
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2008

An Event Monitor and Response Framework Based
on the WSLogA Architecture
Todd Christopher Brett
Nova Southeastern University, todd@brett-family.net

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Todd Christopher Brett. 2008. An Event Monitor and Response Framework Based on the WSLogA Architecture. Doctoral dissertation.
Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (349)
http://nsuworks.nova.edu/gscis_etd/349.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

 An Event Monitor and Response Framework
Based on the WSLogA Architecture

by

Todd Christopher Brett

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information Science

Graduate School of Computer and Information Sciences
Nova Southeastern University

2008

We hereby certify that this dissertation, submitted by Todd Brett, conforms to acceptable
standards and is fully adequate in scope and quality to fulfill the dissertation requirements
for the degree Doctor of Philosophy.

Graduate School of Computer and Information Sciences

Nova Southeastern University

2008

Michael Laszlo, Ph.D.
Chairperson of Dissertation Committee

Date

Frank Mitropoulos, Ph.D.
Dissertation Committee Member

Date

Steven Zink, Ph.D.
Dissertation Committee Member

Date

Approved:

Edward Lieblein, Ph.D., Dean

Date

An abstract of a dissertation submitted to Nova Southeastern University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

An Event Monitor and Response Framework

Based on the WSLogA Architecture

by
Todd C. Brett

October 2008

Web services provide organizations with a powerful infrastructure by which information
and products may be distributed, but the task of supporting Web service systems can be
difficult due to the complex nature of environment configuration and operation. Tools are
needed to monitor and analyze such Enterprise environments so that appropriate engineer-
ing, quality control, or business activities can be pursued.

This investigation resulted in the development of a software development kit, the
WSLogA Framework, which is inspired by the vision of Cruz et al. (2003, 2004). The WSLogA
Framework provides distributed Enterprise systems with a platform for comprehensive
information capture and environment management. Five component groups are intended
for employment to enable integrated workflows addressing monitoring and response
activities, but these components may also be used individually to facilitate the phased
integration of the WSLogA Framework into existing environments. The WSLogA Frame-
work's design is portable across technology platforms (e.g., Java and .NET) and a variety of
technologies may be substituted for the provided implementations to address unique system
architectures.

The WSLogA Framework supersedes existing logging and monitoring solutions in terms
of both capability and intent. Applications based on the WSLogA Framework have an
internal, real-time view of their operation and may adjust their environment based on the
information provided by events related to their or system activities. The WSLogA Framework
is intended as a software development kit around which system functionality may be
organized and implemented, which makes the WSLogA Framework an architectural peer or
complement to traditional application frameworks such as Spring's Web module. WSLogA
Framework based systems should be envisioned as information appliance elements rather
than traditionally scoped applications or services.

Dedicated to Connie and Xavier with my love, respect, and appreciation.

Thank you.

In the beginning we must simplify the subject, thus unavoidably falsifying it, and later we
must sophisticate away the falsely simple beginning.

Moses Maimonides

A complex system that works is invariably found to have evolved from a simple system that
worked. A complex system designed from scratch never works and cannot be patched up to

make it work. You have to start over with a working simple system.

John Gall

Acknowledgements

I am fortunate to live as a global citizen, and I appreciate the ongoing support of family,
friends, mentors, and organizations distributed across the domains of Canada, the United
States, and beyond. The effort to interweave and accept the aggregate experience of these
interactions has proven to be a challenge in its own right, but the broader membership has
granted insight not otherwise available within a nationalist perspective; it serves as the
multifaceted and holistic context by which I explore people and their information realiza-
tion and knowledge exchange within the context of technology.

My wife, Dr. Constance Brett earned her Ph.D. in 2005, and she has generously shared her
insights into the frustrations, experiences, and occasional irony that define the journey of a
graduate student. Connie accommodated, seemingly without complaint, my years of ex-
tended hours as both a professional and academic, and at the most appropriate times
brought me back from the plethora of papers to ensure my participation as a husband,
father, and friend—breaks essential to our long term sanity, I am sure. I am indebted to
Connie for her unfaltering support as a loving, dependable partner and friend.

Dr. Mike Laszlo, my advisor, and the dissertation committee are appreciated members of
my academic journey. Mike has appropriately balanced his expert interventions with my
need for independent exploration. His timely and direct feedback has never left me guessing
as to his intent or my need for additional thought. Mike's guidance has fostered my appre-
ciation of the rewarding intricacies of scholarly research.

The faculty and staff at Nova Southeastern University have frequently gone beyond the
call of duty with their interest in my efforts and success. In particular, I am grateful for Dr.
Steven Zink's accommodation of my interest in software engineering and its application to
information retrieval, knowledge management, and information policy systems. Dr. Marlyn
Littman's interest in distributed and parallel computing often mirrors my own, and I appre-
ciate her efforts to highlight projects from my homeland—many of which I intend to further
explore and, hopefully, contribute. The University merged its Information Science and
Information Systems programs part way through my studies, and the persistent assistance of
Dr. Eric Ackerman was critical to ensuring my timely completion of course obligations
despite the revised course plans.

I am grateful for the support of the Central Ohio Compuware branch, and in particular to
Carrie Archer, Jerry Jones, Vasil Hlinka, Lori Hubbard, and Matt Smith. These people toler-
ated my enthusiastic discourse, ensured that I had time to attend each of the semester
institutes, and otherwise provided their encouragement as I progressed through the multi-
tude of assignments, research reports, and the dissertation investigation. Clients such as the
State of Ohio and Cisco Systems have also accommodated my unusual schedule with grace,
and I wish to thank Mike Morris, Florina Comanescu, and Junilu Lacar for their support.

I appreciate the support of yWorks, which produces the yDoc UML generator. yWorks
donated the use of yDoc for my research as the means by which professional grade class
diagrams could be rapidly generated and integrated into JavaDoc pages. This capability has
saved untold hours of document generation and enabled my ability to quickly assess the
framework’s structure so that key efficiencies and functionality could be introduced.

My extended family and friends, inherited and adopted, have always shown their sup-
port and cheered me on to greater achievements. Many parents, uncles and aunts, siblings
and cousins, as well as neighbors are accomplished in their own right, and I appreciate
sharing in their experiences as motivation for my own throughout this endeavor. Of these
people, I especially wish to thank my parents.

My Mom, Pamela Norgan always listens patiently when I describe discoveries or vent
about frustrations. She applies humor liberally to life, and I have adopted her way as the
means for blunting my native impatience with the understanding that everything worth
pursuing requires dedication and time.

My Dad, Richard Brett and Mom, Kathleen Brett encourage my questioning of life and
the world around us—despite our divergences of philosophy and action. From reading to
multiplication tables, these two have ensured my ability to independently engage the world
and savor its nuances. They remind me of my civic responsibilities and that each individual's
contribution to society is significant.

My Dad, "Sean" Fitzgerald and Mom, Karen Fitzgerald welcomed me into their family
and provided their support throughout the uncomfortable period of my transition to meet
the demands of a new but wonderful country. Their perseverance through personal and
demanding challenges inspire and demonstrate how our will and conviction are essential to
success and the enjoyment of life.

My Grandmother, Amy Brett believed in fostering imagination and creativity. I was al-
ways welcome to boil mud on her stove in the attempt to simulate alien landscapes, or to
use magnets and wire for the purpose of establishing electric transmissions across her living
room floor. Every question from why planes fly to how dinosaurs ended up in the dirt was
asked at one point or another. Perhaps more than any other person, my Grandma Brett
serves as the inspiration for a lifetime of continual questioning and exploration.

The challenges brought about by graduate studies forge many friendships, such as that
with James Hoban. James shares my passion for problems inherent to corporate evolution
and knowledge transfer, and we spent many hours debating these and other topics within
and outside of the classroom. Shari Plantz-Masters humors my ongoing musings about
teaching, but more importantly ensured my understanding of project management and
enabled me to balance career obligations so that I could ensure time for family, friends, and
further academic pursuit.

Finally, I wish to acknowledge the efforts of pioneers such as David Thompson, William
Mackenzie, Simon Fraser, Meriwether Lewis, and William Clark. These intrepid individuals
set out against unforgiving odds to illuminate their unseen universe and the rich cultures of
people who lived within that vast horizon, and then shared their wealth of knowledge with
their respective originating societies. I spent my adolescent years exploring in the shadow of
their monuments—such as the Howe Pass—and retraced many of their routes throughout
Western Canada and the Oregon Territory. Their determination and service in improving our
understanding of the world is truly inspiring.

 viii

Table of Contents

Abstract i i i
Dedicat ion iv
Acknowledgements v i
L ist of Tables x
List of F igures x i

Chapters

1 . Introduction 1
 Problem Statement and Goal 1

Relevance and Significance 4
Research Objectives 5
Limitations and Delimitations 8
Definition of Terms 9
Summary 10

2 . Review of the Literature 12
 Historical Overview of the Theory and Research Literature 12
 Theory and Literature Specific to the Study 24
 Summary of Prior Research 28
 Contribution of this Study 30

3 . Methodology 31
 Research Methods Employed 31
 Specific Procedures Employed 31
 Formats for Presenting Results 36
 Resource Requirements 37
 Reliability and Validity 39
 Summary 40

4. Results 41
 Findings 41
 The Monitor Component Group 47
 The Event Component Group 73
 The Perspective Component Group 89
 The Response Component Group 101
 The Policy Component Group 116

 ix

 Summary 128

5 . Conclusions, Implicat ions, Recommendations, and Summary 131
 Conclusions 131
 Implications 135
 Recommendations 138
 Summary 141

Appendixes
A. Qual ity Assurance 146
B. Adventure Builder as the Test Environment 159
C. WSLogA Framework Demonstrat ions 163
D. Configurat ion Management 194
E. Vers ion Control 208
F. Automation 217
G. Reports and Documentation 226
H. Use Case Descriptions 235
I . Glossary 266

Reference List 270

 x

List of Tables

Tables

1. 1-1. Research objectives and accomplishments 6

2. 3-1. Significant tools, platforms, and environments 38

3. 4-1. Required component groups and corresponding facilities 43

4. D-1. Hardware and software platforms 195

5. D-2. Libraries and components 196

6. D-3. Environment variables 198

7. D-4. Applications and significant plug-ins 201

8. F-1. The Maven lifecycle as applied to the WSLogA Framework 221

9. F-2. Ancillary automation scripts 224

 xi

List of Figures

Figures

1. 1-1. WSLogA topography 2

2. 1-2. Aspects of WSLogA addressed by the WSLogA Framework 3

3. 2-1. The Observer Pattern relationship 20

4. 2-2. A hypothetical service and client interaction 21

5. 2-3. Web services are based on a variety of technology platforms 23

6. 3-1. The organization of investigation activities around the spiral lifecycle 32

7. 3-2. Emphasis of this investigation’s work and analysis 33

8. 3-3. Transitioning from objectives to implementation 34

9. 3-4. Transitioning from test designs to results analysis 35

10. 4-1. The WSLogA Framework's component groups 42

11. 4-2. WSLogA elements addressed by the Monitor Group 46

12. 4-3. Use cases applicable to the Monitor Group 47

13. 4-4 Monitor Group component roles 49

14. 4-5. Monitor Group component structure 51

15. 4-6. The ScheduledMonitorBase 52

16. 4-7. ScheduledMonitorBase delegates monitoring to ScheduledProcessor 53

17. 4-8. The SoapHandlerMonitor 54

 xii

18. 4-9. SoapHandlerMonitor is integrated into SOAP transactions 55

19. 4-10. The Log4JAppenderMonitor 56

20. 4-11. Log4JAppenderMonitor routes Log4J messages to a persistent data store 57

21. 4-12. The JdkLogHandlerMonitor 58

22. 4-13. JdkLogHandlerMonitor routes J2SE messages to a persistent data store 59

23. 4-14. The Observer 60

24. 4-15. ObjectObserver reports on an Object's characteristics 61

25. 4-16. The Recorder 62

26. 4-17. WSLogA Framework report objects are easily persisted 63

27. 4-18. The Inspector 64

28. 4-19. The SoapMessageInspector 65

29. 4-20. The log framework Inspectors 67

30. 4-21. The Monitor Group relationships 68

31. 4-22. General employment of Monitor Group members 69

32. 4-23. An example employment of the Monitor Group 70

33. 4-24. A J2SE Logging API derived Handler may delegate message management 71

34. 4-25. WSLogA elements addressed by the Event Group 73

35. 4-26. Use cases applicable to the Event Group 74

36. 4-27. Event Group component roles 75

37. 4-28. Event Group component structure 76

38. 4-29. The event components define the data model 77

39. 4-30. The Event Group facilitates inter-component event information transfer 78

40. 4-31. The data model as adopted for use with JDO 80

 xiii

41. 4-32. JdoTransactionalEventPool enables bidirectional information management 81

42. 4-33. The data model as adopted for in inter-component information exchange 82

43. 4-34. The Event Group relationships 83

44. 4.-35. General employment of Event Group members 84

45. 4-36. An example employment of the Event Group 85

46. 4-37. WSLogA elements addressed by the Perspective Group 90

47. 4-38. Use cases applicable to the Perspective Group 91

48. 4-39. Perspective Group component roles 92

49. 4-40. Perspective Group component structure 93

50. 4-41. Principal perspective component interaction 94

51. 4-42. PerspectiveBase defines key behaviors for PerspectiveRunner integration 95

52. 4-43. ObservablePerspective pushes event information to EventProcessors 96

53. 4-44. The Perspective Group relationships 97

54. 4-45. General employment of Perspective Group members 98

55. 4-46. An example employment of the Perspective Group 99

56. 4-47. WSLogA elements addressed by the Response Group 101

57. 4-48. Use cases applicable to the Response Group 102

58. 4-49. Response Group component roles 103

59. 4-50. Response Group component structure 104

60. 4-51. Principal response component interaction 105

70. 4-52. The ResponseTask organizes response behavior 106

71. 4-53. The ResponseTaskRunner drives response activities 107

 xiv

72. 4-54. The ResponseTaskService loads ResponseTasks 108

73. 4-55. The ResponseTaskDaemon provides an operational entry point 109

74. 4-56. The Response Group relationships 110

75. 4-57. General employment of Response Group members 111

76. 4-58. An example employment of the Response Group 112

77. 4-59. Use cases applicable to the Policy Group 115

78. 4-60. Policy Group component roles 116

79. 4-61. Policy Group component structure 117

80. 4-62. Principal policy component interaction 118

81. 4-63. Filter, format, and contextual policy specializations 119

82. 4-64. Policy roles are indicated by means of interface implementation 120

83. 4-65. Policy context management is provided by means of class extension 121

84. 4-66. PolicyContexts provide scenario based policy activation 122

85. 4-67. ConfigurablePolicyContext facilitates ad hoc context definitions 123

86. 4-68. The Policy Group relationships 124

87. 4-69. General employment of Policy Group members 125

88. 4-70. An example employment of the Policy Group 126

89. A-1. Test-driven development as applied to this investigation 148

90. A-2. Controlled exploration of method behavior through unit tests 150

91. A-3. Abstract test cases enforce the behavior of concrete components 151

92. A-4. In-memory databases are created and discarded for each unit test 152

93. A-5. Integration tests expose bugs hidden in complex relationships 153

94. A-6. Static analysis tools process source code to identify anti-patterns 155

 xv

95. A-7. Test case documentation 156

96. B-1. The Adventure Builder architecture 160

97. B-2. WSLogA Framework components interact with Adventure Builder 161

98. C-1. Scripts are available to run the demonstrations using common options 164

99. C-2. Project tools are provided to facilitate WSLogA Framework analysis 165

100. C-3. Demonstration phases for information collection 166

101. C-4. Adventure Builder modifications to include inspectors are minimal 167

102. C-5. Demonstration flow for information collection 169

103. C-6. Demonstration interaction for information collection 170

104. C-7. Information collection demonstration components 172

105. C-8. Policy contexts evaluate scenarios to control policy behavior 173

106. C-9. Static contexts communicate the general applicability of policies 174

107. C-10. Dynamic contexts ensure the selective policy activation 175

108. C-11. Demonstration policies and contexts are embedded within project artifacts 176

109. C-12. The multiple policy report illustrates policy driven information formatting 177

110. C-13. Demonstration phases for failed Web service recovery 178

111. C-14. Demonstration flow for failed Web service recovery 179

112. C-15. Demonstration interaction for failed Web service recovery 180

113. C-16. Failed Web service recovery monitor description entry 181

114. C-17. Failed Web service recovery demonstration components 182

115. C-18. Demonstration phases for failed database recovery 183

116. C-19. Demonstration flow for failed database recovery 184

 xvi

117. C-20. Demonstration interaction for failed database recovery 185

118. C-21. The failed database recovery demonstration uses a custom Handler 186

119. C-22. Failed database recovery demonstration components 189

120. E-1. The version control process 209

121. E-2. The version control process as applied to this investigation 210

122. E-3. The Maven2 project object model file declares dependencies 211

123. E-4. Maven repository organization 212

124. E-5. Maven modifies the classpath during build operations 213

125. E-6. The local repository is updated from remote repositories as necessary 215

126. F-1. Ant uses plug-ins to execute tasks manipulating the environment 218

127. F-2. Maven executes tasks within standard lifecycle phases 219

128. G-1. Reports applied to this investigation process 227

129. G-2. JavaDoc reports provide textual information regarding components 228

130. G-3. yDoc UML diagrams are embedded in JavaDoc Web pages 229

131. G-4. XRef reports facilitate the quick exploration of source code 230

132. G-5. Unit test success summaries and statistics are provided in Surefire reports 231

133. G-6. Cobertura reports illustrate source code unit test coverage 232

134. G-7. FindBugs report showing categories in which bugs would appear 233

135. H-1. Use case descriptions include an activity diagram and clarifying comments 236

136. H-2. Principal information capture use cases 237

137. H-3. Monitor management use cases 238

138. H-4. Policy management use cases 239

139. H-5. Event management use cases 248

 xvii

140. H-6. Response engine use cases 253

141. H-7. Information presentation use cases 259

1

Chapter 1

Introduction

Problem Statement and Goal

Web services provide businesses with a powerful infrastructure by which information

and products can be distributed, but the task of supporting Web service systems can be

difficult due to the complex nature of environment configuration and operation. Web

service and host environment monitoring and analysis tools are needed to facilitate the

formation of business and development strategies. Ideally, these facilities are an integral part

of the systems they support. Unfortunately, existing tools do not permit the comprehensive

integration of monitoring, analysis, and response mechanisms with Web service based

systems and their host environments.

Cruz et al. described (2004) and provided a limited demonstration (2003) of their pro-

posed monitoring architecture for Web services, the WSLogA (Figure 1-1). The WSLogA

improves upon traditional click-stream traffic analysis strategies by using Web service

intermediaries to analyze SOAP messages rich in detail as they travel through a system.

However, the WSLogA is not suitable for production environment management because the

architecture does not provide for integrated, holistic monitoring of both the transaction

components and their environment with the customizable capability for rules based interac-

tion based on event analysis. For example, a failed network router may cause the false

2

identification of a transaction endpoint failure by a WSLogA component because the com-

ponent would not understand how the environment caused the communication failure—it

only knows that Web service transactions were interrupted. Administrators can chain third

party tools to achieve post-mortem transaction analysis, but this approach is awkward and

may fail to deliver real time response. Additionally, most tools cannot be modified so admin-

istrators and engineers cannot instruct the system to respond and correct the environment

using improved techniques as knowledge of the problem domain is refined. Finally, the

implementation of WSLogA components is an ad hoc effort that does not offer reuse across

independent systems—new projects must recreate the architecture, which permits architec-

tural fragmentation and the otherwise unnecessary introduction of bugs.

F igure 1 -1 . WSLogA topography.

3

This investigation successfully resulted in the establishment of a framework facilitating

the development of WSLogA components, and significantly improves upon the WSLogA by

incorporating mechanisms for policy driven information collection and normalization;

transaction and environment event monitoring to facilitate holistic runtime analysis with

the capability for real-time environment interaction; and the distribution of information

communicating system behavior or state to people or external systems. The complex

workflows inherent to monitoring, analysis, and response are predefined by the WSLogA

Figure 1 -2 . Aspects of WSLogA addressed by the WSLogA Framework.

4

Framework using Template Method and Strategy patterns, which permits third parties to

focus on implementing business rules rather than architecturally redundant logic. Bold

elements in Figure 1-2 illustrate the investigation’s focus within the WSLogA.

Investigation artifacts include the WSLogA Framework's design, its implementation us-

ing the Java platform and supporting technologies, and test systems based on Sun Microsys-

tems’ Adventure Builder system (Appendix B) that demonstrates the framework’s solution

for the problem domain. The data persistence layer was extended to support non-XML

solutions, such as a relational database management system, and event handlers for applica-

tion or operating platform concerns (e.g., Application server or router logs) were defined to

support comprehensive system behavior or state analysis.

Relevance and Signif icance

Web services provide a powerful tool for information and product distribution, yet such

environments can be difficult to develop and support due to their complex nature. Transac-

tions are event driven and rely on XML or proprietary messaging mechanisms, service

components can wrap legacy systems that are difficult to integrate into dynamic workflows,

and the Application server or other environment components can affect the operational

behavior of system implementations in unforeseen ways. Production support, quality

assurance, and engineering personnel must comprehend the operational impact and timing

of these intricate interactions in order to provide a high degree of service quality.

Existing performance and event monitoring tools focus on the needs of a narrow audi-

ence, such as system administrators, or are intended for use within a single controlling

organization. Few solutions use the SOAP messages from Web service components as the

5

principal channel for data capture, or even consider SOAP messages as a data source for

analysis. This investigation is among the first to address production environment manage-

ment using SOAP data as the primary vehicle for transaction characterization, and it fulfills

the WSLogA vision with the establishment of a reusable framework suitable for driving

holistic enterprise production management solutions. The Java based implementation

ensures the WSLogA Framework's universal applicability to a variety of enterprise systems,

including as those developed using competing platforms such as Microsoft’s .NET.

Researchers can use the WSLogA Framework to better comprehend information ex-

change and generation between Web service components, and in particular for those

systems comprised of components that are highly parallel or distributed across independent

servers. Environment management issues pertinent to production control can be explored

through extensions such as the event response engine, and policy components facilitate the

exploration of information assurance within complex enterprise systems that could operate

across legal or cultural boundaries. Practitioners can use the WSLogA Framework to integrate

holistic transaction analysis and response into their enterprise systems with a reduced need

for expert understanding in the problem domain.

Research Objectives

This investigation's intent was to establish a framework fulfilling WSLogA principles with

significant improvements by means of information capture, information exchange, and

environment management capabilities juxtaposing transaction and environment event

analysis for distributed, service oriented systems. The completed framework's functionality

must be mature enough for demonstration using the Adventure Builder application and

6

contrived framework extensions that exercise the WSLogA principles and improvements

introduced as part of this investigation. Table 1-1 describes the envisioned subsystems

comprising the improved WSLogA system and its framework implementation. These objec-

tives are successfully realized with the establishment of the WSLogA Framework, its unit test

harness, and demonstrations within the context of the Adventure Builder system.

Table 1 -1 . Research objectives and accomplishments.
Object ive Accomplishment

Comprehensive Project System:
The establishment of a transaction moni-
toring engine based on WSLogA architec-
tural principles. Integrates best practices
from distributed monitoring solutions.
Monitoring and event capture capabilities
are extensible to incorporate event data
from additional systems.

• The establishment of a framework facilitat-

ing development of WSLogA components
and their integration into Web service sys-
tems and their host environments.

• The use of black- and white-box tiers tiers
to appropriately hide complexity while
facilitating appropriate extension of the
framework.

• Templated workflows that organize and
control the monitoring, analysis, and re-
sponse processes.

• Component packages addressing each of
the subsystems identified for the proposal:
information collection, event manage-
ment, event analysis and response, and
information presentation. .

Project Subsystem:
SOAP Intermediaries for event data
capture. Foundational classes or interfaces
supply functionality required for all such
entities. Specialized classes using this
subsystem will be provided as examples for
third party developers and will be immedi-
ately useful for most production environ-
ments as basic data capture services.

• Monitoring, reporting, and recording

components with included extensions for
the GenericHandler interface, which is
provided by both Sun Microsystems and
Apache Axis Web service development
platforms.

• Example extension components made
available through unit tests and demon-
strations.

7

Table 1 -1 . Research objectives and accomplishments.
Object ive Accomplishment

Project Subsystem:
A log management framework accepting
SOAP intermediary and other source data
(e.g., from an Application server's log file).
Captured data will be organized in the data
repository. Real time and controlled
updates will be provided as appropriate to
support other system components.

• Monitoring, reporting, and recording
components with included extensions for
external object observation and data
stream parsing (e.g., log files).

• Standards based information collection
with logging technologies such as Log4J,
which permits the immediate integration
of systems based on the framework with
legacy service environments.

• Policy driven information collection,
routing, and normalization. For example,
sensitive information can be encrypted or
buffering mechanisms can be employed to
throttle data capture.

Project Subsystem:
A data repository supporting the storage
and organization needs for the log man-
agement, response engine, and presenta-
tion frameworks. Anticipated is a multi-
component system (e.g., several relational
databases or a database combined with
XML files) to facilitate phased processing
from raw data to highly structured infor-
mation groups.

• JDOM and XML based information repre-

sentation and data persistence.
• Extensible information model permitting

the use of alternate technologies, such as
EJBs or JDBC driven SQL statements for
high efficiency data transfer.

• The use of the HyperSQL relational
database (HSQLDB) for event information
persistence and unit testing.

• Alternate RDBMS technologies, such as
Oracle and MySQL, can be substituted for
HSQLDB to accommodate established en-
vironments.

Project Subsystem:
An ETL support engine and framework will
facilitate the transfer of data or informa-
tion from the data repository for use by
other system services, such as the presen-
tation and response subsystems.

• The JDOM based information model and

persistence subsystem coupled with the
RDBMS permits the organized insertion of
data for retrieval using perspectives.

• Data and metadata associations with event
information permit flexible organization of
event models by perspective components.
Event types can also be related across type
domains for flexible integration of infor-
mation generated by disparate systems.

8

Table 1 -1 . Research objectives and accomplishments.
Object ive Accomplishment

Project Subsystem:
A presentation framework will support the
transfer of information to external systems
and users in a variety of formats. Transla-
tion and formatting functionality will be
extensible to handle third party custom
needs. Foundation classes or interfaces
supply functionality required for all such
entities. Specialized classes using this
subsystem will be provided as examples for
third party developers and will be immedi-
ately useful for most production environ-
ments as basic information transfer and
monitoring aid services.

• A perspective subsystem accommodates
single or multiple queries against the event
persistence subsystem.

• A daemon is provided to schedule and
execute perspective components.

• Perspectives can be observed by response
components to permit real time or sched-
uled analysis and response tasks.

• Perspectives can also serve information to
reporting systems, such as for presentation
to administrative, quality control, or engi-
neering staff.

• Perspective daemons can be operated as
part of the Web service system or as a dis-
tinct process interacting with a common
data persistence mechanism.

Project Subsystem:
A response engine and framework will
enable the processing of event data and
the execution of environment interaction.
Foundation classes or interfaces supply
functionality required for all such entities.
Specialized classes using this subsystem
will be provided as examples for third
party developers and will be immediately
useful for most production environments
as basic environment maintenance serv-
ices.

• A response subsystem accommodates

business logic for analyzing event informa-
tion and performing environment modifi-
cations based on the analysis.

• A daemon is provided to schedule and
execute response components that have
been updated by a perspective.

• Response components are managed to
prevent redundant scheduling if event in-
formation is still being analyzed when a
perspective makes new information avail-
able.

• Response daemons can be operated as part
of the Web service system or as a distinct
process interacting with a common data
transfer mechanism.

L imitat ions and Delimitat ions

This investigation did not address performance issues, such as CPU or network band-

width consumption. Framework performance is best tuned in response to several applica-

9

tion implementations (D'Souza & Wills, 1998; Richter, 1999), and is beyond the scope of this

investigation's goal to create functionality. Information assurance concerns were not ad-

dressed, although the provided policy mechanisms can be used to facilitate information

assurance or security operations. Production environments encrypt sensitive data transmit-

ted over a public network (such as the Internet), and conceivably transport systems (such as

TCP combined with SSH), monitoring filters, or analysis engines can address such concerns.

All data used in the research was non-encrypted and of a non-sensitive nature. Components

such as an Application server cannot be modified without the participation of product

vendors or partner organizations, and such were considered out of scope.

Definit ion of Terms

Key terms are defined in this section to ensure an appropriate context for the subse-

quent discussions. Appendix I provides a general glossary.

• Service oriented architecture (SOA). An organization of logic or system components

to accommodate a standard and modular manner of providing resources.

• Web service (WS). A form of SOA intended for business service implementations.

Web services use a common communication standard based on SOAP, and they can

be assembled from a variety of interoperable platforms (e.g., Java or .NET).

• Framework. A partial system implementation controlling workflows within a specific

problem domain. White box frameworks expose their implementation to developers

for extension. Black box frameworks do not accommodate change or extension

within the foundation or core components.

10

• WSLogA platform. The architecture described by Cruz et al. (2003, 2004) or likely im-

plementations for the architecture.

• WSLogA Framework. The components implemented and bundled as part of this in-

vestigation. This term distinguishes what has been made available for use in Web

service or other distributed applications from what is possible in terms of implemen-

tation strategies for the WSLogA Framework's components.

Summary

 Web services provide an infrastructure by which information and products can be

distributed, but these systems are complex and can require significant management. Moni-

toring and analysis tools are needed to facilitate the formation of business and development

strategies. These facilities should be implemented as an integral part of the systems they

support. Cruz et al. (2003, 2004) described a superior alternative to click stream analysis for

describing user or system behavior with their introduction of the WSLogA architecture, but

their proof of concept does not facilitate component reuse and does not define key mecha-

nisms required for monitoring and response in production grade environments.

This investigation successfully resulted in the creation of a framework facilitating the

development of WSLogA components that can be integrated with applications to provide

holistic transaction and environment monitoring, management, and communication. The

WSLogA Framework improves professional practice by organizing complex information

management workflows and tasks for distributed and service-oriented systems in a reusable

manner. Researchers may use the WSLogA Framework’s comprehensive information cap-

ture, routing, and analysis capabilities to identify data exchange or other behaviors within

11

distributed systems, including those that span legal or cultural boundaries. The WSLogA

Framework also provides a foundation for the investigation of distributed system perform-

ance, information assurance, and transaction security.

12

Chapter 2

Review of the Literature

Historical Overview of the Theory and Research Literature

This investigation involved the design of a framework addressing transaction environ-

ment monitoring, response, and communication of state with WSLogA principles guiding

the core architecture. The pursuit of such a framework faced several barriers and issues over

the course of its design, implementation and testing. Well-balanced frameworks are inher-

ently difficult to design, and the loosely coupled nature of services affects the approach for

design aspects such as a framework's inversion of control. The highly distributed environ-

ments in which many components operate challenge efficient and effective system monitor-

ing and analysis. The problem domain involves considerations for quality of service, object-

oriented development, frameworks and design patterns, service oriented architectures, and

information retrieval.

Quality of Service

System integrity and quality of service are critical issues for software development. Soft-

ware systems are intangible and involve complex interactions between components and the

environment. Envisioning how the system’s constituent parts will interact with each other

and their host environment can be quite difficult, and research continues to explore strate-

gies for discovering system faults and producing easily maintained code in non-conflicting

13

manners. Quality of service, which in part arises from system integrity, is a fundamental

aspect of consumer trust and business growth (Brett, 2004). Comprehending system per-

formance involves application execution analysis and management. Execution tracing is one

practical data gathering technique, and numerous trace management systems have been

developed with varying capability and intent. The debuggers found in many popular IDEs

provide the most common example, but logging APIs and dedicated performance monitor-

ing solutions are increasingly popular among practitioners. Research efforts have started to

blur the distinction between monitoring and business system components—the WSLogA

architecture offers one example through its use of same-concept components to monitor

other system components (e.g., Web services to monitor Web services).

Integrated development environments (IDEs) have become an important solution for

ensuring system integrity in the development phases (Boekhoudt, 2003). IDEs offer conven-

ient access to functionality, such as component visualization and debugging, and contempo-

rary IDEs incorporate build standardization using automation scripts provided by tools such

as Apache Maven and Ant. The popularity of modeling languages such as UML encourages

the development of IDEs, such as OptimalJ, which bring RAD concepts to the code level

(Greenfield & Short, 2003).

Programming languages have evolved to ensure quality through the reduced potential

for faults. Procedural development strategies permit the isolation of cohesive logic into

single functions or themed APIs, but extending a procedural system remains difficult in part

due to the ease by which data structures can be duplicated and unintentionally modified in

manners that make them unsuitable for continued use in existing portions of the system

during the definition of new tasks (Lafore, 2002). Methodologies based on object-oriented

14

analysis and design have resolved some of these issues by instead focusing on the data aspect

of problem domain representation and adding tasks specific to the data’s manipulation only

as necessary (Richter, 1999).

Traditional debugging strategies remain essential, however, despite the convenience

provided by many IDEs (Boekhoudt, 2003; Telles & Hsieh, 2001). Log messages remain a time-

honored form of application behavior tracking (execution tracing). In practice, developers

insert log messages throughout their source code and monitor the application's output to

observe the execution progression. Execution tracing is one of the most useful methods for

debugging system behavior (Telles & Hsieh, 2001)—a sentiment supported by the developer

community through the creation of popular logging frameworks, such as Apache’s Log4J

(Gulcu, 2002, 2005), and their adoption into popular products such as the GlassFish Applica-

tion server. Sun Microsystems acknowledged the usefulness of execution tracing by provid-

ing Java developers with a powerful logging API as part of the J2SE SDK (2004, 2001b). The

Logger, Handler, and Formatter classes work together to accept message statements, stream

message data to a specific repository, and store the data in a specific format (Banes, 2004).

Several other projects, such as grid monitoring systems, have since adopted similar imple-

mentation patterns (Lee et al., 2002).

Log data can describe almost anything related to a system's state of execution when

stored in the proper format (Gulcu, 2002; Telles & Hsieh, 2001). Rosenstein (2000) provided a

series of case studies that together demonstrate how Web Server logs can be used to deter-

mine visitors and their site navigation habits. Spiliopoulou (2000) mined Web Server logs to

evaluate how clients use and perceive web sites, and observed that the server provided a

trace of client browsing habits, including the length of time spent at specific pages. Adminis-

15

trators can use such information to optimize system performance, technical support can

learn how to reproduce issues experienced by customers, and architects can evaluate how

effectively the web site facilitates the client's information or product needs.

Unfortunately, log data in and of itself is not particularly useful; the volume of data can

be prohibitive to analyze (Helsinger et al., 2003; Telles & Hsieh, 2001) when produced by

multithreaded applications or environments involving multiple application instances (e.g.,

distributed systems). Monitoring tools can actively track generated trace data, and analysis

tools can filter out irrelevant data or identify system behavior patterns. Several log analyzers

specialize around certain types of logs with goals ranging from eliminating system faults to

assisting with performance tuning. DevPartner (Compuware, 2005) interacts with the Java

Virtual Machine during an instrumented application’s execution to obtain a log of applica-

tion behaviors suggestive of inefficient coding practices or memory leaks. An alternative,

Analog, specializes in analyzing Web Server logs (Turner, 2004) and is freely available.

Unfortunately, Analog offers only static reports best interpreted by system administrators.

Real-time responses require dynamic system analysis, which makes solutions such as Analog

ineffective. Barra et al. (2002) list several tools that perform similarly with comparable

drawbacks. None of these tools use Web service intermediaries as the event-capture technol-

ogy, or consider targeting SOAP as the primary event data source. Sun offers a programmatic

solution through the Java Management Extensions (JMX) specification to the Java core, and

its refinement for remote functionality (McManus, 2002; McManus & Vienot, 2003). JMX

operates through a tiered approach involving application instrumentation, middleman agent

beans, and a console or control system written by third parties to recognize the functionality

and data exposed by the beans (Dutta, 2004; Sun, 1999). This strategy abstracts the applica-

16

tion monitoring and management task from the application suite, and could even, in theory,

be used to integrate with non-Java systems using Sun's Java Native Interface (JNI) technology.

McGregor (2003) demonstrated how JMX can be integrated with the JUnit testing tool to

provide functional checks for a system that could, with only minor enhancements, provide a

real-time monitoring and reporting system. Valetto and Kaiser (2003) used JMX to assist with

the adaptation of an external monitor and analysis system, but the need to instrument the

target system makes their approach impractical for those components not under the control

of the interested organization, such as Web services located on third party servers.

