
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2000

Complete Randomized Cutting Plane Algorithms
for Propositional Satisfiability
Stephen Lee Hansen
Nova Southeastern University, stephenhansenphd@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Stephen Lee Hansen. 2000. Complete Randomized Cutting Plane Algorithms for Propositional Satisfiability. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (565)
http://nsuworks.nova.edu/gscis_etd/565.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NSU Works

https://core.ac.uk/display/51090107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu


Complete Randomized
Cutting Plane Algorithms for
Propositional Satisfiability

by

Stephen Lee Hansen

A Dissertation Report
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

School of Computer and Information Sciences
Nova Southeastern University

2000



Copyright c© 2000 by Stephen Lee Hansen.
All rights reserved.



We hereby certify that this dissertation report, submitted by Stephen Lee Hansen,
conforms to acceptable standards and is fully adequate in scope and quality to fulfill
the disseratation requirements for the degree of Doctor of Philosophy.

Lee J. Leitner, Ph.D.
Chairperson of Dissertation Committee

Date

S. Rollins Guild, Ph.D.
Dissertation Committee Member

Date

Sumitra Mukherjee, Ph.D.
Dissertation Committee Member

Date

Approved:

Edward Lieblein, Ph.D.
Dean, School of Computer and Information Sciences

Date

School of Computer and Information Sciences
Nova Southeastern University

2000



Certification Statement

I hereby certify that this dissertation constitutes my own product and that the words
or ideas of others, where used, are properly credited according to accepted standards
for professional publications.

Signed:

Stephen Lee Hansen Date



v

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Complete Randomized Cutting Plane Algorithms

for Propositional Satisfiability

by
Stephen Lee Hansen

August 7, 2000

The propositional satisfiability problem (SAT) is a fundamental problem in com-
puter science and combinatorial optimization. A considerable number of prior re-
searchers have investigated SAT, and much is already known concerning limitations
of known algorithms for SAT. In particular, some necessary conditions are known,
such that any algorithm not meeting those conditions cannot be efficient. This pa-
per reports a research to develop and test a new algorithm that meets the currently
known necessary conditions.

In chapter three, we give a new characterization of the convex integer hull of
SAT, and two new algorithms for finding strong cutting planes. We also show the
importance of choosing which vertex to cut, and present heuristics to find a vertex
that allows a strong cutting plane. In chapter four, we describe an experiment to
implement a SAT solving algorithm using the new algorithms and heuristics, and to
examine their effectiveness on a set of problems. In chapter five, we describe the
implementation of the algorithms, and present computational results. For an input
SAT problem, the output of the implemented program provides either a witness to
the satisfiability or a complete cutting plane proof of unsatisfiability.

The description, implementation, and testing of these algorithms yeilds both em-
pirical data to characterize the performance of the new algorithms, and additional
insight to further advance the theory. We conclude from the computational study
that cutting plane algorithms are efficient for the solution of a large class of SAT
problems.



Acknowledgements

I could not have pursued this research without the loving and enduring support
of my domestic partner, Dennis Adams. Dennis both gave spiritual and emotional
support, and took care of nearly all of the domestic chores for more than five years.

I would like to thank Glenn Weber of Christopher Newport University. Glenn
introduced me to the SAT problem more than twenty years ago, showed me some
of the deep connections between mathematical logic and discrete optimization, and
inspired my early interest in the field.

I would like to thank my dissertation advisor, Lee Leitner, for his encouragement
and support during the research, and for helping me to maintain a sense of balance. I
would also like to thank my committee members, Rollie Guild and Sumitra Mukherjee
for their careful reading and suggestions. Rollie suggested the approach of considering
necessary conditions during a pre-class conversation in 1996.

Rollie Guild was unable to sign the final copy of this dissertation report due to a
sudden medical emergency. S. Rollins Guild, Ph.D., passed from this earth on Friday,
July 29, 2000. We shall remember him fondly.

In Memorium Rollie Guild.



Contents

Abstract iv

List of Tables xii

List of Figures xiii

1 Introduction 1
1.1 Relevance And Significance . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Barriers and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Plan and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Cutting Plane Proofs . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Cutting Plane Algorithms . . . . . . . . . . . . . . . . . . . . 8

1.4 Statement of Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Review of the Literature 13
2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Propositional Satisfiability Problem . . . . . . . . . . . . . . . . 18
2.3 Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Algebraic Rewriting . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Randomized Algorithms . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Cutting Plane Algorithms . . . . . . . . . . . . . . . . . . . . 36

2.4 Reduction from SAT to Integer Program . . . . . . . . . . . . . . . . 37
2.4.1 The Integer Programming Problem . . . . . . . . . . . . . . . 38
2.4.2 Writing a SAT as an Integer Program . . . . . . . . . . . . . . 39
2.4.3 Writing a SAT as a Hitting-Set IP . . . . . . . . . . . . . . . . 40

2.5 Algorithms for Linear Programming . . . . . . . . . . . . . . . . . . . 42
2.5.1 Equality Conversion . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Basic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.3 Pivot Operations . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.4 Integer Only Methods . . . . . . . . . . . . . . . . . . . . . . 47

vii



CONTENTS viii

2.5.5 Tableau Representation . . . . . . . . . . . . . . . . . . . . . 49
2.5.6 The Primal Simplex Algorithm . . . . . . . . . . . . . . . . . 51
2.5.7 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.8 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . 55
2.5.9 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . 55

2.6 Algorithms for Integer Programming . . . . . . . . . . . . . . . . . . 57
2.6.1 Gomory Cutting Planes . . . . . . . . . . . . . . . . . . . . . 58
2.6.2 Chvátal Cutting Planes . . . . . . . . . . . . . . . . . . . . . 60
2.6.3 Basic Cutting Plane Algorithm . . . . . . . . . . . . . . . . . 61
2.6.4 The Method of Decreasing Congruences . . . . . . . . . . . . 65
2.6.5 Finding Strong Cutting Planes . . . . . . . . . . . . . . . . . 66
2.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.7 The Convex Hull of SAT . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7.1 Canonical Inequalities . . . . . . . . . . . . . . . . . . . . . . 69
2.7.2 Lifting Procedures for Set Covering . . . . . . . . . . . . . . . 73
2.7.3 Diagonal Sum Inequalities . . . . . . . . . . . . . . . . . . . . 75
2.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.8 Proof Systems and Lower Bounds . . . . . . . . . . . . . . . . . . . . 77
2.8.1 Relative Strength of Proof Systems . . . . . . . . . . . . . . . 78
2.8.2 Hard Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.8.3 Extended Proof Systems . . . . . . . . . . . . . . . . . . . . . 79
2.8.4 Bounded Depth Frege Systems . . . . . . . . . . . . . . . . . . 80

2.9 Cutting-Plane Proof Systems . . . . . . . . . . . . . . . . . . . . . . 81
2.9.1 Chvátal Cutting Plane Proofs . . . . . . . . . . . . . . . . . . 81
2.9.2 Goerdt Cutting Plane Proofs . . . . . . . . . . . . . . . . . . 83
2.9.3 Clote Cutting Plane Proofs . . . . . . . . . . . . . . . . . . . 84
2.9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.10 Lower Bounds for Cutting Plane Systems . . . . . . . . . . . . . . . . 86
2.10.1 Bounded Cutting Plane Systems . . . . . . . . . . . . . . . . . 86
2.10.2 Lower Bounds by Interpolation . . . . . . . . . . . . . . . . . 87
2.10.3 Graph Structure of Cutting Plane Proofs . . . . . . . . . . . . 88
2.10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.11 Positive Results for Cutting Planes . . . . . . . . . . . . . . . . . . . 90
2.11.1 Fast Solution of Pigeonhole Problems . . . . . . . . . . . . . . 90
2.11.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 92
2.11.3 Chvátal Rank of Integer Hull . . . . . . . . . . . . . . . . . . 94
2.11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 A New SAT Algorithm 98
3.1 A Characterization of the SAT Polytope . . . . . . . . . . . . . . . . 100

3.1.1 Canonical Hyperplanes . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS ix

3.1.2 Canonical Facets . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.1.3 Canonical Polytopes . . . . . . . . . . . . . . . . . . . . . . . 106

3.2 Avoiding a Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.3 Canonical Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.1 Minors of a SAT Problem . . . . . . . . . . . . . . . . . . . . 111
3.3.2 The Lifting Lemmas . . . . . . . . . . . . . . . . . . . . . . . 112
3.3.3 Canonical Lifting on a Polytope . . . . . . . . . . . . . . . . . 118
3.3.4 The Canonical Lifting Algorithm . . . . . . . . . . . . . . . . 120
3.3.5 Canonical Lifting Subsumes Diagonal Sums . . . . . . . . . . 122

3.4 Integer Lifting for Cutting Planes . . . . . . . . . . . . . . . . . . . . 126
3.4.1 Integer Minors . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.4.2 Integer Lifting Lemma . . . . . . . . . . . . . . . . . . . . . . 128
3.4.3 Integer Lifting on a Polytope . . . . . . . . . . . . . . . . . . 132
3.4.4 Integer Lifting Algorithm . . . . . . . . . . . . . . . . . . . . . 133

3.5 Choosing a Vertex to Cut . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5.1 Multi-Start Local Search Algorithms . . . . . . . . . . . . . . 135
3.5.2 Finding a Stronger Cut . . . . . . . . . . . . . . . . . . . . . . 136
3.5.3 Reducing the Denominator . . . . . . . . . . . . . . . . . . . . 137
3.5.4 Complexity of the Local Search . . . . . . . . . . . . . . . . . 138

3.6 Choosing an Objective Function . . . . . . . . . . . . . . . . . . . . . 139
3.6.1 Facets Containing a Vertex . . . . . . . . . . . . . . . . . . . . 140
3.6.2 Maximizing the Slack Variables . . . . . . . . . . . . . . . . . 143

3.7 Strength of a Cutting Plane . . . . . . . . . . . . . . . . . . . . . . . 145
3.7.1 Power of Strong Cuts . . . . . . . . . . . . . . . . . . . . . . . 147
3.7.2 Expected Number of Cutting Planes . . . . . . . . . . . . . . 151

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.8.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.8.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.8.3 Finale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4 Methodology 157
4.1 Implementation of Algorithms . . . . . . . . . . . . . . . . . . . . . . 158
4.2 The Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.1 Sources of Test Problems . . . . . . . . . . . . . . . . . . . . . 160
4.2.2 Sizes of Test Problems . . . . . . . . . . . . . . . . . . . . . . 161
4.2.3 DIMACS Challenge Problems . . . . . . . . . . . . . . . . . . 162
4.2.4 Generated NSAT Problems . . . . . . . . . . . . . . . . . . . 162
4.2.5 Generated Mk

m,n Problems . . . . . . . . . . . . . . . . . . . . 163
4.3 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.3.1 Test Problem Generation . . . . . . . . . . . . . . . . . . . . . 163
4.3.2 Running the Test Problems . . . . . . . . . . . . . . . . . . . 164



CONTENTS x

4.3.3 Measures to be Observed . . . . . . . . . . . . . . . . . . . . . 164
4.3.4 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . 165
4.3.5 Criteria for Success . . . . . . . . . . . . . . . . . . . . . . . . 166

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5 Results 167
5.1 The CutSat Test Program Implementation . . . . . . . . . . . . . . . 167

5.1.1 Exact Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . 169
5.1.2 Pseudo-Random Number Generator . . . . . . . . . . . . . . . 170
5.1.3 The Integer Simplex Tableau . . . . . . . . . . . . . . . . . . 170
5.1.4 The Simplex Methods . . . . . . . . . . . . . . . . . . . . . . 171
5.1.5 The Denominator-Reduction Algorithm . . . . . . . . . . . . . 174
5.1.6 The Cutting Plane Algorithm . . . . . . . . . . . . . . . . . . 176
5.1.7 Measuring the Cutting Planes . . . . . . . . . . . . . . . . . . 178
5.1.8 Searching for a Stronger Cut . . . . . . . . . . . . . . . . . . . 181
5.1.9 The Integer Lifting Algorithm . . . . . . . . . . . . . . . . . . 183
5.1.10 Applying Cutting Planes to the Tableau . . . . . . . . . . . . 188

5.2 Reading the Output as Proof . . . . . . . . . . . . . . . . . . . . . . 189
5.2.1 Parameters to Print the Proof . . . . . . . . . . . . . . . . . . 191
5.2.2 Reading and Checking the Proofs . . . . . . . . . . . . . . . . 193

5.3 Test Problem Generators . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.4.1 Unsatisfiable DIMACS Problems . . . . . . . . . . . . . . . . 198
5.4.2 Random NSAT Problems . . . . . . . . . . . . . . . . . . . . . 202
5.4.3 Random MSAT Problems . . . . . . . . . . . . . . . . . . . . 208

5.5 New Proofs of Pigeonhole Unsatisfiability . . . . . . . . . . . . . . . . 214
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6 Conclusions and Recommendations 218
6.1 The Cutting Plane Algorithm . . . . . . . . . . . . . . . . . . . . . . 218
6.2 Discussion of Computational Results . . . . . . . . . . . . . . . . . . 219
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A CutSat Program Code 224
A.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

A.1.1 Parameters.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.2 Pseudo-Random Generator . . . . . . . . . . . . . . . . . . . . . . . . 229

A.2.1 random.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.3 CNF Term Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.3.1 CnfTerm.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230



CONTENTS xi

A.3.2 CnfTerm.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.4 Number Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A.4.1 Integer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.4.2 Integer.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4.3 Quotient.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4.4 Quotient.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.5 Cutting Plane Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 238
A.5.1 CutMeasure.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
A.5.2 CutMeasure.cc . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A.6 The Integer Simplex Tableau . . . . . . . . . . . . . . . . . . . . . . . 248
A.6.1 Simplex.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
A.6.2 Simplex.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.7 The Cutting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 284
A.7.1 CuttingAlgorithm.h . . . . . . . . . . . . . . . . . . . . . . . . 284
A.7.2 CuttingAlgorithm.cc . . . . . . . . . . . . . . . . . . . . . . . 285

B Msat Generator Program Code 297
B.1 msat.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

C A Complete Unsatisfiability Proof 299
C.1 Example Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
C.2 Proof of the Example Problem . . . . . . . . . . . . . . . . . . . . . . 304
C.3 Example CutSat Session Transcript . . . . . . . . . . . . . . . . . . . 311

References 315



List of Tables

2.1 Table of Logic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Estimated number of cutting planes required to exclude 250 random
points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1 Cutting plane measure functions defined in Parameters.h . . . . . . 180
5.2 Computational Results for Unsatisfiable DIMACS Problems . . . . . 198
5.2 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.2 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.3 Computational Results for Unsatisfiable NSAT Problems . . . . . . . 203
5.3 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.3 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.4 Computational Results for Random MSAT Problems . . . . . . . . . 209
5.4 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.4 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.4 Continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xii



List of Figures

2.1 Primal Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2 Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3 Gomory’s Dual Cutting Plane Algorithm . . . . . . . . . . . . . . . . 62

3.1 The two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 145

5.1 Data Structures of the Simplex Tableau . . . . . . . . . . . . . . . . . 171
5.2 Input/Output methods of IntegerSimplex . . . . . . . . . . . . . . 172
5.3 Methods of IntegerSimplex that implement basic linear programming

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.4 Pivot selection within one column. . . . . . . . . . . . . . . . . . . . 175
5.5 Outline of Cutting Algorithm. . . . . . . . . . . . . . . . . . . . . . . 177
5.6 Example of output showing the basic variables. . . . . . . . . . . . . 193
5.7 Example of output showing the derivation of one Gomory cutting plane

inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.8 Example of output showing the Gomory cutting plane inequality that

is selected for lifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.9 Example of output indicating a successful lift. . . . . . . . . . . . . . 195
5.10 Example of output indicating that a variable is fixed to zero. . . . . . 196
5.11 Example of output showing a fully lifted cutting plane inequality. . . 196
5.12 Plot of Number of Variables vs. Number of Cutting Planes for unsat-

isfiable DIMACS problems. . . . . . . . . . . . . . . . . . . . . . . . . 201
5.13 Plot of Number of Variables vs. Number of Cutting Planes for unsat-

isfiable problems generated by the NSAT generator. . . . . . . . . . . 207
5.14 Plot of Number of Variables vs. Number of Cutting Planes for ran-

domly generated MSAT problems. . . . . . . . . . . . . . . . . . . . . 213
5.15 Some inequalities of the hole6 problem. . . . . . . . . . . . . . . . . 215
5.16 The first proof step of the hole6 problem. . . . . . . . . . . . . . . . 215
5.17 One line of the first tableau constructed for the hole6 problem. . . . 216
5.18 A Gomory cutting plane constructed for the hole6 problem. . . . . . 216
5.19 A Gomory cutting plane constructed for the hole6 problem. . . . . . 216

xiii



Chapter 1

Introduction

The search problem in artificial intelligence and combinatorial optimization is to

search a combinatorial structure in a feasible time to find a solution that is optimal

or satisfactory in some sense. The combinatorial structure arises from problem repre-

sentations that involve multiple independent variables, each having multiple possible

values. The complexity class NP captures the essential difficulty of these combinato-

rial search problems. A decision problem is in NP if there exists a nondeterministic

Turing machine that decides every instance of that problem in a polynomially bounded

number of steps. Garey and Johnson (1979) give a catalog of decision and optimiza-

tion problems that are in NP . Many of the problems in NP have high economic

value, or are theoretically important.

The propositional satisfiability problem (SAT) is complete for complexity class

NP (Cook, 1971). Cook showed how to reduce an arbitrary nondeterministic Turing

machine (NDTM) to a proposition in conjunctive normal form (CNF), so that the

CNF term evaluates to true on exactly the inputs that are accepted by the NDTM.

Hence, every decision problem in NP can be reduced to a SAT problem.

The SAT problem is considered the simplest of the NP -complete problems. The

1



CHAPTER 1. INTRODUCTION 2

SAT problem captures all of the difficulty of any NP -hard problem, and is also very

simply stated:

Given a Boolean proposition in conjunctive normal form, decide whether

or not there exists a substitution of values for variables that satisfies the

proposition.

No polynomially bounded deterministic algorithm for the SAT problem has been

found. Numerous researchers have spent many years working on this problem. A

great variety of algorithms have been constructed for satisfiability, but none of them

is efficient. The obvious algorithm for SAT is exhaustive search. For a proposition

havingN variables, exhaustive search requires O(2N) steps and is obviously inefficient.

Much of satisfiability research has concentrated on finding algorithms that are less

inefficient than exhaustive search.

A decision problem is in P if there exists a deterministic Turing machine (DTM)

that decides every instance of that problem in a polynomially bounded number of

steps. The distinction between deterministic and nondeterministic is important. We

can construct deterministic computers, but we cannot physically construct nonde-

terministic computers. A deterministic machine may simulate a nondeterministic

machine, but the known methods require an exponential increase in the number of

steps.

The question of whether P = NP is open. If SAT can be solved in deterministic

polynomial time, then that algorithm would demonstrate P = NP . If P 6= NP , we

cannot expect to find any efficient algorithm for satisfiability. It is widely believed

that P 6= NP .

This dissertation describes and evaluates some new algorithms that may be useful

for satisfiability. We do not provide an efficient algorithm for SAT, or a definitive



CHAPTER 1. INTRODUCTION 3

solution to the P = NP question. This dissertation only describes and evaluates some

alternative algorithms that have not previously been described or evaluated. The

new algorithm is less inefficient than existing algorithms for a class of SAT problems.

More important, the algorithm demonstrates a class of complete SAT algorithms that

can utilize efficient randomized and incomplete search algorithms without sacrificing

completeness.

1.1 Relevance And Significance

The satisfiability problem is a fundamental problem in mathematical logic, inference,

automated reasoning, machine learning, and discrete optimization. NP problems

occur in every branch of Computer Science, and in many applications. Cook (1971)

showed that efficient algorithm for the SAT problem would give efficient algorithms

for all of the problems in NP .

Garey and Johnson (1979) gives a catalog of NP optimization and decision prob-

lems. Hundreds of authors have found other problems that are important for various

reasons, and are in NP . Crescenzi and Kann (1995) maintain a current catalog of

NP problems and approximation results. The problems include a wide variety of

economic problems such as resource allocation, production scheduling, and logistic

distribution problems. For many problems in NP , any efficient algorithm would have

significant economic and theoretical consequences. Many NP problems are economi-

cally important enough that even a partial solution, which solves some useful subset

of the practical examples, would be valuable.

One problem of particular interest is found in software engineering and program-

ming languages. The construction of correct programs is a vital issue for software engi-

neering, particularly for safety-critical and mission-critical applications. The problem



CHAPTER 1. INTRODUCTION 4

of proving that a given program meets a given specification can be viewed as a search

problem. Assuming that the program is written in some computable programming

language, that it takes only some fixed amount of input, and that it terminates, the

problem is to decide whether or not there exists any input for which the program

gives incorrect output. It is easy to see that this problem is NP . We may nonde-

terministically try each possible input to the program, and compare the output to

the specified correct output for that input. That this problem is equivalent to a SAT

problem follows directly from the result of Cook (1971).

1.2 Barriers and Issues

It is widely believed that P = NP , and that no efficient algorithm for SAT can

exist. The literature contains a large number of approaches to the SAT problem,

none of which is efficient. Various researchers have described and evaluated a number

of algorithms for SAT, and have sought to minimize the constants in the complexity

of those algorithms. Those algorithms can be grouped into several families of similar

algorithms.

The fact that the problem has been studied by a large number of researchers,

yet not solved, indicates that the problem is extremely difficult. The large number

of approaches that have been tried indicate that it may be difficult to identify a

previously untried approach. In chapter 2 we review some of the approaches to SAT

that have been tried.

It is clear that straightforward search algorithms cannot solve SAT efficiently. Tree

search algorithms use reasoning to avoid searching some some sub-trees, but must still

search an exponentially sized portion of the complete tree. Algebraic rewriting cannot

solve SAT efficiently, because there can be no compact canonical form. Approaches



CHAPTER 1. INTRODUCTION 5

for special subclasses of SAT are efficient, but are only applicable to a vanishingly

small fraction of all problems. A wide variety of heuristic or randomized search

methods have been tried, but cannot provide complete proof of unsatisfiability. Linear

relaxations allow the application of integer programming techniques, but the common

branch-and-bound techniques for integer programming are essentially just tree-search

algorithms.

The problem of finding concise proofs of unsatisfiability is not effectively addressed

by any of the known approaches. The complete search algorithms produce proofs of

unsatisfiability, but in each case the resulting proof size is exponential in the number

of variables. The randomized algorithms that are known for SAT are not complete, so

they do not address the problem of finding proofs of unsatisfiability. It is not obvious

what other approaches to SAT might be more successful.

Cutting plane algorithms for SAT have not been fully explored, and seem to offer

the possibility of allowing concise proofs of unsatisfiability. Cutting plane proofs have

the advantage that it is not necessary to divide the problem into multiple subproblems

at each step. This advantage may be critical in allowing small proofs of unsatisfiability

and low complexity of algorithms to find those proofs. However, existing methods

of generating cutting plane proofs tend to require large numbers of cutting plane

steps. There are also some theoretical results that some particular cutting plane

proof systems do not allow small proofs of some propositions.

1.3 Plan and Approach

In this dissertation, a family of complete algorithms for SAT is constructed by con-

sidering necessary conditions. A number of conditions are known to be necessary

in the sense that any algorithm not meeting the condition must be inefficient. By



CHAPTER 1. INTRODUCTION 6

avoiding these known causes of inefficiency, we construct an algorithm that has bet-

ter average-case performance than previous algorithms for some classes of hard SAT

problems.

A complete algorithm for satisfiability requires either finding a witness of satisfi-

ability or finding a proof that no witness exists. Any proof that no witness exists is

necessarily based on some system for proving theorems of propositional logic. Differ-

ent formalizations of propositional logic include different sets of axioms and inference

rules, but are equivalent in the sense that they admit proofs of the same theorems.

However, the lengths of the proofs is often very different (Cook & Reckhow, 1974,

1979). Clearly, the number of steps required by a satisfiability algorithm to show that

some problem is unsatisfiable cannot be less than the number of lines required in the

proof.

It is well known that various proof systems based on search and resolution do

not allow short proofs of unsatisfiability (H̊astad, 1987; Chvátal & Szemerédi, 1988;

Urquhart & Fu, 1996). Satisfiability algorithms based on those proof systems cannot

be efficient, because the algorithms require a number of steps at least as great as the

length of proof. It is a necessary condition that any efficient algorithm must be based

on a proof system for which short proofs can exist, or at least for which it is not

known that short proofs cannot exist.

A variety of hard satisfiability problems are known, for which particular algo-

rithms are known to require super-polynomial time. The hard part of the satisfiability

problem is finding proofs of unsatisfiability, or refutation, for unsatisfiable problems

(Franco, Dunn, & Wheeler, 1992). A variety of hard unsatisfiable problems have been

proposed. For some of these hard problems, particular algorithms have been found

that can solve the particular hard problem efficiently. It is a necessary condition

that any efficient algorithm must be able to solve all of these known hard problems



CHAPTER 1. INTRODUCTION 7

efficiently. For the problems for which algorithms are known, some guidance may be

available by examining the structure of the known algorithms.

1.3.1 Cutting Plane Proofs

Every satisfiability problem can be represented as an integer programming problem.

Each clause
∨

i xi ∨
∨

j xj can be represented as a linear constraint
∑

i xi +
∑

j(1 −

xj) ≥ 1. The use of linear inequalities with methods developed for linear integer

programming may be viewed as an extended logic. Each method of deriving new valid

inequalities may be viewed as an inference rule for the proof system. A sequence of

matrix inequalities, where the first is a linear representation of the SAT problem and

the rest are derived by valid inference rules, may be considered as a proof. A proof

of unsatisfiability based on this type of proof system is called a cutting-plane proof.

If the last line of a cutting-plane proof is a false inequality, such as 0 ≥ 1, then the

premises of that proof are unsatisfiable.

Cutting-plane proofs also possess something like a Church-Rosser property. A set

of inequalities in N variables describes a polytope in N dimensions. If we choose a

partial ordering of polytopes based on a measure such as the volume of the polytope,

the addition of each cutting plane reduces the polytope. The order in which several

cutting planes are added does not matter. Any order of additions gives the same

reduced polytope. A method of generating cutting planes is called complete if it can

generate every cutting plane necessary to find the integer convex hull of the problem.

If at least one complete family of cutting planes is used, then for any unsatisfiable

SAT problem, any cutting plane proof can be extended to an empty polytope.

Cutting plane proof systems are known to be as efficient as general Frege proof

systems, and more efficient than constant-depth Frege proof systems (Clote, 1995). In



CHAPTER 1. INTRODUCTION 8

addition, short cutting plane proofs are known to exist for various problems that are

hard for other proof systems (Barth, 1994). Hence, a cutting plane proof system may

exist that meets both of our identified necessary conditions. In addition cutting plane

proofs can be represented using nice regular data structures, and many algorithms

are known for finding cutting planes.

1.3.2 Cutting Plane Algorithms

Cutting plane algorithms for integer programming are similar in many respects to

cutting plane proof systems. The problem of finding good cutting planes for a cut-

ting plane algorithm is closely related to the problem of constructing short proofs.

Good cutting planes are those that give maximum reduction of some measure of the

polytope. Such large reductions often lead to short proofs. Conversely, short proofs

require that at least some of the steps correspond to large reductions. A proof of only

one step uses a single cutting plane that reduces the measure to zero.

Unfortunately, it is difficult to find good cutting planes for satisfiability problems.

The number of individual cutting planes that may be inferred in one step is too

large to search completely. The number of basic solutions of a linear program (LP)

is combinatorial in the number of variables, and there may exist a large number of

distinct cutting planes for each basic solution. Even if we limit the linear combinations

of the inequalities to using only a small number of distinct coefficients, the number

of possible cutting planes is exponential in the number of inequalities.

Traditional randomized algorithms for SAT have been oriented only to searching

for a model to verify satisfiability, and have had some considerable success. Com-

plete algorithms have been viewed as being necessarily deterministic, based on the

assumption that they must necessarily search an entire refutation tree. In contrast,



CHAPTER 1. INTRODUCTION 9

we adopt the view that even complete algorithms for SAT can be viewed as random-

ized algorithms, in the sense that at each step a number of next steps are possible

and one must be chosen. The order in which a search is conducted, or the choices

that are made during a construction, may be interpreted as a random choices.

A cutting plane algorithm is not just one algorithm. Every cutting plane algorithm

requires some method of choosing which vertex of the polytope to cut. Every cutting

plane algorithm requires some method of generating cutting planes for a selected

vertex, and of choosing which cutting planes to use when several are available.

The LP formulation allows the choice of an objective function. The objective

function is usually chosen using some simple heuristic, such as the sum of the linear

constraints. However, for satisfiability there is no particular reason to choose any

particular objective function. It may be useful to modify the objective function

during the computation. It may be useful to derive a cutting plane from some basic

solution of the linear program other than the optimal solution.

For a given basic solution of the LP relaxation, we want to find the strongest

possible cutting plane. The restriction of variables to the domain {0, 1} may allow

stronger cutting plane techniques than are available for general integer programming.

Methods of lifting to find stronger cuts have been developed that are applicable when

all coefficients of a valid inequality are in {0, 1} (Balas & Jeroslow, 1972; Hooker, 1992;

Barth, 1995). It may be possible to develop similar lifting methods to find stronger

cuts for the general case, in which the coefficients are not restricted. Some work along

these lines has been reported. For a survey see Balas, Ceria, Cornuéjols, and Natraj

(1996). This dissertation presents a new method of lifting, in which non-integral

coefficients of a cutting plane are modified by addition of integer quantities.

When several cutting planes are available, the choice of which ones to add to

the linear program may be critical. Methods to choose from multiple valid cutting



CHAPTER 1. INTRODUCTION 10

planes have been suggested, but are often dismissed as too expensive or impractical

(Nemhauser & Wolsey, 1988, pp. 374), (Jünger, Reinelt, & Thienel, 1995, pp. 133).

A measure of cutting plane strength is clearly needed, but is not sufficient. An

efficient method is needed to evaluate the strength of a cutting plane, independent of

any particular objective function.

When the choice of cutting plane is viewed in combination with the choice of basic

solution from which to derive a cutting plane, it seems clear that these two choices

may be made together. Hence, it may be useful to search some subset of the possible

basic solutions, and some subset of the possible cutting planes for each of those basic

solutions, as part of the search for a strong cutting plane. Because the number of

possible basic solutions and cutting planes is impossibly large, it is clear that any

practical algorithm may examine only a small subset of the possible cutting planes.

Hence, a randomized algorithm may be useful in the search for strong cutting planes.

1.4 Statement of Hypothesis

In this dissertation, we develop the theory and practice of 0-1 integer programming,

with the purpose of extending or specializing that theory for the satisfiability prob-

lems. The research was specifically oriented to finding short cutting-plane refutations

of hard unsatisfiable SAT problems. The research goal was to find support for or

refutation of the following hypothesis:

Short cutting-plane proofs of unsatisfiability exist for many hard SAT prob-

lems. Algorithms and heuristics for finding strong cutting planes can be

used to construct such short refutation proofs.



CHAPTER 1. INTRODUCTION 11

The approach involved research toward two theoretical goals, and a series of ex-

periments.

The first goal was to develop methods for finding strong cutting planes, so as to

minimize the number of cutting plane steps required to either generate a proof of

unsatisfiability or to find a witness to satisfiability. Intuitively, strong cutting planes

are those that yield large reductions of some measure of the polytope, and should allow

more concise refutation proofs. Algorithms are developed in chapter 3 to update the

objective function of the LP relaxation, to measure the strength of a cutting plane,

and to search a neighborhood of basic solutions to find a strong cutting plane.

The second goal was to understand the performance characteristics of the resulting

algorithms. The key measure is the number of proof steps required in refutation proofs

of unsatisfiable SAT problems. Some bound on the number of cutting plane steps

in a proof may be possible, but no subexponential bound is presented in this work.

Instead, the expected number of cutting planes is predicted, depending on the average

strength of the cutting planes. This result indicates the importance of algorithms for

finding strong cutting planes.

To quantify the performance of the new randomized algorithms, an experiment

is described in chapter 4, and the results of that experiment are reported in chapter

5. The experiment used a computer program in which the various algorithms and

heuristics were applied to test problems. The program incorporates algorithms and

heuristics that seem promising on a theoretical basis, to see if they work in practice.

The experiment used several varieties of hard unsatisfiable test problems to verify

that short refutation proofs can indeed be found.



CHAPTER 1. INTRODUCTION 12

1.5 Summary

The SAT problem is a problem of fundamental importance in computer science, arti-

ficial intelligence, and discrete optimization. A large number of algorithms have been

developed for SAT, none of which is efficient. A class of algorithms based on linear

programming relaxations, using cutting planes, has not been fully explored. Linear

inequalities can be viewed as an extension of propositional logic, and cutting planes

can be viewed as lemmas for that extended logic. No superpolynomial lower bounds

are currently known for SAT algorithms using extended logics, so there remains a

possibility that such an extended logic may allow short proofs of unsatisfiability.

In this dissertation, we consider some possible algorithms for SAT that are based

on linear programming relaxations, using cutting planes and randomized algorithms.

The theoretical goals included developing algorithms for finding strong cutting planes,

and minimizing the number of cutting planes required to solve a SAT problem. The

research hypothesize asserts that randomized methods of searching for good cutting

planes are useful for constructing short cutting plane proofs of unsatisfiability.



Chapter 2

Review of the Literature

This chapter surveys some of the approaches to SAT that have been tried, and sum-

marizes those results. Lack of success in finding an efficient algorithm for SAT has

not been due to lack of trying. A large number of researchers have proposed and

evaluated a wide variety of algorithms. This chapter is organized into five major

sections. Section 2.3 gives a broad review of algorithms and heuristics that have

been tried. Section 2.4 reviews methods of linear and integer programming that can

be applied to SAT. Section 2.8 reviews the relationship between SAT algorithms and

propositional proof systems. These proof systems have been used to show exponential

lower-bounds on the complexity of some SAT algorithms. Section 2.9 reviews various

definitions of cutting-plane proof systems in detail, and identifies the common fea-

tures of cutting-plane proof systems. Sections 2.10 and 2.11 review known complexity

results on cutting plane proof systems.

Section 2.3 reviews algorithms that have been proposed for SAT. A very great

variety of algorithms have been proposed. Complete algorithms are those that can

definitively solve a SAT problem. Classes of complete algorithms include tree-search,

resolution, and cutting plane algorithms. Incomplete algorithms are those that can

13



CHAPTER 2. REVIEW OF THE LITERATURE 14

solve some SAT problems quickly, but cannot solve all problems. Classes of incomplete

algorithms include those based on rewriting systems and randomized or heuristic

search. Some of the ideas in incomplete algorithms may be useful for further research

into complete algorithms.

Section 2.4 introduces the approach of reducing a SAT problem to an integer

problem and solving it using integer programming methods. Integer programming

is a variation of linear programming, in which the optimal solution domain is also

constrained to integers. Section 2.5 gives a short tutorial introduction to linear-

programming. Section 2.6 gives a short introduction to cutting plane methods integer

programming. Cutting plane algorithms for solving integer programs are based on

generating additional linear constraints such that non-integral solutions to the linear

program are excluded by the added constraints.

In section 2.8, we consider propositional proof systems that provide the mathe-

matical basis for complete SAT algorithms. Each complete algorithm for SAT is based

on some proof system for propositional theorems. To decide that a term is unsatis-

fiable a SAT algorithm must, at least implicitly, construct a proof of unsatisfiability.

Any proof that no satisfying solution exists is necessarily based on some system for

proving theorems of propositional logic. The shortest proof of a proposition provides

a lower-bound on complexity of algorithms based on that propositional proof system.

Lower bounds on proof length are known for a variety of propositional proof systems.

These lower-bounds proofs show why most SAT algorithms cannot be efficient.

Section 2.9 reviews cutting plane proof systems that have been proposed for

SAT. In this section, definitions of cutting-plane proof system will be given in de-

tail. Cutting-plane proof systems are based on cutting-plane algorithms for integer

programming, but there is a crucial difference. The cutting plane proof systems that

have been proposed do not introduce slack variables, so they keep the inequalities



CHAPTER 2. REVIEW OF THE LITERATURE 15

as inequalities rather than converting them to higher-dimensional equalities. As a

consequence of this choice of definition, multiplication is permitted only by positive

values to preserve the sense of the inequalities.

Two lower-bounds results (using Craig interpolation formula) that are specifically

for cutting-plane systems need to be explained in some detail. These lower bounds

use a theorem by Rasborov, that certain functions require exponential size monotone

circuits. We will see that these lower bounds depend critically on the definitions of

cutting plane proof systems. The several definitions each introduce a critical restric-

tion, which enables the lower bounds proof to work.

The lower bounds results stand in contrast to several positive results on cutting

plane algorithms. Some problems that require exponential tree-search and resolution

proofs can be proved by polynomial length cutting plane proofs. In particular, prob-

lems such as pigeonhole formula that involve counting are hard for resolution and

easy for cutting planes. This shows that cutting-plane proof systems are stronger

than tree-search and resolution.

Other results on cutting-plane proof systems include a bi-simulation result showing

that cutting-plane proofs are polynomially-equivalent to Frege proofs, and a paper

asserting that the methods used to establish “lower bounds” for other proof systems

cannot work for Frege systems. These results seem to contradict the lower bounds

results for cutting plane methods. As is common when mathematical results appear

to conflict, there is a difference in the definitions.

2.1 Propositional Logic

Numerous volumes with chapters on propositional logic are available, and there are

numerous conventional variations of the notation. In this chapter, we will not provide



CHAPTER 2. REVIEW OF THE LITERATURE 16

a full introduction to the theory of Boolean algebra. We will instead provide only a

few basic definitions. Early formulations of propositional logic include those by Boole

(1854/1958) and (Whitehead & Russell, 1912/1950). Boole demonstrated that it is

possible to define a mathematical notation for logic. The volumes by Whitehead and

Russell are widely referenced as the first rigorous approach to mathematical logic.

In modern form, various systems of notation are used for propositional logic. For

complete information on the development of propositional logic and the various no-

tations that are often used, the reader may consult any of the numerous chapters

and monographs on propositional logic and finite set theory (Church, 1956; Sup-

pes, 1960/1972; Stoll, 1961, 1963/1979; Curry, 1963/1977; Quine, 1951; Bernays,

1968/1991; Ershov & Palyutin, 1979/1984; Mendelson, 1987). Deskins (1978) gives

a very terse introduction which also includes charts of equivalent symbols. Epstein

(1995) gives a thorough introduction to various formalizations of propositional logic,

and a fairly rigorous argument that all of the formalizations are equivalent.

A propositional calculus is a term algebra. The terms are constructed recursively

in the usual manner. A set of symbols are reserved for use as operator symbols

to denote propositional functions. Operator symbols are required for a subset of

propositional functions that can be used to define all propositional functions. Such

a set of symbols is called a basis for the propositional algebra. Several basis for

propositional algebra are known. The functions and, or, not, true, and false provide

one such basis. The zero-arity functions true and false are also called constants.

Table 2.1 lists the correspondence between logic concepts, function names, and the

operator symbols that we will use to denote the respective functions. We will use the

operator symbols and the function names interchangeably throughout the remainder,

as the distinction is usually clear from the context. Following tradition, we will often

write the negation as a line above the negated term, as x, rather than as a prefix.



CHAPTER 2. REVIEW OF THE LITERATURE 17

Logic Function Operator Example

Concept Name Symbol

Conjunction and ∧ x1 ∧ x2

Disjunction or ∨ x1 ∨ x2

Negation not ¬ ¬x1

False false 0 0

True true 1 1

Table 2.1: Logic concepts, function names, and operator symbols.

The set of propositional variable symbols is any set of other symbols, excluding the

operator symbols. Terms are constructed recursively as follows: A variable symbol is

a term. A constant symbol is a term. For every term T , T is a term. For every pair

of terms T1 and T2, T1 ∧ T2 and T1 ∨ T2 are terms.

Any set of function symbols isomorphic to the set {and, or, not, false, true}

could be used as the set of operator symbols. Many alternative set of symbols may

be found in the literature. It is also customary to use N -arity forms of the two binary

operators, which are each associative, commutative, and idempotent. The N -arity

terms may alternatively be defined as abbreviations for equivalent binary terms. All of

these variations of the notation are equivalent, so we may use any convenient notation

without loss of generality.

The term not(T ) is called the negation of T . The term and(T1, . . . , Tn) is called

the conjunction of T1, . . . , Tn. The term or(T1, . . . , Tn) is called the disjunction of

T1, . . . , Tn. An atom is either a variable or a constant. A literal is either an atom

or the negation of an atom. A clause is either a single literal or a disjunction of

literals. A term that is either a single clause or a conjunction of clauses is said to be



CHAPTER 2. REVIEW OF THE LITERATURE 18

in conjunctive normal form. Many authors use an equivalent clausal form, in which

the operator symbols are omitted and the lists of operands are considered as sets.

The variables of a term, V (T ), is the set of variable symbols that appear in the

term. A ground term is a term that has no variables. An interpretation of a term T is

a substitution mapping from the variables of T to constants. Every interpretation of

a term is a ground term. The value of a ground term is determined by the semantic

functions of the operator symbols applied to the values of the operands. The semantic

functions are often specified as truth tables. An interpretation is called satisfying if

the value of the term is true under the interpretation.

2.2 The Propositional Satisfiability Problem

The propositional satisfiability problem (SAT) is to decide whether or not there exists

a substitution such that a given proposition is true. The converse problem is the

tautology problem, which is to decide whether or not there exists any substitution

such that a given proposition is false. A proposition P is satisfiable, if and only

if the negation ¬P is not a tautology. Satisfiability is a fundamental problem in

mathematical logic.

The origin of the propositional satisfiability problem traces to the very beginnings

of mathematical logic. Boole (1854/1958) formulated the first algebra of propositional

logic, and explored various methods of proving the truth of particular propositions.

Boole argues that every proposition can be written in an equational form V = 0,

where V is a sum of products (ch. X). However, the satisfiability problem is not

specifically stated, as Boole was primarily concerned with showing that the algebra

can be used to write proofs.

