
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2012

Securely Handling Inter-Application Connection
Credentials
Gary Lieberman
Nova Southeastern University, gary@lieberman.us

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Gary Lieberman. 2012. Securely Handling Inter-Application Connection Credentials. Doctoral dissertation. Nova Southeastern University.
Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (215)
http://nsuworks.nova.edu/gscis_etd/215.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Securely Handling Inter-Application Connection Credentials

By
Gary Lieberman

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Information Systems

Graduate School of Computer and Information Sciences
Nova Southeastern University

2012

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Securely Handling Inter-Application Connection Credentials

By
Gary Lieberman
September 2012

The utilization of application-to-application (A2A) credentials within interpretive
language scripts and application code has long been a security risk. The quandaries being
how to protect and secure the credentials handled in the main body of code and avoid
exploitation from rogue programmers, system administrators and other users with
authorized high levels of privilege.

Researchers report that A2A credentials cannot be protected and that there is no

way to reduce the risk of the inevitable successful attack and subsequent exploit.
Therefore, research efforts to date have primarily been focused on mitigating the impact
of the attack rather than finding ways to reduce the attack surface.

The work contained herein successfully addresses this serious cross-cutting concern

and proves that it is in fact possible to significantly reduce the risk of attack. This
reduction of risk was accomplished through implementing a method of credential
obfuscation which applied advice with concerns utilizing a composition filter. The filter
modified messages containing the credentials as they were sent from the interpretive
language script to the remote data store.

The modification extracted credentials from a secure password vault and inserted

them into the message being sent to the remote data store. This modification moved the
handling of the credentials from the main body of code to a secure library and out of the
reach of attackers with authorized high levels of privilege. The relocation of the
credential handling code lines significantly reduced the attack surface and the overall risk
of attack.

Acknowledgments

First and foremost I would like to thank my wife Carol for her encouragement and
undying support. Without which I would never have had the courage and fortitude to
persevere in graduate and post-graduate school. A deep thank you also goes out to my
brother-in-law Phillip Stein, PhD whose accomplishments I have always admired. Your
many encouraging talks have made such a difference.

My appreciation and love goes out to my children, Mark and Sarah who graciously
accepted the many hours dad was doing school work and not participating in family
things. Even though they are adults with successful careers, family is still most important
to them and their sacrifice is very much appreciated. Sarah, thank you for the endless
hours of boring proofreading my graduate and post-graduate papers. I have no idea what
my papers would have read like without your help.

Dr. James Cannady, thank you for the support and encouragement when you told
me I had a good idea in my first semester. Your introduction to Dr. Mitropoulos was key.
Dr. Eric S. Ackerman, I really appreciated our chats in your office. It was really nice to
have that open access to the dean. I was truly honored when you agreed to serve on my
committee. Dr. Gregory Simco, arguably the toughest grader I’ve ever encountered,
everything you said was dead-on correct. You made me a better writer and an even better
professor. Lastly, a very special thank you goes to Dr. Frank Mitropoulos for your
guidance and support. The first time I met you I said there’s my committee chair. Your
guidance has been invaluable.

To everyone who supported my effort, both mentioned and not mentioned; I
couldn’t have done without you!

This work is dedicated to my father, Alfred Louis Lieberman, an amazing role
model.

v

Table of Contents

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Chapters

1. Introduction 1

Background 1

Problem Statement 2

Dissertation Goal 8

Relevance and Significance 9

Barriers and Issues 11

Summary 12

2. Review of the Literature 13

3. Methodology 36

Overview 36

Attack Vector Taxonomy 38

Attack Vectors Employed 40

Password Obfuscation Design Method 47

Baseline Attack Vector Payload 49

vi

Quantifying Testing Results 51

Resource Requirements 53

4. Results 55

Introduction 55

Attack Vector Baselines 57

Findings 61

Summary of Results 66

5. Conclusions, Implications, Recommendations, and Summary 70

Conclusions 70

Implications 72

Recommendations 73

Summary 75

Apendices 77

A. Request for Cloakware License 77

B. Hardware Inventory 79

C. Perl Scripts 82

Baseline Scripts Used for Probe, Debugger and the Memory Scan Attacks 82

Baseline Scripts Used for Logic Bomb Attack 89

Aspect Modified Scripts Used for Probe, Debugger and the Memory Scan

Attacks 91

Aspect Modified Scripts Used for Logic Bomb Attack 98

D. Attack Vector Screenshots 101

vii

Baseline Probe Attack Vector Screenshots 101

Baseline Logic Bomb Attack Vector Screenshots 107

Baseline Debugger Attack Vector Screenshots 110

Baseline Memory Scan Attack Vector Screenshots 116

Aspect Modified Probe Attack Vector Screenshots 124

Aspect Modified Logic Bomb Attack Vector Screenshots 126

Aspect Modified Debugger Attack Vector Screenshots 130

Aspect Modified Memory Scan Attack Vector Screenshots 133

References 136

viii

List of Tables

1. Attack Classification Matrix 40

2. Attack Difficulty Matrix 53

3. Baseline Risk Analysis Matrix for all platforms 57

4. Attack Vector Weight to Skill Level Comparison 58

5. Aspect Modified Risk Analysis Matrix for all platforms 62

6. Probe Attack Risk Reduction Comparison 63

7. Logic Bomb Attack Risk Reduction Comparison 64

8. Debugger Attack Risk Reduction Comparison 65

9. Memory Scan Attack Risk Reduction Comparison 66

10. Comparative Levels of Risk 67

11. Reduction of Risk across Attack Vectors 68

12. Comparative analysis of skill level to attack success 68

ix

List of Figures

1. testScript.pl Function Exploration Example 45

2. Typical Windows ptkdb Session Window 45

3. Typical Solaris/Linux ptkdb Session Window 46

4. Typical Database Connection Scenario 48

5. Connection Process with Composition Filter Enhancement 49

6. Sample Risk Analysis Matrix 51

7. Reducing the attack surface 71

8. Cloakware License Request Email 77

9. Cloakware License Use Approval 78

10. Network Configuration Diagram 81

11. Baseline Probe Attack #1 on Windows 7 101

12. Baseline Probe Attack #1 on Linux 102

13. Baseline Probe Attack #1 on Solaris 10 103

14. Probe Attack #2 on Windows 7 104

15. Probe Attack #2 on Linux 105

16. Probe Attack #2 on Solaris 10 106

17. Insertion of Logic Bomb code on Windows 7 107

18. Insertion of Logic Bomb code on Linux. 108

19. Insertion of Logic Bomb code on Solaris 10 109

20. Debugger Attack run #1 on Windows 7 110

21. Debugger Attack run #1 on Linux 111

x

22. Debugger Attack run #1 on Solaris 10 112

23. Debugger Attack run #2 on Windows 7 113

24. Debugger Attack run #2 on Linux 114

25. Debugger Attack run #2 on Solaris 10 115

26. Generation of the memory on Windows 7 116

27. Memory scan attack vector #1 on Windows 7 117

28. Generation of the memory on Linux 117

29. Memory scan attack vector #1 on Linux 118

30. Generation of the memory on Solaris 10 119

31. Memory scan attack vector #1 on Solaris 10 120

32. Memory scan attack vector #2 on Windows 7 121

33. Memory scan attack vector #2 on Linux 122

34. Memory scan attack vector #2 on Solaris 10 123

35. Aspect Modified Probe Attack - Windows 7 124

36. Aspect Modified Probe Attack - Linux 125

37. Aspect Modified Probe Attack - Solaris 10 126

38. Aspect Modified Logic Bomb Attack - Windows 7 127

39. Aspect Modified Logic Bomb Attack - Linux 128

40. Aspect Modified Logic Bomb Attack - Solaris 10 129

41. Aspect Modified Logic Bomb Attack - Windows 7 130

42. Aspect Modified Logic Bomb Attack – Linux 131

43. Aspect Modified Logic Bomb Attack - Solaris 10 132

44. Aspect Modified Memory Scan Attack - Windows 7 133

xi

45. Aspect Modified Memory Scan Attack – Linux 134

46. Aspect Modified Memory Scan Attack - Solaris 10 135

1

Chapter 1

Introduction

Background

The utilization of application-to-application credentials within interpretive language

scripts and application code has long been a security trade-off. The quandary being

should the credentials be embedded in the code and risk exploitation from rogue

programmers, system administrators and other users with authorized high levels of

privilege or should the application not require password authentication at all? The latter

can be accomplished, somewhat securely, by running the entire process on a single highly

audited machine, disconnecting it from the network and isolating the machine from all

but a few trusted individuals. Although this approach is commonplace in top secret

government processing it is highly impractical in a commercial data processing

environment. Therefore, IT security experts, standards bodies and auditors alike have

concentrated their efforts on figuring out new and ingenious ways to mitigate the impact

from data loss rather than researching methods for securing the credentials. The research

presented in this paper focuses on the development of a method to address this gap and

significantly reduce the risk of credential exploitation. It would be naive to think that the

What can we take on trust in this uncertain life? Happiness,
greatness, pride – nothing is secure, nothing keeps.

– Euripides, Hecuba (c. 425 B.C.)

2

risk can be eliminated entirely. No credential handling method, process or system can

claim to be totally secure, but risk can be significantly reduced to the point where batch

processes utilizing interpretive language scripts can be considered secure in a relative

sense.

This document is organized as follows; the Problem Statement section defines the

problem being addressed and qualifies it as being research worthy. It is followed by a

description of the dissertation goal. Following this section is the Relevance and

Significance section which provides support for the problem statement and dissertation

goal sections and addresses the questions: why there is a problem and who is impacted?

The Literature Review section builds a foundation supporting the validity of this

research. Supporting evidence in this research area is gathered from the existing body of

knowledge and is critically reviewed and analyzed. Additional supporting evidence is

gathered from federal laws and regulatory agencies, established auditing standards and

generally-accepted professional guidelines and practices. Concluding the Literature

Review is an analysis of patent applications and third party products that attempt to

address this problem. The final sections present the research, analysis of findings and

conclusions.

Problem Statement

The Association of Certified Fraud Examiners reported in their 2010 Report to the

Nations on Occupational Fraud and Abuse (as cited in Nilsen, 2010) that on average

companies lose 5% of their revenue to fraud and abuse. Furthermore, researchers have

found that 80% of the fraud and malicious activities within IT operations are related to

the misuse of passwords (Singleton, 2002). According to a recent Gartner report, close to

3

90% of all software attacks are aimed at the application layer (as cited in Brandel, 2009),

yet the 2010 Global Security Survey of Financial Institutions by Deloitte and Touche

("2010 Financial Services Global Security Study," 2010) reported that only 46% of all

survey respondents include application security in their software development life cycle

and that 23% of all respondents lack well-defined security policies in their development

standards. It was reported by the respondents that 10% of all data loss was from

malicious software installed by employees with proper access and authentication. Over

70% of those surveyed have a medium to high expectation of attacks on program source

code. Lastly, only a disturbing 39% of the respondents reported having a high level of

confidence in their ability to defend against insider cyber-attacks.

To better understand the relevance of these survey statistics one must consider that

70% of all insider attacks stem from software exploits ("Insider threat study: illicit cyber

activity in the banking and finance sector," 2004) and that those vulnerabilities primarily

lie within the context of software development and deployment. A primary area of

concern is the manner in which the connection credentials that are used to establish a

communication channel between two applications such as a client and a database server

are handled.

Randazzo, Keeney, Kowalski, Cappelli and Moore (2005) found that 17% of all

insider attacks came from administrators with legitimate privileged access rights. Baring

in mind that administrators may not always be trustworthy (Jaeger & Tidswell, 2001) it is

a fairly simple task for a system administrator of questionable repute to harvest hard-

coded passwords from batch processing scripts and/or application programs stored on the

file systems that they support. It is an equally simple task for a rogue administrator or

4

software developer to modify a script and cause the password to be exported as it is

received from an associated password vault.

Chinchani, Iyer, Ngo and Upadhyaya (2005) found that a lack of a practical

methodology has security experts believing that insider attacks are unpreventable. They

state that the only practical solution is to increase system monitoring, application logging

and overall security countermeasures. They further admit that these are all highly

inconvenient measures that foster an atmosphere of distrust within the organization’s IT

staff. After conceding that little can be done to prevent such attacks they concentrate on

presenting an enhanced threat modeling framework to help identify those applications

which are most vulnerable and good candidates for increased vigilance. This is a reactive

approach that highly depends on both successful monitoring and detection of the attack,

and more importantly, successful interception of the data before it leaves the premises. A

better approach would be to work towards preventing the attack from happening

altogether. Unfortunately, few research projects in this area recommend approaches

aimed at addressing insider attacks proactively (Cappelli, Moore, Shimeall, & Trzeciak,

2009).

Shiflett (2004) emphatically warns that there is no way to hide or keep connection

credentials safe from rogue privileged users. He proposes a simple solution in which

connection credentials are stored in environment variables and accessed by the script at

the time of execution. This method seems rather naive as environment variables must be

stored as cleartext in files on the same system as the scripts themselves. They are just as

vulnerable to the same privileged user attacks as the scripts themselves. In addition, all

memory-stored environment variables are accessible by the program code and therefore

5

vulnerable to rogue programmer attacks. Lastly, operating systems such as certain UNIX

variants HP/UX, Solaris, LINUX, MAC OS X and others allow for the reporting of an

executing process’ operating environment. Thus, memory-stored environment variables

are easily viewed by all users of privilege on those systems.

Chumash and Yao (2009) also believe that due to the interpretive nature of scripts,

it is impossible to obscure, mask or hide connection credentials from users with

administrative access. They identify the most common solution in current use which is to

store the connection credentials as cleartext in files external to the script itself in a

location outside of the script’s root file system and to include or source them in during

the script’s execution. Their thinking is that the credential’s location could be better

monitored and protected than that of the script itself. This methodology is short-sighted

and falls prey to the same privileged user attack as if the credentials were stored in the

script itself. To address this concern they propose what is essentially a password vault

which encrypts and stores the credentials in a secure environment and returns them to the

executing script once it has been properly authenticated. Although this method removes

the credentials from viewing by people with read access to the script it does not prevent

people with write access, such as administrators, from modifying the script and capturing

the returned credentials. There is also exposure to rogue programmers who may not have

access to the production system that executes the script but who do have access to the

source code and can place a logic bomb in the code that will capture the passwords and

forward the credentials to awaiting accomplices when the script executes. This negates

almost all security measures on the executing system, as the attack is setup and put in

place prior to the software rollout.

6

Further exacerbating matters, Said, Guimaraes, Maamar and Jololian (2009) found

that there is a total lack of literature dealing with application security specifically in areas

concerning application connection credentials. Because of this they propose to

indoctrinate programmers and software developers with security courses in graduate

school curriculums. Of the 83 institutions they surveyed only 10 had such security

courses. The fact that research institutions and academia in general are not recognizing

the cleartext storage of connection credentials as a legitimate risk and wide-spread

problem further supports the need for more research and literature on this subject.

Educating the development staff is a solid step in the right direction, but it does not

address the pressure to shortcut good development standards and circumvent security

reviews due to understaffing and development cost considerations. Further, it does not

address in any manner, shape or form the corruptibility of administrators and software

developers, especially in times of an economic downturn.

Shmueli, Vaisenberg, Elovici and Glezer (2010) tell us that access control is useless

if the attacker is a system administrator or a database administrator. They propose a

database encryption scheme to make the data stored in the database unreadable when the

inevitably successful insider attack happens. Besides being quite pessimistic in nature,

their solution assumes the attacker will access the database with the credentials of the

database administrator to look at the stored data. They do not address the possibility of

the rogue administrator capturing the connection credentials from a legitimate batch

processing script and accessing the decrypted data with the appropriate level of access

authentication afforded the script.

7

It is typical for many researchers to concentrate on securing the credential

repository or fortifying the trust negotiation process and ignore the security of the

software that negotiates the trust itself. An example of this can be found in the Yu,

Winslett and Seamons paper on automated trust negotiation strategies which clearly and

emphatically tells us that they assumed that all trust negotiation software can be trusted

(Yu, Winslett, & Seamons, 2003). Six years later Yu, Sivasubramanian and Xie point out

that traditional access control is embedded in application code and therefore it is

impossible to test its effectiveness (Yu, Sivasubramanian, & Xie, 2009). They also state

that it is impossible to protect that application’s code from an insider attack.

Franqueira, Cleeff, Eck and Wieringa (2010) find that few approaches consider the

proactive prevention of insider attacks and adopt a forensic approach analyzing data

gathered from security monitoring tool logs. This seems to be the most common

approach proposed by researchers. Franqueira, Cleeff, Eck and Wieringa concentrate

their study on what they call “external insiders” and propose that external service

providers and their contracting customers bolster contractual agreements to require a high

level of log data sharing so that the log analysis is not concentrated in one company or

within a single office or location. As with other similar forensic approaches this is

closing the barn door after the animals have escaped. The better approach is a

prophylactic one in which access to the credentials is restricted to the interpretive script

and not the administrator.

The presence of application-to-application connection credentials within

interpretive language scripts presents a significant risk, leaving those credentials open to

8

being attacked and exploited. To date no methodology or framework exists that

effectively secures those credentials and reduces that risk.

Dissertation Goal

Analysis of research efforts, auditing and regulatory agency standards and third

party products tells us that most researchers have conceded that the problem as stated in

the above Problem Statement section is unsolvable. They have directed their research

and recommendations to be more in line with an approach that attempts to detect the

attack after the fact and mitigate the impact of the data loss rather reduce the risk of

attack altogether (Salem, Hershkop, & Stolfo, 2008). Albeit naive to state that all risk

can be eliminated, this research shows that the risk of insider attack and exploitation of

application-to-application credentials can be significantly reduced as measured by the

delta between a pre-and post-risk analysis matrix.

The method that was used for comparative analysis to measure the delta between

the pre-and post-analysis of risk is a quantitative Decision Analysis Methodology.

Kepner and Tregoe (1981) defined the three primary elements of analyzing alternatives

and making good decisions as the quality of the problem definition, the quality of the

evaluation of alternatives and understanding the impact of the alternatives. They suggest

that any decision process can be reduced to a mathematical formula resulting in a

weighted quantitative index of alternatives against which an informed analysis can be

made. To facilitate this Kepner and Tregoe introduced the concept of a Weighted

Decision Analysis Matrix.

