
Nova Southeastern University
NSUWorks

CEC Faculty Articles College of Engineering and Computing

4-19-2016

The user attribution problem and the challenge of
persistent surveillance of user activity in complex
networks
Claudio Taglienti
Nova Southeastern University, ctaglienti@comcast.net

James D. Cannady Jr.
Nova Southeastern University, cannady@nova.edu

Follow this and additional works at: http://nsuworks.nova.edu/gscis_facarticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion
in CEC Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Taglienti, Claudio and Cannady, James D. Jr., "The user attribution problem and the challenge of persistent surveillance of user activity
in complex networks" (2016). CEC Faculty Articles. Paper 338.
http://nsuworks.nova.edu/gscis_facarticles/338

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_facarticles?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_facarticles?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_facarticles/338?utm_source=nsuworks.nova.edu%2Fgscis_facarticles%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nsuworks@nova.edu

Page 1 of 68

The User Attribution Problem and the

Challenge of Persistent Surveillance of

User Activity in Complex Networks

Claudio Taglienti

a
, James Cannady

a

a
Nova Southeastern University

Abstract. In telecommunication networks, the user attribution problem refers to the challenge faced in

recognizing communication traffic as belonging to a given user when information needed to identify the user
is missing. This problem becomes more difficult to tackle as users move across many mobile networks

(complex networks) owned and operated by different providers. The traditional approach of using the source

IP address as a tracking identifier does not work when used to identify mobile users. Recent efforts to
address this problem by exclusively relying on web browsing behavior to identify users, brought to light the

challenges of solutions which try to link up multiple user sessions together when these approaches rely

exclusively on the frequency of web sites visited by the user. This study has tackled this problem by utilizing
behavior based identification while accounting for time and the sequential order of web visits by a user.

Hierarchical Temporal Memories (HTM) were used to classify historical navigational patterns for different

users. This approach enables linking multiple user sessions together forgoing the need for a tracking
identifier such as the source IP address. Results are promising. HTMs outperform traditional Markov chains

based approaches and can provide high levels of identification accuracy.

Keywords. Accuracy Scalability, Attribution, Complex Networks, Mobile Networks, Concept Drift

Introduction

The internet of people is becoming the internet of things and it is going to

be mobile. Communication devices attached to gas meters, vending machines,

fleets of trucks, payment kiosks, as well as, android phones enabled as WIFI

routers, ipads, and iphones, all seek, sometimes without requiring human

control, persistent connectivity to different resources via complex networks. In

this new and dynamically evolving environment it is becoming increasingly

difficult to identify these devices and their users.

Complex networks represent graphs with patterns of connectivity that are

neither purely regular nor purely random but instead follow a particular

mathematical function, known as the power law where these graphs expand

continuously with the addition of new vertices and new vertices tend to attach

preferentially to other vertices that are already well connected. The hyperlink

connectivity of documents in the World Wide Web, the pattern of connectivity

of users accessing web documents on the web, the nodes that connect the

internet as well as mobile networks that attach to the internet from multiple

locations all share the properties of complex networks.

Traditionally, users are identified via authentication techniques which

verify the legitimacy of either the user or the device accessing that network.

Page 2 of 68

Once properly authenticated the user/device can access the resources of that

network and potentially other networks for which the user had not been

authenticated. As mobility is becoming pervasive, users continually move

across secured and unsecured networks to access resources available across the

internet. A key question that this study has addressed is: “How can users be

identified when accessing resources across complex networks when no

authentication information is available? The answer to this question has

important implications to identification of malicious users re-entering the

network. In particular, the traditional user identification problem which

leverages authentication to recognize users, morphs into a user attribution

problem when user authentication is not possible. In 2010 Clark and Landau

[12] acknowledged the need for stronger forms of personal identification that

can be observed in the network and defined the attribution problem in terms of

a question: “Why don’t packets have license plates?”. Addressing user

attribution allows users to be recognized among many by attributing a trace of

past user activity to a given user.

While the academic community has recognized this problem and its

complexity, few solutions have been proposed and none address the user

attribution problem that ensues when users move across complex networks

driven by mobility scenarios that have become a mainstream of personal

computing. User identification and user attribution have been addressed in the

context of web usage mining [13, 33, 37, 21, 3, 41] but solutions are strongly

coupled with the web page structure of specific web sites and cannot be applied

in their current form to the more generic user identification problem across

multiple web sites accessed via complex networks. More recently “re-

identification” has been proposed as an approach, used in dynamic networks

like telecommunication networks and the internet, which turns the user

identification problem into a matching problem that involves comparing the

behavior of network entities such as users across time periods [27]. The re-

identification approach has been successfully applied to email-alias detection,

author attribution [26] and identification of fraudulent consumers in

telecommunication networks, but never in the context of complex networks as
defined in this work.

This study makes a contribution to the field of computer information

systems by tackling the highly relevant and current problem of user attribution

by evaluating the impact of the power law distribution and concept drift present

in complex networks. The proposed research has made use of hierarchical

temporal memories to record and classify historical user activity in the form of

unique time ordered user web site visits. This classification ensures that future

user attributions are based on identification of unique patterns of activity that

match prior activity patterns by a given user. Hierarchical temporal memories

represent a new advance in our understanding of how the neocortex part of a

human brain learns and infers sequence patterns over time.

Page 3 of 68

1. The Problem

This research has addressed the challenge that no effective method exists

that can recognize the source of communication entering the network or

returning to a web site by only utilizing the communication traffic of the user.

This problem is further exasperated by the fact that often no form of explicit

(user name/password) or implicit (cookies) authentication is available to

identify the source of communication. When user authentication is not

available, users with their communication traffic can no longer be identified,

instead, users can be recognized based on past user activities and the user
identification problem can be restated as a user attribution problem.

In order to better appreciate the severity of this problem, consider a

malicious user that has been authenticated by an operator network and then

proceeds to hack multiple web servers hosted outside the operator network.

Imagine then, that this user continues to perform malicious activity while

moving between secured and unsecured networks. How can this user be

recognized and stopped? Authentication does not help to identify malicious

authenticated users if the attack occurs away from the authentication point. In

addition, a malicious user can hide his tracks and renew his authentication

credentials by switching periodically between network operators. If user

authentication cannot effectively be used to identify users re-entering the
network then what new approach should be used?

Identification of the source of communication traffic has traditionally relied

on the IP address associated with the source of the connection, utilizing it as

the client or user identifier. This client identification technique has been used to

enforce access-control decisions but suffers from several shortcomings that can

potentially make it ineffective [10]:

 A portion of IP addresses are dynamically assigned to clients upon

initial connection to the network.

 A portion of IP addresses are allocated behind Network Address

Translation (NAT) boxes which hide the real IP address (typically a

private IP address) of the client.

 A portion of IP addresses go through web proxies which cause the

client IP address to be replaced by a new public IP address

A large number of IP traceback techniques have been proposed to identify

the source of communication traffic in the literature as reported by [42, 9, 43,

11, 45]. As pointed out by Santhanam et al [42], most IP traceback schemes are

only capable of tracing up to stepping stones (compromised server) which in

the context of complex networks, are similar to NATs and Web Proxies in that

they assign the source IP address and represent one end point of the

communication, thus hiding the real IP address of the user. In addition,

individual organizations would find it difficult, if not impossible, to

successfully utilize IP tracebacks without the involvement of the upstream

internet service provider [6].

Page 4 of 68

As described, traditional security methods that utilize “IP trace back”

techniques fail to identify the source of communication associated with users

that operate in complex networks (like cellular operator networks) due to the

deployment of large cellular gateways that control the source of

communication (source IP addresses) for millions of users. Specifically,

identification of the source of communication is complicated by the dynamic

assignment of source IP addresses to users by these gateways as well as by the

presence of large scale NAT and web proxy devices in operator networks. It is

difficult to determine how long IP addresses remain allocated to a given user

since IP addresses allocated by cellular gateways, out of very large IP pools,

persist for longer time periods based on operator configuration (up to 24 hours)

than IP addresses modified by NATs or web proxy devices, which are allocated

out of much smaller ranges of IP addresses and change very often, typically for

the duration of a TCP connection.

1.1. Research Questions

These are the research questions that have provided the original motivation
for this study:

 Is it possible to recognize specific users among many in the network by

observing and classifying their historical communication behavior and

be at least as accurate in the classification process measured using

recall as when leveraging comparable classification approaches?

 Does accuracy scale? That is, can the solution maintain the same level

of accuracy, as the communication population (number of sources and

number of destinations contacted by these sources) increases?

1.2. Assumptions

Two assumptions were made for this study:

(1) HTTP (port 80) traffic was selected as the most representative user

communication type traffic since it is used by web browsers which

require direct user intervention to navigate. An implication of this

study is that it will not be possible to separate any traffic initiated

by applications which do not require user intervention/direction but

still utilize port 80.

(2) This study assumes that a user uses a single non shared device for

all experiments.

1.3. Related Work

The popularity of wireless devices and the rise in supported bandwidth by

WiFi and cellular 4G networks has brought to the forefront the user attribution

problem in the context of mobility scenarios. Between 2009 and 2013 several

researchers have tackled this problem. Two generic frequency based

Page 5 of 68

approaches have emerged from this work. One leverages source IP address

based identification to track users and uses frequency of access to visited web

destinations to perform inference. Results from this approach are good in terms

of accuracy and scalability but accuracy decreases dramatically when the

source IP changes. The other approach leverages behavior-based identification

which forgoes tracking via the use of a source IP address and only uses

frequency of access to visited web destinations. Results are promising in terms

of recall accuracy but accuracy does not scale well since frequency of visited

web sites does not provide enough unique differentiation among different users
especially when few popular web sites dominate test data sets.

In 2009 Kumpošt and Matyáš [32] took on the user attribution

problem by leveraging vectors of destination IP addresses bound to specific

source IP addresses and classified users based on similarity between train and

test data measured using TF-IDF. Experiments results are mixed showing 21%

false alarms for SSH, and false alarm rates of 70% and 60% for HTTP and

HTTPS. The authors blame the poor results on students moving across campus

and getting assigned different IP addresses. In 2010 Herrmann, Gerber, Banse

and Federrath [24] use behavior-based identification to tackle the user

attribution problem so that users are identified based on access frequencies of

web destinations within a fixed user time window which satisfies classification

based on a Multinomial Naïve Bayes (MNB) classifier. Experiment results

show correct user identification for 50% of the 28 users 80% of the time.

Assumption of conditional independence among sites visited limits the

scalability of this solution. In 2010, Yang [46] also proposed behavior-based

identification. During inference, support and lift are computed to record the

strength of patterns of visited web sites followed by calculating the Euclidian

difference between learned user patterns and newly inferred ones. Experiment

results show 87% accuracy for 100 users using the support based inference.

However, the author acknowledges the difficulty of scaling up the number of

users due to the inability of the approach to link up consecutive user sessions

belonging to the same user. In order to address the scalability problem Yang

suggests, as future research, combining behavior-based identification with the

use of a tracking identifier like a source IP address. In 2012, Banse, Herrmann,

and Federrath [4] use the triplet <epoch, source IP, destination IP> to identify

user sessions by aggregating all events that share that same epoch (time frame)

and source IP based on a Multinomial Naïve Bayes classifier. Experiment

results show correct user identification for 88% of about 2100 user sessions.

The authors also acknowledge that changing the source IP address frequently

decreases accuracy (60% every 3 hours, 49% every hour). In 2013, Hermann,

Banse and Federrath [25] use again the triplet <epoch, source IP, destination

IP> to identify user sessions by aggregating all events that share that same

epoch (time frame) with a source IP based on a comparison of three

classification approaches: 1) 1-Nearest Neighbor Classifier using Jaccard

coefficient and Cosine Similarity), 2) Multinomial Naïve Bayes and 3) using

Page 6 of 68

lift and support as proposed in Yang [46]. The best accuracy results record up

to 85% recall, using MNB, for over 3000 users with the IP address changing

every 24 hrs. Recall accuracy degrades when the source IP address changes

frequently (65% every 3 hours, 54% every hour). In Yang's study, behavioral

profiling was meant to be used as an additional authentication mechanism (like

a behavioral biometric). Therefore, Yang could assume that the learning

algorithms will have access to a quite large set of labeled sessions for each user.

In fact, the cited result of 87% recall for 100 concurrent users was achieved

with 200 training sessions per user (to derive the support-based patterns for the

profiles) and 100 test sessions, which were processed as a whole to obtain the

support-based profiles, which were to be linked to the training sessions. In

contrast, the work by Herrmann et al. [25] links singular sessions.

Previous research on web mining [21, 37, 41] shows that utilizing the

source IP is a poor choice for identifying users when the source IP address

changes as is the case in mobility scenarios. Previous research also shows that

utilizing exclusively behavior based identification does not scale well. To

understand why consider using the approach proposed in the literature to

identify users that visit 3 popular web sites, say A, B, C. In this case, there

exists a single identifiable pattern <A, B, C> distinguishable only based on the

user frequency of access of each web site. Now consider recording the order of

visits to web sites as an additional way to classify unique patterns. This

approach would increase six fold the number of unique patterns :<ABC>,

<ACB>, <CAB>,<CBA>,<BAC>,<BCA>. Finally, consider taking into

account the time when web sites are visited so that sites visited at

approximately the same time represent a single user timed sequence. Now the

number of unique patterns increases even more: <ABC>, <ACB>,

<CAB>,<CBA>,<BAC>,<BCA>,<A>,,<C>,<AB>,<BC>,<AC>,<CB>,

<CA>,<BA>. Increasing the number of unique identifiable patterns helps

address the presence of popular web sites in the data set creating conditions for

unique differentiation among user patterns that enables to adequately address

the user attribution problem.

2. The Approach

The use of timed sequences is at the heart of the approach used in this

study to address the user attribution problem. Specifically, variable order

Markov chains are used to represent time ordered sequences of web

destinations visited by users. States in the Markov chain represent web sites

visited and transitions between states represent frequency of visits.

Unfortunately, challenges do exist when utilizing traditional Markov chains:

(1) Higher Order Markov Chains increase accuracy but decrease coverage [15].
(2) Markov chains incorrectly recognize never learned before sequences [14].

Page 7 of 68

When using Markov chains it is difficult to match many different

sequences (high coverage) accurately. The challenge lies in how input

sequences are matched against learned input within Markov chains. The

learned sequence within a Markov chain matched against the input is known as

“context”. The most flexible type of Markov chain is the variable order

Markov chain where the order (length) of the context is allowed to vary.

Variable order Markov chains like PPM-C [35] and All-K [38] attempt to

match exactly the input sequence against a context of size N (where N

represents the order of the Markov chain). If a match is not found then the input

sequence is matched against a shorter context of size N-1, and onward

decreasing the size of the learned sequence in the Markov chain until a match is

found or a mismatch is declared. In 2004, Deshpande and Karypis [15] have

shown that matching a size N context increases accuracy but decreases

coverage (few sequences are identified accurately), while decreasing the size of

N upon mismatches increases coverage but decreases accuracy (many

sequences identified with lower accuracy). Ultimately it is desirable to achieve
both high accuracy and high coverage.

In this study, Markov chain accuracy will be improved using a technique

known as state cloning [14] and further extended with a technique known as

“Sequence Cloning” introduced for the first time in this study. Consider the

Markov chain shown in Fig. 1 created with sequences abd and xbc. Note that

this Markov chain will recognize and generate one of the following four

sequences: abd, abc, xbd or xbc, where sequences abc and xbd were never
learned.

Figure 1 Loss of accuracy in Markov chain

The problem lies with shared state “b” which has the property that its in-

degree and out-degree are both greater than 1. When this occurs, the Markov

chain will identify more sequences than were learned. To address this problem

state cloning (duplicating the shared state) is traditionally used to address the
issue as shown in Fig. 2.

Page 8 of 68

Figure 2 State Cloning

However, traditional state cloning is not always sufficient to address
situations were multiple states are shared as shown in Fig. 3.

Figure 3 Limitations of State Cloning

The Markov chain in Fig.3 originally learned sequences <5, 1, 2, 3> and <1,

2, 3, 4> yet two more sequences are identified. Note that the single node

cloning conditions are not violated, yet this graph produces two sequences that

were never learned: 1, 2, 3 and 5, 1, 2, 3, 4. In this case, the problem occurs at

the transitions covered by points a and b. These transitions allow the generation

through shared nodes 1 and 3 of more than 2 sequences. Namely: <1, 2, 3, 4>,

<1,2,3>, <5,1,2,3>, <5,1,2,3,4>. To address this problem the state cloning

approach is extended to cover sequences of shared states such that sequence

cloning is needed when the first shared node in a sequence of shared nodes has

an in-degree greater than 1 and the last shared node in a sequence of shared

nodes has an out-degree also greater than 1. By duplicating all shared states we

solve the problem as shown in Fig. 4. Note that both state and sequence cloning

increase accuracy but also increase the number of nodes in a Markov chain.

This study introduces the idea of accurately matching a learned timed

sequence (context) loosely not necessarily exactly using a combination of

longest common subsequence and longest common substring calculations

instead of matching “exactly” the context of learned sequences stored in
variable order Markov chains.

Page 9 of 68

Figure 4 Sequence Cloning

While use of timed sequences of visited web destinations allows increasing

the discriminating power of the solution, there still is a need to link up multiple

user sessions (sequences) in order to address the poor scalability problem faced

by behavioral based identification techniques that forgo the use of a tracking

identifier like the source IP address. In this study, hierarchical temporal

memories (HTMs) are used to address this need.

A Hierarchical Temporal Memory (HTM) is a technology that is modeled

on the algorithms used in the neocortex of the brain [19, 23]. Network nodes in

an HTM, are organized in a hierarchical way, with each node implementing

learning and memory functions. Hierarchical Temporal Memories are an

appropriate tool to study complex networks. HTMs perform well when the data

they process support a hierarchical structure. Ravasz and Barabasi [40] show

that the scale free and high degree of clustering of complex networks like the

World Wide Web are the consequence of a hierarchical organization. They

show that a small group of nodes, such as communities of interest in the WWW,

organize in a hierarchical manner forming larger groups, while still maintaining

a scale free topology. This self-similar nesting of different groups into other

groups forces a hierarchical structure that well fits the ability of HTMs to

correlate groups that are close in space and time. For more information on why

HTMs were chosen to deal with complex networks see Appendix G.

2.1. HTM Inputs

The next few sections will introduce many terms, computations and

symbols which are defined in Appendix I. Figure 7 shows a typical HTM with

its inputs. Input sequence (IS) is the input sequence being matched by a given

HTM layer. For HTM layer 1, IS is a sequence of web destinations (in a real

cellular network these are extracted from HTTP requests) and for HTM layers

2 and 3 it is a sequence of temporal groups (variable order Markov chains)

matched in the layer below. At layer 1, input is of the form: Timestamp<TS,

Dest> where the format of this input is fully described in the “Session

Identification” section.

Page 10 of 68

At HTM layers 2 and 3 input is of the form: λ𝐿𝑥 < 𝐹𝐹𝐵𝑔𝑖

, 𝐹𝐹𝐵𝑔𝑖+1,𝐹𝐹𝐵𝑔𝑖+2,… > where 2 ≤ x ≤ 3 represent layers above the first HTM

layer and 1 ≤ i ≤ the number of Markov Chains at HTM layer Lx-1. λ𝐿𝑥 is a

vector of feed forward beliefs, which measures how well inputs match learned

sequences and is a vector where only one index is filled based on which

temporal group gi matched the input at the lower layer Lx-1 of the HTM. The

λ𝐿𝑥 vector represents the input for HTM layers 2 and 3 where the index of the

entry in the vector that is filled represents the feed forward belief of the specific

temporal group gi is received from lower HTM layers. For instance, vectors

λ𝐿2<0, 0.4, 0> and λ𝐿2<0.8, 0, 0>, show layer 2 of the HTM receiving from

layer 1 a sequence of temporal groups 𝑆𝑔21(g2, g1) with feed forward belief

values of 40% and 80% for temporal groups 2 and 1 respectively.

