
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

1997

Development and Evaluation of Interactive
Courseware for Visualization of Graph Data
Structure and Algorithms
Thomas E. Beutel
Nova Southeastern University, tom_beutel@yahoo.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Thomas E. Beutel. 1997. Development and Evaluation of Interactive Courseware for Visualization of Graph Data Structure and Algorithms.
Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information
Sciences. (410)
http://nsuworks.nova.edu/gscis_etd/410.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Development and Evaluation of Interactive Courseware
for Visualization of Graph Data Structures and Algorithms

by

Thomas E. Beutel

A Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer and Information Sciences
Nova Southeastern University

1997

We hereby certify that this dissertation, submitted by Thomas E. Beutel, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

0ertrude W. Abramson, Ed.D
Chairperson of Dissertation Committee

Michael J. Laszlo, Ph.D.
Dissertation Committee Member

Dissertation Committee Member

Edward Lieblein, Ph.D.
Dean, School of Computer and Information Sciences

~I
Date.

Date I I

Date
t '

Date

School of Computer and Information Sciences
Nova Southeastern University

1997

Certification Statement

I hereby certify that this dissertation constitutes my own product and that the words or
ideas of others, where used, are properly credited according to accepted standards for
professional publications.

Thomas E. Beutel

Abstract

The primary goal of this dissertation was to develop and pilot test interactive, multimedia
courseware which would facilitate learning the abstract structures, operations, and
concepts associated with graph and network data structures in Computer Science.
Learning objectives and prerequisites are presented in an introduction section of the
courseware and a variety of learning activities are provided including tutorials, animated
demonstrations, interactive laboratory sessions, and self-tests. Courseware development
incorporated principles and practices from software engineering, instructional design, and
cognitive learning theories. Implementation utilized an easy-to-use authoring tool,
NeoBook Professional (1994), to create the overall framework and the user interfaces,
and Microsoft QuickBASIC 4.5 (1990) to program the interactive animated
demonstrations and laboratory exercises. A major emphasis of the courseware is the use
of simple interactive, animated displays to demonstrate the step-by-step operation of
graph and network algorithms such as depth-first traversal, breadth-first traversal, shortest
path, minimum spanning tree and topological ordering.

iv

Acknowledgements

Successful completion of any significant piece of work is never a solitary effort. The
knowledge, wisdom and example of others who have worked before us; the support of
colleagues, peers, family and friends; and the opportunities and gifts given us by God all
come together to help us achieve our goals.

In particular, I would like to thank Dr. Trudy Abramson for her example as an educator
and educational technologist, and her help and encouragement as professor and
Dissertation Chairperson. As a Computer Scientist, I have truly appreciated the support,
ideas and contributions of Dr. Mike Laszlo and Dr. Junping Sun, the Computer Scientists
on my Dissertation committee. Dr. Steve Terrell and Dr. Marlyn Littman challenged me
during courses in research, educational theory, multimedia, and networks. The reading,
writing, and thinking these two professors assigned provided valuable experience for the
dissertation process.

Mount Vernon Nazarene College supported my doctoral work financially and in other
ways which made it easier to balance working and full-time graduate work. Dr. E.
LeBron Fairbanks, college President, and Dr. Jack Anderson, Academic Dean, have been
very encouraging and supportive throughout the entire doctoral program. The Computer
Science students at Mount Vernon Nazarene College have shown understanding and
patience as I balanced teaching with research and writing.

I would also like to acknowledge my parents, Mr. and Mrs. Frederick Beutel. Their belief
in the value of education and the importance of doing your best helped to equip me for
this difficult task. Most of all, I thank my wife Wendy, and my sons, Danny and Adam,
who have sacrificed in many ways to allow me to pursue my graduate work and complete
this dissertation.

v

Table of Contents

Abstract iv
List of Tables viii
List if Figures ix

Chapter

I. Introduction 1
Problem Scope 2
Issues Related to the Development of Instructional Software for Computer

Science 11
Goals and Significance of Research 16
Limitations and Delimitations 29
Summary 30

II. Review of Literature 32
Introduction 32
Graphs and Networks 33
Learning Theory 40
Technology and Multimedia 48
Hypermedia and Interactivity 61
Learning Abstract Content and Visualization 70
Instructional Design and Multimedia 73
Human-Computer Interface Design 82
Authoring 84

III. Methodology 86
Introduction 86
Requirements Analysis 88
Specification 92
Planning 99
Design 103
Implementation and Integration 107
Formative Evaluation 111
Presentation of Results 114
Reliability and Validity 115
Summary 116

vi

IV. Results 118
Introduction 118
Courseware Development 119
Cognitive Learning Theories and Instructional Design Considerations 148
Courseware Evaluation 149

V. Conclusion 153
Conclusions 153
Implications 158
Recommendations 161
Summary 167

References 173
Annotated Bibliography 180
Appendixes

A. Technology Fact Find Questionnaire 212
B. Courseware Evaluation Form 215
C. Functional Specification 218
D. Design Specification 244
E. Instructor's Guide 287
F. QuickBASIC Program Listing 296
G. Data Files for Animated Demonstrations, Lab Sessions and Self-tests 352

vii

List of Tables

Table

1. Courseware Learning Objectives 17

2. Comparison of Design and Development Methodologies 20

3. Gagne" s Events of Instruction 23

4. Approximate Development Schedule 28

5. Intermediate COCOMO Software Development Effort Multipliers 102

6. Percentage of Development Effort for Development Phases 102

7. Leamer Characteristics for Graphs & Networks Courseware 123

8. Operations Defined for User Interface Abstract Types 127

9. Operations Defined for GraphNode and GraphEdge Abstract Data Types 128

10. Operations Defined for Graph and Network Abstract Data Types 129

11. KDSI Estimate for Graphs & Networks 131

12. COCOMO Effort Multipliers for Graphs & Networks 131

13. Estimated and Actual Effort for Project Phases 134

14. Results ofStudentiFaculty Courseware Evaluation 151

viii

List of Figures

Figure

1. Koenigsburg Bridge Problem 34

2. Graph Representing Koenigsburg Problem 34

3. A Simple Graph 36

4. Depth-first Traversal 37

5. Breadth-first Traversal 38

6. Adjacency matrix for Graph in Figure 3 39

7. Software Engineering Development Process 87

8. User Characteristics for College Level Computer Science Students 92

9. Sample Overall Structure Diagram 96

10. Sample Master Page Layout 98

11. Sample Page Layout for Individual Pages 98

12. Instructional Curriculum Map for Courseware 121

13. Demonstration Program User Display Screen 127

14. Courseware Title Page Screen 136

15. First Page of Courseware Introduction 137

16. Help Screen for Introduction 138

17. Contents Page Showing Four Topical Units 139

ix

18. Computer Lab Screen for Graphs & Digraphs Unit 140

19. First Page of Graphs & Digraphs Tutorial 141

20. Demonstration Opening Page 142

21. Demonstration Within a NeoBook Page 143

22. Lab Session Menu Page 144

23. Lab Session for Depth-First Traversal 145

24. Self-Test Opening Page 146

25. Self-Test for Graphs & Digraphs 147

x

Chapter I

Introduction

The idea that technology can be used to improve education is not a new one. Noblitt

(1995) points out that blackboards and books, as well as computers, constitute a level of

educational technology and that new technologies are incorporated into the educational

process whenever they improve teaching and learning. The use of computer-based

instruction (CBI) has been found to improve motivation and achievement (Podell,

Kaminsky & Cuismano, 1993), to increase retention and decrease learning time

(Galbreath, 1994), and to encourage active student learning and higher-order cognitive

activities (Weiss, 1994). In a study conducted at Wright State University in Dayton, Ohio,

students indicated that computer-assisted presentations "make classes more interesting,

exciting", "make class more organized", and "make .. .information clearer" (Sammons,

1995, p.68). Smith and Debenham (1993) have developed interactive instructional

software with the goals of reducing educational costs and increasing access to educational

materials.

Despite the many benefits of CBI which have been demonstrated or presumed, the

technology has not had a revolutionary impact on education (Moore, 1994; Solomon,

1994). There are a number of possible reasons including financial costs, time costs,

2

resistance to change, and others (Solomon, 1994). The development and evaluation of an

interactive, animated courseware package for learning about graphs and networks in

Computer Science described in this report is intended to demonstrate both the

effectiveness of appropriate CBI and an effective methodology for design and

development of CBI applications. Use of the developed courseware will enhance

professional practice in Computer Science education as well as student learning of

abstract structures, operations and concepts. Rigorous design and development of the

courseware demonstrates what is needed to produce instructional software which meets

measurable learning objectives.

Problem Scope

The problem to be addressed is the development of instructional software which

facilitates learning abstract structures, operations, and concepts by Computer Science

students. To insure effectiveness, the software not only deals with subject matter content

accurately and appropriately, but was developed according to established software

engineering and instructional design principles, utilizes current educational technology

effectively, and is guided by cognitive learning theories. To accomplish the development

in a reasonable time development tools were used which facilitated the development

process.

3

Abstractions in Computer Science

As a relatively young discipline, Computer Science has struggled to develop effective and

efficient methodologies as well as its theoretical foundations. The ever-increasing use of

computer technology in business, education, entertainment, and most fields of endeavor,

has challenged Computer Scientists to improve the way in which computer software is

designed and developed. According to Naps and Pothering (1992), "In the late 1950's and

early 1960's there was a widely held belief that designing effective software systems was

something akin to an occult art" (p.46). The result of this approach was often failure or,

at best inefficient and costly development efforts.

The solution to these problems was to adopt methodologies from the field of engineering.

In general, an engineer begins the design process by determining the needs of the ultimate

user, then proceeds through a series of designs, beginning with a purely conceptual, or

abstract, model and culminating in a detailed design (Naps & Pothering, 1992). The focus

at early stages of the design on abstract representations of the end product allows the

engineer to concentrate on the essential features and to experiment with a variety of

implementations.

All nontrivial computer programs are concerned with two types of entities: data structures

and algorithms (Naps & Pothering, 1992; Riley, 1990). The term data structures refers to

how various types and pieces of data are organized within computer memory. Algorithms

are the operations which manipulate data and produce results. One aspect of applying

engineering methods to computer programming is to view data structures and algorithms

4

as abstractions, or conceptual models. This allows the software designer to focus on the

essential elements of the data structures and algorithms and to experiment with various

implementations, in much the same way as the engineer does with an engineering design.

The goal in both instances is to find the most effective and efficient implementation for

the problem at hand.

In addition to the implementation benefits of approaching data structures and algorithms

as abstractions, it is necessary to do so because the data structures and algorithms do not

have a physical existence of their own. The ultimate implementation of both data

structures and algorithms in a computer is manifested in electronic components and

circuits. Aho and Ullman (1992) note that while most scientists deal with the world as it

exists, "Computer scientists, on the other hand, must create abstractions of real-world

problems that can be represented and manipulated inside a computer" (p.1). Thus, even

the data structures and algorithms which programmers seek to implement are abstractions

of the underlying computer architecture (Naps & Pothering, 1992). By working with

abstractions of these entities, Computer Scientists are really working with abstractions of

abstractions.

Difficulty in Learning Abstract Structures, Operations and Concepts

Often, abstractions and conceptual models are difficult to grasp. An example of this from

everyday life would be viewing two paintings, one abstract, one realist. Most people can

easily grasp what is being portrayed in the realist painting, but have difficulty with the

abstract. The same can be true with Computer Science students, especially Freshman and

5

Sophomore college students confronting abstract data types and algorithms for the first

time. When one realizes that these entities are abstractions of abstractions, the difficulty

is compounded.

Authors of traditional Computer Science textbooks recognize this problem. In the preface

to a current Computer Science text, the authors point out that the text contains "extensive

figures and graphic documentation: These allow students to visualize the effect of

algorithms on data" (Naps & Nance, 1995, p.xxiii). The use of figures is intended to

make real both the abstract data structures and the abstract algorithms. The text

Introduction to Algorithms by Cormen (1990) provides a thorough coverage of

algorithms, including almost 200 pages on graphs and networks alone. The text makes

extensive use of sequences of diagrams to demonstrate the effect of an algorithm on a

particular data structure.

While dealing with abstractions in Computer Science is a problem in general, the

difficulties escalate when students are exposed to complex, logical data structures and

their associated algorithms. Simple data structures typically define the relationship of one

element to another in terms of physical ordering. A familiar example would be a grocery

list in which items are usually written one above the other in columnar form. The

simplest equivalent Computer Science structure is a one-dimensional array which is a

linear, physically-ordered structure.

6

A logical data structure, on the other hand, is one in which the relationship of one

element of the data structure to another is not physically determined. Instead, each item

includes information about which other items are related to it. The structure of these

logical data structures is more complex and harder to visualize than that of simpler

structures. Examples of such structures include linked lists, binary trees, and graphs and

networks. Because the structures themselves are more complex, the algorithms which

manipulate these structures are also more complex. Thus, the general problem of dealing

with abstractions is made more difficult by having to deal with complex abstractions.

Researchers and practitioners emphasize the difficulty of learning foreign concepts. "This

is a particularly challenging task in science and engineering disciplines where the subjects

and concepts are often complex, multidimensional processes and phenomena"

(Aukstakalnis & Mott, 1996, p.l4). These authors discuss the use of computer simulation

and visualization techniques as tools to enhance student learning of complex, abstract

concepts, structures, and operations in science and engineering.

Overview of Graphs and Networks

Leonhard Euler, born in Switzerland, "was the most prolific mathematician of his

generation" (Miller, Heeren, & Hornsby, 1990, p.99). Among his many original

contributions to the field of mathematics is the formalization of the study of graphs and

networks. Euler's solution of a popular problem, the Koenigsburg Bridge problem, marks

the beginning of the formal study of graphs and networks (Miller, Heeren, & Hornsby,

1990).

7

A primary emphasis in Computer Science is that of organizing data items and the

relationships among items. According to Aho and Ullman (1992), "graphs are a versatile

model for organizing data" (p. 435). They define a graph as "a set of points (called nodes)

connected by lines (called edges)." Naps and Pothering (1992) state that "graphs are the

most general data structures" (p.42l), because they can be used to represent not only one

to-one and one-to-many relationships, but also the many-to-many relationships found in a

wide variety of problems.

To clarify these concepts, consider a traditional nuclear family with two or more children.

There is a one-to-one relationship between the husband and wife. Each husband has one

wife and each wife has one husband. A one-to-many relationship exists between each

parent and their children. Each child has only one parent, but each parent has more than

one child. If there are at least three children, then there is a many-to-many relationship

among the siblings. Each child has more than one (many) siblings.

Graphs and networks can be used to solve problems in transportation, communication,

scheduling and many other areas. In general, any problem which consists of entities of

some sort which are related to one another in some way can be represented by a graph.

The entities are represented as nodes and the relationships as edges connecting the nodes.

Networks differ from graphs in that each edge has an associated weight, which indicates

the cost of traversing the edge between two nodes. An example would be the distance

between two cities.

8

Nodes in a graph or network may be directly connected by an edge. If there is not a direct

connection, there may be a path, a sequence of edges, which indirectly connects two

nodes. A familiar analogy would be that of a direct flight between two cities as opposed

to a route which involves a connection at some intermediate city.

Solutions to graph and network problems are carried out by applying appropriate

algorithms. Common graph and network algorithms include depth-first traversal, breadth

first traversal, shortest path, minimum spanning tree, and topological sort (Naps &

Pothering, 1992). The traversal algorithms generally process each node in a graph or

network in a particular order. Shortest path algorithms determine the minimum

cumulative edge weight between two nodes; whereas the minimum spanning tree

represents the minimum total edge weight to connect all nodes in some fashion. An

example of the latter would be to find the least amount of network cable to connect a

number of computers, where there would not be direct connections among all computers

on the network.

There are a number of techniques for implementing graphs and networks in computer

programs. A popular method is that of the adjacency matrix (Naps & Pothering, 1992;

Riley, 1990). An adjacency matrix can be thought of as a two-dimensional array, or table,

listing all nodes both horizontally and vertically. Nodes which are directly connected are

indicated by placing a nonzero value in the array element which corresponds to the two

nodes.

9

Elements of Educational Technology

Educational technology encompasses a variety of disciplines and areas of interest

including multimedia, hypermedia, interactivity, and authoring. Multimedia is a

catchword of the nineties. There seem to be as many definitions of multimedia as there

are books and articles about multimedia. Definitions of multimedia include a variety of

key elements. Galbreath (1992) insists that user interactivity must be included in any

definition of multimedia. Buford (1994) says, "It is the simultaneous use of data in

different media forms (voice, video, text, animations, etc.) that is called multimedia"

(p.2).

Sweeters (1994) claims that, "Computer-based learning (CBL) has been enhanced by the

addition of multimedia capabilities" (pA 7). Multimedia features can be incorporated into

tutorials, educational databases, simulations, and educational games (Sweeters, 1994).

The incorporation of multimedia technology into teaching and learning environments

empowers students who do not learn well using traditional methodologies (Noblitt,

1995).

In 1945, Vannevar Bush, science advisor to President Franklin Roosevelt, conceived of a

collection of scientific literature which could be accessed in a nonsequential manner, thus

facilitating research (Maddux, 1992; Myers, 1994). More recently, this concept has come

to be known as hypertext. In a hypertext system users may "skip around" to learn about a

10

related topic or to go into greater depth in some portion of a topic. They are not

constrained to proceed through the presented material in a strictly sequential manner.

Information in a hypertext system is stored in a network of nodes, each node containing

an appropriate unit of information. Links between various nodes form a network

structure. Users of a hypertext system can navigate from node to node according to the
,~,

links provided by the hypertext designer (Lanza, 1991). When information is stored and

accessible in forms other than text, such as audio, graphic images, animation or video, the

term hypermedia is normally used, rather than hypertext (Maddux, 1992). A hypermedia

system allows nonsequential access to a body of multimedia data.

Educational applications of hypermedia include information retrieval systems and

computer-based constructivisitic learning environments (Jonassen & Grabinger, 1993).

Lennon and Maurer (1994) discuss the use of hypermedia systems in lecturing situations.

In general, the interactivity and the potential for learners to choose their own paths

through a body of material are seen as strengths of hypermedia-based learning systems,

allowing learning to be more student-centered and encouraging active student

participation in the learning process (Johnson & Grover, 1993).

The appeal of multimedia and the promise of interactive, hypermedia systems might be of

little practical consequence except for the fact that authoring systems which allow

educators to develop high-quality, high-level instructional software are becoming

increasingly available. Entry-level multimedia authoring tools allow developers to create

11

presentations and simple interactive applications without programming (Lynch, 1995).

Hypermedia learning programs which motivate learners and "promote application,

analysis, synthesis, and evaluation" can be developed with commercially available

authoring systems (Abramson, 1993, p.6). Lynch (1995) describes the assembly of a

variety of authoring tools into an authoring environment which is oriented to the skills of

the developer and to the types of multimedia packages being developed.

Issues Related to the Development of Instructional Software for Computer Science

The need for techniques and tools for dealing with complex abstractions in Computer

Science is well understood. Nevertheless, Computer Scientists are like shoemakers whose

children go barefoot, they often work with less than ideal design and development tools

to develop computer-based applications. Shneiderman (1992) observes, "There is a great

thirst for knowledge, software tools, design guidelines, and testing techniques" (p.34)

with respect to user interface design. This single subfield of Computer Science is

representative of other areas.

Lack of Computer-based Educational Applications in Computer Science

Computer Scientists need to understand the benefits of applying computer-based

educational technology to their own field, and to see examples of effective courseware.

An informal examination of several educational software catalogs showed that the

majority of commercial educational software is for K-12 rather than for the college level.

In addition, those products which are appropriate for college students cover chemistry,

12

mathematics, and other areas, but there are virtually no titles for Computer Science

education.

Hirschbuhl and Faseyitan (1994) confirm this observation, stating, "Unfortunately,

current studies indicate that the use of computers for instructional purposes has not yet hit

the mainstream of university education" (p.64). Likewise, Heterick (1994) says,

"Information technology is everywhere, but not enough of it is in our colleges and

universities." Twigg (1995) asserts, "despite the potential offered by such materials,

many in our community have noted the failure of most institutions--even those who have

worked hard to create them--to integrate their use into their academic programs." There

does not seem to be, at this time, a significant market for instructional software at the

college level (Twigg, 1996).

The majority of software which is available for use in Computer Science courses can be

categorized as tools. Algorithms animators (Wilson, Aiken, & Katz, 1996) are a prime

example. While these software products are helpful, they are not instructional software.

Like microscopes in Biology, they help the student do a task or observe behavior.

However, such activities are not guided by built-in educational objectives or designed

according to instructional design principles.

Lack of High-quality, High-level Computer-based Educational Applications

Although courseware is lacking in Computer Science more than in some academic areas,

effective courseware beyond the drill-and-practice level is not widely available in any

13

field. Johnson and Grover (1993) report, "For more than a decade of classroom

microcomputer use, teachers, reviewers, critics, and software evaluators have consistently

reported that although there are some excellent programs, the overall quality of

interactive instruction is relatively poor" (p.5).

Articles in popular magazines such as Time and Byte as well as educational journals

continue to decry the lack of effective, high-level educational software. Wallis (1995)

observes, "Computers are indeed everywhere in American schools, but they are generally

used as little more than electronic workbooks for drill" (p.49). Johnson (1995), who

quotes Wallis, says "she shares a common concern about the lack of evidence indicating

that a learning revolution has taken place" (p.1).

Courseware should be learner-centered, encouragmg active participation by learners

(Johnson & Grover, 1993). Abramson (1993) encourages courseware development which

promotes higher-level learning including application, analysis, synthesis, and evaluation

and asserts that, "Traditional applications such as drill-and-practice programs, and those

in which pressing the mouse replaces turn-the-page, do not use the power and waste the

glory of hypermedia" (p.6).

Courseware Design and Development Often Does not Follow Established Practice

An important aspect of interactive, multimedia courseware is the user interface. Although

much research has been done in the area of human-computer interface and guidelines for

effective user interface design have evolved (Shneiderman, 1992), few of these results

14

have been applied to the development of educational software (Jones, Farquhar & Surrey,

1995). Along these same lines, traditional courseware does not incorporate newer

learning theories based on cognitive models, particularly as they impact the user interface

of courseware applications (Jones et aI., 1995).

Inadequate user interface design of courseware is only one aspect of a larger design and

development problem. Often courseware applications are created with little regard for

proven instructional design or software development practices. There is a need to follow

established software engineering techniques in the development of courseware. These

techniques begin with determining user requirements, and proceed through design,

implementation, testing, and distribution (Luther, 1994). In addition to following

established software engineering practice, developers must utilize instructional design

practices and techniques (Ehrlich & Reynolds, 1992). A key element of instructional

design is determining learner needs and educational objectives (Ehrlich & Reynolds,

1992; Gagne', Briggs & Wager, 1992).

Development of Multimedia Courseware Requires Multiple Sldlls and Tools

Design and development of effective interactive courseware is a difficult task. Even with

appropriate authoring tools available, utilizing appropriate guidelines for user interface

design, and employing applicable software engineering and instructional design

principles, the task of developing effective courseware requires diverse skills and abilities

(Ehrlich & Reynolds, 1992). Solomon (1994), says that, "Developing quality multimedia

courseware is too difficult for 98% of all faculty" (p.83). A development team or subject

15

matter expert who is educated in educational technology is needed to produce good

quality applications.

In contemplating the development of interactive courseware for learning about graphs and

networks in Computer Science, several implementation difficulties became apparent. A

major problem in learning complex, abstract structures is the learner's difficulty in

visualizing the dynamic operations which manipulate these structures. Therefore,

necessary parts of the courseware are dynamic elements which allow the learner to see the

operations "in action."

Authoring packages which are intuitive and easy-to-use, are not powerful enough to

incorporate the types of interactive animations described above. More powerful authoring

systems are often difficult to use (Lynch, 1995). For a developer with a Computer

Science background, it is easier to program interactive, dynamic displays than to learn a

new authoring system. The difficulty in this approach is that programming attractive,

easy-to-use user interfaces is not an easy task. The solution to this impasse is to combine

the use of an easy-to-use authoring tool and a programming language, using the authoring

system to create the user interface and overall courseware structure, and the programming

language to create the interactive animations. Thus, the courseware is a hybrid application

capitalizing on the strengths of authoring systems and traditional programming

languages.

16

Multimedia Courseware Development is Time-Consuming

Another significant issue relating to the production of instructional software is the time

required to carry out the design and development. Solomon (1994) observes, "Even for

that rare individual with all of the necessary talents to make a program a success, it takes

too much time" (p.83). Developing courseware which is more than a simple slide show or

drill-and-practice application requires significant design and development time

(Sammons, 1995).

Some argue that CBI saves teachers time, SInce students can work independently.

However, if courseware is to be developed by teachers, the time required for design and

development far outweighs any time saved during instruction (Stoddart & Niederhauser,

1993).

Goals and Significance of Research

Development of interactive, multimedia courseware for learning about complex, abstract

data structures and algorithms in Computer Science will enhance professional practice

and improve understanding in the area of interactive courseware design and development,

and will facilitate meeting specified learning objectives in the area of Computer Science

education. These goals are accomplished by: (1) applying the concepts and practices of

software engineering, instructional design, and cognitive learning theory in the

development of interactive, multimedia courseware; (2) effectively using authoring tools

17

and conventional programming languages in courseware development; and (3)

conducting formative evaluations of the courseware throughout the development process.

Learning Objectives

The goal of this dissertation was to develop courseware which will provide interactive,

animated graphical representations of graphs and networks which facilitate learning the

abstract structures, operations and concepts related to graph and network data structures

and related algorithms by Computer Science students. Specific learning objectives for the

completed courseware implementation are given in Table 1.

Table 1: Courseware Learning Objectives

1. The student will define the following terms related to graphs and networks:

a. acyclic graph
b. adjacency matrix
c. breadth-first traversal
d. cycle
e. degree
f. depth-first traversal
g. digraph
h.edge
i. graph
j. minimal spanning tree
k. network
1. node
m. path
n. topological ordering

18

2. The student will explain the following concepts related to graphs and networks:

a. A graph or network is comprised of a set of nodes and edges.
b. Traversing a graph or network using a breadth-first technique.
c. Traversing a graph or network using a depth-first technique.
d. The use of an adjacency matrix as a means of implementing a graph or network

data structure.
e. Finding the shortest path between two nodes in a network.
f. Finding the minimum spanning tree of a network.
g. Performing a topological ordering of the nodes in a network.

3. The student will implement an adjacency matrix as a means of implementing a graph
or network.

4. The student will implement common primitive operations for graphs and networks
including:

a. creating a graph/network
b. adding an edge
c. removing an edge
d. adding a node
e. performing a depth-first traversal
f. performing a breadth-first traversal.

5. The student will implement additional operations for networks including:

a. shortest path
b. minimum spanning tree
c. topological ordering.

6. The student will recognize and describe problems amenable to solution using graphs
and networks.

7. The student will design a computer program which uses graphs or networks to solve a
specific problem.

Surveys were conducted to determine student attitudes about the usability and

effectiveness of the courseware. Accomplishment of learning objectives will typically be

18

2. The student will explain the following concepts related to graphs and networks:

a. A graph or network is comprised of a set of nodes and edges.
b. Traversing a graph or network using a breadth-first technique.
c. Traversing a graph or network using a depth-first technique.
d. The use of an adjacency matrix as a means of implementing a graph or network

data structure.
e. Finding the shortest path between two nodes in a network.
f. Finding the minimum spanning tree of a network.
g. Performing a topological ordering of the nodes in a network.

3. The student will implement an adjacency matrix as a means of implementing a graph
or network.

4. The student will implement common primitive operations for graphs and networks
including:

a. creating a graph/network
b. adding an edge
c. removing an edge
d. adding a node
e. performing a depth-first traversal
f. performing a breadth-first traversal.

5. The student will implement additional operations for networks including:

a. shortest path
b. minimum spanning tree
c. topological ordering.

6. The student will recognize and describe problems amenable to solution using graphs
and networks.

7. The student will design a computer program which uses graphs or networks to solve a
specific problem.

Surveys were conducted to determine student attitudes about the usability and

effectiveness of the courseware. Accomplishment of learning objectives will typically be

19

determined by examinations and homework assignments as the courseware is used in

conjunction with normal classroom presentations and assignments.

Using Software Engineering Methodology in Courseware Development

A number of different software engineering models are used in the development of

computer software. These include the build-and-fix model, the waterfall model, the rapid

prototyping model, the incremental model, and the spiral model (Schach, 1993). Despite

differences in these models, all incorporate certain broad phases: (1) requirements

analysis, (2) specification, (3) planning, (4) design, (5) implementation, and (6)

integration. Appropriate documentation is produced in each phase.

Researchers and practitioners in the area of the design and development of CBI also

define various phases of the development process. Luther (1994) identifies the following

design and development phases of courseware authoring: (1) concept, (2) design, (3)

obtaining materials, (4) assembly, (5) testing, and (6) distribution. Alessi and Trollip

(1991) organize CBI design and development into the areas of (1) preparation, (2) design,

(3) flowcharting, (4) storyboarding, (5) programming and support materials preparation,

and (6) evaluation.

There is not a one-to-one correspondence among the various methodologies, either in

terms of specific activities or in terms of the sequence of activities, although similarities

exist. The comparison of these three methodologies shown in Table 2 demonstrates a

rough correspondence among the three methodologies.

Table 2: Comparison of Design and Development Methodologies

Software Engineering

Requirements Analysis,
Specification, Planning

Design

Implementation, Integration

Authoring

Concept, Obtaining
Materials

Design

Assembly, Testing,
Distribution

CBI Development

Preparation

Design,
Flowcharting,
Storyboarding

Programming,
Support Materials,
Evaluation

20

Some similarities among the methodologies are apparent while others require probing

into the details of each phase of each model. For example, the preparation phase of Alessi

and Trollip (1991) includes the individual activities of (1) determining needs and goals,

(2) collecting resources, (3) learning content, and (4) generating ideas for the most

effective way of presenting the instruction to meet the needs and goals.

Compare these activities with the first and third phases described in Luther (1994):

concept and obtaining materials. In the concept phase objectives and the type of

application are defined. Individual media units including text, graphics, and other formats

which may be used are collected. The activities in both methodologies are similar.

In the software engineering methodology user needs are assessed in the requirements

phase, and the functional characteristics of the application are defined in the specification

21

phase. Again, the basic goals, as well as some of the specific activities, of these phases

are similar to the other methods.

There are differences among these methodologies, some of which are significant. One

difference in the first stage of development is the explicit identification of a planning

activity in the software engineering method. All development methodologies should

incorporate a planning phase in which specific development activities are identified and

schedules and budgets are developed. Neither Luther (1994) nor Alessi and Trollip

(1991) specifically discusses the need for project planning. Developers should be aware

of the need for planning in the early stages of the development process.

Another apparent difference among the models is that testing or evaluation, explicitly

presented in the authoring and CBI development methodologies, is not identified

separately in the software engineering method. Schach (1993) emphasizes throughout his

discussion of the software development process that testing should be an integral part of

each phase of development. This is an important principle which promotes early

discovery and correction of fallacies, errors, or misunderstandings. If evaluation is not

conducted until the application is completed, errors made in the requirements analysis

phase or design phase will have propagated throughout the implementation. They are

likely to have a significant impact on the implementation and result in costly and time

consuming corrections. Appropriate evaluation should be incorporated throughout the

development process, not deferred until implementation is complete.

22

Integrating Instructional Design Techniques into Courseware Development

In addition to following established principles and techniques of software engineering,

courseware development must incorporate the practices of instructional design. Lanza

(1991) says that, "The apparent ease of development and production of hypertext

instructional software could lead developers to disregard methodological and theoretical

design issues" (p.18). A well-designed instructional unit, whether hypermedia or some

other format, must communicate learning objectives, provide opportunities to practice

techniques, and allow for assessment as well as presenting information and examples

(Sweeters, 1994).

Ehrlich & Reynolds (1992) describe a "design model [which] is derived from traditional

instructional system design models" (p.282). The focal point of instructional design is to

begin with the needs and goals of the intended learners. Gagne', Briggs, and Wager

(1992) describe the stages in designing and developing instructional systems, not

necessarily computer-based, as beginning with "analysis of needs, goals, and priorities"

(p.5).

Another important aspect of instructional design is that of defining the desired learning

outcomes. These should be stated in measurable form, so that learners and teachers know

when the outcomes have been accomplished (Ehrlich & Reynolds, 1992; Gagne', Briggs

& Wager, 1992). The implications for courseware developers are that the courseware

23

must be designed to satisfy the needs and goals of the leamer, and should effectively

enable the learner to reach stated measurable learning outcomes.

Alessi and Trollip (1991) base their development process on an expository model of

education which consists of four parts: (1) presenting information, (2) guiding the

student, (3) practicing by the student, and (4) assessing student learning. While the

elements of this model focus on certain important aspects of learning, they omit other

important aspects of instructional design. Gagne's events of instruction enumerate nine

separate elements essential to effective learning (Sweeters, 1994). These are listed in

Table 3. The model proposed by Alessi and Trollip corresponds to events 4 through 8 of

Gagne' 's model (practice incorporates both eliciting expected performance and

feedback). The other events, gaining learner attention, stating objectives, recalling

prerequisites, and enhancing retention are not dealt with.

While it is true that computer-based instruction is not necessarily intended to stand alone,

it is possible and desirable to consciously and effectively incorporate more of Gagne" s

model into courseware.

Table 3: Gagne"s Events of Instruction

1. Gain learner attention
2. State objectives
3. Recall prerequisites
4. Present information
5. Provide learning guidance
6. Elicit expected performance
7. Provide feedback
8. Assess performance
9. Enhance retention

24

Applying Cognitive Learning Theories to Guide Design

Current educational learning theories focus on cognitive models rather than behaviorist

models to explain the learning process (Lanza, 1991; Cortinovis, 1992). According to

cognitive learning theory, learning is an active process whereby knowledge is built upon

existing knowledge. Knowledge is structured, with the structure of an individual learner' s

knowledge being added to and modified as new knowledge is acquired. The network

structure of hypermedia information resembles the structure of knowledge, facilitating the

"mapping of a knowledge domain onto the cognitive structures of learners" (Lanza, 1991,

p.19). The implication for courseware developers is to include hypermedia-style

structures where they facilitate learning.

Johnson and Grover (1993) call for learner-centered design inherent in cognitive models

of learning, and claim that traditional CBI, designed according to behaviorist theories,

ignores the active learner. Abramson (1993) emphasizes that courseware should support

learning outcomes which are at higher levels of cognition including application, analysis,

synthesis, and evaluation.

The use of a hypermedia model, learner interactivity, and other elements of cognitive

learning theory such as constructivist activities, must be tempered with an awareness of

potential problems. For example, despite the wealth of research which demonstrates the

benefits of hypermedia-based instruction, there are many significant problems also

reported in the literature. Chief among these are the problems related to navigating

through the network of hypermedia links and nodes. Studies show that with the freedom

to select their own path, users can easily develop the feeling of being "lost", of not

25

knowing where they are in the network of information (Roselli, 1991; Staninger, 1994;

Tolhusrt, 1992).

It is not enough to "jump on the cognitive bandwagon" in developing interactive,

multimedia courseware. Developers must be aware of potential problem areas and

intentionally incorporate features which promote learning while avoiding techniques

which retard learning.

Facilitating Development by Combining Authoring and Programming

Development of interactive, multimedia courseware requires a set of appropriate tools

tailored to the type of applications being developed and to the individual skills and work

style of the developer (Luther, 1994). Different authoring tools are based on different

metaphors such as a slideshow, book, timeline, windows, or icons (Luther, 1994). The

underlying metaphor of the authoring tool affects the format and style of the courseware

product. Not all metaphors are appropriate for interactive, higher-level courseware. For

example, the slide-show metaphor is basically a page-turning model, suitable for

accompanying a live presentation or for a stand-alone information kiosk, but not for

interactive learning at the higher levels of cognition.

Lynch (1995) reports on a number of entry-level multimedia authoring tools which can be

used to produce professional quality courseware without the need for scripting, the

authoring term for programming. Nevertheless, he notes that, "All five are based on the

26

familiar slide-show metaphor now used in most presentation software" (p.IO). These,

then, may not be useful in designing interactive, higher-level courseware.

The full gamut of possible authoring tools includes traditional programming languages,

authoring languages and authoring systems (Maddux, 1992). Traditional programming

languages such as BASIC, Pascal, and others have the advantage that "every aspect of the

creative process is under the direct and complete control of the author" (Maddux, 1992,

p.8). That is, the developer is not restricted to a particular metaphor, particular types of

media units, or any other restriction which the creators of an authoring tool may have

built in to their product. The disadvantage to using a traditional programming language

derives from the same point, not only are the developers not restricted, they are

completely on their own, with no help being provided by the development tool.

Older authoring languages such as PILOT or Hypercard are similar to traditional

programming languages except that they are oriented specifically towards courseware

development (Maddux, 1992). While these languages aid in courseware development,

they still require an aptitude for programming.

Authoring systems tend to be more structured than authoring languages, providing a

framework for instructional material, with the developer filling in the content. Tools are

provided to create screens; specify interactivity, for example, buttons; and incorporate

content in various forms such as text, images, and animations. The biggest disadvantage

to these easy-to-use systems is their lack of flexibility (Maddux, 1992).

26

familiar slide-show metaphor now used in most presentation software" (p.10). These,

then, may not be useful in designing interactive, higher-level courseware.

The full gamut of possible authoring tools includes traditional programming languages,

authoring languages and authoring systems (Maddux, 1992). Traditional programming

languages such as BASIC, Pascal, and others have the advantage that "every aspect of the

creative process is under the direct and complete control of the author" (Maddux, 1992,

p.8). That is, the developer is not restricted to a particular metaphor, particular types of

media units, or any other restriction which the creators of an authoring tool may have

built in to their product. The disadvantage to using a traditional programming language

derives from the same point, not only are the developers not restricted, they are

completely on their own, with no help being provided by the development tool.

Older authoring languages such as PILOT or Hypercard are similar to traditional

programming languages except that they are oriented specifically towards courseware

development (Maddux, 1992). While these languages aid in courseware development,

they still require an aptitude for programming.

Authoring systems tend to be more structured than authoring languages, providing a

framework for instructional material, with the developer filling in the content. Tools are

provided to create screens; specify interactivity, for example, buttons; and incorporate

content in various forms such as text, images, and animations. The biggest disadvantage

to these easy-to-use systems is their lack of flexibility (Maddux, 1992).

27

One problem in developing effective courseware which incorporates instructional design

principles and follows appropriate cognitive learning theories is that no one tool or type

of tool lends itself to the task. A development process which utilizes both authoring

systems and traditional programming languages can realize the benefits of both types of

tools: the ease of creating screens and a basic framework afforded by the authoring

system and the flexibility and power afforded by the traditional programming language.

Effectiveness of Interactive, Animated Courseware

As work in the areas of the natural sciences, engineering and mathematics has shown, the

use of animation and interactive displays can enhance learning (Aukstakalnis & Mott,

1996; Kaplan, 1992). Park (1994) discusses the theoretical basis, strategic applications,

and instructional conditions for use of dynamic visual displays.

The concepts discussed by Park (1994) which are relevant to the visualization of abstract

data structures and the operation of associated algorithms include (1) an illustration aid,

(2) the facilitator of mental model formation, and (3) a visual anchor for understanding

abstract concepts and processes. As an illustration aid, "in a complex system, motion can

be used to highlight critical features and their relation(s) to other components that might

not be easily grasped or attended" (p.23). Relative to formation of a mental model, "The

graphical representation of invisible system functions or behaviors is particUlarly

important to help the student form a mental model" (p.23). Finally, computer-controlled

animation allows abstract concepts to be observed in a concrete way.

28

In addition to the direction provided above in the use of animation, Shyu and Brown

(1993) have found that interactive visualizations improve learning and learning attitudes

more than the use of static diagrams in non-procedural learning tasks.

Development Schedule

Development of a courseware package which covers the content described above, meets

the specified learning objectives, and is facilitated by the use of appropriate development

tools required approximately six months, with the developer working 15-20 hours per

week. Table 4 presents an approximate schedule.

Table 4: Approximate Development Schedule

Month(s)

Oct. 1996

Nov.-mid Dec. 1996

mid-Dec. 1996-mid Jan. 1997

mid Jan. 1997-Feb. 1997

Mar. 1997

Development Activity

Requirements Analysis

Specifications and Planning

Design

Implementation

Formative Evaluation

29

Limitations and Delimitations

The goal of this development was to demonstrate a methodology for developing effective

instructional software which meets specified measurable learning objectives.

Nevertheless, the results are limited in certain respects.

The focus of the development was on subject matter which is abstract in nature. The

effectiveness of the courseware does not necessarily imply that similar courseware

applied to learning more concrete or procedural content will be effective in the same

ways. The emphasis on simple animations to facilitate understanding of algorithm

operation is applicable primarily to dynamic processes. Typically, these types of

processes are difficult to learn using static aids.

While the overall structure of the courseware is not linear and does allow learner control

to be exercised in terms of instructional sequence, activities and presentations within

topical units is structured, and an optimum sequence of units is suggested to the learner.

Thus, the courseware does not pretend to be an exploratory or reference-style package. A

few hypermedia-style features are provided and used where appropriate, but generally

within a structure intended to guide the student through appropriate activities which

facilitate learning.

The algorithm animation feature of the courseware was developed specifically for

algorithms associated with graphs and networks. The algorithms which are supported

30

include depth-first traversal, breadth-first traversal, shortest path, minimum spanning tree,

and topological ordering. While the animations are general in the sense of supporting any

graph or network specified in the program or by a student, they do support other graph

and network algorithms or algorithms for other abstract structures. Development of a

general algorithm animator was not the goal of this project. Rather, the incorporation of

an animation tool into an instructional software package developed according to software

engineering and instructional design principles and in accordance with cognitive learning

theories was the aim.

Evaluation of the courseware was limited to formative evaluation. Individuals and a small

group of Computer Science students evaluated the usability and effectiveness of the

courseware. Evaluation did not include experimental studies of the effect of the

courseware on student achievement.

Summary

Computer Science students, particularly at the Freshman and Sophomore level, often find

it difficult to grasp the abstract structures, operations, and concepts frequently

encountered in the discipline of Computer Science. The design of computer software, like

the design of a bridge or building, often begins with an abstract model of what the user

needs. Working with abstractions allows the Computer Scientist to experiment with

various implementations to find the most effective and efficient one. In addition, the data

31

structures and algorithms commonly used in computer programs are themselves

abstractions of their actual implementation in the underlying computer architecture.

To facilitate learning the abstract structures, operations, and concepts associated with

graphs and networks, an interactive, animated courseware package was developed.

Development was carried out in accordance with established software engineering and

instructional design principles, and guided by the application of cognitive learning

theories. To facilitate the development, an authoring system was used to implement the

overall courseware structure as well as the primary user interface. Animations,

interactive laboratory sessions, and self-tests were implemented using a traditional

programming language. Compiled programs have been interfaced to the user screens to

present an integrated application.

Current multimedia and hypermedia technology has been utilized where appropriate for

enhancing student learning. The courseware is intended to be used in conjunction with

normal lectures, homework assignments, and other learning activities.

31

structures and algorithms commonly used in computer programs are themselves

abstractions of their actual implementation in the underlying computer architecture.

To facilitate learning the abstract structures, operations, and concepts associated with

graphs and networks, an interactive, animated courseware package was developed.

Development was carried out in accordance with established software engineering and

instructional design principles, and guided by the application of cognitive learning

theories. To facilitate the development, an authoring system was used to implement the

overall courseware structure as well as the primary user interface. Animations,

interactive laboratory sessions, and self-tests were implemented using a traditional

programming language. Compiled programs have been interfaced to the user screens to

present an integrated application.

Current multimedia and hypermedia technology has been utilized where appropriate for

enhancing student learning. The courseware is intended to be used in conjunction with

normal lectures, homework assignments, and other learning activities.

Introduction

Chapter II

Review of Literature

32

The primary goal of this development effort was to produce interactive, multimedia

courseware which will allow Computer Science students to meet specific, measurable

learning objectives related to graph and network data structures and algorithms. To insure

success, the development has followed proven software engineering methodology,

integrated instructional design techniques into the development process, and applied

appropriate cognitive learning theories to the courseware design.

A knowledge of the benefits and pitfalls of employing multimedia and other computer

based technology, such as hypermedia and animation, in instructional software is crucial

to the development of effective instructional software. In addition, application of existing

guidelines in human-computer interface (HCI) design, as well as enhancements to these

principles based on cognitive learning theories are essential, as is a knowledge of

available development tools such as various authoring systems.

33

Graphs and Networks

Graph theory, a subfield of mathematics, had its origins in the solution of a mathematical

problem popular in the early 1700's known as the Koenigsburg Bridge Problem.

Leonhard Euler, a Swiss mathematician, heard of the problem while engaged in the court

of Catherine the Great (Miller, Heeren, & Hornsby, 1990).

In Euler's day, the Pregal River flowed through the town of Koenigsburg, around the

island Kneiphof. Just past the island, the river forked. Seven bridges connected the river

banks to the island and each other as shown in Figure 1. The problem was this. Could a

person, starting at any of the four land areas indicated as a through d, travel across each

of the bridges once and only once, visiting each of the land areas and end his journey

where he began? No one was able to solve the problem.

Euler represented the problem as a graph, a mathematical abstraction consisting of nodes

and edges. The nodes represented the land areas and the edges represented the bridges, as

shown in Figure 2. Using this abstraction, Euler was able to formulate rules which

provided a solution to the problem (Miller, Heeren, & Hornsby, 1990).

34

Figure 1: Koenigsburg Bridge Problem

Figure 2: Graph Representing Koenigsburg Bridge problem

d

Concepts and Terminology

Graphs are abstract mathematical constructs which can be used to represent a wide

variety of problems (Aho & Ullman, 1992; Naps & Porthering, 1992). In particular,

graphs are useful in representing entities and relationships among entities. Thus, graphs

can be applied to problems in communication, transportation, or interrelationships among

people (Miller, Heerden, & Hornsby, 1990).

35

Aho and Ullman (1992) assert that a graph "has a powerful visualization as a set of points

(called nodes) connected by lines (called edges)" (p.435). This can be seen in the case of

the Koenigsburg Bridge Problem described above. The somewhat complex system of

bridges and land masses of the problem, as shown in Figure 1 above, is represented quite

simply by the associated graph, as shown in Figure 2.

Networks are an extension of graphs in which each edge has an associated weight (Naps

& Pothering, 1992). For example, a graph could be used to show whether two cities were

connected directly by a road. A network would show not only the connection, but also the

distance between the two cities along the road.

In either a graph or a network, two nodes may be directly connected by an edge or

indirectly connected by a path, that is a sequence of edges from the start node, through

intermediate nodes, to a destination node (Aho & Ullman, 1992). Figure 3 shows a simple

graph. In this graph there is a direct connection between nodes A and C since there is an

edge connecting these two nodes. While there is not a direct connection between nodes A

and B, there is a path from A to C and from C to B.

Graphs may be classified as cyclic or acyclic. In a cyclic graph at least one path is a

cycle; that is, following the path from its source results in returning to the source. The

graph is Figure 3 is a cyclic graph with the path connecting nodes B, C, and E

constituting a cycle. A graph which has no cycles is called an acyclic graph (Aho &

Ullman, 1992; Naps & Pothering, 1992).

36

Figure 3: A simple graph

.................. nODE

Q~ --.. EDGE
B

D

U-----fl1i E

Graphs such as the one in Figure 3 are called undirected graphs since the edges which

connect the nodes are assumed to be bi-directional. For example, if the graph in Figure 3

represented a system of roads connecting five cities, two-way traffic would be allowed on

each of the roads. In certain problems, edges connecting nodes are unidirectional; that is

travel between two nodes can occur in only one direction. The edges are then represented

with arrows indicating the direction of travel and the graphs are called directed graphs, or

digraphs (Aho & Ullman, 1992; Naps & Pothering, 1992).

The degree of a node in a graph or network is defined as the number of edges connected

to the node. In the graph of Figure 3, node A has a degree of one since there is only one

edge connected to it, while node C has a degree of three. For a directed graph the number

of incoming edges constitutes the indegree of a node, while the number of outgoing edges

constitutes the outdegree of a node (Naps & Pothering, 1992).

37

A common operation associated with a graph or network is that of a traversal. A traversal

is an operation in which each node in a graph is visited in some order. Two common

traversal methods are depth-first traversal and breadth-first traversal. Both methods begin

at a designated starting node. In a depth-first traversal, a path is followed as far away

from the start node as possible before visiting other nodes connected to the start node

(Cormen, Leiserson & Rivest, 1990; Naps & Nance, 1995; Naps & Pothering, 1992).

Figure 4 illustrates a depth-first traversal of the graph from Figure 3. Starting at node A,

the traversal proceeds to node C, then to node B, then to node E, and finally to node D. In

this example, the entire graph is traversed in a single path starting at node A.

Figure 4: Depth-first Traversal

STRRT _R

~ ___ IU@

In a breadth-first traversal each node directly connected to a given node is visited before

traveling along a path further from the node (Naps & Pothering, 1992). Figure 5 shows a

breadth-first traversal. Starting at node B, node C is visited, then node E, both directly

connected to node B. Since there are now no other nodes directly connected to node B the

38

traversal proceeds to follow the first path, that to node C, arriving at node A. Finally, the

path to node D is taken completing the traversal.

Figure 5: Breadth-first Traversal

START

B

D

@

Several advanced operations are typically presented in undergraduate study of graphs and

networks. These include shortest path determination, minimum spanning tree and

topological ordering. All apply to networks only. The shortest path algorithm is used to

find the path with the minimum total edge weight between two nodes. The minimum

spanning tree determines the minimum total edge weight to connect all nodes, not

necessarily with direct connections (Aho & Ullman, 1992; Naps & Pothering, 1992).

In certain applications, such as project scheduling, a network may be used to represent

precedence relationships, such as which tasks must be completed before other tasks. A

topological ordering of the nodes of the graph will indicate the optimum order for

completing the tasks (Aho & Ullman, 1992; Naps & Pothering, 1992).

38

traversal proceeds to follow the first path, that to node C, arriving at node A. Finally, the

path to node D is taken completing the traversal.

Figure 5: Breadth-first Traversal

Several advanced operations are typically presented in undergraduate study of graphs and

networks. These include shortest path determination, minimum spanning tree and

topological ordering. All apply to networks only. The shortest path algorithm is used to

find the path with the minimum total edge weight between two nodes. The minimum

spanning tree determines the minimum total edge weight to connect all nodes, not

necessarily with direct connections (Aho & Ullman, 1992; Naps & Pothering, 1992).

In certain applications, such as project scheduling, a network may be used to represent

precedence relationships, such as which tasks must be completed before other tasks. A

topological ordering of the nodes of the graph will indicate the optimum order for

completing the tasks (Aho & Ullman, 1992; Naps & Pothering, 1992).

39

Implementation

A common technique for representing a graph is the adjacency matrix (Aho & Ullman,

1992; Cormen, Leiserson & Rivest, 1990; Naps & Pothering, 1992). A square, two

dimensional matrix is formed with the nodes representing each row and column. For each

pair of nodes directly connected by an edge, a nonzero value is entered in the

corresponding element of the matrix. For networks, the edge weight is entered. If there is

not an edge between two nodes, a zero is entered. Figure 6 show the adjacency matrix for

the graph of Figure 3. The direct connection between nodes A and C is presented by a 1

in row A, column C. Similarly, the lack of an edge between nodes A and B is indicated

by a 0 in row A, column B.

Figure 6: Adjacency Matrix for Graph in Figures 3

A

B

C

D

E

A

o

o

1

o

o

B

o

o

1

o

1

C

1

1

o

o

1

D

o

o

o

o

1

E

o

1

1

1

o

40

Learning Theory

Learning, whether by an individual for a personal reason, or by a group for a common

goal, always has some objective. Even if learning is engaged in for its own sake, there is a

goal, namely to learn. Given that learning is goal-driven, educators have, throughout

time, sought to understand the purpose and process of learning to improve the degree of

learning, reduce the time needed to learn, and increase retention. Thus, learning theories

abound.

If instructional methodology and the use of technology in instruction are to be effective,

they must take into account current learning theories. Educators must also be receptive to

new theories and be sure to adopt new methodologies which demonstrate measurable

benefit.

Historical Development of Learning Theory

The earliest learning theories date back to Pre-Christian times. Aristotle, a student of

Plato, believed that education was necessary for the development of good individuals and

a good society. In his writing, Politics, Aristotle asserts that "virtue and goodness in the

state are not a matter of chance but the result of knowledge and purpose" (Aristotle, 1968,

p.3).

John Dewey, an educator in the late 1800's, had a major impact on learning theories of

that time. Dewey's My Pedagogic Creed was based on his belief that the success of

41

democracy depended on education, both by the family and by the school (Sullivan, 1971).

Dewey (1968), believed that "all education proceeds by participation of the individual in

the social consciousness of the race" (p.51). He believed that learning was a social

experience, that there should not be a set curriculum, and that the ultimate goal of

education was the improvement of society.

Similarly, Thorndike (1971), writing in the early 1900's, believed that education was

needed to change people. He says, "The need for education arises from the fact that what

is is not what ought to be" (p.12). Thorndike also believed that the primary goal of

education was to teach societal and behavioral values to individuals, in particular,

"Education should make human beings wish each other well, should increase the sum of

human energy and happiness and decrease the sum of discomfort of the human beings

that are or will be, and should foster the higher, impersonal pleasures" (p.13).

While there were differences among these early learning theories, there was one common

thread, an idea made famous by the American psychologist B.F. Skinner, that of

behaviorism. Aristotle, Dewey, and Thorndike all believed that the result of education

was a behavioral change in the individual. Skinner specialized in an instructional

methodology in which learning was seen as producing an appropriate response to a given

stimulus and reinforced by rewarding proper behavioral responses. Skinner (1971)

describes this process by saying, "Once we have arranged the particular type of

consequence called a reinforcement, our techniques permit us to shape up the behavior of

an organism almost at will" (p.23).

41

democracy depended on education, both by the family and by the school (Sullivan, 1971).

Dewey (1968), believed that "all education proceeds by participation of the individual in

the social consciousness of the race" (p.S1). He believed that learning was a social

experience, that there should not be a set curriculum, and that the ultimate goal of

education was the improvement of society.

Similarly, Thorndike (1971), writing in the early 1900's, believed that education was

needed to change people. He says, "The need for education arises from the fact that what

is is not what ought to be" (p.12). Thorndike also believed that the primary goal of

education was to teach societal and behavioral values to individuals, in particular,

"Education should make human beings wish each other well, should increase the sum of

human energy and happiness and decrease the sum of discomfort of the human beings

that are or will be, and should foster the higher, impersonal pleasures" (p.13).

While there were differences among these early learning theories, there was one common

thread, an idea made famous by the American psychologist B.P. Skinner, that of

behaviorism. Aristotle, Dewey, and Thorndike all believed that the result of education

was a behavioral change in the individual. Skinner specialized in an instructional

methodology in which learning was seen as producing an appropriate response to a given

stimulus and reinforced by rewarding proper behavioral responses. Skinner (1971)

describes this process by saying, "Once we have arranged the particular type of

consequence called a reinforcement, our techniques permit us to shape up the behavior of

an organism almost at will" (p.23).

42

While much of Skinner's experimental work was carried out with mice or pigeons, he

proposed the adoption of this behavioral change methodology in educating children.

Contending that the classroom teacher would not be able to adequately provide the

necessary reinforcements, he suggested a teaching machine to do the task (Skinner,

1971). This suggestion represents an early integration of technology and educational

theory and foreshadowed computerized programmed learning systems.

Gagne' (1992) has made significant contributions to the development of instructional

design. His work, to a large degree, is based on Skinner's, being fundamentally

behaviorist-oriented. In the most recent edition of his classic instructional design text he

writes, "Changes in the behavior of human beings and in their capabilities for particular

behaviors take place following their experience within certain identifiable situations.

These situations stimulate the individual in such a way as to bring about the change in

behavior" (p.6).

Modern Learning Theories

While still influential, behaviorist learning theories are being replaced by cognitive

learning theories. There are several fundamental differences between the two types of

theories. Behaviorism emphasizes the transfer from the teacher to a passive learner. The

curriculum is rigid, and learners have little control over the learning process.

43

Cognitive learning theories are based on information processing models (McGilly, 1994)

and emphasize the learner's active participation in the learning process. Several

manifestations of cognitive theory are popular including collaborative learning,

constructivism, and situated learning. Each of these models approaches the cognitive

process according to a particular instructional methodology: collaboration with group

work, constructivism with the learner's unique contribution to knowledge, and situated

learning with environment-based learning experiences.

An important aspect of cognitive learning theories is that knowledge is viewed as an

interconnected network of ideas, concepts and facts (Lanza, 1991; McGilly, 1994). A

structure of interconnected knowledge has implications for learning and for the design of

instructional systems. Gagne' (1971) indicates that at least some types of knowledge are

hierarchically structured. He hypothesizes that the knowledge needed to perform a type of

task may be subdivided into subcategories of more basic knowledge. This process is

repeated on the subcategories until one arrives at knowledge which is considered to be

fundamental. The result is a hierarchical arrangement of categories of knowledge.

A major influence in current learning theory is that of constructivism in which learners

construct knowledge out of their own experiences (Hollis, 1991). Privateer and MacCrate

(1992) emphasize the benefits of collaborative, constructivistic techniques in a college

level humanities course. Constructivism fits in well with the idea that knowledge is an

interconnected network of information. McGilley (1994) describes the process of

44

elaboration in which learning consists of adding new information to an individual's

existing network of information.

Constructivism is often seen in contrast to objectivism. The objectivist view assumes that

"the world is real, it is structured, and that structure can be modeled for the learner"

(Jonassen, 1991, p.28). In contrast, constructivism "claims that reality is more in the mind

of the knower, that the knower constructs a reality or at least interprets it based upon

hislher experiences" (Jonassen, 1991, p.29).

Problem-based learning and situated learning are two applications of constructivism.

Savery and Duffy (1995) describe a problem-based learning approach used by Barrows.

Medical students, working in groups, are given a diagnostic problem with which they are

unfamiliar. The students do appropriate research and propose an answer to the problem.

The instructor evaluates the solution and, if it is not sufficient, requires the students to do

additional research. Students learn by tackling a "real-life" problem and by working

together to increase their knowledge. The authors state, "We cannot talk about what is

learned separately from how it is learned" (p.31).