For the purposes of quantifying pre-and post-research password exploitation risk,

the concept put forth in Kepner and Tregoe’s Weighted Decision Analysis Matrix theory

9

was used. The required matrix consists of an array presenting pre-and post-research tests

on the vertical axis. The horizontal axis represents a list of attacks that were performed

against the test scripts attempting to mine the password used in the scripts. Additional

detail on attack vector quantification and measurement ideology can be found in the

“Quantifying Testing Results” section in Chapter 3.

This research established a methodology and framework by which an interpretive

language script, such as one written in Perl, can securely call a subroutine or function

establishing a connection to a data store or secondary application. The request can then

be authenticated and have a connection handle returned to the calling function from the

called subroutine or function. The connection process was performed in such a manner

as to significantly limit the ability of rogue privileged users or rogue developers from

trapping the connection credentials for exploitation. In addition to avoiding privileged

user exploit threats, this framework also avoided granting the development and

application support staff knowledge of the connection credentials which presents an

equivalent risk of exploitation.

Relevance and Significance

The cleartext hard-coding of application-to-application connection credentials

presents an industry-wide security software weakness that originates in the development

process. The weakness then travels with the software into production, leaving the

production processing environment vulnerable to attack. Logic Bomb attacks and Trojan

Horse attacks can quite easily exploit credentials stored within interpretive scripts (Yang,

2009). The risk is further exacerbated when one considers that the developers of the

software often are aware of the credentials when they embed them in the code. These are

10

the same developers that standards bodies and audit reviews recommend having their

access to production systems denied for security purposes.

Further support for this as an industry-wide software development issue is bolstered

by the listing of hard-coded credentials as a dangerous vulnerability in most security and

auditing standards. For example, the Open Web Application Security Project (OWASP),

arguably one of the major players in the field of secure software development (Futcher &

Solms, 2008), lists hard-coded application credentials eighth on its list of top 10

application vulnerabilities (OWASP, 2007). The SANS Institute, a prominent for-profit

research and education organization, lists hard-coded credentials 21st on its list of the top

25 Most Dangerous Programming Errors (B. Martin, Brown, & Paller, 2009).

Unfortunately, the most common method to address these issues is a forensic one rather

than a prophylactic approach (Salem et al., 2008).

The primary reason so many researchers adopt a forensic approach to their research

is the pervasive belief and subsequent acceptance that insider attacks on software and

application-to-application credentials are unavoidable and unstoppable. Researchers such

as Blackwell (2009); Chumash and Yao (2009); Franqueira, Cleeff, Eck and Wieringa

(2010); Shiflett (2004) and Shmueli, Vaisenberg, Elovici and Glezer (2010) have all

based their papers on the acceptance of the inevitable security breach initiated by the

privileged user. The research presented in this paper was aimed at significantly reducing

the risk of insider attack on application-to-application credentials and subsequently

changing this perception.

11

Barriers and Issues

The goal of this research was to develop a methodology by which applications that

utilize interpretive scripting languages can be secured against the introduction of

erroneous or intentional code logic that could open backdoors and establishes covert

access points to production systems. The hard-coding of production application

credentials in cleartext into source code exposes those credentials to all development and

administrative personnel with access to the development environment, thereby granting

defacto access by development and administrative personnel to production processing

systems. In addition, this research has developed a methodology for securely handling

application connection credentials returned to software applications from a password

vault. Specifically, instructions can be embedded into the logic of a program to exploit

the returned credentials by forwarding them to a person or persons who would otherwise

not be granted access to the targeted production system.

To date adequate and functional solutions to these issues have not been available to

the software development community (Boström, 2004; Edge & Mitropoulos, 2009). The

proliferation of password vault technology is a step in the right direction, but does not

offer the complete solution. Therefore, regulatory agencies, standards bodies and

auditing practices have graciously accepted that there is no complete solution and

adopted a segregation of duties approach which reduces risk. However, this does not

mitigate the risk altogether and is not a complete solution. We can only surmise that

because of this wide acceptance of risk by the professional user community funding is

lacking for academic research. Furthermore, a lack of funding could be a contributing

factor in the lack of peer-reviewed papers proposing solutions. With the exception of the

12

2004 De Win, Joosen and Piessens case study on FTP Server access controls, very few

studies have presented practical approaches to securing application-to-application

connection credentials (Boström, 2004; Edge & Mitropoulos, 2009). However, the

existence of numerous commercial password vault offerings and the ever-growing

number of patent applications attempting to secure the returned credentials seems to

support that research in this area is viable and is taking place.

Summary

The position held by researchers that nothing can be done to reduce the risk to

application-to-application credentials used in interpretive language scripts is unfortunate.

Even more unfortunate is that research is now focused on mitigating the impact of attack

exploits that are considered inevitable. This phenomenon is exacerbated by the

acceptance by standards bodies and auditing societies who recommend segregation of

duties as the primary defense for handling attacks coupled with enhanced monitoring

tools that reduce the time between attack and discovery. Better monitoring leads to faster

discovery, which lends itself to reduced exploit impact. The hypothesis that it is

impossible to reduce the risk of exploit to application-to-application credential in

interpretive language scripts is wrong. The research presented in this work proves that

the risk can be significantly reduced.

13

Chapter 2

Review of the Literature

In 1990 the Expect language was introduced by Don Libes (1990). Expect enables

two programs that would normally interact with humans to interact with each other. In his

paper he clearly states that “Using Expect, it is possible to create a script that solves the

passwd problem.” He is referring to using Expect scripts to hold passwords and submit

them to other applications that would normally require an interactive password

submission. Arguably, Libes’ work is the foundation of modern day batch processing.

He fails to mention, or even consider, the risk of embedding credentials in a script. Later

on in 1993 he published his second paper where he introduces Kibitz, which is an Expect

add-on that is platform independent and seems to correct the password-embedding issue

by allowing the script to ask the executing human for the password (Libes, 1993). Libes,

however, states that this password-asking ability is for portability and never considers it

for security. He reasons that the script may need to connect to multiple targets using

different passwords. Therefore, storing a password in the script becomes inconvenient.

In 1994 Libes published a third paper entitled “Handling Passwords with Security

and Reliability in Background Processes” in which he presents five techniques for using

the Expect language (Libes, 1994a). The last three techniques are centered on hard-

coding the password in the Expect script. He addressed the security concerns by

proposing the scripts be permissioned so that only root level privileges can access them.

No mind is paid to consider the risk of exploit from those possessing root level privileges

on the system. Later that year Libes published another paper moving Expect into the X-

14

Windows environment. Again, he extolls the virtues of using Expect to handle embedded

credentials and never considers the risks (Libes, 1994b).

Libes’ one mention of security in the Kibitz add-on, which asks the user for the

password, works well in theory. However it breaks down quickly when one considers the

large number of batch processing scripts that run each night processing data from the

day’s business. Such is the case in brokerage houses, banks and other financial

institutions. By its nature a batch processing script is designed to run automatically and

unattended. Requiring manual intervention in the running of hundreds or thousands of

batch processing scripts is nearly impossible and presents a security breach unto itself.

Two years after Libes published his last work on the subject, Mavrikidis (1996)

warned against hard-coding passwords in MVS and UNIX scripts and proposed using a

password repository to store the passwords so they cannot be harvested from the source

code. The author also stressed the need for intrusion detection systems and log

monitoring as a final step in protecting the processing environment. Unfortunately, no

attention was paid to the rogue system administrator and/or rogue software developer

threat.

In their 2009 paper, Englert and Shah (2009) identify the need to protect application

credentials against attacks. The authors realize that most access to computers and

computer programs is via an ID and password. The goal of their research was to develop

an online safe or vault that allows users to securely store and retrieve their passwords for

use when interacting with Internet-facing applications. Although their solution does

address numerous weaknesses found in online password vaults, it is designed primarily to

be used interactively with a human being. Their solution addresses the security of the

15

storage of the password and its eventual transmission to the requesting end user.

However, in their conclusion they propose that the same methodology could be used to

develop an application-to-application API. If they were to move forward with this

expansion of their work they would have to consider the security of the returned

credentials once extracted from the vault and safely returned to the requesting

application. However, since no credence was paid to the handling of the credentials once

returned to the human requestor in their current research, it is unlikely it will be

considered in their future research.

Boyen attempts to address the problem of securing credential storage and retrieval

in his paper entitled “Hidden Credential Retrieval from a Reusable Password” (2009).

He proposes a credential retrieval protocol that includes handshake, secure transfer and

decryption in a single protocol operation that returns no indication of success or failure.

Successful authentication generates the return of a plaintext password; failure returns a

string that could be a password. Thus an attacker using a brute force repetitive attack

would gain no insight as to the success or failure of each attempt. Passwords are stored

via a process that includes the generation of a random private signing key, the hashing of

the password and a signature. All are then transmitted to the server over a secure

transmission channel. The passwords are not stored in plaintext on the server as is the

case with some password vaults. By storing an encrypted version of the password the

author addresses the threat of insider attacks on the storage server itself. Little attention

is paid to the threat of insider attacks at the receiving end of the password retrieval

request.

16

Boyen’s work is pointed at the forgetful human being who has a tendency to write

passwords down. However, because his proposed password vault is accessible via a

network connection the interaction with the vault’s interface could be adapted for use

with a batch process using an interpretive language script such as Perl. Boyen did not

consider this possibility when analyzing the success of his work or in any proposed future

work.

Zhu, Feng and Chen (2009) advise that advancements in computer security such as

facial and fingerprint recognition help protect human-to-application credentials, but does

nothing to protect application-to-application credentials from exploit by people with

administrative level authorization. To address this they suggest that access control

policies based on behavior patterns be implemented. Studying these patterns would

allow for the identification of computer system users through the similarity of the user's

behavioral patterns. Constructing access control policies based on usage patterns has

quite a bit of merit and allows for a more granular and finely-tuned set of policies.

Although the authors claim this to be an effective means of combating insider attacks,

they neglect to address insider attacks perpetrated by users with justifiable privileged

access.

Kostiainen, Ekberg, Asokan, and Rantala (2009) correctly point out that securely

storing and using application-to-application credentials is essential in modern-day

distributed applications. They further state that the use of passwords is convenient and

quite flexible but extremely hard if not impossible to secure. Kostiainen, Ekberg,

Asokan, and Rantala also point out that the use of hardware tokens as credentials are

quite secure, but expensive and not practical. They propose an architecture for secure

17

credential management called On-Board Credentials (ObC) which brokers connections

between applications. Unfortunately, this system requires an isolated and secure

execution environment for it to be effective. Once provisioned the requesting application

is sent a connection key that is then used to connect to the remote application. The key is

subject to misuse in the same manner as that of a password returned from a password

vault. It would seem that the success of their methodology is keyed to the level of

isolation the processing environment is able to achieve. The authors point out that

additional analysis and testing is required to determine the level of security and usability

of their proposal.

Blackwell (2009) states that insider attacks are on the rise and are very difficult to

address in large part because insiders tend to possess high levels of privileged access

rights and in-depth knowledge of system weaknesses. They propose a three-pronged

systematic approach to mitigating the risk. The first is to reduce the attack surface, the

second is to minimize impact zone and the third is to reduce the attacker’s motivation

either through persuasion or deterrence. They believe that by bolstering the worker’s

morale, increasing their pay and generally reducing the cost benefit of attacking their

employer the frequency and scope of the attacks can be reduced. Considering that the

United States has 5% of the global population and 25% of the world’s prison population

(Salerno, 2009) it would seem that Blackwell’s hypothesis is flawed. The criminal

generally does not consider the penalty during the commission of the crime. In fact the

exact opposite holds true as they do not think they’ll be caught at all. Blackwell is

correct in his thinking that the best way to address this problem is to prevent the crime,

although a different methodology is called for.

18

As the popularity of centralized disk storage systems grows so does the risk of

unauthorized access to the files and data stored on those disks. These storage systems

have become critical components of most corporate computing environments. Along

with an increase in popularity and usage comes an increase in vulnerability and the risk

of data loss and its damaging impact (Kher & Kim, 2005). Therefore, one must

additionally consider the risk of an insider attack on centrally stored interpretive scripts

which contain application-to-application credentials. A rogue system administrator with

legitimate privileged access could perpetuate an attack on these scripts to harvest

credentials simply by mounting a file system remotely from any number of servers that

may or may not be adequately secured.

Chen, et. al. address the risk of file corruption and/or deletion through insider

attacks on centralized storage systems and propose a secure and efficient Remote Data

Checking (RDC) scheme for network coding-based distributed storage as a means to

catch and correct inappropriate modification to files stored on central storage systems. In

their research the central storage server is considered untrusted and their efforts are

directed at preventing the destruction of files stored on the server by making those files

recoverable. Their solution does not address access by authorized administrators for the

purpose of credential harvesting. It does, however, illustrate the need to secure those

files against attack (Chen, Curtmola, Ateniese, & Burns, 2010).

Kernel level security policy enforcement is the most widely used security

architecture in systems to date. It is based on a two-tiered privilege architecture that

allows for a single administrative super-user and all other users with no particular special

privileges. These non-super-users are largely restricted to accessing files owned by

19

themselves or groups in which they are members. The elevated privilege of the super-

user is generally required to perform almost all administrative tasks. For this reason

super-user accounts are highly exposed, difficult to defend and a favorite target of

adversaries (Payne, 2007).

Payne (2007) acknowledges that cryptographic algorithms are in wide use enforcing

networking security policies. He explains that passive cryptographic file systems exist

primarily to protect the confidentiality of data stored on those files systems. Payne states

that these systems break down when the super-user credentials have been exploited and

the cryptographic keys obtained by attackers after compromising the privileged user’s ID.

It is surprising that with 17% of all insider attacks coming from the administrators

themselves (Randazzo et al., 2005) Payne did not consider rogue administrators more in

his thinking.

Payne (2007) proposes a system called Vaults which boasts of an enhanced access

control system that encrypts the file system at the kernel level. This system can prevent a

super-user from reading a file that is owned by a non-privileged user. This system works

well in that it mitigates the risk of privileged users gaining access to critical files stored

on the files system. Payne also claims that once the kernel is fully booted it will assume

responsibility for verifying the integrity of trusted interpreted scripts against modification

by a privileged attacker.

Payne’s proposed kernel level key management architecture does provide a

cryptography based security model that goes a long way to protect user files from access

by privileged accounts. However, two major concerns weaken the value of the proposed

solution. The first is that Payne does not consider that trusted code contained in

20

interpreted scripts may have been compromised prior to being installed on the system and

secured by Vaults. Unless the code is meticulously reviewed prior to rollout, it is quite

easy for a rogue programmer to plant a logic bomb in the application that will capture the

credentials once it is installed. Additionally, quite often system administrators are tasked

with performing the software installs. It is not hard for a rogue administrator to insert

malicious code into a script during the installation process. Programs with logic bombs

inserted into their code can easily circumvent Payne’s secure environment as Vaults only

monitors changes made to trusted scripts after installation.

The second, and probably most important, concern is that anytime you modify the

kernel of an operating system you risk voiding the manufacturer support of the system

and software. In some cases modifications such as that which Payne proposes may even

void the warranty. You also run the risk of negatively affecting the reliability of the data

processing computations and results. If two plus two suddenly equals five, was it the

floating point co-processor (FPU) in the central processing unit (CPU) that went bad or

was it the kernel modification that caused the problem? In a highly critical computing

environment standardized software installs are of the utmost importance. Anything that

modifies the kernel is generally frowned upon and not allowed in most IT organizations.

In order to be acceptable to communities performing critical processing, his proposal

would have to be incorporated into the kernel, certified and supported by the

manufacturer. Then, unless accepted by all manufacturers and made universally

available across all platforms, the interpretive scripts accessing the Vaults environment

lose their platform independence and in turn their portability.

21

Kher and Kim tell us that the confidentiality and integrity of centrally-stored data at

rest can be achieved through cryptographic operations on the user side. This encryption

requires the use of keys provided to the user for access to the storage system. In the case

of Networked File Systems (NFS), which is widely used in the UNIX environment, they

readily admit that it is the system administrators that control and issue user credentials for

access to the shared storage. Therefore, the administrator who issues the user’s

credentials also has the ability to access their files masquerading as the user. Because

NFS treats security as an afterthought it is ever more important to avoid storing

credentials in scripts and to secure the handling of the credentials requested by an

interpretive language script and returned from a secure credential vault (Kher & Kim,

2005).

Two areas of concern that are easily addressed, but often are ignored are the

securing of backup media such as tapes and other portable devices often stored off-site

for disaster recovery purposes and the disposal of storage devices that are no longer

needed (Fendler, 2004). You can have the greatest and most secure file system in the

world to protect interpretive language scripts with hard-coded application-to-application

credentials, but it will all be for naught if someone were to harvest the credentials from a

backup tape. This is easily addressed by encrypting backup tapes. However, only the

newer tape devices such as LTO4, LTO5 and LTO6 (Linear Tape-Open) tape drives

support hardware encryption ("Encryption Technology for HP StorageWorks LTO

Ultrium Tape Drives," 2010). Software encryption is often slow, cumbersome and not

practical in larger installations. Tape backup encryption is expensive and is generally not

an option available to smaller less well-to-do organizations. Although encryption of tape

22

backups is highly recommended it is best to not have the credentials hard-coded in the

scripts that are stored on the backup media.

The second concern is the disposal of storage devices that are no longer needed.

This is more a matter of policy than a scientific concern. All discarded storage devices

should be wiped clean with a fairly inexpensive NSA certified degaussing device. Secure

disposal can also be accomplished by hiring a shredding company who will certify the

destruction of the media. Again, major regulated companies adhere closely to policies

that require this. It is the smaller, less prominent organizations or organizations that are

not regulated or audited that are either not aware of or cannot afford to enact this policy.

The risk could be greatly mitigated if the credentials were not hard-coded into the

software to begin with.

The practice of storing application credentials in cleartext in the application code,

although frowned upon by standards bodies and internal auditing guidelines, has long

been widely accepted as an unavoidable risk of doing business. It is deemed to be fully

acceptable and is a common practice among IT professionals world-wide (Chumash &

Yao, 2009). Chumash and Yao (2009) tell us that there is no framework available today

that protects sensitive information from insider attacks and allows for the safe execution

of interpretive scripts. Furthermore, they tell us that due to the interpretive nature of the

scripts it is impossible to protect sensitive information contained in the scripts such as

application-to-application connection credentials. Their approach to addressing this risk

is one of reducing the impact of such insider attacks by focusing on early detection of

data loss. While it is always prudent to adopt the measures suggested by Chumash and

23

Yao, it is rather too resigned to defeat to state as emphatically as they have that it is

impossible to reduce the risk further than that which is known and understood today.