Russell (1902/1938) presents and defends a thesis that mathematics and logic are



CHAPTER 2. REVIEW OF THE LITERATURE 19

identical. This work includes a comprehensive and careful development of mathemat-

ical logic, and presents Russell’s famous paradox in class theory. In the calculus of

classes (pp. 21), Russell identifies that a class can be determined by a proposition,

and that the question of whether or not such a class is empty is an important question.

This appears to be the earliest explicit statement of the satisfiability problem.

During the next 30 years, the development of mathematical logic concentrates

on finding the resolution of Russell’s paradox, and attempting to find a completely

satisfactory foundation for all of mathematics. Whitehead and Russell (1912/1950)

made a significant advance in this direction, giving a formal logical foundation to

much of mathematics. Gödel (1931/1992) eventually showed that in every system of

mathematics that admits arithmetic, some statements are true but not provable. At

about the same time, Church (1936b, 1936a) and Turing (1936–1937) came to the

same conclusion by very different routes. Turing’s work considered the question of

computation, and showed that some numbers are not computable. The computation

of a number, in this sense, corresponds to the proof of a statement.

In the meantime, Herbrand (1930/1967) gave the first definite procedure to decide

if a proposition is a tautology. This major result for theorem proving is stated as a

little remark. Remark 3 states a procedure for deciding the truth of a proposition

where each variable takes only a fixed number of alternative values. The truth of

such a proposition can be determined by searching the finite set of interpretations.

After giving a procedure to decide whether or not a proposition is satisfiable, the

mathematical logicians considered the problem solved.

During the 1940’s and 1950’s, digital computers were developed. As a consequence

of this development, some mathematicians were drawn to the problems associated

with programming. Algorithms were developed for various problems, and the problem

of algorithm efficiency arose. Von Neumann (1948/1986) identified the problem, “The



CHAPTER 2. REVIEW OF THE LITERATURE 20

thing which matters is not only whether it can reach a certain result in a finite number

of steps at all but also how many such steps are needed.” It was natural to also ask

if there might exist efficient algorithms for some problems for which only inefficient

algorithms were then known.

Edmonds (1965) proposed polynomial-time computability as a criteria for the

separation of good, efficient algorithms from bad, inefficient algorithms. This proposal

was immediately taken as a theoretical definition of an efficient algorithm. However,

to be practical and useful, an algorithm does not necessarily have to be polynomially

bounded. Edmonds observed that an exponentially bounded algorithm with a low-

enough exponent could be more useful than a polynomially bounded algorithm with

a high-degree polynomial.

Cook (1971) showed that the subgraph, graph-isomorphism, prime-number, tau-

tology, and 3-tautology problems are all solvable by a nondeterministic Turing ma-

chine in polynomially bounded time. Further, Cook showed that any decision problem

that can be solved by a polynomial time-bounded nondeterministic Turing machine

can be reduced to the tautology problem. Cook also conjectures that the tautol-

ogy/satisfiability problem is not in L∗ (now known as P ), and that it is worth spend-

ing considerable effort to prove it. Karp (1972) showed that a great variety of hard

problems are equivalent to satisfiability, and introduced the terms P and NP .

Garey and Johnson (1979) gave a catalog of NP problems, with citations to re-

duction results, that included more than 300 problems. Many of those problems are

economic or managerial problems, such as integer programming, combinatorial op-

timization, and machinery scheduling. Others arise from the design of computing

machinery and software, including the design of networks, the design of storage and

retrieval systems, checking program equivalence and correctness, and program opti-

mization. Every one of these important problems can be reduced to a polynomial



CHAPTER 2. REVIEW OF THE LITERATURE 21

number of satisfiability problems.

Hence, the satisfiability problem is important for two reasons. First, from a the-

oretical point of view, a major open question is whether or not there exists any

polynomially bounded algorithm for satisfiability. Second, a large number of efficient

algorithms for significant economic and theoretical problems could be derived from

any efficient algorithm for satisfiability. While it would be theoretically interesting

to show that there can be no polynomially bounded algorithm for SAT, it would be

much more profitable to find an efficient algorithm.

2.3 Algorithms for SAT

This section reviews some of the approaches to SAT that have been tried. The various

algorithms that have been proposed for SAT fall roughly into several classes. Tree

search algorithms split the problem into multiple subproblems. Algebraic rewriting

attempts to solve the problem by manipulating formulas according to some Markov

algorithm. Special subclasses of SAT have been investigated by a number of re-

searchers. A wide variety of heuristic or randomized algorithms have been proposed.

Finally, linear relaxations transform the problem into a linear programming problem.

2.3.1 Search algorithms

Various search algorithms can be categorized as recursive tree-search, resolution, and

connections methods. A large number of variations and refinements on these basic

algorithms have been proposed. Surveys of search algorithms for propositional theo-

rem proving include those by Gu, Purdom, Franco, and Wah (1997), Gabbay (1992),

Bibel and Eder (1993) and Eisinger and Ohlbach (1993).



CHAPTER 2. REVIEW OF THE LITERATURE 22

Resolution Search Algorithms

Resolution algorithms use an inference rule that also effectively searches all possible

assignments, but is implemented differently (Davis & Putnam, 1960; Robinson, 1965).

Resolution algorithms use the inference rule (x ∨ y) ∧ (x ∨ z) ⊢ (y ∨ z) to construct

a new clause without a variable x. If all copies of a selected variable are eliminated

in all possible ways, the resulting term is equivalent to the original term and has one

less variable. For a CNF term f(x1, . . . , xn), if resolution is used to eliminate xn,

then the resulting term is just the conjunctive normal form of f(x1, . . . , xn−1, 0) ∨

f(x1, . . . , xn−1, 1).

Most implementations of resolution do not eliminate all copies of a variable at

once. Instead, they search a tree of resolution operations to find an empty clause.

Starting from any clause, all possible resolution inferences involving that clause as

an antecedent are tried. If an empty clause can be inferred by resolution, then the

original term is unsatisfiable. The size of the search tree is of course exponential in

the number of clauses. Galil showed that every resolution procedure has exponential

complexity, because in many cases the shortest refutation requires an exponential

number of resolution steps (Galil, 1974, 1975b, 1975a).

Model Search Algorithms

The basic approach of model search algorithms is to try all possible assignments

of constant values for each variable in the term. The possibility of searching all

possible assignments for algebras in finite-domain was identified first by Herbrand

(1930/1967). Herbrand showed that it is possible to enumerate all interpretations

of a term by enumerating the cross-product of the interpretations of the variables

that appear in the term. In propositional logic, there are exactly two possible values



CHAPTER 2. REVIEW OF THE LITERATURE 23

for each variable, corresponding to “true” and “false”. For Boolean expressions of n

variables, there are 2n such assignments. Enumeration is obviously not a practical

approach for problems with large numbers of variables.

The first computer program to search all possible assignments is due to Davis,

Logemann, and Loveland (1962). The algorithm uses unit clause and pure literal

rules as heuristics for choosing a variable. The algorithm assigns the value true to

any literal that appears by itself as a clause. When no such variable is available it

chooses one from the shortest non-unit clause. The chosen variable is added to the

current formula as a new unit clause, and the algorithm recurses. If the guess leads to

an unsatisfiable subproblem, the guess is reversed and the other subproblem is tried.

If both subproblems are unsatisfiable, then the problem is reported unsatisfiable.

The complexity of this algorithm is exponential in the number of variables. Some

simple algebraic reductions based on the pure-literal and subsumption rules allow

some branches of the tree to be avoided, but that does not significantly reduce the

complexity of the search.

Recently, much of SAT research has had the goal of reducing the constants or

the exponent in the exponential complexity of tree-search algorithms (Kullmann,

1998; Freeman, 1995; Wang, 1997; Zhang, 1997). These approaches have had some

success. Kullmann’s algorithm currently has the lowest exponent among the tree-

search algorithms, with complexity approximately O(2.5893N) for 3-SAT. However, the

number of steps is still exponential in the number of variables. The size of problems

that can be solved by these methods is still severely restricted.

Connection Search Algorithms

Connection methods also search all possible assignments, but are again implemented

differently. Connection calculi is presented in a rectangular grid of literals in which



CHAPTER 2. REVIEW OF THE LITERATURE 24

the columns represent the clauses of the term. A proof in a connection calculi is

an arrangement of arcs between the literals such that the connected graph spans

the entire grid, and each arc connects two complementary literals. The connections

between complementary literals represent applications of the resolution rule. Bibel

and Eder (1993) gives a good presentation of several variations of connection calculi.

The advantage of the connection methods is the ease of automating the search,

as compared to the methods using traditional formula to represent the term. The

difficulty with the connection methods is the large number of possible proofs that must

be searched. The number of possible arcs in a matrix of M clauses with N variables is

at only MN , so the size of a finished proof is small. However, the number of possible

sets of arcs that must be searched to find a proofs is 2MN . Hence, connection methods

are exponentially less efficient than even resolution methods.

Summary

None of the search algorithms is efficient. In each case, the difficulty arises from

either the size of the search tree or the size of the intermediate terms. H̊astad (1987)

showed that functions that can be expressed by polynomially bounded circuits at

each depth N > 1 require super-polynomial circuits at depth N − 1, even if some

variables are randomly restricted to constants. H̊astad’s result directly implies that

satisfiability algorithms based on resolution and/or model search cannot be efficient.

We will review the lower-bounds results in more detail in section 2.8.

2.3.2 Special Cases

Some efficient algorithms have been found for various specific subclasses of SAT

(Dantsin, 1997; Truemper, 1998). The review in Truemper (1998, Ch. 5) is both



CHAPTER 2. REVIEW OF THE LITERATURE 25

recent and very thorough. The subclasses for which polynomial algorithms are known

include 2-CNF, Horn, Balanced, and some others. These classes of problems include

some common problems. For example, Horn satisfiability problems include all (pure)

prolog programs. However, only a vanishingly small proportion of satisfiability prob-

lems possess such special structures (Franco, 1997).

2-CNF Formula

The class of 2-CNF propositions includes CNF formula in which each clause contains

at most two literals. The satisfiability of 2-CNF formula can be solved in polynomial

time, using an algorithm given by Evan, Itai, and Shamir (1976).

Evans algorithm is very simple, and consists essentially of applying resolution.

The satisfiability of every 2-CNF proposition can be solved in polynomial time even

by resolution. There are fewer than 4N2 distinct clauses of at most two literals in N

variables. A resolvent of two such clauses gives another such clause, so that set of

clauses is closed under resolution. Hence, at most 4N2 resolution steps are required

to generate all possible clauses, and then to inspect the resulting set of clauses to see

if it contains an empty clause.

Horn Formula

The class of Horn propositions includes CNF formula in which each clause contains

at most one positive literal. A second class of propositions, which can be converted to

Horn by reversing the signs of all variables, includes CNF formula in which each clause

contains at most one negated literal. Satisfiability of Horn formula can be solved in

polynomial time using an algorithm given by Dowling and Gallier (1984). That

algorithm, and variants of it, provide the basis for the logic programming language

Prolog.



CHAPTER 2. REVIEW OF THE LITERATURE 26

The class of hidden-Horn propositions include CNF formula which can be con-

verted to Horn by reversing the signs of some variables. An algorithm due to Lewis

(1978) recognizes hidden Horn formula. Several algorithms are known to determine

the subset of variables to reverse (Truemper, 1998).

Balanced Formula

Propositional terms can be represented by matrices. Each row represents a clause,

and each column represents a variable. If a positive (resp. negative) literal appears

in a clause, the corresponding matrix entry is 1 (resp. 0). A matrix is a cycle

matrix if it is connected, and has exactly two nonzero values in each row and in

each column. A cycle matrix is balanced if the sum of its entries is divisible by 4.

A general balanced matrices is a matrix in which every cycle submatrix is balanced.

Every linear solution of balanced matrices is integral (Chvátal, 1983; Schrijver, 1986).

Hence, if a proposition is represented by a balanced matrix, then linear programming

methods can be used to solve the satisfiability problem efficiently.

Single-Solution Formula

Dantsin (1997) defines the all-0 (resp. all-1) class of SAT problems includes problems

that are satisfied by setting all variables to value 0 (resp. 1). For these classes of

problems, the algorithm consists of simply trying the value to see if it satisfies the

problem. Of course, there are 2N such classes of special problems, corresponding to

2N possible assignments. While testing membership in any polynomial number of

these classes can be done in polynomial time, testing membership in all such classes

clearly requires exponential time.



CHAPTER 2. REVIEW OF THE LITERATURE 27

Size of Special Subclasses

Franco (1997) found that only a vanishingly small proportion of satisfiability problems

possess such special structures. For large problems, the probability that a randomly

selected problem has special structure goes to zero in the limit. Franco formalizes

this result in a theorem:

Theorem 1 (Franco 1977). For any fixed r > 4/(k(k − 1)), the probability that a

random formula is SLUR, q-Horn, extended Horn, CC-Balanced, or renamable Horn

tends to 0 as n → ∞.

The parameter k is the number of literals per clause. The parameter r is the

ratio M/N , where formulas have M clauses in N variables. For 3-SAT, we have

4/(k(k − 1)) = 2/3. Hence, for M > 2N/3, the theorem applies. SAT problems

with M ≤ N are trivially easy, and can be solved by a greedy method. The range of

problems with M > 2N/3 includes all of the interesting 3-SAT problems.

Decomposition Method

Truemper (1998) gives methods that detect sub-problems with special structure, and

decompose a larger problem to take advantage of the easily solved subproblems. The

decomposition technique allows some problems that do not have special structures to

be solved efficiently, if they have subproblems with special structure.

Even for problems that do possess easy subproblems, the problem of finding good

decompositions is a search problem. The problem of finding the best decomposition

is NP -hard. Truempers method uses several integer programming problems to find

decompositions. Hence, an NP problem is used as a subproblem in a method to solve

an NP problem. The method does not actually require the best decomposition, and

so it can use approximate solutions to these subproblems.



CHAPTER 2. REVIEW OF THE LITERATURE 28

Franco’s (1997) results on the frequency of problems with special structure apply

to subproblems as well as to whole problems. Hence, only a vanishingly small propor-

tion of subproblems have special structure. Truemper asserts that many important

real problems have special subproblems and can be solved by his method. In any

case, Truemper’s decomposition method is not a general algorithm, and cannot solve

all SAT problems efficiently.

Summary

Polynomial algorithms are known for some limited subclasses of satisfiability prob-

lems that have special structure. These classes of problems include some common

problems. Some problems can be decomposed into subproblems that can be solved

efficiently.

Such special cases account for only a vanishingly small proportion of satisfiability

problems. For random SAT problems, the probability that the problem can be solved

by the known efficient methods tends to zero as the size of the problem increases. In

the limit, the probability that any of these methods applies is essentially zero.

2.3.3 Algebraic Rewriting

Various algebraic approaches have also been attempted, generally grouped under the

name rewriting systems. In rewriting systems, rules are applied to reduce an algebraic

term to a unique minimal form relative to some term ordering. Le Chenadec (1986)

gives a concise catalog of rewriting results. Klop (1992) and Dershowitz and Jouan-

naud (1994) each give detailed treatments, with references to more recent results.

The earliest formal presentations of rewriting rules as processes of computation are

due to (Church, 1941). Rewriting is central to the λ-calculus and functional program-



CHAPTER 2. REVIEW OF THE LITERATURE 29

ming. Church’s lambda calculus is based on rewriting rules known as α-conversion

and β-conversion. Church and Rosser (1936) shows that λ-calculus is consistent by

showing the consistency of α and β conversion. The Church-Rosser theorem shows

that β-reduction allows exactly one normal form for every λ-expression. This Church-

Rosser property can be used to decide if two λ-expressions are β-equivalent.

Barendregt (1984) provides a full exposition of the theory of λ-calculus and the

Church-Rosser theorems. Hankin (1993) provides an accessible introduction. Salomaa

(1973) presents definitions of rewriting systems, and a definition of Turing Machine

in terms of rewriting systems. This simulation of an arbitrary Turing Machine by a

rewriting system shows that rewriting systems can simulate Turing machines.

The first explicit procedures for computing in term algebras using generators as

rewriting rules is due to Evans (1951). In rewriting, a few simple “rules” are applied to

a single copy of the problem, the goal being to maintain the value of the expression,

while reducing it to some canonical form. Dershowitz and Jouannaud (1994) is a

recent introduction to term rewriting. The notion of rewriting has been widely applied

to numerous algebraic systems other than λ-calculus, and many results have been

published (Jouannaud, 1987/1987; Lescanne, 1987; Dershowitz, 1989; Book, 1991,

1993; Hsiang, 1995; Ganzinger, 1996; Comon & Jouannaud, 1993; Heering, Mienke,

Möller, & Nipkow, 1993).

Confluence

A confluent term rewriting system is a rewrite system that solves the word problem

in an algebra by reducing terms that are semantically equivalent to terms that are

syntactically identical. The minimal form of a term is called a canonical form. Two

terms that are equal for all Herbrand interpretations are said to be equivalent, or

to be in the same equivalence class. Within each equivalence class, we must have



CHAPTER 2. REVIEW OF THE LITERATURE 30

some criteria to select which equivalent term is the canonical form of the equivalence

class. This ordering must have certain properties to be useful. In particular, every

term must be greater than any of its subterms, and the ordering must be stable

under substitution for variables. Orderings that satisfy these properties are called

simplification orderings (Dershowitz, 1987/1987).

The Church-Rosser theorem (Church & Rosser, 1936) asserts that there exists a

unique minimal normal form for certain systems of relations. When a rewrite system

is confluent, the rules may be applied in any order. For a given starting term, there

is exactly one irreducible normal form.

Definition 1 (Confluence). A rewriting system R said to be confluent iff For all

terms M,M1,M2 such that M →∗
R M1 and M →∗

R M2, there exists a term P such

that M1 →∗
R P and M2 →∗

R P .

The confluence property is a global property, and is difficult to check mechanically

because each rewriting may require multiple steps. There are too many combinations

to check. The property of local confluence is related to confluence by restricting the

divergent rewriting to a single application of a single rule.

Definition 2 (Local Confluence). A rewriting system R said to be confluent iff

For all terms M,M1,M2 such that M →R M1 and M →R M2, there exists a term P

such that M1 →∗
R P and M2 →∗

R P .

Newman’s lemma (Newman, 1942) allows us to check local confluence rather than

global confluence. Local confluence is much less difficult to check mechanically, be-

cause there are fewer combinations to be checked.

Lemma 1 (Newman’s Lemma). Let R be a noetherian rewriting system, then: R

is confluent iff R is locally confluent.



CHAPTER 2. REVIEW OF THE LITERATURE 31

Completion

Knuth and Bendix (1970) observed that any nonconfluence must reduce to some

elementary divergence between rules. Such a divergence results when two rules may

each rewrite the same term. The two rules need not rewrite the same occurrence of

the term. It is enough that they rewrite overlapping occurrences. These divergent

points are called critical pairs.

The Knuth-Bendix theorem gives an algorithm to test the local confluence of a list

of rules via the critical pairs. For any pair of rules, we can detect the critical pairs.

To show the local confluence of the list of rules, it suffices to show the confluence

of the critical pair members. By Newman’s lemma, local confluence implies global

confluence. So the Knuth-Bendix theorem and Newman’s lemma give an algorithm

to test the global confluence of a list of rules.

When a list of rules is not locally confluent, there exists at least one non-confluent

critical pair between two rules. The essential part of the Knuth-Bendix algorithm is

that the divergence can be eliminated by adding a new rule to the rewriting system.

Each critical pair may potentially generate a new rule. If a critical pair is resolved by

application of the existing rewriting rules to both sides, then no new rule is necessary.

If a critical pair is not resolved, a new rule is necessary.

Each new rule is created by orienting the reduced critical pair. The rule is oriented

according to a reduction ordering to assure that the rewriting system will remain

Noetherian. If the rule cannot be oriented, then the Noetherian induction would fail

to show termination. The completion algorithm may halt when an equation cannot

be oriented, loop indefinitely, or stop in success when all critical pairs are resolved.



CHAPTER 2. REVIEW OF THE LITERATURE 32

Negative Results for Rewriting

Convergent rewrite systems exist that reduce Boolean terms to canonical forms,

but the resulting terms have super-polynomial term size (Hsiang & Huang, 1997).

Hsiang’s canonical form is based on the “and” and the “exclusive-or” operators. Un-

fortunately, term rewriting cannot reduce terms of propositional algebra to any com-

pact canonical form, because the needed term ordering cannot exist (Quine, 1952;

Freese, Jezek, & Nation, 1993).

Hsiang (1983) found a convergent rewriting system for Boolean rings. Hsiang’s

canonical form is based on the “and” and the “exclusive-or” operators. The rules

are arranged so that they generates an exhaustive list of every possible satisfying

assignment, in the form of an exclusive-or of (potentially very many) conjunctions

of literals. The calculation of Hsiang’s canonical form is not an efficient algorithm,

because the size of the term increases exponentially with the number of variables.

Le Chenadec (1986) reports that (Fages, 1983) extended Hsiang’s result to Boolean

algebras by adding rules to eliminate the other operators. The result of Fages’ system

is also in exclusive-or form, so it is also not efficient.

Unfortunately, term rewriting cannot reduce Boolean terms to any compact canon-

ical form, because the needed term ordering cannot exist (Quine, 1952; Freese et al.,

1993). Quine showed that there is no complete set of reductions for free Boolean

algebras to conjunctive normal form, because there is no unique minimal set of prime

implicants. This follows from a demonstration that one Boolean function may be rep-

resented in CNF by multiple different irreducible terms, which are identical except

for a renaming of the variables. Because the terms are identical up to a renaming

of variables, Quine asserts that there is no reasonable criteria to select one over the

other as the canonical form of that function.



CHAPTER 2. REVIEW OF THE LITERATURE 33

Quine’s result implies that if the terms are kept in conjunctive normal form, then

the word problem for propositional logic cannot be solved by any finite rewriting

system. However, this does not eliminate the possibility that some other normal

form might be found. Freese et al. (1993) showed that there is no other normal

form that can work, and so no rewriting system can solve the propositional word

problem. Freese formalizes this result with a proof that there is no finite, convergent

term rewriting system for the equational theory of lattices. This does not conflict

with Hsiang’s result, because the theory of lattices does not include the exclusive-or

operator. This result shows that rewriting systems by themselves cannot efficiently

solve the SAT problem.

2.3.4 Randomized Algorithms

Various heuristic search algorithms for propositional satisfiability have been proposed

and tested. Much of artificial intelligence research has focused on developing efficient

heuristics for searching combinatorial structures. A variety of search heuristics are

surveyed by Aarts and Lenstra (1997) and Hochbaum (1995). The goal of search

heuristics is to avoid the exhaustive search, so that the computation may be finished in

feasible time. Examples of heuristic search algorithms include hill climbing, simulated

annealing and genetic algorithms.

Randomized algorithms are algorithms that receive as input both the problem to

be solved and a source of random bits that are used to make decisions (Motwani &

Raghavan, 1995). Hill climbing with random starting points, neural networks with

random starting states, simulated annealing with random state changes, and genetic

algorithms with random initial genes are all examples of randomized algorithms. The

theory of randomized search is based in probability theory, using tail inequalities and



CHAPTER 2. REVIEW OF THE LITERATURE 34

Chernoff bounds to assert high probability of finding a solution if one exists (Motwani

& Raghavan, 1995).

Randomized search algorithms for SAT are incomplete, because the random search

does not cover the entire Herbrand universe of the problem. Each incomplete search

algorithm has some probability of finding a satisfying solution, or witness, if the

function is satisfiable. However, that probability is less than one. Each incomplete

search algorithm has some nonzero probability of failing to find a witness when one

exists. Hence, none of these algorithms can prove that a SAT problem is unsatisfiable.

Other randomized algorithms have the goal of finding approximate solutions for

optimization problems. These are useful for some decision problems, if the decision

problem can be posed as an optimization problem. However, for SAT, the problem of

finding an approximate solution is as hard as that of finding exact solutions (Arora,

Lund, Motwani, Sudan, & Szegedy, 1998; H̊astad, 1997).

Randomized Algorithms for SAT

A number of randomized algorithms have been specifically designed for SAT. Each of

the randomized algorithms is incomplete. Most are concerned with direct search for

satisfying solutions, and are not capable of finding a proof of unsatisfiability. For prob-

lems which possess many solutions, the direct search for a witness is successful with

high probability. Heuristics to guide that search can increase the probability some-

what, or reduce the expected length of the search. One algorithm, by Løkkentangen

and Glover (1997), describes a method of using a heuristic algorithm to control pa-

rameters of another randomized method.

A large number of random search algorithms have been proposed. In each of these

algorithms, multiple random starting points are used, and some random decisions oc-

cur at various points in the search. Franco and Ho (1986) considered an algorithm



CHAPTER 2. REVIEW OF THE LITERATURE 35

that simply tries random truth assignments until it finds a satisfying truth assign-

ment. The GSAT algorithm is a hill-climbing algorithm that proceeds by randomly

flipping any variable that results in greatest decrease in the number of unsatisfied

clauses (Selman, Levesque, & Mitchell, 1992). The WSAT algorithm is a variant on

the GSAT algorithm that with probability p picks some random variable in some

unsatisfied clause, and with probability 1− p follows the GSAT rule (Selman, Kautz,

& Cohen, 1996). The SASAT algorithm is a similar hill-climbing algorithm, using

a simulated-annealing schedule for several control parameters (Spears, 1996). The

GRASP algorithm is a greedy randomized hill climbing algorithm, which adjusts

some parameters after each local search (Resende & Feo, 1996). The RandomUC al-

gorithm uses a local search in which the variables are ordered, and values are flipped

when a unit-clause is found under a partial substitution of the variables in a prefix of

that ordering (Zane, 1998). Zane also adds a preprocessing step that uses resolution

to expand the set of clauses, thereby increasing the probability that unit clauses occur

during the search.

All of these search algorithms quickly find satisfying solutions for SAT problems

that have large numbers of satisfying assignments. All of these algorithms require

exponential time for problems that have only one satisfying assignments. None of

the these algorithms is complete. No randomized search algorithm can determine

that a problem is unsatisfiable. For each of the randomized search algorithms, there

remains a possibility that the algorithm will fail to find a satisfying assignment that

does exist.

Løkkentangen and Glover (1997) describe a method of controlling randomized al-

gorithms, based on surrogate constraints. Surrogate constraints are extended clauses

or sums of clauses. A surrogate constraint is a linear combination of simple con-

straints, similar to the valid inequalities of linear programming. Løkkentangen and



CHAPTER 2. REVIEW OF THE LITERATURE 36

Glover use surrogate constraints to guide heuristic search. Initially, a vector of weights

w is chosen. The linear combination wTAx ≥ wT b of the problem constraints Ax ≥ b

controls the probabilities that are used in a randomized algorithm. The randomized

algorithm uses the probabilities to choose the variable to be assigned at each node

of the search tree, or to choose starting points for hill-climbing. After each iteration,

the index set of the violated constraints is used to change the weights w, giving new

probabilities.

Summary

Various randomized algorithms for propositional satisfiability have been proposed and

tested for SAT. We have listed a number of these randomized algorithms. None of

these is complete as a search algorithm. Løkkentangen and Glover (1997) observed

that randomized algorithms can be used to guide or control other algorithms.

2.3.5 Cutting Plane Algorithms

The satisfiability problem can be represented as a general integer programming

problem. Each clause
∨

i xi ∨
∨

j xj can be represented as a linear constraint

∑

i xi +
∑

j(1 − xj) ≥ 1. Using this representation, methods developed for integer

programming can be applied to satisfiability. Linear relaxation is a method for integer

programming that involves relaxing the domain constraint on the discrete variables.

Popular texts on linear and integer programming include those by Wolsey (1998),

Nemhauser and Wolsey (1988), Schrijver (1986), Chvátal (1983), Dantzig (1963), and

Dorfman, Samuelson, and Solow (1958/1987).

Two general classes of integer programming algorithms are called branch-and-

bound and cutting-plane. Branch-and-bound algorithms are tree-search algorithms,



CHAPTER 2. REVIEW OF THE LITERATURE 37

and so have exponential complexity due to the branching of the search tree. Cut-

ting plane algorithms are based on the derivation of valid inequalities that cut off

non-integral extrema of the feasible linear polytope (Chvátal, 1983; Gomory, 1963).

Hybrid algorithms are possible. Some branch-and-bound algorithms use weak cut-

ting plane algorithms to fathom nodes and prune the search tree (Joy, Mitchell, &

Borchers, 1997; Jünger et al., 1995).

After forming the linear relaxation of the SAT problem and choosing an objective

function, the linear relaxation can be treated as a linear program. Linear programs

can be solved by various algorithms. The most popular algorithm is the simplex

algorithm, based on pivot operations (Dantzig, 1963). In the pivoting algorithms for

linear programming, row operations similar to Gaussian elimination are used to find

the optimal basis.

Cutting plane algorithms for integer programming iteratively solve the linear re-

laxation to optimality, add a valid inequality as a new constraint, and repeat until

either an integral solution is found or no feasible linear solution exists. Valid inequali-

ties are generated so as to eliminate non-integral solutions of the linear program, while

retaining integral solutions. Gomory (1963) gave the first cutting-plane algorithm and

showed finite termination of that algorithm.

2.4 Reduction from SAT to Integer Program

Linear programming was developed in the 1950’s to solve problems of operations

research (Dantzig, 1963). The initial problems involved military logistics and network

design, but the methods were quickly found to be applicable to a wide variety of

economic problems. Popular texts on linear programming include those by Chvátal

(1983), and Dantzig (1963).



CHAPTER 2. REVIEW OF THE LITERATURE 38

In this section, we show the reduction from SAT to Integer Programming. In

sections 2.5 and 2.6, we will discuss methods that have been proposed to solve integer

programming problems.

2.4.1 The Integer Programming Problem

A linear programming problem consists of a linear objective function to be minimized

(resp. maximized) and a set of linear inequalities that constrain the feasible solutions.

maximize: CTX

such that: AX ≤ B

X ≥ 0

(2.1)

where C is an N-vector of constants, A is an M ×N matrix of constants, B is an M-

vector of constants, andX is anN vector of variables. The linear CTX is the objective

function. The vector inequality AX ≤ B expresses a set of linear constraints on the

permissible values of X . X ≥ 0 expresses that all variables must be non-negative. It

is common to omit the explicit statement of the non-negativity constraints.

It is customary to assume that the coefficients in a linear or integer programming

problem are integers. In the case where rational numbers are given, the entire array

can be multiplied by the least common multiple of the divisors. In the case where the

constants are irrational, rational approximations are used. This assumption allows

the arithmetic required by various algorithms to be performed easily.

The integer programming problem expresses the additional constraint that the



CHAPTER 2. REVIEW OF THE LITERATURE 39

solution values must be integers.

maximize: CTX

such that: AX ≤ B

X ≥ 0

X integer

(2.2)

2.4.2 Writing a SAT as an Integer Program

The satisfiability problem can be represented as a general integer programming prob-

lem (Karp, 1972; Garey & Johnson, 1979). Each Boolean truth value can be encoded

as an integer, with 0 representing false and 1 representing true. Using this encoding

of truth values, each conjunction of the satisfiability problem can be represented as

a linear inequality. Suppose we have a conjunction:

∨

i

xi ∨
∨

j

xj (2.3)

We can replace the conjunction by a linear inequality:

∑

i

xi +
∑

j

(1− xj) ≥ 1 (2.4)

It is clear that the set of xi ∈ {0, 1} that satisfy the inequality (2.4) encodes the set of

truth values that satisfy the clause (2.3). Multiplying by −1 and moving the constants

to the right-hand side allows us to rewrite the ≥ inequality as a ≤ inequality, suitable

for use as a constraint of an integer program.

∑

i

−xi +
∑

j

xj ≤ |j| − 1 (2.5)

Repeating the transformation for each clause in the SAT problem gives a set of in-

equalities for use as constraints of the integer program.



CHAPTER 2. REVIEW OF THE LITERATURE 40

To finish constructing the integer program, we need additional constraints to en-

force that the variables may take only the values that represent truth values.

xi ≤ 1

xi ≥ 0

Xi integer

(2.6)

Finally, we must choose an objective function, and state all of the inequalities. The

satisfiability problem does not require any particular objective function, so we may

freely choose the coefficient vector C. Suppose we choose to maximize the objective

function CTX . Finally, the SAT problem may be written as an integer program:

maximize: CTX

such that:
∑

i

−xi +
∑

j

xj ≤ |j| − 1,

for each clause
∨

i

xi ∨
∨

j

xj

xi ≤ 1, for each variable xi

−xi ≤ 0, for each variable xi

Xi integer

(2.7)

2.4.3 Writing a SAT as a Hitting-Set IP

There are various other methods of representing a SAT as an integer programming

problem. One method that is often used is to first reduce the SAT problem to a

hitting set problem, then represent the hitting-set problem as an integer program

(Karp, 1972; Garey & Johnson, 1979).

The hitting-set problem is given a finite set S, a set C of subsets of S, and an

integer K ≤ |C|. The hitting-set problem is feasible if and only if there is a subset

S ′ ⊆ S with |S ′| ≤ k such that S ′ contains at least one element from each subset in

C.



CHAPTER 2. REVIEW OF THE LITERATURE 41

The key to the reduction from SAT to hitting-set is to define a new variable to

represent the negation of each original variable. Let zi = xi for each i. Using the

convention of 0 representing false and 1 representing true, we have zi = 1 − xi. To

write the domain constraints, we require that for each i, at least one of xi or zi must

be true.

xi + zi ≥ 1

xi, zi ∈ {0, 1}
(2.8)

In the hitting set interpretation, these constraints directly encode the existence of a

set in C containing the elements xi and zi, for each i.

We then write a constraint for each clause in the SAT problem. Suppose the SAT

problem has a conjunction:

∨

i

xi ∨
∨

j

xj (2.9)

We replace the conjunction by a linear inequality:

∑

i

xi +
∑

j

zj ≥ 1 (2.10)

It is clear that the set of xi, zi ∈ {0, 1} that satisfy the inequality (2.10) encodes the

set of truth values that satisfy the clause (2.9). For each clause, the constraint (2.10)

encodes the existence of a set in C containing the elements xi and zj. Repeating the

transformation for each clause in the SAT problem gives a set of inequalities for use

as constraints of the integer program.

The domain constraints to enforce that the variables may take only the values

that represent truth values are not directly represented in the hitting set formulation.

It would be possible for some i to have both xi = 1 and zi = 1. The hitting-set

formulation uses the limit value k to limit the number of xi and zi that may be true.

The IP formulation of the hitting-set problem uses the objective function to find a



CHAPTER 2. REVIEW OF THE LITERATURE 42

feasible solution with the minimum sum of all of the variables. The complete integer

program is then:

minimize:
∑

i

xi +
∑

i

zi

such that:
∑

i

xi +
∑

j

zj ≥ 1 , for each clause
∨

i

xi ∨
∨

j

xj

xi + zi ≥ 1 , for each variable xi

(2.11)

The hitting set problem is solved affirmatively if there exists a feasible solution to

the integer program with objective value less than or equal to k. The SAT problem

in N variables is satisfiable if and only if there is a feasible solution to the integer

program (2.11) with objective value equal to N . For each variable xi, at least one of

xi or zi must be 1 in order to satisfy the constraint xi + zi ≥ 1. If for each i, only

one of xi or zi is nonzero, then the objective function has value N . If both xi and zi

must be 1 for some i to hit all of the clauses, then the objective value will be greater

than N .

The formulation of SAT as a set-cover problem, and the translation of the set-cover

problem as an integer program, is almost identical to the formulation as a hitting set

problem. The difference is that the set cover problem does not explicitly limit the

number of variables that may be true. The SAT problem in N variables is satisfiable

if and only if there is a feasible solution to the integer program (2.11) with objective

value equal to N .

2.5 Algorithms for Linear Programming

In this section, we give a very terse explanation of an algorithm for solving linear pro-

grams, similar to the simplex algorithm due to Dantzig (1963). Other variations of the

simplex algorithm exist (Chvátal, 1983). Also, other algorithms called interior-point



CHAPTER 2. REVIEW OF THE LITERATURE 43

methods exist for linear programming (Schrijver, 1986). For the present purpose, it

is enough to outline a simple algorithm. This material has been available in textbook

form for many years. Popular texts on linear programming include Schrijver (1986),

Chvátal (1983), Dantzig (1963), and Dorfman et al. (1958/1987).

Suppose we are given a linear programming problem:

maximize: CTX

such that: AX ≤ B

X ≥ 0

(2.12)

The linear function CTX is referred to as the objective function. The matrix

inequality AX ≤ B represents a set of linear inequalities,
∑

j aijXj ≤ Bi, for each j.

These linear inequalities are referred to as the constraints.

In the simplex approach to linear programming, the system of inequalities is first

converted to an equivalent system of linear equalities, and Gaussian elimination is

used to solve the system of linear equalities. Because the system of linear equalities

is under-constrained, it has multiple solutions. Dantzig’s major insight was that one

of these basic solutions is an optimal solution to the linear program. While other

solutions may exist, every optimal solution to the linear program is a basic solution

to the system of equalities.

2.5.1 Equality Conversion

The first step in solving a linear programming problem is to state it as a system

of linear equalities. This is accomplished in two steps: the objective function is

stated as an equality by defining a new variable equal to the objective value; and the

constraint inequalities are converted to equalities by adding a new slack variable Si

to each inequality.



CHAPTER 2. REVIEW OF THE LITERATURE 44

We first consider the objective function, CTX . To state the objective function as

an equality, we define a new variable Z as the value of the objective function. Then

we have:

Z − CTX = 0 (2.13)

We then consider the inequality constraints. Suppose we have an inequality:

AiX ≤ Bi (2.14)

where Ai is the i-th row of A, and Bi is the i-th element of B. To convert the

inequality (2.14) to an equality, we add a new slack variable Si. The slack variable is

a new variable that does not otherwise appear in the problem. The slack variable is

also constrained to be non-negative. The inequality can then be rewritten as:

AiX + Si = Bi (2.15)

The addition of a slack variable lifts the inequality to a higher-dimensional vector

space. There is a distinct slack variable for each inequality, so each inequality is

converted to a corresponding equality. For Si ≥ 0, the set of X that satisfy the

inequality (2.14) is identical to the set of X that satisfy the equality (2.15).

{X : AiX ≤ Bi, X ≥ 0} = {X : AiX + Si = Bi, X ≥ 0, Si ≥ 0} (2.16)

After converting the objective function and each inequality constraint to equalities,

we have the linear program (2.12) converted to the system of linear equalities:

Z − CTX = 0

AiX + Si = Bi, for i = 1, . . . ,M

X ≥ 0

(2.17)



CHAPTER 2. REVIEW OF THE LITERATURE 45

Hence, the linear programming problem is converted into finding the solution of the

equality constraints (2.17) that gives the greatest possible value for the objective

variable Z. This can be expressed:

maximize: Z

such that: Z − CTX = 0

AiX + Si = Bi, for i = 1, . . . ,M

X ≥ 0

Si ≥ 0

(2.18)

The constraints Z − CTX = 0 and AiX + Si = Bi can be combined into a single

vector equation by renaming of the variables. Let Xi+N ≡ Si, for 1 ≤ i ≤ M . Then

the linear programming problem can be written as:

maximize: Z

such that: Z − CTX = 0

AX = B

X ≥ 0

(2.19)

2.5.2 Basic Solutions

Assume that we have written the linear program as a set of linear equalities, such

as 2.19. Various solutions to the matrix equality AX = B are possible. A trivial

solution is given by:

Xi =















Bi−N , if (N + 1) ≤ i ≤ (M +N)

0, otherwise

(2.20)

In terms of the original variable names, this solution sets each slack variable Si equal to

the corresponding Bi, and all Xi to zero. This gives an initial solution with objective

value Z = CTX = 0. However, this trivial solution is not the only possible solution.



CHAPTER 2. REVIEW OF THE LITERATURE 46

Suppose we select a set of M variables X̂ ⊂ X . Let Â be the columns of A that

are the coefficients of those variables. Then, if Â is nonsingular, a basic solution of

AX = B is given by setting X̂ = Â−1B, and all other variables to zero. The basic

variables are the variables that appear in X̂ . All other variables are called non-basic.

Further, the matrix A has rank M , because there exists at least one non-singular

M ×M sub-matrix. Indeed, the M ×M identity matrix is a submatrix of A. This

identity matrix is the submatrix that is the coefficients of the slack variables in the

trivial solution.

The number of distinct basic solutions is determined by the number of distinct

non-singular M ×M submatrices of A. There are at most
(

M+N
M

)

such non-singular

sub-matrices.

2.5.3 Pivot Operations

Starting from the initial basic solution, subsequent steps of the simplex algorithm

seek to improve the solution. Iterations change the variables in the basis one at a

time, until an optimal solution is achieved or it is determined that no feasible solution

exists. Each iteration consists of selecting one non-basic variable to be added to the

basis, one basic variable to be removed from the basis, and some arithmetic to effect

the change of basis.

To change the basis, it is not necessary to compute the inverse of the new basis

submatrix from scratch. Instead, row operations similar to Gaussian elimination are

applied. Suppose that we want to introduce variable Xj to the basis, and remove

variable X̂i. We apply row operations similar to Gaussian elimination to generate a

unit vector in column j, with the 1 in row i. The element Ti,j is called the the pivot

element. The operation of changing the basis is called a pivot.



CHAPTER 2. REVIEW OF THE LITERATURE 47

In the pivot operation, row i is divided by Ai,j , to generate a 1 in position i, j.

Then multiples or row i are added to each of the other rows to generate 0 in each

other position of column j. The same operations are performed on the vector B. The

objective function CTX = Z is treated as one of the rows, to generate a 0 in the j-th

element of C.

These operations are justified by the rules of arithmetic, which allow us to derive

new equations from existing equations by addition or by multiplication. The following

inference rules encode these derivations:

Addition
∑

vixi = P
∑

wixi = Q
∑

(vi + wi)xi = (P +Q)
(2.21)

Multiplication For c 6= 0 :
∑

vixi = P
∑

(c× vi)xi = (c× P )
(2.22)

The addition rule (2.5.3) says that a new equation may be derived by adding two

existing equations. The multiplication rule (2.5.3) says that a new equation may be

derived by multiplying every constant in an existing equation by the same constant

c. Note that negative constants c are allowed.