Object-Oriented Development

Object-oriented development continues to supplant procedural development as the

choice strategy for logic organization, reuse, and easier maintenance. Procedural develop-

ment considers logic from the perspective of tasks and handles data as necessary to support

those tasks. Object-oriented development inverts this perspective by focusing on modeling

data first and then adding tasks as necessary to control or communicate data states. Apple

Computer and Be found object-oriented development so efficient that their operating

systems were designed to ensure all of the functionality is accessible by third parties through

object frameworks or APIs (Apple Computer, 2003; Be, 1997).

The data focus and process inversion provided by object-oriented development serves as

the foundation for modern frameworks and service-oriented architectures. Classes bearing

attributes (instances of data with specific structure and expected behavior) and methods

(functions manipulating the entity’s state) form the atomic logic entities in languages such as

Java and C++. The result is a component that, when instantiated into its runtime object

17

form, understands what it knows about itself and how its state can be altered into acceptable

alternatives. Classes can be defined to hide their inner workings and force all client logic to

access or modify the data through one of the class methods (encapsulation).

Classes offer many other advantages that make object-oriented development the ideal

foundation for services. Classes can build on each other to provide increasingly specific

functionality (inheritance). For example, a basic mammal class could describe the general

characteristics of a mammal modeled in the system, and a dog class could be derived from

the mammal class. The dog class would receive the mammal characteristics without further

work so that it can focus on specializing on attribute, behavior, or state management specific

to dogs. Perhaps more interesting is the ability for systems to instantiate objects of the

derived class yet reference and operate on the new object using methods or variables of the

preceding class’ type (polymorphism). In addition to extending classes into more concrete

types, the combination of class types as attributes for a new class can create complex com-

ponents (aggregation and composition). The result is a modeling strategy able to simulate

the problem domain in a manner natural for human thinking. The sum of these characteris-

tics ensures that client components are isolated from unnecessary implementation details,

and that isolation can make the service system more flexible in terms of fulfilling multiple

business needs as well as maintenance adjustments (D'Souza & Wills, 1998; Lafore, 2002;

Richter, 1999).

The approach to design, however, has involved a number of strategies (Monarchi & Puhr,

1992). Forerunners such as D’Souza and Wills (1998) conceived of the Catalysis method for

identifying component roles and their inter-relationships with other system components.

Agile practices such as test-driven development and refactoring are also finding acceptance

18

(Armitage, 2004). The communication of these designs appears to be solidifying into the

UML modeling language, and languages such as these have in turn inspired visual or model

driven engineering products such as the Sun ONE Studio (Sturm, 2002), Poseidon, OptimalJ,

and Prograph (Greenfield & Short, 2003).

Frameworks and Patterns

The drive to organize object-oriented systems and foster deliberate logic reuse gave rise

to the concepts of object frameworks and design patterns (Schmidt et al., 2004). Frameworks

are similar to procedural Application Programming Interfaces (APIs), but with the added

benefit of strategies such as inversion of control without the need for unwieldy callback

functions and memory addressing (Fayad & Schmidt, 1997; Schmidt & Buschmann, 2003;

Schmidt et al., 2004). Design patterns codify expert knowledge regarding class relationships

and object interactions to permit design reuse (Biljon et al., 2004; Gamma et al., 1994;

Shalloway & Trott, 2001).

Frameworks are similar to design patterns as both deal with well-defined roles and rela-

tionships, but frameworks provide an implementation whereas patterns only describe such

systems. Further, frameworks employ patterns in their design. Developers face the challenge

of ensuring that frameworks are designed to meet changing market needs through logical

expansion points and careful component relationship architectures (Roberts & Johnson,

n.d.). Improvements to the framework must not affect existing systems dependent on the

framework’s previous API or functionality (Fayad & Schmidt, 1997; Gurp & Bosch, 2001).

Framework quality has unfortunately varied greatly, with solutions of poor quality often

arising from architectural oversights or technical limitations. For example, the Microsoft

19

Foundation Classes (MFC) framework (Microsoft, 2003a, 2003b) provided a limited solution

for the reuse of basic client application tasks based on the Win32 API (such as displaying a

window). MFC was difficult to extend and covered limited aspects of the Win32 API, and the

behavior associated with classes or methods would change over time forcing developers to

rewrite dependent logic. Better frameworks are found in examples such as the Java Logging

API provided in the J2SE (Sun Microsystems, 2001). The Logging API is comprehensive within

its problem domain and is easily extended to handle new scenarios without client rewrites.

Design patterns in software development were first popularized by Gamma et al. (1994)

as part of their effort to encourage knowledge reuse in manners similar to that in traditional

engineering and architecture fields. A formal pattern presents a design specification address-

ing a scenario (problem domain example); the articulation of component roles, their respon-

sibilities, and their interaction; and potential consequences (positive or negative) arising

from the pattern’s application to a system. Patterns are available for a multitude of problem

domains such as human-computer interaction and e-commerce (Alur et al., 2003; Shalloway

& Trott, 2001).

Service Oriented Architectures

Service oriented architectures (SOA) are the natural culmination of object-oriented archi-

tectures and distributed systems. Developers need a method by which logic can be organized

in a manner that increased task coherence while remaining available across the network for

use by other systems (Farrell, 2004), often unknown to the original developer of the SOA

component. In this regard, SOAs are macroscopic frameworks for distributed computing.

20

The Observer pattern defined by Gamma et al. provides a good example of a typical service-

client relationship, as illustrated in Figure 2-1.

A client (the observer) registers itself with a service component (the subject) to receive a

callback with data or action instructions. The service component executes the collection of

registered callback routines whenever a relevant event occurs. Of course, services can be

designed for linear access by a client and without knowledge of the client.

The key aspect of a service is its specialization and general availability to clients (Farrell,

2004; Graham et al., 2005; Iltchenko, 2006). A simple example involves a tax calculator

service. A single component can perform the calculation, or the service could be an entire

framework with well-defined nodes (hot spots) for the client to extend. The service could be

located within the same organization as its clients, or be publicly available over a network

such as the Internet for general consumption. Regardless, the service’s parts would culmi-

nate in the function of calculating tax. A car rental system could use the service to calculate

the tax charge applicable to a potential transaction. Figure 2-2 illustrates component interac-

tion of this nature.

F igure 2-1 . The Observer pattern relationship.

21

Although the thought of services often conjures images of business processes, such as the

car rental example, many services provide simple backend access to useful resources. For

example, Oracle and BEA developed service data objects (SDOs) for the purpose of providing

an abstracted method for managing data access (Williams & Daniel, 2004). SDOs offer the

advantage of a simple architecture over traditional frameworks such as JDBC (and can even

wrap traditional access technologies).

SOAs continue to inspire changes to development methodology (Zimmerman et al.,

2004). Object-oriented design focuses on class roles and their relationships; component-

oriented design and framework design took form by building on object-oriented method-

ologies; and Service-oriented design adds to the list of design considerations functional

choreography (processes) and business domains.

Web Services

The problem with SOAs is that much of their design and implementation is delegated to

the development community. In traditional object-oriented research such standards deficits

serves as a strength, but businesses need the confidence of being able to build services that

F igure 2-2 . A hypothetical service and client interaction.

22

can be sold or traded with other organizations long after the initial service architectures and

platforms are decided upon. Standards ensure a loose coupling between component de-

pendencies and interaction, and Web services provide the standards based solution that

businesses can rely upon.

Web services target enterprise architecture concerns by emphasizing business logic avail-

ability and component integration across networks with minimal service redundancy

(Arsanjani et al., 2003; Graham et al., 2005). For example, one Web service might provide

credit information to other Web services specialized in financial matters such as determining

mortgage or car loan eligibility. Web services are implemented using many technology

platforms and a variety of data package structures and transport layers enable transactions, as

illustrated in Figure 2-3. A universal registry to facilitate service interaction is often involved

when coordinating Web service discovery or interaction between organizations (Graham et

al., 2005).

The most common form of data packaging is the Simple Object Access Protocol (SOAP)

(Box et al., 2000; Chavda, 2004; Graham et al., 2005). XML documents specialized for inter-

service communication provide the structure for SOAP data. SOAP is a key enabler in Web

service technology (Chavda, 2004; Graham et al., 2005; Thai & Lam, 2001) because XML is

platform independent (Bray et al., 2004; Stanek, 2002) and SOAP enjoys solid integration with

the key e-commerce technology platforms (J2EE and .NET).

An effect of these implementation approaches is the ability for legacy systems to be en-

capsulated using Web services. Specific business functionality can be exposed for use else-

where without the immediate need to rewrite the original system (Arsanjani et al., 2003),

although conversion work can be subsequently performed.

23

Information Retrieval

Information management remains a key focus of business technology initiatives, and the

retrieval of information is an important aspect of system monitoring, response, and commu-

nication. Information retrieval systems must be efficient in their work to locate and retrieve

the information requested. A variety of strategies are available for applications to use, with

brute force and cataloging techniques both providing examples of currently popular strate-

gies (Singhal, 2001; Tague et al., 1991). Domain specific information pools, such as a J2EE

Application server log, can be stored in well-defined forms, with structure and content rules

easily enforced by the data persistence mechanisms. Technologies such as XOM and JAXB

can conveniently represent and access such data structures when the data is stored in XML

form (Fordin, 2004). Web services already utilize such data encapsulation strategies for their

communication and processing mechanisms (Graham et al., 2005), and a similar strategy can

be applied to other domain specific entities. Previous investigations into error detection and

F igure 2-3 . Web services are based on a variety of technology platforms.

24

recovery systems dependent on information retrieval principles pertinent to event analysis

can be applied to the event capture and analyzer engine (Brett, 2005).

Theory and Literature Specif ic to the Study

The problem with traditional log analysis is that the tools are either proprietary systems

that integrate poorly with in-house solutions, or that the tools only consider specific types of

logs. Application based analyzers are insufficient as solutions when the organization needs to

integrate their functionality into custom systems because seamless interoperation would be

difficult if not impossible to achieve. Conceivably, multiple tools might be able to read each

other’s output files in such a manner that the tools could be choreographed for system

monitoring, but this approach lacks elegance. Additionally, tools that only consider specific

kinds of logs are insufficient solutions because many other environment variables, such as

routers or virtual memory usage, can hinder or prevent an application’s execution. Distrib-

uted systems, such as grids, complicate the situation by creating workflow segments that

cannot be directly analyzed (such as systems housed by external organizations) or that result

in spliced logs (such as that created by running the same application on different servers).

Service and Web Monitors

Cruz et al. (2004) described a Web services architecture, WSLogA, that uses Web service

intermediaries to capture data from the SOAP messages between Web service components.

WSLogA allows for event data storage and event processing engines, but the architecture

remains mostly a definition for the kinds of tools involved in such systems (e.g., Application

servers). Cruz et al. (2003) demonstrated WSLogA in the form of a reference implementation

data mart analysis system for user workflows. The advantages of the WSLogA architecture

25

include non-invasive monitoring of existing systems (e.g., logging calls are not added to the

system source code and binaries are not modified), multiple component monitoring, and

monitoring configuration control.

McGregor and Schiefer (2003) recognized that administrators must have a better under-

standing of how an overall service architecture behaves, and within that perspective devel-

oped an approach addressing real time event analysis and performance monitoring compo-

nents based on principles similar to WSLogA. Just as with WSLogA, McGreger and Schiefer

focus on the workflow of the service applications (messages and Web service component

activities).

Gombotz and Dustdar (2005) focus their related work on data mining considerations,

which positions their work for all types of SOAs. Clickstream data generation through source

code modification (e.g., logging) or intermediary components (e.g., servlet chains) provide a

degree of transaction detail surpassing that provided exclusively by Application server logs.

As with WSLogA, Gombotz and Dustdar focus on the service portion of the environment,

although data from the Application server and servlet filters are the primary data sources.

Clickstream research has a significant history in the service and business management

research fields (Gombotz & Dustdar, 2005; Hu & Zhong, 2005; Rosenstein, 2000; Spiliopoulou,

2000), and the concepts learned for Web Server monitoring and analysis are applicable to an

overall architecture such as the framework developed in result of this investigation.

WSLogA and similar architectures do not explicitly address distributed computing issues.

Network bandwidth can constrain the type or quantity of data being logged so alternate

event or data capture strategies might be required to ensure that the decision system can be

adequately primed (Helsinger et al., 2003; Lee et al., 2002). WSLogA does not consider a

26

variety of other sources for pertinent event information. For example, a bad router or

insufficient memory could cause the service system to fail, yet inspection of only the SOAP

changes between service components will not reveal that issue. Quality assurance staff could

misinform developers of system issues and production support staff could waste time cycling

the incorrect system components were they to base their decisions exclusively on the kind of

feedback available from WSLogA or similar systems.

Organizations can design their own intermediaries to fulfill architectures such as

WSLogA but a common implementation foundation does not exist. A framework would

permit the reuse of the WSLogA monitoring concepts (Schmidt et al., 2004) and account for

distributed computing issues that need to be addressed by all intermediaries. Java is nearly

ubiquitous within enterprise environments, so its use as the implementation platform for

such a framework should facilitate adoption and enhancement by organizations. Many of the

requisite components envisioned for such a framework are also available in Java forms. The

J2SE, J2EE, Log4J, and JBoss Application server are examples of such technologies.

General Monitoring, Analysis and Response

Monitoring activities are concerned with breadth of coverage, appropriateness of presen-

tation, and data collection performance. Even if a monitoring system will not directly

present system information, it must still store data representative of the situations wit-

nessed. Analysis activities are concerned with data sources, data correlation, business logic,

and performance.

System performance must be captured from end-to-end in order to effectively address

the information needs of an organization (Lee et al., 2002). Not all components may be

27

available for observation or instrumentation due to natural system boundaries, such as

sessions and non-controlled third party systems. Events from multiple sources must be

correlated in order to provide a holistic view of the system's state (Lee et al., 2002), particu-

larly as processes triggered by monitor data might require several disparate events to occur

before execution. Log data might need to be preprocessed (Spiliopoulou, 2000) due to the

varied structure of performance logs among applications.

All applications executing on the studied system's host environment consume CPU and

memory resources; if not accounted for, CPU and memory usage could distort reports

regarding the studied system's performance and result in misdirected maintenance and

development efforts (Helsinger et al., 2003; Lee et al., 2002). The monitoring system itself

must not excessively steal resources from the host environment. Further, data volumes must

be managed without appreciably degrading system performance. Quality of data might need

to degrade as volume increases, which could involve the utilization of alternate communica-

tion channels and caching techniques to ensure that an appropriate perspective of the

system is provided within the capability of the host environment's resources.

Multiple views of the monitoring and analysis data must be accommodated to serve the

needs of varying user roles (Barra et al., 2002; Cruz et al., 2004; Lee et al., 2002). For example,

system administrators might be interested in the CPU and memory loads for the system,

whereas technical support might wish to know the state of user transactions. The framework

should provide monitoring functionality accommodating tiered levels of observation trust-

worthy of producing an accurate, precise representation of the system's execution.

Organizations can use Web services to expose legacy systems (Arsanjani et al., 2003).

Source code instrumentation, such as embedding service messages or function calls, is not

28

possible in these situations. The solution should provide event data input mechanisms that

can capture feeds from non-service repositories, and possibly even allow for notes entered by

users of the system (such as a comment inserted by an administrator to be associated with an

event flow range).

Frameworks

Frameworks rely on the inversion of execution control to coordinate component activi-

ties (Fayad & Schmidt, 1997; Schmidt & Buschmann, 2003), yet Web services are, by nature,

loosely coupled with operations triggered by message events (Graham et al., 2005). The

framework design must carefully consider asynchronous event management and transaction

requests, such as those established ad hoc via service registries, unless service composition

rules such as BPEL4WS (Milanovic & Malek, 2004) are employed.

Encryption and decryption functionality might need to be provided or accommodated so

Web services can deal with sensitive data (Arsanjani et al., 2003). Event correlation engines

must allow for integration with auditing and cryptography solutions so that analysis logic

can access event data contents, otherwise in secure environments only the event type would

be visible. The monitoring and analysis components themselves must also be auditable to

ensure their own proper behavior (Arsanjani et al., 2003).

Summary of Pr ior Research

Logging and associated practices remain an accepted and encouraged method for im-

proving a system’s integrity and quality of service. Logging provides insight into a system’s

behavior, but to be effective all logs within the environment need to be taken into account.

Unfortunately, existing tools are proprietary, focus on a limited range of log structures, or do

29

not integrate well into custom solutions. Technologies that permit the construction of

custom solutions, such as JMX, require modifications to the sources or artifacts, and that

practice is not an option for external systems. Multiple staff roles might be involved in

properly translating tool results into information meaningful to all interested parties, such as

development teams, production support, and executives.

The acquisition of data needs to be thorough but many challenges must be overcome in

distributed systems to ensure that appropriate collection occurs. Applications running on

different servers, multithreaded systems or those with multiple simultaneous sessions,

network performance, and systems not controlled by or visible to the interested organiza-

tion are just a few factors that can impede data collection. The data store or retrieval mecha-

nism must properly sequence collected data. Real time analysis or communication of the

data must account for non-temporal data entries even after those processes begin.

Object-oriented designs and implementations provide good foundations for service-

oriented architectures due to the methodology’s perspective of data definition and man-

agement. Frameworks serve to organize logic into reusable solutions that can reduce knowl-

edge requirements and workloads by third parties dependent on the functionality provided

by frameworks. Web services challenge framework development because of their reliance on

loose communication and interaction coupling strategies.

Information retrieval was an essential aspect of the framework. Many strategies exist for

developing a backend information retrieval system, but the strategy selected must comple-

ment the data storage and data manipulation technologies adopted by the framework. For

example, JAXB would be appropriate for interacting with XML based storage solutions, but a

MySQL RDBMS could be more efficient for storing large volumes of data.

30

Web services provide businesses with a standardized means to integrate operations

through technology. WSLogA and parallel architectures have demonstrated data collection

for workflow and user behavior analysis, but a reusable implementation for disparate

organizations is not yet available. Such architectures are ineffective in production environ-

ments without obtaining a holistic perspective of the system’s behavior and state.

Contribution of this Study

The pursuit of a Web services framework for system monitoring and analysis faced sev-

eral barriers and issues over the course of design, implementation, and testing. Well-

balanced frameworks are inherently difficult to design, and the loosely coupled nature of

Web services certainly affects how design aspects such as a framework's inversion of control

must be approached. The highly distributed environments in which many functional

components operate also challenge efficient and effective system monitoring and analysis.

WSLogA is improved by the availability of a framework facilitating the development of

components intended for WSLogA environments.

This investigation explored framework development for Web services and provides an

understanding of how loose component and communication coupling can be best addressed

through inversion of control strategies. Highly customizable monitoring and analysis strate-

gies for transaction environments are documented through detailed designs, implementa-

tion, and test analysis. The expert knowledge gained regarding the problem domain and its

solution is reusable by practitioners through the availability of the framework. WSLogA is

improved through the availability of a software development kit based on its architectural

principles and server distribution requirements.

31

Chapter 3

Methodology

Research Methods Employed

The information systems design science research framework proposed by Hevner et al.

(2004) and the principles of design research as observed by the AIS (2005) guided this investi-

gation’s methodology. Artifacts were developed and analyzed for their suitability as a solu-

tion to the problem domain in a rigorous, iterative fashion organized using the spiral soft-

ware development lifecycle (Schach, 2002). Systems analysis practices such as scenario

mapping through use cases (Whitten et al., 2001) and object-oriented techniques such as

role-based design (D'Souza & Wills, 1998; Richter, 1999) served as the approach for engineer-

ing the artifact’s functionality and organization. Analysis of an evolving artifact’s behavior

through the application of tests resulted in an improved understanding of the problem

domain (Louridas & Loucopoulos, 2000), and the artifact’s validated design codifies the

developing theory (AIS, 2005). This active reflection drove the artifact’s iterative evolution as

it is formed into a suitable solution (Hevner et al., 2004; Whitten et al., 2001).

Specif ic Procedures Employed

This investigation emphasized the development of an artifact design incorporating les-

sons learned from the artifact’s implementation and exploration within an environment

representative of the problem domain (AIS, 2005; Hevner et al., 2004). The design’s assertions

32

and assumptions were validated through the creation of the artifact’s implementation in the

form of the WSLogA Framework, as well as its exercise using automated and manual proc-

esses (Appendix A; Appendix F). The lessons learned from the implementation and test

analysis served as the basis for subsequent designs (Edwards, 2004; Hevner et al., 2004).

Configuration and automation strategies ensured consistency between iteration activities

such as regression tests. Figure 3-1 depicts the organization of activities within the iterations.

F igure 3 -1 . The organization of investigation activities around the spiral lifecycle.

33

Iterations started with the formation of objectives divided between environment, design,

and test strategies. Environment considerations included the establishment of the Applica-

tion server and logging systems to simulate the problem domain by means of a simplified

representation (Appendix B; Appendix C). Design considerations included the specification

of the artifact’s behavior as comprised by assertions and assumptions formulated using the

body of literature, lessons learned from previous iterations, and the investigation’s goals.

Test considerations included the configuration and execution of scenarios within the

prepared environment appropriate to the problem domain. The artifact’s design was consid-

ered valid when its implementation successfully addressed the test objectives. Figure 3-2

depicts the emphasis of work and analysis for the proposed investigation.

Several design documents were prepared each iteration. The interaction between par-

ticipants within the problem domain (a scenario) were described using requirements and use

cases (D'Souza & Wills, 1998; Richter, 1999; Whitten et al., 2001) (Appendix H). Each use case

F igure 3 -2 . Emphasis of this investigation’s work and analysis.

34

contained a nominal flow (depicting ideal or likely events) and, as appropriate, alternate

flows deemed significant (situations resulting in a fault). Class diagrams, object interaction

diagrams, and process or functional flows specifying the organization and behavior of the

artifact’s components were prepared from the use cases to guide the artifact’s implementa-

tion (D'Souza & Wills, 1998; Richter, 1999) (Chapter 4). The use cases also defined the scope

and activities of tests (Appendix A). Figure 3-3 depicts the transition from iteration objectives

to the artifact’s implementation.

Both the automated and manual tests validated the implementation. Both types of tests

adhered to data and event scripts based on associated use cases, and the results for both

types of tests were documented using the methods specified in Appendix A. Automated tests

were conducted through JUnit implementations, and as such were executed every iteration

to ensure proper regression testing (Staff & Ernst, 2004a). Automated tests were executed

F igure 3 -3 . Transitioning from objectives to implementation.

35

after each implementation attempt to identify bugs, and executed again in conjunction with

the manual tests after bug fixes to obtain results for analysis (Figure 3-1). Analysis of the test

results provided insights for subsequent iteration designs, and identified aspects of the

environment requiring improvement to better simulate the problem domain (Edwards,

2004; Hevner et al., 2004; Maximilien & Williams, 2003). Figure 3-4 depicts the transition

from test designs to the analysis of test results.

This investigation's resultant artifacts are comprised of development and runtime

frameworks. As such, object-oriented development and framework development techniques

(Cortes et al., 2003; D'Souza & Wills, 1998; Gamma et al., 1994; Richter, 1999; Whitten et al.,

2001) were key considerations throughout the design process. Both white- and black-box

framework architectures (Richter, 1999) were acceptable, and the WSLogA Framework is a

combination of both types.

F igure 3 -4. Transitioning from test designs to results analysis.

36

Formats for Presenting Results

The results for this investigation demonstrate the developed artifact’s suitability as a so-

lution to the problem domain. Evidence includes the design documents, implementation

sources, implementation artifacts, test scripts and the result analysis, and environment

configurations. Discussed in Chapters 4 and 5 are those aspects of the documents relevant to

the outcome and significant issues that challenged the investigation’s activities. A DVD

image containing the full set of documents generated by the investigation was made avail-

able in association with the final report.

Discussions regarding scenarios and the artifact architecture incorporate the UML mod-

eling language (OMG, 2001, 2006), with the emphasis on use case, activity, class, and se-

quence diagrams. The UML modeling language does not illustrate all key framework design

issues, such as significant expansion points for use by third parties (hot spots), and for these

situations the consistent use of alternate diagram strategies was substituted. Discussions

pertaining to the artifact’s design focus on class diagrams and their associated use cases,

other design documents, and significant implementations.

The efficacy of the design was demonstrated using Java source code and compiled bina-

ries. Both sources and binaries were made available (Appendix C), but only source code

segments pertinent to a discussion are included in this report. In situations where the

audience’s comprehension could be improved a source segment was presented to provide

the discussion’s context.

Validation of the working model’s efficacy was accomplished using test and data scripts.

Each script is described using a form detailing information pertinent to the reproduction of

37

the test, and automated tests include JUnit source code and binaries based on the script.

Appendixes A and C discuss the manner by which tests were prepared or analyzed.

Resource Requirements

Design, development, and test tools were used throughout the investigation (Appendix

D), along with a demonstration environment simulating the problem domain (Appendix C).

Hardware and software configurations remained consistent throughout this investigation

except where changes were warranted because of bugs interfering with the research. The

hardware and software utilized were selected based on their suitability to the problem

domain and general availability to other researchers or practitioners.

The significant software tools can be broken into design, implementation, test, configu-

ration, and automation categories. Table 3-1 summarizes the significant technologies utilized

and Appendix D discusses their configuration. Auxiliary tools such as Microsoft Office are

assumed. Platforms and operating environments typical of Web service environments were

involved throughout the implementation and test activities. An Intel based Macintosh was

used because Mac OS X provides a representative UNIX environment in the form of Berkley

UNIX and a Windows environment by means of the VMware 80x86 virtualization software.

GlassFish was used for the application server due to its role in demonstrating Java technology

in a variety of Sun Microsystems certification courses, as well as its native support for key

Web service technologies supporting the J2EE SDK. Table 3-2 describes the platforms and

operating environments used.

38

Table 3 -1 . Significant tools, platforms, and environments.

Tool Purpose Source

OmniGraffle UML and other documentation Omni Group

www.omnigroup.com

Eclipse Source code implementation and

binary generation
Eclipse Foundation
www.eclipse.org

Maven 2 Binary generation, test execution,

data management, and environ-
ment configuration automation

Apache Software Foundation
maven.apache.org

JUnit Test automation Open source community

junit.sourceforge.net

Subversion Version control and configuration of

investigation documents
Open source community
Bundled with Mac OS X

Java 1.5 (J2SE) SDK Source code implementation and

binary generation
Sun Microsystems, Inc.
java.sun.com/j2se/1.5.0/

J2SE 1.4 SDK Source code implementation Sun Microsystems, Inc.

java.sun.com/j2ee/1.4/

Java Web services
Development Pack

Source code implementation Sun Microsystems, Inc.
java.sun.com/webservices/

Log4J Source code implementation and

testing
Apache Software Foundation
logging.apache.org/log4j/

Mac OS X Design, implementation, and

testing
Apple Computer, Inc.
www.apple.com

VMware Fusion and
WindowsXP

Testing and demonstrations VMware, Inc.
www.vmware.com

Microsoft Corporation
www.microsoft.com

GlassFish Testing Sun Microsystems, Inc.

GlassFish.dev.java.net

39

Reliabi l i ty and Val idity

The consistent approach to configuration, automation, data management, and test

strategies ensured this investigation’s reliability and validity. The availability of the software

components, including both artifacts and environments, should facilitate the reproduction

of the investigation’s results by other researchers and practitioners.

This investigation organized its activities within an agile (Berczuk & Appleton, 2003;

Conboy & Fitzgerald, 2004; Highsmith, 2002) form of the spiral lifecycle (Schach, 2002). This

strategy facilitated and encouraged the consideration of design, implementation, and quality

assurance efforts or artifacts necessary for developmental research (AIS, 2005; Hazzan &

Dubinsky, 2007; Hevner et al., 2004), yet emphasized framework design exploration through

continual testing, refactoring, and integration (Fowler, 2006; Garsombke, 2003).

Design research methodology depends on the researcher’s ability to reflect on the results

of each iteration’s events and outputs (Hevner et al., 2004). This investigation integrated

testing and analysis as key activities that preceded design and followed implementation. In

this manner, feedback regarding the design's efficacy through validation of the working

model was obtained at regular interviews throughout the iterations. Automated testing is

advocated by researchers and practitioners alike for its ability to facilitate the accurate

execution and consistent reproduction of test steps, as well as the active discovery of artifact

faults (Cortes et al., 2003; Edwards, 2004; Maximilien & Williams, 2003; Telles & Hsieh, 2001).

JUnit is an effective test tool (Gaffney et al., 2004; Louridas, 2005; Olan, 2003; Wick et al.,

2005), and because JUnit tests are implemented using Java and related technologies many of

the investigation’s tests will be conveniently reproducible for either validation of the investi-

gation or, to varying degrees, comparison against similar studies.

40

The Subversion version control system (Appendix E) was used to track and organize

documents generated by the investigation’s activities. Comparisons can be made against text

document changes to facilitate analysis. Environment configurations were documented to

facilitate precise recreations, and automation tools were employed to ensure the consistent

execution of build, data management, and JUnit test processes. The consistency between

iterations for these activities permitted appropriate comparisons during result analysis and

regression testing. The strategy of using automated tests also ensured the consistency for

manual evaluations of the implementation and environment.

Summary

 This investigation used design research methodology combined with the spiral lifecycle

to iteratively investigate the resultant artifact’s design, implementation, testing, and result

analysis—a technique known as reflection. Framework and object-oriented design practices

formed the foundation for the preparation of the artifact’s component organization and

relationships. Automated and manual testing of the artifact within a carefully configured

environment facilitated reflection, ensured rigor, and enables result comparisons.

41

Chapter 4

Results

F indings

This investigation resulted in the successful realization of all research objectives with the

establishment of the WSLogA Framework. The WSLogA Framework serves as a platform for

enabling the holistic monitoring, analysis, and response tasks required to ensure the robust

operation of Web service based Enterprise systems. The WSLogA Framework's core func-

tionality is based on the principles of the WSLogA system described by Cruz et al. (2003,

2004), and significantly extends that platform by incorporating a policy based information

collection facility; an event information processing and analysis engine; and an event re-

sponse system with environment management capabilities. The WSLogA Framework

provides implementations for best practices addressing Web service transaction monitoring

and an application's management of its environment in response to related events.

The WSLogA Framework can be extended to capture and provide information regarding

the activities of Web services, their transactions, and their host environments. The informa-

tion aggregated for analysis is organized around the content of SOAP messages, and supple-

mentary information may be collected based on observations of the application's compo-

nents or related resources (e.g., the application server or log files). The WSLogA Framework

42

makes the event information available to components that can analyze the events and in

response manage the Enterprise environment to ensure its continued operation.

Practitioners can use the WSLogA Framework to implement Web service based systems

integrating monitoring, analysis, and response functionality that holistically considers both

transaction data, represented by SOAP messages or application objects, and environment

data, such as network logs. Researchers can use the WSLogA Framework to understand the

flow of information within service oriented distributed or parallel applications, as well as

explore the information assurance concerns regarding processing points within the system

for scenarios involving components operating across disparate hosts or processing regions.

The WSLogA Framework Platform

The WSLogA Framework is a modular software development kit in the form of a frame-

work. Component groups within the WSLogA Framework are designed to provide integrated

workflow support with functionally related groups (Figure 4-1), but most components may

also be independently integrated into an application to support a phased adoption of the

WSLogA Framework. For example, the Policy Group components may be of use to any

Figure 4-1 . The WSLogA Framework's component groups.

43

Enterprise system requiring post-deployment management of information normalization

procedures (e.g., the manner by which social security numbers are formatted before being

committed to a log). Table 4-1 summarizes how each group corresponds with the functional-

ity envisioned for the WSLogA Framework.

Table 4-1 . Required component groups and corresponding facilities.
Functional ity Corresponding Faci l i ty Object ive

Information Capture
An information capture and routing
subsystem by which SOAP message,
object attribute, environment logs,
user input, and other information
sources can be accessed, normal-
ized, and channeled for use by
framework components.

• The Monitor Component Group

provides information capture,
routing, and normalization capa-
bilities.

• Applications can be created that
extend the Monitor Group's com-
ponents for integrated and native
information management, and
legacy systems can be wrapped or
observed using these components
to contribute information for
event realization and analysis.

Yes

Event Management
An information modeling and
persistence subsystem that handles
the organization and transport of
event information for use by
framework components.

• The Event Component Group

models event related information
and manages the transport of
event information between
framework components and a per-
sistent storage platform, such as a
database.

Yes

Information Presentation
An information normalization and
distribution subsystem that facili-
tates the routing of event informa-
tion for use by analysis or reporting
systems.

• The Perspective Component

Group provides query based access
to the event information managed
by the Event Group.

• Information normalization may be
performed by this group to maxi-
mize the framework's integration
with external systems.

Yes

44

Applicability of the WSLogA Framework to Enterprise Environments

Enterprise environments can involve complex compositions of application servers, data

stores, message transports, and operating hosts interacting in manners not necessarily clear

in terms of significant contact points or outcomes (Telles & Hsieh, 2001; Whitten et al., 2001).

Web services are inherently subject to these complexities yet their quality of service is

dependent on the development and support teams' comprehension of these interactions.

Table 4-1 . Required component groups and corresponding facilities.
Functional ity Corresponding Faci l i ty Object ive

Event Response
An information analysis and envi-
ronment management subsystem
that facilitates the execution of
business rules intended to commu-
nicate system state or behavior, as
well as to make environment
adjustments to ensure the contin-
ued operation of the application.

• The Response Component Group

facilitates event information analy-
sis, correlation, and environment
management.

• Response tasks are scheduled as
the result of information gener-
ated by components from the Per-
spective Group to ensure the orga-
nized handling of events as they
are realized by the system.

Yes

Policy Management
A behavior management subsystem
by which business rules may
influence the behavior of other
framework components, such as the
manner by which the Monitor
Group formats data during the
normalization process.

• The Policy Component Group

facilitates event information analy-
sis, correlation, and environment
management.

• Established in the recognition that
information normalization by the
Monitor Group, and possibly other
framework or application compo-
nents, required the flexibility to
handle legal or cultural require-
ments that were not consistent
across system hosts.

No

45

Cruz et al. (2003, 2004) described an architecture, the WSLogA, with the capability of

monitoring Web service components by means of simple service probes and the capture of

SOAP message information. This investigation sought to produce a design, demonstrated by

a Java based implementation, which addresses the WSLogA's principal concerns and en-

hances the WSLogA by introducing holistic information collection and environment re-

sponse capabilities. The design succeeds by dividing the responsibility of the sought func-

tionality into modules accommodating environment management through the use of

information capture, routing, persistence, retrieval, and analysis functionality (Table 4-1).

The information collection capabilities augment SOAP message inspection with integration

points provided for logging systems and ad hoc system elements.

The WSLogA Framework is implemented using the Java language and related technology

platforms, but the design is generally compliant with the requirements for a variety of

contemporary software development languages. Microsoft's .NET platform (Telles, 2001; Thai

& Lam, 2001) provides the C# language, which reproduces Java functionality relevant to the

WSLogA Framework—SOAP transaction management, object-relational mapping, and

support for dynamic, pluggable components within runtime environments (required for

select policy management strategies as discussed later in this chapter). Reporting solutions

such as Crystal Reports (Business Objects, 2008) or Cognos (Cognos, 2008) can be substituted

for modules such as the Response Group.

The WSLogA Framework is intended to support Enterprise systems involving SOAP

transactions by adding information capture and environment response capabilities with

minimal modification to logic implementing business rules. For example, a SOAP message

monitor can be added to a SOAP handler chain with only configuration changes to the

46

affected module's configuration file (Graham et al., 2005). Log messages produced by the

Log4J framework (Gulcu, 2002) and J2SE Logging API (Arnold et al., 2005; Sun Microsystems,

2001) can be captured and combined with SOAP information to provide context for SOAP

analysis (Telles & Hsieh, 2001). Event information correlation is delegated to components

operating outside of the application (but potentially within the same JVM). Many WSLogA

Framework components integrate policy managed logic to permit flexible information

management and event processing within the same application architecture. A common

data model was established to organize and correlate event information for application or

environment sources, including sources operating across different machine or process

boundaries.

Demonstrations exercising important WSLogA Framework components within the con-

text of the Adventure Builder application (Appendix B), which uses Web service compo-

nents, are provided to facilitate continued research and adoption of the WSLogA Framework

F igure 4-2 . WSLogA elements addressed by the Monitor Group.

