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The utilization of application-to-application (A2A) credentials within interpretive 
language scripts and application code has long been a security risk.  The quandaries being 
how to protect and secure the credentials handled in the main body of code and avoid 
exploitation from rogue programmers, system administrators and other users with 
authorized high levels of privilege. 

 
Researchers report that A2A credentials cannot be protected and that there is no 

way to reduce the risk of the inevitable successful attack and subsequent exploit.  
Therefore, research efforts to date have primarily been focused on mitigating the impact 
of the attack rather than finding ways to reduce the attack surface. 

 
The work contained herein successfully addresses this serious cross-cutting concern 

and proves that it is in fact possible to significantly reduce the risk of attack.  This 
reduction of risk was accomplished through implementing a method of credential 
obfuscation which applied advice with concerns utilizing a composition filter.  The filter 
modified messages containing the credentials as they were sent from the interpretive 
language script to the remote data store. 

 
The modification extracted credentials from a secure password vault and inserted 

them into the message being sent to the remote data store.  This modification moved the 
handling of the credentials from the main body of code to a secure library and out of the 
reach of attackers with authorized high levels of privilege.  The relocation of the 
credential handling code lines significantly reduced the attack surface and the overall risk 
of attack. 
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Chapter 1 

Introduction 

Background 

The utilization of application-to-application credentials within interpretive language 

scripts and application code has long been a security trade-off.  The quandary being 

should the credentials be embedded in the code and risk exploitation from rogue 

programmers, system administrators and other users with authorized high levels of 

privilege or should the application not require password authentication at all?  The latter 

can be accomplished, somewhat securely, by running the entire process on a single highly 

audited machine, disconnecting it from the network and isolating the machine from all 

but a few trusted individuals.  Although this approach is commonplace in top secret 

government processing it is highly impractical in a commercial data processing 

environment.  Therefore, IT security experts, standards bodies and auditors alike have 

concentrated their efforts on figuring out new and ingenious ways to mitigate the impact 

from data loss rather than researching methods for securing the credentials.  The research 

presented in this paper focuses on the development of a method to address this gap and 

significantly reduce the risk of credential exploitation.  It would be naive to think that the 

What can we take on trust in this uncertain life?  Happiness, 
greatness, pride – nothing is secure, nothing keeps. 

– Euripides, Hecuba (c. 425 B.C.) 
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risk can be eliminated entirely.  No credential handling method, process or system can 

claim to be totally secure, but risk can be significantly reduced to the point where batch 

processes utilizing interpretive language scripts can be considered secure in a relative 

sense. 

This document is organized as follows; the Problem Statement section defines the 

problem being addressed and qualifies it as being research worthy.  It is followed by a 

description of the dissertation goal.  Following this section is the Relevance and 

Significance section which provides support for the problem statement and dissertation 

goal sections and addresses the questions: why there is a problem and who is impacted?  

The Literature Review section builds a foundation supporting the validity of this 

research.  Supporting evidence in this research area is gathered from the existing body of 

knowledge and is critically reviewed and analyzed.  Additional supporting evidence is 

gathered from federal laws and regulatory agencies, established auditing standards and 

generally-accepted professional guidelines and practices.  Concluding the Literature 

Review is an analysis of patent applications and third party products that attempt to 

address this problem.  The final sections present the research, analysis of findings and 

conclusions. 

Problem Statement 

The Association of Certified Fraud Examiners reported in their 2010 Report to the 

Nations on Occupational Fraud and Abuse (as cited in Nilsen, 2010) that on average 

companies lose 5% of their revenue to fraud and abuse.  Furthermore, researchers have 

found that 80% of the fraud and malicious activities within IT operations are related to 

the misuse of passwords (Singleton, 2002).  According to a recent Gartner report, close to 
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90% of all software attacks are aimed at the application layer (as cited in Brandel, 2009), 

yet the 2010 Global Security Survey of Financial Institutions by Deloitte and Touche 

("2010 Financial Services Global Security Study," 2010) reported that only 46% of all 

survey respondents include application security in their software development life cycle 

and that 23% of all respondents lack well-defined security policies in their development 

standards.  It was reported by the respondents that 10% of all data loss was from 

malicious software installed by employees with proper access and authentication.  Over 

70% of those surveyed have a medium to high expectation of attacks on program source 

code.  Lastly, only a disturbing 39% of the respondents reported having a high level of 

confidence in their ability to defend against insider cyber-attacks. 

To better understand the relevance of these survey statistics one must consider that 

70% of all insider attacks stem from software exploits ("Insider threat study: illicit cyber 

activity in the banking and finance sector," 2004) and that those vulnerabilities primarily 

lie within the context of software development and deployment.  A primary area of 

concern is the manner in which the connection credentials that are used to establish a 

communication channel between two applications such as a client and a database server 

are handled. 

Randazzo, Keeney, Kowalski, Cappelli and Moore (2005) found that 17% of all 

insider attacks came from administrators with legitimate privileged access rights.  Baring 

in mind that administrators may not always be trustworthy (Jaeger & Tidswell, 2001) it is 

a fairly simple task for a system administrator of questionable repute to harvest hard-

coded passwords from batch processing scripts and/or application programs stored on the 

file systems that they support.  It is an equally simple task for a rogue administrator or 
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software developer to modify a script and cause the password to be exported as it is 

received from an associated password vault. 

Chinchani, Iyer, Ngo and Upadhyaya (2005) found that a lack of a practical 

methodology has security experts believing that insider attacks are unpreventable.  They 

state that the only practical solution is to increase system monitoring, application logging 

and overall security countermeasures.  They further admit that these are all highly 

inconvenient measures that foster an atmosphere of distrust within the organization’s IT 

staff.  After conceding that little can be done to prevent such attacks they concentrate on 

presenting an enhanced threat modeling framework to help identify those applications 

which are most vulnerable and good candidates for increased vigilance.  This is a reactive 

approach that highly depends on both successful monitoring and detection of the attack, 

and more importantly, successful interception of the data before it leaves the premises.  A 

better approach would be to work towards preventing the attack from happening 

altogether.  Unfortunately, few research projects in this area recommend approaches 

aimed at addressing insider attacks proactively (Cappelli, Moore, Shimeall, & Trzeciak, 

2009). 

Shiflett (2004) emphatically warns that there is no way to hide or keep connection 

credentials safe from rogue privileged users.  He proposes a simple solution in which 

connection credentials are stored in environment variables and accessed by the script at 

the time of execution.  This method seems rather naive as environment variables must be 

stored as cleartext in files on the same system as the scripts themselves.  They are just as 

vulnerable to the same privileged user attacks as the scripts themselves.  In addition, all 

memory-stored environment variables are accessible by the program code and therefore 



5 

 

vulnerable to rogue programmer attacks.  Lastly, operating systems such as certain UNIX 

variants HP/UX, Solaris, LINUX, MAC OS X and others allow for the reporting of an 

executing process’ operating environment.  Thus, memory-stored environment variables 

are easily viewed by all users of privilege on those systems. 

Chumash and Yao (2009) also believe that due to the interpretive nature of scripts, 

it is impossible to obscure, mask or hide connection credentials from users with 

administrative access.  They identify the most common solution in current use which is to 

store the connection credentials as cleartext in files external to the script itself in a 

location outside of the script’s root file system and to include or source them in during 

the script’s execution.  Their thinking is that the credential’s location could be better 

monitored and protected than that of the script itself.  This methodology is short-sighted 

and falls prey to the same privileged user attack as if the credentials were stored in the 

script itself.  To address this concern they propose what is essentially a password vault 

which encrypts and stores the credentials in a secure environment and returns them to the 

executing script once it has been properly authenticated.  Although this method removes 

the credentials from viewing by people with read access to the script it does not prevent 

people with write access, such as administrators, from modifying the script and capturing 

the returned credentials.  There is also exposure to rogue programmers who may not have 

access to the production system that executes the script but who do have access to the 

source code and can place a logic bomb in the code that will capture the passwords and 

forward the credentials to awaiting accomplices when the script executes.  This negates 

almost all security measures on the executing system, as the attack is setup and put in 

place prior to the software rollout. 
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Further exacerbating matters, Said, Guimaraes, Maamar and Jololian (2009) found 

that there is a total lack of literature dealing with application security specifically in areas 

concerning application connection credentials.  Because of this they propose to 

indoctrinate programmers and software developers with security courses in graduate 

school curriculums.  Of the 83 institutions they surveyed only 10 had such security 

courses.  The fact that research institutions and academia in general are not recognizing 

the cleartext storage of connection credentials as a legitimate risk and wide-spread 

problem further supports the need for more research and literature on this subject.  

Educating the development staff is a solid step in the right direction, but it does not 

address the pressure to shortcut good development standards and circumvent security 

reviews due to understaffing and development cost considerations.  Further, it does not 

address in any manner, shape or form the corruptibility of administrators and software 

developers, especially in times of an economic downturn. 

Shmueli, Vaisenberg, Elovici and Glezer (2010) tell us that access control is useless 

if the attacker is a system administrator or a database administrator.  They propose a 

database encryption scheme to make the data stored in the database unreadable when the 

inevitably successful insider attack happens.  Besides being quite pessimistic in nature, 

their solution assumes the attacker will access the database with the credentials of the 

database administrator to look at the stored data.  They do not address the possibility of 

the rogue administrator capturing the connection credentials from a legitimate batch 

processing script and accessing the decrypted data with the appropriate level of access 

authentication afforded the script. 
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It is typical for many researchers to concentrate on securing the credential 

repository or fortifying the trust negotiation process and ignore the security of the 

software that negotiates the trust itself.  An example of this can be found in the Yu, 

Winslett and Seamons paper on automated trust negotiation strategies which clearly and 

emphatically tells us that they assumed that all trust negotiation software can be trusted 

(Yu, Winslett, & Seamons, 2003).  Six years later Yu, Sivasubramanian and Xie point out 

that traditional access control is embedded in application code and therefore it is 

impossible to test its effectiveness (Yu, Sivasubramanian, & Xie, 2009).  They also state 

that it is impossible to protect that application’s code from an insider attack. 

Franqueira, Cleeff, Eck and Wieringa (2010) find that few approaches consider the 

proactive prevention of insider attacks and adopt a forensic approach analyzing data 

gathered from security monitoring tool logs.  This seems to be the most common 

approach proposed by researchers.  Franqueira, Cleeff, Eck and Wieringa concentrate 

their study on what they call “external insiders” and propose that external service 

providers and their contracting customers bolster contractual agreements to require a high 

level of log data sharing so that the log analysis is not concentrated in one company or 

within a single office or location.  As with other similar forensic approaches this is 

closing the barn door after the animals have escaped.  The better approach is a 

prophylactic one in which access to the credentials is restricted to the interpretive script 

and not the administrator. 

The presence of application-to-application connection credentials within 

interpretive language scripts presents a significant risk, leaving those credentials open to 
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being attacked and exploited.  To date no methodology or framework exists that 

effectively secures those credentials and reduces that risk. 

Dissertation Goal 

Analysis of research efforts, auditing and regulatory agency standards and third 

party products tells us that most researchers have conceded that the problem as stated in 

the above Problem Statement section is unsolvable.  They have directed their research 

and recommendations to be more in line with an approach that attempts to detect the 

attack after the fact and mitigate the impact of the data loss rather reduce the risk of 

attack altogether (Salem, Hershkop, & Stolfo, 2008).  Albeit naive to state that all risk 

can be eliminated, this research shows that the risk of insider attack and exploitation of 

application-to-application credentials can be significantly reduced as measured by the 

delta between a pre-and post-risk analysis matrix. 

The method that was used for comparative analysis to measure the delta between 

the pre-and post-analysis of risk is a quantitative Decision Analysis Methodology.  

Kepner and Tregoe (1981) defined the three primary elements of analyzing alternatives 

and making good decisions as the quality of the problem definition, the quality of the 

evaluation of alternatives and understanding the impact of the alternatives.  They suggest 

that any decision process can be reduced to a mathematical formula resulting in a 

weighted quantitative index of alternatives against which an informed analysis can be 

made.  To facilitate this Kepner and Tregoe introduced the concept of a Weighted 

Decision Analysis Matrix. 

For the purposes of quantifying pre-and post-research password exploitation risk, 

the concept put forth in Kepner and Tregoe’s Weighted Decision Analysis Matrix theory 
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was used.  The required matrix consists of an array presenting pre-and post-research tests 

on the vertical axis.  The horizontal axis represents a list of attacks that were performed 

against the test scripts attempting to mine the password used in the scripts.  Additional 

detail on attack vector quantification and measurement ideology can be found in the 

“Quantifying Testing Results” section in Chapter 3. 

This research established a methodology and framework by which an interpretive 

language script, such as one written in Perl, can securely call a subroutine or function 

establishing a connection to a data store or secondary application.  The request can then 

be authenticated and have a connection handle returned to the calling function from the 

called subroutine or function.  The connection process was performed in such a manner 

as to significantly limit the ability of rogue privileged users or rogue developers from 

trapping the connection credentials for exploitation.  In addition to avoiding privileged 

user exploit threats, this framework also avoided granting the development and 

application support staff knowledge of the connection credentials which presents an 

equivalent risk of exploitation. 

Relevance and Significance 

The cleartext hard-coding of application-to-application connection credentials 

presents an industry-wide security software weakness that originates in the development 

process.  The weakness then travels with the software into production, leaving the 

production processing environment vulnerable to attack.   Logic Bomb attacks and Trojan 

Horse attacks can quite easily exploit credentials stored within interpretive scripts (Yang, 

2009).  The risk is further exacerbated when one considers that the developers of the 

software often are aware of the credentials when they embed them in the code.  These are 
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the same developers that standards bodies and audit reviews recommend having their 

access to production systems denied for security purposes. 

Further support for this as an industry-wide software development issue is bolstered 

by the listing of hard-coded credentials as a dangerous vulnerability in most security and 

auditing standards.  For example, the Open Web Application Security Project (OWASP), 

arguably one of the major players in the field of secure software development (Futcher & 

Solms, 2008), lists hard-coded application credentials eighth on its list of top 10 

application vulnerabilities (OWASP, 2007).  The SANS Institute, a prominent for-profit 

research and education organization, lists hard-coded credentials 21st on its list of the top 

25 Most Dangerous Programming Errors (B. Martin, Brown, & Paller, 2009).  

Unfortunately, the most common method to address these issues is a forensic one rather 

than a prophylactic approach (Salem et al., 2008). 

The primary reason so many researchers adopt a forensic approach to their research 

is the pervasive belief and subsequent acceptance that insider attacks on software and 

application-to-application credentials are unavoidable and unstoppable.  Researchers such 

as Blackwell (2009); Chumash and Yao (2009); Franqueira, Cleeff, Eck and Wieringa 

(2010); Shiflett (2004) and Shmueli, Vaisenberg, Elovici and Glezer (2010) have all 

based their papers on the acceptance of the inevitable security breach initiated by the 

privileged user.  The research presented in this paper was aimed at significantly reducing 

the risk of insider attack on application-to-application credentials and subsequently 

changing this perception. 
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Barriers and Issues 

The goal of this research was to develop a methodology by which applications that 

utilize interpretive scripting languages can be secured against the introduction of 

erroneous or intentional code logic that could open backdoors and establishes covert 

access points to production systems.   The hard-coding of production application 

credentials in cleartext into source code exposes those credentials to all development and 

administrative personnel with access to the development environment, thereby granting 

defacto access by development and administrative personnel to production processing 

systems.  In addition, this research has developed a methodology for securely handling 

application connection credentials returned to software applications from a password 

vault.  Specifically, instructions can be embedded into the logic of a program to exploit 

the returned credentials by forwarding them to a person or persons who would otherwise 

not be granted access to the targeted production system. 

To date adequate and functional solutions to these issues have not been available to 

the software development community (Boström, 2004; Edge & Mitropoulos, 2009).  The 

proliferation of password vault technology is a step in the right direction, but does not 

offer the complete solution.  Therefore, regulatory agencies, standards bodies and 

auditing practices have graciously accepted that there is no complete solution and 

adopted a segregation of duties approach which reduces risk.  However, this does not 

mitigate the risk altogether and is not a complete solution.  We can only surmise that 

because of this wide acceptance of risk by the professional user community funding is 

lacking for academic research.  Furthermore, a lack of funding could be a contributing 

factor in the lack of peer-reviewed papers proposing solutions.  With the exception of the 
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2004 De Win, Joosen and Piessens case study on FTP Server access controls, very few 

studies have presented practical approaches to securing application-to-application 

connection credentials (Boström, 2004; Edge & Mitropoulos, 2009).  However, the 

existence of numerous commercial password vault offerings and the ever-growing 

number of patent applications attempting to secure the returned credentials seems to 

support that research in this area is viable and is taking place. 

Summary 

The position held by researchers that nothing can be done to reduce the risk to 

application-to-application credentials used in interpretive language scripts is unfortunate.  

Even more unfortunate is that research is now focused on mitigating the impact of attack 

exploits that are considered inevitable.  This phenomenon is exacerbated by the 

acceptance by standards bodies and auditing societies who recommend segregation of 

duties as the primary defense for handling attacks coupled with enhanced monitoring 

tools that reduce the time between attack and discovery.  Better monitoring leads to faster 

discovery, which lends itself to reduced exploit impact.  The hypothesis that it is 

impossible to reduce the risk of exploit to application-to-application credential in 

interpretive language scripts is wrong.  The research presented in this work proves that 

the risk can be significantly reduced.  
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Chapter 2 

Review of the Literature 

In 1990 the Expect language was introduced by Don Libes (1990).  Expect enables 

two programs that would normally interact with humans to interact with each other. In his 

paper he clearly states that “Using Expect, it is possible to create a script that solves the 

passwd problem.”  He is referring to using Expect scripts to hold passwords and submit 

them to other applications that would normally require an interactive password 

submission.  Arguably, Libes’ work is the foundation of modern day batch processing.  

He fails to mention, or even consider, the risk of embedding credentials in a script.  Later 

on in 1993 he published his second paper where he introduces Kibitz, which is an Expect 

add-on that is platform independent and seems to correct the password-embedding issue 

by allowing the script to ask the executing human for the password (Libes, 1993).  Libes, 

however, states that this password-asking ability is for portability and never considers it 

for security.  He reasons that the script may need to connect to multiple targets using 

different passwords.  Therefore, storing a password in the script becomes inconvenient. 

In 1994 Libes published a third paper entitled “Handling Passwords with Security 

and Reliability in Background Processes” in which he presents five techniques for using 

the Expect language (Libes, 1994a).  The last three techniques are centered on hard-

coding the password in the Expect script. He addressed the security concerns by 

proposing the scripts be permissioned so that only root level privileges can access them.  

No mind is paid to consider the risk of exploit from those possessing root level privileges 

on the system.  Later that year Libes published another paper moving Expect into the X-
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Windows environment. Again, he extolls the virtues of using Expect to handle embedded 

credentials and never considers the risks (Libes, 1994b). 