Instructional principles derived from constructivism are: (1) learning activities should be

anchored to a larger task or problem, (2) learners should be supported in developing

ownership for a problem, (3) tasks should be authentic, (4) tasks and activities should

reflect the complexity of the actual situation in which the learner will eventually operate,

(5) allow the learner to be responsible for the process for developing the solution, (6) the

45

environment should support and challenge the leamer, (7) encourage learners to consider

alternative views, and (S) allow and encourage the learner to reflect on the solution and

the process of arriving at the solution (Savery & Duffy, 1995).

While certain aspects of constructivism are appealing, there are also difficulties with this

approach which must be taken into account when applying constructivistic theories.

Jonassen (1991) believes that "evaluation of learning from constructivistic environments

is perhaps the most difficult issue related to constructivism" (p.2S). Evaluation of

learning according to the traditional objectivist model is criterion-referenced. That is,

specific, measurable learning objectives are developed for instruction, and learner

achievement is measured by determining to what degree the goals have been met.

Jonassen contends that evaluation must be more goal-free in constructivistic instruction.

"If possible, it is the process of knowledge acquisition that should be evaluated, rather

than a product" (Jonassen, 1991, p.30).

Not all educators would be willing to agree that the process of instruction is more

important than the product. In addition to philosophical differences about the validity of

goal-free evaluation, there are practical problems. Jonassen (1991) says "that using a

single set of criteria for assessing the quality of outcomes is unacceptable" (p.31). He also

contends that, "Constructivistic evaluation requires a panel of reviewers, each with a

meaningful perspective from which to evaluate the outcomes" (p.31).

46

Another area of concern is that constructivistic learning often places high, perhaps

unrealistically high, demands on the learner in the areas of cognitive load, metacognitive

activities, and appropriate learner attitudes (Perkins, 1991). Constructivistic learning

often focuses on context-rich environments in which learners can discover and construct

knowledge. These environments are necessarily complex. The complexity places a high

cognitive load on learners (Perkins, 1991).

In addition to cognitive complexity "typical constructivistic instruction asks learners to

play more of the task management role than in conventional instruction" (Perkins, 1991,

p.20). That is, learners are seen to be in control, or more in control, of their own learning

which demands appropriate metacognitive skills in monitoring and evaluating learning.

Not all learners are equipped for this increased demand and not all teachers provide the

support needed for learners to succeed in managing their own learning (Perkins, 1991).

Wilson (1995) says that "as the teacher relinquishes control over the content, pacing, and

specific activities, students need corresponding increases in decision and performance

support" (p.28).

Finally, while constructivist theory claims that learners are more responsible for their

own learning and construct their own knowledge, not all learners see the learning process

in this light. Often learners are used to "being taught" and assume all teachers will teach

them what they need to know. Learners do not always "buy in" to the constructivistic

approach (Perkins, 1991).

47

Philosophically, cognitive learning theories tend to be humanistic. Emphasis is on the

self-actualization of the learner. Knowledge is constructed by learners, with learners

defining reality from their own point of view. The process is experiential (Hollis, 1991).

Traditionally instructional design has been largely based on behaviorist theories and has

taken a scientific, problem-solving approach to learning. Hollis (1991) sees the possibility

of bridging the gap between humanist theory-based learning theories and instructional

design. He points out that, while its orientation differs dramatically from that of cognitive

theories, instructional design is really a theory of instruction whereas humanistic

educational approaches are theories of learning. Instructional design is primarily

concerned with the application of learning theories and is free to combine elements of

various theories.

An important aspect of constructivistic learning is that of situated cognition or learning

environments. McLellan (1994) explains that the theory of situated cognition "is based

upon the notion that knowledge is contextually situated and is fundamentally influenced

by the activity, context, and culture in which it is used" (p.7). She emphasizes that

learning should take place in an actual environment or a rich simulated environment

which is as much like the actual environment as possible.

Wilson (1995) says, "A learning environment is a place where people can draw upon

resources to make sense out of things and solve problems" (p.26). He emphasizes the

need for appropriate information resources and tools within the learning environment, and

48

that learners be given adequate support and guidance. Learning environments should be

collaborative "communities of learners [who] work together on projects and learning

agendas, supporting and learning from one another, as well as from the physical

environment" (Wilson, 1995, p.27).

Technology and Multimedia

Overview of EducationalTechnology and Multimedia

Buford (1994) defines multimedia as "the simultaneous use of data in different forms

(voice, video, text, animations, etc.)" (p.2). Galbreath (1992) insists that user interactivity

via a computer must be included in any definition of multimedia. Multimedia

applications exist in entertainment, home shopping, healthcare, science and engineering,

and education (Buford, 1994). Buford believes that "multimedia documents,

presentations, mail, games, and other applications will be the common denominator by

which people and organizations communicate, work, and play together" (p.24).

Multimedia is one of the latest forms of technology to break upon the education scene.

Education has embraced technology of all sorts over the years, with the goal of improving

teaching and learning (Noblitt, 1995). Multimedia applications can provide individualized

instruction, and provide information in forms other than text such as graphics,

animations, and audio (Galbreath, 1994). There is a wide range of educational

applications which can incorporate multimedia technology including tutorials,

educational databases, simulations, and educational games (Sweeters, 1994).

49

Educational Technology Applications

Applications of educational technology vary widely in style and complexity. At one end

of the spectrum is the computer-aided presentation. Primarily aimed at enhancing

classroom presentations, this type of application is similar to a slide show or use of an

overhead projector. Sammons (1995) describes a project at Wright State University in

Dayton, Ohio in which selected faculty were provided with equipment and software for

developing and delivering multimedia presentations. Faculty were trained on equipment

use as well as on development techniques. The project focused on large, general

education courses.

Student reaction to the use of multimedia for classroom presentations was highly

favorable. Students felt that the computer-aided presentations "organized and supported

the content", made presentations "more interesting and helped with understanding of

material", and "helped them pay attention and clarified information" (Sammons, 1995,

p.67). According to Sammons, the students "overwhelmingly supported continued use of

the computer in the classroom" (p.69).

Applications which integrate course content and learning objectives, educational

technology, and learner interactivity to provide a learning environment are at the other

end of the spectrum from computer-aided presentations. Thurber, Macy and Pope (1991)

developed interactive, multimedia instructional software for use in a college-level

humanities course. The final product, NewBook, incorporated graphics, text, hypertext

50

links, and several types of learner interactivity. The goal was to involve learners, in a

constructivistic way, in the learning process. "Readers would, in the act of reading, create

and eventually write another kind of small 'book' that would be a record of their reading

and their own decision-making about what is or is not important" (Thurber, et aI, 1991,

p.58).

In the Odyssey Project, Privateer and MacCrate (1992) developed an interactive,

computer-based application. Like NewBook, the Odyssey Project used graphics, text, and

hypertext links to provide a rich information resource and overall course structure.

Lecture notes were included as well as a "'smart' syllabus, a time management system"

that insures students keep current in their work (Privateer & MacCrate, 1992, p.77). The

application also incorporates a word processor to facilitate student note-taking and

recording of thoughts and observation.

The Odyssey disk was used in conjunction with a cooperative learning technique which

"encourages the use of higher-order, cognitive thinking strategies" (Privateer &

MacCrate, 1992, p.78). Thus, the instructional software was integrated with cognitive

strategies to encourage and support higher-order learning.

Computer-based simulations represent another type of educational technology

application. "Computer-based simulations are efficient, effective, highly motivational,

serve the need for individualization and enhance the transfer of learning" (DeNardo &

Pyzdrowski, 1994, p.126). DeNardo and Pyzdrowski (1994) conducted a study of the

51

effectiveness of using simulation to teach computer architecture at the college level.

Results of the study showed that students felt "the simulators helped them to understand

the concepts relating to the specific machine demonstrated in the simulators, helped them

understand the concepts relating to computer architecture, and made learning about

computer architectures more concrete" (p.134).

Poden, Kaminsky and Cusimano (1993) used computers and computer software as tools

to enhance student motivation in ninth-grade physical science instruction. Rather than

developing new software, the researchers implemented a science computer laboratory

consisting of networked computers equipped with electronic probes. In addition, students

were given access to spreadsheet templates, graphing programs, word processing

programs and commercial instructional software for physical science. An experimental

group "received instruction in physical science through computer-based and hands-on

activities" (Podell, et aI, 1993, p.68). Results of the study showed that the use of

computer technology enhanced achievement and had a positive effect on attendance,

subsequent enrollment in science courses, and toward computers.

Technology has not had a Wide-spread Impact on Education

Whether behaviorist or cognitive, learning theories encourage the use of technology to

supplement and enhance instruction. Skinner (1971) suggested the use of a teaching

machine to provide the proper reinforcements needed to ensure desired behavioral change

in learners. Cognitive theories emphasize the information processing aspects of learning

with the implication that applying information processing technology to instruction

52

should prove beneficial. McGilley (1994) claims that applying the principles of cognitive

science to education can have profound benefits.

Despite the almost universal support for the use of educational technology, in particular

the use of computers in education, widespread benefits have not materialized. Wallis

(1995) notes that "computers are indeed everywhere in American schools, but they are

generally used as little more than electronic workbooks for drill, or as places for kids to

play games during 'free choice' periods" (p.49).

The situation in higher education, particularly in American colleges and universities, is

even worse. There are at least two major problems. First, there is not a significant amount

of high-quality instructional software available for higher education. Second, computers

are not used effectively for support of higher-order learning.

Ely (1993) observes that "very little software exists that is oriented to higher education

alone" (p.53). Heterick (1994) agrees. He says, "Information technology is everywhere,

but not enough of it is in our colleges and universities." Significant development of

computer-based, interactive, instructional software for colleges and universities has not

occurred as it has for K-12 education (Twigg, 1996). Twigg (1995) notes that

"mainstream faculty (read, most people) want 'proven applications of compelling value'

in order to change the way they go about their work, and these applications simply do not

exist at the college level."

53

Where computers are being used, they are often not used effectively to enhance

instruction. Surveys show that the majority of college faculty use computers to do word

processing, spreadsheets or for other noninstructional uses (Ely, 1993; Heterick, 1994;

Solomon, 1994).

In the Fall semester of 1996, the author assigned students in an introductory computer

class at Mount Vernon Nazarene College the task of surveying college faculty and office

personnel about computer usage. The survey instrument, the Technology Fact Find

Questionnaire, is included in Appendix A. Computer use was high for faculty and staff.

91 % of the 116 college personnel surveyed used their computer daily. Word processing

was reported as an application for 97% of faculty and 90% of staff personnel. The

primary educational applications for faculty were preparing materials (76%),

presentations (55%), and electronic gradebooks (38%). Less than 25% of the faculty

indicated using the computer for instructional applications such as tutorials, simulations,

and drill-and-practice. These results, while restricted to a single, small college, are

basically in agreement with the findings of others including Solomon (1994).

Computer usage in K -12 education is often ineffective as well. Caftori (1994) reports on

research conducted at Old Orchard Junior High School in Skokie, Ill. Students were

observed using educational software during free time after lunch. The results of the study

indicated that students generally did not use the software as intended by the software

designers, and that they frequently treated the programs like arcade games, missing the

54

intended educational objectives. Caftori (1994) attributes the problems, at least partially,

to incorrect use of the software. "Software documentation indicated that many programs

were designed for a classroom environment with trained teacher guidance" (p.63). Other

factors contributing to the ineffectiveness of the software were: (1) insufficient time,

students were allowed only 20 minutes; and (2) distraction caused by some of the

attractive features of the software.

Solomon (1994) attributes the lack of significant computer use in higher education to a

number of factors including the prevailing culture in colleges and universities, financial

costs, lack of standards, and the demand for multiple skills and significant time for

faculty to develop their own software.

The prevailing culture in colleges and universities does not encourage innovation. In

research institutions "there is not sufficient credit toward tenure and promotion for such

activities"; while "in teaching institutions the teaching load is so high (normally 15 or 18

contact hours per semester) that there is insufficient time" (Solomon, 1994, p.82).

Computers, especially multimedia systems, are expensive and colleges are already under

economic pressure. Costs have risen at a rate greater than twice the rate of inflation

(Solomon, 1994) and the tax base needed to support education is eroding (Smith &

Debenham, 1993). Multimedia instructional materials are seen as supplemental and,

therefore, nonessential in the face of budgetary constraints (Solomon, 1994).

55

Development of high-quality instructional software for higher education is impeded by

the general lack of technical standards for software, especially for various media such as

graphics, audio, and video (Solomon, 1994). One solution is for faculty to develop their

own software on their own equipment for their own classes. While there are instances of

successful developments of this kind, for many, development is not an option. Solomon

(1994) claims that the task is "too difficult for 98% of all faculty" and that "most people

who begin the process of developing multimedia courseware give up soon into the

process" (p.83). Multiple skills are needed to develop multimedia software (Erlich &

Reynolds, 1992; Solomon, 1994) and development requires vast amounts of time

(Solomon, 1994).

Using Technology Effictively

Technology, including the computer, has not had a wide-spread impact on education,

either in K-12 education or at the college level. Nevertheless, there have been successes

and there are things which can be done to promote the effective use oftechnology.

A good starting point is for educators to use existing, well-done instructional software

and other technology effectively. The ineffective use of educational software at Old

Orchard Junior High described by Caftori (1994) can be corrected relatively easily. A

teacher, familiar with the operation of the software, the intended educational objectives,

and the proper use of the package could provide a training session at the time the software

is purchased. Students should use the software in the intended setting, such as the

56

classroom with guidance from a teacher. Students should use the software for an

appropriate amount of time, long enough to allow sufficient exploration, expenence,

problem-solving and synthesis of facts and concepts to occur (Caftori, 1994).

Software designers must avoid the use of attractive graphics, animations, audio, and other

multimedia features if they tend to distract students from the primary task of learning.

Software should "adopt the pedagogical methods that teachers use in a hands-on

environment or for manipulatives: Remind students of what the goal is and point out

inconsistencies in students' actions" (Caftori, 1994, p.65). Designers must design features

into the software which provide immediate feedback and individual guidance in much the

same way as a teacher would.

Littauer (1994) discusses considerations for the effective use of instructional software.

Two vital points are that software is often incomplete and the teacher's role is different

when using instructional software. First, teachers must realize that in many instances the

"usual considerations in lesson planning - questions of content, organization and

evaluation - are not addressed as clearly and respectively in instructional software" as

they are in textbooks and other traditional materials. (p.53). The implication is that the

teacher must be present when students are using software and may have to provide

additional guidance or elaboration.

Second, the teacher's role in the classroom is often different when students are using

instructional software. Students learn as information is presented, as they encounter

57

environments and experiences provided by the software, and possibly as they contribute

to the information being presented by notetaking, journaling or in other ways. "Where the

teacher was a lecturer, he or she is now a facilitator" (Littauer, 1994, p.53). To be

effective in this new role the teacher must become thoroughly familiar with the software

before incorporating it into lesson plans.

The project at Wright State University to encourage faculty to incorporate technology

into classroom instruction focused on the use of computer-aided presentations in large

lecture classes (Sammons, 1995). While overall reactions of faculty and students were

positive, several ideas for the proper use of technology in lecture situations emerged.

Screens should not be overcrowded with information, lettering should be large enough to

read at a distance, sufficient color contrast must be used, and screen content should

generally be an outline, providing the main points and highlights.

If presentations simply incorporate text or a few images, the use of a computer is

unnecessary. The power of the machine is not being utilized. Students at Wright State

indicated that, "In addition to text, they would like to have sound, pictures, maps,

diagrams, animation and humor. Many feel that the use of the computer as a glorified

overhead projector is a waste" (Sammons, 1995, p.68). Students were also concerned that

classes with high technology use not become depersonalized, that faculty be

knowledgeable in the use of equipment, and that presentations should not rely on flashy

features, but should provide sufficient content.

58

A major problem discussed in the preceding section was that of the lack of significant

instructional software at the college and university level. Twigg (1995) makes several

suggestions aimed at rectifying this situation. Her emphasis is on increasing the amount

of instructional software which is available for higher education. Colleges should join

together to write specifications for needed software and request software developers to

bid on development. By collaborating, institutions would demonstrate to developers that

there is an adequate market for college-level instructional software and provide a

guarantee that developed software would be purchased and used. "Courses or subj ect

areas enrolling a large number of post-secondary students or serving as a pre-requisite for

further study in many areas should be the focus of our effort." The idea is to develop

instructional software where it can be widely used and have the greatest institutional

impact.

Twigg (1996) also suggests that developers look at the final market for instructional

software not as the institution, but as the student. She argues that instructional software is

like other learning materials, such as textbooks, or other learning tools, such as

calculators. Typically these are purchased directly by students. Institutions could work

with vendors to provide software to students at reasonable prices.

The effective use of educational technology is a multifaceted problem. Not only must

appropriate instructional software and other technology be made available, but faculty

59

and administration must be encouraged to use it and given the opportunity to see the

benefits which it can provide.

Faculty in colleges and universities might be more willing to use instructional software if

they knew that they could receive needed help and support. Willis (1993) notes that

"Technology-assisted innovations are particularly sensitive to inadequate support" (p.26).

He suggests that software vendors provide "school-based consultants who spend a

significant amount of their time in schools working with teachers" (Willis, 1993, p.26).

Other possibilities for support suggested by Willis include an "electronic hotline and

technical support as well as normal phone and E-mail contact" (p.26).

Other factors which are believed to promote faculty use of educational technology

include adequate training; peer interaction and support; time to experiment with the

technology; voluntary participation as opposed to imposed use; and administrative

cooperation and support.

Perhaps the most important issue related to the effective use of technology in education is

to be sure that the technology is used to promote higher-order learning. Abramson (1993)

emphasizes "computer-based instructional resources that promote application, analysis,

synthesis, and evaluation" (p.6). She also comments that, "Traditional applications such

as drill-and-practice programs, and those in which press-the-mouse replaces turn-the

page, do not use the power and waste the glory of hypermedia" (p.6).

60

Stoddart and Niederhauser (1993) contend that the mere infusion of technology into

education will not change instruction. Instead, the important factor is how technology is

used. They believe that technology should incorporate and support cognitive learning

theories if it is to be effective.

Computers can be used to mediate the interaction of learners with natural or social

phenoma (Dede, 1995). Software simulates environments which learners explore and

manipulate, allowing them to discover facts and principles and to construct new

knowledge. Dede (1995) thinks that this use of computer technology can be extended to

the point that "learners can immerse themselves in distributed, synthetic environments,

becoming 'avatars' who vicariously collaborate and learn-by-doing, using virtual artifacts

to construct knowledge" (p.46).

The COMPUTER TUTOR software described by Smith and Debenham (1993) is

intended to provide increased effectiveness and accessibility of instruction. Their

approach was to develop "interactive computer software that would simulate a personal

tutor and help students master course materials at their own pace" (p.71). A primary

design criterion was that the software would incorporate cognitive learning theory.

Students who took classes in which COMPUTER TUTOR was used believed that "the

software improves their learning", and that "using the computer to learn key terms and

concepts is a more efficient way oflearning than reading the text alone" (p.73).

61

The major factors responsible for the lack of a wide-spread impact of computer

technology on education can be addressed. Developers can be encouraged to develop

software for colleges and universities acting in collaboration. Adequate training and

support, as well as the support of administration, can promote faculty usage of

educational technology. Most importantly, technology, particularly computer-based

technology, must be used in ways that capitalize on the strengths and capabilities of the

technology and incorporate cognitive learning theories.

Hypermedia and Interactivity

Hypermedia in its vanous forms is becoming widely used in a variety of learning

situations. From encyclopedic databases to on-line help to computer-based instruction

programs, hypermedia is one of the major new technologies in education as well as other

applications (Ambrose, 1991; Cortinovis, 1992; Lanza, 1991; Myers & Burton, 1994;

Park, 1991).

The term hypermedia refers to a system of presenting text, graphics, sound, animation or

video-based information in such a way that the user of the medium may proceed in a

nonlinear fashion (Maddux, 1992; Myers & Burton, 1994). For example, hypertext, the

forerunner of the more general hypermedia, is characterized by the reader choosing the

path through a document rather than proceeding strictly from beginning to end. Myers

62

and Burton (1994) compare hypertext to "Star TreJ[s transporter, allowing the user to

'beam' to any coordinates in a given hyperspace of information" (p.1 0).

Throughout the hypertext document certain keywords are highlighted. By selecting a

keyword, the reader may branch to text which describes or explains that word or concept,

or which is related to the concept in some way. Hypermedia simply extends the concept

of hypertext to information in forms other than pure text, such as graphics, animation or

sound (Myers & Burton, 1994).

The concept of hypermedia was first conceived by Vannevar Bush, science advisor to

Franklin Roosevelt (Maddux, 1992; Myers & Burton, 1994). Bush envisioned a database

of scientific literature capable of non-sequential access which would facilitate research.

This system, called memex, was based on the principle of association. "The selection of

any item could allow the immediate selection of another. By forming associations at will,

the user could build a custom-made trail through the material" (Myers & Burton, 1994,

p.ll).

In the 1960's, Ted Nelson, a student at Harvard University, conceived of an electronic

system which could represent the linkages he perceived between the units of knowledge

he was studying in various courses (Paske, 1990). Nelson embarked on a project called

Xanadu, with the goal of linking together a large body of human knowledge and

providing access to this knowledge on-line and in real time (Myers & Burton, 1994). The

hypermedia concept was popularized with the inclusion of Hypercard on Apple

63

Macintosh personal computers (Ambrose, 1991). "This software allows everyday users to

create their own hypermedia products" (Myers & Burton, 1994, p.1S).

While hypermedia seems to be a promising medium for educational applications, there

are a number of problems associated with it (Park, 1991; Roselli, 1991; Wulfekuhle,

1994). Although hypertext and hypermedia have been the topic of research and many

journal articles, important questions still remain unanswered about the effectiveness of

hypermedia in various learning situations and for learners with different learning styles

(Ambrose, 1991; Burwell, 1991; Jonassen & Grabinger, 1993; Moore, 1994; Myers &

Burton, 1994).

Perceived Advantages of Hypermedia

Studies related to the use of hypertext, hypermedia and related technologies, such as

interactive videodiscs, claim numerous advantages in instructional settings. Hypertext

and hypermedia are effective in a variety of learning situations including delivery of

traditional forms of CBI such as tutorials, drills and simple simulations; information

retrieval systems; and in complex, constructivistic environments (Jonassen & Grabinger,

1993).

Hypermedia systems incorporate cognitive learning theories. Lanza (1991) says that

"Both the representation of knowledge and its processing - inherent in the hypertextual

approach to instruction - conform to the newer cognitive models of the learning/teaching

process" (p.19). Other researchers argue that traditional CBI is machine-centered, rather

64

than learner-centered because traditional CBr is based on B. F. Skinner's behaviorist

theories rather than on newer cognitive theories (Johnson & Grover, 1993). "Hypertext is

the most appropriate technology for supporting constructivistic learning environments

because acquiring knowledge from hypertext requires the user to engage in

constructivisitc learning processes" (Jonassen & Grabinger, 1993, p.26).

These ideas are supported by researchers who believe that hypermedia promotes

nonlinear thinking (Wei, 1991), allows learners to access and organize information

according to their own cognitive needs (Park, 1991), and that the interconnectedness of

knowledge is supported by the structure of hypermedia (Ambrose, 1991; Staninger,

1994). Ambrose (1991) says that "the hypermedia format is likely to encourage thinking,

speCUlation, and personal judgements on the part of the learner" (p.S2). Learners are able

to employ new strategies for learning, and to focus on the relationships among units of

knowledge rather than simply accumulating isolated facts (Ambrose, 1991).

Hypermedia supports the concept of the active learner, allowing learners to pursue paths

through information which meet their interests or are appropriate for their individual style

of learning. Johnson and Grover (1993) describe a hypermedia model, the hypertutor

system, which includes a "highly intuitive, default structure within an instructional

environment having a high degree of learner control" (p.7). Learners who need more

structure can follow the default path, while those who have less need of structure are free

to navigate through the content more freely.

65

Cognitive Flexibility Theory holds that learners should recognize the interconnectedness

of knowledge and develop new cognitive methods to organize complex information

(Staninger, 1994). Some research tends to show that, consistent with Cognitive

Flexibility Theory, the use of hypermedia actually does encourage the development of

higher-level cognitive learning skills. Weiss (1994) contends that hypermedia systems

"tend to encourage active processing on the part of students and support higher-order

thinking" (p.31).

Cortinovis (1992) cites several current trends in training, all of which would seem to be

consistent with the hypermedia approach. These are "reference-based training", the

change from being a "teaching culture" to being a "learning culture", and the integration

of classic behaviorist theories with cognitive theories. Cortinovis defines "reference

based training" as "getting the right information when and where needed" (p.47). This is

certainly in line with hypermedia which allows the user to proceed nonlinearly through

information as needed rather than enforcing a strictly sequential path through possibly

irrelevant information. The idea of being a "learning culture" rather than a "teaching

culture" embodies the idea that the learner is involved in and, at least partially, in control

of, the process rather than the teacher. This, too, is consistent with the hypermedia

approach as well as with cognitive learning theories.

A number of studies in specialized settings show that hypermedia is an effective

instructional tool. In particular, hypertext has been used to improve humanities learning,

66

the key being the flexibility of encountering the text and interacting with the text

(Thurber, Macy & Pope, 1991). Privateer and MacCrate (1992), using their Odyssey

project as the basis, claim that the use of hypertext is "an excellent way of presenting

information that has applications across all disciplines" (p.78). Another area in which

some researchers have found benefit in the use of hypermedia is that of cooperative

learning. Maddux (1992) found that when hypermedia is used in conjunction with

cooperative learning, the two approaches, both of which encourage and depend on higher

order cognitive thinking strategies, support one another.

In a different vein, hypermedia is judged to be an effective means of developing CBI

lessons by teachers, rather than by professional developers (Maddux, 1992). Wulfekuhle

(1994) concludes that CBI programs developed using hypermedia are effective because

they are interactive and employ multiple media formats which stimulate and hold

learners' interests.

Finally, a common benefit claimed for the hypermedia approach is that serendipitous

learning may occur as learners navigate their own path through the hypermedia

information (Staninger, 1994).

Problems Related to Hypermedia

Despite the wealth of research which demonstrates the benefits of hypermedia-based

instruction, there are many significant problems also reported in the literature. Chief

among these are problems related to navigating through the network of hypermedia links

67

and nodes. Studies show that with the freedom to select their own path, users can easily

develop the feeling of being lost, of not knowing where they are in the network of

information (Roselli, 1991; Staninger, 1994; Tolhurst, 1992; Wei, 1991). Staninger

(1994) observes, "For the novice user, the unfamiliar organization and retrieval structure

of hypertext requires a period of adjustment and a new attitude toward information

acquisition" (p.S1).

The navigational problem is worse with larger hypermedia systems, which may be the

most useful systems since a larger quantity of knowledge is linked together (Park, 1991) .

. The worsening of the navigational problem with large systems may render such systems

ineffective (Rivlen, Botafugo & Schneiderman, 1994).

In her text on the design of CBI systems, Steinberg (1991) notes, "Students often view

each display as a separate entity and fail to perceive the continuity between displays.

Consequently, the physical scheduling of related information must be planned with

special care" (p.17). However, with a hypermedia system, the planned sequence intended

by the designer need not be followed by the learner.

A number of researchers indicate concern over the possibility of learner distraction and

cognitive overload with users of hypermedia systems. That is, due to the sheer number of

choices and possible paths, the learner can experience too much information to process at

one time (Roselli, 1991). Roselli also says that "cognitive overload gives rise to a further

problem, which can be defined as 'conceptual disorientation', which occurs when the user

68

loses sight of what really interests him" (p.42). Cognitive overload occurs because there

is a limit to the amount of information that a person is able to process in a given amount

of time (Steinberg, 1991).

The navigational problem and cognitive overload problem described above are both

related to the issue of learner-control in instructional systems. Perhaps a more pertinent

concern is that learner-control itself is not necessarily effective with all types of learners.

Some students learn better with learner-control while others learn better with more

structure and guidance (Burwell, 1991). Research has not shown learner-control to be

. effective because (l) learners do not know enough about what they are learning to make

good decisions about sequence, and (2) metacognitive skills may not be adequate to allow

learners to monitor and evaluate progress when dealing with a nonlinear presentation of

information (Park, 1991).

Lanza (1991) contends that the hypermedia system designer must understand the

cognitive learning styles and strategies of the intended learners to effectively set up the

links of a hypermedia system. Learners with different cognitive styles may not be able to

realize the same benefit from a given system as those for whom it was intended.

While the results described above indicate that learner-control may not be effective with

all types of learners, there are also studies which show that learner-control may not be

effective in certain content areas or learning situations. Knowledge in science tends to be

hierarchical, one topic building on preceding topics. There must be a progression to the

69

learning of the related material. Following other transverse paths; that is, those which cut

across the hierarchy, tends to disrupt the natural order of the subject matter (Roselli,

1991).

One potential advantage of hypermedia claimed by researchers as described above was

that hypermedia systems promote the development of higher-order cognitive skills.

However, it may be that hypermedia requires higher-order cognitive skills for effective

use (Wei, 1991; Roselli, 1991). In a hypermedia system the burden is on the learner to

bring order to the seemingly chaotic collection of knowledge. If this is not done, there

may be problems in comprehension (Staninger, 1994). Roselli (1991) says that "this kind

of environment obliges the learner to make decisions continually and to assess constantly

his state of progress, forcing him to apply higher-order intellectual powers" (p.42). A

recent study shows that when readers are allowed to select the sequence of text, the

sequences chosen are poor and incomplete (Rivlin, Botafugo & Schneiderman, 1994).

Considering all of the problems identified with the use of hypermedia, one may be

tempted to question whether instruction is even an appropriate application of hypermedia.

A number of researchers note that hypermedia was conceived of and developed primarily

for reference applications rather than for instruction (Lanza, 1991). Sweeters (1994)

relates various types of computer-based learning to Gagne' 's events of instruction.

Hypermedia systems only fulfill two of the Gagne' 's nine required events of instruction.

Crucial events such as providing learning guidance, performing feedback, and assessing

performance are not inherently part of the hypermedia approach.

70

Finally, even claims of serendipitous learning are not wholeheartedly embraced by some

experts. Sweeters (1994) says that, "although incidental learning may occur when one

simply browses through a database, this is unlikely to meet major educational goals"

(p.49). Similarly, Jonassen and Grabinger (1993) assert, "Browsing in a domain for which

no properly developed schemata have yet been constructed, or no obvious need has been

identified, is not likely to lead to satisfactory knowledge acquisition" (p.19).

Learning Abstract Content and Visualization

Computer-based technology may be used to facilitate and enhance learning in a variety of

ways as described in the preceding sections. Nevertheless, the key element in the

effective use of technology in instruction is that of appropriateness; that is, technology

must be applied in ways which capitalize on its strengths, which enhance teaching or

learning, not just for its own sake. Jonassen and Grabinger (1993) warn against using

hypertext inappropriately. Boling (1994) discusses a number of issues relevant to the

design of interactive, multimedia educational applications. Considerations such as screen

size and resolution, use of audio and motion, and degree of user interactivity are issues

which must be consciously dealt with (Boling, 1994). Park (1994) cautions that

"animation should be incorporated only when the attributes are congruent to the learning

task" (p.22).

71

Past Attempts to Facilitate Learning Abstract Structures, Operations and Concepts

Certain subject matter content is difficult to learn because it deals with concepts,

structures or operations which are very complex, invisible to the naked eye, or are

abstract representations of actual phenomena. This is frequently the case "in science and

engineering disciplines where the subjects and concepts studied are often complex,

multidimensional processes" (Aukstakalnis & Mott, 1996, p.14). Animations can be used

to facilitate understanding in situations such as these. "The graphical representation of

ideas can provide advantages over written formulas and theories. For instance, animated

presentations allow students to actually see a physical law in action" (Armstrong &

Loane, 1994, p.20).

Traditionally, authors of computer science texts have used a series of static diagrams to

illustrate the effect of a particular algorithm acting on a data structure. In the introduction

to their text, Naps and Nance (1995) note that an important feature of the text is that

"algorithms are pictorially traced in a way that will bring them to life in the students'

minds" (p.xxiii).

Current Multimedia Applications for Facilitating Learning Abstractions

Shyu and Brown (1993) cite studies in which the use of dynamic presentations was more

effective than the use of static diagrams. While their own study of the effectiveness of

dynamic presentations in the learning of a procedural task did not show a significant

improvement of achievement, the results did indicate improved learning attitudes, as well

72

as "supporting a pattern of higher task performance and shorter time for instruction"

(Shyu & Brown, 1993, p.79).

Park (1994) claims a number of important benefits from the appropriate use of animation.

In particular, graphical animations have been effectively used to "explicitly represent

highly abstract and dynamic concepts in science", "to simulate functional behaviors of

mechanical or electronic systems", and "to explicitly represent invisible flow of

information" (Park, 1994, p.22).

These concepts have been put into practice, and the benefits of interactive, animated

presentations have been demonstrated, by several educators. The use of multimedia

courseware to provide visualization and animation was undertaken in the subject areas of

chemistry, physics, and math at the University of Massachusetts at Lowell. Using

animation tools, such as Authorware, animations were created to illustrate chemical

processes, the effects of physical laws, and mathematical concepts (Kaplan, 1992).

Kashef (1991), using computer-aided design (CAD) tools to create simulations, found

that the "simulations enhance motivation, the transfer oflearning and efficiency" (p.64).

Algorithm Animators in Computer Science

The effectiveness of animations in computer science may be inferred from the growing

popularity of algorithm animation systems which are available. "It is assumed that such

systems help students learn algorithms better than they could otherwise" (Wilson, Aiken

73

& Katz, 1996, p.75). Visual animation systems in common use include Balsa, Xtango,

GAIGS, and FLAIR.

Projecting algorithm animations during a lecture can be an effective way of presenting

the important features of algorithm operation. The speed of the animation can be

controlled, the animation can be paused, and the effect of using different data sets can be

easily observed by students (Rodger, 1996).

Studies indicate that algorithm animation systems are most effective when used to

supplement and support lectures and other traditional instructional methods, rather than

as stand-alone applications. "Learning is facilitated when animations are included as a

part of an instructional context which also includes textual components and which

features carefully focused task assignments designed to achieve specific learning

objectives" (Wilson, Aiken & Katz, 1996).

Instructional Design and Multimedia

To be effective, instructional materials, including computer-based materials, must be

designed according to proven principles and techniques of instructional design. In

addition, traditional instructional design methods must be updated to incorporate

considerations for new technologies and new learning theories (Erlich & Reynolds,

1992).

74

Instructional Design

Instructional design IS a methodology which employs the systematic, purposeful

organization of instructional experiences to promote learning. The emphasis is on the

individual learner rather than on large groups, and the primary guiding assumption is that

learning occurs best in systematic, structured environments (Gagne', Briggs & Wager,

1992).

Five basic assumptions guide the process of instructional design. First, instructional

design is intended primarily to aid the individual learner. Second, instructional design

incorporates both short-term and long-term design phases. Long-term design focuses on

the overall structure and goal of a curriculum or set of lessons while short-term design

pertains to the immediate preparation of individual lessons. Third, instruction is most

effective if it is systematically designed. "Unplanned and undirected learning, we believe,

is very likely to lead to the development of many individuals who are in one way or

another incompetent to derive personal satisfaction from living in society" (Gagne',

Briggs & Wager, 1992, p.5).

Fourth, the design and development of instructional materials must also be systematic,

following systems engineering methodology. Finally, instruction must be designed in

ways which incorporate current learning theories (Gagne', Briggs & Wager, 1992).

75

Gagne, Briggs and Wager (1992) describe the internal processes of learning and relate

these to external instructional events which they call the events of instruction. These

include: (1) gaining learner attention, (2) stating objectives, (3) recalling prerequisites, (4)

presenting information, (5) providing learning guidance, (6) eliciting expected

performance, (7) providing feedback, (8) assessing performance, and (9) enhancing

retention. Sweeters (1994) examines several CBI models including tutorials, hypertext

and hypermedia systems, simulations, and educational games with respect to their

incorporation of the events of instruction. Interestingly enough, tutorials, generally

considered to be low-level instructional materials, incorporate more of the events of

instruction than any other model. This seems to imply that appropriate tutorials ought to

be a part of interactive, multimedia instructional software.

Instructional design incorporates analysis and design, development, and evaluation. In

particular the process consists of the following activities: (1) defining instructional goals,

(2) performing instructional analysis, (3) identifying learner characteristics, (4) specifying

performance objectives, (5) determining criterion-referenced performance measures, (6)

designing an instructional strategy, (7) collecting and developing instructional materials,

(8) conducting formative evaluation, and (9) conducting summative evaluation (Gagne',

Briggs & Wager, 1992).

The process begins with defining the goals of the instruction which are derived from

learner needs. This focus on needs and goals in at the heart of the design process (Erlich

& Reynolds, 1992; Kozel, 1995).

76

Instructional analysis focuses on the "skills involved in reaching a goal" (Gagne', Briggs

& Wager, 1992, p.23). Task analysis can be used to determine the skills needed at each

stage of carrying out a particular procedure, while information-processing analysis

determines the mental operations which are involved. The goal is to understand the

underlying requirements involved in a particular learning situation.

In addition to setting goals and analyzing instructional processes, the characteristics of

individual learners must be determined. This includes identifying prior skills and

knowledge, and necessary prerequisites. If this is not done, instruction may not be

appropriate or effective for the intended learners (Gagne', Briggs & Wager, 1992).

Since instruction is intended to meet an identified need or reach a specified goal, it is

essential to know whether or not the objective has been accomplished. This requires the

specification of measurable performance objectives. Objectives "should focus on learning

outcomes and be stated in measurable terms" (Erlich & Reynolds, 1992, p.283). Specific,

measurable performance objectives also facilitate planning and development of materials

and instructional activities (Gagne', Briggs & Wager, 1992). As indicated in the events of

instruction, the performance objectives should be communicated to the learner.

Performance assessment is intended to determine whether and to what degree the learner

has met the performance objectives (Erlich & Reynolds, 1992). In addition, performance

measures can be used for learner placement. Performance measures should be criterion-

77

referenced, that is they should be based on specific learning objectives (Gagne', Briggs &

Designing an instructional strategy involves planning what resources and procedures

learners will experience, the sequence of experiences, the degree and timing of guidance,

and how specific activities contribute to accomplishing the performance objectives. At

this point various learning theories can be accommodated, specifying teacher-led

experiences for some activities, as well as leamer-controlled activities for others.

Associated with instructional strategy is the selection and development of appropriate

materials to support and deliver instruction (Gagne', Briggs & Wager, 1992; Luther,

1994).

Formative and summative evaluation are intended to determine the effectiveness of the

instructional product. "Formative evaluation provides data for revising and improving

instructional materials" (Gagne', Briggs & Wager, 1992, p.30). Materials should be tested

initially one-on-one, with a single learner and an evaluator working together. Next,

materials are used by small groups of learners representative of the target audience, and

finally, by an entire class in a field test (Gagne', Briggs & Wager, 1992).

Once the materials have been revised and finalized, summative evaluation can be done.

Summative evaluation is intended to determine the effectiveness of the instructional

system as a whole. The instructional system is used in broad and varied circumstances

78

representative of the target audience, and measures of effectiveness are recorded and

analyzed (Gagne, Briggs & Wager, 1992).

Designing Interactive, Multimedia Instructional Systems

The principles and techniques of instructional design provide a good foundation for the

design of interactive, multimedia instructional systems. However, there are significant

differences between static, sequentially-oriented materials and the dynamic, nonlinear

features of interactive multimedia and hypermedia systems (Park & Hannafin, 1993).

Instructional design does not specifically address issues related to the use of technology

in instruction.

Kozel (1995) describes a model for designing interactive multimedia courseware called

the interactive experience model (lEM). "The IEM divides the design process into two

parts: defining the goal/experience and constructing the interactive spiral" (Kozel, 1995,

p.74). True to instructional design methodology, learning goals are identified first. As

goals are identified, experiences are planned which will help the learner achieve the

goals.

The key to the IEM proposed by Kozel is the second phase, constructing the interactive

spiral. The spiral "has three components - interest, activity and resolution - that recur in

Succession until the user experience is complete" (Kozel, 1996, p.62).The idea is to

introduce content to the learner gradually, gaining their attention, engaging in an

appropriate activity, and pointing the way to the next stage. This process is repeated as

79

the learner progresses through the content. Gagne" s events of instruction are evident as

well as the instructional design model's concern for instructional strategy and systematic

design. Kozel (1996) emphasizes that instructional software will be effective only if it is

user-centered and learner interaction is meaningful.

The design of a hypertext or hypermedia system must take into account factors and

considerations which are unique to these styles of document implementation. Sweeters

(1994) says, "Almost any presentation can be made more interesting by using

hypermedia" (p.49). Nevertheless, factors such as the document and page structure,

learner control, navigational and other tools, presentation of material, and multimedia

considerations must be intentionally considered.

Cates (1992) proposes fifteen principles to be used in the design of a

hypermedia/multimedia product. These design principles relate to educational and user

interface concerns as well as those which derive from the nature of the medium.

A hypermedia system is typically perceived as a document which consists of a number of

related units of information of various types, presented in various media formats. Each

unit of information is considered to be a node. Certain nodes are connected by links

forming a tree-like structure or network of interconnected nodes. Hypermedia systems

tend to be ill-structured and chaotic and thus can inhibit learning (Staninger, 1994).

80

To avoid confusion due to lack of structure, hypermedia systems should be designed to

incorporate an overall document structure, careful design of individual nodes, and

meaningful links between nodes (Staninger, 1994). Lanza (1991) maintains that

"designers have to know 'how' students learn in order to set up links which favor flexible

and intuitive navigation within the hypercourse environment" (p.20).

The degree of learner control with respect to sequence of presentation is related to the

establishing of links in the hypermedia system. A balance must be maintained between

the desire to accommodate different cognitive styles and the necessity to provide

guidance and structure (Tolhurst, 1992). Johnson and Grover (1993) suggest the

implementation of a default path through a document which learners can follow, yet still

allowing deviation from the path as the user desires.

Nodes in a hypermedia network represent units of information or knowledge. The

hypermedia network, itself, is representative of the network structure of knowledge

assumed in cognitive learning theories (Ambrose, 1991; Lanza, 1991). To facilitate

incremental development of knowledge and allow learner control to navigate the

hypermedia network relatively freely each node should represent a single concept. While

the learner has the freedom to navigate within the hypermedia network at will, the

designer can and should guide the learning by including appropriate links among nodes

(Lanza, 1991).

81

should be a well-defined starting point, or root node, for a hypermedia document.

The root node should provide general information and options for proceeding to other

nodes. The user should be able to return directly to a root node from any other node in the

hypermedia network (Lanza, 1991).

Because the user is not constrained to follow a predetermined path through a hypermedia

document, navigational controls and aids must be provided. Navigational controls

generally allow the user to move around in the document, following links between nodes.

Such controls typically allow simple tasks like going forward or backward a single page

in a document, or jumping to a table of contents page, an index page, or a glossary.

In addition to simple page-turning, navigational aids also provide learners with

information about where they are within the document. Maps, bookmarks, and progress

indicators are examples of additional navigational aids (Boling, 1994; Tolhurst, 1992).

A primary consideration in designing a hypermedia system is that of screen or page

design. The typical computer display is not able to present the quantity of text or other

material that can be presented on a printed page (Boling, 1994; Wei, 1991). Richards and

others (1991) recommend the use of well-defined page structures and describe four such

structures: simple page, tiled page, overlay page, and oversized page.

The use of multiple media formats in a hypermedia system can provide a rich learning

environment. Nevertheless, the designer must be sure that media are used appropriately.

82

In particular, audio, video and animation formats, while dramatic, should only be used

when the presentation is enhanced by their use (Boling, 1994).

Human-Computer Interface Design

Perhaps the most important consideration in the design of interactive, multimedia

instructional software, as in any system, is the design of the user interface. Shneiderman

(1992) says, "When an interactive system is well-designed, the interface almost

disappears, enabling users to concentrate on their work, exploration or pleasure" (p.9).

The concept of user-friendliness is imprecise and must be succeeded by specific

guidelines and principles for user interface design. Several important design

considerations guidelines discussed by Shneideman (1992) are providing proper

functionality, identification of user profiles, consistency, error detection and handling,

avoiding cognitive overload, and minimizing user actions.

The user interface must provide capabilities for the user to perform all tasks necessary to

the application. Providing proper functionality results from doing a task analysis as part

of the user interface design. Tasks should be divided into categories according to

frequency of use. Generally, tasks provided should relate to the application domain,

minimizing the necessity for the user to master computer concepts to use an application

(Shneiderman, 1992).

83

In most applications, users can be divided into three categories: novice, intermittent, and

frequent. The needs of users in each of these groups is different. Novice users need

instructions, frequent help and prompting. Intermittent users are typically knowledgeable

about the system, but need reminders on specific details. Frequent users often wish to

bypass lengthy sequences of operations, taking short-cuts to accomplish a task. The user

interface design should make provision for all types of users.

Next to proper functionality, consistency is probably the most important consideration in

user interface design. By providing consistent ways to do similar actions, communicating

in consistent formats and locations, and responding in consistent ways to similar inputs,

the user interface promotes confidence and a sense of control in the user. Users are not

forced to figure out each new display or data entry when consistency is maintained

(Shneiderman, 1992).

Operations should be rapid, incremental, and reversible, with the effects of operations

being immediately visible (Shneiderman, 1992). The possibility of errors can be

eliminated by presenting the user with valid alternatives. If errors occur, diagnostic

messages should be clear and understandable, and give the user an explanation of how to

remedy the condition.

Displays which are overcrowded, screens which require the user to remember information

for action on subsequent screens, providing the user with too many options at one time all

84

contribute to the problem of cognitive overload (Shneiderman, 1992; Roselli, 1991). The

user interface design should attempt to minimize cognitive overload by simplifYing

displays and lists of alternatives, by retaining contextual information in the transition

between screens, and generally by minimizing user actions where possible.

Authoring

There are a number of important considerations in developing, or authoring, instructional

software. The process of authoring is of critical importance and should be based on

established software engineering practices such as needs assessment, analysis, design,

implementation, and evaluation (Mauldin, 1995). In addition, the authoring process must

incorporate instructional design principles (Erlich & Reynolds, 1992) and cognitive

learning theories (Park & Hannafin, 1993).

The selection and use of an appropriate authoring tool is key to the successful

development of a hypermedia instructional unit. Mechanisms for including learner

control, various types of presentation formats, and techniques for organizing and

accessing the source data are important considerations (Wulfekuhle, 1994).

Learner control features must allow ease of use, and permit the learner to concentrate on

educational tasks, not being distracted by complex or cumbersome controls. Under

presentation considerations, Wulfekuhle (1994) includes the ability to add audio and

visual elements, compatibility with common platforms, ability to use multimedia

85

information with ease, and the capability to include user input such as test answers. Being

able to handle a large amount of multimedia data and allowing flexible access to the data

are source data organization concerns.

Creation of the software should be as simple as possible. Point-and-click interfaces for

designing screens, including media units in nodes, and creating hyperlinks between nodes

are significantly easier to use than mark-up languages, scripting or traditional

programming. The authoring system should provide (or provide interfaces to) tools for

creation and editing of media units of various types including text, graphic images, audio

clips, and animations (Luther, 1993). Similarly, it should be possible to provide a link to

external programs to allow the developer to write programs, if necessary, to supplement

the features provided by the authoring system.

Introduction

Chapter III

Methodology

86

The pnmary goal of this dissertation has been the development and evaluation of

interactive, multimedia software which incorporates animation to facilitate learning about

abstract concepts, structures, and operations. The courseware was developed using proven

methods of software engineering, incorporating instructional design principles. Cognitive

learning theories guided the design to promote active, high-level learning.

The overall methodology was that of software engineering, a proven methodology for

developing complex software systems. The major steps in the process included: (1)

requirements analysis, (2) specification, (3) planning, (4) design, and (5) implementation

and integration. Figure 7 illustrates the development process, emphasizing its iterative

nature. Once the product has been completed, undiscovered errors or product

enhancements cause the process to be repeated. The error or enhancement is analyzed,

specifications are modified, plans are made to implement required changes, modifications

are designed, and finally implemented. As noted in Figure 7 formative evaluation was

87

conducted throughout the process to ensure correctness and usability of the resulting

courseware (Schach, 1993).

Figure 7: Software Engineering Development Process

Problem to be
solued by
application

Corrections 8< Enhancements

Requirements _ ... Specification
Analysis

Planning Design

Implementation
and 1------'

Inte ration

Instructional design considerations were incorporated into the software engmeenng

methodology to tailor the general process to the design and development of educational

software. Instructional design considerations include: (1) defining instructional goals, (2)

identifying learner characteristics, (3) performing instructional analysis, (4) specifying

performance objectives, (5) determining criterion-referenced performance measures, (6)

88

designing an instructional strategy, (7) developing and collecting instructional materials,

and (9) production of support materials (Gagne', Briggs & Wager, 1992).

Cognitive learning theories suggest that learning occurs best when the learner is actively

engaged; contributes to the learning process; has some control over the content, pace and

sequence of instruction; and is presented with a network of information which resembles

the interconnected structure of knowledge itself (Johnson & Grover, 1993; Jonassen &

Grabinger, 1993; Staninger, 1994).

Requirements Analysis

The first phase of the design and development process was the requirements analysis. The

goals ofthis activity were to: (1) define the problem to be addressed, (2) define the goals

of the development, and (3) determine the characteristics of the users and any

prerequisites for effective use of the final product.

In a conventional software development, much of the work during the requirements

analysis phase in done jointly by the developer and a client. The client represents a group

or organization which has a perceived problem. The client and the developer may belong

to different organizations, to the same organization, or even be the same person. In this

investigation, the developer was a Computer Science professor who has observed the

difficulty Freshman and Sophomore Computer Science majors have in learning abstract

structures, concepts, and operations.

89

Problem Definition

The procedures for problem definition in this development have been: (1) observation, (2)

discussion with students, and (3) research into the experience of other Computer Science

teachers. Problem definition was completed in identifying the dissertation topic. The

problem has been observed over time in the difficulty students have understanding

abstract structures, concepts, and operations presented in class and in implementing

associated data structures and algorithms in homework assignments. Discussions with

students confirm the difficulties as do discussions with colleagues teaching Computer

Science courses. The problem is confirmed in writings by others both within Computer

Science (Rodger, 1996; Wilson, Aiken, & Katz, 1996) and in other science and

engineering disciplines (Aukstakalnis & Mott, 1996; Kaplan, 1992).

Development Goals

Having defined the problem, the next step was to specify development goals. In the case

of instructional software, these goals relate to a number of areas including: (1)

measurable learning objectives, (2) educational level, (3) delivery methodology, and (4)

development methodology.

Instructional software development must have as its pnmary goal that of meeting

specific, measurable learning objectives (Erlich & Reynolds, 1992; Kozel, 1995).

Learning objectives are performance objectives, that is, they state learning outcomes in

terms of activities the learner will perform to demonstrate that learning has occurred.

90

While the details of these learning objectives were determined in the next phase,

specification, the need for the software to support attainment of specific learning

objectives was acknowledged as a development goal.

In general, the content area to be covered may be oriented toward a particular age group

or grade level or may be appropriate for various levels. In this development project, the

developer determined for which age or grade levels the software is intended and specified

prerequisite skills or knowledge which learners will need to use the software effectively.

Traditional materials, including textbooks, workbooks, and audiovisuals were used to

help determine appropriate level.

Consultation with practitioners and learners was used to determine the best delivery

methodology. Literature review augmented personal experience and discussion with

colleagues and students. Determination was made regarding the technology and the

instructional features to be included in the courseware.

A final development goal related to the development itself. To be effective, instructional

software must be developed according to established software engineering methodology,

incorporate instructional design principles, and be guided by current learning theories

(Erlich & Reynolds, 1992; Gagne', Briggs & Wager, 1992; Stoddart & Neiderhauser,

1993). The methodology described in this chapter reflects this development goal.

91

Determining User Characteristics and Prerequisites

Instructional analysis was used to determine prerequisite skills and knowledge. Task

analysis and information-processing analysis are two types of instructional analysis. Task

analysis produces "a list of steps and the skills used at each step in a procedure" (Gagne',

Briggs & Wager, 1992, p.23). Information-processing analysis is used to determine the

knowledge and conceptual understanding needed to learn new concepts.

Instructional analysis consisted of creating instructional curriculum maps (Alessi &

Trollip, 1991) and noting skills and knowledge needed to attain each learning objective.

To create the instructional curriculum map (ICM) a learning objective was decomposed

into necessary skills and knowledge. Each requisite skill or unit of knowledge was then

analyzed to determine its necessary skills and knowledge. The process was continued

until a basic level of skills and knowledge was reached. This basic level consists of skills

and knowledge which Sophomore Computer Science majors can be assumed to have.

User characteristics are summarized using a chart similar to the one shown in Figure 8

which is based on a similar chart in Alessi and Trollip (1991). The chart includes general

student characteristics such as motivation, experience and interest, as well as specific

attributes related to the area of learning abstract data structures and algorithms. Leamer

prerequisites determined by the instructional analysis replace the row labeled "Skills to

implement data structures and algorithms."

92

Figure 8: User Characteristics for College Level Computer Science Students

Level Time to Difficulty

Low Avg High Learn to Learn

Year

Experience

Motivation

Interest

Computer Operation

Courseware Familarity

Skills to implement
data structures &
algorithms

Specification

The purpose of the specification phase is to produce a specification document which

describes the functional characteristics of the courseware product and associated

documentation such as user's guides. The specification document is called by various

names including the Requirements Specification, and the Functional Specification. The

intent of the document is to clearly define what the end product is to be and what it is to

do. The design at this stage is functional, that is, it concentrates on what functions are to

be performed and describes them in ways that the end user can understand. The document

is not a technical document in terms of implementation.

93

User interface designs were included in the specification document. The document was

complete enough that the user could understand what the product would be, what it would

look like and how it would operate. In a commercial software development, the

specification document acts as a contract between the developer and the client. It defines

what the client will receive and what the developer will deliver.

While the specification document clearly defines what the product is to be, it does not

address how the implementation will be accomplished. The client is not generally

concerned with this knowledge as long as the product does what it is supposed to do.

Detailed design of the implementation is normally done in the design phase.

Learning Objectives

Specific, measurable learning objectives guide the overall design and development.

Meeting the learning objectives is intended to solve the problem or meet the overall goal

of the instructional experience. Gagne', Briggs & Wager (1992) define a performance

objective as "a precise statement of a capability that, if possessed by the learner, can be

observed as a performance" (p.125). The emphasis of learning objectives is measurable,

observable behavior (Kozel, 1995).

Abramson (1992) describes SIX categories of learning objectives: (1) knowledge

objectives, (2) comprehension objectives, (3) application objectives, (4) analysis

objectives, (5) synthesis objectives, and (6) evaluation objectives.

94

Knowledge objectives focus on the learner recalling or reciting learned information.

Comprehension objectives are intended to demonstrate that the learner can use learned

information. Applying abstract concepts, rules or procedures in particular situations is the

focus of application objectives.

Analysis objectives center on distinguishing parts and breaking down ideas or models

into constituent parts, while synthesis objectives involve building up new ideas or entities

from basic elements. Finally, evaluation objectives demonstrate the learner's ability to

make value judgments based on appropriate criteria.

Learning objectives have been stated using action verbs to describe desired learner

performance. Objectives for the courseware include knowledge, comprehension,

application, analysis, and synthesis objectives.

Overall Structure

An important part of the specification is defining the overall structure of the courseware.

The overall structure defines the major parts of the courseware and their relationship to

one another. Once the publication structure was specified, individual parts were specified

in detail.

A multimedia courseware application typically consists of units linked together in some

way: linearly, hierarchically, or network fashion. Each unit will consist of items which

95

are unique to that unit such as graphic images, text and other media items. Typically there

will also be some parts of each unit which are common to all or most of the units such as

navigational controls.

Documentation of the publication structure was done as a diagram showing the various

units, their contents and their interrelationships, accompanied by an explanatory

narrative. Figure 9 shows a sample overall structure diagram for a small electronic book

application.

Several features of the structure diagram are worth noting. First, individual units of the

document, in this case pages, are represented by rectangles. Each rectangle is labeled to

indicate what part of the publication it represents. The completed publication must

include a page for each rectangle in the structure diagram. Generally, notes within, next to

or below a rectangle indicate the contents of the unit.

Lines between rectangles represent links. A link may be followed in the direction of an

arrow. Navigational controls must be implemented to allow the user to navigate between

units as indicated by the links in the structure diagram.

Those items which appear on all, or nearly all, units are shown as part of a "master page."

In the figure, the PREV PAGE, NEXT PAGE, and CONTENTS buttons are indicated as

being part of the master page.

Figure 9: Sample Overall Structure Diagram

Title, author,
NeoBook credit,
Date, OPEN BOOK

PRW PRGE, NEHT PRGE,
CONTENTS

list &. link to each
article , CLOSE BOOK

NOTES: 1. Each block represents one page in the publication.

Master Page Layout

2. lines connecting blocks represent nauigational controls for mouing
between pages. Rrrows indicate direction of links.

3. link: between CONTENTS and RRTICLE 3 (PRGE 2) is a one-way link:
back: to the CONTENTS page.

4. MRSTER PRGE contains controls common to all or most of the pages.

96

After the overall structure of the courseware was determined, the layout of each page, or

type of page, was designed. The layout consists of a rough sketch of the page showing

the approximate location of objects on the page. Page layout of this type is often referred

to as storyboarding. With an interactive authoring system, such as NeoBook Professional

(1994) which was used in this development project, it is sufficient to layout roughly the

97

areas for each of the objects since the objects can be moved and resized dynamically

during implementation to achieve the best results.

The first page to be specified is normally the master page since the objects included on

the master page will be present on all other pages. Figure 10 shows a sample master page

layout for the electronic book example. The Graphs & Networks courseware does not use

a master page.

In the figure, three objects, all buttons, are indicated. Their function and approximate

location are indicated. These objects would typically be included on each page of the

courseware application. Individual objects on specific pages which are not needed could

be disabled by covering them with a filled rectangle or by some other means. For

example, the NEXT PAGE button would not be needed on the last page of the

publication. A solid rectangle could be placed over the button to hide and disable it.

Individual Page Layout

Once the master page had been designed, the layout of the individual pages was done.

There were several different styles, or layouts, used for individual pages. The layout

simply shows the approximate location and size of objects, the exact location and size

were determined during the interactive authoring task. A sample page layout of the

individual pages for the small electronic book is shown in Figure 11.

Figure 10: Sample Master Page Layout

preuious page
button

table of contents
button

next page
button

Figure 11: Sample Page Layout for Individual Pages

98

99

The planning phase of the software engineering process typically focuses on two main

issues: (1) cost and (2) duration. Cost may include costs for equipment, tools and other

materials needed to do the development, but is primarily concerned with labor cost, how

many person-months of effort will be required. The duration is determined by allocating

the required person-months of effort over time based on the number of development

personnel and the scheduling of the various development tasks (Schach, 1993).