2.5.4 Integer Only Methods

Suppose that all of the coefficients and constants in an initial linear program are

rational numbers. Those rational numbers can be represented with a common de-

nominator, say d. Then, after a pivot operations, all of the coefficients and constants

in the resulting linear program are also rational numbers. Further, if the coefficient

of the pivot element has value p, the resulting numbers can all be represented with a

common denominator pd.



CHAPTER 2. REVIEW OF THE LITERATURE 48

At each pivot, the common denominator is multiplied by the pivot value. To see

this, consider a 2× 2 submatrix of coefficients:

Ai,j Ai,l

Ak,j Ak,l

(2.23)

We will pivot on the element Ai,j. The k’th row is representative of rows other than

the one containing the pivot element. The l’th column is representative of columns

other that the one containing the pivot element. After the pivot, the submatrix

becomes:

1
Ai,l

Ai,j

0
Ak,lAi,j−Ak,jAi,l

Ai,j

(2.24)

Note that each element of the resulting matrix can be written with denominator Ai,j:

Ai,j

Ai,j

Ai,l

Ai,j

0
Ai,j

Ak,lAi,j−Ak,jAi,l

Ai,j

(2.25)

The common denominator is closely related to the determinant of a submatrix of

the coefficients. Gomory (1963) gives a concise algebraic proof, and Schrijver (1986)

gives a good account of the historical development. Suppose the initial problem has

constraints Ax = B, and after some pivot operations the problem has constraints

Āx = B̄. A sequence of pivots is just a sequence of steps of Gaussian elimination.

Then there is a square matrix D such that DA = Ā and DB = B̄, and the common

denominator is just the determinant of D.

Clearly, it would be possible to multiply each equation by the common denom-

inator, so that the linear program is represented as an equivalent system of linear

equations with integer coefficients and constants. The common denominator may

be kept separately, so that the rational numbers may be constructed whenever re-



CHAPTER 2. REVIEW OF THE LITERATURE 49

quired. The advantage of this method is that linear programming algorithms may be

implemented using only integer arithmetic.

2.5.5 Tableau Representation

Implementations of the simplex algorithms use a convenient data structure, called

a tableau. A tableau is just a M + 1 × M + N + 1 matrix, with some auxiliary

information. A simplex tableau stores all of the information that is needed in the

simplex algorithm, in a data structure that is more compact and more convenient for

programming.

Consider the linear program:

maximize: Z

such that: Z − C1X1 − . . . − CNXN = 0

S1 + A1,1X1 + . . . + A1,NXN = B1

S2 + A2,1X1 + . . . + A2,NXN = B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SM + AM,1X1 + . . . + AM,NXN = BM

(2.26)

The tableau representation simply dispenses with the repetitive syntax and vari-

able names, and uses a single matrix to keep track of all of the coefficients. The rows

and columns are indexed starting from zero. Row 0 of the tableau represents the

objective function. Rows 1 through M represent the individual constraints. Column

0 represents the B vector, while columns 1 through M +N represent the individual

variables. The objective variable Z is not represented in the tableau. The linear

program (2.26) is represented in a tableau as follows:



CHAPTER 2. REVIEW OF THE LITERATURE 50



























0 −C1 −C2 . . . −CN 0 0 . . . 0

B1 A1,1 A1,2 . . . A1,N 1 0 . . . 0

B2 A2,1 A2,2 . . . A1,N 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BM AM,1 AM,2 . . . AM,N 0 0 . . . 1



























(2.27)

The row operations of Gaussian elimination can be applied directly to the tableau

matrix. This tableau format is very convenient for computation. However, it is not

the smallest representation for the information. For very large problems, another

optimization is available to further reduce the size of the tableau.

Note that the tableau contains the M × M identity matrix as a submatrix. In

the simplex algorithm, the tableau always contains the M ×M identity matrix as a

submatrix. In cases where M is large, the identity matrix requires a large amount of

storage. It is not necessary to actually store that constant submatrix. It is only nec-

essary to provide storage for the columns that are coefficients of non-basic variables.

To keep track of which columns are actually stored in the reduced tableau, it

is also necessary to keep two vectors of variable names. One keeps the indexes of

the basic variables, the other keeps the indexes of the non-basic variables. These

vectors of variable indexes (or names) are the auxiliary information. The resulting

data structure consists of one matrix of coefficients and two vectors of variable names.

The pivot algorithm using the reduced tableau is complicated by the need to exchange

variable names between the basis and non-basis vectors, and by the arithmetic of

generating in the pivot column the coefficients of the new nonbasic variable. However,

it is clear that an actual implementation could use the reduced tableau.



CHAPTER 2. REVIEW OF THE LITERATURE 51

2.5.6 The Primal Simplex Algorithm

We are now ready to state the primal simplex algorithm. We suppose that the problem

is given as a system of equalities and has been placed into a tableau T as presented

in formula (2.27) of subsection 2.5.5. For the primal algorithm, we further suppose

that the initial solution is feasible. That is, we have Ti,0 ≥ 0 for 1 ≤ i ≤ M .

The essential idea of the simplex algorithm is very simple. If any Cj is positive for

a non-basic variable Xj , then the objective function can be increased by increasing

the value of Xj . The objective function is stored in row 0 of the tableau, T0,j = −Cj ,

so the algorithm looks for negative values in row 0 of the tableau. If any are found, the

algorithm considers the pivot steps that would bring Xj into the basis, and chooses

one that preserves the feasibility of the solution. Figure 2.1 shows the primal simplex

algorithm.

The choice in step 1 of a variable to enter the basis is important. If a correct choice

is always made, then the simplex algorithm terminates after at most M iterations.

However, it is not easy to make such correct choices. Dantzig’s original simplex

algorithm included a deterministic procedure to choose the entering variable. That

procedure gives good average performance (Smale, 1983). However, in the worst-case

it requires an exponential number of steps. Klee and Minty gave an example in 1972

for which Dantzig’s algorithm requires an exponential number of steps (Schrijver,

1986, pp. 139). Recently, randomized simplex algorithms have been developed which

are both simple and polynomial (Kalai, 1992; Gärtner & Ziegler, 1994). A randomized

algorithm just chooses randomly in step 3 from among all j̄ such that T0,j < 0.

Polynomially bounded algorithms for linear programming do exist. Khachiyan

showed in 1979 an ellipsoid method that runs in polynomial time (Schrijver, 1986,

ch. 13). However, in practice such methods are rarely used because they are so



CHAPTER 2. REVIEW OF THE LITERATURE 52

Figure 2.1: Primal Simplex Algorithm

1. (Test for optimality.) If T0,j ≥ 0, for 1 ≤ j ≤ M + N , then stop. The

current solution is optimal.

2. (Choose a variable to enter the basis.) Choose an index j̄ such that

1 ≤ j̄ ≤ M +N and T0,j < 0.

3. (Test for unbounded solution.) If Ti,j̄ < 0 for 1 ≤ i ≤ M , then fail. An

unbounded solution exists.

4. (Choose a basis variable to exit the basis.) Choose an index ī with

Tī,0/Tī,j̄ = min(Ti,0/Ti,j̄), for Ti,j̄ ≥ 0.

5. (Pivot to the new basis.) Divide each element of row ī by Tī,j̄ . For

each other row k 6= ī, subtract Tk,j/Tī,j̄ times row ī from row k. This

generates a 1 in tableau position Tī,j̄, and a 0 in tableau position Tī,j̄,

for each k 6= ī.

6. Go to step 1.



CHAPTER 2. REVIEW OF THE LITERATURE 53

complex. In practice, Dantzig’s original algorithm gives good performance with high

probability, and randomized algorithms give good performance with probability 1.

2.5.7 Duality

Given any linear program, there is another linear program that is closely related to

the first. In the context of this relation, the first linear program is referred to as the

primal, while the second is referred as thedual. This section follows the presentation

of Chvátal (1983, ch. 5). Suppose the primal linear programming problem is:

maximize: CTX

such that: AX ≤ B
(2.28)

The dual linear program is defined using the same set of coefficient vectors and a new

set of variables. Using variables Yi the dual problem is:

minimize: BTY

such that: ATY ≥ C
(2.29)

We can write the dual linear program in standard form by multiplying the objective

by −1 to express the dual program as a maximization problem, and multiplying the

constraints by −1 to express them using ≤ relations. Then the dual linear program

can be written as:

maximize: −BTY

such that: −ATY ≤ −C
(2.30)

It is easy to see that the dual of the dual is identical to the primal linear program.

To see this, we write the dual of the linear program 2.30:

minimize: − CTX

such that: − AX ≥ −B
(2.31)

Then we rewrite the dual of the dual in standard form, as a maximization problem

with ≤ constraints, we obtain exactly 2.28.



CHAPTER 2. REVIEW OF THE LITERATURE 54

There are several very interesting symmetries between the primal and the dual

problem. Recall that a basic solution of the primal problem, or primal solution, is

said to be optimal if Cj ≤ 0, for1 ≤ j ≤ N . A primal solution is said to be feasible if

Bi ≥ 0, for1 ≤ i ≤ M . If all Cj ≤ 0 and all Bi ≥ 0, then the primal solution is both

optimal and feasible.

By symmetry, a basic solution of the dual problem, or dual solution, is said to

be optimal if Bi ≥ 0, for1 ≤ i ≤ M . A dual solution is said to be feasible if

Cj ≤ 0, for1 ≤ j ≤ N . If all Cj ≤ 0 and all Bi ≥ 0, then the dual solution is both

optimal and feasible.

A variety of theorems are available describing the relation between the primal and

dual problems. Every feasible solution of the primal LP (2.28) provides a lower bound

on the optimal (minimal) feasible value of the dual (2.29), and visa-versa. The proof

of these bounds is particularly nice:

CTX =
n
∑

j=1

CjXj ≤
n
∑

j=1

(

m
∑

i=1

Ai,jYi

)

Xj =
m
∑

i=1

(

n
∑

j=1

Ai,jXj

)

Yi ≤
m
∑

i=1

biyi = BTY

(2.32)

A stronger duality theorem is due to Gale, Kuhn, and Tucker (Chvátal, 1983, pp.

57).

Theorem 2. If the primal LP has an optimal feasible solution X, then the dual has

an optimal and feasible solution Y such that CTX = BTY .

The proof of the strong form of the duality consists of constructing an optimal

and feasible solution to either problem, by using slack variables, and showing that

the dual of that solution is a feasible and optimal solution to the other problem.

By observing the symmetries, it is easy to verify that optimal solutions of the

primal problem correspond exactly with feasible solutions to the dual problem, and

optimal solutions of the dual problem correspond with feasible solutions of the primal



CHAPTER 2. REVIEW OF THE LITERATURE 55

problem. If no feasible solution exists for one problem, then no optimal solution exists

for the other, which must then be either unbounded or infeasible. It is possible that

no feasible solution exists for either problem.

2.5.8 The Dual Simplex Algorithm

The dual simplex algorithm can be applied when the initial solution is optimal, but

not feasible. The dual simplex algorithm solves the dual problem to optimality.

However, it is not necessary to perform the matrix transposition. By swapping the

indexes in the primal algorithm, a dual algorithm can be derived that solves the dual

optimization problem using the primal tableau. Figure 2.2 shows the primal simplex

algorithm.

2.5.9 The Primal-Dual Algorithm

A solution is optimal if Bj ≥ 0, for1 ≤ j ≤ M + N . A solution is feasible if

Ci ≤ 0, for1 ≤ i ≤ M . The initial solution X̂ = Â−1B may suboptimal, infeasible,

or both. In the initial tableau, some of the variable values T 0
i,0 may be negative,

violating the non-negativity constraint of the primal simplex algorithm. Further,

some of the T 0
i,0 may be negative, violating the non-negativity constraint of the dual

simple algorithm.

The primal-dual algorithm is a variant algorithm that uses both primal and dual

pivots. The primal-dual algorithm does not require that the T 0
i,0 (resp. T 0

i,0) tableau

entries must be non-negative. Instead, it uses dual pivots to obtain non-negativity in

the T 0
i,0 without regard to the T 0

i,0, then primal pivots to obtain the solution.

The pivoting procedure proceeds in two phases. In the first phase, dual pivots

are applied as in the dual simplex algorithm until a feasible solution is found, or it



CHAPTER 2. REVIEW OF THE LITERATURE 56

Figure 2.2: Dual Simplex Algorithm

1. (Test for Feasibility) If Ti,0 ≥ 0, for 1 ≤ i ≤ M , then stop. The current

solution is feasible.

2. (Choose a variable to exit the basis) Choose an index ī, where 1 ≤ ī ≤ N ,

and Tī,0 < 0.

3. (Test for No Feasible Solution) If Tī,j ≥ 0 for 1 ≤ j ≤ N , then fail. An

unbounded solution exists.

4. (Choose a variable to enter the basis) Choose an index j̄ with T0,j̄/Tī,j̄ =

min(T0,j/Tī,j), for Tī,j ≥ 0.

5. (Pivot to the new basis.) Divide each element of row ī by Tī,j̄ . For

each other row k 6= ī, subtract Tk,j/Tī,j̄ times row ī from row k. This

generates a 1 in tableau position Tī,j̄, and a 0 in tableau position Tī,j̄,

for each k 6= ī.

6. Go to step 1.



CHAPTER 2. REVIEW OF THE LITERATURE 57

is determined that no feasible solution exists. In the second phase, primal pivots are

applied as in the primal simplex algorithm to find the optimal feasible solution, or to

determine that an unbounded solution exists.

2.6 Algorithms for Integer Programming

Various algorithms for integer programming have been proposed. Search algorithms

are commonly used for integer programming, but suffer from the same combinatorial

explosion as search algorithms for satisfiability. Indeed, the integer programming

problem is polynomially reducible to SAT (Garey & Johnson, 1979, pp. 245). The

other major approach to integer programming uses a class of algorithms called cutting

plane algorithms.

Cutting plane algorithms for integer programming avoid the search. In cutting

plane algorithms, the integer program is relaxed to a linear program, which is solved as

a subproblem. Additional valid inequalities are added to the linear program to elim-

inate non-integral solutions of the linear program, while retaining integral solutions.

Each addition of a new valid inequality increases the size of the linear program, which

must then be solved as a new subproblem. Typically, many iterations are required.

Given a integer programming problem with constraints Ax ≥ b, x ∈ In, an inequal-

ity cTx ≥ d is a valid inequality if and only if cT x̄ ≥ d for all x̄ ∈ {x|Ax ≥ b, x ∈ I}.

That is, every integral solutions of the constraints is also a solution of the valid in-

equality. If the integer program is unsatisfiable, then no integral solutions exist, and

every inequality is a valid inequality.

A valid inequality is called a cutting plane with respect to a point y if in addition

we have cTy < d. Geometrically, a cutting plane separates the point from all of the

integral solutions. The point y is a non-integral solution of the original constraints,



CHAPTER 2. REVIEW OF THE LITERATURE 58

and the cutting plane provides a new constraint that excludes the non-integral point.

A new valid inequality may be derived by multiplying an existing valid inequality

by a positive constant, or by addition of existing valid inequalities, just as in linear

algebra. However, the key to the cutting plane algorithms is to eliminate non-integral

vectors from the solution set of the linear program. This is done by introducing

cutting planes. Two principle methods for deriving new cutting planes are provided

by Gomory and Chvátal (Gomory, 1963; Chvátal, 1983).

2.6.1 Gomory Cutting Planes

Gomory’s derivation of cutting planes uses modular arithmetic. For any set of equa-

tions, the equations hold also in the algebraic module defined by those equations for

any modulus. That is, each equation implies that a set of modular equivalences hold,

and the modulus may be freely chosen. If we have an equation:

∑

i

aixi = b (2.33)

where the ai and b are integers, then for every integer modulus d, all integral values

of x that satisfy the inequality also satisfy:

∑

i

aixi ≡ b (mod d) (2.34)

From this, Gomory derives the linear inequality:

∑

i

−(ai (mod d))xi ≤ −(b (mod d)) (2.35)

Gomory’s actual derivation is quite intricate. However, the actual concept is relatively

simple, and so simplified presentations appear in various textbooks (Schrijver, 1986;

Nemhauser & Wolsey, 1988; Wolsey, 1998). In particular, we may choose modulus



CHAPTER 2. REVIEW OF THE LITERATURE 59

(mod 1). This has the effect of keeping only the fractional part of each coefficient.

The simplified derivation starts from an equality:

∑

i

aixi = b (2.36)

By some simple analysis, we may derive:

∑

i

⌊ai⌋xi ≤ ⌊b⌋ (2.37)

Then subtracting 2.36 from 2.37, we obtain:

∑

i

(⌊ai⌋ − ai)xi ≤ ⌊b⌋ − b (2.38)

If we define a function to extract the fractional part of a coefficient: f(x) = x− ⌊x⌋,

Gomory’s cutting plane may be written as:

∑

i

−f(ai)xi ≤ −f(b) (2.39)

The presentation using (mod 1) is equivalent to the presentation using arbitrary

modulus, because the original equation may be multiplied by any desired positive

rational number before taking the cut. That is, for each λ > 0, we may multiply the

equality by λ,

∑

i

λaixi = λb (2.40)

and then use that inequality to derive the cut

∑

i

−f(λai)xi ≤ −f(λb) (2.41)

For an arbitrary modulus d, the equivalent cut is derived by setting λ = 1/d. Then we

have f(λai)/λ = f(ai/d)× d = ai (mod d), and similarly f(λb)/λ = f(b/d)× d = b

(mod d). So equation 2.41 is equivalent to 2.34, if we choose λ = 1/d.



CHAPTER 2. REVIEW OF THE LITERATURE 60

Gomory showed that the addition of these inequalities to a linear program cuts off

some non-integer solutions of the linear program. In particular, each new inequality

2.39 is an unsatisfied constraint, because the constant −f(λb) on the right-hand side

is negative. Hence, a dual-simplex algorithm may be used to find again a feasible

solution. Since each added cut properly reduces the polytope without eliminating

any integral solutions, we eventually obtain the integral hull of the polytope, and

the optimal solution of that integer hull is an integer optimal solution of the original

problem.

2.6.2 Chvátal Cutting Planes

Chvátal gave a simplified version of cutting plane derivation, and proved that the

simplified version is complete. Given an inequality:

∑

i

aixi ≥ b (2.42)

with the domain restriction xi ∈ I, Chvátal derives a cutting plane by first rounding

the coefficients:

∑

i

⌈ai⌉xi ≥ b (2.43)

Rounding the coefficients up to the next integer can only increase the left hand side,

so every solution of (2.43) is also a solution of (2.42). Now, because the variables are

all constrained to integer values, the left-hand side of (2.43) must be integral. Hence,

we may also round the right-hand side:

∑

i

⌈ai⌉xi ≥ ⌈b⌉ (2.44)

Chvátal showed that every integer solution of (2.44) is also a solution of (2.42), and

that there exists a valid derivation for every valid inequality. It is interesting that the



CHAPTER 2. REVIEW OF THE LITERATURE 61

usual derivation of Gomory’s cutting planes actually uses Chvátal ’s cutting planes

as an intermediate step.

The completeness theorem states that every valid inequality can be derived using

only Chvátal -style cutting planes, multiplication of inequalities by positive numbers,

and addition of inequalities. It is significant that the completeness theorem only

asserts that a derivation exists for every valid inequality, but does not say anything

about the length of the derivation. This completeness proof gave rise to the notion

of cutting-plane proofs.

2.6.3 Basic Cutting Plane Algorithm

Gomory (1958) provided the original cutting plane algorithm. Gomory (1963) gives a

full development with a proper proof of finite termination. Gomory’s algorithm finds

integral solutions to linear programs by adding cutting planes to the linear program

one at a time. Figure 2.3 gives Gomory’s cutting plane algorithm.

Subsequent algorithms using cutting planes have largely followed Gomory’s orig-

inal algorithm. The principle differences between cutting plane algorithms are in the

methods used to select the row in step 5, and the methods used to actually construct

the cutting plane from that row in step 6.

During the solving of a linear program, all of the values in the tableau can be

expressed using a common denominator, which is the product of all of the pivot

elements. (Each pivot step divides by the pivot element, and hence multiplies the

common denominator by the pivot element.) The usual sequence of steps in cutting

plane algorithms is to keep the linear program fully solved at all times, and to add

cutting planes and use dual pivots to eliminate the fractions only when the fully

solved linear program contains fractional values.



CHAPTER 2. REVIEW OF THE LITERATURE 62

Figure 2.3: Gomory’s Dual Cutting Plane Algorithm

1. Construct the tableau T of the linear programming problem.

2. Solve the linear programming problem using the dual simplex algorithm.

3. If the solution B = (T0,1, . . . , T0,M) is integral, stop. (The optimal inte-

gral solution has been found.)

4. If no feasible solution exists, stop. (No integral solution exists.)

5. Select a row to use to generate the cut. Let i be the index that row.

(One possible rule is to use the index of the first non-integral component

of B.)

6. Generate a new cutting plane from the i’th equation:

n
∑

j=1

−f(Ti,j)xj + s = −f(Ti,0)

where f(y) is the fractional part of y, and s is a new slack variable.

7. Adjoin this new cutting plane to the tableau as a new row. Increment

M , the count of rows in the tableau. Then go to step 2.



CHAPTER 2. REVIEW OF THE LITERATURE 63

Gomory notes that the common denominator D is multiplied by the pivot element

at each pivot step. With D = 1, the matrix is all integer, but with D 6= 1, the matrix

cannot be all integer.

In Gomory’s second finiteness proof, Gomory suggests a variation of the method.

In this variation, the use of primal pivots, dual pivots, and the addition of cutting

planes may be interspersed, rather than occurring in strict sequence (Gomory, 1963,

pp. 290). In the proof, a method is suggested in which cutting planes and dual pivots

are applied whenever the common denominator exceeds some threshold.

Whenever a cutting plane is added, and a pivot is performed using one of the

fractions in the cutting plane as the pivot element, the value of D is reduced. After

some finite number of cutting planes and dual pivots, the denominator is again reduce

to the threshold. Some logic concerning the sequence of denominator values suffices to

show that the algorithm finds an integer solutions, which is assumed to exist. Gomory

credits E. M. L. Beale for a suggestion that fractional values might be eliminated

immediately whenever they appear. That algorithm adds cutting planes whenever

the denominator D is not 1.

The weakness of this proof is that it assumes the existence of an integer solution.

Because of this weakness, the algorithm that is implicit in this proof has been largely

ignored by the integer programming community.

Empirical Experience with Cutting Plane Algorithms

Early cutting-plane algorithms for integer programming seem to require large numbers

of iterations, which in turn require solving a large number of large linear-programming

subproblems. This empirical inefficiency was observed very early, but very few results

were published to either demonstrate or explain the difficulty.

As a result, cutting-plane algorithms were quickly dismissed as too inefficient, and



CHAPTER 2. REVIEW OF THE LITERATURE 64

most subsequent research on integer programming has concentrated on branch-and-

bound approaches.

A few authors attempted to explain the difficulty. Jeroslow and Kortanek (1971)

shows that pathological examples of integer programs exist such that Gomory’s frac-

tional cutting plane algorithm converges very slowly, if it is implemented using finite-

precision arithmetic. For any given n, there exists an integer program with only two

variables for which Gomory’s algorithm requires at least n iterations. The problem

occurs when a linear solution has a term with coefficient −1/t for large t, so the

cutting plane has a coefficient (t−1)/t, and the pivot on that coefficient makes a new

term −1/(t− 1). If −1/(t− 1) gets rounded −1/t by the finite-precision arithmetic,

then O(t) iterations are needed to eliminate the fractions.

The results of Jeroslow and Kortanek apply to a large class of fractional cutting-

plane algorithms. However, the cutting planes considered by Jeroslow and Kortanek

do not include all possible cutting planes. In this article, they consider only Gomory

cuts with λ = 1. To be fair, they report that they completed a proof for a larger class

of algorithms using more general cutting planes, but were convinced by the editor to

present only the simple case in the published article. Even with these restrictions,

Jeroslow and Kortanek demonstrated that the use of finite precision (floating-point)

arithmetic could be a significant source of inefficiency in fractional cutting plane

algorithms.

In subsequent literature, some attempts have been made to reduce the inefficiency,

even though the causes were not fully understood.



CHAPTER 2. REVIEW OF THE LITERATURE 65

2.6.4 The Method of Decreasing Congruences

Gondran (1973) presents a method of decreasing congruences, which is similar to

the algorithm that is implicit in Gomory’s second finiteness proof. The algorithm is

also reported in english by Minoux (1983/1986). The basic idea is rather elementary.

Suppose an initial integer program has integer coefficients. The linear relaxation of

that integer program is solved to obtain a result that is optimal and feasible, but has

non-integer values.

The basic idea is elementary. Suppose an initial integer program has integer

coefficients, and we solve linear relaxation to obtain a result that is optimal and

feasible but has non-integer values. Using Gomory’s (1963) integer-only method, the

numbers in that solution tableau have a common denominator which is the product

of pivot elements. The method of decreasing congruences eliminates the fractions by

decreasing the common denominator until it reaches one. The decrease is obtained

by adding Gomory cutting planes, and performing pivots using pivot elements with

value n/d < 1. The method is as follows:

1. If the solution is in integers, stop.

2. Generate a Gomory cutting plane, and add it to the tableau.

3. Perform exactly one dual-simplex pivot, using a pivot element p/d < 1 (i.e.

with numerator n < d).

4. goto step 1.

The algorithm as presented by Minoux also incorporates a heuristic to look for an

integral solution, before step 2. If an integral solution is found, then the algorithm

stops. That heuristic may avoids some final iterations, but does not seem essential

to the correctness of the algorithm.



CHAPTER 2. REVIEW OF THE LITERATURE 66

In the method of decreasing congruences, the fractions are eliminated because

the sequence of common denominators is strictly decreasing. At each iteration, the

common denominator is multiplied by (n/d). Now, n/d ≤ (d − 1)/d < 1, so the

algorithms strictly reduces the common denominator at each step. Gondran provided

empirical results that the average number of iterations required to obtain an integer

solution is log2(d), where d is the common denominator, if the best available cut is

used at each step.

However, the method can result in some constraints becoming infeasible. If some

constraints are infeasible after all fractions are eliminated, then additional iterations

of the dual simplex method are required. These additional pivots may introduce

fractions, which then must be eliminated by another application of the decreasing

congruences method. Finite termination is assured because a finite number of cutting

planes is sufficient, just as in other cutting plane methods. Because the number of

cutting planes can be large, decreasing congruences is not an efficient algorithm for

general integer programming.

2.6.5 Finding Strong Cutting Planes

There has been relatively little research on cutting plane algorithms for general integer

programming, other than applications to specific problems. The widely held belief

that cutting plane algorithms are inherently inefficient seems to have discouraged

most research toward finding better cutting plane algorithms.

Blair (1976) gives two methods for deriving new valid inequalities from systems

of linear inequalities. Given a system of linear inequalities Ax ≥ b, a new inequality

∑

tixi ≥ R can be linearly deduced iff there are Θ1, ...,Θm ≥ 0 and γ1, ..., γn ≥ 0

such that
∑m

j=1 ajiΘj − γi ≤ ti and
∑m

1 bjΘj −
∑n

1 γj ≥ R. The linear deduction



CHAPTER 2. REVIEW OF THE LITERATURE 67

rule is equivalent to finding a weighted sum of the inequalities
∑

aijxj ≥ bi and the

inequalities −xj ≥ −1. Blair’s nameless rule allows a new valid inequality to be

deduced from two similar inequalities: If t1x1 + t1x2 + . . .+ sxk + . . .+ tnxn ≥ P and

t1x1+t1x2+. . .+rxk+. . .+tnxn ≥ T then t1x1+t1x2+. . .+(r+P−T )xk+. . .+tnxn ≥

P .

Vizvári (1989) gives two methods to find strong Gomory cuts, and several excellent

definitions. The cut
∑

j âj (mod d)xj ≥ b̂ (mod d) is a strengthening of the Gomory

cut
∑

j aj (mod d)xj ≥ b (mod d) if b̂ (mod d) ≥ b (mod d) and âj (mod d) ≤ aj

(mod d), and we have at least one strict inequality.

The rank of a Gomory cut
∑

j aj (mod d)xj ≥ b (mod d) is the smallest nonneg-

ative integer t such that the equation
∑

j ajxj = d+ td has at least one nonnegative

integer solution. For t > 0, the equality gives a stronger cut than the original. Vizvári

(1989) gives a dynamic programming algorithm to solve for the t giving the strongest

cut, for each modulus ∈ {1 . . . d}, in one pass for all moduli. The running time of the

algorithm is linear in d, the denominator. Because the denominator can be exponen-

tial in the number of pivots/steps used in the cutting-plane algorithm, this algorithm

is not efficient. However, if the algorithm is interrupted early, a partial result can be

useful.

In a second method, the problem of choosing a multiplier is considered. The

cut
∑

j âj (mod d)xj ≥ b̂( mod d) is a λ-strengthening of the Gomory cut
∑

j aj

(mod d)xj ≥ b (mod d) if λb̂ (mod d) ≥ b( mod d) and λâj (mod d) ≤ aj (mod d),

and we have at least one strict inequality. The theorem shows that if there is a λ-

strengthening, then there is a λ-strengthening such that λ = ⌈pd
b
⌉−1, for some index

p ∈ {1 . . . s}, where s is the rank of the Gomory cut. This theorem allows the search

for multipliers to be constrained to a finite set of multipliers.

Ceria, Cornuéjols, and Dawande (1995) consider the problem of finding a linear



CHAPTER 2. REVIEW OF THE LITERATURE 68

combination of those cutting planes to give the strongest possible cut. The approach

uses rational coefficients with a fixed denominator. The procedure first maximized

the fraction of the constant on the right-hand side, using a nice observation about

the gcd of the coefficients. Then it minimizes the fractions of the coefficients on the

left-hand side of the cut, one at a time. This minimization uses a result of J.B. Rosser

on the solution of Diophantine equations. Each ordering of the left-hand variables

gives a different cut.

Ceria et al. (1995) implemented their algorithm only for the case with up to three

inequalities, requiring only three weights. This is because the method requires solving

a combinatorial subproblem. Even for this case, the implemented algorithm does not

always give the strongest cut when slack variables are involved. In a final section,

they suggest that eliminating the slack variables before the optimization might give

better results.

2.6.6 Summary

Several approaches to finding strong Gomory cutting planes each require solving a

combinatorial subproblem, or inspecting a combinatorial number of cases. The second

method of Vizvári (1989) appears to be the least impractical. If the rank of the cut

can be restricted to some small value, then it may be possible to search for the value

of λ that gives a strong cut. By any method, the problem of finding strong Gomory

cutting planes is a search problem, and the number of possibilities is large enough so

that exhaustive search is not feasible.



CHAPTER 2. REVIEW OF THE LITERATURE 69

2.7 The Convex Hull of SAT

A critical problem in a cutting-plane algorithm is to find tight cuts, so as to minimize

the number of cuts that are needed. Various authors have considered the problem of

finding facet inequalities. Facet inequalities are inequalities that describe the convex

hull of the integer solution to a problem. In order to find facet cuts, it is essential to

have some information about the facets of the integer hull.

2.7.1 Canonical Inequalities

Balas and Jeroslow (1972) made a major step toward describing the convex hull of

the integer solutions for the SAT problem. Balas and Jeroslow do not specifically

mention the SAT problem. Instead, they consider the convex hull of subsets of the

vertices of the n-dimensional unit hypercube. Of course, each satisfying solution of a

SAT problem is exactly a vertex of an n-dimensional unit hypercube, so the convex

hull of the SAT problem is exactly the convex hull of a subset of such vertices. The

theory requires some rather technical definitions:

The n-dimensional unit hypercube is the set

K = {x ∈ Rn|0 ≤ xj ≤ 1, j ∈ N}whereN = {1, . . . , n} (2.45)

A vertex of K is a point x ∈ K such that exactly N of the inequalities (2.45) are

tight. Let V be the set of vertices. Two vertices x, y ∈ V are adjacent if they differ

in exactly one component.

Let x, y ∈ V be adjacent vertices, then [x, y] = {z ∈ Rn|z = λx + (1 − λ)y, 0 ≤

λ ≤ 1} is an edge of K, and (x, y) = {z ∈ Rn|z = λx + (1 − λ)y, 0 < λ < 1} is an

open edge of K. An edge is sometimes termed a closed edge, to differentiate from an

open edge. Two distinct edges of K are adjacent iff they have a common endpoint.



CHAPTER 2. REVIEW OF THE LITERATURE 70

A k-dimensional face F k of K is a set of points x ∈ K such that exactly n − k

of the 2n inequalities (1) are tight. A k-dimensional face F k can be written as a

conjunction of k literals. Using DeMorgans law, a point x is on a face if the the

disjunction of the negations of those literals is false. Let F be a k-dimensional face.

let N(F )+ = {j ∈ N |∀x ∈ F ∩ V, xj = 1}, N(F )− = {j ∈ N |∀x ∈ F ∩ V, xj = 0},

and N(F )0 = N −N(F )+−N(F )−. If |N(F )+|+ |N(F )−| = k, then a k-dimensional

face can be written as:

∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi = 0

The dimension or order of a k-dimensional face is just n− k. Note that the number

of variables not used in the equation, |N(F )0|, is equal to the dimension of the face.

The distance d(x, y) between two vertices x, y ∈ V is the number of indices such

k ∈ N such that xk 6= yk. The distance d(x, F ) between a vertex x and a face F of

K is d(x, F ) = miny∈F∩V d(x, y).

A canonical hyperplane is defined by Balas and Jeroslow as the set of vertices that

are all at some fixed distance d from a given face. Let F be a k-dimensional face. A

canonical hyperplane associated with a face F and denoted H(F )d is defined by:

∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi = d

for a constant d. The order of a canonical hyperplane H(F )d is the number of

zero coefficients in the equation, |N(F )0|. The half-space bounded by a canonical

hyperplane,
∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi ≤ d

is denoted H(F )+d .

Now, it gets interesting. It turns out that canonical hyperplanes have a property

in common with integer hulls.



CHAPTER 2. REVIEW OF THE LITERATURE 71

Proposition 1 (Balas and Jeroslow (1972)). Let V ′ ⊂ V be a subset of vertices,

and let C(V ′) be the integer hull of V ′. Then C(V ′) contains a point of an open edge

(x, y) iff it contains the whole edge [x, y].

Proposition 2 (Balas and Jeroslow (1972)). A canonical hyperplane H con-

tains a point of an open edge (x, y) of K if an only if it contains the whole edge

[x, y].

The convex hull of a subset of vertices is exactly the integer hull of SAT. This gives

an indication that canonical hyperplanes may have something in common with faces

of the integer hull of SAT. The result suggests is that canonical hyperplane might

be the faces of the integer hull of SAT, but Balas and Jeroslow do not obtain that

result. They do show one simple case in which the integer hull of a set of vertices is

coincident with a canonical hyperplane. For a set of vertices that lay on a canonical

hyperplane, the integer hull of those vertices is exactly that canonical hyperplane.

Theorem 3 (Balas and Jeroslow (1972)). Let C(V ∩H) be the convex hull of all

vertices of K lying on a canonical hyperplane H. Then C(V ∩H) = H ∩K.

In an extension, Balas and Jeroslow give an inference rule that allows a k-

dimensional half space to be derived from a conjunction of n − k k+1-dimensional

half-spaces.

Proposition 3 (Balas and Jeroslow (1972)). Let H(F k)d, d 6= 0, be a canonical

hyperplane and let F k+1
i , i = 1, . . . , n − k be all the faces of order k + 1 containing

F k. Then

x ∈ V ∩
{

n−k
⋂

i=1

H(F k+1
i )+d

}

=⇒ x ∈ H(F k)+d+1 (2.46)



CHAPTER 2. REVIEW OF THE LITERATURE 72

The notation of equation (2.46) is rather dense. The n− k half-spaces H(F k+1
i )+d

are just the inequalities that result from omitting one of the literals from the inequality

H(F k)+d . Their proof of the proposition makes this clear.

Proof. The left-hand side of the implication is equivalent to the statement that x

satisfies the relations:

∑

j∈N(F )+−i

xj −
∑

j∈N(F )−

xj ≤ |N(F )+| − 1− d , for i ∈ N(F )+

∑

j∈N(F )+

xj −
∑

j∈N(F )−−i

xj ≤ |N(F )+| − d , for i ∈ N(F )−

where the number of inequalities is |N(F )+|+ |N(F )−| = n− k. Adding the inequal-

ities yields

(n− k − 1)





∑

j∈N(F )+

xj −
∑

j∈N(F )−

xj



 ≤ (n− k − 1)
[

|N(F )+| − d
]

− d

or
∑

j∈N(F )+

xj −
∑

j∈N(F )−

xj ≤ |N(F )+| − d− d

n− k − 1

which implies, in view of the condition xj ∈ {0, 1}, j ∈ N ,

∑

j∈N(F )+

xj −
∑

j∈N(F )−

xj ≤ |N(F )+| − d− 1

���

The proof just adds the n − k inequalities together, divides by the common coeffi-

cient of the literals, then takes a Chvátal cut of the result to obtain the lower-order

inequality.

Balas and Jeroslow also give an inference rule that is exactly equivalent to resolu-

tion, in which a new canonical half-space can be inferred from two the canonical half-

spaces defined by two adjacent canonical hyperplanes. Finally, they give an algorithm



CHAPTER 2. REVIEW OF THE LITERATURE 73

to derive from an arbitrary inequality the set of strongest canonical inequalities that

define the same vertices. Finally, Balas and Jeroslow show that the decision problem

of an arbitrary integer program can be reduced to a set cover problem.

2.7.2 Lifting Procedures for Set Covering

The set-cover problem is closely related to the SAT problem. By introducing a new

variables zi = xi = (1 − xi) for each 0-1 variable xi in SAT, and adding constraints

xi + zi ≥ 1, a given SAT problem can be stated as a set-cover problem. The SAT

problem in n variables is satisfiable if there is a cover of only n nonzero variables.

Nobili and Sassano (1989) use the natural bipartite graph of a set-cover problem

B = (V, U, E) with node set V ∪ U and edge set E, where there is an edge between

vi ∈ V and uj ∈ U if and only if variable vi appears in clause uj.

Definition 3. Let C ⊆ V,D ⊆ V be two arbitrary node sets. The induced subgraph

obtain from V \ (C ∪ D), U \ N (D)) by removing from U \ N (D) the dominated

nodes is denoted as BC
D and is said to be a minor of B. BC

D is said to be obtained by

contracting the nodes in C and deleting the nodes in D.

The function N (D) is the set of neighbors of nodes in D. This definition corre-

sponds with the usual notion of contracting and deleting columns in 0-1 matrices.

The sets that contain variables in D and the variables in C are removed from the

set-cover problem. The resulting set-cover problem is smaller, in the sense that it has

fewer variables and/or fewer sets that must be covered. In a matrix representation,

the columns correspond to the variables, and the rows correspond to the sets or con-

straints. A 1 entry indicates that the variable of that column is present in the set of

that row. The contracting operation removes a column from the matrix, while the

deleting operation removes the rows that contain 1 in a column, and also removes



CHAPTER 2. REVIEW OF THE LITERATURE 74

that column.

Nobili and Sassano found several results that allow us to consider these minors

as natural sub-problems of SAT. Basically, if an inequality is a facet of a minor

sub-problem, then it can be extended to find a facet of the larger problem. The

lifting lemma gives that for each facet of a minor sub-problem, a facet of the larger

problem exists. The sequential lifting lemma gives that there is a sequence of minor

sub-problems, and that the variables may be added one at a time rather than all at

once.

Lemma 2 (Lifting Lemma). Let H = (VH , UH , EH) be a minor of B and let Q(H)

be the convex hull of H. Suppose that the inequality
∑

v∈VH
avxv ≥ a0 defines a non-

trivial facet of Q(H) and that Q(H) is full dimensional. Then there exist non-negative

numbers bv(v ∈ V \VH) and b0 such that the inequality
∑

v∈VH
avxv+

∑

v∈V \VH
bvxv ≥

a0 + b0 defines a facet of Q(B).

Lemma 3 (Sequential Lifting). Let H = BC
D = (VH , UH , EH) be a minor of B

and assume that the inequality
∑

v∈VH
avxv ≥ a0 defines a nontrivial facet of Q(H).

The the following statements hold:

1. For each w ∈ C the inequality

∑

v∈VH

avxv + (a0 − βa(B
C\{w}
D∪{w}))xw ≥ a0

defines a facet of the polytope Q(B
C\{w}
D ).

2. For each w ∈ D the inequality

∑

v∈VH

avxv + (βa(B
C\{w}
D∪{w})− a0)xw ≥ βa(B

C\{w}
D∪{w})

defines a facet of the polytope Q(BC
D\{w}).



CHAPTER 2. REVIEW OF THE LITERATURE 75

The function βa is defined as being the minimum weight of a cover of a bipartite

graph. The sequential lifting lemma says that, given a facet of a proper minor of

a set-cover problem, we may compute a facet of another minor with one additional

variable. The computation is not necessarily straightforward, because the needed

values of the function βa are in general not easy to compute.

2.7.3 Diagonal Sum Inequalities

Hooker (1992) gives a method of deriving a valid inequality called a diagonal sum, and

an algorithm using that rule to solve 0-1 integer programming problems. A diagonal

sum cut is an inference rule based on a rank-one cut, in which the inequality:

a1x1 + a2x2 + ... + anxn ≥ b (2.47)

may be inferred from the set of inequalities:

(a1 − 1)x1 + a2x2 + ... + anxn ≥ b− 1

a1x1 + (a2 − 1)x2 + ... + anxn ≥ b− 1

. . .

a1x1 + a2x2 + ...+ (an − 1)xn ≥ b− 1

(2.48)

The name diagonal sum derives from the fact that the coefficients on the diagonal are

each reduced by one in the antecedents. The proof shows that there is a Chvátal cut

of a linear combination of the antecedents that gives the consequent. The structure

of Hooker’s proof of the diagonal sum rule is identical to the structure of Balas and

Jeroslow’s proposition 7 (Balas & Jeroslow, 1972). It consists of adding the antecedent

inequalities together, then dividing by the common coefficient, and taking a Chvátal

cut to obtain the consequent. The algorithm consists of repeated application of

resolution and diagonal sum cuts. A theorem is given that repeated application of

resolution and diagonal sum cuts yield a complete set of prime inequalities.