Libes’ one mention of security in the Kibitz add-on, which asks the user for the 

password, works well in theory.  However it breaks down quickly when one considers the 

large number of batch processing scripts that run each night processing data from the 

day’s business.  Such is the case in brokerage houses, banks and other financial 

institutions.  By its nature a batch processing script is designed to run automatically and 

unattended.  Requiring manual intervention in the running of hundreds or thousands of 

batch processing scripts is nearly impossible and presents a security breach unto itself. 

Two years after Libes published his last work on the subject, Mavrikidis (1996) 

warned against hard-coding passwords in MVS and UNIX scripts and proposed using a 

password repository to store the passwords so they cannot be harvested from the source 

code.  The author also stressed the need for intrusion detection systems and log 

monitoring as a final step in protecting the processing environment.  Unfortunately, no 

attention was paid to the rogue system administrator and/or rogue software developer 

threat. 

In their 2009 paper, Englert and Shah (2009) identify the need to protect application 

credentials against attacks.  The authors realize that most access to computers and 

computer programs is via an ID and password.  The goal of their research was to develop 

an online safe or vault that allows users to securely store and retrieve their passwords for 

use when interacting with Internet-facing applications.  Although their solution does 

address numerous weaknesses found in online password vaults, it is designed primarily to 

be used interactively with a human being.  Their solution addresses the security of the 
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storage of the password and its eventual transmission to the requesting end user.  

However, in their conclusion they propose that the same methodology could be used to 

develop an application-to-application API.  If they were to move forward with this 

expansion of their work they would have to consider the security of the returned 

credentials once extracted from the vault and safely returned to the requesting 

application.  However, since no credence was paid to the handling of the credentials once 

returned to the human requestor in their current research, it is unlikely it will be 

considered in their future research. 

Boyen attempts to address the problem of securing credential storage and retrieval 

in his paper entitled “Hidden Credential Retrieval from a Reusable Password” (2009).  

He proposes a credential retrieval protocol that includes handshake, secure transfer and 

decryption in a single protocol operation that returns no indication of success or failure.  

Successful authentication generates the return of a plaintext password; failure returns a 

string that could be a password.  Thus an attacker using a brute force repetitive attack 

would gain no insight as to the success or failure of each attempt.  Passwords are stored 

via a process that includes the generation of a random private signing key, the hashing of 

the password and a signature.  All are then transmitted to the server over a secure 

transmission channel.  The passwords are not stored in plaintext on the server as is the 

case with some password vaults.  By storing an encrypted version of the password the 

author addresses the threat of insider attacks on the storage server itself.  Little attention 

is paid to the threat of insider attacks at the receiving end of the password retrieval 

request. 
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Boyen’s work is pointed at the forgetful human being who has a tendency to write 

passwords down.  However, because his proposed password vault is accessible via a 

network connection the interaction with the vault’s interface could be adapted for use 

with a batch process using an interpretive language script such as Perl.  Boyen did not 

consider this possibility when analyzing the success of his work or in any proposed future 

work. 

Zhu, Feng and Chen (2009) advise that advancements in computer security such as 

facial and fingerprint recognition help protect human-to-application credentials, but does 

nothing to protect application-to-application credentials from exploit by people with 

administrative level authorization.  To address this they suggest that access control 

policies based on behavior patterns be implemented.  Studying these patterns would 

allow for the identification of computer system users through the similarity of the user's 

behavioral patterns.  Constructing access control policies based on usage patterns has 

quite a bit of merit and allows for a more granular and finely-tuned set of policies.  

Although the authors claim this to be an effective means of combating insider attacks, 

they neglect to address insider attacks perpetrated by users with justifiable privileged 

access. 

Kostiainen, Ekberg, Asokan, and Rantala (2009) correctly point out that securely 

storing and using application-to-application credentials is essential in modern-day 

distributed applications.  They further state that the use of passwords is convenient and 

quite flexible but extremely hard if not impossible to secure.  Kostiainen, Ekberg, 

Asokan, and Rantala also point out that the use of hardware tokens as credentials are 

quite secure, but expensive and not practical.  They propose an architecture for secure 
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credential management called On-Board Credentials (ObC) which brokers connections 

between applications.  Unfortunately, this system requires an isolated and secure 

execution environment for it to be effective.  Once provisioned the requesting application 

is sent a connection key that is then used to connect to the remote application.  The key is 

subject to misuse in the same manner as that of a password returned from a password 

vault.  It would seem that the success of their methodology is keyed to the level of 

isolation the processing environment is able to achieve.  The authors point out that 

additional analysis and testing is required to determine the level of security and usability 

of their proposal. 

Blackwell (2009) states that insider attacks are on the rise and are very difficult to 

address in large part because insiders tend to possess high levels of privileged access 

rights and in-depth knowledge of system weaknesses.  They propose a three-pronged 

systematic approach to mitigating the risk.  The first is to reduce the attack surface, the 

second is to minimize impact zone and the third is to reduce the attacker’s motivation 

either through persuasion or deterrence.  They believe that by bolstering the worker’s 

morale, increasing their pay and generally reducing the cost benefit of attacking their 

employer the frequency and scope of the attacks can be reduced.  Considering that the 

United States has 5% of the global population and 25% of the world’s prison population 

(Salerno, 2009) it would seem that Blackwell’s hypothesis is flawed.  The criminal 

generally does not consider the penalty during the commission of the crime.  In fact the 

exact opposite holds true as they do not think they’ll be caught at all.  Blackwell is 

correct in his thinking that the best way to address this problem is to prevent the crime, 

although a different methodology is called for. 
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As the popularity of centralized disk storage systems grows so does the risk of 

unauthorized access to the files and data stored on those disks.  These storage systems 

have become critical components of most corporate computing environments.  Along 

with an increase in popularity and usage comes an increase in vulnerability and the risk 

of data loss and its damaging impact (Kher & Kim, 2005).  Therefore, one must 

additionally consider the risk of an insider attack on centrally stored interpretive scripts 

which contain application-to-application credentials.  A rogue system administrator with 

legitimate privileged access could perpetuate an attack on these scripts to harvest 

credentials simply by mounting a file system remotely from any number of servers that 

may or may not be adequately secured. 

Chen, et. al. address the risk of file corruption and/or deletion through insider 

attacks on centralized storage systems and propose a secure and efficient Remote Data 

Checking (RDC) scheme for network coding-based distributed storage as a means to 

catch and correct inappropriate modification to files stored on central storage systems.  In 

their research the central storage server is considered untrusted and their efforts are 

directed at preventing the destruction of files stored on the server by making those files 

recoverable.  Their solution does not address access by authorized administrators for the 

purpose of credential harvesting.  It does, however, illustrate the need to secure those 

files against attack (Chen, Curtmola, Ateniese, & Burns, 2010). 

Kernel level security policy enforcement is the most widely used security 

architecture in systems to date.  It is based on a two-tiered privilege architecture that 

allows for a single administrative super-user and all other users with no particular special 

privileges.  These non-super-users are largely restricted to accessing files owned by 
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themselves or groups in which they are members.  The elevated privilege of the super-

user is generally required to perform almost all administrative tasks.  For this reason 

super-user accounts are highly exposed, difficult to defend and a favorite target of 

adversaries (Payne, 2007). 

Payne (2007) acknowledges that cryptographic algorithms are in wide use enforcing 

networking security policies.  He explains that passive cryptographic file systems exist 

primarily to protect the confidentiality of data stored on those files systems.  Payne states 

that these systems break down when the super-user credentials have been exploited and 

the cryptographic keys obtained by attackers after compromising the privileged user’s ID.  

It is surprising that with 17% of all insider attacks coming from the administrators 

themselves (Randazzo et al., 2005) Payne did not consider rogue administrators more in 

his thinking. 

Payne (2007) proposes a system called Vaults which boasts of an enhanced access 

control system that encrypts the file system at the kernel level.  This system can prevent a 

super-user from reading a file that is owned by a non-privileged user.  This system works 

well in that it mitigates the risk of privileged users gaining access to critical files stored 

on the files system.  Payne also claims that once the kernel is fully booted it will assume 

responsibility for verifying the integrity of trusted interpreted scripts against modification 

by a privileged attacker. 

Payne’s proposed kernel level key management architecture does provide a 

cryptography based security model that goes a long way to protect user files from access 

by privileged accounts.  However, two major concerns weaken the value of the proposed 

solution.  The first is that Payne does not consider that trusted code contained in 
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interpreted scripts may have been compromised prior to being installed on the system and 

secured by Vaults.  Unless the code is meticulously reviewed prior to rollout, it is quite 

easy for a rogue programmer to plant a logic bomb in the application that will capture the 

credentials once it is installed.  Additionally, quite often system administrators are tasked 

with performing the software installs.  It is not hard for a rogue administrator to insert 

malicious code into a script during the installation process.  Programs with logic bombs 

inserted into their code can easily circumvent Payne’s secure environment as Vaults only 

monitors changes made to trusted scripts after installation. 

The second, and probably most important, concern is that anytime you modify the 

kernel of an operating system you risk voiding the manufacturer support of the system 

and software.  In some cases modifications such as that which Payne proposes may even 

void the warranty.  You also run the risk of negatively affecting the reliability of the data 

processing computations and results.  If two plus two suddenly equals five, was it the 

floating point co-processor (FPU) in the central processing unit (CPU) that went bad or 

was it the kernel modification that caused the problem?  In a highly critical computing 

environment standardized software installs are of the utmost importance.  Anything that 

modifies the kernel is generally frowned upon and not allowed in most IT organizations.  

In order to be acceptable to communities performing critical processing, his proposal 

would have to be incorporated into the kernel, certified and supported by the 

manufacturer.  Then, unless accepted by all manufacturers and made universally 

available across all platforms, the interpretive scripts accessing the Vaults environment 

lose their platform independence and in turn their portability. 
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Kher and Kim tell us that the confidentiality and integrity of centrally-stored data at 

rest can be achieved through cryptographic operations on the user side.  This encryption 

requires the use of keys provided to the user for access to the storage system.  In the case 

of Networked File Systems (NFS), which is widely used in the UNIX environment, they 

readily admit that it is the system administrators that control and issue user credentials for 

access to the shared storage.  Therefore, the administrator who issues the user’s 

credentials also has the ability to access their files masquerading as the user.  Because 

NFS treats security as an afterthought it is ever more important to avoid storing 

credentials in scripts and to secure the handling of the credentials requested by an 

interpretive language script and returned from a secure credential vault (Kher & Kim, 

2005). 

Two areas of concern that are easily addressed, but often are ignored are the 

securing of backup media such as tapes and other portable devices often stored off-site 

for disaster recovery purposes and the disposal of storage devices that are no longer 

needed (Fendler, 2004).  You can have the greatest and most secure file system in the 

world to protect interpretive language scripts with hard-coded application-to-application 

credentials, but it will all be for naught if someone were to harvest the credentials from a 

backup tape.  This is easily addressed by encrypting backup tapes.  However, only the 

newer tape devices such as LTO4, LTO5 and LTO6 (Linear Tape-Open) tape drives 

support hardware encryption ("Encryption Technology for HP StorageWorks LTO 

Ultrium Tape Drives," 2010).  Software encryption is often slow, cumbersome and not 

practical in larger installations.  Tape backup encryption is expensive and is generally not 

an option available to smaller less well-to-do organizations.  Although encryption of tape 
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backups is highly recommended it is best to not have the credentials hard-coded in the 

scripts that are stored on the backup media. 

The second concern is the disposal of storage devices that are no longer needed.  

This is more a matter of policy than a scientific concern.  All discarded storage devices 

should be wiped clean with a fairly inexpensive NSA certified degaussing device.  Secure 

disposal can also be accomplished by hiring a shredding company who will certify the 

destruction of the media.  Again, major regulated companies adhere closely to policies 

that require this.  It is the smaller, less prominent organizations or organizations that are 

not regulated or audited that are either not aware of or cannot afford to enact this policy.  

The risk could be greatly mitigated if the credentials were not hard-coded into the 

software to begin with. 

The practice of storing application credentials in cleartext in the application code, 

although frowned upon by standards bodies and internal auditing guidelines, has long 

been widely accepted as an unavoidable risk of doing business.  It is deemed to be fully 

acceptable and is a common practice among IT professionals world-wide (Chumash & 

Yao, 2009).  Chumash and Yao (2009) tell us that there is no framework available today 

that protects sensitive information from insider attacks and allows for the safe execution 

of interpretive scripts.  Furthermore, they tell us that due to the interpretive nature of the 

scripts it is impossible to protect sensitive information contained in the scripts such as 

application-to-application connection credentials.  Their approach to addressing this risk 

is one of reducing the impact of such insider attacks by focusing on early detection of 

data loss.  While it is always prudent to adopt the measures suggested by Chumash and 
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Yao, it is rather too resigned to defeat to state as emphatically as they have that it is 

impossible to reduce the risk further than that which is known and understood today. 

In part, accepting that application-to-application credentials cannot be protected 

stems from a lack of conceptual and practical security training for software developers 

("Making Security a Business Priority," 2008; Said et al., 2009).  Acceptance is also 

encouraged due to a void of functional alternatives coupled with the over-reliance on 

segregation of duties (SoD) as the primary risk mitigation methodology (Lieberman, 

2010; Singleton, 2002).  In a broad generalized sense, SoD is the concept of having more 

than one person required to complete a task.  It is alternatively called separation of duties 

and specifically within the context of IT operations it is defined as separating the 

development community from the production processing environment and limiting access 

to just those who need access to support the production environment. 

The International Organization for Standardization’s (ISO) standard on information 

technology and security techniques, ISO/IEC 27001:2005, section 11.03.01, specifies that 

no hard-coded credentials should be allowed in any automated logon process, yet no 

insight is offered as to how one would go about securing an unattended batch process 

script (ISO, 2005).  The Payment Card Industry’s (PCI) Data Security Standard, section 

8.5.16, accepts hard-coded passwords as an acceptable risk, but requires that the 

production environment protect the credentials against unauthorized use (PCI, 2009).  

This is virtually impossible if one considers that production computer systems and 

associated database management systems require real-time maintenance and support from 

system, application and database administrators who have the privileged access necessary 

to carry out their duties and also view the production script source code. 
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It is a significant when one considers the absence of warnings and the lack of 

research surrounding the hardcoding of credentials and/or the handling of those being 

returned from password vaults.  In their 1,175-page definitive guide to software security 

assessments, Dowd, McDonald and Schuh (2007) made no mention of hard-coding 

credentials in software or the risk of exploitation of credentials when returned from a 

password vault.  Another example of the absence of this issue in secure programming 

guidelines can be found in the Guimaraes, Murray and Austin (2007) paper on 

developing secure database programming courseware.  Not a single mention of hard-

coded credentials or the risk of exploiting credentials returned from a password vault can 

be found.  George and Valeva (2006) identify the lack of application-to-application 

security and defensive programming techniques in undergraduate curriculum as a root 

cause for it being ignored in professional software development shops.  This is further 

evident in Yang’s paper (2009) suggesting methods for teaching database security and 

auditing which present the entire realm of application security in terms of SQL injection 

attacks and never once mention access control or the protection of connection credentials 

as a cross-cutting concern. 

In their paper on database application security Said, Guimaraes, Maamar, and 

Jololian (2009) state that a lack of academic literature on database application security 

led them to develop courseware to educate developers, yet they still fail to mention the 

hard-coding of DBMS access credentials as a real security risk.  Because academia has 

not recognized the protection of application-to-application credentials in interpretive 

scripts as a serious security risk, undergraduate and graduate courseware is sorely lacking 

in this area (Ge & Zdonik, 2007).  It is not hard to understand why graduating students 
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who become researchers tend to ignore areas of research in which they have been given 

no educational foundation.  Furthermore, those graduating students who go on to careers 

in software development do not consider the protection of credentials in the design of 

their programs. 

The Information Technology General Controls (ITGC), in section 404 of the 

Sarbanes-Oxley Act of 2002 (SOX), requires restricted access and SoD to reduce the risk 

of fraud through unauthorized data manipulation ("Sarbanes-Oxley section 404: A Guide 

for Management by Internal Controls Practitioners," 2008).  SoD has long been thought 

of as the cornerstone of data protection (Mattsson, 2008).  Mattsson suggests that the only 

way to address this risk is to combine SoD with data encryption at the database source.  

Encrypting the data and separating the security administration function from that of the 

developer/administrator thereby protects the sensitive data from database administrator 

attack.  However, he later admits that even with these precautions the data is at risk to an 

attack from rogue administrators and developers who insert malicious code into the 

interpretive scripts and capture the returned data after its decryption. 

In the context of this discussion, segregation of duties means that the development 

community is segregated from the production processing environment (Adaikkappan, 

2009).  This is additionally supported by CoBiT (Control Objectives for Information and 

Related Technology), a standard published by ISACA (Information Systems Audit and 

Control Association), which has achieved pervasive usage as a guideline for SOX section 

404 compliance.  Specifically, CoBiT sections AI 3.4 and AI 7.4 require the separation of 

developers from the production environment (ISACA, 2007). 
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SoD is the number one means for prevention of fraud and abuse in computer and 

application security.  It is widely adopted in business, industry and government, and is 

the primary remediation focus in almost all audit findings (Gligor, 1998; Jianfeng, 2009; 

Mattsson, 2008).  One area where the SoD process breaks down is in the nature of 

modern software development.  In the past almost all computer programs were written in 

a language that required compiling before execution to convert program source code from 

a human-readable form to binary code that is readable and understood by the computer’s 

operating system.  Because binary program code is not human-readable and not easily 

modified, it fits well within the SoD scenario.  Most software today is written in some 

form of interpretive scripting language such as Shell, Perl, JavaScript or BeanShell.  

These programs, called scripts, are human-readable and are essentially compiled at 

execution time.  Application connection credentials are often stored within the script’s 

code lines, thus opening up critical application access credentials for viewing by anyone 

who has read-access to the scripts (Lieberman, 2010).  Gligor found that even with strong 

encryption policies in place and a mature access control framework implemented, it is 

virtually impossible to prevent the insertion of malicious code into an application that 

would allow unauthorized persons access to sensitive data.  He concludes that to be 

effective, new administrative methods and stronger tools need to be developed that offer 

significant support for SoD policies (Gligor, 1998). 

SoD effectiveness relies heavily on the detection of the fraud itself and is only as 

effective as the incentive program that encourages employee fraud reporting and the 

detection of fraudulent acts through follow-up audits.  SoD’s level of effectiveness as a 

preventive measure is high in areas of general application usage.  It is less than effective 
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when dealing with persons who have high level access rights or super-user privileges.  

Although implementing SoD in the overall application security framework is a sound 

practice, it does little to address the risks and issues arising from modern development 

and application support practices.  Unfortunately it is most commonly relied upon as the 

end-all solution for protecting application-to-application credentials. 