The method for determining development cost used for this project was the Intermediate

Constructive Cost Model (COCOMO) as presented in Schach (1993). The model was

developed by statistically analyzing the development effort required for a range of

development projects. The model divides development projects into three groups: (1)

organic, (2) semidetached, and (3) embedded (Schach, 1993). An organic development is

characterized by its small size (less than 50,000 lines of code), relatively small

deVelopment team, high level of experience of the developers, and high level of overall

understanding of the projects goals and benefits (NASA). The courseware developed in

this project falls within this category.

Estimating the required effort was carried out in several steps. First, the number of lines

of program code to be produced was estimated. The estimate is stated in terms of KDSI

thousand delivered source instructions. Generally, this would be the number of lines of

'-~~,~u'" divided by one thousand. Estimates are typically made based on experience with

100

":>H~J'~'- projects. For this project, the estimate of KDSI was based on the approximate

of coding for a prototype version of the software produced for the course DCTE

1!J70/870 Courseware Design and Development at Nova Southeastern University during

. the Winter Term of 1996.

The estimate of KDSI was done in two parts corresponding to the two development tools

being used: QuickBASIC 4.5 (1990) and NeoBook Professional (1994). The number of

lines of QuickBASIC 4.5 code for the prototype courseware was extrapolated for the

remaining modules to be programmed. A similar approach was used with the portions

developed using NeoBook Professional although source line determination was modified

due to the nature of development with NeoBook Professional.

The point-and-click development technique of NeoBook Professional (1994) produces a

pUblication file. The lines in this file can be thought of as source instructions to the

NeoBook Professional run-time package. Based on the developer's experience with

programming and with developing NeoBook Professional applications, it is estimated

that 10 lines of NeoBook Professional source code is equivalent to 1 line of

programming, in terms of development effort. That is, it is ten times faster to develop a

screen with NeoBook Professional than to program it directly. This is probably a

conservative estimate. Therefore, the size of the NeoBook Professional publications were

estimated based on the prototype, then divided by 10 to yield a KDSI figure which was

added to that for the QuickBASIC 4.5 (1990) programming.

100

"U~.u.~~_A projects, For this project, the estimate of KDSI was based on the approximate

of coding for a prototype version of the software produced for the course DCTE

o Courseware Design and Development at Nova Southeastern University during

the Winter Term of 1996,

The estimate of KDSI was done in two parts corresponding to the two development tools

being used: QuickBASIC 4,5 (1990) and NeoBook Professional (1994). The number of

lines of QuickBASIC 4.5 code for the prototype courseware was extrapolated for the

remaining modules to be programmed. A similar approach was used with the portions

developed using NeoBook Professional although source line determination was modified

due to the nature of development with NeoBook Professional.

The point-and-click development technique of NeoBook Professional (1994) produces a

publication file. The lines in this file can be thought of as source instructions to the

NeoBook Professional run-time package. Based on the developer's experience with

programming and with developing NeoBook Professional applications, it is estimated

that 10 lines of NeoBook Professional source code is equivalent to 1 line of

programming, in terms of development effort. That is, it is ten times faster to develop a

screen with NeoBook Professional than to program it directly. This is probably a

conservative estimate. Therefore, the size of the NeoBook Professional pUblications were

estimated based on the prototype, then divided by 10 to yield a KDSI figure which was

added to that for the QuickBASIC 4.5 (1990) programming.

101

Using the KDSI estimate a nominal development effort was calculated usmg the

following formula which is given in Schach (1993):

Nominal effort = 3.2 x (KDSI)l.05 person-months

After the nominal effort was calculated, it was adjusted using a set of multipliers which

characterize the product, platform, development personnel, and project. Table 5 gives the

factors and their associated multipliers used in determining the correction to the nominal

effort.

Each characteristic, referred to as a cost driver in the table, was estimated for the

courseware development. The fifteen factors were multiplied together to yield a single

value which was then multiplied with the nominal effort to give the actual estimate of

total development effort.

To help monitor progress, the overall development effort estimate was allocated to the

various development phases. This allocation was done according to the percentages of

total development shown in Table 6 based on information in Schach (1993).

102

Table 5: CO COMO Software Development Effort Multipliers (Schach, 1993).

Rating

Very Very Extra

Cost Drivers Low Low Nom. High High High
--
Product Attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Database size 0.94 1.00 ' 1.08 1.16
Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

Computer Attributes
Execution time constraint 1.00 1.11 1.30 1.66
Main storage constraint 1.00 1.06 1.21 1.56
Virtual machine volatility* 0.87 1.00 1.15 1.30
Computer turnaround time 0.87 1.00 1.07 1.15

Personnel Attributes
Analyst capabilities 1.46 1.19 1.00 0.86 0.71
Applications experience 1.29 1.13 1.00 0.91 0.82
Programmer capability 1.42 1.17 1.00 0.86 0.70
Virtual machine experience* 1.21 1.10 l.00 0.90
Programming language experience 1.14 1.07 1.00 0.95

Project Attributes
Use of modern programming practices l.24 l.10 1.00 0.91 0.82
Use of software tools 1.24 1.10 l.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

* For a given software product, the underlying virtual machine is the complex of
hardware and software (operating system, database management system) it calls on to
accomplish its task.

Table 6: Percentage of Development Effort for Development Phases

Phase % of Total Development

Requirements Analysis 9
Specification 12
Planning 7
Design 18
Implementation/Integration 54

103

Finally, once the total development effort was determined and distributed to each phase

of development, a schedule was determined. Since the development was undertaken by a

single developer, all phases were performed in sequence, not allowing for two activities

to be performed simultaneously. The hours/month which the developer planned to

allocate to the development work was used to translate person-months into calendar

months. The result was shown as a total development duration and allocated to the

individual development phases as described above.

Evaluations of the courseware were scheduled into the development schedule as indicated

in the section below on Formative Evaluation. Timing depended on the availability of

faculty and students who performed the evaluations.

Design

In the specification phase the functionality of the courseware was defined. What the

product will do and what elements will constitute the finished product were specified.

Emphasis was on what will be done, not on how it would be done. In the design phase

implementation details were specified. In the case of program development, the specific

algorithms for accomplishing the specified functionality were defined and recorded in

narrative form.

104

Design of the elements of the courseware which were implemented using NeoBook

Professional (1994), primarily the user interface, consisted of specifying screen layouts

and button actions.

Cognitive Learning Theory Design Considerations

A major concern of the design phase was the intentional use of various elements of

cognitive learning theories to guide the design. The specific considerations are described

below with the more general concerns described first, then those which are more specific.

1. The courseware incorporates various instructional models including: (1) tutorials using

text and static graphic images, (2) simple animated demonstrations, (3) interactive,

animated laboratory exercises, and (4) self-tests. The intention was to include a

reasonably complete instructional experience with the courseware.

2. The courseware is designed to be a supplement to normal instructional activities.

Despite the breadth of instructional activities included, the courseware is not intended to

be used in a stand-alone manner. Rather, it is intended to be used as a supplement to

normal instructional activities including reading, lectures, and programming assignments.

3. To facilitate use of the courseware and incorporation into the normal curriculum, an

instructor guide is provided with the courseware. The goal is to promote proper use of the

courseware.

105

The overall structure of the courseware is that of a hypermedia system. This structure

consistent with cognitive learning theories which contend that knowledge itself is

l;!;';UU,,""'~ as a network and that the use of hypermedia supports this structure (Ambrose,

of content and activities are linked allowing

free navigation by the learner.

5. The root of the hypermedia network is a table of contents with links to all topics and

0nline help. Each topic has a central point from which the learner can branch to a specific

activity or return to the table of contents. The intent is to minimize learner disorientation

and facilitate navigation.

6. The courseware allows the learner to navigate freely, but provides guidance regarding

Where appropriate, the courseware allows the learner to experiment with the effects of

algorithms to promote a better understanding of algorithm operation. Within

necessary constraints, such as screen space, learners are able to specify a data

and watch an animated sequence as an algorithm acts on the data structure. This

""-~ .. ~'" is similar to algorithm animators being used in Computer Science courses, with

added benefit of being incorporated in a courseware package which provides a

complete instructional environment and is designed to achieve specific,

106

8. The courseware provides extensive learner support features including online, context

sensitive help; recommended sequence of activities; and immediate feedback. The intent

is to support the learner's metacognitive activities.

9. The user interface minimizes cognitive load by using consistent displays, navigational

controls, and a familiar metaphor, that of a computer laboratory.

10. Screens were designed using a consistent format, a limited palette of colors, do not

use scrolling, have labeled navigational controls, and are not overcrowded. Animations

and other displays generated by the QuickBASIC 4.5 (1990) programs are presented in a

window within a page created using NeoBook Professional (1994) to provide consistency

and continuity.

11. The courseware is designed to minimize the possibility of learner errors by providing

mouse-selectable options rather than using keyboard input.

12. Sound and color are used to draw attention to or emphasize important information,

but are not over-used. Simple animation is used to make visible the dynamic

operations of algorithms acting on data structures.

107

Implementation and Integration

Because of the hybrid nature of this development, implementation and integration deal

with procedures for using the authoring tool, NeoBook Professional (1994), and with

procedures for programming the QuickBASIC 4.5 (1990) programs.

NeoBook Professional (1994) was used to create the user interface, the overall structure

of the courseware, the general online help, and the tutorial activities. NeoBook

Professional was chosen as the authoring tool for several reasons including: (1) cost, (2)

ease of use, (3) its ability to call an external program, and (4) its ability to compile

applications for stand-alone execution.

QuickBASIC 4.5 (1990) was selected as the programming language for two specific

reasons. First, changing the palette to match the one selected for the NeoBook

Professional portion is difficult in Turbo Pascal 6.0 (1990), the other language considered

for the implementation. Second, it is possible to start a compiled QuickBASIC 4.5

program in graphics mode without resetting the monitor screen. This is not possible in

Turbo Pascal. For consistency of appearance it is desirable to have the QuickBASIC 4.5

programs appear to run within a window on the NeoBook-displayed screen. This cannot

be done if the screen is reset when the program is run.

One aspect of the authoring activity using NeoBook Professional (1994) was the creation

or location of the media units, such as text files and graphic images which were needed to

108

produce the courseware. Creation and editing of graphic images was done using NeoPaint

(1994), a companion product to NeoBook Professional.

A second aspect is that of assembling the media units onto pages and linking the pages

according to the overall courseware structure. The assembly process is simplified by

using NeoBook Professional since pages were created and buttons and other objects

placed using a point-and-click interface. This allowed the author to create and alter each

page dynamically during the authoring task to achieve the best results without having to

program or write scripts.

Despite the ease of use ofNeoBook Professional, there are techniques which were used to

further simplify the assembly stage, and to promote consistency. These techniques

include stub authoring, cloning buttons or other objects, cloning pages, and modular

implementation.

Stub Authoring

The technique of stub authoring is derived from the equivalent practice in computer

programming called stub programming. In stub authoring, the author creates all units, or

pages, of the courseware, along with the navigational controls, but does not add the media

content to the individual pages. The idea is to implement the overall structure and to

verify that the overall structure is valid and that navigational controls are properly

implemented. The content-less pages are the stubs. Once the entire structure has been

109

implemented and checked, the author proceeds to add content a page at a time, confident

that the overall structure is correct.

A useful variation on the technique of stub authoring is to create a dummy media unit of

each type to be used in the publication: text, graphic, etc. Individual pages can be created

with the dummy units as the structure is implemented and tested, then modified later to

include the actual media units.

Cloning Buttons or Other Objects

As a page is implemented, either during stub authoring or during actual implementation,

buttons which have a similar size will be duplicated rather than creating each button

separately. This process of cloning buttons will save development time and ensure a

consistent look for similar buttons. Once a duplicate button has been created, it was

moved to the desired location. Attributes of the button such as the fill color and pattern;

text font, color or pattern were altered as needed.

Cloning Pages

Duplicating entire pages can vastly simplify creation of a publication. If pages had the

same structure, but different content, a new page was made by making a duplicate copy of

the page and editing it as needed.

110

Modular Implementation

The courseware was implemented in a modular fashion. The basic concept was to divide

the application into relatively small, coherent units and link the units together to create

the complete application. There are several advantages.

Due to the hypermedia nature of the overall design, the courseware consists of many

small units of information or activities. Implementation was simplified by dealing with

individual units one at a time rather than the entire application. Also, to avoid the

possibility that the NeoBook Professional (1994) portion would be too large to run in

available memory, individual modules are called from a main module.

At various stages evaluation of the courseware indicated the need for modifications.

Making these modifications was simplified by modularization. If a particular portion of

the application needed to be modified, it was changed and recompiled. The entire

application did not need to be recompiled as long as associated links were not changed.

By modularizing the implementation and using the technique of stub authoring, major

stubs were implemented as separate modules. Initially, these stubs did not contain actual

content. As a stub was completed, it was recompiled and the already existing link to it

caused the completed unit to be displayed.

111

QuickBASIC Programming

QuickBASIC 4.5 (1990) was used to program the animated demonstrations, interactive

laboratory exercises, the self-test activities, and online help associated with these

elements of the courseware. The general development procedures were modular

implementation, reuse of modules, and the use of abstract data types. Modular

implementation was similar to the technique described above for the authoring process.

The programs were divided into modular sections for ease of programming and

maintenance. Wherever possible, code modules written for one program were reused in

others saving development time and promoting reliability.

An abstract data type is a data structure which represents some entity and the set of

associated operations which are valid for that structure. The use of abstract data types in

the implementation facilitated reuse of entities within different portions of the program,

and enhanced reliability of the software. The latter occurs because entities are

manipulated only according to defined operations. The use of abstract data types is akin

to object-oriented programming. QuickBASIC 4.5 (1990) does not support object

oriented programming.

Formative Evaluation

The purpose of formative evaluation is to "provide data for revising and improving

instructional materials" (Gagne', Briggs & Wager, 1992, p.30). In keeping with software

engineering methodology, formative evaluation was conducted throughout the design and

112

development process (Schach, 1993). The procedures used as well as any instrumentation

are described in this section.

Evaluation of Requirements Analysis and Specification

The result of the requirements analysis and specification phases is the Functional

Specification which documents the user requirements and the functional definition of the

finished product. The format and contents of this document are described in the following

section Presentation of Results.

Evaluation of the Functional Specification consisted of a review by a Computer Science

faculty member at Mount Vernon Nazarene College who is familiar with the subject area

and with the problems associated with learning abstract structures, concepts and

operations. The reviewer read the document and noted comments on the document.

Subsequent to the review, the developer met with the reviewer and reviewed the

Functional Specification page by page to understand the comments.

After the reVIew seSSIOn, the developer modified and corrected the Functional

Specification as needed to satisfy the reviewer. The developer and the reviewer then met

and reviewed the corrections and modifications to determine if they were satisfactory.

The process was repeated until the developer and the reviewer agreed on the content of

the Functional Specification.

113

Evaluation of Design

The Design Specification, which contains the details of the courseware design, was

produced during the design phase. This document underwent a review process similar to

the one described for the Functional Specification, except that a review team consisting of

two Computer Science faculty members, and one non-Computer Science major reviewed

the document. Evaluation focused on how well the design met the functional

requirements documented in the Functional Specification.

Evaluation of Implementation

As the courseware was being developed, completed portions were tested and evaluated by

the developer to see that they conformed to the Design Specification. Modifications and

corrections were made as needed.

Once the courseware was completed, it went through a series of evaluations. In each

evaluation, one or more evaluators used the product, noted problems and comments, and

completed a Courseware Evaluation Form. The Courseware Evaluation Form is included

in Appendix B. The developer discussed the problems and comments noted with the

evaluators and made necessary modifications.

The first evaluation was by a Computer Science faculty member, the second by two or

three upper-class Computer Science majors who were familiar with the content of the

courseware, and the final evaluation by a small group or class of Computer Science

majors who were not familiar with the content of the courseware.

114

Presentation of Results

The development yielded two types of results: (1) the completed courseware and related

documentation, and (2) evaluation results. The courseware is presented in the appendix of

the dissertation document. Separate appendices are included for the Functional

Specification, Design specification, Instructor's Guide, and QuickBASIC 4.5 (1990)

program listings.

The Functional Specification is presented using the following format:

Cover Page including Project Name, Developer's Name, Date

Table of Contents

1.0 Problem Description and Goals

2.0 Instructional Analysis

3.0 User Characteristics and Prerequisites

4.0 Functional Definition

4.1 Overall Structure

4.2 Individual Unit Specifications

5.0 System Requirements

The Design Specification is presented using the format shown below.

Cover Page including Project Name, Developer's Name, Date

Table of Contents

1.0 Introduction

2.0 Overall Design

3.0 Individual Unit Designs

4.0 System Requirements

115

Summaries of evaluation results are presented in Chapter IV of the dissertation with

complete results being included in an appendix. Modifications made to the courseware in

response to evaluations are discussed and explained.

Reliability and Validity

The reliability and validity of the courseware development and evaluation are inherent in

the methodology which was followed and insured by conducting evaluations throughout

the development process. The developed courseware must enhance a leamer's ability to

meet specific, measurable learning objectives. This was accomplished by: (1) using

proven software engineering development methodology, (2) incorporating instructional

design principles, and (3) applying current cognitive learning theories.

Software engineering methodology has proven reliable in the design and development of

software systems in general. This reliability carries over to development of educational

courseware provided appropriate educational considerations are taken into account

(Mauldin, 1995). The first of these is the use of the techniques and principles of

instructional design. Instructional design techniques have proven reliable for the design

116

and development of instructional materials which were not computer-based.

Incorporating these principles into the various phases of the software engineering

methodology combines two proven techniques.

Finally, to make use of the ability of the computer to provide higher level cognitive

activities, practical considerations derived from cognitive theories of learning were

incorporated into the design of the courseware.

Summary

The guiding methodology of this dissertation was that of software engIneenng.

Courseware which will enhance student learning of abstract data structures and

algorithms was developed and evaluated according to this methodology which includes

requirements analysis, specification, planning, design, and implementation and

integration. Evaluation was conducted throughout the development process.

Principles of instructional design were integrated into the development process to apply

the development activities to the development of computer-based instructional materials.

To insure that the courseware promotes higher-level cognitive activities such as

application, analysis and synthesis, cognitive learning theories were used to guide the

design.

117

The overall structure of the courseware is that of a hypermedia system. Online help,

labeled navigational controls, consistent user interfaces, and other design features help

prevent the learner from becoming disoriented in the hypermedia environment.

The courseware was developed usmg an interactive authoring system, NeoBook

Professional (1994), and a conventional programming language, QuickBASIC 4.5 (1990).

The authoring system facilitated development of the user interface and overall courseware

structure, while the programming language was used to implement features not present in

the authoring package including the animated demonstrations, interactive laboratory

exercises, and self-tests.

Development practices such as modular implementation, reusability of code or other

entities, and the use of abstract data types facilitated implementation and modification of

the courseware. Evaluation of the Functional Specification, Design Specification and of

the developed product helped to insure that the courseware met its development goals.

Introduction

Chapter IV

Results

118

As described in Chapter I Introduction, the goals of this dissertation were to enhance

professional practice, improve understanding in the area of interactive courseware design

and development, and to develop courseware which would facilitate meeting specified

learning objectives. These goals were accomplished by (1) applying the concepts and

practices of software engineering, instructional design, and cognitive learning theory in

the development of interactive, multimedia courseware; (2) effectively using authoring

tools and conventional programming languages in courseware development; and (3)

conducting formative evaluations of the courseware throughout the development process.

The development yielded two types of results: (1) the completed courseware and related

documentation, and (2) the results of user evaluations. The first of these demonstrates the

effectiveness of using software engineering and instructional design techniques to carry

out the development and the efficiency realized by using an authoring system and a

conventional programming language as development tools. The second type of result,

119

user evaluations, provided feedback about the usability and probable effectiveness of

using the completed courseware in an instructional situation.

In addition to these two broad types of results, it is important to analyze the effects of

applying elements of instructional design and applicable cognitive learning theories to the

design of the courseware.

Courseware Development

The overall methodology of the development work was that of software engineering, a

proven methodology for developing complex software systems. The major steps in the

development process consisted of: (1) requirements analysis, (2) specification, (3)

planning, (4) design, and (5) implementation and integration. The details of these

deVelopment activities are presented in Chapter HI Methodology.

Functional Specification

The primary result of the requirements analysis and specification tasks was the Functional

Specification. This document presents a description of the problem to be solved, the

development goals, an instructional analysis of the learning task, and a summary of the

characteristics of intended users of the courseware. The document also includes an overall

structure of the courseware and detailed functional descriptions of individual units of the

courseware.

120

The Functional Specification presents the functional requirements of the courseware; that

is, it concentrates on what functions the courseware is to perform. The emphasis is not on

how these functions will be accomplished. The document includes user interface designs

and a description of the content of various portions of the courseware. The complete

Functional Specification is included in Appendix C.

Instructional Curriculum Map

An important part of the development was identifying what concepts and skills were

requisite to accomplishing the learning objectives. Some of these concepts and skills were

assumed to be prerequisites while others constituted intermediate learning objectives. An

instructional curriculum map (ICM) was developed by starting with the primary overall

objective of the courseware, being able to design a computer program which uses graphs

and networks, and decomposing this overall objective into requisite learning objectives.

The process was repeated until skills or knowledge which were needed were those

assumed to be possessed by the intended users.

The ICM for the Graphs & Networks instructional software is shown in Figure 12 below

and in Figure 1 of the Functional Specification. Items in round-cornered boxes represent

skills or knowledge which are assumed prerequisites for the intended users. These items

are commonly learned in introductory Computer Science courses prior to a student's first

exposure to graphs and networks.

Figure 12: Instructional Curriculum Map for Courseware

Design a Computer Program
~ using Graphs &. Networks ~

~ I -
Recognize &. describe Implement common Implement additional
problems for solution with primitive operations for operations for networks

~'PTn'_kS ~'7~/ \
Understand mplement ImPlem:n; E~lain Explain Explain
network abstract adjacency mmlm~m shortest topologIcal
nature of data types matrix spanmng path sort

Explain concept
of br e adth-fir st
traversal

E"Pl,jnusfm \. tree~.Lon"PI
adjacency matrix of a network
to implement a Implement
graph or network common data

Explain concept
of a graph comprised
of nodes and edges

structures in
language
such as Pascal
orC

/
/ ~,.----:--------.

Basic language
skills

Understand concepts
of linked structur e s such
as linked lists and trees

121

All of the other items in the reM are addressed by the courseware. Starting at the bottom

of the figure: explain concept of a graph comprised of nodes and edges, explain concept

of breadth-first traversal, and explain concept of depth-first traversal are covered in the

unit on Graphs & Digraphs.

122

relating to networks: explain concept of a network, explain minimum spanning

explain shortest path, and explain topological sort, are covered in the courseware

unit on networks. Items in the reM related to implementation depend on the basic units

already mentioned and on the additional units on graph implementation and network

implementation.

One final item, recognize and describe problems for solution with graphs and networks, is

not covered as a separate topic, but is incorporated into various tutorials and laboratory

sessions, primarily in the form of examples.

Learner Characteristics

In addition to analyzing the instructional characteristics of the courseware, the

characteristics of the intended learners were determined. The technique was to summarize

learner characteristics using a chart of the form shown in Figure 8 in Chapter III

Methodology. This technique was patterned after a similar chart given in Alessi and

Trollip (1991). Specific prerequisite skills determined from the instructional analysis and

the primary learning objective were included in the chart in addition to certain basic

characteristics such as year in college, motivation, etc. The chart of learner characteristics

is presented in Table 7 below and in Table 2 of the Functional Specification.

Table 7: Learner Characteristics for Graphs & Networks Courseware

Level Time to Difficulty

Low Avg High Learn to Learn

Year Soph Junior Senior

Experience Prereq
1

Prereq
1

Prereq
1

Motivation High High High

Interest High High High

Computer Operation High High High

Courseware Familarity None None None 10-30 min Easy

Basic Language Skills Average Average Average

Understand Concepts
Low Average High

of Linked Structures

Implement Common Average High High
Data Structures

Implement Abstract Average High High
Data Types

Understand the
Average High High

Network Nature of
Certain Problems

Implement Graph &
Network Data

None None None 4 - 8 Hours Difficult
Structures and
Algorithms

1. Prereq. denotes completion of Computer Science I, Computer Science II, and
File Processing

123

The chart rates potential learners, Sophomore, Junior, and Senior Computer Science

majors, with respect to the mastery of prerequisite skills and knowledge. The first row of

the chart shows the year, Sophomore, Junior, or Senior, of the learner corresponding to

124

chart, all learners are assumed to have at least a minimum set of prerequisite skills and

knowledge which would be normally attained by completing the first several courses in a

typical Computer Science curriculum.

Since all of the intended learners are Computer Science majors, their motivation, interest,

and ability to operate a computer are considered to be high. It is also assumed that the

students have not used this particular courseware before, so their familiarity with it is

rated as "none." Nevertheless, because the design follows instructional design principles

and appropriate cognitive learning theories, it is estimated that students can master use of

the courseware in a relatively short time, 10 - 30 minutes, and that this task is "easy."

All students were rated as having "average" basic language skills. However, Sophomore

students were rated "low" in their ability to implement linked structures compared to

"average" for Juniors and "high" for Seniors. This rating is based on the amount of

experience students have typically had implementing linked structures in their various

courses.

Sophomore students are assumed to be "average" in their ability to implement common

data structures such as arrays and records; in their ability to implement abstract data types

such as stacks and queues; and in their understanding of the network nature of certain

problems. Juniors and Seniors, however, are rated "high" in these areas based on their

greater experience.

125

The rating of "none" for all students with respect to implementing graph and network

data structures and algorithms assumes that learners using the courseware are

encountering these topics for the first time.

Design Specification

The design specification documents the overall and detailed design of the courseware. It

includes a description of the overall design, the software structure of the final product,

and detailed descriptions of all data structures, file formats and major software routines.

The choice and use of color and the use of NeoBook Professional (1994) and

QuickBASIC 4.5 (1990) in the development are described.

The animated demonstrations, laboratory sessions, and self-tests were implemented in a

single QuickBASIC program. Specific demonstrations, laboratory sessions, and self-tests

were implemented using data files which are processed by the program. To simplify

development and maintenance, and to provide a more powerful program, abstract data

types were implemented for user interface features such as buttons and regions, for graph

and network abstractions, and for several supporting features such as queues and general

purpose functions. The data structures and algorithms for these abstract data types are

described in detail in section 3 of the Design Specification. The complete Design

Specification is included in Appendix D.

126

User Interface Abstract Data Types

The user interface provided by the demonstration program was designed to provide

convenient, intuitive operation. It consists of display regions and buttons which can be

used for various functions depending on the specific application. Buttons are redefined as

needed to support animated demonstration controls, laboratory session controls, and self

test actions. Fixed and pop-up screen regions are used for various functions such as

demonstration narration, displaying help, and presenting lab problems or self-test

questions. Figure 13 shows a screen capture of the demonstration program user display

for the depth-first traversal laboratory session.

Notice that the user display includes several main regions. A description of the laboratory

session is included in the top portion of the display, the text region. The lower left half of

the display is a work region, used to display program- or user-generated graphs and

networks. The graph shown in the figure was created interactively by a user. The lower

right portion of the display includes two small regions for displaying information and

special messages, and a set of buttons. Only certain buttons are active for the laboratory

session depicted in the figure.

To facilitate implementation of the user display two abstract data types, ButtonType and

Region, were defined. The ButtonType data type was used to implement three

dimensional buttons. The Region data type provides a window-like screen area which can

be written to, cleared and manipulated in other ways. The specific operations provided for

items of type ButtonType and Region are summarized in Table 8.

Figure 13: Demonstration Program User Display Screen

Table 8: Operations Defined for User Interface Abstract Data Types

Operation

ButtonAction
ButtonCreate
ButtonDraw
ButtonHide
ButtonPress
ButtonUnhide
RegionBorder
RegionClear
RegionConfirm
RegionCreate
RegionPrint

Description

carries out a specified action when the button is pressed.
creates a button with specified attributes
displays a button
hides a button and sets it to inactive
displays a button so that it appears to be pressed in
sets a button to active
draws a three-dimensional border around a region
clears a region
displays a pop-up region used to confirm a user action
creates a region with specified attributes
prints text to a designated region

127

128

detailed description of the data structures and the operations for user interface abstract

types is included in the Design Specification in Appendix D.

and Network Abstract Data Types

allow students to experiment with various graph and network algorithms, it was

to implement graph and network abstract data types in the demonstration

program. This was accomplished by defining data structures and appropriate operations

for nodes and edges, as well as a data structure for the adjacency matrix and various

graph and network algorithms. The operations defined for nodes, edges, graphs and

networks are shown in Table 9 and Table 10.

Table 9: Operations Defined for GraphNode and GraphEdge Abstract Data Types

Operation

NodeCenter
NodeChangeColor
NodeCreate
NodeHide
NodeShow
NodeShowDimmed
EdgeAdd
EdgeArrowHead
EdgeColorChange
EdgeCreate

EdgeDelete
EdgePind
EdgeHide
EdgeHighlight
EdgeShow

Description

returns the center of the circle which represents the node
sets the display color of a node to a new value
creates a node with specified attributes
hides a node on the user display
displays a node on the user display
displays a dimmed version of a node on the user display
adds a bi -directional edge to a graph
displays an arrowhead for a directed edge in a digraph
sets the display color of an edge to a new value
creates an edge between specified nodes with a specified
weight '
removes an edge from a graph
finds the edge associated with two specified nodes
hides an edge on the user display
highlights an edge on the user display
displays an edge on the user display

129

Table 10: Operations Defined for Graph and Network Abstract Data Types

Operation

GraphBreadthFirstTraversal
GraphDepthFirstTraversal
GraphEmpty
GraphInit

. GraphShow
N etMinSpan Tree
N etShortestPath
N etTopologicalSort

Description

performs a breadth-first traversal of a graph
performs a depth-first traversal of a graph
returns TRUE if a graph is empty
initializes a graph
displays a graph on the user display
finds the minimum spanning tree of a network
finds the shortest path between two nodes
performs a topological sort of a network

Other data structures and algorithms which support the interactive, animated display of

graphs and networks are described in detail in the Design Specification in Appendix D.

Planning

Planning is a crucial aspect in the development of any large software system, including

instructional software. Courseware development typically requires a great deal of time.

Therefore, it is important to estimate as accurately as possible the total time required and

the duration of the development.

As described in Chapter III Methodology, the primary technique used for estimating the

total development time was the Intermediate Constructive Cost Model (COCOMO) as

presented in Schach (1993). According to the model the development of the Graphs &

Networks courseware was classified as "organic." In the COCOMO model a project is

considered to be organic if it is relatively small in size (less than 50,000 lines of code), is

130

undertaken by a relatively small development team, and the developers have a high level

of experience and a high level of understanding of the project (NASA).

Based on this classification, the relationship used to determine the nominal effort to

complete the project is given by the following equation;

Nominal effort = 3.2 x (KDSIl05 person-months

The term KDSI in the equation represents thousands of lines of delivered source

instructions and is a measure of the overall size ofthe project.

The KDSI for this project were determined by estimating the total lines of source code

based on the approximate lines of coding for a prototype version of the software produced

for the course DCTE770/870 Courseware Design and Development at Nova Southeastern

University during the winter Term of 1996. The estimate consisted of two parts, one for

the portion generated using NeoBook Professional (1994) and one for the QuickBASIC

4.5 (1990) program. Table 11 shows the estimates for KDSI for the project. The resulting

nominal effort is given by the equation following the table.

Table 11: KDSI Estimate for Graphs & Networks

Portion of Courseware

QuickBASIC program
NeoBook publication
Total Lines
KDSI

Estimated Source Lines

4000
2250
6250
6.25

Nominal effort = 3.2 x (6.25)1.05 = 21.9 person-months

131

\fhe nominal effort estimate was modified using appropriate effort multipliers as defined

1n the COCOMO model. Table 5 in Chapter III Methodology gives the COCOMO

effort multipliers. The actual multipliers used for this project are shown below in Table

Table 12: COCOMO Effort Multipliers for Graphs & Networks

Effort Multiplier Rating Value

Product Attributes
Required software reliability Low 0.88
Database size Low 0.94
Product complexity Nominal 1.00

Computer Attributes
Execution time constraint Nominal 1.00
Main storage constraint Nominal 1.00
Virtual machine volatility Low 0.87
Computer turnaround time Low 0.87

Personnel Attributes
Analyst capabilities Very High 0.71
Applications experience Very High 0.82
Programmer capability Very High 0.70
Virtual machine experience High 0.90
Programming language experience High 0.95

Project Attributes
Modem programming practices Very High 0.82
Use of software tools Very High 0.83
Required development schedule Nominal 1.00

132

Required software reliability was rated low because the impact of errors or operational

problems is low compared to the need for accurate, reliable operation of a large database

system or a process control system. In terms of COCOMO, this project was a relatively

small, simple project, thus, database size and product complexity were rated low.

With respect to computer attributes, the software does not require highly time-critical

operations, nor is a large storage capacity required. The platform on which the software

was developed was expected to remain stable during the development. Turnaround time

is not an issue at all since development was performed on a single user, interactive

system. Therefore, the lowest rating possible for each of these elements was chosen.

Development was carried out by a single developer with approximately thirty years of

analysis, applications, and programming language experience. The developer was also

very familiar with the development platform and, as a Computer Science professor, has a

high degree of programming experience. All personnel attributes were accordingly

selected to be the highest available values.

Finally, the development was conducted using modern programming practices such as

modular programming and abstract data types. Likewise the use of an interactive

programming environment which supports structured programming and the use of an

interactive authoring system constituted a high level of using software tools. These

133

factors were rated as high as possible. The development schedule requirement was rated

"nominal" since external pressure was not great.

The effort multipliers were then multiplied together to yield an overall effort. The result

was then applied to the nominal effort to produce an actual estimate of the required

development effort. The results of these calculations are shown below:

Overall Effort Multiplier = 0.148

Estimated Effort = 0.148 x 21.9 = 3.24 person-months (14 person-weeks)

It was further estimated that the developer was working 50% of a full-time schedule on

the development project. The person-week estimate was doubled to 28 weeks to account

for this.

In addition to the overall estimated effort, the portion of the development time for each

phase of the project was estimated. The estimated effort was distributed among the

project phases using the factors in Table 6 in Chapter HI Methodology. A time log of

actual development work was maintained throughout the development project to

determine the actual development effort. The results for the estimated and actual

development effort are shown below in Table 13.

134

Table 13: Estimated and Actual Effort for Project Phases

Phase % of Total Development Person-weeks
Estimated Actual Estimated Actual

Requirements Analysis 9 16.5 2.5 4.0
Specification 12 12.4 3.4 3.0
Planning 7 6.2 2.0 1.5
Design 18 14.5 5.0 3.5
ImplementationiIntegration 54 50.4 15.1 12.2

Total 100 100.0 28.0 24.2

Actual effort was reasonably close to the estimate, although lower than projected overall.

The slightly lower than projected design effort is attributed to the incorporation of some

aspects of the design into the actual implementation. In particular, screen layouts were

designed roughly since implementation with NeoBook Professional (1994) allowed exact

locations and layouts to be determined interactively during screen creation.

Instructor's Guide

An Instructor's Guide was developed to accompany the courseware. This brief guide

includes general information about the courseware as well as instructions for installing

the software and system requirements. Suggested uses of the courseware within a normal

Computer Science curriculum are described. Each of the basic instructional activities:

tutorial, animated demonstration, laboratory sessions, and self-tests, are explained. The

Instructor's Guide is presented in Appendix E.

135

Overview of Completed Software

The Graphs & Networks courseware provides instructional activities intended to help

Computer Science students meet specific learning objectives related to graph and network

data structures and algorithms. The courseware is intended to be used in conjunction with

normal classroom lectures, programming and other assignments. The software provides

brief tutorials; animated demonstrations; interactive, animated laboratory sessions; and

self-tests. The animated demonstrations and interactive, animated laboratory sessions are

intended to help the student understand the effects of various algorithms acting on graph

and network data structures by presenting dynamic displays.

Figure 14 shows the title screen of the courseware. The learner begins a session by

clicking on the START button with the mouse. The session begins with the Introduction

in which the subject matter and the courseware are briefly described, the goals are

presented, and prerequisites are explained. The first page of the Introduction which

explains the subject matter is shown in Figure 15.

136

Figure 14: Courseware Title Page Screen

Context-sensitive help is available throughout the courseware. The Help icon appears in

the upper right-hand comer of the screen as seen in Figure 15. Clicking on the Help icon

brings up a help screen relevant to the current section of the courseware. For example, the

help screen for the Introduction is shown in Figure 16.

Figure 15: First Page of the Courseware Introduction

THE SUBJECT mATTER

Forty years before the beginning of the Americo.n Revolution Leonhard Euler developed the
concepts of graphs and networks and applied them to the solution of the Koenigsburg Bridge
problem. Since that time graphs and networks have been used to solve problems in
transportation, communication, and many other areas.

In generul a graph consists of entities and relationships among the entitles; for example,
cltres and rui/road lines between cities. IJruphs are completely general with flO limit on the
Interconnections among the entitles represented. In the railroad example, each City co.n be
connected to any number of other cities. Thus, graphs are nonlinear, non-hierurchrco.l
structures.

137

OEXTPAGE

On each page of the Introduction, there is an icon at the bottom center of the screen

labeled CONTENTS. Clicking on this icon will take the learner to the table of contents

screen for the courseware. New users will probably want to read the entire Introduction;

however, students who have used the courseware before can skip reading the Introduction

by clicking on the CONTENTS icon.

Figure 16: Help Screen for Introduction

The InTRODUCTIOn provides general information about the courseware including a brief
description of the topiC D.nd the courseware, learning obJectiues, and prerequisites.
Several controls are prOlJlded in the InTRODUCTIOn

PREIJf'AGE

Go back to the preceding page. Go forward to the next page.

flEXT PAGE

Go to the COntEntS pClge.

Indimtes a "hypermedia link." CUcking on the text will jump to
supplementary mClterial.

This leon D.ppears on pages of supplementary information.

RETURn

138

The table of contents page acts as the real starting point of the courseware. From this

page the learner can select the topic to be studied. Upon completion of a topic the learner

returns to the table of contents page, and each session is ended by returning to the table of

contents page to exit. Figure 17 shows the table of contents page for the Graphs &

Networks courseware.

Figure 17: Contents Page Showing Four Topical Units

•
•
•
•

Click on n topiC to select ...

139

The learner can select a specific topic from the table of contents page. The first topic,

Graphs & Digraphs, covers basic concepts and terminology related to graphs. Common

graph algorithms, including depth-first traversal and breadth-first traversal are described

and explained. Graph Implementation presents the concepts related to the data structures

used to implement graphs, in particular the adjacency matrix. Sample Pascal coding for

declaring the data structures is given.

140

Basic concepts related to networks and how networks are related to graphs are presented

in the Networks topic. Network algorithms such as minimum spanning tree, shortest path,

and topological sort are also presented.

Upon selecting a topic the learner is taken to the Computer Lab screen for that topic.

Each topic has a Computer Lab Screen. This screen presents the four instructional

activities which the learner can do. Figure 18 shows the Computer Lab screen for the

Graphs & Digraphs unit.

Figure 18: Computer Lab Screen for Graphs & Digraphs Unit

Welcome to the comptJter loh Click on a comptJter to select an actlulty.

TUTORIRl

141

From the Computer Lab screen, the learner can select tutorial, animated demonstration,

laboratory session, or self-test. The tutorials provide the most basic instruction. Concepts,

terminology, and examples are provided using text and graphic images in a manner

Figure 19: First Page of Graphs & Digraphs Tutorial

GRAPHS Ano DIGRAPHS

Consider a database consisting of registration information for college classes. In the
database, each student is registered in seueral courses and each course has many
students enrolled Situations of this type are called many-to-many relationships. linear
data structures such as linked lists represent one-to-one relationships, while hierarchical
structures such as trees are used to Implement one-to-many relationships.

Graphs, digraphs and networks are used to represent many-to-many relationshIps. Each
item in a graph can be associated with any number of other Items in the graph. networks
ore really a special case of graphs and are explained in another section of this program.

BACK TO LAB OEXTPAGE

similar to a standard textbook. Hyperlinks are incorporated to provide supplementary

material or topics of special interest which are related to the topic being covered. Students

may proceed at their own pace through the tutorial material. It is recommended that

students view the tutorial for a unit before going on to one of the other activities;

142

however, this is not strictly necessary. Figure 19 shows the first page of the tutorial for

the Graphs & Digraphs unit.

Figure 20: Demonstration Opening Page

GRAPHS AnD DIGRAPHS

The demonstro.tfon for GRAPHS & DIGRAPHS proufdes o,n etn/mared look at msre terminology
and concepts. Graphs, nodes, edges and other basic terms are illustrated,

gepth-first OJ1d breadth-first trauersals ore animOtted to clearly show the.order.ln which
nodes are uislted In eo.ch of these importo.nt operatIons.

To start the demonstration, click on. the PLR~ DEmo icon below,

f'LA~DEmo BACK TO LAB

Animated demonstrations are a main feature of the courseware. Many of the concepts,

data structures, and algorithmic operations related to graphs and networks are difficult to

visualize. Textbooks have traditionally used sequences of pictures with explanatory notes

to illustrate these topics. The use of animation allows students to see the changes in a data

structure resulting from the operation of an algorithm. Animations can be replayed as

needed to study a specific topic.

143

When the learner selects an animated demonstration, the demonstration opening page

shown in Figure 20 is presented. This page explains the purpose of the demonstration.

The Play Demo icon at the bottom of the page is used to start the demonstration.

Figure 21: Demonstration within a NeoBook Page

The animated demonstration is implemented as a QuickBASIC 4.5 (1990) program. The

output from this program is displayed in a portion of a demonstration screen presented by

the NeoBook Professional (1994) publication. Figure 21 shows part of the animated

144

demonstration for the Graphs & Digraphs unit as it is displayed within the demonstration

page.

Figure 22: Lab Session Menu Page

GRAPHS AnD DIGRAPHS

Select one of the activities fisted below by clicking on It ...

COnsTRUCT A GRAPH: burld a gro:ph which represents 0 specified problem.

DEPTH-FIRST TRAUERSAL: Build 0 groph ond run depth-first trouersol
from uorlous stortlng pOints.

BREADTH-FIRST TRAUERSAL: Build 0 groph and run breodth-first trouersol
from uarlous starting pOints.

BACK TO LAB

Most learning theories, whether behavioral or cognitive, emphasize the need for learners

to perform practical exercises to reinforce and clarify concepts and build skills. The

interactive lab sessions in the courseware are intended to provide this type of learning

activity. Students perform laboratory activities to solve specified problems or

demonstrate phenomena. The activities are interactive. For example, one lab session in

145

first unit, Graphs & Digraphs, asks the student to build a graph of routes for a airline.

sing a point-and-click interface the student adds edges to create a graph on screen.

Figure 23: Lab Session for Depth-First Traversal

Like the animated demonstration, a laboratory session begins with an opening page, and

proceeds to a laboratory session page with a display from the QuickBASIC program

running within a NeoBook Professional display. Figure 22 shows the laboratory session

menu page for the Graphs & Digraphs unit, while Figure 23 presents a portion of the

laboratory session for the depth-first traversal.

Figure 24: Self-Test Opening Page

'ihe SELF-TEST rillows you to check yoor comprehension oTsomerifthe·ioasicfacts and
concepts of this unit. multiple choice questions ore presented one Qt Q time, After
t:l,nSwerlng C\ questIon you may goon to the next questIon or return to Q prt,lulous question
to review or chD.nge your D.nswer.

When you hQue completed the test, you mQy check your Qnswers. To roke the self., test cUck
on the TAKE TEST button below.

TAKE TEST BACK TO LAB

146

The self-tests are included primarily for students to check their progress. The tests are

interactive and consist of multiple-choice questions. Students can review answers and

change them as needed. Answers can be checked by the software. Incorrect answers are

indicated and correct answers are displayed. Figure 24 shows the self-test opening page

for the Graphs & Digraphs unit. A display of part of the self-test is shown in Figure 25.

147

Figure 25: Self-Test for Graphs & Digraphs

Program Listing and Data Files

The animated demonstrations, interactive laboratory seSSIOns, and self-tests were

implemented using QuickBASIC 4.5 (1990). A general program which provides the

interactive user display is customized for a particular session using a specified data file.

Appendix F includes the program listing of the QuickBASIC program,

ANILABll.BAS. Appendix G contains listings of the data files used to specify the

demonstrations, laboratory sessions, and self-tests.

148

Cognitive Learning Theories and Instructional Design Considerations

One goal of the development of the Graphs & Networks courseware was to intentionally

incorporate features which take account of cognitive learning theories and instructional

design considerations. While the courseware is not intended to be used in a stand-alone

manner, an attempt was made to incorporate a variety of instructional techniques

including tutorials; simple animated demonstrations; interactive, animated laboratory

sessions; and self-tests. An Instructor's Guide is included to provide guidance on proper

use of the courseware.

The topics and activities of the courseware are implemented as a hypermedia system,

allowing learners a relatively high degree of control in the sequencing of specific

instructional activities. To facilitate navigation within the hypermedia network topical

units and instructional activities act as hyperlinks. Common controls such as requesting

help, moving sequentially through a series of pages, and initiating an activity such as an

animated demonstration are placed consistently on pages. The table of contents page acts

as a "horne page" from which the learner can select a topic and to which the learner can

return when finished with a topic.

While the learner has a relatively high degree of user control, the courseware suggests an

optimum sequencing. Learners who require a greater degree of structure can follow the

recommended sequence. Screens have a similar appearance and use a small palette of

colors to reduce distraction and cognitive overload. Even screens displayed by the

149

QuickBASIC 4.5 (1990) program are embedded in basic pages created with NeoBook

Professional (1994) to provide continuity and a consistent look. User errors are

minimized by providing mouse-selectable options.

Simple animation is used to make visible the dynamic operations of algorithms on the

abstract structures of graphs and networks. Sound and color are used to convey

information such as indicating which nodes in a graph have been visited during a

traversal. Users can create structures interactively and experiment with the effects of

various algorithms on these structures.

Courseware Evaluation

It is a characteristic of the software development process to conduct evaluations

throughout the development process. A preliminary version of the software was reviewed

by the dissertation committee in January along with the dissertation proposal. The

primary feedback related to the need for detailed design specifications. These were

developed and sent to the committee in February 1997.

Computer Science faculty at Mount Vernon Nazarene College also reviewed the software

and made recommendations for changes and corrections. These included a minor content

correction, and several operational issues. During implementation, the developer

constantly ran tests, noted bugs or suggestions for improvements in a running log, and

implemented modifications as needed.

150

Student/Faculty Evaluation of Completed Courseware

Following completion of the courseware, the software was evaluated by a small group of

faculty and students at Mount Vernon Nazarene College. Two Computer Science faculty

and six students, all of whom were Junior or Senior Computer Science majors, used the

software for several hours and completed a questionnaire. The questionnaire was

designed to measure the usability of the courseware and the users' attitudes towards the

courseware. The evaluation was not intended to be an experimental study. It did not

measure changes in achievement for students using the software. Appendix B contains a

copy of the courseware evaluation form.

Overall response to the courseware was favorable. Questions 4 through 25 which had to

do with operational and other features of the courseware all used a semantic differential

scale to measure attitudes using bipolar adjectives such as "hard" versus "easy" and "very

cluttered" versus "not cluttered." In all cases a rating of 1 represented an undesirable

evaluation such as "hard" and a 5 represented a desirable evaluation, such as "easy."

Table 14 shows the results of the evaluation by students and faculty. The last column of

the table, Rating, indicates the weighted average of the evaluations for each question.

151

Table 14: Results of StudentlFaculty Courseware Evaluation

Question 1 2 3 4 5 Rating
4. Rate the overall ease of use 6 2 4.250
5. Rate the overall appearance 7 1 4.125
6. How easy is it to navigate, e.g. to go from 3 5 4.625

one activity or topic to another?
7. How easy is it to find the specific activity 4 4 4.500

or topic you want, such as a demonstration
or lab exercise?

8. Screens are ... (Easy to Read) 1 4 3 4.000
9. Screen layouts are ... (Not Cluttered) 1 4 3 4.000
10. Use of color, graphics and sound are ... 1 4 2 4.143

(Helpful)
11. Content is accurate 1 7 4.875
12. Content has educational value 1 7 4.875
13. Prerequisites are clear 1 4 3 4.000
14. Purpose of courseware is clear 4 4 4.500
15. Courseware achieves its goal 1 7 4.875
16. Level of difficulty is appropriate for intended 4 4 4.500

audience.
17. The courseware increased my motivation 3 1 3 4.000
18. Learners receive appropriate feedback 1 5 2 4.125
19. Learners have appropriate degree of control 2 2 4 4.250
20. Tutorials are helpful 3 5 4.625
21. Animated demonstrations are helpful 3 5 4.625
22. Interactive laboratory sessions are helpful 2 6 4.750
23. Self-tests are helpful 4 4 4.500
24. Supplementary materials are helpful 1 2 3 4.333
25. The courseware helped my learning 2 3 2 4.000

A number of conclusions can be derived from the results of the evaluation. These are

discussed in Chapter V Conclusions.

In addition to the numerical results of the evaluation, most of the respondents included

comments in the area provided on the courseware evaluation form. Comments included

suggestions for modifications, corrections, and general reactions. Some of these were

152

used to make immediate modifications to the courseware, while others were noted and are

presented as suggestions for further work in Chapter V Conclusions.

Three items noted by several of the evaluators were considered serious enough to warrant

software modification. A number of students and both faculty members raised a question

related to the order of node selection during a traversal. In particular, they indicated that

while the tutorial for Graphs & Digraphs showed the order of traversal, it did not explain

why a given node was selected over another node when two nodes were adjacent to a

parent node. The tutorial was modified to give a brief explanation and a further

explanation was given in the Graph Implementation tutorial.

Another concern raised by several evaluators was that, on their machine, the check

feature of the self-test ran through the questions too quickly. It was decided to modify the

check feature to apply to the current question only. This not only solved the speed

problem, but allows the user to check questions individually.

Finally, a question of content accuracy was raised by the two Computer Science faculty

who evaluated the software. The first question of the self-test for Graphs & Digraphs

originally stated "Information is represented in a graph by ... " The correct answer was

supposed to be "Nodes." The faculty members argued that both nodes and edges can be

thought of as representing information. The edges, in particular, contain information

about the relationships among nodes. The question was changed to read "Entities" instead

of "Information."

Chapter V

Conclusion

153

Technology is a valuable tool which can be used to enhance teaching and learning. In

particular, computer technology, with the seemingly endless variety of applications

possible, promises to bring richness to the educational experience both in terms of

content and in terms of supporting higher level learning. However, development of

effective instructional software requires use of proven methodologies such as software

engineering and instructional design, application of cognitive learning theories, and

selection of proper development tools. The results described in the preceding chapter

demonstrate the success which can be achieved from following these practices.

Conclusions

In drawing conclusions from the results of this development effort one should start with

the evaluation of the courseware by Computer Science students and faculty. The attitudes

and assessments of this group are important since these users represent the group of

intended users. If student learning is to be enhanced, students must find the courseware

helpful and easy to use. If faculty are to recommend the software to their students and use

154

it in the classroom, they must consider the content to be accurate and the instructional

activities to be helpful and supportive of learning.

Faculty/Student Evaluation

Table 14 in Chapter IV Results presents the ratings of the Graphs & Networks

courseware by Computer Science students and faculty. A number of conclusions can be

drawn by examining the data in this table.

First, the overall reaction of the evaluators was favorable. All items pertaining to ease of

use and the effectiveness of the courseware were evaluated on a scale of one to five with

one being the lowest (poorest) rating, and five being the highest (best) rating. Every item

evaluated scored 4.000 or higher, the overall average rating being 4.385 out of 5.000. In

all, 158 of the 171 total responses to questions 4 through 25 (92.4%) were either four or

five.

With regard to the user interface, the evaluators rated the overall ease of use, appearance,

ease of navigation, and ease of finding a particular activity high, the lowest rating being

4.125. Evaluators felt that screens were easy to read, not cluttered, and that the use of

color, graphics, and sound were helpful.

The evaluation with regard to instructional effectiveness was also high. Evaluators rated

the content and the educational value of the content very high (4.875). Similarly,

155

evaluators indicated that the purpose of the courseware was clear (4.500), the

prerequisites were clear (4.000) and that the courseware achieved its goal (4.875).

All instructional activities were rated as helpful. Despite the fact that a major emphasis of

the courseware was on interaction and animation, even the static tutorials received a high

rating (4.625). The animated demonstrations and interactive laboratory sessions were

rated high with ratings of 4.625 and 4.750 respectively. Generally, students indicated that

the courseware increased their motivation and helped their learning.

Students indicated in comments that the animations and interactive laboratories facilitated

understanding. One student noted that, "The multimedia demonstration is very good" and

that the "main menu with four options is very user friendly." A student who has not yet

taken the advanced data structures course in which graphs and networks are presented

stated, "This will be very helpful during the actual class." Another commented, "The real

life examples and images were very helpful" and "I think it [the courseware] would help

me in a Data Structures course."

Development Methodology

The methodology used in this courseware development was based on a conventional

software development model incorporating instructional design principles and techniques,

and guided by applicable cognitive learning theories. The products of the development

were the functional specification, design specification, the courseware itself, and an

Instructor's Guide. These items underwent evaluation throughout the development as

156

well as evaluation by a small group of Computer Science students and faculty

representative of the target audience. The fact that the products of the development were

completed successfully, within the planned time frame, and were evaluated positively by

users attests to the success of the methodology.

As described in Chapter HI Methodology the development was planned to be carried

out in specific phases including (1) requirements analysis, (2) specification, (3) planning,

(4) design, and (5) implementation. The time required for the overall development and for

each phase was estimated using the COCOMO model and proven estimation techniques

and is given in Table 13 in Chapter IV Results. As shown in this table, the actual time

spent was fairly close to the estimated time. The two greatest deviations from the

estimated time were the requirements analysis and the design phases.

The longer time for the requirements analysis is attributed to the in-depth research needed

to support the problem description and objectives for the dissertation process. In a typical

application development, rightly or wrongly, requirements are usually analyzed for the

local organization, not in terms of a more universal problem. The analogy would have

been to focus only on the immediate learning objectives and needs of Mount Vernon

Nazarene College Computer Science majors rather than on Computer Science majors in

general. Investigating and describing the more general problem took a longer time.

The lower than projected time for design was a result of the selection of development

tools, specifically, the use of NeoBook Professional (1994), a point-and-click authoring

157

system, to develop the mam user interfaces and overall application structure. The

interactive nature of screen development made it unnecessary to specify exact locations

of items on a screen. Instead, items were located and sized interactively during screen

development.

The use of NeoBook Professional also contributed to an overall lower development time.

The ease of creating and modifying screens, and of including buttons, graphic images and

other items, reduced the time needed to do implementation of these parts of the

courseware. Also, duplicating individual items and entire pages, easily done within the

NeoBook Professional environment, simplified development and fostered consistency

within the application.

Impact of Cognitive Learning Theories

The courseware design incorporated several key concepts derived from cognitive learning

theories, including (1) the structuring of the courseware as a hypermedia system, (2)

including the table of contents as a specific root node of the hypermedia system, (3)

providing appropriate navigational controls, (4) incorporating online help, a

recommended sequence of activities, mouse-selectable options, and appropriate feedback,

(5) designing screens with a consistent, uncluttered format, a limited palette of colors,

labeled controls, and a familiar metaphor for selecting instructional activities, and (6) the

use of color, animation, and sound to draw attention to and emphasize important features.

158

Evaluations by faculty and students indicated that these features were effective. In

particular, evaluators indicated that it was easy to navigate from one activity to another

and that it was easy to find a specific activity or topic. They also agreed that the screens

were easy to read, were not cluttered, and that the use of color, graphics, and sound were

helpful. The helpfulness of the animated demonstrations and interactive laboratory

sessions was rated very high. The use of a hypermedia structure was intended to provide

freedom in learner control, particularly with regard to sequencing of topics and activities.

The evaluation group indicated that learner control was appropriate.

Implications

The successful development of the Graphs & Networks courseware has implications for

faculty development of instructional software and for the effectiveness of instructional

software.

Faculty Development of Instructional Software

In Chapter I Introduction it was noted that the development of multimedia courseware

requires multiple skills and tools and that development is time-consuming. The

development of the Graphs & Networks courseware bears out these contentions, but also

points to ways of reducing development demands.

For faculty to develop instructional software effectively and efficiently, they need to be

aware of current learning theories and the potential of educational technology, as well as

159

being knowledgeable in their content area. Teacher education programs for education

majors, as well as in-service training, workshops, and continuing education courses for

current faculty, should provide educational opportunities in the areas of learning theory,

authoring, instructional design, and courseware development. Training in the use and

effective application of specific design and development tools should also be provided on

a regular basis.

Faculty who are interested in and capable of carrymg out effective courseware

development should be given time and encouragement to do so. Despite the power and

ease of use of design and development tools, it still takes a significant amount of time to

develop high quality, educationally effective instructional software. Likewise, faculty

need access to appropriate tools such as interactive authoring systems, graphics, sound,

and video editors, and computer systems capable of running these tools efficiently.

Effectiveness of Instructional Software

Several concerns regarding the lack of effective instructional software and the difficulties

of learning abstract data structures and operations in Computer Science were identified at

the early stages of the development effort. While there may be a proper place for drill

and-practice programmed instruction, this type of educational application neither utilizes

the full capability of computer technology nor supports higher level learning activities

such as analysis, synthesis, evaluation, and application.

160

Instructional software which consciously incorporates instructional design principles and

applications of cognitive learning theories does provide higher level learning. The

appropriate use of a hypermedia structure as well as the use of sound and animation can

facilitate learning for most learners. The use of animation in the Graphs & Networks

courseware made it easier to understand the way in which graph and network algorithms

work. Evaluators of the software indicated that the animated demonstrations and

interactive laboratory sessions were helpful and that they would be helpful in the

classroom.

An important aspect of understanding complex or abstract structures and operations is

being able to experiment with them and observe the results of various actions or

decisions. The interactive, animated laboratory seSSIOns provided in the Graphs &

Networks courseware allow the learner to create structures, run algorithms, and observe

the results. Within the constraints of the user display, the learner is free to create graph

and network structures of their choosing. Algorithms may be run and rerun to promote a

thorough understanding of their operation.

In addition to the direct educational benefits, evaluators indicated that the Graphs &

Networks courseware increased their motivation to learn the content.