CHAPTER 2. REVIEW OF THE LITERATURE 76

Hooker also considers specifically the case of set-covering inequalities, in which

the coefficients ai are restricted to {0, 1} and the right-hand side b is 1. Set covering

problems are closely related to SAT problems. An extended set-covering inequality

allows positive integers on the right-hand side. The application of diagonal sum in-

ference procedure to set-covering inequalities uses a difficult combinatorial algorithm

to search for diagonal-sum cuts. Hookers method requires combinations of inferences

to derive the antecedents of the diagonal-sum rule from a given set of extended set-

covering inequalities.

A set of extended clauses dominates an extended clause if the extension of the

set is a subset of the extension of the extended clause. Hooker (1992) gives several

easy lemmas to decide domination. Barth (1994) gives a very nice theorem that an

extended clause L ≥ d dominates L′ ≥ d′ iff |L \ L′| ≤ d − d′. This gives an easy

decision predicate for the dominance relation between constraints. If L ≥ d dominates

L′ ≥ d′, then L ≥ d implies L′ ≥ d′, and so the second constraint is redundant and

can be removed.

Barth (1993) considers the problem of transforming a linear 0-1 constraint into an

equivalent set of extended clauses, which he defines as an inequality having the form

L1 + . . . + Ln ≥ d, where 0 ≤ d ≤ n + 1, and the Li are literals. Extended clauses

constrain the number of propositions that must be true to make the clause true, and

are essentially identical to the canonical inequalities defined by Balas and Jeroslow.

Starting from a linear 0-1 constraint, c1L1 + . . . + cnLn ≥ d, the procedure removes

the terms with small coefficients by adding multiples of −xi ≤ −1 as long as the right

hand side remains positive. The result has the fewest literals, at least one of which

must be true. A Chvátal cut then discards the remaining coefficients.

Barth (1995) gives another algorithm to search for diagonal sum cuts in an integer

program, which is much nicer than Hookers original algorithm. The algorithm essen-



CHAPTER 2. REVIEW OF THE LITERATURE 77

tially uses a recursive procedure to find a diagonal sum. To infer
∑

i=1...N Li ≥ d, the

algorithm first finds or infers each of the N required antecedent inequalities.

Later, Barth (1996) shows how to use diagonal sum cuts to show in polynomial

time that the pigeonhole problem is unsatisfiable. The algorithm for the pigeonhole

uses the diagonal sum cuts in a specific order, so that only a polynomial number

of the cuts must actually be computed. The use of diagonal sum cuts to solve the

pigeonhole problem efficiently shows that diagonal sum cuts are quite strong.

2.7.4 Summary

Based on Balas and Jeroslow’s results, we might suspect that the facets of the integer

hull of SAT are canonical hyperplanes. However, they do not achieve that result.

They do achieve several other results that anticipate the results of Hooker and Barth.

Those results were later used by Barth to show that a cutting plane algorithm can

efficiently solve pigeonhole problems.

Hooker and then Barth build on the results of Balas and Jeroslow without citing

Balas and Jeroslow (1972). Nevertheless, Hooker’s diagonal-sum rule gives a strong

cutting plane, and Barth showed that diagonal-sums can be used to solve certain hard

SAT problem efficiently.

2.8 Proof Systems and Lower Bounds

To decide that a term is unsatisfiable, a SAT algorithm must implicitly construct

a proof of unsatisfiability. Any proof that no witness exists is necessarily based on

some system for proving theorems of propositional logic. Different formalizations

of propositional logic include different sets of axioms and inference rules, but are

equivalent in the sense that they admit proofs of the same theorems. However, the



CHAPTER 2. REVIEW OF THE LITERATURE 78

length or size of the proofs is often very different. Lower bounds for the complexity of

a complete SAT algorithm have been derived by considering the algorithm as a proof

system.

The length or size of the proof in a proof system is not less than the complexity of

the corresponding algorithm. For a given proof system, if there exists a problem for

which the shortest possible proof has length f(n), where X is the size of the input,

then the worst-case complexity of the algorithm is at least O(f(n)). The size of a

proof is just the number of symbols in the proof, while the length is the number of

lines in the proof. If the size of one line is limited by some polynomial in the number

of variables, then the two measures of proofs can be used interchangeably.

The research in this area takes two general approaches. Some research has been

directed at finding unsatisfiable problems which require exponentially long proofs in

a specific proof system. Other research has considered polynomial simulation of one

proof system by another. A proof system A is said to polynomially simulate a proof

system B, if, for every for every proof in system B of length L, a proof can be can

be constructed in system A with length P (L), for some polynomial P . Both sorts of

results serve to show that one proof system is more or less powerful than another.

2.8.1 Relative Strength of Proof Systems

Cook and Reckhow (1974) defines a super proof system as one for which there exists

a polynomial P (n) such that every tautology has a proof of length not more than

P (n). Cook then considers some proof systems that might be used to approach the

SAT problem, and gives a number of polynomial transforms between them. Analytic

tableaux, Davis Putnam tree search, and a restricted from of resolution called regular

resolution are shown to be “not super”. Gentzen’s system without cut, unrestricted



CHAPTER 2. REVIEW OF THE LITERATURE 79

resolution, and several others are not classified by Cook as super or not super. Res-

olution with extension, Gentzen’s system with cut, natural deduction, and all Frege

systems are shown to be polynomially equivalent in proof length.

2.8.2 Hard Problems

Cook and Reckhow (1979) considers the length of proofs in natural deduction systems.

For this, Cook uses the pigeonhole problem as an example of a proposition having a

proof with a polynomial number of lines in an unextended Frege system, but in which

the lines are exponentially long. Cook does not claim that this proof is the shortest

possible Frege proof of the pigeonhole formula, so this is not a lower bound. Cook

does show in this paper that all unextended Frege systems are equivalent, up to a

polynomial factor.

Based on Cook’s (1979) result, pigeonhole problems have become popular for

analysis of satisfiability algorithms. For a given problem, a specialized proof system

that allows a short proof can be defined, and a specialized algorithm can construct

that short proof. Several specialized algorithms are able to construct short proofs for

pigeonhole problems in various proof systems (Buss, 1987; Bibel, 1990; Urquhart &

Fu, 1996).

2.8.3 Extended Proof Systems

Buss (1987) gives a proof that (unextended) Frege systems do admit a polynomial-

length proof of pigeonhole principle tautologies. The Frege proof of PHP is con-

structed by coding arithmetic operations as propositions, and then giving a simple

counting argument. The constructions of arithmetic operations are proved by polyno-

mial Frege proofs, and the counting argument is polynomial size, so the composition



CHAPTER 2. REVIEW OF THE LITERATURE 80

is polynomial size. An exponential gap between resolution proof systems and Frege

proof systems is given by a theorem that propositional pigeonhole tautologies have

polynomial size Frege proofs, but require exponential size resolution proofs. Hence,

Frege systems are strictly more powerful than resolution systems.

Bibel (1990) constructs polynomial size proofs or pigeonhole problems using an

extended connection method. Connection methods use matrices to display proposi-

tional formula, and arcs to show connections, which are essentially resolutions between

complementary literals in two clauses. To enable these proofs, Bibel extends the con-

nection method by two new rules. Using these new rules, proofs for a pigeonhole

problem can be given in polynomial number of steps. This shows that the extended

connection method is strictly stronger than resolution. The key to the short proof

is that smaller subproblems are isolated, and then each smaller subproblem is solved

using a lemma rather than constructing individual proofs.

2.8.4 Bounded Depth Frege Systems

The depth of a proof in a Frege system is the maximum depth of the formula that

appear as lines of the proof. The depth of a formula is the tree-height of the formula.

A bounded-depth proof systems is a proof system in which the depth of formula is

bounded by a constant. Several important lower bounds have been found for bounded-

depth proof systems. This is an important class of proof systems, because shallow

formulas are considered easier for most people to work with in natural deduction and

Frege proof systems.

H̊astad (1987) gives several complexity theorems using Boolean terms that com-

pute parity functions. H̊astad showed that certain functions that can be expressed

by polynomially bounded circuits at each depth N > 1 require super-polynomial cir-



CHAPTER 2. REVIEW OF THE LITERATURE 81

cuits at depth N − 1. This directly implies that satisfiability algorithms based on

resolution cannot be efficient. Similar results are provided by (Beame et al., 1992;

Beame & Pitassi, 1996), but with a simpler and more direct proof. This reduces the

list of proof systems that not known to be not super to those that Cook and Reckhow

(1974) identified as polynomially equivalent with Frege systems.

Urquhart and Fu (1996) show that proofs of pigeonhole tautologies require expo-

nential number of steps in bounded-depth Frege systems, but polynomial number of

steps in unbounded-depth Frege systems. For any depth d, any finite Frege system

that can have polynomial proofs of PHP must have formulas of depth > d in proof

steps. For any bounded depth, the proof lengths go exponential.

2.9 Cutting-Plane Proof Systems

Cutting plane proof systems use linear inequalities as the lines of the proofs. In

each cutting plane proof system, rules of inference allow new linear inequalities to be

derived from previous linear inequalities. For SAT, the initial inequalities are derived

as for an integer program. Chvátal (1984), Goerdt (1991), and Clote (1995) have each

defined a version of cutting plane proof system. The several proof systems differ in

the details of their rules of inference, but are polynomially equivalent. Every theorem

proved of any of the proof systems can also be proved in each of the others, and the

lengths of the proofs are polynomially related.

2.9.1 Chvátal Cutting Plane Proofs

The earliest definition of “cutting plane proof”, as distinct from cutting plane methods

for integer programming, seems to be due to Chvátal (1984). As reported by Schrijver

(1986), the definition is as follows:



CHAPTER 2. REVIEW OF THE LITERATURE 82

Let Ax ≤ B be a system of linear inequalities, and let cx ≤ δ be an

inequality. We say that a sequence of linear inequalities c1x ≤ δ1, c2x ≤

δ2, . . . , cmx ≤ δm is a cutting plane proof of cx ≤ δ (from Ax ≤ B), if

each of the vectors c1, . . . , cm is integral, if cm = c, δm = δ, and if for

each i = 1, . . . , m: ci ≤ δ′i is a nonnegative linear combination of the

inequalities Ax ≤ B, c1x ≤ δ1, . . . , ci−1x ≤ δi−1 for some δ′i with ⌊δ′i⌋ ≤ δi.

According to this definition, a new inequality may be derived from any nonneg-

ative linear combination of inequalities appearing earlier in the proof, such that the

coefficients c are integral, by rounding the constant on the right-hand side of the

inequality. The restriction to nonnegative coefficients is necessary, because a negative

coefficient would reverse the sense of an inequality and allow derivation of an invalid

inequality.

The restriction to integer coefficients seems innocuous, because an inequality with

rational coefficients can be multiplied by the least common multiple of the denom-

inators. However, any such multiplication reduces the difference δi − ⌊δ′i⌋ that can

be introduced by the rounding operation. Hence, this method of deriving new valid

inequalities appears to give weaker inequalities than the cutting planes of Gomory or

Chvátal .

Schrijver gives a completeness theorem, which asserts:

1. If Ax ≤ B has at least one integral solution, and cx ≤ δ is a valid inequality,

then there is a cutting plane proof of cx ≤ δ from Ax ≤ B;

2. If Ax ≤ B has no integral solutions, then there is a cutting plane proof of

0x ≤ −1 from Ax ≤ B.

This completeness theorem shows that the cutting plane proof system can serve as

the proof system for a complete algorithm for SAT. If the proposition is satisfiable,



CHAPTER 2. REVIEW OF THE LITERATURE 83

then cutting plane proofs can derive every linear inequality needed to find the integral

polytope. Further, if the proposition is not satisfiable, then a cutting plane proof of

0x ≤ −1 exists.

2.9.2 Goerdt Cutting Plane Proofs

Goerdt (1991) gives a simplified cutting plane proof system named CP that admits

three rules of inference:

Addition

∑

vixi ≥ P
∑

wixi ≥ Q
∑

(vi + wi)xi ≥ (P +Q)
(2.49)

Multiplication For c ∈ Z+ :

∑

vixi ≥ P
∑

(c · vi)xi ≥ (c · P )
(2.50)

Division For c ∈ Z+ \ 0, vi = c · wi for all i,

wi ∈ Z for all i, not all vi = 0:

∑

vi · xi ≥ P
∑

wi · xi ≥ ⌈1
c
· P ⌉ (2.51)

(In Goerdt’s article, the division rules contains a typographical error. The fraction as

printed on page 176 of that article is
∑

vi·xi≥P∑
wi·vi≥Q

. The version given above is corrected.)

Goerdt’s CP system is clearly equivalent to the definition of cutting plane proof

given by Chvátal and Schrijver. The use of ≥ rather than ≤ for the inequalities

has the effect of reversing the signs of all of the numbers, and requires rounding up

instead of rounding down. The coefficients are required to be integers, and only the

constant can be rounded. The addition and multiplication rules allow construction,

by multiple steps, of any nonnegative linear combination of the preceding inequalities.



CHAPTER 2. REVIEW OF THE LITERATURE 84

The division rule provides the rounding of the constants. Subtraction of inequalities

and multiplication by negative constants are not allowed, to preserve the validity of

the derived inequalities.

2.9.3 Clote Cutting Plane Proofs

Clote (1995) gives yet another equivalent definition, and also an extension named

CP+. Clote first defines a language of expressions as follows: If a ∈ Z and i ∈ N,

then a ∈ E and (a · xI) ∈ E. If E, F ∈ E, then (a · E) ∈ E and (E + F ) ∈ E. Using

these expressions, Clote’s system of cutting plane proofs is defined by five inference

rules:

Transitivity:

E ≥ F F ≥ G

E ≥ G
(2.52)

Simplification Simplification of arithmetic expressions

Addition

E ≥ F G ≥ H

E +G ≥ F +H
(2.53)

Multiplication

for c ∈ N,
E ≥ F

c× E ≥ c× F
(2.54)

Division for c ∈ N, c > 0, E, F, E ′ ∈ E, E = c ·E ′,

E ≥ F

E ′ ≥ ⌈F/c⌉ (2.55)



CHAPTER 2. REVIEW OF THE LITERATURE 85

Note that the multiplication rule allows only positive integers as multipliers. Also,

the division rule requires that the coefficients (in E ′) must be integers. With these

restrictions, it is not difficult to see that this proof system is equivalent to the proof

system of Goerdt. The difference of presentation is intended to make it easier to

define Clote’s system CP+.

CP+ is then defined as a modification of CP , which removes the restriction in the

division rule that the division must yield an integral value. The division rule is then

restated as:

Division for c ∈ N, c > 0, E, F ∈ E,

E ≥ F

⌈E/c⌉ ≥ ⌈F/c⌉ (2.56)

Clearly it is intended that the ⌈⌉ operators, when applied to a sum of the form

⌈c1x1 + . . .+ cnxn⌉, should be distributed over the elements as ⌈c1⌉x1 + . . .+ ⌈cn⌉xn.

Note that proof system CP+ retains the requirement that the multiplication rule

allows only positive integers as multipliers.

2.9.4 Summary

Cutting planes proofs differ from linear program, in that only nonnegative linear

combinations of inequalities are allowed. Several versions of cutting plane proofs

have been defined. The traditional version due to Chvátal allows nonnegative lin-

ear combinations of inequalities, with integral coefficients (Chvátal, 1984; Schrijver,

1986). An equivalent system due to Goerdt (1991) allows only binary addition of

inequalities, and multiplication by positive integers. A definition due to Clote (1995)

allows the division rule to be applied even where the coefficients do not all divide the

divisor evenly. Clote’s proof system is CP+ is identical to that of Chvátal (1984),



CHAPTER 2. REVIEW OF THE LITERATURE 86

while Goerdt’s system is slightly more restrictive. In all three definitions, only non-

negative multipliers are allowed. Clote showed that all three definitions are equivalent

in the sense that they can polynomially simulate each other.

In each case, the restriction to nonnegative multipliers preserves the validity of the

inequalities. In each case, the proof is constructed entirely using only the variables

that appear in the original set of inequalities.

2.10 Lower Bounds for Cutting Plane Systems

Several lower-bound and simulation results are available for cutting plane and Frege

proof systems. Positive results indicate that cutting plane proof systems are as pow-

erful as general Frege proof systems (Clote, 1995). Negative results include lower

bounds for restricted forms of cutting plane proof systems (Bonet, Esteban, Galesi,

& Johannsen, 1998), and a general lower bound for an unrestricted cutting plane

proof system based on Chvátal cuts (Pudlák, 1997). One misleading result shows an

exponential lower bound for cutting plane proofs, but only for an input problem of

exponential size (Cook, Coullard, & Turán, 1987). Cook (1990) shows that even for

such problems, cutting plane proofs may be constructed in polynomial work space.

2.10.1 Bounded Cutting Plane Systems

The first lower bound result on the length of cutting plane proofs of unsatisfiability

is due to Cook et al. (1987). The particular cutting plane proof system is uses only

Chvátal cuts and inequalities with bounded integral coefficients. The lower bound is

based on an unsatisfiable system having 2N inequalities in N variables, where each

inequality cuts off exactly one integral value. For this problem, the cutting plane

proof of unsatisfiability requires length at least 2N/N − 1 cuts. The lower bound is



CHAPTER 2. REVIEW OF THE LITERATURE 87

based on the number of variables and not on the size of the input. Of course, for an

input problem of size O(2N), the number of steps required just to read the problem is

exponential in N . This result does not apply to the complexity of SAT, because the

complexity of SAT must be stated in terms of the size of the input. We should also

note that the proof depends critically on allowing only two inequalities to be added

together at each step.

2.10.2 Lower Bounds by Interpolation

Kraj́ıček (1997) gives version of the propositional Craig interpolation theorem for

cut-free sequent calculus, shows the existence of small monotone interpolations for

certain non-monotone propositions, and uses previous results on the size of monotone

circuits to show lower bounds for several proof systems including a restricted form of

cutting plane proofs.

The interpolation theorem states that every implication A(p, q) −→ B(p, r) with

p = (p1, ..., pn) occurring in both A and B, q = (q1, ..., qs) occurring only in A, and

r = (r1, ..., rt) occurring only in B, has an interpolant C(p) such that A(p, q) −→ C(p)

and C(p) −→ B(p, r).

The idea of monotonicity appears in each of several representations of proposi-

tional logic. A Boolean formula is monotone if it contains no NOT operators. A CNF

formula is monotone if it contains no negated literals. A logic circuit is monotone if

it contains no NOT gates. Translated into pseudo-Boolean inequalities, a formula is

monotone if the set of inequalities contains no negative coefficients.

Kraj́ıček constructs a non-monotone unsatisfiable formula A(p, q) −→ B(p, r) in

which the common variables p = (p1, ..., pn) appear only positively, and for which there

is a monotone interpolant. Because the interpolant is monotone, any proof of that



CHAPTER 2. REVIEW OF THE LITERATURE 88

interpolant can be simulated by a monotone circuit. Using a result by Rasborov, that

monotone circuits must have exponential size for certain formula, Kraj́ıček concludes

that any CP proof must of the interpolant must have exponential size.

The particular version of cutting plane proof system used by Kraj́ıček is the one

defined by Cook et al. (1987), allowing only bounded coefficients and Chvátal cuts.

The key to Kraj́ıček lower bound proof for CP proof system is that the formula

A(p, q) has no negative coefficients, and the Chvátal cuts cannot introduce negative

coefficients. Because all formulas have no negative coefficients, they can be simulated

by monotone circuits. If negative coefficients were present, the simulation would fail.

Pudlák (1997) extends the results of Kraj́ıček (1997) to provide lower bounds for

CP proofs with unbounded coefficients. Pudlák uses the same monotone interpolation

theorem, and a very similar construction. The lower bound is based on an exponential

lower bound on the size of a monotone real circuit computing the clique function, and

an implication that has the clique function as an interpolant. The result is proved

by defining monotone circuits over the domain of real numbers Rn , rather than Bn.

After extending Razborov’s result to this new class of monotone circuits, the lower

bound on CP proofs with real coefficients follows immediately.

2.10.3 Graph Structure of Cutting Plane Proofs

Bonet et al. (1998) give a separation theorem that separates tree-like proofs from

dag-like proofs for cutting plane proofs. The difference is, of course, that in a tree-

like proof each line of the proof can be used only once in the subsequent steps of the

proof. There is a problem for which every tree-like cutting-plane refutation requires

exponential size, but a dag-like refutation has polynomial size. Hence, cutting-plane

proof systems that allow dag-like proofs are more efficient than those that allow only



CHAPTER 2. REVIEW OF THE LITERATURE 89

tree-like proofs. This suggests that a proof system should not discard an inequality

after it has been used to generate another inequality.

2.10.4 Summary

Any SAT algorithm must implicitly construct proofs of unsatisfiability. Various for-

malizations of propositional logic include different sets of axioms and inference rules,

but are equivalent in the sense that they admit proofs of the same theorems. The

length or size of a proof, as a function of the size of the theorem, provides a lower

bound for the complexity of any algorithm to construct that proof. Various proof

systems based on search or resolution have been shown to require exponentially long

proofs for certain theorems.

Lower bounds are known for some restricted forms of cutting plane proof systems.

Several restricted cutting plane proof systems have been studied.

Cutting-plane proof systems allow only positive integral multipliers, to maintain

the orientation of the inequalities. Those cutting plane proof systems are subject to

a lower bound derived using monotone interpolations (Kraj́ıček, 1997; Pudlák, 1997).

A critical point in each lower bound proof is that any derivation using only positive

multipliers cannot introduce negative coefficients into a problem that contains only

non-negative coefficients. The absence of negative coefficients allows the proofs to be

simulated by monotone circuits. The simulation by monotone circuits is critical to

the proof of the lower bound in each case.

The lower bound using monotone circuits affects only cutting plane proof systems

that are not capable of introducing negative coefficients. The usual formulations of

cutting plane proof systems allow only positive multipliers, to maintain the inequal-

ities. This appears to be an innocuous restriction. No lower bounds are known for



CHAPTER 2. REVIEW OF THE LITERATURE 90

cutting plane proof systems that can introduce negative coefficients. However, no

such cutting plane proof systems have been proposed.

2.11 Positive Results for Cutting Planes

Several positive theoretical results have been reported for cutting plane algorithms.

Peter Barth used Chvátal cutting planes in an algorithm that can solve pigeonhole

problems efficiently (Barth, 1993, 1994, 1996). Clote (1995) showed that cutting

plane proofs can polynomially simulate general Frege proofs with unbounded term

depth. Hence, cutting plane proofs are as powerful as general Frege proofs. Bockmayr

and Eisenbrand (1997) showed that the Chvátal rank of the polytope of an integer

program representing an unsatisfiable SAT is surprisingly small. For a problem with

n variables, only n iterations of cutting plane algorithm are required, if every possible

cut is generated at each iteration.

The literature on computational experience using Gomory cutting planes is very

scant. The reputation for inefficiency does not seem to be backed by very many

papers reporting actual computational experience. A survey of those empirical results

appears in the introduction by Balas et al. (1996), including encouraging results for

the set-cover problem, which is very closely related to satisfiability. Balas et al. (1996)

also reports a recent set of experiments using Gomory cutting planes to prune a search

tree for mixed-integer programming problems.

2.11.1 Fast Solution of Pigeonhole Problems

Peter Barth used extended clauses of the form L1+ . . .+Ln ≥ d, where 0 ≤ d ≤ n+1,

to demonstrate an algorithm that can solve pigeonhole problems efficiently (Barth,

1993, 1994, 1996). Each extended clause may be written also as a linear inequality of



CHAPTER 2. REVIEW OF THE LITERATURE 91

the form
∑

i∈I xi+
∑

j∈J(1−xj) ≥ d, where 0 ≤ d ≤ n+1. Hence, methods developed

for linear integer programming are applicable. A set of extended clauses is said to

dominate an extended clause if the extension of the set is a subset of the extension

of the extended clause. Barth gives an easy decision predicate for the dominance

relation between extended clauses. L ≥ d dominates L′ ≥ d′ iff |L \ L′| ≤ d − d′. If

L ≥ d dominates L′ ≥ d′, then L ≥ d implies L′ ≥ d′, and so the second constraint is

redundant and can be removed.

To solve the pigeonhole problem, Barth used a family of cutting planes called

diagonal sums to convert a pigeonhole problem into a linear programming problems

for which no feasible solution exists. The algorithm uses sets of inequalities which

appear in the problem and have a certain combinatorial property. After adding the

inequalities in such a set, a Chvátal cut of the sum gives the diagonal sum cut. The

result of a diagonal sum cut is a new inequality that is satisfied when all-but-one of

the literals is true.

In the solution of the pigeonhole problem, each new extended clause is added to

the problem only if it dominates at least one old extended clause, which is removed.

Hence, the size of the problem does not increase with the addition of new extended

clauses. Barth’s algorithm generates all available diagonal-sum cuts before the result-

ing problem is solved as a linear program. The number of diagonal-sum constraints

that must be generated to solve a pigeonhole problem is polynomial in the dimension

of the problem.

Barth’s results build on previous work by Cornuéjols and Sassano (1989), who

identified necessary and sufficient conditions for an extended clause to be a facet-

defining inequality for the set cover problem. A set covering problem Ax ≥ 1 defines

a bipartite graph (V, U, E) in a natural way: there is an edge between vi ∈ V and

uj ∈ U if the variable vi appears in the clause uj. A cutset induced by a set of



CHAPTER 2. REVIEW OF THE LITERATURE 92

variables S ⊆ U is the set of clauses that contain at least one variable in S and one

variable in S̄ = V \S. Cornuéjols and Sassano showed that an inequality
∑

j∈S xj ≥ b

is a facet-defining equality if for every j 6∈ S, the cutset induced by S ∪ {xj} has a

certain counting property.

2.11.2 Simulation Results

Goerdt (1991) showed that Frege proof systems can polynomially simulate cutting

plane proof systems, showing that cutting plane proofs are not more powerful than

Frege proofs. Clote (1995) provides the reverse direction, that cutting plane proofs

can polynomially simulate general Frege proofs with unbounded term depth, using a

slightly extended cutting plane proof system, CP+.

The main result of Clote (1995) is that CP+ polynomially-simulates Frege proofs

Frege proof systems. This proof uses a result of Cook and Reckhow (1979) that any

Frege system simulates any other Frege system with at most a polynomial increase in

proof size. Hence, it is only necessary to show that CP+ polynomially simulates one

particular Frege proof system. For this, Clote uses a particular Frege proof system F .

F has propositional variables xi, terms defined using the logical connectives 6,∨. The

symbol ¬ denotes the not function, and the symbol ∨ denotes the or function. Of

course, the and function can be simulate because xi ∧ xj = 6 (xi ∨ xj), and so the two

function symbols provide a basis for propositional logic. F has four rules of inference:

Contraction

A ∨A

A
(2.57)

Expansion

A

B ∨A
(2.58)



CHAPTER 2. REVIEW OF THE LITERATURE 93

Associativity

A ∨ (B ∨ C)

(A ∨B) ∨ C
(2.59)

Cut

A ∨B ¬A ∨ C

B ∨ C
(2.60)

Clote then gives the definition of a Frege proof as follows:

A Frege proof is a sequence A1, . . . , An such that for each 1 ≤ i ≤ n

either Ai is a substitution instance of an axiom, or there exist j, k < i such

that Ak is deduced from Aj , Ak by the application of a rule of inference.

(It appears that Clote’s definition contains a typographical error. Clearly, Ai, not Ak,

should be deduced from Aj, Ak by the application of a rule of inference) Assuming

this correction, Clote’s proof simply shows that the operation of each inference rule

can be simulated by a sequence of valid inequalities, such that the last valid inequality

is the consequent of the inference rule.

Clote gives two distinct proofs that CP+ can polynomially simulate Frege proof

systems: one showing that cut elimination can be simulated; the other by giving a

direct translation of any Frege proof into CP+. Clote also shows that cutting plane

proofs are strictly more powerful than resolution, in the sense that cutting planes

proof systems allow proofs that are shorter by an exponential factor. Results on

propositions that require exponential size resolution and constant-depth Frege proofs,

but admit polynomial size Frege proofs and cutting-plane proofs, include propositional

representations of Ramsey theorems and the pigeonhole theorems.



CHAPTER 2. REVIEW OF THE LITERATURE 94

2.11.3 Chvátal Rank of Integer Hull

Early cutting plane algorithms were inefficient, and so cutting plane algorithms were

largely abandoned for integer programming, in favor of branch-and-bound algorithms.

This was justified by the empirical observation that cutting plane algorithms seemed

to require a very large number of cuts, and the tableau tended to grow beyond the

available memory. There are now some reasons to suspect that the number of cutting

planes required to solve an satisfiability problem may not be very large.

The Chvátal rank of a polyhedron P = {x ∈ RN |Ax ≤ b}, was introduced by

Chvátal (1973) to measure the compexity of integer linear programs. Let P ′ denote

the polytope satisfying all cutting planes that can be derived directly from P . Let

P (0) = P , P (I+1) = (P (I))′. The Chvátal rank of P is the smallest k such that

P (k) = PI , where PI is the integer hull of P .

Recently, Bockmayr and Eisenbrand (1997) has showed that the Chvátal rank of

the polytope of an integer program representing an unsatisfiable SAT is surprisingly

small. They give the following lemma:

Theorem 4 (Bockmayr and Eisenbrand 1997). The Chvátal rank of polytopes

P ⊆ [0, 1]n with PI = ∅ is at most n.

Since the polytope of a linear program in N variables has dimension at most N ,

the Chvátal rank of the linear program representing an unsatisfiable SAT problem in

N variables is at most N . This result does not indicate that only N cutting planes

are required. This results does indicate that only N generations of cutting planes

are required, where at each generation all possible cutting planes are generated. The

theorem limits the tree-height of the proof tree, rather than the size of the proof tree.



CHAPTER 2. REVIEW OF THE LITERATURE 95

2.11.4 Summary

Taken together, Goerdt (1991) and Clote (1995) provide a bi-simulation result that

the Frege proof system and the CP+ proof systems are polynomially equivalent.

Clote’s CP+ proof system is an extension of Goerdt’s CP proof system, so Goerdt’s

proof that CP p-simulates Frege also shows that CP+ also p-simulates Frege. The bi-

simulation result shows that CP+ proof systems are polynomially equivalent to Frege

proof systems, in that any proof in either system can be translated to an equivalent

proof in the other, with at most a polynomial increase of the proof size.

The lower bound results for cutting plane proofs Kraj́ıček (1997) and Pudlák

(1997) seem at odds with the simulation results of Goerdt (1991) and Clote (1995).

The lower bounds results depend on having monotone formula within the problem,

such that the proof of the monotone subproblem must be monotone. The proof

systems forbid the introduction of negated coefficients for monotone variables. Lower

bounds for monotone circuits then apply to a circuit that simulates the proof.

The results of Clote, Goerdt and Barth are particularly important when viewed

in the light of Cook and Reckhow (1974). Cook showed that Frege systems are

polynomially equivalent to several very powerful proof systems, including natural

deduction. Clote showed that cutting-plane systems can polynomially simulate Frege

systems. Barth provided an example of this power, by showing that cutting plane

proofs allow short proofs of unsatisfiability for pigeonhole problems. Hence, cutting-

plane proof systems are very powerful propositional proof systems, that also allow a

nice regular tabular format.



CHAPTER 2. REVIEW OF THE LITERATURE 96

2.12 Summary

Many different algorithms have been proposed for the SAT problem. Tree search

algorithms use reasoning to avoid searching some some sub-trees, but must still search

an exponentially sized portion of the complete tree. Algebraic rewriting cannot solve

SAT efficiently, because there can be no compact canonical form. Approaches for

some special subclasses of SAT are efficient, but are only applicable to a vanishingly

small fraction of all problems. A wide variety of heuristic or randomized search

methods have been tried, but cannot provide complete proof of unsatisfiability. Linear

relaxations allow the application of integer programming techniques, but the common

branch-and-bound techniques for integer programming are essentially just tree-search

algorithms.

Lower bounds results show that algorithms based on weak proof systems such

as resolution cannot be efficient for SAT. Specific problems such as the pigeonhole

problems have been found that require exponential size resolution proofs, but allow

short Frege proofs. Specific algorithms have been constructed to show that Frege and

cutting-plane proof systems allow short proofs of pigeonhole problems. The results

on pigeonhole problems show a sequence of proof systems and proof-construction

algorithms. Each algorithm is specifically designed to take advantage of the structure

of the pigeonhole problem. Other hard problems clearly do exist, for which these

known algorithms do not find short proofs. Unspecialized algorithms that find short

proofs of various problems are conspicuously absent from the literature in this area.

The relative lack of literature on cutting plane algorithms for SAT indicates that

the cutting-plane approach has not been fully explored. Historically, this appears

to be because early cutting-plane algorithms for integer programming were observed

to be slower than early tree-search algorithms, and so very little research has been



CHAPTER 2. REVIEW OF THE LITERATURE 97

concentrated on cutting-plane algorithms. The lower-bounds on cutting plane proof

systems depend on details of the definitions. It might be possible to give a different

definition that avoids the lower-bound. We also have some evidence that cutting-

plane algorithms are polynomially equivalent to Frege systems, and that strong lower

bounds cannot be proved for Frege systems using current methods. The apparent

contradictions in the literature need to be resolved. For all of these reasons, the

cutting-plane approach to SAT needs further research.

Some formalization of cutting plane proofs that allows introduction of negative

coefficients, and also allows dag-like proofs, is clearly needed. Such a definition would

avoid the known lower bounds that apply to the existing cutting plane proof systems.

An open theoretical problem is to show that a short refutation exists for every false

proposition, or that short refutations cannot exist for some particular class of propo-

sitions. A related practical problem is to find some algorithm for constructing a short

cutting plane refutation when one does exist for a given proposition. Even if some

SAT problems cannot be solved efficiently, an algorithm that finds short refutations

for a large class of propositions would be of practical use. A number of minor open

questions also exist for cutting plane algorithms, such as how to construct strong cut-

ting planes, which heuristics are most effective, and how to most efficiently implement

the algorithms. The abundance of open questions indicate that the cutting-plane ap-

proach to SAT should be fertile ground for further research.



Chapter 3

A New SAT Algorithm

In this chapter, we will develop the theory of a new complete algorithm for satisfia-

bility. The design of the algorithm is based on the conditions that are known to be

necessary if a complete SAT algorithm is to be efficient. In chapter 2, we identified

a number of papers showing that certain conditions must be fulfilled by any efficient

algorithm. In this chapter, we will give an algorithm and show that it fulfills each of

those necessary conditions.

The new algorithm is based on extended cutting plane proofs, which use slack

variables to express the constraints as equalities. The algorithm uses Gomory cutting

planes and a primal-dual simplex method, and so is somewhat similar to some cutting

plane methods for integer programming. Several sections of this chapter develop

algorithms to find cutting planes, and show that various necessary conditions are

satisfied by these classes of cutting planes.

Section 3.1 studies the convex hull of the integer solutions of SAT, and gives a

describes the facet inequalities of the SAT polytope. Various authors have studied

methods for deriving facet inequalities using canonical hyperplanes for various prob-

lems, but have not fully described the integer hull of SAT (Sassano, 1989; Cornuéjols

98



CHAPTER 3. A NEW SAT ALGORITHM 99

& Sassano, 1989; Hooker, 1992; Barth, 1993, 1996). Balas and Jeroslow (1972) de-

fined a canonical hyperplane on the unit hypercube as a particular form of linear

equation, having coefficients ∈ {−1, 0, 1}. We show that the convex hull of SAT can

be written as a conjunction of canonical hyperplanes.

Section 3.2 shows that cutting plane algorithms using slack variables provides

a stronger proof system than the cutting plane proof systems defined by Chvátal

(1984), Goerdt (1991), and Clote (1995). We show that a lower-bound on the length

of cutting plane proofs, due to Kraj́ıček (1997) and Pudlák (1997), does not hold for

cutting plane algorithms with slack variables. It is necessary that any efficient SAT

algorithm must avoid that lower bound.

In section 3.3, we develop a theory of lifting for inequalities in the SAT polytope.

Lifting gives us a method for deriving strong valid inequalities of an n-dimensional

SAT polytope from valid inequalities of lower-dimensional subproblems of that SAT

problem. Several of the known necessary conditions are that the algorithm must

be able to solve a particular kind of “hard” problem efficiently. The canonical lifting

algorithm finds valid inequalities that lead to efficient solution of pigeonhole problems,

which were nominated by Cook and Reckhow (1979) as being “hard” for a wide variety

of known algorithms. Several authors have given special purpose algorithms that solve

pigeonhole problems efficiently (Buss, 1987; Bibel, 1990; Urquhart & Fu, 1996; Barth,

1996).

In section 3.4 we give a new lifting algorithm that can be applied even when some

of the variables are not constrained to be Boolean. That is, when some variables

may take on integer values, the proof of the canonical lifting lemmas fail. We provide

new integer-lifting lemmas and a new lifting algorithm that holds even with integer

variables. These algorithms can be applied to Chvátal and Gomory cutting planes,

even when the nonbasic variables include some slack variables. Hence, this new



CHAPTER 3. A NEW SAT ALGORITHM 100

lifting algorithm using cutting planes and slack variables has the potential to avoid

the known lower bound on monotone cutting plane proofs (Kraj́ıček, 1997; Pudlák,

1997).

We hypothesize that this new lifting algorithm allows short refutations of some

hard unsatisfiable propositions that are not efficiently refuted by previous algorithms.

The measure of efficiency in this context should be the number of steps that are

required in the refutation proof, as measured by the number of cutting planes.

To use the cutting-plane algorithms based on linear programming relaxations of

integer problems, it is necessary to have some algorithms to sequence and control

the other algorithms. In sections 3.5 and 3.6, we consider algorithms for choosing the

vertex to cut. The choice of vertex determines the cutting planes that are available to

be lifted. Modification of the objective function is proposed as one method of choosing

a vertex. Local search in the neighborhood of the optimal vertex is also considered.

In section 3.7, we provide a cutting-plane strength measure that is independent of

any particular objective function, and show that even small difference in the strength

of cutting planes may have a large effect on the length of refutation proofs.

3.1 A Characterization of the SAT Polytope

A critical problem in a cutting-plane algorithm is to find tight cuts, so as to minimize

the number of cuts that are needed. Facet cuts are cutting planes that are facets of

the convex hull of the integer solutions to the problem. In order to find facet cuts, it

is essential to have some information about the facets of the integer hull.

A full description of the convex hull of SAT is an open problem. Several authors

have characterized subsets of the facets of the closely-related set-cover polytope (Balas

& Jeroslow, 1972; Peled, 1977; Sassano, 1989; Cornuéjols & Sassano, 1989; Balas &



CHAPTER 3. A NEW SAT ALGORITHM 101

Ng, 1989b, 1989a; Nobili & Sassano, 1989). Each characterized some subset of the

facets, but no complete characterization is known. Balas and Jeroslow (1972) give a

good set of definitions, and an approach which seems to come close.

Balas and Jeroslow considered the convex hull of subsets of the vertices of the unit

hypercube, which is exactly the convex hull of SAT. In this section, we will extend

the result of Balas and Jeroslow (1972) to obtain a theorem characterizing the convex

hull of SAT.

3.1.1 Canonical Hyperplanes

The n-dimensional unit hypercube is the set K = {x ∈ Rn|0 ≤ xj ≤ 1, j ∈ N} where

N = {1, . . . , n}. A vertex ofK is a point x ∈ K such that exactly n of the inequalities

are tight. Let V be the set of vertices. Two vertices x, y ∈ V are adjacent if they

differ in exactly one component.

Let x, y ∈ V be adjacent vertices, then [x, y] = {z ∈ Rn|z = λx + (1 − λ)y, 0 ≤

λ ≤ 1} is an edge of K, and (x, y) = {z ∈ Rn|z = λx + (1 − λ)y, 0 < λ < 1} is an

open edge of K. An edge is sometimes called a closed edge to emphasize that it is

not an open edge. Two distinct edges of K are adjacent if and only if they have a

common endpoint.

A k-dimensional face F k ofK is a set of points x ∈ K such that exactly n−k of the

2n inequalities (1) are tight. A k-dimensional face F k can be written as a conjunction

of n−k literals. Let F be a k-dimensional face. let N(F )+ = {j ∈ N |∀x ∈ F ∩V, xj =

1}, N(F )− = {j ∈ N |∀x ∈ F ∩V, xj = 0}, and N(F )0 = N −N(F )+−N(F )−. Then

a k-dimensional face F k can be written as:

(

∧

i∈N(F )+

xi

)

∧
(

∧

i∈N(F )−

xi

)

Using DeMorgans law, a vertex v ∈ V is on a k-dimensional face if the disjunction



CHAPTER 3. A NEW SAT ALGORITHM 102

of the negations of those literals is false. Hence, the equation of a k-dimensional face

may be written in a linear form:

∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi = 0

Two distinct k-dimensional faces of K are adjacent if and only if they have a common

(k-1)-dimensional face. The edge distance d(x, y) between two vertices x, y ∈ V is the

number of indices such k ∈ N such that xk 6= yk. The edge distance d(x, F ) between

a vertex x and a k-dimensional face F of K is d(x, F ) = min({d(x, y)|y ∈ F ∩ V }).

The euclidean distance between two vertices x, y ∈ V is just the square root of the

edge distance, and that the edge-distance satisfies the axioms that are expected of a

distance measure.