Jerbi, Hadar, Gates and Grebenev (2008) note the impact of insider attacks on a 

company’s compliance with federal regulatory laws such as SOX and the Health 

Insurance Portability and Accountability Act (HIPAA).  To address this concern they 

introduce the concept of least privilege access as a way to control administrator and 

application support personnel access to critical files, scripts and programs.  Although this 

concept does restrict access by unauthorized administrators, Jerbi, Hadar, Gates and 

Grebenev’s solution does nothing more than audit access by authorized administrators 

and application support personnel to scripts and programs containing hard-coded 

credentials.  In addition, their solution does not address malicious code embedded in 

scripts and programs prior to the migration of the software from development to 

production. 

Not securing hard-coded passwords stored in cleartext in scripts and programs as 

they migrate from development to production places a company’s production systems at 

risk.  Databases and other data stores become vulnerable to access by any and every 

developer that has had access to source code residing on development systems whether 

production system access is segregated or not (Woodbury, 2005).  This seemingly puts 

the company in severe jeopardy of violating SOX and HIPAA requirements.  Hicks, 

Rueda, St.Clair, Jaeger and McDaniel (2007) expand on the least privilege access model 
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by incorporating a multi-level security framework to control and restrict credential use.  

Their proposal is built upon three security models: the Type Enforcement (TE) model, the 

Role-Based Access Control (RBAC) model and the Multi-Level Security (MLS) model.  

This framework, based on the Mandatory Access Control theory, requires that all subjects 

and objects be identified and marked.  All security-sensitive operations are checked at 

runtime against a security policy to determine whether the operation should be allowed.  

This is again a sound policy; however, it does not address whether or not a file accessed 

by a qualified system administrator is for legitimate or illegitimate purposes.  

Auditors have long cautioned against hard-coding credentials in scripts, but never 

seem to offer viable alternatives beyond separation of duties.  The CPA Journal article on 

securing software (Rechtman, 2009) relies heavily on code reviews as the only sure way 

to secure software against exploits and misuse by closing security gaps before 

deployment.  The author strongly discourages hard-coding critical values into the scripts 

and programs, but totally misses the risk of hard-coding credentials.  The article also 

ignores the risk of software tampering after deployment.  Martin points out that SoD 

weakens significantly unless used in conjunction with a strong Security Information and 

Event Management system (SIEM) to track and capture suspicious system activity (A. 

Martin, 2008).  A truly efficient SEIM requires a hardened OS, such as Trusted Solaris, 

Trusted BSD or Security Enhanced Linux (SELinux), which is not economically practical 

or supportable in the average batch processing environment. 

In their consideration and acceptance of the cleartext hard-coding of application 

credentials many auditing agencies and standards bodies recommend auditing the use of 

the credentials themselves as a method to mitigate the risk presented by this practice.  For 
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instance the audit guidelines published by the Institute of Internal Auditing (IIA) accepts 

that application-to-application connection credentials held within the software are 

necessary and recommends that the use of those credentials be monitored for possible 

misuse (Bresz, Renshaw, Rozek, & White, 2007).  This seems to be a quite reactionary 

approach that is solely dependent upon the depth and chronological sensitivity of the 

audit log monitoring that takes place in the targeted firm.  To be truly effective the 

monitoring must be real-time and intelligent.  The only way to provide real-time 

intelligent monitoring is via a fully-automated log-scanning tool that can correlate 

activities across all monitored systems.  These types of monitoring systems are complex, 

expensive and require an entire staff to maintain.  In most cases they are prohibitive to all 

but the largest operations.  Anything other than real-time monitoring is at best an after-

the-fact approach that relies on the firm’s security personnel to intercept the attacker 

before the data leaves the premises or before any malicious damage reaches the point of 

non-repair.  It is a hit-or-miss approach at best. 

There are numerous commercial products available that attempt to address the 

cross-cutting concerns of secure enterprise credential management.  All products 

reviewed claim to secure application-to-application connection credentials used within 

programs and interpretive scripts.  These products are generally referred to as secure 

password repositories or password vault software products.  Although their feature sets 

vary greatly, they all have the same essential methodology.  The products store enterprise 

passwords in a secure client-server back-end database with a front-end password broker 

process through which remote agents can request and retrieve a password from the vault.  

Communication between broker and remote agent is generally encrypted with agents 
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caching requested passwords locally thereby reducing the load on the broker.  

Applications requesting a password are authenticated by the agent prior to passing the 

request onto the broker.  There are varying degrees and methods of application-

authentication used to verify the identity of the requesting application.  These 

authentication schemes differ with each vendor’s product, but all provide a similar 

method to vet the application prior to returning the requested credentials. 

The e-DMZ’ Password Auto Repository (PAR) technical product overview 

("Application Password Management Module," 2009) states: 

e-DMZ Security’s Application Password Management (APM), part of the TPAM 

Suite of privileged user and access control solutions, provides a solution to replace 

embedded passwords that are hard-coded in scripts, procedures and programs with simple 

CLI/API calls. Often overlooked, embedded passwords create back-door access accounts 

to target systems and applications that can easily be exploited. Replacing these hard-

coded passwords with programmatic calls that dynamically retrieve the account 

credential removes this often overlooked exposure. 

An analysis of the company’s product literature and a provided white paper 

("Managing Embedded Application Passwords with Password Auto Repository™ 

(PAR)," 2009) shows that the product offering protects the password up to the point 

where it is returned to the requesting application.  The product has no facility available to 

secure and protect the password after it is returned to the application.  Although this is a 

step in the right direction it falls way short of addressing the risk presented by rogue 

programmers and administrators who could embed logic bombs in the code to harvest the 

returned password. 
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The Password Manager Pro (PMP) User Guide ("Password Management API for 

Application-to-Application Password Management," 2009) makes the following claim: 

“Any application or script can query PMP and retrieve passwords to connect with other 

applications or databases, eliminating hard-coded passwords.”  No facility is provided to 

address concerns with handling the password after it is returned to the application.  This 

product does include a facility to change the password after each use, which the company 

touts as a method for securing the password it returns.  However, this falls down when 

you consider that the password could be hijacked and exploited between the time the 

password is returned from the vault and the time the password is changed.  When asked, 

the company’s technical representative admitted that there was no known solution to 

addressing the insider threat posed by compromised code exploiting the returned 

password. 

The Cyber-Ark Application Identity Management (AIM) implementation guide 

("Application Identity Management Implementation Guide," 2009) states: 

Application credentials are often stored in embedded form in the application 

code, or in a configuration file, usually in cleartext that is visible to a large 

audience. This challenge identifies a security gap and significant risk, often 

captured by auditors, where these sensitive database and application ID passwords 

are widely known and accessible to developers, help desk engineers, etc. 

This product boasts a patented password vault, a robust authentication process for 

password requestors and a highly-available, locally cached agent-based architecture that 

affords a well thought-out password protection scheme.  The company further claims that 

by removing hard-coded passwords from application code and configuration files you can 
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make “them invisible to developers and support staff.”  When questioned, a Cyber-Ark 

technical support engineer reluctantly admitted that their product cannot address the 

insider threat posed by compromised code exploiting the returned password.  They 

suggested that the passwords used by applications be changed every few hours as a 

means of mitigating this concern.  However, a password can be compromised and an 

illicit connection be made to a data store within seconds of a legitimate password request 

being made to the vault and that password being returned to the application.  This 

suggested solution can be deemed weak at best. 

A white paper from Cloakware regarding their Password Authority (PA) password 

management software suite ("Cloakware Password Authority™," 2009) boasts that “Your 

unattended servers no longer need hard-coded credentials to access other servers.”  It 

further boasts “It helps you meet your compliance requirements by eliminating shared 

and hard-coded passwords,…”  Cloakware’s product offering has a secure password vault 

backend, a local agent that caches passwords for high availability and a large assortment 

of API’s by which applications can request and receive passwords. 

Cloakware’s literature does not claim to solve the entire problem of password 

exploitation.  In a question and answer session Cloakware’s Chief Technologist Robert 

Grapes admitted that their product only “...helps to prevent developers or administrators 

from having unmonitored access to production systems.”  As with the other password 

vault technology products, Cloakware’s product offerings do not protect a legitimately 

requested and returned password from being captured and exploited once it is returned to 

the requesting application. 
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In 1999-2000 the Cloakware Corporation applied for and was granted a Canadian 

patent describing an invention in which a series of one-way hashed passwords are stored 

both in the remote resource and in the application requesting access.  With each 

successive login attempt the accessing program sends the previous password in the series 

(Johnson, Gu, & Chow, 1999).  This is a very unique approach in that it uses an 

unattended two-factor authentication scheme to authenticate the application requesting 

access.  Both the resource and the requestor need to know what the current password is 

and what the previous one was.  This prevents man-in-the-middle and replay attacks from 

capturing the password and reusing it.  While, this solution protects the transmission of 

the credentials it does not protect the housing of the credentials in the program itself.  

Granted this patent award is almost ten years old, an eternity in the context of computer 

science, but it is worth examining to show that since the patent was awarded there has 

been no significant progress made toward addressing the issue of handling and protecting 

credentials in the application-to-application authentication process. 

In their 2008 patent application Adams, Grapes, Gu, Mehan and Rong (2008), 

describe their invention as a method by which unattended software applications can 

request access to shared resources.  This is noted in paragraph 0069, claim #5 

commenting on claim #1, where they describe the process as returning resource 

credentials to the requesting application for use in establishing a connection to said 

resource.  As well thought-out as this invention is it does not address issues concerning 

what the application does with the credentials after they are surrendered to the control of 

the application.  As with the previously-explored solutions, the returned credentials are 

exposed to insider attacks by a rogue programmer who could embed password capture 
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logic into his/her programs during the development cycle and now resides in the 

production processing environment. 

Sade and Adar’s (2008) patent application addresses the issue of insider attacks on 

credentials returned to requesting applications.  The authors note that no one to date has 

effectively addressed the risk of exploitation from capturing a returned password and 

relaying it to an awaiting accomplice to use for illicit access to a remote data store.  Sade 

and Adar propose a method by which the transmission of the credentials to the remote 

application or data store is intercepted and the password replaced with one extracted from 

a password vault, assuming the requesting application is fully vetted and authenticated to 

access the vault and the remote application/data store.  Their patent application describes 

the invention as an interception module that performs intercepting methods such as 

application hooking, monitoring and intercepting network-packets, altering byte-code and 

altering operating-system drivers.  They define application hooking as intercepting calls 

to APIs and/or modifying the API behavior. 

The Sade and Adar (2008) solution, at first blush, seems quite attractive as it 

requires no modification to the requesting application code, does not use any hard-coded 

passwords placed in the code by the developers and is not subject to insider attacks in the 

form of embedded exploitive code placed in the application to trap and transmit the 

requested credentials.  It is essentially a white hat, man-in-the-middle approach to solving 

the problem at hand.  It seems that this approach would work well in situations where the 

network packets are not encrypted themselves or transmitted via SSL or TLS protocols.  

In addition, a firm understanding of each network protocol used by each individual 

vendor would be required to accomplish this.  Intercepting the network packets also 



35 

 

assumes the interception modules can overcome the deployed environment’s man-in-the-

middle defenses. 

The byte-code (binary) modification of system APIs and kernel driver code can be a 

slippery slope in which one can easily render an application, operating system or even the 

entire computer processing environment inoperable.  Furthermore, tampering with APIs 

and kernel drivers, whether good-intentioned or not, introduces legal issues regarding 

software tampering and software licensing considerations.  Lastly, the modification of the 

binary code for APIs and system kernel modules could possibly void associated support 

contracts and can cause concerns regarding system stability while running mission-

critical batch processes.  On the surface this seems like a great idea, but in the real world 

where down-time is costly, system stability is king and white hat hacking is frowned 

upon, this solution isn’t very palatable.  It does, however, demonstrate the focus of 

present-day research and the relevance of protecting passwords from insider attacks. 
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Chapter 3 

Methodology 

Overview 

The work presented here developed a method by which application-to-application 

connection credentials are better protected from various forms of attack.  A framework 

was developed that adopts concepts learned from source code obfuscation research used 

in protecting programs from reverse engineering.  Source code obfuscation is gaining an 

ever-growing level of importance in the secure software arena, affording both source 

code and binary protection in areas such as Intellectual Property (IP) and Digital Rights 

Management (DRM) (Giacobazzi, Jones, & Mastroeni, 2012).  The goal of source code 

obfuscation is to transform and obscure the program variables and the codebase to such a 

point where it becomes unintelligible to both automated and human reverse engineering 

efforts (Majumdar, Drape, & Thomborson, 2007; Sosonkin, Naumovich, & Memon, 

2003). 

Reverse engineering efforts focus primarily on transforming binary objects into 

human readable source code which can then be used for illicit purposes such as copyright 

infringement or security bypassing.  The problem addressed in this research focuses on 

code lines that are already in human readable form.  Therefore, source code obfuscation 

in a pure sense is not applicable in this research.  However, the basic principles and 

concepts derived from source code obfuscation research can be adapted and used as a 

foundation for this work.  The framework established addresses the problem of securing 

application-to-application credentials such that an interpretive language script, one 
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written in Perl for instance, can securely call a subroutine that establishes a connection to 

a data store or secondary application.  During this process the credentials used to 

establish the connection is obfuscated, thereby reducing the risk of capture and 

exploitation. 

A developmental research methodology was used to create a framework for 

application-to-application credential obfuscation.  This framework was built upon the 

following concepts; the first being the disguising and obscuring of variables that hold the 

credentials being returned from a password vault.  Obscuring storage variable names and 

breaking them up into multiple smaller variables will promote the obscurity of the 

variables and further reduce the risk of exploit. 

Because Perl is a programming language that supports object-oriented 

programming, the second concept utilized an aspect in which the pointcut handled the 

password vault call, the reception of the returned password and the opening of the 

application connection.  This takes place in the advice woven into the application 

connection open function call at runtime.  The basis for this methodology is the 

obfuscation of the credentials handling to an area of program execution that is outside the 

program code accessible by the programmer and anyone else with access to the script 

code.  This abstraction also increased the obscurity of the credentials to debugger attacks 

and memory scan attacks. 

In preparation for developing the attack vector workload, and facilitating the 

development of the above framework, a batch processing environment similar to a typical 

small business was utilized.  It consisted of a mix of computers running the three most 

prominent operating systems in use representing a typical batch processing environment.  



38 

 

They are Windows 7, Solaris 10 and Linux.  All machines used in the research were 

networked together.  A complete listing of hardware and software used in this research, 

including a network topography diagram, is available in Appendix B. 

Attack Vector Taxonomy 

Over the past three decades there have been numerous lists and taxonomies 

published to categorize vulnerabilities and attacks.  Unfortunately, the degree of 

complexity and sophistication of current day attacks and vulnerability exploits renders 

these lists and taxonomies inadequate (Weber, Karger, & Paradkar, 2005).  Within the 

context of this research the term vulnerability can be defined as a means whereby a 

hostile entity can successfully violate a system’s security.  We can also define an attack 

as the use of a tool or technique with which an attacker will attempt to detect and exploit 

a vulnerability to capture a password used in an interpretive script. 

Hansman and Hunt (2005) published a paper reviewing the various taxonomies 

used to describe network and computer attacks.  This paper reviewed early-published 

taxonomies including Bishop’s 1995 vulnerability taxonomy, Howard’s 1998 taxonomy,  

Lough’s 2001 taxonomy and that which was published by the OASIS web application 

security council.  Hansman and Hunt found that these taxonomies were too general in 

nature and weren’t all capable of adequately classifying attacks.  They proposed an 

alternative taxonomy for classifying attacks.  To illustrate this taxonomy shortcoming one 

can look at the attack patterns classified in the CAPEC (Common Attack Pattern 

Enumeration and Classification) database.  Of the 920 attack vectors classified under the 

Methods of Attack category only one sub-category deals with exploitation of privilege 
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attacks and none address credential capture attacks ("CAPEC-1000: Mechanism of 

Attack," 2011). 

The Hansman and Hunt taxonomy utilizes four dimensions for high-level attack 

classification; each of which can be broken down into levels or components which further 

granulizes the categorization.  The first dimension categorizes the attack vector, the 

second dimension categorizes attack target, the third categorizes the vulnerability and the 

fourth categorizes the attack payload (Hansman & Hunt, 2005). 

Their approach was attractive for use in this research as it allowed for attack 

categorization without specific external attack vectors or an attack vectors that are 

considered trivial.  Attacks perpetrated by system administrators who already have 

legitimate access to the system tend to trivialize the attack vector.  To illustrate the 

display of levels within a dimension, levels will be shown in the format of (level  level 

2 …level N).  Password attacks has been chosen as the first dimension’s level one 

category and exploiting implementation as the level two category, thus the first dimension 

is displayed as (Password attacks  exploiting implementation). 

The second dimension addresses the target of the attack.  In this case the target is 

the interpretive script either containing the credentials or requesting them from a 

password vault.  Therefore, (Software  application  server  interpretive script) 

seems appropriate. 

The third dimension addresses the vulnerabilities the attack exploits.  These are 

generally tied to vulnerabilities listed in the Common Vulnerabilities and Exposures 

(CVE) database.  However, the use of the CVE database is not appropriate for our 

purposes because CVE entries are specifically tied to vulnerabilities with published 
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software programs, packages and applications.  This research is focused on a 

programming concept and practice with scripts developed to demonstrate the concept and 

not a specific published application.  Hansman and Hunt provide for such a case by 

allowing the use of Howard and Longstaff’s (1998) vulnerability in design classification 

which defines the design of the program as perfectly implemented but flawed. 

The fourth dimension addresses the attack payload which in this case is simply the 

capturing of the password.  The Hansman and Hunt category selected is Disclosure of 

Information. 

Dimension Level 1 Level 2 Level 3 Level 4 

One password attacks 
exploiting 
implementation     

Two software application server 
interpretive 
script 

Three 
vulnerability in 
design 

simple attack 
logic bomb attack 
debugger attack     

Four 
Disclosure of 
Information    

Table 1 Attack Classification Matrix 

Attack Vectors Employed 

The desired attack vector payload is to capture the credentials being used by the 

interpretive language scripts.  This was accomplished using two attack vector methods 

and four attacks under those methods.  The first method is a called a Man-At-The-End 

attack (MATE).  This type of attack is generally defined as an adversary gaining an 

advantage by violating the software  under their control (Collberg, 2011).  Tampering 

attacks and reverse-engineering attacks are the two most common forms of MATE 

attacks (Falcarin, Collberg, Atallah, & Jabubowski, 2011). 
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For the purposes of this research the MATE defined tampering attack was used in 

the first attack vector method.  The two MATE tampering attack vectors employed were 

a probe attack and a logic bomb attack.  A probe attack is one in which an adversary with 

privileged access examines and probes software looking for low hanging fruit such as 

embedded credentials within the code of the script (Falcarin et al., 2011).  There were 

two flavors of probe attack employed.  One used simple commands to examine the 

scripts, the second used a debugger to examine the code and it’s in memory variables 

during execution.  A logic bomb attack is an attack in which the code of the script is 

modified to relay the credentials to an adversary at run-time.  For this attack code was 

added to the script to pass the payload to standard output for capture. 