2.1.1. Session Identification

In this study, the TCP timestamp TS value [29] is used to identify and track

user sessions only during the training phase of experiments. The use of TCP

timestamps was inspired by the work of Kohno, Broido and Claffy [30]. These

authors proposed device recognition by fingerprinting devices via detection of

changes in clock skews among different devices using the TCP Timestamp

option. Kohno et al., believe that their approach can be used to identify the

same physical device among a large number of devices since there exist

variability in the clock skew of different physical devices, and it holds that the

clock skew for a given device is constant and independent of network access

technology. This approach differs from the way in which TCP timestamps are

used in this study, where they are leveraged to track directly user sessions and

consider clock skew not as a unique fingerprint for devices but instead noise

that will decrease the tracking capabilities of this session identification

approach. In general, any fingerprinting approach which identifies a logical

source (e.g. source IP address) or a physical device as done in Kohno et al.

suffers in deployments which obfuscate the source. This becomes particularly

problematic in session identification when trying to link up TCP packets

belonging to the same user. Consider fingerprinting a device as proposed in

Kohno et al. which requires the TCP timestamp value to be passed unchanged

through a middle box. Many middle boxes deployed in cellular networks act as

“proxies” by splitting the TCP connection between the device and the origin

server into two separate TCP connections which cause the origin server to

negotiate TCP timestamp options with the middle box instead of the device

[28]. This causes the middle box to be mistaken for the real source. This is not

a problem when TCP timestamps are used for session identification as

proposed in this study. The ability to link up TCP packets belonging to the

same user during training will not be impacted whether tapping of

communication traffic occurs between device and middle box or middle box

and origin server. This is because this approach does not track the source but

connections and in this case both connections are surrogates for the single end

Page 11 of 68

to end connection between device and origin server. We are not aware of other

work that leveraged TCP timestamps to track communication sessions as was

done for this study.

Training of HTMs is completely unsupervised and leverages the

tracking strength of the TS value to identify consecutive web visits as

belonging to the same user session (observation). This is different from the

supervised training approach used by Yang in her experiments where a label

(user-id) was used to train her inference model. During training, in this study,

session identification and user identification are one and the same. During the

inference stage the assumption that a specific session belongs to a given user

no longer holds and instead the TS value is only used to identify an anonymous

session (a set of consecutive web visits belonging to an unknown user that

make up an observation). The task of assigning an anonymous session to a

specific user is carried out by the Markov chains performing inference within

the different layers of each HTM based on past learned patterns of users’

sessions (web visits). All HTMs attempt to recognize each anonymous session

and only one HTM will be able to recognize it better than the other HTMs

based on its past training.

Beacken et al. [7] have discovered that the TCP Timestamp field used for

iphones always starts at the same date/value when the device is restarted but for

android devices, the TCP timestamp value on device power up is random. They

state that this allows one to be able to distinguish iphones from android type

devices. In this study, the TCP time stamp value, a 32 bit value, which

implements a virtual clock on each device, is used to uniquely identify unique

sessions associated with a given user. The prototype built for this study

identifies multiple communication sessions during the training phase of

learning that belong to different users by tracking the unique TS value (TS) of

each device. During training, all communication input associated with a given

<TS> value within a given time window is fed to a hierarchical temporal

memory (HTM) to identify the communication patterns associated with

sessions belonging to different users. These communication patterns are

defined in terms of the destinations (Dest, a number mapping to the IP address

of the web site) visited by this user. The timestamp, calculated from the input

at HTM layer 1, has a resolution of 1 millisecond and represents the passage of

time with respect to the arrival of input to the HTM. The time stamp is

specifically needed to distinguish multiple <TS, Dest> input pairs immediately

following each other with potentially the same TCP time stamp values, as

either all arriving at the same time or at different times.

The algorithm in Fig.5 was used to implement communication session

identification during the training phase of classification and selection of

appropriate HTMs to perform communication pattern identification.

Each HTMUx once created runs a virtual clock with a 1 ms resolution used

to track the TS value of sessions associated with this HTM. The allowed TS

clock window was computed as follows: Allowed-TS-Clock-Window = [TSv +

Page 12 of 68

Clock()] ± Clock-Skew-Factor. The computation TSv + Clock() needs to

account for wrap around at 2
32

. The Clock-Skew-Factor is a fixed maximum

allowed clock skew.

Unfortunately, using a fixed window offset from the currently received

TCP TS counter to measure clock skew, can potentially either underestimate

(lose a single tracked user session) the clock skew with a window that is too

small or overestimate (identify a single user session as belonging to multiple

user sessions) the clock skew with a window that is too large. A possible way

to address this problem is to allow for dynamic resynchronization of the HTM

TS counter with a tracked source based on how much of an offset (within a

window) a given new received TCP timestamp is from the existing HTM TS

counter. This approach would use the new TCP time stamp received as the new

TS counter value each time the new TS value is within the window but does

not match exactly the current HTM TS counter. This could address the

potential increase in clock skew that occurs over time overcoming the

limitations of a fixed HTM TS counter. With this newly proposed approach, it

will be possible to use a small window size since the algorithm is able to adjust

to clock skew over time. The benefit of this approach, as well as determining

the best size for the clock skew window, is an area of further research that

should be based on the empirical results of studying the characteristics of clock

skew of mobile devices in real mobile networks.

Figure 5 TCP Timestamp Session Identification Algorithm

2.2. How the HTM Works

Each HTM learns and then performs inference. Learning occurs in an

unsupervised manner, starting from the bottom layer of the HTM, one layer at a

time. Layer 1 learns first. After that, layer 2 learns and once layer 2 is done

learning layer 3 completes learning. During training a new HTM is created for

each user each time a not seen before user session (based on TCP timestamp

IF (Given input: <TSv,Dest>, TSv is out of range of allowed TS clock skew window for any

HTMUx)THEN

// New user not identified before
 // Create a new HTM to track communication patterns from this source

- Create New HTMUx (Timestamp:<TSv,Dest>)

ELSE IF (Given input: <TSv,Dest>, TSv is in range of allowed TS clock skew window for a single
HTMUx) THEN

 // Existing user already being tracked

- Invoke existing HTMUx (Timestamp:<TSv,Dest>)

ELSE // The TCP timestamp matches more than one HTM

- Drop the input

- Update counter: Unable-to-Distinguish-Session

ENDIF

Page 13 of 68

tracking) is encountered. Learning entails both spatial and temporal learning.

Spatial learning at layer 1 covers identification of individual sequences of web

destinations, while at layer 2 and 3 it covers identification of individual

sequences of coincidences (temporal groups representing Markov chains
matched from the layer below).

Initial learning is completed at each HTM layer with creation of a single

Markov graph representing all learned sequences within that HTM layer. At the

end of training this single graph is split into many variable order Markov

chains by merging all nodes that are most highly connected into one of several

Markov chains based on a depth first traversal of the Markov graph (see Fig. 6)

thus ensuring that sequences are maintained and not broken up and that
sequences held in Markov chains do not overlap.

Figure 6 Algorithm to create Markov Chains from a single Markov Graph

These Markov chains represent destinations or coincidences (temporal

groups) that are highly temporally correlated based the specific temporal order
in which they follow each other.

After learning is completed at a given HTM layer, playback occurs. During

playback, each HTM at layer Ln which completed learning is used to bootstrap

learning for the layer above Ln+1 using the already learned sequences at layer

Ln. Playback (an approach introduced in this study) improves the time it takes

to train the HTM and allows higher layers to learn higher level concepts that

are consistent with the lower level concepts learned by the layers below. In the

playback stage, learned sequences at layer n are generated in increasing order

of time, so that layer n+1 can correctly learn higher level concepts from the

layer below. This in effect simulates the HTM been retrained on the same input

used to train the layer below. In order to generate sequences in increasing time

order (from oldest to most recent), each node in the Markov graph holds a

FIFO queue of timestamps. Each time stamp represents the time when a node

was created or modified by updating or adding incoming or outgoing links

While there are more nodes to be processed from the Markov graph Do

- Pick the next node (seed node) from the Markov graph not yet processed adjacent

to the “Start” state. This seed node is the first node of a new Markov Chain gi

- Perform a depth first traversal of the Markov graph originating from the seed

node and add all traversed nodes to Markov Chain gi that have not been processed

yet

- Potentially merge this Markov Chain gi with another already processed Markov

Chain gx if Markov Chain gi has elements in common (same node in the Markov
graph) with Markov Chain gx. When merging, smaller Markov chains get merged

into larger ones.

EnDo

Page 14 of 68

to/from this node. Time ordered sequence generation is achieved by traversing

the Markov graph at each layer of the HTM, starting from the “start” state,

while removing from the front of the FIFO queues timestamps associated with

nodes with the least recent (oldest) timestamp for each transition up to the
“final” state.

During inference the HTM layer collects input until a sequence is formed.

The spatial and temporal poolers at each layer of the HTM ensure that

sequences are created so that nodes that follow each other in space (sequential

order of inputs) and time (timely order of inputs) are grouped together creating

a sequence matched against learned sequences of coincidences (stored within

variable order Markov chains gi). The HTM spatial and temporal poolers

terminate a sequence and start another under one of the following terminating

conditions: (TC1) A fixed maximum input size has been processed. (TC2) A

maximum learned inter destinations arrival rate is exceeded. (TC3) The same

destination is already present in the sequence (HTM version 1). Note that only
HTM layer 1 uses terminating condition TC2.

Each HTM layer matches the input sequence collected against learned

sequences held in Markov chains and finds the best (longest) matching learned

sequence (LLS). Each HTM layer computes the feed forward belief (λ) of the

best matching learned sequence (LLS). This feed forward belief combines the

degree of membership (how well input matches learned sequences) and

persistence (how often a matched learned sequence is visited). Belief

propagation occurs when HTM layer n passes as input the feed forward belief (

λ) to HTM layer n+1. Belief propagation for casual (Bayesian) networks was

first proposed by Judea Pearl [36] and then adapted to HTMs by Deleep

George [19].

The output that is sent to the Max Output Layer (see Fig. 8) from each HTM

includes identification of the specific HTM and provides the feed forward

belief of the matched observation input across all layers of that HTM. The Max

Output Layer aggregates the feed forward beliefs (λOutput) of up to one

observation worth of data (50 web sites) from each HTM using one of seven

HTM algorithms and then selects the HTM (user) with the maximum

aggregated feed forward belief value among all HTMs as the one that best

matches the HTM layer 1 input.

HTMs use one of seven algorithms proposed in this study (detailed in

section “HTM Algorithms Calculations”) to aggregate feed forward beliefs and

to determine how well an observation matches HTMs’ learned input. Each one

of the seven different HTM algorithms (based on the HTM layer where they

are applied 1 or 3) combines feed forward beliefs associated with a given input

observation based on one of three generic algorithms: average, weighted sum

and path probability. The average based algorithm simply computes the

averages of feed forward beliefs associated with a given observation. Weighted

Page 15 of 68

sum algorithms (BottomUp and TopTop) use weights proportional to the size

of an observation matched by a given feed forward belief. The BottomUp

algorithm aggregates the feed forward belief with weights proportional to an

observation at layer 1 so that the degree of membership calculation at higher

layers will be impacted by this weight as the feed forward belief travels up the

HTM layers (see Table 1). The TopTop algorithm aggregates the feed forward

belief with weights proportional to an observation matched at layer 3. The Path

Probability algorithm leverages the idea of independence among feed forward

beliefs and simply multiplies together the feed forward beliefs belonging to a

given observation.

Figure 7 Hierarchical Temporal Memory layers

2.3. Feed Forward Belief Calculations

As shown in Fig. 7 the key computation performed by HTMs creates

groups of feed forward beliefs (λ<FFBs>) that match the input presented to

each HTM layer. The idea is to find the longest learned sequence (LLS) out of

Page 16 of 68

all the learned sequences in all of the Markov chains in a given HTM layer

which best matches (has the highest degree of membership (DM) as shown in

equation (8)) the input sequence (IS). The calculation of DM and persistence

(SP equation (7)) of the matched LLS represents how well inferred input (IS) is

matched against learned input. In terms of notation: (Abbreviation) Function

name (Arg1,…Argn) represents a function “Function name” which takes n

arguments Arg1,…Argn and is referenced using the abbreviated name

“Abbreviation”. The rest of this section presents the key calculations necessary

to compute feed forward beliefs (equations 9 and 10) that are calculated within

each HTM layer before being propagated up to next layer. Refer to Appendix I

for specific explanations of abbreviations used in this section.

 (ALLLS_Cond) Adjusted Length LLS Condition(IS, cLLS) =

 if IS is a substring of cLLS and IS1 = cLLS1 and | cLLS | > |IS|

(ALLLS)Adjusted Length LLS(IS, cLLS) = {
 |𝐼𝑆| ALLLS_Cond
max(|𝐼𝑆|, |𝑐𝐿𝐿𝑆|) otherwise

 (LCSm) Longest Common Subsequence Measure(IS, cLLS) =
|𝐿𝐶𝑆(𝐼𝑆,𝑐𝐿𝐿𝑆) |

𝐴𝐿𝐿𝐿𝑆(𝐼𝑆,𝑐𝐿𝐿𝑆)
 (1)

(LCSUm) Longest Common Substring Measure (IS,cLLS) =
|𝐿𝐶𝑆𝑢(𝐼𝑆,𝑐𝐿𝐿𝑆) |

𝐴𝐿𝐿𝐿𝑆(𝐼𝑆,𝑐𝐿𝐿𝑆)
 (2)

See Appendix C for an example of how to use equations (1) and (2).

(Fq) Frequency of visits (cLLSi) = Number of times cLLSi occurs in Markov chain gi

within this HTM layer across all Markov chains in that HTM layer (3)

NLS = Number of all learned sequences within a given HTM layer

(Ps) Persistence (cLLS) =
𝐹𝑞(𝑐𝐿𝐿𝑆)

𝑁𝐿𝑆
 (4)

Similarity Weights = Ws + Wu + Wp = 1.0 (5)

 where in this study Ws = 0.495, Wu = 0.495, Wp = 0.01

(SS) Sequence Similarity (IS, cLLS) = (6)

 (LCSm(IS, cLLS) × Ws) + (LCSUm(IS, cLLS) × Wu)

(SP) Sequence Persistence (cLLS) = (Ps(cLLS) × Wp) (7)

(DM) Degree of Membership (IS, cLLS) = (8)

 𝑚𝑎𝑥𝐿𝐿𝑆(SS (IS, cLLS)) when |∀s, SS (IS, cLLS)> SS(IS,s) | == 1 (8.a)

 𝑚𝑎𝑥𝐿𝐿𝑆(SS (IS, cLLS) , SP(cLLS)) when |∀s, SS (IS, cLLS)> SS(IS,s) | > 1 (8.b)

 where s = all learned sequences, including cLLS, in a given HTM layer

Page 17 of 68

The best matching LLS is that candidate LLS (cLLS), in a given HTM

layer, that has the maximum degree of membership value when measured

against the input sequence (IS). For instance, assume IS = <S1, S3> which

matches cLLS1 <S1,S2,S3,S4> and cLLS2 = <S1, S3, S6> in Fig.14, then LLS
which satisfies DM(IS,cLLS) is cLLS2 since:
 LCSm(IS,cLLS) = LCSm(IS, cLLS2) = 2/2

 LCSUm =(IS,cLLS) = LCSu(IS, cLLS2) = 2/2

 LCSm(IS,cLLS) = LCSm(IS, cLLS1) = 2/4

 LCSUm =(IS,cLLS) = LCSu(IS, cLLS1) = 1/4

 SS(IS, cLLS1) = (0.5 × 0.495) + (0.25 × 0.495)

 SS(IS, cLLS2) = (1 × 0.495) + (1 × 0.495)

 SS(IS, cLLS2) > SS(IS, cLLS1) then based on (8.a) 𝑚𝑎𝑥𝐿𝐿𝑆(SS (IS, cLLS)) is

 cLLS2.

When more than one cLLS sequence exists with the same maximum

sequence similarity values then the more persistent of these cLLS sequences is

chosen. Consider a different example where IS = <S1, S6> and from Fig.14

cLSS1 = <S1, S8, S6> and cLSS2 = <S1, S3, S6>, in this case equation 8.b is used

since two sequences have the same sequence similarity values, namely

|SS(IS,cLLS1) = SS(IS,cLLS2)| > 1. In this case, LLS = <S1, S3, S6> since
SP(cLLS2) = 2/16 > SP(cLLS1) = 1/16

(FFB) Feed Forward Belief (IS, LLS) = (9)

 min(1.0, DM (IS, LLS) + SP(LLS)) where min is the minimum function

FFB(IS,LLS) is the feed forward belief used with all HTM algorithms except

for path probability. The feed forward belief applied with the path probability

HTM algorithm (see section “HTM Algorithm Calculations” for details) is

shown below:

(FFB_PP) Path Probability of LLS (LLS) = (10)

P(LLS) = P(LLS1) × P(LLS2| LLS1) × P(LLS3| LLS1 LLS2) × .. P(LLSn| LLS1…LLSn-1),

where:

P(LLS1) = {
𝐹𝑞(𝐿𝐿𝑆1)

NLS
 if 𝐿𝐿𝑆1 = 𝐼𝑆1

penalty = 0.0001 otherwise
 (11)

 where penalty is an error probability for mismatches against IS.

Fq(LSS j→k) = Frequency of visits across node transition j→k

P(LLSk | LLSj) =
𝑭𝒒(𝑳𝑳𝑺𝒋→𝒌)

𝑭𝒒(𝑳𝑳𝑺𝒋)
 where k,j > 1 (12)

Page 18 of 68

2.4. Feed Forward Belief Propagation Calculations

Feed forward beliefs propagate through HTM layers, as shown in Fig. 7,

following the formulas shown in Table 1. Feed forward beliefs exiting the

output (last) HTM layer will be directed to the Max HTM output layer, shared

across all HTMs, which aggregates feed forward beliefs for an each

observation worth of inputs (see Fig. 8).

Table 1. FEED FORWARD BELIEFS FOR EACH HTM LAYER

HTM Layers Feed Forward Beliefs Propagation

MAX HTM

Output layer

Output

(𝑶𝑹)𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑹𝒆𝒔𝒖𝒍𝒕 = < HTM_name, MAX_FFB_HTMs, Observation

input>, 𝐻𝑇𝑀_𝑛𝑎𝑚𝑒 is the name of the HTM matching Observation input with the
highest aggregated feed forward belief value computed using MAX_FFB_HTMs

for 𝑆λOutput𝑘..𝑘+𝑁 over all HTMs.