47

(Appendix C). A complete implementation of the WSLogA Framework using Java and

supporting technologies, JavaDoc documentation, component and system diagrams, and an

extensive test suite featuring both unit and integration test contexts (Appendix A) has been

made available (Chapter 3).

The Monitor Component Group

The Monitor Group is comprised of those components that report and record informa-

tion related to the Web services, their transactions, or related environment information, as

well as those components that organize information collection and routing processes. The

F igure 4-3 . Use cases applicable to the Monitor Group.

48

interfaces, classes, and resources for this group are defined within the org.ws.loga.monitor

package. Figure 4-2 illustrates those portions of the WSLogA platform that are addressed by

members of the Monitor Group with grey elements indicating boundary components.

Figure 4-3 illustrates use cases embodying these workflows. Appendix H documents the

activities associated with each use case.

Roles and Responsibilities

Five information collection and routing roles were envisioned for the Monitor Group.

Reporter components describe events and objects, and Recorder components route the

descriptions to consumers (e.g., the Event Group). A Monitor component coordinates

Reporters and Recorders for situations in which strong relationships exist, such as with SOAP

intermediaries (Chavda, 2004; Graham et al., 2005) or related runtime objects. Figure 4-4

illustrates the Monitor Group component roles and their relationships.

The Reporter describes events and objects with significant meaning to the application

and its environment. Reporters may consider multiple characteristics of an event or object

context before creating a report, and the manner by which information is transcribed into

the report may be influenced by active policies associated with the Reporter.

The Subject represents events, runtime objects, system resources, and their contexts.

The Subject is the focus of the Monitor Group but has no implementation because facilities

such as Java 1.5's generics (Arnold et al., 2005) are assumed to provide suitable mechanisms

by which Subjects can be exposed to Monitor Group components. The Recorder routes

information generated by Reporters to appropriate consumers. The WSLogA Framework

manifests Event Group components as the consumer of the information, but alternate

49

consumers such as sockets to external systems can also be established as Recorders. Com-

plementary technologies, such as the Log4J framework (Gulcu, 2002), may be used for the

transport mechanisms in some Recorders to reduce the learning curve of engineers extend-

ing the monitor or Event Group services.

Structure

The Monitor Group is organized around a generic Monitor component intended to ac-

commodate unique system requirements, as well as three platform specific Monitors that

respectively address SOAP transactions, Log4J events (Gupta, 2003), and JDK Logging API

events (Gupta, 2003). The Reporter component is provided for data calculation, and it is

extended by an Observer component to acquire data provided by a variable Subject. The

Inspector component complements the Recorder family by facilitating detailed Subject

F igure 4-4. Monitor Group component roles.

50

analysis. The Recorder component is provided to route data to consuming systems, such as

another Web service or a relational database management system. Figure 4-5 illustrates the

structure of the Monitor Group's components.

 Reporter is an interface that represents a point from which the Monitor Group may ac-

cess event data regarding the monitored Enterprise system. Reporter is generic enough to

represent both a calculation (e.g., a summary value representing more complex relation-

ships) and a data acquisition (e.g., a file or object attribute value). The Observer abstract class

implements Reporter to make explicit the task of acquiring information from a definable

Subject, such as a runtime object or environment service. The Inspector interface is provided

as an analytical assistant for the Reporter component family. Inspectors are expected to

assess to some degree of detail, possibly using calculations, information regarding a specific

Subject set and then prepare a report using that information.

Recorder is an interface that represents a data consumer, or at least the entry point for

moving data to a consumer set. Recorders do not perform data analysis, but they may filter

information contained within provided reports prior to submitting the report to a consumer,

such as to ensure security obligations are met or to maximize bandwidth efficiency.

Implementation

The Monitor Group is implemented as three packages addressing monitoring, report

generation, and report routing. All of the components have definitions that control the

workflows necessary to facilitate information acquisition and management, and several

specialized components are provided with integrated support for policies that control

information acceptance or formatting. Applications only need to instantiate a specialized

51

Reporter to take advantage of the provided workflow, but customization for component or

environment monitoring and information routing is also supported.

F igure 4-5 . Monitor Group component structure.

52

General monitoring functionality is provided by the ScheduledMonitorBase component

family, illustrated in Figure 4-6, which is located at the root package, org.wsloga.monitor.

ScheduledMonitorBase extends MonitorBase and implements the ScheduledMonitor

interface to mark the component as being a Monitor. MonitorBase is a generic abstract class

that provides management for Reporter and Recorder components addressing common

report themes. ScheduledMonitorBase organizes information produced by Reporters and

exchanges the information with Recorders using a ScheduledProcessor derivative. De-

Figure 4-6. The ScheduledMonitorBase.

53

faultScheduledProcessor is assigned to ScheduledMonitorBase instances when the strategic

delegate (Gamma et al., 1994) is unspecified. DefaultScheduledProcessor iteratively obtains

reports from associated Reporters and provides those reports to associated Recorders for

routing. The Monitor Group does not provide scheduling capability because such functional-

ity is addressed by external projects, such as Quartz (Cavaness, 2006), but third parties can

derive monitors from ScheduledMonitor to organize monitoring activities.

Figure 4-7 illustrates the standard workflow for ScheduledMonitorBase as coupled with

the DefaultScheduledProcessor. Monitor event management is delegated to the Scheduled-

Processor implementation, and DefaultScheduledProcessor responds by acquiring a report

from each registered Reporter as appropriate and then passes the reports to each registered

Recorder for routing.

F igure 4-7 . ScheduledMonitorBase delegates monitoring to ScheduledProcessor.

54

The SoapHandlerMonitor component is used to monitor SOAP transactions. SoapHan-

dlerMonitor extends GenericHandler (Singh et al., 2004), which provides a default imple-

mentation of the Handler (Graham et al., 2005; Singh et al., 2004) interface intended for

intercepting and processing SOAP messages traveling through J2EE or Axis managed applica-

tion servers. SOAP messages are platform independent (Bray et al., 2004; Singh et al., 2004;

Stanek, 2002) so SoapHandlerMonitor is able to address SOAP information regardless of the

F igure 4-8 . The SoapHandlerMonitor.

55

source technology platform. Figure 4-8 illustrates the SoapHandlerMonitor and its associated

components.

Handler declares three message processing methods—handleRequest, handleResponse,

and handleFault—that are invoked by the application server and provided with instances of

MessageContext (Graham et al., 2005; Singh et al., 2004). In the case of a SOAP based system,

the provided MessageContext object is actually a SOAPMessageContext (Graham et al., 2005;

Singh et al., 2004), which is extracted by SoapHandlerMonitor and delegated to instances of

HandlerDelegate registered with the SoapHandlerMonitor instance. HandlerDelegate is a

class internal to SoapHandlerMonitor that coordinates SOAPMessageContext processing and

report recording using a combination of provided SoapMessageInspector and Recorder

F igure 4-9. SoapHandlerMonitor is integrated into SOAP transactions.

56

objects. As such, third parties should extend HandlerDelegate or SoapMessageInspector to

provide custom SOAP message analysis.

Figure 4-9 illustrates the standard workflow for SoapHandlerMonitor as invoked by an

application server to process a SOAP message. The SoapHandlerMonitor extracts the SOAP-

MessageContext object and provides it to SoapMessageInspectors exposed by the assigned

HandlerDelegate objects.

Log event monitoring within the context of Log4J enabled systems is provided by the

Log4JAppenderMonitor, illustrated in Figure 4-10. Log4JAppenderMonitor extends Log4J's

AppenderSkeleton class (Gulcu, 2002; Gupta, 2003), and as such may be configured using a

standard Log4J properties file to make use of filters, honor log levels, and other functional

aspects of the Log4 framework, which makes Log4JAppenderMonitor a convenient vehicle

by which the WSLogA Framework may be quickly integrated into legacy applications that

would be difficult to update because of source code intricacy or for which source code is not

available but a Log4J configuration can be adjusted (Gupta, 2003). The JdoEventRecorder

component used internally by the Log4JAppenderMonitor can be replaced with a Recorder

F igure 4-10. The Log4JAppenderMonitor.

57

instance appropriate for alternate information routing technologies, such as Hibernate

(Bauer & King, 2006).

Figure 4-11 illustrates the standard workflow for log event processing by

Log4JAppenderMonitor within the context of an application using the Log4J framework.

Log messages are generated by the application and host environment and then transferred

to Appender (Gupta, 2003) components by the Log4J framework. By default, the WSLogA

Framework routes the received message information into a relational database management

system using the Event Group.

Log event monitoring within the context of J2SE Logging API (Arnold et al., 2005; Gupta,

2003) enabled systems is provided by the JdkLogHandlerMonitor, illustrated in Figure 4-12.

JdkLogHandlerMonitor extends Logging API's Handler class (Gupta, 2003), which permits the

monitor component to be configured within the standard J2SE JVM extension framework.

This approach permits integration of the WSLogA Framework into systems for which Log4J

was not an option (e.g., an Apache commons logging strategy (Oak, 2004) was not em-

F igure 4-11 . Log4JAppenderMonitor routes Log4J messages to a persistent data store.

58

ployed). The JdkLogHandlerMonitor parallels the Log4JAppenderMonitor by employing the

same policy based approach to information adjustment and by routing information to a

relational database management system through the use of JdoEventRecorder; however,

JdkLogHandlerMonitor must be configured as an extension to a JRE in which the application

is executed (Gupta, 2003; Sun Microsystems, 2001, 2004). This configuration can be achieved

by direct modification of a Sun based JVM, such as that provided for J2SE 1.5, or with the

assistance of an application featuring appropriate JVM control, such as the GlassFish applica-

tion server.

Figure 4-13 illustrates the standard workflow for log event processing by JdkLogHan-

dlerMonitor within the context of a typical J2SE application using the Logging API. Log

messages are generated by the application and host environment and then transferred to the

Handler components by the J2SE. As with the Log4JAppenderMonitor, the default WSLogA

Framework configuration routes the received message information into a relational database

management system using the Event Group.

Reporter is an interface that provides the report method for use by monitors and other

components interested in obtaining information regarding a Reporter object's Subject. The

F igure 4-12 . The JdkLogHandlerMonitor.

59

report method's return value is generic (Arnold et al., 2005) and may represent any report

structure appropriate to the system, such as a Java Object or textual XML. Reporters may

serve as calculators (e.g., data generators as opposed to harvesters), and in such cases a

component may wish to implement both the WSLogA Framework's Reporter and the J2SE

(1.5 or greater) SDK's Future interface (Goetz et al., 2006) to take advantage of contemporary

threading mechanisms offered by the Java platform. Figure 4-14 illustrates the Reporter and

its associated components.

The Observer abstract class implements Reporter and adds functionality for tracking Sub-

jects. Subject is generic (Arnold et al., 2005), and, as such, may vary according to the system's

needs. For example, an Observer might track a file within the environment or a Java Object

receiving data from a SOAP transaction. The method getReportSubjects can be used to

retrieve Subjects valid for report preparation, such as those that might be deemed candidates

by an associated policy set. PoliciedObserver extends Observer by overriding the getRe-

portSubjects method to honor policy filters. ObjectObserver is a concrete implementation of

Figure 4-13 . JdkLogHandlerMonitor routes J2SE messages to a persistent data store.

60

PoliciedObserver that uses an ObjectInspector instance to analyze Java Objects and prepare

reports using the XmlEventType component provided by the Event Group.

Figure 4-15 illustrates a typical workflow for the preparation of a report by an ObjectOb-

server interacting with a WSLogA Framework enabled application. An ObjectObserver is

F igure 4-14. The Observer.

61

prepared and Subjects of interest are associated by the application. The ObjectObserver is

then provided to a Monitor that can periodically pull reports regarding the Subjects.

Recorder is an interface that declares behavior for accepting reports generated by Re-

porter instances. Recorder implementations may further process or route information as

appropriate to the system. The JdoEventRecorder is a concrete implementation of Recorder

that accepts reports represented as textual XML and persists the information by using a

F igure 4-15 . ObjectObserver reports on an Object's characteristics.

62

JdoEventRegistrar instance. XmlEventRecorder accepts XmlEventType objects and translates

the information into a textual XML report for consumption by an embedded Recorder that

accepts reports represented as String instances. Figure 4-16 illustrates the Recorder interface

and its associated components.

JdoEventRegistrar is a Singleton (Gamma et al., 1994) class that interacts with the Event

Group to appropriately generate new database entries or associate information with existing

database entries in a manner that satisfies JDO's implementation constraints. The use of such

F igure 4-16. The Recorder.

63

a gateway into an associated data store facilitates the maintenance of data integrity within

multithreaded systems.

Figure 4-17 illustrates a typical workflow for the routing of report information into an

associated relational database management system by means of an XmlEventRecorder. A

Monitor transfers report information from a Reporter to the XmlEventRecorder, which first

transforms the report into textual XML and then provides the report to a JdoEventRegistrar

so that the information may be persisted.

The Inspector component provides the Monitor Group with functionality for generating

detailed report information regarding a Subject. Third parties may build domain specific

Inspectors, but predefined Inspector sets are provided for SOAP and log message inspection

within the context of the most popular J2EE technology platforms for those purposes. The

Inspector interface contains generic references to the type of report and Subject addressed

by the inspection. Policy management is provided for Inspector through the PoliciedInspec-

torBase abstract class, which may be extended by third parties to produce flexible inspection

solutions for their applications. PoliciedInspectorBase uses AcceptancePolicy instances to

Figure 4-17 . WSLogA Framework report objects are easily persisted.

64

filter the type and content of information obtained from a Subject. For example, a Policy

could be established to ignore social security numbers within an Object representing a

financial account. A default AcceptancePolicy is permitted for reference by PoliciedInspec-

torBase whenever a standard policy associated within a PoliciedInspectorBase instance fails

to filter information. DefaultAcceptancePolicy is defined as a member class of PoliciedInspec-

torBase, and will accept all information provided for the report. Figure 4-18 illustrates the

core Inspector components.

SoapMessageInspector (Figure 4-19) is a dedicated Inspector for SOAPMessage (Graham

et al., 2005) objects that are used by J2EE and Axis Web service environments, such as those

provided by the GlassFish and JBoss application servers. SOAPMessage objects provided to

F igure 4-18. The Inspector.

65

SoapMessageInspector, such as by a SoapHandlerMonitor, are properly analyzed for informa-

tion contained within XML fields in addition to information stored as Java Object attributes.

SoapMessageInspector implements PoliciedInspectorBase to provide Policy managed infor-

mation extraction and report generation.

Integration with encoded and legacy log architectures is provided by the WSLogA

Framework using a component set that shares log inspection functionality, as illustrated in

Figure 4-20. Encoded log messages are those whose message payloads are structured to

accommodate parsing, such as what may be provided by XML, whereas Legacy log messages

are those in plain text format, such as those intended to be read by a developer debugging

an application. LogInspector is an interface that declares core log message processing

F igure 4-19. The SoapMessageInspector.

66

functionality that accepts a generically typed message object and provides hook methods

intended to extract information from the message object. Log4JInspector and SunLogInspec-

tor implement LogInspector according to log platform requirements—Log4J LoggingEvent

(Gulcu, 2002; Gupta, 2003) objects in the case of Log4JInspector and J2SE LogRecord (Gupta,

2003) objects in the case of SunLogInspector. Parallel components extending log platform

classes are provided to accept log messages from log systems and route messages to respec-

tive log Inspector components for processing. EventReportLayout includes Log4JInspector as

a composite attribute and may be integrated into Log4J based systems. EventReportFormat-

ter includes SunLogInspector as a composite attribute and may be integrated into J2SE

Logging API based systems. The default behavior of the log inspection components is to

capture log messages in a manner that permits policy based control, but third parties may

provide additional logic to enable analysis of highly refined information such as that con-

tained by XML encoded message payloads.

Employment

The Monitor Group is integrated into the WSLogA Framework as the information acqui-

sition and routing mechanism. Functionality is provided for observing or inspecting data

from a variety of sources—such as SOAP transactions, log frameworks, or Java runtime

objects—and, with the assistance of Policy components, route appropriately filtered or

calculated information into data stores, such as a relational database management system or

another Web service. Figure 4-21 illustrates the relationship between the Monitor Group and

other component groups as well as the environment.

67

F igure 4-20. The log framework Inspectors.

68

The Monitor Group must be employed in conjunction with the Policy Group, but other-

wise is independent of other WSLogA Framework components. Such an independent

integration of the Monitor Group would facilitate robust information acquisition for Enter-

prise systems, and, in particular, those based on Web services that require data capture

across contexts (e.g., information provided by both SOAP messages and runtime objects).

The Monitor components can be employed to control the timing of observations to ensure

information acquisition is coordinated for sessions or transactions. Figure 4-22 illustrates the

general relationships involved in the deployment of only the Monitor Group and essential

associated components.

The Monitor Group is demonstrated as the information acquisition and routing mecha-

nism for the Adventure Builder application (Appendix C). Scenarios such as the information

collection example employ the Monitor Group as an integrated function of monitoring

systems hosted within the GlassFish application server process. A SOAP monitor is associated

with the Lodging Web service to capture lodging requests generated by the Order Processing

F igure 4-21 . Monitor Group relationships.

69

Center (OPC) Web service. ObjectInspector components are also configured and associated

with the lodging request generation and consumption components provided by Adventure

Builder, and the information is later correlated to ensure transaction integrity. A key feature

of the strategy employed is that the monitoring system requires only minor modifications to

the Adventure Builder application and does not impact the business logic's flow. Figure 4-23

illustrates an example workflow involving the Monitor Group.

Constraints and Opportunities

The Monitor Group provides the capability to capture SOAP message information made

available by request, response, and fault events; however, the WSLogA Framework improves

on this capability by also enabling the acquisition of information related to the transaction's

context. For example, functionality is provided for integration with Log APIs, and third

parties may develop more complex acquisition components such as those that inspect

F igure 4-22. General employment of Monitor Group members.

70

databases, system log files, or distinct hosts. A combination of information sources facilitates

decision making and reporting that provides a holistic understanding of system behavior

that cannot be obtained by SOAP analysis alone (Telles & Hsieh, 2001).

The concept of coordinating reporting and recording activities by means of a Monitor

cleanly separates tasks to permit the development of specialized components (Gamma et al.,

1994; Greenfield & Short, 2003; Schmidt & Buschmann, 2003). Further, Reporter and Re-

corder components can be employed independently of a coordinating Monitor component

to provide Enterprise systems with the best flexibility for establishing information flows.

However, Monitors should be introduced to Enterprise systems whenever information

pertaining to a set of Subjects or event milestones should be recorded as a coherent report.

For example, a B2B e-commerce exchange may wish to confirm the entry and exit statuses of

F igure 4-23. An example employment of the Monitor Group.

71

a Web service module, and part of that confirmation may include user account or server

state calculations.

The Reporter component family makes explicit that information can be calculated or

harvested. Often, as may be provided by an Inspector, the report produced will be a combi-

nation of values that could further be modified according to rules introduced by active policy

sets. Third parties extending the WSLogA Framework should introduce log events (that may

also be harvested by WSLogA Framework, such as by means of Log4J integration) for com-

plex data flow and transformation relationships to ensure a complete understanding of

original versus modified or calculated data during the development phase.

The logging API integration components—Log4JAppenderMonitor and JdkLogHandler-

Monitor—provide convenient integration of the WSLogA Framework into established

Enterprise systems, and in particular those systems that are difficult to modify (such as an

application server), but convenience comes at the price of flexibility. Log messages bearing

unstructured information (e.g., text intended to be read by people) may not be suitable for

F igure 4-24. A J2SE Logging API derived Handler may delegate message management.

72

use in an environment analysis engine without significant preprocessing. Systems providing

event information to WSLogA Framework may need to be reworked to ensure that log

messages use structures such as those provided by XML. Reporting components can subse-

quently process the structured information to produce human friendly reports, if necessary.

The J2SE Logging API is generally configurable only through JVM properties (Gupta,

2003), which means data acquisition goals may conflict with the log routing intention of

established systems. For example, the GlassFish application server uses the J2SE Logging API

to manage its log records, and GlassFish's log configuration is performed through an admin-

istrative console that sets log management preferences globally for the JVM. JdkLogHan-

dlerMonitor can only be used with GlassFish as a configurable, external entity to the system

as a substitute Handler instance in lieu of GlassFish's preferred Handler (Appendix C).

Derivations of the JdkLogHandlerMonitor may need to be developed that conveniently allow

delegation of log information to other Handler instances by means of an external configura-

tion mechanism to ensure that both the WSLogA Framework and the host system's informa-

tion management objectives can be realized without adversely affecting the information

flow. Figure 4-24 illustrates such a relationship.

The Policy Group can significantly enhance information flow and transformation by in-

troducing business rules that may change report content without requiring adjustments to

the principal acquisition or host logic. This functionality is important for those systems

deployed throughout environments that may have different information management

obligations. WSLogA Framework enables convenient policy integration through components

such as PoliciedObserver.

73

The Event Component Group

The Event Group is comprised of those components that model and persist the informa-

tion captured by the WSLogA Framework. The interfaces, classes, and resources for this

group are defined at the org.ws.loga.event package. Figure 4-25 illustrates those portions of

the WSLogA platform that are addressed by members of the Event Group with grey elements

indicating boundary components. Figure 4-26 illustrates the use cases embodying these

workflows. Appendix H documents the activities associated with each use case.

Roles and Responsibilities

Eight roles were envisioned for the Event Group components for the purpose of model-

ing the information of interest to WSLogA Framework components. The focus is on the

description of an event, but ancillary roles assisting event or data management are provided

F igure 4-25. WSLogA elements addressed by the Event Group.

74

for the convenience of Perspective or Response Group components. Figure 4-27 illustrates

the Event Group component roles and their relationships.

The Event role represents an event occurrence within the service, transaction, or envi-

ronment and is generally comparable to log messages or click stream data. An Event encap-

sulates data specific to its occurrence, which is represented within the system as generic

Datum instances or specialized types such as Locations.

Similar Events are organized within an Event Type, which is metadata facilitating the

convenient reference of Event sets. Event Types are characterized by a Severity, which should

be interpreted as a degree of significance within the universe of Events as opposed to

continuity of system functionality. This recognizes that issues of continuity are really a

F igure 4-26. Use cases applicable to the Event Group.

75

matter of perspective and best interpreted by analyzers within the boundaries of business

rules, such as those analyzers enabled by the Response Group (Lai et al., 2005; Larson &

Stephens, 2000).

Event Domain and Data Type Synonym roles represent additional metadata organizing

Event- and Datum Types for the convenience of perspective or Response Group components.

The establishment of these roles recognizes that long term organization of information

F igure 4-27. Event Group component roles.

76

within a system's event database is subject to change due to evolution in system enhance-

ments or extensions.

Structure

The Event Group is structured using the Event interface and supporting components, as

illustrated in Figure 4-28. The interfaces provided define the structure for event values,

locations, and categories, and, as such, form the data model for the WSLogA Framework’s

management of acquired information. The interfaces do not make assumptions as to

whether the information will be persisted, which permits the development of component

F igure 4-28. Event Group component structure.

77

families that distinctly address inter-component communication (e.g., using XML payloads)

and data store transitions (e.g., using JDO or Hibernate).

The Event interface is intended to organize information related to an event occurrence,

such as the Event’s location, transaction attributes, and processing markers applied by

managing components (e.g., the Response Group’s ResponseTask). All other components

F igure 4-29. The event components define the data model.

78

within the Event Group are or ganized around the Event interface to either define related

information containers or to manage persistence.

The EventType interface is intended to organize Event objects related in terms of a logi-

cal type established by the Monitor Group. For example, Events could be organized in terms

of the Web service in which the Event occurs, or Events could be organized in terms of

transaction types (of which multiple types could be handled by a single service endpoint).

The EventDomain interface is provided to relate EventTypes that may be conceptually

similar but identified using different labels. For example, one development department may

establish an EventType known as com.someCompany.serviceFailure and another depart-

ment could use com.someCompany.nonResponsiveService to capture what is effectively the

same issue from the perspective of an environment management system (Meadow et al.,

2000).

F igure 4-30. The Event Group facilitates inter-component event information transfer.

79

The Location interface provides access to Physical- and LogicalLocation components,

which record the coordinates for an Event’s occurrence. Analysis systems can build maps of

an information set’s system traversal using the Location information—including for Web

service nodes external to an in-house Web service system if the external nodes also imple-

ment the WSLogA Framework. Credit and financial institutions, among others, often provide

services involving the operation of multi-organization Web services and can use this feature

to ensure those partners with the best performing systems are rewarded with system usage

during transactions (Anselmi et al., 2007; Tong & Zhang, 2006).

The Data and DataType interfaces are intended to facilitate event descriptions and

should be managed by Event objects. Data objects can uniquely identify information for later

retrieval and analysis. DataType objects can be associated with Data objects to identify the

kind of information being tracked, such as information that is part of the Event (e.g., the

amount of a fund transfer) or metadata provided by Event processors (e.g., marking an Event

as processed so that it isn’t redundantly analyzed).

The Event Group provides a model by which gathered information is organized but no

assumption is made about the data persistence system used to accept information. Applica-

tions can implement the Event Group’s foundation interfaces to integrate most data persis-

tence technologies if the distributed WSLogA Framework components do not meet the

adopting system’s requirements.

80

F igure 4-31 . The data model as adopted for use with JDO.

81

Figure 4-32. JdoTransactionalEventPool enables bidirectional information management.

Implementation

Each component role is provided with an abstract or concrete class implementation that

organizes information in the form of class attributes and provides derivations with hook

methods for state initialization or information management capabilities expected as a

common occurrence for the data model. Third parties may use or derive the components

within this package to share data among components utilizing otherwise incompatible

82

technology platforms, such as Hibernate (Bauer & King, 2006). Figure 4-29 illustrates the

components implementing the information data model.

Also defined within the persist extension package are components for transferring event

information among system modules or WSLogA Framework APIs. EventPool is the base data

transfer object (Alur et al., 2003) within the WSLogA Framework, and should be used by

F igure 4-33 . The data model as adopted for in inter-component information exchange.

83

third parties to move information from Perspective to Response components when such

information should not be modified by analysis engines. Figure 4-30 illustrates the EventPool

and associated support components.

The WSLogA Framework provides data persistence capabilities that take advantage of

relational database management systems, such as that provided by the HyperSQL database

engine (HSQLDB Development Group, 2008) used in this investigation's demonstration

(Appendix C). The JDO technology platform (Tyagi et al., 2004) was adopted for this purpose

because it uses an object-oriented approach to transferring data between the application and

data tiers that is easily understood by Java developers from a variety of data management

backgrounds (Landre et al., 2007; Senthil et al., 2007).

F igure 4-34. The Event Group relationships.

84

Each data model class defined in the base package is extended and enhanced for use

with the JPOX JDO engine (JPOX, 2008). Rules enforcing referential integrity are imple-

mented in components as necessary, and functionality is provided within the JDO compo-

nents that enables their conversion into XML to facilitate convenient transfer of their

information across system boundaries for which JDO may not be an option (e.g., a socket or

RMI connection to a parallel processing system). Similarly, information in an appropriate

XML form may be accepted by the JdoEventType component to produce an object hierarchy

appropriate for persisting information into the associated database. Figure 4-31 illustrates the

JDO enabled components.

The JDO component family provides enhanced capabilities for transferring Event infor-

mation between Perspective and Response components. The TransactionalEventPool

F igure 4-35 . General employment of Event Group members.

85

accommodates the registration of objects that may modify the associated Event information,

such as to add metadata that prevents redundant processing of Event records. Registered

observers can vote on how Event information provided by the TransactionalEventPool

should be persisted, if at all. The change can be made effective once all of the observers have

voted as well as when a timeout period set by managing logic expires. For example, a

Perspective could instantiate a TransactionalEventPool object for which the data should only

be considered valid for a maximum of five minutes. Figure 4-32 illustrates use of the Transac-

tionalEventPool within a typical Event analysis module.

F igure 4-36. An example employment of the Event Group.

86

A parallel component family manages the transition of event information from the struc-

ture of XML to object form. The components within the xml package are not responsible for

persisting event information so the managing logic is limited to ensuring reasonable data

integrity within object models established in result of a parsed XML feed. The components

within the persist package are used as the foundation model ensuring transparency in data

conversation within the WSLogA Framework, such as for managing the transition of Event

information from XML report to JDO object form, so competing technologies, such as JAXB

(Graham et al., 2005), were not used. Figure 4-33 illustrates the components provided by the

xml package.

Employment

The Event Group is integrated into the WSLogA Framework by serving both as the data

model for event information and the principal mechanism by which that data is transferred

between the application and data tiers. The Monitor and Perspective Groups are structured

around the Event Group's functionality. The Recorder component set within the Monitor

Group uses the Event Group's JDO integration to persist reports about Events and their

context. EventPool and TransactionalEventPool serve as Data Transfer Objects (Alur et al.,

2003) to move event information from the data store to event analysis and response engines,

which permits Perspective components to focus on framing the ad hoc data models pre-

sented for reports and analysis instead of data loading. The common data model provided by

components within the persistence package, such as PersistentEvent, permit the establish-

ment of extension packages in which components provide specialized data management

capabilities. For example, the JDO based components juxtapose the WSLogA Framework

87

data model with the persistence management capabilities of the JPOX framework. Likewise,

a third party could create a custom data management platform with capabilities such as

persistence over the wire (e.g., using a Web service). Figure 4-34 illustrates the relationship

between the Event Group and other component groups as well as the environment.

The Event Group is an integral part of the WSLogA Framework and is not intended to be

used apart from the other component groups. Instead, third parties should concentrate on

integrating either the Monitor or Perspective Groups into their system architecture to take

advantage of their relationship with the Event Group. However, third parties may wish to

provide data management extensions to the components within the persistence package to

accommodate system specific technology constraints. For example, a system based on the

Spring framework (Walls & Breidenbach, 2007) may use the Hibernate data management

platform, in which case the developers for such a system are likely more comfortable organ-

izing data queries using SQL instructions. Figure 4-35 illustrates the general relationships

involved in the deployment of the Event Group within the context of the Monitor and

Perspective Groups.

The Event Group is demonstrated as the event data model and management mechanism

for the Adventure Builder application (Appendix C). All of the scenarios presented within

Appendix C involve the capture of information from sessions involving the Adventure

Builder application (Appendix B), for which the result is event information persisted within

the associated HyperSQL database configured for use with the WSLogA Framework. As

appropriate, Perspective-derived components use the Event Group to retrieve event informa-

tion with specific characteristics from the database and share subsets of that information

with ResponseTask derivations. Although the HyperSQL database is used in the demonstra-

88

tion, any relational database management system compatible with the JPOX framework can

be configured for use with the WSLogA Framework's default implementation. Figure 4-36

illustrates an example workflow involving the Policy Group.

Constraints and Opportunities

The Event Group is designed to describe event information using a common denomina-

tor model easily represented within relational data systems, such as the HyperSQL relational

database used for this investigation's demonstrations (Appendix C). Relational data systems

are popular complements to Enterprise application environments and a variety of object-

relational mapping (ORM) platforms—including Enterprise Java Beans (EJBs), Java Data

Objects (JDO), and Hibernate—have been developed to integrate Java based systems with

relational data systems. A feature of many ORM solutions is that they use the Java Database

Connectivity (JDBC) API (Reese, 2000) to transfer data, which enhances an Enterprise sys-

tem's flexibility by offering potential integration with non-traditional formats that include

ad hoc file systems and XML data sets. Particularly in the case of the XML file set, these

alternatives can open up opportunities for investigating WSLogA Framework integration

with search platforms such as Apache Lucene (Gospodnetic & Hatcher, 2004) or Hadoop

(Apache, 2007; Dean & Ghemawat, 2008) to augment the perspective or Response Group

capabilities.

The JPOX framework for JDO was selected as the data persistence technology because

that platform can operate outside of Application server containers and provides software

developers with an object-oriented paradigm that naturally complements the Java language.

Enterprise JavaBeans (EJBs), Hibernate, and JDBC/SQL access were also considered for the

89

implementation, but their dependency on application containers or procedural data access

strategies eliminated their candidacy for the initial version of the WSLogA Framework.

Initial JDO implementations are limited in their ability to handle queries such as those

using negation to shape result sets. Some Perspective components developed to demonstrate

the WSLogA Framework had to use expensive query strategies to circumvent query structure

limitations that would have been easily solved using SQL syntax (Appendix C). However, the

intended effect of the Perspective components—the availability of specific data sets—was

achieved with a moderate work around. Environments using a relational database system to

persist Event information captured by the WSLogA Framework may also use custom report

engines, such as Crystal Reports (Business Objects, 2008) or Cognos (Cognos, 2008), to

directly access the tables and records for efficient data shaping and retrieval.

The Event Group provides Enterprise systems with the flexibility of operational continu-

ity of monitoring and response processes despite erroneous or fatal behavior in front end

systems. For example, in the failing Web service demonstration scenario (Appendix C) the

Adventure Builder application suffers significant component failure, yet the monitoring and

response processes located in the JUnit process driving the demonstration remained effec-

tively operational while using Event Group components to retrieve Event information and

mark processed Event records.

The Perspective Component Group

The Perspective Group is comprised of those components that retrieve and normalize

information managed by the Event Group and distribute it to response or reporting systems.

The interfaces, classes, and resources for this group are defined in the org.ws.loga.perspective

90

package. Figure 4-37 illustrates those portions of the WSLogA platform that are addressed by

members of the Perspective Group with grey elements indicating boundary components.

Figure 4-38 illustrates the use cases embodying these workflows. Appendix H documents the

activities associated with each use case.

Roles and Responsibilities

Five roles were envisioned for the Perspective Group components for the purpose of co-

ordinating and performing information retrieval and normalization for Response Group

components or external system processes, such as reporting applications. Figure 4-39

illustrates the Perspective Group component roles and their relationships.

The Perspective performs the information retrieval and normalization tasks. It is pro-

vided with a resource reference to the Event information managed by the Event Group

components and can establish queries for information retrieval. Perspective may also nor-

malize information in terms of content or structure to ensure its suitability for consumption

F igure 4-37. WSLogA elements addressed by the Perspective Group.

91

by Response Group components or an external process such as a reporting system. A Per-

spective knows its preferred schedule for making Event information available to Event

Processor objects, and can be dynamic (e.g., multiple queries may be performed) or static

(e.g., only one query will be performed).

The Perspective Scheduler works with Perspectives and the Perspective Runner to ensure

that Perspectives are submitted for execution at appropriate intervals. A Perspective Sched-

uler queries each Perspective to learn about its preferred schedule and then attempts to

meet that schedule by submitting Perspectives ready for operation to a Runner. The Perspec-

F igure 4-38. Use cases applicable to the Perspective Group.

92

tive Runner executes Perspectives in a manner suitable for the environment, and ideally in a

concurrent manner.

Perspectives make their processed information available to Event Processors. The Event

Processor may observe one or more Perspectives for updates to Event information, or

another mechanism may be established by which the availability of information is commu-

nicated to the Event Processor.

The Perspective Service is made available for loading Perspectives, which may be useful

for non-container processes, such as a daemon based on the WSLogA Framework. A configu-

ration may be supplied to the Perspective Service, or Perspective characteristics may be

predetermined by the service for specialized analysis systems.

F igure 4-39. Perspective Group component roles.

93

Structure

The Perspective Group is principally structured using the Perspective interface and sup-

porting components for loading, scheduling, and executing Perspective components, as

illustrated in Figure 4-40.

The Perspective interface declares a Template Method (Gamma et al., 1994) that imple-

menting components define to obtain Event information, as well as method signatures for

functionality required by the WSLogA Framework for managing the information retrieval

and distribution workflows. This interface is appropriate for information distribution by

which external systems are directly updated with Event information, although a comple-

mentary implementation of the Response Group's ResponseTask is appropriate for separat-

F igure 4-40. Perspective Group component structure.

94

ing processing concerns. The WSLogA Framework distribution provides an enhanced

Perspective that facilitates this separation of concern.

The PerspectiveRunner class manages the execution of Perspective objects, and works

with the PerspectiveScheduler to identify Perspective instances that are ready to retrieve

information. Both the PerspectiveRunner and PerspectiveScheduler are defined as concrete

components as they are an integral bridge between the perspective and Event Groups. These

components work intimately with Perspective objects to coordinate and perform informa-

tion retrieval and distribution tasks. Figure 4-41 illustrates the principal sequence for the

perspective components.