The second attack vector method that was used is a memory scan attack.  

Researchers have had quite a bit of success in retrieving encryption keys from active 

system memory.  Enck, Butler, Richardson, McDaniel and Smith (2008) found that in 

order for this attack vector to be successful the adversary must have physical privileged 

access to the machine on which the software is running as was the case in the research 

presented here.  However, this research differs from Enck, Butler, Richardson, McDaniel 

and Smith’s research in that the payload is not an encryption key, but a plaintext 

password.  Hargraves and Chivers (2008) report that several researchers have had great 

success in retrieving plaintext passwords using the same attack vector.  Bauer (2009) also 

reports on  the success of rootkits in scanning memory and gaining access the privileged 

information. 

The attacks that were used to evaluate the pre-and post-research exploitability of the 

test scripts are broken down below.  Each attack was performed using a privileged 
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account (‘root’ for Unix/Linux and ‘administrator’ for Windows).  The privileged 

account and commands used varied depending of the operating system.  The attacks were 

carried out against two scripts that performed a simple task; connect to an RDBMS and 

perform a simple query in a loop of 100 iterations and print the data returned.  One script 

utilized hard-coded credentials and the second utilized credentials returned from a 

password vault. 

(Vulnerability in design  simple attack) 

Simple operating system-specific commands were used on each operating system 

(Solaris, Linux and Windows) to capture the password.  Success of the attack was 

measured by the ability to capture the password and then by the degree of difficulty of a 

successful attack.  This test was performed on a script that used a hard-coded password 

and a script that requested a password from a password vault. 

The following commands were employed to extract the password from the scripts at 

rest: 

Windows 

• type – This command prints the contents of the script to standard output (the 

screen).  The script code was examined looking for occurrences of password 

embedding or calls to a password vault.  The examinations like this may 

yield additional areas to investigate such as other scripts that are called from 

the target script.  Example command: 

C:\Users\Gary> type perlscript.pl 

• find – This command searched the targeted script for occurrences of the 

specified token and printed them to standard output (the screen).  Variations 
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on the word ‘password’ were searched for in the script.  Example command: 

C:\Users\Gary> find :password: C:\Users\Gary\perlscript.pl 

Unix/Linux 

• cat – This command prints the contents of the script to standard output (the 

screen).  The script code was examined looking for occurrences of password 

embedding or calls to a password vault.  The examinations like this may 

yield additional areas to investigate such as other scripts that are called from 

the target script.  Example command: 

#: cat perlscript.pl 

• grep – This command searched the targeted script for occurrences of the 

supplied token and prints them to standard output (the screen).  Variations 

on the word ‘password’ were searched for in the script.  Example command: 

#: grep –i password perlscript.pl 

In the above example the –i option makes the search case insensitive. 

(Vulnerability in design  logic bomb attack) 

Logic was embedded in the script to capture and distribute the password during the 

execution of the script.  This test was performed on scripts that requested a password 

from a password vault.  The exact nature of the code that was added to the script 

depended on the code structure of the script itself.  Generally, passwords returned to a 

requesting script are stored in a localized variable for future use.  The contents of that 

variable were written to standard output.  Alternatively, the contents of the password 

variable can be sent to Standard Error or emailed out.  However, those are really 

alternative methods of distribution after the fact.  Therefore, writing the password to 
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Standard Out sufficed for this test.  Success of the attack was measured by the ability to 

capture the password, and then secondarily by the degree of difficulty in achieving the 

successful attack. 

The VI editor was used for this attack on all platforms.  On the windows platform 

the MKS VI editor version 8.5, build 1397 was used.  It is available from MKS, Inc. 

(www.mkssoftware.com).  On the Linux and Solaris platform the VI editor included with 

the release of the O/S was used. 

(Vulnerability in design  debugger attack) 

A process debugger was used to step through the execution of the script in an 

attempt to capture the password during script execution.  “Ptkdb is a free/open source 

debugger for Perl with graphical user interface (GUI) based on Perk/Tk.” (Page & 

Marinov, 2007)  Because it is specifically built for Perl, it is highly portable and able to 

run on Solaris, Linux and Windows 7.  Being able to use the same debugger across 

platforms allowed for a more consistent platform independent test scenario. 

This test used the Perl/Tk debugger, ptkdb version 1.231, to explore the script as it 

executed.  The entire execution of the script was manually stepped through and all 

internal and external variables were examined looking for the possible storage of a 

password.  At each step all sub-functions were stepped into and their variables examined.  

Drilling down continued until the lowest executing sub-function has been reached.  

Success of the attack was measured by the ability to capture the password and then by the 

degree of difficulty of a successful attack. 
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Figure 1 testScript.pl Function Exploration Example 

Windows 

•   The script was executed using the following syntax: 

C:\Strawberry\Perl\Bin> perl –d:ptkdb testScript.pl. 

 
Figure 2 Typical Windows ptkdb Session Window 

Unix/Linux 

•   The script was executed using the following syntax: 

#: perl –d:ptkdb testScript.pl. 
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Figure 3 Typical Solaris/Linux ptkdb Session Window 

(Vulnerability in design  memory dump attack) 

This attack attempted to extract the password from a dump of system memory 

during script execution.  Methods and commands used varied depending on the operating 

system the script was running on.  Success of the attack was measured by the ability to 

capture the password and then by the degree of difficulty of the successful attack.  The 

following steps were used for each operating system: 

Windows 

Several tools from different manufacturers were used in conjunction to generate and 

search a memory dump (see Appendix B).  The following commands will be used to 

create and explore the Windows memory dump: 
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• As administrator, using the Microsoft Sysinternals LiveKD kernel debugger, a 

memory dump of the system’s memory was generated during the execution of the 

targeted Perl Script.  The following syntax was used: 

0: KD> .dump –f C:\memory.dmp 

• The following is an example of a typical simple parsing of the memory dump 

searching for a ‘Password’ string: 

C:\> type memory.dmp | strings | grep –i ‘password = ‘ 

Unix/Linux 

The following commands were used to create and explore the Unix/Linux memory 

dump: 

• As root, using the standard Unix/Linux dd command, a memory dump of the 

system’s memory was generated during the execution of the targeted Perl Script.  

The following syntax will be used: 

# dd if=/dev/mem of=/memory.dmp 

• The following is an example of typical command syntax for a simple parsing of a 

memory dump searching for a ‘Password’ string: 

# cat /memory.dmp | strings | grep –i ‘password = ‘ 

Password Obfuscation Design Method 

Because Aspect code can be housed outside of the targeted program and called 

transparently during execution a higher level of obscurity can be achieved, further 

reducing the risk of memory scan attacks.  A higher level of obscurity, resulting in a 

lower level of risk, was achieved by implementing concerns that utilize the Composition 

Filter (CF) model.  The CF model is a modular extension to the conventional object-
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based model of which Perl subscribes.  Filters define enhancements to messages sent and 

received by objects (Filman, Elrad, Clarke, & Aksit, 2005). 

Consider a Perl script that calls a module that opens a connection to a remote data 

source such as an RDBMS.  The module received messages containing information 

needed to affect the desired end result, which is an established connection to the remote 

data source.  The credentials needed to authenticate the connection are generally passed 

to the called module from the calling script. 

Figure 4 Typical Database Connection Scenario 
 
Figure 5 illustrates the proposed filter and how the pointcut intercepts the 

connection credentials, makes the password vault request and subsequently modifies the 

message with the correct credentials before passing it on to the RDBMS connection 

module.  By enhancing the message in this manner a level of abstraction is introduced 

that obfuscates the handling of the credentials.  This is accomplished in part because the 

code for the aspect does not reside in the program code nor is it placed in the program 

codebase by the developers who wrote the program.  The Aspect will be located in the 

function library and loaded at program execution time. 
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At no time are the credentials returned to the program or handled in any manner by 

the script code that was created by the program creator.  Because there is no code in the 

script itself that touches the credentials the level of obfuscation is high and the risk of a 

successful attack is diminished greatly.  

Figure 5 Connection Process with Composition Filter Enhancement 

Baseline Attack Vector Payload 

The initial baseline demonstrates the exploitability of the credentials stored in the 

interactive scripts as well as those scripts that use the Cloakware Password Authority 

product.  The security and strength of the Cloakware product was not evaluated, as it was 

used simply as a transport for returning the password to the application.  These 

interpretive Perl scripts typify a common batch processing environment in which scripts 

run unattended, connect to a database server and perform standard database-related tasks 

such as selecting, inserting and deleting data from tables under database control.  Typical 

database servers require password authentication from accessing scripts.  Common to 

batch processing environments are a mix of computers with disparate operating systems.  

It is also significant to note that attack vectors vary with operating systems.  Therefore, 
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computers running Windows, Linux and Solaris were used to emulate a typical batch 

processing environment allowing a complete and robust test environment.  Vulnerability 

testing was conducted on all platforms and operating systems listed above.  All 

discovered vulnerabilities and exploits were fully documented and are reproducible. 

The Perl scripting language was chosen as the programing language for this 

research.  It is platform agnostic, and by far, the most popular interpretive scripting 

language in use today for batch processing and web scripting (Sheppard, 2000).  Several 

interpretive Perl scripts were developed that log into a database server and perform 

queries against several tables containing test data.  These were not elaborate or complex 

scripts, but ones that simply demonstrated a connection to a database server using an ID 

and password to authenticate in a manner most typical to client/server architecture based 

processing environments.  A commercial password vault product was used to store and 

return passwords to these programs.  The Password Authority product from Cloakware 

was used to house and return a password upon request.  Cloakware, a subsidiary of the 

Xceedium, Inc. was petitioned and has graciously granted this author a one year software 

license for their product use in this research (see Appendix A).   Cloakware agents were 

installed on all test machines to facilitate automated requesting and receipt of passwords. 

Two scripts were used for the creation of baseline testing.  Each script initialized a 

connection to a remote data source (RDBMS) and performed a simple database query.  

The first script had the connection credentials hardcoded into the script.  The second 

script is a bit more complex in that it did not have the credentials hardcoded into it, but 

relied on requesting the credentials from the password vault.  It then passed the 

credentials on to the connection module.  See Appendix C for a listing of each script. 
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Quantifying Testing Results 

As introduced in the “Dissertation Goal” section of Chapter 1, Kepner and Tregoe’s 

Weighted Decision Analysis Matrix theory was used to quantify the testing results and 

measure the delta between the baseline and post-research results.  The required matrix 

consists of an array presenting pre-and post-research tests on the vertical axis.  The 

horizontal axis represents a list of attacks that were performed against the test scripts 

attempting to mine the password used in the scripts.  Each Attack Vector was weighted 

(W) from one to ten to indicate the degree of difficulty as evaluated against all other 

exploits attempted.  The score or degree of success for each attack (S) was presented in 

the vector (xy coordinates) of the pre-or post-research test and the attack.  The weighted 

score (W x S) was calculated as the product of the attack weight and the degree of 

success of the attack (the score).  The rightmost column contains the sum of weighted 

scores for the pre-and post-research testing.  The delta between the total weighted score 

of the pre-and post-test results indicates the success or failure the method in reducing the 

risk of password exploit. 

 
Figure 6 Sample Risk Analysis Matrix 

 
Evaluation of the attack success (the score) was first be based on whether or not the 

attempt to capture the password was in fact successful.  A failed attack would 

automatically generate a score of zero.  A successful attack is defined as the capture of 

the password.  Once successful, an attack was then evaluated on the degree of difficulty 

Weight (W): 0 Weight (W): 0 Weight (W): 0 Weight (W): 0
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
Simple Script 0 0 0 0 0 0 0 0 0

Passwd Vault Script 0 0 0 0 0 0 0 0 0
 Risk FactorTotals 0 0 0 0 0

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Aspect Modified

Probe Attack Logic Bomb Attack Debugger Attack Memory Scan Attack
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in capturing the password.  Each successful attack was evaluated on a scale of one to ten 

and then considered in determining the total score for that attack vector. 

Assessing the degree of difficulty of an attack (W) is a process of evaluating the 

degree of technical knowledge and expertise necessary to carry out the attack along with 

the effort necessary. (Hongyu, Hu, Huang, Wang, & Chen, 2011)  Byres, Franz, and 

Miller (2004) also point out that risk is an expression of the likelihood that a treat can 

exploit a payload, and that the likelihood of the attack success is directly related to the 

technical skill level of the attacker.  They break down attack difficulty into four levels; 

trivial, moderate, difficult and unlikely. 

Zaobin, Tang, Wu, and Varadharajan (2007) break down attack difficulty into a 

descending scale of five levels with level five being very hard, hard, moderate, easy and 

level one being very easy.  The Verizon Risk Team ("2012 Data Breach Investigations 

Report," 2012) investigators define four levels of attack difficulty as very low – no 

special skills needed, low - basic skills needed, moderate – skilled techniques required 

and high – advanced skills required. 

For the purposes of this research, attack difficulty (W) is defined as the required 

skill level of the attacker as influenced by the likelihood of the success of the attack.  The 

likelihood of attack success is directly correlated to the effort required of the attacker to 

achieve the payload.  For instance, a debugger attack requires a higher level of attacker 

skill than a memory scan attack.  However, the memory scan attack requires a much 

greater effort to achieve success than the debugger attack.  Because of the effort involved, 

the memory scan attack has a much lower return on investment than that of the debugger 
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attack.  Therefore, the debugger attack is deemed to have a lower degree of difficulty 

than the memory scan attack 

Ranking and rating the difficulty of attack arguably involves a degree of 

subjectivity ("2012 Data Breach Investigations Report," 2012).  Such was the case in 

determining the degree of attack difficulty for each of the four attacks considered in this 

research.  The degree of difficulty was assessed on two planes.  The first being the skill 

level required for the attack and second the effort involved in effecting the attack.  Each 

plane was rated on a scale of one to three, whereas one was the lowest and three the 

highest ranking.  Table two represents how the attack difficulty value for each attack was 

determined. 

 
  Skill Level Effort Difficulty 

(W) 
Probe Attack low low 10 

Logic Bomb Attack low moderately 
low 

9 

Debugger Attack moderate moderately 
low 

8 

Memory Scan Attack moderately 
low 

very high 4 

Table 2 Attack Difficulty Matrix 

Resource Requirements 

A small processing environment was setup that is representative of a typical 

client/server batch processing environment.  A networked environment was assembled 

consisting of two commercial relational database managers (RDBMS), a commercial 

password vault and a mix of computers that represent the three major batch processing 

operating systems; Linux, Solaris and Windows.  Xceedium’s Cloakware Password 
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Authority was chosen for use in this research.  Appendix A contains the formal request 

and permission to use the Cloakware product.  Appendix B contains a detailed list of 

hardware and software that was used and a network topography diagram. 

It should be noted that although not explicitly pertinent to the research, certain 

indirectly pertinent equipment is itemized in the list of resources.  Equipment such as 

UPS power equipment, NAS storage devices and a tape backup server are germane to 

protecting the research environment and allowing for restoration of critical work should 

something untoward happen such as a power outage, hardware failure or an accidental 

deletion of critical files. 
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Chapter 4 

Results 

Introduction 

In this chapter the results of the credential obfuscation research will be presented.  

The first part will describe the establishment of a risk level baseline against which the 

degree of success of the credential obfuscation method will be judged.  The baseline is 

presented in the form of a set of risk analysis matrices as described in chapter three.  

Throughout the rest of this work the initial activity will be referred to as ‘Baseline’ and 

the post baseline activity will be referred to as ‘Aspect Modified’.  It is appropriately 

named because the code lines used to form the baseline scores were modified to utilize an 

aspect as the foundation of the credentials obfuscation method. 

Attack vector baselines were established using two Perl scripts written specifically 

for this work and tested on three different platforms, Windows 7, Linux and Solaris 10.  

Each script established a connection to an RDBMS and performed a simple query in a 

loop of 100 iterations.  In most cases it was not necessary to run the script through all 100 

iterations to accomplish the targeted attack.  Scripts running on Windows 7 and Linux 

connected to a MySQL RDBMS and scripts running on Solaris connected to an Oracle 

RDMBS.  The only difference between scripts that were run on Windows and Linux and 

the scripts run on Solaris is name and IP address of the target RDBMS.  Otherwise all 

scripts and Perl modules are identical.  The brand of the target RDBMS was deemed 

insignificant to the work and research being performed and was chosen simply for ease of 
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use.  The method for connecting to the target RDBMS, the Perl DBI module, is germane 

to this work and was identical through all three platforms tested. 

The first script utilized hard-coded credentials to connect to the RDBMS.  The 

second script utilized credentials that were stored in a password vault and returned to the 

script via a subroutine called passwdLookup().  This subroutine wraps the password vault 

specific code into a single subroutine call.  The passwdLookup() subroutine is contained 

in the Perl module called NOVA::Passwd.pm.  It takes two arguments when called.  The 

first is the ID for which the password is required and the second is the name of the Server 

the ID will be used to connect to.  The two arguments are combined to form a single ID 

Alias and passed on to the password vault.  The use of an ID alias is unique to the brand 

of password vault used for this research.  Using the Perl module and the passwdLookup() 

subroutine allowed for the moving of redundant code from the test scripts to a library 

(Perl module).  A full code listing of all scripts can be found in Appendix C.  Wrapping 

the password vault product specific code in a Perl module is typical of the generally 

accepted method for using the Cloakware product from within a Perl script.  It is also 

essential to obfuscating the password retrieval method and aided in the creation of the 

aspect code in the second part of the research. 

Once baselines were established the Perl module was modified to include code that 

automatically invokes an aspect in which the pointcut handled the password vault call, 

the reception of the returned password and the opening of the application connection.  

This takes place in the advice woven into the application connection open function call at 

runtime.  The exact same attacks were carried out against the scripts using the aspect 

modified Perl module.  A second set of statistics was gathered and will be presented in 
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the form of a second set of risk analysis matrices.  Conclusions and analysis of success or 

failure will be drawn from the delta of the two sets of matrices. 

During the execution of the attacks, it was observed that the level of attack 

difficulty stayed static between platforms and did not vary.  The commands differed for 

each platform, but each attack vector, whether successful or not, met with an equal 

challenge on across platforms.  This did not change between the establishment of the 

baseline scores and the establishment of the aspect modified scores. 

Attack Vector Baselines 

It should be noted that all successful baseline attack vectors were given the highest 

score of ten points.  Attack vectors run against Aspect modified code were awarded 

scores based on the degree of difficulty in capturing the payload as compared to the 

baseline.  The baseline Risk Matrix was identical across all three platforms. 

 
Table 3 Baseline Risk Analysis Matrix for all platforms 

 
The probe attack vector was given a weight value of two as this is considered the 

easiest attack to carry out and required the least amount of skill.  The logic bomb attack 

vector was given a weight of three as it is marginally more difficult to carry out than the 

probe attack vector and required some minimal programming skills.  These two 

tampering attacks are considered most common forms of MATE attacks and therefore 

received the lowest weights (Falcarin et al., 2011). 