HTM1..M

Layer 3

Output/MAX

HTM Output

layer Input

λOutput = {
𝑭𝑭𝑩_𝑷𝑷𝒈𝒌(𝑳𝑳𝑺) × (𝑰𝑨𝑳𝑺𝒈𝒋..𝒋+𝑵) if HTM algorithm is Path Probability

𝑭𝑭𝑩𝒈𝒌(𝑺𝒈𝒋..𝒋+𝑵, 𝑳𝑳𝑺) × (𝑰𝑨𝑳𝑺𝒈𝒋..𝒋+𝑵) otherwise

 (13)

 where 1 ≤ k ≤ Number of Markov Chains at HTM layer 3. Note that when the

HTM is configured with only 1 layer then λL2 = λOutput

HTM1..M

Layer2

Output/

HTM1..M

Layer3 Input

λL3 = {
𝑭𝑭𝑩_𝑷𝑷𝒈𝒋(𝑳𝑳𝑺) × (𝑰𝑨𝑳𝑺𝒈𝒊..𝒊+𝑵) if HTM algorithm is Path Probability

𝑭𝑭𝑩𝒈𝒋(𝑺𝒈𝒊..𝒊+𝑵, 𝑳𝑳𝑺) × (𝑰𝑨𝑳𝑺𝒈𝒊..𝒊+𝑵) otherwise

 (14)

 where 1 ≤ j ≤ Number of Markov Chains at HTM layer L2

HTM1..M

Layer1

Output/

HTM1..M

Layer2 Input

λL2 ={

𝑭𝑭𝑩𝒈𝒊(𝑰𝑺, 𝑳𝑳𝑺) × (
|𝑰𝑺|

𝑶𝑺
) if HTM algorithm is BottomUP

𝑭𝑭𝑩_𝑷𝑷𝒈𝒊(𝑳𝑳𝑺) if HTM algorithm is Path Probability

𝑭𝑭𝑩𝒈𝒊(𝑰𝑺, 𝑳𝑳𝑺) otherwise

 (15)

where 1 ≤ i ≤ Number of Markov Chains at HTM layer L1 and Observation size

is 50

HTM1..M

Layer1 Input

received

from the

network

Timestamp<TS,Dest1> … Timestamp<TS,DestN>

The input activation level equation shown below measures the strength of a

match between input and learned sequences and is further defined in Appendix

I.
(𝐼𝐴𝐿𝑆𝑔𝑖..𝑖+𝑁) Input Activation Level(𝑆𝑔𝑖..𝑖+𝑁 , 𝐹𝐹𝐵𝒈𝒊) = (16)

 min (1.0,
 ∑ 𝐹𝐹𝐵𝒈𝒊

|𝑺𝒈𝒊..𝒊+𝑵|
𝒊=𝟏

|𝑺𝒈𝒊..𝒊+𝑵|
)

Page 19 of 68

2.5. HTM Algorithms Calculations

The seven HTM algorithms described in previous sections are

implemented based on the three generic algorithms defined by equations 18, 19

and 20. The algorithms are deployed mainly in the Max Output Layer and also

across the HTM layers for the Path probability and BottomUP algorithms. Fig.

8 shows λOutput which represents the feed forward belief output from layer 3 of

an HTM to the Max Output layer and 𝑆λOutput𝑘..𝑘+𝑁 which is a sequence of

such feed forward beliefs. These parameters are used by the Max output layer

to compute the highest valued feed forward belief for a given observation using

the formula shown below.

(MAX_FFB_HTMs) Max Feed Forward Belief for HTMs(𝑆λOutput𝑘..𝑘+𝑁) = (17)

 𝑚𝑎𝑥𝐻𝑇𝑀1..𝑀 (HTM_Algorithma(𝑆λOutput𝑘..𝑘+𝑁)) where a is one of 3

generic HTM algorithms (Average, Weighted Sum, Path Probability) , 1 ≤ M

≤ number of HTMs/users learned during training, HTM1..M is the name of all

HTMs learned during training.

Figure 8 HTM Max Output Layer Inputs and Output

The three generic HTM algorithms which process feed forward beliefs
within the Max HTM Output Layer are shown below:

NB = |𝑆λOutput𝑘..𝑘+𝑁 | is the number of beliefs per observation.

Average (𝑆λOutput𝑘..𝑘+𝑁) = (∑ λOutput𝑁𝐵
𝑘=1 𝑘

) /NB (18)

Page 20 of 68

 Weighted Sum (𝑆λOutput𝑘..𝑘+𝑁 , ISk, OS) = (19)

 ∑ (λOutput 𝑘 ×
|𝐼𝑆𝑘|

𝑂𝑆
)𝑁𝐵

𝑘=1 where ISk is HTM layer 1 input

sequence associated with λOutput𝑘 and OS = Observation size (50 web

destinations at HTM layer 1)

 Path Probability (𝑆λOutput𝑘..𝑘+𝑁) = ∏ λOutput 𝑘
𝑁𝐵
𝑘=1 (20)

See Appendix E for an example on how the Max HTM Ouput layer utilizes

HTM algorithms. Table 2 provides more details about which HTM layer

provides inputs to the Max Output layer for specific HTM algorithms.

Table 2 HTM Algorithms

HTM Algorithms HTM Generic

Algorithms

(HTM_Algorithma)

HTM Layers

supplying input to

Max HTM Output

Average Average 1,3

TopTop Weighted Sum 3

ButtomUP Average 1,3

Path Probability Path Probability 1,3

How to read table 2: The Average and BottomUP HTM algorithms use the

average generic HTM algorithm with inputs to Max HTM Output Layer from

HTM layers 1 and 3 (see Fig.8). The TopTop HTM algorithm uses the

weighted sum algorithm with inputs exclusively from layer 3. Allowing HTM

algorithms to generate inputs from either HTM layer 1 or 3 was done to enable

verification of HTMs with and without HTM hierarchies. The BottomUp

algorithm, takes the average of feed forward beliefs at the Max HTM Output

Layer computed using the weighted sum at layer 1 (see Table 1 equation (15)).

This was done to normalize differences in calculations due to large number of

beliefs produced from layer 1 versus the few number of beliefs produced from
layer 3 of HTMs.

3. Experiments

The HTM together with the entire set of tools needed to support the

experiments conducted in this study were developed from scratch in Java. It

became critical then to qualify the HTM to guarantee its correct

implementation before performing any experiments. A “calibration” procedure

was used to ensure that experiments run using all seven HTM algorithms, as

well as, all alternate Markov chain based algorithms would be able to recognize

users using their own trained data set instead of a different test data set,

achieving in the case of synthetic data sets, 100% recall accuracy results. This

initial calibration criterion was used to qualify each one of the HTMs and

Page 21 of 68

alternate Markov chains algorithms as being correctly implemented with

respect to their ability to accurately train and infer their own input. It became

also important to create reference data sets for the experiments themselves,

allowing validation of the algorithms against a well understood baseline. For

this purpose synthetic data sets were created (see Appendix F for a description

of how synthetic data was created to be as close as possible to real network

data). Only if the HTM and alternate Markov chain algorithms could achieve

high levels of recall accuracy with these synthetic data sets would a

corresponding new set of experiments be conducted with real network data

extracted from an operator cellular network. In this study a total of 514

experiments were conducted utilizing synthetic data and 228 experiments

utilizing real network data.

Table 3 shows the entire set of experiments conducted in this study. All

experiments test the ability of the seven HTM algorithms to attribute

communication traffic to users under test. In addition, four alternate algorithms

based on Markov chains (MC) were also tested (E1, E2, E6) in order to compare

the HTM inference recall accuracy performance against traditional algorithms

that, like HTM algorithms, recognize sequences leveraging Markov chains. A

single experiment usually entails training either the HTM using one of the

seven HTM algorithms or training one of four MC algorithms on a specific

data set (synthetic or real) to perform a specific experiment such as user

identification. User identification experiments with synthetic data sets were

performed without noise (E1) and with noise introduced in the test data set in

the form of either concept drift (E2) or in the form of DOS or Phish attacks (E3,

E4). The ability to maintain high levels of recall accuracy performance with

increasing number of users (E1, E5) and increasing number of destinations (E1)

was also measured. Similar experiments were also performed utilizing data sets

collected from a real cellular network (E6-E11). Experiments E13 and E14 verify

the ability of the HTM to identify users, utilizing real network data, by

continuing to learn during the inference phase of the experiment instead of just

learning during the train phase of the experiment. Experiments E12 measure the

accuracy of session identification performed during the train phase of user

identification experiments.

Markov chain based algorithms were chosen because of Markov chains’

ability to recognize sequences and because the HTM also uses Markov chains,

albeit with modifications. The following types of Markov chains (MC) were

used to baseline this work: [Fixed Order] 1st Order Markov Chains, [Fixed

Order] 3rd Order Markov Chains, [Variable Order] All-K Markov model,
where K=3, [Variable Order] (PPM-C) Prediction by Partial Match, where K=3.

In this study, mismatches found by MC based algorithms between learned and

new input sequences are assigned a fixed penalty when using fixed order

Markov chains and a variable penalty proportional to the number of different

Page 22 of 68

destinations matched so far and their frequencies when using variable order
Markov chains.

Table 3. FOURTEEN SETS OF EXPERIMENT FOR THIS STUDY

Experiment Types (E1-14)

Data Type

Number of

Experiments

using HTM

Algorithms (7)

Number of

Experiments

using

alternate

MC

Algorithms

(4)

(E1) User Identification no concept drift Synthetic 210 120

(E2) User Identification with concept drift Synthetic 84 48

(E3) User Identification under DOS attack Synthetic 21 -

(E4) User Identification under Phish attack Synthetic 21 -

(E5) HTM Accuracy Scalability Synthetic 10 -

(E6) User Identification Alternate MC Real - 24

(E7) User Identification HTM2++ Real 42 -

(E8))User Identification HTM2 Real 42 -

(E9) User Identification HTM1 Real 42 -

(E10) User Identification under DOS attack Real 21 -

(E11) User Identification under Phish attack Real 21 -

(E12) Session Identification Real 18 -

(E13) User Identification continuous learning Real 12 -

(E14) User Identification under DOS attack

 with continuous learning
 Real 6 -

3.1. Experiments Using Synthetic Data

Three hundred and thirty experiments (E1) were conducted using synthetic

data without simulating context drift which used 1000, 5000, and 10,000

visited web destinations. These experiments simulated 5, 20, 50, 100, 500 users

accessing the network using 5 days’ worth of train data and either one or two

days’ worth of test data or just 3 observations (one observation “Obs” equals

50 visited web destinations) worth of test data per user. For instance, Table 21

in Appendix H shows that for 5 users and 1000 visited web destinations, 11

experiments are executed using 5 train days and 1 test day (5/1), 11

experiments using 2 days’ worth of test data(5/2), 11 experiments using 3

observations (3 Obs) worth of test data for a total of 33 experiments. On the

other hand for 500 users using 5000 destinations Table 21 shows 11
experiments being executed using 3 observations in the test data set.

All 132 concept drift experiments (E2) shown in Table 22 in Appendix H

involved visits to 1000 web destinations with 5 users, with 5,10,15,20 training

days and 2,3,4,5 test days’ worth of test data respectively (see Appendix F for a

description of how concept drift was simulated using a random walk algorithm).

Concept drift is introduces in the form of 20% new destinations and 10% new

Page 23 of 68

transitions between destinations not in the original train data set. The first line
of Table 22 represents the baseline (no concept drift).

In this study, users are identified based on their normal behavior and

anomalous traffic is introduced as a form of noise to understand how much user

identification accuracy is lost when noise (in the form of an attack) is

introduced in the normal communication traffic patterns of users. The idea is

not to identify the attack traffic but to identify normal traffic (tied to a specific

user) in spite of the presence of embedded attack traffic (noise). The

assumption is that when noise is introduced in the form of a phish or DOS

attack from the device, it is due to the device having been compromised,

possibly based on a download of an infected application. As the subscriber uses

his mobile device to browse the internet (normal behavior) the malicious app is

at work in the background, launching its phish or DOS attacks. Table 23 in

Appendix H shows twenty-one experiments (E3) which were conducted with

HTM algorithms by simulating denial of service attacks, embedded within

synthetic network data, where the attack is initiated from individual devices

during the test phase to a number of destinations (5, 10, 20) learned at train

time. The destinations are attacked repeatedly over time (within a time interval

of 5, 10, 20 ms and spaced by a fixed time interval of 5 ms). The idea is to

determine how well the HTM can continue to identify users before and after

the attack. In these experiments 10 users are used and 4 of them are assumed to

be infected and to start DOS attacks during the test phase. The motivation for

attacking destinations learned at train time is based on the assumption that

perpetrators of DOS attacks typically target sites or services hosted on high-

profile web servers such as on-line retailers, banks, credit card payment

gateways which are likely to have been visited by the user, thus making the

attack less likely to be detected (less conspicuous).

Table 24 in Appendix H shows twenty-one experiments which simulate

phishing attacks (E4), embedded within synthetic network data, which were run

using HTM algorithms. For these experiments, attacks are initiated from

individual devices during the test phase where unique destinations (1, 3, 5) are

randomly selected from outside the user training data set (to simulate access to

never visited before web phish sites) and attacked within a time interval (1ms,

3ms, 5ms) spaced by a random time intervals (1 minute – 1 hour).

Ten scalability experiments (E5) were also run using the two best

performing HTM algorithms to measure the ability of the HTM to accurately

identify users as the number of users increased from 150 to 500 users

3.2. Experiments Using Real Network Data

The next set of user identification experiments used real network data

collected from a CDMA/LTE cellular data network in North America over a

Page 24 of 68

period of approximately a month. Experiments were conducted against HTMs

using the following parameters: 5 and 10 users, 5 train days and 1 test day, 5

train days and 2 test days, 10 train days and 3 test days. The actual number of

different web destinations visited by all users over the month was: 4903

destinations for 5 train days/1 test day, 5221 destinations for 5 train days/2 test

days , 6672 destinations for 10 train days/3 test days.

The data originally collected from the network was for 50 users for a

period of one month, unfortunately only 10 users used enough communication

data to support the train and test timelines proposed for this study.

One hundred twenty six user identification experiments (E7, E8, E9) were

conducted using real network data running seven HTM algorithms. Table 25 in

Appendix H shows the configuration for these experiments. For instance, 10

users leveraging 5 days of train data and 1 day worth of test data (5/1).

Twenty four user identification experiments were run using alternate

Markov based algorithms (E6). Forty two experiments (E9) uncovered

shortcomings in the HTM state machines when handling repetitive consecutive

web destinations embedded in the real network input data set. The HTM was

modified to address these shortcomings and the same 42 user identification

experiments (E8), using the same data set, were run to determine if the HTM

accuracy could be improved. Finally, repetitive web destinations occurring at

the exact same time (same timestamp) were removed from the input data set

and the 42 same user identification experiments were run again (E7).

Twenty one experiments which identify users in spite of simulated DOS

attacks (E10) and 21 experiments which identify users in spite of simulated

Phish attacks (E11) were also run using real network data (using parameters

shown in Tables 23, 24).

The inability to collect TCP timestamps from the real cellular network

limited session identification experiments to utilizing synthetically created TCP

timestamps. It thus became necessary to conduct a set of experiments (E12) to

determine how noise introduced by different session identification algorithms

impacts train data and the ensuing inference accuracy of HTMs. Session

Identification experiments were performed by creating training data sets for the

HTM that use one of three session identification algorithms: (1) Source IP, (2)

Sliding Window, (3) TCP Timestamp. The train data set to be modified by the

session identification algorithms uses real network data. The experiments

include a preliminary step which runs the session identification algorithms

against real network data to produce a new altered train data set that is

modified based on the bias introduced by each session identification algorithm

run under conditions that introduce noise. The experiment would then train the

HTM with this altered train data set and use the original real network data as

the test data set. Using the “Source IP” algorithm, all input with the same

source IP address belongs to the same user. The “Sliding Time Window”

Page 25 of 68

algorithm selects the first (oldest) HTTP request in a time window based on the

source IP address and assign it to user-x, then all subsequent HTTP requests

within the time window for that source IP address, belong to the same user-x.

As long as data is available for user-x within the window over time, then that

session belongs to user-x otherwise that session is assigned to a new user

(source IP address) selected at random based on users who have data falling

within the sliding time window. Note that the sliding window approach

presented in other related literature [4, 46] only specified that requests

occurring together in time belong to the same session. No other detail was

given as to how a specific session was identified among others occurring at

similar times. Thus, the use of the oldest source IP in a given time window as

the seed for identifying a given user is proposed in this paper in support of this

approach. The TCP Timestamp algorithm uses the TCP Time stamp values

within a clock skew window to track different users.

 A total of 18 session identification experiments were run where the source

IP and TCP Timestamps leveraged real life scenarios to alter the original train

data set. This was done by random simulation of recycling of the same source

IP address among users as done by NATs and web proxy middle-boxes and by

random simulation of re-attachment of a device with a new source IP as done

when users move across networks. For TCP timestamp, data loss was randomly

simulated by creating holes in the data stream as well as random simulation of

device power off/on. The number of users in these experiments is 5 and 10 for

5 train days, with the following additional experiment parameters: (Source IP) :

10% recycle source IP address and 10% access network re-attaches; (Sliding

Window): Sliding window size in seconds (1, 3, 5, 60); (TCP Timestamp):

10% data loss and 10% device power on/off.

In order to determine if it was possible to further improve HTM user

attribution accuracy with real network data in the presence of real concept drift,

continuous learning logic was added to the HTM. Continuous learning was

implemented by allowing the output of the Max HTM Output layer, which

identifies which HTMx a given observation belongs to, to be sent back to layer

1 of that HTMx so that it can learn that observation. HTMx then during

inference uses a mechanism similar to “playback” to learn the just received

observation across all HTM layers. Two types of continuous learning were

implemented: (1) Continuous Baseline which lets the Max HTM Output Layer

send feedback to the correct HTM that matched the given observation. (2)

Continuous Inference which lets the Max HTM Output Layer send feedback to

the inferred HTM (which could be right or wrong) that matched the given

observation. Twelve user identification experiments (E13) with continuous

learning were conducted for 5 and 10 users using the BottomUP approach run

at HTM layer 3.

In order to determine if continuous learning could improve the HTM

accuracy in spite of DOS or Phish attacks, 6 experiments (E14) were run. These

Page 26 of 68

experiments were conducted using real network data for 10 users using 5 days’

worth of train data and 2 days’ worth of test data, using the BottomUp Layer 3

HTM algorithm and applying simulated DOS and Phish attacks configured

with the same parameters previously described for these experiments in Tables

23, 24.

4. Results

Due to the large number of experiments conducted for this study only key

results will be reported in this section. Following are key findings from these

experiments:

 HTM algorithms such as Bottom Up and TopTop tend to provide the

highest levels of recall accuracy and scalability among all HTM

algorithms.

 The HTM algorithm Path Probability tends to perform the worst among all

HTM algorithms.

 Alternate Markov chains based algorithms (1
st
 and 3

rd
 Order Markov

Chains, All-K and PPM) perform very poorly in terms of recall accuracy

and recall accuracy scalability compared to HTM algorithms. However,

Alternate Markov Chains based algorithms excel at recognizing their own

train input.

 HTM recall accuracy is strongly influenced by the number of visited web

destinations and the pattern of behavior (which web sited are visited) of

users, specifically:

o Recall accuracy for HTM algorithms improves dramatically

moving from 1000 to 5000 web destinations visited by all users.

Beyond 5000 web destinations accuracy levels off.

o Continuous repetitive patterns (large number of identical web

destinations visited over a very short time window) found in real

network data impact negatively HTM algorithms’ recall accuracy.

o User behavior changes (new web sites visited) from behavior

learned at train time (concept drift) do impact negatively HTM

recall accuracy. Concept drift that splits randomly learned

sequences of web destinations has the most negative impact on

HTM recall accuracy performance.