161

Recommendations

The recommendations related to this development fall into four broad categories: (1)

those affecting professional practice in the development of instructional software, (2)

those related to the use of the Graphs & Networks courseware, and (3) those related to

enhancements and modifications of the courseware, and (4) further research using the

Graphs & Networks courseware.

Recommendations for Development of Instructional Software

The methodology used in this development effort should serve as a model for the

development of any significant instructional software application. While the main

features of the methodology are not new, the integration of software development and

instructional design techniques, and the application of relevant cognitive learning theories

into a unified approach is unique. It is vital that the courseware developer carry out the

proven development phases of software engineering: (1) requirements analysis, (2)

specification, (3) planning, (4) design, and (5) implementation. Evaluation should be

conducted as needed during each phase of development. Appropriate documents such as

the functional specification, design specification, and user's guides should be produced as

an integral part of the development.

Instructional design techniques such as defining learning objectives, performing task

analysis, and defining learner characteristics must be incorporated into the software

development methodology to customize the process for educational applications.

162

The design must take into account cognitive theories of learning and incorporate design

features and an overall structure which support and facilitate learning. The overall

structure should be that of a hypermedia network. Learner control options can be

constrained if necessary, but should be left as open as possible to allow for different

abilities and learning styles. Media other than static text and graphic images, such as

sound and animation, should be incorporated to clarify complex structures and processes,

or to draw attention to or emphasize certain aspects of the material.

Displays should be uncluttered, use few colors, and should be consistent with one another

to avoid distraction or cognitive overload. Transitions between screens should be smooth

with continuity of format or content also to minimize the possibility of cognitive overload

on the part of the learner.

Finally, appropriate tools should be used to facilitate development. In particular, a

powerful, easy-to-use authoring system should be used to implement at least the primary

user displays and the overall application structure. Scripts or programs written with a

traditional programming language such as BASIC, Pascal, or C, can be used to

supplement the features of the authoring system if necessary.

Recommendations for Using the Graphs & Networks Courseware

The Graphs & Networks courseware was designed to be used in support of normal

instructional activities including lectures and programming assignments. The courseware

163

is not a stand-alone application. Within this context, the courseware can be used

effectively in several ways.

First, the courseware can be used in the classroom to supplement lectures. The animated

demonstrations and interactive laboratory sessions can be used to illustrate dynamic

operations. The displays can be projected using a high-intensity overhead projector

equipped with an LCD display panel. The self-tests can be used in class to check class

comprehension or review for a test or quiz.

Second, students having difficulty with graph and network material can use the

courseware for supplemental work. The tutorials and animated demonstrations can be

used to provide another exposure to some of the content. The student can do the

laboratory exercises to gain a better understanding, then check understanding using the

self-tests.

Finally, the specific activities in the courseware can be assigned to all students to be

completed on their own or during scheduled laboratory periods. The instructor could

develop a laboratory guide with specific structures and problems for the students to create

interactively and experiment with.

Recommendations for Enhancements and Modifications of the Courseware

The software engineering process is often referred to as the software development cycle

or the software life cycle. The point is that the process is cyclic or iterative in nature.

164

when the product reaches the final phase, implementation, the discovery of

-undiscovered bugs and ideas for additional features, or enhancements, causes

cycle to be repeated beginning at the requirements analysis phase. Several possible

I1J:l}UlHV',""U'JUU and enhancements of the Graphs & Networks courseware are described in

following paragraphs.

First, there are other topics In Computer Science pertaining to data structures and

algorithms which could be easily added to the application. Other linked structures such as

linked lists and trees would be possible candidates for additional topical units. Especially

in the case of trees, animated demonstrations of related algorithms such as the inorder,

preorder, and postorder traversal of binary trees, and even adding nodes to and deleting

nodes from binary search trees would be helpful to students.

Incorporation of new topics would be relatively easy given the modular design of the

courseware. New screens, subroutines, and data files would need to be added with

relatively little modification to existing software.

Second, additional features could be added to the courseware to enhance the instructional

experience. Glossaries, search features, and other aids could be added to assist the

student. Text input by students could be added to allow student note-taking, adding notes

to existing topics and activities, essay questions on self-tests, and other constructivistic

activities. Laboratory sessions could be enhanced by adding more problems and possibly

165

by randomly selecting problems for students to do. The same could be done with self

tests, with questions being randomly selected from a pool of available questions.

Buttons could be added to the laboratory user display to allow nodes and edges to be

removed as well as being added. The current version of the courseware only allows

adding nodes and edges. The only way to remove an edge or a node is to clear the

structure and start over.

In addition to enhancements, certain modifications might be desirable. The current

version of the courseware is oriented around topics. It might be desirable to allow the

laboratory sessions to be more general. For example, currently the user can select the

depth-first traversal lab session in the Graphs & Digraphs unit. During the lab session the

user can build various graph structures and run the depth-first traversal to observe the

operation of the algorithm on these structures. To observe the operation of a different

algorithm, for example the breadth-first traversal, on the same structure, the user must

exit the lab session, select the breadth-first lab session, then reenter the structure and run

the algorithm.

An alternative approach would be to have a general graph laboratory in which the user

creates a graph structure then selects an algorithm to run. When the algorithm completes,

a different algorithm could be selected for the same structure.

166

In the current version of the courseware there is no way to "back out" of the ADD NODE

or ADD EDGE operation in an interactive laboratory session. The problem is not serious

since the user can simply respecify an existing node or edge. However, adding the

capability of canceling an operation would probably be a worthwhile modification.

Finally, directed graphs receive very little treatment in the current version. Additional

material could be added to the Graphs & Digraphs tutorial, animated demonstration,

laboratory session, and self-test to cover this subtopic more thoroughly.

Recommendations for Further Research

The primary goal of this development was to demonstrate a development methodology

which can be used to produce effective, high-level instructional software efficiently. The

courseware addresses the problem of learning abstract structures and operations. It was

not a goal of the project to demonstrate experimentally that using the courseware would

enhance student achievement.

Thus, one area of further work would be to conduct an experimental study which would

investigate the effect of using the courseware on student achievement in learning the

topics of graphs and networks.

More generally, the enhanced software development methodology could be used to

develop other high-level instructional software and investigate the effect on achievement,

motivation, or other factors related to student learning. The effect on learning of

167

emphasizing or de-emphasizing various cognitive learning theory considerations such as

constructivistic features or cognitive overload could be studied using modified versions

of the courseware.

Finally, incorporating new tools and technology into the development process would

produce interesting results. In particular, using HyperText Markup Language (HTML) to

author the courseware as an internet or intranet application would facilitate delivery and

increase accessibility. Features which could not be implemented directly using HTML

could be incorporated using common gateway interface (cgi) programs in C, Perl or Java.

Summary

Computer Science, by its very nature, deals with abstractions. The algorithms and data

structures used in computer programs are abstractions of real entities, relationships, and

operations, and even the program coding is an abstraction of the underlying computer

hardware. Because of this abstract nature of the discipline, Computer Science majors,

particularly Sophomore and Junior students dealing with complex abstractions for the

first, time find it difficult to understand the structures and operations they are studying.

Learning of complex abstractions can be facilitated by using appropriate instructional

software; however, very little educational software exists at the college and university

level, particularly in the area of Computer Science. In general, educational software tends

to be aimed at lower levels of learning such as drill-and-practice, rather than at higher

168

such as analysis, synthesis, evaluation, and application. Software which does exist

is often ineffective because of poor design or improper use.

For instructional software to be effective it must be developed usmg the proven

methodologies of software engmeenng and instructional design, and incorporate

applicable considerations from cognitive learning theories. Selection and use of powerful

and efficient development tools can reduce development time and effort.

Software engineering is a discipline which tends to change the activity of computer

programming from a mysterious art to a rigorous science. The methodology is defined by

a precise sequence of analysis, planning, design, and development phases, with

evaluation and documentation being done throughout the process. The methodology

emphasizes analysis, planning and design as a means of facilitating implementation and

reducing the need for changes in the finished product. The process is considered to be

iterative in nature allowing the product to be refined in a stepwise fashion.

Following the disciplined process of software engineering reduces overall development

time, and produces software which is more reliable and easier to maintain. Incorporating

techniques and principles from instructional design into the software development

process customizes the process for educational applications. Instructional activities which

address higher levels of learning can be incorporated by applying principles of cognitive

learning theories.

169

Two primary difficulties arise in the development of high level instructional software.

First, development requires a variety of skills and abilities including subject matter

knowledge, familiarity with educational theory, knowledge of software engineering and

instructional design methods, and proficiency with various development tools such

authoring systems and programming languages. Second, development of courseware

requires a significant amount of development time.

The first problem can be addressed by usmg teams of professionals to carry out

development. Alternatively, faculty who wish to do development can be educated in the

area of educational technology. In any case, the second factor, development time, can be

reduced by following proper development procedures and using powerful, effective

development tools. Authoring systems which require no programming and which offer

appropriate development functions, design templates, and other design and development

aids can reduce the difficulty and the time required to do development.

Development of the Graphs & Networks courseware utilized software engineering and

instructional design techniques and incorporated applicable considerations from cognitive

learning theory. An easy-to-use, yet relatively powerful authoring system, NeoBook

Professional (1994) and a programming language, QuickBASIC 4.5 (1990), were used to

carry out the development. NeoBook was used to create the main user displays,

navigational controls, and overall courseware structure. Functions which could not be

170

done easily in NeoBook were programmed In QuickBASIC and integrated into the

NeoBook structure.

The courseware was organized as a hypermedia system allowing a high degree of learner

control in sequencing of topics and instructional activities. For learners who need a

greater degree of structure, a suggested sequence was provided. Simple animations were

used to provide dynamic, visual presentations of the actions of graph and network

algorithms on related data structures.

The development of the Graphs & Networks courseware was completed within the

estimated time and produced all products specified including the functional specification,

design specification, courseware, and Instructor's Guide. An important part of the

specification phase was to define measurable learning objectives for the courseware.

Instructional task analysis helped to define a hierarchy of instructional activities needed

to meet the stated learning objectives and to identify prerequisite skills and knowledge

assumed for the intended learners.

Evaluation of the courseware by a representative group of Computer Science faculty and

students resulted in a overall favorable attitude and high ratings for the usability and

instructional effectiveness of the courseware. In particular, the animated demonstrations

and interactive laboratory sessions were viewed as very helpful.

171

The results of the project demonstrate the effectiveness of development which follows the

proven techniques of software engineering and instructional design, and which

incorporates applicable cognitive learning theory considerations. Also, the use of

appropriate, powerful development tools is crucial to efficient development.

The Graphs & Networks software is designed to be used to supplement normal classroom

lectures and programming assignments. The courseware can be used in class to

demonstrate dynamically the operation of graph and network algorithms on related

structures or outside of class in formal laboratories or self-study sessions.

Because of the modular design of the courseware, incorporation of other data structures

and algorithms such as linked lists or binary trees could be easily accomplished,

extending the usefulness of the courseware. Student aids such as glossaries, search

features, and student input of notes, would enhance the educational value of the

courseware.

Finally, it would be interesting to extend the research in several ways. Experimental

studies should be conducted to determine quantitatively the degree to which this type of

courseware enhances achievement, motivation, and other educational measures.

Implementation using different platforms would extend the availability of the courseware.

In particular, developing a version using HyperText Markup Language (HTML) for

internet and intranet delivery would be useful.

172

Technology has always played an important role in education. Whenever new technology

can be used to improve teaching and learning, it should be used to do so. The best parts of

proven methods and new theories can be integrated to create effective instructional

activities. Powerful tools can be used to facilitate development.

References

Abramson, G.W. (1993). Helping teachers create high-order, highly-motivating,
hypermedia-based learning experiences, Part II: IBM Linkway. SIGTC
Connections, 10(1), 6-18.

173

Abramson, G.W. (1992). Learning objectives and lesson plans. Unpublished manuscript.
William Paterson College of New Jersey.

Aho, A.V., & Ullman, J.D. (1992). Foundations of computer science. New York:
W.H. Freeman and Company.

Alessi, S.M., & Trollip, S.R. (1991). Computer-based instruction: Methods and
development (2nd ed.). Englewood Cliffs, NJ: Prentice-hall, Inc.

Ambrose, D. W. (1991). The effects of hypermedia on learning: A literature review.
Educational Technology, 31(12), 51-55.

Armstrong, T.C., & Loane, R.F. (1994). Educational software: A developer's perspective.
Tech Trends, 39(1), 20-22.

Aristotle (1968). From Politics. In R. Foy (Ed.), The world of education: Selected
readings (pp. 3-5). New York: The MacMillan Company.

Aukstakalnis, S., & Mott, M.W. (1996). Transforming teaching and learning through
visualization. Syllabus, 9(6), 14-16.

Barker, P. (1990). Designing interactive learning systems. Educational and Training
Technology International, 27(2), 125-145.

Boling, E. (1994). Meeting the challenge of the electronic page: Extending instructional
design skills. Educational Technology, 34(7), 13-18.

Buford, J. F. K. (1994). Multimedia Systems. New York: ACM Press.

Burwell, L. B. (1991). The interaction oflearning styles with learner control treatments in
an interactive videodisk lesson. Educational Technology, 31(3), 37-43.

Caftori, N. (1994). Educational effectiveness of computer software. THE. Journal,
22(1),62-65.

Cates, W. M. (1992). Fifteen principles for designing more effective instructional
hypermedia/multimedia products. Educational Technology, 32(12), 5-11.

Cormen, T.H., Leiserson, C.E., & Rivest, R L. (1990). Introduction to Algorithms.
Cambridge, MA: The MIT Press.

174

Cortinovis, R. (1992). Hypermedia for training: A software and instructional engineering
model. Educational Technology, 32(7), 47-51.

Dede, C. (1995). The evolution of constructivist learning environments: Immersion in
distributed, virtual worlds. Educational Technology, 35(5), 46-52.

DeNardo, A.M., & Pyzdrowski, A.S. (1994). A study of the effectiveness of computer
based simulations in teaching computer architecture. Computers in the Schools,
10(112), 125-139.

Dewey, 1. (1968). My pedagogic creed. In R Foy (ed.), The world of education: Selected
readings (pp. 49-58). New York: The MacMillan Company.

Ely, D. P. (1993). Computers in the schools and universities in the United States of
America. Educational Technology, 33(7),53-57.

Erlich, D., & Reynolds, L.(1992). Integrating instructional design and technology: A
model and process for multimedia design. Interactive Learning International,
8(4),281-289.

Gagne', R.M. (1971). The acquisition of knowledge. In P.E. Johnson (Ed.), Learning
theoryandpractice (pp. 288-301). New York: Thomas Y. Crowell Company, Inc.

Gagne', RM., Briggs, L.J., & Wager, W.W (1992). Principles of instructional design
(4th ed.). Fort Worth, TX: Harcourt Brace Janovich College Publishers.

Galbreath, J. (1994). Multimedia in education: Because it's there? Tech Trends, 39(6), 17-
20.

Galbreath,1. (1992). The educational buzzword ofthe 1990's: Multimedia, or is it
hypermedia, or interactive multimedia, or..? Educational Technology, 32(4),
15-19.

Heterick, R.C., Jr. (1994). The shoemaker's children. Educom Review, 29(3).
http://ivory.educom.edu/web/pubs/review/reviewArticles/29360.html

Hirschbuhl, J.J., & Faseyitan, S.O. (1994). Faculty uses of computers: Fears, facts &
perceptions. THE. Journal, 21(9),64-65.

Hollis, W.F. (1991). Humanistic learning theory and instructional technology: Is
reconciliation possible? Educational Technology, 31(11),49-53.

Johnson, C. W., & Grover, P. A. (1993). Hypertutor therapy for interactive instruction.
Educational Technology, 33(1), 5-13.

Johnson, D.L. (1995). Where to look for the learning revolution. Computers in the
Schools, 11(4), 1-4.

Jonassen, D.H. (1991). Evaluating constructivistic learning. Educational Technology,
31(9), 28-33.

175

Jonassen, D. H., & Grabinger, R. S. (1993). Applications of hypertext: Technologies for
higher education. Journal o/Computing in Higher Education, 4(2), 12-42.

Jones, M.G., Farquhar, J.D., & Surrey, D.W. (1995). Using metacognitive theories to
design user interfaces for computer-based learning. Educational Technology,
35(4), 12-22.

Kaplan, H. (1992). Multimedia in lecture halls: Science & math visualizations. THE.
Journal, 20(5), 53-55.

Kashef, A.E. (1991). Visualization with CAD. THE. Journal, 19(5),64-66.

Kozel, K. (1996). The interactive experience model: Designing with the spiral.
Multimedia Producer, 2(1), 61-66.

Kozel, K. (1995). Crafting the user experience. Multimedia Producer, 1(11), 72-80.

Lanza, A. (1991). Some guidelines for the design of effective hypercourses. Educational
Technology, 31(10), 18-22.

Lennon, J., & Maurer, H. (1994). Lecturing technology: A future with hypermedia.
Educational Technology, 34(4),5-14.

Littauer, J. (1994). A "how-to" on using courseware in the classroom. THE. Journal,
22(1),53-54.

Luther, A. C. (1994). Authoring Interactive Multimedia. Boston: AP Professional.

Lynch, P. J. (1995). Entry-level multimedia authoring tools for education. Syllabus, 8(8),
10-18.

Maddux, C. D. (1992). User-developed computer-assisted instruction: Alternatives in
authoring software. Educational Technology, 32(4), 7-14.

176

Mauldin, M. (1995). Developing multimedia: A method to the madness. THE. Journal,
22(7), 88-90.

McGilly, K. (1994). Cognitive science and educational practice: An introduction. In K.
Gilly (Ed.) Classroom lessons: Integrating cognitive theory and classroom
practice (pp. 2-21). Cambridge. MA: The MIT Press.

McLellan, H. (1994). Situated learning: Continuing the conversation. Educational
Technology, 34(8), 7-8.

Miller, C.D., Heeren, V.E, & Hornsby, E.J., Jr. (1990). Mathematical Ideas (6th ed.).
Glenview, IL: Scott, Foresman-Little, Brown.

Moore, D.M. (1994). The parable of the expensive ballpoint pen (revisited): Implications
for hypermedia. Computers in the Schools, 10(1/2),3-7.

Myers, R.J., & Burton, J.K. (1994). The foundations of hypermedia: Concepts and
history. Computers in the Schools, 10(1/2), 9-20.

Naps, T.L., & Nance, D.W. (1995). Introduction to computer science: Programming,
problem-solving and data structures (3rd alt. ed.). St. Paul, MN: West Publishing
Company, Preface, xxiii.

Naps, T.L., & Pothering, G.J. (1992). Introduction to data structures and algorithm
analysis with Pascal (2nd ed.). St. Paul, MN: West Publishing Co.

NASA: Parametric Cost Estimating Reference Manual.
http://www.jsc.nasa.gov/bu2/COCOMO.html

NeoBook Professional [Computer software]. (1994). Bend, OR: NeoSoft Corporation.

NeoPaint [Computer software]. (1994). Bend, OR: NeoSoft Corporation.

Noblitt, J.S. (1995). Enhancing instruction with multimedia. Syllabus, 8(9), 28-30.

Park, 1., & Hannafin, M. (1993). Empirically-based guidelines for the design of
interactive multimedia. Educational Technology, research and development,
41(3),63-85.

Park, O. (1994). Dynamic visual displays in media-based instruction. Educational
Technology, 34(4),21-25.

Park, O. (1991). Hypermedia: Functional features and research issues. Educational
Technology, 31(8), 24-31.

Paske, R. (1990). Hypermedia: A brief history and progress report. THE. Journal,
18(1), 53-56.

Perkins, D.N. (1991). What constructivism demands of the learner. Educational
Technology, 31(9), 19-21.

Podell, D.M., Kaminshy, D., & Cusimono, V. (1993). The effects ofamicrocomputer
laboratory approach to physical science instruction on student motivation.
Computers in the Schools, 9(2/3),65-73.

Privateer, P. M., & MacCrate, C. (1992). Odyssey project: A search for new learning
solutions. THE. Journal, 20(3), 76-80.

177

QuickBASIC 4.5 [Computer programming language]. (1990). Redmond, WA: Microsoft
Corporation.

Riley, 1.H., lr. (1990). Advanced programming and data structures using Pascal. Boston,
MA: PWS-Kent Publishing Co.

Rivlin, E., Botafugo, R. & Shneiderman, B. (1994). Navigating in hyperspace: Designing
a structure-based toolbox. Communications of the ACM, 37(2),87-96.

Rodger, S.H. (1996). Integrating animations into courses. Integrating Technology into
Computer Science Education (pp. 72-74). New York: ACM Press.

Roselli, T. (1991). Control of user disorientation in hypertext systems. Educational
Technology, 31(12), 42-46.

Sammons, M.C. (1995). Students assess computer-aided classroom presentations. THE.
Journal, 22(10),66-69.

Savery, 1.R., & Duffy, T.M. (1995). Problem-based learning: an instructional model and
its constructivist framework. Educational Technology, 35(5),31-38.

Schach, S.R. (1993). Software engineering (2nd ed.). Homewood, IL: Irwin.

Shneiderman, B. (1992). Designing the user interface: Strategies for effective human
computer interaction (2nd ed.). Reading, MA: Addison-Wesley.

Shyu, H., & Brown, S.W. (1993). A study of interactive learning: IVS and diagrams.
Computers in the Schools, 9(4), 71-80.

178

Skinner, B.F. (1971). The science oflearning and the art of teaching. In P.E. Johnson
(Ed.), Learning theory and practice (pp.22-24). New York: Thomas Y. Crowell
Company, Inc.

Smith, G., & Debenham, J. (1993). Automating university teaching by the year 2000.
THE. Journal, 21(1),71-75.

Solomon, M.B. (1994). What's wrong with multimedia in higher education? THE.
Journal, 21(7),81-83.

Staninger, S. W. (1994). Hypertext technology: educational consequences. Educational
Technology, 34(6), 51-53.

Steinberg, E. R. (1991). Computer-assisted instruction: A synthesis of theory, practice,
and technology. Hillsdale, NJ: Lawrence Erlbaum.

Stoddart, T., & Neiderhauser, D. (1993). Technology and educational change. Computers
in the Schools, 9(2/3),5-22.

Sullivan, P. (1971). John Dewey's philosophy of education. In J.C. Stone & F.W.
Schneider (Eds.), Readings in thefoundations of education (2nd ed.): Vol. 2.
Commitment to teaching (pp. 495-502). New York: Thomas Y. Crowell
Company, Inc.

Sweeters, W. (1994). Multimedia electronic tools for learning. Educational Technology,
43(5),47-52.

Thorndike, E.L. (1971). From the principles of teaching. In P.E. Johnson (Ed.), Learning
theory and practice (pp.12-22). New York: Thomas Y. Crowell Company, Inc.

Thurber, B. D., Macy, G., & Pope, J. (1991). The book, the computer and the humanities.
THE. Journal, 19(1), 57-61.

Tolhurst, D. (1992). A checklist for evaluating content-based hypertext computer
software. Educational Technology, 32(3), 17-21.

Turbo Pascal 6.0 [Computer programming language]. (1990). Scotts Valley, CA: Borland
International.

Twigg, C.A. (1996). It's the student, stupid! Educom Review, 31(3).
http://ivory .educom.edulweb/pubs/review/review Articles/31342.html

Twigg, C.A. (1995). A chicken-egg dilemma. Educom Review, 30 (3).
http://ivory .educom.edu/web/pubs/review/review Articles/3 03 5 0 .html

179

Wallis, C. (1995, Spring). The learning revolution. Time, 49-51.

Wei, C. (1991). Hypertext and printed materials: Some similarities and differences.
Educational Technology, 31(3), 51-53.

Weiss, J. (1994). Keeping up with the research. Technology & Learning, 14(5), 30-36.

Willis, J. (1993). What conditions encourage technology use? It depends on the context.
Computers in the Schools, 9(4), 13-32.

Wilson, B.G. (1995). Metaphors for instruction: Why we talk about learning
environments. Educational Technology, 35(5), 25-30.

Wilson, J., Aiken, R., & Katz, 1. (1996). Review of animation systems for algorithm
understanding. Integrating Technology into Computer Science Education (pp. 75-
77). New York: ACM Press.

Wulfekuhle, N. (1994). Selecting a hypermedia authoring program for CBT. THE.
Journal, 21(7), 77-80.

180

Annotated Bibliography

Abramson, G. (1995). Learning with Linkway: Tutorial & applications. Cincinnati, OH:
South-Western Educational Publishing.

This training manual focuses on the authoring system, Linkway, by IBM. Nevertheless,
many principles are discussed throughout which can be generalized to the design and
development of courseware. The tutorials which form the bulk of the book allow the
reader to progress from simple to more complex implementations. The chapters on
developing subject-rich software, and on design skills are useful, particUlarly with respect
to the planning and design of the courseware product.

Abramson, G.W. (1993). Helping teachers create high-order, highly-motivating,
hypermedia-based learning experiences, Part II: IBM Linkway. SIGTC
Connections, 10(1),6-18.

In this practical and challenging article, Abramson makes a case for the use of well
designed and implemented interactive computer-based instruction, describes the contents
and process for developing such applications, and gives examples in many subject areas.
The author asserts that interactive multimedia instructional applications should aim at
higher levels of learning including application, analysis, synthesis, and evaluation. They
should not be computer-based page-turning exercises, but should allow the learner to
select activities from a web of provided material.

The article gives a good summary of the contents of interactive multimedia packages
including the superfolder, an organizing module of the application, and the various other
folders or content/activity modules. Also, the specific topical examples help to show what
can be done.

Abramson, G.W. (1992). Learning objectives and lesson plans. Unpublished manuscript.
William Paterson College of New Jersey.

The emphasis of this article is on establishing higher-level learning objectives to allow
technology to be applied effectively to instructional situations. Educational objectives are
classified as (1) acquiring and recalling, (2) comprehending, (3) applying, (4) analyzing,
(5) synthesizing, and (6) evaluating. Appropriate action verbs are associated with
objectives in each category to produce performance objectives.

181

Aho, A.V., & Ullman, J.D. (1992). Foundations of computer science. New York:
W.H. Freeman and Company.

Chapter 9 of this text by Aho and Ullman presents concepts and applications of graph
data structures including cyclic and acyclic graphs and networks. The chapter begins with
basic concepts and terminology including nodes and arcs, paths, cycles, acyclic graphs,
and undirected graphs. Two main implementation techniques, adjacency matrices and
adjacency lists are described in the next section. Common algorithms such as depth-first
search, minimum spanning and shortest path are described and analyzed with regard to
execution efficiency. The text is on the theoretical side and provides a thorough basis for
understanding graph and network data structures and algorithms.

Alessi, S.M., & Trollip, S.R. (1991). Computer-based instruction: Methods and
development (2nd ed.). Englewood Cliffs, NJ: Prentice-hall, Inc.

This is a classic text on the design and development of computer-based instruction
applications. First the text covers various types of instructional applications, emphasizing
those elements which are unique or important to each type of application. Tutorials,
drills, simulations, instructional games, and tests are covered. Part 2 of the text presents a
detailed explanation of various design and development activities including: preparation,
design, flowcharting, storyboarding, programming and preparation of support materials,
and evaluation. The last part covers a number of advanced topics. Computer-managed
instruction, interactive video, and artificial intelligence applications are discussed.

In addition to the main material in the text there are several helpful appendices. One gives
a thorough, although lengthy, summary for evaluating the quality of an application.
Another appendix provides sample storyboard forms for use in designing screen layouts.

Ambrose, D. W. (1991). The effects of hypermedia on learning: A literature review.
Educational Technology, 31(12),51-55.

In this article, Ambrose surveys both potentially positive and negative effects of the use
of hypermedia learning systems on learning. One major emphasis is that hypermedia,
with its web of links among units of knowledge and various media, is structurally
similar to the semantic networks of knowledge itself.

Because of its nonlinear structure, hypermedia can encourage learners to explore,
speculate, and form hypotheses. These types of activities are considered to be higher
level cognitive activities. Since hypermedia packages typically utilize multiple
media types, including dynamic modes such as video, animation, and audio, they are able
to attract and hold the learner's attention better than static media.

Problems associated with hypermedia are generally the "flip side" ofthe benefits. The
web of nonlinear links in a hypermedia application can cause learner disorientation and

182

allow the learner to choose an ineffective sequence of material. The multimedia
aspect can provide distractions if not used properly. The author emphasizes the need for
research on the effects and effectiveness of hypermedia in learning situations.

Armstrong, T.C., & Loane, RF. (1994). Educational software: A developer's perspective.
Tech Trends, 39(1), 20-22.

Armstrong & Loane are two software developers. In this article, the authors discuss
several aspects relating to the development of educational software including the
advantages of educational software, state-of-the-art development techniques, and market
trends. A primary benefit discussed is that of using graphical representation and simple
animation to facilitate learning of laws or other processes which cannot be directly
observed. Object oriented programming (OOP) techniques are described. The availability
of computers to most learners and the ease of use of desktop computers running Windows
or the Mac OS are presented. Finally, the authors describe a type of multimedia program,
textbook accompaniments, which are gaining popularity. These programs tend to be
interactive, and use text, graphics and simple animations to supplement traditional
textbooks.

Aristotle (1968). From Politics. In R Foy (Ed.), The world of education: Selected
readings (pp. 3-5). New York: The MacMillan Company.

In this excerpt from Politics, Aristotle presents a case for educating for a virtuous life. In
the democratic state of Aristotle's time, the belief was that each citizen should in tum
govern and be governed. Education was a means of preparing people for their role as
governor and as citizen, in particular for virtuous conduct based on rational principle.

Aristotle believed that education would develop the person's capability to rationally
consider what was good and to pursue that which was best, not only for himself, but also
for the society. He concludes by saying that some "in a vulgar spirit have fallen back on
those (virtues) which promised to be more useful and profitable." That is, rather than
pursuing the ideal best, they have pursued the immediately practical.

AukstakaInis, S., & Mott, M.W. (1996). Transforming teaching and learning through
visualization. Syllabus, 9(6), 14-16.

Aukstakalnis & Mott present the case for using visualization techniques to facilitate
learning difficult concepts, complex processes, and multidimensional structures.
Examples come primarily from science and engineering where such concepts, processes,
and structures are common.

The claims of the benefits of visualization techniques are based on cognitive psychology
and "visual information processing" theories. Complex concepts and processes typically
cannot be presented directly. However, when presented in symbolic or codified form, the
mind must interpret the presented images before understanding can occur. This activity of

iUterpretation retards learning. A dynamic or multidimensional visual model can often
overcome this problem.

Barker, P. (1990). Designing interactive learning systems. Educational and Training
Technology International, 27(2), 125-145.

183

This article focuses on multimedia, interactive learning systems used for individualized
learning. The author discusses background considerations including the need to follow
proven system engineering design and development practices, and the importance of
establishing pedagogic objectives. Subject matter should be "open" to the use of
technology. Metaphors are important in both the overall design as a unifying element and
in aiding learning. Five paradigms are presented for utilizing media: (1) hypermedia
paradigm, (2) reactive media paradigm, (3) surrogation, (4) learner-control paradigm, and
(5) composite screen paradigm.

Boling, E. (1994). Meeting the challenge of the electronic page: Extending instructional
design skills. Educational Technology, 34(7), 13-18.

Boling presents practical considerations and techniques for designing educational
materials for delivery using the typical computer screen. She discusses the issues of the
lack of physical presence, screen resolution and size, interactivity, and the use of motion
and sound. The need for navigational controls and other "tools" to assist the learner in the
use of the courseware is emphasized. Another important concern is the need for "chunks"
of material to be able to stand alone in hypermedia type systems.

Brassard, G., & Bratley, P. (1996). Fundamentals of Algorithmics. Englewood Cliffs, NJ:
Prentice-Hall.

This is a text on algorithms. The primary emphases are describing types of algorithms,
general approaches to designing algorithms and analyzing the efficiency of various
algorithms for performing a particular operation. Graphs, digraphs and networks are
discussed in several places in the text. The data structures are introduced and formally
defined in Chapter 5. Several graph algorithms including minimum spanning tree and
shortest path, and graph applications such as scheduling, are discussed in a chapter on
greedy algorithms. Chapter 9 focuses specifically on graphs including depth-first and
bread-first search and applications to game-playing.

Buford, J. F. K. (1994). Multimedia Systems. New York: ACM Press.

Buford presents a wide range of topics relating to multimedia including uses of
multimedia information; architectures for multimedia systems; various media
technologies such as digital audio and video; operating system and system software
support for multimedia; and multimedia communications systems.

184

Burwell, L. B. (1991). The interaction oflearning styles with learner control treatments in
an interactive videodisk lesson. Educational Technology, 31(3), 37-43.

Burwell discusses the interaction between learning styles and learner control used in
computer-based learning applications, specifically those using a videodisk controlled by a
computer. After summarizing the findings of other researchers and the lack of agreement
in these findings, he describes an experimental study designed to focus on the interaction
oflearning style and learner control.

The results of Burwell's study demonstrate that field dependent learners learn most
effectively when given control options and appropriate advice and guidance, while field
independent learners do best when learning is guided by the program. Burwell also found
that the groups using the programmed instruction performed better on post tests than
those using a written study guide.

Bruner, J.S. (1971). After John Dewey, what? In J.e. Stone & F.W. Schneider (Eds.),
Readings in the foundations of education (2nd ed.) Vol. 2: Commitment to
teaching, (pp. 495-502). New York: Thomas Y. Crowell Company, Inc.

The principles of John Dewey's pedagogic creed are reviewed and evaluated by Jerome
Bruner in light of experience and current educational thinking. With regard to the
education within and as an extension ofthe culture of the day, Bruner argues that
education must also provide alternative views of the world and prepare and encourage the
learner to explore these alternative views.

With regard to basing the curriculum and activities of education on the interests and
capabilities ofthe child, Bruner says that "it is equally a mistake to sacrifice the adult to
the child as to sacrifice the child to the adult." He asserts that the child can be exposed to
new interests and develop new capacities.

The school must provide not only an extension to the community and home, but should
also be a place of free exploration and exposure to new ideas and knowledge. Bruner
proposes that excellence be a hallmark of schools, including excellence in teaching.
Finally, in addition to Dewey'S ideas, Bruner believes that knowledge is inherently worth
mastering for its own right; not all learning has to be immediately useful. Also, while
much learning may begin with concrete experiences, at least some learning goes on into
more abstract realms.

Caffarella, R.S. (1993). Self-directed learning. In S.B. Merriam (Ed.), An update on adult
learning theory. New Directions for Adult and Continuing Education, no. 57
(pp.25-35). San Francisco: Jossey-Bass.

Caffarella examines one ofthe major tenets of Knowles' theories of adult learning, that of
self-direction. First, she discusses the underlying philosophical assumptions of self
direction, the primary assumption being that of humanism. The result of this philosophy

185

is that learners are assumed to take primary responsibility for their learning and that the
process of learning, which is centered on the leamer, is more important than the content.

Other philosophies, progressivism, behaviorism, and critical theory, are also discussed.
Critical theory, in particular, focuses on critical evaluation of institutions and culture and
initiation of change.

Critics of the concept of self-direction include Boucouvalas who believes that self
direction must be coupled with concepts of interdependence and interconnectedness.
Others argue that self-direction varies among learners and even from situation to situation
depending on prior experience, learner confidence, and other factors.

Caftori, N. (1994). Educational effectiveness of computer software. THE. Journal,
22(1),62-65.

Caftori describes a study performed at Old Orchard Junior High School in which Junior
High School students were observed using educational software during a 20 minute lunch
period. Students were allowed to use the software in the computer lab rather than going to
study hall. No guidance was given to students. Some students were interviewed as well as
being observed. The primary conclusion of this informal study was that when educational
software, even that which is considered to be good quality, is used improperly,
educational objectives are usually not met. While this may seem obvious, it is likely that
much educational software in use is not used with sufficient guidance or in other ways
which were not intended.

Cates, W. M. (1992). Fifteen principles for designing more effective instructional
hypermedia/multimedia products. Educational Technology, 32(12), 5-11.

The premise of Cates' article is that technology does not revolutionize education, rather
teachers and students do. The bulk of the article consists of presenting principles for
designing effective multimedia or hypermedia instructional systems based on this
premise. The suggested guidelines are practical rather than theoretical and emphasize
support of current teaching practice and curricular emphases. Constructivistic
considerations are included as well as cautions to use video and interaction in meaningful
ways, not just for their own sake. The importance of appropriate and high-quality written
materials to support the instructional software is stressed.

Chiou, G. (1993). Some potential areas of research and development in the space of
computer-based learning. Educational Technology, 33(8), 19-23.

Chiou brings order to the diverse area of research and development associated with
computer-based learning. Using a three-dimensional matrix, he organizes numerous
research and development areas according to the considerations of user interface design,
information technology, and learning concepts. The author calls for developing design

186

rationales which are based on the principles of the contributing areas and that these
rationales would be used as guidelines in developing computer-based learning materials.

Cormen, T.H., Leiserson, C.E., & Rivest, R. L. (1990). Introduction to Algorithms.
Cambridge, MA: The MIT Press.

This is a thorough and weighty text on algorithms of various kinds. It includes five
complete chapters on graph-related algorithms, almost 200 pages. Incorporated into the
thorough discussion are numerous figures which attempt to show the operation of a given
algorithm through a sequence of static images. While the depth of coverage is greater
than will be presented in the courseware, the text makes an excellent reference to the
topic of graphs and related algorithms. Depth-first search, breadth-first search,
topological ordering, minimum spanning tree, shortest path, and several other major
algorithms are presented.

Cortinovis, R. (1992). Hypermedia for training: A software and instructional engineering
model. Educational Technology, 32(7), 47-51.

Cortinovis presents a model for the design and development of computer-based training
applications which incorporates current educational theories and software engineering
principles. In particular, he focuses on reference-based training and the integration of
behaviorist and cognitive theories in the article.

The model consists of lessons comprised of instructional events, which are, in turn, made
up of micro-instructional events, MIE's. The MIE's are modular units which can be
arranged as needed to create the overall instructional event. The author presents models
for a presentation MIE, a structured-test MIE and a job-aid MIE to illustrate the
technique.

Dede, C. (1995). The evolution of constructivist learning environments: Immersion in
distributed, virtual worlds. Educational Technology, 35(5), 46-52.

Chris Dede's article reads like a science fiction book, describing interactions via avatars
and with knowbots in distributed virtual worlds. The application of computer technology
to create virtual environments in which learners can participate marks a change in the
way in which technology is used to implement constructivist theory-based learning.
Instead of using technology to mediate the interaction of learners with constructivist
environments, technology can now be used to create and populate these environments.
In Dede's view, these environments are distributed simulations using networks to link
geographically distant users.

Dede discusses various benefits and some drawbacks to this application of technology
which extends the concepts of the "Dungeons and Dragons" style role-playing games.
Interacting with others using avatars (simulated persona) which can be modified by the
user allows people to interact in new ways and without old inhibitions. Being able to

187

manipulate the physical laws of the environment provides first-hand experience with how
these laws work.

DeNardo, A.M., & Pyzdrowski, A.S. (1994). A study of the effectiveness of computer
based simulations in teaching computer architecture. Computers in the Schools,
10(1/2), 125-139.

While this article focuses on simulation rather than multimedia or animation as such, it is
important for three reasons: (1) it describes the use of computer-based instruction in
Computer Science, (2) some of the characteristics of simulation are similar to those in
animating abstract objects and processes, and (3) the results show improved student
attitudes and understanding. Computer-based simulations involve the student and provide
immediate feedback and repeatability difficult to achieve in traditional learning.

Dewey, J. (1968). My pedagogic creed. In R. Foy (ed.), The world of education: Selected
readings (pp. 49-58). New York: The MacMillan Company.

This classic work by the educator John Dewey outlines his primary beliefs about
education and learning. There are five primary areas which Dewey considers: (1) what
education is, (2) what the school is, (3) the subject-matter of education, (4) the nature of
method, and (5) the school and social progress.

Dewey believed that "all education proceeds by participation of the individual in the
social consciousness of the race." The main idea here is that education is centered on the
individual and their experiences in a social setting. School, for Dewey, existed as a social
institution, as a part of "real life" not separate from it. He believed that it should be
closely tied to home and community life and that the moral training provided in the home
should be supported and extended in the school.

With regard to subject matter, Dewey believed that there should not be a set curriculum
and that segregation of subject matter presented an unrealistic view to the learner. He felt
that subject matter should spring from the interests and capabilities of the learner and that
the "constructive activities" such as cooking, sewing, manual training, etc. were proper
areas of study. Because the child is primarily active, rather than passive, Dewey believed
that learning should be based in activities and that purely cognitive studies should be tied
to appropriate uses of what was learned.

Finally, Dewey, like many others believed that education has, as its ultimate goal, the
improvement of society. He felt that education would change people who in tum would
change society and that this was more natural and effective than legislated
changes. He claims that" the community's duty to education is, therefore, its paramount
moral duty."

Ely, D. P. (1993). Computers in the schools and universities in the United States of
America. Educational Technology, 33(7),53-57.

188

This article presents summary statistics about the availability, use, and impact of
computers in education in the United States. One telling fact reported is that very little
software is available for post-secondary education. Another finding is that the most
wide-spread use of computers in education is word processing; little direct application of
computer technology to student learning is being used. While most public school
systems, as well as most colleges and universities have computers for student use, the
rationale for having this technology is more often based on social and vocational reasons
than on pedagogic reasons. Ely concludes that on a national scale computer-based
education has had little impact in the United States.

Erlich, D., & Reynolds, L.(1992). Integrating instructional design and technology: A
model and process for multimedia design. Interactive Learning International,
8(4),281-289.

Erlich & Reynolds describe an approach to the design and development of computer
based courseware. The emphasis of these authors' work is that of instructional design
methodology. In particular, they seek to incorporate the use of multimedia into
instructional design which traditionally has not dealt with these media.

The technique presented is straightforward, beginning with an analysis of learner needs
and goals. Other considerations of the design and development process are: (1) learner
characteristics, (2) topics/tasks, (3) objectives, (4) performance assessment, (5)
instructional activities, (6) media/delivery systems and (7) resources. The emphasis on
learner needs and goals is important and can be adapted to various learning theories.

Gagne', R.M. (1971). The acquisition of knowledge. In P.E. Johnson (Ed.), Learning
theory and practice (pp. 288-301). New York: Thomas Y. Crowell Company, Inc.

In this article Gagne' presents the theory of a knowledge hierarchy, especially as it
pertains to the concept of "productive learning." By productive learning, Gagne' means
learning which enables the learner to perform a class of tasks rather than a single task. He
hypothesizes that the knowledge needed to perform a type of task may be subdivided into
subcategories of more basic knowledge. This process is repeated on the subcategories
until one arrives at knowledge which is considered to be fundamental. The result is a
hierarchical arrangement of categories of knowledge.

Gagne' then applies the theory to explain individual differences in learning. The idea is
that different people enter a learning situation at different points in the knowledge
hierarchy and, thus, require, more or less "training" to achieve the final learning goal.
Progress through the knowledge hierarchy is accomplished by learners when they transfer
knowledge from lower categories to higher ones with instructions being the only learning
aid.

,R.M., Briggs, L.J., & Wager, W.W (1992). Principles of instructional design
(4th ed.). Fort Worth, TX: Harcourt Brace Janovich College Publishers.

189

This is a classic text on instructional design. Its importance to the design and
development of computer-based learning applications lies its presentation of the
principles of designing educational materials. In particular, the emphasis on the learner,
the outcomes ofinstruction, defining performance objectives, analysis of the learning
task, lesson design, and the discussion of individualized learning, are all important to
courseware design and development.

Galbreath, J. (1994). Multimedia in education: Because it's there? Tech Trends, 39(6), 17-
20.

Galbreath reviews the capabilities of multimedia instructional software, makes a case for
using multimedia courseware, and examines the requirements for developing courseware.
In particular, the author asserts that it is not the role of courseware to replace teachers,
but, that courseware can assist teachers to provide individualized, student-centered
learning. Galbreath also believes that users (teachers) can become developers if equipped
with necessary development hardware and software. Three levels of hardware Is oft ware
configurations are described.

Galbreath, J. (1992). The educational buzzword of the 1990's: Multimedia, or is it
hypermedia, or interactive multimedia, or..? Educational Technology, 32(4),
15-19.

Galbreath covers two important aspects of multimedia in this article. First, he explores
the meaning of the term multimedia. Second, he provides a summary of various
multimedia and interactive technologies which are available today. These include:
interactive video, digital platforms, CD-ROM, digital video interactive, compact disc
interactive and a few others.

Gay, L. R. (1992). Educational research: Competencies/or analysis and application
(3rd ed.). New York: Merrill.

Gay presents the essentials of doing educational research including basic statistical
analysis. Important stages of research such as selecting and defining the problem, creating
a research plan, selecting a sample and appropriate measuring instruments, are described.
The text also discusses various types of research models, including historical, descriptive,
correlational, causal-comparative, and experimental. Both descriptive and inferential
statistics are presented. The text concludes with a description of the process for preparing
and evaluating a research report.

190

Henry, M.J., & Southerly, T.W. (1994). A comparison of the language features of BASIC
and Hypercard. Computers in the Schools, 10(112), 141-153.

The authors describe the main features of BASIC and Hypercard. Common commands in
BASIC include INPUT, PRINT, READ/DATA, as well as looping constructs such as
FOR/NEXT and branching statements such as GOTO and IF/THEN/ELSE. The
capabilities of BASIC in the area of graphics and color are also presented. Hypercard
features are described including stacks, backgrounds, and fields and the use of Go, Find,
Push, and Pop commands is described.

The discussion centers around the use of one of these languages as a teaching tool. One
emphasis of the article is that the choice of language may depend on the learning
objectives. Various studies seem to indicate that Hypercard supports learning about
software development while BASIC promotes the development of problem-solving skills.

Heterick, R.C., Jr. (1994). The shoemaker's children. Educom Review, 29(3).
http://ivory .educom.edulweb/pubs/review/review Articles/293 60 .html

The main point of Heterick' s article is that computer technology is not being used
effectively in education as it is in other areas of society. While computers are used in
banks, car engines, recording studios, factories, and other areas, the same colleges and
universities which develop new technology are not integrating it into their instructional
programs.

Hirschbuhl, J.J., & Faseyitan, S.O. (1994). Faculty uses of computers: Fears, facts &
perceptions. THE. Journal, 21(9),64-65.

The authors conducted a study of college faculty to determine the main factors which
affect the adoption of computer technology in their instruction. They found that personal
attributes such as gender, rank, and research commitment do not affect the likelihood of
adoption, whereas, the technological orientation of one's discipline did make a difference.
Hirschbuhl and Faseyitan conclude that appropriate training be given to faculty to help
them overcome fears of computers and to develop proficiency in computer use.

Hollis, W.F. (1991). Humanistic learning theory and instructional technology: Is
reconciliation possible? Educational Technology, 31(11), 49-53.

Hollis examines the assumptions inherent in humanist learning theories and in
instructional design theory. While not a learning theory per se, instructional design does
exhibit a theory of education and draws on learning theories. Hollis draws a dichotomy
between humanist theories and instructional design, the first being person-centered, the
latter being more process-centered. In humanist theories, learning occurs relative to the
leamer, knowledge is relative, and the goal is self-actualization. Instructional design is
systematic and assumes that appropriate methods must be used to produce desired
outcomes.

191

The author centers on two aspects of learning to try to bring the two theories somewhat
together. First, locus of control is examined. While humanist theories emphasize internal
locus of control, traditional instructional design has emphasized external locus of control.
Hollis says that this is changing with newer technologies.

Secondly, the ties between humanist theories and constructivism are explored. The key
here is that it is learners who construct knowledge out of their own experiences. Again
newer technologies allow constructivistic learning activities.

Horowitz, E., & Sahni, S. (1989). Fundamentals of data structures in Turbo Pascal for
the IBM Pc. Rockville, MD: Computer Science Press.

Terminology, concepts, and implementation techniques for graphs and networks are
presented. Various implementation techniques are compared and algorithms are presented
in Pascal. Depth first search, breadth first search, minimum spanning tree and shortest
path algorithms are described and presented. Topological sorts and applications to critical
path scheduling are also described. Overall the emphasis is fairly theoretical, but provides
a solid foundation in the topic.

Jerome, M., & Lee, L. (1995). Multimedia presentation software comes of age.
Newmedia, 5(5), 61-75.

The authors present general characteristics of various presentation packages and then
describe and compare several packages. Three categories of multimedia presentation
software are described: programs which produce slide shows; programs which allow
creation of learning materials and the incorporation of various media types; and programs
which use a time-line metaphor to organize and synchronize materials and media.
Important features of presentation packages include: (1) usability, (2) graphics, (3)
outlining and charting, (4) media integration and editing, (5) synchronizing and ordering
events, (6) transitions, animations, and glitz, (7) interactivity, and (8) runtime players and
cross-platform capability.

Johnson, C. W., & Grover, P. A. (1993). Hypertutor therapy for interactive instruction.
Educational Technology, 33(1), 5-13.

This excellent, practical article describes a model and the characteristics of learner
centered computer-based, interactive instructional applications. The authors begin by
highlighting two common deficiencies with the majority of current CBI products: (1)
deficient message design models which emphasize the machine rather than the leamer,
and (2) deficient message design execution in which accepted practices of instructional
design are overlooked. They acknowledge that early CBI products were primarily guided
by behaviorist theories rather than cognitive theories of learning.

192

The hypertutor model incorporates (1) learner control, (2) consistent presentation formats
using instructional design principles, (3)extensive, randomly selected examples and
practice exercises, (4) frequent, varied, graded feedback, and (5) extensive, appropriate
on-line, randomly-accessible, resources.

Johnson, D.L. (1995). Where to look for the learning revolution. Computers in the
Schools, 11(4), 1-4.

Johnson begins by emphasizing that educational technology has not had the widespread
impact that many had predicted. He even quotes articles from the popular press which
make the same point. He then goes on to say that perhaps we are expecting too much, too
fast. Drawing the analogy to the inception ofthe automobile, Johnson points to Henry
Ford as a risk taker and implementer of a new way of doing things, not just a user of new
technology. The use of educational technology must be the same. Rather than looking for
education-wide adoption of technology, we should point to those areas which have been
successful and encourage others to take a risk. Then, eventually, when enough schools
have obtained benefits and can demonstrate their success, others will follow suit.

Jonassen, D.H. (1991). Evaluating constructivistic learning. Educational Technology,
31(9), 28-33.

Jonassen pursues one of the most critical aspects of constructivist learning theory, that of
assessing learning. The difficulty comes from the fact that constructivism, by its nature,
does not recognize objective reality and, therefore, cannot use traditional criterion-based
evaluation techniques.

Jonassen argues that it is the process of learning rather than the products of learning that
should be evaluated in a constructivist learning situation. He also states that evaluation
should be carried out by a panel of reviewers, each with a different and relevant
perspective.

Jonassen, D. H., & Grabinger, R. S. (1993). Applications of hypertext: Technologies for
higher education. Journal o/Computing in Higher Education, 4(2), 12-42.

Jonassen & Grabinger present a thorough analysis of the appropriate use of hypertext in
educational systems. They begin by arguing against the indiscriminate use of hypertext
and the assumption that linking materials together will automatically enhance student
learning. The authors divide the acquisition of knowledge into three phases: introductory,
advanced, and expert. They then describe appropriate hypertext-based systems for use at
each stage. For example, simple hypertext-based tutorials are appropriate in introductory
learning. At higher levels of learning hypertext may be used to support complex,
constructivistic learning environments, environments which are need driven, provide
learner-initiated interaction, and are conceptually and intellectually engaging.

Jones, M.G., Farquhar, J.D., & Surrey, D.W. (1995). Using metacognitive theories to
design user interfaces for computer-based learning. Educational Technology,
35(4), 12-22.

193

The authors discuss considerations in the development of user interfaces for CBI
applications which are based on metacognitive theories. After describing the state of user
interface design, they proceed to explain the main elements of metacognition, the process
by which learning is controlled and evaluated by the learner. Metacognitive processes are
classified into two categories: 1) control of cognitive processes, and (2) monitoring of
cognitive processes.

The article then discusses design considerations which are based on metacognitive
processes, organizing the discussion around three questions relating to a CBI application:
(1) What is it?, (2) How do I use it?, and (3) What do I know? Several practical issues are
discussed. The idea of maps and other devices to let the users know where they are in the
program is a useful one. Also, the idea that testing or self-evaluation may be more
difficult in hypermedia type applications than in linear ones is a point to consider. When
specific learning objectives are defined, there must be a way to be sure that the learner
has worked through all necessary material.

Kaplan, H. (1992). Multimedia in lecture halls: Science & math visualizations. THE.
Journal, 20(5), 53-55.

Kaplan describes the development of computer-based, multimedia programs for use in
large, freshman-level courses in chemistry, physics, and math. The key element was the
use of images, both still and animated. The multimedia images accomplished the
following: (1) captured the learners' attention, (2) made complex processes or those
which cannot be directly observed visual, (3) enhanced readability and visibility in a large
room through the use of a large screen projection system, (4) allowed dynamic
manipulation of the display to explore various conditions.

Kashef, A.E. (1991). Visualization with CAD. THE. Journal, 19(5),64-66.

This article describes the use of a specific computer-based tool, a Computer Automated
Design (CAD) system for enhancing instruction. The author reviews the debate regarding
the use of CAD to teach engineering and science students, explains CAD and some of its
uses, and points out educational benefits.

Among the benefits are helping students to understand structures by providing three
dimensional visualizations, allowing students to manipulate visualizations and to
experiment with them, providing an interesting and engaging way of studying visual
topics, and allowing trial and error experimentation.

This article, although specifically aimed at CAD, provides more support for the use of
interactive visualizations to teach complex structures and processes. The ability to make

concrete things which are complex or impossible to view naturally simplifies the
cognitive task of the learner. Being able to interact with the visualizations provides an
experiential component to the instruction.

Kneller, G.F. (1971). Contemporary educational theories. In G.F. Kneller (Ed.),
Foundations of education (3rd ed.) (pp. 231-251). New York: John Wiley &
Sons. Inc.

194

George Kneller summarizes and critiques four educational theories which have had
effects on American education. These include perennialism, progressivism, essentialism
and reconstructionism.

Perennialism, essentially affirms the constancy of the most basic elements of life and
human nature, emphasizing study of classic literature as a means of learning about these
themes. The goal of education is to impart knowledge about eternal truths in preparation
for life. The implication is that students need to be taught specified subjects, these
primarily being grounded in classic literature, philosophy, history, and science.

Progressivism is essentially embodied in the theories of John Dewey and others who
center education on the interests and capacities of the child, and do not prescribe a fixed
subject matter. Progressivists claim that education is not preparation for life, but is,
rather, life itself. They claim that change is the central theme in human affairs rather than
constancy.

Essentialism is closer to perennialism than to progressivism, although essentialists are
more willing to accept some of the contributions of the progressivists. The claim is that
there are certain essential subjects children should learn, although these are not
necessarily based in the classics as held by the perennialists. Essentialism claims that
learning, by its nature, involves hard work, that initiative should lie with the teacher
rather than with the learner, that there should be a prescribed subject matter, and mental
discipline must be used in learning.

Recontructionism sees the school and education in general as leading the way in social
reform. It holds that education should commit itself to the creation of a new social order,
that the new society should be a genuine democracy, that social and cultural forces
condition the learner and the school and that the teacher is to convince the student of the
validity of recontructionism.

Kozel, K. (1996). The interactive experience model: Designing with the spiral.
Multimedia Producer, 2(1), 61-66.

The second phase of the interactive experience model (IEM) is described in this article,
creating the interactive spiral. This spiral includes gaining interest, activity, and
resolution. The aim is to engage the user thereby enhancing learning. Kozel discusses the
theory of a "flow state" in which the user is completely engaged in what they are doing

195

and the role of the spiral approach in encouraging this state. User options should be
presented in ways which promise a benefit if exercised and the overall experience should
allow for various levels of challenge.

Kozel, K. (1995). Crafting the user experience. Multimedia Producer, 1(11), 72-80.

This article is the first in a two part series on designing interactive, multimedia
applications which "work." Kozel describes a model for thinking about and designing
interactive, multimedia applications called the interactive experience model (IEM). The
model consists of two broad phases: (1) define the goal and related user experience, and
(2) develop the application using the interactive spiral. The first phase is discussed in this
article. The author emphasizes the necessity of clearly defining the goal. For educational
programs this would be the performance objectives. Then, the designer specifies what
experience would enable the user to meet the intended goal. Incorporating appropriate
experiences or simulated experiences is a type of situated learning and has been shown
to be effective.

Lanza, A. (1991). Some guidelines for the design of effective hypercourses. Educational
Technology, 31(10), 18-22.

In this article the author emphasizes the importance of designing and implementing
computer-based learning applications, in this case hypermedia, according to cognitive
learning theories. She points out the danger of having new technology drive development
of courseware, rather than following instructional design and cognitive theory guidelines.

Lanza describes the similarity between the network structure of hypercourses and the
semantic network structure of knowledge according to cognitive theories. One
implication of organizing hyperknowledge as a network and accessing it randomly
through links is that a node, or unit of knowledge in a hypercourse, should deal with a
single topic or concept and should stand alone. Links in the hypercourse will influence
how students learn since access to knowledge is via links which are provided.

Lennon, J., & Maurer, H. (1994). Lecturing technology: A future with hypermedia.
Educational Technology, 34(4),5-14.

The focus of this article is on applying computer-based technology to lecture situations.
Various traditional methods including the use of blackboards, white boards, overhead
transparencies, and flip charts are analyzed to determine the advantages as well as the
disadvantages of each. The goal, then is to incorporate the advantages of all methods into
a specification for lecturing technology of the future. Advantages of future computer
based lecturing technologies include dynamic presentations, student interaction, and ease
of providing all materials to learners.

Littauer, 1. (1994). A "how-to" on using courseware in the classroom. THE. Journal,
22(1), 53-54.

196

Littauer focuses on the fact that the role of the classroom teacher changes when
instructional courseware is used. He briefly discusses seven considerations: (1) does the
courseware basically consist of drills, (2) is the program project-oriented involving
students in planning and problem solving, (3) are students grouped simply to help each
other, (4) is the courseware interactive, (5) does the program contain all the data
necessary to complete the assignment project, (6) what is the teacher's tolerance of
"confusion", and (7) is the courseware sold with an unconditional, money-back
guarantee?

Luther, A. C. (1994). Authoring Interactive Multimedia. Boston: AP Professional.

A general textbook on authoring interactive, multimedia applications. Topics discussed
include the authoring process, authoring interfaces, authoring languages, and working
with various types of media. Luther emphasizes the need to set up an authoring
environment consisting of various authoring tools which are appropriate for the type of
applications to be developed and to the skills and inclinations ofthe developer.