Weight (W): 2 Weight (W): 3 Weight (W): 4 Weight (W): 4
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
Simple Script 10 20 10 30 10 40 10 40 130

Passwd Vault Script 2 4 10 30 10 40 10 40 114
 Risk FactorTotals 72 180 240 240 732

Debugger Attack Memory Scan Attack

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Baseline

Probe Attack Logic Bomb Attack
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Of the two remaining attack 

vectors the debugger attack vector and 

the memory scan attack vector were 

each weighted at four.  Although the 

skill set required to effect the debugger 

attack vector is much greater than that 

which is required for the memory scan 

attack vector, it required less effort to 

carry out and is considered more 

common by MATE standards (Falcarin 

et al., 2011).  The memory scan attack vector received a weight of four because it 

required much more effort to carry out than the debugger attack vector, but also required 

much less skill.  It is quite time consuming and requires a brute-force effort to test strings 

found in memory to see if they are in fact the targeted payload being searched for.  There 

is a very low return on investment for the effort in this kind of attack. 

Probe Attack Vector 

The first attack performed was a simple probe attack (Vulnerability in design  

simple attack).  It consisted of printing the targeted script to standard output.  To facilitate 

this, the ‘type’ command was used against the script with the hard-coded credentials on 

the Windows 7 platform and the ‘cat’ command was used on the Linux and Solaris 10 

platforms.  Screenshots of each exploit can be found in Appendix D.  A baseline score of 

ten indicating a successful attack was awarded to this attack vector when run against the 

script with hard-coded credentials. 

Table 4 Attack Vector Weight to Skill Level Comparison 
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When the attack was run against the script utilizing the password vault for password 

storage no credentials were able to be captured.  However, the method for retrieving the 

password from the vault was easily discovered by the attacker during the attack.  Even 

though capturing the payload was not achieved, valuable information was gained that 

could aide attackers in developing an alternative plan to capture the payload.  A score of 

two was awarded for this attack because of the information gained during the attack.  

There was no variance between platforms for ease of execution or degree of difficulty in 

achieving success. 

Logic Bomb Attack Vector 

The second attack vector consisted of a logic bomb attack (Vulnerability in design 

 logic bomb attack).  Code was inserted into the script to print the credentials to 

standard output.  Screenshots of each exploit can be found in Appendix D.  A score of ten 

was awarded this attack vector when run against both of the scripts as capturing the 

payload was easily accomplished.  There was no variance between platforms for ease of 

execution or degree of difficulty in achieving success. 

Debugger Attack Vector 

The third attack vector (Vulnerability in design  debugger attack) utilized a 

debugger to capture the payload.  When run against the script with the hard-coded 

credentials the total time of attack was less than ten seconds as the password was 

displayed in the initial debugger screen without having to execution any commands.  

When run against the script that utilized the password vault a total time to payload 

capture was approximately 2 minutes average across all platforms and required a higher 

degree of skill than the probe and logic bomb attack vectors.  Screenshots of each exploit 
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can be found in Appendix D.  Simple debugger steps where used to accomplish the goal.  

The script was executed and stepped though one line of code at a time.  It was not 

necessary to step into any subroutines, declare any break points or use any complex 

debugger skills to achieve success. 

Memory Scan Attack Vector 

The fourth attack vector utilized a memory dump and subsequent scan to capture 

the payload.  It was observed that previous execution of the scripts seem to stay resident 

in the memory at the time of the dump.  This held true even after cold system reboots.  In 

order to accurately test attack vectors it was necessary to change the password used fairly 

often.  A second observation was that the memory dumps for the Windows 7 platform 

and the Linux platform where identical in structure, while the memory dump for the 

Solaris 10 platform was quite different.  The similarity of the Windows 7 and Linux 

memory dumps is most likely due to their both running same x86 based instruction set 

CPU architecture.  The Windows 7 machine ran on an Intel 2.76 GHz i7 CPU M620 and 

the Linux platform ran on a 2.10 GHz AMD Athlon 64 X2 4000 CPU.  The Solaris 10 

platform ran on a 1.34 GHz UltraSPARC IIIi CPU which is an entirely different chip 

instruction set CPU architecture. 

Searches for the string ‘$Passwd =’ on the Windows 7 and Linux memory dumps 

yielded immediate success when attacking script with hard-coded credentials.  When the 

same attack vector was run on the Solaris 10 platform the password was captured, but 

there were no easily identifiable characteristics associated with the password.  Therefore, 

on the Solaris 10 platform a lengthy brute-force method of testing strings to identify 

which one was the password would have had to have been performed.  This was similar 
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in manner to that which was necessary for attack vectors on all three platforms against 

the script utilizing the password vault. 

To put the brute-force identification method into proper perspective, the Windows 7 

platform had ~20 million strings to parse, the Linux platform had ~28 million strings to 

parse and the Solaris 10 platform had ~5 million strings to parse.  Curiously, all three 

platforms were configured for four GB of usable memory, yet the number of strings 

varied quite a bit.  This made it much more difficult to capture the payload when the 

attack vector was run against the script utilizing the password vault.  For the purposes of 

this research and because the password was known ahead of time, searches were 

performed looking for the known password and the brute-force method of identification 

was avoided.  This had no negative affect on the data collected nor did it affect the 

outcome of the testing.  Screenshots of memory scan attack vectors can be found in 

Appendix D.  This level of difficulty only supports the lower attack weight assigned to 

this attack vector. In the wild only the most skilled and patient attackers would be able to 

carry out such an undetected attack successfully. 

Findings 

To achieve the goal of this research several modifications were made to the test 

scripts and the associated Perl module used to establish the baseline statistics.  The first 

modification was to add the ‘use NOVA::Passwd;’ pragma to load the Perl module into 

the script with the hard-coded credentials when it was executed.  The initial thought was 

to remove the hard-coded credentials completely from the script after adding the pragma 

call.  However, the thinking changed during the testing of the script with the aspect firing.  
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A set of invalid hard-coded credentials were left in the script that served as an additional 

form of obfuscation, thus further masking the fact that an aspect is firing. 

Modifications were also made to the second script that used the password vault for 

credential management.  The password vault call code was removed and a set of hard-

coded credentials were added as a smokescreen.  When finished, both scripts were 

identical. 

Further changes were made to the Perl module.  A subroutine was added that fires 

off an aspect creating a filter.  The pointcut intercepted the connection credentials passed 

to the RDBMS connection call and made the appropriate password vault request 

subsequently modifying the message with the correct credentials before passing it on to 

the RDBMS connection module.  By enhancing the message in this manner a level of 

abstraction was successfully introduced that obfuscated the handling of the credentials. 

The following table shows an analysis of the attack vectors run against scripts using 

the aspect modified Perl module.  Each attack vector will be presented and analyzed in 

the following sections.  A comparison of the baseline and aspect modified results will be 

presented in the summary section of this chapter. 

 
Table 5 Aspect Modified Risk Analysis Matrix for all platforms 

Probe Attack Vector 

The probe attack vector presented the largest variances between baseline and aspect 

modified scores.  By utilizing an aspect to intercept the call to the DBI->connect 

Weight (W): 2 Weight (W): 3 Weight (W): 4 Weight (W): 4
(W x S) (W x S) (W x S) (W x S)

Score (S) Factor Score (S) Factor Score (S) Factor Score (S) Factor Risk Score
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
Simple Script 0 0 0 0 5 20 10 40 60

Passwd Vault Script 0 0 0 0 5 20 10 40 60
 Risk FactorTotals 0 0 120 240 360

Memory Scan Attack

Windows 7

Linux

Solaris 10

Research Risk Analysis Matrix
Aspect Modified

Probe Attack Logic Bomb Attack Debugger Attack
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subroutine and replace the supplied password with the real password the level of risk was 

reduced 100%.  All attempts to scan the script code to capture the password were 

unsuccessful. 

Simply converting the script to use the password vault thwarted the probe attack 

from capturing the payload.  However, using the aspect to retrieve the password allowed 

the script to present the setting of a fictitious password as a smokescreen and pass it as an 

argument to the DBI->connect subroutine.  This also further obscured the method of 

password retrieval from the attacker. 

 
Table 6 Probe Attack Risk Reduction Comparison 

Logic Bomb Attack Vector 

The logic bomb attack vector presented the largest variance between baseline and 

aspect modified scores.  By utilizing an aspect to intercept the call to the DBI->connect 

subroutine and replace the supplied password with the real password the level of risk was 

reduced 100%.  This attack vector modifies the script code to print out the hard-coded 

password, or in the case of the script retrieving the password from the password vault the 

returned password from the vault.   Only a simple edit on the script with the hard-coded 
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credentials to add the ‘use NOVA::Passwd;’ pragma was required to reduce the risk of 

attack by 100%. 

 
Table 7 Logic Bomb Attack Risk Reduction Comparison 

 
In addition to adding the ‘use NOVA::Passwd;’ pragma to the script that utilized 

the password vault, the code that made the password vault call was removed.  In its place 

the hard-coding of a password was added.  This gave the script a higher level obscurity 

masking the use of aspect to retrieve the credentials.  

Debugger Attack Vector 

The debugger attack vector successfully captured the payload in both the baseline 

tests and the aspect modified tests.  The level of difficulty and the skill required increased 

significantly when an aspect was introduced.  On average 50 plus debugger commands 

were needed to capture the payload when calling the aspect to return the password from 

the vault.  In comparison, no commands were needed for the hard-coded credentials 

script in the baseline test and three commands for the password vault baseline script. 
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Table 8 Debugger Attack Risk Reduction Comparison 

 
During the execution of the 50 plus debugger commands hundreds of lines of code 

required review and numerous subroutines had to be stepped into before the aspect code 

was discovered.  It was clear that prior knowledge of the code base aided the attack and 

mostly certainly reduced the steps involved in achieving success. 

Memory Scan Attack Vector 

Both the baseline and the aspect modified attack vectors stayed fairly static in their 

level of difficulty and their successful outcome.  An attacker would need a significant 

amount of time and the ability to test multiple candidate strings recovered from the dump 

against the target RDBMS before finding the payload.  It was observed that the use of 

passwords with lower levels of complexity was more easily captured than if the password 

had a high level of complexity.  Passwords made up of 12 to 16 characters in length 

utilizing uppercase, lowercase letters, numbers and punctuation characters significantly 

increased the level of difficulty in capturing the payload. 
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Capturing the payload was not impossible even with complex passwords, but highly 

impractical considering most locked down and secure RDBMS’s would have login 

failure monitoring in place to trap multiple failures from a single source.  Given time and 

the proper environment the payload can and would be captured.  The significant point 

here is that this attack vector was unaffected by the use of the aspect methodology 

proposed in the research. 

 
Table 9 Memory Scan Attack Risk Reduction Comparison 

Summary of Results 

Invoking an Aspect, whose code can be housed outside of the targeted program and 

called transparently during execution, significantly reduced the risk from attack.  Overall, 

this research was able to effect a 50.82% reduction in risk as measured across all attack 

vectors.  It was noted that changes in risk levels did not vary between platforms, but were 

surprisingly identical.  Basically, the operating made no difference and had no impact on 

the success or failure of the attack vector.  Baseline risk scores of 244 per platform were 

recorded prior to the introduction of the aspect method and then reduced to risk scores of 

120 once an aspect method was introduced, thus supporting and proving that the 
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obfuscation of the application to application connection credentials does in fact 

significantly reduce risk from attack.   The graph in Table 10 demonstrates the levels of 

risk comparatively. 

 
Table 10 Comparative Levels of Risk 

 
It was observed that a higher level of risk reduction was achieved in attack vectors 

that required lower levels of skill to effect.  Conversely, those attack vectors requiring 

high skill levels saw little or no reduction in risk.  A 100% reduction in risk for the probe 

and logic bomb attack vectors was achieved, while the debugger attack vector achieved a 

50% reduction in risk.  The memory scan attack vector saw no reduction in risk at all.  

This is in agreement with the higher skill level required for the attack. 
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Table 11 Reduction of Risk across Attack Vectors 

 
Introducing an aspect achieved a higher level of obscurity, resulting in a lower level 

of risk, by implementing concerns that utilized the Composition Filter (CF) model.  

Obfuscation of the program code and its variables proved to be impossible once stored in 

system memory.  The use of a debugger to examine program code during execution 

required a higher skill level and the proposed aspect method significantly obstructed the 

path to the variables, but was not able to block the attack from gaining the payload. 

 
Table 12 Comparative analysis of skill level to attack success 
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Table 12 demonstrates a comparative analysis of baseline to aspect modified attack 

vectors as influenced by the skill level of the attack.  As the skill level rises, the ability of 

the aspect method to reduce risk drops. 

Considering the two attack methods used in this research, the MATE attack method 

is by far the more widely used one by attackers (Falcarin et al., 2011), far more so than 

the memory scan attack method.  Further, if one considers only the MATE attack vectors, 

the Aspect Obfuscation Method reduced risk by 75.61%.  Therefore, it can be said 

without a shadow of doubt that the stated goal of this research has been achieved. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

Analysis of research efforts, auditing and regulatory agency standards and third 

party products tell us that most people knowledgeable in the field have conceded that the 

challenge of protecting application-to-application credentials used in interpretive scripts 

is unsolvable (Chinchani et al., 2005; Chumash & Yao, 2009; Shiflett, 2004; Shmueli et 

al., 2010; Yu et al., 2009).  While the research presented in this work does not claim to 

eliminate all risk of attack against application-to-application credentials it has proven that 

the risk can be reduced significantly. 

We are told that 17% of all insider attacks are perpetrated by attackers with 

privileged access (Randazzo et al., 2005).  The majority of those attackers do not possess 

advance programing or forensic analysis skills.  They are more crimes of opportunity 

than not.  Yet, very little literature or research has been dedicated to reducing the risk of 

attacks on application-to-application credentials contained in programs accessible by 

those attackers.  Instead, the focus of auditing and regulatory agencies and third party 

product researchers has been on mitigating the impact of successful attacks (Franqueira et 

al., 2010).  This author feels, and this dissertation proves out, that the effort would be 

better spent preventing the attack altogether. 

It has long been said that skilled thieves are unstoppable and most locks were 

designed to keep out honest people and the lessor skilled thieves.  The work presented 

here has proven that it is possible to block attack vectors from attackers with lessor 
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forensic skills and retard attacks from those with medium level skill sets.  The 

development of a framework to obfuscate application-to-application credentials used by 

interpretive Perl scripts is essential to raising the skill level necessary to successfully 

carry out an attack.  Raising the necessary skill level for successful attack vector directly 

lowers the risk of exploit. 

The key to reducing the risk of any attack is to reduce the attack surface.  The 

research presented here did just that.  When credentials are handled by the main body of 

program code, whether those credentials are hard-coded or returned from a password 

vault, they are exposed to attack from users with high levels of privilege on many planes.  

Figure 7 illustrates that by removing the handling of the credentials from the main body 

of code and relocating them to a secure library (the red circle) the attack surface is 

significantly reduced. 

 
Figure 7 Reducing the attack surface 
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The framework developed in this work has been able to reduce the risk of MATE 

attacks by as much as 75.61%.  It did, however, fail to reduce the risk from attacks 

perpetrated by highly skill attackers using a ‘low return on investment’ memory scan 

attack vector.  The framework developed in this research was able to effectively reduce 

low skill MATE attack vectors such as probe attacks and logic bomb attack by 100%.  

The third MATE attack vector explored, the debugger attack vector, had its risk reduced 

by 50%.  This overwhelmingly demonstrates the value of this framework in protecting 

application-to-application credentials from exploit. 

Implications 

This dissertation has made a number of contributions to the body of knowledge 

regarding the protection and handling of application-to-application credentials in 

interpretive scripts.  Most notable is moving the focus of security from post-attack 

mitigation to pre-attack preventive concepts.  Post-attack concepts deal with minimizing 

the impact and reducing loss from attack, whereas pre-attack concepts focus on attack 

avoidance and risk reduction. 

The framework developed from this research consists of the following 

recommendations: 

• Implement a secure password vault to manage all application-to-application 

credentials. 

• Wrap the password vault product specific code to retrieve those credentials 

from the vault in a subroutine stored in a secure library or Perl module.  The 

location of which must be secured and monitored real-time. 



73 

 

• Distract the attacker by planting incorrect hard-coded credentials in the 

script that for all intents and purposes would look like the normal 

connection credentials needed to establish the connection.  These false 

credentials could also be used as a honey pot to identify attacks in progress 

and possibly expose the identity of the attacker. 

• Invoke an aspect to intercept the subroutine call that establishes the 

connection to the remote data source from the interpretive script.  The aspect 

will then handle the password vault retrieval logic and replace the supplied 

credentials with the correct legitimate credentials needed for the connection.  

It is imperative that the aspect code be housed a library or Perl module, the 

location of which must be secured.  Looking at the code the attacker should 

not be able to determine that an aspect is being fired off. 

Securing application-to-application credentials in interpretive scripts can and will 

reduce financial impact of successful abuse of privilege attacks.  Instead of concentrating 

on limiting financial loss by focusing on post-attack security; organizations can now 

focus more on attack avoidance and risk reduction. 

Recommendations 

This dissertation is the first known to study the impact on risk reduction through the 

utilization of an aspect to obfuscate application-to-application credentials in a program 

written in an interpretive scripting language.  Aspects have long been used for such 

useful things as statistics gathering, measuring the number of subroutine calls, analyzing 

time spent in a subroutine and other crosscutting concerns that span subroutines within a 

program.  A framework addressing the concern of protecting application-to-application 
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credentials, be it crosscutting or not, provides a unique use of aspect technology in 

protecting those credentials. 

Several patent applications mentioned in this research have attempted to move the 

interception of application-to-application credentials into the network handling logic of 

the operating system.  For obvious reasons already mentioned this approach this is not a 

good idea.  However, additional research could and should be initiated into interfacing 

the fired-off aspect directly with the operating system to further lock down the credentials 

in transit from the vault. 

Additional studies could and should be initiated that explore the locking down and 

obfuscating of variables containing credentials in memory.  In the last year numerous 

papers have presented methods and approaches attempting to secure memory through 

encryption.  The work presented by Muller, Freiling, and Dewald (2011) shows promise 

but does not mesh well with the operating system and causes some issues.  Their future 

work is to focus on developing a special key register resident in the CPU.  They further 

hope to create a third party application that can perform the function on a Windows 

operating system. 

Chhabra, Rogers, Solihin, and Prvulovic (2011) present a hardware and software 

approach to full system security.  Their SecureME solution performs a process that they 

call memory cloaking.  This is quite promising as it allows for the contents of memory 

locations to be hidden from the OS while the OS is allowed to perform regular memory 

management functions.  The negative impact of their solution is that it could take as 

much as 13.5% of the system compute resources.  If they can refine this process to have 
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less of an impact on the operating system it would be an ideal complement for credential 

obfuscation via an aspect. 