 Continuous learning does mitigate the negative impact of

concept drift on HTMs’ recall accuracy performance.

 Recall accuracy reported by HTM algorithms at layers 1 and 3 is generally

comparable.

 HTMs tolerate reasonably well noise introduced in test datasets in the form

of DOS or Phish attacks.

Page 27 of 68

 TCP timestamps can be effective in session identification, however if noise

is present in the training data set, experiments showed that the sliding

window algorithm can be a more accurate session identification algorithm

4.1. Results using Synthetic Data Sets

Based on experiment set (E1), alternate MC based algorithms with one day

worth of test data never produced recall accuracy statistics above 42% (see

Table 4 below) and when the test data set consisted of 3 observations, these

algorithms never produced recall statistics over 66% (see Table 5). In contrast,

HTM algorithms produced accuracy statistics (recall statistics) as high as 99%

for a sample of 100 users with one day worth of test data as shown in Table 4

and 99% recall accuracy for a sample of 500 users with 3 observations worth of
test data as shown in Table 5.

Table 4 - 5-100 users, 5000 Destinations, 5 Train Days and 1 Test Day Synthetic Data (E1)

(E1) HTM and Alternate

Algorithms

 Variable Number of Observations per user

5 users, 5000

destinations, 5

Train/1Test,

Ave Recall

20 users, 5000

destinations, 5

Train/1Test,

Ave Recall

50 users, 5000

destinations, 5

Train/1Test,

Ave Recall

100 users,

5000

destinations

, 5

Train/1Test,

Ave Recall

HTM L1 Simple Ave 0.988 0.91 0.918 0.89

HTM L1 Bottom Up 0.99 0.99 0.986 0.96

HTM L1Path Probability 0.99 0.98 0.94 0.92

HTM L3 Simple Ave 0.988 0.91 0.91 0.89

HTM L3 Bottom Up 0.99 0.99 0.98 0.967

HTM L 3 TopTop 1.00 0.997 0.999 0.986

HTM L3 Path Probability 0.718 0.46 0.38 0.298

First Order MC 0.42 0.125 0.0277 0.0139

Third Order MC 0.3579 0.120 0.0277 0.013

All K=3 0.42 0.125 0.0277 0.0139

PPM 0.42 0.125 0.0277 0.0139

Table 5 - 5-500 users, 5000 destinations, for 5 Train days and 3 Observations for test Synthetic Data (E1)

(E1) HTM and

Alternate Algorithms

 3 Test Observations /user

5 users,

5000

destinations,

5

Train/1Test,

Ave Recall

20 users,

5000

destinatio

ns, 5

Train/1T

est, Ave

Recall

50 users,

5000

destinations,

5

Train/1Test,

Ave Recall

100 users,

5000

destination

s, 5

Train/1Tes

t, Ave

Recall

500 users,

5000

destinations,

5

Train/1Test,

Ave Recall

HTM L1 Simple Ave 1.0 0.966 0.886 0.91 0.829

HTM L1 Bottom Up 1.0 0.98 0.97 0.98 0.949

HTM L 1Path

Probability 1.0 0.966 0.93 0.946 0.88

HTM L3 Simple Ave 1.0 0.966 0.87 0.91 0.83

HTM L3 Bottom Up 1.0 0.98 0.97 0.976 0.946

HTM L3 TopTop 1.0 1.0 0.99 1.0 0.986

Page 28 of 68

(E1) HTM and

Alternate Algorithms

 3 Test Observations /user

5 users,

5000

destinations,

5

Train/1Test,

Ave Recall

20 users,

5000

destinatio

ns, 5

Train/1T

est, Ave

Recall

50 users,

5000

destinations,

5

Train/1Test,

Ave Recall

100 users,

5000

destination

s, 5

Train/1Tes

t, Ave

Recall

500 users,

5000

destinations,

5

Train/1Test,

Ave Recall

HTM L3 Path

Probability 0.53 0.45 0.366 0.329 0.209

First Order MC 0.66 0.25 0.126 0.069 0.0186

Third Order MC 0.60 0.25 0.120 0.066 0.0186

All K=3 0.66 0.25 0.126 0.069 0.0186

PPM 0.66 0.25 0.126 0.069 0.0186

Why do Markov chains based algorithms perform so poorly in these

experiments? Fig. 9 shows, the PPM statistics for the experiments run with 5

users with results shown in Table 5. The percentage of hits and misses were

computed for all k orders across all users. The PPM algorithm starts at the

highest k order (k=3) and each time the context (input) of size k of the input is

not matched the algorithm scales down to a lower k order (matches a shorter

portion of the input). Fig. 9 shows that the PPM algorithm operates at k order

= 0 about 80% of the time. This means that 80% of the time the PPM algorithm

fails to match its input, applies a penalty to the path probability for the input

and moves down to a lower k order Markov graph until it reaches k order = 0.

This explains the poor performance of PPM and other higher K order

algorithms (3rd Order MC, All-K) and also explains why higher order Markov

chain algorithms have accuracy performance recall output values similar to
lower order Markov chain algorithms.

Figure 9 PPM Matches and Miss Matches per K-Order = 3 (E1)

Accuracy reported by HTM algorithms scales better with increasing

number of users and web destinations than the accuracy reported by alternate

Markov chains based algorithms as shown in Table 6. Table 6 shows the

difference in recall accuracy between experiments(E1, Table 21 Appendix H)

run for 5 and 100 users, with different number of visited web destination (1000,

5000, 10000), over 5 train days and 1 test day using synthetic data. The high

and low recall values of all HTM algorithms and alternate algorithms were

Page 29 of 68

recorded and the difference between accuracy values for 5 and 100 users was

tabulated. Table 6 shows that HTM algorithms scale better (smaller

differences) than alternate algorithms with a maximum of 13% loss in accuracy

when tracking 1000 web destinations moving from 5 to 100 users compared to

41% loss in accuracy for alternate MC based algorithms running equivalent

experiments. For 5000 and 10,000 web destinations, the scale factor for the

HTM algorithm improves even more and is as low as 1% for high recall values.

Table 6 Recall Accuracy Scaling from 5 up to 100 Users for 5 Train Days and 1 Test Day (E1)

Number of

Destinations
Scale Factor based on Recall Differences from 5 to 100 Users

 HTM High

Recall

Difference

HTM Low Recall

Difference

Alternate

Algorithm High

Recall Difference

Alternate

Algorithm Low

Recall Difference

1000

Destinations
0.13 0.05 0.407 0.342

5000

Destinations
0.01 0.1 0.41 0.35

10,000

Destinations
0.01 0.06 0.41 0.41

To further understand how accuracy is specifically impacted by the number

of destinations in the data set. Synthetic data accuracy performance increases

substantially (E1, Table 21 Appendix H) as number of destinations increases

from 1000 to 5000 (from 54% recall accuracy to 99% for 500 users with 5 days

of train data and 3 observations of test data), minimally from 5000 to 10,000.

Synthetic data accuracy scalability measured for increasing number of users

with 5000 web destinations visited (E5) is high for the top 2 best performing

HTM algorithms (BottomUp at layer 1 and TopTop) consistently at 99% recall

accuracy for 150, 250 350, 450, 500 users (see Fig. 10).

Figure 10 Accuracy scalability Synthetic data, 5 Train and 1 Test Days (E5)

Page 30 of 68

The weighted sum based HTM algorithms (BottomUp at layers 1 and 3 and

TopTop) outperformed all other HTM algorithms. To understand why, let us

compare the average based algorithm to the weighted sum based algorithm.

Consider an observation of size 5 (5 web sites visited) where the input received

by the HTM is <1, 2, 3, 4, 5> which matches 100% of the learned input as 5

distinct nodes (5 sequences each of size 1). That is, for the average HTM

algorithm FFB= 1+1+1+1+1/5 = 1.0 (100%). Now consider the calculation (as

done for the BottomUP algorithm) for the average weighted sum proportional

to the matched input FFB = [(1/5) + (1/5) + (1/5) + (1/5) + (1/5)] /5 = 1/5

(20%). Now assume a new input <1, 2, 3, 4, 5> which matches 100% of the

learned input as a single sequence of 5 nodes (1 sequence of size 5). In this

case, using the average algorithm FFB= 1/1 = 1 (100%), while using the

average weighted sum algorithm FFB = [5/5]/1 = 1 = (100%). The average

algorithm produces the same recall accuracy whether an entire sequence is

matched or only individual elements of the sequence are matched, while

weighted sum based algorithms give more weight to longer sequences over
shorter ones increasing the discriminating power of the solution.

In order to verify the ability of the HTM to handle noise, several

experiments were conducted. Experiments (E2) using synthetic data with

simulated concept drift via “Random Walk” show a reduction in accuracy of up

to 25%, indicating that the HTM is susceptible to random splitting of learned

sequences. Concept drift which adds new connections at the end of learned

sequences reduces accuracy only by up to 11%. Experiments which simulated

DOS attacks (E3) run across all HTM algorithms with synthetic data reduced

accuracy by up to 11%, while experiments which simulated Phish attacks (E4)

reduced accuracy only by up to 5%.

4.2. Results using Real Network Data Sets

Experiments were also conducted with real network data collected over a

period of a month from a cellular data network. Train data sets ranged from 5

to 10 days and 1, 2, 3 test days. Results, at first were modest (E9). For instance,

for 5 users with 5 days’ worth of train data and 2 days’ worth of test data

produced results with recall accuracy as high as 81% for HTM algorithms and

10% for Markov chains based algorithms. Visual observation of this data set

showed a high recurrence of repeating continuous patterns of a single

destination (e.g. 48, 48, 48, 48) within observations compared to similar

measurements for synthetic data. This was confirmed by intra-observation

repetitiveness (IOR) measurements which for some users were as high as 94 %,

indicating that within a user observation on average there were 47 repeating

destinations out of 50. Calibration of real network data run against the HTM

also showed poor performance with the best HTM algorithms (ButtomUp and

TopTop) scoring recall accuracy values (for experiments E9 with 5 users, 5

Page 31 of 68

train and 2 test days’ worth of data) ranging from 71% to 100%. Unexpectedly,

alternate Markov chain algorithms in calibration tests with the same data set

performed very well with the lowest recall accuracy value of 99%. It appears

that alternate Markov chain based algorithms perform well when test and train

data are very similar but when the data set differ as in the user identification

experiments (E6) then recall accuracy scores do not go above 10% .

The HTM was modified (version 2 HTM2++) in the implementation of the

sequence termination condition (TC3) of the HTM spatial and temporal poolers

to account for continuous repeated destinations. The same set of experiments

was repeated (E7) but this time any repeated destinations that occurred at the

exact same time were removed from the real network dataset. The reduction

was applied to all train and test data files and accounted for a total reduction in

repeated destinations of about 35%. The IOR values decreased and recall

accuracy increased. For instance, with real network data for 10 users with 5

train days and 1 test day, IOR decreased by 7% and 9% for train and test data

sets respectively while recall accuracy increased by 8% with the recall
accuracy values shown in Table 7.

TABLE 7. REAL CELLULAR NETWORK DATA RECALL ACCURACY RESULTS (E7)

Train/Test Days Recall Results from Real Cellular Network using HTM algorithms

 5 Users

High

Recall

10 Users High

Recall
5 Users Low Recall

10 Users Low

Recall

5 Train, 1 Test days 0.95 0.87 0.75 0.64

5 Train, 2 Test days 0.90 0.79 0.78 0.61

10 Train, 3 Test days 0.86 0.81 0.72 0.64

To determine if results using 10 users with real network data had

statistical significance we took the experiment from Table 7 using real network

data for 10 users for 5 train days and 1 test day. This experiment produced a

“high” recall accuracy value of 87% (86.7). We repeated the same experiment

30 times, skipping the first 5, 10, 15, 20,.. up to 150 destinations for each

experiment. This mimics starting an experiment at a different place in the real

data stream. The value of α chosen was 0.01, the research hypothesis was that

the recall accuracy over these experiments was greater than 85.8%. The

calculated sample standard deviation was 0.0084, the standard error mean was

0.0015, and the mean was 0.8625, while the z-score was 2.92. These results are
significant at the 0.0018 level.

Why was HTM1 (the original version of the HTM) unable to recognize

repetitive continuous patters? HTM1 broke up repetitive patterns instead of

treating them as sequences. So pattern, 1,2,3 1,2,3 1,2,3 was seen as pattern

1,2,3 occurring 3 times (which is good), but sequence 2,2,2,2,2,2,2,2 was seen

as a single destination 2 visited 8 times. This means that a user who seldom

visits destination 2 and another who visits it in a sequence will produce

Page 32 of 68

analogous similarity statistics since for a single repeating continuous

destination, HTM1 does not see a sequence of destinations but only a single

element. HTM version 2 (HTM2) modifies terminating condition TC3 to

continue to process repeated destinations already in the sequence until a new

destination not already in the sequence is encountered or terminating conditions

TC1 or TC2 are met. In order to understand the recall accuracy improvements

between experiments E9, E8,and E7, Fig. 11 shows the results for user

identification tests run with 5 users with 5 train and 2 test days’ worth of real

data. HTM1 represents version 1 of the HTMs without the fix to address

continuous repetitive patterns (E9), HTM2 is the second version of the HTM

which addresses repetitive continuous patterns but is run on the same real data

set as HTM1 (E8). HTM2++ is HTM2 run on the real data set where web

destinations repeated at the exact same time are removed from the input (E7).

The baseline in Fig. 11 is based on running the experiments on the equivalent

synthetic data set. The association of higher levels of IOR measurements with

the inferior accuracy results was further investigated and experiments were run

(beyond experiments reported in Table 3) with the same data set for 10 users (5

train days/1 test day), this time completely eliminating repeating continuous

patterns of a single destination within observations in the input to determine if

this would further positively impact accuracy results. While IOR continued to

decrease (additional 8% for both train and test data sets), unexpectedly,

accuracy never improved beyond 87%.

Figure 11 - Accuracy comparisons of all HTM versions (E7,E8, E9) including removal of same time
destinations

Page 33 of 68

While investigating these results further, the real network data set was run

through an algorithm that computed and thus measured concept drift by

converting the concept drift generator for synthetic data to a concept drift

detector for real network data. This concept drift detector identified changed

user behavior in the test data set due to visits to new connections among

existing nodes (CDe) and new connections to new nodes (CDn) as shown in
Table 8.

TABLE 8. CONCEPT DRIFT MEASURED IN REAL CELLULAR NETWORK DATA (E7)

Train/Test Days Concept Drift (CD) from Real Network Data

 5 Users CDe

existing

connections

10 Users CDe

existing

connections

5 Users CDn

new

connections

10 Users CDn

new connections

5 Train, 1 Test days 0.19 0.20 0.05 0.07

5 Train, 2 Test days 0.20 0.21 0.07 0.09

10 Train, 3 Test days 0.18 0.19 0.07 0.08

The average CDe concept drift is 20% and CDn is 7% which is very similar

to the simulated concept drift levels used for synthetic data. In order to

determine the impact of concept drift on recall accuracy for real network data

experiments, the HTM prototype was further modified to continuously learn

during inference (E13). Preliminary results, using only the BottomUP approach

run at HTM layer 3, show that recall accuracy improves with the real network

data for 5, 10 users for 5 train days and 1, 2, 3 test days. Specifically, recall

accuracy for 5 users improved on average 4% and 2% for continuous baseline

and continuous inference respectively and 6% and 1% respectively for 10 users.
Table 9 shows details of these results.

TABLE 9. RECALL ACCURACY WHEN CONTINUOUS LEARNING IS APPLIED TO REAL NETWORK DATA (E13)

Train/Test

Days

Continuous Learning (BottomUp layer3) Recall Results from Real Cellular

Network

 5 Users Recall

Continuous

Baseline/Normal

10 Users Recall

Continuous

Baseline/Normal

5 Users Recall

Continuous

Inference/Normal

10 Users Recall

Continuous

Inference/Normal

5 Train, 1 Test

days
0.983 /0.95 0.931 /0.87 0.983 /0.95 0.899/0.87

5 Train, 2 Test

days
0.88/0.876 0.847/0.788 0.868/0.876 0.776/0.788

10 Train, 3

Test days
0.847/0.773 0.826/0.764 0.807/0.773 0.766/0.764

Experiments with real network data which simulated DOS attacks (E10) run

across all HTM algorithms reduced accuracy by up to 8% while experiments

which simulated Phish attacks (E11) reduced accuracy only by up to 4%. Fig. 12

shows the results of (E14) using continuous learning to mitigate the user

attribution effects under a DOS attack. The baseline, “normal” in Fig. 12,

represents experiments run without continuous learning. The results show that

Page 34 of 68

when a subset of users (four out of ten) is under attack during the inference

phase, it is possible to get improved attribution recognition accuracy (even over

scenarios where no attacks are present) when the HTM algorithm can learn

perfectly (continuous baseline). On the other hand, using inference to select

which sequences to learn during continuous learning (continuous inference)

produces mixed results. DOS attacks conducted during the inference phase

produce decreased recognition accuracy performance when continuous

inference learning is enabled possibly due to the fact that attacked sites were

already learned by this user before the attack took place and do not create new

distinctive patterns. Phish attacks instead produced better recognition accuracy

performance possibly due to the fact that attacked sites were new and not

learned until after the attack making it easier to infer them correctly.

Figure 12 Recall Accuracy using Continuous Learning during DOS and Phish attacks (E14)

4.3. Session Identification Experiment Results

The motivation for conducting session identification experiments is to

determine how much different session identification approaches applied during

HTM training impact the ability of the HTM to infer accurately (when used

under conditions that emulate real life scenarios specific to each session

identification algorithm).

Session Identification experiment results showed that the sliding

window session identification algorithm (which operates normally with some

level of randomness) when measured against “perfect” tracking algorithms

such as source IP address and TCP timestamp (that are exposed to simulated

real life conditions which introduce noise in the data set) can outperform both

of these algorithms. The average recall accuracy for all experiments across 5

and 10 users is shown in Fig. 13. To put things in perspective, a window size of

1 minute, produced a change in the original train data set (loss of web

Page 35 of 68

destinations) of 57%, yet recall accuracy during inference is reported at 92%

(sliding window worst result), compared to the best performing TCP timestamp

(with 10% data loss and 10% device resets) which reports average recall

accuracy value of 83%. These results warrant further study into the impact of

noise on the session identification algorithms presented in this study.

Figure 13 Aggregate Session Identification Recall Accuracy Results

5. Security and Privacy Considerations

This study addresses the important problem of user attribution leveraging

communication traffic. A relevant property of user attribution as implemented

in this study is that it is privacy preserving with respect to the real identity of

the user. Consider the following real-world scenario where the user attribution

solution described in this paper is deployed in an access network (possibly a

cellular/WIFI operator network or at internet points of presence) and monitors

HTTP traffic. As traffic passes through the user attribution solution (UAS) as

proposed in this paper, the solution learns to recognize users (User 1, User 2,

User 3, …., User N) based on each user’s past communication behavior. After

the learning stage, the UAS can recognize users (inference stage) based on

learned communication patterns when users re-enter the network possibly using

a new source IP address and new authorization credentials without knowing the

user specific identity (User1 is Joe Smith). In the context of security, accuracy

and the (minimal) amount of test data used by HTM algorithms to recognize

users are the key measures of success for the UAS. The majority of

experiments conducted in this study measured recall accuracy; in addition,

Page 36 of 68

experiments conducted which leveraged just 3 observations in the test data sets

provide good insights on how quickly the user attribution solution proposed in
this study could recognize users.