In part, accepting that application-to-application credentials cannot be protected

stems from a lack of conceptual and practical security training for software developers

("Making Security a Business Priority," 2008; Said et al., 2009). Acceptance is also

encouraged due to a void of functional alternatives coupled with the over-reliance on

segregation of duties (SoD) as the primary risk mitigation methodology (Lieberman,

2010; Singleton, 2002). In a broad generalized sense, SoD is the concept of having more

than one person required to complete a task. It is alternatively called separation of duties

and specifically within the context of IT operations it is defined as separating the

development community from the production processing environment and limiting access

to just those who need access to support the production environment.

The International Organization for Standardization’s (ISO) standard on information

technology and security techniques, ISO/IEC 27001:2005, section 11.03.01, specifies that

no hard-coded credentials should be allowed in any automated logon process, yet no

insight is offered as to how one would go about securing an unattended batch process

script (ISO, 2005). The Payment Card Industry’s (PCI) Data Security Standard, section

8.5.16, accepts hard-coded passwords as an acceptable risk, but requires that the

production environment protect the credentials against unauthorized use (PCI, 2009).

This is virtually impossible if one considers that production computer systems and

associated database management systems require real-time maintenance and support from

system, application and database administrators who have the privileged access necessary

to carry out their duties and also view the production script source code.

24

It is a significant when one considers the absence of warnings and the lack of

research surrounding the hardcoding of credentials and/or the handling of those being

returned from password vaults. In their 1,175-page definitive guide to software security

assessments, Dowd, McDonald and Schuh (2007) made no mention of hard-coding

credentials in software or the risk of exploitation of credentials when returned from a

password vault. Another example of the absence of this issue in secure programming

guidelines can be found in the Guimaraes, Murray and Austin (2007) paper on

developing secure database programming courseware. Not a single mention of hard-

coded credentials or the risk of exploiting credentials returned from a password vault can

be found. George and Valeva (2006) identify the lack of application-to-application

security and defensive programming techniques in undergraduate curriculum as a root

cause for it being ignored in professional software development shops. This is further

evident in Yang’s paper (2009) suggesting methods for teaching database security and

auditing which present the entire realm of application security in terms of SQL injection

attacks and never once mention access control or the protection of connection credentials

as a cross-cutting concern.

In their paper on database application security Said, Guimaraes, Maamar, and

Jololian (2009) state that a lack of academic literature on database application security

led them to develop courseware to educate developers, yet they still fail to mention the

hard-coding of DBMS access credentials as a real security risk. Because academia has

not recognized the protection of application-to-application credentials in interpretive

scripts as a serious security risk, undergraduate and graduate courseware is sorely lacking

in this area (Ge & Zdonik, 2007). It is not hard to understand why graduating students

25

who become researchers tend to ignore areas of research in which they have been given

no educational foundation. Furthermore, those graduating students who go on to careers

in software development do not consider the protection of credentials in the design of

their programs.

The Information Technology General Controls (ITGC), in section 404 of the

Sarbanes-Oxley Act of 2002 (SOX), requires restricted access and SoD to reduce the risk

of fraud through unauthorized data manipulation ("Sarbanes-Oxley section 404: A Guide

for Management by Internal Controls Practitioners," 2008). SoD has long been thought

of as the cornerstone of data protection (Mattsson, 2008). Mattsson suggests that the only

way to address this risk is to combine SoD with data encryption at the database source.

Encrypting the data and separating the security administration function from that of the

developer/administrator thereby protects the sensitive data from database administrator

attack. However, he later admits that even with these precautions the data is at risk to an

attack from rogue administrators and developers who insert malicious code into the

interpretive scripts and capture the returned data after its decryption.

In the context of this discussion, segregation of duties means that the development

community is segregated from the production processing environment (Adaikkappan,

2009). This is additionally supported by CoBiT (Control Objectives for Information and

Related Technology), a standard published by ISACA (Information Systems Audit and

Control Association), which has achieved pervasive usage as a guideline for SOX section

404 compliance. Specifically, CoBiT sections AI 3.4 and AI 7.4 require the separation of

developers from the production environment (ISACA, 2007).

26

SoD is the number one means for prevention of fraud and abuse in computer and

application security. It is widely adopted in business, industry and government, and is

the primary remediation focus in almost all audit findings (Gligor, 1998; Jianfeng, 2009;

Mattsson, 2008). One area where the SoD process breaks down is in the nature of

modern software development. In the past almost all computer programs were written in

a language that required compiling before execution to convert program source code from

a human-readable form to binary code that is readable and understood by the computer’s

operating system. Because binary program code is not human-readable and not easily

modified, it fits well within the SoD scenario. Most software today is written in some

form of interpretive scripting language such as Shell, Perl, JavaScript or BeanShell.

These programs, called scripts, are human-readable and are essentially compiled at

execution time. Application connection credentials are often stored within the script’s

code lines, thus opening up critical application access credentials for viewing by anyone

who has read-access to the scripts (Lieberman, 2010). Gligor found that even with strong

encryption policies in place and a mature access control framework implemented, it is

virtually impossible to prevent the insertion of malicious code into an application that

would allow unauthorized persons access to sensitive data. He concludes that to be

effective, new administrative methods and stronger tools need to be developed that offer

significant support for SoD policies (Gligor, 1998).

SoD effectiveness relies heavily on the detection of the fraud itself and is only as

effective as the incentive program that encourages employee fraud reporting and the

detection of fraudulent acts through follow-up audits. SoD’s level of effectiveness as a

preventive measure is high in areas of general application usage. It is less than effective

27

when dealing with persons who have high level access rights or super-user privileges.

Although implementing SoD in the overall application security framework is a sound

practice, it does little to address the risks and issues arising from modern development

and application support practices. Unfortunately it is most commonly relied upon as the

end-all solution for protecting application-to-application credentials.

Jerbi, Hadar, Gates and Grebenev (2008) note the impact of insider attacks on a

company’s compliance with federal regulatory laws such as SOX and the Health

Insurance Portability and Accountability Act (HIPAA). To address this concern they

introduce the concept of least privilege access as a way to control administrator and

application support personnel access to critical files, scripts and programs. Although this

concept does restrict access by unauthorized administrators, Jerbi, Hadar, Gates and

Grebenev’s solution does nothing more than audit access by authorized administrators

and application support personnel to scripts and programs containing hard-coded

credentials. In addition, their solution does not address malicious code embedded in

scripts and programs prior to the migration of the software from development to

production.

Not securing hard-coded passwords stored in cleartext in scripts and programs as

they migrate from development to production places a company’s production systems at

risk. Databases and other data stores become vulnerable to access by any and every

developer that has had access to source code residing on development systems whether

production system access is segregated or not (Woodbury, 2005). This seemingly puts

the company in severe jeopardy of violating SOX and HIPAA requirements. Hicks,

Rueda, St.Clair, Jaeger and McDaniel (2007) expand on the least privilege access model

28

by incorporating a multi-level security framework to control and restrict credential use.

Their proposal is built upon three security models: the Type Enforcement (TE) model, the

Role-Based Access Control (RBAC) model and the Multi-Level Security (MLS) model.

This framework, based on the Mandatory Access Control theory, requires that all subjects

and objects be identified and marked. All security-sensitive operations are checked at

runtime against a security policy to determine whether the operation should be allowed.

This is again a sound policy; however, it does not address whether or not a file accessed

by a qualified system administrator is for legitimate or illegitimate purposes.

Auditors have long cautioned against hard-coding credentials in scripts, but never

seem to offer viable alternatives beyond separation of duties. The CPA Journal article on

securing software (Rechtman, 2009) relies heavily on code reviews as the only sure way

to secure software against exploits and misuse by closing security gaps before

deployment. The author strongly discourages hard-coding critical values into the scripts

and programs, but totally misses the risk of hard-coding credentials. The article also

ignores the risk of software tampering after deployment. Martin points out that SoD

weakens significantly unless used in conjunction with a strong Security Information and

Event Management system (SIEM) to track and capture suspicious system activity (A.

Martin, 2008). A truly efficient SEIM requires a hardened OS, such as Trusted Solaris,

Trusted BSD or Security Enhanced Linux (SELinux), which is not economically practical

or supportable in the average batch processing environment.

In their consideration and acceptance of the cleartext hard-coding of application

credentials many auditing agencies and standards bodies recommend auditing the use of

the credentials themselves as a method to mitigate the risk presented by this practice. For

29

instance the audit guidelines published by the Institute of Internal Auditing (IIA) accepts

that application-to-application connection credentials held within the software are

necessary and recommends that the use of those credentials be monitored for possible

misuse (Bresz, Renshaw, Rozek, & White, 2007). This seems to be a quite reactionary

approach that is solely dependent upon the depth and chronological sensitivity of the

audit log monitoring that takes place in the targeted firm. To be truly effective the

monitoring must be real-time and intelligent. The only way to provide real-time

intelligent monitoring is via a fully-automated log-scanning tool that can correlate

activities across all monitored systems. These types of monitoring systems are complex,

expensive and require an entire staff to maintain. In most cases they are prohibitive to all

but the largest operations. Anything other than real-time monitoring is at best an after-

the-fact approach that relies on the firm’s security personnel to intercept the attacker

before the data leaves the premises or before any malicious damage reaches the point of

non-repair. It is a hit-or-miss approach at best.

There are numerous commercial products available that attempt to address the

cross-cutting concerns of secure enterprise credential management. All products

reviewed claim to secure application-to-application connection credentials used within

programs and interpretive scripts. These products are generally referred to as secure

password repositories or password vault software products. Although their feature sets

vary greatly, they all have the same essential methodology. The products store enterprise

passwords in a secure client-server back-end database with a front-end password broker

process through which remote agents can request and retrieve a password from the vault.

Communication between broker and remote agent is generally encrypted with agents

30

caching requested passwords locally thereby reducing the load on the broker.

Applications requesting a password are authenticated by the agent prior to passing the

request onto the broker. There are varying degrees and methods of application-

authentication used to verify the identity of the requesting application. These

authentication schemes differ with each vendor’s product, but all provide a similar

method to vet the application prior to returning the requested credentials.

The e-DMZ’ Password Auto Repository (PAR) technical product overview

("Application Password Management Module," 2009) states:

e-DMZ Security’s Application Password Management (APM), part of the TPAM

Suite of privileged user and access control solutions, provides a solution to replace

embedded passwords that are hard-coded in scripts, procedures and programs with simple

CLI/API calls. Often overlooked, embedded passwords create back-door access accounts

to target systems and applications that can easily be exploited. Replacing these hard-

coded passwords with programmatic calls that dynamically retrieve the account

credential removes this often overlooked exposure.

An analysis of the company’s product literature and a provided white paper

("Managing Embedded Application Passwords with Password Auto Repository™

(PAR)," 2009) shows that the product offering protects the password up to the point

where it is returned to the requesting application. The product has no facility available to

secure and protect the password after it is returned to the application. Although this is a

step in the right direction it falls way short of addressing the risk presented by rogue

programmers and administrators who could embed logic bombs in the code to harvest the

returned password.

31

The Password Manager Pro (PMP) User Guide ("Password Management API for

Application-to-Application Password Management," 2009) makes the following claim:

“Any application or script can query PMP and retrieve passwords to connect with other

applications or databases, eliminating hard-coded passwords.” No facility is provided to

address concerns with handling the password after it is returned to the application. This

product does include a facility to change the password after each use, which the company

touts as a method for securing the password it returns. However, this falls down when

you consider that the password could be hijacked and exploited between the time the

password is returned from the vault and the time the password is changed. When asked,

the company’s technical representative admitted that there was no known solution to

addressing the insider threat posed by compromised code exploiting the returned

password.

The Cyber-Ark Application Identity Management (AIM) implementation guide

("Application Identity Management Implementation Guide," 2009) states:

Application credentials are often stored in embedded form in the application

code, or in a configuration file, usually in cleartext that is visible to a large

audience. This challenge identifies a security gap and significant risk, often

captured by auditors, where these sensitive database and application ID passwords

are widely known and accessible to developers, help desk engineers, etc.

This product boasts a patented password vault, a robust authentication process for

password requestors and a highly-available, locally cached agent-based architecture that

affords a well thought-out password protection scheme. The company further claims that

by removing hard-coded passwords from application code and configuration files you can

32

make “them invisible to developers and support staff.” When questioned, a Cyber-Ark

technical support engineer reluctantly admitted that their product cannot address the

insider threat posed by compromised code exploiting the returned password. They

suggested that the passwords used by applications be changed every few hours as a

means of mitigating this concern. However, a password can be compromised and an

illicit connection be made to a data store within seconds of a legitimate password request

being made to the vault and that password being returned to the application. This

suggested solution can be deemed weak at best.

A white paper from Cloakware regarding their Password Authority (PA) password

management software suite ("Cloakware Password Authority™," 2009) boasts that “Your

unattended servers no longer need hard-coded credentials to access other servers.” It

further boasts “It helps you meet your compliance requirements by eliminating shared

and hard-coded passwords,…” Cloakware’s product offering has a secure password vault

backend, a local agent that caches passwords for high availability and a large assortment

of API’s by which applications can request and receive passwords.

Cloakware’s literature does not claim to solve the entire problem of password

exploitation. In a question and answer session Cloakware’s Chief Technologist Robert

Grapes admitted that their product only “...helps to prevent developers or administrators

from having unmonitored access to production systems.” As with the other password

vault technology products, Cloakware’s product offerings do not protect a legitimately

requested and returned password from being captured and exploited once it is returned to

the requesting application.

33

In 1999-2000 the Cloakware Corporation applied for and was granted a Canadian

patent describing an invention in which a series of one-way hashed passwords are stored

both in the remote resource and in the application requesting access. With each

successive login attempt the accessing program sends the previous password in the series

(Johnson, Gu, & Chow, 1999). This is a very unique approach in that it uses an

unattended two-factor authentication scheme to authenticate the application requesting

access. Both the resource and the requestor need to know what the current password is

and what the previous one was. This prevents man-in-the-middle and replay attacks from

capturing the password and reusing it. While, this solution protects the transmission of

the credentials it does not protect the housing of the credentials in the program itself.

Granted this patent award is almost ten years old, an eternity in the context of computer

science, but it is worth examining to show that since the patent was awarded there has

been no significant progress made toward addressing the issue of handling and protecting

credentials in the application-to-application authentication process.

In their 2008 patent application Adams, Grapes, Gu, Mehan and Rong (2008),

describe their invention as a method by which unattended software applications can

request access to shared resources. This is noted in paragraph 0069, claim #5

commenting on claim #1, where they describe the process as returning resource

credentials to the requesting application for use in establishing a connection to said

resource. As well thought-out as this invention is it does not address issues concerning

what the application does with the credentials after they are surrendered to the control of

the application. As with the previously-explored solutions, the returned credentials are

exposed to insider attacks by a rogue programmer who could embed password capture

34

logic into his/her programs during the development cycle and now resides in the

production processing environment.

Sade and Adar’s (2008) patent application addresses the issue of insider attacks on

credentials returned to requesting applications. The authors note that no one to date has

effectively addressed the risk of exploitation from capturing a returned password and

relaying it to an awaiting accomplice to use for illicit access to a remote data store. Sade

and Adar propose a method by which the transmission of the credentials to the remote

application or data store is intercepted and the password replaced with one extracted from

a password vault, assuming the requesting application is fully vetted and authenticated to

access the vault and the remote application/data store. Their patent application describes

the invention as an interception module that performs intercepting methods such as

application hooking, monitoring and intercepting network-packets, altering byte-code and

altering operating-system drivers. They define application hooking as intercepting calls

to APIs and/or modifying the API behavior.

The Sade and Adar (2008) solution, at first blush, seems quite attractive as it

requires no modification to the requesting application code, does not use any hard-coded

passwords placed in the code by the developers and is not subject to insider attacks in the

form of embedded exploitive code placed in the application to trap and transmit the

requested credentials. It is essentially a white hat, man-in-the-middle approach to solving

the problem at hand. It seems that this approach would work well in situations where the

network packets are not encrypted themselves or transmitted via SSL or TLS protocols.

In addition, a firm understanding of each network protocol used by each individual

vendor would be required to accomplish this. Intercepting the network packets also

35

assumes the interception modules can overcome the deployed environment’s man-in-the-

middle defenses.

The byte-code (binary) modification of system APIs and kernel driver code can be a

slippery slope in which one can easily render an application, operating system or even the

entire computer processing environment inoperable. Furthermore, tampering with APIs

and kernel drivers, whether good-intentioned or not, introduces legal issues regarding

software tampering and software licensing considerations. Lastly, the modification of the

binary code for APIs and system kernel modules could possibly void associated support

contracts and can cause concerns regarding system stability while running mission-

critical batch processes. On the surface this seems like a great idea, but in the real world

where down-time is costly, system stability is king and white hat hacking is frowned

upon, this solution isn’t very palatable. It does, however, demonstrate the focus of

present-day research and the relevance of protecting passwords from insider attacks.

36

Chapter 3

Methodology

Overview

The work presented here developed a method by which application-to-application

connection credentials are better protected from various forms of attack. A framework

was developed that adopts concepts learned from source code obfuscation research used

in protecting programs from reverse engineering. Source code obfuscation is gaining an

ever-growing level of importance in the secure software arena, affording both source

code and binary protection in areas such as Intellectual Property (IP) and Digital Rights

Management (DRM) (Giacobazzi, Jones, & Mastroeni, 2012). The goal of source code

obfuscation is to transform and obscure the program variables and the codebase to such a

point where it becomes unintelligible to both automated and human reverse engineering

efforts (Majumdar, Drape, & Thomborson, 2007; Sosonkin, Naumovich, & Memon,

2003).

Reverse engineering efforts focus primarily on transforming binary objects into

human readable source code which can then be used for illicit purposes such as copyright

infringement or security bypassing. The problem addressed in this research focuses on

code lines that are already in human readable form. Therefore, source code obfuscation

in a pure sense is not applicable in this research. However, the basic principles and

concepts derived from source code obfuscation research can be adapted and used as a

foundation for this work. The framework established addresses the problem of securing

application-to-application credentials such that an interpretive language script, one

37

written in Perl for instance, can securely call a subroutine that establishes a connection to

a data store or secondary application. During this process the credentials used to

establish the connection is obfuscated, thereby reducing the risk of capture and

exploitation.