Lynch, P. J. (1995). Entry-level multimedia authoring tools for education. Syllabus, 8(8),
10-18.

Lynch presents a review of five authoring systems which are oriented toward beginning
courseware developers. The author focuses on packages which facilitate development by
using point-and-click style user interfaces and do not require scripting. Action!, Astound,
Digital Chisel, mPOWER and Special Delivery are reviewed.

Maddux, C. D. (1992). User-developed computer-assisted instruction: Alternatives in
authoring software. Educational Technology, 32(4), 7-14.

In this article, the author discusses various approaches which educators can take in
developing custom courseware. Reasons for educators to do their own development are
presented, and tools for doing the development are discussed. In particular, traditional
programming languages, specialized authoring languages, authoring systems and
authoring aids are described. The advantages and disadvantages of the various types of
tools are examined.

Mauldin, M. (1995). Developing multimedia: A method to the madness. THE. Journal,
22(7), 88-90.

Mauldin describes the software development process used at the Educational Technology
Laboratory at the Medical University of South Carolina. It is generally a traditional
software engineering model tailored to the development of educational materials. Goal
specification and needs assessment are done early in the process, followed by analysis,

197

design, production, and implementation. The article is important in two respects: (1) the
need for concentrating on goals, needs and analysis early in the development is
emphasized, and (2) the need for formative evaluation at all stages of development is
presented. This is seldom emphasized in deVelopment models except those of software
engineering.

McFarland, R.D. (1995). Ten design points for the human interface to instructional
multimedia. THE. Journal, 22(7),67-69.

The author's primary focus is on the design of the Human-Computer Interface (HCI) for
multimedia programs. McFarland notes that one important characteristic of multimedia
programs is their ability to engage the learner, and it is the human-computer interface
which is fundamental in accomplishing this. He then briefly describes ten points to
consider in the design of the HCI for a multimedia program.

McGilly, K. (1994). Cognitive science and educational practice: An introduction. In K.
Gilly (Ed.) Classroom lessons: Integrating cognitive theory and classroom
practice (pp. 2-21). Cambridge. MA: The MIT Press.

The idea of information processing is that humans learn and process information in ways
similar to the information processing performed by digital computers. With regard to
knowledge and knowledge types two ideas are important. First, knowledge tends to be of
two types, declarative and procedural. Second, knowledge tends to be retained either as
isolated and disconnected bits of information, or as connected, interrelated information.
Memory is seen as existing in two types, working memory and long term memory.

Cognitive science methodologies of task analysis and verbal protocol analysis, as well as
computer simulation are also described.

Several applications are briefly described which seem to support the claims of cognitive
theory. The technique of reciprocal teaching is used to aid reading comprehension.
Hypermedia is used to help students see and incorporate the interconnectedness of
historical and literary knowledge. Using the concept of elaboration to build knowledge on
existing knowledge is used in solving complex mathematical problems.

McLellan, H. (1994). Situated learning: Continuing the conversation. Educational
Technology, 34(8), 7-8.

In this brief article, Hilary McLellan summarizes key aspects of situated learning. In
particular, the theory of situated cognition assumes that knowledge is "contextually
situated" and is influenced by the situations in which it is used. The theory identifies three
types of learners: novice, expert and "just plain folks." The importance of this last
category is that they exhibit some of the characteristics of experts in their normal
situated environments, such as at work.

198

The situated learning model identifies the following components: (1) apprenticeship, (2)
collaboration, (3) reflection, (4) coaching,(5) multiple practice, and (6) articulation. Most
of these elements involve others and represent a social context for the learning. McLellan
states that "stories" and technology are important in situated learning. Finally, knowledge
must be learned in an appropriate context such as an actual work setting or a highly
realistic "virtual" setting.

Miller, C.D., Heeren, V.E, & Hornsby, E.J., Jr. (1990). Mathematical Ideas (6th ed.).
Glenview, IL: Scott, Foresman-Little, Brown.

This text by Miller is a mathematics text, not a Computer Science text. However, it
provides some historical information about Leonhard Euler who pioneered graph theory,
as well as some explanation of graphs and networks. The Koenigsbug Bridge problem is
described.

Moore, D.M. (1994). The parable of the expensive ballpoint pen (revisited): Implications
for hypermedia. Computers in the Schools, 10(1/2),3-7.

Moore raises the question of whether hypermedia can be used to make a real contribution
to education, or whether it is simply a new way of doing old things, one which is
admittedly different, but not necessarily better. The author explains what hypermedia is,
and discusses the opportunity for student-directed learning. He mentions the ideas of
Papert in which students become developers of their own instruction.

Despite potential benefits, Moore cites several problems and drawbacks, including the
fact that most existing hypermedia-based instructional programs are not created using
instructional design and do not incorporate cognitive learning theories. Disorientation,
distraction, human factors, and learner control are issues which need to be carefully
addressed in hypermedia systems

Myers, R.J., & Burton, J.K. (1994). The foundations of hypermedia: Concepts and
history. Computers in the Schools, 10(1/2), 9-20.

While hypermedia has been popular for several years, there still exist misconceptions and
misunderstandings about what it is and what it can do. This article provides a good,
thorough overview of hypermedia beginning with an explanation of the concept and
related terminology. The historical roots are described including important contributors
such as Bush, Englebart, Nelson, and Weyer. Hardware and some successful hypermedia
systems are presented. The authors believe that Hypercard has done more to make
hypermedia popular than any other factor since users can easily create their own
hypermedia programs.

The authors also discuss design and implementation issues such as providing navigational
aids, proper interface design, and the degree and type of learner control. Factors which

199

may inhibit the use of hypermedia in education, development time and cost,
hypermedia's frequent association with cooperative methods, and the change in the role
of the teacher, are also presented.

Naps, T.L., & Nance, D.W. (1995). Introduction to computer science: Programming,
problem-solving and data structures (3rd alt. ed.). St. Paul, MN: West Publishing
Company, Preface, xxiii.

In the preface to this Computer Science text, the authors emphasize the use of "extensive
figures and graphic documentation ... to allow students to visualize the effect of algorithms
on data." Additional explanation and examination of the text clearly indicates that a
mechanism is needed to help students understand various abstract structures, processes
and concepts presented in the text.

Naps, T.L., & Pothering, G.J. (1992). Introduction to data structures and algorithm
analysis with Pascal (2nd ed.). St. Paul, MN: West Publishing Co.

Naps and Pothering provide a good, clear introduction to graph and network data
structures and their associated algorithms. The use of diagrams and figures helps to
clarify the presentation. Pascal implementations of data structures and algorithms
demonstrate implementation techniques. Implementations are based on the concept of
abstract data types which is used throughout the text. Depth first search, breadth first
search, shortest path, minimum spanning tree, and topological ordering are all discussed.

NASA: Parametric Cost Estimating Reference Manual.
http://www.jsc.nasa.gov/bu2/COCOMO.html

The reference provides a brief explanation of COCOMO and provides input fields to
allow the user to perform COCOMO estimates online. Particularly helpful is the
explanation of the three categories of software development used in the COCOMO
model: organic, semidetached, and embedded.

Noblitt, J.S. (1995). Enhancing instruction with multimedia. Syllabus, 8(9), 28-30.

This article links technology, in the broad sense, such as writing, books, images and
digital computers to learning and teaching styles. Noblitt emphasizes that all technologies
and methodologies have their proper place. The key advantage of the use of media
(images) is visualization; the use of digital technology is interactivity. Interactive
technology actively engages the learner.

Park, 1., & Hannafin, M. (1993). Empirically-based guidelines for the design of
interactive multimedia. Educational Technology, research and development,
41(3),63-85.

Park & Hannafin try to bring order and method to the design of interactive multimedia

200

courseware in this excellent article. In particular, they organize relevant research from
psychology, pedagogy, and technology and derive principles for interactive multimedia
design based on this research. While the content is too exhaustive to summarize, some of
the areas considered are (1) improving learning, (2) integration of knowledge, (3)
knowledge transfer, (4) feedback, (5) maintaining learner attention, (6) minimizing
disorientation, (7) providing guidance, and (8) reducing metacognitive demands.

The twenty "implications" for design are practical, each being based on a corresponding
principle derived from research. This is not only helpful in designing interactive
multimedia systems, but also useful as a guide in evaluating systems. The presentation
gives the designer a solid research base on which to build.

Park, O. (1994). Dynamic visual displays in media-based instruction. Educational
Technology, 34(4),21-25.

Park discusses the theoretical bases, strategic applications, and considerations for using
dynamic visual displays (DVD's) in courseware applications. He traces the effectiveness
ofDVD's back to both behavioral and cognitive theories of learning. From a cognitive
point of view, DVD's can "make complex cognitive tasks more concrete and easy to
understand. "

DVD's can be used as (1) an attention guide, (2) an illustration aid, (3) a knowledge
representation means, (4) a facilitator of mental model formation, and (5) a visual
analogy or reasoning anchor for understanding abstract and symbolic concepts, processes,
and structures.

Park, O. (1991). Hypermedia: Functional features and research issues. Educational
Technology, 31(8), 24-31.

In this article the author discusses three major topics relating to hypermedia research and
application to education: (1) the desired functional features of hypermedia, (2)
instructional applications, and (3) research issues and technical improvements. Park
presents ten functional characteristics for hypermedia. Some which are particularly
important to educational applications are the need for guidance in node selection, the
need for a browser, the need for node selection using keywords, and interface capability
with programming languages. The problems as well as the potential benefits of learner
control inherent in hypermedia systems are discussed and research relative to learner
control is described.

Paske, R. (1990). Hypermedia: A brief history and progress report. THE. Journal,
18(1), 53-56.

Paske provides a short summary of the key concepts of hypermedia. Hypermedia is
defined and some of the history of hypermedia is presented. The overall structure of a
hypermedia system is briefly described. Hypermedia is contrasted to interactive video and

interactive multimedia. The author touches on the bandwidth demands of hypermedia
systems delivered on a network and explains a little about ISDN.

Perkins, D.N. (1991). What constructivism demands of the learner. Educational
Technology, 31(9), 19-21.

201

In this article, Perkins takes a critical look at the demands which constructivism places on
the learner. The main areas considered are: cognitive complexity, task management, and
"buying in."

Several factors contribute to the complexity of the cognitive load placed on the learner.
First, students are generally asked to cope with complex situations. Second,
phenomenaria are typically rich environments. And lastly, the conflict between
learners' naive concepts and the concepts being learned may be dealt with by "facing" the
conflict between the two, which may be difficult for learners.

Task management is a key part of learning. Constructivism expects more of the task
management to be assumed by the learner than does a traditional learning situation.
Finally, the learners may not wish to work in a constructivist environment. They may
want teachers to "teach" them, rather than taking responsibility for their own learning.

Podell, D.M., Karninshy, D., & Cusimono, V. (1993). The effects of a microcomputer
laboratory approach to physical science instruction on student motivation.
Computers in the Schools, 9(2/3),65-73.

In this article Podell, Kaminsky & Cusimono describe a study which they conducted to
determine the effect of the integration of computer technology into a secondary physical
science course on factors related to motivation. The effects on attendance, attitudes
toward science and toward computers, and student enrollment in subsequent science
courses were studied. The researchers randomly assigned students to experimental or
control groups from a population of all ninth-grade physical science students in a New
York City high school. Students in the experimental groups used computer-based and
hands-on activities while students in the control group received more traditional
instruction, primarily lecture format and demonstrations.

The results of the study showed, that for the population studied, the use of computer
based instruction had a positive effect on student attitudes and behavior. Student
attendance and enrollment in subsequent courses improved, and students' attitude toward
computers was positively influenced. Also, science achievement was higher for the
experimental group.

Privateer, P. M., & MacCrate, C. (1992). Odyssey project: A search for new learning
solutions. THE. Journal, 20(3), 76-80.

202

Privateer & MacCrate have developed an interesting and creative courseware application
which supports the use of collaborative learning techniques in a humanities course. The
authors found that students in large classes of a humanities course were reduced the role
of transcribers and were not afforded opportunities for critical thinking and analysis
which the instructors desired.

The courseware was a hypermedia application used in conjunction with collaborative
techniques. The courseware provided an interdisciplinary knowledge base, navigational
aids, course management tools, and an integrated word processor which allowed the
students to contribute to the knowledge.

The authors seem to have done a good job of applying hypermedia technology to a
course. The implementation was creative and effective. It is interesting that the
courseware was not expected to stand on its own, but was supported by specific
techniques, both in terms of group work and special lecture formats. This may partially
account for the success of the application.

Riley, lH., Jr. (1990). Advanced programming and data structures using Pascal. Boston,
MA: PWS-Kent Publishing Co.

A Computer Science text, this book not only covers the concepts and terminology related
to graphs and graph algorithms, but also includes Pascal code demonstrating the
implementation of both the data structures and the algorithms. It provides a practical
reference to the implementation of graphs and graph algorithms. Both the adjacency
matrix and adjacency list techniques for implementing graphs are presented in detail.

Rodger, S.H. (1996). Integrating animations into courses. Integrating Technology into
Computer Science Education (pp. 72-74). New York: ACM Press.

The author describes the use of algorithm animations in Computer Science courses.
Animations are used in lectures to clarify the description of algorithm operation and to
demonstrate visually the effects of algorithms on data structures. Animations are also
used in laboratories. Students can run the animations with different data sets to see how
the algorithms operate under different conditions. The animations are interactive,
allowing students to pause and replay the program. Rodger also describes the use of the
XTANGO animation tool which was used to create the animations.

Roselli, T. (1991). Control of user disorientation in hypertext systems. Educational
Technology, 31(12), 42-46.

Roselli discusses problems associated with the use of hypertext (or hypermedia) systems
for educational applications. These include the need for higher-order metacognitive skills,

203

and possible disorientation and cognitive overload. Having described the problems the
author suggests a means for overcoming these problems. The technique involves
monitoring the user's navigational choices, and having the system make suggestions for
"better" selections.

Sammons, M.C. (1995). Students assess computer-aided classroom presentations. THE.
Journal, 22(10), 66-69.

The article describes a project undertaken at Wright State University in Dayton, Ohio
which was intended to assess and encourage faculty use of technology in their teaching.
Faculty teaching large, lecture intensive, general education courses were the primary
participants. The primary use oftechnology was to prepare computer-based presentations
for use in lectures. One aspect of the study was an assessment by students of the faculty
use of technology. The vast majority of students felt that using computer-based
presentations supported course content, made lectures more organized, and facilitated
seeing and reading instructor presentations and note-taking. The article presents general
recommendations and comments regarding screen design, multimedia use, methodology,
room design and layout, and hardware.

Savery, l.R., & Duffy, T.M. (1995). Problem-based learning: an instructional model and
its constructivist framework. Educational Technology, 35(5),31-38.

This article on constructivism emphasizes a problem-based learning approach, in
particular, that used by Barrows. The authors begin by summarizing three principles of
constructivism: (1) understanding is gained through interaction with the environment, (2)
cognitive conflict provides a stimulus to learn, and (3) knowledge is created by social
negotiation.

Instructional principles derived from constructivism are: (1) learning activities should be
anchored to a larger task or problem, (2) learners should be supported in developing
ownership for a problem, (3) tasks should be authentic, (4) tasks and activities should
reflect the complexity of the actual situation in which the learner will eventually operate,
(5) allow the learner to be responsible for the process for developing the solution, (6) the
environment should support and challenge the learner, (7) encourage learners to consider
alternative views, and (8) allow and encourage the learner to reflect on the solution and
the process of arriving at the solution.

Schach, S.R. (1993). Software engineering (2nd ed.). Homewood, IL: Irwin.

This is a standard text used in Computer Science curricula for learning the discipline of
software engineering. The scope and processes of software engineering are discussed as
well as specific software development models, computer-assisted software engineering
(CASE) tools, and testing principles. Each major phase of the development process is
described in detail.

204

Schwier, R. A. (1993). Learning environments and interaction for emerging technologies:
Implications for learner control and practice. Canadian Journal of Educational
Communication, 22(3), 163-176.

The focus of Schwier's article is on levels of interactivity and learning environments.
Three learning environments are described: prescriptive, democratic, and cybernetic. In
prescriptive learning, basically all elements of learning, the content, sequence, activities,
etc., are defined and learner interaction is restricted to reaction. Learners can be more
proactive in democratic learning environments where they are allowed to make decisions
and choices about sequence, content, and activities.

In cybernetic environments, learners work with adaptive computer-based systems. As in
democratic systems, learners exercise a high degree of control; however, the system
intelligently adapts to the leamer's actions. Generally, learning is more constructivistic.

Shneiderman, B. (1992). Designing the user interface: Strategies for effective human
computer interaction (2nd ed.). Reading, MA: Addison-Wesley.

This is a classic text by the leading researcher in the field of human-computer interface
(HCI) design. Shneiderman discusses a wide range of topics including: (1) human factors,
(2) theories, principles, and guidelines for HCI, (3) menus, (4) command languages, (5)
direct manipulation, (6) interaction devices, (7) response time and delay rate, (8) system
messages, screen design, and color, and many others. Much of the focus ofthe text is on
the benefit of direct manipulation and the creation of easy-to-use, intuitive interfaces.

Shyu, H., & Brown, S.W. (1993). A study of interactive learning: IVS and diagrams.
Computers in the Schools, 9(4), 71-80.

Shyu & Brown discuss the possible advantages of using dynamic visual displays,
especially in contrast to the use of static displays as in a textbook. They cite one study
which seems to indicate that achievement was not enhanced by use of dynamic displays
from an interactive videodisk system (IVS), however, another study showed significantly
higher achievement for groups using dynamic means instead of static displays.

In addition, student reaction to the dynamic displays was more positive. The authors then
present a study which they did comparing the use of dynamic visual images with that of
static images in the learning of a procedural task. Their results do not show a significant
difference in performance for learners using dynamic displays compared to those using
static displays. However, students using dynamic displays did have more favorable
attitudes about the instruction.

205

Skinner, B.F. (1971). The science oflearning and the art of teaching. In P.E. Johnson
(Ed.), Learning theory and practice(pp.22-24). New York: Thomas Y. Crowell
Company, Inc.

B. F. Skinner describes recent (at the time) advances in learned behavior using
appropriate reinforcements and schedules of reinforcements. In this article he claims two
significant advances in techniques in the field of learning: (1) a better understanding and
use of the Law of Effect, and (2) schedules of reinforcement which promote the
maintenance of given behaviors for long periods of time.

After describing these techniques in experimental settings, Skinner moves on to their
application to education. In particular, teaching elementary-level children mathematical
skills is presented in terms of providing appropriate positive reinforcements. Based on the
complexity of teaching mathematics, Skinner concludes that the classroom teacher cannot
adequately provide the necessary reinforcements, and suggests a teaching machine to do
the task. He concludes with an appeal for American education to use its resources to
provide such machines in the schools.

Skinner's suggestion to use teaching machines, especially for learning subjects such as
mathematics, certainly foreshadows the use of computers for drill-and-practice type
applications. His emphasis on reinforcements, such as prompt positive feedback, is
something a teaching machine or computer-based lesson can easily do.

Of course, Skinner views the process from a purely behaviorist view, provide proper
stimuli and you will get proper responses. What is interesting is that in certain areas, such
as drill and practice, the techniques associated with this view appear to work. By treating
the learning process as a "black-box" and determining what inputs have to be entered to
create desired outputs, it is not necessary to understand the actual processes of learning.

Smith, G., & Debenham, J. (1993). Automating university teaching by the year 2000.
THE. Journal, 21(1), 71-75.

Smith & Debenham assert that the traditional methods of delivering education at the
college and university level must change in response to economic and other pressures.
They propose a solution which is being developed at The University of Utah, that of
using interactive, multimedia courseware to teach basic concepts and terminology,
freeing faculty to focus on software development, lead seminars, and in general deal with
higher level issues. The software created by the authors, COMPUTER TUTOR, is based
on cognitive learning theories. Studies of classes using the software have shown a number
of advantages in student attitude and performance.

206

Solomon, M.B. (1994). What's wrong with multimedia in higher education? THE.
Journal, 21 (7), 81-83.

In this article, the author looks at the failure of various technologies to revolutionize
education. Television and the microcomputer have not produced the revolutionary impact
on education which was promised, and neither has multimedia says the author. Five
factors which are making it difficult for multimedia to have a significant impact on
education are: (1) the culture of higher education, (2) cost, (3) lack of standards, (4)
multiple talents required to produce software and (5) the amount of time needed to
produce software. Solomon asserts that only when these factors are overcome will
multimedia be able to have the impact on education which many are hoping for.

Staninger, S. W. (1994). Hypertext technology: educational consequences. Educational
Technology, 34(6), 51-53.

The author begins by explaining what hypertext is and how a hypertext application is
structured using nodes and links. The nodes represent units of knowledge and may be
comprised of information presented using various media. Staninger believes that the links
are the vital part of the application and that a primary challenge for the designer is to
determine and implement appropriate links.

According to the author, the main benefit of hypertext-type applications is that they
allow the learner to pursue knowledge in ways which are appropriate to the ways in
which people learn, specifically, in a nonlinear fashion. Cognitive Flexibility Theory
claims that knowledge is interconnected and hypertext demonstrates and reinforces this.

Stanley, R. (1995). Steps, roads, funnels, galaxies: Metaphors for designing interactive
presentations. THE. Journal, 22(5),57-61.

Stanley, an art instructor, presents a different view on the process of design of a
multimedia program. He approaches the design process and the multimedia program as
an artist, one not always comfortable with the rigid step-by-step approach demanded by
most design and development methodologies. He maintains that in the early stage
activities of selecting lessons, describing outcomes, doing an overall design, identifying
materials, and exploring various pedagogic techniques should be done simultaneously,
each being affected by the others until it becomes necessary to apply stricter discipline
and work sequentially. His point is not that everyone should work in this manner, but that
for some it may be more comfortable and productive than a strict sequential approach.

Steinberg, E. R. (1991). Computer-assisted instruction: A synthesis of theory, practice,
and technology. Hillsdale, NJ: Lawrence Erlbaum.

This text is the second volume of a two-volume set, the first volume being, Teaching
Computers to Teach. Unlike the first book which is primarily a how-to guide for
developers of computer-assisted instruction (CAl), this volume focuses on the theoretical

207

foundations of design and development practices. Two important themes run throughout
the book: (1) instructional interactions between people and computers are distinctive, and
(2) despite this distinctiveness, there are features of CAl which are similar to other modes
of instruction.

Stoddart, T., & Neiderhauser, D. (1993). Technology and educational change. Computers
in the Schools, 9(2/3), 5-22.

The authors assert that, even with the use of computer-based instructional systems,
education has changed little since "the inception of the common school." The primary
thrust of the article is the comparison of Integrated Learning Systems (ILS's) and tool
based systems (TBS's). An ILS is primarily based on behaviorist learning theories and an
objectivist view of learning. Knowledge is seen as primarily external to learners and the
job of the teacher is to transmit this knowledge to students.

TBS's are predicated on cognitive theories, particularly constructivist theories which
focus on knowledge being created by learners as they interact with the world around
them. Thus, the TBS approach to computer-based instruction differs radically from the
ILS approach and supports student-centered learning, and active student participation in
the learning process. The authors also point out several barriers to adoption of TBS
systems including resistance to change, lack of effective teacher training and cost in terms
of both time and money.

Sullivan, P. (1971). John Dewey's philosophy of education. In J.C. Stone & F.W.
Schneider (Eds.), Readings in thefoundations o/education (2nd ed.): Vol. 2.
Commitment to teaching (pp. 495-502). New York: Thomas Y. Crowell
Company, Inc.

Phyllis Sullivan summarizes John Dewey's Pedagogic Creed and gives a brief critique of
Dewey's views. She begins by explaining the educational environment of the late 1800's
and noting that "previous to this period, education was received from the home and some
public institutions." Sullivan emphasizes that Dewey believed that the success of
democracy depended on education both by the family and by the school.

Sullivan then reviews the five main principles in Dewey's pedagogic creed. First,
education begins "by understanding a child's capacities, interests, habits, and instinct." In
other words, education of children should be done in a way which recognizes that
children are not little adults. Secondly, school must provide opportunities for learning
within social settings, encouraging learning and discipline for the good of the social
group, rather than for some external purpose.

The curriculum would be flexible, and the teacher's role would be to select appropriate
activities geared to the children's interests and abilities. The author notes that Dewey has
been criticized for not properly developing his concept of the curriculum. In her
summary, the author relates some of the positive effects of Dewey's philosophy.

208

Sweeters, W. (1994). Multimedia electronic tools for learning. Educational Technology,
43(5),47-52.

Sweeters describes and evaluates several types of instructional applications including (1)
tutorials, (2) educational databases, (3) simulations, and (4) educational games as well as
a model he calls learning nodes. Within the educational databases type are included
hypertext and hypermedia applications.

The author examines each of the instructional applications in light of Gagne's events of
instruction. This provides a sound educational basis for analysis rather than focusing on
technology issues. It is interesting that the tutorial method, which generally is losing
favor, contains all ofthe events of instruction.

Thorndike, E.L. (1971). From the principles of teaching. In P.E. Johnson (Ed.), Learning
theory and practice (pp.12-22). New York: Thomas Y. Crowell Company, Inc.

Written in the early 1900's(1906), this article takes an interesting view of education. First,
education is intended to change people. Thorndike says that "The need for education
arises from the fact that what is is not what ought to be." Second, the primary goals of
education are to teach societal and behavioral values to individuals, in particular,
"Education should make human beings wish each other well, should increase the sum of
human energy and happiness and decrease the sum of discomfort of the human beings
that are or will be, and should foster the higher, impersonal pleasures."

Finally, Thorndike sees the process as one largely of stimulus and response. The
questions relating to teaching then become, what stimuli should I as a teacher provide to
get the desired responses from the learners?

Thurber, B. D., Macy, G., & Pope, J. (1991). The book, the computer and the humanities.
THE. Journal, 19(1), 57-61.

The authors describe a computer-based learning application in the humanities and their
rationale for developing the application. The application, NewBook, incorporates
hypertext capabilities, as well as other forms of learner interactivity such as note-taking
and writing essays. The goals were to engage the learner in a "reader-centered method of
instruction, to embed the teaching of integrative, evaluative skills in the course material
itself', and to "enable readers to have continuous evaluation oftheir own thought."

Tolhurst, D. (1992). A checklist for evaluating content-based hypertext computer
software. Educational Technology, 32(3), 17-21.

Various criteria for evaluating hypertext or hypermedia educational systems are
described. Factors discussed include: (1) user control vs. amount of guidance, (2)

navigational aids, (3) clarity oflinking mechanisms, and (4) hypertext contexts. The
author also discusses curriculum considerations in the use of hypertext.

Twigg, C.A. (1996). It's the student, stupid! Educom Review, 31(3).
http://ivory .educom.edulweb/pubs/review/review Articles/3134 2.html

209

In this article, Twigg decries the lack of college-level instructional software and the
opinion that their is not a market for such software. The primary fallacy of those who do
not think that there is a market is that they are wrong about who the ultimate customers
are, students. Twigg says that instructional software should be considered to be similar to
learning materials such as textbooks, learning tools such as calculators, and learning
services. Basing the potential demand on student need leads to the conclusion that there is
a significant market for instructional software.

Twigg, C.A. (1995). A chicken-egg dilemma. Educom Review, 30 (3).
http://ivory .educom.edulweb/pubs/review/review Articles/3 03 50 .html

Twigg notes that, in general, there is not a great deal of good instructional software at the
college level. Much of what is available consists of ad hoc learning programs created by
faculty for their own courses. Twigg's suggestion is that a consortium of colleges and
universities get together and create specifications for needed instructional software and
agree to use it if developed. The specifications should be given to companies in the
software development industry and paid for collectively by the colleges and universities.
She even suggests some top-level specifications, including those based on achieving
measurable learning outcomes.

Wallis, C. (1995, Spring). The learning revolution. Time, 49-51.

Wallis notes that the prophesied wide-spread impact of computer technology in education
has not occurred. She goes on, however, to describe one particular school, the Dalton
School, where computer-based technology has made a significant impact on education.
Applications in history, literature, and science are described. The article gives a glimpse
of the possibilities of effective CBI.

Wei, C. (1991). Hypertext and printed materials: Some similarities and differences.
Educational Technology, 31(3), 51-53.

Similarities and differences exist between printed materials and hypertext systems. The
author points out that both media can be used for instruction; provide information; and
use text, graphics, diagrams and pictures. However, there are fundamental differences
between these two media.

In particular, hypertext systems are generally more complex, promote nonlinear thinking,
emphasize cognitive information processing, and may be dynamic in content and
structure.

210

Weiss, J. (1994). Keeping up with the research. Technology & Learning, 14(5), 30-36.

Key elements of current research in the area of computer-based learning are described in
this article. Issues are reported from several major research efforts including Stanford
Research Institute and Educational Development Corporation, consultant and researcher
Saul Rockman, and researcher Henry Jay Becker. General topics include the impact of
computer-based learning, factors affecting the implementation and effectiveness of
computer-based learning, and factors affecting teacher use of computer-based learning.

Willis, 1. (1993). What conditions encourage technology use? It depends on the context.
Computers in the Schools, 9(4), 13-32.

Willis maintains that the primary issues relating to implementing computer technology in
education today are different from those of the past. He claims that hardware selection is
simpler due to fewer, more similar options. Training, while necessary, is more related
now to how instructional software can and should be used than to how to use the
equipment or the software. And finally, Willis believes that the technical quality, not
necessarily the educational quality, of available software is better than in the past.

Several concrete suggestions for facilitating introduction of computer-based technology
into the curriculum are given, including making educators aware of what is available,
allowing them to explore new technologies, providing consultation for planning how to
use technology in their classes, and providing training "just-in-time", that is, when it is
needed and will be helpful.

Wilson, B.G. (1995). Metaphors for instruction: Why we talk about learning
environments. Educational Technology, 35(5), 25-30.

The theory of situated cognition insists that all learning occurs in real situations, where
the learner interacts with other people, employs appropriate "tools", and interacts with the
environment. The claim is that learning cannot occur in "artificial" situations, such as
formal schools.

The author cites research results as well as educational theoreticians such as Dewey and
Kolb to bolster the case for situated learning. Dewey asserted that "All genuine education
comes about through experience." Kolb's four-stage model oflearning incorporates two
stages, concrete experiences and active experimentation, which are obviously
experiential.

The author claims that learning must be situated in "authentic activities" meaning those
which require exactly the cognitive processes which one is trying to develop. The claim is
that learning is not transferable from similar experiences.

211

Wilson, J., Aiken, R., & Katz, 1. (1996). Review of animation systems for algorithm
understanding. Integrating Technology into Computer Science Education (pp. 75-
77). New York: ACM Press.

Wilson, Aiken & Katz describe several available packages which can be used to animate
the operation of algorithms. The animations are dynamic visualizations of algorithm
operation and the effect of the algorithms on data structures. These systems allow
students to explore the operation of algorithms, often interactively. Several animation
systems are briefly described including: Balsa, Xtango, GAIGS, and FLAIR. The authors
note that evidence relating to the effectiveness of these packages is mostly anecdotal.
Studies which have been done indicate that algorithm animations should be used as a
supplement to traditional instruction, not in place of it.

Wulfekuhle, N. (1994). Selecting a hypermedia authoring program for CBT. THE.
Journal, 21(7), 77-80.

This article, written by a program manager for a training organization, focuses on the use
of hypermedia as a means of implementing computer-based training programs. Learner
control, form of information processing and source data organization are the three
functional areas on which the author concentrates. Each of these is elaborated to provide
specific criteria to be used in the evaluation or design of a hypermedia computer-based
training application. The author seems to have a high regard for the potential of
hypermedia and believes that successful applications will custom build lessons to meet
specific users' problems, resulting in reduced training costs and time.

212

Appendix A

Technology Fact Find Questionnaire

Technology Fact Find Questionnaire

The following questions are intended to explore the use of computer
technology in educational, business, personal,and other situations.
Please complete each question as accurately as possible. Thank you
for your cooperation.
~==

Interviewer Date

Person interviewed Position -------
===

PART I: COMPUTER USAGE AT WORK

SYSTEM INFORMATION (Check appropriate items)

computer: IBM PC/compatible
Macintosh

DON'T KNOW

Operating System: DOS 5.0+
_Mac System

DON'T KNOW

RAM: 1MB 2MB 4MB

386
68000

7.

8MB

486 Pentium
Power Mac

Other PC
Other Mac

Windows 3.1+ Windows 95/NT
Other

More than 8MB DON'T KNOW

Video: VGA SVGA 14"/256 color (Mac) Other DON'T KNOW

Other: mouse printer sound card CD-ROM DON'T KNOW
-

Hard Disk size (fill in amount) DON'T KNOW

WORK USAGE INFORMATON (Check appropriate items as they apply to your
computer usage at work.)

Frequency of use:

Applications:

Internet Use:

Educational Use:

daily weekly

word processing
_presentations

World Wide Web
download software

prepare materials
-tutorials

Other

less than once/week

spreadsheets
=desktop publ.

News groups
APPLICABLE

presentations
-simulations

APPLICABLE

database
Other

email

gradebook
-drills

How satisfied are you with the system you have at work?

Very Satisfied It's OK Dissatisfied

213

Page 2

PART II: COMPUTER USAGE AT HOME

SYSTEM INFORMATION (Check appropriate items)

Computer: IBM PC/compatible
Macintosh

386
68000

486 Pentium Other PC
Other Mac Power Mac

DON'T KNOW

Operating System: DOS 5.0+ Windows 3.1+ Windows 95/NT
System 7.5 Other

DON'T KNOW

RAM: 1MB 2MB 4MB 8MB More than 8MB DON'T KNOW

Video: VGA SVGA 14"/256 color (Mac) Other DON'T KNOW

Other: mouse _printer sound card CD-ROM DON'T KNOW

Hard Disk size (fill in amount) DON'T KNOW

HOME USAGE INFORMATON (Check appropriate items as they apply to your
computer usage at horne.)

Frequency of use: _daily _weekly less than once/week

Applications: word processing spreadsheets database - -
presentations desktop publ. Other -

Internet Use: World Wide Web News groups email -
download software NOT APPLICABLE

Educational Use: prepare materials presentations gradebook - -
tutorials simulations drills
Other NOT APPLICABLE

How satisfied are you with the system you have at work?

_Very Satisfied It's OK Dissatisfied

===

Thank You for your cooperation !
===

214

215

AppendixB

Courseware Evaluation Form

216

Courseware Evaluation Form

General Information

1. Reviewer 2. Date

CS Non-CS Fresh/ Junior/
Faculty Faculty Soph Senior

3. Classification 1 2 3 4

Courseware User Interface
Hard Easy

4. Rate the overall ease of use 1 2 3 4 5

Poor Great
5. Rate the overall appearance 1 2 3 4 5

Very Very
Hard Easy

6. How easy is it to navigate, e.g. to go from 1 2 3 4 5
one activity or topic to another?

Very Very
Hard Easy

7. How easy is it to fmd the specific activity 1 2 3 4 5
or topic you want, such as a demonstration
or lab exercise?

Difficult Easy
to read to read

8. Screens are ... 1 2 3 4 5

Very Not
Cluttered Cluttered

9. Screen layouts are ... 1 2 3 4 5

Distracting Helpful
10. Use of color, graphics and sound are ... 1 2 3 4 5

Instruction
Strongly Strongly
Disagree Agree

11. Content is accurate. 1 2 3 4 5

12. Content has educational value. 1 2 3 4 5

13. Prerequisites are clear. 1 2 3 4 5

217

Courseware Evaluation Form (Page 2)

Instruction (cont.)
Strongly Strongly
Disagree Agree

14. Purpose of courseware is clear. 1 2 3 4 5

15. Courseware achieves its goal. 1 2 3 4 5

16. Level of difficulty is appropriate for intended 1 2 3 4 5
audience.

17. The courseware increased my motivation. 1 2 3 4 5

18. Learners receive appropriate feedback. 1 2 3 4 5

19. Learners have appropriate degree of control. 1 2 3 4 5

20. Tutorials are helpful. 1 2 3 4 5

21. Animated demonstrations are helpful. 1 2 3 4 5

22. Interactive laboratory sessions are helpful. 1 2 3 4 5

23. Self-tests are helpful. 1 2 3 4 5

24. Supplementary materials are helpful. 1 2 3 4 5

25. The courseware helped my learning. 1 2 3 4 5

Comments: Please write any additional comments about the courseware.

218

Appendix C

Functional Specification

Graphs & Networks: Concepts & Implementation

Instructional Software

Functional Specification

by

Thomas E. Beutel

January 1997
Revised March 1997

219

List of Tables 221
List of Figures 222

Table of Contents

1.0 Problem Description and Goals 223
1.1 Problem 223
1.2 Goals 225

2.0 Instructional Analysis 226

3.0 User Characteristics 228

4.0 Functional Definition 230
4.1 Overall Structure 230
4.2 Individual Unit Specifications 231

4.2.1 Main Unit (Introductory Section) 231
4.2.2 Topic Units 233
4.2.3 Graphs and Digraphs Tutorial 235
4.2.4 Graph Implementation Tutorial 236
4.2.5 Networks Tutorial 236
4.2.6 Network Implementation Tutorial 237
4.2.7 Graphs and Digraphs Demonstration 237
4.2.8 Graph Implementation Demonstration 239
4.2.9 Network Demonstration 239
4.2.10 Network Implementation Demonstration 240
4.2.11 Graphs and Digraphs Lab Session 240
4.2.12 Graph Implementation Lab Session 241
4.2.13 Network Lab Session 241
4.2.14 Network Implementation Lab Session 241
4.2.15 Self-Tests 241

5.0 System Requirements 243

220

221

List of Tables

Table

1. Courseware Learning Objectives 225

2. Learner Characteristics for Graphs & Networks Courseware 229

222

List of Figures

Figure

1. Instructional Curriculum Map for Courseware 228

2. Overall Courseware Structure 231

3. Page Layouts for Main Unit 232

4. Page Layout for Computer Lab Page 234

5. Page Layouts: Tutorial, Demonstration, Lab Sessions and Self-Test 235

6. Demonstration Page with Window for Animated Demo 238

7. User Display and Controls for Lab/Demo Program 238

8. User Display and Controls for Self Tests 242

223

1.0 Problem Description and Goals

1.1 Problem

The problem to be addressed is the development of instructional software which

facilitates learning abstract structures, operations, and concepts by Computer Science

students in the area of graphs and networks. To be effective, the software must not only

deal with subject matter content accurately and appropriately, but must be developed

according to established software engineering and instructional design principles, utilize

current educational technology effectively, and be guided by cognitive learning theories.

To accomplish the development in a reasonable time development tools must be used

which facilitate the development process.

The ever-increasing use of computer technology in business, education, entertainment,

and most fields of endeavor, has challenged Computer Scientists to improve the way in

which computer software is designed and developed. In response, Computer Scientists

have adopted methodologies from the field of engineering. In general, an engineer begins

the design process by determining the needs of the ultimate user, then proceeds through a

series of designs, beginning with a purely conceptual, or abstract, model and culminating

in a detailed design. The focus at early stages of the design on abstract representations of

the end product allows the engineer to concentrate on the essential features and to

experiment with a variety of implementations.

One aspect of applying engineering methods to computer programming is to view data

structures and algorithms as abstractions, or conceptual models. This allows the software

designer to focus on the essential elements of the data structures and algorithms and to

experiment with various implementations, in much the same way as the engineer does

with an engineering design.

224

Often, abstractions and conceptual models are difficult to grasp, especially for Freshman

and Sophomore college students confronting abstract data types and algorithms for the

first time.

While dealing with abstractions in Computer Science is a problem in general, the

difficulties escalate when students are exposed to complex, logical data structures and

their associated algorithms. Simple data structures typically define the relationship of one

element to another in terms of physical ordering. A logical data structure, on the other

hand, is one in which the relationship of one element of the data structure to another is

not physically determined. Instead, each item includes information about which other

items are related to it.

The structure of these logical data structures is more complex and harder to visualize than

that of simpler structures. Examples of such structures include linked lists, binary trees,

and graphs and networks. Because the structures themselves are more complex, the

algorithms which manipulate these structures are also more complex. Thus, the general

problem of dealing with abstractions is made more difficult by having to deal with

complex abstractions.

Researchers and practitioners emphasize the difficulty of learning foreign concepts and

suggest the use of computer simulation and visualization techniques as tools to enhance

student learning of complex, abstract concepts, structures, and operations in science and

engineering.

225

1.2 Goals

The goal of this development is to produce courseware which will provide interactive,

animated graphical representations of graphs and networks which facilitate learning the

abstract structures, operations and concepts related to graph and network data structures

and related algorithms by Computer Science students. Specific learning objectives for the

completed courseware implementation when used to supplement normal instruction and

assignments are given in Table 1.

Table 1: Courseware Learning Objectives

1. The student will define the following terms related to graphs and networks:

a. acyclic graph
b. adjacency matrix
c. breadth-first traversal
d. cycle
e. degree
f. depth-first traversal
g. digraph
h.edge
i. graph
j. minimal spanning tree
k. network
1. node
m. path
n. topological ordering

2. The student will explain the following concepts related to graphs and networks:

a. A graph or network is comprised of a set of nodes and edges.
b. Traversing a graph or network using a breadth-first technique.
c. Traversing a graph or network using a depth-first technique.
d. The use of an adjacency matrix as a means of implementing a graph or network

data structure.
e. Finding the shortest path between two nodes in a network.
f. Finding the minimum spanning tree of a network.
g. Performing a topological ordering of the nodes in a network.

226

3. The student will implement an adjacency matrix as a means of implementing a graph
or network.

4. The student will implement common primitive operations for graphs and networks
including:

a. creating a graph/network
b. adding an edge
c. removing an edge
d. adding a node
e. performing a depth-first traversal
f. performing a breadth-first traversal.

5. The student will implement additional operations for networks including:

a. shortest path
b. minimum spanning tree
c. topological ordering.

6. The student will recognize and describe problems amenable to solution using graphs
and networks.

7. The student will design a computer program which uses graphs or networks to solve a
specific problem.

Accomplishment of learning objectives will be determined by normal examinations and

homework assignments.

2.0 Instructional Analysis

Each of the learning objectives has certain prerequisite skills or knowledge which the

learner must have to successfully achieve the objective. The objectives are not

independent, but form a hierarchy of learning. To insure effective and efficient learning,

instructional activities must take into account the interdependency of the learning

objectives and the prerequisite skills and knowledge.

227

Instructional analysis is used to define the interdependencies among learning objectives

and the prerequisites. An instructional curriculum map (ICM) is prepared by starting with

the highest cognitive goal and decomposing that goal into its prerequisites. This process

is then repeated on each prerequisite until the prerequisites which are identified are those

assumed to be true for the intended learners.

For the Graphs & Networks courseware, the highest cognitive goal is the goal of

designing and writing a computer program using graphs or networks to solve a problem.

This goal involves application and problem-solving. Figure 1 shows the ICM for the

Graphs & Network courseware. The items enclosed in round-cornered boxes represent

basic skills and knowledge assumed for the intended learners, Sophomore Computer

Science students.

Figure 1: Instructional Curriculum Map for Courseware

Design a Computer Program
~ using GraPh, & Networks ~

Recognize & describe Implement common Implement additional
pr 0 b lems for solution Ih'ith primitive op er atiom for op eratiom for networks

~~hr'~fk< ~~;~/ \
Understand mplement Implement E~lain Explain Explain.
network abstract adjacency mmlm~m shortest topologlcal
nature of th t
certain

lEroblems

Explain concept
of depth-fir st
traversal

Explain concept
of breadth-first
traversal

d"'1ype< ltr"\ ~'::::\ 7
Explain use of Explain concept
adjacency matrix of a network
to implement a Implement
graph or nel'i:vork common data

Explain concept
of a graph comprised
of nodes and edges

structures in
language
such as Pascal
or C

/ ~~----
Basic language
skills

3.0 User Characteristics and Prerequisites

Understand concepts
of linked structures such
as linke d lists and tr e e s

228

Based on the instructional analysis of the preceding section, certain prerequisites can be

identified for the intended learners, Sophomore Computer Science students. In addition,

229

other characteristics are representative of this group oflearners. Table 2 summarizes these

characteristics and prerequisites.

Table 2: Learner Characteristics for Graphs & Networks Courseware

Level Time to Difficulty

Low Avg High Learn to Learn

Year Soph Junior Senior

Experience Prereq
1

Prereq
1

Prereq
1

Motivation High High High

Interest High High High

Computer Operation High High High

Courseware Familarity None None None 10-30 min Easy

Basic Language Skills Average Average Average

Understand Concepts
Low Average High

of Linked Structures

Implement Common Average High High
Data Structures

Implement Abstract Average High High
Data Types

Understand the
Average High High

Network Nature of
Certain Problems

Implement Graph &
Network Data

None None None 4 - 8 Hours Difficult
Structures and
Algorithms

1. Prereq. denotes completion of Computer Science I, Computer Science II, and
File Processing

230

4.0 Functional Definition

The courseware will consist of several types of instructional activities including tutorials,

animated demonstrations, laboratory exercises, and self-tests. The emphasis will be on

using the computer to provide learning experiences which are difficult to do in other ways

and to facilitate learning of abstract structures, concepts and operations. Dynamic

visualizations and interactivity will be important aspects of the courseware. In particular,

the operation of algorithms such as depth-first traversal or shortest path on graph or

network data structures will be demonstrated using simple animation. Laboratory

exercises will allow the learner to build structures visually on the display, then run

algorithms to observe the results.

4.1 Overall Structure

Functionally, the courseware will consist of five major parts: the introductory section,

and four topical units covering graphs, graph implementation, networks, and network

implementation. Each topical unit will incorporate four instructional activities: tutorial,

animated demonstration, interactive laboratory sessions, and self-test. The overall

structure of the Graphs & Networks courseware is shown in Figure 2.

The courseware is organized as a hypermedia system. Each block in the structure diagram

represents a node in the hypermedia network, with the lines between the blocks

representing links between nodes. In some cases, such as a tutorial, there may be multiple

pages arranged linearly for presenting the content of the topic. There may also be

additional pages or supplementary information which are linked in hypermedia fashion.

These additional and supplementary pages are not shown in the structure diagram.

Figure 2: Overall Structure of Courseware

NOTE S: 1. Lines cormecling blocks represent links between blocks. Labels on links show the 'button" used to actWate
thelink

2. Individualblocks may be irr(plemented as mu1tple "pages" with pTImdl'lly linear navagation using NE XT
and PRE V buttons.

231

The following sections describe each major unit of the courseware in detail, specifying

what each unit will do. Implementation details are contained in the Design Specification.

4.2 Individual Unit Specifications

4.2.1 Main Unit (Introductory Section)

The Main Unit serves as the starting point for use of the courseware. It includes a title

page, introduction, and table of contents page. The table of contents page acts as the root

node of the hypermedia network. The learner can access any of the four major units from

the contents page. Similarly, each major unit is linked back to the contents page to

provide a means for the learner to return to a known location in the hypermedia network.

232

The introduction will cover four main topics: (1) a brief explanation of the subject matter,

(2) explanation of the courseware, (3) the learning objectives, and (4) prerequisites.

Online help is accessible from all pages and explains the controls available to the learner.

Figures 3 shows the page layout for the title page, a sample introduction page, the

contents page and the main help page.

Figure 3: Page Layouts for the Main Unit

INTRODUCTION • HELP

•• CONTENTS PREU NEHT

TITLE PRGE LRYOUT SRMPLE INTRODUCTION PRGE LRYOUT

CONTENTS • HELP
HELP

• TOPICS ARE H:;PERLInKS • EHIT RETURN

CONTENTS PRGE LRYOUT HELP PRGE LRYOUT

The Title Page will include the title of the courseware "Graphs & Networks: Concepts &

Implementation", the author's name and college, a stylized image of a graph, an

233

acknowledgment of the use ofNeoBook, and the date. There will also be a start button on

the page. Clicking on the start button will jump to the first page of the introduction.

The introduction will consist of four pages as described above, with navigational controls

for going to the next page or the previous page, help, or jumping directly to the contents

page. Thus, the user who is familiar with the courseware need not go through the entire

introduction section each time the software is used. The Help Page will include a

description of the current section and any navigational controls. A return button at the

bottom of the page allows the user to return directly to the place from which help was

requested.

4.2.2 Topic Units

From the Contents Page the user can jump to one of four topic units. Each topic unit has

the same configuration, although the content will differ according to the topic. On

selection of a topic from the Contents Page, the user will follow a link to the Computer

Lab page for the selected topic. The Computer Lab page acts as the starting point for all

activities for a specific topic. From the Computer Lab page, the learner may select one of

four instructional activities: tutorial, animated demonstration, interactive laboratory, or

self-test. The metaphor of a computer laboratory is supported by using small images of

computer stations for each of the four activities. The user selects an activity by clicking

on one of the computers.

Figure 4 shows the layout of the Computer Lab page for each topic and Figure 5 shows

the page layouts for each of the four instructional activities.

234

Figure 4: Page Layout for Computer Lab Page

COMPUTER LAB •
Cliok on (l computer to select M (lctivit!:! HELP

The tutorial unit will consist of pages having the format shown for the Tutorial Page in

Figure 5. Each tutorial will consist of several pages containing text and images as needed

to present the content related to the topic. In addition a help button, navigational controls

for moving through the pages of the tutorial, and a button to return to the computer lab

are included on the each page.

The Demonstration Page includes a help button, a button to return to the computer lab, a

brief description of the animated demonstration, and a button to start the demonstration.

Clicking on the Play Demo button will activate a QuickBASIC program which will

present the animated demonstration.

Similarly, the Lab Session Page and the Self Test Page include controls to return to the

computer lab, get help and activate the related instructional activities. The Lab Session

page lists several laboratory exercises each of which is a hyperlink to the related

interactive, animated QuickBASIC program. The Self Test page includes a button to

allow the learner to Take Test. This button also links to a QuickBASIC program which

presents the self test.

Figure 5: Page Layouts: Tutorial, Demonstration, Lab Session and Self-Test

TUTORIAL PG 10FS •
HELP

••• BACK TO LAB PRW NEHT

TUTORIAL PAGE LAYOUT

LABORATORY SESSION

Lo.b Icon

• BACK TO LAB

• HELP

Link to Lo.b
Exercise

LAB SESSION PAGE LAYOUT

• HELP

• • PLAY DEMO BACK TO LAB

DEMONSTRATION PAGE LAYOUT

• Self Test Icon HELP

• • TAKE TEST BACK TO LAB

SELF-TEST PAGE LAYOUT

235

The following sections describe the content of each of the topical instructional activities.

4.2.3 Graphs and Digraphs Tutorial

The Graphs and Digraphs tutorial presents general concepts and terminology relating to

graphs. The following terms and concepts are covered:

• graph

• digraph

• node

II edge

II path

II cycle

II acyclic graph

II degree

II depth-first traversal

II breadth-first traversal

4.2.4 Graph Implementation Tutorial

236

The concept of using an adjacency matrix to represent a graph will be presented in this

tutorial. Many of the terms and concepts from the Graphs and Digraphs tutorial are

related to the adjacency matrix. The following topics are presented:

II use of a one-dimensional array to represent nodes

II use of a two-dimensional array (adjacency matrix) to represent edges

II symmetry of the adjacency matrix for an undirected graph

II relation of the adjacency matrix to paths, degree of a node, and traversals

4.2.5 Networks Tutorial

The basic concept of a network and what characteristics distinguish a network from a

graph will be described. Common network algorithms will also be explained. Specific

topics include:

II edge weight

II shortest path algorithm

II minimum spanning tree algorithm

II topological sort algorithm

237

4.2.6 Network Implementation Tutorial

Use of an adjacency matrix with edge weights as entries in the matrix will be presented as

a means of implementing a network. A description of how the network algorithms use the

information in the adjacency matrix to perform their operations will be discussed.

4.2.7 Graphs and Digraphs Demonstration

The animated demonstration for Graphs and Digraphs will present much of the same

information as presented in the related tutorial activity. The primary difference between

the two presentations is that the demonstration will incorporate simple animation. The use

of animation will be particularly effective in showing the operation of algorithms such as

the depth-first or breadth-first traversal on a particular graph.

The learner will be able to run the animation, proceed forward or backward through the

pages of the animation, and terminate the animation at any time and return to the

computer lab page. The animation will be implemented by a QuickBASIC program

running within a window on the demonstration page of the courseware. Figure 6 shows

the general layout of the demonstration page and the window for the animation. Figure 7

shows the design for the user display and controls for the demonstration which will be

implemented in QuickBASIC.

238

Figure 6: Demonstration Page with Window for Animated Demo

DEMONSTRATION

Figure 7: User Display and Controls for LablDemo Program

239

The user display shown in Figure 7 will be used for all demonstrations, lab sessions and

self-tests. The various windows within the display, the text area, information area, and

message area, will be used as needed for each demonstration, lab session or test. The

circles in the work area of the display show where nodes will be displayed when a graph

or network is built or displayed. In building a graph or network the student clicks on a

circle to add a node at that location. The buttons shown in the lower right quarter of the

display can be renamed and their functions specified for each session as needed. Using

the same user interface for demonstrations, lab sessions, and tests and displaying the user

display within a window of the main display will provide continuity and consistency for

the user.

4.2.8 Graph Implementation Demonstration

The demonstration for Graph Implementation will use simple animation to present a

simple graph, the array of nodes, and the associated adjacency matrix. Elements of the

array will be highlighted along with the corresponding elements of the data structures.

Depth-first and breadth-first traversals of the graph will highlight array elements to

demonstrate why nodes are visited in a particular order.

4.2.9 Network Demonstration

As with the Graphs and Digraphs demonstration, the Networks demonstration will

present the basic network content using simple animation to emphasize and clarify

concepts and terminology. Edge weight, and the animated execution of the shortest path,

minimum spanning tree, and topological sort algorithms will be presented in the

demonstration.

240

4.2.10 Network Implementation Demonstration

The Network Implementation demonstration presents simple animations illustrating the

use of the adjacency matrix to carry out the minimum spanning tree, shortest path and

topological sort algorithms.

4.2.11 Graphs and Digraphs Lab Session

Three exercises will be provided in the Graphs and Digraphs Lab Session. In the first, the

user will be given a simple problem and asked to build the corresponding graph. The

nodes of the graph will be displayed in the work area of the user display. The student will

use the Add Edge button to link the provided nodes appropriately to solve the given

problem. The session allows students to check their answers when they think they have

completed the problem.

The second exercise allows the student to build a graph then run the depth-first traversal

algorithm on that graph from a specified starting node. The student can rerun the

algorithm from different start nodes or may clear the graph and build a new one. The goal

of the exercise is to help the student understand how a depth-first traversal works.

In the third exercise the student also builds a graph. Once the graph is built, the student

can run the breadth-first traversal algorithm on that graph from a specified starting node.

The student can rerun the algorithm from different start nodes or may clear the graph and

build a new one. The goal of the exercise is to help the student understand how a breadth

first traversal works.

241

4.2.12 Graph Implementation Lab Session

In this lab session, the student will be presented with one laboratory exercise. The student

is asked to build a graph and views the adjacency matrix as the graph is being built. The

goal ofthe exercise is to help the student understand the concept ofthe adjacency matrix.

4.2.13 Network Lab Session

Four exercise are provided in the Network Lab Session. In general, they are similar to

those in the Graph Lab Session. In the first, the student builds a network to solve a

specified problem. The intent is to provide experience in using the lab display to build a

network and to reinforce the concept of a network. In each of the other three exercises,

the student will build a network, then run an algorithm on the network. The shortest path,

minimum spanning tree and topological sort algorithms are each used in one of the three

exercises.

4.2.14 Network Implementation Lab Session

This lab session is similar to the Graph Implementation Lab Session. The student will

either build a network and view the adjacency matrix.

4.2.15 Self Tests

The self test for a particular unit will consist of up to ten multiple choice questions

covering the terms and concepts covered in the tutorial, animated demonstration, and

laboratory session for the related topic. The user interface used for the interactive

laboratory sessions and animated demonstrations will be used to present the test. Figure 8

shows how the various portions of the display and user controls will be used.

242

Figure 8: User Display and Controls for Self Tests

Notice in Figure 8 that several of the buttons have been redefined. Those at the left of the

button area are labeled A, B, C, and D, and will be used to indicate multiple choice

answers. The start button is used to begin the self-test or to restart at the beginning. The

Next and Back buttons will advance to the next question or allow the student to return to

the preceding question. The Check button is used to check answers to the questions.

Incorrect answers will be indicated by changing the display to the question and displaying

a message in the message area.

Some problems may use a graph or network as part of the question. These will be

displayed in the work area.

243

5.0 System Requirements

The courseware will be designed to run on an IBM PC compatible computer which has

the following minimum characteristics:

II IBM PC compatible computer, 386 or better

II 14" SVGA monitor

II 530 Kbytes free conventional memory

II hard disk with 2 Mbytes free space

II Logitech or Microsoft-compatible mouse with driver

II MS-DOS 5.0 or higher

The courseware is not designed to run under Windows. It may be run as a DOS

application from Windows as long as all minimum requirements are met.

AppendixD

Design Specification

244

Graphs & Networks: Concepts & Implementation

Instructional Software

Design Specification

by

Thomas E. Beutel

February 1997
Revised March 1997

245

List of Tables 247
List of Figures 248

1.0 Introduction 249

Table of Contents

2.0 Overall Design 249

3.0 Individual Unit Designs 252
3.1 Main Unit (Introductory Section) and Other NeoBook-created Portions 252

3.1.1 Color Palette 253
3 .2 Laboratory/Animated DemonstrationiSelf-Test Program 254

3.2.1 Main Logic 255
3.2.2 Data Structures and Abstract Data Types 256
3.2.3 User Interface Data Structures and Abstract Data Types 257

3.2.3.1 ButtonType Abstract Data Type 257
3.2.3.2 Region Abstract Data Type 259
3.2.3.3 Button Table 260

3.2.4 Graph and Network Data Structures and Abstract Data Types 261
3.2.4.1 GraphNode Abstract Data Type 262
3.2.4.2 GraphEdge Abstract Data Type 264
3.2.4.3 Node Pool 266
3.2.4.4 Edge Table 267
3.2.4.5 GraphlNetwork Abstract Data Type 267
3.2.4.6 Auxiliary Data Structures and Operations for Graphs

and Networks 270
3.2.5 Application Data Structures and Operations 271

3.2.5.1 Data Structures and Operations for General Session
Support 271

3.2.6 General Purpose Routines 278
3.2.7 Mouse Handling Routines 279
3.2.8 File Formats 281

3.2.8.1 Lab Session Data File Format 283
3.2.8.2 Animated Demonstration Data File Format 284
3.2.8.3 Self-Test File Format 285

4.0 System Requirements 286

246

247

List of Tables

Table

1. Courseware Color Palette 254

2. Session Codes for Laboratories, Demonstrations, and Self-tests 282

248

List of Figures

Figure

1. Overall Functional Structure of the Courseware 250

2. Courseware Implementation Structure 252

249

1.0 Introduction

The Graphs & Networks instructional software is described in the document Graphs &

Networks: Concepts & Implementation Instructional Software Functional

Specification which describes the problem being addressed, the development goals, an

instructional analysis and summary of user characteristics, and the functional description

of the overall package and the individual units which comprise the package.