There are several applications in the area of security that benefit from being

able to address the user attribution problem. Specifically, in the area of

intrusion detection, the HTM-based approach used to identify users can be used

before, during or after an attack has taken place to identify the communication
traffic associated with the user that needs to be stopped or rate limited.

The “user attribution problem” is generic and not tied to attack scenarios,

but it can still be used to recognize and stop malicious users. Consider a second

real-world scenario where the UAS is coupled with an intrusion detection and

prevention system (IDPS) so that both receive the same communication input

but instead of using the source IP address to recognize users (due to the

unreliability of this source), the IDPS uses the user labels (User 1, User 2, User

3…. ,User N) associated with the given input provided by the UAS. The UAS

after it has completed the training phase and it has entered the inference phase

provides user labels to the IDPS. Assume the IDPS (out of scope for this study)

detects anomalous behavior with communication traffic belonging to user4 and

blocks all HTTP traffic associated with this user label. User4, unable to access

the internet decides to re-enter the network next day from a different location,

possibly using a different access network (e.g. WIFI access point instead of a

cellular network). User4 likely using a brand new assigned IP address is able to

access the internet, until the UAS recognizes user4 and passes this user label to

the IDPS which will again block this user before the user can start to perform
malicious activities.

The experiments run in this study show that it is possible to recognize

communication traffic as belonging to a given user even during DOS or phish

attacks originating from mobile devices albeit less effectively. We are not

aware of reported DOS attacks that originate from mobile devices. Operators

do report DOS attacks such as DNS amplification attacks originating from the

internet destined for IP addresses of mobile devices. Such attacks are typically

stopped by operators using firewalls deployed at internet peering points and do

not impact user attribution as defined in this study, since they do not originate

from mobile devices. Analysis of DOS attack traces made available by the

operator where real network data was collected show the typical DOS attack

pattern of extremely high volume of messages, sent within extremely tight time

windows to the same destination IP address. If such attack patterns were to

originate from many mobile devices then the UAS could easily filter them out
(same destinations within the same time stamp) as was done in experiments E7.

What if after an attack occurred, traces of the communication traffic of

many users were analyzed to tie that traffic to a possible physical human? The

Page 37 of 68

UAS could be trained to recognize communication traffic for users and bind

those users to real humans (user4 is Joe Smith). Like previous examples, the

UAS relies on inference to attribute communication traffic to a given user and

thus it suffers from possible false negative or false positive errors as opposed to

a typical authentication system which relies on fixed tokens like secret

key/passwords/cookies. However, it is highly unlikely that such tokens are

present in the communication traffic collected from communication logs/traces

for user traffic destined to specific web destinations. Even if present, these

security tokens have meaning only to the end systems that issued them.

Because of these reasons the HTM-based approach proposed in this study

could be used to address network forensic investigations.

What if the described scenarios of intrusion detection and network forensic

could only have access to encrypted user traffic data? Would the HTM-based

approach still be able to recognize user communication traffic? Consider the

following three different scenarios: (1) User communication to a secure

network server via IPSEC, (2) User communication to a web server supporting

a secure HTTPS connection, (3) User leveraging the anonymizing Tor network

[16] to communicate with a web server. The answer to the above questions

depend on whether the destination IP address in the encrypted communication

traffic received by the attribution system represents the actual destination that

the user intended to visit. This is possible with IPSEC since the IPSEC tunnel

could terminate at the site being visited, it is likely with HTTPS since the

secure connection terminates at the server being visited, but impossible with

Tor destined traffic since Tor encrypts the original data, including the

destination IP address, several times and sends it through a virtual circuit
comprising successive, randomly selected Tor relays.

What if a strategic attacker, who knows about the attribution system

being in place, takes actions to avoid it? The attribution system monitors

normal traffic and not malicious traffic, assuming that the original user has

possession of the compromised device, then that user would continue to use the

device normally, with normal “concept drift” over time, plus the background

malicious activity. In this case the attribution system has a good chance of

recognizing the user. However, if the malicious activity completely takes over

the device (possibly the device is stolen) then the new malicious user will have

different user behavior and this malicious user would not be recognized by the

attribution system.

Another security application where user attribution as addressed in this

study could be leveraged is in the area of user communication traffic

identification under source spoofing conditions. Assume that spoofing or

impersonation could take place as two users call or message each other. In this

case, the sequence of destinations (numbers called or messaged to) originating

from a potential impersonator are run against HTMs which are trained with

Page 38 of 68

sequences of destinations accessed by valid users. These sequences would be

identified as being spoofed if the HTM inferred user (associated with these

learned sequences) does not match the reported originating user. For instance,

assume that for Voice over IP (VOIP) scenarios the HTM at train time

monitors SIP INVITE messages which identify calls originating from user1. At

train time the HTM learns that user1 calls <user2, user5, user8> in that order.

Assume that user1 is being impersonated and the impersonating user1 calls

<user5, user8, user2>, then this call pattern is not likely to match user1 (the

reported originating user in the SIP INVITE message) call patterns and thus

user1 would be identified as a possible impersonator. Note that even if the

impersonator were to guess the right sequence order of users to call, it is not

guaranteed that the HTM would be fooled into identifying the impersonating

user1 as the authentic user1. This is because the HTM learns the inter

destination arrival rate TC2 for all learned sequences. This means that if the

HTM learned the following sequence <user2, user5, user8> for user1 and for

another user4 it learned sequence <user5, user8>, then the impersonating user1

could call the same users as the original user1 but with different inter arrival

times so that two sequences could be generated: <user2>, <user5, user8>. In

this case user4, different from the originating user1 reported in the SIP INVITE

message, would be identified as matching the input sequences and user1 would

again be identified as an impersonator. Session identification, however, would

likely leverage a different identification approach for the VOIP scenarios than

what has been proposed in this study. Assuming that the train data set is trusted,

the originating user is identified in the SIP INVITE message (“FROM/Contact”

SIP headers) and this tracking header can be used to create user sessions,

instead of using the TCP timestamps. This session identification approach

works especially well when SIP INVITE messages ride over the UDP protocol

which cannot use the TCP timestamp.

6. Limitations

The following sections describe implementation constraints faced during the

experimentation phase as well as envisioned challenges faced using the TCP

timestamp approach.

6.1. Limitations in Implementation

The HTM prototype was completely written in Java. The performance

scalability of HTMs measured in terms of run-time and space (memory needed

at run-time) was a challenge in this study which limited the experiments to a

maximum of 500 users. All experiments were executed on a Quad i7-3820QM

2.7-3.7 GHz with 16Gig RAM laptop. Threading (one thread per HTM) and

caching (of already computed results derived by performing inference traversal

of the Markov chains within each layer of the HTM) were two techniques that

Page 39 of 68

considerably improved the inference performance of the HTM allowing

completing the experiments for 500 users in reasonable times. When first

implemented threads improved run-time performance by almost 100% so that

running the HTM algorithms for 2 users would take about 30 minutes to

complete in single threaded mode but using multiple threads the experiment

would complete in 16 minutes. By adding caching of results of Markov chain

searches, performance dropped from 16 minutes to 6 minutes for the same set

of experiments. Further optimizations in how threads were used (limiting the

number of concurrent threads to 8) and other enhancements in the cache

algorithms to maximize cache hits and minimize collisions resulted in run

times of 16 minutes to 1 hour and 15 minutes for 5 to 100 users using 5 days’

worth of synthetic train data and 1 day worth of test data and 7 minutes to 5

hours for 5 to 500 users for 5000 destinations using 5 days’ worth of synthetic

train data and 3 observations worth of test data. In contrast, the highest run time

for alternate Markov chain based algorithms was 3 minutes for equivalent tests

which involved 500 users. Alternate Markov chains algorithms have much

better run times since discovery of the start of the input sequence is determined

in constant time and matching of the sequence against the “context” occurs in

time proportional to the size of the input since all alternate Markov chain

algorithms are based on extensions of a 1st order Markov graph which matches

the input completely based on the on the very first web destination in the

sequence. HTM algorithms on the other hand have search run times that are

proportional to the size of the entire input (all sequences) learned at training

time as well as the size of the input sequence since HTMs perform an

exhaustive search of all Markov chains at each HTM layer.

The amount of runtime memory needed by HTMs also proved to be a

limiting factor in being able to extend experiments beyond 500 users. The

HTM was run with a JVM setting of 14 gigabytes of RAM but a limiting factor

of the HTM design is the need for the MAX HTM Output layer (as shown in

Fig. 8) to receive and hold one observation’s worth of feed forward beliefs

from each HTM before being able to decide which HTM has the “best” feed

forward belief. Increasing the number of users increases the number of HTMs

which also increases the amount of RAM main memory needed to run the

experiment. When the Java JVM starts to run out of the allocated RAM

memory and starts to use hard drive virtual memory, run-time performance

deteriorates dramatically eventually preventing forward progress.

6.2. Limitations in Approach

There are a few limitations tied to the use of TCP timestamps as a

communication session identification algorithm. In this study, the TCP

timestamp session identification is used in two situations. The first occurs

during training of an HTM when session identification is used to identify up to

50 observations as belonging to a given source associated with a specific HTM

Page 40 of 68

representing a given user. The second occurs during inference when session

identification is used to create anonymous sessions for each observation which

are distributed to all HTMs so that each HTM can perform inference on the

observation to determine how well the observation matches learned input for

each HTM. During the training phase the following scenarios are not allowed

as they will corrupt the training data set:

 A single user leveraging multiple devices

 Many users sharing the same device

 The user recycling the device.

A single user using multiple devices at training time would appear as many

different sources and thus one HTM would be created for each source. This is a

problem because each HTM created at train time identifies a different user

when actually training is occurring for only one user. When many users share

the same device at train time, the sessions produced are corrupted. These

sessions will include data from multiple users and would thus not be

representative of any given user. When a user recycles his/her device, the TCP

timestamp is reset and this user session will appear as a new source and thus

would incorrectly cause a new HTM to be created, thus identifying a new, non-

existing user. During the inference phase when anonymous sessions are created

only the second scenario is disallowed as the multiple users sharing the same

device will create individual sessions with corrupted data belonging to multiple

users. During the inference phase a user can use one device to train the HTM

and a different device to perform inference. In addition, during inference, when

anonymous sessions are created, the device under test can be recycled, as long

as partial sessions (containing less than 50 observations) produced because

recycling interrupts creation of the previous observation, are discarded. In

general, the effect of a recycling device is the restart of a TCP IP connection

which resets the TCP timestamp’s TS value. TCP connections are also reset

when TCP connections go through middle boxes (Web proxies, NATs,

Firewalls, Load Balancers) which split a single TCP connection from device to

origin server into two TCP connections; one connection from the device to the

middle box and the other from the middle box to the origin server.

If the TCP approach has the reported limitations why was this approach

chosen for this study? The TCP timestamp approach provides a reliable way to

“track” user communication sessions in a way that is independent of the

location or network a device attaches to, thus enabling support for mobility.

The authors believe that in real life scenarios, users recycle their mobile

devices infrequently, and do not share their personal mobile devices with others.

Another practical challenge with the use of TCP timestamp is due to the

possibility of loss of tracking accuracy due to clock skew, approaches to

address these challenges were presented in the “Session Identification” section.

A final limitation brought to bear in this study is found in experiments (E14)

where DOS attacks during user identification experiments are countered by

Page 41 of 68

using “continuous learning”. The results show consistent worse recall accuracy

performance when using continuous inference learning. This leads to the

observation that continuous learning can improve user identification recall

accuracy in the presence of “concept drift” but when presented with repeated

continuous patters found in typical DOS attacks, it can perform poorly.

6.3. Further Research Directions

An assumption made in this study is that users can be identified by learning

web sites they visit. An interesting extension of this idea would be to study the

user attribution problem in the context of peer-to-peer communication as is the

case for messaging and voice calls. A key question would be: Can users be

identified based on peer-to-peer patterns of communication? A related question

would be: Is the power law at work in peer-to-peer communication scenarios as

well? That is, do people tend to communicate (message or call) with a few set

of users very often and with many other users infrequently? The security

implications of extending the user attribution problem to cover peer-to-peer

communication scenarios are especially relevant in the area of detection of

spoofing of sources in peer-to-peer communication (e.g. recently RFC 7375

“Secure Telephone Identity Threat Model” has defined voice attacks where the

calling party can be impersonated by an attacker).

As mobility will continue to dominate our future and as the internet of

people becomes the internet of things, the user attribution problem will

eventually morph into a device/user attribution problem. It would be interesting

to run experiments that utilize all communication traffic originating from a

device, not just HTTP traffic, to extend the attribution problem from a user to a

source (device/user).

Due to the promising results achieved in this study it is important to

extend experiments that seek to improve recall accuracy utilizing a larger real-

network data set studying further the impact on user identification accuracy of

techniques like continuous learning. The HTM framework will be made

available to researchers who wish to extend this work by contacting the authors.

7. Conclusions

The user attribution problem is an old problem that just recently has

received the attention of the research community. This problem is very

important in the field of security since if one cannot attribute communication

traffic to a specific user in a network then one cannot identify the user to

determine if that user is performing malicious activities in that network or even

more importantly stop/prevent the user from continuing to perform such

activity. This is the first study that addresses the user attribution problem in the

context of complex networks where mobility is dominant using an extensive set

Page 42 of 68

of experiments which used both synthetic and real network data. The approach

leveraged behavior based identification using HTMs to extend the research of

Herrmann and Yang [25, 46]. This research, acknowledges the limitations of

traditional tracking identifiers such as cookies and source IP addresses, and

introduces TCP timestamps as a new session identification algorithm used to

identify communication sessions for mobile users. Results from the

experiments conducted in this study are promising. HTMs outperform

traditional Markov chains based approaches and can provide high levels of

identification accuracy using synthetic data with 99% recall accuracy for up to

500 users and good levels of recall accuracy of 95 % and 87% for 5 and 10

users respectively when using cellular network data. Performance was further

improved with recall accuracy results of 98% and 90% for 5 and 10 users

respectively by implementing continuous learning enabled during inference

within HTMs to address the challenge of concept drift found in real cellular

networks.

This research has made several contributions in the approach used by

extending the hierarchical temporal memory model originally proposed in [19]

which was not designed to support sequences and showed that sequence based

hierarchical memories can consistently provide higher levels of identification

accuracy with higher levels of accuracy scalability than traditional Markov

chains. The following represent contributions from this research designed to

improve HTM inference accuracy:

 This study implements sequence inference using a novel technique

which combines traditional variable order Markov chains with the use

of longest common subsequence and longest common substring

coupled with the persistence of learned sequences to support seven new

HTM inference algorithms.

 This study introduces the concept of sequence cloning to improve the

learning and inference accuracy of Markov chains and of HTMs.

 This study introduces the concept of playback to distribute accurately

learned sequences from lower to higher layers of the HTM. This

reduces learning times and improves inference accuracy in hierarchical

models like HTMs.

This study also provides insights into the impact to recall accuracy of

the power law distribution at work in complex networks which creates high

levels repetition of popular web sites in the data set. The impact to recall

accuracy of noise in the data set was studied in the context of simulation of

malicious activities and the simulation and observation of context drift in a real

network. Experiment results suggest that while partial elimination from the

data set of continuous repetition of popular web sites improves accuracy results,

complete elimination of such repetition does not produce further improvements.

Instead, addressing concept drift found in real networks shows promise as an

area of further research for improving attribution accuracy performance.

Page 43 of 68

8. References

[1] A. L. Adamic. and B. A Huberman, The Nature of Markets in the World Wide Web.

Quarterly Journal of Electronic Commerce, 1, 2000a, 5-12.

[2] A. L. Adamic. and B. A. Huberman, Power-Law Distribution of the World Wide Web.

Science, 287,2000b, 2115.

[3] P. Baldi, P.Frasconi and Smyth, P. Modelling the Internet and the Web: Probabilistic

Methods and Algorithms. West Sussex, England: JohnWiley & Sons, 2003.

[4] C. Banse, D. Herrmann, and H. Federrath, “Tracking Users on the Internet with Behavioral

Patterns: Evaluation of Its Practical Feasibility”. Information Security and Privacy

Research, 27th IFIP TC 11 Information Security and Privacy Conference Heraklion,

Greece: Springer Berlin Heidelberg. 2012, Vol 376, pp. 235-248.

[5] A. L. Barabasi and R. Albert, Emergence of Scaling in Random Network. Science Journal,

286(5439), 1999, 509-512.

[6] A. Belenky and N. Ansari, On IP Traceback. IEEE Communications Magazine, 41(7), 2003,

142-153.

[7] M. Beacken, L.Braun, D. J.Imbesi, L. G. Greenwald, M. J. Geller, A . Hartman, A., … and D.

Bishop, LGS' government communications laboratory and research for the U.S.

government. Bell Labs Technical Journal: Vertical Markets, 16(3), 2011,5-28. doi:

10.1002/bltj.20519

[8] B. Bobier, Handwritten Digit Recognition using Hierarchical Temporal Memory, (2007).

Unpublished manuscript, Department of Computing and Information Science,

University of Guelph, Ontarion, Canada. Retrieved from

http://arts.uwaterloo.ca/~cnrglab/?q=system/files/SoftComputingFinalProject.pdf

[9] H. Burch and B. Cheswick, Tracing Anonymous Packets to Their Approximate Source. Lisa

'00 Proceedings of the 14th Conf. Systems Administration, , 2000, pp. 319-328.
Berkeley, CA: USENIX Association Berkeley.

[10] M. Casado and M. J. Freedman, “Peering Through the Shroud: The Effect of Edge Opacity

on IP-Based Client Identification”. Proc. 4th USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI). Cambridge, MA: USENIX Association

Berkeley. 2007, pp. 173-186

[11] H. Y.Chang, R. Narayanan, S. F. Wu, B. M. Vetter, X. Wang, M. Brown, .… and F. Gong,.

Deciduous: Decentralized Source Identification for Network-Based Intrusions.

Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network

Management, 1999, pp. 701-714. Boston, MA: IEEE Computer Society.

[12] D. D. Clark and S. Landau, “Untangling Attribution” in Proceedings of a workshop on

Deterring CyberAttacks: Informing Strategies and Developing Options for U.S. Policy.

Washington D.C., USA: The National Academies Press. 2010, pp. 25-40.

[13] R.Cooley, B. Mobasher and J. Srivastava, Data Preparation for Mining World Wide Web

Browsing Patterns. Knowledge and Information Systems, , 1999, 1(1), 5-32.

[14] G. V. Cormack and R. N. S. Horspool, Data Compression Using Dyanamic Markov

Modelling. The Computer Journal, 30(6), 1987, 541-550.

[15] M. Deshpande and G. Karypis, (2004). Selective Markov Models for Predicting Web-Page

Accesses. ACM Transactions on on Internet Technology, 4(2), 163-184

[16] R.Dingledine, N. Mathewson and P. Syverson. Tor: The Second-Generation Onion router.

Proceedings of the 13th conference on USENIX Security Symposium, 2004.

[17] J. V. Doremalen and L. Boves, Spoken Digit Recognition using a Hierarchical Temporal

Memory. 9th Annual Conference of the International Speech Communication

Association, ,2008,(pp. 2566-2569. Brisbane, Australia: ISCA.