A developmental research methodology was used to create a framework for

application-to-application credential obfuscation. This framework was built upon the

following concepts; the first being the disguising and obscuring of variables that hold the

credentials being returned from a password vault. Obscuring storage variable names and

breaking them up into multiple smaller variables will promote the obscurity of the

variables and further reduce the risk of exploit.

Because Perl is a programming language that supports object-oriented

programming, the second concept utilized an aspect in which the pointcut handled the

password vault call, the reception of the returned password and the opening of the

application connection. This takes place in the advice woven into the application

connection open function call at runtime. The basis for this methodology is the

obfuscation of the credentials handling to an area of program execution that is outside the

program code accessible by the programmer and anyone else with access to the script

code. This abstraction also increased the obscurity of the credentials to debugger attacks

and memory scan attacks.

In preparation for developing the attack vector workload, and facilitating the

development of the above framework, a batch processing environment similar to a typical

small business was utilized. It consisted of a mix of computers running the three most

prominent operating systems in use representing a typical batch processing environment.

38

They are Windows 7, Solaris 10 and Linux. All machines used in the research were

networked together. A complete listing of hardware and software used in this research,

including a network topography diagram, is available in Appendix B.

Attack Vector Taxonomy

Over the past three decades there have been numerous lists and taxonomies

published to categorize vulnerabilities and attacks. Unfortunately, the degree of

complexity and sophistication of current day attacks and vulnerability exploits renders

these lists and taxonomies inadequate (Weber, Karger, & Paradkar, 2005). Within the

context of this research the term vulnerability can be defined as a means whereby a

hostile entity can successfully violate a system’s security. We can also define an attack

as the use of a tool or technique with which an attacker will attempt to detect and exploit

a vulnerability to capture a password used in an interpretive script.

Hansman and Hunt (2005) published a paper reviewing the various taxonomies

used to describe network and computer attacks. This paper reviewed early-published

taxonomies including Bishop’s 1995 vulnerability taxonomy, Howard’s 1998 taxonomy,

Lough’s 2001 taxonomy and that which was published by the OASIS web application

security council. Hansman and Hunt found that these taxonomies were too general in

nature and weren’t all capable of adequately classifying attacks. They proposed an

alternative taxonomy for classifying attacks. To illustrate this taxonomy shortcoming one

can look at the attack patterns classified in the CAPEC (Common Attack Pattern

Enumeration and Classification) database. Of the 920 attack vectors classified under the

Methods of Attack category only one sub-category deals with exploitation of privilege

39

attacks and none address credential capture attacks ("CAPEC-1000: Mechanism of

Attack," 2011).

The Hansman and Hunt taxonomy utilizes four dimensions for high-level attack

classification; each of which can be broken down into levels or components which further

granulizes the categorization. The first dimension categorizes the attack vector, the

second dimension categorizes attack target, the third categorizes the vulnerability and the

fourth categorizes the attack payload (Hansman & Hunt, 2005).

Their approach was attractive for use in this research as it allowed for attack

categorization without specific external attack vectors or an attack vectors that are

considered trivial. Attacks perpetrated by system administrators who already have

legitimate access to the system tend to trivialize the attack vector. To illustrate the

display of levels within a dimension, levels will be shown in the format of (level  level

2 …level N). Password attacks has been chosen as the first dimension’s level one

category and exploiting implementation as the level two category, thus the first dimension

is displayed as (Password attacks  exploiting implementation).

The second dimension addresses the target of the attack. In this case the target is

the interpretive script either containing the credentials or requesting them from a

password vault. Therefore, (Software  application  server  interpretive script)

seems appropriate.

The third dimension addresses the vulnerabilities the attack exploits. These are

generally tied to vulnerabilities listed in the Common Vulnerabilities and Exposures

(CVE) database. However, the use of the CVE database is not appropriate for our

purposes because CVE entries are specifically tied to vulnerabilities with published

40

software programs, packages and applications. This research is focused on a

programming concept and practice with scripts developed to demonstrate the concept and

not a specific published application. Hansman and Hunt provide for such a case by

allowing the use of Howard and Longstaff’s (1998) vulnerability in design classification

which defines the design of the program as perfectly implemented but flawed.

The fourth dimension addresses the attack payload which in this case is simply the

capturing of the password. The Hansman and Hunt category selected is Disclosure of

Information.

Dimension Level 1 Level 2 Level 3 Level 4

One password attacks
exploiting
implementation

Two software application server
interpretive
script

Three
vulnerability in
design

simple attack
logic bomb attack
debugger attack

Four
Disclosure of
Information

Table 1 Attack Classification Matrix

Attack Vectors Employed

The desired attack vector payload is to capture the credentials being used by the

interpretive language scripts. This was accomplished using two attack vector methods

and four attacks under those methods. The first method is a called a Man-At-The-End

attack (MATE). This type of attack is generally defined as an adversary gaining an

advantage by violating the software under their control (Collberg, 2011). Tampering

attacks and reverse-engineering attacks are the two most common forms of MATE

attacks (Falcarin, Collberg, Atallah, & Jabubowski, 2011).

41

For the purposes of this research the MATE defined tampering attack was used in

the first attack vector method. The two MATE tampering attack vectors employed were

a probe attack and a logic bomb attack. A probe attack is one in which an adversary with

privileged access examines and probes software looking for low hanging fruit such as

embedded credentials within the code of the script (Falcarin et al., 2011). There were

two flavors of probe attack employed. One used simple commands to examine the

scripts, the second used a debugger to examine the code and it’s in memory variables

during execution. A logic bomb attack is an attack in which the code of the script is

modified to relay the credentials to an adversary at run-time. For this attack code was

added to the script to pass the payload to standard output for capture.

The second attack vector method that was used is a memory scan attack.

Researchers have had quite a bit of success in retrieving encryption keys from active

system memory. Enck, Butler, Richardson, McDaniel and Smith (2008) found that in

order for this attack vector to be successful the adversary must have physical privileged

access to the machine on which the software is running as was the case in the research

presented here. However, this research differs from Enck, Butler, Richardson, McDaniel

and Smith’s research in that the payload is not an encryption key, but a plaintext

password. Hargraves and Chivers (2008) report that several researchers have had great

success in retrieving plaintext passwords using the same attack vector. Bauer (2009) also

reports on the success of rootkits in scanning memory and gaining access the privileged

information.

The attacks that were used to evaluate the pre-and post-research exploitability of the

test scripts are broken down below. Each attack was performed using a privileged

42

account (‘root’ for Unix/Linux and ‘administrator’ for Windows). The privileged

account and commands used varied depending of the operating system. The attacks were

carried out against two scripts that performed a simple task; connect to an RDBMS and

perform a simple query in a loop of 100 iterations and print the data returned. One script

utilized hard-coded credentials and the second utilized credentials returned from a

password vault.

(Vulnerability in design  simple attack)

Simple operating system-specific commands were used on each operating system

(Solaris, Linux and Windows) to capture the password. Success of the attack was

measured by the ability to capture the password and then by the degree of difficulty of a

successful attack. This test was performed on a script that used a hard-coded password

and a script that requested a password from a password vault.

The following commands were employed to extract the password from the scripts at

rest:

Windows

• type – This command prints the contents of the script to standard output (the

screen). The script code was examined looking for occurrences of password

embedding or calls to a password vault. The examinations like this may

yield additional areas to investigate such as other scripts that are called from

the target script. Example command:

C:\Users\Gary> type perlscript.pl

• find – This command searched the targeted script for occurrences of the

specified token and printed them to standard output (the screen). Variations

43

on the word ‘password’ were searched for in the script. Example command:

C:\Users\Gary> find :password: C:\Users\Gary\perlscript.pl

Unix/Linux

• cat – This command prints the contents of the script to standard output (the

screen). The script code was examined looking for occurrences of password

embedding or calls to a password vault. The examinations like this may

yield additional areas to investigate such as other scripts that are called from

the target script. Example command:

#: cat perlscript.pl

• grep – This command searched the targeted script for occurrences of the

supplied token and prints them to standard output (the screen). Variations

on the word ‘password’ were searched for in the script. Example command:

#: grep –i password perlscript.pl

In the above example the –i option makes the search case insensitive.

(Vulnerability in design  logic bomb attack)

Logic was embedded in the script to capture and distribute the password during the

execution of the script. This test was performed on scripts that requested a password

from a password vault. The exact nature of the code that was added to the script

depended on the code structure of the script itself. Generally, passwords returned to a

requesting script are stored in a localized variable for future use. The contents of that

variable were written to standard output. Alternatively, the contents of the password

variable can be sent to Standard Error or emailed out. However, those are really

alternative methods of distribution after the fact. Therefore, writing the password to

44

Standard Out sufficed for this test. Success of the attack was measured by the ability to

capture the password, and then secondarily by the degree of difficulty in achieving the

successful attack.

The VI editor was used for this attack on all platforms. On the windows platform

the MKS VI editor version 8.5, build 1397 was used. It is available from MKS, Inc.

(www.mkssoftware.com). On the Linux and Solaris platform the VI editor included with

the release of the O/S was used.

(Vulnerability in design  debugger attack)

A process debugger was used to step through the execution of the script in an

attempt to capture the password during script execution. “Ptkdb is a free/open source

debugger for Perl with graphical user interface (GUI) based on Perk/Tk.” (Page &

Marinov, 2007) Because it is specifically built for Perl, it is highly portable and able to

run on Solaris, Linux and Windows 7. Being able to use the same debugger across

platforms allowed for a more consistent platform independent test scenario.

This test used the Perl/Tk debugger, ptkdb version 1.231, to explore the script as it

executed. The entire execution of the script was manually stepped through and all

internal and external variables were examined looking for the possible storage of a

password. At each step all sub-functions were stepped into and their variables examined.

Drilling down continued until the lowest executing sub-function has been reached.

Success of the attack was measured by the ability to capture the password and then by the

degree of difficulty of a successful attack.

45

Figure 1 testScript.pl Function Exploration Example

Windows

• The script was executed using the following syntax:

C:\Strawberry\Perl\Bin> perl –d:ptkdb testScript.pl.

Figure 2 Typical Windows ptkdb Session Window

Unix/Linux

• The script was executed using the following syntax:

#: perl –d:ptkdb testScript.pl.

46

Figure 3 Typical Solaris/Linux ptkdb Session Window

(Vulnerability in design  memory dump attack)

This attack attempted to extract the password from a dump of system memory

during script execution. Methods and commands used varied depending on the operating

system the script was running on. Success of the attack was measured by the ability to

capture the password and then by the degree of difficulty of the successful attack. The

following steps were used for each operating system:

Windows

Several tools from different manufacturers were used in conjunction to generate and

search a memory dump (see Appendix B). The following commands will be used to

create and explore the Windows memory dump:

47

• As administrator, using the Microsoft Sysinternals LiveKD kernel debugger, a

memory dump of the system’s memory was generated during the execution of the

targeted Perl Script. The following syntax was used:

0: KD> .dump –f C:\memory.dmp

• The following is an example of a typical simple parsing of the memory dump

searching for a ‘Password’ string:

C:\> type memory.dmp | strings | grep –i ‘password = ‘

Unix/Linux

The following commands were used to create and explore the Unix/Linux memory

dump:

• As root, using the standard Unix/Linux dd command, a memory dump of the

system’s memory was generated during the execution of the targeted Perl Script.

The following syntax will be used:

dd if=/dev/mem of=/memory.dmp

• The following is an example of typical command syntax for a simple parsing of a

memory dump searching for a ‘Password’ string:

cat /memory.dmp | strings | grep –i ‘password = ‘

Password Obfuscation Design Method

Because Aspect code can be housed outside of the targeted program and called

transparently during execution a higher level of obscurity can be achieved, further

reducing the risk of memory scan attacks. A higher level of obscurity, resulting in a

lower level of risk, was achieved by implementing concerns that utilize the Composition

Filter (CF) model. The CF model is a modular extension to the conventional object-

48

based model of which Perl subscribes. Filters define enhancements to messages sent and

received by objects (Filman, Elrad, Clarke, & Aksit, 2005).

Consider a Perl script that calls a module that opens a connection to a remote data

source such as an RDBMS. The module received messages containing information

needed to affect the desired end result, which is an established connection to the remote

data source. The credentials needed to authenticate the connection are generally passed

to the called module from the calling script.

Figure 4 Typical Database Connection Scenario

Figure 5 illustrates the proposed filter and how the pointcut intercepts the

connection credentials, makes the password vault request and subsequently modifies the

message with the correct credentials before passing it on to the RDBMS connection

module. By enhancing the message in this manner a level of abstraction is introduced

that obfuscates the handling of the credentials. This is accomplished in part because the

code for the aspect does not reside in the program code nor is it placed in the program

codebase by the developers who wrote the program. The Aspect will be located in the

function library and loaded at program execution time.

49

At no time are the credentials returned to the program or handled in any manner by

the script code that was created by the program creator. Because there is no code in the

script itself that touches the credentials the level of obfuscation is high and the risk of a

successful attack is diminished greatly.

Figure 5 Connection Process with Composition Filter Enhancement

Baseline Attack Vector Payload

The initial baseline demonstrates the exploitability of the credentials stored in the

interactive scripts as well as those scripts that use the Cloakware Password Authority

product. The security and strength of the Cloakware product was not evaluated, as it was

used simply as a transport for returning the password to the application. These

interpretive Perl scripts typify a common batch processing environment in which scripts

run unattended, connect to a database server and perform standard database-related tasks

such as selecting, inserting and deleting data from tables under database control. Typical

database servers require password authentication from accessing scripts. Common to

batch processing environments are a mix of computers with disparate operating systems.

It is also significant to note that attack vectors vary with operating systems. Therefore,

50

computers running Windows, Linux and Solaris were used to emulate a typical batch

processing environment allowing a complete and robust test environment. Vulnerability

testing was conducted on all platforms and operating systems listed above. All

discovered vulnerabilities and exploits were fully documented and are reproducible.

The Perl scripting language was chosen as the programing language for this

research. It is platform agnostic, and by far, the most popular interpretive scripting

language in use today for batch processing and web scripting (Sheppard, 2000). Several

interpretive Perl scripts were developed that log into a database server and perform

queries against several tables containing test data. These were not elaborate or complex

scripts, but ones that simply demonstrated a connection to a database server using an ID

and password to authenticate in a manner most typical to client/server architecture based

processing environments. A commercial password vault product was used to store and

return passwords to these programs. The Password Authority product from Cloakware

was used to house and return a password upon request. Cloakware, a subsidiary of the

Xceedium, Inc. was petitioned and has graciously granted this author a one year software

license for their product use in this research (see Appendix A). Cloakware agents were

installed on all test machines to facilitate automated requesting and receipt of passwords.

Two scripts were used for the creation of baseline testing. Each script initialized a

connection to a remote data source (RDBMS) and performed a simple database query.

The first script had the connection credentials hardcoded into the script. The second

script is a bit more complex in that it did not have the credentials hardcoded into it, but

relied on requesting the credentials from the password vault. It then passed the

credentials on to the connection module. See Appendix C for a listing of each script.

51

Quantifying Testing Results

As introduced in the “Dissertation Goal” section of Chapter 1, Kepner and Tregoe’s

Weighted Decision Analysis Matrix theory was used to quantify the testing results and

measure the delta between the baseline and post-research results. The required matrix

consists of an array presenting pre-and post-research tests on the vertical axis. The

horizontal axis represents a list of attacks that were performed against the test scripts

attempting to mine the password used in the scripts. Each Attack Vector was weighted

(W) from one to ten to indicate the degree of difficulty as evaluated against all other

exploits attempted. The score or degree of success for each attack (S) was presented in

the vector (xy coordinates) of the pre-or post-research test and the attack. The weighted

score (W x S) was calculated as the product of the attack weight and the degree of

success of the attack (the score). The rightmost column contains the sum of weighted

scores for the pre-and post-research testing. The delta between the total weighted score

of the pre-and post-test results indicates the success or failure the method in reducing the

risk of password exploit.

Figure 6 Sample Risk Analysis Matrix

Evaluation of the attack success (the score) was first be based on whether or not the

attempt to capture the password was in fact successful. A failed attack would

automatically generate a score of zero. A successful attack is defined as the capture of

the password. Once successful, an attack was then evaluated on the degree of difficulty

Weight (W): 0 Weight (W): 0 Weight (W): 0 Weight (W): 0
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
 Risk FactorTotals 0 0 0 0 0

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Aspect Modified

Probe Attack Logic Bomb Attack Debugger Attack Memory Scan Attack

52

in capturing the password. Each successful attack was evaluated on a scale of one to ten

and then considered in determining the total score for that attack vector.

Assessing the degree of difficulty of an attack (W) is a process of evaluating the

degree of technical knowledge and expertise necessary to carry out the attack along with

the effort necessary. (Hongyu, Hu, Huang, Wang, & Chen, 2011) Byres, Franz, and

Miller (2004) also point out that risk is an expression of the likelihood that a treat can

exploit a payload, and that the likelihood of the attack success is directly related to the

technical skill level of the attacker. They break down attack difficulty into four levels;

trivial, moderate, difficult and unlikely.

Zaobin, Tang, Wu, and Varadharajan (2007) break down attack difficulty into a

descending scale of five levels with level five being very hard, hard, moderate, easy and

level one being very easy. The Verizon Risk Team ("2012 Data Breach Investigations

Report," 2012) investigators define four levels of attack difficulty as very low – no

special skills needed, low - basic skills needed, moderate – skilled techniques required

and high – advanced skills required.

For the purposes of this research, attack difficulty (W) is defined as the required

skill level of the attacker as influenced by the likelihood of the success of the attack. The

likelihood of attack success is directly correlated to the effort required of the attacker to

achieve the payload. For instance, a debugger attack requires a higher level of attacker

skill than a memory scan attack. However, the memory scan attack requires a much

greater effort to achieve success than the debugger attack. Because of the effort involved,

the memory scan attack has a much lower return on investment than that of the debugger

53

attack. Therefore, the debugger attack is deemed to have a lower degree of difficulty

than the memory scan attack

Ranking and rating the difficulty of attack arguably involves a degree of

subjectivity ("2012 Data Breach Investigations Report," 2012). Such was the case in

determining the degree of attack difficulty for each of the four attacks considered in this

research. The degree of difficulty was assessed on two planes. The first being the skill

level required for the attack and second the effort involved in effecting the attack. Each

plane was rated on a scale of one to three, whereas one was the lowest and three the

highest ranking. Table two represents how the attack difficulty value for each attack was

determined.