Using the definitions of a k-dimensional face and the edge distance, they then

defined a canonical hyperplane as the set of vertices that are all at some fixed distance

d from a given face. A canonical hyperplane associated with a face F and denoted

H(F )d is defined by:
∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi = d

for a constant d. The order of a canonical hyperplane H(F )d is the number of zero

coefficients in the equation, |N(F )0|. A canonical inequality is a half-space bounded

by a canonical hyperplane:

∑

i∈N(F )+

(1− xi) +
∑

i∈N(F )−

xi ≥ d

3.1.2 Canonical Facets

Balas and Jeroslow showed that canonical hyperplanes have a property in common

with the convex hulls of vertices in the unit hypercube. In particular, If V ′ ⊂ V is

a subset of the vertices V of the unit hypercube, and C(V ′) is the convex hull of V ′,



CHAPTER 3. A NEW SAT ALGORITHM 103

then C(V ′) contains a point of an open edge (x, y) if and only if it contains the whole

edge [x, y]. Similarly, a canonical hyperplane H contains a point of an open edge

(x, y) of K if and only if it contains the whole edge [x, y].

This common property suggests that the facets of the convex hull of SAT might

be closely related to canonical hyperplanes. In particular, it suggests that the facets

of the convex hull might be canonical defined by canonical inequalities. It turns out

that this is not quite the case. In this section, we prove that the convex hull of any

subset of the vertices of the unit hypercube can be written as canonical inequalities.

Recall that a facet of an n-dimensional polytope is an n−1-dimensional polytope

having n affinely independent exact solutions. Several authors have studied the facets

of the SAT and set-cover polytopes. Balas and Jeroslow identified that some canonical

hyperplanes can be facets of the SAT polytope. The others characterized other classes

of facets, on the assumption that a complete characterization of all facets would give

a complete characterization of the convex hull.

The hyperplanes that contain n affinely independent integer points constitutes the

set of hyperplanes that might be facets of some SAT problem. Peled (1977) found that

there may exist some facets of the SAT polytope that are not canonical hyperplanes.

Consider, for example:

2x1 + 2x2 + x3 + x4 = 3 (3.1)

Equation (3.1) possesses four exact integer solutions that are affinely independent,

and hence is a facet of some four-dimensional polytope. However, the intersection of

2x1 +2x2 + x3 + x4 ≥ 3 with the unit hypercube cube possesses non-integral vertices

(e.g. (1
2
, 1
2
, 1, 0)), and hence could not be the convex hull of the integer solutions. For

any SAT polytope having equation (3.1) as a facet, other facet inequalities must exist

that eliminate the non-integral vertices.



CHAPTER 3. A NEW SAT ALGORITHM 104

It is easy to see that the inequality (3.1) can be expressed as a linear combination

of canonical inequalities:

x1 + x2 ≥ 1 (3.2)

x3 + x4 ≥ 1 (3.3)

Two times (3.2) plus (3.3) gives the inequality (3.1). It is obvious that every facet

inequality can be expressed as a linear combination of canonical inequalities, because

every integer is the sum of some number of ones.

What is not obvious is that every facet inequality can be expressed as a linear

combination of canonical facet inequalities. In theorem 5, we will assert that the

convex hull may be written as a set of canonical inequalities, and that every facet

inequality can be expressed as a linear combination of canonical facet inequalities.

This is so, even though there may also exist some non-canonical inequalities that are

facets of the convex hull.

Theorem 5. The convex integer hull of SAT can be written as a conjunction of

canonical inequalities.

Proof. We need only show that, given any non-integer vertex of the polytope of a

linear program, we can find a separating inequality that is a canonical inequality. Let

X be a non-integer basic solution of a linear program, with a basic variable xb and

nonbasic variables xj , for j ∈ J . Let

xb +
∑

j∈J

ajxj = b

be one of the equations in the solution of the linear integer program, where b is

non-integer. By Gomory’s method (Gomory, 1963), we obtain the separating cutting



CHAPTER 3. A NEW SAT ALGORITHM 105

plane:

∑

j∈J

f(aj)xj ≥ f(b) (3.4)

where f(y) = y − ⌊y⌋ is just the fractional part of y. The inequality (3.4) is a valid

inequality for the linear integer program, and the solution X does not satisfy (3.4).

Taking the Chvátal cut of (3.4), we obtain the inequality:

∑

j∈J

⌈f(aj)⌉xj ≥ ⌈f(b)⌉ (3.5)

Now, inequality (3.5) is a canonical inequality, and is a valid inequality for the integer

program. Further, the non-integer solution X is infeasible for (3.5), because every

variable appearing in (3.5) is nonbasic in X . Hence, the valid inequality (3.5) sepa-

rates the non-integer solution X from the convex hull of the integer program. This

derivation was done for an arbitrary non-integer basic solution X , and the argument

is valid for every particular non-integer basic solution. Hence, every non-integer basic

solution of a linear program may be separated from the convex hull by a canonical

inequality. By Chvátal’s theorem, a finite number of such cutting planes is suffi-

cient. Hence, it is possible to write the convex hull as a conjunction of canonical

inequalities. ���

Rather than characterizing all possible facets of SAT, we have characterized all

possible SAT polytopes. Theorem 5 tells us that it is always possible to write the

convex hull of a SAT problem as a conjunction of canonical inequalities. Other

valid inequalities may exist, and some of those other valid inequalities may be facet

inequalities. It follows immediately that every facet inequality can can be written as

a linear combination of canonical facet inequalities.

Lemma 4. Every facet inequality of the SAT polytope can be written as a canonical

facet inequality.



CHAPTER 3. A NEW SAT ALGORITHM 106

Proof. This follows immediately from theorem 5. ���

The procedure used in the proof of theorem 5 to construct a separating canonical

inequality gives weak cutting planes. Using only this method of finding cutting planes,

a cutting plane algorithm may require a large number of cuts to solve the linear

integer program. In the sequel we will give other methods for deriving canonical

cutting planes that construct stronger cuts.

3.1.3 Canonical Polytopes

In general, a polytope can be described by as system of linear equations Ax ≤ B.

The linear relaxation of a satisfiability problem gives a polytope in the 0/1 cube. The

linear relaxation of any given SAT problem can be written in the form:

∑

i

xi +
∑

j

(1− xj) ≥ 1 , for each clause
∨

i

xi ∨
∨

j

xj

0 ≤ xi ≤ 1 , for each variable xi

(3.6)

By theorem 5, the convex hull of the satisfying solutions can be written using

only canonical inequalities. Hence, the convex hull of the satisfying solutions of a

satisfiability problem can be written in the form:

∑

j

aijxj ≥ bi , for each constraint index i

0 ≤ xj ≤ 1 , for each variable index j

(3.7)

where each aj ∈ {−1, 0, 1} and each b ∈ I.

Assuming that we can find a suitable set of canonical inequalities, the solution to

a satisfiability problem can be computed by a linear program using only canonical

inequalities as constraints. That is a rather strong assumption. A major difficulty is

that often the complete description of the convex hull requires an impractically large

set of inequalities.



CHAPTER 3. A NEW SAT ALGORITHM 107

Because the coefficients aj are all in {−1, 0, 1}, the canonical hyperplanes of the

convex hull have a nice property. The intersection of a canonical hyperplane with a

two-dimensional face of the unit hypercube is either parallel to one of the dimensional

axis, or diagonal to both of them. Further, because the constant b is integer, the

intercept of the hyperplane with each axis occurs at an integer point on the axis.

Each canonical hyperplane intercepts some corners of the unit hypercube, and does

not intercept the edges other than at the corners.

For convenience, we will define a canonical polytope as any polytope determined

by an intersection of canonical half spaces. It is clear that the polytope (3.6) of

every SAT problem is a canonical polytope. Any constraint of (3.6) that includes

both xi and −x1 for any i can be discarded, because every x ∈ [0, 1]n satisfies every

such constraint. Each remaining constraint of the SAT problem can be written as a

canonical inequality.

3.2 Avoiding a Lower Bound

Kraj́ıček (1997) and Pudlák (1997) showed lower bounds on the proof length of cutting

plane proofs, based on known lower bounds on the size of monotone circuits. The

lower bounds proofs depend critically on a lemma that a cutting plane proof system

cannot introduce a negative coefficient for a variable if the coefficients of all previous

occurrences of that variable are non-negative. That lemma in turn depends critically

on using a particular definition of cutting plane proof system, in which a line of a proof

is an inequality. If a cutting plane proof has only non-negative (resp. non-positive)

coefficients, then that proof may be simulated by a monotone circuit in a straight

forward manner. Using that simulation, the lower bounds on the monotone circuit

size imply lower bounds on the proof length for the proofs of certain propositions.



CHAPTER 3. A NEW SAT ALGORITHM 108

For a proposition having only non-negative (resp. non-positive) coefficients, and

using a proof system that cannot introduce a negative (resp. positive) coefficient into

a proof, every proof of that proposition must have only non-negative (resp. non-

positive) coefficients. If a proof system can introduce a negative (resp. positive)

coefficient into a proof, then the lower bound result does not hold for that proof

system. In this section we show that cutting plane algorithms used in integer linear

programming are not subject to the monotone lower bounds of Kraj́ıček and Pudlák

because those cutting plane algorithms can introduce a negative (resp. positive)

coefficient into a proof.

For cutting plane proofs, as defined by Chvátal (1984), Goerdt (1991), and Clote

(1995) the lower bound does hold because those proof systems cannot introduce a

negative coefficient. In those proof systems, proof lines are inequalities and may be

derived by two basic operations: a prior inequality may be multiplied by positive

numbers; and multiple prior inequalities may be added together. Neither method of

producing a new inequality can produce a new negative coefficient.

Cutting plane algorithms for integer programming use slack variables to convert

the inequalities to equalities in a higher-dimensional vector space. Because the al-

gorithms are working with equalities, row operations from Gaussian elimination may

be applied. In particular, an equality may be multiplied by a negative value, and one

row may be subtracted from another. Hence, cutting plane algorithms may introduce

a negative (resp. positive) coefficient to a sequence of tableaus in which all previous

occurrences of that variable have non-negative (resp. non-positive) coefficients.



CHAPTER 3. A NEW SAT ALGORITHM 109

3.2.1 An Example

We will now give an example showing how a cutting plane algorithm can introduce

a negative coefficient. This will show that a cutting plane algorithm that uses slack

variables can generate a constraint with a negative coefficient in a proof where all

previous occurrences of that variable have positive coefficients.

We start the example by supposing that an equality constraint with no negative

coefficients exists in a linear program.

S1 +
1

2
x1 +

3

2
x2 =

1

2
(3.8)

The coefficient of the basis variable S1 is 1, so this equality constraint represents

the inequality 1
2
x1 +

3
2
x2 ≤ 1

2
. From this equality constraint, we generate a Gomory

cutting plane.

(⌊

1

2

⌋

− 1

2

)

x1 +

(⌊

3

2

⌋

− 3

2

)

x2 ≤
(⌊

1

2

⌋

− 1

2

)

(3.9)

−1

2
x1 −

1

2
x2 ≤ −1

2
(3.10)

Converting the cutting plane to an equality requires a new slack variable, S2. The

resulting equality is then be added to the problem, with the new slack variable as a

basic variable. We then have the two constraints:

S1 +
1

2
x1 +

3

2
x2 =

1

2
(3.11)

S2 −
1

2
x1 −

1

2
x2 = −1

2
(3.12)

We have shown that generating a Gomory cut can introduce negative coefficients.

This is because generating the Gomory cutting plane requires subtracting the equation

from the inequality.

Traditional cutting plane proofs use Chvátal cuts, rather than Gomory cuts, and

do not allow the step of subtracting one inequality from another. To generate Gomory



CHAPTER 3. A NEW SAT ALGORITHM 110

cutting plane inequalities, it is necessary to have an equality rather than an inequality

as the starting point. The conversion of each inequality to an equality requires the

use of a slack variable. Slack variable are also not allowed in traditional cutting plane

proofs.

Negative coefficients may also be generated by pivot operations. Suppose, we

pivot on the −1
2
x2 in the new cutting plane. The pivot operation yields:

S1 + 3S2 − x1 = −1 (3.13)

−2S2 + x1 + x2 = 1 (3.14)

In this case, two new negative coefficients are generated in the first constraint. Again,

the negative coefficients occur when a subtraction step is performed.

We have demonstrated that introduction of Gomory cutting planes with slack

variables can generate negative coefficients, and that pivot operations can also gen-

erate negative coefficients. Hence, a necessary condition in the lower bounds proofs

of Kraj́ıček and Pudlák does not hold, and so the lower bound result does not hold

for cutting plane algorithms.

Chvátal (1984) showed that Chvátal cuts are as powerful as Gomory cuts, in the

sense that all of the same theorems can be proved. However, Chvátal ’s proof says

nothing about the length of the proofs. The results of Kraj́ıček and Pudlák exhibit

lower bounds on the proof length of cutting plane proofs, if slack variables are not

used to express the constraints as equality constraints. Those results use Chvátal

cutting planes. With the addition of slack variables, Gomory cutting planes may be

used. As we have seen, the lower bounds results of Kraj́ıček and Pudlák do not hold

if we use slack variables to express constraints as equalities.



CHAPTER 3. A NEW SAT ALGORITHM 111

3.3 Canonical Lifting

The facets of polytopes for certain 0-1 programming problems are related to the facets

of certain subproblems. The subproblems are called minors. Geometrically, a minor

of a polytope is a cross-section of the polytope obtained by fixing values for some of

the variables. The early results in this area were given by Padberg (1975) and Wolsey

(1976).

Peled (1977) gives a result that each inequality that is a facet of a minor of a

set-packing problem can be lifted to obtain a facet of the full set-packing problem.

Nobili and Sassano (1989) gives a similar result for the set-cover problem. Several

other authors give similar definitions and related results for both problems (Zemel,

1978; Balas & Zemel, 1984; Balas & Ng, 1989b, 1989a; Balas, 1990; Gu, Nemhauser,

& Savelsbergh, 1995; Plaza, 1996). In this section, we will translate those results to

obtain a lifting lemma for the SAT problem.

The set-cover problem is closely related to the SAT problem. By introducing a new

variables zi = xi = (1 − xi) for each 0-1 variable xi in SAT, and adding constraints

xi + zi ≥ 1, any given SAT problem may be stated as a set-cover problem. The

variables of the set-cover problem correspond to the literals of the SAT problem. The

SAT problem in n variables is satisfiable if there is a cover having at most n nonzero

variables. Hence, the translation of the lifting lemmas to the context of the SAT

problem is not difficult.

3.3.1 Minors of a SAT Problem

In this section, we define a particular type of subproblem of SAT called a minor

subproblem. A minor of a SAT problem is constructed by fixing some subset of

the variables to 0, fixing another subset of the variables to 1, discarding any of the



CHAPTER 3. A NEW SAT ALGORITHM 112

clauses that are satisfied by any of the fixed variables, and finally discarding the fixed

variables.

Definition 4. Let P = {x : Ax ≥ B} be the polytope of an SAT problem. Let

N = {0, . . . , n} index the variables, F ⊂ N , T ⊂ N , and N ′ ⊂ N be subsets of the

index set N such that F ∩ T = ∅ and N ′ = N \ (F ∩ T ). Then the minor P T
F of P is

the polytope {x : Ax ≥ P, xj = 0 for j ∈ F, xj = 1 for j ∈ T}.

If S is the set of feasible solutions of some 0-1 programming problem, ST
F can be

naturally interpreted as a subproblem. In the SAT interpretation, the clauses that

contain literals in T are satisfied by setting those literals true, and the literals in F are

removed from the problem by setting those literals false. The minor of a SAT problem

is a projection of the n-dimensional polytope onto an (n− |F ∪ T |)-dimensional face

of the unit hypercube.

The conditions Ax ≥ B are the usual inequalities constructed from the SAT

problem as in the formulation (3.6). The projection simply fixes values to some of

the variables, leaving a smaller number of unfixed variables. The minor of the SAT

polytope is the lower-dimensional polytope of the resulting subproblem.

3.3.2 The Lifting Lemmas

A lifting lemma gives that for each facet of a minor sub-problem, a facet of the larger

problem exists. The sequential lifting lemma gives that there is a sequence of minor

sub-problems, such that the variables may be added one at a time rather than all at

once.

Let P be the polytope of a satisfiability problem with variable index set N . Let



CHAPTER 3. A NEW SAT ALGORITHM 113

P T
F be a minor of P and assume that the inequality

∑

v∈N ′

avxv ≥ a0 (3.15)

is a valid inequality for P T
F .

We may assume without loss of generality that av ≥ 0 for all v in (3.15). For any

av < 0, we use a change of variables based on the equality xv = 1−xv ( xv = 1−xv).

That is, we complement the variables that have negative coefficients, to obtain an

equivalent symmetric mirror-image polytope having all non-negative coefficients in

the selected valid inequality.

For each j ∈ T , we know that the inequality

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.16)

is a valid inequality for P T
F , because the variable xj is fixed to value 1. It is natural to

ask if (3.16) might be valid for P
T\{j}
F . Clearly, (3.16) is valid for P

T\{j}
F if and only

if it is valid for both P T
F and P

T\{j}
F∪{j}. If (3.16) is valid when xj = 1, and also when

xj = 0, then it is valid for all values in the domain of xj . Hence, (3.16) is valid for

P
T\{j}
F if and only if:

min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv)− a0 ≥ aj (3.17)

For the complements of the variables, we have the complement to the same argu-

ment. For each j ∈ F , we know that the inequality

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.18)

is a valid inequality for P T
F , because the variable xj is fixed to value 0, so the changed

variable x has value 1. It is natural to ask if (3.18) might be valid for P T
F\{j}. Clearly,

(3.18) is valid for P T
F\{j} if and only if it is valid for both P T

F and P
T∪{j}
F\{j} . If (3.18) is



CHAPTER 3. A NEW SAT ALGORITHM 114

valid when xj = 0, and also when xj = 1, then it is valid for all values in the domain

of xj . Hence, (3.18) is valid for P T
F\{j} if and only if:

min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′

avxv)− a0 ≥ aj (3.19)

Of course, we want to obtain the strongest possible valid inequality for P
T\{j}
F

(resp. P T
F\{j}). It seems plausible that the strongest inequality might occur when

(3.17) (resp. (3.19)) is satisfied exactly with equality. It also seems plausible that

the resulting inequality might be stronger if the starting inequality (3.15) is a facet

inequality for P T
F . These intuitive considerations motivate the the lifting lemmas for

the SAT polytope.

Lemma 5 (Canonical Inequality Lifting). Let P be the polytope of a satisfiabil-

ity problem with variable index set N . Let P T
F be a minor of the polytope P and

assume that the inequality

∑

v∈N ′

avxv ≥ a0 (3.20)

defines a valid inequality of Q(P T
F ). Then:

1. For each j ∈ T , and coefficient

aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv)− a0 (3.21)

the inequality:

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.22)

defines a valid inequality of the polytope Q(P
T\{j}
F ).

2. For each j ∈ F , and coefficient

aj = min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′

avxv)− a0 (3.23)



CHAPTER 3. A NEW SAT ALGORITHM 115

the inequality:

∑

v∈N ′

avxv − ajxj ≥ a0 (3.24)

defines a valid inequality of the polytope Q(P T
F\{j}).

Proof. We give a detailed proof of statement 1. The proof of statement 2 is comple-

mentary, with one additional step to note that
∑

v∈N ′ avxv + ajxj ≥ a0 + aj implies

∑

v∈N ′ avxv − ajxj ≥ a0.

Let aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv)− a0. If Q(P ) ∩ {x : xj = 0} = ∅, then xj ≥ 1

is valid for Q(P
T\{j}
F ). In this case, for every aj :

∑

v∈N ′

avxv ≥ a0 (3.25)

∑

v∈N ′

avxv + aj ≥ a0 + aj (3.26)

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.27)

Otherwise, Q(P )∩{x : xj = 0} 6= ∅. For xj = 0, we have P
T\j
F ∩{x = 0} = P

T\{j}
F∪j .

Then
∑

v∈N ′ avxv ≥ a0 + aj for aj such that:

min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv) ≥ a0 + aj (3.28)

or equivalently:

aj ≤ min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv)− a0 (3.29)

Hence, (3.22) is valid for Q(P
T\{j}
F ). ���

Lemma 5 gives a method for deriving valid inequalities, using inequalities that

are valid for lower-dimension subproblems. To show that the method can be used to

derive facet inequalities, we need an additional condition.



CHAPTER 3. A NEW SAT ALGORITHM 116

Lemma 6 (Sequential Facet Lifting). Let P be the polytope of a satisfiability

problem with variable index set N . Let P T
F be a minor of the polytope P and as-

sume that the inequality

∑

v∈N ′

avxv ≥ a0 (3.30)

defines a nontrivial facet of Q(P T
F ). Then:

1. For each j ∈ T , If aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.31)

defines a facet of the polytope Q(P
T\{j}
F ).

2. For each j ∈ F , For aj = min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv − ajxj ≥ a0 (3.32)

defines a facet of the polytope Q(P T
F\{j}).

Proof. We give a detailed proof of statement 1. The proof of statement 2 is comple-

mentary. Because (3.30) is a facet of Q(P T
F ), (3.30) is a valid inequality of Q(P T

F ).

Hence, by lemma 5, (3.31) is a valid inequality for Q(P
T\{j}
F ). It remains to show

that (3.31) defines a facet of the polytope Q(P
T\{j}
F ). To show this, we will show the

existence of k + 1 affinely independent vectors that satisfy (3.31) at equality.

Since (3.30) defines a facet of Q(P T
F ), there must be k = |N ′| = |N \ (F ∪ T )|

affinely independent vectors xi for i ∈ {1, . . . , k} that satisfy (3.30) at equal-

ity. Since xi
j = 0, each vector xi satisfies (3.31) at equality. To construct the

one additional affinely independent vector, let x∗ ∈ Q(P
T\{j}
F∪j ) with x∗

j = 1. For

aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv) − a0, x∗ satisfies (3.31) at equality. Since x∗
j = 1,



CHAPTER 3. A NEW SAT ALGORITHM 117

x∗ cannot be written as a combination of the k vectors xi, so the k + 1 vectors

{x∗, x1, . . . , xk} are affinely independent. Hence, there exist k + 1 affinely indepen-

dent vectors in Q(P
T\{j}
F ) that satisfy (3.31) at equality, so (3.31) defines a facet of

the polytope Q(P
T\{j}
F ). ���

Lemma 7 (Lifting Lemma). Let P be the polytope of a satisfiability problem with

variable index set N . Let P T
F be a minor of P and let Q(P T

F ) be the convex hull of

P T
F . Suppose that the inequality

∑

v∈N ′

avxv ≥ a0

defines a nontrivial facet of Q(P T
F ) and that Q(P T

F ) is full dimensional. Then there

exist coefficients bv, for v ∈ N \N ′ and b0 such that the inequality

∑

v∈N ′

avxv +
∑

v∈N\N ′

bvxv ≥ a0 + b0

defines a facet of Q(P ).

Proof. This follows by induction from repeated application of lemma 6. At each

application, the cardinality of N \N ′ is reduced. ���

The sequential lifting lemma tells us that given a facet of a proper minor of

a SAT problem, we may compute a facet of another minor having one additional

variable. The sequential lifting lemma 6 requires the calculation of a minimum aj =

min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv)−a0 over the 0-1 domain of the variables. Hence, the method

requires the solution of an integer program. To compute a facet of the full problem,

the needed coefficients are in general not easy to compute.

However, the solution of that integer program is bounded by the solution of the

linear relaxation. Given a facet of a minor, if the solution of the minimum (3.21) as a

linear program produces a positive value aj > 0, then the minimum integer value of aj



CHAPTER 3. A NEW SAT ALGORITHM 118

is at least ⌈aj⌉. Hence, we may find some lifts without solving integer programming

subproblems.

The sequence in which the individual coefficients are computed may be significant.

It may be that only one sequence leads to the desired coefficients. Lemma 7 gives us

only the existence of some sequence.

Fortunately, we do not need a complete set of facet inequalities. We need only

enough strong inequalities so that the solution of the linear program obtains an integer

solution. Rather than trying to find only facet inequalities, we settle for finding strong

cutting planes that are canonical inequalities. By finding strong cutting planes that

are canonical inequalities, we will eventually find the facet inequalities. If the methods

for finding strong cutting planes are good, then facet inequalities might be found

quickly.

3.3.3 Canonical Lifting on a Polytope

Suppose we have a set of canonical inequalities P that define the polytope of a SAT

problem. We do not know a-priori if any one of those inequalities defines a facet of a

minor of the problem. Obviously, if we have a canonical inequality

∑

v∈N ′

avxv ≥ b (3.33)

for some set of variables S, then it is possible that there may exist a minor subproblem

P T
F for which the inequality (3.33) is a facet.

If the inequality (3.33) is a facet of a minor of the SAT problem, then by the

sequential lifting lemma there must exist an index j 6∈ N ′, a literal Lj ∈ {xj , (1−xj)},

and a aj such that

∑

v∈N ′

avxv + ajLj ≥ b+ aj (3.34)



CHAPTER 3. A NEW SAT ALGORITHM 119

is a facet of one of the minor subproblems P
T\{j}
F or P T

F\{j}. The literal Lj may be a

positive occurrence of a variable xj , or a negated occurrence xj = 1 − xj . The two

cases of the sequential lifting lemma 6 correspond to the two possibilities.

Suppose for a particular variable xj , we use an algorithm to find aj =

minx∈P ∅
{j}
(
∑

v∈N ′ avxv)− a0. If aj > 0 then the inequality

∑

v∈N ′

avxv + ajxj ≥ b+ aj (3.35)

is a valid inequality, and dominates the original inequality (3.33). Because (3.35)

implies (3.33), we may remove (3.33) from the problem, replacing it with (3.35). As

a bonus, if the inequality (3.33) is a facet of P
{j}
∅ , then the inequality (3.35) is a facet

of P .

In the complementary case, suppose for a particular complemented variable xj =

(1−xv), we use an algorithm to find aj = min
x∈P

{j}
∅

(
∑

v∈N ′ avxv)−a0. If aj > 0 then

the inequality

∑

v∈N ′

avxv − ajxj ≥ b (3.36)

is a valid inequality, and dominates the original inequality (3.33). Because (3.36)

implies (3.33), we may remove (3.33) from the problem, replacing it with (3.36). As

a bonus, if the inequality (3.33) is a facet of P ∅
{j}, then the inequality (3.35) is a facet

of P .

The polytope P ∅
{j} (resp. P

{j}
∅ ) is just a polytope described by some set of linear

inequalities, and the sum of the weights
∑

v∈N ′ avxv is just a linear function. Hence,

a linear programming algorithm can be used to find a lower bound for the minimum

value of aj .

The remaining difficulty is to find the good choice of the literal Lj . A nondeter-

ministic algorithm could make every choice for the inequality (3.33), and every choice



CHAPTER 3. A NEW SAT ALGORITHM 120

for Lj , at each step. However, to simulate such a nondeterministic algorithm on a

deterministic machine would require exponential time, and the resulting set of facet

inequalities may be exponentially large. Fortunately, the sequential lifting lemma

allows us to modify the problem each time a lifted inequality is found, and so a

deterministic algorithm is possible.

3.3.4 The Canonical Lifting Algorithm

The abstract presentation of the previous sections described the lifting algorithm on

an arbitrary canonical polytope. For a practical implementation, the polytopes is

described by a set of linear inequalities. In this section, we will give algorithms that

use linear-programming subproblems to obtain strong canonical inequalities. The

algorithms are designed to find cutting planes that are canonical inequalities, and

that satisfy some necessary conditions that must be satisfied by all facets of the

convex hull.

The lifting algorithm lifts a given inequality by the addition of a single literal,

to find when one exists a stronger valid inequality that implies the original valid

inequality. All of the valid inequalities that are found by Barth’s procedure (Barth,

1996, ch. 8) are also found by this new algorithm, which is much less complex

than Barth’s algorithm. Using the inequalities found by this method, the pigeonhole

problems and a variety of hard SAT problems can be solved efficiently.

For a particular literal Lj , canonical lifting requires some means of finding the

minimum value of aj such that (3.34) follows from P . In this section we give an

algorithm that uses a linear programming subproblem and a single Chvátal cut to

find a lower bound on this value.



CHAPTER 3. A NEW SAT ALGORITHM 121

Suppose that we are given a set of valid inequalities

∑

j∈J

aijxj ≥ bi , for each i ∈ U (3.37)

where all of the variables are restricted to the domain {0, 1}. The linear relaxation

of the domain restriction gives the domain inequalities

xj ≥ 0 , for each j

−xj ≥ −1 , for each j
(3.38)

for each the 0-1 variables in J .

Suppose also that the inequality (3.33) is one of the given inequalities, and that

S ⊂ J .

We first choose one of the inequalities to be lifted. It is sufficient to try the

algorithm for each available inequality, and for each available literal. Suppose that

the inequality:

∑

v∈N ′

aijxj ≥ b (3.39)

is the selected inequality (3.37). If the inequality (3.39) is a facet of a minor of the

SAT problem, then by the sequential lifting lemma there must exist an index j 6∈ N ′,

and a literal Lj ∈ {xj , (1− xj)} such that

∑

v∈N ′

avxv + Lj ≥ b+ 1 (3.40)

We want to find a literal Lj ∈ {xi, (1 − xi)|i ∈ N \ N ′} and a strong canonical

inequality (3.34) that dominates (3.33), if one exists.



CHAPTER 3. A NEW SAT ALGORITHM 122

Now, to find the minimum value of
∑

v∈N ′ Lv + Lj , we use a linear program.

minimize:
∑

v∈N ′

avxv + Lj

such that:
∑

j∈J

aijxj ≥ bi , for i ∈ U

xj ≥ 0 , for each j

− xj ≥ −1 , for each j

and: Ln = 0

(3.41)

If the minimum value of this linear program is greater than b, then by the sequential

lifting lemma we may deduce the inequality (3.40). The inequality (3.40) dominates

the original inequality (3.39). Hence, we may remove (3.39) from the problem and

replace it with (3.40).

The remaining issue is how to choose the inequality (3.33) and the literal Lj . We

assert that it suffices to search the available literals. That is, for each inequality in

the problem, and for each literal in the problem, lifting may be attempted. Hence,

the number of linear programming subproblems to consider is the product of the

number of variables and the number of inequalities. If any one of the lifting attempts

succeeds, then the integer program may be modified by adding new cutting plane and

removing the inequality that was lifted.

3.3.5 Canonical Lifting Subsumes Diagonal Sums

Barth (1996, ch. 7) gives a method of solving the pigeonhole problems by finding

diagonal sum cuts. Diagonal sums were first defined by Hooker (1992). Essentially,

a diagonal sum cut is an inference rule in which a1x1 + a2x2 + ... + anxn ≥ b may

be inferred from the set of inequalities: (a1 − 1)x1 + a2x2 + ... + anxn ≥ b − 1,

a1x1 + (a2 − 1)x2 + ... + anxn ≥ b − 1,. . . , a1x1 + a2x2 + ... + (an − 1)xn ≥ b − 1.



CHAPTER 3. A NEW SAT ALGORITHM 123

The name diagonal sum derives from the fact that the coefficients on the diagonal

are each reduced by one in the antecedents.

Hooker’s generalized resolution rule is the special case in which only 0-1 coefficients

are present:

Definition 5. An canonical inequality DS :=
∑

1≤i≤n Li ≥ d + 1 is a diagonal sum

of a set of canonical inequalities if:

1. for all 1 ≤ j ≤ n the canonical inequality DSj :=
∑

1≤i 6=j≤n Li ≥ d dominated

by an extended clause in S

2. there is no canonical inequality in S that dominates DS;

3. V ar(Li) 6= V ar(Lj) for all i 6= j (that is, no two literals have the same variable).

Barth’s contribution was to give an algorithm for finding certain generalized res-

olution inferences that are present in the pigeonhole problems. The search algorithm

looks for diagonal sum cuts in a certain sequence that corresponds to a lifting proce-

dure. However, Barth’s algorithm for finding diagonal sum cuts is a search algorithm

that finds only certain linear combinations of inequalities called diagonal sum cuts.

We show that our lifting method of solving subproblems to find canonical inequalities

also solves the pigeonhole problem efficiently, by finding the same inequalities that

are found by Barth’s method.

In Barth’s procedure, each canonical inequality in n variables with is found by

first finding n canonical inequalities in n − 1 variables. The procedure recurses to

develop the inequalities with n−1 variables. Ultimately, the canonical inequalities in

three variables are each constructed from three inequalities in two variables. In the



CHAPTER 3. A NEW SAT ALGORITHM 124

case with three variables, Barth’s procedure finds:

x1 + x2 ≥ 1 (3.42)

x1 + x3 ≥ 1 (3.43)

x2 + x3 ≥ 1 (3.44)

then constructs a single Chvátal cut of the sum of those inequalities to derive:

x1 + x2 + x3 ≥ 2 (3.45)

To find a single canonical inequality in n variables, Barth’s procedure may require

searching for as many as sum
n/2
i=0

(

n
i

)

goal clauses.

Now, to show that our procedure finds the same canonical inequalities in n vari-

ables. Rather than finding n canonical inequalities in n−1 variables, we require only

one. The formula
∑

1≤i≤n Li ≥ d = n − 1 is called a clique inequality, and is a very

important special case. When a clique inequality is encoded into conjunctive normal

form, it generates
(

n
2

)

two-literal clauses Li ∨ Lj , for each i 6= j. The solution of the

pigeonhole problem requires that the algorithm find clique inequalities.

To find a clique inequality, our procedure requires that we have previously found

only one inequality in n − 1 variables. Without loss of generality, we assume a

convenient labeling of the variables. Suppose that we have found:

∑

1≤i≤n−1

Li ≥ d = n− 2 (3.46)

and that the problem also includes inequalities that dominate each of the two-literal

inequalities that includes Ln. In the simple case where each of the two-literal inequal-

ities is directly present, we have the set of inequalities:

∑

1≤i≤n−1

Li ≥ n− 2 (3.47)

Lj + Ln ≥ 1 , for 1 ≤ j ≤ n− 1 (3.48)



CHAPTER 3. A NEW SAT ALGORITHM 125

Our procedure will attempt to lift the first inequality by the literal Ln to obtain

∑

1≤i≤n−1

Li + Ln ≥ d = n− 1 (3.49)

The linear program is then:

minimize:
∑

1≤i≤n

Li

such that:
∑

1≤i≤n−1

Li ≥ d− 1 = n− 2

Lj + Ln ≥ 1 , for 1 ≤ j ≤ n− 1

and: Ln = 0

(3.50)

the minimum value is then found to be n− 1, which is greater than n− 2, and hence

by the lifting lemma the inequality 3.49 is justified.

In the case of finding a large clique inequality, our method requires solving as many

as n−1 linear programs. This is potentially much more efficient than Barth’s method,

which requires a recursive procedure to find each of sum
n/2
i=0

(

n
i

)

smaller inequalities.

The derivation for non-clique inequalities, sometimes called counting inequalities,

is similar. The only difference is that the value of d is smaller, and the initial set of

inequalities is larger. When a counting constraint

∑

1≤i≤n

Li ≥ d = n− k (3.51)

is encoded into conjunctive normal form, the resulting proposition has
(

n
k+1

)

clauses of

size
(

n
k

)

. Our procedure requires finding only one constraints with n−1 literals, from

which the inequality (3.51) can be derived directly by solving one linear program.

minimize:
∑

1≤i≤n

Li

such that:
∑

1≤i≤n−1

Li ≥ d− 1 = n− k − 1

∑

j∈S

Li ≥ 1 , for S ⊂ {1, . . . , n}, |S| = k

and: Ln = 0

(3.52)



CHAPTER 3. A NEW SAT ALGORITHM 126

After finding that the minimum is greater than d − 1, the lifting lemma gives the

result. Barth’s procedure again requires a combinatorial number of intermediate

inequalities to be built up before the counting constraint (3.51) can be recovered

from the proposition.

3.4 Integer Lifting for Cutting Planes

The canonical lifting algorithm given in section 3.3.4 lifts canonical inequalities to

discover stronger canonical inequalities that are also valid for the 0-1 program. Hooker

and Barth gave similar algorithms, and Barth showed that his algorithm could solve

pigeonhole problems efficiently (Barth, 1996; Hooker, 1992).

However, those lifting algorithms do not apply after some pivots have been per-

formed in a linear program, because the proofs each depend on having only 0-1

variables. After some pivots have been performed, some of the variables in the in-

equalities are slack variables of the original problem, which are not constrained to

take only 0-1 values. The use of slack variables is necessary to avoid the lower bound

of Kraj́ıček (1997) and Pudlák (1997), as discussed in section 3.2. Hence, to incor-

porate both lifting and slack variables in a single algorithm, new lifting lemmas and

corresponding algorithms are needed.

In this section, we give a modification of the lifting lemmas, and show that cutting

planes can be lifted in the context of a linear program, even if some non-Boolean slack

variables are nonbasic. These new lifting lemmas use a modification of the definition

of a minor, which accommodates the presence of some slack variables in a natural

way.



CHAPTER 3. A NEW SAT ALGORITHM 127

3.4.1 Integer Minors

Recall the definition 4 of a minor of a SAT problem. That definition assumes that all

of the variables present in the problem are Boolean variables, restricted to the domain

{0, 1}. Before giving the lifting lemmas for the case in in which some non-Boolean

integer variables are present in the problem, it is necessary to extend the definition

of a minor to allow variables with non-Boolean domains. The slack variables have

domain in the positive integers, so we must provide a definition of minor that allows

such variables.

For the statements and proofs of integer lifting theorems, it will be convenient

to redefine some notation. We define the minor of an integer programming problem

using the same notation as definition 4. The reuse of the notation should not be

confusing, because the new definition is equivalent to the previous definition for the

case with all Boolean variables.

Definition 6. Let P = {x : Ax ≥ B} be the polytope of an integer programming

problem. Let N = {0, . . . , n} index the variables, F ⊂ N , T ⊂ N , and N ′ ⊂ N be

subsets of the index set N such that F ∩T = ∅ and N ′ = N \(F ∩T ). Then the integer

minor P T
F of P is the polytope {x : Ax ≥ P, xj ≤ 0 for j ∈ F, xj ≥ 1 for j ∈ T}.

The difference between definition 4 and definition 6 is subtle. In definition 4, the

restriction on the variables in T is xj = 1. In definition 6, that restriction is altered to

xj ≥ 1. For variables that are restricted to domain {0, 1}, there is no difference. The

difference only affects variables having domain in the positive integers. Hence, for

problems in which all variables are restricted to domain {0, 1}, the minor as defined by

definition 6 is identical to the minor of definition 4. The two definitions are different

only if some of the variables are not Boolean.

Definition 6 accommodates slack variables in a natural way. In a pure integer



CHAPTER 3. A NEW SAT ALGORITHM 128

program, or in the integer program relaxation of a SAT problem, the slack variables

are restricted to the domain of positive integers. For a SAT problem having N Boolean

variables and M clauses, M slack variables are introduced when the integer program

relaxation is formed. Thus, the polytope of the integer program has M+N variables.

In the minors of that polytope, any of those variables may be restricted by either of

the inequalities xj ≤ 0 or xj ≥ 1.

3.4.2 Integer Lifting Lemma

In this section, we give a modification of the lifting lemma, and show that cutting

planes can be lifted in the context of a linear program, even if some non-Boolean

slack variables are nonbasic. The difference is that this new version of lifting does not

depend on having only 0-1 variables in the problem. Instead, this version depends on

having only integer variables. The slack variables of an integer program are integer

variables, so a 0-1 linear program meets this more general condition even after some

pivots.

Lemma 8 (Integer Inequality Lifting). Let P be the polytope of an integer pro-

gramming problem with variable index set N . Let P T
F be an integer minor of the

polytope P and assume that the inequality

∑

v∈N ′

avxv ≥ a0 (3.53)

defines a valid inequality of Q(P T
F ). Then:

1. For each j ∈ T , and aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.54)

defines a valid inequality of the polytope Q(P
T\{j}
F ).



CHAPTER 3. A NEW SAT ALGORITHM 129

2. For each j ∈ F , and aj = min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv − ajxj ≥ a0 (3.55)

defines a valid inequality of the polytope Q(P T
F\{j}).

Proof. Proof of statement 1:

Let aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv) − a0. If Q(P ) ∩ {x : xj = 0} = ∅, then xj ≥ 1 is

valid for Q(P
T\{j}
F ). In this case, for every aj :

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.56)

Otherwise, Q(P ) ∩ {x : xj = 0} 6= ∅. For xj = 0, we have P
T\j
F ∩ {x : x = 0} =

P
T\{j}
F∪j . Then

∑

v∈N ′ avxv ≥ a0 + aj for aj such that:

min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv) ≥ a0 + aj (3.57)

or equivalently:

aj ≤ min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′

avxv)− a0 (3.58)

Hence, (3.54) is valid for Q(P
T\{j}
F ).

Proof of statement 2:

Let aj = min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′ avxv) − a0. If Q(P ) ∩ {x : xj ≥ 1} = ∅, then xj = 0 is

valid for Q(P T
F\{j}). In this case, for every aj :

∑

v∈N ′

avxv − ajxj ≥ a0 (3.59)

Otherwise, Q(P ) ∩ {x : xj ≥ 1} 6= ∅. For xj ≥ 1, we have P T
F\j ∩ {x : x ≥ 1} =

P
T∪{j}
F\{j} . Then

∑

v∈N ′ avxv+ ≥ a0 + aj for aj such that:

min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′

avxv) ≥ a0 + aj (3.60)



CHAPTER 3. A NEW SAT ALGORITHM 130

or equivalently:

aj ≤ min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′

avxv)− a0 (3.61)

Hence, (3.55) is valid for Q(P T
F\{j}). ���

Lemma 8 gives a method for deriving valid inequalities, using inequalities that

are valid for lower-dimension subproblems. To show that the method can be used to

derive facet inequalities, we need an additional condition.

Lemma 9 (Integer Facet Lifting). Let P be the polytope of an integer program-

ming problem with variable index set N . Let P T
F be an integer minor of the polytope

P and assume that the inequality

∑

v∈N ′

avxv ≥ a0 (3.62)

defines a nontrivial facet of Q(P T
F ). Then:

1. For each j ∈ T , If aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv + ajxj ≥ a0 + aj (3.63)

defines a facet of the polytope Q(P
T\{j}
F ).

2. For each j ∈ F , For aj = min
x∈P

T∪{j}
F\{j}

(
∑

v∈N ′ avxv)− a0, the inequality:

∑

v∈N ′

avxv − ajxj ≥ a0 (3.64)

defines a facet of the polytope Q(P T
F\{j}).