Page 44 of 68

[18] W. Duch, R. J. Oentaryo and M. Pasquier, “Cognitive architectures: where do we go from

here?”. Proceedings of the First conference on Artificial General Intelligence Memphis, TN:

IOS Press Amsterdam. 2008, pp. 122-136

[19] D. George and B. Widrow. “How the brain might work: A hierarchical and temporal model

for learning and recognition”. Stanford University. Dissertation Abstract International,

69(04), 177. (UMI No. 3313576) ,(2008).

[20] J. Gray, P. Sundaresan, S. Engler., K. Baclawski, & P. J. Weinberger (1994). Quickly

generating billion-record synthetic databases. Proceedings of the 1994 ACM SIGMOD

International Conference on Management of Data (Vol. 23(2), pp. 243-252). Minneapolis,

MN: ACM.

[21] M. Grčar, USER PROFILING: WEB USAGE MINING. Proceedings of the 7 th

International Multiconference Information Society, 2004, pp. 75−78. Ljubljana,

Slovenia: Jožef Stefan Institute.

[22] K. Greff, “Extending Hierarchical Temporal Memory for Sequence Classification”. (Master

Thesis, Technische Universität Kaiserslautern AG Wissensbasierte Systeme, Saarbrücken,

Germany). 2010. Retrieved fromhttp://www.dfki.de/lt/publication_show.php?id=5462

[23] J. Hawkins, D. George and J. Niemasik. (2009). Sequence memory for prediction, inference

and behavior. Philosophical Transactions of the Royal Society B Biological Sciences,

364(1521), 1203-1209.

[24] D. Herrmann, C. Gerber, C. Banse, and H. Federrath. “Analyzing Characteristic Host

Access Patterns for Re-identification of Web User Sessions”. 15th Nordic Conference on

Secure IT Systems (NordSec). Espoo, Finland: Springer. 2010, pp. 136-154

[25] D. Herrmann, C. Banse, and H. Federrath, Behavior-based Tracking: Exploiting

Characteristic Patterns in DNS Traffic. Computers & Security. Journal Computers and

Security, Vol 39, 2013,17-33

[26] S. Hill and F. Provost, “The Myth of the Double-Blind Review? Author Identification

Using Only Citations”. SIGKDD Explorations, 2003, 5(2), 179-184.

[27] S. B. Hill, D. K. Agarwal, R. Bell, and C. Volinsky, (2006). Building an Effective

Reppresentation for Dynamic Networks. Journal of Computational and Graphical Statistics,

15(3), 584–608.

[28] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. Is it still

possible to extend TCP? In ACM/USENIX Internet measurement conference (IMC),

pages 181-194. ACM, 2011.

[29] V. Jacobson, R. Braden and D. Borman, TCP Extensions for High Performance Network

Working Group. (Report No. RFC 1323). 1992. Retrieved from the Internet Engineering

Task Force (IETF) website: http://www.ietf.org/rfc/rfc1323.txt

[30] T. Kohno, A. Broido and K. Claffy, Remote physical device fingerprinting, IEEE

Transactions on Dependable and Secure Computing, 2(2), 2005, 93-108

[31] P. Kumar and P.R. Raju, (2010). A New Similarity Metric for Sequential Data. International

Journal of Data Wharehousing and Mining. 6(4), 16-32

[32] M. Kumpošt, and V. Matyáš. “User Profiling and Re-identification: Case of University-

Wide Network Analysis”. Proceedings of the 6th International Conference on Trust, Privacy

and Security in Digital Business. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 1-10

[33] B. Liu, Web Data Mining Exploring Hyperlinks, Contents and Usage Data. Berlin,

Germany: Springer-Verlag, 2008.

[34] W. J. C. Melis, S. Chizuwa and M. Kameyama, Evaluation of Hierarchical Temporal

Memory for a Real World Application. Fourth International Conference on Innovative

Computing, Information and Control, 2009, pp. 144 -147. Kaohsiung, Taiwan: IEEE

Computer Society.

[35] A. Moffat, (1990). Implementing the PPM Data Compression Scheme. IEEE Transactions

on Communications, 38(11), 1917-1921.

http://www.dfki.de/lt/publication_show.php?id=5462
http://www.ietf.org/rfc/rfc1323.txt

Page 45 of 68

[36] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

2nd ed. San Francisco, CA: Morgan Kaufmann. 1988, pp143-194

[37] J. Pitkow, In Search for Reliable Usage Data on the WWW. Proceedings of the Sixth

International WWW Conference, 1997, pp. 451-463. Santa Clara, CA: Georgia Institute

of Technology.

[38] J. Pitkow, and P. Pirolli, Mining Longest Repeating Subsequence to Predict world wide

web surfing. Proceedings. of USITS' 99: The 2nd USENIX Symposium on Internet

Technologies & Systems. Boulder, CO: USENIX Association. 1999, Vo.l 2, pp. 13-13

[39] D.J de S. Price. (1976). A general theory of bibliometric and other cumulative advantage

processes. Journal of the American Society for Information Science, 27(5), 292-306.

[40] E. Ravasz and A.L. Barabasi. (2003). Hierarchical Organization in Complex Networks.

Physical Review E Journal, 67(2), 1-7.

[41] M. Rosenstein,What is Actually Taking Place in Web Sites: E-Commerce Lessons from

Web Server Logs. ACM Conference on Electronic Commerce, , 2000, pp. 38-43.
Minneapolis, Minnesota: ACM.

[42] L. Santhanam, A. Kumar, and D. P. Agrawal, Taxonomy of IP Traceback. Journal of

Information Assurance and Security, 2006, 1, 79-94.

[43] S. Savage, D. Wetherall, A. Karlin and T. Anderson, Practical Network Support for IP

Traceback. Proceedings of the ACM SIGCOM 2000, IEEE/ACM Trans. Networking,

,2001, pp. 295-306. Stockholm, Sweden: ACM.

[44] C. Song. S. Havlin and H. A. Makse, Self-Similarity of Complex Networks. Nature,

433(7024), 2005, 392-395.

[45] R. Stone, CenterTrack: An IP Overlay Network for Tracking DoS Floods. Proceedings of

the 9th Usenix Security Symposium, 2000, Vol. 9, pp. 15-15. Denver, Colorado:

USENIX Association.

[46] Y. Yang, Web user behavioral profiling for user identification. Decision Support Systems,

49(3), 2010, 261-271

Page 46 of 68

9. Appendix A – Example of HTM creation during the Training Phase

The examples in this section and in Appendix B assume that

contiguous repetitive sequences (e.g. <48,48,48,48>) are treated as multiple

sequences of size 1 based on terminating condition TC3 (e.g.

<48>,<48>,<48>,<48>) which reflects the implementation in version 1 of the

HTM (HTM1 in experiments E9 found in Table 3).

In order to get a better idea of how beliefs propagate up the HTM

network layers, this section of the paper shows what happens during playback

of input learned in layer 1 of the HTM as represented in the Markov graph and

Markov chains shown in Fig.14 in Appendix B. Input received at layer 1 by the

spatial pooler is organized into sequences with the temporal pooler computing

corresponding feed forward beliefs as shown in Table 10. Note that during

playback the feed forward belief vector only indicates the matched temporal

group (in contrast with the inference phase where feed forward beliefs also

record the degree of membership value).

Table 10 Learned Input Sequences at HTM Layer 1 with generated FFBs

Sequences Learned Feed Forward Beliefs
λ<g1,g2,g3,g4,g5,g6>

S1,S2,S3,S4 λ<0,g2,0,0,0,0>

S1,S2,S5 λ<0,g2,0,0,0,0>

S1,S3,S6 λ<0,g2,0,0,0,0>

S1,S3,S6 λ<0,g2,0,0,0,0>

T1,T2,T3 λ<0,0,0,0,g5,0>

T1,T3,T5 λ<0,0,0,0,g5,0>

T6,T5,T7 λ<0,0,0,0,0,g6>

S3,S7,S6,S1 λ<0,0,g3,0,0,0>

H-L1,H-L2 λ<g1,0,0,0,0,0>

H-L1 λ<g1,0,0,0,0,0>

H-L1,H-L3 λ<g1,0,0,0,0,0>

H-L1 λ<g1,0,0,0,0,0>

H-L1, H-L2, H-L3 λ<g1,0,0,0,0,0>

 UL1, UL2, UL3, UL4 λ<0,0,0,g4,0,0>

S2,S6,S5 λ<0,g2,0,0,0,0>

S1,S8,S6 λ<0,g2,0,0,0,0>

After layer 1 completes initial training, layer 1 starts playback of

learned sequences towards layer 2. The spatial pooler at layer 2 maps feed

forward beliefs from layer 1 into sequence of coincidences using the sequence

termination rules TC1-3 previously described to combine input into sequences as

shown in Table 11.

Page 47 of 68

Table 11 HTM Layer 2 learned Coincidences

Feed Forward Beliefs

from Layer 1

Coincidences Sequences of Coincidences for

Layer2

λ<0,g2,0,0,0,0> g2 C1 (new

coincidence)

C1

λ<0, g2,0,0,0,0> C1 C1

λ<0, g2,0,0,0,0> C1 C1

λ<0, g2,0,0,0,0> C1

λ<0,0,0,0,g5,0> g5 C2 (new

coincidence)

C1, C2

λ<0,0,0,0,g5,0> C2

λ<0,0,0,0,0,g6> g6 C3 (new
coincidence)

λ<0,0,g3,0,0,0> g3 C4 (new

coincidence)

λ<g1,0,0,0,0,0> g1 C5 (new

coincidence)

C2, C3, C4, C5

λ<g1,0,0,0,0,0> C5 C5

λ<g1,0,0,0,0,0> C5 C5

λ<g1,0,0,0,0,0> C5 C5

λ<g1,0,0,0,0,0> C5

λ<0,0,0,g4,0,0> g4 C6 (new

coincidence)

λ<0,g2,0,0,0,0> C1 C5, C6, C1

λ<0,g2,0,0,0,0> C1 C1

Having completed initial learning, layer 2 then would convert the

received coincidences into the Markov Graph and Markov chains as shown

below in Fig. 15. Assuming that initial learning is completed at layer 2, layer 2

starts playback in order to train layer 3 as shown in Table 12.

Table 12 Learned Input Sequences at HTM Layer 2 with generated FFBs

Sequences Learned Feed Forward Beliefs
λ<g1,g2,g3>

C1 λ<g1,0,0>

C1 λ<g1,0,0>

C1 λ<g1,0,0>

C1 C2 λ<g1,0,0>

C2, C3, C4, C5 λ<0,g2,0>

C5 λ<0,g2,0>

C5 λ<0,g2,0>

C5 λ<0,g2,0>

C5, C6, C1 λ<0,0,g3>

C1 λ<g1,0,0>

Finally, the spatial pooler at layer 3 converts feed forward beliefs

received from layer 2 into sequence of coincidences using the terminating

condition rules previously described to combine coincidences into sequences of

coincidences as shown in Table 13. Fig. 16 shows layer 3 Markov chains.

Page 48 of 68

Table 13 HTM Layer 3 Learned Coincidences

Feed Forward

Beliefs

Coincidences Sequences of Coincidences for

Layer3

λ<g1,0,0> g1 C1 new

coincidence

C1

λ< g1,0,0> C1 C1

λ<g1,0,0> C1 C1

λ< g1,0,0> C1

λ<0, g2,0> g2 C2 new

coincidence

C1, C2

λ<0,g2,0> C2 C2

λ<0,g2,0> C2 C2

λ<0,g2,0> C2

λ<0,0,g3> g3 C3 new

coincidence

C2, C3

λ< g1,0,0> C1 C1

10. Appendix B – Examples of HTM Inference calculations and FFBs propagation

In order to understand how feed forward beliefs propagate through HTM

layers during inference consider the following example. Fig.14 represents

Markov chains at layer 1 of the HTM created during the training phase based

on the following input sequences (see Table 10 in Appendix A) received in this

order during inference: <S1,S2,S3,S4>, < S1,S2,S5>, < S1,S3,S6>, <

S1,S3,S6>, < T1,T2,T3>, < T1,T3,T5>, < T6,T5,T7>, < S3,S7,S6,S1>, < H-

L1,H-L2>, < H-L1>, <H-L1,H-L3>, < H-L1>, < H-L1, H-L2, H-L3>, < UL1,

UL2, UL3, UL4>, < S2,S6,S5>, <S1,S6,S8>. These sequences were collected

by the spatial pooler based on the sequence terminating conditions TC1-3 (for

this example the max allowed sequence size is 4) previously defined. During

the learning phase a single Markov graph is created which is then split into

multiple Markov chains based on the algorithm shown in Fig.6.

Page 49 of 68

Figure 14 Example HTM Layer 1 Markov Chains

Assume that during the inference stage the following input sequences

are processed in time order by layer 1 of the HTM: <S1,S3>, <S3,S6>,

<T1,T2,T3>, <T6,T9>, <S7,S1>, <HL1,HL2,HL3>, <UL1, UL2, UL4>,

<UL1,UL3>, <S1, S2>, <S1>. Table 14 was created from these inputs based on

the FFB calculations from Table 1 applied against the Markov chains in Fig.14.

Also assume that the HTM algorithm used is neither the Path probability nor
the ButtomUP algorithm.

Table 14 Feed Forward Belief calculations for HTM Layer 1

Input Sequence(IS)

to HTM Layer 1

Sequence

Similarity

(SS)

Sequence

Persistence

(SP)

Degree of

Membership

(DM)

λL2 Markov

Chain

Matched

<S1,S3> 0.99 0.00125 0.99 <0,0.99,0,0,0,0> g2

<S3,S6> 0.66 0.00125 0.66 <0,0.66,0,0,0,0> g2

<T1,T2,T3> 0.99 0.000625 0.99 <0,0,0,0,0.99,0> g5

<T6,T9> 0.33 0.000625 0.33 <0,0,0,0,0,0.33> g6

<S7,S1> 0.37 0.000625 0.37 <0,0,0.37,0,0,0> g3

<HL1,HL2,HL3> 0.99 0.000625 0.99 <0.99,0,0,0,0,0> g1

<UL1, UL3, UL4> 0.62 0.000625 0.62 <0,0,0,0.62,0,0> g4

<UL1,UL3> 0.37 0.000625 0.37 <0,0,0,0.37,0,0> g4

<S1, S2> 0.99 0.000625 0.99 <0,0.99,0,0,0,0> g2

<S1> 0.99 0.00125 0.99 <0,0.99,0,0,0,0> g2

Page 50 of 68

The calculations below refer to Table 14 as applied at HTM layer 1 to

the Markov chains in Fig.14.
 IS = <S1,S3> then LLS = <S1,S3,S6>, SS = (1×0.495) + (1×0.495) = 0.99,

SP = (2/16 × 0.01), DM=SS=.99, λL2 = FFB = min(1,0.991) = 0.99

 IS = <S3,S6> then LLS = <S1,S3,S6>, SS = (2/3 × 0.495) + (2/3 × 0.495)

=0.66, SP = (2/16 × 0.01), DM = SS=0.66, λL2 = FFB = min(1,0.661) = 0.66

 IS = <T1,T2,T3> then LLS = <T1,T2,T3>, SS = (1×0.495) + (1 × 0.495) =

0.99, SP = (1/16× 0.01), DM= SS=0.99, λL2 = FFB = min(1, 0.991) = 0.99

 IS = <T6,T9> then LLS = <T6,T5,T7>, SS=(1/3 × 0.495) + (1/3 × 0.495) =

0.33, SP = (1/16× 0.01), DM=SS=0.33, λL2 = FFB = min(1, 0.331) = 0.33

 IS = <S7,S1> then LLS = <S3,S7,S6,S1>, SS= (2/4 × 0.495) + (1/4 × 0.495)=

0.37, SP = (1/16× 0.01), DM=SS=0.37, λL2 = FFB = min(1, 0.371) = 0.37

 IS = <HL1,HL2,HL3> then LLS = <HL1,HL2,HL3>, SS= (3/3 × 0.495) +

(3/3 × 0.495) = 0.99, SP = (1/16× 0.01), DM=SS=0.99, λL2 = FFB = min(1,

0.991) = 0.99

 IS = <UL1, UL3, UL4> then LLS = <UL1, UL2, UL3,UL4>, SS= (3/4 ×

0.495) + (2/4 × 0.495) = 0.617, SP = (1/16 × 0.01), DM = SS=0.617 , λL2 =

FFB = min(1,0.6176) = 0.62

 IS = <UL1,UL3> then LLS= <UL1, UL2, UL3,UL4>, SS= (2/4 × 0.495) +

(1/4 × 0.495) = 0.37, SP = (1/16 × 0.01), DM = SS=0.37, λL2 = FFB =

min(1,0.371) = 0.37

 IS = <S1, S2> then LLS = <S1,S2,S5>, SS= (2/2 × 0.495) + (1/2 × 0.495) =

0.99, SP = (1/16 × 0.01), DM = SS=0.99, λL2 = FFB = min(1,0.991) = 0.99

 IS = <S1> then LLS = <S1,S3,S6>, SS= (1/1 × 0.495) + (1/1 × 0.495) = 0.99,

SP = (2/16 × 0.01), DM =(SS,SP)=0.99, λL2 = FFB = min(1,0.991) = 0.99

The feed forward beliefs from layer 1 travel to layer 2 as shown in

Table 15 below. The mapping of temporal groups gi to coincidences Ci was

established during the learn phase and is shown in Table 11 in Appendix A.

Layer 2 input sequences (coincidences) are created based on terminating

conditions TC1 and TC3.

Table 15 HTM Layer 2 Mapping of Feed Forward Beliefs to Coincidences

λL2

λ<g1,g2,g3,g4,g5,g6>

Maps to

Layer 2

Coincidence

Layer 2

Input

Sequence

(IS)

Sgi Layer1

FFBgi

from λL2

Layer 2

IALSgi..i..i+N

<0,0.99,0,0,0,0> g2 C1 < C1> Sg2 0.99 0.99

<0,0.66,0,0,0,0> C1 0.66

<0,0,0,0,0.99,0> g5 C2 0.99

<0,0,0,0,0,0.33> g6 C3 0.33

<0,0,0.37,0,0,0> g3 C4 < C1, C2, C3,

C4>

Sg2563 0.37 0.5875

<0.99,0,0,0,0,0> g1 C5 0.99

<0,0,0,0.62,0,0> g4 C6 < C5, C6> Sg14 0.62 0.805

<0,0,0,0.37,0,0> C6 0.37

<0,0.99,0,0,0,0> g2 C1 < C6, C1> Sg42 0.99 0.68

<0,0.99,0,0,0,0> C2 < C2> Sg2 0.99 0.99

Page 51 of 68

The HTM layer 2 input activation level (IAL) calculations from Table

15 are shown below:

 IALSg2 = 0.99/1 = 0.99
 IALSg2563 = [0.66 + 0.99 + 0.33 + 0.37]/4 = 0.5875
 IALSg14 = [0.99 + 0.62]/2 = 0.805
 IALSg42 = [0.37 + 0.99]/2 = 0.68
 IALSg2 = 0.99/1 = 0.99

Layer 2 of the HTM was created during the training phase (see Table 11 in

Appendix A) and is shown below.

Figure 15 Example HTM Layer 2 Markov Chains

The feed forward beliefs generated at layer 2 to be sent to layer 3 are

computed as shown in Table 16.