 Skill Level Effort Difficulty

(W)
Probe Attack low low 10

Logic Bomb Attack low moderately
low

9

Debugger Attack moderate moderately
low

8

Memory Scan Attack moderately
low

very high 4

Table 2 Attack Difficulty Matrix

Resource Requirements

A small processing environment was setup that is representative of a typical

client/server batch processing environment. A networked environment was assembled

consisting of two commercial relational database managers (RDBMS), a commercial

password vault and a mix of computers that represent the three major batch processing

operating systems; Linux, Solaris and Windows. Xceedium’s Cloakware Password

54

Authority was chosen for use in this research. Appendix A contains the formal request

and permission to use the Cloakware product. Appendix B contains a detailed list of

hardware and software that was used and a network topography diagram.

It should be noted that although not explicitly pertinent to the research, certain

indirectly pertinent equipment is itemized in the list of resources. Equipment such as

UPS power equipment, NAS storage devices and a tape backup server are germane to

protecting the research environment and allowing for restoration of critical work should

something untoward happen such as a power outage, hardware failure or an accidental

deletion of critical files.

55

Chapter 4

Results

Introduction

In this chapter the results of the credential obfuscation research will be presented.

The first part will describe the establishment of a risk level baseline against which the

degree of success of the credential obfuscation method will be judged. The baseline is

presented in the form of a set of risk analysis matrices as described in chapter three.

Throughout the rest of this work the initial activity will be referred to as ‘Baseline’ and

the post baseline activity will be referred to as ‘Aspect Modified’. It is appropriately

named because the code lines used to form the baseline scores were modified to utilize an

aspect as the foundation of the credentials obfuscation method.

Attack vector baselines were established using two Perl scripts written specifically

for this work and tested on three different platforms, Windows 7, Linux and Solaris 10.

Each script established a connection to an RDBMS and performed a simple query in a

loop of 100 iterations. In most cases it was not necessary to run the script through all 100

iterations to accomplish the targeted attack. Scripts running on Windows 7 and Linux

connected to a MySQL RDBMS and scripts running on Solaris connected to an Oracle

RDMBS. The only difference between scripts that were run on Windows and Linux and

the scripts run on Solaris is name and IP address of the target RDBMS. Otherwise all

scripts and Perl modules are identical. The brand of the target RDBMS was deemed

insignificant to the work and research being performed and was chosen simply for ease of

56

use. The method for connecting to the target RDBMS, the Perl DBI module, is germane

to this work and was identical through all three platforms tested.

The first script utilized hard-coded credentials to connect to the RDBMS. The

second script utilized credentials that were stored in a password vault and returned to the

script via a subroutine called passwdLookup(). This subroutine wraps the password vault

specific code into a single subroutine call. The passwdLookup() subroutine is contained

in the Perl module called NOVA::Passwd.pm. It takes two arguments when called. The

first is the ID for which the password is required and the second is the name of the Server

the ID will be used to connect to. The two arguments are combined to form a single ID

Alias and passed on to the password vault. The use of an ID alias is unique to the brand

of password vault used for this research. Using the Perl module and the passwdLookup()

subroutine allowed for the moving of redundant code from the test scripts to a library

(Perl module). A full code listing of all scripts can be found in Appendix C. Wrapping

the password vault product specific code in a Perl module is typical of the generally

accepted method for using the Cloakware product from within a Perl script. It is also

essential to obfuscating the password retrieval method and aided in the creation of the

aspect code in the second part of the research.

Once baselines were established the Perl module was modified to include code that

automatically invokes an aspect in which the pointcut handled the password vault call,

the reception of the returned password and the opening of the application connection.

This takes place in the advice woven into the application connection open function call at

runtime. The exact same attacks were carried out against the scripts using the aspect

modified Perl module. A second set of statistics was gathered and will be presented in

57

the form of a second set of risk analysis matrices. Conclusions and analysis of success or

failure will be drawn from the delta of the two sets of matrices.

During the execution of the attacks, it was observed that the level of attack

difficulty stayed static between platforms and did not vary. The commands differed for

each platform, but each attack vector, whether successful or not, met with an equal

challenge on across platforms. This did not change between the establishment of the

baseline scores and the establishment of the aspect modified scores.

Attack Vector Baselines

It should be noted that all successful baseline attack vectors were given the highest

score of ten points. Attack vectors run against Aspect modified code were awarded

scores based on the degree of difficulty in capturing the payload as compared to the

baseline. The baseline Risk Matrix was identical across all three platforms.

Table 3 Baseline Risk Analysis Matrix for all platforms

The probe attack vector was given a weight value of two as this is considered the

easiest attack to carry out and required the least amount of skill. The logic bomb attack

vector was given a weight of three as it is marginally more difficult to carry out than the

probe attack vector and required some minimal programming skills. These two

tampering attacks are considered most common forms of MATE attacks and therefore

received the lowest weights (Falcarin et al., 2011).

Weight (W): 2 Weight (W): 3 Weight (W): 4 Weight (W): 4
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
 Risk FactorTotals 72 180 240 240 732

Debugger Attack Memory Scan Attack

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Baseline

Probe Attack Logic Bomb Attack

58

Of the two remaining attack

vectors the debugger attack vector and

the memory scan attack vector were

each weighted at four. Although the

skill set required to effect the debugger

attack vector is much greater than that

which is required for the memory scan

attack vector, it required less effort to

carry out and is considered more

common by MATE standards (Falcarin

et al., 2011). The memory scan attack vector received a weight of four because it

required much more effort to carry out than the debugger attack vector, but also required

much less skill. It is quite time consuming and requires a brute-force effort to test strings

found in memory to see if they are in fact the targeted payload being searched for. There

is a very low return on investment for the effort in this kind of attack.

Probe Attack Vector

The first attack performed was a simple probe attack (Vulnerability in design 

simple attack). It consisted of printing the targeted script to standard output. To facilitate

this, the ‘type’ command was used against the script with the hard-coded credentials on

the Windows 7 platform and the ‘cat’ command was used on the Linux and Solaris 10

platforms. Screenshots of each exploit can be found in Appendix D. A baseline score of

ten indicating a successful attack was awarded to this attack vector when run against the

script with hard-coded credentials.

Table 4 Attack Vector Weight to Skill Level Comparison

0

1

2

3

4

Skill
Required

Effort
Required

59

When the attack was run against the script utilizing the password vault for password

storage no credentials were able to be captured. However, the method for retrieving the

password from the vault was easily discovered by the attacker during the attack. Even

though capturing the payload was not achieved, valuable information was gained that

could aide attackers in developing an alternative plan to capture the payload. A score of

two was awarded for this attack because of the information gained during the attack.

There was no variance between platforms for ease of execution or degree of difficulty in

achieving success.

Logic Bomb Attack Vector

The second attack vector consisted of a logic bomb attack (Vulnerability in design

 logic bomb attack). Code was inserted into the script to print the credentials to

standard output. Screenshots of each exploit can be found in Appendix D. A score of ten

was awarded this attack vector when run against both of the scripts as capturing the

payload was easily accomplished. There was no variance between platforms for ease of

execution or degree of difficulty in achieving success.

Debugger Attack Vector

The third attack vector (Vulnerability in design  debugger attack) utilized a

debugger to capture the payload. When run against the script with the hard-coded

credentials the total time of attack was less than ten seconds as the password was

displayed in the initial debugger screen without having to execution any commands.

When run against the script that utilized the password vault a total time to payload

capture was approximately 2 minutes average across all platforms and required a higher

degree of skill than the probe and logic bomb attack vectors. Screenshots of each exploit

60

can be found in Appendix D. Simple debugger steps where used to accomplish the goal.

The script was executed and stepped though one line of code at a time. It was not

necessary to step into any subroutines, declare any break points or use any complex

debugger skills to achieve success.

Memory Scan Attack Vector

The fourth attack vector utilized a memory dump and subsequent scan to capture

the payload. It was observed that previous execution of the scripts seem to stay resident

in the memory at the time of the dump. This held true even after cold system reboots. In

order to accurately test attack vectors it was necessary to change the password used fairly

often. A second observation was that the memory dumps for the Windows 7 platform

and the Linux platform where identical in structure, while the memory dump for the

Solaris 10 platform was quite different. The similarity of the Windows 7 and Linux

memory dumps is most likely due to their both running same x86 based instruction set

CPU architecture. The Windows 7 machine ran on an Intel 2.76 GHz i7 CPU M620 and

the Linux platform ran on a 2.10 GHz AMD Athlon 64 X2 4000 CPU. The Solaris 10

platform ran on a 1.34 GHz UltraSPARC IIIi CPU which is an entirely different chip

instruction set CPU architecture.

Searches for the string ‘$Passwd =’ on the Windows 7 and Linux memory dumps

yielded immediate success when attacking script with hard-coded credentials. When the

same attack vector was run on the Solaris 10 platform the password was captured, but

there were no easily identifiable characteristics associated with the password. Therefore,

on the Solaris 10 platform a lengthy brute-force method of testing strings to identify

which one was the password would have had to have been performed. This was similar

61

in manner to that which was necessary for attack vectors on all three platforms against

the script utilizing the password vault.

To put the brute-force identification method into proper perspective, the Windows 7

platform had ~20 million strings to parse, the Linux platform had ~28 million strings to

parse and the Solaris 10 platform had ~5 million strings to parse. Curiously, all three

platforms were configured for four GB of usable memory, yet the number of strings

varied quite a bit. This made it much more difficult to capture the payload when the

attack vector was run against the script utilizing the password vault. For the purposes of

this research and because the password was known ahead of time, searches were

performed looking for the known password and the brute-force method of identification

was avoided. This had no negative affect on the data collected nor did it affect the

outcome of the testing. Screenshots of memory scan attack vectors can be found in

Appendix D. This level of difficulty only supports the lower attack weight assigned to

this attack vector. In the wild only the most skilled and patient attackers would be able to

carry out such an undetected attack successfully.

Findings

To achieve the goal of this research several modifications were made to the test

scripts and the associated Perl module used to establish the baseline statistics. The first

modification was to add the ‘use NOVA::Passwd;’ pragma to load the Perl module into

the script with the hard-coded credentials when it was executed. The initial thought was

to remove the hard-coded credentials completely from the script after adding the pragma

call. However, the thinking changed during the testing of the script with the aspect firing.

62

A set of invalid hard-coded credentials were left in the script that served as an additional

form of obfuscation, thus further masking the fact that an aspect is firing.

Modifications were also made to the second script that used the password vault for

credential management. The password vault call code was removed and a set of hard-

coded credentials were added as a smokescreen. When finished, both scripts were

identical.

Further changes were made to the Perl module. A subroutine was added that fires

off an aspect creating a filter. The pointcut intercepted the connection credentials passed

to the RDBMS connection call and made the appropriate password vault request

subsequently modifying the message with the correct credentials before passing it on to

the RDBMS connection module. By enhancing the message in this manner a level of

abstraction was successfully introduced that obfuscated the handling of the credentials.

The following table shows an analysis of the attack vectors run against scripts using

the aspect modified Perl module. Each attack vector will be presented and analyzed in

the following sections. A comparison of the baseline and aspect modified results will be

presented in the summary section of this chapter.

Table 5 Aspect Modified Risk Analysis Matrix for all platforms

Probe Attack Vector

The probe attack vector presented the largest variances between baseline and aspect

modified scores. By utilizing an aspect to intercept the call to the DBI->connect

Weight (W): 2 Weight (W): 3 Weight (W): 4 Weight (W): 4
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
 Risk FactorTotals 0 0 120 240 360

Memory Scan Attack

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Aspect Modified

Probe Attack Logic Bomb Attack Debugger Attack

63

subroutine and replace the supplied password with the real password the level of risk was

reduced 100%. All attempts to scan the script code to capture the password were

unsuccessful.

Simply converting the script to use the password vault thwarted the probe attack

from capturing the payload. However, using the aspect to retrieve the password allowed

the script to present the setting of a fictitious password as a smokescreen and pass it as an

argument to the DBI->connect subroutine. This also further obscured the method of

password retrieval from the attacker.

Table 6 Probe Attack Risk Reduction Comparison

Logic Bomb Attack Vector

The logic bomb attack vector presented the largest variance between baseline and

aspect modified scores. By utilizing an aspect to intercept the call to the DBI->connect

subroutine and replace the supplied password with the real password the level of risk was

reduced 100%. This attack vector modifies the script code to print out the hard-coded

password, or in the case of the script retrieving the password from the password vault the

returned password from the vault. Only a simple edit on the script with the hard-coded

0

20

40

60

80

100

120

140

Windows 7 Linux Solaris 10

Baseline

Aspect
Modified

64

credentials to add the ‘use NOVA::Passwd;’ pragma was required to reduce the risk of

attack by 100%.

Table 7 Logic Bomb Attack Risk Reduction Comparison

In addition to adding the ‘use NOVA::Passwd;’ pragma to the script that utilized

the password vault, the code that made the password vault call was removed. In its place

the hard-coding of a password was added. This gave the script a higher level obscurity

masking the use of aspect to retrieve the credentials.

Debugger Attack Vector

The debugger attack vector successfully captured the payload in both the baseline

tests and the aspect modified tests. The level of difficulty and the skill required increased

significantly when an aspect was introduced. On average 50 plus debugger commands

were needed to capture the payload when calling the aspect to return the password from

the vault. In comparison, no commands were needed for the hard-coded credentials

script in the baseline test and three commands for the password vault baseline script.

0

20

40

60

80

100

120

140

160

180

200

Windows 7 Linux Solaris 10

Baseline

Aspect
Modified

65

Table 8 Debugger Attack Risk Reduction Comparison

During the execution of the 50 plus debugger commands hundreds of lines of code

required review and numerous subroutines had to be stepped into before the aspect code

was discovered. It was clear that prior knowledge of the code base aided the attack and

mostly certainly reduced the steps involved in achieving success.

Memory Scan Attack Vector

Both the baseline and the aspect modified attack vectors stayed fairly static in their

level of difficulty and their successful outcome. An attacker would need a significant

amount of time and the ability to test multiple candidate strings recovered from the dump

against the target RDBMS before finding the payload. It was observed that the use of

passwords with lower levels of complexity was more easily captured than if the password

had a high level of complexity. Passwords made up of 12 to 16 characters in length

utilizing uppercase, lowercase letters, numbers and punctuation characters significantly

increased the level of difficulty in capturing the payload.

0

10

20

30

40

50

60

70

80

90

Windows 7 Linux Solaris 10

Baseline

Aspect
Modified

66

Capturing the payload was not impossible even with complex passwords, but highly

impractical considering most locked down and secure RDBMS’s would have login

failure monitoring in place to trap multiple failures from a single source. Given time and

the proper environment the payload can and would be captured. The significant point

here is that this attack vector was unaffected by the use of the aspect methodology

proposed in the research.

Table 9 Memory Scan Attack Risk Reduction Comparison

Summary of Results

Invoking an Aspect, whose code can be housed outside of the targeted program and

called transparently during execution, significantly reduced the risk from attack. Overall,

this research was able to effect a 50.82% reduction in risk as measured across all attack

vectors. It was noted that changes in risk levels did not vary between platforms, but were

surprisingly identical. Basically, the operating made no difference and had no impact on

the success or failure of the attack vector. Baseline risk scores of 244 per platform were

recorded prior to the introduction of the aspect method and then reduced to risk scores of

120 once an aspect method was introduced, thus supporting and proving that the

0

10

20

30

40

50

60

70

80

90

Windows 7 Linux Solaris 10

Baseline

Aspect
Modified

67

obfuscation of the application to application connection credentials does in fact

significantly reduce risk from attack. The graph in Table 10 demonstrates the levels of

risk comparatively.

Table 10 Comparative Levels of Risk

It was observed that a higher level of risk reduction was achieved in attack vectors

that required lower levels of skill to effect. Conversely, those attack vectors requiring

high skill levels saw little or no reduction in risk. A 100% reduction in risk for the probe

and logic bomb attack vectors was achieved, while the debugger attack vector achieved a

50% reduction in risk. The memory scan attack vector saw no reduction in risk at all.

This is in agreement with the higher skill level required for the attack.

0

50

100

150

200

250

Windows 7 Linux Solaris 10

Baseline

Aspect
Modified

68

Table 11 Reduction of Risk across Attack Vectors

Introducing an aspect achieved a higher level of obscurity, resulting in a lower level

of risk, by implementing concerns that utilized the Composition Filter (CF) model.

Obfuscation of the program code and its variables proved to be impossible once stored in

system memory. The use of a debugger to examine program code during execution

required a higher skill level and the proposed aspect method significantly obstructed the

path to the variables, but was not able to block the attack from gaining the payload.

Table 12 Comparative analysis of skill level to attack success

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Probe Attack Logic Bomb Attack Debugger Attack Memory Scan
Attack

Risk
Reduction

72

180

240 240

0 0

120

240

0

50

100

150

200

250

300

350

400

450

Probe
Attack

Logic Bomb
Attack

Debugger
Attack

Memory
Scan Attack

Baseline Score

Aspect Modified
Score
Skill/Effort Level

(W
 x S) Factor

69

Table 12 demonstrates a comparative analysis of baseline to aspect modified attack

vectors as influenced by the skill level of the attack. As the skill level rises, the ability of

the aspect method to reduce risk drops.

Considering the two attack methods used in this research, the MATE attack method

is by far the more widely used one by attackers (Falcarin et al., 2011), far more so than

the memory scan attack method. Further, if one considers only the MATE attack vectors,

the Aspect Obfuscation Method reduced risk by 75.61%. Therefore, it can be said

without a shadow of doubt that the stated goal of this research has been achieved.

70

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Analysis of research efforts, auditing and regulatory agency standards and third

party products tell us that most people knowledgeable in the field have conceded that the

challenge of protecting application-to-application credentials used in interpretive scripts

is unsolvable (Chinchani et al., 2005; Chumash & Yao, 2009; Shiflett, 2004; Shmueli et

al., 2010; Yu et al., 2009). While the research presented in this work does not claim to

eliminate all risk of attack against application-to-application credentials it has proven that

the risk can be reduced significantly.