This document describes the design of the courseware including the details of the user

interface design, the data structures and algorithms used to implement general features as

well as graphs and networks, and the details of the individual instructional activities such

as the tutorials, animated demonstrations, interactive lab sessions, and self-tests.

2.0 Overall Design

Functionally, the courseware will consist of five major parts: the introductory section,

and four topical units covering graphs, graph implementation, networks, and network

implementation. Each topical unit will incorporate four instructional activities: tutorial,

animated demonstration, interactive laboratory sessions, and self-test. The overall

functional structure of the Graphs & Networks courseware is shown in Figure 1.

The courseware is organized as a hypermedia system. Each block in the structure diagram

represents a node in the hypermedia network, with the lines between the blocks

representing links between nodes. In some cases, such as a tutorial, there may be multiple

pages arranged linearly for presenting the content of the topic. There may also be

additional pages or supplementary information which are linked in hypermedia fashion.

These additional and supplementary pages are not shown in the structure diagram.

Figure 1: Overall Functional Structure of the Courseware

To other topics (lame structure allntroductiO'tl):
Graph InwlementatiO'tl.
Networh.
Network InwlementatiO'tl.

BACK TO LAB

SELF-TEST

NOTE S: 1. Linel connecting blocb represent linb between bloch Labell O'tllinb lhow the ''buttO'tl''uled to aetiolate
thelink.

2. Individual blocbmay be implemented al multple ''pagel'' with pTImat'lly linear navagatiO'tl using NE XT
and PRE V buttO'tll.

250

The courseware will be implemented in a manner which follows the overall structure as

shown in Figure 1. Some portions of the courseware will be implemented with a

courseware authoring system, NeoBook Professional, while others will be implemented

using QuickBASIC, a compiler version of BASIC.

The authoring system will be used to create the overall courseware structure and the

primary user interface. The reason for using the authoring system is the ease of creating

screens which incorporate graphic images, text, interactive controls such as buttons and

hyperlinks, and other interactive, multimedia features. While these features could be

implemented with a traditional programming language, the overall courseware structure

251

and user interface can be created much more quickly and easily with the authoring

system.

NeoBook Professional was selected as the authoring system for several reasons including

ease of use, support of all media types except video, the ability to call external programs,

and the ability to compile stand-alone, royalty-free applications. QuickBASIC was

selected primarily because its compiled programs would run within a window in the

NeoBook-created screens without clearing the screen and the palette was more easily

adapted to that selected for the NeoBook portion than for other languages such as Turbo

Pascal. Also, NeoBook Professional is a DOS application, so windows-based languages

such as Visual BASIC were not appropriate.

The implementation using NeoBook and QuickBASIC will include compiled NeoBook

publications, compiled QuickBASIC programs, and data files used for lab sessions,

interactive demonstrations, and self-tests. The specific implementation design is shown in

Figure 2. In general, the structure in Figure 2 follows the functional design from Figure 1,

although it emphasizes the implementation structure.

In Figure 2 square-edged boxes represent portions of the courseware which will be

implemented using NeoBook, round-edged boxes represent portions to be implemented in

QuickBASIC, and the boxes with a diagonal upper right comer represent data files. The

following sections describe the design of the various parts of the courseware.

251

and user interface can be created much more quickly and easily with the authoring

system.

NeoBook Professional was selected as the authoring system for several reasons including

ease of use, support of all media types except video, the ability to call external programs,

and the ability to compile stand-alone, royalty-free applications. QuickBASIC was

selected primarily because its compiled programs would run within a window in the

NeoBook-created screens without clearing the screen and the palette was more easily

adapted to that selected for the NeoBook portion than for other languages such as Turbo

Pascal. Also, NeoBook Professional is a DOS application, so windows-based languages

such as Visual BASIC were not appropriate.

The implementation using NeoBook and QuickBASIC will include compiled NeoBook

publications, compiled QuickBASIC programs, and data files used for lab sessions,

interactive demonstrations, and self-tests. The specific implementation design is shown in

Figure 2. In general, the structure in Figure 2 follows the functional design from Figure 1,

although it emphasizes the implementation structure.

In Figure 2 square-edged boxes represent portions of the courseware which will be

implemented using NeoBook, round-edged boxes represent portions to be implemented in

QuickBASIC, and the boxes with a diagonal upper right corner represent data files. The

following sections describe the design of the various parts of the courseware.

Figure 2: Courseware Implementation Structure

I
Graphs &
Digraphs

~ lab

~

Tutorial

1

Data File
for lab
Sessions

3.0 Individual Unit Designs

Main Unit:
I ntr 0 duction,

Table of Contents

I

Graph Networks
Implementation

~o lab ~o
lab

~ ~

Tutorial Tutorial

~

Lab or atory I -
Demonstr ation/

Self-Test
Program

I I

.l~

-

Data Files for
Rnimations

-

I
Network
Implementation

~o lab
Test -

Tutorial

.1..1.

--
Data Files
for Self-Tests

3.1 Main Unit (Introductory Section) and Other NeoBook-created Portions

252

All portions of the courseware to be created using NeoBook will be implemented

according to the Functional Specification. The screen layouts including the use of text,

images, buttons, and hypermedia links are given in the Functional Specification. Exact

screen locations are not given for elements of screens because the screens will be

253

implemented interactively using NeoBook. For example, a button can be created by

clicking on the Button Tool in NeoBook, then dragging the button to its desired position

and size. The position and size can be changed by selecting the button with a Selector

Tool and redragging the button. Button color, text and action are indicated at the time the

button is created.

Using an authoring tool such as NeoBook means that the functional design is adequate

for doing the actual implementation of the portions which are being implemented with the

authoring system. In addition to the screen layout specifications which indicate the

placement of text, images, button, and hypermedia links, the overall structure diagram in

Figure 1 of the preceding section indicates button actions by the links between boxes. For

example, the link from the Title Screen box to the Introduction box is labeled START.

This means that the START button indicated in the screen layout for the Title Page will

have a button action which causes the Introduction Screen to be displayed.

3.1.1 Color Palette

The color palette used in the courseware was selected with several goals in mind. The use

of color can be helpful in creating interest, for emphasis, and other uses. Nevertheless, if

the use of color is overdone, it can be a distraction rather than a help. Color images which

use alot of colors require more storage space and take longer to display than those which

use fewer colors. For these reasons the color palette was restricted to sixteen colors.

Many of the colors were selected simply because they produced a pleasant appearance.

Others were selected with a specific purpose in mind. For example, to create the

impression of three dimensional objects such as buttons, shades of gray, black and white

were included. Table 1 gives the color palette to be used in the courseware.

254

Table 1: Courseware Color Palette

Color Number Color Special Use
0 Black Background for text
1 Blue
2 Yellow Nodes, edges of graphs in

the lab/demo/test program
3 Robin's Egg
4 Red
5 Light Gray Light border color for 3D object
6 Medium Lt. Gray
7 Medium Gray Region Background Colors in

program portion of courseware
8 Medium Dk. Gray Dimmed Nodes on User Display,

Dimmed Buttons (Inactive)
9 Dark Gray Dark border color for 3D objects
10 Spring Green
11 Light Red Highlighted nodes, edges
12 Persimmon Titles on pages in NeoBook-created

portion of courseware
13 Cinnamon
14 Vanilla Main background in NeoBook-

created portion of courseware
15 White

3 .2 Laboratory/Animated DemonstrationiSelf-test Program

The animated demonstrations, interactive laboratory sessions, and self-tests will be

implemented using QuickBASIC. The decision to implement these features in this way

was based on two factors: (1) NeoBook does not have the capability to implement these

features easily, and (2) actual graph and network data structures and algorithms could be

used to implement the demonstrations and lab sessions, making the experience more

flexible and powerful in terms of what the student could do.

To simplify the programmmg, provide a consistent interface, and promote code

reusability, it was decided to implement a single, customizable program. The program

255

handles all user interface functions for the demonstrations, lab sessions, and self-tests

using a common display and set of controls. Individual demonstrations, laboratory

sessions or self-tests are called sessions and are implemented by customizing the program

in two ways: (1) session-specific information is read from a sequential file, and (2)

session-specific operations must be added to the program. These session-specific routines

generally consist of custom actions for buttons, data structures and algorithms, and any

auxiliary routines which might be needed.

Only one routine in the program must actually be changed to incorporate a new session.

This routine consists of a large SELECT CASE statement which directs the program flow

to the appropriate button handling. When a particular laboratory session, animated

demonstration or self-test is selected on the NeoBook-created portion of the courseware,

the laboratory/animationlself-test program is called with a command line parameter

which indicates the particular session to be carried out. This parameter is used to access

the appropriate data file and in the SELECT CASE statement to perform the correct

button actions.

3.2.1 Main Logic

The main logic of the program will consist of some preliminary initialization, retrieving

the session code from the command line, retrieving appropriate session setup data,

creating the user display regions, and initializing the Node Pool, Edge Table, and graph.

After these initializations, the title screen is displayed, the user display drawn, the session

is set up, and the program goes into a loop retrieving user actions and carrying them out.

The logic is shown below in pseudocode form.

Set screen mode to 640x480x16 colors
Set Color Palette
Retrieve Session Code from Command Line
If session is a lab then

access lab data file and retrieve lab session data
else if session is a demonstration then

else

access appropriate data file and retrieve demonstration session data
create standard demonstration button set
define standard demonstration node labels
set up standard demonstration help
initialize current frame to 0

access appropriate data file and retrieve self-test session data
create standard self-test button set
define standard self-test node labels
set up standard self-test help
initialize current question to 0

create regions of user display
initialize Node Pool
initialize Edge Table
initialize graph adjacency matrix
display title screen
display user display
setup session
while not done

get user choice
if button pressed, carry out user choice

end while
display ending screen

3.2.2 Data Structures and Abstract Data Types

256

To facilitate implementation and reuse, a number of data structures and abstract data

types are defined for the program. Some of these support the graphical user interface,

such as the ButtonType type and Region type. Others implement the graph and network

abstractions which are being demonstrated and studied. There are also data structures and

routines which are used to implement the laboratory sessions, animated demonstrations,

and self-tests.

257

3.2.3 User Interface Data Structures and Abstract Data Types

The data structures and abstract data types needed to implement the graphical user

interface are defined in the following sections.

3.2.3.1 ButtonType Abstract Data Type

The ButtonType data type is used to implement a three-dimensional button for the user

interface. A three-dimensional button is presented to the user by displaying a rectangle

which has a light-colored border on the left and top sides and a dark-colored border on

the right and bottom sides. This color scheme creates the impression of a rectangle which

is raised from the plane of the screen. A ButtonType consists of the parameters listed

below. The primitive data type of each parameter is given in parentheses following the

description.

ButtonActive : indicates if button is active in this session (boolean)

xl : x coordinate of the top left corner ofthe button (integer)

yl

x2

: y coordinate of the top left corner of the button (integer)

: x coordinate of the bottom right corner of the button (integer)

y2 : y coordinate of the bottom right corner of the button (integer)

LightBorderColor : color used for the light edge of a button (integer)

DarkBorderColor

FaceColor

TextColor

ButtonText

ActionCode

: color used for the dark edge of a button (integer)

: color used for the face of the button (integer)

: color for the button text (integer)

: text to appear on button (string)

: code specifying what action to take when button

is pressed (integer)

258

The following operations can be performed on variables of type ButtonType. Operations

are described using a procedure header format which gives the operation and the

parameters needed by the procedure.

ButtonAction (B : ButtonType)

If a button is active, carry out the action specified in the field ActionCode.

ButtonCreate (B:ButtonType; xl,yl,x2,y2,Light,Dark,Face,TextCol:integer;
ButtonText: string;Action,Active: integer)

Creates a button, B, with the specified parameters for location, colors, button text, action,

and active status.

ButtonDraw (B:ButtonType)

Displays a button, B, using the parameters stored in the button's data structure including

the location, colors, and button text.

ButtonHide (B:ButtonTpe)

Sets a button, B, to inactive. In active buttons are displayed as dimmed rectangles on the

user display.

ButtonPress (B:ButtonType)

Displays a button with the light and dark colors swapped and the button text moved to the

right and dimmed. This makes the button appear to be recessed into the plane of the

screen and gives the impression that the button was pressed.

259

ButtonUnhide (B:ButtonType)

Sets a button, B, to active status. An active button is displayed as a three-dimensional

object with the specified button text. When selected, the stored action will be carried out.

3.2.3.2 Region Abstract Data Type

A Region is a rectangular portion of the screen. It is used like a window to display certain

information to the user. Regions can be fixed or can "popup" in response to an event. A

region may have a three-dimensional border which makes it appear to be recessed into the

plane of the screen. The user display for the laboratory/animationlself-test sessions

consists of several regions as described in the Functional Specification. They include a

Text Area, a Work Area, an Information Area, and a Message Area. A Region consists of

the parameters listed below. The primitive data type of each parameter is given in

parentheses following the description.

xl

yl

x2

y2

BGCoior

: x coordinate of the top left comer ofthe Region (integer)

: y coordinate of the top left comer of the Region (integer)

: x coordinate of the bottom right comer of the Region (integer)

: y coordinate of the bottom right comer of the Region (integer)

: color used for the background of a Region (integer)

The following operations can be performed on variables of type Region. Operations are

described using a procedure header format which gives the operation and the parameters

needed by the procedure.

260

RegionBorder (R:Region)

Draws a three dimensional border around a region. The colors used for the border are the

default BORDERDARK and BORDERLIGHT colors defined in constants at the

beginning of the program.

RegionClear (R:Region)

Clears a Region, R, to the stored background color.

RegionConfirm (R:Region; Mesg:string; Response:hoolean)

Pops up a region with a message and a place to click Yes or No in response to the

message. Used generally to confirm an operation such as clearing a region or quitting the

program. The message is one line and is printed in a fixed place in the region. It identifies

the operation being confirmed. The additional message "ARE YOU SURE?" is added to

the specified message. The response is returned.

RegionCreate (R:Region; xl,yl,x2,y2,BGColor:integer)

Creates a region, R, of type Region and stores the specified parameters including the

location and background color.

RegionPrint (R: Region; RegionRow,RegionCol: integer; Mesg:string;

Color:integer)

Prints the text in Mesg to the specified region, R. Printing occurs at the indicated row and

column of the region. Within a region, rows and columns are numbered starting at 1.

3.2.3.3 Button Table

In addition to the abstract data types for buttons and regions described one other major

data structure is used to support the graphical user interface, the Button Table. The Button

261

Table is a one-dimensional array with each element corresponding to a button on the user

display. Each element, a ButtonType, includes relevant information such as the position

of the associated button, whether the button is active or not, and the action code to

indicate what action to take when the button is pressed. The Button Table is dimensioned

for elements 1 to MAXBUTTONS. MAXBUTTONS is a defined constant.

3.2.4 Graph and Network Data Structures and Abstract Data Types

A graph consists of a set of nodes and a set of edges. The edges indicate connections

between pairs of nodes. In general, nodes and edges for this application have attributes

which include information used to display graphs on the user display. Nodes are

displayed as circles with a label within the circle and edges are displayed as lines. In the

laboratory/demonstration/self-test program, a complete set of nodes is created during

program initialization. The set of nodes forms a Node Pool from which graphs can be

constructed either according to information specified for a particular lab session or

demonstration, or by the user. Nodes are initially not visible. When a node is added to a

graph, the graph data structures are updated and the node is made visible on the user

display.

Edges are created as needed and stored in a one dimensional array called the Edge Table.

This structure supplements the adjacency matrix which also records connections between

nodes. The information in the Edge Table encapsulates attributes of the edges such as the

nodes being connected, and the color of the edge.

An adjacency matrix is used to record connections between nodes in a graph or network.

The matrix is a two-dimensional array with each dimension ranging over all nodes in the

Node Pool. Nodes connected by an edge are indicated by placing a nonzero value in the

array element corresponding to the two nodes. For a graph a one is used to indicate an

262

edge; for a network the value represents the weight of the edge. In both cases a zero

indicates no connection.

The data structures and abstract data types needed to implement the graph and network

abstractions are defined in detail in the following sections.

3.2.4.1 GraphNode Abstract Data Type

Nodes are represented by the data type GraphNode. A GraphNode is a node in a graph or

network and has the attributes shown below. The primitive data type of each attribute is

given in parentheses following the description.

Label : identifier displayed in a node on the user display (character)

NodeColor : the display color of the node on the user display (integer)

LabelColor : the display color of the node label on the user display (integer)

NodeXCoord : the x coordinate of the node's center (integer)

NodeYCoord : the y coordinate of the node's center (integer)

Node Visible : indicates if node is visible (boolean)

The following operations can be performed on variables of type GraphNode. Operations

are described using a procedure header format which gives the operation and the

parameters needed by the procedure.

NodeCenter (Node: GraphNode; x,y:integer)

Given the index of the node in the Node Pool in the range l..MAXNODES, return the x,y

coordinates of the center of the center of the circle used to represent the node on the user

display. This routine is used in creating nodes as initializing the Node Pool.

263

NodeChangeColor (Node: GraphNode; Color:integer)

Set the display color for a node to a new value. Used to change a node's display color for

highlighting the node for some purpose such as indicating that the node has been visited

during a traversal.

NodeCreate (Node:GraphNode; Label:String; NodeColor,LabeIColor,x,y:integer)

Creates an entry in the Node Pool with the specified attributes. Nodes in the Node Pool

are not part of a graph until a node is added to a graph and made visible. Therefore, the

created node is initially set to be invisible.

NodeHide (Node:GraphNode)

Hides a GraphNode on the user display. The node is displayed dimmed to indicate its

position but is not part of a graph. The node is shown at the coordinates defined when it

was created. The NodeVisible attribute is also changed to FALSE.

NodeShow (NodeIndex: integer)

Displays a GraphNode on the user display. The node is displayed in the color stored for

the node at the coordinates defined for the node when it was created. These coordinates

are used to compute the row and column for displaying the node label. The Node Visible

attribute is also changed to TRUE.

NodeShowDimmed (Node:GraphNode)

Displays a dimmed version of a node in the work area of the user display. The user clicks

on the dimmed version of the node to add it to a graph.

264

3.2.4.2 GraphEdge Abstract Data Type

Edges are represented by the data type GraphEdge. An edge in a graph is indicated in the

adjacency matrix for the graph, but a table of edges is also kept to allow the current edge

color to be stored. The edge color will change during traversals and other algorithmic

manipulations. The entries in the Edge Table are of type GraphEdge and have the

attributes shown below. The primitive data type of each attribute is given in parentheses

following the description.

EdgeColor

Node I

Node2

: the display color of the edge on the user display (integer)

: Index in Node Pool of first node connected by edge (integer)

: Index in Node Pool of second node connected by edge (integer)

The following operations can be performed on variables of type GraphEdge. Operations

are described using a procedure header format which gives the operation and the

parameters needed by the procedure.

EdgeAdd (G:Graph; Nodel,Node2,Weight: integer)

Adds a bi-directional edge to a graph by setting the appropriate elements in the adjacency

matrix for the graph, G. Nodel and Node2 are the indexes in the Node Pool of the nodes

to be connected and correspond to the row and column indexes in the adjacency matrix

for the corresponding nodes. Weight is the edge weight.

EdgeArrowHead (Edge:GraphEdge)

Edge is a directed edge from Edge.Nodel to Edge.Node2 (fields in the GraphEdge data

structure). The point of the arrowhead is first computed from the relative positions of

Nodel and Node2, then the sides are drawn and the arrowhead is filled in.

EdgeChangeColor (Edge:GraphEdge; Color:integer)

Set the edge color to the specified value.

EdgeCreate (Edge:GraphEdge; EdgeColor,N odel,N ode2, Weight: integer)

265

Adds an edge to the Edge Table. The current color and the two nodes connected by the

edge are recorded in the entry. Edge is an available edge in the Edge Table found using

the FindFreeEdge routine. Weight is the edge weight for a network edge.

EdgeDelete (G:Graph; Nodel,Node2:integer)

Remove an edge from a graph, G, by setting the corresponding elements in the adjacency

matrix to zero.

EdgeFind (EdgeTable: array of graphEdge; Nodel,Node2,EdgeIndex:integer)

Given the indexes of two nodes, return the index in the EdgeTable which connects the

two nodes. If the two specified nodes are not connected by an edge, return a 0 (FALSE).

EdgeFindFree (EdgeTable:array of GraphEdge; EdgeIndex:integer)

Unused entries in the EdgeTable are marked with a -1 in the EdgeColor field. This

routine searches for the first unused entry and returns its index, Edgelndex. Since the

graph is restricted in size, the maximum number of edges are allowed for in the

EdgeTable. Thus, the search cannot exceed the table size; it simply searches until an

unused entry is found.

EdgeHide (Edge:GraphEdge)

Remove an edge from the Edge Table and clear it from the user display. Clearing is

accomplished simply by redisplaying the graph without the removed edge.

266

EdgeHighlight(Edge:GraphEdge; NodePool:array of GraphNode; Color:integer)

Similar to EdgeShow, except the outer portion of the edge is displayed in the specified

color to highlight the edge.

EdgeShow (Edge:GraphEdge; NodePool: array of GraphNode)

Make an edge visible on the user display. The indexes of the two nodes connected by the

edge are kept in the fields Nodel and Node2. These are used to access the Node Pool to

determine the screen locations of the nodes. Edges are drawn as a thick line consisting of

five lines from the center of one node to the center of the other node. The nodes are then

redisplayed.

3.2.4.3 Node Pool

The Node Pool is a one-dimensional array with each element corresponding to a

GraphNode. There are MAXNODES nodes in the Node Pool, each node representing a

displayable node in the work area of the user display. Node Pool entries are initialized at

the start of the program to specify the location, color, associated label, etc. Initially, all

nodes are hidden, that is, displayed as a dimmed image. As nodes are added to a graph,

either by the user or by the program, the corresponding GraphNode is shown on the user

display. The Node Pool keeps track of the state of individual nodes.

The following operations can be performed on the Node Pool. Operations are described

using a procedure header format which gives the operation and the parameters needed by

the procedure.

NodePoolInit (Nodes: array of GraphNode)

Initializes all entries of the Node Pool to default attributes. The label for each node is set

according to a label string specified for the particular session. Colors are set to default

267

values, the center is computed using the NodeCenter routine and stored, and NodeVisible

is set to FALSE.

3.2.4.4 Edge Table

The Edge Table is also a one-dimensional array, dimensioned to hold MAXEDGES

entries, with each entry representing an edge in a graph. MAXEDGES represents the

maximum number of edges possible for a graph displayed in the user area. When an edge

is added to a graph by the user or by the program, an entry is made in the adjacency

matrix used to represent the graph and the edge is recorded in the Edge Table.

The following operations can be performed on the Edge Table. Operations are described

using a procedure header format which gives the operation and the parameters needed by

the procedure.

EdgeTableInit (EdgeTable:array of GraphEdge)

Sets all entries in the EdgeTable to unused, by setting the edge color to -1.

3.2.4.5 GraphlNetwork Abstract Data Type

A graph or network is represented by a two-dimensional array called an adjacency matrix.

and a list of nodes. Two nodes which are connected by an edge are represented by a

nonzero value stored in the corresponding row/column elements of the array. For a

network the value will be the edge weight. Note that there will be two such entries for

each edge in an undirected graph. The adjacency matrix is dimensioned for the maximum

number of nodes, MAXNODES.

268

The following operations can be performed on variables of type Graph. Operations are

described using a procedure header format which gives the operation and the parameters

needed by the procedure.

GraphBreadthFirstTraversal (G:Graph; StartIndex:integer)

Performs a breadth-first traversal on the graph, G, starting at the node having the index

indicated by StartIndex.

GraphDepthFirstTraversal (G:Graph; StartIndex:integer)

Performs a depth-first traversal on the graph, G, starting at the node having the index

indicated by StartIndex.

GraphEmpty (G:Graph):boolean

This function, returns a TRUE if a graph, G, is empty, or a FALSE if it is not.

GraphHighlightMatrix (G:Graph; Rwo,Col:integer)

Highlights a column in the adjacency matrix.

GraphInit (G:Graph)

Takes a graph, G, in an unknown state and initializes it to an empty graph in which all

edge connections are set to zero

GraphSearchFrom (NodeIndex:integer)

This is the main routine of the depth-first traversal. The routine is recursive, using the

system stack to process the graph in a Last In First Out manner.

269

GraphShow (NodePool:array of GraphNode; EdgeTable:array as GraphEdge)

Show the graph represented by the NodePool and EdgeTable on the user display. Nodes

to be displayed are in the Node Pool with the NodeVisible attribute set to TRUE. Edges

in the Edge Table are included if the EdgeColor is not -1 (indicates unused).

GraphShowMatrix (G:Graph)

Displays the adjacency matrix for the graph which is in the work area. A special window

is used for this display.

NetAIlIncluded (Visited:array of boolean)

Returns True if all elements of Visited are True, indicating that all nodes have been

included by the algorithm processing the network.

NetFindMin(N:Graph; i,j:integer)

Given a network, N, return the indexes of the two nodes, i andj, such that I is included in

the minimum spanning tree forthe network, j is not included, and for which the edge

weight is a minimum.

NetMinSpanTree (N:Graph)

Finds the minimum spanning tree for the network, N, usmg Prim's algorithm. The

spanning tree will be highlighted on the network on the user display.

NetShortestPath (N:Graph; Nodel,Node2:integer)

Finds the shortest path between the two specified nodes in the network, N, usmg

Dijkstra's Algorithm. The shortest path will be highlighted on the network on the user

display.

270

N etShowShortestPath (Path: array of integer; Start, Dest:integer)

Recursively highlights the nodes and edges in the shortest path from the Start node to the

Dest node as determined by the Shortest Path algorithm.

NetTopologicalSort (N:Graph)

Performs a topological ordering of the nodes in the network, N. The ordering will be

displayed as a list in the information area of the user display.

3.2.4.6 Auxiliary Data Structures and Operations for Graphs and Networks

In addition to the main data structures and operations needed to implement graphs and

networks, several auxiliary data structures and operations are also used. These are

described below.

The Visited array is a one-dimensional array which is used to keep track of nodes in a

graph or network which have been processed by some algorithm such as the depth-first

traversal. A simple queue, implemented as a one-dimensional array with associated Head

and Tail variables is used in doing the breadth-first traversal, along with a one

dimensional array which keeps track of which nodes have already been processed through

the queue.

Several routines are used to manipulate the queue. These operations are described below

using a procedure header format which gives the operation and the parameters needed by

the procedure.

QueueAdd (Q:Queue; Head,Tail,Item:integer)

Adds an item to the queue, adjusting head and tail variables as needed.

271

QueueEmpty (Q:Head,Tail:integer)

A function which returns TRUE if a queue, Q, is empty, or FALSE, if it is not empty.

QueueInit (Head,Tail:integer)

Initialize a queue represented by its Head and Tail variables, to empty.

QueueRemove (Q:Queue; Head,Tail, Item:integer)

Remove an item from the Head of a Queue, Q, and return it in the variable, Item.

3.2.5 Application Data Structures and Operations

A number of data structures and operations are needed to implement the laboratory

sessions, animated demonstrations, and self-tests. Each execution of the program

implements a particular session, for example the animated demonstration for graphs and

digraphs. The data structures and the operations described below support sessions in

general. In addition, there will be session-specific operations which implement specific

laboratory sessions, demonstrations, and self-tests.

3.2.5.l Data Structures and Operations for General Session Support

The following data structures are used to implement the general session-handling

capability of the program. Each data structure is described briefly.

Session : holds the identifier for the particular session (string)

SessionDescr : a one-dimensional array of strings which holds the description

for the particular session. The array is dimensioned to hold the

maximum number oflines available in the Text Area ofthe user

display.

SessionHelp : a one-dimensional array of strings which holds help information

NodeLabel

272

for the particular session. The array is dimensioned to hold one less

than the maximum number of lines available in the Text Area of

the user display to allow for a "Click to continue ... " prompt.

: a string of the labels to be used for the various nodes. The first

character in the string is used for the node with index 1, etc.

NumFrames : holds number of frames for an animated demonstration (integer).

Frame : hold the number of the current frame in a demonstration (integer).

FrameText : a two-dimensional array of strings which holds the lines of text

for each frame in an animated demonstration. Each question may

have up to the maximum number of lines available in the Text

Area of the user display

NumQuestions: holds the number of questions for a self-test (integer).

QuestionNum : holds the number of the current question for a self-test (integer).

Question : a two-dimensional array of strings which holds the lines of text

for each question in a self-test. Each question may have up to the

maximum number oflines available in the Text Area of the user

display.

Answer : a one-dimensional array of characters giving the correct answer

for each question in a particular self-test.

NodeList : a two-dimensional array used to specify a list of node indexes in

two graphs. Used to implement examples and solutions in sessions.

NumNodes : A two-dimensional array specifying the number of nodes in the

lists in N odeList.

EdgeList : a three-dimensional array used to specify a list of node pairs

for indicating edges in two graphs. Used in conjunction with

NodeList to implement examples and solutions in sessions.

NumEdges

273

: A two-dimensional array specifying the number of edges in the

lists in EdgeList.

The following operations implement general session support. Operations are described

using a procedure header format which gives the operation and the parameters needed by

the procedure.

DemoGetSessionData (Code: string; Descr: array of string; NumFrames:integer;

FrameTest: array of array of strings)

Retrieves session-specific data for an animated demonstration. The data for each

demonstration is contained in a sequential file. The routine uses Code to access the

correct file, reads the session description, reads the number of frames, and loads the frame

text for each frame. If there are graphs used in the demonstration, the routine reads the

data for the node list and edge list for up to two graphs.

DemoRun

Run an animated demonstration. Data for the demonstration, including the text for each

frame is in global variables. The number of frames in the demo is in the variable

NumFrames. The logic of each frame is implemented with a separate subroutine.

DemoRun will call the first frame's subroutine and will exit when the subroutine returns.

The user controls are used to progress through the demonstration. If the NEXT button is

pressed, the Frame variable is incremented by one and DemoRun is called again. Using

Frame, DemoRun calls the subroutine for the next frame.

Demoxxxx

Individual frames of each animated demonstration are implemented by specific

subroutines. The are as follows:

274

DemoGiml - DemoGim3: Frames 1 - 3 of the Graph Implementation demonstration.

DemoGraphl - DemoGraph5: Frames 1 - 5 of the Graphs Concepts demonstration.

DemoNetl - DemoNet4: Frames 1 - 4 ofthe Networks Concepts demonstration.

DemoNiml - DemoNim5: Frames 1 - 5 of the Networks Implementation demonstration.

LabButtonService (B:ButtonType)

Services a button press by calling the appropriate subroutine depending on the button's

ActionCode. This routine is application-specific. When new sessions are added to the

program, appropriate action codes must be defined to indicate session-specific button

actions, corresponding action routines must be added to the program, and the SELECT

CASE statement in this routine must be modified to incorporate the new button action

and action routine.

LabCheckBalsa (G:Graph)

Check button action for the Balsalines problem. Checks the graph built by the user

against the correct solution.

LabCheckNet (G:Graph)

Check button action for the network errand problem. Checks the network built by the user

against the correct solution.

LabDoAddEdge (NodePool:array of GraphNode)

Adds an edge to the graph and displays it on the user display.

LabDoAddNode (NodePool: array of GraphNode)

Adds a node to the graph and displays it on the user display.

LabDoClearGraph (NodePool:array of GraphNode;

EdgeTable:array of GraphEdge; G:Graph)

Resets the graph and clears it from the user display.

LabDoHelp

275

Displays help for a particular session in the Text Area and prompts the user to continue.

When the user responds, the routine redisplays the associated session description.

LabDoMinSpan (G:Graph, NodePool: array of GraphNode, EdgeTable: array of

GraphEdge)

Carry out the Minimum Spanning algorithm for the network, G.

LabDoShortestPath (G:Graph, NodePool: array of GraphNode, EdgeTable: array

of GraphEdge)

Carry out the Shortest Path algorithm for the network, G.

LabDoTopSort(G:Graph, NodePool: array of GraphNode, EdgeTable: array of

GraphEdge)

Carry out the Topological Sort algorithm for the network, G.

LabDoTraversal (G;Graph; NodePool: array of GraphNode)

Carries out a traversal laboratory session. Common actions are performed, then the

traversal indicated by the laboratory session code is called.

LabDrawLabScreen

Draws the user display including all regions and buttons.

276

LabGetEdgeWeight (Weight: integer)

Show edge colors and prompt for user selection.

LabGetNodeSelection(NodePool:array of GraphNode; NodeIndex:integer)

Waits for the user to select a node in the work area and returns the index in the NodePool

of the selected node.

LabGetSessionData (Code:string;Descr, Help:array of string;

ButtonTable:array of ButtonType; Nodelabel:string)

Retrieves the appropriate data from the lab data file LABDATA.DAT and stores the data

for use by the program. The session code is used to access the correct data in the file.

LabGetUserAction (Choice:integer)

Waits for a mouse click, then searches the Button Table to see which button, if any, was

selected. Returns the index in the Button Table of the selected buton, or zero if an active

button was not selected.

LabResetWorkRegion

Clears the work area of the user display and shows the dimmed nodes.

LabSetPalette (Colors: array of single precision)

Sets the palette to that used in the NeoBook portion ofthe courseware.

LabSetupBalsa

Display nodes for Balsa airlines laboratory session.

LabSetUpGraph (G:Graph; GraphNum:integer; NumNodes:array of integer;

NodeList: array ofinteger; NumEdges: array ofinteger;

EdgeList: array of integer)

277

Sets up a graph based on specified nodes and edges. GraphNurn indicates which of the

two lists of nodes and edges to use.

LabSetupMatrix (G:Graph)

Clear and display the matrix window and display the adjacency matrix for the graph, G.

LabSetupNet

Displays nodes for network errand laboratory session.

LabSetupSession (Session:string)

Performs any special actions at the start of a particular seSSIOn. Session is used to

determine which session is being initiated.

LabShowWeights

Displays the color key for edge weights for networks in the lower part of the work Area.

The constants WGHTXl and WGHTYI are coordinates selected to simplify displaying

the color boxes.

LabTheEnd

Prints a closing message for the session.

LabTitleScreen

Prints an opening title screen.

278

TestCheck (FrameText:string,Ans: array of string,NumFrames: integer)

Check user's answers to the self-test and indicated those which are not correct. Display

the correct answer for incorrect problems.

TestClear (Ans: array of string, NumFrames: integer)

Clear user-entered answers for a self-test.

TestGetSessionData(Code:string, NumFrames:integer, Text, Ans:array of string,

NumNodes:integer)

Retrieve data for a self-test from the data file.

TestRun

Run a user self-test. Data for the self-test, including the text for each question is in global

variables. The number of questions in the self-test is in the variable NumFrames.

TestShowAns (Ans: array of string, Frame:integer)

Display multiple choice answers and the user's current answer (initialized to a space) in

the Information Region of the display.

TestShowQuestion (Text: array of string, Frame:integer)

Display the question for the associated frame from the Text array in the Text Region of

the display.

3.2.6 General Purpose Routines

The following routines are general in nature.

279

XColorValue (Red,Green, Blue: single precision)

This function returns a single precision value corresponding to the amount of red, green

and blue which is indicated for a particular color.

XDelay (Seconds: single precision)

Delays the specified amount of time in seconds. The time is read from the system clock

so that the delay should not be affected by CPU speed. The routine does not account for

time passing midnight.

XPrintText (Row,Col:integr, Mesg:string; Color:integer)

Prints text at a specified row and column, and in a specified color.

3.2.7 Mouse Handling Routines

Mouse support is provided by a set of mouse handling routines written for a Microsoft or

Logitech-compatible mouse driver.

Mouse (Fcn,Argl ,Arg2,Arg3 : integer)

This routine provides the main interface to the mouse driver. A set of specific mouse

routines are also provided to perform specific actions such as showing the mouse. These

specific routines call this routine with appropriate values for the parameters and operate

on the results which are returned.

The driver is called by doing a CALL interrupt for interrupt &H33. Before calling the

driver, the mouse function (Fcn) is stored in the AX register, and other arguments as

needed (Argl...Arg3) are stored in registers BX, CX, and DX respectively. Results are

280

returned in these same registers. Specific arguments and results are described in the

specific routines which call this routine.

MouseButtonPressed

This routines calls the Mouse routine with a function 3 (Get Mouse Position and Status).

The mouse driver returns the button status in BX, the current horizontal cursor position in

ex, and the current vertical cursor position in DX. The button status is such that 1 =left

button pressed, 2=right button pressed, 4=middle button pressed, O=no button pressed.

This routine simply checks for BX > 0 (some button pressed) or 0 (no button pressed) and

returns the corresponding result.

MouseGet Pos (x,y:integer)

This routines calls the Mouse routine with a function 3 (Get Mouse Position and Status).

The mouse driver returns the button status in BX, the current horizontal cursor position in

ex, and the current vertical cursor position in DX. The button status is such that 1 =left

button pressed, 2=right button pressed, 4=middle button pressed, O=no button pressed.

This routine returns the horizontal position (O<=x<640) and the vertical position

(O<=y<200). Mouse coordinates are always in this range regardless of screen mode.

281

MouseHide ,

This routine calls Mouse with a function 2 (Hide Cursor). No results are returned.

MouseReset

This routine calls Mouse with a function 0 (Mouse Reset). The mouse driver checks for

the existence of the mouse and resets it if found. If not found, the AX is set to -1. This

routine does not check for mouse not found.

MouseShow

This routine calls Mouse with a function 1 (Show Cursor). No results are returned.

WaitForMouseClick (x,y:integer)

Calls MouseButtonPressed in a loop until TRUE is returned, then loops until

MouseButtonPressed is FALSE, thus indicating that a button has been pressed and

released. Calls MouseGetPos to get and return the current coordinates.

WaitForMousePress (x,y:integer)

Calls MouseButtonPressed in a loop until TRUE is returned, then calls MouseGetPos to

get and return the current coordinates.

3.2.8 File Formats

Session-specific data for laboratory sessions, animated demonstrations and self-tests are

stored in sequential files. Data for all laboratory sessions are stored in a single file

282

LABDATA.DAT. Data for animated demonstrations and self-tests are stored in specific

files. The file names for these files consist of the session code concatenated with the

extension ".DAT" Table 2 gives the session codes for all sessions.

Table 2: Session Codes for Laboratories, Demonstrations, and Self-Tests.

Code Type Description

GRAPHLAB laboratory Graph Unit, Lab 1: Build a graph
DEPTHLAB laboratory Graph Unit, Lab 2: Depth-first traversal
BREADTHLAB laboratory Graph Unit, Lab 3 :Breadth-first traversal
NETLAB laboratory Network Unit, Lab 1: Build a network
PATHLAB laboratory Network Unit, Lab 2: Shortest Path
SPANLAB laboratory Network Unit, Lab 3: Min. Spanning Tree
SORTLAB laboratory Network Unit, Lab 4: Topological Sort
GIMPOILAB laboratory Graph Implementation Unit, Lab 1
NIMPO 1 LAB laboratory Network Implementaton Unit, Lab 1
GRPHDEMO demo Graphs & Digraphs Demonstration
GIMPDEMO demo Graph Implementation Demonstration
NETDEMO demo Networks Demonstration
NIMPDEMO demo Networks Implementation Demonstration
GRPHTEST self-test Graphs & Digraphs Demonstration
GIMPTEST self-test Graph Implementation Demonstration
NETTEST self-test Networks Demonstration
NIMPTEST self-test Networks Implementation Demonstration

283

, 3.2.8.1 Lab Session Data File Format

The lab session data file, LABDATA.DAT, contains data for all lab sessions. Data for

individual sessions is stored consecutively, with the data for each session having the

format shown below.

Session Code (string)
Number of Lines of Session Description (integer)
Description Line 1 (string)

Description Line n (string)
Number of Lines of Help (integer)
Help Line 1 (string)

Help Line n (string)
Node Labels (string)
Button 1 text,Text Color, xl, yl, x2, y2, action code, active

Button 12 text,Text Color, xl, yl, x2, y2, action code, active
Number of nodes used

The number of lines of description is limited to MAXDESCR and the number of lines of

help is limited to MAXHELP. In the button information xl,yl are the coordinates of the

top left corner of the button, and x2,y2 are the coordinates of the bottom right corner of

the button.

284

. 3.2.8.2 Animated Demonstration Data File Format

Animated demonstrations are implemented using session-specific data and seSSlOn

specific routines. The data for animated demonstrations can include a session description,

text for each frame of the demonstration, and up to two graph specifications for graphs to

be used in the demonstration. Each demonstration has a separate data file named

XXXXXXXX.DAT, where XXXXXXXX is the same as the session code for the

demonstration (see Table 2 above). The format of each animated demonstration data file

is shown below.

Number of Lines of Description (integer)
Description Line 1 (string)

Description Line n (string)
Number of Frames (integer)
Number of Lines of Text for Frame 1 (integer)
Text Line 1 for Frame 1 (string)

Text Line n for Frame 1 (string)
Number of Lines of Text for Frame 2 (integer)
Text Line 1 for Frame 2 (string)

Text Line n for Frame 2 (string)

Number of Graphs (maximum of two)
Number of Nodes for Graph 1 (integer)
Node 1 Index (integer)

Node n Index (integer)
Number of Edges for Graph 1 (integer)
Nodel Index, Node 2 Index pair l,EdgeWeight 1

Nodel Index, Node 2 Index, pair n, EdgeWeight n

Number of nodes used

Help will be the same for all demonstrations and is hard-coded. A standard button

configuration is also used for each demonstration.

285

3.2.8.3 Self-Test Data File Format

Self-tests are implemented using session-specific data and a standard set of routines,

buttons, and help. The data for self-tests can include a session description, questions,

answers and correct answers for up to MAXQUESTIONS questions, and up to two graph

specifications for graphs to be used in the self-test. Each self-test has a separate data file

named XXXXXXXX.DAT, where XXXXXXXX is the same as the session code for the

self-test (see Table 2 above). The format of each self-test data file is shown below.

Number of Lines of Description (integer)
Description Line 1 (string)

Description Line n (string)
Number of Questions (integer)
Number of Lines of Text for Question 1 (integer)
Text Line 1 for Question 1 (string)

Text Line n for Question 1 (string)
Text for Question 1, Answer 1 (string)

Text for Question 1, Answer 4 (string)

Correct Answer for Question 1 (character)
Number of Lines of Text for Question 2 (integer)
Text Line 1 for Question 2 (string)

Number of Graphs (maximum of two)
Number of Nodes for Graph 1 (integer)
Node 1 Index (integer)

Node n Index (integer)
Number of Edges for Graph 1 (integer)
Nodel Index, Node 2 Index pair 1

Node 1 Index, Node 2 Index, pair n

Number of nodes used

Questions are intended to be multiple choice.

286

4.0 System Requirements

The courseware will be designed to run on an IBM PC compatible computer which has

the following minimum characteristics:

II IBM PC compatible computer, 386 or better

II 14" SVGA monitor

II 530 Kbytes free conventional memory

II hard disk with 2 Mbytes free space

II Logitech or Microsoft-compatible mouse with driver

III MS-DOS 5.0 or higher

The courseware is not designed to run under Windows. It may be run as a DOS

application from Windows as long as all minimum requirements are met.

AppendixE

Instructor's Guide

287

288

Graphs & Networks: Concepts & Implementation

Instructor's Guide

Thomas E:. B~utei
mount .,"' nfl!2'I'III"~11'l1'l CI~ifl:\nJt\'

Crent~d with n~()a~ok
IDnr1991

289

What is the Graphs & Networks courseware?

Graphs & Networks: Concepts & Implementation is an interactive courseware

product which combines text, color graphics, animation, and user interaction to present

the concepts and implementation principles for the nonlinear data structures of graphs and

networks. Tutorials provide an introduction to each topic. The information presented is

reinforced using interactive, animated demonstrations and lab sessions. Students can

assess their knowledge and progress by taking a self-test, then repeating any of the

activities as needed.

How does Graphs & Networks fit into my curriculum?

Graphs & Networks: Concepts & Implementation is intended to be used by

Freshman or Sophomore undergraduate Computer Science majors. The Introduction

included in the courseware describes the objectives and prerequisites. The objectives are

performance objectives, stated in terms of what the student should be able to do after

using the courseware in conjunction

with other learning activities such as lectures and programming assignments.

Graphs & Networks is intended to supplement your normal instruction. It can be

assigned to all students to facilitate their understanding of graph, digraph and network

data structures and associated algorithms, or it can be used for those students who are

290

having difficulty understanding these topics. You might even assign parts of the

courseware prior to class sessions and devote the class time to clearing up lingering

problems or elaborating on specific topics.

System Requirements

The courseware is designed to run on an IBM-PC compatible computer which has

the following minimum characteristics:

0' IBM PC-compatible, 386 or better

0' 14" SVGA monitor

0' 530 Kbytes free conventional RAM

0' hard disk drive with 2 Mbytes free space

0' Logitech or Microsoft-compatible mouse with driver

0' MS-DOS 5.0 or higher

Please note that the courseware is not designed to run under Windows. It may be

run as a DOS application from Windows as long as all minimum requirements are met.

291

Installing and Running Graphs & Networks

The software for Graphs & Networks is included on the floppy disk which

accompanies this guide. It is a good idea to create a backup copy of the courseware disk

before installing the software. To create a backup copy of the diskette, perform the

following steps:

0' Set the write protect tab on the courseware disk to ON.

0' Use the DOS diskcopy command to copy the courseware disk to

another floppy disk.

0' The courseware disk includes an installation program which will install

Graphs & Networks onto your hard drive. To run the installation program and install the

courseware, proceed as follows:

0' Tum on your computer.

0' Insert the distribution disk into Drive A:

0' At the DOS prompt (usually C:», type A:INSTALL and press ENTER

The installation program creates a directory on your hard drive called GRAPH

SW. All files for the courseware are placed in that directory. To start the courseware,

change to the directory GRAPH-SW by typing the DOS command cd c:\graph-sw and

pressing ENTER. Once in the proper directory, start the courseware by typing graphs

and pressing ENTER. The Graphs & Networks opening screen shown in Figure 1 will

be displayed. To begin, click on the START button.

292

Figure 1: Graphs & Networks Opening Screen

293

Courseware Organization

Graphs & Networks: Concepts & Implementation consists of four units

relating to the topics of graphs, digraphs, and networks. These are:

o Graphs & Digraphs

o Graph Implementation

o Networks

o Network Implementation

Basic concepts and terminology are presented in Graphs & Digraphs and

Networks. Implementation techniques for the data structures and common algorithms are

described and illustrated in Graph Implementation and Network Implementation.

Each unit of the courseware has four main learning activities: tutorial, animated

demonstration, interactive lab session, and self-test. These activities are described in the

following sections.

294

Tutorials

The tutorials provide the most basic instruction. Concepts, terminology, and

examples are provided using text and graphic images in a manner similar to a standard

textbook. Hyperlinks are incorporated to provide supplementary material or topics of

special interest which are related to the topic being covered. Students may proceed at

their own pace through the tutorial material. It is recommended that students view the

tutorial for a unit before going on to one of the other activities; however, this is not

strictly necessary.

Animated Demonstrations

Animated demonstrations are a mam feature of the courseware. Many of the

concepts, data structures, and algorithmic operations are difficult to visualize. Textbooks

have traditionally used sequences of pictures with explanatory notes to illustrate these

topics. The use of animation allows students to see the changes in a data structure or the

operation of an algorithm as the change progresses. Animations can be replayed as

needed to study a specific topic.

295

Interactive Lab Sessions

Most learning theories, whether behavioral or cognitive, emphasize the need for

learners to perform practical exercises to reinforce and clarify concepts and build skills.

The interactive lab sessions in the courseware are intended to provide this type of

learning activity. Students perform laboratory activities to solve specified problems or

demonstrate phenomena. The activities are interactive. For example, one lab session in

the first unit, Graphs & Digraphs, asks the student to build a graph of routes for a airline.

Using a point-and-click interface the student adds edges to create a graph on screen.

[]

[]

[] Self Tests

The self tests are included primarily for the student to check his/her own progress.

The tests are interactive and multiple choice questions. Students can review answers and

change them as needed. Answers can be checked by the software with incorrect answers

indicated along with the correct answer.

AppendixF

QuickBASIC Program Listing

296

297

DECLARE SUB WaitForMouseClick (x%, y%)
DECLARE SUB TestGetSessionData (Code$, Descr$(), NumFrames%, FText$(),
ANS$(), ActNodes%)
DECLARE SUB TestCheck (FrameText$(), ANS$(), NumFrames AS INTEGER)
DECLARE SUB TestShowAns (ANS$(), Frame AS INTEGER)
DECLARE SUB TestShowQuestion (FrameText$(), Frame AS INTEGER)
DECLARE SUB TestRun ()
DECLARE SUB TestClear (ANS$(), NumFrames AS INTEGER)
DECLARE SUB DemoNiml ()
DECLARE SUB DemoNim2 ()
DECLARE SUB DemoNim3 ()
DECLARE SUB DemoNim4 ()
DECLARE SUB DemoNim5 ()
DECLARE SUB GraphHighlightMatrix (G() AS INTEGER, row AS INTEGER, col AS
INTEGER)
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB

DemoGiml
DemoGim2
DemoGim3
DemoNetl
DemoNet2
DemoNet3
DemoNet4

()
()
()
()
()
()
()

DECLARE SUB NetTopologicalSort (N() AS INTEGER)
DECLARE SUB LabDoTopSort (Graph() AS INTEGER, Nodes() AS ANY, Edges() AS
ANY)
DECLARE FUNCTION XRadians! (Degrees AS SINGLE)
DECLARE SUB EdgeArrowHead (e AS ANY)
DECLARE SUB NetShowShortestPath (Path() AS INTEGER, START%, Dest%)
DECLARE SUB NetShortestPath (N() AS INTEGER, START%, Dest%)
DECLARE SUB LabDoShortestPath (G() AS INTEGER, Nodes() AS ANY, Edges()
AS ANY)
DECLARE SUB LabDoTraversal (Graph() AS INTEGER, Nodes() AS ANY)
DECLARE SUB NetMinSpanTree (N() AS INTEGER)
DECLARE SUB LabDoMinSpan (Graph() AS INTEGER, Nodes() AS ANY, Edges() AS
ANY)
DECLARE SUB LabDoDepth (Graph() AS INTEGER, Nodes() AS ANY)
DECLARE SUB LabDoBreadth (Graph() AS INTEGER, Nodes() AS ANY)
DECLARE SUB NetFindMin (N() AS INTEGER, Nodel%, Node2%)
DECLARE FUNCTION NetAllIncluded% (Visited() AS INTEGER)
DECLARE SUB LabCheckNet (G() AS INTEGER)
DECLARE SUB LabSetupNet ()
DECLARE SUB LabShowWeights ()
DECLARE SUB LabGetEdgeWeight (Weight%)
DECLARE SUB LabSetupmatrix (G() AS INTEGER)
DECLARE SUB GraphShowMatrix (G() AS INTEGER)
DECLARE SUB EdgeHighlight (e AS ANY, Nodes() AS ANY, Kolor%)
DECLARE SUB NodePoolInit (Nodes() AS ANY)
DECLARE SUB LabSetupGraph (G() AS INTEGER, GNum%, NumNodes%(),
NodeList%(), NumEdges%(), EdgeList%())
DECLARE SUB LabResetWorkRegion ()
DECLARE SUB EdgeChangeColor (e AS ANY, Kolor%)
DECLARE SUB EdgeFind (Edges() AS ANY, Nodel%, Node2%, EIndex%)
DECLARE SUB DemoGraph5 ()
DECLARE SUB DemoGraph4 ()
DECLARE SUB DemoGraph2 ()
DECLARE SUB DemoGraph3 ()
DECLARE SUB NodeCreate (N AS ANY, Label$, NColor%, LColor%, x%, y%)
DECLARE SUB DemoGraphl ()
DECLARE SUB DemoRun ()
DECLARE SUB DemoGetSessionData (Code$, Descr$(), NumFrames%, FText$(),
ActNodes%)

DECLARE SUB GraphBreadthFirstTraversal (G() AS INTEGER, START%)
DECLARE SUB QueueAdd (Q() AS INTEGER, Head%, Tail%, Item%)
DECLARE SUB QueueRemove (Q() AS INTEGER, Head%, Tail%, Item%)
DECLARE SUB QueueInit (Head%, Tail%)
DECLARE FUNCTION QueueEmpty% (Head%, Tail%)
DECLARE FUNCTION GraphEmpty% (G() AS INTEGER)
DECLARE SUB NodeChangeColor (N AS ANY, Kolor%)
DECLARE SUB GraphDepthFirstTraversal (G() AS INTEGER, START%)
DECLARE SUB GraphSearchFrom (NodeIndex%)
DECLARE SUB LabSetupBalsa ()
DECLARE SUB LabSetupSession (Session$)
DECLARE SUB LabCheckBalsa (G() AS INTEGER)
DECLARE SUB GraphShow (Nodes() AS ANY, Edges() AS ANY)
DECLARE SUB EdgeAdd (G() AS INTEGER, Node1%, Node2%, Weight%)
DECLARE SUB LabButtonService (B AS ANY)
DECLARE SUB EdgeTableInit (Edges() AS ANY)
DECLARE FUNCTION XColorValue! (RED!, GREEN!, BLUE!)
DECLARE SUB RegionCreate (R AS ANY, x1%, y1%, x2%, y2%, BGColor%)
DECLARE SUB RegionClear (R AS ANY)
DECLARE SUB RegionPrint (R AS ANY, RegionRow%, RegionCol%, Mesg$,
Kolor%)
DECLARE SUB RegionBorder (R AS ANY)
DECLARE SUB GraphInit (G() AS INTEGER)
DECLARE SUB NodeCenter (NODE%, x%, y%)
DECLARE SUB ButtonAction (B AS ANY)
DECLARE SUB NodeShow (NIndex%)
DECLARE SUB EdgeShow (e AS ANY, Nodes() AS ANY)
DECLARE SUB EdgeCreate (e AS ANY, EColor%, Node1%, Node2%)
DECLARE SUB EdgeFindFree (Edges() AS ANY, EdgeIndex%)
DECLARE SUB NodeShowDimmed (N AS ANY)
DECLARE SUB ButtonPress (B AS ANY)
DECLARE SUB ButtonDraw (B AS ANY)
DECLARE SUB ButtonCreate (B AS ANY, x1%, y1%, x2%, y2%, Light%, Dark%,
Face%, TextCol%, ButtonText$, Action%, Active%)
DECLARE SUB LabSetPalette (Colors() AS SINGLE)
DECLARE SUB LabGetSessionData (Code$, Descr$(), SHelp$(), Button() AS
ANY, NLabel$, ActNodes%)
DECLARE SUB LabTitleScreen ()
DECLARE SUB LabDrawLabScreen ()
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
INTEGER)
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB

LabGetUserAction (choice%)
LabTheEnd ()
LabDoAddNode (Nodes() AS ANY)
LabDoAddEdge (Nodes() AS ANY)
LabDoClearGraph (Nodes() AS ANY, Edges() AS ANY, G() AS

LabDoHelp ()
RegionConfirm (R AS ANY, Mesg$, Response%)
XDelay (Seconds!)
LabGetNodeSelection (Nodes() AS ANY, NodeIndex%)
XPrintText (row%, col%, Mesg$, Kolor%)
MouseHide ()
MouseShow ()
WaitForMousePress (x%, y%)
MouseReset ()

I Program Name ANILAB11.BAS
I By T. Beutel
I Date Mar. 13, 1997
'Description This program provides an interactive laboratory and
I demonstration environment for working with graphs and networks. It

298

I is part of the courseware package on graphs and networks. The program

299

is called from a NeoBook application which provides the user interface
, and overall structure of the courseware. NeoBook calls the program
, without clearing the screen so that the program seems to be running
, within the NeoBook application.

, The program provides a general purpose display consisting of display
, areas and user controls which can be used for the various animated
, demonstrations and laboratory exercises. When the NeoBook application
, calls the program, it passes an appropriate command line parameter
, to specify what lab or animation is to be done.

===

'Boolean Constants
CONST TRUE = -1
CONST FALSE 0

'Palette Colors: set to match selected palette in NeoBook application.
CONST Black = 0
CONST BLUE = 1
CONST YELLOW = 2
CONST ROBINSEGG = 3
CONST RED = 4
CONST LTGRAY = 5
CONST MEDLTGRAY 6
CONST MEDGRAY 7
CONST MEDDKGRAY 8
CONST DKGRAY 9
CONST SPRINGGREEN 10
CONST LTRED = 11
CONST PERSIMMON 12
CONST CINNAMON 13
CONST VANILLA 14
CONST WHITE = 15

'Default Colors
CONST TEXTKOLOR
CONST NODEKOLOR
CONST EDGEKOLOR

VANILLA
YELLOW
YELLOW

CONST DRAWKOLOR DKGRAY
CONST LABELKOLOR = YELLOW
CONST BUTTONLIGHT = LTGRAY
CONST BUTTONDARK = DKGRAY
CONST BUTTONFACE = Black
CONST BORDERLIGHT = LTGRAY
CONST BORDERDARK = DKGRAY
CONST HIGHLTCOLOR = LTRED

'Color of text in Text Region
'Color of node on user display
'Color of edge on user display
'Color for drawing node outline
'Color of node label
'Light color for 3D button edge
'Dark color for 3D button edge
'Color for face of 3D button
'Light color for 3D border
'Dark color for 3D border
'Edge highlight color

'Start Coordinates for Nodes in Work Area: center of the first node
CONST STARTX 68
CONST STARTY = 232

, Coordinates/Color for Demo area
CONST DEMOXI 28
CONST DEMOYI 68
CONST DEMOX2 615
CONST DEMOY2 474
CONST DEMOKOLOR = Black

'The user display (Demo Area) is organized into five regions as follows:

Text display lab problems, explanations, etc.

Work
Controls:
Message
Info

area where a graph is displayed, animated, etc.
buttons for controlling the display
error or prompt messages
information related to the current activity

'In addition, there are two special regions used in the program.

Confirm
Matrix

used for confirmation messages
used to display the adjacency matrix

'The constants given below, specify the location of each area for
'this program.