Proof. We give a detailed proof of statement 1. The proof of statement 2 is comple-

mentary. Because (3.62) is a facet of Q(P T
F ), (3.62) is a valid inequality of Q(P T

F ).

Hence, by lemma 8, (3.63) is a valid inequality for Q(P
T\{j}
F ). It remains to show



CHAPTER 3. A NEW SAT ALGORITHM 131

that (3.63) defines a facet of the polytope Q(P
T\{j}
F ). To show this, we will show the

existence of k + 1 affinely independent vectors that satisfy (3.63) at equality.

Since (3.62) defines a facet of Q(P T
F ), there must be k = |N ′| = |N \ (F ∪ T )|

affinely independent vectors xi for i ∈ {1, . . . , k} that satisfy (3.62) at equal-

ity. Since xi
j = 0, each vector xi satisfies (3.63) at equality. To construct the

one additional affinely independent vector, let x∗ ∈ Q(P
T\{j}
F∪j ) with x∗

j ≥ 1. For

aj = min
x∈P

T\{j}
F∪{j}

(
∑

v∈N ′ avxv) − a0, x∗ satisfies (3.63) at equality. Since x∗
j ≥ 1,

x∗ cannot be written as a combination of the k vectors xi, so the k + 1 vectors

{x∗, x1, . . . , xk} are affinely independent. Hence, there exist k + 1 affinely indepen-

dent vectors in Q(P
T\{j}
F ) that satisfy (3.63) at equality, so (3.63) defines a facet of

the polytope Q(P
T\{j}
F ). ���

Lemma 10 (Integer Lifting Lemma). Let P be the polytope of a satisfiability

problem with variable index set N . Let P T
F be a minor of P and let Q(P T

F ) be the

convex hull of P T
F . Suppose that the inequality

∑

v∈N ′

avxv ≥ a0

defines a nontrivial facet of Q(P T
F ) and that Q(P T

F ) is full dimensional. Then there

exist coefficients bv, for v ∈ N \N ′ and b0 such that the inequality

∑

v∈N ′

avxv +
∑

v∈N\N ′

bvxv ≥ a0 + b0

defines a facet of Q(P ).

Proof. This follows by induction from repeated application of lemma 9. At each

application, the cardinality of N \N ′ is reduced. ���

The use of lifting algorithm to find strong inequalities that dominate Chvátal

-Gomory cutting planes gives an algorithm that is potentially more efficient than

previous cutting plane algorithms because it can discover stronger valid inequalities.



CHAPTER 3. A NEW SAT ALGORITHM 132

3.4.3 Integer Lifting on a Polytope

Suppose we have a set of canonical inequalities P that define the polytope of an integer

programming problem. We do not know a-priori if any one of those inequalities defines

a facet of an integer minor of the problem. Obviously, if we have a canonical inequality

∑

v∈N ′

avxv ≥ b (3.65)

for some set of variables S, then it is possible that there may exist an integer minor

subproblem P T
F for which the inequality (3.65) is a facet.

If the inequality (3.65) is a facet of an integer minor of the problem, then by the

sequential lifting lemma there must exist an index j 6∈ N ′, a literal Lj ∈ {xj , (1−xj)},

and an aj such that

∑

v∈N ′

avxv + ajLj ≥ b+ aj (3.66)

is a facet of one of the minor subproblems P
T\{j}
F or P T

F\{j}. The literal Lj may be a

positive occurrence of a variable xj , or a negated occurrence xj = 1 − xj . The two

cases of lemma 9 correspond to the two possibilities.

Suppose for a particular variable xj , we use an algorithm to find aj =

minx∈P ∅
{j}
(
∑

v∈N ′ avxv)− a0. If aj > 0 then the inequality

∑

v∈N ′

avxv + ajxj ≥ b+ aj (3.67)

is a valid inequality, and dominates the original inequality (3.65). Because (3.67)

implies (3.65), we may remove (3.65) from the problem, replacing it with (3.67).

In the complementary case, suppose for a particular complemented variable xj =

(1−xv), we use an algorithm to find aj = min
x∈P

{j}
∅

(
∑

v∈N ′ avxv)−a0. If aj > 0 then

the inequality

∑

v∈N ′

avxv − ajxj ≥ b (3.68)



CHAPTER 3. A NEW SAT ALGORITHM 133

is a valid inequality, and dominates the original inequality (3.65). Because (3.68)

implies (3.65), we may remove (3.65) from the problem, replacing it with (3.68).

The polytope P ∅
{j} (resp. P

{j}
∅ ) is just a polytope described by some set of linear

inequalities, and the sum of the weights
∑

v∈N ′ avxv is just a linear function. Hence,

a linear programming algorithm can be used to find a lower bound for the minimum

integer value of aj.

3.4.4 Integer Lifting Algorithm

In section 3.4.2, the lifting lemmas were modified to show that cutting planes can be

lifted in the context of an integer program. In section 3.4.3, we gave an an algorithm

for lifting of an integer program defined by a given polytope. In this section, we give

an algorithm for lifting an integer program defined by an SAT problem.

For a particular integer variable xj , or its complement 1−xj , integer lifting requires

some means of finding the minimum value of aj such that (3.66) follows from P . In

this section we give an algorithm that uses a linear programming subproblem to find

a lower bound on this value. Using this lower bound, and knowing that the facets

of SAT are canonical hyperplanes, we may use the integer ceiling of that minimum

value to obtain a stronger inequality.

Suppose that we are given a set of valid inequalities

∑

j∈J

aijxj ≥ bi , for each i ∈ U (3.69)

where all of the variables are restricted to the domain of nonnegative integers. Some

of the variables may be further restricted to the domain {0, 1}. As before, the linear

relaxation of any such domain restrictions gives the domain inequalities:

xj ≥ 0 , for each j

−xj ≥ −1 , for each j
(3.70)



CHAPTER 3. A NEW SAT ALGORITHM 134

for each the Boolean variables. Suppose also that the inequality (3.65) is one of the

given inequalities, and that S ⊂ J .

We first choose one of the inequalities to be lifted. Suppose that the inequality:

∑

v∈N ′

avxv ≥ b (3.71)

is the selected inequality. Suppose further that the selected inequality is a Gomory

cutting plane generated from some linear combination of inequalities with only integer

coefficients.

If the inequality (3.71) is a facet of an integer minor of the integer program,

then by the sequential lifting lemma there exists an index j ∈ N , and a literal

Lj ∈ {xj, (1− xj)} such that

∑

v∈N ′

avxv + Lj ≥ b+ 1 (3.72)

We want to find a literal Lj ∈ {xi, (1− xi)} and a strong canonical inequality (3.66)

that dominates (3.65), if one exists.

Now, to find the minimum value of
∑

v∈N ′ avxv + Lj , we use a linear program:

minimize:
∑

v∈N ′

avxv + Lj

such that:
∑

j∈J

aijxj ≥ bi , for i ∈ U

xj ≥ 0 , for each j

− xj ≥ −1 , for each j

and: Lj ≤ 0

(3.73)

Because the selected inequality (3.71) is a Gomory cutting plane algorithm from a

set of linear inequalities having only integer coefficients, we also know that:

∑

v∈N ′

avxv ≡ b(mod1) (3.74)



CHAPTER 3. A NEW SAT ALGORITHM 135

Hence, if the minimum value of the linear program (3.73) is greater than b, then by

the sequential lifting lemma we may deduce the inequality (3.72). The inequality

(3.72) dominates the original inequality (3.71). Hence, we may remove (3.71) from

the problem and replace it with (3.72).

The use of Chvátal or Gomory cutting planes with this lifting algorithm gives an

algorithm that is potentially more efficient than the previous cutting plane algorithms

because it can discover stronger canonical cutting planes. The derivation of a strong

inequality that dominates a cutting plane gives a stronger inequality, and so fewer

inequalities may be required to solve the problem.

3.5 Choosing a Vertex to Cut

For SAT, the objective function is not given by the problem. We are free to use any

objective function, and even to ignore the objective function when it is advantageous

to do so. When it is necessary to construct cutting planes, it may be that a different

vertex of the polytope will allow us to construct a stronger cutting plane. A local

search of some subset of the vertices, to find a vertex that allows us to generate a

stronger cutting planes, may be advantageous.

In this section, we discuss a method of using a local search to find strong cutting

planes. The basic idea is to measure the strength of the strongest cutting plane at

each vertex, and to take any pivots that allow us to generate a stronger cutting plane.

3.5.1 Multi-Start Local Search Algorithms

The idea of multi-start local search is not new. Many operations research problems

have been addressed by local search (Fiduccia & Mattheyses, 1982; Aarts & Lenstra,

1997). Much of artificial intelligence can be viewed as developing various algorithms



CHAPTER 3. A NEW SAT ALGORITHM 136

for local search. Numerous authors have applied multi-start local search to develop

a variety of model-search algorithms for finding satisfying solutions SAT problems.

(See section 2.3.4.) Those algorithms seek to find a satisfying solution to an SAT

problem.

A multi-start local search algorithm searches a graph to find an local-optimum

vertex. The basic algorithm uses iterations, with two basic steps at each iteration.

In the first step, a starting node of the graph is selected. Second, while an adjacent

nodes is better than the current node, select one of the better adjacent nodes. A

“greedy” version always selects the best adjacent node, while a “randomized” version

selects randomly from among the adjacent nodes. A variation of the randomized

version selects the best adjacent node from a random sample of the adjacent nodes.

The two basic design decisions for such an algorithm are the method of selecting

starting nodes, and the method of determining the quality of each node. For local

search algorithms on convex polytopes, the nodes of the graph are the vertices of the

polytope, which of course are just the basic solutions of the linear equations. The

arcs of the graph are just the edges of the polytope, which are the possible pivots of

the system of linear equations. The simplex algorithm is an example of a local-search

algorithm, in which the local optimum is also a global optimum.

3.5.2 Finding a Stronger Cut

At each iteration of a cutting plane algorithm, an objective function is constructed,

and the linear program is solved. In the usual algorithm, one or more cutting planes

are added and the next iteration starts. This section outlines a modification of the

usual algorithm to include a local search to find a stronger cutting plane.

Rather than immediately generating a cutting plane, we search for a nearby vertex



CHAPTER 3. A NEW SAT ALGORITHM 137

that allows a stronger cutting plane. The vertex the is the solution of the linear

program is used as the starting point of the search. The adjacent vertices of the

polytope, determined by the feasible pivots of the tableau, are examined to see if any

of them gives a stronger cutting plane. If any pivot gives a tableau that allows a

stronger cutting plane than is allowed by the current tableau, the pivot leading to

the strongest such cutting plane is taken.

The two basic design decisions for a multi-start local search algorithm are the

selection of starting nodes and the method of measuring the quality of each node.

Our method of selecting the starting vertex is to solve the linear program using an

objective function. In section 3.6, we develop an objective function that can be used

with a simplex algorithm to select a basic solution as a starting vertex. Our method

of measuring the quality of the nodes is by measuring the strength of the cuts that

may be generated at a vertex. In section 3.7, we develop a method of measuring

the quality of a vertex, by measuring the strength of the cutting planes that can be

derived at that vertex.

3.5.3 Reducing the Denominator

Gomory (1963) presents the original method of cutting planes for integer program-

ming. In Gomory’s algorithm, a linear relaxation is first solved to optimality, then

cutting planes and dual pivots are used to reduce the optimal solution to integers.

In the traditional cutting-plane algorithm, all of the values in the tableau may be

expressed using a single common denominator. The common denominator is explicit

in Gomory’s integer-only method, which keeps it separately (Gomory, 1963, Example

3). In the traditional algorithm, the common denominator may become quite large.

In the linear program solutions it is common to have coefficients with value zero



CHAPTER 3. A NEW SAT ALGORITHM 138

in the objective row of the optimal tableau. In such cases, multiple distinct solutions

of the linear program give the same objective value. It may be that some optimal

solutions have a smaller denominator than others. When this is the case, it is possible

to choose the solution having the smaller denominator while preserving the optimality

of the solution.

In our algorithm, we want to find the strongest cutting plane, and to reduce the

denominator only when it does not cost us any cutting-plane strength. When the

local search algorithm does not find a stronger cut, it may still find a pivot that gives

the same strength of cut and a reduced denominator.

The value of reducing the common denominator is twofold. The first reason is

to optimize the arithmetic. Multiple-precision arithmetic functions run faster if they

are operating on smaller numbers, and the memory usage to store large numbers

can become a problem. The second reason is aesthetic. Solutions expressed with

smaller numbers are aesthetically more pleasing than solutions expressed with large

numbers. As a heuristic, it seems plausible that simplex tableau with small common

denominators may tend to contain fewer fractions.

3.5.4 Complexity of the Local Search

The complexity of local search for pivots that allow stronger cutting planes is polyno-

mial. Clearly, for a simplex tableau having N columns and M variables, at most MN

pivots exist that preserve primal feasibility. For each such pivot, the computation of

the resulting tableau requires O(MN) arithmetic operations. Assuming for the mo-

ment that the algorithm to measure the strength of a cutting plane is linear in N , the

complexity of examining a tableau to determine the strength of the strongest cutting

plane and the magnitude of the smallest pivot element is also O(MN). Hence, the



CHAPTER 3. A NEW SAT ALGORITHM 139

total complexity of one iteration of the local search algorithm is at most a fourth-

degree polynomial in N . In practice, far fewer than MN pivots exist that preserve

primal feasibility.

The number of iterations required by the local search is also a low-degree poly-

nomial. Tovey (1997) gives an analysis of search algorithms for finding local max-

ima/minima in graphs. Tovey the unit hypercube as a model of a discrete structure

to be searched, but generalizes the theorems in later sections. The expected num-

ber of iterations for both greedy and randomized local search algorithms is shown

to be logarithmic in the number of nodes in the graph, assuming some connectivity

conditions. Convex polytopes, in particular, are mentioned as an example of graphs

that meet the conditions. Hence, the expected complexity of our entire local search

algorithm is polynomial.

The use of a subroutine that has fourth-degree polynomial complexity could con-

tribute greatly to the running time of a SAT algorithm. An approximation is to use

sampling, rather than exhaustive search. The algorithm may be reduced to cubic

complexity by reducing one dimension of the search. We may choose to sample of

the possible pivots in each column, or to measure the strength of only a sample of

the cutting planes for each possible pivot. The resulting limited local search very

frequently finds cutting planes that are as strong as the full local search, but is much

less expensive. In any case, even the full local search is polynomially bounded.

3.6 Choosing an Objective Function

We have considered in the previous sections several cutting plane algorithms for SAT.

To apply a cutting-plane algorithm to the linear relaxation of SAT, we must also select

a basic solution from which to construct a cutting plane. In the usual operations



CHAPTER 3. A NEW SAT ALGORITHM 140

research applications of integer programming algorithms, the objective function is

normally given as part of the problem, and the objective function determines the

choice of vertex.

For SAT, the objective function is not given by the problem. We are free to use

any objective function, and even to ignore the chosen objective function when it is

advantageous to do so. The literature provides essentially no guidance in choosing

an appropriate objective function. In this section, we will identify a good choice of

objective function for SAT problems. This choice is of course purely a heuristic. As

such, it may assist in the solution of some problems.

We also give a modification of the dual simplex algorithm to improve the objective

function as cutting planes are added to the problem. This is justified by the fact that

for SAT the choice of objective function is purely arbitrary. If the vertex that is

optimal for one objective function is difficult to find, then it may be advantageous to

modify the objective function.

3.6.1 Facets Containing a Vertex

An interesting question is to estimate the number of cutting planes that are required

to find one of a small number of satisfying solutions, or to show that none exist. It is

clear that the number of cutting planes depends in some sense on the number of facet

inequalities that must be found. It is also clear that the number of facet inequalities

that must be found depends on the number of facets that contain the optimal vertex,

which in turn depends on the choice of objective function.

Hence, the number of cutting planes that are required depends on the choice of

objective function. As a heuristic, we want to choose an objective function such that

only a small number of facets of the convex hull contain the vertex that is optimal for



CHAPTER 3. A NEW SAT ALGORITHM 141

that objective function. If only a small number of facets are required, it seems likely

that only a small number cutting planes are needed to find those facets.

In the following, we will consider unspecified SAT problems in n variables that

have a set V ′ of satisfying solutions. Let K = [0, 1]n be the unit hypercube. Let

V = {0, 1}n be the vertices of the unit hypercube. Let V ′ ⊆ V be the set of satisfying

solutions of an unspecified SAT problem. Also let Q(V ′) be the convex hull of V ′,

and H be the set of canonical hyperplanes that define facets of Q(V ′).

We may easily construct SAT problems such that Q(V ′) has O(2n−1) facets. Con-

sider, for example, a proposition representing a parity function which has value 1

when an even number of variables have value 1. However, for such problems the

number of satisfying solutions |V ′| is also very large. Observe that, for the parity

function, every vertex is contained on exactly n of the facets of the convex hull. Such

problems tend to be easily solved by various search algorithms.

We are much more interested in hard SAT problems, which have either no satisfy-

ing solutions, or only a small number of satisfying solutions. For these problems the

set V ′ is small, so we have |V ′|/|V | = O(p(n)/2n). That is, the number of satisfying

solution is a polynomial of the number of variables.

To find integer solutions by using a cutting plane method, it is usually necessary

to find some number of cutting planes that each contain the optimal solution. Cutting

planes are defined by valid inequalities, and in the limit the cutting planes are the

facets of the polytope. It is clear that the minimum number of valid inequalities that

is required is determined by the dimension of the convex hull Q(V ′).

Proposition 4. For each vertex Vi ∈ V ′, if Q(V ′) is full dimensional, then the min-

imum number of facets of the convex hull Q(V ′) that contain Vi is n.

Proof. A point in Rn is uniquely determined by the intersection of exactly n (n-1)-



CHAPTER 3. A NEW SAT ALGORITHM 142

dimensional and affinely independent hyperplanes. A facet is an (n-1)-dimensional

and affinely independent hyperplane. Hence, at least n facets are needed to determine

the point. ���

To minimize the number of cutting planes that are required, we need to avoid cer-

tain vertices. In particular, we need to somehow avoid the vertices that are contained

in large numbers of facets, because it may be necessary to find cutting planes that

define all of those facets. The existence of such bad polytopes is demonstrated easily.

Proposition 5. There exists a polytope P and a vertex Vi ∈ V ′ such that the number

of facets of the convex hull Q(V ′) that contain Vi is 2n−1.

Proof. Consider the polytope with vertices consisting of the single point (0, 1, . . . , 1)

and each of the 2n−1 points (1, x2, . . . , xn). For this polytope, the number of vertices

is |V | = 1 + 2n−1. There is an edge between the point (0, 1, . . . , 1) and each of

the 2n−1 points (1, x2, . . . , xn). Hence, there are 2n−1 facets containing the point

(0, 1, . . . , 1). ���

Observe that for each such bad vertex, there must exist a large number of adjacent

vertices that are not each contained in a large number of facets. This occurs because

the number of facets containing a given vertex Vi cannot exceed the number of other

vertices that are adjacent to Vi. When |V ′| is small, this gives a particularly nice

limit on the number of facets containing each vertex.

Proposition 6. If |V ′| = p(n) for some polynomial p, then for each vertex Vi ∈ V ′,

at most p(n)− 1 facets contain Vi.

Proof. The simplex graph of the convex hull contains at most |V ′|−1 edges having Vi

as an endpoint, because there are only |V ′| − 1 other vertices. Each facet containing

Vi is determined by two of those edges. There are at most |V ′| − 1 such facets. ���



CHAPTER 3. A NEW SAT ALGORITHM 143

Even for SAT problems having a large number of satisfying solutions, we observe

that most vertices of the convex hull have only a small number of adjacent vertices,

and are contained in only a small number of facets.

Proposition 7. For every vertex Vi ∈ V ′, Vi is determined by the intersection of

only N facets.

Proof. Indeed, in N dimensions, the intersection of any N affinely independent N−1

dimensional hyperplanes (facets) is a single point. ���

For the polytopes of satisfiable SAT problems, most vertices are contained in

only a small number of incident facets. If any satisfying solution exists for a SAT

problem in N dimensions, there must be a satisfying solution that is contained in the

intersection of only N facets. Hence, we may restrict the search for a solution to those

vertices that are contained in a small number of facets without loss of completeness.

If there is no satisfying solution that is contained in the intersection of only N facets,

then there is no satisfying solution at all.

Now, consider the description of the polytope as a set of linear inequalities. After

adding slack variables, the resulting linear matrix equation is a simplex tableau of

the polytope. The number of linear inequalities, and the number of basic variables, is

equal to the number of facets of the polytope. Hence, the restriction on the number

of facets that must be constructed also restricts the number of facet inequalities that

must be constructed. If we can find facet inequalities efficiently, then we should be

able to solve the SAT problem efficiently.

3.6.2 Maximizing the Slack Variables

We have shown that we may restrict the search for a solution to those vertices that

are contained in only a small number of facets. We will now give one method of doing



CHAPTER 3. A NEW SAT ALGORITHM 144

so. This method is based on choosing the objective function so that any vertices that

are contained in large numbers of facets are suboptimal.

In the linear programming formulation, every cutting plane has an associated slack

variable. For a vertex that is contained in a large number of facets, a large number

of slack variables must have value 0. To avoid these vertices, we need only choose an

objective function so that any vertex with a large number of 0-valued slack variables

is not an optimal solution.

In particular, we may choose the objective function to maximize the sum of the

slack variables. This choice of objective function also has the effect of finding integer-

valued solutions for many problems very quickly, and using very few or no cutting

planes. The choice of objective function allows the linear programming algorithm to

solve some SAT problems without requiring any cutting planes.

In a trivial two-dimensional example (figure 3.1), the inequalities x + y ≤ 1 and

x − y ≤ 0 are converted to equalities by adding slack variables s1 and s2, giving

s1+x+y = 1 and s2+x−y = 0. The point (1/2, 1/2) satisfies both inequalities with

no slack. The maximum slackness occurs at either of the points (0, 0) or (0, 1). This

illustrates a case in which the choice of objective function allows an integer solution

to be found with a minimum number of cutting planes.

In higher numbers of dimensions, of course, the maximum slackness does not

always occur at an integer vertex. (If it did, then that fact alone would solve SAT.)

However, as a heuristic, maximizing the slackness may be helpful. Of course, the

objective of maximizing the slackness requires that the objective function must be

modified whenever a new slack variable is added to the problem with a new cutting

plane.



CHAPTER 3. A NEW SAT ALGORITHM 145

Figure 3.1: A two-dimensional unit hypercube with two canonical constraints, x+y ≤

1 and x− y ≤ 0. The three points mark the extrema of the polytope.

x

y

❅
❅
❅
❅
❅
❅❅x+ y = 1�

�
�
�
�
��

x− y = 0

r

r

r

3.7 Strength of a Cutting Plane

To search for stronger cutting planes, it is necessary to have some function to mea-

sure the strength of a cutting plane. In the usual optimization-based methods used

for integer programming, the strength of a cutting plane is often considered as the

distance from the current basic solution. Various distance measures can be used,

giving various strength measures. However, for our purposes we need a measure of

the strength of a cutting plane that is independent of any particular basic solution.

Barth (1995) gives a function to determine the weakness of a valid inequality that

is independent of any particular solution. Barth’s weakness measure is conceptually

the negation of a strength measure, and so can be used in place of a strength function.

Barth’s method simply counts the number of literals that may be false, while the

inequality remains satisfied.

A corresponding strength measure would simply count the number of literals that

must be true if the inequality is to be satisfied. However, such a measure captures

very little information from the inequality. Consider, for example, the case of Chvátal

cutting planes. For inequalities of the form
∑

xi ≥ 1, the inequality is true whenever

any one of the literals is true. Hence, every Chvátal cutting plane would have strength



CHAPTER 3. A NEW SAT ALGORITHM 146

1 by this measure. Clearly, we require a more discriminating measure.

We propose instead a measure that depends on the coefficients, rather than just

the count of literals. Several authors have suggested that the distance from the current

basic solution to the hyperplane as the measure of cutting-plane strength is a good

measure of strength (Franco & Gelder, 1998). We will first show the derivation of

such a measure, and then show a modification that we will use.

Suppose we have an inequality:

∑

i∈I

fixi +
∑

j∈J

gjxj ≥ h (3.75)

such that fi ≥ 0, gj ≤ 0, and I ∩ J is empty. To find the minimum distance from

the origin to a given hyperplane, we will consider the case in which all of the xj = 0.

(Nonzero xj could only increase the distance.) Then we have the hyperplane:

∑

i∈I

fixi = h (3.76)

Now, the parametric equations of the line through the origin and orthogonal to the

hyperplane (3.76) are:

xi = fit , for each i ∈ I (3.77)

Substituting the equations of the orthogonal line (3.77) into the equation of the

hyperplane (3.76), we obtain the parameter t of the intersection of the line and the

hyperplane:

t =
h

∑

i∈I f
2
i

(3.78)

Now, at t = 1, the distance from the origin to the line is just d1 =
√
∑

i∈I f
2
i , so at

t = h
Σi∈If

2
i

, the distance from the origin to the intersection of the hyperplane with the

line is just:

dt =
h
√
∑

i∈I f
2
i

∑

i∈I f
2
i

=
h

√
∑

i∈I f
2
i

(3.79)



CHAPTER 3. A NEW SAT ALGORITHM 147

Now for our modification. Observe that a cutting plane with only two variables

may have a distance at most
√
2, while a cutting plane with, say, nine variables may

have a distance of
√
9 = 3. But the two-variable cutting plane with distance

√
2 fixes

both of those variables, while a nine-variable cutting plane with distance 2 does not

fix any variables. Hence, the cutting plane with fewer variable is actually stronger,

in the sense that it fixes more variables. This observation motivates our definition.

Then we define the strength of (3.75) as the distance from the origin to the cutting

plane, expressed as a fraction of the maximum distance that is possible with the given

number of variables.

Definition 7. The strength of a cutting plane (3.75)

∑

i∈I

fixi +
∑

j∈J

gjxj ≤ h

such that fi ≤ 0, gi ≥ 0, h ≤ 0, and I ∩ J = ∅, is given by

√

h2

|I|∑i∈I f
2
i

(3.80)

Finally, to avoid computing the square root, algorithms may consider the square

of the distance. Whenever one distance is greater than another, the same ordering

holds between the squares of the distances.

3.7.1 Power of Strong Cuts

To justify both this strength measure and the local search for strong cutting planes,

we consider the expected number of cutting planes that will be needed to solve the

SAT problem. Consider a non-integer basic solution of the LP relaxation, with some

set of N nonbasic variables. We may consider the N -dimensional hypercube of the

nonbasic dimensions. Each Boolean nonbasic variable determines one dimension of



CHAPTER 3. A NEW SAT ALGORITHM 148

the hypercube. Each integer nonbasic slack variable determines a sum of Boolean

variables, so increasing the value of a slack variable by one directly forces a Boolean

variable to be increased by the same amount. Each cutting plane that may be con-

structed from the tableau has the effect of cutting off a polytope containing some

fraction of the feasible points of the hypercube, including one or more vertices.

We are interested in determining the fraction of the feasible points that is cut off.

The fraction of the feasible points that is cut off can be considered as the probability

that a random point in the hypercube is eliminated by the cut. Alternatively, that

fraction may be thought of as a reduction of the hypervolume of the cube. Because

hypervolume is difficult to visualize in more than about three dimensions, we will use

the probability approach.

Power of Chvátal Cuts

We first consider the simple case of Chvátal cutting planes. Suppose we have a

Chvátal cutting plane
∑

i∈S −xi ≤ −1, for some subset S of the nonbasic variables.

Suppose we have 2|S| random points uniformly distributed in the |S|-dimensional

hypercube defined by those nonbasic variables. Each such cutting plane cuts off

1
2|S|−1 of the hypervolume of the |S|-dimensional hypercube defined by those variables,

properly containing exactly one vertex of the hypercube. We expect that 1
2|S|−1 of the

randomly distributed points are excluded by the cutting plane. With high probability,

at least 1
2|S| of the randomly distributed points are properly excluded by the cutting

plane.

The |S|-dimensional hypercube is a projection of the higher-dimensional N -

dimensional hypercube defined by all of the non-basic variables. Each point (resp.

vertex) of the |S|-dimensional hypercube is the projection of 2N−|S| points (vertices)

of the N -dimensional hypercube. Hence, 1
2|S| of the points and vertices of the N -



CHAPTER 3. A NEW SAT ALGORITHM 149

dimensional hypercube are properly excluded by the cutting plane. The number of

remaining points is reduced by a factor of at least 2|S|−1
2|S| .

Power of Canonical Cuts

Next, consider the case of canonical cutting planes. Suppose we have a canonical

cutting plane
∑

i∈S −xi ≤ −k, for some set S of nonbasic variables. Each such cutting

plane is satisfied by
∑|S|

j=k

(

|S|
j

)

of the vertices of the |S|-dimensional hypercube. The

fraction of the vertices of the N -dimensional hypercube of the nonbasic variables

that are properly excluded by the cutting plane is just
Σk−1

j=0 (
|S|
j )

2|S| . Suppose we have

2|S| random points uniformly distributed in the |S|-dimensional hypercube. With

high probability, at least
Σk−1

j=0(
|S|
j )

2|S| of the random points are properly excluded by the

cutting plane.

As before, the |S|-dimensional hypercube is a projection of the higher-dimensional

N -dimensional hypercube defined by all of the non-basic variables. Each point (resp.

vertex) of the |S|-dimensional hypercube is the projection of 2N−|S| points (vertices)

of the N -dimensional hypercube. Hence, we may expect that at least
Σk−1

j=0(
|S|
j )

2|S| of the

points (
Σk−1

j=0 (
|S|
j )

2|S| of the vertices) of the N -dimensional hypercube are excluded by the

cutting plane. The number of remaining points is reduced by a factor of
2|S|−Σk−1

j=0(
|S|
j )

2|S| .

Power of Gomory Cuts

To extend this result to non-canonical Gomory cutting planes, we cannot easily use

such binomial expressions to exactly count the number of vertices or the probabil-

ity that a random point is excluded. Suppose we have a Gomory cutting plane

∑

i∈S −fixi ≤ −h, for some set S of nonbasic variables. To estimate the power of the

Gomory cutting plane, we use the fact that the strength of an inequality is just the

fraction the variables xi that must be true to satisfy the inequality.



CHAPTER 3. A NEW SAT ALGORITHM 150

Suppose the Gomory cutting plane has strength d =
√

h2

|S|
∑

i∈S f2
i

. Consider again

2|S| random points uniformly distributed in the |S|-dimensional hypercube. If the

cutting plane is orthogonal to the diagonal of the hypercube, then the expected

fraction of random points that are excluded by the Gomory cutting plane is at least

Σ
⌊d|S|−1⌋
j=0

(

|S|
j

)

2|S|
. (3.81)

If the cutting plane is not orthogonal to the diagonal, then fraction of points that are

excluded is even larger.

Correspondence of Strength with Power

The strength of a cutting plane corresponds with the fraction of the volume of the

hypercube that is excluded by the cutting plane. To see this, compare the definition

of cutting plane strength (definition 7) with the probability that a random point is

excluded (equation 3.81). It is easy to verify that for constant |S|:

h1

|S| >
h2

|S| ⇐⇒
Σh1−1

j=0

(

|S|
j

)

2|S|
>

Σh2−1
j=0

(

|S|
j

)

2|S|
. (3.82)

Similarly, for constant h and different subsets S1, S2 of the variables:

h

|S1|
>

h

|S2|
⇐⇒

Σh−1
j=0

(

|S1|
j

)

2|S1|
<

Σh−1
j=0

(

|S2|
j

)

2|S2|
. (3.83)

Hence, we see that the stronger of two cutting planes excludes a larger fraction of the

hypervolume in each case. By a diagonal argument, in which at each step either the

numerator of the strength is increased or the denominator of the strength is decreased,

it can be shown that the strength of a Chvátal or canonical cutting plane is measure

of the probability that a random point in the hypercube is excluded by that cutting

plane (Halmos, 1950).



CHAPTER 3. A NEW SAT ALGORITHM 151

3.7.2 Expected Number of Cutting Planes

A natural question to ask is how many cutting planes are needed to eliminate all of

the vertices of a hypercube. For any specific set if inequalities and specific sequence

of cutting planes, we could obviously compute the exact number of cutting planes. It

is more interesting to ask how many cutting planes are needed in the average case.

We first consider a simple case. Suppose that we have a hypercube of N dimen-

sions, and that we have a procedure to find cutting planes with strength 1
2
. Each

such cutting plane excludes an estimated

Σ
⌊N

2
−1⌋

j=0

(

N
j

)

2N

vertices. That is, each cutting plane with strength 1/2 excludes nearly 1/2 of the

vertices. If the cutting planes are independent, then each cutting plane excludes

nearly 1/2 of the remaining vertices that were not excluded by previous cutting planes.

Hence, we may expect that only O(N) such cutting planes are required.

To estimate the number of cutting planes that are required for strength 6= 1/2, we

will consider the average strength of the cutting planes. Suppose we have a procedure

to find cutting planes that have strength h
k
< 1. We estimate the fraction of the

remaining vertices that are excluded by each cut as in equation (3.81). Assuming

independence, we need a number c of cutting planes such that:



1−
Σ

⌊h
k
N−1⌋

j=0

(

N
j

)

2N





c

≤ 1

2N
(3.84)

This formula is entirely too complex to easily visualize the relationship between h, k,

and c for a parameter N . The case with h/k = 1/2 was considered above, requiring

an expected O(N) cutting planes. It is easy to see that as h
k
is reduced, the number of

cutting planes c increases. To illustrate the rate at which the number of cuts increases



CHAPTER 3. A NEW SAT ALGORITHM 152

Cut Strength Number of Cuts Cut Strength Number of Cuts

0.50 59 0.30 74019

0.48 84 0.28 226602

0.46 126 0.26 768312

0.44 324 0.24 2.90488e+06

0.42 565 0.22 1.23465e+07

0.40 1050 0.20 5.95714e+07

0.38 2093 0.18 3.30278e+08

0.36 4499 0.16 2.13688e+09

0.34 10484 0.14 1.64649e+10

0.32 26619 0.12 1.55352e+11

Table 3.1: Estimated number of cutting planes required to exclude 250 random points

from a problem having 50 variables, for various values of cut strength.



CHAPTER 3. A NEW SAT ALGORITHM 153

as h
k
is reduced, we calculated the number of cuts required for various values of cutting

plane strength, for a problem with only 50 variables. The results of that calculation

are given in table 3.1. It is clear that small differences of cutting plane strength are

associated with large differences in the number of cuts required.

3.8 Summary

In this chapter, we have developed the theory of a new complete algorithm for satis-

fiability. The design of the algorithm is based on the conditions that are known to be

necessary if a complete SAT algorithm is to be efficient. The new algorithm is based

on extended cutting plane proofs, using slack variables to express the constraints as

equalities. Cutting plane proof systems are known to be able to simulate general

Frege proof systems, and so are among the most powerful available proof systems for

propositional logic.

Section 3.2 shows that cutting plane algorithms using slack variables provides

a stronger proof system than the cutting plane proof systems defined by Chvátal

(1984), Goerdt (1991), and Clote (1995). We show that a lower-bound on the length

of cutting plane proofs, due to Kraj́ıček (1997) and Pudlák (1997), does not hold for

cutting plane algorithms with slack variables.

Section 3.1 studies the convex hull of the integer solutions of SAT, and describes

the facet inequalities of the SAT polytope. We show that the convex hull of SAT can

be written as a conjunction of canonical hyperplanes. In section 3.3, we develop a

theory of lifting for inequalities in the SAT polytope. In section 3.4 we give a theory

of lifting for inequalities that may include slack variables, and hence which may be

used with cutting plane algorithms.



CHAPTER 3. A NEW SAT ALGORITHM 154

3.8.1 Algorithms

The algorithm uses Gomory cutting planes and a primal-dual simplex method, and

so is somewhat similar to some cutting plane methods for integer programming. The

new algorithm uses exact arbitrary-precision integer arithmetic to implement the

integer-only simplex method as was proposed by Gomory (1963). Exact arbitrary-

precision was not implemented by Gomory, and is rarely used in traditional integer

programming codes. The use of exact arithmetic is necessary to avoid round-off errors

which prevent rapid convergence (Jeroslow & Kortanek, 1971).

Several sections of this chapter develop subalgorithms to find strong cutting

planes, and show that various necessary conditions are satisfied by these classes of

cutting planes. The methods for finding and using strong cutting planes are the key

to the new algorithm. The integer lifting lemmas, which allow lifting of Chvátal and

Gomory cutting planes with some nonbasic integer-domain variables, are new. Pre-

vious lifting algorithms were applicable only if all nonbasic variables were Boolean.

Lifted cutting planes are stronger than previous cutting planes, and should converge

to facet-defining cuts in fewer iterations.

Several of the known necessary conditions are that any efficient algorithm must

be able to solve a particular kind of “hard” problem efficiently. We show that cutting

planes found by our algorithms can be used to efficiently solve those hard problems.

Our first lifting algorithm finds valid canonical inequalities that lead to efficient so-

lution of pigeonhole problems, which were nominated by Cook and Reckhow (1979)

as being “hard” for a wide variety of known algorithms. Our second lifting algorithm

generalizes the first to find strong valid inequalities that dominate Gomory cutting

planes, and can avoid the known lower bound on monotone cutting plane proofs

(Kraj́ıček, 1997; Pudlák, 1997).



CHAPTER 3. A NEW SAT ALGORITHM 155

Finally, we discuss some algorithms to control and sequence the linear program-

ming algorithms. In section 3.6, we consider the choice of objective function for

the linear program. Three important heuristics are incorporated into our algorithm.

First, the objective function maximizes the slack variables. Second, extra pivots are

used to minimize the denominator when the optimal objective function is degenerate.

Finally, extra pivots are used to obtain basic solutions that yield stronger cutting

planes than would be obtained from the optimal solution. The use of extra pivots to

find stronger cutting planes is new. The local search for stronger cutting planes is

polynomially bounded, and depends on having a measure of cutting plane strength

that is independent of any particular optimal linear solution. One such strength mea-

sure is provided, though other measures of cutting plane strength are clearly possible.

3.8.2 Complexity

The complexity of the individual sub-algorithms is clearly polynomial average time.

It is well known that linear programs can be solved in polynomial time, and that the

average-case complexity of the simplex method is polynomial. SAT polytopes do not

includes the types of polytopes that are known to elicit super-polynomial behavior

from simplex-type algorithms, and the use of a simplex method is not an essential

part of the larger algorithm. The construction of the objective function, solving of

linear programs, generation of cutting planes, and the local search heuristics, can all

clearly be done in polynomial time.

The only possible source of super-polynomial complexity is the number of cutting

planes that may be required. In proposition 7, we give an argument that if the

problem is satisfiable, then there must exist a solution that can be found using only

a polynomial number of facet inequalities. We have not provided demonstrated that



CHAPTER 3. A NEW SAT ALGORITHM 156

the presented algorithms for generating cutting planes can find such a solution. We

have not demonstrated that the presented algorithms can prove unsatisfiability using

only a polynomial number of lifted cutting planes. Any such demonstration would

imply P = NP .

3.8.3 Finale

We have presented a complete algorithm for SAT that meets all conditions that are

known to be necessary if a complete SAT algorithm is to be efficient. The new

algorithm is based on extended cutting plane proofs, using slack variables to express

the constraints as equalities. The algorithm uses two new methods for finding strong

cutting planes: lifting, and local search. Both methods are specialized for the SAT

polytope, but could potentially be adapted for use in general integer programming.

We have demonstrated that the new algorithm may generate facet cutting planes

for SAT, and that a polynomial number of such facet cutting planes are sufficient to

determine a model for any satisfiable SAT problem. We have not demonstrated that

the new algorithm always does generate only facet cutting planes, or that any specific

number of such cutting planes is sufficient to show unsatisfiability. The complexity

of the algorithm depends on the number of cutting planes that are required to be

generated. An analytic determination of that complexity seems to be out of reach at

this time.



Chapter 4

Methodology

In chapter three, we provide some new algorithms to find strong canonical and lifted

Gomory cutting planes. A proof of completeness was given, showing that the convex

integer hull of any SAT problem may be described by a finite number of canonical

cutting planes. The completeness of lifted Gomory cutting planes follows directly

from Gomory’s original proof (Gomory, 1963). We also suggested several heuristics,

including a method of comparing the strength of cutting planes that is independent

of any particular objective function, and a local search of adjacent vertices to find a

strong cut

The theory to describe the complexity of a cutting plane algorithm is elusive. The

complexity of finding one cutting plane is certainly polynomial, because it requires

only solving one linear program and applying some heuristics. However, we have not

found a subexponential bound for the number of such cutting plane iterations that

might be needed to solve a given SAT problem. To gain some insight as to the number

of cutting planes that are required, we conducted a computational experiment.In this

chapter, we describe the experiment.

The purpose of the experiment is to verify our hypothesis:

157



CHAPTER 4. METHODOLOGY 158

Short cutting-plane proofs of unsatisfiability exist for many hard SAT prob-

lems. Algorithms and heuristics for finding strong cutting planes can be

used to find such short refutation proofs.

The experiment consisted of using algorithms and heuristics identified in chapter

three to attempt a number of hard unsatisfiable SAT problems. The number of

cutting planes in the resulting refutation proofs was determined. If the hypothesis is

true, there should be a polynomial correlation between the number of cutting planes

and the size of the SAT problem, for some identifiable class of SAT problems.

4.1 Implementation of Algorithms

A test-bed program was written to input SAT problems and to output the solu-

tions and descriptive statistics in the DIMACS suggested format (DIMACS Center

for Mathematics and Theoretical Computer Science, 1993a). The CutSat program

was designed to allow easy implementation of various particular cutting-plane algo-

rithms, and to experimentation with various design choices and parameter settings.

In addition, the program includes instrumentation, to gather the results as indicated

in section 4.3.3, below.

The algorithms identified in chapter 3 were implemented, including integer lifting

of Gomory cutting planes. Additional algorithms and modifications of these algo-

rithms were also implemented and tested on a selection of small problems. The

program version that performed well for the small test problems was used for the

large experiment.