We are told that 17% of all insider attacks are perpetrated by attackers with

privileged access (Randazzo et al., 2005). The majority of those attackers do not possess

advance programing or forensic analysis skills. They are more crimes of opportunity

than not. Yet, very little literature or research has been dedicated to reducing the risk of

attacks on application-to-application credentials contained in programs accessible by

those attackers. Instead, the focus of auditing and regulatory agencies and third party

product researchers has been on mitigating the impact of successful attacks (Franqueira et

al., 2010). This author feels, and this dissertation proves out, that the effort would be

better spent preventing the attack altogether.

It has long been said that skilled thieves are unstoppable and most locks were

designed to keep out honest people and the lessor skilled thieves. The work presented

here has proven that it is possible to block attack vectors from attackers with lessor

71

forensic skills and retard attacks from those with medium level skill sets. The

development of a framework to obfuscate application-to-application credentials used by

interpretive Perl scripts is essential to raising the skill level necessary to successfully

carry out an attack. Raising the necessary skill level for successful attack vector directly

lowers the risk of exploit.

The key to reducing the risk of any attack is to reduce the attack surface. The

research presented here did just that. When credentials are handled by the main body of

program code, whether those credentials are hard-coded or returned from a password

vault, they are exposed to attack from users with high levels of privilege on many planes.

Figure 7 illustrates that by removing the handling of the credentials from the main body

of code and relocating them to a secure library (the red circle) the attack surface is

significantly reduced.

Figure 7 Reducing the attack surface

72

The framework developed in this work has been able to reduce the risk of MATE

attacks by as much as 75.61%. It did, however, fail to reduce the risk from attacks

perpetrated by highly skill attackers using a ‘low return on investment’ memory scan

attack vector. The framework developed in this research was able to effectively reduce

low skill MATE attack vectors such as probe attacks and logic bomb attack by 100%.

The third MATE attack vector explored, the debugger attack vector, had its risk reduced

by 50%. This overwhelmingly demonstrates the value of this framework in protecting

application-to-application credentials from exploit.

Implications

This dissertation has made a number of contributions to the body of knowledge

regarding the protection and handling of application-to-application credentials in

interpretive scripts. Most notable is moving the focus of security from post-attack

mitigation to pre-attack preventive concepts. Post-attack concepts deal with minimizing

the impact and reducing loss from attack, whereas pre-attack concepts focus on attack

avoidance and risk reduction.

The framework developed from this research consists of the following

recommendations:

• Implement a secure password vault to manage all application-to-application

credentials.

• Wrap the password vault product specific code to retrieve those credentials

from the vault in a subroutine stored in a secure library or Perl module. The

location of which must be secured and monitored real-time.

73

• Distract the attacker by planting incorrect hard-coded credentials in the

script that for all intents and purposes would look like the normal

connection credentials needed to establish the connection. These false

credentials could also be used as a honey pot to identify attacks in progress

and possibly expose the identity of the attacker.

• Invoke an aspect to intercept the subroutine call that establishes the

connection to the remote data source from the interpretive script. The aspect

will then handle the password vault retrieval logic and replace the supplied

credentials with the correct legitimate credentials needed for the connection.

It is imperative that the aspect code be housed a library or Perl module, the

location of which must be secured. Looking at the code the attacker should

not be able to determine that an aspect is being fired off.

Securing application-to-application credentials in interpretive scripts can and will

reduce financial impact of successful abuse of privilege attacks. Instead of concentrating

on limiting financial loss by focusing on post-attack security; organizations can now

focus more on attack avoidance and risk reduction.

Recommendations

This dissertation is the first known to study the impact on risk reduction through the

utilization of an aspect to obfuscate application-to-application credentials in a program

written in an interpretive scripting language. Aspects have long been used for such

useful things as statistics gathering, measuring the number of subroutine calls, analyzing

time spent in a subroutine and other crosscutting concerns that span subroutines within a

program. A framework addressing the concern of protecting application-to-application

74

credentials, be it crosscutting or not, provides a unique use of aspect technology in

protecting those credentials.

Several patent applications mentioned in this research have attempted to move the

interception of application-to-application credentials into the network handling logic of

the operating system. For obvious reasons already mentioned this approach this is not a

good idea. However, additional research could and should be initiated into interfacing

the fired-off aspect directly with the operating system to further lock down the credentials

in transit from the vault.

Additional studies could and should be initiated that explore the locking down and

obfuscating of variables containing credentials in memory. In the last year numerous

papers have presented methods and approaches attempting to secure memory through

encryption. The work presented by Muller, Freiling, and Dewald (2011) shows promise

but does not mesh well with the operating system and causes some issues. Their future

work is to focus on developing a special key register resident in the CPU. They further

hope to create a third party application that can perform the function on a Windows

operating system.

Chhabra, Rogers, Solihin, and Prvulovic (2011) present a hardware and software

approach to full system security. Their SecureME solution performs a process that they

call memory cloaking. This is quite promising as it allows for the contents of memory

locations to be hidden from the OS while the OS is allowed to perform regular memory

management functions. The negative impact of their solution is that it could take as

much as 13.5% of the system compute resources. If they can refine this process to have

75

less of an impact on the operating system it would be an ideal complement for credential

obfuscation via an aspect.

Chhabra and Solihin (2011) present a simple memory encryption solution that is

aimed at encrypting memory at the time of system shutdown. This prevents memory

scan attacks on non-volatile memory on systems that are at rest and not running. Their

approach has tremendous merit and warrants further exploration to see if it is feasible to

implement full-time on a running system. Enck et al. (2008) present a similar solution to

Chhabra and Solihin, but it also only addresses non-volatile memory. Because memory

scan attacks proved successful even with the use of an aspect it is important for future

research efforts to focus on and investigate methods to close this gap in security.

Summary

Government regulatory agencies and auditing standards bodies tell us we must

never hard-code application-to-application credentials in our scripts. They offer

segregation of duties and the use of password vaults as the answer. These agencies also

require the implementation of strict guidelines for handling the inevitable data breaches.

Researchers conclude there is no way to stop these breaches, universities do not go far

enough in considering security concepts in their programming curriculum and

programmers more often than not have no concept of what good secure programming

methods are.

Password vault vendors tout their products as a way to address the insecurity of

application-to-application credentials in interpretive scripts. When pressed they

reluctantly admit that they have no control on what the script does with the credentials

76

once they are returned to the calling script. It is no wonder that the number of successful

insider attacks coming from attackers with privilege access is so high.

The method and framework developed in this dissertation relocates the password

retrieval code from the main body of program code, which is under the control of the

programmer and accessible by the administrator, to the security of a centralized library

module. By obfuscating the handling of the credentials the administrator and the

programmer lose their ability to access those credentials. Without ready access to the

credentials only the most skilled attackers can capture the attack vector payload.

The goal of this dissertation was to prove that the firing of an aspect and the

relocation of password retrieval code from the main body of the program could

significantly reduce the risk of attack. This concept was proven as a 50.82% overall

reduction of risk was achieved. A 75.61% reduction was achieved for attack vectors

dealing directly with program code. Lastly, this dissertation presented the foundation for

secure programming methods that can be carried forward and enhanced with future

research.

77

Appendix A

Request for Cloakware License

Figure 8 Cloakware License Request Email

78

Figure 9 Cloakware License Use Approval

79

Appendix B

Hardware Inventory

The following computer equipment will be required to complete this research.

1. Backup Server
a. HP Compaq 8200 SFF PC

i. 1 x Quad Core 3.30 GHz Intel i3-2120 CPU
ii. 12 GB memory

iii. 500 GB internal hard drive
iv. Windows 7 Professional 64 bit
v. Roxio Retrospect V7.7 Backup Software

vi. HP LT03 Tape Drive
vii. Quantum DLT Tape Drive

2. Client Servers
a. Windows 7

i. HP Elitebook 8440 Notebook PC
1. 1 x Quad Core Intel 2.76 GHz i7 CPU M620
2. 4 GB memory
3. 295 GB internal hard drive
4. Windows 7 Professional 64 bit
5. Strawberry Perl version 5.10.1.5
6. The following base software was installed to facilitate

the dumping of live memory:
a. Microsoft Visual C++ 2010 lC64

Redistributable, version 10.0.30319
b. Microsoft Visual C++ 2010 x86

Redistributable, version 10.0.30319
c. Microsoft Windows Performance Toolkit,

version 4.8.0
d. Debugging Tools for Windows (x64), version

612.2.633
e. Microsoft .NET Framework4 Multi-Targeting

Pack, version 4.0.3031g
f. Application Verifier (lx64), version 4l1078
g. Microsoft Visual C++ Compilers 2010

Standard - enu - x64, version 10.0.30319

80

h. Microsoft Visual C++ Compilers 2010
Standard - enu - x86, version10.0.30319

i. Microsoft Windows SDK for Windows 7
(7.1), version 71.7600.0.30514

j. Microsoft Help Viewer 1.0, version 1.0.30319
k. Microsoft .NET Framework 4 Extended,

version 4.0.30319
l. Microsoft Sysinternals Suite, version 02.24.11
m. MKStool Kit, version 8

b. Solaris 10
i. Oracle/Sun SunFire V210

1. 1 x 1.34 GHz UltraSPARC IIIi CPU
2. 4 GB memory
3. 2 x 146gb disk mirrored
4. Solaris 10
5. Oracle Database 11g, version 11.2.0.3
6. Oracle Client 10g, 10.2.0.2
7. Perl 5.10.0
8. Cloakware Password Authority version 4.5.0

c. openSUSE Linux
i. Dell Inspiron 531

1. 1 x 2.10 GHz AMD Athlon 64 X2 4000 CPU
2. 4 GB Memory
3. 250 GB hard drive
4. openSUSE Linux version 10.3
5. Perl 5.10.0

3. Storage
a. Western Digital ShareSpace 4TB NAS Storage Device

4. Network Equipment
a. Sonicwall TZ 100 Network Security Appliance providing DHCP

services to the LAN and WLAN.
b. 3 x Netgear GS608 8 Port Gigabit Desktop Switches

5. Power Equipment
a. 1 x APC SmartUPS 3000
b. 1 x APC Back-UPS X5 1500

81

Figure 10 Network Configuration Diagram

82

Appendix C

Perl Scripts

Baseline Scripts Used for Probe, Debugger and the Memory Scan Attacks

Simple Script Used on Windows 7 and Linux

This is a basic Perl script that has hard-coded application to application credentials.

It connects to a MySql database server and performs a simple query in a loop of 100

iterations.

#!/usr/bin/perl

use DBI;
use locale;

$User = 'gary';
$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User,
$Passwd);
die("Cannot open MySql Connection") if(!$dbh);

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

83

Simple Script Used on Solaris 10

This is a basic Perl script that has hard-coded application to application credentials.

It connects to an Oracle database server and performs a simple query in a loop of 100

iterations.

#!/usr/bin/perl

use DBI;
use locale;

$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd);
die("Cannot open Oracle Connection") if(!$dbh);
my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Password Vault Script Used on Windows 7 and Linux

This is a essentially the same Perl script described above under “Simple Script Used

on Windows 7 and Linux” except the hard-coded application to application credentials

have been replaced with a call to a subroutine contained in the NOVA::Passwd Perl

84

module. The new code is highlighted in red below. It connects to a MySql database

server and performs a simple query in a loop of 100 iterations.

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

unless($Password = passwdLookup("gary","Linux-01")){
 die "Unable to retrieve password from Cloakware.\n";
}
my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", "gary",
$Password);
die("Cannot open MySql Connection") if(!$dbh);

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Password Vault Script Used on Solaris 10

This is a essentially the same Perl script described above (Simple Script Used on

Solaris 10) except the hard-coded application to application credentials have been

replaced with a call to a subroutine contained in the NOVA::Passwd Perl module. The

new code is highlighted in red below. It connects to a Oracle database server and

performs a simple query in a loop of 100 iterations.

85

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

unless($Password = passwdLookup("gary","ORPCLK01")){
 die "Unable to retrieve password from Cloakware.\n";
}
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Password);
die("Cannot open Oracle Connection") if(!$dbh);

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Perl Module Used for Password Vault Access on Windows 7

The following is to code for a Perl module that houses a subroutine

(passwdLookup) that performs a call the Cloakware Password Vault. The subroutine

expects two arguments to be passed to it. The first is the ID for which the password is

being requested. The second is the name of the server being connected to. These two

arguments are then combined into a singled string separated by an underscore to form an

alias for the ID. The Cloakware Password Vault requires an alias to be passed to it for all

password vault requests.

86

package NOVA::Passwd;

our $VERSION = qw ($Revision: 1.0 $)[1];
use vars qw(@ISA @EXPORT);
use Exporter;

use lib "C:/cspm/cloakware/cspmclient/lib";
use CSPM_CLIENT;
use Carp;

@ISA = qw(Exporter);
@EXPORT = qw(passwdLookup);

sub passwdLookup{
 my $cwID = shift;
 my $cwTarget = shift;

 my $errorCode = {
 400 => "Errorcode 400:Success",
 401 => "Errorcode 401: Failed to authenticate with the “.
 “Password Authority service.",
 402 => "Errorcode 402: Unable to establish connection with “.
 “client daemon.",
 403 => "Errorcode 403: Not authorized (for client daemon).",
 404 => "Errorcode 404: Unable to establish connection with “.
 “Password Authority Server.",
 405 => "Errorcode 405: No data found for specified target “.
 “alias.",
 406 => "Errorcode 406: Application error. See system log for “.
 “details.",
 407 => "Errorcode 407: Invalid parameters specified.",
 408 => "Errorcode 408: A system error occurred, problem with “.
 “the “.
 “client environment. Unable to retrieve environment “.
 “data.",
 409 => "Errorcode 409: Unauthorized script name.",
 410 => "Errorcode 410: Unauthorized execution path.",
 411 => "Errorcode 411: Unauthorized execution user ID.",
 412 => "Errorcode 412: Unauthorized request server.",
 413 => "Errorcode 413: Client software version is “.
 “incompatible “.
 “with the server. ".
 "This version is no longer supported: upgrade the “.
 “Password Authority client software.",
 414 => "Errorcode 414: DLL cannot locate exe. (Windows only)",
 415 => "Errorcode 415: DLL internal error occurred. (Windows “.
 “only)",
 419 => "Errorcode 419: Invalid target alias specified.",
 441 => "Errorcode 441: Invalid file path specified.",
 443 => "Errorcode 443: Client is initializing.",
 445 => "Errorcode 445: Client is updating the encryption key.",
 446 => "Errorcode 446: Authorization mapping validation “.
 “error. “.
 “Invalid execution path specified for request script.",
 447 => "Errorcode 447: Authorization mapping validation “

87

 “error. “.
 “Invalid file path specified for request script.",
 448 => "Errorcode 448: Authorization mapping validation “.
 “error. “.
 “Missing request script information.",
 449 => "Errorcode 449: Authorization mapping validation “.
 “error. “.
 “Missing hash value for request script."
 };

 if(!defined $cwID or !defined $cwTarget){
 return;
 }else{
 my $cwAlias = $cwID . "_" . $cwTarget;
 my ($cwAnswer, $cwCommand, @cwArray);

 $cwCommand = qq{$GETCR $cwAlias true};
 $cwAnswer = `$cwCommand`;
 @cwArray = split(/\s+/, $cwAnswer);
 if($cwArray[0] ne "400"){
 carp $errorCode->{$cwArray[0]};
 return(undef);
 }else{
 return($cwArray[2]);
 }
 }
}
1:

Perl Module Used for Password Vault Access on Linux and Solaris 10

This is essentially the same Perl module described in “Perl Module Used for

Password Vault Access on Windows 7” above with the exception of the Cloakware

library location and the addition of the environment variables both highlighted in red

below.

package NOVA::Passwd;

our $VERSION = qw ($Revision: 1.0 $)[1];
use vars qw(@ISA @EXPORT);
use Exporter;

use lib "/opt/cloakware/cspmclient/lib";
use CSPM_CLIENT;
use Carp;

88

@ISA = qw(Exporter);
@EXPORT = qw(passwdLookup);

$ENV{'CSPM_CLIENT_HOME'} = "/opt/cloakware";
$ENV{'LD_LIBRARY_PATH'} = "/opt/cloakware/cspmclient/lib:”.
 “/opt/cloakware/cspmclient_thirdparty/java/bin";
$ENV{'CSPM_CLIENT_BIT_TYPE'} = "64";

sub passwdLookup{
 my $cwID = shift;
 my $cwTarget = shift;

 my $errorCode = {
 400 => "Errorcode 400:Success",
 401 => "Errorcode 401: Failed to authenticate with the “.
 “Password Authority service.",
 402 => "Errorcode 402: Unable to establish connection with “.
 “client daemon.",
 403 => "Errorcode 403: Not authorized (for client daemon).",
 404 => "Errorcode 404: Unable to establish connection with “.
 “Password Authority Server.",
 405 => "Errorcode 405: No data found for specified target “.
 “alias.",
 406 => "Errorcode 406: Application error. See system log for “.
 “details.",
 407 => "Errorcode 407: Invalid parameters specified.",
 408 => "Errorcode 408: A system error occurred, problem with “.
 “the “.
 “client environment. Unable to retrieve environment “.
 “data.",
 409 => "Errorcode 409: Unauthorized script name.",
 410 => "Errorcode 410: Unauthorized execution path.",
 411 => "Errorcode 411: Unauthorized execution user ID.",
 412 => "Errorcode 412: Unauthorized request server.",
 413 => "Errorcode 413: Client software version is “.
 “incompatible “.
 “with the server. ".
 "This version is no longer supported: upgrade the “.
 “Password Authority client software.",
 414 => "Errorcode 414: DLL cannot locate exe. (Windows only)",
 415 => "Errorcode 415: DLL internal error occurred. (Windows “.
 “only)",
 419 => "Errorcode 419: Invalid target alias specified.",
 441 => "Errorcode 441: Invalid file path specified.",
 443 => "Errorcode 443: Client is initializing.",
 445 => "Errorcode 445: Client is updating the encryption key.",
 446 => "Errorcode 446: Authorization mapping validation “.
 “error. “.
 “Invalid execution path specified for request script.",
 447 => "Errorcode 447: Authorization mapping validation “
 “error. “.
 “Invalid file path specified for request script.",
 448 => "Errorcode 448: Authorization mapping validation “.
 “error. “.
 “Missing request script information.",

89

 449 => "Errorcode 449: Authorization mapping validation “.
 “error. “.
 “Missing hash value for request script."
 “Missing hash value for request script."
 };

 if(!defined $cwID or !defined $cwTarget){
 return;
 }else{
 my $cwAlias = $cwID . "_" . $cwTarget;
 my ($cwAnswer, $cwCommand, @cwArray);

 $cwCommand = qq{$GETCR $cwAlias true};
 $cwAnswer = `$cwCommand`;
 @cwArray = split(/\s+/, $cwAnswer);
 if($cwArray[0] ne "400"){
 carp $errorCode->{$cwArray[0]};
 return(undef);
 }else{
 return($cwArray[2]);
 }
 }
}
1:

Baseline Scripts Used for Logic Bomb Attack

Script Used on Windows 7 and Linux

The logic bomb attack consists of the addition of specific code to compromise the

credentials contained or handled within the script. The script described under “Simple

Script Used on Windows 7 and Linux” was modified to print the credentials to standard

out. The code that was added to the script is highlighted below in red.