, Coordinates for Text Region
CONST TEXTXl 28
CONST TEXTYI 68
CONST TEXTX2 615
CONST TEXTY2 195

, Coordinates for Work Region
CONST WORKXl 30
CONST WORKYI 204
CONST WORKX2 308
CONST WORKY2 468

, Coordinates
CONST CTRLXl
CONST CTRLYl
CONST CTRLX2
CONST CTRLY2

for Controls Region
316
204
612
468

, Coordinates for Message Region
CONST MESGXl 322
CONST MESGYI 316
CONST MESGX2 603
CONST MESGY2 340

, Coordinates for Info Region
CONST INFOXI 322
CONST INFOYI 212
CONST INFOX2 603
CONST INFOY2 308

, Coordinates
CONST CONFXl
CONST CONFYl
CONST CONFX2
CONST CONFY2

, Coordinates
CONST MATRXI
CONST MATRYl
CONST MATRX2
CONST MATRY2

'Coordinates
CONST SMATXl
CONST SMATYI
CONST SMATX2
CONST SMATY2

for Confirm Region
188
132
436
236

for the Matrix Region
322
72
603
340

for small Matrix Region
322
196
603
340

300

, Coordinates for Edge Weight Key
CONST WGHTX1 120
CONST WGHTY1 448

'Lines of description and help
CONST MAXDESCR = 7
CONST MAXHELP = 6

'Maximum number of buttons,
CONST MAXBUTTONS 12

nodes, and edges for the user display.

CONST
CONST
CONST
CONST
CONST

MAXNODES =
MAXEDGES =

NODERADIUS
MAXFRAMES =

MAXWT = 100

16
42
= 16

10
'radius of a node
'separate pages in demo/test
'high value for edge weight

301

, Action Codes for Buttons: codes specify possible actions for buttons.
, Not all actions will be used for a given lab/demo session. The
, actions for a given session will be specified in the session data.
CONST NOACTION = 0
CONST ADDNODE 1
CONST DELNODE 2
CONST ADDEDGE 3
CONST DELEDGE 4
CONST ANS.A
CONST ANS.B

5
6

CONST ANS.C 7
CONST ANS.D 8
CONST RUNDEPTH
CONST RUNBREADTH
CONST RUNPATH 12
CONST RUNS PAN 13
CONST RUNSORT 14
CONST RUN DEMO 15
CONST STARTTEST = 16
CONST NEXTQUES = 17
CONST PREVQUES 18
CONST PAUSE = 20
CONST BACK = 21
CONST CONTIN = 30
CONST FORWARD = 31
CONST RESTART = 40
CONST CLRGRAPH = 50
CONST CLRBALSA = 51
CONST CLRMATRIX 52
CONST CLRTEST 54
CONST CLRNET 53
CONST CHECK 60
CONST CHECKBALSA
CONST CHECKNET

10
11

61
62

63 CONST CHECKTEST
CONST HELP 70
CONST QUIT 80

, Data Structure Declarations

'multiple choice answers

'depth-first traversal algorithm
'breadth-first traversal algorithm
'shortest path algorithm
'minimum spanning tree algorithm
'topological sort algorithm
'animated demo
'self-test controls

'go back one frame in demo

'go forward one frame in demo

'clear graph & adjacency matrix display
'clear answers on self-test
'clear network for errand problem

'check graph for Balsa airline problem
'check network for errand problem
'check answers on self-test

, ButtonType: A ButtonType is a 3D button used to activate some program
, feature. A ButtonType consists of a LightBorderColor, DarkBorderColor,
, FaceColor, TextColor, ButtonText, top left corner (X1,Y1), bottom

, right corner (X2,Y2), an ActionCode, and an Active/Inactive flag.
, The ActionCode is used by the ServiceButton routine to call an
, associated subroutine.

TYPE ButtonType
ButtonActive AS INTEGER
xl AS INTEGER
yl AS INTEGER
x2 AS INTEGER
y2 AS INTEGER
LightBorderColor AS INTEGER
DarkBorderColor AS INTEGER
FaceColor AS INTEGER
TextColor AS INTEGER
ButtonText AS STRING * 9
ActionCode AS INTEGER

END TYPE

'actually "boolean"

, GraphNode: A node in a graph consisting of a label, node color,
, label color, x and y coordinated for displaying the node, and a
, boolean flag indicating if the node is visible on the user display.

TYPE GraphNode
Label AS STRING * 1
NodeColor AS INTEGER
LabelColor AS INTEGER
NodeXCoord AS INTEGER
NodeYCoord AS INTEGER
NodeVisible AS INTEGER

END TYPE

, GraphEdge: Connects two GraphNodes. The connection is indicated
, in the adjacency matrix, but a table of edges is also kept to allow
, the current edge color to be stored. The edge color will change
, during traversals or other algorithmic manipulations.

TYPE GraphEdge
EdgeColor AS INTEGER
Nodel AS INTEGER
Node2 AS INTEGER

END TYPE

302

, Region: A Region is a rectangular portion of the screen consisting of
, a RegionBGColor and a three-dimensional border. The location is
, specified by the coordinates of the top left corner (xl,yl) and the
, coordinates of the bottom right corner (x2,y2).

TYPE Region
xl AS INTEGER
yl AS INTEGER
x2 AS INTEGER
y2 AS INTEGER
BGColor AS INTEGER

END TYPE

, Variable Declarations

, Among the variable declared below are three arrays which deserve
, some explanation: the Button Table, Node Pool and Edge Table.

, The Button Table is a one-dimensional array with each element
, corresponding to a button on the user display. Each element, a
, ButtonType, includes relevant information such as its position,
, colors, whether it is active or not, and an action code to indicate
, what action the ButtonService routine should initiate when the
, button is pressed.

, The Node Pool is a one-dimensional array with each element
, corresponding to a GraphNode. There are MAXNODES nodes in the
, Node Pool, each node representing a displayable node in the work
, area of the user display. These are initialized at the start of the
, program to specify the location, color, associated label, etc.
, Initially, all nodes are "hidden", that is, displayed as a dimmed
, image. As nodes are added to a Graph, either by the user or by
, the program, the corresponding GraphNode is "shown" on the user
, display. The Node Pool keeps track of the state of individual
, nodes.

, The Edge Table is also a one-dimensional array, with each element
, corresponding to an edge in a Graph. When an edge is added to a
, graph by the user or by the program, an entry is made in the
, adjacency matrix used to represent the Graph and the edge is
, recorded in the Edge Table. The main purpose of the edge table
, entry is to maintain the current color of the edge.

DIM Colors (0 TO 15)
DIM Button(l TO MAXBUTTONS) AS ButtonType
DIM Nodes (1 TO MAXNODES) AS GraphNode
DIM Edges(l TO MAXEDGES) AS GraphEdge

'Array of palette colors
'Button Table
'pool of nodes
'edge table

, A Graph is represented by a two-dimensional array called and
, an adjacency matrix. Two nodes which are connected by an edge
, is represented by TRUE (-1) stored in the corresponding
, row/col elements of the array. (Note there will be two such
, entries for each edge since the graph is undirected.

DIM Graph(l TO MAXNODES, 1 TO MAXNODES) AS INTEGER

, The Visited array is used to keep track of nodes visited during
, the depth-first traversal.

DIM Visited(l TO MAXNODES) AS INTEGER

, The InQueue array is used to keep track of nodes pending processing
, during the breadth-first traversal. Queue holds the indexes of nodes
, to be processed. Head and Tail indicate the head and tail of the

queue.

DIM InQueue(l TO MAXNODES) AS INTEGER
DIM Queue(l TO MAXNODES) AS INTEGER
DIM Head AS INTEGER
DIM Tail AS INTEGER

, Regions on Lab Screen
DIM DemoRegion AS Region
DIM TextRegion AS Region
DIM MesgRegion AS Region
DIM InfoRegion AS Region
DIM WorkRegion AS Region
DIM ControlRegion AS Region
DIM ConfirmRegion AS Region

303

DIM MatrixRegion AS Region

, Session Data: stores all information needed to specify a session
, including the session code, description, help info. Button info.
, is stored in Button Table.

DIM SessionS 'code for current session
DIM SessionDescr$(1 TO MAXDESCR)
DIM SessionHelp$(1 TO MAXHELP)
DIM NodeLabel$ 'string containing node labels

, Demonstration Data: stores information for frames of a demo.
, The demo description and help are stored in the SessionDescr$
, and SessionHelp$ arrays above. A demo may also include up to
, two prespecified graphs. These are stored as lists of nodes
, and edges (node pairs).

DIM NumFrames AS INTEGER
DIM Frame AS INTEGER

DIM FrameText$(l TO MAXFRAMES, 1 TO MAXDESCR)

'Self-test Data: Uses NumFrames, Frame and FrameText$ for questions.
'Ans$() holds multiple choice answers. Fifth entry holds a two
'char string consisting of the correct answer followed by the user's
'answer.

DIM ANS$(l TO MAXFRAMES, 1 TO 5)

DIM NumNodes(l TO 2) AS INTEGER
DIM NumEdges(l TO 2) AS INTEGER
DIM NodeList(l TO 2, 1 TO MAXNODES) AS INTEGER

304

'EdgeList hold data for two graphs, each having up to MAXEDGES edges,
'with two nodes (last index 1 and 2) and an edge weight (last index 3) .
DIM EdgeList(l TO 2, 1 TO MAXEDGES, 1 TO 3) AS INTEGER

DIM DONE AS INTEGER
DIM i AS INTEGER
DIM ActualNodes AS INTEGER
DIM ShowMatrix AS INTEGER
DIM Net AS INTEGER
DIM Digraph AS INTEGER

, Main Program

DEFINT A-Z
SCREEN 12
LabSetPalette Colors! ()
SessionS = COMMAND$

'Boolean variable for main program loop

'actual number of nodes used
'should adj. matrix be displayed
'TRUE if network being used
'TRUE if digraph is being used

'make integer the default data type
'640x480x16 colors
'Set palette to same as NeoBook
'get session from command line

IF RIGHT$(Session$, 3) "LAB" THEN 'lab session
LabGetSessionData SessionS, SessionDescr$(), SessionHelp$(), Button(),

NodeLabel$, ActualNodes

ELSEIF RIGHT$(Session$, 4) "DEMO" THEN 'demo session
DemoGetSessionData SessionS, SessionDescr$(), NumFrames, FrameText$(),

ActualNodes

, Create standard button set for demos

FOR i = 1 TO MAXBUTTONS
READ Text$, TColor, xl, yl, x2, y2, Action, Active
ButtonCreate Button(i) , xl, yl, x2, y2, BUTTONLIGHT, BUTTONDARK,

BUTTONFACE, TColor, Text$, Action, Active
NEXT i

, Standard Node labels for demos
NodeLabel$ = "ABCDEFGHIJKLMNOP"

for Demos
"
un

CONTROLS FOR DEMONSTRATION"

305

, Standard Help
SessionHelp$(l)
SessionHelp$(2)
SessionHelp$(3)
SessionHelp$(4)

" RUN start demonstration"
" NEXT proceed to next frame

of demo"
SessionHelp$(5)

frame"
SessionHelp$(6)

demonstration"

" BACK go back to preceding

" QUIT terminate

Frame = 0

ELSEIF RIGHT$(Session$, 4) "TEST" THEN 'self-test
TestGetSessionData Session$, SessionDescr$(), NumFrames, FrameText$(),

ANS$(), ActualNodes

, Create standard button set for tests

FOR i = 1 TO MAXBUTTONS 'read past demo DATA
READ Text$, TColor, xl, yl, x2, y2, Action, Active

NEXT i
FOR i = 1 TO MAXBUTTONS 'read test DATA

READ Text$, TColor, xl, yl, x2, y2, Action, Active
ButtonCreate Button(i), xl, yl, x2, y2, BUTTONLIGHT, BUTTONDARK,

BUTTONFACE, TColor, Text$, Action, Active
NEXT i

, Standard Node labels for tests
NodeLabel$ "ABCDEFGHIJKLMNOP"

, Standard Help for tests
SessionHelp$(l) "
SessionHelp$(2) " START: start

answer A"
SessionHelp$(3) " NEXT go to

answer B"
SessionHelp$(4) " BACK go to

answer C"
SessionHelp$(5) " CHECK: check

answer D"

CONTROLS FOR SELF-TEST"
self-test A: select

next question B: select

previous question C: select

answer to question D: select

SessionHelp$(6) " QUIT : terminate self-test"

Frame 0

END IF

'Create Lab Screen Regions
RegionCreate DemoRegion, DEMOX1, DEMOY1, DEMOX2, DEMOY2, DEMOKOLOR
RegionCreate TextRegion, TEXTX1, TEXTY1, TEXTX2, TEXTY2, DEMOKOLOR
RegionCreate WorkRegion, WORKX1, WORKY1, WORKX2, WORKY2, MEDGRAY
RegionCreate MesgRegion, MESGX1, MESGY1, MESGX2, MESGY2, DEMOKOLOR

RegionCreate InfoRegion, INFOX1, INFOY1, INFOX2, INFOY2, DEMOKOLOR
RegionCreate ControlRegion, CTRLX1, CTRLY1, CTRLX2, CTRLY2, DEMOKOLOR
RegionCreate ConfirmRegion, CONFX1, CONFY1, CONFX2, CONFY2, DEMOKOLOR

IF SessionS = "GIMPDEMO" OR SessionS = "NIMPDEMO" THEN

306

RegionCreate MatrixRegion, SMATX1, SMATY1, SMATX2, SMATY2, DEMOKOLOR
ELSE

RegionCreate MatrixRegion, MATRX1, MATRY1, MATRX2, MATRY2, DEMOKOLOR
END IF

NodePoolInit Nodes()
EdgeTableInit Edges()
GraphInit Graph()

LabTitleScreen
LabDrawLabScreen
LabSetupSession SessionS

DONE = FALSE
WHILE NOT DONE 'loop until user quits session

choice = 0
LabGetUserAction choice
IF (choice <> 0) THEN ButtonAction Button(choice)

WEND
LabTheEnd
CLS

, Data for default buttons for animated demos.

DATA "ADD NODE",5,322,346,412,370,0,0
DATA "DEL NODE",5,322,378,412,402,0,0
DATA "ADD EDGE",5,322,410,412,434,0,0
DATA "DEL EDGE",5,322,442,412,466,0,0
DATA "RUN",5,418,346,508,370,15,-1
DATA "NEXT",5,418,378,508,402,31,-1
DATA "BACK",5,418,410,508,434,21,-1
DATA "RESTART",5,418,442,508,466,0,0
DATA "CLEAR",5,514,346,604,370,0,0
DATA "CHECK",5,514,378,604,402,0,0
DATA "HELP!",10,514,410,604,434,70,-1
DATA "QUIT",11,514,442,604,466,80,-1

, Data for default buttons for self-tests.
, ===

DATA "A", 5, 32 2, 3 4 6, 4 12, 37 0, 5, 1
DATA "B",5,322,378,412,402,6,-1
DATA "C",5,322,410,412,434,7,-1
DATA "0",5,322,442,412,466,8,-1
DATA "START",5,418,346,508,370,16,-1
DATA "NEXT",5,418,378,508,402,17,-1
DATA "BACK",5,418,410,508,434,18,-1
DATA "RESTART",5,418,442,508,466,O,0
DATA "CLEAR",5,514,346,604,370,54, 1
DATA "CHECK",5,514,378,604,402,63,-1
DATA "HELP!",10,514,410,604,434,70,-1
DATA "QUIT",11,514,442,604,466,80,-1

===

, Subroutines: Subroutines are organized alphabetically by QuickBASIC.
, So ... subroutines are grouped into groups of related operations by

307

, starting each subroutine name with a key identifier, such as Button
, for all button-related routines. Routines starting with X are general
, purpose routines.

==-

===

, ButtonAction: If a button is active, carry out the action specified
, in the ActionCode.

===

SUB ButtonAction (B AS ButtonType)
IF (B.ButtonActive TRUE) THEN

ButtonPress B
LabButtonService B
ButtonDraw B

END IF
END SUB

, ButtonCreate: Creates a ButtonType B with the specified parameters.

SUB ButtonCreate (B AS ButtonType, xl, y1, x2, y2, Light, Dark, Face,
TextCol, ButtonText$, Action, Active)

B.ButtonActive = Active
B.x1 xl
B.y1 y1
B.x2 x2
B.y2 y2
B.LightBorderColor = Light
B.DarkBorderColor = Dark
B.FaceColor Face
B.TextColor TextCol
B.ButtonText$ ButtonText$
B.ActionCode = Action

END SUB

, ButtonDraw: Displays a button using the parameters stored in the
, button's data structure.

SUB ButtonDraw (B AS ButtonType)
MouseHide
IF B.ButtonActive TRUE THEN

LINE (B.x1, B.y1)-(B.x2, B.y1), B.LightBorderColor
LINE (B.x1 + 1, B.y1 + 1)-(B.x2 - 1, B.y1 + 1), B.LightBorderColor
LINE (B.x1, B.y1)-(B.x1, B.y2), B.LightBorderColor
LINE (B.x1 + 1, B.y1 + 1)-(B.x1 + 1, B.y2 - 1), B.LightBorderColor
LINE (B.x2, B.y1)-(B.x2, B.y2), B.DarkBorderColor
LINE (B.x2 - 1, B.y1 + 1)-(B.x2 - 1, B.y2 - 1), B.DarkBorderColor
LINE (B.x2, B.y2)-(B.x1, B.y2), B.DarkBorderColor
LINE (B.x2 - 1, B.y2 - 1)-(B.x1 + 1, B.y2 - 1), B.DarkBorderColor
LINE (B.x1 + 2, B.y1 + 2)-(B.x2 - 2, B.y2 - 2), B.FaceColor, BF
ButtonLength INT((B.x2 - B.x1) \ 8)
ButtonHeight INT((B.y2 - B.y1) \ 16)
row = INT(B.y1 \ 16) + ButtonHeight \ 2 + 2
col INT(B.x1 \ 8) + (ButtonLength - LEN (B.ButtonText$)) \ 2 + 1
XPrintText row, col, B.ButtonText$, B.TextColor

ELSE
LINE (B.x1, B.y1) (B.x2, B.y2), MEDDKGRAY, BF

END IF
MouseShow

END SUB

, ButtonHide: Sets the Button Active field to false so that the
, button will not be displayed.

SUB ButtonHide (B AS ButtonType)
B.ButtonActive = FALSE

END SUB

, ButtonPress: Displays a button with the light and dark colors
, swapped and the Button text moved to the right to make it appear
, that the button has been pressed in.

SUB ButtonPress (B AS ButtonType)
MouseHide
LINE (B.xl, B.yl)-(B.x2, B.yl), B.DarkBorderColor
LINE (B.xl + 1, B.yl + 1)-(B.x2 - 1, B.yl + 1), B.DarkBorderColor
LINE (B.xl, B.yl)-(B.xl, B.y2), B.DarkBorderColor
LINE (B.xl + 1, B.yl + l)-(B.xl + 1, B.y2 - 1), B.DarkBorderColor
LINE (B.x2, B.yl)-(B.x2, B.y2), B.LightBorderColor
LINE (B.x2 - 1, B.yl + 1)-(B.x2 - 1, B.y2 - 1), B.LightBorderColor
LINE (B.x2, B.y2)-(B.xl, B.y2), B.LightBorderColor
LINE (B.x2 - 1, B.y2 - l)-(B.xl + 1, B.y2 - 1), B.LightBorderColor
LINE (B.xl + 2, B.yl + 2)-(B.x2 - 2, B.y2 - 2), B.FaceColor, BF
ButtonLength INT((B.x2 - B.xl) \ 8)
ButtonHeight INT((B.y2 - B.yl) \ 16)
row = INT(B. \ 16) + ButtonHeight \ 2 + 2
col = INT(B.xl \ 8) + (ButtonLength - LEN(B.ButtonText$)) \ 2 + 2
XPrintText row, col, B.ButtonText$, MEDGRAY
MouseShow

END SUB

, ButtonUnhide: Sets the Button Active field to True so that the
, button will be displayed.

SUB ButtonUnhide (B AS ButtonType)
B.ButtonActive = TRUE

END SUB

, GetSessionData:Retrieve session data from file.

308

SUB DemoGetSessionData (Code$, Descr$(), NumFrames, FText$(), ActNodes)
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER

FileName$ = CodeS + ".DAT"
CLOSE #1
OPEN FileName$ FOR INPUT AS #1
INPUT #1, NumDescr
FOR i = 1 TO NumDescr

INPUT #1, Descr$(i)

'how many descr lines?
'get description

NEXT i
FOR i NumDescr + 1 TO MAXDESCR 'fill in blank lines

Descr$(i) = ""

NEXT i
INPUT #1, NumFrames
FOR i = 1 TO NumFrames 'get text for each frame

INPUT #1, NumLines
FOR j = 1 TO NumLines

INPUT #1, FText$(i, j)
NEXT j

NEXT i
INPUT #1, NumGraphs
FOR i = 1 TO NumGraphs

INPUT #1, NumNodes(i)
FOR j = 1 TO NumNodes(i)

INPUT #1, NodeList(i, j)
NEXT j
INPUT #1, NumEdges(i)
FOR j = 1 TO NumEdges(i)

309

INPUT #1, EdgeList(i, j, 1), EdgeList(i, j, 2), EdgeList(i, j, 3)
NEXT j

NEXT i
INPUT #1, ActNodes
CLOSE #1

END SUB

I DemoGiml: First frame animation for Graph Implementation animated
I demonstration. The use of the adjacency matrix to represent the
, edge connections of a graph is presented.

SUB DemoGiml
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER
SHARED ShowMatrix AS INTEGER

Digraph = FALSE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphInit Graph()
LabSetupmatrix Graph()
FOR i = 1 TO NumNodes(l)

N = NodeList(l, i)
NodeShow N: SOUND 440, 1: XDelay (1)

NEXT i
XDelay (2)
ShowMatrix = TRUE
GraphInit Graph()
FOR i = 1 TO NumEdges(l)

EdgeShow Edges(i), Nodes(): SOUND 880, 1
EdgeAdd Graph(), Edges (i) .Nodel, Edges(i) .Node2, 1
XDelay (2)

NEXT i

END SUB

I DemoGim2: Second frame animation for Graph Implementation animated

, demonstration. The relationship of the degree of a node to the
, adjacency matrix is presented.

SUB DemoGim2
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = FALSE
GraphInit Graph()
LabSetupmatrix Graph()
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphShow Nodes(), Edges()
NodeChangeColor Nodes(l), LTRED
NodeShow 1
SOUND 440, 1
XDelay (1)
EdgeFind Edges(), 1, 2, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1
GraphHighlightMatrix Graph(), 2, 1
XDelay (2)
EdgeFind Edges(), 1, 6, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1
GraphHighlightMatrix Graph(), 6, 1
XDelay (2)

END SUB

, DemoGim3: Third frame animation for Graph Implementation animated
, demonstration. The relationship of a path to the adjacency matrix
, is presented.

SUB DemoGim3
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = FALSE
GraphInit Graph()
LabSetupmatrix Graph()
LabResetWorkRegion

310

LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
NodeChangeColor Nodes(l), LTRED
NodeChangeColor Nodes(6), LTRED
NodeChangeColor Nodes(5), LTRED
EdgeFind Edges(), 1, 6, EdgeIndex
EdgeHighlight Edges(EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 440, 1
GraphHighlightMatrix Graph(), 1, 6
XDelay (2)
EdgeFind Edges(), 5, 6, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 440, 1
GraphHighlightMatrix Graph(), 6, 5
XDelay (2)

END SUB

, DemoGraphl: First frame animation for Graphs & Digraphs animated
, demonstration. The terms NODE and EDGE are presented.

SUB DemoGraphl
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED TextRegion AS Region
SHARED WorkRegion AS Region
SHARED NodeLabel$
SHARED Graph () AS INTEGER

LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
FOR i = 1 TO NumNodes(l)

N = NodeList(l, i)
NodeShow N: SOUND 440, 1: XDelay (1)

NEXT i
XDelay (1)
RegionPrint TextRegion, 4, 20, "and EDGES.", TEXTKOLOR
XDelay (1)
FOR i = 1 TO NumEdges(l)

EdgeShow Edges(i), Nodes(): SOUND 880, 1: XDelay (1)
NEXT i
XDelay (1)

END SUB

, DemoGraph2: presents direct connection of nodes

SUB DemoGraph2
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER

311

SHARED Graph() AS INTEGER

LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
XDelay (1)
EdgeFind Edges(), 6, 7, EIndex
NodeChangeColor Nodes(6), LTRED
NodeChangeColor Nodes(7), LTRED
EdgeHighlight Edges(EIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1
XDelay (2)

END SUB

'"DemoGraph3: Shows a path connecting two nodes.
, ---
SUB DemoGraph3
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED Graph () AS INTEGER

LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
XDelay (2)
EdgeFind Edges(), 6, 11, El
EdgeFind Edges(), 10, 11, E2
NodeChangeColor Nodes(6), LTRED
NodeChangeColor Nodes(10), LTRED
NodeChangeColor Nodes(ll), LTRED
EdgeHighlight Edges(E1), Nodes(), HIGHLTCOLOR: SOUND 880, 1: XDelay

(2)
EdgeHighlight Edges(E2), Nodes(), HIGHLTCOLOR: SOUND 880, 1: XDelay

(2)
END SUB

, DemoGraph4: Shows the depth-first traversal for a graph.

SUB DemoGraph4
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList() AS INTEGER
SHARED NodeLabel$
SHARED Graph () AS INTEGER

LabSetupGraph Graph(), 2, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
XDelay (2)
GraphDepthFirstTraversal Graph(), 2

END SUB

312

, DemoGraph5: Shows a breadth-first traversal for a graph.

SUB DemoGraph5
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED NodeLabel$
SHARED Graph () AS INTEGER

LabSetupGraph Graph(), 2, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
XDelay (2)
GraphBreadthFirstTraversal Graph(), 2

END SUB

, DemoNetl: First frame animation for Networks animated demonstration.
, The network similarity to a graph and the term EDGE WEIGHT are
, presented.

SUB DemoNetl
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = FALSE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphShow Nodes(), Edges()
LabShowWeights

END SUB

, DemoNet2: Show Minimum Spanning Tree for a network.

SUB DemoNet2
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = FALSE

313

LabSetupGraph Graph(), 2, NumNodes(), NodeList(), NumEdges(),
EdgeList ()

GraphShow Nodes(), Edges()
LabShowWeights
XDelay (2)
NetMinSpanTree Graph()

END SUB

==

, DemoNet3: Show Shortest Path algorithm for a network.
==

SUB DemoNet3
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = FALSE
LabSetupGraph Graph(), 2, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphShow Nodes(), Edges()
LabShowWeights
XDelay (2)
NodeChangeColor Nodes(l), LTRED
NodeShow 1: SOUND 440, 1: XDelay (1)
NetShortestPath Graph(), 1, 8

END SUB

, DemoNet4: Show Topological Sort algorithm for a network.

SUB DemoNet4
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED NodeLabel$
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER

Digraph = TRUE
LabSetupGraph Graph(), 2, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphShow Nodes(), Edges()
LabShowWeights
XDelay (2)
NetTopologicalSort Graph()
Digraph FALSE

END SUB

==

314

, DemoNiml: First frame of the Network Implementation Demo.
, Illustrates the use of the adjacency matrix for networks.

==

SUB DemoNiml
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER
SHARED Net AS INTEGER

Digraph = FALSE
Net = TRUE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
LabSetupmatrix Graph()
GraphShow Nodes(), Edges()
LabShowWeights

END SUB

==

, DemoNim2: Begin sequence relating adjacency matrix to
, implementation of minimum spanning tree algorithm.

SUB DemoNim2
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER
SHARED WorkRegion AS Region
SHARED Graph() AS INTEGER
SHARED Digraph AS INTEGER
SHARED Net AS INTEGER

Digraph FALSE
Net = TRUE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
LabSetupmatrix Graph()
GraphShow Nodes(), Edges()
LabShowWeights
NodeChangeColor Nodes(l), LTRED
NodeShow 1
SOUND 440, 1
XDelay (1)

END SUB

, DemoNim3: Continue sequence showing use of the adjacency
, matrix in implementing the minimum spanning tree algorithm.

==

SUB DemoNim3

315

SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER
SHARED WorkRegion AS Region
SHARED Graph() AS INTEGER
SHARED Digraph AS INTEGER
SHARED Net AS INTEGER

Digraph = FALSE
Net = TRUE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
LabSetupmatrix Graph()
GraphShow Nodes(), Edges()
LabShowWeights
NodeChangeColor Nodes(l), LTRED
NodeChangeColor Nodes(5), LTRED
NodeShow 1
EdgeFind Edges(), 1, 5, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1
XDelay (2)

END SUB

, DemoNim4: Continue sequence showing use of the adjacency
, matrix in implementing the minimum spanning tree algorithm.

SUB DemoNim4
SHARED Nodes () AS GraphNode
SHARED Edges () AS GraphEdge
SHARED NumNodes () AS INTEGER
SHARED NumEdges () AS INTEGER
SHARED NodeList () AS INTEGER
SHARED EdgeList () AS INTEGER
SHARED WorkRegion AS Region
SHARED Graph () AS INTEGER
SHARED Digraph AS INTEGER
SHARED Net AS INTEGER

Digraph FALSE
Net = TRUE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
LabSetupmatrix Graph()
GraphShow Nodes(), Edges()
LabShowWeights
NodeChangeColor Nodes(l), LTRED
NodeChangeColor Nodes(5), LTRED
NodeChangeColor Nodes(2), LTRED
EdgeFind Edges(), 1, 5, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
EdgeFind Edges(), 5, 2, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1

316

XDelay (2)

END SUB

==

, DemoNim5: Continue sequence showing use of the adjacency
, matrix in implementing the minimum spanning tree algorithm.

==

SUB DemoNim5
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER
SHARED WorkRegion AS Region
SHARED Graph() AS INTEGER
SHARED Digraph AS INTEGER
SHARED Net AS INTEGER

Digraph = FALSE
Net = TRUE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
LabSetupmatrix Graph()
GraphShow Nodes(), Edges()
LabShowWeights
NodeChangeColor Nodes(I), LTRED
NodeChangeColor Nodes(5), LTRED
NodeChangeColor Nodes(2), LTRED
NodeChangeColor Nodes(6), LTRED
EdgeFind Edges(), 1, 5, EdgeIndex
EdgeHighlight Edges(EdgeIndex), Nodes(), HIGHLTCOLOR
EdgeFind Edges(), 5, 2, EdgeIndex
EdgeHighlight Edges(EdgeIndex), Nodes(), HIGHLTCOLOR
EdgeFind Edges(), 2, 6, EdgeIndex
EdgeHighlight Edges(EdgeIndex), Nodes(), HIGHLTCOLOR
SOUND 880, 1
XDelay (2)

END SUB

, DemoRun: Run an animated demonstration. Data for the demo, including
, the text for each "frame" is in global variables. The number of
, frames in the demo is in the variable NumFrames. Each frame is
, implemented with a separate subroutine.

SUB DemoRun
SHARED TextRegion AS Region
SHARED MatrixRegion AS Region
SHARED Graph() AS INTEGER
SHARED FrameText$()
SHARED Frame AS INTEGER
SHARED NumFrames AS INTEGER
SHARED Session$
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge

RegionClear TextRegion

317

FOR i = 1 TO MAXDESCR
RegionPrint TextRegion, i, 4, FrameText$(Frame, i), TEXTKOLOR

NEXT i

318

RegionPrint TextRegion, 1, 64, STR$(Frame) + " OF" + STR$(NumFrames),
TEXTKOLOR

XDelay (2)
IF Session$ "GRPHDEMO" THEN

SELECT CASE Frame
CASE 1

DemoGraphl
CASE 2

DemoGraph2
CASE 3

DemoGraph3
CASE 4

DemoGraph4
CASE 5

DemoGraph5
END SELECT

END IF
IF Session$ = "NETDEMO" THEN

SELECT CASE Frame
CASE 1

DemoNetl
CASE 2

DemoNet2
CASE 3

DemoNet3
CASE 4

DemoNet4
END SELECT

END IF
IF Session$ = "GIMPDEMO" THEN

SELECT CASE Frame
CASE 1

DemoGiml
CASE 2

DemoGim2
CASE 3

DemoGim3
END SELECT

END IF
IF Session$ = "NIMPDEMO" THEN

SELECT CASE Frame
CASE 1

DemoNiml
CASE 2

DemoNim2
CASE 3

DemoNim3
CASE 4

DemoNim4
CASE 5

DemoNim5
END SELECT

END IF

END SUB

, EdgeAdd: adds a bidirectional edge to a graph or network by

, setting the appropriate elements in the adjacency matrix. Weight
, is the edge weight. If Digraph=TRUE a directed edge is added.

SUB EdgeAdd (G() AS INTEGER, Node1, Node2, Weight)
SHARED ShowMatrix AS INTEGER
SHARED Digraph AS INTEGER

G(Nodel, Node2) = Weight
IF NOT Digraph THEN

G(Node2, Node1) = Weight
END IF

'edge from Node1 to Node2

IF ShowMatrix THEN GraphShowMatrix G()
END SUB

, EdgeArrowHead: Draw arrowhead to indicate a directed edge.

SUB EdgeArrowHead (e AS GraphEdge)
SHARED Nodes() AS GraphNode
DIM Theta AS SINGLE
DIM TanTheta AS SINGLE

Node1 e.Nodel
Node2 e.Node2
xl Nodes (Node1) . NodeXCoord
yl Nodes (Node1) .NodeYCoord
x2 Nodes (Node2) . NodeXCoord
y2 Nodes (Node2) . NodeYCoord

'convert to normal coordinates
yl 480 - y1
y2 = 480 - y2

'compute angle theta
IF (xl = x2) AND (y1 > y2) THEN 'pos y axis

Theta XRadians! (90)
ELSEIF (xl x2) AND (y1 < y2) THEN 'neg y axis

Theta = XRadians! (270)
ELSEIF (yl = y2) AND (xl> x2) THEN 'pos x axis

Theta XRadians! (0)
ELSEIF (yl = y2) AND (xl < x2) THEN 'neg x axis

Theta = XRadians! (180)
ELSEIF (xl> x2) AND (y1 > y2) THEN 'quad I

Theta ATN((y1 - y2) / (xl - x2))
ELSEIF (xl < x2) AND (yl > y2) THEN 'quad II

Theta = XRadians! (180) + ATN((yl - y2) / (xl - x2))
ELSEIF (xl < x2) AND (y1 < y2) THEN 'quad III

Theta XRadians! (180) + ATN((y1 - y2) / (xl - x2))
ELSE 'quad IV

Theta
END IF

ATN((yl - y2) / (xl - x2))

319

'compute x,y, intersection of the edge & node; also, pt of arrowhead
x x2 + NODERADIUS * COS (Theta)
y = y2 + NODERADIUS * SIN (Theta)

'compute (x3,y3) and (x4, y4), the "corners" of the arrowhead
x4 = x + 10 * COS (Theta - 3.141593 / 6)
y4 Y + 10 * SIN (Theta - 3.141593 / 6)
x3 x + 10 * COS (Theta + 3.141593 / 6)
y3 y + 10 * SIN (Theta + 3.141593 / 6)

'compute xp,yp, coordinates for painting arrowhead
xp x + (NODERADIUS \ 2) * COS (Theta)
yp y + (NODERADIUS \ 2) * SIN (Theta)

'convert all coordinates to screen coordinates
y = 480 - Y
yl 480 - yl
y2 480 y2
y3 480 y3
y4 480 y4
yp 480 - yp

'draw arrowhead & fill
LINE (x, y)-(x3, y3), LTRED
LINE (x3, y3)-(x4, y4), LTRED
LINE (x4, y4)-(x, y), LTRED
PAINT (xp, yp), LTRED, LTRED

END SUB

, EdgeChangeColor: set edge color to a new value.

SUB EdgeChangeColor (e AS GraphEdge, Kolor)
e.EdgeColor = Kolor

END SUB

I EdgeCreate: adds an edge to the Edge Table. The current color
, and the two nodes connected by the edge are recorded. E is an
I available edge found using the FindFreeEdge routine.

SUB EdgeCreate (e AS GraphEdge, EColor, Nodel, Node2)
SHARED Graph() AS INTEGER
SHARED Session$

e.EdgeColor EColor
e.Nodel Nodel
e.Node2 = Node2

END SUB

, EdgeDelete: Remove an edge from a graph by setting the corresponding
, elements in the adjacency matrix to O.

SUB EdgeDelete (G()
G(Nodel, Node2)
G(Node2, Nodel) =

END SUB

AS INTEGER, Nodel, Node2)
o
o

, EdgeFind: Given the indexes of two nodes, return the index in the
, edge table of the edge which connects the two nodes. If the two
, specified nodes are not connected by an edge return 0 (FALSE).

SUB EdgeFind (Edges() AS GraphEdge, Nodel, Node2, EIndex)
Found = FALSE
i = 1
WHILE (i <= MAXEDGES) AND NOT (Found)

320

IF (Edges(i) .Node1 = Node1) AND (Edges(i) .Node2 = Node2) THEN
Found = TRUE

ELSEIF (Edges (i) .Node2 = Node1) AND (Edges(i) .Node1 = Node2) THEN
Found TRUE

ELSE
i = i + 1

END IF
WEND
IF Found

END SUB
TRUE THEN EIndex i ELSE EIndex o

, EdgeFindFree: Unused entries in the EdgeTable are marked with -1
, in the EdgeColor field. This routine searches for the first unused
, entry and returns its index.

SUB EdgeFindFree (Edges() AS GraphEdge, EdgeIndex)
Found = FALSE
i 1
WHILE NOT (Found)

IF Edges (i) .EdgeColor
Found = TRUE
EdgeIndex = i

ELSE
i = i + 1

END IF
WEND

END SUB

-1 THEN

, EdgeHide: Remove an edge from the edge table and clears it from
, the user display.

SUB EdgeHide (e AS GraphEdge)
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge

e.EdgeColor = -1
GraphShow Nodes(), Edges()

END SUB

, EdgeHighlight: Make edge visible on the user display with the outer
, portion of the edge in the specified color to highlight the edge.

SUB EdgeHighlight (e AS GraphEdge, Nodes() AS GraphNode, Kolor)
MouseHide
xl Nodes (e.Node1) . NodeXCoord
y1 Nodes (e.Node1) .NodeYCoord
x2 Nodes (e.Node2) . NodeXCoord
y2 Nodes (e.Node2) .NodeYCoord

IF y1 > y2 THEN
temp = y1
y1 = y2
y2 = temp
temp = xl
xl = x2
x2 = temp

END IF

'swap nodes for drawing

321

IF (x2 >= xl) THEN
LINE (xl + 2,
LINE (xl - 2,

ELSE
LINE (xl + 2,
LINE (xl - 2,

END IF
NodeShow e.Node1
NodeShow e.Node2
MouseShow

END SUB

y1
y1

y1
y1

- 2)-(x2 + 2, y2 - 2), Ko1or
+ 2)-(x2 - 2, y2 + 2) , Ko1or

+ 2)-(x2 + 2, y2 + 2), Kolor
- 2)-(x2 - 2, y2 - 2) , Kolor

, EdgeShow: Make edge visible on the user display. The indexes of
, the two nodes connected by the edge are kept in the fields Node1
, and Node2. These are used to access the Node Pool to determine
, the screen locations of the nodes. If Digraph is TRUE then Node1
, is the source node and Node2 is the destination node.

SUB EdgeShow (e AS GraphEdge, Nodes() AS GraphNode)
SHARED Digraph AS INTEGER

MouseHide
xl Nodes (e.Node1) . NodeXCoord
y1 Nodes (e.Node1) .NodeYCoord
x2 Nodes (e.Node2) . NodeXCoord
y2 Nodes (e.Node2) .NodeYCoord

IF y1 >
temp
y1 =

y2 =
temp
xl =

y2 THEN
y1

y2
temp
= xl
x2

x2 temp
END IF

xl THEN

'swap nodes for drawing

IF x2 >=
IF NOT

LINE
LINE

Digraph THEN 'thinner edge line for digraph
(xl + 2, y1 - 2)-(x2 + 2, y2 - 2), e.EdgeColor
(xl - 2, y1 + 2)-(x2 - 2, y2 + 2), e.EdgeColor

END IF
LINE (xl + 1, y1 - 1)-(x2 + 1, y2 - 1), e.EdgeColor
LINE (xl - 1, y1 + 1)-(x2 - 1, y2 + 1), e.EdgeColor

ELSE
IF NOT Digraph THEN

LINE (xl + 2, y1 + 2)-(x2 + 2, y2 + 2), e.EdgeColor
LINE (xl - 2, y1 - 2)-(x2 - 2, y2 - 2), e.EdgeColor

END IF
LINE (xl + 1, y1 + 1)-(x2 + 1, y2 + 1), e.EdgeColor
LINE (xl - 1, y1 - 1)-(x2 - 1, y2 - 1), e.EdgeColor

END IF
LINE (xl, y1)-(x2, y2), e.EdgeColor
NodeShow e.Node1
NodeShow e.Node2
IF Digraph THEN

EdgeArrowHead e
END IF
MouseShow

END SUB

322

, EdgeTableInit: Sets all entries in the edge table to unused (-1).

SUB EdgeTableInit (Edges() AS GraphEdge)
FOR i = 1 TO MAXEDGES

Edges(i) . EdgeColor = -1
NEXT i

END SUB

, GraphBreadthFirstTraversal: perform a breadth first traversal of
, graph.

SUB GraphBreadthFirstTraversal (G() AS INTEGER, START)
SHARED Visited() AS INTEGER
SHARED InQueue() AS INTEGER
SHARED Queue() AS INTEGER
SHARED Head AS INTEGER
SHARED Tail AS INTEGER
SHARED Nodes() AS GraphNode
SHARED ActualNodes AS INTEGER

'Initialize Data Structures
FOR k = 1 TO ActualNodes

InQueue(k) = FALSE
Queue(k) = 0
Visited = FALSE

NEXT k
QueueInit Head, Tail
QueueAdd Queue(), Head, Tail, START
InQueue(START) = TRUE
WHILE NOT (QueueEmpty(Head, Tail))

QueueRemove Queue(), Head, Tail, CurNode
Visited(CurNode) = TRUE
NodeChangeColor Nodes(CurNode), LTRED
NodeShow CurNode
SOUND 440, 1
XDelay (1)
FOR k 1 TO ActualNodes

IF NOT (InQueue(k)) AND (G(CurNode, k) <> 0) THEN
QueueAdd Queue(), Head, Tail, k

InQueue(k) TRUE
END IF

NEXT k
WEND

END SUB

, GraphDepthFirstTraversal: perform a depth first traversal of the
, graph beginning at the indicated start index.

SUB GraphDepthFirstTraversal (G() AS INTEGER, START)
SHARED Visited() AS INTEGER
SHARED ActualNodes AS INTEGER

FOR k = 1 TO ActualNodes
Visited(k) = FALSE

NEXT k
GraphSearchFrom START

END SUB

323

I GraphEmpty: Returns TRUE if a graph is empty.

FUNCTION GraphEmpty (G() AS INTEGER)
SHARED ActualNodes AS INTEGER

GraphEmpty = TRUE
FOR i = 1 TO ActualNodes

FOR j = 1 TO ActualNodes
IF G(i, j) <> 0 THEN GraphEmpty

NEXT j
NEXT i

END FUNCTION

FALSE

==

I GraphHighlightMatrix: Highlights a column in the adjacency
I matrix.

SUB GraphHighlightMatrix (G() AS INTEGER, row AS INTEGER, col AS
INTEGER)
SHARED ActualNodes AS INTEGER
SHARED MatrixRegion AS Region

IF G(row, col) = 0 THEN
Kolor MEDLTGRAY

ELSE
Kolor

END IF
ROBINSEGG

RegionPrint MatrixRegion, row + 2, 2 * col + 5, STR$(G(row, col)),
Kolor

END SUB

I GraphInit: Takes a graph in an unknown state and initializes it
, to an empty graph in which all edge connections are set to O.

SUB GraphInit (G() AS INTEGER)

FOR i
FOR j

G(i,
NEXT j

NEXT i
END SUB

1 TO MAXNODES
= 1 TO MAXNODES

j) = 0

, GraphSearchFrom: Main routine of the depth-first traversal. This
I subroutine is recursive.

SUB GraphSearchFrom (NodeIndex)
SHARED Visited() AS INTEGER
SHARED Graph() AS INTEGER
SHARED Nodes() AS GraphNode
SHARED ActualNodes AS INTEGER

Visited(NodeIndex) = TRUE
NodeChangeColor Nodes (NodeIndex), LTRED
NodeShow NodeIndex
SOUND 440, 1
XDelay (1)

324

FOR j = 1 TO ActualNodes
IF NOT (Visited(j)) AND (Graph (NodeIndex, j) <> 0) THEN

GraphSearchFrom j
END IF

NEXT j
END SUB

325

, GraphShow: Show the graph on the user display. Nodes to be displayed
, are in the Node Pool with the NodeVisible attribute set to TRUE.
, Edges in the Edge Table are included if the EdgeColor is not -1.

SUB GraphShow (Nodes() AS GraphNode, Edges() AS GraphEdge)
DIM i AS INTEGER
SHARED WorkRegion AS Region
SHARED ActualNodes AS INTEGER

LabResetWorkRegion
FOR i = 1 TO ActualNodes

IF Nodes (i) . NodeVisible TRUE THEN
NodeShow i

END IF
NEXT i
FOR i 1 TO MAXEDGES

IF Edges (i) .EdgeColor <> -1 THEN
EdgeShow Edges(i), Nodes()

END IF
NEXT i

END SUB

, GraphShowMatrix: Displays the adjacency matrix for a graph or
, network in the MatrixRegion special window.

SUB GraphShowMatrix (G() AS INTEGER)
SHARED MatrixRegion AS Region
SHARED ActualNodes AS INTEGER

RegionPrint MatrixRegion, 1, 10, "ADJACENCY MATRIX", ROBINSEGG
RegionPrint MatrixRegion, 2, 8, "A BCD E F G H I J K L", WHITE
FOR row = 1 TO ActualNodes

RegionPrint MatrixRegion, row + 2, 5, CHR$(row + 64), WHITE
FOR col = 1 TO ActualNodes

IF G(row, col) = 0 THEN
Print Color MEDLTGRAY
ELSE
PrintColor
END IF

LTRED

RegionPrint MatrixRegion, row + 2, 2 * col + 5, STR$(G(row, col)),
PrintColor

NEXT col
NEXT row

END SUB

, LabButtonService: Services a button press by calling the appropriate
, subroutine depending on the button's ActionCode.

SUB LabButtonService (B AS ButtonType)
SHARED MesgRegion AS Region
SHARED MatrixRegion AS Region

SHARED DONE AS INTEGER
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
SHARED Graph() AS INTEGER
SHARED ConfirmRegion AS Region
SHARED Frame AS INTEGER
SHARED NumFrames AS INTEGER
SHARED ActualNodes AS INTEGER
SHARED Net AS INTEGER
SHARED ANS$ ()
SHARED FrameText$()
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER

SELECT CASE B.ActionCode
CASE ADDNODE

LabDoAddNode Nodes()
CASE ADDEDGE

LabDoAddEdge Nodes()
CASE ANS.A

IF Frame >= 1 THEN
MID$ (ANS$ (Frame, 5), 2, 1) "An
XDelay (1)
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "A", TEXTKOLOR

END IF
CASE ANS.B

IF Frame >= 1 THEN
MID$ (ANS$ (Frame, 5), 2, 1) "8"
XDelay (1)
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "B", TEXTKOLOR

END IF
CASE ANS.C

IF Frame >= 1 THEN
MID$ (ANS$ (Frame, 5), 2, 1) "C"
XDelay (1)
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "C", TEXTKOLOR

END IF
CASE ANS.D

IF Frame >= 1 THEN
MID$ (ANS$ (Frame, 5), 2, 1) "D"
XDelay (1)
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "D", TEXTKOLOR

END IF
CASE RUNDEPTH

LabDoTraversal Graph(), Nodes()
CASE RUNBREADTH

LabDoTraversal Graph(), Nodes()
CASE RUNS PAN

LabDoMinSpan Graph(), Nodes(), Edges()
CASE RUNPATH

LabDoShortestPath Graph(), Nodes(), Edges()
CASE RUNSORT

LabDoTopSort Graph(), Nodes(), Edges()
CASE RUN DEMO

Frame = 1

326

DemoRun
CASE STARTTEST

Digraph = FALSE
LabResetWorkRegion
LabSetupGraph Graph(), 1, NumNodes(), NodeList(), NumEdges(),

EdgeList ()
GraphShow Nodes(), Edges()
Frame = 1
TestRun

CASE FORWARD
IF Frame < NumFrames THEN

Frame = Frame + 1
DemoRun

ELSE
RegionConfirm ConfirmRegion, "End of Demo, QUIT", Response
IF Response TRUE THEN DONE = TRUE

END IF
CASE NEXTQUES

IF Frame < NumFrames THEN
Frame = Frame + 1
TestRun

ELSE
RegionConfirm ConfirmRegion, "End of Test, QUIT", Response
IF Response TRUE THEN DONE = TRUE

END IF
CASE BACK

IF Frame > 1 THEN
Frame
DemoRun

ELSE

Frame - 1

RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "At start of demo!", LTRED
XDelay (2)
RegionClear MesgRegion

END IF
CASE PREVQUES

IF Frame > 1 THEN
Frame = Frame - 1
TestRun

ELSE
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "At start of test!", LTRED
XDelay (2)
RegionClear MesgRegion

END IF
CASE CLRGRAPH

LabDoClearGraph Nodes(), Edges(), Graph()
IF Net THEN LabShowWeights

CASE CLRBALSA
LabDoClearGraph Nodes(), Edges(), Graph()
LabSetupBalsa

CASE CLRMATRIX
LabDoClearGraph Nodes(), Edges(), Graph()
RegionClear MatrixRegion
RegionBorder MatrixRegion
GraphShowMatrix Graph()
IF Net THEN LabShowWeights

CASE CLRNET
LabDoClearGraph Nodes(), Edges(), Graph()
LabSetupNet
LabShowWeights

327

CASE CLRTEST
TestClear ANS$(), NumFrames
Frame = 1
TestRun

CASE CHECKBALSA
LabCheckBalsa Graph()

CASE CHECKNET
LabCheckNet Graph()

CASE CHECKTEST
TestCheck FrameText$(), ANS$(), NumFrames

CASE HELP
LabDoHelp

CASE QUIT
RegionConfirm
IF Response

END SELECT
END SUB

ConfirmRegion, "QUIT", Response
TRUE THEN DONE = TRUE

, LabCheckBalsa: CHECK button action for the Balsa Airlines problem.
, Checks the graph built by the user against the correct solution.

SUB LabCheckBalsa (G() AS INTEGER)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER
DIM ANS(l TO MAXNODES, 1 TO MAXNODES)

'Build solution graph
GraphIni tANS ()
EdgeAdd ANS(), 2, 3, 1
EdgeAdd ANS(), 2, 6, 1
EdgeAdd ANS(), 3, 7, 1
EdgeAdd ANS(), 2, 7, 1
EdgeAdd ANS(), 7, 11, 1
EdgeAdd ANS(), 6, 11, 1
Correct TRUE
FOR row = 1 TO ActualNodes

FOR col = 1 TO ActualNodes
IF G(row, col) <> ANS(row, col) THEN Correct

NEXT col
NEXT row
RegionClear MesgRegion
IF Correct THEN

Mesg$ "Solution Correct!"
ELSE

Mesg$ "Sorry ... Not correct."
END IF
RegionPrint MesgRegion, 1, 1, Mesg$, TEXTKOLOR
XDelay (2)
RegionClear MesgRegion

END SUB

FALSE

, LabCheckNet: CHECK button action for the network errand problem.
Y Checks the graph built by the user against the correct solution.

SUB LabCheckNet (G() AS INTEGER)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER
DIM ANS(l TO MAXNODES, 1 TO MAXNODES)

328

'Build solution graph
GraphInit ANS ()
EdgeAdd ANS(), 6, 7, 5
EdgeAdd ANS(), 6, 11, 1
EdgeAdd ANS(), 6, 10, 4
EdgeAdd ANS(), 7, 10, 2
EdgeAdd ANS(), 7, 11, 3
EdgeAdd ANS(), 10, 11, 3
Correct TRUE
FOR row = 1 TO ActualNodes

FOR col 1 TO ActualNodes
IF G(row, col) <> ANS(row, col) THEN Correct

NEXT col
NEXT row
RegionClear MesgRegion
IF Correct THEN

Mesg$ "Solution Correct!"
ELSE

Mesg$ "Sorry ... Not correct."
END IF
RegionPrint MesgRegion, 1, 1, Mesg$, TEXTKOLOR
XDelay (2)
RegionClear MesgRegion

END SUB

FALSE

, LabDoAddEdge: adds an edge to the graph and displays it.

SUB LabDoAddEdge (Nodes() AS GraphNode)
SHARED InfoRegion AS Region
SHARED MesgRegion AS Region
SHARED Edges() AS GraphEdge
SHARED SessionS
SHARED Graph() AS INTEGER

RegionClear MesgRegion
NumNodes = 0
FOR i = 1 TO MAXNODES

IF Nodes (i) .NodeVisible TRUE THEN
NumNodes = NumNodes + 1

END IF
NEXT i
IF (NumNodes < 2) THEN

RegionPrint MesgRegion, 1, 1, "Need at least 2 nodes!", LTRED
XDelay (3)
RegionClear MesgRegion

ELSE
RegionPrint MesgRegion, 1, 1, "Click on first node at left.",

TEXTKOLOR
Visible = FALSE
WHILE NOT Visible

LabGetNodeSelection Nodes(), Nodelndex1
Visible = Nodes (NodeIndex1) . NodeVisible

WEND
RegionClear MesgRegion

XDelay (1)
RegionPrint MesgRegion, 1, 1, "Click on second node at left.",

TEXTKOLOR
Visible = FALSE
WHILE NOT Visible

LabGetNodeSelection Nodes(), NodeIndex2

329

IF NodeIndex2 <> NodeIndexl THEN Visible
Nodes (NodeIndex2) .NodeVisible

WEND
'Get edge weight for network and set edge color.
IF Session$ = "NETLAB" OR Session$ = "PATHLAB" OR Session$

"SPANLAB" OR Session$ "NIMPOILAB" THEN
LabGetEdgeWeight Weight
SELECT CASE Weight 'set edge color according to weight

CASE 1: Kolor YELLOW
CASE 2: Kolor
CASE 3: Kolor
CASE 4: Kolor
CASE 5: Kolor

END SELECT
ELSE

Weight = 1
END IF

ROBINSEGG
LTGRAY
SPRINGGREEN
WHITE

'graph case

EdgeFindFree Edges(), EdgeIndex
EdgeCreate Edges(EdgeIndex), Kolor, NodeIndexl, NodeIndex2
EdgeAdd Graph(), NodeIndexl, NodeIndex2, Weight 'update adj

matrix
EdgeShow Edges(EdgeIndex), Nodes()
RegionClear MesgRegion

END IF
END SUB

, LabDoAddNode: adds a node to the graph and displays it on the user
, display.

SUB LabDoAddNode (Nodes() AS GraphNode)
SHARED InfoRegion AS Region
SHARED MesgRegion AS Region

RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "Click on a node at left to add.",

TEXTKOLOR
LabGetNodeSelection Nodes(), NodeIndex
NodeShow NodeIndex
RegionClear MesgRegion

END SUB

330

, LabDoClearGraph: resets the graph and clears it from the user display.

SUB LabDoClearGraph (Nodes() AS GraphNode, Edges() AS GraphEdge, G() AS
INTEGER)
SHARED WorkRegion AS Region
SHARED ConfirmRegion AS Region
SHARED ActualNodes AS INTEGER
SHARED NodeLabel$

RegionConfirm ConfirmRegion, "CLEAR GRAPH", Response
IF Response = TRUE THEN

RegionClear WorkRegion
FOR i = 1 TO ActualNodes

Nodes(i) . Label = MID$(NodeLabel$, i, 1)
Nodes(i) . NodeVisible = FALSE
NodeShowDimmed Nodes (i)

NEXT i
GraphIni t G ()

EdgeTableInit Edges()
END IF
XDelay (1)

END SUB

, LabDoHelp: Displays help for particular lab or demo.
, display.

SUB LabDoHelp
SHARED TextRegion AS Region
SHARED InfoRegion AS Region
SHARED MatrixRegion AS Region
SHARED Graph() AS INTEGER
SHARED Session$
SHARED SessionHelp$()
SHARED SessionDescr$()
SHARED Frame AS INTEGER
SHARED FrameText$()

RegionClear TextRegion
FOR i = 1 TO MAXHELP

RegionPrint TextRegion, i, 4, SessionHelp$(i), YELLOW
NEXT i

331

RegionPrint TextRegion, MAXHELP + 1, 24, "Click HERE to continue ... ",
TEXTKOLOR

x = 0: y = 0
WHILE NOT ((x >= 216) AND (x <= 416) AND (y >= 176) AND (y <= 191))

WaitForMousePress x, y
WEND
RegionClear TextRegion
FOR i = 1 TO MAXDESCR

IF RIGHT$(Session$, 3) = "LAB" OR (Frame = 0) THEN
RegionPrint TextRegion, i, 4, SessionDescr$(i) , TEXTKOLOR

ELSE
RegionPrint TextRegion,

END IF
NEXT i
IF (Session$ = "GIMPOILAB")

RegionClear MatrixRegion
RegionBorder MatrixRegion
GraphShowMatrix Graph()

END IF
END SUB

i, 4, FrameText$(Frame, i), TEXTKOLOR

OR (Session$ "NIMPOILAB") THEN

, LabDoMinSpan: carry out the minimum spanning tree lab session.

SUB LabDoMinSpan (Graph() AS INTEGER, Nodes() AS GraphNode, Edges() AS
GraphEdge)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER

IF GraphEmpty(Graph()) THEN
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "No network defined!", LTRED
XDelay (2)
RegionClear MesgRegion

ELSE
FOR i = 1 TO ActualNodes 'redisplay nodes in original color

IF Nodes(i) .NodeVisible THEN

NodeShow i
END IF

NEXT i
NetMinSpanTree Graph()
'Restore original color
FOR i = 1 TO ActualNodes

IF Nodes(i) . NodeVisible THEN
Nodes (i) .NodeColor = NODEKOLOR

END IF
NEXT i

END IF
END SUB

===

, LabDoShortestPath: carry out shortest path lab session.