Because the cutting plane algorithms require the use of exact arithmetic, no suit-

able program code could be found. None of the available source codes for linear

programming implements exact rational or integer-only algorithms. Instead, Go-



CHAPTER 4. METHODOLOGY 159

mory’s (1963) integer-only algorithm was implemented to solve the linear program-

ming problems using arbitrary-precision integer arithmetic. The arbitrary precision

integer arithmetic was implemented using the NTL package due to Shoup (1999).

A compile time option also allows use of the native hardware arithmetic for small

problems. Gomory’s integer-only simplex algorithm was adapted to use a “bigM” im-

plementation of the perturbation method to avoid degeneracy and cycling (Chvátal,

1983, pp. 138).

For the solution of the linear programming subproblems, an algorithm with guar-

anteed polynomial complexity could in principle have been implemented. However,

the simplex type algorithms for linear programming are much less difficult to program

than the alternative programs for solving linear programs, and are more practical. In

practice, simplex type algorithms exhibit strongly polynomial expected time behavior.

All of the algorithms that are used to generate one lifted cutting plane have

polynomial average complexity. The local search algorithms for cut strengthening and

denominator reduction are limited by the size of the tableau, and thus have polynomial

complexity. The unknown factor in the complexity of the compete algorithm was the

number of cutting planes that are needed to solve a given SAT problem.

4.2 The Input Data

The CutSat program was used to attempt refutation of a number of unsatisfiable

test problems. Several sources of test problems were used. Section 4.2.1 discusses the

selection of problem sources. The choice of problem parameters, particularly the ratio

of clauses to variables, may affect the results. Section 4.2.2 discusses the selection

of the clause-variable ratio for our test problems. Finally, three sections present the

three problem sets that were used. The DIMACS challenge problems were used to



CHAPTER 4. METHODOLOGY 160

provide a basis for comparisons with other algorithms working on that common set

of problems. Two sets of randomly generated problems were also used.

4.2.1 Sources of Test Problems

To make an empirical determination of the average performance of the new algorithm

over a range of problem size parameters, we require a sample of test problems. In

addition, we will distinguish between unsatisfiable problems and satisfiable problems,

because an algorithm may perform differently for those two classes. Unsatisfiable

problems are known to be the most difficult, because any proof of unsatisfiability

must be exhaustive.

We would have preferred to use an established collection of SAT problems as

test data. The only such published collection is the DIMACS challenge problem

set (DIMACS Center for Mathematics and Theoretical Computer Science, 1993b).

The DIMACS collection is a collection of challenge problems for SAT solvers. It

includes many problems with known answers, and many problems that have proven

particularly hard to for previous SAT solver programs to solve.

However, the DIMACS collection contains only a few distinct sizes of randomly

generated SAT problems, and very few of the problems are unsatisfiable. Satisfiable

and unsatisfiable randomly generated 3-SAT problems are provided in the DIMACS

collection, but only in sizes with 50, 100, and 200 variables, and only a few of each

size. No other published collection of SAT problems is available.

Due to the absence of a published collection containing a sufficient number of

input problems of useful sizes, we used randomly generated test problems. The use of

randomly generated problems for testing of SAT solvers is commonly accepted (Gu

et al., 1997; Asahiro, Iwama, & Miyano, 1996; Franco & Gelder, 1998). Randomly



CHAPTER 4. METHODOLOGY 161

generated 3-SAT problems are known to be difficult even for the best algorithms. To

allow comparison with previous results, published random SAT problem generators

were used to generate the test problems.

Several models of random problem generation have been proposed for SAT (Gu

et al., 1997). In each case, the parameter m controls the number of clauses, n the

number of variables. The ratio r = m/n, and the constant k denotes the number

of literals per clause. The constant-density model attempts to generated problems

with a constant number of occurrences of each literal by elementary means. Older

constant-density generators have been criticized because these problems may have

structural features that allow them to be easily solved (Franco & Ho, 1986; Franco,

1989). A generator of unsatisfiable problems due to Asahiro et al. (1996) has been

proved to generate hard problems. Finally, the Mk
m,n model consists of sampling

clauses with replacement from the 2k
(

n
k

)

distinct clauses of size k in n variables, such

that no two literals in one clause have the same variable.

4.2.2 Sizes of Test Problems

The size measures of the input problems include the the number of variables and the

number of clauses. There is general agreement that random 3-SAT instances should be

generated with clause/variable ratio approximately 4.25, because that clause-variable

ratio gives hard 3-SAT problems (Asahiro et al., 1996). That ratio is known to

generate problems that are about half satisfiable and half unsatisfiable.

It is also known that smaller ratios yield easier problems, and larger ratios yield

harder problems. That is, the larger the ratio, the harder it is to find refutations for

the problems that are unsatisfiable. For any fixed r ≥ 2k ln 2, the shortest resolution

refutation of a Mk
m,n random formula has super-polynomial number of steps with



CHAPTER 4. METHODOLOGY 162

high probability (Franco & Gelder, 1998). Hence, to examine the length of refutation

proofs, it is appropriate to use input problems with clause/variable ratio greater

r ≥ 2k ln 2. For k = 3, the ratio should r be greater than 5.545.

4.2.3 DIMACS Challenge Problems

The unsatisfiable problems included in the DIMACS challenge benchmark set were

attempted (DIMACS Center for Mathematics and Theoretical Computer Science,

1993b). The DIMACS challenge set of unsatisfiable problems includes a number of

SAT problems that are thought to be hard for all known algorithms. Since 1993, some

algorithms have been found that find short refutations for some of those problems,

but for others there is still no known short refutation (Barth, 1994). However, the

number of unsatisfiable problems in the DIMACS test suite is small, and so this test

set does not provide a sufficient basis from which to draw any conclusions.

The size and parameters of the first problem set were fixed by the set of unsatis-

fiable problems present in the DIMACS problems.

4.2.4 Generated NSAT Problems

A set of test problems were generated by the NSAT random SAT problem generator

due to Asahiro et al. (1996), with clause/variable ratio 4.25. The NSAT generator

was previously used to generate some of the problems in the DIMACS challenge

benchmark set (DIMACS Center for Mathematics and Theoretical Computer Science,

1993b). The problems generated by the NSAT problem generator are known to be

unsatisfiable by construction, and the security of the NSAT generator has been proved.

Because of the verified security, problems generated by NSAT are believed to be at

least as hard as random SAT problems generated by any other generator.



CHAPTER 4. METHODOLOGY 163

4.2.5 Generated Mk
m,n Problems

A set of random test problems were generated using the Mk
m,n model with

clause/variable ratio 6. The Mk
m,n model consists of sampling clauses with replace-

ment from the 2k
(

n
k

)

distinct possible clauses, such that no two literals in one clause

have the same variable. It is known that for r ≥ 2k ln 2, almost all formulas in the

Mk
m,n model are unsatisfiable, and that no known polynomial-time algorithm verifies

unsatisfiability with high probability (Franco & Gelder, 1998; Chvátal & Szemerédi,

1988).

A pseudo random generator program, named MSAT, was written to generate

problems using the Mk
m,n model. Mk

m,n problems were generated for several values

of n covering a range of sizes. We used k = 3 to generate 3-SAT problems. We used

clause/variable ratio 6, to generate problems that are almost certainly unsatisfiable

and are known to be hard for previous algorithms.

4.3 Test Procedure

After the test program was written, and a version was developed that performed

satisfactorily on a small number of test problems, the program was tested on fresh

input data. The test procedure consisted of generating fresh test problems, and then

running the program on those test problems.

4.3.1 Test Problem Generation

The DIMACS test problems were obtained from the DIMACS ftp host, and stored

locally. The files which contain unsatisfiable problems were identified and stored in

a separate directory. Those problem files were used without alteration.



CHAPTER 4. METHODOLOGY 164

For each model of generated test problems, problems were generated with a num-

ber of variables ranging from 30 variables, in increments of 5 variables, up to 100

variables. For each number of variables, 10 problems were generated. In total, we

generated 150 problems of the NSAT model, and at 150 problems of the Mk
m,n model.

4.3.2 Running the Test Problems

For the DIMACS problems, we ran the CutSat program to attempt each of the

problems and record the result. At most one hour of cpu time was be allowed for any

one problem. The computer used for this experiment is a Macintosh G4/450, so one

hour was a relatively generous allowance of cpu time.

For the NSAT problems, the sequence of problems was arranged so that the smaller

problems were attempted first. For each size of problem, we ran the CutSat program

to attempt each of the problems of that size and record the result. At most one

hour of cpu time was allowed for any one problem. The sequence was to be stopped,

and larger problems not attempted, if less than half of the problems of one size were

completed in one hour each.

For the Mk
m,n, we used the same procedure as for the NSAT problems.

4.3.3 Measures to be Observed

For each test problem, data describing the size of the problem problem, the result,

the number of lifted cutting planes used, and the computational effort expended was

gathered. We were particularly interested in the number of cutting planes required.

The computation to generate one cutting plane is known to be polynomial, so the

number of cutting planes required is the interesting statistic.

For each problem, several observations were gathered:



CHAPTER 4. METHODOLOGY 165

1. The number of variables in the problem.

2. The number of clauses in the problem.

3. Whether or not the algorithm terminated before the time limit.

For each problem, if the CutSat program solved the problem within the one hour

time limit, we also gathered:

1. Whether or not the problem is satisfiable (the answer).

2. The number of cutting planes that were used.

3. The number of seconds of cpu time that were used.

4.3.4 Analysis of the Results

For each problem set, we used Mathematica to fit both a polynomial function and

an exponential function to the experimental data. For both functions, the size of the

problem was measured as the number of variables in the problem, and the experimen-

tal data of interest was the number of cutting planes used by the CutSat algorithm.

The quality of the correlation between each function and the experimental data is

measured as the sum of the square error. The function that best correlates with the

experimental data was then determined by comparing the sum-square error between

the fitted functions and the experimental data.

If the particular algorithms in the CutSat program are indeed useful for finding

refutations, refutations would be found for enough problems to enable the correlation

to be calculated. We expected that if the hypothesis was true, then the number of

cutting planes required in a refutation should best correlate with a polynomial of

the size of the problem. Similarly, if the hypothesis was false, the number of cutting



CHAPTER 4. METHODOLOGY 166

planes required in a refutation should best correlate with an exponential function of

the size of the problem.

4.3.5 Criteria for Success

We determined to deem that the experiment supports the hypothesis, if there is a cor-

relation between the number of lifted cutting planes and some low-degree polynomial

in the size of the problems, for some tested class of SAT problems.

4.4 Summary

We gave in chapter three a new and complete characterization of the convex integer

hull for SAT, and several algorithms to compute strong cutting planes. The charac-

terization of the convex integer hull of SAT by canonical hyperplanes is new. Two

algorithms to find strong cutting planes are also new. The new cutting plane algo-

rithm is a complete algorithm that is capable of proving unsatisfiability. While the

theory is correct, and the family of cutting planes is complete, the performance of

the new algorithms was unknown.

In this chapter, we have described an experiment to measure the performance

of the new algorithms, and to gain the experience of using the new cutting plane

algorithms on some real SAT problems.



Chapter 5

Results

Several programs were successfully prepared to implement the algorithms described

in chapter 3, and the test problem generators described in section 4.2.1.

In section 5.1, we describe the implementation of the cutting plane algorithms

algorithms. In section 5.3, we describe the implementation of the test problem gen-

erators. In section 5.4, we give the results obtained by running the program with the

described input data.

5.1 The CutSat Test Program Implementation

A program was written in C++ to implement the algorithms discussed in chapter 3.

The CutSat program is designed to enable testing of various cutting plane algorithms

for SAT problems. The implementation has several significant features that distin-

guish it from previous implementations of cutting plane algorithms.

From a software-engineering point of view, the program is object-oriented. The

measure of cutting plane strength is encapsulated in two classes, CutMeasure and

TableauMeasure. The integer-only simplex algorithms are encapsulated in an

167



CHAPTER 5. RESULTS 168

IntegerSimplex class. The cutting plane algorithms, including the integer lifting, is

encapsulated in a CuttingAlgorithm class.

Exact integer arithmetic is fully implemented with integer-only simplex methods

similar to those reported by (Gomory, 1963). We are not aware of any other implemen-

tation of integer-only simplex aside from the one reported by Gomory, and Gomory’s

original implementation was restricted to the natural word size of the machine.

After finding one optimal solution, a denominator-reduction method applies extra

pivots to reduce the common denominator. The denominator-reduction algorithm is

similar to the linear programming algorithms, in that it selects pivot positions and

applies pivots.

LP representations of SAT problems are often highly degenerate. For many choices

of objective function, the linear program encodings most SAT problems have numer-

ous optimal solutions. Hence, SAT problems require cycle-avoiding algorithms to

assure finite termination of the linear programming algorithms. The implementa-

tion uses a randomized perturbation method to assure finite termination by elimi-

nating ties in pivot selection for both the linear programming algorithms and the

denominator-reduction algorithms.

A local-search algorithm uses extra pivot operations to find an improved cutting

plane. At each step, adjacent feasible solutions are examined to see of one of them

gives a stronger cutting plane than the current feasible solution. The local search is

randomized in the sense that only a random sample of the cutting planes given by

each adjacent feasible solution are examined.

Integer lifting is used to further improve the best cutting plane before it is added

to the tableau. During the integer lifting procedure, some variables may be fixed to

zero by observing that restricting the variable to a nonzero value yields an infeasible

tableau.



CHAPTER 5. RESULTS 169

Each of these features is presented in detail in the following sections.

5.1.1 Exact Integer Arithmetic

Two modes of integer arithmetic are implemented, controlled by a conditional com-

pilation switch. If a macro USE EXACT INTEGER ARITHMETIC is defined, the program

uses arbitrary-precision integers for the simplex and cutting plane calculations. Oth-

erwise, the program uses “long long” integers, which are 64 bit signed integers.

The file “Integer.h” defines the type “Integer” according to the definition of

USE EXACT INTEGER ARITHMETIC. The code is available in Appendix A.4.

The implementation of arbitrary precision arithmetic uses a library due to Victor

Shoup (Shoup, 1999). A few minor modifications were needed to correct a memory

leak, and to optimize memory allocation. Exact arithmetic is rather slow, but never

overflows unless heap memory is exhausted.

The difference in execution time between the two integer arithmetic implemen-

tations is a logarithmic factor of the largest integers encountered. For problems of

practical size, the largest integers encountered fit in a 64 bit integer, and so the dif-

ference is essentially a constant factor. An arithmetic operation that requires a single

instruction on native 64 bit integers requires a few dozen instructions in the exact

arithmetic package.

The pivot method of the IntegerSimplex class includes code to detect over-

flow if it should occur. That overflow-detection code is enabled if a macro

CHECK 64 INTEGER OVERFLOW is defined. The denominator-reduction features of the

algorithm help to avoid overflow. In tests with SAT problems of practical size, over-

flow was not observed.



CHAPTER 5. RESULTS 170

5.1.2 Pseudo-Random Number Generator

During the development, the pseudo-random number generators provided with the

CodeWarrior compiler was found to be defective. The sequences of generated numbers

failed to pass commonly accepted statistical tests of randomness. To guard against

possible error due to poor quality random numbers, a known good pseudo random

number generator was implemented. The R250 generator was selected because it is

very fast, the source code is available, and R250 is guaranteed to give very high quality

pseudo random numbers (Carter Jr., 1994; Kirkpatrick & Stoll, 1981). The wrapper

code that was needed to adapt the R250 generator to this purpose is presented in

Appendix A.2.

5.1.3 The Integer Simplex Tableau

The class IntegerSimplex encapsulates the data structures of the tableau, together

with the various linear-programming algorithms that operate on that tableau struc-

ture. The data structure includes the matrix of coefficient numerators, the common

denominator, the two vectors of Variable names, and a few miscellaneous items.

Figure 5.1 shows the essential data structure of the simplex tableau. The data

structure is a full (non-sparse) matrix representation. The matrix elements are the

numerators of the linear coefficients, and the common denominator is stored sepa-

rately. The objective function coefficients are stored in row zero of the matrix. The

constants are located in column zero of each row vector. The objective value is located

in column zero of row zero.

The IntegerSimplex class has the usual constructors and destructors. In addi-

tion, it provides methods to set the problem into the tableau, and to read the results

from the tableau, and to print parts of the tableau. The prototypes of these methods



CHAPTER 5. RESULTS 171

public:

// The tableau structure

int rows; // size of the tableau

int cols;

Integer denominator; // The common denominator

vector<vector<Integer> > mat; // The matrix of numerators

vector<Variable> basic_vars; // primal basis variables

vector<Variable> nonbasic_vars; // dual basis variables

Figure 5.1: Data Structures of the Simplex Tableau

are shown in figure 5.2.

The setObjective method sets the given vector<Integer> into row zero of

the matrix, and saves a second copy for later use by the readPrimalSolution and

readDualSolution methods. The addConstraint method checks for duplicate con-

straints, and adds the given vector<Integer> to the matrix as a new row only if it

is not identical to a previous constraint.

5.1.4 The Simplex Methods

The real work of linear programming is performed in just a few methods of the

IntegerSimplex class. Both primal and dual solution algorithms are provided, and

also a primalDual method. All of these methods use the same pivot method, which

applies one pivot to the tableau. The primalSimplex method implements a version

of the usual linear programming algorithm. The dualSimplex method implements

the dual simplex algorithm. The primalDualSimplex method uses dual pivots to

find a feasible solution, then calls primalSimplex. We give detailed explanation of

the primalSimplex method only. The other two are similar.

The primalSimplex method iteratively selects a pivot column and row, and pivots

the tableau, while the tableau is not optimal. The pivot selection method searches all



CHAPTER 5. RESULTS 172

public:

// Methods for setting the problem into the tableau,

void setObjective(const vector<Integer>& obj);

bool addConstraint(const vector<Integer>& constraint);

// Methods for reading the results out of the tableau.

LPStatus readPrimalSolution(Integer& objective,

vector<Integer>& primalVariables,

vector<Integer>& primalSlacks,

Integer& denominator);

LPStatus readDualSolution(Integer& objective,

vector<Integer>& dualVariables,

vector<Integer>& dualSlacks,

Integer& denominator);

// Method to print one inequality

void printRow(ostream& os, int row);

// Method to print the vector of nonbasic variables

void printNonbasicVariables(ostream& os);

Figure 5.2: Input/Output methods of IntegerSimplex

public:

// Simplex algorithms

LPStatus primalDualSimplex();

LPStatus dualSimplex();

LPStatus primalSimplex();

// The pivot operation

void pivot(int row, int column);

Figure 5.3: Methods of IntegerSimplex that implement basic linear programming
algorithms



CHAPTER 5. RESULTS 173

possible pivot columns to find the primal pivot that gives the largest increase of the

objective function. The method to select a primal pivot in a given column is slightly

complicated by the need to avoid cycling.

Cycle Elimination

SAT problems are often highly degenerate. For many SAT problems, the linear pro-

gram has numerous optimal solutions. This common feature of SAT problems requires

that the simplex algorithm be implemented with additional cycle-avoiding algorithms

to assure finite termination. This implementation uses a “perturbation” method, and

breaks any remaining ties randomly. Both methods are discussed by Chvátal (1983,

pp. 138). Essentially, each element of column zero is perturbed by a small amount,

and the perturbances serve to break ties during pivot selection. By reducing the

incidence of ties during pivot selection, the perturbations avoid degeneracy and cy-

cling. If each possible basis solution has a distinct objective value, then the algorithm

must terminate at a single optimal solution. However, the perturbation method does

not guarantee the complete elimination of all ties. Any remaining ties are broken

randomly.

The perturbation values are actually stored separately, in a vector<Integer>

named colZero. Each element of colZero is effectively the low-order part of the

corresponding Integer in column zero of the matrix. The two values are combined

as if the matrix element in column zero was multiplied by a large multiplier M

and added to the corresponding element of the colZero vector. The value of M is

never made explicit, but is assumed to be sufficiently large so that the largest value

in colZero is very small compared to M . The technique is similar to the “big-M”

method for finding feasible solutions (Schrijver, 1986; Chvátal, 1983). An example

that illustrates the technique is given in Figure 5.4. The pivot selection algorithm uses



CHAPTER 5. RESULTS 174

choosePrimalPivotRow to select the pivot row within one column. The algorithm

selects the smallest quotient mat[i][0]/mat[i][col], and breaks ties by selecting

the smallest quotient colZero[i]/mat[i][col].

The use of random perturbations fails, and may allow cycling, if ties occur be-

tween the perturbation values themselves. The second element of the cycle-avoiding

algorithm detects when these ties occur, and chooses randomly. Finite termination

of the methods is assured by these random choices (Schrijver, 1986, pp. 138). The

perturbations serve to minimize the number of random choices that are needed.

The only other element of the primalSimplex method that is particularly unusual

is due to the all-integer representation of the tableau. The matrix contains only the

numerators of each value, and the common denominator is stored separately. The

quotients that are needed for pivot selection are formed using only the numerators,

since the common denominators cancel each other out in each case. Similar logic

appears in the pivot method. The dual simplex method is just a mirror image of the

primal simplex method, and the primal dual method is also very similar.

5.1.5 The Denominator-Reduction Algorithm

Gomory (1963) presents the original method of cutting planes for integer program-

ming and the original integer-only method. In Gomory’s algorithm, all of the values

in the tableau are expressed using a single common denominator, which may become

quite large. Gomory mentions that one may choose when to add cutting planes, not-

ing that each pivot in a new cutting plane has the effect of reducing the common

denominator because the coefficients of a cutting plane are less than one.

In the linear program solutions of SAT problems, it is common to have coefficients

with value zero in the objective row of the optimal tableau. In such cases, multiple



CHAPTER 5. RESULTS 175

int

IntegerSimplex::choosePrimalPivotRow(int &col)

{

int best_row = -1;

Quotient best_M_q; // Major part of best quotient

Quotient best_u_q; // micro part of best quotient

for ( int i=1; i<=rows; i++ )

{

if ((sign(mat[i][col]) > 0) && (sign(mat[i][0]) >= 0))

{

// Compute (Major,micro) quotient for this column.

Quotient M_q = Quotient(mat[i][0],mat[i][col]);

Quotient u_q = Quotient(colZero[i],mat[i][col]);

// Keep the row with smallest (Major,micro) quotient,

// And break ties randomly.

if ( (best_row == -1) ||

(M_q < best_M_q) ||

( (M_q == best_M_q) &&

( (u_q < best_u_q) ||

( (u_q == best_u_q) &&

randomBit()))))

{

best_M_q = M_q;

best_u_q = u_q;

best_row = i;

}

}

}

return best_row;

}

Figure 5.4: Pivot selection within one column.



CHAPTER 5. RESULTS 176

distinct solutions of the linear program give the same objective value. It may be

that some optimal solutions have a smaller denominator than others. When this is

the case, it is possible to choose the solution having the smaller denominator while

preserving the optimality of the solution.

The IntegerSimplex class provides a denominatorReduction method that looks

for feasible pivots which both do not change the objective value and also reduce the

common denominator. Such pivots are either: a primal pivots with a zero coefficient

in row zero; a dual pivot with a zero coefficient in column zero. When several such

pivots are available, the one giving the least common denominator is taken. This

method does not necessarily find the optimal vertex that has the minimal common

denominator. Instead, it finds a local minima such that none of the adjacent optimal

vertices has a lower common denominator.

5.1.6 The Cutting Plane Algorithm

The cutting plane algorithm is implemented as the operator() method of class

CuttingAlgorithm. Figure 5.5 presents an outline of the code for the top level of

the algorithm. Some details are omitted to fit the display on one page. The complete

code is available in Appendix A.7. This CuttingAlgorithm method is a variant of

the usual cutting plane algorithm. Every cutting plane algorithm iteratively solves

the linear program, checks for fractions, and adds one or more cutting planes. This

algorithm contains two additional steps, and the method of adding cutting planes

is unusual. The three differences between CuttingAlgorithm and the usual cutting

plane algorithm are:

1. The use of a denominatorReduction method, which searches for adjacent op-

timal and feasible solutions and may modify the tableau by pivoting to an



CHAPTER 5. RESULTS 177

LPStatus CuttingAlgorithm::operator()(IntegerSimplex& tab)

{

LPStatus status;

while (1)

{

// Solve the LP to optimal, and test unsatisfiability

status = tab.primalDualSimplex();

if (status == INFEASIBLE) break;

// If there are multiple optimal solutions,

// choose one with a small common denominator.

tab.denominatorReduction();

// Use pivots to improve the best cutting plane.

tab.primalCutImproving();

// Show the basic solution.

cout << "THE NONBASIC VARIABLES:" << endl;

tab.printNonbasicVariables(cout);

// Look for fractions in the solution

if (tableau.isFractionalSolution())

{

// Generate and lift one or more cutting planes

status = applyCuts(tableau);

}

else

{

status = FEASIBLE;

break; // satisfied and integer

}

}

return status;

Figure 5.5: Outline of Cutting Algorithm. Some details are omitted to fit the code
on one page. The complete code is available in Appendix A.7.



CHAPTER 5. RESULTS 178

adjacent feasible solution that has a smaller common denominator.

2. The use of the primalCutImproving method, which searches adjacent feasible

solutions for better Gomory cutting planes and may modify the tableau by

pivoting to an adjacent feasible solution that contains a better cutting plane.

3. The details of the applyCuts method, which generates a cutting plane and

applies a lifting algorithm to the generated cut before adding it to the tableau.

The denominatorReduction method has been discussed above, in section 5.1.5. The

primalCutImproving method and the applyCuts method will be discussed in the

following sections.

5.1.7 Measuring the Cutting Planes

Any cutting plane algorithm has at its core some method of choosing from the avail-

able cutting planes. In this algorithm, we search adjacent basic solutions, and hence

also must choose also the basic solution that contains the chosen cutting plane. To

make these choices, it is necessary to have some function to measure the desirability

of a cutting plane, or at least to compare two cutting planes to choose between them.

In the usual optimization-based methods used for integer programming, the strength

of a cutting plane is often considered as the distance from the current basic solution.

We consider also some alternative measures.

A measure on a set is a an additive monotonic set function. An outer measure

on a set is a sub-additive monotonic set function (Doob, 1993; Halmos, 1950). The

sub-additive property is a essentially just generalization (to higher dimensions) of the

familiar geometric triangle inequality. Either kind of measure determines an induced

partial order of the subsets of the set. An approximate measure is just a set function



CHAPTER 5. RESULTS 179

that approximates a measure.

The CutMeasure class encapsulates the methods and data to implement an ap-

proximate measure of the subset of the hypercube that is cut off by a cutting plane.

The TableauMeasure class encapsulates the methods and data to implement a cor-

responding approximate measure of entire IntegerSimplex objects, with additional

criteria to decide between tableaus when there is a tie between cutting planes. Each

is intended to implement a subadditive partial ordering of the subsets of a hypercube,

where the subsets are defined by cutting plane inequalities. The numerical value of

any particular measure function is unimportant. The implementation of CutMeasure

determines a partial ordering of cutting planes, and hence can be used to compare two

cutting planes. Similarly, the implementation of TableauMeasure induce a partial

ordering of IntegerSimplex objects.

The public interface of both CutMeasure and TableauMeasure include compari-

son operators. The comparison operators (>, <, ==, >=, <=) of CutMeasure implement

the induced partial order on cutting planes. The comparison operators internally use

the value() method of CutMeasure, which returns a floating-point number that ap-

proximately represents the abstract subadditive measure of the cut. The comparison

operators of TableauMeasure induce a partial order on entire tableaus by first com-

paring the CutMeasure of the best cut in each tableau, and then using other criteria

to break ties.

CutMeasure provides an assortment of geometric measure functions, including the

distance, the strength (fraction of diagonal), and the power (volume). These func-

tions are based on Euclidean geometric measures of the hypercube and the cutting

plane, such as distance to the cutting plane, and the volume excluded by the cut-

ting plane. The geometric interpretation makes it very easy to see that the various

functions are indeed (approximate) outer measure functions. The power method to



CHAPTER 5. RESULTS 180

Value Function Explanation of Function

distance() Distance from origin to the cutting plane

diagonolDistance() Distance from origin to intersection of cutting

plane with the diagonal of the hypercube.

strength() Distance as a fraction of the diagonal of the

hyperplane

power() Fraction of the volume eliminated by the cut,

using an orthogonality assumption to esti-

mate the volume

logPower() Logarithm (base 2) of power

distance() / A polynomial that is easy to evaluate.

(count * count * count)

(log2(strength()*count) A fast approximation of logPower

- count

Table 5.1: Cutting plane measure functions defined in Parameters.h

compute the volume suffers from arithmetic overflow, and so a logPower method is

defined to compute the logarithm of the power. Because the logarithm function is

monotonic increasing, the logPower function induces the same partial order as the

power method.

The selection of which measure function to use for to solve a SAT problem may

be modified by editing the code of the value() method of class CutMeasure. The

present implementation defines the value of a cutting plane according to a macro

CUT VALUE FUNCTION defined in the header file Parameters.h. Table 5.1 lists the

several definitions that are currently listed in the parameters file. Several of these



CHAPTER 5. RESULTS 181

definitions simply invoke other methods of CutMeasure. The power and logPower

methods are computationally expensive, and the power method tends to suffer arith-

metic overflow. The values of a large number of cutting planes must be evaluated for

each step in the proof, according to the size of the sample of cutting planes that is

chosen. Hence, the efficiency of the value function is a consideration. The polynomial

(distance() / (count * count * count)) is easy to evaluate, and approximates

the ordering induced by the power function over a range of problems sizes. The

expression (log2(strength()*count) - count) is also easy to evaluate, and ap-

proximates the logPower function over a wider range of problem size.

Preliminary experiments using a small sample of test problems indicated that the

last expression provides fast evaluation, and also uses nearly as few cutting planes

as the power function. Based on the preliminary result, we used the expression

(log2(strength()*count) - count) as the value of a CutMeasure for the large

experiment.

5.1.8 Searching for a Stronger Cut

The method of using a local search to find strong cutting planes is implemented by a

method of IntegerSimplex named primalCutImproving. The choice to implement

this algorithm as a method of class IntegerSimplex is purely a convenience. The

algorithm could have been implemented in as subclass of IntegerSimplex, or as a

method of the CuttingAlgorithm class.

The primal cut-improving method is structurally similar to a primal simplex

method, and uses the internal representation of the underlying IntegerSimplex.

The pivot selection algorithms used by primalCutImproving are similar to the pivot

selection algorithms in the simplex methods.



CHAPTER 5. RESULTS 182

The basic idea is to search the possible pivots that give feasible solutions, to find a

pivot that gives cutting plane that is better than any available in the current feasible

solution. The implementation uses the TableauMeasure class to measure the strength

of a sample of cutting planes at each adjacent feasible basic solution, and takes the

pivot that gives the greatest TableauMeasure. The principle difference between the

cut improving method and the primal simplex method is the way in which the value

of a pivot is determined. The primal simplex method seeks to maximize the value

of the objective function. The primal cut-improving method seeks to maximize a

different measure of the tableau.

The key to the primalCutImproving method is the pivot selection. Rather than

selecting pivots that improve the objective function, the cut improving method se-

lects pivots that give better cutting planes. The primalCutImproving method uses

measureCuts to measure the initial tableau using all of the Gomory cutting planes in

the current tableau. That initial measure provides a baseline against which improve-

ments can be compared. For each possible pivot, method measureCutsAfterPivot

is used to measure the tableau that would result if that pivot were taken, using a

sample of the cutting planes that would be available in the resulting tableau.

The order of the search is randomized. The columns are searched in random order.

For each column, method choosePrimalCutImprovingPivotRow is used to search the

pivot rows within that column. The rows are searched also in random order. The

pivot giving the greatest TableauMeasure is selected. When there is a tie among the

tableaus that would result from several different pivot positions, the first one is kept.

Because the search order is random, the ties are broken randomly.

Method measureCutsAfterPivot uses TableauMeasure to measure the tableau

that would result if a proposed pivot were taken, using a sample of the cutting planes

that would be available in the resulting tableau. The sample size is controlled by



CHAPTER 5. RESULTS 183

symbol CUT SAMPLE SIZE, which is defined in file Parameters.h. The for each possible

pivot, the sample of cutting planes is drawn by considering the rows in random order

without replacement, until the required number of cutting planes has been examined

or all rows have been considered. For each row, if the pivot would result in a fractional

basis variable in that row of the tableau, then the Gomory cutting plane is generated

and measured.

5.1.9 The Integer Lifting Algorithm

In section 3.4.4, we gave an algorithm for lifting an integer program defined by an SAT

problem. That algorithm uses the solution of a linear program to justify increasing the

coefficient of a literal by one. The algorithm is implemented in method cutLifting

of class CuttingAlgorithm.

After choosing an inequality (3.71) represented by a row of a basic solution to

the linear program, the algorithm seeks to justify the derivation of a lifted inequality

(3.66) that dominates (3.65). In the implementation, we choose the literal Lj to be

the negation of one of the literals that appears in the inequality. Reversing the sense

of the inequality sign, the inequality (3.71) may be written as:

∑

v∈N ′

−avxv ≤ −b (5.1)

and the inequality (3.66) may be written as:

∑

v∈N ′

−avxv − Lj ≤ −b− 1 (5.2)

Now, by choosing the literal Lj to be xv′ = (1−xv′), for some v′ ∈ N ′, we may rewrite



CHAPTER 5. RESULTS 184

the inequality (5.2) as:

∑

v∈N ′

−avxv − (1− xv′) ≤ −b− 1 (5.3)

∑

v∈N ′

−avxv − 1 + xv′ ≤ −b− 1 (5.4)

∑

v∈N ′

−avxv + xv′ ≤ −b (5.5)

Hence, the lifting operation may be thought of as increasing the coefficient of some

xv′ in the inequality by one. It is important to modify the coefficients only by integer

quantities, because the all-integer simplex method depends on preserving a unimodu-

lar transform from the initial tableau. The introduction of a non-integer modification

would cause the all-integer pivot algorithm to fail. For Gomory cutting planes, the

values of all of the coefficients −av are in the range (−1, 0], so increasing any coeffi-

cient by one yields a non-negative coefficient.

There are two parts to the implementation lifting algorithm. First, we must choose

the subset and sequence of the variables for which the lift will be attempted. Second,

we must construct and solve the linear programs to actually test the lifts.

Choosing the Variables to Lift

It is known that different sequences of variables give different linear lifting results

(Nobili & Sassano, 1989; Gu et al., 1995). That is, the choice of the order in which

the possible lifts are tried has an effect on the result. The heuristic used in cutLifting

to make the choice uses two factors. The variables with the largest (absolute value)

coefficients are tried first. Ties are broken by choosing the variable such that setting

the variable to value one causes the largest total infeasibility of other inequalities.

This is similar to the heuristic suggested by (Gu et al., 1995).

The heuristic of choosing first the variables with large negative coefficients is



CHAPTER 5. RESULTS 185

justified by considering the effect of setting the variable to value one. A large negative

coefficient causes that literal to make a large contribution to the required value of the

sum. The heuristic of choosing first the variable that gives the largest infeasibility of

other constraints is justified by considering that the infeasibility of other constraints

contributes to forcing other nonbasic variables to nonzero values. The lift is justified

if some other nonbasic variables in the inequality 5.1 are forced to nonzero values.

Because the testing of one lift involves solving a linear programming subproblem,

it is a rather expensive operation. Hence, the implementation tests the lifting of only

some subset of the variables in a cutting plane inequality. In particular, after some

number of lift tests fail to find a lift, the lifting of remaining variables in that cutting

plane may be skipped entirely. As a heuristic, this is justified by the observation that

the lifting tests which are skipped are very unlikely to be successful, and so the cost

of performing the additional tests is very likely to be wasted.

Testing One Lift

As developed in sections (3.4) through (3.4.4), the mathematical justification for

lifting and the algorithm for testing one lift do not appear to be particularly easy.

However, the implementation is actually not difficult. The key is to observe that

there is an alternate proof of the lifting lemma that can be derived immediately from

logic which appears in Gomory’s 1963 paper. To show:

∑

v∈N ′

−avxv − Lv′ ≤ −b− 1 (5.6)



CHAPTER 5. RESULTS 186

It is required to show that the maximum value of:

max:
∑

v∈N ′

−avxv − Lv′

such that:
∑

j∈J

−aijxj ≤ −bi , for i ∈ U

− xj ≤ 0 , for each j

xj ≤ 1 , for each j

and: Lv′ ≤ 0

(5.7)

is less than b. Now, for choices of Lv′ that are nonbasic variables, this is not the case

because the nonbasic solution has already the required value of that literal. Hence, it

is enough to consider choices of Lv′ that are negations of nonbasic variables. For those

literals, we may write Lv′ = (1 − xv′). The constraint Lv′ ≤ 0 gives the constraint

xv′ ≥ 1. So the problem is to test the maximum value of:

max:
∑

v∈N ′

−avxv + xv′

such that:
∑

j∈J

−aijxj ≤ −bi , for i ∈ U

− xj ≤ 0 , for each j

xj ≤ 1 , for each j

and: − xv′ ≤ −1

(5.8)

We can see that the last constraint is infeasible, so at least one pivot is needed to find

a feasible solution. Now, if the maximum value of
∑

v∈N ′ −avxv + xv′ is strictly less

than (1− b), we have:

∑

v∈N ′

−avxv + xv′ < −b+ 1 (5.9)

Gomory’s (1963) insight was that the entire system is a module with modulus 1.

Hence, the maximum value of the linear program (5.8) must be congruent to −b



CHAPTER 5. RESULTS 187

(mod 1), so the strict inequality of (5.9) gives us the desired result. Inequality (5.9)

and

∑

v∈N ′

−avxv + xv′ ≡ −b (mod 1) (5.10)

immediately implies:

∑

v∈N ′

−avxv + xv′ ≤ −b (5.11)

Now, the inequation (5.9) is true if and only if
∑

v∈N ′ −avxv < −b. Hence, it is

enough to test whether or not the maximum value of the linear program:

max:
∑

v∈N ′

−avxv

such that:
∑

j∈J

−aijxj ≤ −bi , for i ∈ U

− xj ≤ 0 , for each j

xj ≤ 1 , for each j

and: − xv′ ≤ −1

(5.12)

is strictly less than −b.

The implemented code in method cutLifting constructs the linear program

(5.12) using the IntegerSimplex class. The tableau is constructed using the current

basic solution together with all of the Gomory cutting planes that can be derived

immediately from that basic solution. The objective function is just a copy of the

cutting plane that we are attempting to lift, and one constraint is added to force the

selected nonbasic variable to value at least one.

Modifying the Tableau

If a lift is found to be justified by testing the linear program, then the tableau repre-

senting the problem may be modified. There are two cases:



CHAPTER 5. RESULTS 188

1. If the linear program (5.12) is infeasible, then the variable xv′ cannot take on

any nonzero value, and that literal may be eliminated from all constraints.

2. If the linear program (5.12) is feasible with maximum value strictly less than

−b, then the constraint (5.1) may be replaced by:

∑

v∈N ′

−avxv + xv′ ≤ −b (5.13)

In the first case, rather than adding a constraint xv′ ≤ 0, the implementation zeros

the coefficients of the variable xv′ in every row of the simplex tableau. Setting the

coefficients to zero constrains that variable to remain nonbasic for all future iterations,

and hence fixes the value of that variable to zero. In the second case, the coefficient

of the variable xv′ in the Gomory cut is modified, giving a stronger “lifted” cutting

plane.

5.1.10 Applying Cutting Planes to the Tableau

Method applyCuts of class CuttingAlgorithm generates all Gomory cutting planes

for multiplier λ = 1, selects which of those cutting planes is to be used, applies

the cutLifting method to the selected cut(s), and adds the resulting lifted cutting

plane(s) to the tableau. The applyCuts method is essentially administrative, in

that it does not actually do much of the work. There are two important heuristic

implemented in applyCuts.

First, the present implementation adds at most one cutting plane to the tableau

at each basic solution. That is, when multiple distinct cutting planes are available,

only one is selected. This is in keeping with the goal of finding a short proof using

the fewest number of cutting planes. A modification to use multiple of the available

cutting planes could be useful, if the goal were to use the fewest number of iterations



CHAPTER 5. RESULTS 189

or basic solutions.

Second, the present implementation does not necessarily use even one cutting

plane at every iteration. If symbol AVOID USING LARGE CUTS is defined, then cutting

plane inequalities having a large number of literals are avoided. The avoidance al-

gorithm is randomized, so that large cutting planes are less likely to be used than

smaller cutting planes, but are not entirely excluded.

By avoiding the use of large cutting planes, we merely avoid the computational

expense of computing the extra rows of the tableau during following iterations. Cut-

ting planes with large numbers of literals do not reduce the volume of the polytope

by much at all, so they contribute little to the proof. By excluding them, we avoid

some computation and we avoid adding a step to the proof that is not likely to be

helpful.

5.2 Reading the Output as Proof

The usual kind of cutting-plane proof of unsatisfiability consists of a sequence of

inequalities, where some number of inequalities represent the initial clauses of the

SAT problem, the others are derived from previous inequalities prescribed operations,

with the last line of the proof being an inequality of the form 0 ≤ b for some b <

0. The prescribed operations require that each inequality must be a positive linear

combination of previous inequalities, or must be a cutting plane derived from one

such inequality.

Because it uses simplex tableaus with slack variables, this algorithm is concerned

with entire basic solutions of the linear system. The initial simplex tableau is con-

structed by adding slack variables to the initial inequalities. Subsequent simplex

tableaus are derived from previous simplex tableaus by prescribed operations, with



CHAPTER 5. RESULTS 190

the last tableau of the proof containing an equality of the form s+ 0 = b, where s is

a non-negative slack variable, for some b < 0.

The prescribed operations require that each tableau is derived from the previous

tableau by a sequence of pivot operations, or by the addition of a lifted cutting

plane derived from the previous tableau. The pivot operation constructs each row

of the new tableau from a linear combination of two rows of the previous tableau.

Because the rows represent equalities, the linear combination need not be a positive

linear combination. Because linear combination is transitive, any sequence of pivot

operations yields a tableau where each row is a linear combination of rows of the

initial tableau. The derivation of a lifted cutting plane is a slightly more complex

operation.

The derivation of a lifted cutting plane from a given tableau includes several steps.