Chhabra and Solihin (2011) present a simple memory encryption solution that is 

aimed at encrypting memory at the time of system shutdown.  This prevents memory 

scan attacks on non-volatile memory on systems that are at rest and not running.  Their 

approach has tremendous merit and warrants further exploration to see if it is feasible to 

implement full-time on a running system.  Enck et al. (2008) present a similar solution to 

Chhabra and Solihin, but it also only addresses non-volatile memory.  Because memory 

scan attacks proved successful even with the use of an aspect it is important for future 

research efforts to focus on and investigate methods to close this gap in security. 

Summary 

Government regulatory agencies and auditing standards bodies tell us we must 

never hard-code application-to-application credentials in our scripts.  They offer 

segregation of duties and the use of password vaults as the answer.  These agencies also 

require the implementation of strict guidelines for handling the inevitable data breaches.  

Researchers conclude there is no way to stop these breaches, universities do not go far 

enough in considering security concepts in their programming curriculum and 

programmers more often than not have no concept of what good secure programming 

methods are. 

Password vault vendors tout their products as a way to address the insecurity of 

application-to-application credentials in interpretive scripts.  When pressed they 

reluctantly admit that they have no control on what the script does with the credentials 
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once they are returned to the calling script.  It is no wonder that the number of successful 

insider attacks coming from attackers with privilege access is so high. 

The method and framework developed in this dissertation relocates the password 

retrieval code from the main body of program code, which is under the control of the 

programmer and accessible by the administrator, to the security of a centralized library 

module.  By obfuscating the handling of the credentials the administrator and the 

programmer lose their ability to access those credentials.  Without ready access to the 

credentials only the most skilled attackers can capture the attack vector payload. 

The goal of this dissertation was to prove that the firing of an aspect and the 

relocation of password retrieval code from the main body of the program could 

significantly reduce the risk of attack.  This concept was proven as a 50.82% overall 

reduction of risk was achieved.  A 75.61% reduction was achieved for attack vectors 

dealing directly with program code.  Lastly, this dissertation presented the foundation for 

secure programming methods that can be carried forward and enhanced with future 

research.  
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Appendix A 

Request for Cloakware License 

Figure 8 Cloakware License Request Email 
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Figure 9 Cloakware License Use Approval 
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Appendix B 

Hardware Inventory 

The following computer equipment will be required to complete this research. 

1. Backup Server 
a. HP Compaq 8200 SFF PC 

i. 1 x Quad Core  3.30 GHz Intel i3-2120 CPU 
ii. 12 GB memory 

iii. 500 GB internal hard drive 
iv. Windows 7 Professional 64 bit 
v. Roxio Retrospect V7.7 Backup Software 

vi. HP LT03 Tape Drive 
vii. Quantum DLT Tape Drive 

2. Client Servers 
a. Windows 7 

i. HP Elitebook 8440 Notebook PC 
1. 1 x Quad Core Intel 2.76 GHz  i7 CPU M620 
2. 4 GB memory 
3. 295 GB internal hard drive 
4. Windows 7 Professional 64 bit 
5. Strawberry Perl version 5.10.1.5 
6. The following base software was installed to facilitate 

the dumping of live memory: 
a. Microsoft Visual C++ 2010 lC64 

Redistributable, version 10.0.30319 
b. Microsoft Visual C++ 2010 x86 

Redistributable, version 10.0.30319 
c. Microsoft Windows Performance Toolkit, 

version 4.8.0 
d. Debugging Tools for Windows (x64), version 

612.2.633 
e. Microsoft .NET Framework4 Multi-Targeting 

Pack, version 4.0.3031g 
f. Application Verifier (lx64), version 4l1078 
g. Microsoft Visual C++ Compilers 2010 

Standard - enu - x64, version 10.0.30319 
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h. Microsoft Visual C++ Compilers 2010 
Standard - enu - x86, version10.0.30319 

i. Microsoft Windows SDK for Windows 7 
(7.1), version 71.7600.0.30514 

j. Microsoft Help Viewer 1.0, version 1.0.30319 
k. Microsoft .NET Framework 4 Extended, 

version 4.0.30319 
l. Microsoft Sysinternals Suite, version 02.24.11 
m. MKStool Kit, version 8 

b. Solaris 10 
i. Oracle/Sun SunFire V210 

1. 1 x 1.34 GHz UltraSPARC IIIi CPU  
2. 4 GB memory 
3. 2 x 146gb disk mirrored 
4. Solaris 10 
5. Oracle Database 11g, version 11.2.0.3 
6. Oracle Client 10g, 10.2.0.2 
7. Perl 5.10.0 
8. Cloakware Password Authority version 4.5.0 

c. openSUSE Linux 
i. Dell Inspiron 531 

1. 1 x 2.10 GHz AMD Athlon 64 X2 4000 CPU  
2. 4 GB Memory 
3. 250 GB hard drive 
4. openSUSE Linux version 10.3 
5. Perl 5.10.0 

3. Storage 
a. Western Digital ShareSpace 4TB NAS Storage Device 

4. Network Equipment 
a. Sonicwall TZ 100 Network Security Appliance providing DHCP 

services to the LAN and WLAN. 
b. 3 x Netgear GS608 8 Port Gigabit Desktop Switches 

5. Power Equipment 
a. 1 x APC SmartUPS 3000 
b. 1 x APC  Back-UPS X5 1500 
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Figure 10 Network Configuration Diagram 
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Appendix C 

Perl Scripts 

Baseline Scripts Used for Probe, Debugger and the Memory Scan Attacks 

Simple Script Used on Windows 7 and Linux 

This is a basic Perl script that has hard-coded application to application credentials.  

It connects to a MySql database server and performs a simple query in a loop of 100 

iterations. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
 
$User = 'gary'; 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User, 
$Passwd); 
die("Cannot open MySql Connection") if(!$dbh); 
 
my $sth = $dbh->prepare(" 
 SELECT col1, col2 
 FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
 print "\nLoop $i\n"; 
 $sth->execute(); 
 while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
  print "col1 = $col1, col2 = $col2\n"; 
 } 
 $sth->finish(); 
 sleep 1; 
} 
$dbh->disconnect(); 
exit; 
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Simple Script Used on Solaris 10 

This is a basic Perl script that has hard-coded application to application credentials.  

It connects to an Oracle database server and performs a simple query in a loop of 100 

iterations. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd); 
die("Cannot open Oracle Connection") if(!$dbh); 
my $sth = $dbh->prepare(" 
   SELECT col1, col2 
   FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
        print "\nLoop $i\n"; 
        $sth->execute(); 
        while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
                print "col1 = $col1, col2 = $col2\n"; 
        } 
        $sth->finish(); 
        sleep 1; 
} 
$dbh->disconnect(); 
exit; 
 

 

 

Password Vault Script Used on Windows 7 and Linux 

This is a essentially the same Perl script described above under “Simple Script Used 

on Windows 7 and Linux” except the hard-coded application to application credentials 

have been replaced with a call to a subroutine contained in the NOVA::Passwd Perl 



84 

 

module.  The new code is highlighted in red below.  It connects to a MySql database 

server and performs a simple query in a loop of 100 iterations. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
unless($Password = passwdLookup("gary","Linux-01")){ 
 die "Unable to retrieve password from Cloakware.\n"; 
} 
my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", "gary", 
$Password); 
die("Cannot open MySql Connection") if(!$dbh); 
 
my $sth = $dbh->prepare(" 
 SELECT col1, col2 
 FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
 print "\nLoop $i\n"; 
 $sth->execute(); 
 while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
  print "col1 = $col1, col2 = $col2\n"; 
 } 
 $sth->finish(); 
 sleep 1; 
} 
$dbh->disconnect(); 
exit; 

 

 

Password Vault Script Used on Solaris 10 

This is a essentially the same Perl script described above (Simple Script Used on 

Solaris 10) except the hard-coded application to application credentials have been 

replaced with a call to a subroutine contained in the NOVA::Passwd Perl module.  The 

new code is highlighted in red below.  It connects to a Oracle database server and 

performs a simple query in a loop of 100 iterations. 
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#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
unless($Password = passwdLookup("gary","ORPCLK01")){ 
        die "Unable to retrieve password from Cloakware.\n"; 
} 
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Password); 
die("Cannot open Oracle Connection") if(!$dbh); 
 
my $sth = $dbh->prepare(" 
        SELECT  col1, col2 
        FROM    novatab 
"); 
 
for($i=0;$i<100;$i++){ 
        print "\nLoop $i\n"; 
        $sth->execute(); 
        while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
                print "col1 = $col1, col2 = $col2\n"; 
        } 
        $sth->finish(); 
        sleep 1; 
} 
$dbh->disconnect(); 
exit; 

 

 

Perl Module Used for Password Vault Access on Windows 7 

The following is to code for a Perl module that houses a subroutine 

(passwdLookup) that performs a call the Cloakware Password Vault.  The subroutine 

expects two arguments to be passed to it.  The first is the ID for which the password is 

being requested. The second is the name of the server being connected to.  These two 

arguments are then combined into a singled string separated by an underscore to form an 

alias for the ID. The Cloakware Password Vault requires an alias to be passed to it for all 

password vault requests. 
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package NOVA::Passwd; 
 
our $VERSION = qw ($Revision: 1.0 $)[1]; 
use vars qw(@ISA @EXPORT); 
use Exporter; 
 
use lib "C:/cspm/cloakware/cspmclient/lib"; 
use CSPM_CLIENT; 
use Carp; 
 
@ISA = qw(Exporter); 
@EXPORT = qw(passwdLookup); 
 
sub passwdLookup{ 
        my $cwID = shift; 
        my $cwTarget = shift; 
 
        my $errorCode = { 
                400 => "Errorcode 400:Success", 
                401 => "Errorcode 401: Failed to authenticate with the “. 
                       “Password Authority service.", 
                402 => "Errorcode 402: Unable to establish connection with “. 
                       “client daemon.", 
                403 => "Errorcode 403: Not authorized (for client daemon).", 
                404 => "Errorcode 404: Unable to establish connection with “. 
                       “Password Authority Server.", 
                405 => "Errorcode 405: No data found for specified target “. 
                        “alias.", 
                406 => "Errorcode 406: Application error. See system log for “. 
                       “details.", 
                407 => "Errorcode 407: Invalid parameters specified.", 
                408 => "Errorcode 408: A system error occurred, problem with “. 
                       “the “. 
                       “client environment. Unable to retrieve environment “. 
                        “data.", 
                409 => "Errorcode 409: Unauthorized script name.", 
                410 => "Errorcode 410: Unauthorized execution path.", 
                411 => "Errorcode 411: Unauthorized execution user ID.", 
                412 => "Errorcode 412: Unauthorized request server.", 
                413 => "Errorcode 413: Client software version is “. 
                       “incompatible “. 
                       “with the server. ". 
                        "This version is no longer supported: upgrade the “. 
                        “Password Authority client software.", 
                414 => "Errorcode 414: DLL cannot locate exe. (Windows only)", 
                415 => "Errorcode 415: DLL internal error occurred. (Windows “. 
                       “only)", 
                419 => "Errorcode 419: Invalid target alias specified.", 
                441 => "Errorcode 441: Invalid file path specified.", 
                443 => "Errorcode 443: Client is initializing.", 
                445 => "Errorcode 445: Client is updating the encryption key.", 
                446 => "Errorcode 446: Authorization mapping validation “. 
                       “error. “. 
                       “Invalid execution path specified for request script.", 
                447 => "Errorcode 447: Authorization mapping validation “ 
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                       “error. “. 
                       “Invalid file path specified for request script.", 
                448 => "Errorcode 448: Authorization mapping validation “. 
                       “error. “. 
                       “Missing request script information.", 
                449 => "Errorcode 449: Authorization mapping validation “. 
                       “error. “. 
                       “Missing hash value for request script." 
        }; 
 
        if(!defined $cwID or !defined $cwTarget){ 
                return; 
        }else{ 
                my $cwAlias = $cwID . "_" . $cwTarget; 
                my ($cwAnswer, $cwCommand, @cwArray); 
 
                $cwCommand = qq{$GETCR $cwAlias true}; 
                $cwAnswer = `$cwCommand`; 
                @cwArray = split(/\s+/, $cwAnswer); 
                if($cwArray[0] ne "400"){ 
                        carp $errorCode->{$cwArray[0]}; 
                        return(undef); 
                }else{ 
                        return($cwArray[2]); 
                } 
        } 
} 
1: 
 
 

 

Perl Module Used for Password Vault Access on Linux and Solaris 10 

This is essentially the same Perl module described in “Perl Module Used for 

Password Vault Access on Windows 7” above with the exception of the Cloakware 

library location and the addition of the environment variables both highlighted in red 

below. 

package NOVA::Passwd; 
 
our $VERSION = qw ($Revision: 1.0 $)[1]; 
use vars qw(@ISA @EXPORT); 
use Exporter; 
 
use lib "/opt/cloakware/cspmclient/lib"; 
use CSPM_CLIENT; 
use Carp; 
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@ISA = qw(Exporter); 
@EXPORT = qw(passwdLookup); 
 
$ENV{'CSPM_CLIENT_HOME'} = "/opt/cloakware"; 
$ENV{'LD_LIBRARY_PATH'} = "/opt/cloakware/cspmclient/lib:”. 
                          “/opt/cloakware/cspmclient_thirdparty/java/bin"; 
$ENV{'CSPM_CLIENT_BIT_TYPE'} = "64"; 
 
sub passwdLookup{ 
        my $cwID = shift; 
        my $cwTarget = shift; 
 
        my $errorCode = { 
                400 => "Errorcode 400:Success", 
                401 => "Errorcode 401: Failed to authenticate with the “. 
                       “Password Authority service.", 
                402 => "Errorcode 402: Unable to establish connection with “. 
                       “client daemon.", 
                403 => "Errorcode 403: Not authorized (for client daemon).", 
                404 => "Errorcode 404: Unable to establish connection with “. 
                       “Password Authority Server.", 
                405 => "Errorcode 405: No data found for specified target “. 
                        “alias.", 
                406 => "Errorcode 406: Application error. See system log for “. 
                       “details.", 
                407 => "Errorcode 407: Invalid parameters specified.", 
                408 => "Errorcode 408: A system error occurred, problem with “. 
                       “the “. 
                       “client environment. Unable to retrieve environment “. 
                        “data.", 
                409 => "Errorcode 409: Unauthorized script name.", 
                410 => "Errorcode 410: Unauthorized execution path.", 
                411 => "Errorcode 411: Unauthorized execution user ID.", 
                412 => "Errorcode 412: Unauthorized request server.", 
                413 => "Errorcode 413: Client software version is “. 
                       “incompatible “. 
                       “with the server. ". 
                        "This version is no longer supported: upgrade the “. 
                        “Password Authority client software.", 
                414 => "Errorcode 414: DLL cannot locate exe. (Windows only)", 
                415 => "Errorcode 415: DLL internal error occurred. (Windows “. 
                       “only)", 
                419 => "Errorcode 419: Invalid target alias specified.", 
                441 => "Errorcode 441: Invalid file path specified.", 
                443 => "Errorcode 443: Client is initializing.", 
                445 => "Errorcode 445: Client is updating the encryption key.", 
                446 => "Errorcode 446: Authorization mapping validation “. 
                       “error. “. 
                       “Invalid execution path specified for request script.", 
                447 => "Errorcode 447: Authorization mapping validation “ 
                       “error. “. 
                       “Invalid file path specified for request script.", 
                448 => "Errorcode 448: Authorization mapping validation “. 
                       “error. “. 
                       “Missing request script information.", 
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                449 => "Errorcode 449: Authorization mapping validation “. 
                       “error. “. 
                       “Missing hash value for request script." 
                       “Missing hash value for request script." 
        }; 
 
        if(!defined $cwID or !defined $cwTarget){ 
                return; 
        }else{ 
                my $cwAlias = $cwID . "_" . $cwTarget; 
                my ($cwAnswer, $cwCommand, @cwArray); 
 
                $cwCommand = qq{$GETCR $cwAlias true}; 
                $cwAnswer = `$cwCommand`; 
                @cwArray = split(/\s+/, $cwAnswer); 
                if($cwArray[0] ne "400"){ 
                        carp $errorCode->{$cwArray[0]}; 
                        return(undef); 
                }else{ 
                        return($cwArray[2]); 
                } 
        } 
} 
1: 

 

Baseline Scripts Used for Logic Bomb Attack 

Script Used on Windows 7 and Linux 

The logic bomb attack consists of the addition of specific code to compromise the 

credentials contained or handled within the script.  The script described under “Simple 

Script Used on Windows 7 and Linux” was modified to print the credentials to standard 

out.  The code that was added to the script is highlighted below in red. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
 
$User = 'gary'; 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User, 
$Passwd); 
die("Cannot open MySql Connection") if(!$dbh); 
# 
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# Added logic bomb to print the password 
# 
print "$Passwd\n"; 
# 
# End logic bomb code 
# 
my $sth = $dbh->prepare(" 
 SELECT col1, col2 
 FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
 print "\nLoop $i\n"; 
 $sth->execute(); 
 while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
  print "col1 = $col1, col2 = $col2\n"; 
 } 
 $sth->finish(); 
 sleep 1; 
} 
$dbh->disconnect(); 
exit; 

 

 

Script Used on Solaris 10 

The logic bomb attack consists of the addition of specific code to compromise the 

credentials contained or handled within the script.  The script described under “Simple 

Script Used on Solaris 10” was modified to print the credentials to standard out.  The 

code that was added to the script is highlighted below in red. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd); 
die("Cannot open Oracle Connection") if(!$dbh); 
# 
# Added logic bomb to print the password 
# 
print "$Passwd\n"; 
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# 
# End logic bomb code 
# 
my $sth = $dbh->prepare(" 
  SELECT col1, col2 

FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
        print "\nLoop $i\n"; 
        $sth->execute(); 
        while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
                print "col1 = $col1, col2 = $col2\n"; 
        } 
        $sth->finish(); 
        sleep 1; 
} 
$dbh->disconnect(); 
exit; 

 

Aspect Modified Scripts Used for Probe, Debugger and the Memory Scan 

Attacks 

Simple Password Vault Script Used on Windows 7 and Linux 

This basic Perl script that has hard-coded application to application credentials was 

left as is except for the pragma call added to invoke the aspect shown in red below.    The 

call to DBI->connect is intercepted and the password parameter replaced with a password 

retrieved from the vault.  It connects to a MySql database server and performs a simple 

query in a loop of 100 iterations. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
$User = 'gary'; 
$Passwd = 'novaphd'; 
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my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User, 
$Passwd); 
die("Cannot open MySql Connection") if(!$dbh); 
 
my $sth = $dbh->prepare(" 
 SELECT col1, col2 
 FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
 print "\nLoop $i\n"; 
 $sth->execute(); 
 while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
  print "col1 = $col1, col2 = $col2\n"; 
 } 
 $sth->finish(); 
 sleep 1; 
} 
$dbh->disconnect(); 
exit; 
 

 

 

Simple Password vault Script Used on Solaris 10 

This is basic Perl script that has hard-coded application to application credentials 

left as is except for the pragma call added to invoke the aspect shown in red below.  It 

connects to a Oracle database server and performs a simple query in a loop of 100 

iterations. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd); 
die("Cannot open Oracle Connection") if(!$dbh); 
my $sth = $dbh->prepare(" 
  SELECT col1, col2 

FROM novatab 
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"); 
 
for($i=0;$i<100;$i++){ 
        print "\nLoop $i\n"; 
        $sth->execute(); 
        while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
                print "col1 = $col1, col2 = $col2\n"; 
        } 
        $sth->finish(); 
        sleep 1; 
} 
$dbh->disconnect(); 
exit; 
 
 

 

Aspect Modified Perl Module Used for Password Vault Access on 

Windows 7 

The following is to code for a Perl module that houses two subroutines that perform 

calls the Cloakware Password Vault.  The subroutine lookupPaswd() expects two 

arguments to be passed to it.  The first is the ID for which the password is being 

requested. The second is the name of the server being connected to.  These two 

arguments are then combined into a singled string separated by an underscore to form an 

alias for the ID. The Cloakware Password Vault requires an alias to be passed to it for all 

password vault requests. 