Table 16 Feed Forward Belief calculations for HTM Layer 2

Input Sequence(IS)

to HTM Layer 2

Sequence

Similarity

(SS)

Sequence

Persistence

(SP)

Degree of

Membership

(DM)

λL3 Markov

Chain

Matched

< C1> 0.99 0.004 0.99 <0.98,0,0> g1

< C1, C2, C3, C4> 0.74 0.001 0.74 <0,0.43,0> g2

< C5, C6> 0.99 0.001 0.99 <0,0,0.80> g3

< C6, C1> 0.66 0.001 0.66 <0,0,0.45> g3

< C2> 0.99 0.001 0.99 <0,0.98,0> g2

Table 16 above was created based on the following calculations applied against

the Markov chains in Fig.15:
 IS = <C1> then LLS = <C1>, SS = (1×0.495) + (1×0.495) = 0.99, SP = (4/10

× 0.01), DM=SS=0.99, λL3 = FFB × IAL = min(1,0.994) × 0.99 = 0.98

Page 52 of 68

 IS = <C1,C2,C3,C4> then LLS = <C2,C3,C4,C5>, SS = (3/4 × 0.495) +

(3/4×0.495) = 0.74, SP = (1/10 × 0.01), DM=SS=0.74, λL3 = FFB × IAL =

min(1,0.741) × 0.5875 = 0.435

 IS = <C5,C6> then LLS = <C5,C6,C1>, SS = (2/2 × 0.495) + (2/2 × 0.495) =

0.99, SP = (1/10 × 0.01), DM=SS=0.99, λL3 = FFB × IAL = min(1,0.991) ×

0.805 = 0.796

 IS = <C6,C1> then LLS = <C5,C6,C1>, SS = (2/3 × 0.495) + (2/3 × 0.495) =

0.66, SP = (1/10 × 0.01), DM=SS=0.66, λL3 = FFB × IAL = min(1,0.661) ×

0.68 = 0.449

 IS = <C2> then LLS = < C2,C3,C4,C5>, SS = (1 × 0.495) + (1 × 0.495) =

0.99, SP = (1/10 × 0.01), DM=SS=0.99, λL3 = FFB × IAL = min(1,0.991) ×

0.99 = 0.98

Layer 3 of the HTM was created during the training phase and is shown below.

Figure 16 HTM Layer 3 Markov Chains

The feed forward beliefs from layer 2 travel to layer 3 as shown in the

Table 17 below. The mapping of temporal groups gj to coincidences Cj was

established during the training phase and is shown in Table 13 in Appendix A.

Table 17 HTM Layer 3 Mapping of Feed Forward Beliefs to Coincidences

λL3

λ<g1,g2,g3>

Maps to

Layer 3

Coincidence

Layer 3

Input

Sequence

(IS)

Sgj Layer 2

(FFBgi ×

IALSgi..i..i+N)

from λL3

Layer 3

IALSgj..j+N

<0.98,0,0> g1 C1 C1 0.98

<0,0.43,0> g2 C2 C2 0.43

<0,0,0.80> g3 C3 < C1, C2,C3> Sg123 0.80 0.737

<0,0,0.45> g3 C3 C3 0.45

<0,0.98,0> g2 C2 < C3, C2> Sg23 0.98 0.715

The HTM layer 3 input activation level (IAL) calculations from Table

17 are shown below:

 IALSg123 = [0.98 × 0.43 × 0.80]/3 = 0.737
 IALSg23 = [0.45 + 0.98]/2 = 0.715

Page 53 of 68

The feed forward beliefs generated at layer 3 to be sent to the Max Output layer

are computed as shown below.

Table 18 Feed Forward Belief calculations for HTM Layer 3

Input Sequence(IS)

to HTM Layer 3

Sequence

Similarity

(SS)

Sequence

Persistence

(SP)

Degree of

Membership

(DM)

λOutput Markov

Chain

Matched

< C1, C2,C3> 0.66 0.001 0.66 0.49 g1,g2

< C3, C2> 0.495 0.002 0.495 0.355 g1

The calculations below belong to table 18 based on the Makov chains

of HTM layer 3 in Fig.16.

 IS = <C1,C2,C3> then LLS = <C1,C2> and <C2,C3> since DM(C1,C2) =

DM(C2,C3) and SP(C1,C2) = SP(C2,C3), SS = (2/3×0.495) + (2/3×0.495) =

0.66, SP = (1/10 × 0.01), DM=(SS,SP)=0.66, λOutput = FFB × IAL =

min(1,0.661) × 0.737 = 0.49

 IS = <C3,C2> then LLS = <C2> since DM(C2) = DM(C1,C2) = DM(C2,C3)

and SP(C2) > SP(C1,C2) and SP(C2,C3), SS = (1/2×0.495) + (1/2×0.495) =

0.495, SP = (2/10 × 0.01), DM=(SS,SP)=0.495 , λOutput = FFB × IAL =

min(1,0.497) × 0.715 = 0.355

At layer 3 λOutput is sent directly to the Max Output layer, but for layers

1 and 2 the matched Markov chain is used as an index into vectors λ2 and λ3.

Since it is possible to match more than one Markov chain as shown for input

sequence <C1, C2, C3> the single chosen Markov chain is non-deterministic

(HTM implementation dependent).

11. Appendix C – Example of Longest Common Subsequence Computation

Consider the following examples to illustrate the use of formulas (1) LCSm and

(2) LCSUm

1. Let IS = <a,b,c> and let cLLS = <a,b,c,d,x> then

a. LCS(IS,cLLS) = <a,b,c>, IS1 = <a>, cLLS1 = <a>, |IS| = 3, |cLLS| =

5, ALLL(IS,cLLS) = |IS| = 3, |LCS(IS,cLLS)| = 3

b. LCSm(IS,cLLS) = 3/3, LCSu(IS,cLLS) = <a,b,c>,| LCSu(IS,cLLS) |

= 3, LCSUm = 3/3

2. Let IS = <a,m,c> and let cLLS = <a,b,c,d,x> then

a. LCS(IS,cLLS) = <a,c>, IS1 = <a>, cLLS1 = <a>, |IS| = 3, |cLLS| = 5,

ALLL(IS,cLLS) = max(IS,cLLS) = 5, |LCS(IS,cLLS)| = 2

b. LCSm(IS,cLLS) = 2/5, LCSu(IS,cLLS) = <a> and <c>, | LCSu| = 1,

LCSUm = 1/5

3. Let IS = <b,c> and let cLLS = <a,b,c,d,x> then

a. LCS(IS,cLLS) = <b,c>, IS1 = , cLLS1 = <a>, |IS| = 2, |cLLS| = 5,

ALLL(IS,cLLS) = max(IS,cLLS) = 5, |LCS(IS,cLLS)| = 2

Page 54 of 68

b. LCSm(IS,cLLS) = 2/5, LCSu(IS,cLLS) = <bc> , | LCSu| = 2, LCSUm

= 2/5

The best match is achieved with example (1) since all of the input sequence

is matched against the learned sequence. The next best match is example (3)

which matches all of the input but not from the beginning of the learned

sequence. The worst match is example (2) which matches part of the input,
albeit from the beginning of the learned sequence.

12. Appendix D – Computing Path Probability

Assume that each element of sequence LLS has its path probability

computed according to equations (11, 12) and probability values stored in table

Learned_LLS_Nodes, as shown in Fig.17. Then ComputePathProbability

computes the path probability of IS based on sequence LLS as shown in Fig.17.

Figure 17 Path Probability Algorithm

 For instance, assume IS = <S1, S3, S4> then from Fig.14 LLS = <S1,S3,S6>
then

P(LLS1) = P(LLS start →S1) = 4/16 since LLS1 == IS1 from (11)

P(LLS2) = P(LL S1→S3) = P(LLS2| LLS1)= 2/4

 since LLS2 == IS2 from condition (12.a)

P(LLS3) = penalty = 0.0001 since LLS3 ≠ IS3 from condition (12.b)

ComputePathProbability(input, Learned_LLS_Nodes)
// Compute the path probability of the input from the LLS applying appropriate penalties
//for mismatches as follows:
 Path_prob = 1.0
 For each element “e” of the input (IS) Do
 IF match is found between “e” and learned_LLS_Nodes[i] at the next matched
 consecutive position “i” in sequence LLS
 THEN // Condition (12.a)

- Path_prob = Path_prob * learned_LLS_Nodes[i].probability
 Else IF “e” does not match any elements in learned_LLS_Nodes from position i OR “e”
 matches an already matched element of learned_LLS_Nodes

 THEN // Condition (12.b)
 // Penalize this input element

 Path_prob = Path_prob * PENALTY
 ELSE IF a match is found between “e” and learned_LLS_Nodes[j] not at the next
 matched consecutive position
 THEN // Condition (12.c)

 // Elements exist in the learned LLS at a position “j” beyond elements at
 // position “i” (last matched element) in the learned LLS that are not part of
 // the input Penalize them

- Path_prob = Path_prob * learned_LLS_Nodes[i].probability * (j - i)
* PENALTY

EndIF
 EnDo

Page 55 of 68

P(LLS) = 4/16 × 2/4 × 0.0001

Another example consider IS = <S1,S4> and assume that LLS =

<S1,S2,S3,S4> then
 P(LLS1) = P(LLS start →S1) = 4/16 since LLS1 == IS1 from (11)

 P(LLS2) = P(LLS3) = penalty = (0.0001 × 2)

 since IS2 == LLS4 from condition (12.c)

 P(LLS) = 4/16 × (0.0001 × 2)

Another example consider IS = <H1,H4,H5,H2> then from Fig.14 LLS

=<H1,H2> then
 P(LLS1) = P(LLS start →H1) = 5/16 since LSS1 == IS1 from (11)

 P(LLS2) = penalty = 0.0001 since IS2 ≠ LLS2 from condition (12.b)

 P(LLS3) = penalty = 0.0001 since IS3 ≠ LLS2 from condition (12.b)

 P(LLS4) = P(LLS H1→H2) = 2/5 since IS4 == LLS2 from condition (12.a)

 P(LLS) = 4/16 × 0.0001 × 0.0001 × 2/5

The first example produces the best match. The second example produces

the second best match and the third example the worst match. Compare these

results to utilization of longest common sequence and longest common

substring calculations and the results are different. When using equations feed

forward belief calculations 1 and 2, the second example produces the best

match while the first example produces the second best result and the third

example produces the worst result. Equations 1 and 2 reward matching all

elements of the input sequence IS, whereas the probability based computations

are more sensitive to any mismatch between input and learned sequence.

Another way to look at it, is that longest common based algorithms of

similarity match the input more “loosely” than probability based algorithms.

13. Appendix E – Understanding HTM Algorithms

To understand how HTM algorithms work consider the following

example where input to the Max Output layer is generated during inference for

two HTMs (HTMA, HTMB, see Table 19) from the same observation (made up

of several input sequences totaling 50 web destinations).

Table 19 Feed Forward Beliefs with associated input received at Max Output Layer

HTMA λOutputK HTMA matched

input sequence (ISk)

size

HTMB λOutputK HTMB matched

input sequence (ISk)

0.45 1 0.99 5

0.76 5 0.35 4

0.22 5 0.65 3

0.35 3 0.78 5

0.44 2 0.44 4

0.77 5 0.96 5

Page 56 of 68

0.85 4 0.84 4

0.31 5 0.47 4

0.56 5 0.24 3

0.30 5 0.67 3

0.66 3 0.52 5

0.94 2 0.72 5

0.29 5

 Average HTMA = (0.45 + 0.76 + 0.22 + 0.35 + 0.44 + 0.77 + 0.85 + 0.31 +

0.56 + 0.30 + 0.66 + 0.94 + 0.29)/50 = 6.9/50=0.138

 Average HTMB = (0.99 + 0.35 + 0.65 + 0.78 + 0.44 + 0.96 + 0.84 + 0.47 +

0.24 + 0.67 + 0.52 + 0.72)/50 = 7.63/50= 0.1526

 Weighted Ave HTMA = [0.45×(1/50)] + [0.76× (5/50)] + [0.22 × (5/50)] +

[0.35 × (3/50)] + [0.44 × (2/50)] + [0.77 × (5/50)] + [0.85 × (4/50)] + [0.31 ×

(5/50)] + [0.56 × (5/50)] + [0.30 × (5/50)] + [0.66 × (3/50)] + [0.94 × (2/50)] +

[0.29× (5/50)] = 0.5138

 Weighted Ave HTMB = [0.99 ×(5/50)] + [0.35 × (4/50)] + [0.65 × (3/50)] +

[0.78 × (5/50)] + [0.44 × (4/50)] + [0.96 × (5/50)] + [0.84 × (4/50)] + [0.47 ×

(4/50)] + [0.24 × (3/50)] + [0.67 × (3/50)] + [0.52 × (5/50)] + [0.72× (5/50)] =

0.6586

 Path Prob HTMA = 0.45 × 0.76 × 0.22 × 0.35 × 0.44 × 0.77 × 0.85 × 0.31 ×

0.56 × 0.30 × 0.66 × 0.94 × 0.29 = 0.000071

 Path Prob HTMB = 0.99 × 0.35 × 0.65 × 0.78 × 0.44 × 0.96 × 0.84 × 0.47 ×

0.24 × 0.67 × 0.52 ×0.72 = 0.00176

For this example, for all HTM algorithms, the observation matches

sequences learned by HTMB better than sequences learned by HTMA since

HTMB = max HTMA,B(Average()) = max HTMA,B(Weighted Sum()) = max

HTMA,B(Path Probability()) (see eq. 17).

14. Appendix F - The Design of Synthetic Data

Synthetic train and test data was produced for both the HTM and

Markov Chain (MC) based algorithms. The User Attribution solution was

verified against synthetic data that mimics user web visits found in real world

scenarios as shown in Fig. 18, using the algorithm presented in Fig.19. The

User Attribution solution was also verified against MC approaches. These

approaches, as opposed to the HTM, do not leverage any timing information.

For Markov Chains based approaches tests were performed using the same

synthetic data generated by the algorithm in Fig. 19 with the exception that all

timing information (time stamp and TS values) was removed so that only

sequences of destinations are left to be processed. Training and inference for

these alternate approaches took place based on “observations”. Each

Page 57 of 68

observation simulated a user web session worth of input and consisted of a

predetermined number (50) of web sites visited.

Simulation was performed by using input data that is as representative

of real user network traffic as possible. The input to the HTM prototype has the

following form: Timestamp<TS, Dest>, where: (1) Generation of the

Timestamp input field was accomplished by modeling devices entering

(random distribution arrival times) and leaving (random distribution for service

times) the network. (2) Generation of the TCP TS value was accomplished by

using a 50/50 ratio of TS values started at a fixed value (iphones) and random

values (android phones). (3) Generation of destinations (ranked in order of

popularity) visited by all users in the simulation follow a power law

distribution (Zipf) .

Figure 18 Synthetic Input Data for User Attribution Simulation

Fig. 18 shows the input framework within which the simulation was

run. A Java application was developed separate from the HTM, which

produced, for each user, the synthetic input data as shown in Fig. 18. The data

simulated devices associated with users entering the network at random times

and initiating multiple communication sessions until the devices are turned off.

Table 20 below shows the various random parameters that were used in the

simulation.

Page 58 of 68

Random

Simulation

Parameters

Statistical

Distributions

Boundaries

of Distributions

Explanations

Power On Time Random
Uniform

0 – 3 hours Simulates users powering on
their devices and entering the

network in the morning hours,

between 6:00 AM and 9:00 AM

Intra Session

Time (IRA)

Random

Uniform

0 – 5

seconds

Time between HTTP

requests for a given user within the

same user communication session.
User communication sessions

form clusters of web destinations
visited by a user that follow each

other close in time.

Inter Session

Time (IRT)

Random
Uniform

1 – 5
minutes

Time between the end of a
user communication session and

the beginning of the next user

communication session for that
same user.

Service Time Random

Uniform

Power Off

Time - Power On
Time

Amount of time a device

once powered on remains on in the
network.

Power Off Time Random

Uniform

0 – 21 hours Simulates time when users

power off their devices and exit
the network.

Web Destinations Zipf 1 – 10,000

web destinations

Simulates web destinations

ranked in order of importance (1
most visited to 10000 as the least

visited) visited by users.

Number of Web

Destinations per user

session

Random
Uniform

1- 10
destination per

session

For each user session a user
is allowed between 1 to 10 web

visits chosen at random.

TCP Timestamp

(TS)

Random
Uniform

0 - 232 50 % of devices entering the
network will have a random

starting value while the other 50%

will have a fixed starting value of
0.

Table 20 Simulation Parameters

The input generation application creates an input file for each

simulated user where the numbers of train and test days are configurable

parameters.

The algorithm in Fig. 19 creates 5 simulation days’ worth of synthetic

train data for user Ux. This simulation code generates synthetic data for

training purposes for both HTM and alternate approaches. Each simulation day

contains a random number of user sessions bounded by random intersession

times. Each user session for the HTM is made up of a random number of input

tokens of the form: Timestamp<TS, Dest>. Within a user session, the intra

session time randomly spaces occurrences of the input tokens. Destinations are

selected based on the Zipf distribution, with the most popular destinations

having the highest probability of being selected over less popular destinations.

The algorithm used to implement the zipf distribution is based on the zipf

algorithm used in [20]. Next_ZipfRandom in Fig. 19 returns the next web site

Page 59 of 68

in rank order from 1 to n (with 1 being the most visited and n the least)

following a power law distribution. The algorithm generates web sites that are

weight proportional to the Riemann zeta function:
𝟏

𝟏

𝜽
+

𝟏

𝟐

𝜽
+….+

𝟏

 𝑵

𝜽
. In the

algorithm in [20], θ(theta) controls the skewness such that θ = 1.0 indicates the

highest skew (all nodes have different popularity) and θ = 0 indicates the

lowest skew (all nodes are equally popular). For this study, theta was set to

0.96.

Figure 19 High level algorithm to generate synthetic random train input for a single user

Test data had to be created using a different approach since it had to be

similar to the train data but also maintain a certain level of independence from

train data. Three methods were used for generation of synthetic data for the test

phase of experiments. All three algorithms (Random Walk, Walk Only and

Concept Drift) walk a first order Markov chain of learned destinations which

Ux_Max-Simulation_Days = 5 // Defines max number of Train or Test days

// Create one input file per user Ux in simulation
For Each user Ux in simulation Do

- Generate_Input_For_User(Ux, Ux_Max_Simulation_Days)
EnDo

Generate_Input_For_User(Ux, Ux_Max_Simulation_Days)
 TimeStamp = 0
 DevicePowerOnTime = TimeStamp + Uniform Random(0, 3Hrs)
 DevicePowerOffTime = DevicePowerOnTime + Uniform Random(0, 21Hrs)
 TS = Generate TCP TimeStamp-TS
 TimeStamp = DevicePowerOnTime
 While (Ux_Max_Simulation_Days > 0) Do

 While (TimeStamp < DevicePowerOffTime) Do
 NumberDestinationsPerSessions = Uniform Random(1,10)
 While (NumberDestinationsPerSessions > 0 AND TimeStamp <

 DevicePowerOffTime) Do
Dest = Next_ZipfRandom (1000,theta) // Get the next destination

 Output TimeStamp<TS,Dest> to Ux file name
 NumberDestinationsPerSessions = NumberDestinationsPerSessions – 1
 IF (NumberDestinationsPerSessions > 0) THEN
 IntraSessionTime-IRA = UniformRandom(0,5secs)
 TimeStamp = IntraSessionTime-IRA

 TS = TS + IntraSessionTime
 EndIF

 EnDO
 InterSessionTime-IRT = UniformRandom(1,5mins)
 TimeStamp = InterSessionTime-IRT
 TS = TS + InterSessionTime
 EnDO
 Ux_Max_Simulation_Days = Ux_Max_Simulation_Days – 1

 EnDO

Page 60 of 68

were generated during the training phase of the synthetic data generation

process.