F igure 4-41 . Principal perspective component interaction.

95

Implementation

The Perspective interface implements the Runnable interface, which permits its

threaded execution by PerspectiveRunner. The EventPool interface from the Event Group is

used to track updated and normalized Event information for distribution among external

systems or other WSLogA Framework components.

The PerspectiveBase abstract class implements the Perspective interface to provide the

critical management functionality expected by the PerspectiveRunner and Perspec

tiveScheduler components. Applications creating custom information distribution workflows

F igure 4-42. PerspectiveBase defines key behaviors for PerspectiveRunner integration.

96

should extend the PerspectiveBase abstract class and implement the template information

retrieval method to ensure compatibility with the WSLogA Framework workflows. Figure 4-

42 illustrates the PerspectiveBase relationship with the PerspectiveRunner and Perspec-

tiveScheduler components.

The ObservablePerspective abstract class extends PerspectiveBase and works in tandem

with the EventProcessor interface to distribute normalized event information among

consuming external systems or components. (The WSLogA Framework distribution imple-

ments the Response Group's ResponseTask as an EventProcessor to accommodate the

standard analysis and response workflow.) Figure 4-43 illustrates the ObservablePerspective

and EventProcessor relationship.

F igure 4-43. ObservablePerspective pushes event information to EventProcessors.

97

The PerspectiveRunner class executes Perspective components provided by the Perspec-

tiveScheduler using ExecutorService (Goetz et al., 2006). The PerspectiveScheduler makes use

of the PerspectiveService component to identify Perspective objects ready to query the Event

Group for event information updates, and makes the active Perspective objects available to

the PerspectiveRunner.

Employment

The Perspective Group is integrated into the WSLogA Framework by serving to shape

and make available Event information for use by reporting and analysis engines. The Re-

sponse Group is structured according to the services provided by the Perspective Group, for

which the ObservablePerspective and ResponseTask (an implementation of EventProcessor)

component relationship is a prime example. The principal advantage of the Perspective

Group is to provide Policy managed Event information shaping prior to its consumption by

reporting and analysis engines, which is an important concern if sensitive information may

be captured by the WSLogA Framework system (e.g., social security numbers or customer

habits). Figure 4-44 illustrates the relationship between the Perspective Group and other

component groups as well as the environment.

F igure 4-44. The Perspective Group relationships.

98

The Perspective Group can be employed independent of all other WSLogA Framework

components to provide basic information shaping and routing functionality; however,

advanced features were implemented using elements of the Event Group and, as such, third

parties should plan to adopt both component groups when evolving existing application

architectures. Regardless of the degree of adoption, third parties must provide their own

logic shaping the Event information retrieved. JDO integration provided by the Event Group

is ideal for this purpose and the demonstrations provided as part of this investigation

(Appendix C) use this strategy when preparing EventPool objects for use by ResponseTask

F igure 4-45. General employment of Perspective Group members.

99

instances. Figure 4-45 illustrates the general relationships involved in the deployment of the

Perspective Group.

The Perspective Group is demonstrated as the Event information shaping and provider

mechanism for the Adventure Builder application (Appendix C). All of the scenarios involv-

ing event analysis use Perspective derivations to shape the Event information made available

to Event Processors. The information capture demonstration uses a pull-based Perspective

implementation in which the Perspective derivation only loads and prepares Event informa-

tion upon the request of an external component. The failing Web service and failing data-

base scenarios take advantage of push-based Perspective derivations that periodically load

and prepare Event information and then push the Event information to observing Response

Task based components. Figure 4-46 illustrates the usage of both push- and pull-based

Perspective derivations.

F igure 4-46. An example employment of the Perspective Group.

100

Constraints and Opportunities

Information distribution is an important concern for reporting systems as well as systems

responsible for ensuring proper application operation and performance across production

environments. The Perspective Group provides Enterprise systems with a mechanism for

retrieving the aggregated and correlated information from the persistent data store main-

tained by the Event Group, normalizing the information for consumption, and distributing

the information to consuming processes.

The implementation strategy for the distributed WSLogA Framework perspective com-

ponents provides a workflow that tightly integrates the information retrieval, normalization,

and distribution tasks. Applications only need to extend PerspectiveBase with custom

retrieval and normalization logic while still gaining the benefit of the controlled WSLogA

Framework workflow. ObservablePerspective can also be extended to accommodate con-

sumer registration, which minimizes the logistical tasks necessary to streamline the informa-

tion distribution process.

The Perspective Group is designed with the assumption that members of the Event

Group will be utilized to obtain information. As such, the mechanism for query management

will depend on the technology driving the subset of persistent data classes providing infor-

mation access. For example, the WSLogA Framework is distributed with JDO enabled

information management, which is excellent for organic data models and linear data access

but is still limited in the types of complex queries possible for retrieving specific data sub-

sets. Perspective components for systems in which the information management technology

could change should make use of Proxy and Strategy patterns (Gamma et al., 1994) to

101

delegate information retrieval to components that may be easily substituted without the

need for reworking the Perspective's principal logic.

The Response Component Group

The Response Group is comprised of those components that process information re-

trieved by Perspective Group components and manage the application or environment in

response to the analysis results. The interfaces, classes, and resources for this group are

defined at the org.ws.loga.response package. Figure 4-47 illustrates those portions of the

WSLogA platform that are addressed by members of the Response Group with grey elements

indicating boundary components. Figure 4-48 illustrates the applicable use cases. Appendix

H documents the activities associated with each use case.

F igure 4-47. WSLogA elements addressed by the Response Group.

102

Roles and Responsibilities

Four roles were envisioned for the Response Group components for the purpose of ac-

cepting Event information from Perspective Group components, analyzing the obtained

information, and making environment adjustments in response to the analysis results.

Figure 4-49 illustrates the Response Group component roles and their relationships.

The Response Task manages the analysis of Event information and effects change in the

application or environment in response to the analysis result. The Response Task provided

for distribution with the WSLogA Framework is envisioned as a form of the Event Group's

F igure 4-48. Use cases applicable to the Response Group.

103

Event Processor role, but conceivably any consumer of Event information made available by

the WSLogA Framework could serve as a Response Task. The Response Task may also directly

work with Event Group components to add metadata markers regarding information

provided by the associated Perspective, such as to indicate that the Response Task has

already processed specific Events (Brett, 2005).

Response Task components wait to receive updated event information from a Perspec-

tive when manifested as a specialized form of the Event Processor defined as part of the

Perspective Group. The Response Task notifies the Response Task Scheduler upon receiving

updated Event information, and the Response Task Scheduler works with the Response Task

Runner to execute the Response Task at an appropriate time.

The Response Task Service is provided to facilitate Response Task loading and configura-

tion, such as to associate Response Tasks with Perspectives. The Response Task Service may

F igure 4-49. Response Group component roles.

104

be particularly useful for processes operating outside of an Application server, such as a

production environment control system.

Structure

The Response Group is principally structured using a relationship between a component

representing the Response Task and components managing the scheduling and execution of

the Response Task, as illustrated in Figure 4-50.

The ResponseTask abstract class represents work to be performed in response to the ap-

plication's analysis of the Event information as harvested by the WSLogA Framework.

F igure 4-50. Response Group component structure.

105

ResponseTask is defined as a Runnable (Arnold et al., 2005) component to facilitate the

simultaneous execution of multiple tasks, and the component implements the EventProces-

sor interface provided by the Perspective Group to enable its consumption of information

provided by Perspective components. The WSLogA Framework manages ResponseTask

objects after their instantiation, which permits adopting systems to focus on the business

logic driving system stability and reporting.

The ResponseTaskScheduler interface is responsible for scheduling the execution of Re-

sponseTasks upon being notified by ResponseTasks that they are ready to process Event

information or perform environment management. Implementations of ResponseTask-

Scheduler permit flexibility in how system resources are distributed to handle responses

(Helsinger et al., 2003; Lee et al., 2002). For example, an application could implement a

Scheduler that gives priority to system maintenance tasks over tasks generating reports.

F igure 4-51 . Principal response component interaction.

106

The ResponseTaskRunner class implements the ResponseTaskScheduler interface and is

responsible for the execution of ResponseTask objects. ResponseTaskRunner delegates

operation of ResponseTask instances to ResponseTaskExecutors, which are obtained from a

ResponseTaskExecutorFactory. This delegation ensures that applications have the ability to

choose a ResponseTask management strategy appropriate for the system’s response and

resource requirements. For example, servers with significant operating resources (e.g., RAM)

F igure 4-52. The ResponseTask organizes response behavior.

107

may be able to handle the ResponseTask instances within a single, local JVM; however,

systems could instead implement a ResponseTaskExecutor that distributes ResponseTask

execution among nodes within a grid (Helsinger et al., 2003; Lee et al., 2002).

Figure 4-51 illustrates the relationships among the ResponseTask, ResponseTaskSched-

uler, and ResponseTaskRunner components. Adopting systems only need to implement the

ResponseTask component to take advantage of the default Event information processing and

response workflow.

F igure 4-53 . The ResponseTaskRunner drives response activities.

108

Implementation

The Response Group is implemented as three packages addressing ResponseTask, Re-

sponseTaskService, and daemon components that include the ResponseTaskRunner. All of

the components except ResponseTask have definitions that control the workflows necessary

to facilitate typical analysis and response operations in Enterprise system contexts. Applica-

tions only need to implement ResponseTask and associate the derived component with a

Perspective to benefit from the default workflow.

F igure 4-54. The ResponseTaskService loads ResponseTasks.

109

The ResponseTask is defined as an abstract class with a Template Method (Gamma et al.,

1994; Shalloway & Trott, 2001) for information analysis and response logic. Common func-

tionality for associating a Perspective and guarding against redundant execution is provided

(e.g., processing Event information while a previous update is still being processed). This

strategy permits extending components to focus on the business logic and the management

of related resources, such as a JMX component (L. McGregor, 2003; McManus, 2002;

McManus & Vienot, 2003). Figure 4-52 illustrates the ResponseTask component.

The ResponseTaskRunner is defined as a class that works in conjunction with a provided

Strategy component (Alur et al., 2003; Gamma et al., 1994; Shalloway & Trott, 2001) to

manage the scheduling and execution of ResponseTask objects. ResponseTaskRunner

implements the ResponseTaskScheduler interface to facilitate ResponseTask registration, and

a ResponseTaskService may establish this association with ResponseTask instances during

their initialization. Varied ResponseTask management behavior is enabled through the use of

F igure 4-55. The ResponseTaskDaemon provides an operational entry point

110

an associated ResponseTaskExecutorFactory component that produces ResponseTaskExecu-

tor instances that serve as ResponseTask management proxies (Gamma et al., 1994; Shallo-

way & Trott, 2001). The default behavior is to execute synchronously each ResponseTask

against its queue of assigned Events for processing. Third parties can vary this behavior,

including the execution of the ResponseTasks in foreign JVMs, by providing alternate

implementations of ResponseTaskExecutorFactory and ResponseTaskExecutor. Figure 4-53

illustrates the ResponseTaskRunner component.

The ResponseTaskService is defined as an interface, and is responsible for providing Re-

sponseTask objects for use in the Event analysis and environment management process.

ClassLoaderResponseTaskService implements the WSLogA Framework's default Response-

TaskService, and may be used as a Factory (Gamma et al., 1994; Shalloway & Trott, 2001) to

produce ResponseTask instances from classes available to the JVM and initialize each task by

F igure 4-56. The Response Group relationships.

111

providing references to the associated ObservablePerspective (Perspective Group) and

ResponseTaskScheduler. Figure 4-54 illustrates the ClassLoaderResponseTaskService.

The ResponseTaskDaemon is defined as an interface, and is responsible for managing an

Event analysis and environment management process based on Response Group compo-

nents. ScheduledResponseDaemon implements the WSLogA Framework's default Response-

TaskDaemon, and may be used to operate a ResponseTaskRunner using ResponseTask

implementations available to the host JVM. Figure 4-55 illustrates the ResponseTaskDaemon.

Employment

The Response Group is integrated into the WSLogA Framework by serving as the end-

point for Event information organized and provided by Perspective components, and by

refining the Event information pool made available to WSLogA Framework components

F igure 4-57. General employment of Response Group members.

112

through updates to Event metadata in result of Event analysis. Policy components can be

integrated into ResponseTask logic to enact behavior such as determining when environ-

ment interaction should be performed based on Event pattern observation or ensuring that

resultant reports only include information for which the audience is authorized. The Re-

sponse Group facilitates environment management by means of the processEvents method

provided by the extensible ResponseTask component. No default implementations are

defined, but extensions to the WSLogA Framework providing such implementations could

be developed as common response requirements are identified for specific architectures

(e.g., Web services running on GlassFish application servers). Figure 4-56 illustrates the

relationship between the Response Group and other component groups as well as the

environment.

F igure 4-58. An example employment of the Response Group.

113

The Response Group can be employed independent of most other WSLogA Framework

components; although, such architectures should consider also using Perspective and

EventPool components to facilitate Event information transfer from the Event information

pool. This strategy permits independent marshalling and exposure of Event information,

which may be critical to ensuring that only authorized consumers of the Event information

(represented by ResponseTask implementations) have access to information Perspectives (Lai

et al., 2005; Larson & Stephens, 2000; Monson-Haefel, 2004). The analysis and response

system should also remain external to the J2EE application being managed to ensure the

proper operation of Response Group members in the event of failure within the application

(Garlan & Schmerl, 2002; Helsinger et al., 2003; Lee et al., 2002). Figure 4-57 illustrates the

general relationships involved in the deployment of only the Response Group and essential

associated components.

The Response Group is demonstrated as the Event analysis and environment manage-

ment mechanism for the Adventure Builder application (Appendix C). Scenarios such as the

failing Web service example employ the Response Group components by means of a process

(JUnit) operating externally to the Adventure Builder application. Analysis components

extending ResponseTask are provided as appropriate for each example, and a GlassFish

management component is defined for environment interaction. The ResponseTask compo-

nents receive Event information from corresponding Perspective components and are

scheduled using the default strategies provided with the WSLogA Framework. If appropriate,

environment interaction is provided in response to the analysis outcomes. Figure 4-58

illustrates an example workflow involving the Response Group.

114

Constraints and Opportunities

System maintenance is an important concern for any distributed system, and Web serv-

ice environments such as that typified by the combination of the Adventure Builder applica-

tion and the GlassFish application server are equally susceptible to Enterprise environment

issues. The Response Group provides Enterprise systems with a mechanism for analyzing

information aggregated from multiple sources and executing environment or application

adjustments in response (Dashofy et al., 2002)—in effect, the Response Group provides a

suitable foundation for the development of self-healing systems. For example, in the event a

database pool fails a ResponseTask component could realize the failure and restart the

database pool.

The ResponseTaskDaemon and ResponseTaskRunner components permit the externali-

zation of Response Task operations, which accommodates holistic pattern analysis using

both internal (e.g., application generated) and external (e.g., router log file) information

(Garlan & Schmerl, 2002; Wang, 2005). Further, failure within the application or its immedi-

ate host, the application server, does not prevent error recovery from initiating. For example,

Handler (Graham et al., 2005) components are associated with specific Web services in

GlassFish, which means that an inactivated Web service prevents its corresponding Handlers

from recording transaction events; however, use of the ResponseTaskDaemon and its

associated components ensures that error recovery is performed (Appendix C).

The concentration of information analysis and response operation into the Response

Group permits the centralization of policies and rules regarding environment management

(Wang, 2005). As a result, sub-frameworks specialized for use with the WSLogA Framework

can be developed to accommodate reusable self-healing system logic for similar architectures

115

across disparate applications. For example, the application server management logic for

failed components, such as Web services and databases, should work similarly for the

WebLogic application server regardless of the implementation details for Web services or

their Handlers (Graham et al., 2005) deployed within WebLogic.

The implementation strategy for the distributed WSLogA Framework Response compo-

nents provides a workflow that tightly integrates the information retrieval, analysis, and

response tasks. Applications only need to implement a ResponseTask component with the

appropriate business rules (and ensure a suitable Perspective component is available) to take

immediate advantage of these features. However, systems can take advantage of the flexibil-

ity provided by the ResponseTaskScheduler and ResponseTaskRunner interfaces to define

extraordinary resource management in resource sensitive systems, such as those that must

ensure real time responses.

F igure 4-59. Use cases applicable to the Policy Group.

116

The Pol icy Component Group

The Policy Group is comprised of those components facilitating the expression of busi-

ness rules affecting information management (Wang, 2005). Policy contexts are defined to

represent behavior within the context of system, legal, or cultural boundaries that deter-

mine policy expression, which enables flexible adjustment of the system's behavior without

the modification of principal workflows. The interfaces, classes, and resources for this group

are defined at the org.ws.loga.policy package. Figure 4-59 illustrates the use cases embodying

these workflows. Appendix H documents the activities associated with each use case.

Roles and Responsibilities

Two roles were identified from the use cases for the purpose of representing a frame-

work policy and contexts in which that policy could operate. Figure 4-60 illustrates the

Policy Group component roles and their relationships.

Policy components can manifest behavior that confirms acceptance of a process or task,

or the objects can act upon information in manners that normalize the content or structure

to make it acceptable for specific contexts. For example, an acceptance Policy could indicate

whether a social security number should be recorded as part of the Event information

stream; a formatting Policy could substitute the character 'x' for a social security number's

F igure 4-60. Policy Group component roles.

117

first five digits to mask the significant parts of the social security number enabling the

unique identification of an individual.

Policy Context components confirm whether specified Policy objects should express

their behavior. For example, a Policy Context could represent an account type of interest—

such as that for a European customer—in which Policies enabling information capture rules

adhering to strict privacy standards will be approved for expression. Policy Context compo-

nents can also represent workflow phases for which general customization of information

management should take place regardless of legal or cultural considerations, such as

whether the business prefers to document the time required for transactions.

Structure

The Policy Group is principally structured using a simple relationship between two inter-

faces and a helper abstract class, as illustrated in Figure 4-61.

The Policy interface represents the Policy role, and as such serves as a proxy for the be-

havior or state implied by the rules defining the Policy. The Policy interface permits compo-

nents—including the Policy—to assert whether the Policy's rules will be executed if the

F igure 4-61 . Policy Group component structure.

118

Policy is invoked. Implementing components must validate the availability of resources

necessary for Policy execution.

The PolicyContext interface represents the Policy Context role, and as such serves as a

proxy for the evaluation affecting a Policy component's ability to operate. Implementing

components have several options for evaluating a Policy's active state. The Policy object can

be inspected, such as through reflection (Arnold et al., 2005), to determine if its attributes

warrant the Policy's activity as an instance-specific consideration; for example, a context may

enforce the rule that only Policies established by the local JVM may execute and foreign

Policies must not execute. The environment can also be assessed to determine activity; for

example, the context could be associated with a specific language (e.g., French) and only

permit Policy execution if that language is active for the client.

F igure 4-62. Principal policy component interaction.

119

The ContextualPolicy abstract class provides the functionality necessary to manage the

association of PolicyContext objects with a Policy object. This permits PolicyContexts to be

aggregated with a Policy that may traverse the system as part of a transaction, and with an

appropriate remote procedure call implementation the PolicyContexts could even be

transferred to remote systems. The WSLogA Framework defines the workflow by which

ContextualPolicy objects will consult associated PolicyContext objects to determine whether

the ContextPolicy should be active. Figure 4-62 illustrates the principal sequence for the

Policy components.

Implementation

The WSLogA Framework implements the Policy Group as two distinct packages that re-

spectively address specialized Policy or PolicyContext behavior and state as necessary for

general use. Extending applications may build upon the structure defining interface compo-

nents or override Template Methods (Gamma et al., 1994) within the specialized classes,

such as that provided by AcceptancePolicy.

F igure 4-63. Filter, format, and contextual policy specializations.

120

The Policy interface is the archetype of components manifesting or directly supporting

the Policy role. Extending implementations are accommodated through Template Methods

(Gamma et al., 1994) intended for the highly cohesive expression of business rules. Generics

(Arnold et al., 2005) are employed to provide compile time distinction between affected

entities and, if appropriate, the results of Policy operations. Figure 4-63 illustrates the

WSLogA Framework components derived from the Policy interface.

The preferred method for introducing a policy pattern into the WSLogA Framework is to

declare the intended behavior as a Template Method (Gamma et al., 1994) for an interface

derived from Policy. The use of Policy as a type marker clearly communicates the derived

component's intent and enables convenient organization of the derived components within

the package hierarchy and collections. Implementing components can manifest the Policy

rule by defining logic for the Template Method. Entities operated upon by the Policy-derived

component are injected into the object as necessary to satisfy a process' choice in behavior.

F igure 4-64. Policy roles are indicated by means of interface implementation.

121

For example, a reporting component could provide a formatting Policy with a social security

number so that the digits could be masked according to the Policy needs. A default Policy

might be to leave the social security number in its raw form. The AcceptancePolicy and

FormatPolicy components follow this strategy for Policy implementation, and serve as the

foundation for members of the Monitor Group that facilitate reporting processes. Figure 4-

64 illustrates this relationship using the AcceptancePolicy component.

The ContextualPolicy abstract class is derived from Policy to communicate its role as a

Policy component. However, rather than provide templates for policy patterns, the Contex-

tualPolicy class provides functionality for aggregating Policy contexts with transient Policy

objects. Policy pattern components, such as AcceptancePolicy, are declared as interfaces, so

the functionality provided by ContextualPolicy can be made available to WSLogA Framework

or application Policy components with the creation of a new class extending Contextual-

F igure 4-65. Policy context management is provided by means of class extension.

122

Policy that also implements the desired Policy-derived pattern components. Figure 4-65

illustrates the use of ContextualPolicy to enhance Policy components distributed with the

WSLogA Framework.

The PolicyContext interface is the archetype of components representing environments

for which Policies may be active. Extending implementations are facilitated through the use

of ConfigurablePolicyContext, which makes use of strategy components for evaluating

provided Policy objects and provides a Template Method (Gamma et al., 1994) for use in

determining whether the context is active and can assess Policies. Figure 4-66 illustrates the

WSLogA Framework components derived from the PolicyContext interface.

ConfigurablePolicyContext is provides functionality for assessing whether provided Pol-

icy objects are active, and for determining whether the context is active and can make such

assessments. Policy evaluation is delegated to a PolicyFilter component, which permits

specialized contexts to be developed that make similar policy evaluations within their scope.

For example, the ApplicationPolicyContext considers Policies within a global system scope

F igure 4-66. PolicyContexts provide scenario based policy activation.

123

but ThreadPolicyContext only evaluates Policies that are within the scope of a specific

thread; however, using the PolicyFilter strategy each context could be set to evaluate only

those Policies for formatting credit card numbers. Extending components can add logic to

assess whether the context may be considered active by overriding the isContextActive

template method (Gamma et al., 1994). For example, ApplicationPolicyContext is always

considered to be active, but ThreadPolicyContext is only considered active when operated

within a specified thread. Figure 4-67 illustrates the ConfigurablePolicyContext and how it

facilitates behavior for the distributed WSLogA Framework components.

Management components are also provided by the WSLogA Framework to facilitate Pol-

icy and PolicyContext association for other component groups. For example, the Monitor

F igure 4-67. ConfigurablePolicyContext facilitates ad hoc context definitions.

124

Group uses PolicyManager for its reporting components to enable Policy association, and

ContextualPolicy uses PolicyContextManager to enable PolicyContext association.

Employment

The Policy Group is integrated into the WSLogA Framework by serving as the gateway

for information transfer among component groups, the associated persistent storage system,

and client systems such as those used to prepare reports. The Monitor and Perspective

Groups are structured with the Policy Group’s functionality in mind, and PoliciedObserver

provides an example of how information filtering and flow control has been established

within the WSLogA Framework as a fundamental architectural element. The Policy Group

provides the flexibility required of Enterprise applications deployed to disparate jurisdictions

in that rules for information transfer and formatting can be expressed universally (e.g., with

Figure 4-68. The Policy Group relationships.

125

static or hard checkpoints) or per-environment through a variety of configuration options

(e.g., replaceable JAR libraries, calculations, and environment analysis). Figure 4-68 illustrates

the relationship between the Policy Group and other component groups as well as the

environment.

The Policy Group can be employed independent of all other WSLogA Framework com-

ponents to provide a controlled process by which variable information transfer and format-

ting may occur. For example, many Web service applications make use of a logging frame-

work, such as Log4J, which provides APIs permitting the development of custom data

formatter or persistence components. A custom component could be developed by a third

party that integrates the Policy Group to enable rules based processing of the log informa-

F igure 4-69. General employment of Policy Group members.

126

tion, such as to ensure sensitive information (e.g., a social security number) is masked before

being placed into a public log. As such, the independent use of the Policy Group in an

existing Enterprise environment can introduce development teams to the key information

management concepts used by the WSLogA Framework, which could ease the subsequent

adoption of advanced information flow component groups—such as the Monitor and

Perspective Groups. Figure 4-69 illustrates the general relationships involved in the deploy-

ment of only the Policy Group.

The Policy Group is demonstrated as the information transfer and formatting mecha-

nism for the Adventure Builder application (Appendix C). Scenarios such as the information

capture and multiple policy examples employ the Policy Groups by means of Policy aware,

WSLogA Framework derived components hosted within the GlassFish application server

process. Figure 4-70 illustrates an example workflow involving the Policy Group.

F igure 4-70. An example employment of the Policy Group.

127

Constraints and Opportunities

There are many opportunities for the use of the Policy Group in distributed systems, and

especially for those systems that operate across legal or cultural boundaries. For example, the

British Columbia government provides organizations based in the United States access to

select health records for processing (Fayerman, 2008), and policies could be used to properly

mask or otherwise transform information before it is provided to protect the interest of that

Province’s residents.

The Policy Group addresses the problem of policy expression and management using an

object-oriented approach. Systems adopting this policy strategy can use the Policy compo-

nents to represent and execute business rules for information management in a method

natural for the Java platform. Policy updates can be performed by replacing outdated class

files, and if a plug-in architecture is enabled, such as through a custom class loader, then

policy enhancements can immediately take effect without the need to restart the system.

However, highly distributed systems must be cautious with such approaches because policy

expression should be consistent across machines within comparable policy regions, which

means updates to Policy components must be properly scheduled and performed.

As Policy rules are expressed using the Java language, Policies established using the

WSLogA Framework cannot be transferred to external systems or applications developed

using competing languages, such as Microsoft’s .NET, without the addition of a conversion

framework. A future improvement to the Policy Group would be to externalize business

rules using XML file sets or scripting languages, which could then be translated or executed

by the WSLogA Framework to effect the desired behavior.

128

Summary

The WSLogA Framework fulfills the vision established by Cruz et al. (2003, 2004) for a

flexible SOAP monitoring platform, and significantly improves upon their vision by provid-

ing end-to-end data management services with rules-driven processing. Information may be

acquired from a variety of sources, such as SOAP messages, runtime objects, and environ-

ment data sources. The design transcends the Java platform and should be reproducible

using comparable technology platforms, such as with Microsoft's .NET software develop-

ment kits. The WSLogA Framework is optimized for Web service architectures, but the

comprehensive information management approach ensures the WSLogA Framework's

suitability for a multitude of Enterprise architectures. New applications can be designed as

information appliances organized around the structure provided by the WSLogA Framework,

and existing applications may gradually migrate to the WSLogA Framework’s structure

through selective implementation of the framework’s component groups.

The Monitor Group provides systems based on the WSLogA Framework with a powerful

mechanism for acquiring information from Enterprise systems, and, in particular, Web

service based Enterprise systems such as those demonstrated by Sun Microsystems' Adven-

ture Builder application operating within the GlassFish application server. Subsystems

include monitoring, observation, inspection, and recording mechanisms to provide varying

degrees of information acquisition and routing functionality. Systems building on the

Monitor Group's functionality can quickly acquire and route session or transaction informa-

tion without significantly affecting the established business logic. Functionality for capturing

information from common Enterprise sources, such as SOAP and log messages, is predefined

129

by the WSLogA Framework, as is the capability to route captured information to a persistent

data store with the assistance of the Event Group.

The Event Group facilitates the transfer of data from the WSLogA Framework compo-

nent layer and a data store, such as a relational database management system or another

Web service. A core component group, representing Event information, permits Enterprise

systems to substitute technologies to satisfy engineer experience or platform limitations. For

example, the Hibernate data persistence platform—which is based on configurable SQL

statements—could be substituted for the JDO based data management strategy bundled

with the WSLogA Framework whenever JDO cannot appropriately address complex queries.

The appropriate use of common-denominator class types (e.g., the preference of interfaces or

abstract classes over concrete classes) when transferring Event information, such as by means

of an EventPool instance, permits perspective components to make immediate use of new

data store technologies.

The Perspective Group facilitates retrieval and organization of event information from

the data store associated with a WSLogA Framework session. Information can be pushed

(e.g., the information is updated and then provided to observers) or pulled (e.g., an observer

instructs when new information is desired), which accommodates a variety of environment

management and reporting scenarios. Policies can be introduced to components derived

from the Perspective Group to enforce security or implement progressive disclosure. The

workflow is designed to accommodate information made available by the Event Group, but

alternate information sources could be integrated, if necessary. Information retrieval and

distribution operations are best operated externally from Web service applications to permit

the continuity of the WSLogA Framework’s operations should an application fail.

130

The Response Group integrates environment management and reporting into the

WSLogA Framework, which enables the Framework to handle data synchronization and task

activation on behalf of third parties. The Response Group provides Enterprise systems with a

mechanism for analyzing aggregated and correlated Event information, as well as for re-

sponding to the results with adjustments to the application or environment. Response

operations can be externalized from the distributed system's application, which ensures that

response operations can be executed even if application services fail. Alternate implementa-

tions made possible by the use of interfaces for response scheduling and execution enables

systems to distribute response execution in a manner that best utilizes the system's resource

constraints. The WSLogA Framework defines the workflow by which Event information is

provided by a Perspective component to an observing ResponseTask component, which as

implemented as an EventProcessor. Applications only need to implement the ResponseTask

interface to make analysis and business logic available to the response system. Response-

TaskScheduler and ResponseTaskRunner components have been implemented to organize

the simultaneous operation of ResponseTask objects ready for execution, but applications

can define their own version of these interfaces to make the best use of system resources.

The Policy Group facilitates variable information management behavior without requir-

ing architectural changes after deployment. Applications can define contexts in which

Policies should operate and associate the contexts with specific Policy objects. The Policy

Group is employed by the Monitor Group to guide information normalization before it is

persisted by the Event Group for later analysis. Although the Policy Group members are

integral participants in the WSLogA Framework, the components may also be adopted as an

independent feature set by applications requiring a phased adoption of the Framework.

131

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

This investigation established a novel design for an Enterprise system monitoring and

environment management system that is portable across software development language

platforms, and demonstrates that design through a Java based implementation. The artifacts

were explored within the design research framework described by Hevner et al. (2004) and

manifested by means of an iterative process for which design elements were envisioned,

tests derived from the designs were prepared, and implementations were produced within

the context of the tests. The result is a software development kit, the WSLogA Framework,

suitable for adoption by practitioners as the basis for enabling holistic information capture

within Enterprise environments and the management of environment parameters in

response to analysis of the captured information. In effect, the WSLogA Framework enables

Enterprise systems to be perceived as information appliances rather than traditional applica-

tions with distinct operational boundaries. Researchers may use the WSLogA Framework to

explore the workflows by which information is produced and exchanged within Enterprise

environments, and, in particular, those based on Web services.

132

The Achievement of Investigation Objectives

This investigation successfully produced a design and demonstration implementation

that addresses the architectural vision of Cruz et al. (2003, 2004) for a SOAP monitoring

system, the WSLogA, and improves upon the WSLogA by incorporating holistic information

acquisition and environment response mechanisms. The WSLogA Framework establishes five

significant component groups: Monitor, Event, Perspective, Response, and Policy. Each

group provides predefined functionality and workflow integration that, together, enable

comprehensive information management permitting an application's architecture to focus

on business logic while maintaining support for operational analysis and correction. Further,

WSLogA Framework's component groups are extensible, and alternative technologies may

be substituted in lieu of provided components to accommodate a system's unique require-

ments so as to facilitate integration of the WSLogA Framework into existing environments.

The WSLogA Framework serves as a bridge between the concepts of information harvest-

ing (e.g., SOAP message capture or click stream production), operational dashboards (report-

ing utilities for a spectrum of services), and application development (the availability of a

software development kit). The result is a platform encouraging software and system archi-

tects to envision applications as Enterprise elements supporting the overarching system as

an information appliance that may exist across organizational boundaries rather than as

distinct components organized around technology (e.g., a "Java Web service application") or

deployment (e.g., "some system in California").

133

The Artifact Development Methodology

Test-driven development is a natural complement to iterative artifact exploration be-

cause the practice facilitates thoughtful consideration of the problem domain being mod-

eled and how proposed solutions (e.g., software components) should behave within the

context of that environment. Design deficiencies and unforeseen workflows involving the

components can be identified before the components are extensively implemented. Investi-

gation efforts are therefore focused on the literature to identify potential solutions, the

lessons learned from prior experiments, and the components' architecture. Researchers

experimenting with architectures and component sets should adopt the principle of test-

driven methodologies to gain the benefit of their efficiencies.

The Test and Demonstration Methodologies

The test-driven development strategy adopted to explore problem domain concerns, re-

fine component functionality, and demonstrate important aspects of the WSLogA Frame-

work was effective and likely reduced the effort necessary to produce a mature series of

artifacts for the investigation. The planning and establishment of tests requires significant

consideration of the components under test, which identifies problematic design elements.

However, the strict form of test-driven development in which all tests are produced prior to

the implementation of principal components did not work well for the problem domain's

exploration. Instead, it was more effective to first identify component roles and relationships

and define those using interfaces or lightweight abstract classes. Tests organized around the

interfaces and their default relationships (e.g., workflows made possible by WSLogA Frame-

work component interactions) could then be established and concrete implementations

134

could then be defined as appropriate. The tests could also be developed to directly address

the enhancements provided by a component definition within an inheritance tree, and

existing behavior could be re-asserted by importing tests for the fundamental functionality.

Integration tests were useful for asserting the validity of complex component relation-

ship implementations. Originally the Selenium test platform was used to capture workflows

with the assumption that portions of the Adventure Builder would be executed for specific

component sets, but the WSLogA Framework's evolution did not ultimately benefit from

that approach. Instead, unit tests provided the more effective behavior validation for indi-

vidual components and immediate relationships using techniques such as dependency

injection. For example, mock Policy objects could be injected into a reporting component to

influence its behavior across multiple Policy contexts as a contrived workflow progressed.

Integration tests were better expressed as demonstrations providing examples of how the

WSLogA Framework components could be used within system contexts, such as within the

context of Adventure Builder operating across multiple application servers.

The Adventure Builder Context

Adventure Builder is a contrived J2EE 1.4 application used by Sun Microsystems to dem-

onstrate the architectural principles addressed by their book, Core J2EE Patterns (Alur et al.,

2003) and various training programs supporting the Java certification tracks (Appendix B).

The application is partially implemented using Web service technologies and enables a series

of scenarios to be developed that illustrate the WSLogA Framework's success in achieving

the investigation's objectives. Adventure Builder's implementation requires the generation

of supporting Web service components by its host Application server, which means the

135

server selected for the demonstration must be compatible with the JAX-RPC and J2EE

specifications. JBoss 4 was originally selected for use as the demonstration Application server

because of its broad adoption throughout the software industry, but surprisingly it could not

properly generate the supporting components despite its claim of J2EE 1.4 compatibility. Sun

Microsystems' reference implementation for the J2EE standard, the GlassFish application

server, was instead adopted. GlassFish correctly deployed and served the Adventure Builder

application and proved to be easily managed by the build and test systems developed in

support of this investigation.

Implicat ions

Ensuring an application's operation requires a multitude of approaches that range in na-

ture from robust design strategy to environment adjustments during runtime, and for

decades researchers and practitioners have considered increasingly sophisticated mecha-

nisms by which operational support may be provided. Enterprise environments complicate

the issue of operational support beyond that for desktop application suites with the addition

of concerns that include network based data exchange, clustered hosts, and extended

periods of operation. Service-oriented architectures, such as those represented by Web

services or computing grids, are quickly evolving to establish highly productive, multi-

organizational contexts in which B2B e-commerce or research is performed. The complex

and often hidden interactions between all components in these environments determine

the operational health of the Enterprise environment.