The second subroutine, passwdAspect() invokes an aspect to intercept calls to the 

DBI->connect subroutine and replaces the supplied password with one retrieved from the 

password vault.  The aspect is invoke automatically when the Perl module is loaded at 

execution time. 

package NOVA::Passwd; 
 
our $VERSION = qw ($Revision: 1.0 $)[1]; 
use vars qw(@ISA @EXPORT); 
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use Exporter; 
 
use lib "C:/cspm/cloakware/cspmclient/lib"; 
use CSPM_CLIENT; 
use Carp; 
 
@ISA = qw(Exporter); 
@EXPORT = qw(passwdLookup passwdAspect); 
 
sub passwdLookup{ 
        my $cwID = shift; 
        my $cwTarget = shift; 
 
        my $errorCode = { 
                400 => "Errorcode 400:Success", 
                401 => "Errorcode 401: Failed to authenticate with the “. 
                       “Password Authority service.", 
                402 => "Errorcode 402: Unable to establish connection with “. 
                       “client daemon.", 
                403 => "Errorcode 403: Not authorized (for client daemon).", 
                404 => "Errorcode 404: Unable to establish connection with “. 
                       “Password Authority Server.", 
                405 => "Errorcode 405: No data found for specified target “. 
                        “alias.", 
                406 => "Errorcode 406: Application error. See system log for “. 
                       “details.", 
                407 => "Errorcode 407: Invalid parameters specified.", 
                408 => "Errorcode 408: A system error occurred, problem with “. 
                       “the “. 
                       “client environment. Unable to retrieve environment “. 
                        “data.", 
                409 => "Errorcode 409: Unauthorized script name.", 
                410 => "Errorcode 410: Unauthorized execution path.", 
                411 => "Errorcode 411: Unauthorized execution user ID.", 
                412 => "Errorcode 412: Unauthorized request server.", 
                413 => "Errorcode 413: Client software version is “. 
                       “incompatible “. 
                       “with the server. ". 
                        "This version is no longer supported: upgrade the “. 
                        “Password Authority client software.", 
                414 => "Errorcode 414: DLL cannot locate exe. (Windows only)", 
                415 => "Errorcode 415: DLL internal error occurred. (Windows “. 
                       “only)", 
                419 => "Errorcode 419: Invalid target alias specified.", 
                441 => "Errorcode 441: Invalid file path specified.", 
                443 => "Errorcode 443: Client is initializing.", 
                445 => "Errorcode 445: Client is updating the encryption key.", 
                446 => "Errorcode 446: Authorization mapping validation “. 
                       “error. “. 
                       “Invalid execution path specified for request script.", 
                447 => "Errorcode 447: Authorization mapping validation “ 
                       “error. “. 
                       “Invalid file path specified for request script.", 
                448 => "Errorcode 448: Authorization mapping validation “. 
                       “error. “. 
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                       “Missing request script information.", 
                449 => "Errorcode 449: Authorization mapping validation “. 
                       “error. “. 
                       “Missing hash value for request script." 
        }; 
 
        if(!defined $cwID or !defined $cwTarget){ 
                return; 
        }else{ 
                my $cwAlias = $cwID . "_" . $cwTarget; 
                my ($cwAnswer, $cwCommand, @cwArray); 
 
                $cwCommand = qq{$GETCR $cwAlias true}; 
                $cwAnswer = `$cwCommand`; 
                @cwArray = split(/\s+/, $cwAnswer); 
                if($cwArray[0] ne "400"){ 
                        carp $errorCode->{$cwArray[0]}; 
                        return(undef); 
                }else{ 
                        return($cwArray[2]); 
                } 
        } 
} 
 
sub passwdAspect{ 
        before { 
                my $context = shift; 
                my ($cwTagert, $cwID, $cwPasswd); 
 
                my @params = $context->params; 
                $cwTarget = $params[1]; 
                $cwTarget =~ s/^.*=//; 
                $cwID = $params[2]; 
                unless($params[3] = passwdLookup($cwID,$cwTarget)){ 
                        print STDERR "\nThe passwd $cwID not found in 
Cloakware,”. 
                        “switching to passthrough mode\n"; 
                }else{ 
                        $context->params($params[0],$params[1],$params[2], 
                                  $params[3]); 
                } 
        } call ('DBI::connect'); 
} 
 
passwdAspect; 
1: 
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Aspect Modified Perl Module Used for Password Vault Access on Linux 

and Solaris 10 

This is essentially the same Perl module described in “Aspect Modified Perl 

Module Used for Password Vault Access on Windows 7” above with the exception of the 

Cloakware library location and the addition of the environment variables both highlighted 

in red below. 

package NOVA::Passwd; 
 
our $VERSION = qw ($Revision: 1.0 $)[1]; 
use vars qw(@ISA @EXPORT); 
use Exporter; 
 
use lib "/opt/cloakware/cspmclient/lib"; 
use CSPM_CLIENT; 
use Carp; 
 
@ISA = qw(Exporter); 
@EXPORT = qw(passwdLookup passwdAspect); 
 
$ENV{'CSPM_CLIENT_HOME'} = "/opt/cloakware"; 
$ENV{'LD_LIBRARY_PATH'} = "/opt/cloakware/cspmclient/lib:”. 
                          “/opt/cloakware/cspmclient_thirdparty/java/bin"; 
$ENV{'CSPM_CLIENT_BIT_TYPE'} = "64"; 
 
sub passwdLookup{ 
        my $cwID = shift; 
        my $cwTarget = shift; 
 
        my $errorCode = { 
                400 => "Errorcode 400:Success", 
                401 => "Errorcode 401: Failed to authenticate with the “. 
                       “Password Authority service.", 
                402 => "Errorcode 402: Unable to establish connection with “. 
                       “client daemon.", 
                403 => "Errorcode 403: Not authorized (for client daemon).", 
                404 => "Errorcode 404: Unable to establish connection with “. 
                       “Password Authority Server.", 
                405 => "Errorcode 405: No data found for specified target “. 
                        “alias.", 
                406 => "Errorcode 406: Application error. See system log for “. 
                       “details.", 
                407 => "Errorcode 407: Invalid parameters specified.", 
                408 => "Errorcode 408: A system error occurred, problem with “. 
                       “the “. 
                       “client environment. Unable to retrieve environment “. 
                        “data.", 
                409 => "Errorcode 409: Unauthorized script name.", 
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                410 => "Errorcode 410: Unauthorized execution path.", 
                411 => "Errorcode 411: Unauthorized execution user ID.", 
                412 => "Errorcode 412: Unauthorized request server.", 
                413 => "Errorcode 413: Client software version is “. 
                       “incompatible “. 
                       “with the server. ". 
                        "This version is no longer supported: upgrade the “. 
                        “Password Authority client software.", 
                414 => "Errorcode 414: DLL cannot locate exe. (Windows only)", 
                415 => "Errorcode 415: DLL internal error occurred. (Windows “. 
                       “only)", 
                419 => "Errorcode 419: Invalid target alias specified.", 
                441 => "Errorcode 441: Invalid file path specified.", 
                443 => "Errorcode 443: Client is initializing.", 
                445 => "Errorcode 445: Client is updating the encryption key.", 
                446 => "Errorcode 446: Authorization mapping validation “. 
                       “error. “. 
                       “Invalid execution path specified for request script.", 
                447 => "Errorcode 447: Authorization mapping validation “ 
                       “error. “. 
                       “Invalid file path specified for request script.", 
                448 => "Errorcode 448: Authorization mapping validation “. 
                       “error. “. 
                       “Missing request script information.", 
                449 => "Errorcode 449: Authorization mapping validation “. 
                       “error. “. 
        }; 
 
        if(!defined $cwID or !defined $cwTarget){ 
                return; 
        }else{ 
                my $cwAlias = $cwID . "_" . $cwTarget; 
                my ($cwAnswer, $cwCommand, @cwArray); 
 
                $cwCommand = qq{$GETCR $cwAlias true}; 
                $cwAnswer = `$cwCommand`; 
                @cwArray = split(/\s+/, $cwAnswer); 
                if($cwArray[0] ne "400"){ 
                        carp $errorCode->{$cwArray[0]}; 
                        return(undef); 
                }else{ 
                        return($cwArray[2]); 
                } 
        } 
} 
 
sub passwdAspect{ 
        before { 
                my $context = shift; 
                my ($cwTagert, $cwID, $cwPasswd); 
 
                my @params = $context->params; 
                $cwTarget = $params[1]; 
                $cwTarget =~ s/^.*=//; 
                $cwID = $params[2]; 
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                unless($params[3] = passwdLookup($cwID,$cwTarget)){ 
                        print STDERR "\nThe passwd $cwID not found in 
Cloakware,”. 
                        “switching to passthrough mode\n"; 
                }else{ 
                        $context->params($params[0],$params[1],$params[2], 
                                  $params[3]); 
                } 
        } call ('DBI::connect'); 
} 
 
passwdAspect; 
1: 
 

 

 

Aspect Modified Scripts Used for Logic Bomb Attack 

Script Used on Windows 7 and Linux 

The logic bomb attack consists of the addition of specific code to compromise the 

credentials contained or handled within the script.  The script described under “Simple 

Script Used on Windows 7 and Linux” was modified to print the credentials to standard 

out.  The code that was added to the script is highlighted below in red. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
 
$User = 'gary'; 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:mysql:database=Nova;host=Linux-01", $User, 
$Passwd); 
die("Cannot open MySql Connection") if(!$dbh); 
# 
# Added logic bomb to print the password 
# 
print "$Passwd\n"; 
# 
# End logic bomb code 
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# 
my $sth = $dbh->prepare(" 
 SELECT col1, col2 
 FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
 print "\nLoop $i\n"; 
 $sth->execute(); 
 while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
  print "col1 = $col1, col2 = $col2\n"; 
 } 
 $sth->finish(); 
 sleep 1; 
} 
$dbh->disconnect(); 
exit; 
 

 

 

Script Used on Solaris 10 

The logic bomb attack consists of the addition of specific code to compromise the 

credentials contained or handled within the script.  The script described under “Simple 

Script Used on Solaris 10” was modified to print the credentials to standard out.  The 

code that was added to the script is highlighted below in red. 

#!/usr/bin/perl 
 
use DBI; 
use locale; 
use NOVA::Passwd; 
 
 
$Passwd = 'novaphd'; 
 
my $dbh = DBI->connect("DBI:Oracle:ORPCLK01", "gary", $Passwd); 
die("Cannot open Oracle Connection") if(!$dbh); 
# 
# Added logic bomb to print the password 
# 
print "$Passwd\n"; 
# 
# End logic bomb code 
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# 
my $sth = $dbh->prepare(" 
  SELECT col1, col2 

FROM novatab 
"); 
 
for($i=0;$i<100;$i++){ 
        print "\nLoop $i\n"; 
        $sth->execute(); 
        while (my ($col1, $col2) =  $sth->fetchrow_array()){ 
                print "col1 = $col1, col2 = $col2\n"; 
        } 
        $sth->finish(); 
        sleep 1; 
} 
$dbh->disconnect(); 
exit; 
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Appendix D 

Attack Vector Screenshots 

Baseline Probe Attack Vector Screenshots 

 
Figure 11 Baseline Probe Attack #1 on Windows 7 
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Figure 12 Baseline Probe Attack #1 on Linux 
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Figure 13 Baseline Probe Attack #1 on Solaris 10 

 

The screenshot showed in figures 11, 12 and 13 show the test script running on all 

three platforms and being terminated after two iterations.  Then the probe attack was 

carried out against the script.  The payload of the probe attack vector is shown circled in 

red. 
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Figure 14 Probe Attack #2 on Windows 7 
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Figure 15 Probe Attack #2 on Linux 
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Figure 16 Probe Attack #2 on Solaris 10 

 
Figures 14, 15 and 16 show an attempted probe attack on the script utilizing the 

passwdLookup subroutine held in the NOVA::Passwd Perl module.  The probe attack 

vector was carried out on all three platforms and was not successful in capturing the 

payload. 
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Baseline Logic Bomb Attack Vector Screenshots 

 
Figure 17 Insertion of Logic Bomb code on Windows 7 
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Figure 18 Insertion of Logic Bomb code on Linux. 
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Figure 19 Insertion of Logic Bomb code on Solaris 10 

 
Figures 17, 18 and 19 show a successful logic bomb attack vector carried out on all 

three platforms.  The code encased in the red rectangle is the logic bomb code place in 

the script.  The payload form the logic bomb attack vector is circled in red. 
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Baseline Debugger Attack Vector Screenshots 

 
Figure 20 Debugger Attack run #1 on Windows 7 
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Figure 21 Debugger Attack run #1 on Linux 
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Figure 22 Debugger Attack run #1 on Solaris 10 

 
Figures 20, 21 and 22 show a successful debugger attack vector carried out on all 

three platforms against a simple Perl script with hard-coded credentials.  The payload is 

highlighted in the red circle. 
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Figure 23 Debugger Attack run #2 on Windows 7 
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Figure 24 Debugger Attack run #2 on Linux 
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Figure 25 Debugger Attack run #2 on Solaris 10 

 
Figures 23, 24 and 25 show a successful debugger attack vector carried out on all 

three platforms against a simple Perl script utilizing the password vault via the 

passwdLookup subroutine held in the NOVA::Passwd Perl module.  The payload is 

highlighted in the red circle. 
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Baseline Memory Scan Attack Vector Screenshots 

 
Figure 26 Generation of the memory on Windows 7 
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Figure 27 Memory scan attack vector #1 on Windows 7 

 

 
Figure 28 Generation of the memory on Linux 
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Figure 29 Memory scan attack vector #1 on Linux 
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Figure 30 Generation of the memory on Solaris 10 
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Figure 31 Memory scan attack vector #1 on Solaris 10 

 
Figures 26 through 31 show a successful memory scan attack vector carried out on 

all three platforms against a simple Perl script with hard-coded credentials.  The payload 

is highlighted in the red circles.  Figures 26, 28 and 30 show the generation of the 

memory dumps. 
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Figure 32 Memory scan attack vector #2 on Windows 7 
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Figure 33 Memory scan attack vector #2 on Linux 
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Figure 34 Memory scan attack vector #2 on Solaris 10 

 
Figures 32, 33 and 34 show a successful memory scan attack vector carried out on 

all three platforms against a simple Perl script utilizing the password vault via the 

passwdLookup subroutine held in the NOVA::Passwd Perl module.  The payload is 

highlighted in the red circle. 
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Aspect Modified Probe Attack Vector Screenshots 

 
Figure 35 Aspect Modified Probe Attack - Windows 7 
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Figure 36 Aspect Modified Probe Attack - Linux 
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Figure 37 Aspect Modified Probe Attack - Solaris 10 

 
Figures 35, 36 and 37 demonstrate a failed probe attack vector on the Windows 7, 

Linux ad Solaris 10 platforms.  The script avoids attack by activating and firing an aspect 

through the ‘use NOVA::Passwd;’ pragma (highlighted in the green circle) and 

obfuscates the real password by setting (highlighted in the red rectangle) and passing a 

phony password to the DBI->connect subroutine.  

Aspect Modified Logic Bomb Attack Vector Screenshots 

Figures 38, 39 and 40 demonstrate a failed logic bomb attack vector on the 

Windows 7, Linux ad Solaris 10 platforms.  The script avoids attack by activating and 
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firing an aspect through the ‘use NOVA::Passwd;’ pragma and obfuscates the real 

password by setting (highlighted in the red rectangle) and passing a phony password to 

the DBI->connect subroutine.   The attack payload is shown in the green circle and is 

broadcasting the wrong password. 

 
Figure 38 Aspect Modified Logic Bomb Attack - Windows 7 
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Figure 39 Aspect Modified Logic Bomb Attack - Linux 
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Figure 40 Aspect Modified Logic Bomb Attack - Solaris 10 
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Aspect Modified Debugger Attack Vector Screenshots 

 
Figure 41 Aspect Modified Logic Bomb Attack - Windows 7 
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Figure 42 Aspect Modified Logic Bomb Attack – Linux 
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Figure 43 Aspect Modified Logic Bomb Attack - Solaris 10 

 
Figures 41, 42 and 43 show a successful debugger attack vector run against all three 

platforms.  The payload is circled in red.  On average this attack took 50 debugger steps 

to accomplish. 
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Aspect Modified Memory Scan Attack Vector Screenshots 

 
Figure 44 Aspect Modified Memory Scan Attack - Windows 7 
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Figure 45 Aspect Modified Memory Scan Attack – Linux 
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Figure 46 Aspect Modified Memory Scan Attack - Solaris 10 

 
Figures 44, 45 and 46 show a successful memory scan attack run against all three 

platforms. 

  



136 

 

 

 

References 

2010 Financial Services Global Security Study. (2010). Deloitte Touche Tohmatsu. 

2012 Data Breach Investigations Report. (2012). from 
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-
report-2012_en_xg.pdf 

Adaikkappan, A. (2009). Application Security Controls:  An Audit Perspective. Journal 
Online, 6.  

Adams, G. D., Grapes, R., Gu, Y. X., Mehan, R. E. J., & Rong, J. J. (2008). 

Application Identity Management Implementation Guide. (2009). Retrieved from 
www.cyberark.com 

Application Password Management Module. (2009). Retrieved from http://www.e-
dmzsecurity.com/tpam_brochures.html 

Bauer, M. (2009). Anthony Lineberry on /dev/mem rootkits. Linux J., 2009(184), 5.  

Blackwell, C. (2009). A security architecture to protect against the insider threat from 
damage, fraud and theft. Paper presented at the Proceedings of the 5th Annual 
Workshop on Cyber Security and Information Intelligence Research: Cyber 
Security and Information Intelligence Challenges and Strategies, Oak Ridge, 
Tennessee.  