In the “Random Walk” the next destination Vj, for transitions of the

form Vi Vj, is chosen randomly in proportion to the in-degree of the node Vj.

That is, in proportion to the access frequencies of the neighbors (Vj1,… Vjn) of

the current node (Vi). If no such neighbor Vj exists then the walk proceeds with

a new node Vi with at least one neighbor, selected from the learned destinations

based on a zipf distribution. Selection of the next destination Vj is based on the

work of Price (1976) [39] who proposed a model of networks formation that

gives rise to power-law degree distributions. Price was interested in the power

law distribution of citation networks. Specifically, his model showed that a

newly appearing paper cites previous ones chosen at random with a probability

proportional to the number of citations that those previous papers already have.

This property is critical in creating a relationship between train data generated

for a given user with test data for that same user. While a relationship must

exist between the train and test data sets it must also maintain a certain level of

independence between the two sets which is provided by the randomness of the

selection of already visited nodes. While the Price model has been applied to

simulation of networks traversed by many users, in this study, this model is

adjusted to simulate web visits by a single user. As a result the emphasis was

not placed exclusively on in-degree or out-degree of network nodes but instead

on the frequencies of edges emanating from or terminating to nodes

representing web visits to web sites. The algorithm follows with connectivity

probability

1 -
𝑶𝒊

𝑶𝒊+𝑪𝒊
 > r (0 ≤ r ≤ 1)

a learned path proportional to the frequency of the in-degree of web sites along

the path. Otherwise it starts a new path. In terms of notation, r is a random

number that follows a uniform distribution, Ci represents the sum of traversal

frequencies of all edges emanating from Vi (Vi Vj1-n) and Oi is the out

degree of Vi. As would happen in real life the algorithm favors learned path

patterns, but does also produce variations that simulate "concept drift”. In

“Walk Only” -, the algorithm selects Vj randomly in proportion to access

frequencies of all of Vi's neighbors as long as Vi has at least one neighbor.

Note that this algorithm minimizes any concept drift since it always follows a

learned path as long as one exists, as opposed to the Random Walk algorithm

that is constrained by the connectivity probability and the random value of r. In

“Context Drift”, the algorithm selects Vj using the Walk Only algorithm except

for 20% of the Vj destinations that are selected as new ones outside of the

learned train set. In addition, 10% of the Vi Vj transitions selected during the

walk are new (not existing in the train set).

Page 61 of 68

14.1. Evaluating similarity between Synthetic and Real Network data

 In order to determine how similar train and test data sets are to each other,

similarity statistics were computed against real cellular network data collected

for an equivalent number of users. Observation similarity statistics between

train and test data sets were generated based on all observations processed
leveraging the work of Kumar and Raju [31].

(OSS)Observation Sequence Similarity = (21)

∑
|𝐿𝐶𝑆(𝑇𝑂𝑖, 𝑇𝑟𝑂)|

|𝑇𝑂𝑖|
|𝑇𝑂|
𝑖=1

|𝑇𝑂|
⁄

(OSuS)Observation Substring Similarity = (22)

∑
|𝐿𝐶𝑆𝑢(𝑇𝑂𝑖, 𝑇𝑟𝑂)|

|𝑇𝑂𝑖|
|𝑇𝑂|
𝑖=1

|𝑇𝑂|
⁄

(OSeS)Observation Set Similarity =

 (23)

∑
|𝑇𝑂𝑖 ∩ 𝑇𝑟𝑂|

|𝑇𝑂𝑖|
|𝑇𝑂|
𝑖=1

|𝑇𝑂|
⁄

Overall Similarity = (24)

 (.33)×OSS + (.33)×OSuS + (.33)×OSeS

TO and TrO are the sets of all test and train observations respectively. TOi

is a specific test observation from the test set TO. 𝐿𝐶𝑆(𝑇𝑂𝑖, 𝑇𝑟𝑂) is the length

of the longest common subsequence match between a specific test observation

and all train observations, whereas 𝐿𝐶𝑆𝑢(𝑇𝑂𝑖, 𝑇𝑟𝑂) is the length of the

longest common substring match between a specific test observation and all

train observations. As can be seen from Fig. 20 overall similarity between train

and test synthetic data sets is 50%, with set similarity (observations in train and

test data sets containing the same destinations but not in the same order) being

as high as 83%. Sequence and substring similarity measure how alike

sequences of destinations are between train and test data sets. The real network

data measurements (line in red in Fig. 20) for an equivalent data set (5 users, 5

train days, and 1 test days) collected from a real network show that train and

test data sets are more similar to each other than similar data sets derived from

synthetic data. These results provide support for the belief that synthetic data

Page 62 of 68

represents a good benchmark for baselining the experiments conducted in this
study.

Figure 20 Similarities between Train and Test Data Sets

15. Appendix G – Why use HTMs when dealing with Complex Networks?

HTMs are unique in stressing the temporal aspect of perception and

implementing memory for sequences of patterns that facilitate anticipation.

Each level in the hierarchy is trained separately to memorize spatial-temporal

objects (patterns) and is able to recognize objects in a bottom-up/top-down

process [18]. The HTM hierarchy also enables efficient representation of

relationships among many inputs by leveraging reuse of lower level inputs in

order to represent higher level concepts at higher levels of the hierarchy. HTMs

allow sequence learning (concatenation of spatial and then temporal learning),

which provides the ability to make predictions and can be applied to

disambiguate input. Only few methods exist that combine spatial and temporal

learning in a tight way (e.g. recurrent neural networks can do this a well) [22].

Of specific interest to this study is the evaluation of the distribution of

visitors to web sites. Adamic and Huberman [1] studied the distribution of

users among web sites by examining usage logs from America Online covering

120,000 sites. They discovered that the distribution of visitors per site follows a

universal power law similar to that found by Pareto in income distributions.

They reasoned that a small number of sites control the traffic of the web

population, a result typical of winner-take-all markets. The authors agree that

Page 63 of 68

the World Wide Web gives rise to an asymptotic self-similar structure in which

there is no natural scale and the number of users per site is indeed distributed

according to a power law. In another study, Adamic and Huberman [2] find

inconsistencies in the conclusions of a study by Barabasi and Albert [5] which

states that because of preferential treatment, a vertex that acquires more

connections than another will increase its connectivity at a higher rate so that

the connectivity between nodes increases in line with the growth of the

network. This leads to older vertices increasing their connectivity at the

expense of younger and leading to the well known “rich-get-richer”

phenomenon for highly connected vertices. Adamic and Huberman studied

web crawls of 260,000 sites and concluded that all sites are not created equal

since no correlation exists between the age of a site and its number of links.

They explain that the rate of acquisition of new links varies from site to site

and is probably proportional to the number of links the site already has,

because the more links the site already has, the more visible it becomes and the

more links it will get.

While there has been agreement in the research community that

communication traffic has self-similar characteristics, until recently it was

believed that complex networks are not invariant or self-similar under large

scale transformations. This belief is rooted in the small world property of these

networks which would seem to imply that the number of nodes increases

exponentially with the diameter of the network rather than following the power

law relation expected for self-similar structures. Song, Havlin and Maske [44]

analyzed real complex networks, like the web, utilizing a box counting method

as a scale invariant renormalization procedure and concluded that, on the

contrary, these networks consist of self-repeating patterns on all length scales

that suggest they share common self-organizing properties.

 What are the implications of addressing the user attribution problem in

the context of complex networks? The self-similar, small world and clustering

properties together with the preferential attachment characteristic of complex

networks supports the notion that users tend to visit a limited number of mostly

popular sites with increasing frequencies. How can the approach implemented

in this study leverage unique and personal patterns to differentiate among users

if different users visit mostly the same sites and this research proposes to use

web site visits as a way to uniquely recognize users?

This study has leveraged the power law properties that characterize web

traffic of users who visit different web sites. Specifically, the implications of

the power law distribution support the notion that while it is true that few web

sites get visited very often by all users, many web sites, in the long tail portion

of the power law distribution, get visited less often by a variety of users as

well. By recording communication patterns of past activity for each user it

becomes possible to identify unique and differentiating elements that will

enable isolation among users. More specifically, the hypothesis in this study

has been that the long tail properties of the distribution of user visits to web

Page 64 of 68

sites together with the time order of such visits create conditions for unique

differentiation among user patterns that allows to adequately address the user

attribution problem.

HTMs have been successfully used in classification problems in a

variety of applications such as recognition of USPS handwritten digits [8],

speech recognition [17], and prediction of user choices on mobile phones [34].

HTMs have also been used in the area of web analytics which represents an

important use case for this study. In a talk given for the association of

computing machinery (ACM) in 2009, Subutal Ahmad, vice president of

engineering at Numenta, described results of experiments using Numenta’s

HTMs to predict user web click behavior for topics and pages of interest to the

user. In these experiments web content was partitioned into 177 different

topics. In their experiments random prediction reported 0.56% accuracy. By

training the HTM with 100,000 user sequences (web pages) and using no

temporal context (0
th
 order prediction based on recorded popularity of topics

and web pages) the accuracy reported was 23%, which matches what most web

sites can do today. By including in the analysis transition probabilities from a

given web page to another in the form of 1
st
 order prediction, predictive

accuracy increased to 28%. By further leveraging use of variable order

prediction, accuracy levels jumped to 45%. Variable order prediction, used in

this study, allows prediction to fully leverage the dynamic “context” (different

length sequences) of web pages visited by a user.

16. Appendix H – Tables Describing Parameters for Experiments

Table 21 . EXPERIMENT TYPE E1, USER ATTRIBUTION NO CONCEPT DRIFT

Number of Web

Destinations

 Number of Users

 5 20 50 100 500

1000 5/1, 5/2, 3Obs 5/1, 5/2, 3Obs 5/1, 5/2, 3Obs 5/1, 3Obs 3Obs

5000 5/1, 3Obs 5/1, 3Obs 5/1, 3Obs 5/1,3Obs 3Obs

10,000 5/1, 3Obs 5/1, 3Obs 5/1, 3Obs 5/1,3Obs 3Obs

Table 22 . EXPERIMENT TYPE E2, USER ATTRIBUTION WITH CONCEPT DRIFT

Number

of Users

 Number Train Days/Number of Test Days

 5/2 10/3 15/4 20/5

5 Walk Only, Walk Only Walk Only Walk Only

5 Random Walk Random Walk Random Walk Random Walk
5 Walk Only 20% Walk Only 20% Walk Only 20% Walk Only 20%

Page 65 of 68

Number

of Users

 Number Train Days/Number of Test Days

 5/2 10/3 15/4 20/5

and10% and10% and10% and10%

Table 23. EXPERIMENT TYPE E3, E10 USER ATTRIBUTION UNDER DOS ATTACK

Number of

Users/Numb

er infected

users

 DOS Attack Parameters

 Number

Destinations/Unit of

Time, Repeats Every

Number

Destinations/Unit of

Time, Repeats Every

Number

Destinations/Unit of

Time, Repeats Every

10/4 5/5ms, 5ms 10/10ms, 5ms 20/20ms, 5ms

Table 24 . EXPERIMENT TYPE E4, E11 USER ATTRIBUTION UNDER PHISH ATTACK

Number of

Users/Number

infected users

 Phish Attack Parameters

 Number

Destinations/Unit of

Time, Repeats

Every

Number

Destinations/Unit of

Time, Repeats Every

Number

Destinations/Unit of

Time, Repeats Every

10/4 1/1ms, (1min-1hour) 3/3ms, (1min-1hour) 5/5ms, (1min-1hour)

Table 25. EXPERIMENT TYPES E7,E8, E9, USER ATTRIBUTION

Number of Users Number Train Days/Number of Test Days

5 5/1 5/2 10/3

10 5/1 5/2 10/3

17. Appendix I - Glossary of HTM Abbreviations and Symbols

The table below provides an explanation for many of the abbreviations, terms and

symbols used in HTM computations and algorithms found in the “The Approach”

section.

Page 66 of 68

Table 26. TERMS USED IN HTM CALCULATIONS AND ALGORITHMS

Terms Description

ALLLS Adjusted Length LLS computes the appropriate proportion of

an input string IS matched against the longest common

subsequence LCS or longest common substring LCSu of a

candidate learned longest common subsequence cLLS that

needs to be accounted for during similarity calculations.

Specifically, ALLLS returns the length of the input sequence IS

matched against subsequence cLLS. This length, based on the

ALLLS_Cond condition, is equal to the size of the input

sequence when IS matches completely from the beginning

sequence cLLS, otherwise the length returned is the size of the

longer sequence between the IS and cLLS. Experiments

conducted during this study have shown that matching

substrings from the beginning of a best matching cLLS

produces better recall accuracy results than matching

substrings sequences in the middle of cLLS.

ALLLS_Cond Adjusted Length LLS condition is true if the size of the input

sequence IS matches completely from the beginning sequence
cLLS.

cLLS cLLS refers to a candidate longest learned sequence LLS, one

out possibly many that matches IS, out of all Markov chains in

a given HTM layer.

DM Degree of Membership finds the best (longest) match

computed based on sequence similarity (SS) between a single

input sequence IS and all cLSS sequences in a given HTM

layer. See equation (8)

𝑭𝑭𝑩𝒈𝒊 Feed forward belief measures the degree of membership (DM)

of a given input sequence at layer Lx-1 of the HTM computed

against the most persistently visited LLS belonging to

Temporal group gi at layer Lx-1. Each computed LLS can only

belong to a unique Markov Chain within an HTM layer. See

equation (9).

FFB_PP Path Probability of LLS is the path probability algorithm

which computes the path probability of matching the longest

learned sequence (LLS) and then for each LLS mismatch

against IS a penalty is computed. The algorithm ensures that

path probability P(LLSk | LLSj) (where LLSk follows directly

LLSj) is computed only if LLSk and LLSj are both matched in

IS otherwise penalties are computed (as shown in condition

12.c of the path probability algorithm shown in Fig. 17). See

equation (10).

Fq Frequency of visits is used to compute the persistence (PS) of

a given cLLS sequence.

gi A temporal group gi, also known as “coincidence”, is the

Markov chain which holds the Longest Learned Sequence

(LLS)

IAL Input Activation Level represents the strength of the match of

the input sequence against the longest learned sequence (LLS)

from the HTM layer below Ln-1 and is used to normalize feed

forward belief calculations at layer Ln. Examples of how feed

forward beliefs propagate through HTM layers are shown in
Appendix B. See equation (16)

Page 67 of 68

𝛌𝑳𝒙<𝑭𝑭𝑩𝒈𝒊 , 𝑭𝑭𝑩𝒈𝒊+𝟏, > A vector of feed forward beliefs at HTM layers 1, 2, 3. The

topmost HTM layer is also known as “output” layer. See

equation (15) for λL2 and equation (14) for λL3.

λOutput<𝑭𝑭𝑩𝒈𝒊, 𝑭𝑭𝑩𝒈𝒊+𝟏, > A vector of feed forward beliefs at the output HTM layer. See

equation (13) for λLoutput

LCS Longest Common Subsequence is computed as the longest

sequence of inputs (web destinations or temporal groups) that

appears left to right but not necessarily in a contiguous block

in both input sequence (IS) and the matched cLLS.

LCSm Longest Common Subsequence Measure computes the portion

of the cLLS matched as the longest common subsequence

against the input sequence IS. See equation (1).

LCSu Longest Common Substring is computed as the longest

sequence of inputs (web destinations or temporal groups) that

appears left to right in a contiguous block in both input
sequence (IS) and matched cLLS.

LCSUm Longest Common Substring Measure computes the portion of

the cLLS matched as the longest common substring against the
input sequence IS. See equation (2).

LLS Longest Learned Sequence is the single longest sequence of

learned inputs (web destinations or temporal groups) in a

Markov chain within an HTM layer that best matches the input

sequence. The LLS is discovered by computing the longest

common subsequence and substring of learned sequences in

the HTM (eq. 1,2).

MAX_FFB_HTMs Max Feed Forward Belief for HTMs uses the 𝑚𝑎𝑥𝐻𝑇𝑀1..𝑀

function to compute the highest valued feed forward belief

(based on one of 7 HTM algorithms) for a given observation

worth of input for a given HTM/user (see equation 17). To

review examples of calculations of feed forward beliefs

propagating towards upper layers of the HTM during HTM

training see Appendix A and during inference see Appendix B.

Ps Persistence measures how often learned sequences in Markov

chains are visited (see equation 4). For instance, consider the

Markov chains at layer 1 of the HTM in Fig. 14 from

Appendix B, which used the spatial pooler algorithm to

combine groups of web destinations into sequences based on

terminating conditions TC1-3. These Markov chains were

created during the training phase using sequences of web sites

as shown in Table 10 from Appendix A. All nodes in Fig. 14

represent unique web destinations, with the exception of

cloned nodes which are represented using prime symbols as in

S3’ and S3’’. Assume that cLLS = <S1, S2, S3 ,S4> then

Fq(cLLS) = 1, NLS = 16 and Ps(cLLS) = 1/16. As another

example, assume cLLS = <S1,S3,S6> from Fig. 14, then
Fq(cLLS) = 2, NLS = 16 and Ps(cLLS) = 2/16.

 𝑺𝒈𝒊..𝒊+𝑵(𝒈𝒊, 𝒈𝒊+𝟏,𝒈𝒊+𝟐,…) Sequence of temporal groups received from a lower HTM

layer which represents an input sequence learned and inferred

within variable order Markov chains at HTM layers 2 and 3

𝑺𝛌𝐎𝐮𝐭𝐩𝐮𝐭𝒌..𝒌+𝑵(𝛌𝐎𝐮𝐭𝐩𝐮𝐭𝒌+𝑵)

A sequence of feed forward beliefs received at Max Output

layer from a given HTMi for a single observation worth of data

and represents an input sequence (IS) received at the Max

Page 68 of 68

Output layer.

Sp Sequence persistence measures the persistence (frequency) of

visits (Ps) to a given cLLS normalized using persistence

weight WP. See equation (7).

SS Sequence Similarity measures the similarity of an input

sequence (IS) and cLLS based on the aggregate of longest

common subsequence (LCSm) and substring measures

(LCSUm) normalized with subsequence and substring weights

(Ws,Wu). See equation (6).

Timestamp<TS, Dest> Represents HTM input at layer 1. Timestamp is the time in

milliseconds when the input was received by the HTM. TCP

Timestamp (TS) is the time in milliseconds when a TCP packet

was sent. Destination (Dest) is the destination address

(represented within the HTM as a number) of the HTTP

request received by the HTM.

Ws Similarity weights represent the relative importance attributed

to different components of the sequence similarity calculation.

Ws represents the weight given to the longest common

subsequence portion of the sequence similarity calculation. Wu

represents the weight given to the longest common substring

portion of the sequence similarity calculation. Wp represents

the weight given to the sequence persistence calculation. The

similarity weights values are based on results from

experiments which have shown that sequence persistence (SP)

which is simply based on frequency of occurrences of learned

sequences, while necessary to improve overall accuracy

results, has the least impact on overall recall accuracy in

contrast to the sequence similarity calculation (SS) which

instead is based on recognition of the timed order of web

destinations within learned sequences.

	Nova Southeastern University
	NSUWorks
	4-19-2016

	The user attribution problem and the challenge of persistent surveillance of user activity in complex networks
	Claudio Taglienti
	James D. Cannady Jr.
	NSUWorks Citation

	1