Click stream monitoring of application workflows enabled administrators to understand

the general manner by which users interacted with a hosted system, and the use of comple-

136

mentary tools facilitates the merging of logs or system performance data from a myriad of

servers to provide more holistic perspectives of system utilization. Unfortunately, these tools

generally remain external to the applications hosted within application servers and thus only

provide indirect and inferred understandings of how monitored systems perform for some

contexts while leaving many environmental factors unknown. Perhaps more important, such

tools fail to provide environments with the means by which real-time corrections may be

made to application behavior or environment status to ensure continual operation.

Cruz et al. (2003, 2004) recognized that SOAP messages contain business information and

may additionally carry system information describing Web service component states (e.g.,

operational or business rule faults) that can be harvested to enrich an administrator's

understanding of the system's health. SOAP messages may traverse disparate technological

platforms and organizational boundaries, and, as such, the operational information has the

potential to expose quality of service issues that otherwise would remain hidden to an

organization's support staff attempting to troubleshoot problems for which symptoms may

not have so specifically identified misbehaving or defunct components.

The WSLogA Framework juxtaposes the architecture for SOAP message information har-

vesting envisioned by Cruz et al. (2003, 2004) with an environment response mechanism

suitable for integration with application or service components hosted by Enterprise envi-

ronments, including those spanning organizational boundaries. Contextual information

harvesting is supported by collection mechanisms that integrate with traditional application

information sources (e.g., logging mechanisms), runtime object descriptions (through

reflection and object state analysis), and extensible components for additional sources that

may include files, sockets, and other external resources. Information structure and content

137

may be controlled through policies that can be context specific, which enables the imple-

mentation of a transactional architecture satisfying general business requirements but whose

information management behavior may be customized after development or deployment

for specific jurisdictions (e.g., the European Union versus the United States).

Applications using the WSLogA Framework as a core element can make information

management and self-healing operations an integral aspect of their operation. Systemic

monitoring of information exchanges, transaction parameters, and operational behavior

with an internal perspective of the application permits components to be designed and

implemented with the convenient capability for state and behavior management. Error

correction capabilities may also be implemented to accommodate issues transcending

organizational boundaries, which permit the overall Web service system to activate candi-

date services based on a holistic and refined understanding of the quality of service offered

by each. In effect, the Enterprise environment has the capacity to become its own intelligent

agent capable of communicating its operational state with reliable precision and adjusting its

overall behavior to ensure the continued and correct operation of business processes.

An interesting difference between traditional information routing or harvesting systems,

such as the Log4J logging framework, and the WSLogA Framework is the pervasiveness and

intent of information management provided by the WSLogA Framework. The WSLogA

Framework is designed to support information harvesting for all aspects of the Enterprise

environment with the intent that the information be used to influence operational out-

comes for the implementing systems. Applications implementing Log4J or similar frame-

works could largely consider information routing to be an implementation detail supporting

development or debugging activities within the greater architecture dictating a Web applica-

138

tion nature, but the WSLogA Framework's influence on application design should be signifi-

cant enough that an adopting system must necessarily exhibit a new nature—that of an

information appliance. As such, the WSLogA Framework is an architectural equivalent, and

possibly a complement, to existing frameworks such as Spring's Web module.

Finally, the availability of the WSLogA Framework increases the likelihood of informa-

tion stealing and other abuses across cooperative Enterprise systems. The research commu-

nity should examine related concerns so that future platforms appropriately guard against

unintended information acquisition and misuse. The issues of identity, trust, and confidenti-

ality must not be ignored as the WSLogA Framework evolves.

Recommendations

Enterprise environments do not operate as a collection of individual parts, but rather

their behavior is the culmination of the myriad orchestrated interactions among all opera-

tional elements. Web services are further complicated in that their identity does not neces-

sarily end at an organization's boundary and, instead, should be considered a sum of all

supporting services involved in satisfying the system's workflows (albeit participants may

change if services can be selected dynamically to satisfy, for example, quality of service

calculations). In other words, all interacting services within a B2B relationship—and by

extension, their host environments—can be considered the same application.

Practitioners must change their perspective of Enterprise environments and Web service

systems from one of technology or application organized entities to that of information

appliances. The business information, transaction information, operations information, and

meta-information regarding these and other aspects of the conjoined parts are collectively

139

essential to providing the insight necessary to evolve the overall system in terms of quality of

service and functionality; the WSLogA Framework is a manifestation and enabler of this

recognition. The WSLogA Framework should be adopted in Java oriented environments, and

the Monitor and Policy Groups should be evolved into a set of sub-frameworks addressing

the information management possibilities for Enterprise systems. The WSLogA Framework

should also be further developed, perhaps as a community project, for improved perform-

ance as well as security and information acquisition capabilities.

Contemporary frameworks defining application structure, such as Spring's Web module

and the Apache Axis Web service framework, are conceptually compatible with the WSLogA

Framework so framework researchers should explore how the WSLogA Framework may be

integrated into these technologies. Candidate integration success may be measured by the

degree information harvesting and environment response capabilities become natural

extensions of systems based on the juxtaposed platform without the need for significant

engineer familiarity regarding the component mechanics.

Information assurance researchers should investigate manners by which information

may be leaked or generated for inappropriate use in result of such holistic and pervasive

information management architectures. Policy definition and expression within distributed

and parallel systems needs to further investigated. The ease by which distributed system

components can be hosted across the world in legally or culturally disparate contexts

increases the chance that inappropriate information management will occur, which could

result in political, sociological, or economic problems. The concept of what constitutes a

policy, the architectural hotspots for policy integration, transactional boundaries for when

policy changes are realized during the course of a workflow, and other engineering concerns

140

must be addressed so that a universal model for policy integration into software systems may

be established. It may be possible to integrate domain language support into the Policy

Group, perhaps by means of the Java Virtual Machine's support for scripting languages, to

permit business analysis, quality control, and information security staff to directly influence

application behavior.

Monitoring and response activities are secondary objectives for most workflows. For ex-

ample, a transaction involving financial deposits is first concerned with ensuring that the

correct deposit is recorded and then concerned that monitoring systems are notified that the

deposit occurred with specific characteristics. Aspect oriented programming (AOP) seeks to

describe cross-cutting concerns, such as logging, as distinct from business logic and then

correctly combine the two workflows during runtime with minimal instruction by the

system's engineers. Some of this behavior can be simulated through deliberate system design

(i.e., as workflow elements, such as those enabled by Template Methods) but monitoring

and response operations must still be explicitly defined at appropriate points within a

component set. AOP permits the definition of a logic trigger (e.g., when a method exits on

the stack) that is executed when implementation patterns for the principal components are

executed. The implications of this approach to execution definition for the WSLogA Frame-

work are significant and should be explored.

The exploration of the IT artifact is an iterative process in which evolutions in artifact

behavior, state, and organization are deliberately investigated, consciously analyzed, and

purposefully improved (Hevner et al., 2004). This investigation's methodology demonstrated

that adaptations of iterative, test-driven development focus the development of software

artifacts. Role based design may be used in conjunction with the usual information gathering

141

process (literature reviews or lab results), and from the design tests should be established

prior to other lab work. The test framework then guides the process of exploring implemen-

tations satisfying the design in a manner that is easily compared and documented. The tests

also serve as documentation for the artifacts. Software development researchers should

consider the use of test-driven development to structure investigation efforts and communi-

cate results or intent to researchers outside of the project.

Summary

This investigation established a novel design for an Enterprise system monitoring and

environment management system that is portable across software development language

platforms (e.g., the common Java and .NET software development kits), and demonstrates

that design through the Java based WSLogA Framework. The WSLogA Framework is orga-

nized around the Web service monitoring architecture proposed by Cruz et al. (2003, 2004),

but improves upon the architecture by incorporating holistic information capture, event

analysis, and environment response capabilities. Five component families were established

within the WSLogA Framework to meet these needs.

The Monitor Group enables information acquisition and routing. Components imple-

ment reporting roles that accept Subjects ranging in nature from SOAP messages to runtime

objects. The Subjects are analyzed or used as the basis for calculations so that reports may be

prepared and provided to components implementing recording roles. Recording compo-

nents route the information to consumers, such as the relational database management

system bundled with the WSLogA Framework as part of its demonstration system.

142

The Event Group defines the information model for the WSLogA Framework and serves

as both the principal consumer and provider of event information for WSLogA Framework

components. Data model implementations are provided for integration with persistent data

stores (i.e., databases) as well as inter-component data transfers (i.e., as XML payloads). JDO

was selected as the principal means of data transfer to data stores but alternate technologies,

such as Hibernate, may be substituted.

The Perspective Group facilitates information extraction from the persistent data envi-

ronment maintained by the Event Group, as well as the restructuring of extracted informa-

tion to support the WSLogA Framework's integration with response or external systems. The

Response Group is established on the platform provided by the Perspective Group and

provides event analysis and environment response capabilities. The Response Group provides

integrated workflow support with the Perspective Group but adopting systems must define

their own error recovery and performance optimization implementations.

The Policy Group enables the definition of rules by which information may be filtered or

otherwise transformed as it traverses workflows defined by the other WSLogA Framework

component groups. Contextual behavior is defined to permit the execution of policies in

specific scenarios to ensure the flexible behavior of WSLogA Framework based systems post-

deployment and across operational scopes (e.g., physical distribution or legal context).

This investigation was guided by a design research framework (AIS, 2005; Hevner et al.,

2004). The WSLogA Framework was established using an iterative approach based on the

Spiral Lifecycle that facilitated the deliberate consideration of the problem domain, body of

literature, lessons learned from prior experiments, implementation of components, and

rigorous testing of components. Significant emphasis was placed on the use of automation

143

and test methodologies, such as test-driven development, to establish controlled environ-

ments in which components would function prior to component implementation. This

approach ensures that component designs directly correspond to the requirements of the

problem under consideration. The extensive test suite produced as part of this investigation,

which includes unit and integration tests, also serves to document the problem domain

addressed, the key principles behind the WSLogA Framework's design, and the manners by

which third parties may adopt and extend the functionality provided by the WSLogA

Framework. Consideration was given to configuration management throughout the investi-

gation to ensure that key technology variables were tracked to ensure iteration results were

comparable and to permit reproduction of the results by third parties. The efficacy of the

completed WSLogA Framework was demonstrated on UNIX and Windows operating

platforms, and an ISO file bearing the source code, build harness, tests, and demonstrations

has been made available.

Researchers may use the WSLogA Framework to explore the complex component inter-

actions and information workflows involved in Web service environments, and, in particular,

for those that span physical machine, organizational, or legal boundaries. Practitioners may

use the WSLogA Framework to establish Enterprise systems capable of communicating and

reacting to their operational state or that of their environment. The WSLogA Framework

facilitates the establishment of real-time, complex monitoring and management applications

for Web services operating both within and external to an organization. The WSLogA

Framework provides new opportunities for research into technologies addressing informa-

tion policy and assurance.

144

AOP technologies and methodologies, such as those in the Spring Framework, provide an

interesting context in which the WSLogA Framework may operate. Information acquisition

can occur at transaction, component, or method boundaries, and event analysis coupled

with environment response may be invoked upon exit points. The WSLogA Framework

already provides low-touch system integration with its SOAP message monitoring and

inspection capabilities, but in theory aspects can extend low-touch integration to most

monitoring and inspection or response mechanisms within the Framework.

Search engine technology broadly relevant to Enterprise environments continues to

evolve thanks to projects such as Apache's Lucene and Hadoop. Map/Reduce and related

approaches to data organization may be applied to SOAP messages and associated system

event records captured by the WSLogA Framework, which could permit the advancement of

production monitoring and environment response systems. It may be possible to integrate

Map/Reduce strategies with the Java virtual machine's support for scripting and domain

languages to enable staff such as business analysts or technical support to create ad hoc rules

for WSLogA Framework's analysis and response components.

Platforms such as the WSLogA Framework facilitate the acquisition and analysis of trans-

action information in manners that are holistic and time related. It may be possible for the

WSLogA Framework to be used by middle tier organizations to collect information that can

then be used in manners other than its intended purpose. For example, a government could

collect information from commercial or health transaction systems that could later be

analyzed to establish user profiles for security follow-up. Careful consideration should be

given to the ethics of using the WSLogA Framework for such purposes, and mechanisms for

145

guarding information (such as with the use of WS-Security or the WSLogA Framework Policy

Group) should be explored.

146

Appendix A

Quality Assurance

Measurement in IS Design Science

Information systems design research (AIS, 2005; Hevner et al., 2004) recognizes design as

a principal research artifact (guideline 1), but the artifact's quality, utility, and efficacy must

be demonstrated before it can be considered valid (Hevner et al., 2004). A Java based imple-

mentation of this investigation's resultant design was thoroughly tested (guideline 3) to, in

part, demonstrate the problem relevance (guideline 2) and satisfaction of research contribu-

tions (guideline 4). The quality assurance framework used for the tests contributed to the

research's rigor (guideline 5), facilitated the design search process (guideline 6), and facili-

tates the research's communication to technology oriented audiences (guideline 7).

The test-driven development (TDD) principle (Rainsberger & Stirling, 2005) was adopted

to guide the formation of contexts in which implementations satisfying the design's intent

and specification could be produced. Integration tests demonstrated the complex interac-

tion of framework components with extension (third party) and system (e.g., Application

server and application) components. Unit tests demonstrated the implementation's design

fidelity and exposed behavior or object state issues that needed to be resolved before

subsequent implementation efforts could be pursued. Integration and unit tests exposed

design deficiencies that were resolved with an iterative consideration of the WSLogA archi-

147

tecture, the literature base, and test results (Chapter 3). The tests exercise the design's

intended behavior, which means the tests are extensions of the documentation base for the

WSLogA Framework (Astels, 2003; Rainsberger & Stirling, 2005). Researchers may use the

tests as benchmarks when exploring design modifications. Practitioners may use the tests to

assert that the WSLogA Framework is mature enough for use in their systems, as well as to

ensure that their extension components adhere to the intent and specification of the

WSLogA Framework. This section describes the strategies and tools used to prepare meas-

urements appropriate for facilitating this research.

The Test -driven Development Principle

The Spiral lifecycle (Schach, 2002) adapted for use in this investigation made quality as-

surance an integral aspect of the design’s evolution and validation (Chapter 3). Designs were

envisioned with input from Cruz et al.’s (2003, 2004) description of WSLogA, relevant

literature, and insights gained from prior iterations. The designs were refined using an

iterative process by which tests were prepared, implementations satisfying the tests were

produced, and further need for design refinement or extension was identified (Cortes et al.,

2003; Hevner et al., 2004; Rainsberger & Stirling, 2005). Additional tests were created as bugs

in the source code were discovered to assert that subsequent development or refactoring

corrected implementation behavior (Telles & Hsieh, 2001). Figure A-1 illustrates the test

process adapted for use in this investigation.

148

This quality assurance strategy is inspired by the principle of test-driven development

(Rainsberger & Stirling, 2005), which has been shown to result in higher quality implementa-

tions (Bhat & Nagappan, 2006; Maximilien & Williams, 2003) and appears to enhance learn-

ing outcomes (Bowyer & Hughes, 2006; Wick et al., 2005). TDD based projects tend to

progress slower than those based on a test after coding (TAC) strategy but yield higher

F igure A-1 . Test-driven development as applied to this investigation.

149

quality elements due to the necessarily extensive consideration of system contexts (Bhat &

Nagappan, 2006; Canfora et al., 2006; Maximilien & Williams, 2003).

TDD is a natural fit for framework development because such tests provide controlled

contexts by which evolving component or method hot spots can be evaluated within an

active test process, and the impact of framework refactoring relative to the design goals can

be immediately perceived.

Assessment of the WSLogA Framework's API

Framework based APIs provide generalized solutions to problem domains common

among application sets (Cortes et al., 2003; D'Souza & Wills, 1998; Greenfield & Short, 2003;

Schmidt et al., 2004). For example, the Struts framework (Cavaness, 2004) provides a Model-

View-Controller (Alur et al., 2003; Gamma et al., 1994) architecture for Web oriented applica-

tions. Struts' implementation manages extension components to coordinate the exchange

and processing of information between presentation and business logic in a coordinated,

predictable manner.

The correct behavior of the WSLogA Framework’s APIs had to be verified within scenar-

ios concerning individual method operation, component states after method invocation, and

the control of extension components. Unit tests driven by the JUnit framework and test

runtime engine were prepared and regularly executed to handle API tests (Appendix C).

Successful test results indicated API adherence to design specifications, and the exploration

of unsuccessful tests provided insight into the problem domain. Test results were a key input

into the design process.

150

General Test Strategy

Initial unit tests focused on key business logic rather than attribute access methods

(typically referred to as getters and setters) and similarly auxiliary or trivial operations. These

initial tests permitted rapid implementation of a component to facilitate exploration of a

proposed design. Unit tests providing more comprehensive coverage were implemented as

part of the refactoring process for the design, implementation, and initial unit tests. The test

cases adhered to the philosophy of Hunt and Thomas (2006):

• operation results must be correct;
• method boundary conditions must be appropriate and satisfied;
• inverse value and state relationships must be considered;
• operation error conditions must be forced; and,
• operation performance characteristics must be within bounds.

Boundary conditions, inverse relationships, and error conditions received specific atten-

tion during test preparation. Method inputs were considered for class types, list order and

F igure A-2 . Controlled exploration of method behavior through unit tests.

151

cardinality, degree of object state (e.g., null, instantiated, or initialized), and minimum and

maximum ranges. Malformed inputs were deliberately provided in some test scenarios to

facilitate boundary, range, and error testing. Figure A-2 illustrates the controlled approach to

method invocation.

Interface Component Test Strategy

WSLogA Framework design efforts focused on the production of a hybrid framework in

which white and black box components (Richter, 1999) were incorporated. Role based design

techniques (D'Souza & Wills, 1998; Richter, 1999) identified principal components—often

those serving as framework engine templates or hotspots for framework extension by third

F igure A-3 . Abstract test cases enforce the behavior of concrete components.

152

parties—that were implemented as interfaces. Interfaces do not provide functionality, but

they do imply behavior expectations through method signatures and component documen-

tation. Proper implementations of these interfaces were enforced with the use of abstract

test cases, which document and enforce behavior expectations by providing test suites for an

interface's methods.

A test case for a concrete component implementing an interface is expected to extend

the abstract test case, which ensures that the interface's tests will be executed as part of the

concrete component's test suite. The abstract test cases therefore guide WSLogA Framework

extension and assure developers of such components that their results adhere to the

F igure A-4. In-memory databases are created and discarded for each unit test.

153

WSLogA Framework's intent. Figure A-3 illustrates how abstract test cases enforce design

intent for concrete implementations of interfaces.

Data Management Test Strategy

The WSLogA Framework includes a data management layer that coordinates the ex-

change of data between data stores and the WSLogA Framework or application components.

The provided implementation relies on JDO for transaction management, but third parties

Figure A-5 . Integration tests expose bugs hidden in complex relationships.

154

may substitute their own data management and transaction strategies to support otherwise

incompatible application architectures. The HSQLDB database engine (Simpson & Toussi,

2005) was adopted to facilitate testing of data management components as HSQLDB data-

bases can be operated exclusively in-memory. Test cases initialize the data management

components under test with an association to the HSQLDB database using scripts that

provide just enough structure and content to facilitate the test. At the test's conclusion the

database may be reset or discarded to ensure unit tests are always conducted with clean data

stores. Figure A-4 illustrates the data management configuration process for unit testing. The

DBUnit framework (Rainsberger & Stirling, 2005) was considered for data management, but

concerns regarding JDO compatibility during this investigation’s exploration of JDO frame-

works eliminated DBUnit as a primary test management vehicle for data stores.

Assessment of the WSLogA Framework's Potentia l for Integrat ion

The framework developed as part of this investigation is intended for integration into

Web service oriented systems, which means that consideration must be given to the

WSLogA Framework's ability for complex system integration. Sun Microsystems' Adventure

Builder application (Appendix B) in combination with the GlassFish J2EE Application server

and bundled Derby database were used to host the WSLogA Framework for integration

testing. Integration tests were comprised of recorded workflows that could be used to

explore successful and (deliberately) erroneous scenarios. The ThoughtWorks Selenium IDE

(Holmes & Kellogg, 2006) integrated with the FireFox Web browser was used to capture the

workflows, and the scripts were converted into JUnit tests for automatic execution as part of

the project's automated build process (Appendix E). The execution of the recorded work-

155

workflows exercised component instantiation, method invocation, data exchange, and

thread management for the integrated Application server, Adventure Builder application,

and framework systems. Figure A-5 illustrates how integration tests provide a comprehensive

measure of framework and host environment interaction.

Stat ic Source Code Analys is

Unit and integration tests detect faulty behavior and state but may not indicate why the

behavior was faulty. For example, a null pointer exception may be caught by JUnit during a

test—JUnit will report the exception instance and stack trace, but the source code must still

be debugged or otherwise inspected before the cause of the null pointer exception can be

known. Static analysis tools facilitate quality assurance by examining implementations for

F igure A-6. Static analysis tools process source code to identify anti-patterns.

156

patterns known to permit faulty behavior. For example, the failure to initialize a variable

prior to its manipulation can result in a null pointer exception. A static analysis tool can

detect and report such problems before the source code is compiled and executed (Ayewah

et al., 2007; Foster et al., 2007). Figure A-6 illustrates the static analysis process.

This investigation made use of the FindBugs static analysis tool (Foster et al., 2007;

Hovermeyer & Pugh, 2007), which is associated with the University of Maryland. FindBugs

integrates with Maven for automated bug reporting (CodeHAUS, 2007).

Test Documentation

Documentation was prepared to communicate unit and integration test intent and re-

quirements. Each test case was prepared with a detailed HTML fragment so that JavaDoc

F igure A-7 . Test case documentation.

157

documentation prepared from the test case's comments would clearly communicate impor-

tant aspects of the tests performed. Figure A-7 illustrates test documentation within a unit

test case’s JavaDoc page.

Surefire reports (Appendix G) generated as part of the automated build process (Appen-

dix F) were archived during the investigation to facilitate exploration of framework imple-

mentations across iterations. Folders containing test documentation and results were

numbered to ensure temporal clarity for test results.

Test Result Analys is

Successful test results indicated the likelihood that components or workflows under test

adhered to the design intent and specifications. Components whose tests completed success-

fully were considered stable for use by third parties and for subsequent use in related

experiments or project work. Unsuccessful test results indicated that a component's imple-

mentation either did not satisfy the design's intent or specification, or that the design did

not adequately address the problem domain. Problematic components were first analyzed

for implementation issues (e.g., bugs or malformed relationships caused by the refactoring of

other components) and then for design issues. Straightforward implementation issues were

simply corrected and verified with additional tests. Complex implementation issues, such as

malformed relationships or a failure to address a discovered scenario, resulted in the design's

rescheduled work for a subsequent iteration.

Summary

A test-driven development approach was used to guide the evolution of designs and im-

plementations. Initial tests for interesting use cases were produced in conjunction with a

158

design's specification. Components were implemented and explored with the initial test

suites. Additional tests were developed as a design or implementation matured to ensure

that bugs and new components behaviors or relationships were properly accounted for

despite subsequent refactoring within the same or related packages. Unit tests ensured the

validity of WSLogA Framework API implementations and integration tests ensured the

WSLogA Framework's potential for integration within a complex, Web services oriented

system. Tests were documented to communicate their intent and outcomes with the use of

HTML headers in unit test Java files as well as Surefire success reports. Researchers can use

the WSLogA Framework's test suite as a guide for further experimentation or extension.

Practitioners can use the test suite as documentation and a measure of the WSLogA Frame-

work's ability to perform in the expected manner.

159

Appendix B

Adventure Builder as the Test Environment

A Comprehensive J2EE Reference System

This investigation used Sun Microsystems’ Adventure Builder system as the environment

for testing the WSLogA Framework’s efficacy. The Adventure Builder application permits

users to browse and purchase a series of vacation packages supplied by vendors and service

providers. The system simulates a reasonably complex J2EE system involving Web services

and external transaction dependencies (such as communication with hypothetical financial

entities). Several of Sun's books, websites, and certification courses use Adventure Builder to

demonstrate J2EE best practices, so the application's popularity should enable software

engineers quickly to comprehend the proposed WSLogA Framework's design and compo-

nent distribution within a functional environment.

The Adventure Builder Architecture

A complete description of Adventure Builder and the involved design principles can be

obtained by visiting Sun's Adventure Builder project online (Sun Microsystems, 2005) or by

examining the associated resources (Singh et al., 2004; Sun Microsystems, 2006). Figure B-1

illustrates the components and processes involved for the presentation and business tiers.

160

Adventure Builder is based on the model-view-controller architecture pattern (Cavaness,

2004; Gamma et al., 1994), in which a controlling series of components coordinates them

activities of presentation and business model. The business model is responsible for mapping

the data tier into the application’s components. Clients interact with Adventure Builder

through a series of Java Server Pages (JSPs) presented within a web browser. A database

persists information such as catalog items and user vacation package selections. The control-

ler uses a master servlet to specify the overall workflow, but sub-sections rely on Web service

F igure B-1 . The Adventure Builder architecture.

161

components that interact with a persistent data layer or external (to the organization)

entities for detailed business rule implementation. Adventure Builder is similar to other J2EE

systems in that it depends on a host of application and Web Server, data persistence, net-

working, log, and operating services that provide the types of maintenance challenges

WSLogA derivatives are intended to learn about and manage.

Integrat ion with WSLogA

WSLogA uses intermediary Web service components to analyze data in transit and report

events or content of interest for later analysis, as illustrated by Figure 1-2. The proposed

framework adds observing components for relevant system aspects such as the Application

server, database, and operating system services. The information collected by these compo-

Figure B-2. WSLogA Framework components interact with Adventure Builder.

162

nents is placed into a persistent storage solution, such as a database, which primes the event

processing engine's queue. The event-processing engine relies on pluggable components to

present information or interact with the environment for corrective maintenance. Figure B-2

illustrates in simplified form the manner by which framework data capture and information

processing systems interact with Adventure Builder, the Application server, and other

environment components or log repositories.

Adventure Builder as Related to Cruz et a l . Research

Cruz et al. (2003, 2004) demonstrated WSLogA principles by examining systems for work-

flow and transaction information. Adventure Builder also provides workflow and transaction

scenarios that the WSLogA Framework can process in manners similar to the examples

provided by Cruz et al. As such, the use of Adventure Builder for the demonstration system

facilitates proper evaluation of the produced WSLogA Framework in lieu of the systems

used by Cruz et al. Additionally, the use of Adventure Builder as the demonstration system

host application permits researchers to explore with consistency the WSLogA Framework's

design against a known benchmark. Practitioners can use the demonstration system to test

their WSLogA Framework extensions.

163

 Appendix C

WSLogA Framework Demonstrations

Intent

The WSLogA Framework provides holistic information collection, analysis, and event re-

sponse capabilities to Enterprise systems in a manner that reduces the knowledge and work

necessary for the implementation of such functionality. The WSLogA Framework is demon-

strated through four scenarios involving the framework, the Adventure Builder J2EE applica-

tion, and the J2EE 1.4 compliant GlassFish application server. The demonstrations are

configured for execution on Mac OS X and a subset of the live demonstrations may be

executed on WindowsXP Professional. The combinations of these scenarios and platforms

enable WSLogA Framework’s strengths and weaknesses to be assessed in an objective

manner within the context of environments representative of service oriented Enterprise

systems. The demonstration suites provide the context by which the WSLogA Framework

components are described in Chapter 4, and Chapter 5 addresses the implications of demon-

stration outcomes.

Organizat ion

Demonstrations of the WSLogA Framework are organized into scenarios that have mock

and live environment counterparts featuring comparable workflows. Both suites are con-

trolled using the JUnit test harness, which permits the extension of tests through the

164

addition of new Java routines and facilitates analysis of the WSLogA Framework components

through the use of debugging tools (Appendix A).

The mock demonstration suite simulates environment components, such as the applica-

tion server, by organizing the process or data flows involving WSLogA Framework compo-

nents or derivations and injecting data values or assessing results in a manner that requires

minimal resources and provides maximum operational precision (Freeman et al., 2004; Staff

& Ernst, 2004b). As a result, studies regarding the behavior of WSLogA Framework compo-

nents or derivations may focus on component mechanics without the distraction of envi-

ronment availability, configuration, and operational timing.

The live demonstration suite uses external systems, such as the GlassFish application

server, to exercise the WSLogA Framework components or derivations within contexts

F igure C-1 . Scripts are available to run the demonstrations using common options.

165

representative of Enterprise systems (Holmes & Kellogg, 2006). The Selenium extension for

JUnit is used to control Web browsers hosting interactive Adventure Builder sessions. Live

demonstrations are operationally less precise than their mock counterparts and may be

affected by factors that include, but are not limited to, the operating system, degree of

processing power, and quantity of RAM made available by the host machine.

F igure C-2 . Project tools are provided to facilitate WSLogA Framework analysis.

166

Distr ibution

The source code and supporting tools for the WSLogA Framework were archived onto

DVD and made available with this report to facilitate third party assessment of the investiga-

tion's artifacts. Appendix D discusses the configuration used to prepare the WSLogA Frame-

work for development and quality assurance in conjunction with the tools utilized through-

out the Framework's development. UNIX is the preferred environment for operating the

mock and live environment demonstrations, and specifically the Mac OS X operating system

was used for principal development and quality assurance.

VMware virtualization technology was adopted to host the Microsoft Windows environ-

ment and operate the demonstrations within that context. A virtual PC provided in the form

of a VMware virtual hard disk file was prepared using the WindowsXP Professional SP2

edition provided through the MSDN to NSU graduate students. The Eclipse IDE, Maven2

build engine, the J2SE 1.5 JDK, and GlassFish v1 were installed on the VMware system and

preconfigured for use with the WSLogA Framework project. The execution of all mock and

F igure C-3 . Demonstration phases for information collection.

167

live environment demonstration suites within Mac OS X was captured as a QuickTime video

and may be considered by audiences unable to operate the WindowsXP based distribution.

Operation

The VMware virtual machine produced for the demonstrations must be used with one of

VMware’s virtualization hosts, such as VMware Workstation (Microsoft Windows and Linux),

VMware Fusion (Mac OS X), or the VMware Player (Microsoft Windows and Linux). The free

VMware Player for Microsoft Windows is provided as part of this investigation’s project

(Appendix D) and is recommended for configuring and hosting the VMware virtual machine.

A set of script files is made available for both the UNIX (bash shell) and Microsoft Win-

dows platforms. These script files are suffixed with the appropriate file extension and are

placed within the src/main/script folder for the demonstration module (Appendix D). The

VMware virtual disk also makes these scripts available within the C:\NSU folder. Figure C-1

illustrates the location of the script files. The UNIX scripts are configured to operate in the

correct folders as provided on the DVD or VMware distributions.

 Observer lodgingObserver = new Observer(inspector);
 lodgingMonitor.getReporters().addReporter(lodgingObserver);
 try
 {
 // Do Interaction layer processing
 ...
 }
 finally
 {
 lodgingMonitor.monitor();
 }
 }

F igure C-4. Adventure Builder modifications to include inspectors are minimal.

168

The complete demonstration suite (except the aforementioned live demonstrations dis-

abled when using the VMware demo environment) may be started using the RunLiveDemo

script. The RunMockDemo script may be executed to exercise only the mock demonstration

suite. All demonstration suites make use of an HSQLDB server to store event information

captured by the WSLogA Framework, but only the live environment demonstrations take

advantage of a persistent, disk based database server facilitating post-operation evaluation of

the generated event information (Appendix A). The RunDatabaseManager script launches a

graphical database manager that may be used to inspect the event information and generate

reports with the use of SQL commands. The RunEnvironmentOnly script starts the HSQLDB

server and the application server that hosts distributed WSLogA Framework components

and the Adventure Builder application. Individuals desiring to trace the framework’s opera-

tion during manual execution of the Adventure Builder application should run only the

environment and the Eclipse IDE to control the source code that is explored (Figure C-2).

The Eclipse IDE and Maven2 development tools are preconfigured in the VMware distri-

bution for use with the WSLogA Framework project. A debug profile for the externally

operated GlassFish Application server is made available through the Eclipse IDE’s debug

menu, and the command line may be used to execute Maven2 build instructions for build-

ing and packaging the WSLogA Framework artifacts (Figure C-2). The VMware virtual hard

disk provides practitioners with a self-contained development and runtime environment for

WSLogA Framework development, and provides researchers with a self-contained environ-

ment for artifact evaluation.

169

Information Acquis it ion and Dissemination

Cruz et al. (2003, 2004) introduced the WSLogA as a means by which information could

be gathered from Web service based systems to facilitate business decision making and

technical support, which suggests that any derived framework should focus on information

collection. The WSLogA Framework facilitates information acquisition across multiple source

types through SOAP and log message monitoring as well as the runtime observation or active

inspection of Java Objects and system components. The combined use of these mechanisms

in an enterprise system permits precise and focused information collection supporting

F igure C-5 . Demonstration flow for information collection.

170

engineering, support, and business concerns (Gulcu, 2002, 2005; Gupta, 2003; Telles & Hsieh,

2001).

This demonstration uses the communication between the order processing controller

(OPC) and lodging Web services included as part of the Adventure Builder application to

demonstrate capabilities of the SOAP message and Java Object inspection information

F igure C-6. Demonstration interaction for information collection.

171

acquisition mechanisms (log interception is demonstrated as part of the failing database

demonstration discussed within this appendix). The SOAP based transaction between the

OPC and lodging services is inspected to identify the lodges preferred by customers and

whether data transferred from the lodge purchase order, SOAP transport, and order proces-

sor maintain information integrity.

Figure C-3 illustrates the phases provided for the consideration of WSLogA Framework

component behavior. The demonstration does not require an event history so the applica-

tion workflow necessary to invoke the SOAP transaction is performed only once. A SOAP

Handler captures the information necessary to prepare a report regarding selected lodges in

a manner that does not require modification to Adventure Builder's source code. The OPC

and LodgingSupplier modules are each modified to contain an Object inspector used to

monitor lodging information. However, the source code modifications are superficial (Figure

C-4) and the business logic driving the transaction remains unchanged.

Report components are provided for use in the demonstration's JUnit logic for the pur-

pose of preparing an HTML based lodging report and to ensure information integrity is

maintained throughout a session's data flow. Perspective components providing focused

access to the WSLogA Framework's event pool are used by the report components to obtain

the relevant event information. Figure C-5 illustrates the flow among the WSLogA Frame-

work derived components and the operationally relevant Adventure Builder services.

172

F igure C-7 . Information collection demonstration components.

173

The live environment workflow deviates from the mock workflow in that the GlassFish

application server and HSQLDB process are operated in independent processes. The use of

distinct system contexts asserts the runtime utility of the WSLogA Framework components

for the purpose of Web service monitoring and profiling, and provides an example of

component distribution across processes that are typically distinct in Enterprise systems.

Figure C-6 illustrates the interaction among the WSLogA Framework derived components

and the operationally relevant Adventure Builder services.

Multiple components were prepared using the WSLogA Framework to acquire and, if

appropriate, modify information either processed by the Adventure Builder application or

that was obtained by inspecting Java Objects operating within an Adventure Builder session.

Figure C-7 illustrates the WSLogA Framework extensions for the information capture

demonstration, which are provided in the demonstration module (Appendix D).

F igure C-8. Policy contexts evaluate scenarios to control policy behavior

174

The AbLodgingMonitor component extends the SoapHandlerMonitor provided by the

WSLogA Framework, which in turn uses a policied Observer component for message analysis

and a Recorder component for persisting the event information into the WSLogA Frame-

work’s database. A process external to the application server (in this scenario, the test JVM) is

established to host event information perspective and response components that handle

Lodging Web service management.

AbLodgeObjectInspector extends ObjectInspector by initializing a set of delegate Object

field inspectors that, in turn, have an active state regulated by a PolicyContext sensitive to a

demonstration-controlled flag contained within the session’s WSLogA Framework database.

Each delegate component, such as the NonProcessingFieldInspectorDelegate, uses a regular

expression or Java based calculation to ascertain whether an inspected field contains relevant

content and, if so, produces a PatternInspector capable of filtering or otherwise manipulat-

ing the field’s data to suite information acquisition requirements.

F igure C-9. Static contexts communicate the general applicability of policies.