Boström, G. (2004). Database Encryption as an Aspect. Paper presented at the Workshop 
on AOSD Technology for Application-level Security, United Kingdon.  

Boyen, X. (2009). Hidden Credential Retrieval from a Reusable Password. Paper 
presented at the Proceedings of the 4th International Symposium on Information, 
Computer, and Communications Security, Sydney, Australia.  

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.cyberark.com/
http://www.e-dmzsecurity.com/tpam_brochures.html
http://www.e-dmzsecurity.com/tpam_brochures.html


137 

 

Brandel, M. (2009). Source Code Analysis Tools: How to Choose and Use Them. CSO. 
Retrieved from http://www.csoonline.com/article/print/477016 

Bresz, F., Renshaw, T., Rozek, J., & White, T. (2007). Global Technology Audit Guide 
Identity and Access Management   Retrieved from 
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-
guides/gtag/gtag9/  

Byres, E. J., Franz, M., & Miller, D. (2004). The Use of Attack Trees in Assessing 
Vulnerabilities in SCADA Systems. Paper presented at the International 
Infrastructure Survivability Workshop (IISW), Lisbon, Portugal.  

CAPEC-1000: Mechanism of Attack. (2011).   Retrieved January 15, 2012, 2012, from 
http://capec.mitre.org/data/graphs/1000.html 

Cappelli, D., Moore, A., Shimeall, T. J., & Trzeciak, R. (2009). Common Sense Guide to 
Prevention and Detection of Insider Threats. Carnegie Mellon University 
Retrieved from http://www.cert.org/archive/pdf/CSG-V3.pdf. 

Chen, B., Curtmola, R., Ateniese, G., & Burns, R. (2010). Remote data checking for 
network coding-based distributed storage systems. Paper presented at the 
Proceedings of the 2010 ACM workshop on Cloud computing security workshop, 
Chicago, Illinois, USA.  

Chhabra, S., Rogers, B., Solihin, Y., & Prvulovic, M. (2011). SecureME: a hardware-
software approach to full system security. Paper presented at the Proceedings of 
the international conference on Supercomputing, Tucson, Arizona, USA.  

Chhabra, S., & Solihin, Y. (2011). i-NVMM: a secure non-volatile main memory system 
with incremental encryption. SIGARCH Comput. Archit. News, 39(3), 177-188. 
doi: 10.1145/2024723.2000086 

Chinchani, R., Iyer, A., Ngo, H. Q., & Upadhyaya, S. (2005). Towards a Theory of 
Insider Threat Assessment. 

Chumash, T., & Yao, D. (2009). Detection and Prevention of Insider Threats in Database 
Driven Web Services. In E. Ferrari, N. Li, E. Bertino & Y. Karabulut (Eds.), Trust 
Management III (Vol. 300, pp. 117-132): Springer Boston. 

http://www.csoonline.com/article/print/477016
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-guides/gtag/gtag9/
http://www.theiia.org/guidance/standards-and-guidance/ippf/practice-guides/gtag/gtag9/
http://capec.mitre.org/data/graphs/1000.html
http://www.cert.org/archive/pdf/CSG-V3.pdf


138 

 

Cloakware Password Authority™. (2009). Retrieved from 
http://datacenter.cloakware.com/support/resources.php#whitepapers 

Collberg, C. (2011). Toward Digital Asset Protection, 26, 8-13. 

Dowd, M., McDonald, J., & Schuh, J. (2007). The Art of Software Security Assessment. 
Boston, MA: Addison-Wesley. 

Edge, C., & Mitropoulos, F. (2009). Aspectization of the Secure Communication Pattern 
for Data Integrity. Paper presented at the Association of Information Systems 
SIGSEC Workshop on Information Security & Privacy (WISP 2009), Phoenix, 
AZ.  

Enck, W., Butler, K., Richardson, T., Patrick, M., & Adam, S. (2008). Defending Against 
Attacks on Main Memory Persistence. 

Encryption Technology for HP StorageWorks LTO Ultrium Tape Drives. (2010). 
Hewlett-Packard Development Company, L.P. 

Englert, B., & Shah, P. (2009). On the design and implementation of a secure online 
password vault. Paper presented at the Proceedings of the 2009 International 
Conference on Hybrid Information Technology, Daejeon, Korea.  

Falcarin, P., Collberg, C., Atallah, M., & Jabubowski, M. (2011). Guest Editors' 
Introduction: Software Protection, 28, 24-27. 

Fendler, P. (2004). Securing varieties of file systems. Paper presented at the Proceedings 
of the 1st annual conference on Information security curriculum development, 
Kennesaw, Georgia.  

Filman, R. E., Elrad, T., Clarke, S., & Aksit, M. (2005). Aspect-Oriented Software 
Development: Addison-Wesley. 

Franqueira, V. N. L., Cleeff, A. v., Eck, P. v., & Wieringa, R. (2010). External Insider 
Threat: A Real Security Challenge in Enterprise Value Webs. 

Futcher, L., & Solms, R. v. (2008). Guidelines for secure software development. Paper 
presented at the Proceedings of the 2008 annual research conference of the South 

http://datacenter.cloakware.com/support/resources.php#whitepapers


139 

 

African Institute of Computer Scientists and Information Technologists on IT 
research in developing countries: riding the wave of technology, Wilderness, 
South Africa.  

Ge, T., & Zdonik, S. (2007). Answering aggregation queries in a secure system model. 
Paper presented at the Proceedings of the 33rd international conference on Very 
large data bases, Vienna, Austria.  

George, B., & Valeva, A. (2006). A database security course on a shoestring. Paper 
presented at the Proceedings of the 37th SIGCSE technical symposium on 
Computer science education, Houston, Texas, USA.  

Giacobazzi, R., Jones, N. D., & Mastroeni, I. (2012). Obfuscation by partial evaluation of 
distorted interpreters. Paper presented at the Proceedings of the ACM SIGPLAN 
2012 workshop on Partial evaluation and program manipulation, Philadelphia, 
Pennsylvania, USA.  

Gligor, V. D. (1998). On the Formal Definition of Separation-of-Duty Policies and their 
Composition. 

Guimaraes, M., Murray, M., & Austin, R. (2007). Incorporating database security 
courseware into a database security class. Paper presented at the Proceedings of 
the 4th annual conference on Information security curriculum development, 
Kennesaw, Georgia.  

Hansman, S., & Hunt, R. (2005). A taxonomy of network and computer attacks. 
Computers & Security, 24(1), 31-43. doi: 10.1016/j.cose.2004.06.011 

Hargreaves, C., & Chivers, H. (2008). Recovery of Encryption Keys from Memory Using 
a Linear Scan. 

Hicks, B., Rueda, S., St.Clair, L., Jaeger, T., & McDaniel, P. (2007). A logical 
specification and analysis for SELinux MLS policy. Paper presented at the 
Proceedings of the 12th ACM symposium on Access control models and 
technologies, Sophia Antipolis, France.  

Hongyu, G., Hu, J., Huang, T., Wang, J., & Chen, Y. (2011). Security Issues in Online 
Social Networks, 15, 56-63. 



140 

 

Howard, J. D., & Longstaff, T. A. (1998). A Common Language for Computer Security 
Incidents: Sandia National Laboratories. 

Insider threat study: illicit cyber activity in the banking and finance sector. (2004). from 
http://www.cert.org/archive/pdf/bankfin040820.pdf 

ISACA. (2007). COBIT (Objectives for Information and related Technology) (Vol. 
AI3.4, AI7.4): IT Governance Institute. 

ISO. (2005). ISO/IEC 27001:2005 Information technology -- security techniques -- 
information security management systems -- requirements: International 
Organization for Standards (ISO). 

Jaeger, T., & Tidswell, J. E. (2001). Practical safety in flexible access control models. 
ACM Trans. Inf. Syst. Secur., 4(2), 158-190. doi: 
http://doi.acm.org/10.1145/501963.501966 

Jerbi, A., Hadar, E., Gates, C., & Grebenev, D. (2008). An access control reference 
architecture. Paper presented at the Proceedings of the 2nd ACM workshop on 
Computer security architectures, Alexandria, Virginia, USA.  

Jianfeng, L. (2009). Dynamic Enforcement of Separation-of-Duty Policies. 

Johnson, H. J., Gu, Y., & Chow, S. T. (1999). CA Patent No. 2340742. C. I. P. Office. 

Kepner, C. H., & Tregoe, B. B. (1981). The Uses of Decision Analysis The New Rational 
Manager (pp. 103-105). Princeton, NJ: Princeton Research Press. 

Kher, V., & Kim, Y. (2005). Securing distributed storage: challenges, techniques, and 
systems. Paper presented at the Proceedings of the 2005 ACM workshop on 
Storage security and survivability, Fairfax, VA, USA.  

Kostiainen, K., Ekberg, J.-E., Asokan, N., & Rantala, A. (2009). On-board credentials 
with open provisioning. Paper presented at the Proceedings of the 4th 
International Symposium on Information, Computer, and Communications 
Security, Sydney, Australia.  

http://www.cert.org/archive/pdf/bankfin040820.pdf
http://doi.acm.org/10.1145/501963.501966


141 

 

Libes, D. (1990, June 1990). expect: Curing Those Uncontrollable Fits of Interaction. 
Paper presented at the 1990 USENIX Conference, Anaheim, CA. 

Libes, D. (1993). Kibitz - connecting multiple interactive programs together. Software - 
Practice and Experience, 23(5), 465-475.  

Libes, D. (1994a). Handling Passwords with Security and Reliability in Background 
Processes. Paper presented at the Eighth Systems Administration Conference, San 
Diego, CA. 

Libes, D. (1994b). X Wrappers for Non-Graphic Interactive Programs. Paper presented 
at the Xhibition 94,, San Diego, CA. 

Lieberman, G. (2010). A False Sense of Security Internal Auditor Online (June 12, 2010 
ed.): The Institute of Internal Auditors. Inc. 

Majumdar, A., Drape, S. J., & Thomborson, C. D. (2007). Slicing obfuscations: design, 
correctness, and evaluation. Paper presented at the Proceedings of the 2007 ACM 
workshop on Digital Rights Management, Alexandria, Virginia, USA.  

Making Security a Business Priority. (2008). ComputerWorld Hong Kong, 25(6), 7-9.  

Managing Embedded Application Passwords with Password Auto Repository™ (PAR). 
(2009). Retrieved from http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-
AppPasswordMgt_WP.pdf 

Martin, A. (2008). Define Segregation of Duties. USBanker, 118(12), 1.  

Martin, B., Brown, M., & Paller, A. (2009). 2009 CEW/SANS top 25 most dangerous 
programming errors. Common Weakness Enumeration (CWE), from 
http://cwe.mitre.org/top25/index.html 

Mattsson, U. T. (2008). How to Prevent Internal and External Attacks on Data - Securing 
the Enterprise Data Flow Against Advanced Attacks. SSRN eLibrary.  

Mavrikidis, J. J. (1996). Security issues in a networked UNIX and MVS/VM 
environment. SIGSAC Rev., 14(3), 2-8. doi: 
http://doi.acm.org/10.1145/236397.236399 

http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-AppPasswordMgt_WP.pdf
http://www.e-dmzsecurity.com/pdf/e-DMZ_PAR-AppPasswordMgt_WP.pdf
http://cwe.mitre.org/top25/index.html
http://doi.acm.org/10.1145/236397.236399


142 

 

Muller, T., Freiling, F. C., & Dewald, A. (2011). TRESOR runs encryption securely 
outside RAM. Paper presented at the Proceedings of the 20th USENIX conference 
on Security, San Francisco, CA.  

Nilsen, K. (2010). Keeping Fraud in the Cross Hairs. Journal of Accountancy, 209(6), 6.  

OWASP. (2007). The ten most critical web application security vulnerabilities: Open 
Web Application Security Project (OWASP). 

Page, A. E., & Marinov, S. (2007).   Retrieved January 22/2012, 2012, from 
http://ptkdb.sourceforge.net/about.html 

Password Management API for Application-to-Application Password Management. 
(2009). Retrieved from 
http://www.manageengine.com/products/passwordmanagerpro/help/index.html 

Payne, C. (2007). A cryptographic access control architecture secure against privileged 
attackers. Paper presented at the Proceedings of the 2007 ACM workshop on 
Computer security architecture, Fairfax, Virginia, USA.  

PCI. (2009). Payment Card Industry (PCI) Data Security Standard Requirements and 
Security Assessment Procedures (pp. 74): The Payment Card Industry Security 
Standards Council. 

Randazzo, M. R., Keeney, M., Kowalski, E., Cappelli, D., & Moore, A. (2005). Insider 
Threat Study: Illicit Cyber Activity in the Banking and Finance Sector (pp. 37). 

Rechtman, Y. (2009). Evaluating Software Risk as Part of a Financial Audit. The CPA 
Journal, 79(6), 4.  

Sade, Y., & Adar, R. (2008). US Patent No. 20080196101. 

Said, H. E., Guimaraes, M. A., Maamar, Z., & Jololian, L. (2009). Database and 
database application security. Paper presented at the Proceedings of the 14th 
annual ACM SIGCSE conference on Innovation and technology in computer 
science education, Paris, France.  

http://ptkdb.sourceforge.net/about.html
http://www.manageengine.com/products/passwordmanagerpro/help/index.html


143 

 

Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A Survey of Insider Attack Detection 
Research Insider Attack and Cyber Security (Vol. 39, pp. 69-90). 

Salerno, S. (2009). Criminal Injustice. Skeptic, 15(1), 8.  

 Sarbanes-Oxley section 404: A Guide for Management by Internal Controls 
Practitioners. (2008).   Retrieved from 
http://www.theiia.org/download.cfm?file=31866  

Sheppard, D. (2000). Beginner's Introduction to Perl  Retrieved March 10, 2012, 2012, 
from http://www.perl.com/pub/2000/10/begperl1.html 

Shiflett, C. (2004). Shared Hosting. php|architect, III. 

Shmueli, E., Vaisenberg, R., Elovici, Y., & Glezer, C. (2010). Database encryption: an 
overview of contemporary challenges and design considerations. SIGMOD Rec., 
38(3), 29-34. doi: 10.1145/1815933.1815940 

Singleton, T. (2002). Stop fraud cold  with powerful internal controls. The Journal of 
Corporate Accounting & Finance, 13(4), 29-40.  

Sosonkin, M., Naumovich, G., & Memon, N. (2003). Obfuscation of design intent in 
object-oriented applications. Paper presented at the Proceedings of the 3rd ACM 
workshop on Digital rights management, Washington, DC, USA.  

Weber, S., Karger, P. A., & Paradkar, A. (2005). A software flaw taxonomy: aiming tools 
at security. SIGSOFT Softw. Eng. Notes, 30(4), 1-7. doi: 
10.1145/1082983.1083209 

Woodbury, C. (2005). Eight Reasons to Stop Ignoring the Security of Your Development 
Systems. IBM Systems magazine. 

Yang, L. (2009). Teaching database security and auditing. Paper presented at the 
Proceedings of the 40th ACM technical symposium on Computer science 
education, Chattanooga, TN, USA.  

Yu, T., Sivasubramanian, D., & Xie, T. (2009). Security policy testing via automated 
program code generation. Paper presented at the Proceedings of the 5th Annual 

http://www.theiia.org/download.cfm?file=31866
http://www.perl.com/pub/2000/10/begperl1.html


144 

 

Workshop on Cyber Security and Information Intelligence Research: Cyber 
Security and Information Intelligence Challenges and Strategies, Oak Ridge, 
Tennessee.  

Yu, T., Winslett, M., & Seamons, K. E. (2003). Supporting Structured Credentials and 
Sensitive Policies through Interoperable Strategies for Automated Trust 
Negotiation. ACM Trans. Inf. Syst. Secur., 6(1), 1-42. doi: 
10.1145/605434.605435 

Zaobin, G., Tang, J., Wu, P., & Varadharajan. (2007). A Novel Security Risk Evaluation 
for Information Systems. 

Zhu, X., Feng, H., & Chen, H. (2009). Access Control Policy Based on Behavior 
Patterns. 

 
 


	Nova Southeastern University
	NSUWorks
	2012

	Securely Handling Inter-Application Connection Credentials
	Gary Lieberman
	Share Feedback About This Item
	NSUWorks Citation


	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	Background
	Problem Statement
	Dissertation Goal
	Relevance and Significance
	Barriers and Issues
	Summary

	Chapter 2
	Review of the Literature
	Chapter 3
	Methodology
	Overview
	Attack Vector Taxonomy
	Attack Vectors Employed
	(Vulnerability in design ( simple attack)
	Windows
	Unix/Linux

	(Vulnerability in design ( logic bomb attack)
	(Vulnerability in design ( debugger attack)
	Windows
	Unix/Linux

	(Vulnerability in design ( memory dump attack)
	Windows
	Unix/Linux


	Password Obfuscation Design Method
	Baseline Attack Vector Payload
	Quantifying Testing Results
	Resource Requirements

	Chapter 4
	Results
	Introduction
	Attack Vector Baselines
	Probe Attack Vector
	Logic Bomb Attack Vector
	Debugger Attack Vector
	Memory Scan Attack Vector

	Findings
	Probe Attack Vector
	Logic Bomb Attack Vector
	Debugger Attack Vector
	Memory Scan Attack Vector

	Summary of Results

	Chapter 5
	Conclusions, Implications, Recommendations, and Summary
	Conclusions
	Implications
	Recommendations
	Summary

	Request for Cloakware License
	Hardware Inventory
	Perl Scripts
	Baseline Scripts Used for Probe, Debugger and the Memory Scan Attacks
	Simple Script Used on Windows 7 and Linux
	Simple Script Used on Solaris 10
	Password Vault Script Used on Windows 7 and Linux
	Password Vault Script Used on Solaris 10
	Perl Module Used for Password Vault Access on Windows 7
	Perl Module Used for Password Vault Access on Linux and Solaris 10

	Baseline Scripts Used for Logic Bomb Attack
	Script Used on Windows 7 and Linux
	Script Used on Solaris 10

	Aspect Modified Scripts Used for Probe, Debugger and the Memory Scan Attacks
	Simple Password Vault Script Used on Windows 7 and Linux
	Simple Password vault Script Used on Solaris 10
	Aspect Modified Perl Module Used for Password Vault Access on Windows 7
	Aspect Modified Perl Module Used for Password Vault Access on Linux and Solaris 10

	Aspect Modified Scripts Used for Logic Bomb Attack
	Script Used on Windows 7 and Linux
	Script Used on Solaris 10


	Attack Vector Screenshots
	Baseline Probe Attack Vector Screenshots
	Baseline Logic Bomb Attack Vector Screenshots
	Baseline Debugger Attack Vector Screenshots
	Baseline Memory Scan Attack Vector Screenshots
	Aspect Modified Probe Attack Vector Screenshots
	Aspect Modified Logic Bomb Attack Vector Screenshots
	Aspect Modified Debugger Attack Vector Screenshots
	Aspect Modified Memory Scan Attack Vector Screenshots

	References