#!/usr/bin/perl

use DBI;
use locale;

$User = 'gary';
$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User,
$Passwd);
die("Cannot open MySql Connection") if(!$dbh);

90

Added logic bomb to print the password

print "$Passwd\n";

End logic bomb code

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Script Used on Solaris 10

The logic bomb attack consists of the addition of specific code to compromise the

credentials contained or handled within the script. The script described under “Simple

Script Used on Solaris 10” was modified to print the credentials to standard out. The

code that was added to the script is highlighted below in red.

#!/usr/bin/perl

use DBI;
use locale;

$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd);
die("Cannot open Oracle Connection") if(!$dbh);

Added logic bomb to print the password

print "$Passwd\n";

91

End logic bomb code

my $sth = $dbh->prepare("
 SELECT col1, col2

FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Aspect Modified Scripts Used for Probe, Debugger and the Memory Scan

Attacks

Simple Password Vault Script Used on Windows 7 and Linux

This basic Perl script that has hard-coded application to application credentials was

left as is except for the pragma call added to invoke the aspect shown in red below. The

call to DBI->connect is intercepted and the password parameter replaced with a password

retrieved from the vault. It connects to a MySql database server and performs a simple

query in a loop of 100 iterations.

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

$User = 'gary';
$Passwd = 'novaphd';

92

my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User,
$Passwd);
die("Cannot open MySql Connection") if(!$dbh);

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Simple Password vault Script Used on Solaris 10

This is basic Perl script that has hard-coded application to application credentials

left as is except for the pragma call added to invoke the aspect shown in red below. It

connects to a Oracle database server and performs a simple query in a loop of 100

iterations.

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd);
die("Cannot open Oracle Connection") if(!$dbh);
my $sth = $dbh->prepare("
 SELECT col1, col2

FROM novatab

93

");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Aspect Modified Perl Module Used for Password Vault Access on

Windows 7

The following is to code for a Perl module that houses two subroutines that perform

calls the Cloakware Password Vault. The subroutine lookupPaswd() expects two

arguments to be passed to it. The first is the ID for which the password is being

requested. The second is the name of the server being connected to. These two

arguments are then combined into a singled string separated by an underscore to form an

alias for the ID. The Cloakware Password Vault requires an alias to be passed to it for all

password vault requests.

The second subroutine, passwdAspect() invokes an aspect to intercept calls to the

DBI->connect subroutine and replaces the supplied password with one retrieved from the

password vault. The aspect is invoke automatically when the Perl module is loaded at

execution time.

package NOVA::Passwd;

our $VERSION = qw ($Revision: 1.0 $)[1];
use vars qw(@ISA @EXPORT);

94

use Exporter;

use lib "C:/cspm/cloakware/cspmclient/lib";
use CSPM_CLIENT;
use Carp;

@ISA = qw(Exporter);
@EXPORT = qw(passwdLookup passwdAspect);

sub passwdLookup{
 my $cwID = shift;
 my $cwTarget = shift;

 my $errorCode = {
 400 => "Errorcode 400:Success",
 401 => "Errorcode 401: Failed to authenticate with the “.
 “Password Authority service.",
 402 => "Errorcode 402: Unable to establish connection with “.
 “client daemon.",
 403 => "Errorcode 403: Not authorized (for client daemon).",
 404 => "Errorcode 404: Unable to establish connection with “.
 “Password Authority Server.",
 405 => "Errorcode 405: No data found for specified target “.
 “alias.",
 406 => "Errorcode 406: Application error. See system log for “.
 “details.",
 407 => "Errorcode 407: Invalid parameters specified.",
 408 => "Errorcode 408: A system error occurred, problem with “.
 “the “.
 “client environment. Unable to retrieve environment “.
 “data.",
 409 => "Errorcode 409: Unauthorized script name.",
 410 => "Errorcode 410: Unauthorized execution path.",
 411 => "Errorcode 411: Unauthorized execution user ID.",
 412 => "Errorcode 412: Unauthorized request server.",
 413 => "Errorcode 413: Client software version is “.
 “incompatible “.
 “with the server. ".
 "This version is no longer supported: upgrade the “.
 “Password Authority client software.",
 414 => "Errorcode 414: DLL cannot locate exe. (Windows only)",
 415 => "Errorcode 415: DLL internal error occurred. (Windows “.
 “only)",
 419 => "Errorcode 419: Invalid target alias specified.",
 441 => "Errorcode 441: Invalid file path specified.",
 443 => "Errorcode 443: Client is initializing.",
 445 => "Errorcode 445: Client is updating the encryption key.",
 446 => "Errorcode 446: Authorization mapping validation “.
 “error. “.
 “Invalid execution path specified for request script.",
 447 => "Errorcode 447: Authorization mapping validation “
 “error. “.
 “Invalid file path specified for request script.",
 448 => "Errorcode 448: Authorization mapping validation “.
 “error. “.

95

 “Missing request script information.",
 449 => "Errorcode 449: Authorization mapping validation “.
 “error. “.
 “Missing hash value for request script."
 };

 if(!defined $cwID or !defined $cwTarget){
 return;
 }else{
 my $cwAlias = $cwID . "_" . $cwTarget;
 my ($cwAnswer, $cwCommand, @cwArray);

 $cwCommand = qq{$GETCR $cwAlias true};
 $cwAnswer = `$cwCommand`;
 @cwArray = split(/\s+/, $cwAnswer);
 if($cwArray[0] ne "400"){
 carp $errorCode->{$cwArray[0]};
 return(undef);
 }else{
 return($cwArray[2]);
 }
 }
}

sub passwdAspect{
 before {
 my $context = shift;
 my ($cwTagert, $cwID, $cwPasswd);

 my @params = $context->params;
 $cwTarget = $params[1];
 $cwTarget =~ s/^.*=//;
 $cwID = $params[2];
 unless($params[3] = passwdLookup($cwID,$cwTarget)){
 print STDERR "\nThe passwd $cwID not found in
Cloakware,”.
 “switching to passthrough mode\n";
 }else{
 $context->params($params[0],$params[1],$params[2],
 $params[3]);
 }
 } call ('DBI::connect');
}

passwdAspect;
1:

96

Aspect Modified Perl Module Used for Password Vault Access on Linux

and Solaris 10

This is essentially the same Perl module described in “Aspect Modified Perl

Module Used for Password Vault Access on Windows 7” above with the exception of the

Cloakware library location and the addition of the environment variables both highlighted

in red below.

package NOVA::Passwd;

our $VERSION = qw ($Revision: 1.0 $)[1];
use vars qw(@ISA @EXPORT);
use Exporter;

use lib "/opt/cloakware/cspmclient/lib";
use CSPM_CLIENT;
use Carp;

@ISA = qw(Exporter);
@EXPORT = qw(passwdLookup passwdAspect);

$ENV{'CSPM_CLIENT_HOME'} = "/opt/cloakware";
$ENV{'LD_LIBRARY_PATH'} = "/opt/cloakware/cspmclient/lib:”.
 “/opt/cloakware/cspmclient_thirdparty/java/bin";
$ENV{'CSPM_CLIENT_BIT_TYPE'} = "64";

sub passwdLookup{
 my $cwID = shift;
 my $cwTarget = shift;

 my $errorCode = {
 400 => "Errorcode 400:Success",
 401 => "Errorcode 401: Failed to authenticate with the “.
 “Password Authority service.",
 402 => "Errorcode 402: Unable to establish connection with “.
 “client daemon.",
 403 => "Errorcode 403: Not authorized (for client daemon).",
 404 => "Errorcode 404: Unable to establish connection with “.
 “Password Authority Server.",
 405 => "Errorcode 405: No data found for specified target “.
 “alias.",
 406 => "Errorcode 406: Application error. See system log for “.
 “details.",
 407 => "Errorcode 407: Invalid parameters specified.",
 408 => "Errorcode 408: A system error occurred, problem with “.
 “the “.
 “client environment. Unable to retrieve environment “.
 “data.",
 409 => "Errorcode 409: Unauthorized script name.",

97

 410 => "Errorcode 410: Unauthorized execution path.",
 411 => "Errorcode 411: Unauthorized execution user ID.",
 412 => "Errorcode 412: Unauthorized request server.",
 413 => "Errorcode 413: Client software version is “.
 “incompatible “.
 “with the server. ".
 "This version is no longer supported: upgrade the “.
 “Password Authority client software.",
 414 => "Errorcode 414: DLL cannot locate exe. (Windows only)",
 415 => "Errorcode 415: DLL internal error occurred. (Windows “.
 “only)",
 419 => "Errorcode 419: Invalid target alias specified.",
 441 => "Errorcode 441: Invalid file path specified.",
 443 => "Errorcode 443: Client is initializing.",
 445 => "Errorcode 445: Client is updating the encryption key.",
 446 => "Errorcode 446: Authorization mapping validation “.
 “error. “.
 “Invalid execution path specified for request script.",
 447 => "Errorcode 447: Authorization mapping validation “
 “error. “.
 “Invalid file path specified for request script.",
 448 => "Errorcode 448: Authorization mapping validation “.
 “error. “.
 “Missing request script information.",
 449 => "Errorcode 449: Authorization mapping validation “.
 “error. “.
 };

 if(!defined $cwID or !defined $cwTarget){
 return;
 }else{
 my $cwAlias = $cwID . "_" . $cwTarget;
 my ($cwAnswer, $cwCommand, @cwArray);

 $cwCommand = qq{$GETCR $cwAlias true};
 $cwAnswer = `$cwCommand`;
 @cwArray = split(/\s+/, $cwAnswer);
 if($cwArray[0] ne "400"){
 carp $errorCode->{$cwArray[0]};
 return(undef);
 }else{
 return($cwArray[2]);
 }
 }
}

sub passwdAspect{
 before {
 my $context = shift;
 my ($cwTagert, $cwID, $cwPasswd);

 my @params = $context->params;
 $cwTarget = $params[1];
 $cwTarget =~ s/^.*=//;
 $cwID = $params[2];

98

 unless($params[3] = passwdLookup($cwID,$cwTarget)){
 print STDERR "\nThe passwd $cwID not found in
Cloakware,”.
 “switching to passthrough mode\n";
 }else{
 $context->params($params[0],$params[1],$params[2],
 $params[3]);
 }
 } call ('DBI::connect');
}

passwdAspect;
1:

Aspect Modified Scripts Used for Logic Bomb Attack

Script Used on Windows 7 and Linux

The logic bomb attack consists of the addition of specific code to compromise the

credentials contained or handled within the script. The script described under “Simple

Script Used on Windows 7 and Linux” was modified to print the credentials to standard

out. The code that was added to the script is highlighted below in red.

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

$User = 'gary';
$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User,
$Passwd);
die("Cannot open MySql Connection") if(!$dbh);

Added logic bomb to print the password

print "$Passwd\n";

End logic bomb code

99

my $sth = $dbh->prepare("
 SELECT col1, col2
 FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

Script Used on Solaris 10

The logic bomb attack consists of the addition of specific code to compromise the

credentials contained or handled within the script. The script described under “Simple

Script Used on Solaris 10” was modified to print the credentials to standard out. The

code that was added to the script is highlighted below in red.

#!/usr/bin/perl

use DBI;
use locale;
use NOVA::Passwd;

$Passwd = 'novaphd';

my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd);
die("Cannot open Oracle Connection") if(!$dbh);

Added logic bomb to print the password

print "$Passwd\n";

End logic bomb code

100

my $sth = $dbh->prepare("
 SELECT col1, col2

FROM novatab
");

for($i=0;$i<100;$i++){
 print "\nLoop $i\n";
 $sth->execute();
 while (my ($col1, $col2) = $sth->fetchrow_array()){
 print "col1 = $col1, col2 = $col2\n";
 }
 $sth->finish();
 sleep 1;
}
$dbh->disconnect();
exit;

101

Appendix D

Attack Vector Screenshots

Baseline Probe Attack Vector Screenshots

Figure 11 Baseline Probe Attack #1 on Windows 7

102

Figure 12 Baseline Probe Attack #1 on Linux

103

Figure 13 Baseline Probe Attack #1 on Solaris 10

The screenshot showed in figures 11, 12 and 13 show the test script running on all

three platforms and being terminated after two iterations. Then the probe attack was

carried out against the script. The payload of the probe attack vector is shown circled in

red.

104

Figure 14 Probe Attack #2 on Windows 7

105

Figure 15 Probe Attack #2 on Linux

106

Figure 16 Probe Attack #2 on Solaris 10

Figures 14, 15 and 16 show an attempted probe attack on the script utilizing the

passwdLookup subroutine held in the NOVA::Passwd Perl module. The probe attack

vector was carried out on all three platforms and was not successful in capturing the

payload.

107

Baseline Logic Bomb Attack Vector Screenshots

Figure 17 Insertion of Logic Bomb code on Windows 7

108

Figure 18 Insertion of Logic Bomb code on Linux.

109

Figure 19 Insertion of Logic Bomb code on Solaris 10

Figures 17, 18 and 19 show a successful logic bomb attack vector carried out on all

three platforms. The code encased in the red rectangle is the logic bomb code place in

the script. The payload form the logic bomb attack vector is circled in red.

110

Baseline Debugger Attack Vector Screenshots

Figure 20 Debugger Attack run #1 on Windows 7

111

Figure 21 Debugger Attack run #1 on Linux

112

Figure 22 Debugger Attack run #1 on Solaris 10

Figures 20, 21 and 22 show a successful debugger attack vector carried out on all

three platforms against a simple Perl script with hard-coded credentials. The payload is

highlighted in the red circle.

113

Figure 23 Debugger Attack run #2 on Windows 7

114

Figure 24 Debugger Attack run #2 on Linux

115

Figure 25 Debugger Attack run #2 on Solaris 10

Figures 23, 24 and 25 show a successful debugger attack vector carried out on all

three platforms against a simple Perl script utilizing the password vault via the

passwdLookup subroutine held in the NOVA::Passwd Perl module. The payload is

highlighted in the red circle.

116

Baseline Memory Scan Attack Vector Screenshots

Figure 26 Generation of the memory on Windows 7

117

Figure 27 Memory scan attack vector #1 on Windows 7

Figure 28 Generation of the memory on Linux

118

Figure 29 Memory scan attack vector #1 on Linux

119

Figure 30 Generation of the memory on Solaris 10

120

Figure 31 Memory scan attack vector #1 on Solaris 10

Figures 26 through 31 show a successful memory scan attack vector carried out on

all three platforms against a simple Perl script with hard-coded credentials. The payload

is highlighted in the red circles. Figures 26, 28 and 30 show the generation of the

memory dumps.

121

Figure 32 Memory scan attack vector #2 on Windows 7

122

Figure 33 Memory scan attack vector #2 on Linux

123

Figure 34 Memory scan attack vector #2 on Solaris 10

Figures 32, 33 and 34 show a successful memory scan attack vector carried out on

all three platforms against a simple Perl script utilizing the password vault via the

passwdLookup subroutine held in the NOVA::Passwd Perl module. The payload is

highlighted in the red circle.

124

Aspect Modified Probe Attack Vector Screenshots

Figure 35 Aspect Modified Probe Attack - Windows 7

125

Figure 36 Aspect Modified Probe Attack - Linux

126

Figure 37 Aspect Modified Probe Attack - Solaris 10

Figures 35, 36 and 37 demonstrate a failed probe attack vector on the Windows 7,

Linux ad Solaris 10 platforms. The script avoids attack by activating and firing an aspect

through the ‘use NOVA::Passwd;’ pragma (highlighted in the green circle) and

obfuscates the real password by setting (highlighted in the red rectangle) and passing a

phony password to the DBI->connect subroutine.

Aspect Modified Logic Bomb Attack Vector Screenshots

Figures 38, 39 and 40 demonstrate a failed logic bomb attack vector on the

Windows 7, Linux ad Solaris 10 platforms. The script avoids attack by activating and

127

firing an aspect through the ‘use NOVA::Passwd;’ pragma and obfuscates the real

password by setting (highlighted in the red rectangle) and passing a phony password to

the DBI->connect subroutine. The attack payload is shown in the green circle and is

broadcasting the wrong password.

Figure 38 Aspect Modified Logic Bomb Attack - Windows 7

128

Figure 39 Aspect Modified Logic Bomb Attack - Linux

129

Figure 40 Aspect Modified Logic Bomb Attack - Solaris 10

130

Aspect Modified Debugger Attack Vector Screenshots

Figure 41 Aspect Modified Logic Bomb Attack - Windows 7

131

Figure 42 Aspect Modified Logic Bomb Attack – Linux

132

Figure 43 Aspect Modified Logic Bomb Attack - Solaris 10

Figures 41, 42 and 43 show a successful debugger attack vector run against all three

platforms. The payload is circled in red. On average this attack took 50 debugger steps

to accomplish.

133

Aspect Modified Memory Scan Attack Vector Screenshots

Figure 44 Aspect Modified Memory Scan Attack - Windows 7

134

Figure 45 Aspect Modified Memory Scan Attack – Linux

135

Figure 46 Aspect Modified Memory Scan Attack - Solaris 10

Figures 44, 45 and 46 show a successful memory scan attack run against all three

platforms.

136

References

2010 Financial Services Global Security Study. (2010). Deloitte Touche Tohmatsu.

2012 Data Breach Investigations Report. (2012). from
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-
report-2012_en_xg.pdf

Adaikkappan, A. (2009). Application Security Controls: An Audit Perspective. Journal
Online, 6.

Adams, G. D., Grapes, R., Gu, Y. X., Mehan, R. E. J., & Rong, J. J. (2008).

Application Identity Management Implementation Guide. (2009). Retrieved from
www.cyberark.com

Application Password Management Module. (2009). Retrieved from http://www.e-
dmzsecurity.com/tpam_brochures.html

Bauer, M. (2009). Anthony Lineberry on /dev/mem rootkits. Linux J., 2009(184), 5.