175

AbLodgeIntegrityReporter is a Reporter component that pulls event information from

AbLodgeIntegrityPerspective per reporting event to ascertain whether data was transferred

from the originating Lodging component across the SOAP mechanisms and into the receipi-

ent Lodging component within Adventure Builder. The calculation is performed by match-

ing information captured by AbLodgeObjectInspector and AbLodgingMonitor objects during

an Adventure Builder session.

The Adventure Builder application was modified to support the generation and insertion

of a GUID value into the Lodging data stream at the transaction’s outset, and this ID is used

by the AbLodgeIntegrityReporter to relate otherwise generic event records. The AbLodgeIn-

tegrityPerspective uses JDO based components from the Event Group to retrieve the event

F igure C-10. Dynamic contexts ensure the selective policy activation.

176

information and prepare a non-transactional EventPool object for consumption by AbLodge-

IntegrityReporter.

AbLodgeBookingReporter is a Reporter component that pulls event information from

AbLodgeBookingPerspective per reporting event to list the lodging booking requests made

within the Adventure Builder application. Each booking request row entry within the report

provides a quantity column indicating the number of bookings requested using the same

information. This report is also used by the multiple policy jurisdiction demonstration to

illustrate how changes in acquired information, such as to introduce end user anonymity,

can affect reports and the ability of WSLogA Framework derived components to process

captured information. The AbLodgeBookingPerspective uses JDO based components from

F igure C-11 . Demonstration policies and contexts are embedded within project artifacts.

177

the Event Group to retrieve the event information and prepare a non-transactional Event-

Pool object for consumption by AbLodgeBookingReporter.

Information collection is the central functionality of the WSLogA Framework. An exten-

sive set of reporting and recording components are provided by the WSLogA Framework to

facilitate a diverse range of information collection needs within Web service based systems.

This demonstration makes use of the SoapHandlerMonitor and ObjectInspector components

to provide an example of coordinated information collection within a transaction's workflow

to accomplish multiple objectives—that of business report preparation and confirmation of

F igure C-12 . The multiple policy report illustrates policy driven information formatting.

178

data integrity within a complex workflow. The multiple uses for the same information pool

underscore the importance of pervasive information harvesting by systems to accommodate

data mining and knowledge applications.

Mult iple Pol icy Jurisdict ions

Web service applications provide the benefit of being able to operate across a diverse

range of host systems, which enables organizations to form partnerships that lead to highly

integrated information systems. Organizations may also benefit from being able to produce

an information system in one country and host the system in multiple countries to take

advantage of operational benefits specific to the available infrastructures. For example, a

Web service could be developed to organize and provide access to digitized journal articles,

but operate as a self-contained system on disparate university campuses. Legal jurisdictions

may enforce information management policies, such as those pertaining to privacy, that are

F igure C-13 . Demonstration phases for failed Web service recovery.

179

not inter-compatible, which means for an architecture to be efficient the design needs to

address both the business rules' mechanics and the varying information storage or presenta-

tion requirements. The WSLogA Framework’s Policy Group enables both framework and

third party components to focus on business logic by delegating information acceptance and

formatting. Different information management policies can be introduced to the application

by referencing the appropriate policy component library. This demonstration provides an

F igure C-14. Demonstration flow for failed Web service recovery.

180

example of how different policy component sets can affect the information management

behavior of a WSLogA Framework derived system.

The multiple policy demonstration's operation is integrated into that of the information

collection demonstration because policy implementations affect the outcome for informa-

tion collection. Policies can be static, such as denying redundant data, or dynamic, such as to

appropriately mask sensitive information depending on a jurisdiction's requirements. Several

strategies may be followed to implement policy exchange within WSLogA Framework based

systems (Chapter 4), and this demonstration illustrates how contexts may be used to control

individual policies. Figure C-8 illustrates context managed policy behavior.

F igure C-15 . Demonstration interaction for failed Web service recovery.

181

The demonstration provides format policies that permit the capture data in its raw form

as represented by a String value. These basic policies use a static context to ensure they are

always available regardless of the application's operational context, which means data

formatting behavior may be predicted for software development environments. Figure C-9

illustrates this relationship.

 A set of strict formatting policies are also associated with each inspector, but these

policies are associated with a context that only activates when a sentinel value indicates a

<webservice-description>
 <webservice-description-name>
 CreditCardService
 </webservice-description-name>
 <wsdl-file>
 META-INF/wsdl/CreditCardService.wsdl
 </wsdl-file>
 <jaxrpc-mapping-file>
 META-INF/CreditCardServiceMap.xml
 </jaxrpc-mapping-file>
 <port-component>
 <description>port component description</description>
 <port-component-name>
 CreditCardIntfPort
 </port-component-name>
 <wsdl-port xmlns:CreditCardns="urn:CreditCardService">
 CreditCardns:CreditCardIntfPort
 </wsdl-port>
 <service-endpoint-interface>
 com.sun.j2ee.blueprints.bank.creditcardservice.CreditCardIntf
 </service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>CreditCardEndpointBean</ejb-link>
 </service-impl-bean>
 <handler>
 <handler-name>AbBankMonitorHandler</handler-name>
 <handler-class>
 org.ws.loga.demo.failingservice.AbBankMonitor
 </handler-class>
 </handler>
 </port-component>
</webservice-description>

F igure C-16. Failed Web service recovery monitor descriptor entry.

182

strict information management jurisdiction is in effect. The sentinel value is controlled by

the JUnit managed logic, which permits reports to be prepared demonstrating information

collection outcomes across a variety of contexts. Figure C-10 illustrates this relationship.

The policy context and policy components can be made available to the application at

any point within the system's class path, such as the application server's common library, the

domain library, or the application archive. The multiple policy demonstration stores the

F igure C-17 . Failed Web service recovery demonstration components.

183

policy and supporting components within the demonstration project's artifact, which is

made available to the Adventure Builder application and WSLogA Framework extension

components from within the application server's common library; however, objects instanti-

ated as part of the policy system are active within the appropriate module class trees and

thread memory assignments. Figure C-11 illustrates the interaction among the WSLogA

Framework derived components and the operationally relevant Adventure Builder services.

The multiple policy demonstration concludes with the publication of an HTML based

report (Figure C-12) that shows multiple lodging requests across at least one session with a

relaxed requirement for information masking and a different session with strict information

masking requirements.

F igure C-18. Demonstration phases for failed application server database recovery.

184

Information capture performed by the same application architecture may be required

across jurisdictions with varying information management requirements. The WSLogA

Framework's policy support permits the development of a common architecture addressing

business requirements with varied information acceptance and formatting policies according

F igure C-19. Demonstration flow for failed database recovery.

185

to a dynamic and interchangeable rules system. Inherent support within the WSLogA

Framework for such functionality ensures that applications based on the Framework will

have a growth path compatible with multinational organization concerns.

Detection and Recovery of a Fai led Web Service

Web services are comprised of components that are subject to failure in result of miscon-

figurations, system resource limitations, and runtime exceptions (Cruz et al., 2003; Cruz et

al., 2004; Graham et al., 2005; Telles & Hsieh, 2001). Production environments must ensure

the availability of their Web service components, which means these components must be

F igure C-20. Demonstration interaction for failed database recovery.

186

monitored for their availability and behavior (Cruz et al., 2003; Cruz et al., 2004; Lee et al.,

2002). In the event a Web service ceases to be available for application participation it needs

to be restarted.

This demonstration provides an example of how a failed Web service may be detected

and reactivated using components based on the WSLogA Framework. Self-healing systems

can be difficult to establish (Babaoğlu, 2005; Telles & Hsieh, 2001), but use of the WSLogA

Framework makes such monitoring and recovery straightforward.

Figure C-13 illustrates the phases provided for the consideration of WSLogA Framework

component behavior. The demonstration begins with the standard operation of the envi-

F igure C-21 . The failed database recovery demonstration uses a custom Handler.

187

ronment components to build an event history. The Bank Web service provided with

Adventure Builder (Appendix B) is disabled after a history is established and the demonstra-

tion test logic monitors the Web service to determine when it is reactivated by a response

task. A monitor observing the SOAP messages between the Bank Web service and its client

Web service, Order Processing Center records SOAP events in a database managed by the

WSLogA Framework. A perspective retrieves the relevant event information and publishes

the information to a listening response task. The response task analyzes the event informa-

tion and, if appropriate, interacts with the application server to reactivate the Bank Web

service. Figure C-14 illustrates the activity sequence for the demonstration.

The Selenium oriented workflow deviates from the mock workflow in that the GlassFish

application server and HSQLDB process are operated in independent processes. The use of

distinct system contexts asserts the runtime utility of the WSLogA Framework components

for the purpose of Web service recovery, and provides an example of component distribution

across processes that are typically distinct in Enterprise systems. Figure C-15 illustrates the

interaction among the WSLogA Framework derived components and the operationally

relevant Adventure Builder services.

A monitoring component is associated with the Web service of interest through an entry

in the service’s configuration file, as illustrated in Figure C-16. The bold XML marks the entry

for the WSLogA Framework component. The entry is minimal in that the monitor, which is

a type of Handler (Graham et al., 2005; Singh et al., 2004), only requires a name and class

reference. (The monitor class must be exposed to the classpath at runtime.)

The AbBankMonitor component employed in this demonstration extends the SoapHan-

dlerMonitor provided by the WSLogA Framework, which in turn uses a policied Observer

188

component for message analysis and a Recorder component for persisting the event infor-

mation into the WSLogA Framework’s database. A process external to the application server

(in this scenario, the test JVM) is established to host event information perspective and

response components that handle Bank Web service management. AbBankPerspective

queries the WSLogA Framework database for event information relevant to the Bank Web

service and publishes the filtered information for use by listening AbBankResponseTaskBase

components (mock and live extension variants are defined to enable appropriate environ-

ment interaction). The response component considers both request and response message

counts in determining whether satisfactory Bank Web service operation is available, and

when predefined tolerance levels are breached the response task interacts with the applica-

tion server to reactive the Bank Web service. Figure C-17 illustrates the WSLogA Framework

extensions for the failing Web service demonstration, which are provided in the demonstra-

tion module (Appendix D).

Self-healing systems (Dashofy et al., 2002; Wang, 2005) are of interest to software engi-

neers seeking to produce robust Enterprise solutions, such as those typically demanded of

Web service systems that interact as critical components in partnerships. The Adventure

Builder application provides a context suitable for simulating this relationship because the

Bank Web service represents the role an independent financial institution would play for the

adventuring booking organization. All Web service systems have the risk that a deployed

Web service may fail, and the components derived from the WSLogA Framework for this

demonstration provide a benchmark by which comparable services may be developed and

compared for production environments. Third parties should also consider the related

scenario of dependent resource failure, such as the loss of connectivity to a database integral

189

to the Web service system. The Detection and Recovery of a Failed Database demonstration

describes such a scenario.

Detection and Recovery of a Fai led Database

Web services may depend on resources such as database connections for proper func-

tionality, which means production environments must ensure that these resources remain

available for use by the Enterprise system. In the event a resource dependency fails it must

F igure C-22. Failed database recovery demonstration components.

190

be reactivated and, if appropriate, the dependent system must be recycled to ensure contin-

ued operation.

This demonstration provides an example for how a failed external resource—the Apache

Derby database integrated with the GlassFish application server—may be detected and

reactivated using components based on the WSLogA Framework. Figure C-18 illustrates the

phases provided for the consideration of WSLogA Framework component behavior. The

demonstration begins with the standard operation of environment components to build an

event history. The Derby database manages application data and JMS queues for Adventure

Builder Web services, which means its operation is essential to maintaining workflows. The

Derby database is disabled after a history is established and the demonstration test logic

monitors the database to determine when it is reactivated by a response task. A monitor

observing log messages provided by GlassFish and its embedded components, such as the

Derby database, records events in a distinct database managed by the WSLogA Framework. A

perspective retrieves the relevant event information and publishes the information to a

listening response task. The response task analyses the event information and, if appropriate,

interacts with the application server to reactivate the Derby database and recycle inoperable

Web services (e.g., those that crashed because of database dependencies). Figure C-19

illustrates the activity sequence for the demonstration.

 The Selenium oriented workflow deviates from the mock workflow in that the GlassFish

application server and HSQLDB processes are operated in independent processes. The use of

distinct system contexts asserts the runtime utility of the WSLogA Framework component

for the purpose of database recovery, and provides an example of component distribution

across processes that are typically distinct in Enterprise systems. Figure C-20 illustrates the

191

interaction among the WSLogA Framework derived components and the operationally

relevant GlassFish resources or Adventure Builder services.

The GlassFish application server uses the J2SE Log API to record events for the server

core, extension components (e.g., the JMS queue), integrated systems (e.g., the Apache

Derby database), and hosted applications. The J2SE Log API must be configured in the JVM

through system properties or a configuration file embedded in the JVM’s distribution folder.

The WSLogA Framework provides JdkLogHandlerMonitor as the entry point component by

which event capture utilizing the J2SE log stream may be accomplished, and the demonstra-

tion component extending this component, AbDatabaseLogHandlerMonitor, is exposed for

use by GlassFish through the application server’s JVM options page, as illustrated in Figure C-

21. Further configuration of Formatter or other components could also be provided by this

configuration page but to simplify the demonstration these component relationships are

established programmatically.

The AbDatabaseLogHandlerMonitor component deployed in this demonstration extends

the JdkLogHandlerMonitor provided by the WSLogA Framework, which in turn manages a

J2SE Log Formatter and JdoEventRecorder to prepare and persist event information provided

by GlassFish log requests. A process external to the application server (in this scenario, the

test JVM) is established to host event information perspective and response components that

handle Apache Derby database management. AbDatabasePerspective queries the WSLogA

Framework database for event information relevant to the Apache Derby database and

publishes the filtered information for use by listening AbDatabaseResponseTaskBase compo-

nents (mock and live extension variants are defined to enable appropriate environ ment

interaction). The response component considers SQLException and related errors to deter-

192

mine that the Apache Derby database has been disabled. Figure C-22 illustrates the WSLogA

Framework extensions for the failing database demonstration.

Self-healing systems (Dashofy et al., 2002; Wang, 2005) are of interest to software engi-

neers seeking to produce robust Enterprise solutions, such as those typically demanded of

Web service systems that interact as critical components in partnerships. The GlassFish

application server provides a context suitable for simulating this relationship because the

Apache Derby database represents the role an RDBMS would play for a J2EE application. All

Web service systems have the risk that the associated database may fail, and the components

derived from the WSLogA Framework for this demonstration provide a benchmark by which

comparable services may be developed and compared for production environments. Third

parties should also consider the related scenario of Web service failure. The Detection and

Recovery of a Failed Web Service demonstration describes such a scenario.

Summary

The WSLogA Framework is a holistic solution for information capture, analysis, and envi-

ronment management. The provided information capture mechanisms target SOAP mes-

sages, runtime objects, and log messages generated by foundational systems such as the

application server. Policy component influence the extent to which information is persisted

and the manner of its presentation format, which permits common architectures to devel-

oped for applications that must respect information policies for diverse jurisdictions. Re-

sponse formation and execution mechanisms permit environment correction and reporting

that accommodates machine and human audiences. The workflows and component behav-

193

iors automated by the framework address essential and complex relationships necessary for

advanced production support and management.

The WSLogA Framework’s configurations, workflows, and components are demon-

strated by means of a pre-configured VMware virtual machine operated by Windows XP. The

WSLogA Framework’s source code has been installed and its resultant artifacts and project

reports are made available for inspection. The GlassFish application server and its associated

database, Apache Derby, are configured for use with the Adventure Builder application with

modifications for WSLogA Framework integration. The Eclipse IDE and Maven2 build engine

are installed and configured for use with the WSLogA Framework project and GlassFish to

support unit and integration tests that consistently execute and validate the WSLogA

Framework. Researchers may use the virtual machine to assess the WSLogA Framework.

Practitioners may use the virtual machine to better understand or enhance the WSLogA

Framework. Adjustments to the WSLogA Framework can be compared against the baseline

provided by the original demonstration virtual machine associated with this report.

194

Appendix D

Configuration Management

Introduction

The complexity of software development requires a disciplined, consistent approach to

the production of the documents, artifacts, and environments necessary for the rigorous

exploration of a technology (Berczuk & Appleton, 2003; Hevner et al., 2004; Mason, 2006).

This section discusses the configurations used for this investigation with the intent of

facilitating result reproduction, and complements several other appendixes within this

report: Appendixes A and C address the quality control strategies employed to ensure rigor; E

and F continue this section’s discussion by respectively detailing the version control and

automation strategies; and Appendix G overviews the development and audit reports.

Host Environment

All project phases made use of the Apple Macintosh platform, operated by Mac OS X, for

which the J2SE 1.5 SDK is a standard component (Apple Computer, 2008). Applicable service

packs released during the course of research were applied to the operating system, and are

reflected in the operating system’s version number as provided in Table D-1. This environ-

ment adequately represents industry enterprise environments for which the WSLogA

Framework would be an enhancement (Sun Microsystems, 2008c; TheServerSide.com, 2005).

195

Tests were also conducted using the Microsoft Windows platform (Appendix C), which

suggests that the WSLogA Framework can be generally employed throughout a heterogene-

ous environment.

The GlassFish Application server (Sun Microsystems, 2008a) was utilized in conjunction

with the Adventure Builder application to host WSLogA Framework tests. GlassFish is a J2EE

1.4 compliant system, and is representative of the J2EE Application servers used throughout

the industry (Sun Microsystems, 2008c; TheServerSide.com, 2005). JBoss (2008) was proposed

as the Application server, but environment configuration efforts for Adventure Builder

exposed a bug by which the proposed server incorrectly handled Web service deployments

requiring JAX-RPC support (JBoss failed to generate the Web service component stubs for

Adventure Builder). GlassFish correctly handles all J2EE, Web service, and Adventure Builder

Table D-1 . Hardware and software platforms.
Platform Version

Apple Macintosh Model MacBook

CPU Dual Core 2 at 2 GHz
RAM 3 GB
Disks 120GB with 60 GB partition for

research documents and runtime

Mac OS X 10.5.3 (9D34) integrated with Darwin 9.3.0 (Berkley UNIX variant)

VMware Fusion Version 1.1.1
Model X86 Intel compatible

CPU Reflects host PC configuration
RAM 2 GB
Disks 50GB

WindowsXP NSU MSDN as licensed for SCIS student activities, Service Pack 2 (SP2)

196

requirements. Table D-2 describes the library files (e.g., JARs) added to GlassFish or the unit

test environment (simulating system use within an application server) to support operation

of the WSLogA Framework. Where possible, descriptions are from the perspective of the

Maven project file. Library build scopes are defined in Maven 2 terms (Appendix F).

Table D-2 . Libraries and components.
Art i fact Vers ion Scope Declared

javaee (1.4 as distributed with GlassFish v1) 9.0_01 Compile Y

hsqldb 1.8.0.7 Test Y

easymock 2.2 Test Y

easymockclassextension 2.2 Test Y

selenium-java-client-driver 0.9.2 Test Y

appserv-ws 9.0_01 Provided Y

j2ee (1.4 as distributed with GlassFish v1) 9.0_01 Provided Y

j2ee-svc (1.4 as distributed with GlassFish v1) 9.0_01 Provided Y

ant 1.6 Compile n

dom4j 1.6.1 Compile n

geronimo-spec 1.0.1B-rc2 Compile N

jakarta-regexp 1.4 Compile N

jdo2-api 2.0 Compile N

connector 1.0 Compile N

jta 1.0.1B Compile N

jaxen 1.1-beta-8 Compile N

197

Table D-2 . Libraries and components.
Art i fact Art i fact Art i fact Art i fact

jdom 1.0 Compile N

jpox 1.1.7 Compile Y

jpox-enhancer 1.1.7 Compile Y

jpox-maven-plugin 1.1.7 Provided Y

log4j 1.2.14 Compile Y

bcel 5.2 Compile N

xalan 2.7.0 Compile N

xercesimpl 2.6.2 Compile N

xmlparserapis 2.6.2 Compile N

xml-apis 1.0.b2 Compile N

xom 1.1 Compile Y

cglib-nodep 2.1_3 Test N

commons-logging 1.0.4 Test N

servlet-api 2.4 Test N

jetty 5.1.10 Test N

junit 3.8.2 Test N

selenium-core 0.8.3 Test N

selenium-server 0.9.2 Test N

selenium-server-coreless 0.9.1 Test N

198

One system account was established on each investigation system—the Mac OS X work-

station and Windows VMware virtual hard disk—and used for all project phases to ensure

consistent variable configurations. Environment variables, such as CLASSPATH, were config-

ured in the appropriate system registry (e.g., the UNIX .profile file and the Windows System

control panel) or in a build property file. These files are included in the research archive to

facilitate result reproduction in other environments.

Table D-3 . Environment variables.
Variable Value

ANT_HOME $J2EE_HOME/lib/ant

CLASSPATH $CLASSPATH:$J2EE_HOME/lib/j2ee.jar:$J2EE_HOME/lib/

javaee.jar:$J2EE_HOME/lib/j2ee-svc.jar:/Volumes/Media/dev/
wslogafwk/lib/ydoc-2.2_03-
jdk1.5/lib/ydoc.jar:/Volumes/Media/
dev/wslogafwk/lib/ydoc-2.2_03-jdk1.5/lib/class2svg.jar:/
Volumes/Media/dev/wslogafwk/lib/ydoc-2.2_03-jdk1.5/
resources

GLASSFISH_HOME /Applications/ appserver /GlassFish

J2EE_HOME $J2EE_SERVER

J2EE_SERVER /Applications/appserver/GlassFish

M2_HOME /Applications/maven-2.0.7

PATH $PATH:$M2_HOME/bin:$J2EE_HOME/bin:$ANT_HOME/bin

:$SVN_HOME

WSLOGA_DEMO_SERVICE
_PACKAGE_HOME

/Volumes/Media/dev/advbuilder

199

Test Environment

A test environment was used to facilitate the WSLogA Framework’s evaluation. Archiving

or scripting pre-configured environments and re-instating such as needed through an

automated process ensured consistent test environment preparation (Berczuk & Appleton,

2003; Haftmann et al., 2007; Hunt & Thomas, 2006; Rainsberger & Stirling, 2005). The consis-

tency permits comparative consideration of WSLogA Framework or environment changes

across development iterations, and the availability of the archived environments permit

independent evaluation of results. Two distinct test environments were maintained: unit

tests executable from within the IDE or an automated build (Appendix A), and a functional

test environment involving GlassFish and Adventure Builder (Appendix C).

The unit tests use the JUnit framework, which permits an organized approach to mini-

mal environment preparation (e.g., a database pool), test execution, reporting, and environ-

ment cleanup (Appendix A). Each WSLogA Framework component was developed in parallel

with a test component intended to ensure that all pre- and post-conditions mandated by

component methods were satisfied. All unit tests were designed to avoid the need for an

Application server to ensure maximum test efficiency during development. Unit tests were

executed both from within the IDE and as part of a WSLogA Framework build using the

Maven or Ant scripts developed to facilitate this investigation. The SureFire plug-in for

Maven managed unit testing and produced reports describing unit test outcomes (Appendix

F). All unit test sources as well as the final build’s unit test report are included in the project

archive associated with this report (Appendix C).

Cobertura was utilized to produce source code execution maps in conjunction with unit

test activities (Appendix F). Cobertura instruments Java class files prior to unit test execution,

200

monitors unit test execution to identify source code executed during the tests, and reports

those aspects of source code executed during the unit tests (Appendix G). Analysis of the

execution maps permits the refinement of unit tests to ensure all important source code

elements are addressed by one or more unit tests.

The functional tests require the execution of the test application and WSLogA Frame-

work components (Appendix A). Limited automation of these evaluations was supported by

JUnit, but most testing occurred through the manual handling of the test system as specified

by scenario scripts documented using the Selenium functional test tool. SQL scripts provide

data facilitating the functional tests, and are included in the project archive associated with

this report.

Development Documents and Tools

The investigation utilized tools, environments, and documents commonly found within

the IT industry to ensure general applicability of the research results for researchers and

practitioners. Proposed tools, environments, and documents for the investigation remained

static as appropriate, but products were upgraded or replaced as bugs were discovered or

significant enhancements were made available by vendors (such as with the Application

server and version control system). This approach provides an appropriate balance between

result consistency and the availability of an appropriate lab environment for project work.

Table D-4 describes the final versions of significant applications and plug-ins utilized to

produce the documents and artifacts for the investigation.

201

Table D-4. Applications and significant plug-ins.
Applicat ion or Components Vers ion Purpose

Eclipse IDE 3.3.1.1 Java and other document editor.

BBEdit 7.0.3 Multiplatform text editor for Java source

code, XML documents, and related
content.

Subversion 1.4.4 Version control system used to manage

project source code, documents, and
environment configurations.

Subclipse 1.2.4 Eclipse IDE integration with Subversion.

Maven 2.0.7 Build, test, and report engine (includes

Ant).

VMware Fusion 1.1.1 Virtualizer for the WindowsXP platform

used to distribute and demonstrate the
WSLogA Framework.

OmniGraffle Pro 4.2.2 UML and other document preparation.

yDoc 1.1 Automated UML document preparation.

GlassFish Application server v1

(9.0_01)
J2EE 1.4 compliant application server
used to host Adventure Builder and the
WSLogA Framework demonstration.

Adventure Builder 1.0.5 J2EE 1.4 Web service based system

simulating a travel booking system used
to facilitate WSLogA Framework quality
control and demonstration.

HyperSQL Relational Database
Management System (HSQLDB)

1.8.0.7 Relational Database Management
System with extensions for Java applica-
tion integration. Used to facilitate
WSLogA Framework quality control and
demonstration.

202

Applications and Environment

The Eclipse IDE and BBEdit text editor were utilized for Java and script implementation.

The Eclipse IDE is a popular open architecture development platform with broad commu-

nity support from key vendors (Eclipse Foundation, 2008). The IDE’s functionality can be

repaired (such as to eliminate bugs) or extended through the installation of plug-in compo-

nents. The BBEdit text editor is a popular Mac OS X text editor with support for Java and

XML documents produced or maintained on a variety of platforms (Bare Bones, 2007;

MacWorld, 2005a).

Subversion and the Eclipse IDE Subclipse plug-in were utilized for managing versions of

the investigation’s documents. Subversion’s role in the investigation’s version control

strategy is discussed in Appendix E, but in summary Subversion is a version control tool

intended by its developers to replace CVS (Berczuk, 2003). CVS was proposed for the investi-

gation and utilized until April 2007, but was replaced by Subversion after the Subversion

development team addressed key bugs with version 1.4.3 (Tigris.org, 2007). Subclipse enables

direct repository access and control through the Eclipse IDE interface, which makes conven-

ient the management of research activities such as exploratory development.

The Maven and Ant build systems were utilized for producing investigation artifacts

from the source documents and controlling unit tests (Appendix F). Ant is a declarative

scripting language and platform for controlling the manner by which artifacts are produced;

Maven incorporates and extends Ant functionality by providing a common build platform

oriented around industry best practices for source and artifact document organization, build

workflow, and other configuration or engineering related activities. Maven integrates with

the Eclipse IDE through the use of the Maven 2 Eclipse Integration plug-in.

203

VMware Fusion was used to produce the virtualized distribution of the WSLogA Frame-

work based on the WindowsXP platform (Appendix C). The VMware product family permits

x86-based environments, such as a WindowsXP system, to be established using portable

virtual hard disk files, which can then be operated on physical x86 systems with similar

performance yet in a manner completely distinct from the host (VMware, 2008). VirtualPC

was proposed for this task, but as the Mac OS X platform for VirtualPC only executes on

PowerPC systems it was eliminated by Microsoft as a product line with the advent of Intel

based Macintosh PCs (MacWorld, 2006). The VMware virtual hard disk can be executed to

run tests within the WindowsXP context, and reverted to its original state to ensure subse-

quent tests can be compared with appropriately identical settings (e.g., database state).

OmniGraffle Pro and yDoc were utilized to produce UML diagrams. OmniGraffle pro-

vides the Mac OS X platform with diagramming support compatible with Microsoft Visio

(MacWorld, 2005b). yDoc is a JavaDoc extension library that produces UML class diagrams for

incorporation into industry standard JavaDoc documentation produced by the JavaDoc tool

(yWorks, 2008). Diagrams prepared using each application were used to envision and docu-

ment the WSLogA Framework.

Design Documents

Design documents were produced using OmniGraffle Pro and yDoc to visualize the

WSLogA Framework’s architectural evolution throughout research iterations with an

emphasis on class, activity, and sequence UML diagrams (Appendix G). Class diagrams

describe the structural relationship between WSLogA Framework components, such as

framework extension nodes (hot spots) and increasing degrees of component functionality

204

through inheritance. Activity diagrams describe execution- or workflows and applied to both

source code and tests. Sequence diagrams describe component interaction.

Source and Supporting Documents

Java, SQL, configuration, and build files were produced as source documents for the in-

vestigation. Java produced for the WSLogA Framework is limited to J2SE 1.5 and J2EE 1.4

functionality to ensure reasonable industry applicability. SQL scripts adhere to common SQL-

99 and SQL-2003 features (Toussi, 2008) to ensure compatibility with the HSQLDB system

employed to facilitate quality control for the WSLogA Framework. Use of SQL standards

should ensure general portability of the SQL scripts to other database systems, such as Oracle

or MySQL. Configuration files provide custom session behavior for the Application server,

database, Adventure Builder application, WSLogA Framework, and build system. The

configuration files produced for the WSLogA Framework are structured using XML or adhere

to the INI strategy common for Java oriented properties files. Maven and Ant build scripts

are formatted according to XML schemas published by their respective development teams.

Test and Supporting Documents

Java and JavaScript documents were utilized for unit and functional tests. JUnit classes

were developed in tandem with the tested source code as a method for assisting the discov-

ery of architecture requirements and a mechanism for verifying implementation correctness.

Selenium JavaScript scripts were developed to provide automated navigation of the Adven-

ture Builder and demonstration system user interfaces as a means to verify functional

behavior. SQL documents were used to manage the Adventure Builder and demonstration

205

system’s database content. Initialization scripts reset the databases to ensure test results

were not polluted by development activities or prior tests.

Development Art i facts

The investigation resulted in Java, database, and documentation artifacts. These artifacts

represent the goal of the investigation’s project and can be used to validate the WSLogA

Framework’s behavior or in support of new projects.

Compiled Documentation

The JavaDoc, yDoc, Cobertura, and SureFire tools were utilized to produce API and test-

ing documentation (Appendix G). JavaDoc documentation includes UML class diagrams

produced by the yDoc plug-in for JavaDoc. Cobertura reports describe the degree of source

code coverage by the unit tests, and SureFire reports describe unit test outcomes. Third

parties can analyze the documentation to gain an understanding of the functionality made

available by the WSLogA Framework and the manner by which that functionality may be

incorporated into a new project.

Binaries, JARs, WARs, and EARs

The WSLogA Framework is comprised of a JAR file set that includes the classes and other

resources necessary for the WSLogA Framework’s utilization by another project. Third

parties can include in their projects the WSLogA Framework's JARs as dependencies to gain

an implementation foundation for their custom WSLogA architecture and configuration.

Third party libraries required by the WSLogA Framework JARs must be externally configured

206

within the host environment. For example, the XOM library was placed into GlassFish's lib

folder to ensure its availability to the wsloga-framework-1.0-SNAPSHOT.jar.

The Adventure Builder application is comprised of a WAR containing the Web applica-

tion as well as a JAR set containing the supporting Web services (Appendix B). These artifacts

may be reproduced using the Adventure Builder project included in the VMware distribu-

tion file, and they are made available for use in integration tests within the domain1 server

instance provided with the VMware distribution file.

Databases

The GlassFish application server is bundled with the Apache Derby database (Sun Micro-

systems, 2008b), which was used to host Adventure Builder's seed and session data. Applica-

tion seed data was injected into the Derby database using SQL scripts provided with the

GlassFish project sources. Session data was generated during tests, and could not be removed

other than by resetting the host environment's state (e.g., by using VMware's snapshot and

rollback functionality).

The WSLogA Framework uses the HSQLDB relational database management application

(Hsqldb.org, 2008) to manage captured information (Appendix A). The WSLogA Framework's

test environment involved both disk and in-memory HSQLDB sessions, and both manifesta-

tions were reset prior to the subsequent execution of tests when using the Maven2 build

instructions established for the project (Appendix F). SQL scripts are provided with the

WSLogA Framework to facilitate environment configuration and maintenance, as well as to

support subsequent research.

207

Summary

The development and demonstration of the WSLogA Framework involved a multitude of

documents, tools, and environments. A strict configuration management approach to

ensuring consistency across formats, versions, and utility was maintained to facilitate this

investigation’s iterative development and quality control practices. The tools and environ-

ments were selected for their ability to represent affordable, common technology platforms

likely to be found within Enterprise development environments, which further ensures that

the WSLogA Framework serves as a relevant and accessible technology.

208

Appendix E

Version Control

Intent

Configuration management is concerned with accuracy—specific document and envi-

ronment versions provide anticipated behavior for software releases (Bar & Fogel, 2003;

Berczuk & Appleton, 2003; Casey et al., 2006; Enes, 2007; Estublier et al., 2005; Mason, 2006).

The Subversion (Mason, 2006) version control system was used to manage the evolution of

design, development, and test documents. ZIP archives (PKWare, 2007) were used to orga-

nize the environment components necessary for testing and analysis, such as the Application

server. Maven (Casey et al., 2006) was used to manage third party explicit and transitive

artifacts supporting the WSLogA Framework’s functionality or build process. This section

describes the processes and tools used to manage the sources and artifacts for this investiga-

tion.

Subvers ion and CVS

This investigation made use of the Concurrent Versions System (CVS) (Bar & Fogel, 2003)

and Subversion (Mason, 2006) version control systems. CVS is bundled with many operating

system distributions (Bar & Fogel, 2003), such as Mac OS X (Apple Computer, 2006), and

enjoys widespread support within the software development industry (Berczuk & Appleton,

2003). Subversion is a modern version control system intended to replace CVS through the

209

use of a distinct source code base and the incorporation of lessons learned by the industry in

its use of CVS and other version control systems (Collins-Sussman et al., 2004; Mason, 2006).

CVS was proposed and initially utilized for the investigation because of its maturity and

availability at the time of the proposal; however, Subversion has superior version manage-

ment capabilities (Mason, 2006) and was adopted for the investigation in May 2007 after its

development team addressed a series of critical bugs with the release of Subversion version

4.3 (CollabNet, 2007).

Subversion’s popularity among Open Source development teams has resulted in broad

product support. The Eclipse IDE directly integrates with Subversion through the use of the

Subclipse (CollabNet, 2006; Herborth, 2006) plug-in to support local development with

seamless version control. Maven and Ant can execute command line statements for interac-

tion with any command line based application (Casey et al., 2006), but Maven also provides

built-in support for Subversion that accommodates version control processes typical for Java

development projects.

F igure E-1 . The version control process.

210

ZIP Archives

The ZIP format enjoys widespread adoption among the significant software development

and operating platforms, including the Java SDK (Arnold et al., 2005; Sun Microsystems, 2003)

or operating systems such as Mac OS X (Apple Computer, 2007) and Windows XP (Microsoft,

2004). The GlassFish Application server and supporting components, such as the bundled

Derby database engine, were regularly adjusted to reflect the needs of testing and analysis

F igure E-2 . The version control process as applied to this investigation.

211

throughout the investigation. Preferred component configurations were bundled within a

single archive and unarchived as necessary to provide subsequent tests with a fresh envi-

ronment (Rainsberger & Stirling, 2005).

Maven

Maven is a configuration management and build tool produced by Apache to manage

the complex build and release processes for the group's multitude of open source projects

(Casey et al., 2006; Enes, 2007). Maven was designed using lessons learned and best practices

for information technology projects within the industry (Casey et al., 2006), and as such is

suited for the development and release of frameworks such as the one produced by this

investigation. Maven incorporates Ant, provides integrated Subversion connectivity, and is

supported by development tools such as Eclipse through the use of third party plug-ins

(Casey et al., 2006; Mergere, 2007). Maven was used to manage the WSLogA Framework’s

F igure E-3 . Project object model file declares dependencies.

212

build and reporting processes as well as to organize third party artifacts required for WSLogA

Framework functionality or development in fulfillment of the software configuration

management third party code line pattern (Berczuk & Appleton, 2003).