332

SUB LabDoShortestPath (G() AS INTEGER, Nodes() AS GraphNode, Edges() AS
GraphEdge)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER

IF GraphEmpty(G()) THEN
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "No graph defined!", LTRED
XDelay (2)
RegionClear MesgRegion

ELSE
FOR i = 1 TO ActualNodes 'redisplay nodes & edges in original color

IF Nodes (i) .NodeVisible THEN
NodeShow i

END IF
NEXT i
FOR i 1 TO MAXEDGES

IF Edges(i) . EdgeColor <> -1 THEN
EdgeShow Edges(i), Nodes()

END IF
NEXT i
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "Click on Start node.", TEXTKOLOR
LabGetNodeSelection Nodes(), START
NodeChangeColor Nodes(START), LTRED
NodeShow START
RegionClear MesgRegion

XDelay (1)
RegionPrint MesgRegion, 1, 1, "Click on Destination node.",

TEXTKOLOR
LabGetNodeSelection Nodes(), Dest
RegionClear MesgRegion
NetShortestPath G(), START, Dest

'Restore original color
FOR i = 1 TO ActualNodes

IF Nodes(i) .NodeVisible THEN
Nodes(i) .NodeColor = NODEKOLOR

END IF
NEXT i

END IF
END SUB

===

, LabDoTopSort: carry out topological sort lab session.

333

, ===

SUB LabDoTopSort (Graph() AS INTEGER, Nodes() AS GraphNode, Edges() AS
GraphEdge)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER

IF GraphEmpty(Graph()) THEN
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "No graph defined!", LTRED
XDelay (2)
RegionClear MesgRegion

ELSE
FOR i = 1 TO ActualNodes 'redisplay nodes in original color

IF Nodes(i) .NodeVisible THEN
NodeShow i

END IF
NEXT i
NetTopologicalSort Graph()
'Restore original color
FOR i = 1 TO ActualNodes

IF Nodes(i) .NodeVisible THEN
Nodes(i) .NodeColor = NODEKOLOR

END IF
NEXT i

END IF
END SUB

, LabDoTraversal: carry out traversal lab session. Session code is
, checked to see which traversal to do.

SUB LabDoTraversal (Graph() AS INTEGER, Nodes() AS GraphNode)
SHARED MesgRegion AS Region
SHARED ActualNodes AS INTEGER
SHARED Session$

IF GraphEmpty(Graph()) THEN
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "No graph defined!", LTRED
XDelay (2)
RegionClear MesgRegion

ELSE
FOR i = 1 TO ActualNodes 'redisplay nodes in original color

IF Nodes(i) .NodeVisible THEN
NodeShow i

END IF
NEXT i
RegionClear MesgRegion
RegionPrint MesgRegion, 1, 1, "Click on node to start.", TEXTKOLOR
LabGetNodeSelection Nodes(), NodeIndex
RegionClear MesgRegion
IF (LEFT$(Session$, 5) = "BREAD") THEN

GraphBreadthFirstTraversal Graph(), NodeIndex
ELSE

GraphDepthFirstTraversal Graph(), NodeIndex
END IF
'Restore original color
FOR i = 1 TO ActualNodes

IF Nodes (i) .NodeVisible THEN
Nodes(i) . NodeColor = NODEKOLOR

END IF

NEXT i
END IF

END SUB

, LabDrawLabScreen: Draws the user display including the regions and
, buttons.

SUB LabDrawLabScreen
SHARED DemoRegion AS Region
SHARED TextRegion AS Region
SHARED InfoRegion AS Region
SHARED MesgRegion AS Region
SHARED WorkRegion AS Region
SHARED ControlRegion AS Region
SHARED MatrixRegion AS Region
SHARED Button () AS ButtonType
SHARED Nodes () AS GraphNode
SHARED SessionDescr$()
SHARED ActualNodes AS INTEGER
SHARED Net AS INTEGER

'Display Regions
RegionClear DemoRegion
LINE (DEMOXl, DEMOYl)-(DEMOX2, DEMOY2), 7, BF
RegionBorder WorkRegion
RegionBorder ControlRegion
RegionClear InfoRegion
RegionClear MesgRegion

'Display Buttons
FOR i = 1 TO MAXBUTTONS

ButtonDraw Button(i)
NEXT i

'Display Dimmed Nodes
FOR i = 1 TO ActualNodes

NodeShowDimmed Nodes(i)
NEXT i

'Display Description
RegionClear TextRegion
FOR i = 1 TO MAXDESCR

'Demo border

RegionPrint TextRegion, if 4, SessionDescr$(i), TEXTKOLOR
NEXT i
MouseReset
MouseShow

END SUB
'turn on for the first time

, LabGetEdgeWeight:Show edge colors and prompt for user selection.

SUB LabGetEdgeWeight (Weight)
SHARED MesgRegion AS Region

RegionClear MesgRegion
XDelay (1)

334

RegionPrint MesgRegion, 1, 1, "Select Edge Weight 1 thru 5", TEXTKOLOR
WeightSelected = FALSE
WHILE NOT WeightSelected

WaitForMousePress x, y

IF (448 <= y) AND (y <= 462) THEN
FOR i = 1 TO 5
IF (120 + i * 32 <= x) AND (x <= 142 + i * 32) THEN

WeightSelected TRUE
Weight = i

END IF
NEXT i

END IF
WEND

END SUB

335

, LabGetNodeSelection: Waits for the user to select a node in the work
, area and returns the index in the node pool of the selected node.
, ---
SUB LabGetNodeSelection (Nodes() AS GraphNode, NodeIndex)
SHARED ActualNodes AS INTEGER

NodeSelected = FALSE
WHILE NOT NodeSelected

WaitForMouseClick x, y
FOR i = 1 TO ActualNodes

xl Nodes(i) . NodeXCoord NODERADIUS
x2 Nodes(i) . NodeXCoord + NODERADIUS
y1 Nodes (i) .NodeYCoord - NODERADIUS
y2 Nodes(i) . NodeYCoord + NODERADIUS
IF ((x >= xl) AND (x <= x2) AND (y >= y1) AND (y <= y2)) THEN
NodeSe1ected = TRUE
NodeIndex i

END IF
NEXT i

WEND
END SUB

, LabGetSessionData: Retrieves the appropriate data from the lab
, data file LABDATA.DAT and stores the data for use by the program.
, The session code is used to access the correct DATA.

SUB LabGetSessionData (Code$, Descr$(), SHelp$(), Button() AS
ButtonType, NLabel$, ActNodes)

OPEN "LABDATA.DAT" FOR INPUT AS #1
DO 'get data until correct session

INPUT #1, SessionCode$
INPUT #1, NumDescr
FOR i = 1 TO NumDescr

INPUT #1, Descr$(i)
NEXT i

'how many descr lines?
'get description

FOR i NumDescr + 1 TO MAXDESCR 'fill in blank lines
Descr$(i) = ""

NEXT i
INPUT #1, NumHelp
FOR i = 1 TO NumHelp

INPUT #1, SHelp$(i)
NEXT i
FOR i = NumHelp + 1 TO MAXHELP

SHelp$(i) = ""

NEXT i

'how many help lines?
'get help

'fill in blank lines

FOR i 1 TO MAXBUTTONS 'skip button data
INPUT #1, ButtonText$, TextColor, xl, y1, x2, y2, Action, Active

336

ButtonCreate Button(i), xl, y1, x2, y2, BUTTONLIGHT, BUTTONDARK,
BUTTONFACE, TextColor, ButtonText$, Action, Active

NEXT i
INPUT #1, NLabel$
INPUT #1, ActNodes

LOOP UNTIL SessionCode$ Code$
CLOSE #1

END SUB

, LabGetUserAction: Waits for a mouse click, then searches the Button
, Table to see which button, if any, was selected.

SUB LabGetUserAction (choice)
SHARED Button() AS ButtonType

WaitForMousePress x, y
choice = 0
DONE = FALSE
WHILE (choice < MAXBUTTONS) AND (DONE FALSE)

choice choice + 1
xl Button (choice) .x1
y1 Button (choice) .y1
x2 Button (choice) .x2
y2 Button (choice) .y2
IF (x >= xl) AND (x <= x2) AND (y >= y1) AND (y <= y2) THEN

DONE = TRUE
END IF

WEND
IF (DONE

END SUB
FALSE) THEN choice o

, LabResetWorkRegion: Clears WorkRegion and shows dimmed nodes.

SUB LabResetWorkRegion
SHARED WorkRegion AS Region
SHARED Nodes() AS GraphNode
SHARED ActualNodes AS INTEGER

RegionClear WorkRegion
FOR i = 1 TO ActualNodes

NodeShowDimmed Nodes(i)
NEXT i

END SUB

, LabSetPalette: Sets the palette to that used in the NeoBook portion
, of the courseware.

SUB LabSetPalette (Colors() AS SINGLE)
Colors(O) XColorValue(O, 0, 0)
Colors(l) XColorValue(O, 0, 42)
Colors(2) XColorValue(63, 63, 21)
Colors(3) XColorValue(45, 63, 63)
Colors(4) XColorValue(42, 0, 0)
Colors(5) XColorValue(50, 50, 50)
Colors(6) XColorValue(42, 42, 42)
Colors(7) XColorValue(32, 32, 32)
Colors(8) XColorValue(24, 24, 24)
Colors(9) XColorValue(17, 17, 17)

'Black
'Blue
'Yellow
'RobinsEgg
'Red
'LtGray
'MedLtGray
'MedGray
'MedDkGray
'DkGray

Colors(10)
Colors (11)
Colors(12)
Colors (13)
Colors(14)
Colors(15)
FOR k = 0 TO

XColorValue(39,
XColorValue(63,
XColorValue(63,
XColorValue(42,
XColorValue(63,
XColorValue(63,
15

PALETTE k, Colors! (k)
NEXT k

END SUB

63,
21,
16,
21,
63,
63,

31)
21)
0)
0)
45)
63)

'SpringGreen
'LtRed
'Persimmon
'Cinnamon
'Vanilla
'White

, LabSetupBalsa: Displays nodes for Balsa Airlines problem.

SUB LabSetupBalsa
NodeShow 2
NodeShow 3
NodeShow 6
NodeShow 7
NodeShow 11

END SUB

, LabSetUpGraph: Sets up a graph based on specified nodes and edges.
, GNum indicates which of two lists of nodes as edges to use.

SUB LabSetupGraph (G() AS INTEGER, GNum, NumNodes(), NodeList(),
NumEdges(), EdgeList())
SHARED NodeLabel$
SHARED Edges() AS GraphEdge
SHARED Nodes() AS GraphNode

GraphIni t G ()
NodePoolInit Nodes()
EdgeTableInit Edges()
FOR i = 1 TO NumNodes(GNum) 'create nodes

N = NodeList(GNum, i)
NodeCenter N, x, y
NodeCreate Nodes(N), MID$(NodeLabel$, N, 1), NODEKOLOR,

LABELKOLOR, x, Y
NEXT i

337

FOR i 1 TO NumEdges(GNum)
Nl EdgeList(GNum, i, 1)

'create edges & add to graph
'first node for edge

N2 EdgeList(GNum, i, 2)
Weight = EdgeList(GNum, i, 3)
EdgeFindFree Edges(), EIndex
SELECT CASE Weight 'set
CASE 1: Kolor YELLOW
CASE 2: Kolor ROBINSEGG
CASE 3: Kolor LTGRAY
CASE 4: Kolor SPRINGGREEN
CASE 5: Kolor WHITE
END SELECT

'second node for edge
'edge weight

edge color according to weight

EdgeCreate Edges (EIndex) , Kolor, Nl, N2
EdgeAdd G(), Nl, N2, Weight 'update adj matrix

NEXT i

END SUB

, LabSetupMatrix: Display MatrixRegion and adjacency matrix. Also,

, deactivate and clear nodes on the bottom row of the work area.

SUB LabSetupmatrix (G() AS INTEGER)
SHARED MatrixRegion AS Region

RegionClear MatrixRegion
RegionBorder MatrixRegion
GraphShowMatrix G()

END SUB

, LabSetupNet: Displays nodes for Network Errand problem.

SUB LabSetupNet
NodeShow 6
NodeShow 7
NodeShow 10
NodeShow 11

END SUB

, LabSetupSession: Does special actions at the start of a session.

SUB LabSetupSession (Session$)
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
SHARED Graph() AS INTEGER
SHARED Net AS INTEGER
SHARED Digraph AS INTEGER
SHARED ShowMatrix AS INTEGER

SELECT CASE Session$
CASE "GRAPHLAB"

LabSetupBalsa
Net = FALSE
Digraph = FALSE
ShowMatrix = FALSE

CASE "NETLAB"
LabSetupNet
Net = TRUE
Digraph = FALSE
ShowMatrix = FALSE
LabShowWeights

CASE "PATHLAB"
Net = TRUE
Digraph = FALSE
ShowMatrix FALSE
LabShowWeights

CASE "SPANLAB"
Net = TRUE
Digraph = FALSE
ShowMatrix = FALSE
LabShowWeights

CASE "SORTLAB"
Net = FALSE
Digraph = TRUE
ShowMatrix = FALSE

CASE "GIMPOILAB"
LabSetupmatrix Graph()
Net = FALSE
Digraph = FALSE

338

ShowMatrix = TRUE
CASE "NIMP01LAB"

LabSetupmatrix Graph()
Net TRUE
Digraph = FALSE
ShowMatrix = TRUE
LabShowWeights

END SELECT
END SUB

===

, LabShowWeights: Displays the color key for edge weights for
, networks in the lower part of the Work Area. The constants
, WGHTX1 and WGHTY1 are coordinates selected to simplify displaying
, the color boxes.

===

SUB LabShowWeights
SHARED MesgRegion AS Region

MouseHide
col = WGHTX1 \ 8 - 8
row WGHTY1 \ 16 + 1
XPrintText row, col, "

'position for text

XPrintText row, col, "Edge Weight:1
FOR i = 1 TO 5

xl = WGHTX1 + i * 32
x2 = xl + 20

2 3 4

LINE (xl, WGHTY1 + 14)-(x2, WGHTY1), LTGRAY, B
NEXT i
PAINT (WGHTX1 + 34, WGHTY1 + 7), YELLOW, LTGRAY
PAINT (WGHTX1 + 66, WGHTY1 + 7), ROBINSEGG, LTGRAY
PAINT (WGHTX1 + 98, WGHTY1 + 7), LTGRAY, LTGRAY

" ,
5" ,

PAINT (WGHTX1 + 130, WGHTY1 + 7), SPRINGGREEN, LTGRAY
PAINT (WGHTX1 + 162, WGHTY1 + 7), WHITE, LTGRAY
MouseShow

END SUB

, LabTheEnd: prints a closing message for the session.

SUB LabTheEnd
SHARED DemoRegion AS Region

MouseHide 'hide it for good
RegionClear DemoRegion
XPrintText 15, 33, "End of Session", TEXTKOLOR
XDelay (1)

END SUB

, LabTitleScreen: prints an opening title screen

SUB LabTitleScreen
SHARED DemoRegion AS Region

RegionClear DemoRegion

TEXTKOLOR
TEXTKOLOR

XPrintText 12, 23, "INTRODUCTION TO GRAPHS & NETWORKS", TEXTKOLOR
XPrintText 15, 24, "Laboratory/Demonstration Session", TEXTKOLOR
XPrintText 18, 30, "by Thomas E. Beutel", TEXTKOLOR
XPrintText 19, 25, "Mount Vernon Nazarene College", TEXTKOLOR
XPrintText 20, 35, "Mar 1997", TEXTKOLOR

339

XDelay (2)
END SUB

===

, NetAIIIncluded: Returns TRUE if all elements of Visited are TRUE.
===

FUNCTION NetAIIIncluded (Visited() AS INTEGER)
SHARED ActualNodes AS INTEGER
SHARED Nodes() AS GraphNode

All Included = TRUE
FOR i = 1 TO ActualNodes

IF Nodes (i) .NodeVisible THEN
IF NOT (Visited(i)) THEN

All Included = FALSE
END IF

END IF
NEXT i
NetAIIIncluded

END FUNCTION
All Included

, NetFindMin: Given a network, N, return the indexes of two nodes,
, i and j, such that i is included in the minimum spanning tree for
, the network, j is not yet included, and the edge weight between
, the two nodes is a minimum of the available nodes.

===

SUB NetFindMin (N() AS INTEGER, Nodel, Node2)
SHARED Visited() AS INTEGER
SHARED ActualNodes AS INTEGER
SHARED Nodes() AS GraphNode
DIM MinWeight AS INTEGER

MinWeight = MAXWT 'set weight to max. value
FOR i 1 TO ActualNodes

IF Nodes(i) .NodeVisible THEN 'is node included in graph?
IF Visited(i) THEN 'included in min span tree?

FOR j = 1 TO ActualNodes
IF Nodes(j) .NodeVisible THEN

IF NOT (Visited(j)) THEN
IF (N(i, j) <> 0) AND (N(i, j) < MinWeight) THEN

Nodel = i
Node2 j
MinWeight N(i, j)

END IF
END IF

END IF
NEXT j

END IF
END IF

NEXT i
END SUB

===

, NetMinSpanTree: Finds the minimum spanning tree for the network, N,
, using Prim's algo. The spanning tree is highlighted on the display.

===

SUB NetMinSpanTree (N() AS INTEGER)
SHARED Visited() AS INTEGER
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge

340

SHARED ActualNodes AS INTEGER

'initialize visited array
FOR k 1 TO ActualNodes

Visited(k) = FALSE
NEXT k

'find first node in Node Pool which is actually in the network
k 1
WHILE NOT (Nodes(k) .NodeVisible)

k = k + 1
WEND

Visited(k) = TRUE
NodeChangeColor Nodes(k), LTRED
NodeShow k
SOUND 440, 1
XDelay (1)

DO
NetFindMin N(), i, j
Visited(j) TRUE
NodeChangeColor Nodes(j), LTRED
NodeShow j
SOUND 440, 1
XDelay (1)
EdgeFind Edges(), i, j, EdgeIndex
EdgeHighlight Edges (EdgeIndex), Nodes(), HIGHLTCOLOR

LOOP UNTIL (NetAIIIncluded(Visited()))
END SUB

, NetShortestPath: Finds the shortest path between two specified
, nodes using Dijkstra's algorithm.

SUB NetShortestPath (N() AS INTEGER, START, Dest)
DIM Included(l TO MAXNODES) AS INTEGER 'mark nodes as included
DIM Distance (1 TO MAXNODES) AS INTEGER 'distance to node from start
DIM Path(l TO MAXNODES) AS INTEGER 'next node on path
SHARED ActualNodes AS INTEGER
SHARED Nodes() AS GraphNode

'intialize arrays
FOR i = 1 TO ActualNodes

Included(i) = FALSE
IF (N(START, i) <> 0) THEN
Distance(i) N(START, i)

ELSE
Distance(i) MAXWT

END IF
IF (N(START, i) <> 0) THEN
Path(i) START

ELSE
Path(i) 0

END IF
NEXT i
Included (START) = TRUE

'Find all shortest paths
DO

NextNode = START

341

NextNodeDist = Distance (NextNode)
FOR i = 1 TO ActualNodes

IF (Distance(i) < NextNodeDist) AND NOT (Included(i)) AND
Nodes (i) . NodeVisible THEN

NextNode = i
NextNodeDist = Distance(i)

END IF
NEXT i
Included (NextNode) = TRUE

FOR i = 1 TO ActualNodes
IF (N(NextNode, i) <> 0) AND NOT (Included(i)) THEN 'node

connected
IF NextNodeDist + N(NextNode, i) < Distance(i) THEN

Distance(i) = NextNodeDist + N(NextNode, i)
Path(i) = NextNode

END IF
END IF

NEXT i
LOOP UNTIL (NetAllIncluded(Included()))
NetShowShortestPath Path(), START, Dest

END SUB

, NetShowShortestPath: Recursively highlights the nodes and edges
, in the shortest path from Start to Dest as detemined by the
, shortest path algorithm.

SUB NetShowShortestPath (Path() AS INTEGER, START, Dest)
SHARED Nodes() AS GraphNode
SHARED Edges() AS GraphEdge
DIM Last AS INTEGER 'local copy for when return

Last Dest
IF (Last <> START) THEN

NetShowShortestPath Path(), START, Path(Last)
Nodel = Last
Node2 = Path(Last)
NodeChangeColor Nodes(Last), LTRED
NodeShow Last
SOUND 440, 1
XDelay (1)
EdgeFind Edges(), Nodel, Node2, EIndex
EdgeHighlight Edges(EIndex), Nodes(), HIGHLTCOLOR

END IF
END SUB

, NetTopologicalSort: Performs a topological sort of the nodes in a
, network.

SUB NetTopologicalSort (G() AS INTEGER)
DIM Queue (1 TO MAXNODES) AS INTEGER
DIM Head AS INTEGER
DIM Tail AS INTEGER
DIM InDegree(l TO MAXNODES) AS INTEGER
DIM OrderedList(l TO MAXNODES) AS INTEGER
DIM NODE AS INTEGER
DIM TNode AS INTEGER
SHARED ActualNodes AS INTEGER
SHARED Nodes() AS GraphNode

342

'set initial indegree for each node. A node has an incoming edge
'if its column entry in the adjacency matrix is not zero
FOR col = 1 TO ActualNodes

InDegree(col) = 0
FOR row = 1 TO ActualNodes
IF G(row, col) <> 0 THEN

InDegree(col) InDegree(col) + 1
END IF
NEXT row

NEXT col
QueueInit Head, Tail
FOR NODE = 1 TO ActualNodes

IF InDegree(NODE) = 0 AND Nodes (NODE) . NodeVisible THEN
QueueAdd Queue(), Head, Tail, NODE

END IF
NEXT NODE
Count = 0
WHILE NOT QueueEmpty(Head, Tail)

QueueRemove Queue(), Head, Tail, TNode
Count = Count + 1
OrderedList(Count) = TNode
FOR NODE = 1 TO ActualNodes

IF (G(TNode, NODE) <> 0) THEN
InDegree(NODE) InDegree(NODE) - 1
IF InDegree(NODE) = 0 THEN

QueueAdd Queue(), Head, Tail, NODE
END IF

END IF
NEXT NODE

WEND

'show nodes in topological order
FOR i 1 TO Count

Nodes (OrderedList (i)) .Label CHR$(48 + i) 'set label to count
NodeShow OrderedList(i)
SOUND 440, 1
XDelay (1)

NEXT i
END SUB

, NodeCenter: given the index of a node in the node pool return the
, x,y coordinate of the center of a circle used to represent the node.

SUB NodeCenter (NODE, x, y)
x = ((NODE - 1) MOD 4) * 64 + STARTX
y = ((NODE - 1) \ 4) * 64 + STARTY

END SUB

, NodeChangeColor: set the color for a node to a new value.

SUB NodeChangeColor (N AS GraphNode, Kolor)
N.NodeColor = Kolor

END SUB

, NodeCreate: Creates an entry in the node pool with the specified
, attributes. Nodes in the node pool are not part of a graph until
, an GraphAddNode is performed. A created node is initially invisible.

343

, ---
SUB NodeCreate (N AS GraphNode, Label$, NColor, LColor, x, y)

N.Label = Label$
N.NodeColor = NColor
N.LabelColor LColor
N.NodeXCoord x
N.NodeYCoord y
NodeVisible = FALSE

END SUB

, NodeHide: Hides a GraphNode on the user display. The node is
, is displayed dimmed to indicate its position but is not part
, of a graph.

SUB NodeHide (N AS GraphNode)
MouseHide
CIRCLE (N.NodeXCoord, N.NodeYCoord), NODERADIOS, MEDDKGRAY
PAINT (N.NodeXCoord, N.NodeYCoord), MEDDKGRAY, MEDDKGRAY
col = (N.NodeXCoord + 4) \ 8 'column for label
N.NodeVisible = FALSE
MouseShow

END SUB

, NodePoolInit: Initialize all entries in the node pool.

SOB NodePoolInit (Nodes() AS GraphNode)
SHARED NodeLabel$

FOR i = 1 TO MAXNODES
Nodes(i) .Label = MID$(NodeLabel$, i, 1)
Nodes(i) . NodeColor = NODEKOLOR
Nodes(i) .LabelColor = LABELKOLOR
NodeCenter i, Nodes(i) .NodeXCoord, Nodes(i) . NodeYCoord
Nodes (i) .NodeVisible = FALSE

NEXT i
END SUB

, NodeShow: Displays a GraphNode on the user display. The node is
, is displayed in the color stored for the node at the coordinates
, defined for the node when it was created. These coordinates are
, used to compute the row and column for displaying the node label.
, The NodeVisible attribute is also changed to TRUE.

SOB NodeShow (NIndex)
SHARED Nodes() AS GraphNode

MouseHide
CIRCLE (Nodes (NIndex) . NodeXCoord, Nodes (NIndex) .NodeYCoord),

NODERADIUS, DRAWKOLOR%
PAINT (Nodes (NIndex) . NodeXCoord, Nodes (NIndex) .NodeYCoord),

Nodes (NIndex) .NodeColor, DRAWKOLOR

, The next two lines are commented out. See below for explanation.

'col
label

'row

INT((Nodes (NIndex) . NodeXCoord + 4) / 8)

INT((Nodes(NIndex) . NodeYCoord + 8) / 16)

'column for

'row for label

344

COLOR Nodes (NIndex) .LabelColor

, The following code is included because of an unexplained problem
, with the LOCATE statement. Although the program works fine within
, the QuickBASIC environment, when it is compiled, it crashes on
, the LOCATE statement when it uses row and col computed from the , node's x and y coordinates!

SELECT CASE NIndex
CASE 1

LOCATE 15, 9
CASE 2

LOCATE 15, 17
CASE 3

LOCATE 15, 25
CASE 4

LOCATE 15, 33
CASE 5

LOCATE 19, 9
CASE 6

LOCATE 19, 17
CASE 7

LOCATE 19, 25
CASE 8

LOCATE 19, 33
CASE 9

LOCATE 23, 9
CASE 10

LOCATE 23, 17
CASE 11

LOCATE 23, 25
CASE 12

LOCATE 23, 33
CASE 13

LOCATE 27, 9
CASE 14

LOCATE 27, 17
CASE 15

LOCATE 27, 25
CASE 16

LOCATE 27, 33
END SELECT

'LOCATE row, col
PRINT Nodes (NIndex) .Label;
COLOR TEXTKOLOR
Nodes (NIndex) . NodeVisible TRUE
MouseShow

END SUB

, NodeShowDimmed: Displays a dimmed version of a node in the work
, area of the user display. User clicks on dimmed node to add it
, to a graph.

SUB NodeShowDimmed (N AS GraphNode)
MouseHide
CIRCLE (N.NodeXCoord, N.NodeYCoord), NODERADIUS, MEDDKGRAY
PAINT (N.NodeXCoord, N.NodeYCoord), MEDDKGRAY, MEDDKGRAY
MouseShow

END SUB

345

, QueueAdd: Adds an element to a queue.

SUB QueueAdd (Q() AS INTEGER, Head, Tail, Item)
IF QueueEmpty(Head, Tail) THEN

Head = Head + 1
END IF
Tail = Tail + 1
Q (Tail) = Item

END SUB

, QueueEmpty: return TRUE if queue is empty.

FUNCTION QueueEmpty (Head, Tail)
QueueEmpty = (Head 0) AND (Tail 0)

END FUNCTION

, QueueInit: Initialize a Queue to empty.

SUB QueueInit (Head, Tail)
Head = 0
Tail = 0

END SUB

, QueueRemove: Removes an item from a queue.

SUB QueueRemove (Q() AS INTEGER, Head,
IF NOT (QueueEmpty(Head, Tail)) THEN

Item = Q(Head)

Tail, Item)

'last item IF Head = Tail THEN
QueueInit Head, Tail

ELSE
'reset to empty state

Head = Head + 1
END IF

END IF
END SUB

, RegionBorder: Draws a 3D border around a region. The colors used
, for the border are the default BORDERDARK and BORDERLIGHT.

SUB RegionBorder (R AS Region)
MouseHide
LINE (R.xl, R.yl)-(R.x2, R.yl),
LINE (R.xl + 1, R.yl + 1)-(R.x2
LINE (R.xl, R.yl)-(R.xl, R.y2),
LINE (R.xl + 1, R.yl + l)-(R.xl
LINE (R.x2, R.yl)-(R.x2, R.y2),
LINE (R.x2 - 1, R.yl + 1)-(R.x2
LINE (R.x2, R.y2)-(R.xl, R.y2),
LINE (R.x2 - 1, R.y2 - l)-(R.xl
MouseShow

END SUB

BORDERDARK
- 1, R.yl +
BORDERDARK
+ 1, R.y2 -
BORDERLIGHT
- 1, R.y2 -
BORDERLIGHT
+ 1, R.y2 -

1) , BORDERDARK

1) , BORDERDARK

1) , BORDERLIGHT

1) , BORDERLIGHT

, RegionClear: Clears the indicated Region to its BGColor.

346

SUB RegionClear (R AS Region)
MouseHide
LINE (R.x1 + 2, R.y1 + 2)-(R.x2 - 2, R.y2 - 2), R.BGColor, BF
MouseShow

END SUB

, RegionConfirm: Pops up a region with a message and a place to click
, in response to the message. The message is one line and is printed
, in a fixed place in the region. It identifies the operation being
, confirmed. The response is returned.

SUB RegionConfirm (R AS Region, Mesg$, Response)
DIM Image(l TO 6800) AS INTEGER

MouseHide
GET (R.x1, R.y1)-(R.x2, R.y2), Image
LINE (R.x1, R.y1)-(R.x2, R.y2), YELLOW, BF
RegionClear R
NumCols = (R.x2 - R.x1) \ 8 + 1
col = (NumCols \ 2) - (LEN(Mesg$) \ 2) 'center Mesg$
RegionPrint R, 1, col, Mesg$, YELLOW
RegionPrint R, 2, 10, "Are You Sure?", YELLOW
RegionPrint R, 5, 9, "[YES]", YELLOW
RegionPrint R, 5, 20, "[NO]", YELLOW
Response = -2
MouseShow
WHILE Response = -2

WaitForMousePress x, y

347

IF ((x >= 256) AND (x <= 295) AND (y >= 208) AND (y <= 223)) THEN
Response = TRUE

ELSEIF ((x >= 344) AND (x <= 375) AND (y >= 208) AND (y <= 223))
THEN

Response = FALSE
END IF

WEND
MouseHide
PUT (R.x1, R.y1), Image, PSET
MouseShow

END SUB

, RegionCreate: Creates a region at the specified coordinates with
, the specified background color.

SUB RegionCreate (R AS Region, xl, yl, x2, y2, BGColor)
R.xl xl
R.y1 y1
R.x2 x2
R.y2 y2
R.BGColor BGColor

END SUB

, RegionPrint: Prints text to the specified region, at the specified
, RegionRow and RegionCol, in the given color. Within a Region rows
, and columns are labelled beginning at 1.

SUB RegionPrint (R AS Region, RegionRow, RegionCol, Mesg$, Kolor)
MouseHide
RowO = R.yl \ 16 + 1 'Base Row of Region

1
R.yl) \ 16 + 1

- R.xl) \ 8 + 1

'Base Column of Region ColO = R.xl \ 8 +
NumRows = (R.y2
NumCols = (R.x2
IF (RegionRow <

IF (RegionCol
LOCATE RowO
COLOR Kolor
PRINT Mesg$;
COLOR TextColor

NumRows) AND (RegionCol < NumCols) THEN
+ LEN(Mesg$)) < NumCols THEN
+ RegionRow, ColO + RegionCol

END IF
END IF
MouseShow

END SUB

, TestCheck: Check user's answers to test; indicate if
, incorrect and show correct answer.

SUB TestCheck (FrameText$(), ANS$(), NumFrames AS INTEGER)
SHARED MesgRegion AS Region
SHARED InfoRegion AS Region
SHARED Frame AS INTEGER

CorrectAns$ LEFT$ (ANS$ (Frame, 5), 1)
UserAnswer$ RIGHT$ (ANS$ (Frame, 5), 1)
IF UserAnswer$ = CorrectAns$ THEN

RegionPrint InfoRegion, 5, 1, "CORRECT!!!" + SPACE$(20), LTRED
ELSEIF UserAnswer$ <> " " THEN

TestShowQuestion FrameText$(), Frame
TestShowAns ANS$(), Frame
RegionPrint InfoRegion, 5, 1, "INCORRECT! Correct answer is " +

CorrectAns$, LTRED
XDelay (3)

END IF
END SUB

, TestClear: Clears the user-entered answers for a self-test

SUB TestClear (ANS$(), NumFrames AS INTEGER)
SHARED ConfirmRegion AS Region

RegionConfirm ConfirmRegion,
IF Response TRUE THEN

FOR i = 1 TO NumFrames
MID$ (ANS$ (i, 5), 2, 1)

NEXT i
END IF

END SUB

"Clear Answers", Response

" "

, TestGetSessionData:Retrieve session data from file.

SUB TestGetSessionData (Code$, Descr$(), NumFrames, FText$(), ANS$(),
ActNodes)
SHARED NumNodes() AS INTEGER
SHARED NumEdges() AS INTEGER
SHARED NodeList() AS INTEGER
SHARED EdgeList() AS INTEGER

FileName$ = CodeS + ".DAT"

348

CLOSE #1
OPEN Fi1eName$ FOR INPUT AS #1
INPUT #1, NumDescr
FOR i = 1 TO NumDescr

INPUT #1, Descr$(i)
NEXT i

'how many descr lines?
'get description

FOR i = NumDescr + 1 TO MAXDESCR 'fill in blank lines
Descr$(i) = ""

NEXT i
INPUT #1, NumFrames
FOR i = 1 TO NumFrames

INPUT #1, NumLines
FOR j 1 TO NumLines

INPUT #1, FText$(i, j)
NEXT j
FOR j = 1 TO 5

INPUT #1, ANS$(i, j)
NEXT j

NEXT i
INPUT #1, NumGraphs
FOR i = 1 TO NumGraphs

INPUT #1, NumNodes(i)
FOR j = 1 TO NumNodes(i)

INPUT #1, NodeList(i, j)
NEXT j
INPUT #1, NumEdges(i)
FOR j 1 TO NumEdges(i)

'number of questions
'get text for each question

'get answers

349

INPUT #1, EdgeList(i, j, 1), EdgeList(i, j, 2), EdgeList(i, j, 3)
NEXT j

NEXT i
INPUT #1, ActNodes
CLOSE #1

END SUB

, TestRun: run a self-test.

SUB TestRun
SHARED FrameText$()
SHARED Frame AS INTEGER
SHARED ANS$ ()
SHARED MesgRegion AS Region
SHARED InfoRegion AS Region
SHARED Session$

TestShowQuestion FrameText$(), Frame
RegionClear InfoRegion
RegionClear MesgRegion
XDelay (1)
TestShowAns ANS$(), Frame
IF LEFT$(Session$, 1) "N" THEN 'network test

LabShowWeights
END IF

END SUB

, TestShowAns: Display multiple choice answers and user's
, current answer (initialized to space) in InfoRegion.

SUB TestShowAns (ANS$(), Frame AS INTEGER)

SHARED MesgRegion AS Region
SHARED InfoRegion AS Region

RegionClear MesgRegion
RegionClear InfoRegion
FOR i = 1 TO 4

350

RegionPrint InfoRegion, i,
TEXTKOLOR

I, CHR$(64 + i) + ". " + ANS$(Frame, i),

NEXT i
RegionPrint MesgRegion, I, I, RIGHT$ (ANS$ (Frame, 5), I), TEXTKOLOR

END SUB

==

• TestShowQuestion: Display the question for the associated
• Frame from FrameText$() in the TextRegion.

==

SUB TestShowQuestion (FrameText$(), Frame AS INTEGER)
SHARED TextRegion AS Region
SHARED NumFrames AS INTEGER

RegionClear TextRegion
FOR i = 1 TO MAXDESCR

RegionPrint TextRegion, i, 4, FrameText$(Frame, i), TEXTKOLOR
NEXT i
RegionPrint TextRegion, 1, 63, STR$(Frame) + n OF n +

STR$(NumFrames), TEXTKOLOR

END SUB

DEFSNG A-Z

• XColorValue: Returns an integer value corresponding to the amount
• of red, green and blue in a designated color.

FUNCTION XColorValue! (RED!, GREEN!, BLUE!)
XColorValue! = 65536 * BLUE! + 256 * GREEN! + RED!

END FUNCTION

DEFINT A-Z

• XDelay: delays the specified amount of time in seconds. The time
• is read from the system clock, so the delay should not be affected
• by CPU speed.

SUB XDelay (Seconds!)
START! = TIMER
Finish! = START! + Seconds!
WHILE TIMER < Finish!
WEND

END SUB

• XPrintText: prints text at a specified row and column, and in a
, specified color.

SUB XPrintText (row, col, Mesg$, Kolor)
LOCATE row, col
COLOR Kolor
FOR i = 1 TO LEN(Mesg$)

PRINT MID$(Mesg$, i, 1);

NEXT i
END SUB

FUNCTION XRadians! (Degrees AS SINGLE)
XRadians! = Degrees * 3.141593 / 180

END FUNCTION

351

352

Appendix G

Data Files for Animated Demonstrations, Lab Sessions and Self-Tests

"DUMMYLAB"
4
"No demo or lab session has been specified. The user display and"
"some controls are active. You can, for example, use the ADD NODE"
"and ADD EDGE buttons to create a graph. The CLEAR, HELP and QUIT"
"buttons are also active."
I
" Sorry ... there is no help for this session."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,O,O
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,50,-1
"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKLMNOP"
16
"GRAPHLAB"
7
"Balsa airlines offers roundtrip flights among the following five"
"cities: Boston, Columbus, Denver, New York and Philadelphia. Not"
"all of the flights are direct, only the ones between Boston and"
"Columbus, Boston and Denver, Philadelphia and New York, New York"
"and Columbus, Denver and Philadelphia, and Boston and New York."
"Add edges below to complete the graph. Nodes are identified with"
"the first letter of the city's name. Use CHECK to check answer."
4
"Use the ADD EDGE button to build the graph in the area below."
"Use the CLEAR button to clear the work area if you need to"
"start over. Use CHECK to check your answer. Select QUIT when"
"you are done."
"ADD NODE",5,322,346,412,370,O,O
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,O,O
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,51,-1
"CHECK",5,514,378,604,402,61,-1
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"BC ON P "
16
"DEPTHLAB"
7
" DEPTH-FIRST TRAVERSAL "
"In this lab session you will build a graph and then initiate a"
"depth-first traversal from various starting points. Use ADD NODE"
"and ADD EDGE to build a graph. Use RUN to start the traversal."
"You will be prompted to select a start node. When the traversal"
"is complete, you may use RUN to do another traversal specifying"
"a different start node."
4
"Use the ADD NODE and ADD EDGE buttons to build the graph in the"

353

"area below. Use the CLEAR button to clear the work area if"
"you need to start over. Use RUN to start the algorithm. Select"
"QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,0,0
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,0,0
"RUN",5,418,346,508,370,10,-1
"PAUSE",5,418,378,508,402,0,0
"CONTINUE",5,418,410,508,434,0,0
"RESTART",5,418,442,508,466,0,0
"CLEAR",5,514,346,604,370,50,-1
"CHECK",5,514,378,604,402,0,0
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKLMNOP"
16
"BREADTHLAB"
7
" BREADTH-FIRST TRAVERSAL
"In this lab session you will build a graph and then initiate a"
"breadth-first traversal from various starting points. Use the"
"ADD NODE and ADD EDGE buttons to build a graph. Use RUN to start"
"the traversal. You will be prompted to select a start node. When"
"the traversal is done, you may use RUN to do another traversal"
"specifying a different start node."
4
"Use the ADD NODE and ADD EDGE buttons to build the graph in the"
"area below. Use the CLEAR button to clear the work area if"
"you need to start over. Use RUN to start the algorithm. Select"
"QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,0,0
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,0,0
"RUN",5,418,346,508,370,11,-1
"PAUSE",5,418,378,508,402,0,0
"CONTINUE",5,418,410,508,434,0,0
"RESTART",5,418,442,508,466,0,0
"CLEAR",5,514,346,604,370,50,-1
"CHECK",5,514,378,604,402,0,0
"HELP! " , 10,514,410, 604,434,7 0, -1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKLMNOP"
16
"GIMP01LAB"
7
" GRAPH IMPLEMENTATION LAB"
"Build a graph in the work area"
"below and watch the adjacency"
"matrix. Entries are made in"
"the adjacency matrix as edges"
"are added. Only twelve nodes"
"are used in this lab session."
3
"Use the ADD NODE and ADD EDGE buttons to build a graph in the"
"area below. Use the CLEAR button to clear the work area if you"
"need to start over. Select QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,0,0
"ADD EDGE",5,322,410,412,434,3,-1

354

"

"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,O,O
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,52,-1
"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKLMNOP"
12
"NETLAB"
7
"You have four errands at four drive-thru businesses which are"
"located relative to each other as follows (distances in blocks):"
" BANK: 5 from FAST FOOD, 2 from VIDEO STORE, 3 from LIBRARY "
" FAST FOOD: 1 from LIBRARY, 4 from VIDEO STORE "
" VIDEO STORE: 3 from LIBRARY "
"Add edges below to complete a NETWORK representing the problem. "
"Nodes are identified with the first letter of a business name. "
4
"Use the ADD EDGE button to build the network in the work area. "
"Use the CLEAR button to clear the work area if you need to "
"start over. Use CHECK to check your answer. Select QUIT when"
"you are done."
"ADD NODE",5,322,346,412,370,O,O
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,O,O
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,53,-1
"CHECK",5,514,378,604,402,62,-1
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
" FB VL "
16
"SPANLAB"
6

" MINIMUM SPANNING TREE "
"In this lab session you will build a network and then run the"
"minimum spanning tree algorithm. Use ADD NODE and ADD EDGE to"
"build a network. Use RUN to start the algorithm. Nodes and edges"
"will be highighted as they are included in the minimum spanning"
"tree. "
4
"Use the ADD NODE and ADD EDGE buttons to build a network in the"
"area below. Use the CLEAR button to clear the work area if"
"you need to start over. Use RUN to start the algorithm. Select"
"QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,13,-1
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,50,-1

355

"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKL"
12
" PATHLAB "
6

" SHORTEST PATH LAB "
"In this lab session you will build a network and then run the"
"shortest path algorithm to find the shortest path between two"
"nodes. Use ADD NODE and ADD EDGE to build a network. Use RUN"
"to start the algorithm. Nodes and edges will be highighted to"
"show the shortest path."
4
"Use the ADD NODE and ADD EDGE buttons to build a network in the"
"area below. Use the CLEAR button to clear the work area if"
"you need to start over. Use RUN to start the algorithm. Select"
"QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,12,-1
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,50,-1
"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"ABCDEFGHIJKL"
12
"SORTLAB"
5
" TOPOLOGICAL SORT "
"In this lab session you will build a graph and then run the"
"topological sort algorithm. Use ADD NODE and ADD EDGE to build"
"a graph. Use RUN to start the algorithm. Nodes will be labelled"
"to show the topological order."
4
"Use the ADD NODE and ADD EDGE buttons to build a graph in the"
"area below. Use the CLEAR button to clear the work area if"
"you need to start over. Use RUN to start the algorithm. Select"
"QUIT when you are done."
"ADD NODE",5,322,346,412,370,1,-1
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,14,-1
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,50,-1
"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",11,514,442,604,466,80,-1
"
12
"NIMP01LAB"
7

"

" NETWORK IMPLEMENTATION LAB"

356

"Build a network in the area"
"below and watch the adjacency"
"matrix. Entries are made in"
"the adjacency matrix as edges"
"are added. Only twelve nodes"
"are used in this lab session."
3
"Use the ADD NODE and ADD EDGE buttons to build a network in the"
"area below. Use the CLEAR button to clear the work area if you"
"need to start over. Select QUIT when you are done."
"ADD NODE",5,322,346,412,370,l,-1
"DEL NODE",5,322,378,412,402,O,O
"ADD EDGE",5,322,410,412,434,3,-1
"DEL EDGE",5,322,442,412,466,O,O
"RUN",5,418,346,508,370,O,O
"PAUSE",5,418,378,508,402,O,O
"CONTINUE",5,418,410,508,434,O,O
"RESTART",5,418,442,508,466,O,O
"CLEAR",5,514,346,604,370,52,-1
"CHECK",5,514,378,604,402,O,O
"HELP!",10,514,410,604,434,70,-1
"QUIT",ll,514,442,604,466,80,-1
"ABCDEFGHIJKLMNOP"
12

357

7
" INTRODUCTION TO GRAPHS DEMO"
"n

"This animated demonstration presents terms and concepts related"
"to graphs. Simple graphs, as well as depth-first and breadth-"
"first traversals, are animated to help the student visualize"
"these abstract structures and operations."
" Click on RUN to start ... "
5
4

" TERMINOLOGY"
"n

"A graph is a nonlinear, non-hierarchical structure comprised of"
"NODES ... "
1
"Some nodes are directly connected such as F and G."
3
""
"Nodes which are not directly connected are connected by a PATH"
"such as F to K to J."
6
" TRAVERSALS"
"Visiting all of the nodes in a graph is called a TRAVERSAL."
"A DEPTH-FIRST traversal moves as far as it can along a path"
"before trying another path. For example, starting at node Bin"
"the graph below, a depth-first traversal would visit the nodes"
"in the following order: B-C-G-J-N-L-E-I."
5
"n

"A BREADTH-FIRST traversal visits each node adjacent to a given"
"node before moving further along a path. For example, starting"
"at node B in the graph below, a breadth-first traversal would"
"visit the nodes in the order: B-C-E-G-I-J-L-N."
2
4
6
7
10
11
4
6,7,1
7,11,1
10,11,1
6,11,1
8
2
3
5
7
9
10
12
14
7
2,3,1
3,7,1
7,10,1
7,12,1
10,14,1
2,5,1
5,9,1

358

16 359

7

" GRAPH IMPLEMENTATION DEMO"
"This animated demonstration focuses on the data structures used"
"to implement graphs. The relationship between the graph and the"
"data structure is shown, as well as the meaning of key terms as"
"they relate to the data structures."
"n

"
3
7

"
""

Click on RON to start ... "

ADJACENCY MATRIX"

"A primary data structure used in implementation of graphs is the"
"ADJACENCY MATRIX, a two-dimensional array. Each dimension of the"
"array is labeled with the nodes in the graph. If two nodes are"
"directly connected, the corresponding array element is set to a"
"nonzero value. In digraphs, two symmetrical elements are set."
7

" DEGREE OF A NODE"
""
"The DEGREE of a node is the number of edges associated with the"
"node. The number of nonzero entries in the column of the"
"adjacency matrix corresponding to a node gives the degree of the"
"node. Node A in the graph below has two edges and there are"
"two l's in the column for A in the adjacency matrix."
7
" PATH BETWEEN TWO NODES"
""
"A PATH exists between two nodes, I and J, if there is a nonzero"
"entry in the adjacency matrix corresponding to node I and some"
"other node, between that node and another node, etc. terminating"
"in a nonzero entry between some node and node J. In the graph"
"below there is a path from A to F to E."
1
4
1
2
5
6
3
1,2,1
1,6,1
5,6,1
6

360

7

" INTRODUCTION TO NETWORKS DEMO"
""
"This animated demonstration presents terms and concepts related"
"to networks. The realtionship of networks to graphs, as well as"
"the minimum spanning tree, shortest path, and topological sort"
"algorithms are presented."
" Click on RUN to start ... "
4
7

" TERMINOLOGY"
""
"A network, like a graph, consists of nodes and edges. Unlike a"
"graph, each edge has an associated EDGE WEIGHT. In the network"
"below, the edge weight of the edge from F to G is 1 (Yellow)."
"Other edges have different weights as indicated by the color"
"code."
7
" MINIMUM SPANNING TREE"
""
"The MINIMUM SPANNING TREE for a network is a network which"
"includes all nodes of the original network, connected by only"
"those edges which have the lowest total edge weight. Not all"
"nodes will necessarily be directly connected. Notice during the"
"animated demo, edges which are included are highlighted."
5

" SHORTEST PATH"
""
"The SHORTEST PATH between two specified nodes in a network is"
"the path with the lowest edge weight. In the network below, the"
"shortest path from node A to node H is A-F-J-G-H."
7

" TOPOLOGICAL SORT"
"A directed graph or network can be used to represent problems"
"such as scheduling problems. A directed edge between two nodes"
"implies that the 'source' node precedes the 'destination node. '"
"The TOPOLOGICAL SORT of a digraph gives the order in which the"
"nodes should be visited to take into account the implied"
"precedence between the nodes."
2
4
6
7
10
11
3
6,7,1
7,11,2
10,11,5
8
1
2
3
4
6
7
8
10
9
1,2,1
2,3,3

361

3, 4,2
1,6,2
2,7,5
4, 8, 4
6,10,2
10,7,1
7, 8, 1
12

362

7

" NETWORK IMPLEMENTATION DEMO"
"This animated demonstration focuses on the data structures used"
"to implement networks. The relationship between a network and"
"the data structure is shown. The use of the data structure"
"in the implementation of the minimum spanning tree algorithm is"
"also shown."
"
5
7
"
""

Click on RUN to start ... "

ADJACENCY MATRIX"

"A primary data structure used in implementation of a network is"
"the ADJACENCY MATRIX, a two-dimensional array. Each dimension of"
"the array is labeled with the nodes in the network. If two nodes"
"are directly connected, the corresponding array element is set"
"to the edge weight."
7

" MINIMUM SPANNING TREE EXAMPLE"
"As an example of how the adjacency matrix is used to implement"
"network algorithms, consider the minimum spanning tree. First,"
"one node is included, e.g. A, and the edge weight for each node"
"connected to A is recorded. Nodes not directly connected are set"
"to some maximum weight. In the graph below the weights are: "
" B: 4, E: 2, F: MAX"
7
"n
"The node with the lowest weight from a node already included is"
"now added. This is node E (weight of 2), and the weights are"
"updated to reflect the weight from any already included node."
"The new weights would be;"
" B: 3, (from A to E to B)"
" F: 7, (from A to E to F)"
4
""
"The process is repeated. Node B has the least weight (3),
"is included and the weight for F is recomputed as:"
" F: 4, (from A to E to B to F)"
3
""

so it"

"Finally, F is included with the edge B-F.
"show the minimum spanning tree."

The highlighted edges"

1
4
1
2
5
6
5~

1,2,4
1,5,2
2,6,2
5,6,5
2,5,1
6

363

6
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"This self-test is intended to provide a check on your
"in the area of terms and concepts related to graphs.

learning"

"u

"
10
3
"
""

Click on START to begin ... "

INTRODUCTION TO GRAPHS SELF-TEST"

"Information is represented in a graph by the ... "
"Edges"
"Paths"
"Nodes"
"Data"
"e "
4
" INTRODUCTION TO GRAPHS SELF-TEST"
"n
"Relationships between entities are represented in a graph"
"by the . .. "
"Edges"
"Paths"
"Nodes"
"Data"
"A n

3
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"The degree of a node in a graph is ... "
"Value of the associated data."
"Number of edges for the node."
"Number of paths for the node."
"Position of node in the graph."
"8 "
3

" INTRODUCTION TO GRAPHS SELF-TEST"
""
"Graph theory was invented by ... "
"Newton"
"Leibnitz"
"Euler"
"Einstein"
He "
3
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"A sequence of edges connecting two nodes is called a(n) ... "
"Chain"
"Series"
"Degree"
"Path"
"0 "
5
" INTRODUCTION TO GRAPHS SELF-TEST"
"n

"A graph containing unidirectional edges; that is,
"which can be travelled in only one direction is
"a (n) ... "
"Digraph"

edges"
called"

"

364

"One-way Graph"
"Acyclic Graph"
"Unidirectional Graph"
"A "
5
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"A traversal which follows a path from a start node as far"
"as possible before trying other edges connected to the"
"start node is called a(n) n

"Breadth First Traversal"
"Depth First Traversal"
"Binary Traversal"
"Linear Traversal"
"B "
5
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"A traversal which follows an edge from a start node to"
"each adjacent node before following a given path further"
"from the start node is called a(n) ... "
"Breadth First Traversal"
"Depth First Traversal"
"Binary Traversal"
"Linear Traversal"
"A "
4
" INTRODUCTION TO GRAPHS SELF-TEST"
"n

"Using the graph below, a depth-first traversal starting at"
"node B would visit nodes in the order ... "
"B C F H ILK N"
"8 C H L F I K N"
"8 C H K N L F I"
"8 F I C H L K N"
"e "
4
" INTRODUCTION TO GRAPHS SELF-TEST"
""
"Using the graph below, a breadth-first traversal starting"
"at node 8 would visit nodes in the order ... "
"8 C F H I L K N"
"8 C H L F I K N"
"8 C H K N L F I"
"8 F I C H L K N"
"A "
1
8
2
3
6
8
9
11
12
14
8
2,3,1
2,6,1
3,8,1
6,9,1

365

6,11,1
8,11,1
8,12,1
11,14,1
16

366

6

" GRAPH IMPLEMENTATION SELF-TEST"
""
"This self-test is intended to provide a check on your learning"
"in the area of data structures used to implement graphs."
""
"
7
4

"
"n

Click on START to begin ... "

GRAPH IMPLEMENTATION SELF-TEST"

"A common data structure used to implement the edges in a graph"
"is called a(n) ... "
"One Dimensional Array"
"Linked List"
"Adjacency Matrix"
"Edge List"
"C "
4

" GRAPH IMPLEMENTATION SELF-TEST"
un

"Data values associated with the nodes in a graph are often"
"stored in a(n) ... "
"One Dimensional Array"
"Linked List"
"Adjacency Matrix"
"Two Dimensional Array"
"A "
4
" GRAPH IMPLEMENTATION SELF-TEST"
""
"In an adjacency matrix, M, representing an undirected graph, if"
"two nodes I and J are directly connected ... "
"M[I,J] M[J,I] always"
"M[I,J] = A"
"M[I,J] = a and M[J,I] <> 0"
"M [I, J] <> 0"
"A "
4
" GRAPH IMPLEMENTATION SELF-TEST"
""
"In an adjacency matrix, M, representing a directed graph, if"
"two nodes I and J are directly connected ... "
"M[I,J] = M[J,I] always"
"M[I,J] = 0"
"M[I,J] <> a and M[J,I] <> a"
"M[I,J] <> a and M[J,I] = A"
"0 "
4
" GRAPH IMPLEMENTATION SELF-TEST"
""
"The number of nonzero entries in the column of the adjacency"
"matrix which corresponds to a given node represents the ... "
"Edge Weight"
"Degree"
"Path"
"Data"
"B "
4
" GRAPH IMPLEMENTATION SELF-TEST"
""

367

"In an adjacency matrix representing an undirected graph, the"
"number of nonzero entries will equal ... "
"Number of nodes"
"Number of edges"
"Twice the number of edges"
"Half the number of edges"
"e n

6

" GRAPH IMPLEMENTATION SELF-TEST"
""
"Given the graph below, assume that the adjacency matrix is"
"such that row 1 represents node A, row 2 represents node B, etc"
"and similarly for the columns. Then, row 1 of the adjacency"
"matrix would be ... "
"1 0 1 0 1 0"
"1 1 0 0 0 0"
"0 1 0 0 0 1"
"0 1 0 0 1 1"
"0 "
1
5
1
2
3
5
6
6
1,2,1
2,3,1
1,5,1
1,6,1
2,5,1
3,6,1
16

368

6

" NETWORKS SELF-TEST"
"n
"This self-test is intended to help you check your learning of"
"key terms and concepts related to networks."
""
" Click on START to begin ... "
7
4

" NETWORKS SELF-TEST"
"n

"The term which applies to the 'cost' of traversing an edge in"
"a network is the ... "
"Degree"
"Threshhold"
"Edge Value"
"Weight"
"0 "
4
" NETWORKS SELF-TEST"
""
"The subnetwork which includes all nodes with the least total"
"edge weight needed to connect all nodes is called the ... "
"Shortest Path"
"Topological Sort"
"Minimum Spanning Tree"
"Minimum Weight Network"
"C "
4
" NETWORKS SELF-TEST"
,,"
"The sequence of edges connecting two nodes with the least edge"
"weight between the two nodes is called the ... "
"Shortest Path"
"Topological Sort"
"Minimum Spanning Tree"
"Minimum Weight Network"
"A "
4
" NETWORKS SELF-TEST"
"n

"The algorithm which you
"expensive way of connecting
"Shortest Path"
"Topological Sort"
"Minimum Spanning Tree"
"Minimum Weight Network"
"e "
4

might use to determine the least"
several cities by road would be ... "

" NETWORKS SELF-TEST"
""
"The algorithm which you might use to determine the optimum"
"schedule for a set of tasks in a project would be ... "
"Shortest Path"
"Topological Sort"
"Minimum Spanning Tree"
"Minimum Weight Network"
"E "
4

" NETWORKS SELF-TEST"
""

369

"Given the network below, the minimum spanning tree would"
"include the edges ... "
nAB, AE, AF, FJ, FG, BC"
"AE, EJ, JF, FG, CG, BC"
"AB, AC, AF, FG, FJ, EJ"
"AB, BC, AF, FJ, EJ, CG"
"D "
4
" NETWORKS SELF-TEST"
""
"Given the network below, the shortest path from node A to node"
"J includes the edges ... "
"AB, BC, CG, FG, FJ"
"AF, FJ"
"AF, EJ"
"AE, AF,
"B "
1
7
1
2
3
5
6
7
10
8
1,2,2
2,3,3
1,5,5
1,6,2
3,7,1
6,7,4
5,10,1
6,10,1
12

AJ"

370

6

" NETWORK IMPLEMENTATION SELF-TEST"
u"

"This self-test is intended to provide a check on your learning"
"in the area of data structures used to implement networks."
"n

"
3
4
"
""

Click on START to begin ... "

NETWORK IMPLEMENTATION SELF-TEST"

"The primary difference between a network and a graph is that"
"the edges in a network ... "
"are always directed."
"never form cycles."
"include an edge weight."
"are always undirected."
"e "
3

" NETWORK IMPLEMENTATION SELF-TEST"
""
"Entries in the adjacency matrix for a network represent the .. "
"Edge Weight"
"Data Value"
"Direction of edge"
"Number of associated nodes."
"A "
6
" NETWORK IMPLEMENTATION SELF-TEST"
"n

"Given the network below, assume that the adjacency matrix is"
"such that row 1 represents node A, row 2 represents node B, etc"
"and similarly for the columns. Then, row 5 of the adjacency"
"matrix would be ... "
"0 2 0 0 1 5"
"2 0 0 0 1 2"
"1 1 0 0 0 4"
"5 2 0 0 4 0"
"e "
1
4
1
2
5
6
6
1,2,2
1,6,5
1,5,1
2,5,1
2,6,2
5,6,4
12

371

	Nova Southeastern University
	NSUWorks
	1997

	Development and Evaluation of Interactive Courseware for Visualization of Graph Data Structure and Algorithms
	Thomas E. Beutel
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1482244353.pdf.qBLko