Blackwell, C. (2009). A security architecture to protect against the insider threat from
damage, fraud and theft. Paper presented at the Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and Strategies, Oak Ridge,
Tennessee.

Boström, G. (2004). Database Encryption as an Aspect. Paper presented at the Workshop
on AOSD Technology for Application-level Security, United Kingdon.

Boyen, X. (2009). Hidden Credential Retrieval from a Reusable Password. Paper
presented at the Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security, Sydney, Australia.

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.cyberark.com/
http://www.e-dmzsecurity.com/tpam_brochures.html
http://www.e-dmzsecurity.com/tpam_brochures.html

137

Brandel, M. (2009). Source Code Analysis Tools: How to Choose and Use Them. CSO.
Retrieved from http://www.csoonline.com/article/print/477016

Bresz, F., Renshaw, T., Rozek, J., & White, T. (2007). Global Technology Audit Guide
Identity and Access Management Retrieved from
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-
guides/gtag/gtag9/

Byres, E. J., Franz, M., & Miller, D. (2004). The Use of Attack Trees in Assessing
Vulnerabilities in SCADA Systems. Paper presented at the International
Infrastructure Survivability Workshop (IISW), Lisbon, Portugal.

CAPEC-1000: Mechanism of Attack. (2011). Retrieved January 15, 2012, 2012, from
http://capec.mitre.org/data/graphs/1000.html

Cappelli, D., Moore, A., Shimeall, T. J., & Trzeciak, R. (2009). Common Sense Guide to
Prevention and Detection of Insider Threats. Carnegie Mellon University
Retrieved from http://www.cert.org/archive/pdf/CSG-V3.pdf.

Chen, B., Curtmola, R., Ateniese, G., & Burns, R. (2010). Remote data checking for
network coding-based distributed storage systems. Paper presented at the
Proceedings of the 2010 ACM workshop on Cloud computing security workshop,
Chicago, Illinois, USA.

Chhabra, S., Rogers, B., Solihin, Y., & Prvulovic, M. (2011). SecureME: a hardware-
software approach to full system security. Paper presented at the Proceedings of
the international conference on Supercomputing, Tucson, Arizona, USA.

Chhabra, S., & Solihin, Y. (2011). i-NVMM: a secure non-volatile main memory system
with incremental encryption. SIGARCH Comput. Archit. News, 39(3), 177-188.
doi: 10.1145/2024723.2000086

Chinchani, R., Iyer, A., Ngo, H. Q., & Upadhyaya, S. (2005). Towards a Theory of
Insider Threat Assessment.

Chumash, T., & Yao, D. (2009). Detection and Prevention of Insider Threats in Database
Driven Web Services. In E. Ferrari, N. Li, E. Bertino & Y. Karabulut (Eds.), Trust
Management III (Vol. 300, pp. 117-132): Springer Boston.

http://www.csoonline.com/article/print/477016
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-guides/gtag/gtag9/
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-guides/gtag/gtag9/
http://capec.mitre.org/data/graphs/1000.html
http://www.cert.org/archive/pdf/CSG-V3.pdf

138

Cloakware Password Authority™. (2009). Retrieved from
http://datacenter.cloakware.com/support/resources.php#whitepapers

Collberg, C. (2011). Toward Digital Asset Protection, 26, 8-13.

Dowd, M., McDonald, J., & Schuh, J. (2007). The Art of Software Security Assessment.
Boston, MA: Addison-Wesley.

Edge, C., & Mitropoulos, F. (2009). Aspectization of the Secure Communication Pattern
for Data Integrity. Paper presented at the Association of Information Systems
SIGSEC Workshop on Information Security & Privacy (WISP 2009), Phoenix,
AZ.

Enck, W., Butler, K., Richardson, T., Patrick, M., & Adam, S. (2008). Defending Against
Attacks on Main Memory Persistence.

Encryption Technology for HP StorageWorks LTO Ultrium Tape Drives. (2010).
Hewlett-Packard Development Company, L.P.

Englert, B., & Shah, P. (2009). On the design and implementation of a secure online
password vault. Paper presented at the Proceedings of the 2009 International
Conference on Hybrid Information Technology, Daejeon, Korea.

Falcarin, P., Collberg, C., Atallah, M., & Jabubowski, M. (2011). Guest Editors'
Introduction: Software Protection, 28, 24-27.

Fendler, P. (2004). Securing varieties of file systems. Paper presented at the Proceedings
of the 1st annual conference on Information security curriculum development,
Kennesaw, Georgia.

Filman, R. E., Elrad, T., Clarke, S., & Aksit, M. (2005). Aspect-Oriented Software
Development: Addison-Wesley.

Franqueira, V. N. L., Cleeff, A. v., Eck, P. v., & Wieringa, R. (2010). External Insider
Threat: A Real Security Challenge in Enterprise Value Webs.

Futcher, L., & Solms, R. v. (2008). Guidelines for secure software development. Paper
presented at the Proceedings of the 2008 annual research conference of the South

http://datacenter.cloakware.com/support/resources.php#whitepapers

139

African Institute of Computer Scientists and Information Technologists on IT
research in developing countries: riding the wave of technology, Wilderness,
South Africa.

Ge, T., & Zdonik, S. (2007). Answering aggregation queries in a secure system model.
Paper presented at the Proceedings of the 33rd international conference on Very
large data bases, Vienna, Austria.

George, B., & Valeva, A. (2006). A database security course on a shoestring. Paper
presented at the Proceedings of the 37th SIGCSE technical symposium on
Computer science education, Houston, Texas, USA.

Giacobazzi, R., Jones, N. D., & Mastroeni, I. (2012). Obfuscation by partial evaluation of
distorted interpreters. Paper presented at the Proceedings of the ACM SIGPLAN
2012 workshop on Partial evaluation and program manipulation, Philadelphia,
Pennsylvania, USA.

Gligor, V. D. (1998). On the Formal Definition of Separation-of-Duty Policies and their
Composition.

Guimaraes, M., Murray, M., & Austin, R. (2007). Incorporating database security
courseware into a database security class. Paper presented at the Proceedings of
the 4th annual conference on Information security curriculum development,
Kennesaw, Georgia.

Hansman, S., & Hunt, R. (2005). A taxonomy of network and computer attacks.
Computers & Security, 24(1), 31-43. doi: 10.1016/j.cose.2004.06.011

Hargreaves, C., & Chivers, H. (2008). Recovery of Encryption Keys from Memory Using
a Linear Scan.

Hicks, B., Rueda, S., St.Clair, L., Jaeger, T., & McDaniel, P. (2007). A logical
specification and analysis for SELinux MLS policy. Paper presented at the
Proceedings of the 12th ACM symposium on Access control models and
technologies, Sophia Antipolis, France.

Hongyu, G., Hu, J., Huang, T., Wang, J., & Chen, Y. (2011). Security Issues in Online
Social Networks, 15, 56-63.

140

Howard, J. D., & Longstaff, T. A. (1998). A Common Language for Computer Security
Incidents: Sandia National Laboratories.

Insider threat study: illicit cyber activity in the banking and finance sector. (2004). from
http://www.cert.org/archive/pdf/bankfin040820.pdf

ISACA. (2007). COBIT (Objectives for Information and related Technology) (Vol.
AI3.4, AI7.4): IT Governance Institute.

ISO. (2005). ISO/IEC 27001:2005 Information technology -- security techniques --
information security management systems -- requirements: International
Organization for Standards (ISO).

Jaeger, T., & Tidswell, J. E. (2001). Practical safety in flexible access control models.
ACM Trans. Inf. Syst. Secur., 4(2), 158-190. doi:
http://doi.acm.org/10.1145/501963.501966

Jerbi, A., Hadar, E., Gates, C., & Grebenev, D. (2008). An access control reference
architecture. Paper presented at the Proceedings of the 2nd ACM workshop on
Computer security architectures, Alexandria, Virginia, USA.

Jianfeng, L. (2009). Dynamic Enforcement of Separation-of-Duty Policies.

Johnson, H. J., Gu, Y., & Chow, S. T. (1999). CA Patent No. 2340742. C. I. P. Office.

Kepner, C. H., & Tregoe, B. B. (1981). The Uses of Decision Analysis The New Rational
Manager (pp. 103-105). Princeton, NJ: Princeton Research Press.

Kher, V., & Kim, Y. (2005). Securing distributed storage: challenges, techniques, and
systems. Paper presented at the Proceedings of the 2005 ACM workshop on
Storage security and survivability, Fairfax, VA, USA.

Kostiainen, K., Ekberg, J.-E., Asokan, N., & Rantala, A. (2009). On-board credentials
with open provisioning. Paper presented at the Proceedings of the 4th
International Symposium on Information, Computer, and Communications
Security, Sydney, Australia.

http://www.cert.org/archive/pdf/bankfin040820.pdf
http://doi.acm.org/10.1145/501963.501966

141

Libes, D. (1990, June 1990). expect: Curing Those Uncontrollable Fits of Interaction.
Paper presented at the 1990 USENIX Conference, Anaheim, CA.

Libes, D. (1993). Kibitz - connecting multiple interactive programs together. Software -
Practice and Experience, 23(5), 465-475.

Libes, D. (1994a). Handling Passwords with Security and Reliability in Background
Processes. Paper presented at the Eighth Systems Administration Conference, San
Diego, CA.

Libes, D. (1994b). X Wrappers for Non-Graphic Interactive Programs. Paper presented
at the Xhibition 94,, San Diego, CA.

Lieberman, G. (2010). A False Sense of Security Internal Auditor Online (June 12, 2010
ed.): The Institute of Internal Auditors. Inc.

Majumdar, A., Drape, S. J., & Thomborson, C. D. (2007). Slicing obfuscations: design,
correctness, and evaluation. Paper presented at the Proceedings of the 2007 ACM
workshop on Digital Rights Management, Alexandria, Virginia, USA.

Making Security a Business Priority. (2008). ComputerWorld Hong Kong, 25(6), 7-9.

Managing Embedded Application Passwords with Password Auto Repository™ (PAR).
(2009). Retrieved from http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-
AppPasswordMgt_WP.pdf

Martin, A. (2008). Define Segregation of Duties. USBanker, 118(12), 1.

Martin, B., Brown, M., & Paller, A. (2009). 2009 CEW/SANS top 25 most dangerous
programming errors. Common Weakness Enumeration (CWE), from
http://cwe.mitre.org/top25/index.html

Mattsson, U. T. (2008). How to Prevent Internal and External Attacks on Data - Securing
the Enterprise Data Flow Against Advanced Attacks. SSRN eLibrary.

Mavrikidis, J. J. (1996). Security issues in a networked UNIX and MVS/VM
environment. SIGSAC Rev., 14(3), 2-8. doi:
http://doi.acm.org/10.1145/236397.236399

http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-AppPasswordMgt_WP.pdf
http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-AppPasswordMgt_WP.pdf
http://cwe.mitre.org/top25/index.html
http://doi.acm.org/10.1145/236397.236399

142

Muller, T., Freiling, F. C., & Dewald, A. (2011). TRESOR runs encryption securely
outside RAM. Paper presented at the Proceedings of the 20th USENIX conference
on Security, San Francisco, CA.

Nilsen, K. (2010). Keeping Fraud in the Cross Hairs. Journal of Accountancy, 209(6), 6.

OWASP. (2007). The ten most critical web application security vulnerabilities: Open
Web Application Security Project (OWASP).

Page, A. E., & Marinov, S. (2007). Retrieved January 22/2012, 2012, from
http://ptkdb.sourceforge.net/about.html

Password Management API for Application-to-Application Password Management.
(2009). Retrieved from
http://www.manageengine.com/products/passwordmanagerpro/help/index.html

Payne, C. (2007). A cryptographic access control architecture secure against privileged
attackers. Paper presented at the Proceedings of the 2007 ACM workshop on
Computer security architecture, Fairfax, Virginia, USA.

PCI. (2009). Payment Card Industry (PCI) Data Security Standard Requirements and
Security Assessment Procedures (pp. 74): The Payment Card Industry Security
Standards Council.

Randazzo, M. R., Keeney, M., Kowalski, E., Cappelli, D., & Moore, A. (2005). Insider
Threat Study: Illicit Cyber Activity in the Banking and Finance Sector (pp. 37).

Rechtman, Y. (2009). Evaluating Software Risk as Part of a Financial Audit. The CPA
Journal, 79(6), 4.

Sade, Y., & Adar, R. (2008). US Patent No. 20080196101.

Said, H. E., Guimaraes, M. A., Maamar, Z., & Jololian, L. (2009). Database and
database application security. Paper presented at the Proceedings of the 14th
annual ACM SIGCSE conference on Innovation and technology in computer
science education, Paris, France.

http://ptkdb.sourceforge.net/about.html
http://www.manageengine.com/products/passwordmanagerpro/help/index.html

143

Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A Survey of Insider Attack Detection
Research Insider Attack and Cyber Security (Vol. 39, pp. 69-90).

Salerno, S. (2009). Criminal Injustice. Skeptic, 15(1), 8.

 Sarbanes-Oxley section 404: A Guide for Management by Internal Controls
Practitioners. (2008). Retrieved from
http://www.theiia.org/download.cfm?file=31866

Sheppard, D. (2000). Beginner's Introduction to Perl Retrieved March 10, 2012, 2012,
from http://www.perl.com/pub/2000/10/begperl1.html

Shiflett, C. (2004). Shared Hosting. php|architect, III.

Shmueli, E., Vaisenberg, R., Elovici, Y., & Glezer, C. (2010). Database encryption: an
overview of contemporary challenges and design considerations. SIGMOD Rec.,
38(3), 29-34. doi: 10.1145/1815933.1815940

Singleton, T. (2002). Stop fraud cold with powerful internal controls. The Journal of
Corporate Accounting & Finance, 13(4), 29-40.

Sosonkin, M., Naumovich, G., & Memon, N. (2003). Obfuscation of design intent in
object-oriented applications. Paper presented at the Proceedings of the 3rd ACM
workshop on Digital rights management, Washington, DC, USA.

Weber, S., Karger, P. A., & Paradkar, A. (2005). A software flaw taxonomy: aiming tools
at security. SIGSOFT Softw. Eng. Notes, 30(4), 1-7. doi:
10.1145/1082983.1083209

Woodbury, C. (2005). Eight Reasons to Stop Ignoring the Security of Your Development
Systems. IBM Systems magazine.

Yang, L. (2009). Teaching database security and auditing. Paper presented at the
Proceedings of the 40th ACM technical symposium on Computer science
education, Chattanooga, TN, USA.

Yu, T., Sivasubramanian, D., & Xie, T. (2009). Security policy testing via automated
program code generation. Paper presented at the Proceedings of the 5th Annual

http://www.theiia.org/download.cfm?file=31866
http://www.perl.com/pub/2000/10/begperl1.html

144

Workshop on Cyber Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and Strategies, Oak Ridge,
Tennessee.

Yu, T., Winslett, M., & Seamons, K. E. (2003). Supporting Structured Credentials and
Sensitive Policies through Interoperable Strategies for Automated Trust
Negotiation. ACM Trans. Inf. Syst. Secur., 6(1), 1-42. doi:
10.1145/605434.605435

Zaobin, G., Tang, J., Wu, P., & Varadharajan. (2007). A Novel Security Risk Evaluation
for Information Systems.

Zhu, X., Feng, H., & Chen, H. (2009). Access Control Policy Based on Behavior
Patterns.

	Nova Southeastern University
	NSUWorks
	2012

	Securely Handling Inter-Application Connection Credentials
	Gary Lieberman
	Share Feedback About This Item
	NSUWorks Citation

	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	Background
	Problem Statement
	Dissertation Goal
	Relevance and Significance
	Barriers and Issues
	Summary

	Chapter 2
	Review of the Literature
	Chapter 3
	Methodology
	Overview
	Attack Vector Taxonomy
	Attack Vectors Employed
	(Vulnerability in design (simple attack)
	Windows
	Unix/Linux

	(Vulnerability in design (logic bomb attack)
	(Vulnerability in design (debugger attack)
	Windows
	Unix/Linux

	(Vulnerability in design (memory dump attack)
	Windows
	Unix/Linux

	Password Obfuscation Design Method
	Baseline Attack Vector Payload
	Quantifying Testing Results
	Resource Requirements

	Chapter 4
	Results
	Introduction
	Attack Vector Baselines
	Probe Attack Vector
	Logic Bomb Attack Vector
	Debugger Attack Vector
	Memory Scan Attack Vector

	Findings
	Probe Attack Vector
	Logic Bomb Attack Vector
	Debugger Attack Vector
	Memory Scan Attack Vector

	Summary of Results

	Chapter 5
	Conclusions, Implications, Recommendations, and Summary
	Conclusions
	Implications
	Recommendations
	Summary

	Request for Cloakware License
	Hardware Inventory
	Perl Scripts
	Baseline Scripts Used for Probe, Debugger and the Memory Scan Attacks
	Simple Script Used on Windows 7 and Linux
	Simple Script Used on Solaris 10
	Password Vault Script Used on Windows 7 and Linux
	Password Vault Script Used on Solaris 10
	Perl Module Used for Password Vault Access on Windows 7
	Perl Module Used for Password Vault Access on Linux and Solaris 10

	Baseline Scripts Used for Logic Bomb Attack
	Script Used on Windows 7 and Linux
	Script Used on Solaris 10

	Aspect Modified Scripts Used for Probe, Debugger and the Memory Scan Attacks
	Simple Password Vault Script Used on Windows 7 and Linux
	Simple Password vault Script Used on Solaris 10
	Aspect Modified Perl Module Used for Password Vault Access on Windows 7
	Aspect Modified Perl Module Used for Password Vault Access on Linux and Solaris 10

	Aspect Modified Scripts Used for Logic Bomb Attack
	Script Used on Windows 7 and Linux
	Script Used on Solaris 10

	Attack Vector Screenshots
	Baseline Probe Attack Vector Screenshots
	Baseline Logic Bomb Attack Vector Screenshots
	Baseline Debugger Attack Vector Screenshots
	Baseline Memory Scan Attack Vector Screenshots
	Aspect Modified Probe Attack Vector Screenshots
	Aspect Modified Logic Bomb Attack Vector Screenshots
	Aspect Modified Debugger Attack Vector Screenshots
	Aspect Modified Memory Scan Attack Vector Screenshots

	References