Source Management

Source files were developed on a local workstation and stored within a Subversion re-

pository. These workspaces are organized within the repository and local work environment

according to design patterns obtained from agile and iterative software development best

practices (Bar & Fogel, 2003; Berczuk, 2003; Berczuk & Appleton, 2003; Casey et al., 2006;

Mason, 2006). Figure E-1 illustrates the repository organization, which was optimized for an

iterative process accommodating multiple threads of simultaneous work and limited re-

F igure E-4. Maven repository organization.

213

leases. Changes to designs and implementations were easily tracked for comparative analysis

over time and to provide rollback points for when a tentative effort did not provide the

desired functionality. A single local workspace, such as an Eclipse project, only contained

source for one branch.

Figure E-2 illustrates the relationship between the version control strategy implemented

for this investigation and the development methodology utilized for artifact identification

and creation (also see Figure 3-1). A main development branch contained primary design,

implementation, and test source files for the WSLogA Framework. Iterations started with the

acquisition of source files obtained from the main development branch and placed into a

local workspace. Optionally, an experimental branch was used if the envisioned implementa-

F igure E-5 . Maven modifies the classpath during build operations.

214

tion might have resulted in a significant architectural change to the WSLogA Framework.

Completed artifacts and source files were committed to the main development branch and

tagged for reference. A release branch was prepared after successful unit and integration

testing for the full WSLogA Framework, which ensured a stable artifact and source file set

that could be used as a benchmark with subsequent work and tests. Bug fixes identified by

subsequent testing were committed to the release branch and merged with the main

development branch.

Dependency Management

Maven based projects declare explicit dependencies on third party components, such as

JAR files, within a project object model represented by XML in a pom.xml file (Casey et al.,

2006). Maven understands the transitive dependency model for many third party compo-

nents packaged for use with Maven, such as JUnit, and manages these ancillary artifact

requirements on behalf of the project. Figure E-3 illustrates the relationship between the

pom.xml and third party dependencies within the build environment.

Maven repositories are organized in general accordance with the Java package standard

(Arnold et al., 2005; Casey et al., 2006), as illustrated in Figure E-4. A root directory,

/repository, contains artifacts organized by their group ID, artifact ID, and version. Group IDs

are structured as directory paths and may be specified by an organization to distinguish its

artifacts from similarly named artifacts provided by other organizations. The artifact ID

identifies the component in terms of a functional theme, and the version distinguishes

between multiple releases of the same artifact. Components are labeled with a combination

215

of the artifact ID, version, and artifact type (e.g., JAR) and stored within the version directo-

ries.

For example, the Open QA group publishes a multitude of components packaged for use

with Maven environments, and one such component drives Selenium integration tests.

Open QA uses the group ID /org/openqa/selenium to organize its Selenium components.

The artifact is identified within the selenium subgroup through the use of the /selenium-

java-client-driver directory. Multiple releases of the driver have been provided, such as the

0.9.0 version utilized by this investigation. The 0.9.0 release is represented as a version

directory. The version directory contains the driver JAR and a bundled pom.xml file that

describes the driver’s dependencies (known as transitive dependencies). The path to the

artifact JAR file is specified as /org/openqa/selenium/selenium-java-client-driver/0.9.0/

selenium-java-client-driver-0.9.0.jar.

Maven and related components, such as CodeHAUS’ Maven plug-in for Eclipse (Casey et

al., 2006; Mergere, 2007), manipulate the class path provided to the javac tool during build

operations. Maven examines the project’s pom.xml file and the pom.xml files for specified

dependency artifacts to produce an overall dependency model for the build operation. The

F igure E-6. The local repository is updated from remote repositories as necessary.

216

classpath is then adjusted with references to dependencies stored within the build com-

puter’s Maven repository. Figure E-5 illustrates the relationship between each component.

Maven is bundled with a multitude of popular artifacts, such as JUnit, but many third

party artifacts and updates to Maven’s core functionality must be obtained after Maven is

installed. As illustrated in Figure E-6, Maven uses the build computer’s network connection

(often involving but not restricted to the HTTP protocol) to contact remote Maven reposito-

ries and acquire missing or updated components. Maven then caches the components on

the local Maven repository for subsequent use.

Summary

A standards based approach to configuration management was an integral part of this

investigation’s production and management of source files, artifacts, and environments. The

Subversion version control tool, the Maven build and dependency management tool, and

archives based on the ZIP format were used to manage the versions of WSLogA Framework

elements so that software development, quality control, and release management could be

performed quickly and efficiently. These tools enjoy prominence within the industry and are

accessible for researchers or practitioners interested in reproducing or evolving the WSLogA

Framework produced during this investigation.

217

Appendix F

Automation

Intent

Configuration management is concerned with precision—artifacts and their behaviors

should be reproducible when the same environment and techniques are implemented (Bar

& Fogel, 2003; Berczuk & Appleton, 2003; Casey et al., 2006; Collins-Sussman et al., 2004;

Enes, 2007; Estublier et al., 2005; Fowler, 2006; Hatcher & Loughran, 2003; Hevner et al.,

2004; Rainsberger & Stirling, 2005). Such reliable reproduction facilitates continued research,

development, or the assessment of artifact and theory quality. Process automation is an

important tool for ensuring precise reproduction of artifacts and their behaviors from a

source and environment base (Berczuk & Appleton, 2003; Fowler, 2006; Rainsberger &

Stirling, 2005). The Maven build management and Ant automation tools were used by this

investigation to facilitate process automation for the WSLogA Framework’s build, test, and

packaging requirements.

Ant

Ant is a task automation tool produced by Apache to manage builds for the group’s mul-

titude of open source projects (Hatcher & Loughran, 2003). Tasks are declared using XML

within a build file. Ant is bundled with tasks for common Java oriented build operations

218

(such as the compilation of Java files into class files) but the automation engine can also be

extended with Java based components (Pepperdine, 2003).

Ant can be contrasted with earlier project build tools—such as UNIX scripts or the make

tool for C based applications—in that the language is declarative versus scripted and tasks

are declared in terms of temporal relationships or behaviors (Hatcher & Loughran, 2003).

Script oriented languages can also provide task automation, but bugs may arise due to the

nature of the syntax and improper logic can be difficult to debug (Bar & Fogel, 2003; Chandra

et al., 2003; Hatcher & Loughran, 2003; Telles & Hsieh, 2001). An Ant foundation for Java

projects provides the benefit of industry familiarity and thus reduces the time and configura-

tion work necessary for third parties to begin producing artifacts. The Adventure Builder

application from Sun Microsystems, which is used to demonstrate aspects of the WSLogA

Framework developed as part of this investigation, makes use of Ant for the automated

construction and packing of its components. Figure F-1 illustrates the relationship between

Ant and build elements.

F igure F-1 . Ant uses plug-ins to execute tasks manipulating the environment.

219

Maven

Maven is a build and configuration management tool produced by Apache to manage

the complex build and release processes for the group's multitude of open source projects

(Casey et al., 2006; Enes, 2007). Maven is often perceived as an evolution of Ant because

Maven utilizes Ant's libraries and plug-ins to provide core automation functionality (Casey et

al., 2006). Figure F-2 illustrates Maven's build lifecycle.

Maven improves upon Ant by enforcing conventions for organizing operations, proper-

ties, and other configuration concerns (Casey et al., 2006; Zyl, 2006). Ant provides tasks as

elementary units—such as compiling Java files—and delegates build organization choices to

implementing teams (Hatcher & Loughran, 2003), but Maven defines a series of build

lifecycles (such as for JAR oriented projects) with

F igure F-2 . Maven executes tasks within standard lifecycle phases.

220

 common phases bearing appropriate functionality that are executed in a progressive or-

der. These phases can be customized according to project needs (Casey et al., 2006), but the

commands necessary to execute a lifecycle up to a particular phase always remains the same.

As such, teams familiar with Maven can begin immediate reproduction of a Maven based

project's artifacts without learning how the project's specific build tasks operate.

The Automated Build

This investigation used an automated build based on Maven's JAR lifecycle (Casey et al.,

2006), which is optimized for the compilation of Java source code and the production of a

JAR file that can be distributed with applications or Application servers. The Site and Clean

lifecycles (Casey et al., 2006) were also used for project maintenance. The lifecycles were

customized for the WSLogA Framework's specific needs through the inclusion of tasks for

obtaining source code from Subversion, running unit or integration tests, managing testing

environment components such as the GlassFish Application server, and generating reports.

Builds were not considered successful unless all of the components could be generated and

successfully tested. Reports were produced at the end of each iteration phase. Table F-1

describes build phases for the WSLogA Framework’s implemented Maven lifecycles and the

customized tasks associated with each build phase.

Table F-1 . The Maven lifecycle as applied to the WSLogA Framework.

Build Phase Intent of Phase Customization

JAR lifecycle phases:

initialize Validate that the pom.xml and

workspace are properly structured
and that the necessary information
is available.

• None.

221

Table F-1 . The Maven lifecycle as applied to the WSLogA Framework.
Build Phase Build Phase Build Phase

generate-sources Generate sources for inclusion in

the compilation. Often used by
code generators.

• None.

process-sources Process the source code, such as to

filter symbols for replacement
values.

• None.

generate-resources Generate resources for inclusion in

the compilation. Often used to
apply database or Application server
settings.

• None.

process-resources Process the resources, such as to

filter symbols for replacement
values.

• None.

compile Compile sources into binary form. • The Java 1.5 SDK is required

for successful compilation.
• The Java 1.5 language target

is specified to enable anno-
tations, enumerations, and
other features utilized by
the framework.

process-classes Process binaries, such as to insert

instrumentation information.
• JPOX modifies class files to

enable JDO functionality.

generate-test-
sources

Similar to generate-sources, but for
test components.

• None.

process-test-sources Similar to process-sources, but for

test components.
• None.

generate-test-
resources

Similar to generate-resources, but
for test components.

• None.

process-test-
resources

Similar to process-resources, but for
test components.

• None.

222

Table F-1 . The Maven lifecycle as applied to the WSLogA Framework.

Build Phase Build Phase Build Phase

test-compile Compile test sources into binary

form.
• None.

test Execute unit tests. • Integration tests controlled

by JUnit are excluded from
execution.

package Create packages for artifacts, such as

the JAR file.
• None.

pre-integration-test Prepare environment and compo-

nents for integration tests.
• The Selenium Remote

Control server required to
run Selenium based inte-
gration tests is started.

• The packaged framework is
copied to the GlassFish Ap-
plication server.

• The GlassFish Application
server and database are
started.

integration-test Execute integration tests. • Selenium based integration

tests are executed.

verify Otherwise verify the organization,

structure, and suitability of artifacts.
• None.

install Install the artifacts into the local

Maven repository for use in other
processes or components.

• None.

deploy Deploys the artifacts to a remote

Maven repository.
• None.

Clean lifecycle phases:

pre-clean Prepare the workspace for cleaning. • None.

clean Clean the workspace of directories

and files generated during Maven
builds.

• Remove Cobertura files
generated in locations not
recognized by Maven.

223

Table F-1 . The Maven lifecycle as applied to the WSLogA Framework.

Build Phase Build Phase Build Phase

post-clean Configure the cleaned workspace

for new work.
• None.

Site lifecycle phases:

pre-site Prepare the workspace for a build

with the intent of generating
reports.

• None.

site Perform a build and generate

reports.
• Generate JavaDoc docu-

mentation with UML class
diagrams using yDoc.

• Generate Cobertura code
coverage report for unit
tests.

• Generate FindBugs report
to document implementa-
tion patterns known to fa-
cilitate critical bugs.

• Generate unit test success
report.

• Generate HTML source
code view with hyperlink
references among compo-
nents.

• Generate information site
with project, participant,
and dependency pages.

post-site Manage reports, such as to copy

them to a server for public review.
• None.

224

Table F-2 . Ancillary automation scripts.
Scr ipt Purpose Targets

GlassFish.xml Manages the GlassFish and

bundled Derby database compo-
nents. The Application server
environment can be populated
with Adventure Builder compo-
nents or resources, and the
environment can be archived or
unarchived to facilitate testing.

• GlassFish.archive
Archives the GlassFish and bun-
dled Derby installation in ZIP
format.

• GlassFish.unarchive
Unarchives a ZIP archive and re-
places the existing GlassFish in-
stallation with the archive’s con-
tents.

• GlassFish.installWsLogAFwk
Installs the wslogafwk.jar file in
the lib folder of the test applica-
tion configured within GlassFish
for this investigation.

• GlassFish.installAdventureBuilder
Installs the Adventure Builder
components and initializes the
Derby Database in the test domain
created within GlassFish for this
investigation.

svn.xml Manages the configuration of a

Subversion repository that may be
used to hold the source files made
available by this investigation.

• svn.create.repository
Establishes a new repository for
the project and imports source
files.

maven.xml Installs non-standard dependen-

cies into the local Maven reposi-
tory.

• maven.repository.archive
Archives the local Maven reposi-
tory in ZIP format.

• maven.repository.unarchive
Unarchives a ZIP archive of a
Maven repository and overlays the
contents onto the local Maven
repository.

225

Automated Environment Support

Ant scripts and associated properties files were produced to facilitate the configuration

and subsequent management of the development and test environments. The GlassFish

Application server and bundled Derby database can be prepared with updated Adventure

Builder components and database information, and also be archived into ZIP format for later

use if a configuration proves to be useful for testing or demonstrations. The Subversion

repository configuration used for this investigation can be reproduced with an Ant script,

and sources made available from this investigation can be imported into the new repository

for continued research, development or evaluation. WSLogA Framework dependencies

required for development, testing, or evaluation but that are not provided by one of the

significant Maven plug-in mirror sites can be installed into a local Maven repository through

the use of a provided script. Table F-2 describes these ancillary scripts.

Summary

Task automation permits repetitive tasks to be executed consistently for precise repro-

ductions of results within the same environment. This investigation used automation to

manage the consistent generation of artifacts from sources, measurement of source or

artifact fitness (e.g., with unit tests), and the preparation of documentation related to the

sources, artifacts, or tests. Additionally, Ant scripts were prepared to manage the Maven,

Subversion, and GlassFish environments to facilitate project configuration, testing, or

distribution. Maven and Ant enjoy prominence within the industry and are accessible for

researchers or practitioners interested in reproducing or evolving the framework produced

during this investigation.

226

 Appendix G

Reports and Documentation

Intent

Reports were generated throughout the course of this investigation to describe the qual-

ity or functionality of sources and artifacts. Report generation was driven by Maven (Appen-

dix G) with the use of third party plug-ins integrating tools such as Sun Microsystems’

JavaDoc. These report sets are incorporated into the project archive prepared as the result of

this investigation and made available with this dissertation report. This section describes the

types of reports and documentation produced and how the information provided assisted

investigation efforts, or how it may assist third parties.

Reports Faci l i tat ing Third Party Adoption or Development

Frameworks are complex in that they represent a generalized solution to a problem do-

main. Application logic is introduced to a framework through extension components

implementing hotspots that the framework manages through inversion of control, depend-

ency injection, and other strategies (Arthur & Azadegan, 2005; D'Souza & Wills, 1998; Fayad &

Schmidt, 1997; Fowler, 2004; Richter, 1999; Schmidt et al., 2004). Documentation facilitates

framework adoption (Kotula, 1998) by communicating key concepts regarding the sources

and artifacts (Forward & Lethbridge, 2002) and by reducing the time required for individuals

227

to learn about how the framework and third party extensions interact to provide the desired

behavior (Sherif & Vinze, 1999).

Reports Faci l i tat ing the Invest igat ion Process

The Spiral Lifecycle adapted for use in this investigation ensured the iterative, holistic

consideration of artifacts from the perspective of design, implementation, and quality

control (Chapter 3; Appendix A). Iterations were planned according to completed tasks,

knowledge gained from experiments, issues identified by tests, and artifact requirements

identified but not yet designed or implemented.

Reports from the automated build (Appendix F) were consulted throughout iterations to

ensure development efforts built upon existing work and addressed concerns preventing

F igure G-1 . Reports applied to this investigation process.

228

dependent tasks, as Figure G-1 illustrates. Quality control reports also facilitated project

governance (Schwalbe, 2006; Wysocki et al., 2000).

Documentation Oriented Reports

Three types of reports document the organization and functionality of the sources and

artifacts produced by this investigation: textual component descriptions, graphical compo-

nent descriptions, and source code cross-references. Each report provides a different per-

spective of the WSLogA Framework’s components, methods, and strategies.

Textual component descriptions are provided using Web pages produced using Sun Mi-

crosystems’ JavaDoc utility (Arnold et al., 2005; Kramer). JavaDoc reports document APIs in

terms of their packages, components, attributes, and methods. Software engineers may use

F igure G-2 . JavaDoc reports provide textual information regarding components.

229

JavaDoc reports to understand the WSLogA Framework's capabilities in terms of their

structure and behavior. Figure G-2 illustrates a partial JavaDoc Web page with constructor

and method summaries.

The yDoc plug-in1 was used to augment the JavaDoc report with embedded UML class

diagrams illustrating either components within a package or a specific component and its

object dependencies. yDoc integration with the JavaDoc utility permits these class diagrams

to accurately reflect the available components and their significant structural relationships

each time the JavaDoc report is regenerated. Figure G-3 illustrates a partial class diagram for

the same component described in Figure G-2.

1 yDoc is a product of yWorks, a company that provides documentation tools for a variety of development
languages and platforms. yWorks generously donated a commercial version of yDoc for use in this
investigation. More information regarding yWorks is available online at [http://www.yworks.com].

F igure G-3 . yDoc UML diagrams are embedded in JavaDoc Web pages.

230

Source code can be difficult to navigate when voluminous and an IDE supporting visual

browsing, such as Eclipse, is not available. Software engineers may also wish to explore a

framework’s implementation without obtaining source code—such as when considering

WSLogA Framework revisions. The XRef report tool generates HTML based documentation

containing the source code with hyperlinks referencing related components, as illustrated in

Figure G-4. For example, XRef will provide a hyperlink to an interface that a class imple-

ments. In this manner, the hyperlinks are located within contextually relevant locations.

Packages and components are also presented using indexes styled after the default JavaDoc

template distributed by Sun Microsystems, which makes report navigation straightforward

for experienced Java developers.

F igure G-4. XRef reports facilitate the quick exploration of source code.

231

Qual ity Control Oriented Reports

Three types of reports document the quality of sources and artifacts produced by this

investigation: unit test results, unit test code coverage, and source code segments matching

patterns known to permit faulty behavior. Each report provides a different perspective of the

WSLogA Framework’s adherence to planned functionality.

Unit tests ensure that component implementations honor intended behavior within the

context of inputs and associated components, such as injected dependencies. For example, a

method that adds two numbers and then returns the sum should generate the correct sum

for a known set of numbers; a unit test could call the method and provide predefined

numbers and then assert that the obtained sum is appropriate.

F igure G-5 . Unit test success summaries and statistics are provided in Surefire reports.

232

The Surefire report generator provided with the Maven automated build tool (Appendix

F) generates an HTML based report, illustrated in Figure G-5, that displays test result summa-

ries and associated statistics. Test logs and exception information can be obtained with the

use of hyperlinks on the summary page. Surefire reports were archived throughout this

investigation to provide benchmarks by which the results of iterative work for experiments

or maintenance could be compared.

Test coverage involves source code or artifact analysis to identify structures or states that

may permit unintended behavior, as well as to identify which parts of a system are not

exercised by tests (Ayewah et al., 2007; Berner et al., 2007; Huang et al., 2007). Source code

coverage by the unit tests was monitored with the use of Cobertura reports. Cobertura

F igure G-6. Cobertura reports illustrate source code unit test coverage.

233

(Harold, 2005; Yang et al., 2006) instruments class files prior to testing to insert monitoring

instructions. Cobertura generates an HTML based report after unit test execution by Surefire

that can be analyzed to determine the statements that were executed during the tests and

the degree by which conditional branches have been pursued. Figure G-6 illustrates a

Cobertura report for a component under development. Cobertura does not determine if

appropriate data endpoints were used to activate runtime logic paths, but test scenarios not

envisioned during design may be identified through the exposure of untested regions in the

source code (Berner et al., 2007).

Bug pattern analysis is performed on implemented components with the use of Find-

Bugs. FindBugs uses plug-ins to inspect Java source code for patterns known to permit

F igure G-7 . FindBugs report showing categories in which bugs would appear.

234

unintended behavior (Ayewah et al., 2007; Foster et al., 2007). For example, the failure to

properly initialize a variable could result in a null pointer exception. The FindBugs report

complements the Cobertura test coverage report by highlighting the types of risks present

within the source code, and unit tests can be developed or refined based on report informa-

tion to exercise potentially unsafe code.

Summary

The generated reports provided an important foundation for design, implementation,

and quality control efforts. Code coverage provided by Cobertura identified source code

statements not exercised by unit tests. JUnit test results reported by Surefire facilitated

comparison of WSLogA Framework component behaviors over multiple iterations. FindBugs

reports identified potentially unsafe implementations matching bug patterns that can be

difficult for initial unit tests to discover. JavaDoc reports augmented with embedded UML

class diagrams communicate the APIs available for use by third parties, and an HTML repre-

sentation of the source code facilitates navigation of the component implementations.

Practitioners integrating the WSLogA Framework for use in their systems can use these

reports to learn about the WSLogA Framework’s suitability and maturity for production

systems. Researchers can use these reports to verify the WSLogA Framework’s robustness

and identify sections for further study.

235

 Appendix H

Use Case Descriptions

Overview

Use cases in UML form (Richter, 1999; Stevens & Pooley, 2000) were prepared as part of

the design process for this investigation to identify components as well as guide the WSLogA

Framework’s artifact and test implementations. Use cases are a type of functional specifica-

tion that provides a business or workflow perspective into the system’s domain model

(Richter, 1999). Examples of information that can be obtained from a use case or its descrip-

tion include workflows, system component roles, and the relationships between roles and

the workflows in which they participate (Richter, 1999; Schach, 2002; Stevens & Pooley, 2000;

Whitten et al., 2001). This section describes the use cases presented in Chapter 4 using

activity diagrams (Richter, 1999; Stevens & Pooley, 2000) or comments for scenarios as

necessary for clarification.

Use cases were prepared according to the domain model specified or implied by the Pro-

posal’s objectives: the establishment of information capture, event management, response,

and presentation systems within the WSLogA Framework. These subsystems define the

functionality described by the WSLogA (Cruz et al., 2003; Cruz et al., 2004), but also specify

additional functionality to support the WSLogA Framework’s role in facilitating Web service

analysis and environment manipulation. Implementations were required to provide the

236

specified functionality but component and package boundaries were structured as appropri-

ate for an object-oriented architecture. For example, the information capture domain

defines policy interaction, but policies were implemented in a manner that permits their use

throughout all WSLogA Framework subsystems or third party extensions.

The software industry has yet to adopt a universal functional specification structure, but

in general functional specifications address concerns such as use case triggers, pre-

conditions, post-conditions, and significant activities (Richter, 1999; Schach, 2002; Stevens &

Pooley, 2000; Whitten et al., 2001). This appendix describes those concerns and, where

Use Case(s) : Principal use case names

Comments: A synopsis of the use case.

Trigger: The event or message that starts the flow.

Pre-State: Expectations of state prior to use case flow.

Post-State: Expectations of state after the use case flow.

Normal Flow and States :

Alternate Flows and States :

F igure H-1 . Use case descriptions include an activity diagram and clarifying comments.

237

appropriate, provides examples of the desired functionality using references for similar

technologies—such as the allusion to Quartz in select Response Engine use cases (Quartz is a

thread scheduling library). Figure H-1 illustrates the use case description format used for this

report, which is permitted to break across pages. Each remaining section discusses the use

case domain, introduces the use cases, and provides activity diagrams and their comments to

clarify the expected behavior and state of each use case.

F igure H-2. Principal information capture use cases.

238

Information Capture Use Cases

The information capture subsystem satisfies the Proposal’s objectives for establishing

data capture SOAP handlers and a data routing log management system. Unlike standard

information capture frameworks, such as Apache’s Log4J and Sun Microsystems’ Logging

API, information normalization and filtering through configurable policy expression is a core

feature of the architecture. Applications utilizing the information capture subsystem may be

ported to host environments among diverse legal jurisdictions or cultural regions with

respect to information management policies (e.g., privacy) because the policy management

architecture reduces or eliminates the need for significant implementation changes. Figure

H-2 illustrates the principal use cases address reporting and recording within a coordinated

context established by monitors.

F igure H-3 . Monitor management use cases.

239

Component management is an integral part of framework configuration, and use cases

were prepared to provide examples for the types of management expected for recorders,

reporters, and the myriad of other principal components addressed by the WSLogA Frame-

work. Figure H-3 illustrates the use cases prepared for information capture component

management, and these use cases are referenced throughout this appendix as reference

models for similar functionality.

Policy management and expression was envisioned initially for information capture as

the mechanism by which sensitive information could be masked or omitted before it was

committed to a permanent record. As such, the design for policy workflows is part of the

information capture use case set despite their implementation as a distinct package that may

F igure H-4. Policy management use cases.

240

be utilized by any subsystem or third party extension. Figure H-4 illustrates the use cases

addressing policy and policy context management.

Use Case(s) : Monitor

Comments: The monitor use case represents the process by which inspectors or reporters
produce information and provide such to recorders in the form of report objects.
Reports may be aggregated by the coordinating components prior to submission to
recorders.

Tr igger: A request to monitor, such as a SOAP handler event, begins the monitoring process.

Pre-State: Reporters are provided with Subjects or other resources.

Post-State: Recorders have provided registered consumers with the processed report informa-
tion.

Normal Flow and States :

Use Case(s) : Monitor by Schedule, Monitor by Event

Comments: The Monitor by Schedule and Monitor by Event use cases reflect the need
to permit, respectively, persistent and managed monitoring. Event based
monitors should be provided with a specific subject at the time of event,
whereas scheduled monitors should only be considered with specifically
assigned reporters.

Tr igger: A scheduled manager, such as a thread or other mechanism, will trigger

241

Monitor by Schedule. A specific event or request will trigger Monitor by
Event.

Pre-State: Monitor by Event should be provided with guidance regarding the report
to produce or subject to observe.

Post-State: Identical to the Monitor use case.

Normal Flow and States :

Please reference Monitor.

Use Case(s) : Monitor, Record

Comments: The Record use case is used by Monitor to persist or otherwise provide information
to registered consumers. The report information provided by Monitor is aggregated
into a single report. External consumers, such as a Log4J Appender, may apply their
own filter rules.

Tr igger: The submission of a report by Monitor or comparable entity.

Pre-State: The information is provided in an acceptable report format.

Post-State: The report has been provided to each registered consumer for recoding. Persistence
as part of the recording process, if any, is a function of the consumer.

Normal Flow and States :

Use Case(s) : Monitor, Record per Policies

Comments: The Record per Policies use case is used by Monitor to persist or otherwise provide
information to registered consumers. The report information provided by Monitor
is aggregated into a single report, but consumers can filter and discard report
contents according to policies established by the framework mechanisms or

242

external configures (e.g., Log4J).

Tr igger: The submission of a report by Monitor or comparable entity.

Pre-State: The information is provided in an acceptable report format.

Post-State: The report has been provided to each registered consumer for recoding. Persistence
as part of the recording process, if any, is a function of the consumer.

Normal Flow and States :

Use Case(s) : Report

Comments: The Report use case is used by Monitor to generate a report regarding some topic of
concern. Report types may vary in structure to accommodate subject or context
configurations, but such structural differences must be clearly communicated to
the consumer (e.g., using an XML schema reference or Java class type). Empty
reports are permissible and may take the form of report shells (e.g., an XML
wrapper) or object references (e.g., null).

Tr igger: The request for a report by Monitor or comparable entity.

Pre-State: None.

Post-State: A report of an acceptable structure and content has been generated and provided to
the requesting entity or an appropriate proxy.

243

Normal Flow and States :

Use Case(s) : Report, Observe

Comments: The Observe use case is used by Monitor to generate a report regarding a specific
subject or sets of related subjects. The reporting components should be specialized
for those subjects to enable more detailed reporting than what a generic reporter
might provide. Report types may vary in structure to accommodate subject or
context configurations, but such structural differences must be clearly communi-
cated to the consumer (e.g., using an XML schema reference or Java class type).
Empty reports are permissible and may take the form of report shells (e.g., XML
wrapper) or object references (e.g., null).

Tr igger: The request for a report by Monitor or comparable entity.

Pre-State: The observing component must be primed with one or more subjects for a non-
empty report to be produced.

Post-State: A report of an acceptable structure and content has been generated and provided to
the requesting entity or an appropriate proxy.

244

Normal Flow and States :

Use Case(s) : Observe, Observe per Policies

Comments: The Observe per Policies use case is used by Observe to generate a report regarding
a specific or a set of subjects within the constraints of active associated policies.

Tr igger: The request for a report by Monitor or comparable entity.

Pre-State: The observing component must be primed with one or more subjects for a non-
empty report to be produced.

Post-State: A report of an acceptable structure and content has been generated and provided to
the requesting entity or an appropriate proxy.

245

Normal Flow and States :

Use Case (s) : Add Recorder

Comments: Monitors use the Add Recorder use case to associate a recorder. The
recorder must be unique within the association to prevent duplicate
record requests from being sent to the same recorder.

Tr igger: A monitor attempts to associate a recorder.

Pre-State: None.

Post-State: A single instance of the recorder is associated with the monitor.

246

Normal Flow and States :

Use Case(s) : Add / Remove Reporter

Comments: The Add / Remove Reporter use cases are identical in flow to their respec-
tive Add / Remove Recorder counterparts.

Tr igger: Similar to Add / Remove Recorder, but with reporter objects.

Pre-State: None.

Post-State: Similar to Add / Remove Recorder, but with reporter objects.

Normal Flow and States :

Please reference Add / Remove Recorder.

Use Case(s) : Remove Recorder

Comments: Monitors use the Remove Recorder use case to disassociate a recorder.

Tr igger: A monitor attempts to disassociate a recorder.

Pre-State: None.

Post -State: The recorder is not associated with the monitor.

247

Normal Flow and States :

Use Case(s) : Add / Remove Policy

Comments: The Add / Remove Policy use cases are identical in flow to their respective
Add / Remove Recorder counterparts, except that the entity being modi-
fied is a recorder, a reporter, or other entity that is policy aware. For
example, a policy aware observer may be modified such that it is associated
with a policy, and that policy must be within a unique relationship to the
observer.

Tr igger: Similar to Add / Remove Recorder, but with policy objects.

Pre-State: None.

Post-State: Similar to Add / Remove Recorder, but with policy objects.

Normal Flow and States :

Please reference Add / Remove Recorder.

Use Case(s) : Add / Remove Context

Comments: The Add / Remove Context use cases are identical in flow to their respective
Add / Remove Recorder counterparts, except that the entity being modi-
fied is a policy that is context aware.

Tr igger: Similar to Add / Remove Recorder, but with context objects.

248

Pre-State: None.

Post-State: Similar to Add / Remove Recorder, but with context objects.

Normal Flow and States :

Please reference Add / Remove Recorder.

Event Management Use Case Descriptions

The event management subsystem was defined to satisfy the Proposal’s objectives for

supporting event persistence and information transfer among other subsystems or third

F igure H-5 . Event management use cases.

249

party extensions. The event management subsystem establishes the mechanisms by which

information may be organized within a data store, persisted by the information capture

subsystems, and retrieved by processing components.

Structures are envisioned for the transfer of event information, such as from reporter to

recorder, and the storage of event information, such as a database schema or Java data access

object. Figure H-5 illustrates the event management use cases.

Use Case(s) : Convert Event Formats

Comments: A generic data sharing mechanism must permit the transparent exchange
of information between similar event components. In this manner, third
party extensions may operate on event information without being con-
cerned about the underlying persistence implementations.

Trigger: An event component of one implementation is provided for information
association with a comparable event component of another implementa-
tion. For example, an XML oriented event component is associated with a
JDO oriented event component.

Pre-State: None.

Post-State: The information in the provided component is represented within the
recipient component.

250

Normal Flow and States :

Use Case(s) : Load Event

Comments: Subsystems and third party extensions must be able to load event informa-
tion from the data store.

Trigger: A request is made to obtain event information.

Pre-State: No event information is loaded.

Post-State: Event information in the data store is made available for use in an appro-
priate component.

251

Normal Flow and States :

Use Case(s) : Persist Event

Comments: Event information obtained by the information capture subsystem or
updated by processing third party extensions must be updated in the data
store.

Trigger: A request to persist edits to event information.

Pre-State: None.

Post-State: The event information is represented in the data store.

252

Normal Flow and States :

Use Case(s) : Merge Event Information

Comments: Event information added to the data store must be merged in such a
manner that it is chronologically correct when loaded for processing.

Trigger: Event information is added to the data store.

Pre-State: None.

Post-State: Event information previously stored is properly organized relative to the
newly added information for the purpose of processing.

Normal Flow and States :

Depends on implementation.

Response Engine Use Case Descriptions

The response engine subsystem was defined to satisfy the Proposal’s objectives for support-

ing event processing and environment interaction by third party extensions. The response

engine subsystem establishes the mechanisms by which event information appropriate for a

253

processing component’s domain (e.g., the analysis of failed Web services) may be provided to

registered processors. Structures are envisioned for scheduling event information updates

and the execution of event information processors. Figure H-6 illustrates the response

engine use cases.

F igure H-6. Response engine use cases.

254

Use Case(s) : Load Components

Comments: Third party extensions may be represented as pluggable components that
are loaded for operation by the scheduler.

Tr igger: The scheduler prepares for the operation of processing components.

Pre-State: None.

Post-State: Processing components are available for operation.

Normal Flow and States :

255

Use Case(s) : Load Schedules

Comments: Event information processor and environment manager components may
operate on varying schedulers. A mechanism must be provided for schedul-
ing activities by these components.

Tr igger: Initialization of scheduler.

Pre-State: None.

Post-State: Processing components are executed at appropriate intervals.

Normal Flow and States :

Use Case(s) : Run Scheduler

Comments: The event information processing components are operated by a scheduler.
The scheduler operates iteratively until the occurrence of an event stipulat-
ing that processing should terminate.

Trigger: Execution of scheduling daemon.

Pre-State: Processing components are ready for operation.

Post-State: Processing components have completed operation.

256

Normal Flow and States :

Use Case(s) : Run Component

Comments: Each processing component is operated in a manner that ensures appropri-
ate access to event information and other framework resources. System
interaction is a definition of the implementation. Processed events may be
flagged to prevent the component from re-processing handled information.

Trigger: The processing component’s schedule indicates activation.

Pre-State: The processing component is ready for operation.

Post-State: The processing component has processed available information.

257

Normal Flow and States :

Use Case(s) : Analyze Events

Comments: Processing components are provided with event information for analysis
and updates.

Tr igger: The scheduler has activated the processing component.

Pre-State: The event information for processing has been provided to the component
and the scheduler has activated the component.

Post-State: The provided event information has been processed.

258

Normal Flow and States :

Use Case(s) : Update Events

Comments: Processing components are provided with event information relevant to
the component’s analysis objective. These events should be flagged in some
manner, such as by being associated with metadata, to prevent re-
processing by the same component.

Tr igger: The scheduler has activated the processing component.

Pre-State: The processing component has been provided with the opportunity to
analyze the provided events and respond to the environment.

Post-State: The provided event information has been updated to represent its post-
processing state.

Normal Flow and States :

Depends on the component implementation.

Use Case(s) : Interact with System

Comments: Processing components are provided with the opportunity to interact with
the environment, such as in response to event analysis. In addition to
system or JVM security constraints, policies can be used to enforce process-
ing component behavior.

Tr igger: The scheduler has activated the processing component.

259

Pre-State: The processing component has been provided with the opportunity to
analyze the provided events and respond to the environment.

Post-State: The environment is adjusted according to the processing component’s
instructions.

Normal Flow and States :

Depends on the component implementation

Information Presentation Use Case Descriptions

The information presentation subsystem was defined to satisfy the Proposal’s objectives

for supporting the distribution of raw or processed event information with other subsystems

or third party extensions. The information presentation subsystem establishes the mecha-

F igure H-7. Information presentation use cases.

260

nisms by which raw or processed event information may be provided to registered consum-

ers. Structures are envisioned that permit third party extensions to specify the nature of

event information desired as a static or dynamic perspective. Figure H-7 illustrates the

information presentation use cases.

Use Case(s) : Create Static/Live Perspective

Comments: Perspectives into the event information made available by the event
management subsystem are analogous to the SQL view mechanism
established by databases such as Oracle or Microsoft SQL Server. The
perspectives may be static in that the populating query or calculations are
only performed at the Perspective's initialization or live in that subsequent
queries are performed to refresh the event information. Static perspectives
may be useful for transferring event information to external systems or
static display (e.g., as HTML).

Tr igger: A perspective is requested.

Pre-State: None.

Post-State: A perspective of the appropriate static or live nature is provided with initial
event information sets.

261

Normal Flow and States :

Use Case(s) : Refresh Result Set

Comments: Live perspectives periodically update their event information. Failed
updates should not eliminate a prior valid information set. Consumers
should not be permitted to begin processing in the middle of an update,
and updates should not be permitted during active processing.

Trigger: The perspective is updated.

Pre-State: Consumers are placed in waiting states.

Post-State: The associated information set is updated and consumers are permitted to
access and process the information.

262

Normal Flow and States :

Use Case(s) : Structure Information

Comments: Perspective information may be structured in a form different from that
used by the event management subsystem’s native format. Calculated
information may be part of the set.

Tr igger: The perspective is updated.

Pre-State: None.

Post-State: Information is properly structured for consumption.

263

Normal Flow and States :

Use Case(s) : Filter Information Per Policy

Comments: Perspectives may filter information prior to making the information
available for consumption. For example, the first five digits of a social
security number could be replaced by the x character.

Tr igger: Information is loaded or structured for use in a Perspective.

Pre-State: The information is in its raw form.

Post-State: The information is in a filtered form.

264

Normal Flow and States :

Use Case(s) : Query Event Manager

Comments: Perspectives are populated using query mechanisms established by event
management subsystem implementations. The event information may be
restructured and new information may be calculated before the perspec-
tive’s information set is ready for consumption.

Trigger: The perspective is updated.

Pre-State: None.

Post-State: The associated information set is appropriately structured.

265

Normal Flow and States :

Alternate Flows and States :

266

Appendix I

Glossary

abstract class An incomplete class offering
functionality common to all potential
sub-classes.

aggregation A method for extending the

functionality and state of an object. The
class definition includes an attribute
bearing the desired characteristics, and
the class logic manipulates the attribute
to achieve the desire effects. Also see
composition.

API See Application Programming Inter-

face.

Application Programming Interface A

collection of components or functions
that provide logic within a common
theme for use by client systems.

Architecture. Refers to the structure and

relationships, envisioned or actual, of a
design’s implementation.

black box framework A framework that

attempts to hide most of the library
complexity from the developer. Often
characterized by the use of aggregation
as the primary means of behavior exten-
sion.

ByteCode The compiled form of Java

source code.

class A code template that is used to
create objects. In Java, classes offer full
support for popular object-oriented
development features.

client-side Indicates that the activity in

question occurs on a local workstation
computer, such as that used in a home
or office.

component A general term for a class,

object or closely related collection of
either.

composition A strong form of aggregation

in which the included attribute requires
a value to be supplied in a valid form
before the object can be successfully
created.

dependency A component requirement of

the project or an artifact required by the
project. Also see transitive- and explicit
dependency.

design pattern A codification of expert

architecture knowledge for reuse by
software designers. Pioneered by
Gamma et al. in the early 1990s, soft-
ware engineering design patterns are
loosely based on the concepts developed
for civil architecture.

267

Enterprise Generally refers to software
applications or systems intended for
commercial and industrial use, typically
over a network. Networks are typically
involved due to remote clients. Clients
and servers are often comprised of
multiple subsystems of varying type and
scope.

event (a) An occurrence of note. (b) An

object representing a logical occurrence
of note.

framework An architecture intended to

organize and control the execution of a
specific domain of tasks. Also see Black
Box and White Box.

functional specification A specification

statement that describes a process, task
or behavior that a completed system
will feature.

garbage collection The process of releasing

memory and other resources consumed
by an object that is no longer referenced
by system logic.

hot spot A component or method inter-

face that allows functionality to be
added to the library.

inheritance A method for reusing func-

tionality defined in a class to model a
more accurate version of the concept
represented by the class.

interface (a) A special form of class that is

completely abstract in nature. Method
declarations are given but functionality
is not defined (child classes inherit from
an interface and define the appropriate
functionality for each method). Often
used to model a role or viewpoint that
might be performed by part of a com-

ponent library. (b) A term for the a
specific method identified by its pa-
rameter types.

J2EE See Java 2 Enterprise Edition.

J2SE See Java 2 Standard Edition.

Java An object-oriented programming

language invented by Sun. Applications
written in pure Java have the ability to
be run on most platforms supporting a
standard JVM.

Java 2 Enterprise Edition An API that

provides functionality specialized for
activities commonly performed in En-
terprise systems implementing using
Java.

Java 2 Standard Edition An API that

provides functionality common to many
systems implemented using Java.

Java Runtime Environment The collection

of applications and libraries that support
the execution of Java-based systems.

Java Virtual Machine The application in

the JRE that mimics a hardware system
in which Java ByteCode can be run.

JRE See Java Runtime Environment.

JVM See Java Virtual Machine.

Mac OS X An advanced operating system

based on BSD UNIX published by Apple
Computer.

MDI See Multiple Document Interface.

Multiple Document Interface A window-

ing system in which document windows
are displayed inside of a master applica-
tion window. See also SDI.

268

non-functional specification A specifica-

tion statement that describes everything
else not described by a functional speci-
fication. Often intangible system bene-
fits will be described, including stability
and performance.

explicit dependency A dependency

introduced to the project through a
declaration within the project's build
file or project object model.

object A specific instance of a class.

POM See project object model.

Project object model A model of a pro-

ject's build and configuration require-
ments. Maven based projects declare a
project object model within an XML
based pom.xml file.

role Represents a precise range of behav-

ior that a component will exhibit.

scenario A model involving a possible flow

of logic and behavior within a system.

SDI See Single Document Interface.

SDK See Software Development Kit.

Service Oriented Architecture An organi-

zation of system functionality to ac-
commodate a standard and modular
manner of processing requests. SOAs are
task specific.

Single Document Interface A windowing

system in which all application windows
are presented to the user outside of any
container window. See also MDI.

SOA See Service Oriented Architecture.

Software Development Kit A collection of

APIs for a common development plat-
form. Associated tools, utilities and
documentation may also be included.

static class diagram A type of UML dia-
gram that models classes and their
relationships within a given system.

Swing The J2SE framework that handles

the development of graphical user inter-
faces.

SWT A component library developed by

Eclipse that facilitates the development
of graphical user interfaces using native
operating system APIs.

text specification Describes a scenario

associated with a use case diagram.

transitive dependency A dependency

implicitly introduced to the project by a
component relationship required by an
explicit project dependency. Transitive
dependencies are not declared by the
project, but can often be controlled by
build tools such as Maven to ensure
uniform dependency compatibility and
version resolution within the classpath.

UML See the Unified Modeling Language.

Unified Modeling Language An object-

oriented modeling language that illus-
trates and describes the functionality,
behavior and state of a system. Several
syntaxes are used to specialize commu-
nication focusing on either static enti-
ties (such as classes and their relation-
ships) or dynamic entities (such as
method calls between objects).

Unit Test A test of high granularity. In

object-oriented systems, a unit test

269

would typically focus on a single
method for an object. Unit tests are an
integral part of agile development
methodology. JUnit offers a unit test
framework and runtime system.

use case diagram A UML diagram that

illustrates general domains of function-
ality or behavior that a system embod-
ies.

viewpoint A perspective of system behav-

ior specific to a user domain. For exam-
ple, a casual driver and a professional
mechanic are interested in different
aspects of a car engine.

Web service A form of SOA intended for

implementations of business services.
Hallmarks include SOAP based commu-
nications and Application server hosts.

white box framework A framework

strategy that requires developers to
understand the library architecture in
detail before the components can be
properly used. Often characterized by a
strong use of inheritance as the primary
means of behavior extension.

Windows An operating system family

published by Microsoft. Enterprise
environments would typically host
services on the NT (network technology)
family of Windows, such as NT 4, 2000,
and XP. Clients might use the NT family,
but could also involve the 9x/ME/XP
Home series if only a web browser inter-
face or other light client were required.

WS See Web service.

270

Reference List

AIS. (2005, June 5). Design research in information systems. Retrieved July 13, 2005, from

http://www.isworld.org/Researchdesign/drisISworld.htm

Alur, D., Crupi, J., & Malks, D. (2003). Core J2EE patterns: Best practices and design strategies.
Palo Alto, CA: Sun Microsystems Press.

Anselmi, J., Ardagna, D., & Cremonesi, P. (2007). A QoS-based selection approach of auto-
nomic grid services. Paper presented at the 2007 Workshop on Service-Oriented
Computing Performance: Aspects, Issues, and Approaches, New York.

Apache. (2007, February 14). Hadoop map/reduce. Retrieved July 8, 2008, from http://wiki.
apache.org/hadoop/ProjectDescription

Apple Computer. (2003). The Foundation Framework. Retrieved April 24, 2003, from
http://developer.apple.com/techpubs/macosx/Cocoa/Reference/Foundation/Java/
Intro/IntroFoundation.html#//apple_ref/doc/uid/20000688

Apple Computer. (2006). Mac OS X technology overview. Cupertino, CA.

Apple Computer. (2007). Windows compatibility and Mac OS X (Technical Brief). Cupertino,
CA.

Apple Computer. (2008). Java. Developer Connection. Retrieved May 19, 2008, from
http://developer.apple.com/java/

Armitage, J. (2004). Are agile methods good for design? Interactions, 11(1), 14-23.

Arnold, K., Gosling, J., & Holmes, D. (2005). The Java programming language (4th ed.). Upper
Saddle River, NJ: Addison-Wesley.

Arsanjani, A., Hailpern, B., Martin, J., & Tarr, P. (2003). Web Services Promises and Compro-
mises. Queue, 1(1), 48-58.

Arthur, J., & Azadegan, S. (2005). Spring framework for rapid open source J2EE Web applica-
tion development: A case study. Paper presented at the 6th International Conference
on Software Engineering, Artificial Intelligence, Network and Parallel/Distributed
Computing and 1st ACIS International Workshop on Self-Assembling Wireless Net-
works, Washington DC.

271

Astels, D. R. (2003). Test-driven development: A practical guide. Upper Saddle River, NJ:
Prentice Hall.

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., & Zhou, Y. (2007). Evaluating static
analysis defect warnings on production software. Paper presented at the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, San Diego, CA.

Babaoğlu, Ö. (2005). Self-star properties in complex information systems: Concepts and
practical foundations. New York: Springer.

Banes, J. (2004). Building the ultimate logging solution: …and solving common interoperabil-
ity issues. Java Developer's Journal, 9(5), 30-32.

Bar, M., & Fogel, K. (2003). Open source development with CVS (3rd ed.). Scottsdale, AZ:
Paraglyph Press.

Bare Bones. (2007). BBEdit. Retrieved June 12, 2008, from http://www.barebones.com/
products/bbedit/

Barra, M., Cillo, T., Santis, A. D., Petrillo, U. F., Negro, A., & Scarano, V. (2002). Multimodel
Monitoring of Web Servers. Multimedia, 9(3), 32-41.

Bauer, C., & King, G. (2006). Java persistence with Hibernate. Greenwich, CT: Manning.

Be. (1997). Be developer's guide. Cambridge: O'Reilly.

Berczuk, S. (2003). Pragmatic software configuration management. IEEE Software, 20(2), 15-17.

Berczuk, S., & Appleton, B. (2003). Software configuration management patterms: Effective
teamwork, practical integration. Boston: Addison-Wesley.

Berner, S., Weber, R., & Keller, R. K. (2007). Enhancing software testing by judicious use of
code coverage information. Paper presented at the 29th International Conference on
Software Engineering, Washington DC.

Bhat, T., & Nagappan, N. (2006, September 21-22). Evaluating the efficacy of test-driven
development: Industrial case studies. Paper presented at the 5th ACM-IEEE Interna-
tional Symposium on Empical Software Engineering, Rio de Janeiro, Brazil.

Biljon, J. V., Kotze, P., Renaud, K., McGee, M., & Seffah, A. (2004). The use of anti-patterns in
human-computer interaction: Wise or ill-advised? Paper presented at the The 2004
Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists on IT Research in Developing Countries, South Africa.

Boekhoudt, C. (2003). The big bang theory of IDEs. Queue, 1(7), 74-82.

272

Bowyer, J., & Hughes, J. (2006, February 19-23). Assessing undergraduate experience of
continuous integration and test-driven development. Paper presented at the 34th
SIGCSE Technical Symposium Computer Science Education, Reno, NV.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., et al. (2000).
Simple Object Access Protocol (SOAP) 1.1. Retrieved February 26, 2005, from
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2004, February 4).
Extensible markup language (XML) 1.0. 3rd ed. Retrieved February 28, 2005, from
http://www.w3.org/TR/REC-xml/

Brett, T. C. (2004). Quality of service in e-commerce: A literature review of transaction and
environment concerns. Unpublished manuscript.

Brett, T. C. (2005). Exploration of a query based engine to facilitate error recovery in a J2EE
environment. Unpublished manuscript.

Business Objects. (2008). Crystal Reports 2008. Retrieved July 7, 2008, from http://www.
businessobjects.com/product/catalog/crystalreports/

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., & Visaggio, C. A. (2006, September 21-22).
Evaluating advantages of test driven development: A controlled experiment with
professionals. Paper presented at the 5th ACM-IEEE International Symposium on
Empirical Software Engineering, Rio de Janeiro, Brazil.

Casey, J., Massol, V., Porter, B., Sanchez, C., & Zyl, J. v. (2006). Better builds with Maven: The
how-to guide for Maven 2.0 (1.0.2 ed.). Marina del Rey, CA: Mergere.

Cavaness, C. (2004). Programming Jakarta Struts (2nd ed.). Sebastopol, CA: O'Reilly.

Cavaness, C. (2006). Quartz job scheduling framework: Building open source enterprise
applications. Upper Saddle River, NJ: Prentice Hall.

Chandra, K., Chandra, S. S., & Chandra, S. S. (2003). A comparison of VBScript, Javascript, and
Jscript. Journal of Computing Sciences in Colleges, 19(1), 323-335.

Chavda, K. F. (2004). Anatomy of a Web Service. Journal of Computing Sciences in Colleges,
19(3), 124-134.

CodeHAUS. (2007, August 20). Maven 2 FindBugs Plugin - Introduction. Retrieved August 23,
2007, from http://mojo.codehaus.org/findbugs-maven-plugin/index.html

Cognos. (2008). IBM Cognos 8 business intelligence. Retrieved July 7, 2008, from
http://www.cognos.com/products/cognos8businessintelligence/reporting.html

CollabNet. (2006). Subclipse. Retrieved July 24, 2007, from http://subclipse.tigris.org

273

CollabNet. (2007, January 18). Changes. Subversion Releases Retrieved May 17, 2007, from
http://svn.collab.net/repos/svn/tags/1.4.3/CHANGES

Collins-Sussman, B., Fitzpatrick, B. W., & Pilato, C. M. (2004). Version control with Subver-
sion. Sebastepol, CA: O'Reilly.

Compuware. (2005). DevPartner Studio Professional Edition. Retrieved April 3, 2005, from
http://www.compuware.com/products/devpartner/studio.htm

Conboy, K., & Fitzgerald, B. (2004). Toward a conceptual framework of agile methods: A
study of agility in different disciplines. Paper presented at the 2004 ACM Workshop
on Interdisciplinary Software Engineering Research, Newport Beach, CA.

Cortes, M., Fontoura, M., & Lucena, C. (2003). Using refactoring and unification rules to assist
framework evolution. ACM SIGSOFT Software Engineering Notes, 28(6), 1-5.

Cruz, S. M. S. d., Campos, L. M., Campos, M. L. M., & Pires, P. F. (2003). A data mart approach
for monitoring Web services usage and evaluating quality of services. Paper pre-
sented at the XVIII Brazilian Symposium of Data Bases.

Cruz, S. M. S. d., Campos, M. L. M., Pires, P. F., & Campos, L. M. (2004, July 6-9). Monitoring
e-business Web services usage through a log based architecture. Paper presented at
the IEEE International Conference on Web Services (ICWS'04), San Diego, USA.

D'Souza, D. F., & Wills, A. C. (1998). Objects, components, and frameworks with UML: The
Catalysis™ approach. New York: Addison-Wesley.

Dashofy, E. M., Hoek, A. v. d., & Taylor, R. N. (2002). Towards architecture-based self-healing
systems. Paper presented at the First workshop on Self-Healing Systems, Charleston,
SC.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1), 107-113.

Dutta, S. (2004). Building manageability. Java Developer's Journal, 9(11), 40-44.

Eclipse Foundation. (2008). About the Eclipse Foundation. Retrieved June 12, 2008, from
http://www.eclipse.org/org/

Edwards, S. H. (2004). Using software testing to move students from trial-and-error to
reflection-in-action. Paper presented at the 35th SIGCSE Technical Symposium on
Computer Science Education, Norfolk, VA.

Enes, P. (2007). Build and release management: Supporting development of accelerator
control software at CERN. Unpublished Master of Science Thesis, Norwegian Univer-
sity of Science and Technology.

274

Estublier, J., Leblang, D., Hoek, A. v. d., Conradi, R., Clemm, G., Tichy, W., et al. (2005).
Impact of software engineering research on the practice of software configuration
management. ACM Transactions on Software Engineering and Methodology, 14(4),
340-383.

Farrell, T. (2004). Service-oriented architecture. Java Developer's Journal, 9(4), 12-14.

Fayad, M. E., & Schmidt, D. C. (1997). Object-oriented application frameworks. Communica-
tions of the ACM, 40(10), 32-38.

Fayerman, P. (2008, April 23). New BC health law could lead to privacy abuse. The Vancouver
Sun Retrieved July 8, 2008, from http://www.canada.com/vancouversun/news/
story.html?id=b16e1348-01a4-41c7-a199-a9d5819ffc72&k=23212

Fordin, S. (2004, October). Java architecture for XML binding. Retrieved September 25, 2005,
from http://java.sun.com/webservices/jaxb/about.html

Forward, A., & Lethbridge, T. C. (2002). The relevance of software documentation, tools and
technologies: A survey. Paper presented at the ACM Symposium on Document Engi-
neering, McLean, VA.

Foster, J. S., Hicks, M. W., & Pugh, W. (2007). Improving software quality with static analysis.
Paper presented at the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, San Diego, CA.

Fowler, M. (2004, January 23). Inversion of control containers and the dependency injection
pattern. Retrieved August 7, 2007, from http://www.martinfowler.com/articles/
injection.html

Fowler, M. (2006, May 1). Continuous integration. Retrieved July 27, 2007, from
http://martinfowler.com/articles/continuousIntegration.html

Freeman, S., Mackinnon, T., Pryce, N., & Walnes, J. (2004). Mock roles, objects. Paper pre-
sented at the 19th annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, Vancouver, Canada.

Gaffney, C., Trefftz, C., & Jorgensen, P. (2004). Tools for coverage testing: Necessary but not
sufficient. Journal of Computing Sciences in Colleges, 20(1), 27-33.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of reusable
object-oriented software. Menlo Park, CA: Addison-Wesley.

Garlan, D., & Schmerl, B. (2002). Model-based adaptation for self-healing systems. Paper
presented at the First workshop on Self-Healing Systems, Charleston, SC.

Garsombke, F. (2003). Taking continuous integration to the next level: Continuous what?
Java Developer's Journal, 8(4), 30-34.

275

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Lea, D., & Holmes, D. (2006). Java concurrency in
practice. Boston: Addison-Wesley Professional.

Gombotz, R., & Dustdar, S. (2005). On Web service workflow mining. Paper presented at the
Third International Conference on Business Process Management, Nancy, France.

Gospodnetic, O., & Hatcher, E. (2004). Lucene in action. Greenwich, CT: Manning Publica-
tions.

Graham, S., Davis, D., Simeonov, S., Daniels, G., Brittenham, P., Nakamura, Y., et al. (2005).
Building Web services with Java (2nd ed.). Indianapolis, IN: Sams Publishing.

Greenfield, J., & Short, K. (2003). Software factories: Assembling applications with patterns,
models, frameworks and tools. Paper presented at the Conference on Object Ori-
ented Programming Systems Languages and Applications, Anaheim, CA.

Gulcu, C. (2002). The complete Log4J manual: QOS.ch.

Gulcu, C. (2005, May 5). Logging-log4j Wiki. Retrieved August 10, 2005, from http://wiki.
apache.org/logging-log4j/

Gupta, S. (2003). Logging in Java with the JDK 1.4 Logging API and Apache log4j. New York:
Springer-Verlag.

Gurp, J. v., & Bosch, J. (2001). Design, implementation and evolution of object oriented
frameworks: Concepts and guidelines. Software—Practice and Experience, 31(3), 277-
300.

Haftmann, F., Kossmann, D., & Lo, E. (2007). A framework for efficient regression tests on
database applications. The International Journal on Very Large Data Bases, 16(1), 145-
164.

Harold, E. R. (2005, May 3). Measure test coverage with Cobertura. developerWorks. Re-
trieved August 11, 2007, from http://www.ibm.com/developerworks/java/library/
j-cobertura/

Hatcher, E., & Loughran, S. (2003). Java development with Ant. Greenwich, CT: Manning.

Hazzan, O., & Dubinsky, Y. (2007). Why software engineering programs should teach agile
software development. ACM SIGSOFT Software Engineering Notes, 32(2), 1-3.

Helsinger, A., Lazarus, R., Wright, W., & Zinky, J. (2003, July 14-18). Tools and Techniques for
Performance Measurement of Large Distributed Multiagent Systems. Paper pre-
sented at the AAMAS'03, Melbourne.

276

Herborth, C. (2006, July 11). How to use Subversion with Eclipse. developerWorks Retrieved
July 20, 2007, from http://www-128.ibm.com/developerworks/opensource/library/
os-ecl-subversion/

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems
research. MIS Quarterly, 28(1), 75-105.

Highsmith, J. (2002). Agile software development ecosystems. New York: Addison-Wesley
Professional.

Holmes, A., & Kellogg, M. (2006, July 23-28). Automating functional tests using Selenium.
Paper presented at the AGILE 2006, Minneapolis, MN.

Hovermeyer, D. H., & Pugh, W. W. (2007, May 31). FindBugs™ manual. Retrieved August 23,
2007, from http://findbugs.sourceforge.net/manual/index.html

HSQLDB Development Group. (2008, June 2). HSQLDB - 100% Java database. Retrieved June
12, 2008, from http://hsqldb.org

Hu, J., & Zhong, N. (2005). Clickstream log acquisition with web farming. Paper presented at
the International Conference on Web Intelligence, France.

Huang, T.-Y., Chou, P.-C., Tsai, C.-H., & Chen, H.-A. (2007). Automated fault localization with
statistically suspicious program states. Paper presented at the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools, San Diego, CA.

Hunt, A., & Thomas, D. (2006). Pragmatic unit testing in Java with JUnit. Raleigh, NC: The
Pragmatic Programmers.

Iltchenko, A. (2006). Moving to SOA in J2EE 1.4: How to take an existing J2EE 1.3 bean and
convert it into a Web service endpoint with almost no changes to its business inter-
face. Java Developer's Journal, 11(2), 12-22.

JBoss. (2008). JBoss enterprise application platform. Retrieved June 9, 2008, from
http://www.jboss.com/products/platforms/application

JPOX. (2008, July 9). JPOX: Java persistent objects. Retrieved July 9, 2008, from http://www.
jpox.org/docs/

Kotula, J. (1998). Using patterns to create component documentation. IEEE Software, 15(2),
84-92.

Kramer, D. API documentation from source code comments: A case study of JavaDoc. Paper
presented at the 17th Annual International Conference on Computer Documenta-
tion, New Orleans, LA.

Lafore, R. (2002). Object-oriented programming in C++ (4th ed.). Indianapolis, IN: SAMS.

277

Lai, R., Steel, C., & Nagappan, R. (2005). Core security patterns: Best practices and strategies
for J2EE™, Web services, and identity management. Upper Saddle River, NJ: Prentice
Hall.

Landre, E., Wesenberg, H., & Olmheim, J. (2007). Agile enterprise software development
using domain-driven design and test first. Paper presented at the Conference on Ob-
ject-Oriented Programming Systems Languages and Applications, Montreal, Canada.

Larson, E., & Stephens, B. (2000). Administrating Web servers, security, & maintenance.
Upper Saddle River, NJ: Prentice Hall.

Lee, J., Gunter, D., Stoufer, M., & Tierney, B. (2002). Monitoring data archives for grid envi-
ronments. Paper presented at the Conference on High Performance Networking and
Computing, Baltimore.

Louridas, P. (2005, July). JUnit: Unit testing and coding in tandem. IEEE Software, 22(4), 12-15.

Louridas, P., & Loucopoulos, P. (2000). A generic model for reflective design. Transactions on
Software Engineering Methodology, 9(2), 199-237.

MacWorld. (2005a, March 18). BBEdit 8.0.3. Retrieved June 12, 2008, from http://www.
macworld.com/article/43661/2005/03/bbedit803.html

MacWorld. (2005b, December 5). OmniGraffle Professional 4.0. Retrieved June 12, 2008, from
http://www.macworld.com/article/48248/2005/12/omnigrafflepro4.html

MacWorld. (2006, August 7). WWDC: Microsoft kills Virtual PC for Mac. Retrieved June 12,
2008, from http://www.macworld.com/article/52243/2006/08/vpc.html

Mason, M. (2006). Pragmatic version control using Subversion (2nd ed.). Raleigh, NC: The
Pragmatic Bookshelf.

Maximilien, E. M., & Williams, L. (2003). Assessing test-driven development at IBM. Paper
presented at the 25th International Conference on Software Engineering, Portland,
OR.

McGregor, C., & Schiefer, J. (2003). A framework for analyzing and measuring business
performance with web services. Paper presented at the Fifth International Confer-
ence on E-Commerce, Pittsburgh, PA.

McGregor, L. (2003). Managing J2EE systems with JMX and JUnit. Java Developer's Journal,
8(11), 12-18.

McManus, E. (2002). JSR 3: Java Management Extensions (JMX) Specification. Retrieved
February 16, 2005, from http://www.jcp.org/en/jsr/detail?id=3

278

McManus, E., & Vienot, S. (2003). JSR 160: Java Management Extensions (JMX) remote API 1.0.
Retrieved February 16, 2005, from http://www.jcp.org/en/jsr/detail?id=160

Meadow, C. T., Boyce, B. R., & Kraft, D. H. (2000). Text information retrieval systems (2nd
ed.). San Diego, CA: Academic Press.

Mergere. (2007). Maven IDE plugins (1.2 ed.). Marina del Rey, CA: Mergere.

Microsoft. (2003a). About the Microsoft Foundation Classes. Retrieved January 10, 2003, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmfc98/html/
_mfc_about_the_microsoft_foundation_classes.asp

Microsoft. (2003b). Microsoft Foundation Class Library Version 6.0. Retrieved January 20,
2003, from http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vcmfc98/html/_mfc_hierarchy_chart.asp

Microsoft. (2004, July 14). How to use compressed (zipped) folders in Windows XP. Help and
Support Retrieved July 19, 2007, from http://support.microsoft.com/kb/306531

Milanovic, N., & Malek, M. (2004). Current solutions for Web service composition. Internet
Computing, 8(6), 51-59.

Monarchi, D. E., & Puhr, G. I. (1992). A research typology for object-oriented analysis and
design. Communications of the ACM, 35(9), 35-47.

Monson-Haefel, R. (2004). Enterprise JavaBeans™ (4th ed.). Sebastopol, CA: O'Reilly.

Oak, H. (2004). Pro Jakarta commons. Berkeley, CA: Apress.

Olan, M. (2003). Unit testing: Test early, test often. Journal of Computing Sciences in Col-
leges, 19(2), 319-328.

OMG. (2001). OMG unified modeling language specification. Needham, MA: OMG.

OMG. (2006, January 5). Unified modeling language (UML) version 2.0. Retrieved February 11,
2006, from http://www.omg.org/technology/documents/formal/uml.htm

Pepperdine, K. (2003). Customizing Ant. Java Developer's Journal, 8(9), 36-40.

PKWare. (2007, July 19, 2007). ZIP file format specification. Retrieved September 10, 2008
from http://www.pkware.com/documents/casestudies/APPNOTE.TXT

Rainsberger, J. B., & Stirling, S. (2005). JUnit recipies. Greenwich, CT: Manning.

Reese, G. (2000). Database programming with JDBC and Java (2nd ed.). Sebastapol, CA:
O'Reilly.

279

Richter, C. (1999). Designing flexible object-oriented systems with UML. Indianapolis, IN:
Macmillan Technical Publishing.

Roberts, D., & Johnson, R. (n.d.). Evolving Frameworks. Retrieved November 15, 2002, from
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

Rosenstein, M. (2000, October 17-20). What is actually taking place on Web sites: e-
Commerce lessons from Web server logs. Paper presented at the EC'00, Minneapolis.

Schach, S. R. (2002). Object-oriented and classical software engineering (5th ed.). New York:
McGraw-Hill.

Schmidt, D. C., & Buschmann, F. (2003, May 3-10). Patterns, frameworks, and middleware:
Their synergistic relationships. Paper presented at the 25th International Conference
on Software Engineering.

Schmidt, D. C., Gokhale, A., & Natarajan, B. (2004). Leveraging application frameworks.
Queue, 2(5), 66-75.

Schwalbe, K. (2006). Information technology project management (4th ed.). Boston: Thom-
son Course Technology.

Senthil, R., Kushwaha, D. S., & Misra, A. K. (2007). An improved component model for
component based software engineering. ACM SIGSOFT Software Engineering Notes,
32(4), 1-9.

Shalloway, A., & Trott, J. R. (2001). Design patterns explained: A new perspective on object-
oriented design. Upper Saddle River, NJ: Pearson Education.

Sherif, K., & Vinze, A. (1999). A qualitative model for barriers to software reuse adoption.
Paper presented at the 20th International Conference on Information Systems, Char-
lotte, NC.

Simpson, B., & Toussi, F. (2005, May 29). HSQLDB user guide. Retrieved August 23, 2007, from
http://hsqldb.sourceforge.net/web/hsqlDocsFrame.html

Singh, I., Brydon, S., Murray, G., Ramachandran, V., Violleau, T., & Stearns, B. (2004). Design-
ing Web Services with the J2EE™ 1.4 platform: JAX-RPC, SOAP, and XML technolo-
gies. Santa Clara, CA: Addison-Wesley.

Singhal, A. (2001). Modern information retrieval: A brief overview. Bulletin of the IEEE
Computer Society Technical Committee on data Engineering, 1-9.

Spiliopoulou, M. (2000). Web usage mining for web site evaluation. Communications of the
ACM, 43(8), 127-134.

280

Staff, D., & Ernst, M. D. (2004a). An experimental evaluation of continuous testing during
development. Paper presented at the ISSTA '04, Boston.

Staff, D., & Ernst, M. D. (2004b). Mock object creation for test factoring. Paper presented at
the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, Washington, DC.

Stanek, W. R. (2002). XML pocket consultant. Redmond, WA: Microsoft Press.

Stevens, P., & Pooley, R. (2000). Using UML: Software engineering with objects and compo-
nents. Harlow, England: Pearson Education Limited.

Sturm, T. (2002, November 8). UML Modeling Integrated with Sun ONE Studio. Retrieved
May 2, 2003, from http://forte.sun.com/ffj/articles/poseidon.html

Sun Microsystems. (1999). Java Management Extensions White Paper: Dynamic Management
for the Service Age. Palo Alto, CA: Sun Microsystems.

Sun Microsystems. (2001, Nov 26). Java logging overview. Retrieved February 28, 2005, from
http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

Sun Microsystems. (2003). JAR file specification. Retrieved July 24, 2007, from
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

Sun Microsystems. (2004). Package java.util.logging. Java 2 Platform Standard Ed. 5.0 Re-
trieved February 28, 2005, from http://java.sun.com/j2se/1.5.0/docs/api/java/util/
logging/package-summary.html

Sun Microsystems. (2005). adventurebuilder: Project home. Retrieved April 25, 2006, from
https://adventurebuilder.dev.java.net

Sun Microsystems. (2006). BluePrints. Retrieved April 25, 2006, from http://java.sun.com/
reference/blueprints/

Sun Microsystems. (2008a). GlassFish - Open source application server. Retrieved June 9,
2008, from https://glassfish.dev.java.net/

Sun Microsystems. (2008b). Java DB at a glance. Retrieved June 12, 2008, from
http://developers.sun.com/javadb/

Sun Microsystems. (2008c). Java Platform, Enterprise Edition (EE): Compatibility. Sun Devel-
oper Network (SDN) Retrieved May 19, 2008, from http://java.sun.com/j2ee/
compatibility_1.4.html

Tague, J., Salminen, A., & McClellen, C. (1991). Complete formal model for information
retrieval systems. Paper presented at the Proceedings of the 14th Annual Interna-

281

tional ACM SIGIR Conference on Research and Development in Information Re-
trieval, Chicago.

Telles, M. (2001). C# black book. Sebastopol, CA: Paraglyph Press.

Telles, M., & Hsieh, Y. (2001). The science of debugging. Scottsdale, AZ: The Coriolis Group.

Thai, T., & Lam, H. Q. (2001). .NET framework essentials. Sebastopol, CA: O'Reilly.

TheServerSide.com. (2005, March 27). Application server matrix. Retrieved May 19, 2008,
from http://www.theserverside.com/tt/reviews/matrix.tss

Tigris.org. (2007, January 18). Subversion 1.4.3 - Changes. Retrieved June 9, 2008, from
http://svn.collab.net/repos/svn/tags/1.4.3/CHANGES

Tong, H., & Zhang, S. (2006). A fuzzy multi-attribute decision making algorithm for Web
services selection based on QoS. Paper presented at the 2006 IEEE Asia-Pacific Con-
ference on Services Computing, GuangZhou, China.

Toussi, F. (2008). Chapter 9. SQL syntax. Retrieved June 12, 2008, from http://hsqldb.org/
doc/guide/ch09.html

Turner, S. (2004). Analog: The most popular logfile analyser in the world. Retrieved February
15, 2005, from http://www.analog.cx/

Tyagi, S., McCammon, K., Vorburger, M., & Bobzin, H. (2004). Core Java data objects. Palo
Alto, CA: Prentice Hall PTR.

Valetto, G., & Kaiser, G. (2003). Using Process Technology to Control and Coordinate Software
Adaptation. Paper presented at the 25th International Conference on Software Engi-
neering, Portland, OR.

VMware. (2008). Virtualization basics. Retrieved June 12, 2008, from http://www.vmware.
com/virtualization/

Walls, C., & Breidenbach, R. (2007). Spring in action (2nd ed.). Greenwich, CT: Manning
Publications.

Wang, Q. (2005). Towards a rule model for self-adaptive software. ACM SIGSOFT Software
Engineering Notes, 30(1), 8-12.

Whitten, J. L., Bentley, L. D., & Dittman, K. C. (2001). Systems analysis and design methods
(5th ed.). New York: McGraw-Hill Higher Education.

Wick, M., Stevenson, D., & Wagner, P. (2005). Using testing and JUnit across the curriculum.
Paper presented at the 36th SIGCSE Technical Symposium on Computer Science
Education, St. Louis, MO.

282

Williams, K., & Daniel, B. (2004). An introduction to service data objects: Integrating rela-
tional data into Web applications. Java Developer's Journal, 9(10), 10-16.

Wysocki, R. K., Beck Jr., R., & Crane, D. B. (2000). Effective project management (2nd ed.).
New York: John Wiley and Sons.

Yang, Q., Li, J. J., & Weiss, D. (2006). A survey of coverage based testing tools. Paper presented
at the 2006 International Workshop on Automation of Software Test, New York.

yWorks. (2008). yDoc. Retrieved June 12, 2008, from http://www.yworks.com/en/
products_ydoc.html

Zimmerman, O., Krogdahl, P., & Gee, C. (2004, June 2). Elements of service-oriented analysis
and design. developerWorks: SOA and Web services Retrieved February 17, 2006,
from http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

Zyl, J. V. (2006). Maven: A different way of looking at software development. Java Developer's
Journal, 11(5), 42-46.

	Nova Southeastern University
	NSUWorks
	2008

	An Event Monitor and Response Framework Based on the WSLogA Architecture
	Todd Christopher Brett
	Share Feedback About This Item
	NSUWorks Citation

	An Event Monitor and Response Framework Based on the WSLogA Architecture