First, all of the distinct Gomory cutting planes are derived, and one of them is chosen

to be lifted. Temporary subproblems are used in the sequential lifting algorithm, as

presented in section (5.1.9). The sequential lifting algorithm uses solutions of the

linear programming subproblems to show that the lifted cutting plane inequality is

valid. The new tableau is then derived from the given tableau by adding the new

lifted cutting plane inequality as a new constraint, with a new slack variable. Because

the cutting plane inequality is a valid equality, all of the integer solutions that are

valid for the given tableau are also valid for the new tableau.

The verification of such a proof requires only verifying the derivation of each

tableau from the previous tableau. This, in turn, requires that either the tableaus

or enough information to efficiently reconstruct the tableaus must be printed. The

proof must include either the complete tableaus, or other information that is sufficient

reconstruct the complete tableaus. In addition, the proof must include the derivation

of the lifted cutting planes, or other information that is sufficient to reconstruct those



CHAPTER 5. RESULTS 191

derivations.

5.2.1 Parameters to Print the Proof

A full proof of unsatisfiability that explicitly includes all of the tableaus and the

derivations of all of the cutting planes is quite bulky. It is possible to consider a

smaller amount of output as a proof. The implemented program has compile-time

parameters that control how much detail should be shown in the proof.

The initial simplex tableau is easy to construct from the SAT problem. The initial

tableau of an SAT problem has one line for each variable and one for each clause in

the SAT problem. Because the initial simplex tableau is determined by the given

SAT problem, it is not necessary to explicitly print the tableau. The implemented

program has a conditional compilation switch to control printing of the initial tableau.

If symbol SHOW INITIAL TABLEAU is defined, the CutSat program prints the initial

tableau.

A full proof includes the derivations of each Gomory cutting plane used in the

proof. These derivations are bulky, and are usually not interesting. However, either

those derivations (or equivalent information) are needed to check a proof. If the

symbol SHOW CUT DERIVATIONS is defined, the CutSat program prints the detailed

cut derivations so that they may be inspected. Each detailed cut derivation prints

the equality from which the Gomory cutting plane inequality is derived, and then the

cutting plane inequality.

Alternatively, it is possible to verify that each asserted Gomory cutting plane

inequality is in fact valid by reproducing the derivation. The proof checker may

reproduce the derivation from the simplex tableau containing the basic solution from

which the cutting plane inequality was derived, and then deriving the Gomory cutting



CHAPTER 5. RESULTS 192

planes from that tableau.

Hence, both the tableaus and the cutting plane derivations may be checked if

the proof-checker has sufficient information to reproduce the basic solutions. The

basis solution is uniquely identified by giving the complete tableau, but it is also

be uniquely identified by the vector of basic variables, or by the vector of non-basic

variables. The most concise way to present this information is to identify the vector of

non-basic variables. If the symbol SHOW NONBASIC VARIABLES is defined, the CutSat

program prints the vector of non-basic variable names of each simplex tableau used

in the proof.

It may be desired to inspect every simplex tableau used in the proof. If the

symbol SHOW EVERY TABLEAU is defined, the CutSat program prints every simplex

tableau that is used in the proof. The simplex tableaus are large, and there are as

many of them as there are steps in the proof, so this option outputs a very large

number of lines. There is not an option to show the simplex tableau after every pivot

operation, because that amount of output would be impractically large for all but the

smallest SAT problems.

The number of optimal tableaus is linear in the number of lifted cutting plane

steps that are used in the proof, and the size of those tableaus is polynomial in the

number of input clauses, the number of variables, and the number of lifted cutting

planes. Hence, even if all of the printing parameters are enabled, the required print

size would be merely impractical, rather than exponential in the number of lifted

cutting-plane steps. If the number of lifted cutting planes is polynomial in the input

size, then the proof size is also polynomial in the input size, for any choice of these

parameters.



CHAPTER 5. RESULTS 193

THE NONBASIC VARIABLES:

s126 s15 s152 s67 s157 s146 s109 s154 s60 s113 s87 s139

x20 s131 s85 s42 s94 s44 s117 s144 s32 s142 s128 s82

x14 s127 s134 s121 s119 s48

Figure 5.6: Example of output showing the basic variables.

5.2.2 Reading and Checking the Proofs

We assume that the most concise presentation has been chosen. That is, the sim-

plex tableaus are not normally printed, and the nonbasic variables are printed by

defining SHOW NONBASIC VARIABLES. With these settings, the initial tableau can be

reconstructed by the proof checker from the SAT problem, and so the initial tableau

is known.

At each major step of the proof the program prints the nonbasic variables. This

output is labeled by printing “THE NONBASIC VARIABLES:”, followed by the list of

the basic variable names. Figure 5.6 shows an example of a display of nonbasic

variables. Knowing the list of nonbasic variables, it is possible for the proof checker

to reconstruct the tableau at this point of the proof by applying a number of pivot

operations to the previous tableau. The number of pivot operations is at most equal

to the number of columns in the tableau, and hence the computation needed to

reconstruct the tableau is polynomial in the number of variables.

Given the basic solution, the proof checker may check the cutting planes by deriv-

ing the Gomory cuts. Alternatively, if the symbol SHOW CUT DERIVATIONS is defined,

the program prints the cut derivations. Figure 5.7 shows an example of program

output that gives the derivation of one Gomory cutting plane inequality. Using this

output, the derivation of the cut may be checked by two steps. First, the proof checker

should verify that the equality is indeed present in the tableau. Second, the proof

checker should verify that the Gomory cut of the given equality is indeed the asserted



CHAPTER 5. RESULTS 194

The equality:

s76 -2s126 +1s15 -4s152 +3s157 +1s113 -2s87 -3x20 +3s85 +3s42

+2s142 +4s121 = 2

with denominator 3 generates the candidate Gomory cut:

-1s126 -1s15 -2s152 -1s113 -1s87 -2s142 -1s121 <= -2

Figure 5.7: Example of output showing the derivation of one Gomory cutting plane
inequality.

THE CANDIDATE CUT:

-1s126 -1s15 -2s152 -1s113 -1s87 -2s142 -1s121 <= -2

Figure 5.8: Example of output showing the Gomory cutting plane inequality that is
selected for lifting.

inequality. Both of these steps are trivial. Checking for the presence of the equality

in the tableau requires time at most proportional to the size of tableau. Checking

that the Gomory cut of the equality is the given inequality requires time proportional

to the number of literals in the equality.

Given that the proof checker has verified the current simplex tableau and the

current set of Gomory cutting planes that may be derived from that simplex tableau,

the proof checker must be able to verify the sequential lifting operations. The first

step of lifting is to select a Gomory cutting plane to be lifted. The program indicates

the selected Gomory cut by printing the label “THE CANDIDATE CUT:” followed by

the selected cut. Figure 5.8 shows an example of output indicating the selection of a

cut for lifting. To verify that the candidate cut is indeed one of the Gomory cutting

plane inequalities that exists in the current set of Gomory cuts is trivial, and requires

time at most proportional to the size of the current simplex tableau.

The sequence of successful lifting operations is indicated by the program by print-

ing a line for each successful lift. There are two cases of successful lifting. In one,

a literal may be added to the cutting plane if the optimum solution of a certain lin-



CHAPTER 5. RESULTS 195

FOUND A LIFT. The term: -2s152 is lifted to: 1s152

Figure 5.9: Example of output indicating a successful lift.

ear programming subproblem is negative. The construction of that LP subproblem

requires the previous simplex tableau, the current set of Gomory cutting plane in-

equalities, and the selection of one variable. If the lift is successful, the coefficient of a

that variable in the candidate cut may be increased by one. Because of the all-integer

format of the tableau, the coefficient is actually increased by the denominator of the

tableau. When this case is detected, the program outputs a line with label “FOUND A

LIFT.” Figure 5.9 shows an example of output indicating that a lift has been found.

To verify that the asserted lift is justified, the proof checker may construct the lin-

ear programming subproblem and solve it. The construction of that LP subproblem

requires the previous simplex tableau, the current set of Gomory cutting plane in-

equalities, and the selection the variable. All of that information is available to the

proof checker, and so it is possible to reconstruct the LP subproblem. By solving the

LP subproblem, the proof checker may verify that the lift is justified. Solving the

linear program requires time proportional to a low-degree polynomial of the size of

the simplex tableau.

If the linear programming subproblem for a lift is not feasible, then a variable

may be fixed. The LP subproblem is formed from the previous simplex tableau, the

current set of Gomory cutting plane inequalities, and one additional constraint that

forces the selected variable to be ≥ 1. If the addition of the a constraint setting that

variable ≥ 1 yields a linear program that has no feasible solution, then the selected

variable must have value 0. When this case is detected, the program prints a line

labeled “FOUND A FIXED VARIABLE:” indicating that a variable may be fixed. Figure

5.10 shows an example of output indicating that a fixed variable has been found. To



CHAPTER 5. RESULTS 196

FOUND A FIXED VARIABLE: s142 = 0

Figure 5.10: Example of output indicating that a variable is fixed to zero.

THE LIFTED CUT:

-1s126 +1s152 -1s87 <= -2

Figure 5.11: Example of output showing a fully lifted cutting plane inequality.

verify that the variable can indeed be fixed, it is sufficient for the proof checker to

construct the linear programming subproblem that was used to test the lift of that

variable and attempt to solve it. The output indicating a fixed variable also indicates

the variable, so all of the information needed to construct the subproblem is available

to the proof checker. The construction of the linear program and the solution of that

linear program are the same as in the previous case of verifying a lift.

Finally, after all lifting steps have been verified, the lifted cut is displayed. This

inequality is preceded by a line containing the label “THE LIFTED CUT.” Figure 5.11

shows an example of output indicating that the sequential lifting of a Gomory cutting

plane inequality is completed, and giving the the fully lifted inequality.

After some number of iterations, the program either finds a feasible integer solution

or determines that none exists. If a SAT problem is unsatisfiable, the program prints a

line “NO FEASIBLE SOLUTION EXISTS.” At this point, it is easy for the proof checker

to verify that there is indeed no feasible solution to the current simplex tableau.

Because every step in the derivation of the current simplex tableau has been verified,

the nonexistence of any feasible solution for the current simplex tableau implies the

nonexistence of any feasible integer solution for the original simplex tableau, and the

unsatisfiability of the original SAT problem.

Alternatively, if the program finds a solution, it prints a line “FOUND A FEASIBLE

SOLUTION.” In this case, the program also prints the feasible solution, and so it also



CHAPTER 5. RESULTS 197

can be checked easily.

5.3 Test Problem Generators

The rsat and nsat random problem generators, due to Asahiro et al. (1996), were

used with only minimal alteration. Some minor alteration was required to successfully

compile the code using an ANSI standard compiler. Source code for the rsat and

nsat generators is available at the DIMACS challenge web site (DIMACS Center for

Mathematics and Theoretical Computer Science, 1993b).

The implementation of the msat random problem generator is trivially easy. The

source code of the generator is presented in appendix B. To draw each independent

3-clause from all possible clauses, the code simply places all of the variables in a

vector<Variable>, applies the std::shuffle library procedure to the vector, and

uses the variables in the first three positions of the resulting shuffled vector. To

apply the negation operators independently, each literal of a clause is negated with

probability one-half.

5.4 Computational Results

The CutSat program was run with three sets of input problems. The DIMACS

problems, a set of problems generated by the nsat pseudorandom generator, and

a set of problems generated by the msat pseudorandom generator were run. This

section reports the computational results obtained from those runs.

For each set of problems, the raw results are presented in a table. The results of

curve-fitting calculations are presented, and a graph of the raw data with the fitted

curve is displayed.



CHAPTER 5. RESULTS 198

5.4.1 Unsatisfiable DIMACS Problems

The observations obtained by running the CutSat program using unsatisfiable DI-

MACS problems as input are given in Table (5.2). The table has one row for each

problems in the problem set. The column labeled “Problem” just identifies the prob-

lem by name. The columns labeled “Vars” and “Clauses” give the number of variables

and clauses, respectively, that appear in the problem. The column labeled “Solved”

indicates whether or not the CutSat program solved the problem within a one-hour

time limit. The column labeled “Satisfiable” indicates the solution. The column la-

beled “Seconds” indicates the time required to solve the problem. Finally, the column

labeled “Cutting Planes” indicates the number of lifted cutting planes used in the

proof of unsatisfiability.

Table 5.2: Computational results obtained by running
the CutSat program on unsatisfiable problems from the
DIMACS problem set.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

aim-100-1 6-no-1 100 160 yes no 21 23
aim-100-2 0-no-1 100 200 yes no 24 12
aim-100-2 0-no-2 100 200 yes no 40 19
aim-100-2 0-no-3 100 200 yes no 28 13
aim-100-2 0-no-4 100 200 yes no 64 29
aim-200-2 0-no-1 200 400 yes no 814 52
aim-200-2 0-no-2 200 400 yes no 1225 57
aim-200-2 0-no-3 200 400 yes no 1255 66
aim-200-2 0-no-4 200 400 yes no 509 33
aim-50-2 0-no-1 50 100 yes no 2 8
aim-50-2 0-no-2 50 100 yes no 3 11
aim-50-2 0-no-3 50 100 yes no 7 16
aim-50-2 0-no-4 50 100 yes no 1 7
dubois20 60 160 yes no 68 67
dubois21 63 168 yes no 116 73
dubois22 66 176 yes no 158 93
dubois23 69 184 yes no 95 79



CHAPTER 5. RESULTS 199

Table 5.2: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

dubois24 72 192 yes no 171 90
dubois25 75 200 yes no 373 151
dubois26 78 208 yes no 291 142
dubois27 81 216 yes no 284 138
dubois28 84 224 yes no 274 129
dubois29 87 232 yes no 472 164
dubois30 90 240 yes no 600 178
dubois50 150 400 yes no 2841 241
hole6 42 133 yes no 33 99
hole7 56 204 yes no 102 155
hole8 72 297 yes no 436 284
hole9 90 415 yes no 1352 437
hole10 110 561 no
jnh2 100 850 yes no 64 6
jnh3 100 850 yes no 1260 73
jnh4 100 850 yes no 424 26
jnh5 100 850 yes no 112 12
jnh6 100 850 yes no 663 39
jnh8 100 850 yes no 187 13
jnh9 100 850 yes no 75 6
jnh10 100 850 yes no 108 12
jnh11 100 850 yes no 260 20
jnh13 100 850 yes no 191 15
jnh14 100 850 yes no 107 10
jnh15 100 850 yes no 229 19
jnh16 100 850 no
jnh18 100 850 yes no 860 57
jnh19 100 850 yes no 162 10
jnh20 100 850 yes no 504 30
jnh202 100 800 yes no 34 3
jnh203 100 800 yes no 380 33
jnh206 100 800 yes no 728 55
jnh208 100 800 yes no 539 40
jnh211 100 800 yes no 147 13
jnh214 100 800 yes no 405 32
jnh215 100 800 yes no 134 13
jnh216 100 800 yes no 958 59
jnh219 100 800 yes no 842 48



CHAPTER 5. RESULTS 200

Table 5.2: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

jnh302 100 900 yes no 15 1
jnh303 100 900 yes no 813 40
jnh304 100 900 yes no 37 3
jnh305 100 900 yes no 113 10
jnh306 100 900 yes no 2713 109
jnh307 100 900 yes no 37 4
jnh308 100 900 yes no 582 28
jnh309 100 900 yes no 44 5
jnh310 100 900 yes no 54 3
pret150 25 150 400 yes no 2812 215
pret150 40 150 400 yes no 1906 185
pret150 60 150 400 yes no 521 57
pret150 75 150 400 yes no 2582 219
pret60 25 60 160 yes no 148 94
pret60 40 60 160 yes no 114 72
pret60 60 60 160 yes no 104 73
pret60 75 60 160 yes no 125 88

A graph of the relation between the number of variables and the number of lifted

cutting planes is shown in Figure 5.12.

Using Mathematica, two regression calculations were carried out (Wolfram, 1999).

The curves were fitted to determine the number of lifted cutting planes as a function

of the number n of variables. The relation between the number of variables and the

number of lifted cutting planes correlates with both a low-order polynomial and with

an exponential function. Formula (5.14) gives the polynomial. Formula (5.15) gives

the exponential function with the exponent being a low-order polynomial.

− 4.48557 ∗ 10−9n6 + 2.21128 ∗ 10−6n5 − 0.000380681n4

+ 0.0266796m3 − 0.620576n2 − 0.0343057n− 0.00118877 (5.14)



CHAPTER 5. RESULTS 201

0 50 100 150 200
0

50

100

150

200

250

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵
❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵
❵

❵

Figure 5.12: Plot of Number of Variables vs. Number of Cutting Planes for unsat-
isfiable DIMACS problems. The horizontal scale plots the number of variable in the
problem. The vertical scale plots the number of lifted cutting planes used by CutSat
program to solve the problem.



CHAPTER 5. RESULTS 202

ef(m), where f(m) =

− 5.76453 ∗ 10−11n6 + 2.75109 ∗ 10−8n5 − 4.46904 ∗ 10−6n4

+ .000277831n3 − 0.00455965n2 − 0.000252154n− 8.73875 ∗ 10−6 (5.15)

It is easy to observe that the coefficients of the exponential formula (5.15) are

extremely small, and that the coefficients in the polynomial formula (5.14) seem

more reasonable.

The quality of a curve fitting is determined by the sum of the squared errors.

The polynomial formula (5.14) approximates the data with sum of squared error

approximately 434912.16. The exponential formula (5.15) approximates the data

with sum of squared error approximately 514846.02. We can say that the polynomial

formula (5.14) is a better fit to the data than the exponential formula. Neglecting

the terms with low-order coefficients, it appears that the experimental data correlates

with a cubic polynomial of the number of variables. Of course, the number of data

points is quite small, and the DIMACS test problem set includes problems with special

structure, so this correlation cannot be said to be significant.

5.4.2 Random NSAT Problems

The observations obtained by running the CutSat program using randomly generated

NSAT problems as input are given in Table (5.3). The table has one row for each

problems in the problem set. The column labels are the same as for the previous

table. For several of the problems having 100 variables, the CutSat program suffered

64-bit arithmetic overflow. Because of the overflow, the finite-precision version of the

program did not complete those problems in less than one hour.



CHAPTER 5. RESULTS 203

Table 5.3: Computational results obtained by running
the CutSat program on unsatisfiable problems from the
NSAT problem set.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

nsat-30-4.25-1 30 127 yes no 2 4
nsat-30-4.25-2 30 127 yes no 4 9
nsat-30-4.25-3 30 127 yes no 4 8
nsat-30-4.25-4 30 127 yes no 5 12
nsat-30-4.25-5 30 127 yes no 7 12
nsat-30-4.25-6 30 127 yes no 5 11
nsat-30-4.25-7 30 127 yes no 1 2
nsat-30-4.25-8 30 127 yes no 5 10
nsat-30-4.25-9 30 127 yes no 4 12
nsat-30-4.25-10 30 127 yes no 2 7
nsat-35-4.25-1 35 148 yes no 9 8
nsat-35-4.25-2 35 148 yes no 5 8
nsat-35-4.25-3 35 148 yes no 10 16
nsat-35-4.25-4 35 148 yes no 8 12
nsat-35-4.25-5 35 148 yes no 13 16
nsat-35-4.25-6 35 148 yes no 7 9
nsat-35-4.25-7 35 148 yes no 8 7
nsat-35-4.25-8 35 148 yes no 8 13
nsat-35-4.25-9 35 148 yes no 11 10
nsat-35-4.25-10 35 148 yes no 9 12
nsat-40-4.25-1 40 170 yes no 3 4
nsat-40-4.25-2 40 170 yes no 11 12
nsat-40-4.25-3 40 170 yes no 13 15
nsat-40-4.25-4 40 170 yes no 7 8
nsat-40-4.25-5 40 170 yes no 12 16
nsat-40-4.25-6 40 170 yes no 13 15
nsat-40-4.25-7 40 170 yes no 7 7
nsat-40-4.25-8 40 170 yes no 14 14
nsat-40-4.25-9 40 170 yes no 8 8
nsat-40-4.25-10 40 170 yes no 8 11
nsat-45-4.25-1 45 191 yes no 21 19
nsat-45-4.25-2 45 191 yes no 15 15
nsat-45-4.25-3 45 191 yes no 13 14
nsat-45-4.25-4 45 191 yes no 27 21
nsat-45-4.25-5 45 191 yes no 23 18
nsat-45-4.25-6 45 191 yes no 7 7



CHAPTER 5. RESULTS 204

Table 5.3: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

nsat-45-4.25-7 45 191 yes no 23 20
nsat-45-4.25-8 45 191 yes no 16 17
nsat-45-4.25-9 45 191 yes no 9 7
nsat-45-4.25-10 45 191 yes no 11 10
nsat-50-4.25-1 50 212 yes no 28 20
nsat-50-4.25-2 50 212 yes no 7 6
nsat-50-4.25-3 50 212 yes no 16 9
nsat-50-4.25-4 50 212 yes no 11 8
nsat-50-4.25-5 50 212 yes no 21 14
nsat-50-4.25-6 50 212 yes no 46 29
nsat-50-4.25-7 50 212 yes no 5 5
nsat-50-4.25-8 50 212 yes no 21 17
nsat-50-4.25-9 50 212 yes no 33 21
nsat-50-4.25-10 50 212 yes no 9 6
nsat-55-4.25-1 55 233 yes no 47 26
nsat-55-4.25-2 55 233 yes no 51 26
nsat-55-4.25-3 55 233 yes no 50 28
nsat-55-4.25-4 55 233 yes no 43 22
nsat-55-4.25-5 55 233 yes no 35 21
nsat-55-4.25-6 55 233 yes no 43 20
nsat-55-4.25-7 55 233 yes no 50 24
nsat-55-4.25-8 55 233 yes no 35 24
nsat-55-4.25-9 55 233 yes no 51 22
nsat-55-4.25-10 55 233 yes no 29 16
nsat-60-4.25-1 60 255 yes no 32 18
nsat-60-4.25-2 60 255 yes no 60 24
nsat-60-4.25-3 60 255 yes no 38 17
nsat-60-4.25-4 60 255 yes no 26 14
nsat-60-4.25-5 60 255 yes no 54 25
nsat-60-4.25-6 60 255 yes no 49 25
nsat-60-4.25-7 60 255 yes no 25 13
nsat-60-4.25-8 60 255 yes no 25 13
nsat-60-4.25-9 60 255 yes no 57 25
nsat-60-4.25-10 60 255 yes no 18 14
nsat-65-4.25-1 65 255 yes no 81 23
nsat-65-4.25-2 65 255 yes no 59 24
nsat-65-4.25-3 65 255 yes no 50 20
nsat-65-4.25-4 65 255 yes no 52 23



CHAPTER 5. RESULTS 205

Table 5.3: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

nsat-65-4.25-5 65 255 yes no 42 16
nsat-65-4.25-6 65 255 yes no 56 18
nsat-65-4.25-7 65 255 yes no 64 25
nsat-65-4.25-8 65 255 yes no 78 27
nsat-65-4.25-9 65 255 yes no 25 13
nsat-65-4.25-10 65 255 yes no 57 21
nsat-70-4.25-1 70 297 yes no 108 32
nsat-70-4.25-2 70 297 yes no 112 32
nsat-70-4.25-3 70 297 yes no 60 17
nsat-70-4.25-4 70 297 yes no 62 22
nsat-70-4.25-5 70 297 yes no 203 48
nsat-70-4.25-6 70 297 yes no 59 22
nsat-70-4.25-7 70 297 yes no 93 27
nsat-70-4.25-8 70 297 yes no 51 16
nsat-70-4.25-9 70 297 yes no 88 29
nsat-70-4.25-10 70 297 yes no 78 20
nsat-75-4.25-1 75 318 yes no 92 23
nsat-75-4.25-2 75 318 yes no 70 16
nsat-75-4.25-3 75 318 yes no 107 28
nsat-75-4.25-4 75 318 yes no 96 23
nsat-75-4.25-5 75 318 yes no 198 45
nsat-75-4.25-6 75 318 yes no 67 20
nsat-75-4.25-7 75 318 yes no 37 9
nsat-75-4.25-8 75 318 yes no 134 31
nsat-75-4.25-9 75 318 yes no 110 27
nsat-75-4.25-10 75 318 yes no 149 33
nsat-80-4.25-1 80 340 yes no 137 28
nsat-80-4.25-2 80 340 yes no 184 35
nsat-80-4.25-3 80 340 yes no 161 30
nsat-80-4.25-4 80 340 yes no 301 48
nsat-80-4.25-5 80 340 yes no 111 25
nsat-80-4.25-6 80 340 yes no 120 25
nsat-80-4.25-7 80 340 yes no 147 31
nsat-80-4.25-8 80 340 yes no 109 25
nsat-80-4.25-9 80 340 yes no 147 28
nsat-80-4.25-10 80 340 yes no 167 30
nsat-85-4.25-1 85 361 yes no 130 22
nsat-85-4.25-2 85 361 yes no 266 35



CHAPTER 5. RESULTS 206

Table 5.3: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

nsat-85-4.25-3 85 361 yes no 81 16
nsat-85-4.25-4 85 361 yes no 111 25
nsat-85-4.25-5 85 361 yes no 440 45
nsat-85-4.25-6 85 361 yes no 227 35
nsat-85-4.25-7 85 361 yes no 190 26
nsat-85-4.25-8 85 361 yes no 178 30
nsat-85-4.25-9 85 361 yes no 239 33
nsat-85-4.25-10 85 361 yes no 189 30
nsat-90-4.25-1 90 382 yes no 212 26
nsat-90-4.25-2 90 382 yes no 271 26
nsat-90-4.25-3 90 382 yes no 251 20
nsat-90-4.25-4 90 382 yes no 133 20
nsat-90-4.25-5 90 382 yes no 141 20
nsat-90-4.25-6 90 382 yes no 464 47
nsat-90-4.25-7 90 382 yes no 59 11
nsat-90-4.25-8 90 382 yes no 55 13
nsat-90-4.25-9 90 382 yes no 228 24
nsat-90-4.25-10 90 382 yes no 342 42
nsat-95-4.25-1 95 403 yes no 3394 40
nsat-95-4.25-2 95 403 yes no 446 37
nsat-95-4.25-3 95 403 yes no 300 31
nsat-95-4.25-4 95 403 yes no 211 23
nsat-95-4.25-5 95 403 yes no 165 23
nsat-95-4.25-6 95 403 yes no 409 29
nsat-95-4.25-7 95 403 yes no 262 23
nsat-95-4.25-8 95 403 yes no 323 38
nsat-95-4.25-9 95 403 yes no 429 42
nsat-95-4.25-10 95 403 yes no 487 40
nsat-100-4.25-1 100 425 yes no 472 36
nsat-100-4.25-2 100 425 yes no 509 43
nsat-100-4.25-3 100 425 yes no 339 39
nsat-100-4.25-4 100 425 yes no 656 43
nsat-100-4.25-5 100 425 yes no 466 25
nsat-100-4.25-6 100 425 yes no 718 30
nsat-100-4.25-7 100 425 no - - -
nsat-100-4.25-8 100 425 no - - -
nsat-100-4.25-9 100 425 no - - -
nsat-100-4.25-10 100 425 yes no 1476 30



CHAPTER 5. RESULTS 207

0 25 50 75 100

0

25

50

75

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

Figure 5.13: Plot of Number of Variables vs. Number of Cutting Planes for un-
satisfiable problems generated by the NSAT generator. The horizontal scale plots
the number of variable in the problem. The vertical scale plots the number of lifted
cutting planes used by CutSat program to solve the problem.

A graph of the relation between the number of variables and the number of lifted

cutting planes is shown in Figure 5.13.

Using Mathematica, two regression calculations were carried out (Wolfram, 1999).

The curves were fitted to determine the number of lifted cutting planes as a function

of the number n of variables. The relation between the number of variables and the

number of lifted cutting planes correlates with both a low-order polynomial and with

an exponential function. Formula (5.16) gives the polynomial. Formula (5.17) gives

the exponential function with the exponent being a low-order polynomial.



CHAPTER 5. RESULTS 208

2.79101 ∗ 10−9n6 − 8.24924 ∗ 10−7n5 + 0.0000926481n4

− 0.00494967m3 + 0.127805n2 − 0.990449n− 0.107548 (5.16)

ef(m), where f(m) =

1.28558 ∗ 10−10n6 − 3.79313 ∗ 10−8n5 + 4.22018 ∗ 10−6n4

− 0.000215812n3 + 0.00436818n2 + 0.0443921n+ 0.00477311 (5.17)

It is easy to observe that the coefficients of the exponential formula (5.17) are

extremely small, and that the coefficients in the polynomial formula (5.16) seem

more reasonable.

The quality of a curve fitting is determined by the sum of the squared errors.

The polynomial formula (5.16) approximates the data with sum of squared error

approximately 7348.73. The exponential formula (5.17) approximates the data with

sum of squared error approximately 82770.59. We can say that the polynomial formula

(5.16) is a better fit to the data than the exponential formula. Neglecting the terms

with low-order coefficients, it appears that the experimental data correlates with a

quadratic polynomial of the number of variables.

5.4.3 Random MSAT Problems

The observations obtained by running the CutSat program using as input a set of

problems problems generated by the MSAT pseudorandom SAT problem generator

are given in Table (5.4). The table has one row for each problems in the problem

set. The column labels are the same as for the previous table. For problems with 85



CHAPTER 5. RESULTS 209

variables, the first 7 of the 10 problems each required more than one hour of cpu time,

and so the experiment was terminated. Problems having more than 85 variables were

not attempted.

Table 5.4: Computational results obtained by running
the CutSat program on randomly generated MSAT prob-
lems.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

msat-30-6.0-1 30 180 yes no 9 10
msat-30-6.0-2 30 180 yes no 3 4
msat-30-6.0-3 30 180 yes no 6 11
msat-30-6.0-4 30 180 yes no 9 11
msat-30-6.0-5 30 180 yes no 9 12
msat-30-6.0-6 30 180 yes no 7 12
msat-30-6.0-7 30 180 yes no 7 11
msat-30-6.0-8 30 180 yes no 12 17
msat-30-6.0-9 30 180 yes no 9 12
msat-30-6.0-10 30 180 yes no 9 13
msat-35-6.0-1 35 210 yes no 24 18
msat-35-6.0-2 35 210 yes no 20 17
msat-35-6.0-3 35 210 yes no 20 15
msat-35-6.0-4 35 210 yes no 5 5
msat-35-6.0-5 35 210 yes no 32 24
msat-35-6.0-6 35 210 yes no 7 8
msat-35-6.0-7 35 210 yes no 4 5
msat-35-6.0-8 35 210 yes no 12 9
msat-35-6.0-9 35 210 yes no 12 12
msat-35-6.0-10 35 210 yes no 14 11
msat-40-6.0-1 40 240 yes no 17 12
msat-40-6.0-2 40 240 yes no 41 23
msat-40-6.0-3 40 240 yes no 18 16
msat-40-6.0-4 40 240 yes no 24 15
msat-40-6.0-5 40 240 yes no 22 13
msat-40-6.0-6 40 240 yes no 18 14
msat-40-6.0-7 40 240 yes no 34 21
msat-40-6.0-8 40 240 yes no 25 13
msat-40-6.0-9 40 240 yes no 26 17
msat-40-6.0-10 40 240 yes no 24 10
msat-45-6.0-1 45 270 yes no 43 16



CHAPTER 5. RESULTS 210

Table 5.4: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

msat-45-6.0-2 45 270 yes no 72 29
msat-45-6.0-3 45 270 yes no 49 26
msat-45-6.0-4 45 270 yes no 101 44
msat-45-6.0-5 45 270 yes no 41 19
msat-45-6.0-6 45 270 yes no 54 23
msat-45-6.0-7 45 270 yes no 48 19
msat-45-6.0-8 45 270 yes no 23 13
msat-45-6.0-9 45 270 yes no 44 19
msat-45-6.0-10 45 270 yes no 43 16
msat-50-6.0-1 50 300 yes no 81 24
msat-50-6.0-2 50 300 yes no 100 35
msat-50-6.0-3 50 300 yes no 98 23
msat-50-6.0-4 50 300 yes no 42 15
msat-50-6.0-5 50 300 yes no 62 24
msat-50-6.0-6 50 300 yes no 89 26
msat-50-6.0-7 50 300 yes no 56 24
msat-50-6.0-8 50 300 yes no 87 29
msat-50-6.0-9 50 300 yes no 46 18
msat-50-6.0-10 50 300 yes no 32 14
msat-55-6.0-1 55 330 yes no 196 39
msat-55-6.0-2 55 330 yes no 135 29
msat-55-6.0-3 55 330 yes no 122 27
msat-55-6.0-4 55 330 yes no 152 37
msat-55-6.0-5 55 330 yes no 199 42
msat-55-6.0-6 55 330 yes no 294 55
msat-55-6.0-7 55 330 yes no 105 27
msat-55-6.0-8 55 330 yes no 185 42
msat-55-6.0-9 55 330 yes no 175 36
msat-55-6.0-10 55 330 yes no 123 33
msat-60-6.0-1 60 360 yes no 202 34
msat-60-6.0-2 60 360 yes no 269 46
msat-60-6.0-3 60 360 yes no 115 22
msat-60-6.0-4 60 360 yes no 52 14
msat-60-6.0-5 60 360 yes no 231 36
msat-60-6.0-6 60 360 yes no 207 32
msat-60-6.0-7 60 360 yes no 49 11
msat-60-6.0-8 60 360 yes no 288 44
msat-60-6.0-9 60 360 yes no 174 27



CHAPTER 5. RESULTS 211

Table 5.4: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

msat-60-6.0-10 60 360 yes no 162 29
msat-65-6.0-1 65 390 yes no 288 38
msat-65-6.0-2 65 390 yes no 328 40
msat-65-6.0-3 65 390 yes no 645 68
msat-65-6.0-4 65 390 yes no 552 64
msat-65-6.0-5 65 390 yes no 653 73
msat-65-6.0-6 65 390 yes no 383 47
msat-65-6.0-7 65 390 yes no 332 41
msat-65-6.0-8 65 390 yes no 699 77
msat-65-6.0-9 65 390 yes no 474 59
msat-65-6.0-10 65 390 yes no 400 54
msat-70-6.0-1 70 420 yes no 944 80
msat-70-6.0-2 70 420 yes no 238 25
msat-70-6.0-3 70 420 yes no 754 77
msat-70-6.0-4 70 420 yes no 698 77
msat-70-6.0-5 70 420 yes no 430 41
msat-70-6.0-6 70 420 yes no 964 86
msat-70-6.0-7 70 420 yes no 557 56
msat-70-6.0-8 70 420 yes no 416 43
msat-70-6.0-9 70 420 yes no 331 35
msat-70-6.0-10 70 420 yes no 874 79
msat-75-6.0-1 75 450 yes no 2170 122
msat-75-6.0-2 75 450 yes no 1057 68
msat-75-6.0-3 75 450 yes no 1347 90
msat-75-6.0-4 75 450 yes no 2661 144
msat-75-6.0-5 75 450 yes no 1490 101
msat-75-6.0-6 75 450 yes no 1182 78
msat-75-6.0-7 75 450 yes no 792 51
msat-75-6.0-8 75 450 yes no 1293 81
msat-75-6.0-9 75 450 yes no 1300 79
msat-75-6.0-10 75 450 yes no 1919 107
msat-80-6.0-1 80 480 yes no 1536 80
msat-80-6.0-2 80 480 yes no 1191 66
msat-80-6.0-3 80 480 yes no 1318 75
msat-80-6.0-4 80 480 yes no 1281 67
msat-80-6.0-5 80 480 yes no 2390 123
msat-80-6.0-6 80 480 yes no 1827 92
msat-80-6.0-7 80 480 yes no 1259 84



CHAPTER 5. RESULTS 212

Table 5.4: Continued.

Problem Vars Clauses Solved Satisfiable Seconds Cutting
Planes

msat-80-6.0-8 80 480 yes no 1934 105
msat-80-6.0-9 80 480 yes no 939 62
msat-80-6.0-10 80 480 yes no 3458 153
msat-85-6.0-1 85 520 no - - -
msat-85-6.0-2 85 520 no - - -
msat-85-6.0-3 85 520 no - - -
msat-85-6.0-4 85 520 no - - -
msat-85-6.0-5 85 520 no - - -
msat-85-6.0-6 85 520 no - - -
msat-85-6.0-10 85 520 no - - -

A graph of the relation between the number of variables and the number of lifted

cutting planes is shown in Figure 5.14.

Using Mathematica, two regression calculations were carried out (Wolfram, 1999).

The curves were fitted to determine the number of lifted cutting planes as a function

of the number n of variables. The relation between the number of variables and the

number of lifted cutting planes correlates with both a low-order polynomial function

and with an exponential function. Formula (5.18) gives the polynomial. Formula

(5.19) gives the exponential function with the exponent being a low-order polynomial.

− 1.14124 ∗ 10−7n6 + 0.0000307964n5 − 0.00323486n4

+ 0.165352n3 − 4.09936n2 + 39.5697n+ 4.83655 (5.18)

ef(m), where f(m) =

− 2.7707 ∗ 10−9n6 + 7.691665 ∗ 10−7n5 − 0.0000834537n4

+ 0.00442236n3 − 0.114759n2 + 1.23383n+ 0.150731 (5.19)



CHAPTER 5. RESULTS 213

0 25 50 75 100

0

25

50

75

100

❵

❵

❵❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

❵

Figure 5.14: Plot of Number of Variables vs. Number of Cutting Planes for randomly
generated MSAT problems. The horizontal scale plots the number of variable in the
problem. The vertical scale plots the number of lifted cutting planes used by CutSat
program to solve the problem.



CHAPTER 5. RESULTS 214

The quality of a curve fitting is determined by the sum of the squared errors.

The polynomial formula (5.18) approximates the data with sum of squared error

approximately 34981.4. The exponential formula (5.19) approximates the data with

sum of squared error approximately 29279.5. In this case the exponential function is

a better fit than the polynomial function.

The MSAT test problem set includes problems having no special structure that

could be used to advantage by an algorithm. The number of lifted cutting planes

generated by the CutSat program for problems in this problem set correlates with

a first-degree exponential function of the number of variables. This experimental

result supports an inference that the CutSat program solves these problems using a

super-polynomial number of steps.

5.5 New Proofs of Pigeonhole Unsatisfiability

The CutSat program discovers and uses cliques in a way that is very different from

previous programs, such as that of Barth (1996). Previous programs explicitly search

for diagonal sum cuts representing cliques in the graph of the problem. A diagonal

sum cut is formed from a set of k clauses in k literals where each clause has k − 1 of

the literals.

The CutSat program discovers and uses the same cliques, but finds and represents

them in a very different manner. A cutting plane equivalent to a diagonal sum cut

is represented as a lower bound on the feasible integer values of the slack variables,

rather than on the original variables. An example from the hole6 problem, one of

the pigeonhole problems in the DIMACS problem set, illustrates the algorithm.



CHAPTER 5. RESULTS 215

s65 -1x2 -1x14 = -1

s66 -1x2 -1x20 = -1

s75 -1x14 -1x20 = -1

Figure 5.15: Some inequalities of the hole6 problem.

THE NONBASIC VARIABLES:

x1 s169 x3 x4 x5 s162 x7 x8 x9 x10 s170 x12

x13 s171 s101 x16 x17 s65 x19 s172 s75 s98 x23 x24

s135 x26 x27 x28 s173 x30 x31 x32 s174 x34 x35 x36

x37 s66 x39 x40 x41 s175

THE CANDIDATE CUT:

-1s65 -1s75 -1s66 <= -1

THE LIFTED CUT:

-1s65 -1s75 -1s66 <= -1

Figure 5.16: The first proof step of the hole6 problem.

The hole6 problem contains the following clauses:

(x2x14)(x2x20)(x14x20) (5.20)

Among the equalities constructed in the initial tableau, we find equalities (5.21)

representing the clauses (5.20):

s65 − x2 − x14 = −1

s66 − x2 − x20 = −1

s75 − x14 − x20 = −1

(5.21)

When printed in the format used by CutSat, these inequalities are as shown in figure

5.15. In the first step of the proof constructed by CutSat during one of the runs of

the hole6 problem, we find the output shown in figure 5.16.

These lines of the proof indicate that the CutSat program constructed the

equality shown in figure 5.17. This construction was verified by enabling the

SHOW EVERY TABLEAU feature of the program, and could also be verified by recon-

structing the tableau with the given non-basic variables. The tableau containing the



CHAPTER 5. RESULTS 216

2s2 +1s76 -1s67 -1s65 = 1

Figure 5.17: One line of the first tableau constructed for the hole6 problem.

-1s65 -1s75 -1s66 <= -1

Figure 5.18: A Gomory cutting plane constructed for the hole6 problem.

equation in figure 5.17 has common denominator 2, so the cutting plane can be de-

rived as in figure 5.18 Indeed, we have seen in figure 5.16 that the cutting plane of

figure 5.18 is derived by the CutSat program.

Now, when the cutting plane in figure 5.18 is added to the equations (5.21), we

find that the inequality given in figure 5.19 is a valid linear combination of rows of

the tableau.

But the inequality of figure 5.19 is just the diagonal sum cut that could be derived

from the clauses (5.20) or from inequalities representing those clauses.

Hence, the diagonal sum cut is a linear combination of the original tableau and

the cutting plane. Rather than deriving the diagonal sum cut directly, the CutSat

program finds a lower bound on the slack variables which implies the diagonal sum

cut arithmetically. Every solution which does not satisfy the diagonal sum cut also

does not satisfy the tableau with the cutting plane of figure 5.18. Hence, after the

cutting plane is added, the diagonal sum cut is implicitly present in the tableau.

By finding cutting planes of this type, the CutSat program quickly finds a sufficient

number of cutting planes and completes the proof of unsatisfiability for the pigeonhole

problem. The cutting planes used are equivalent to diagonal sum cuts, and hence the

-2x2 -2x14 -2x20 <= -4

Figure 5.19: A Gomory cutting plane constructed for the hole6 problem.



CHAPTER 5. RESULTS 217

resulting proof is equivalent to previous proofs using diagonal sum cuts. The difference

is that the CutSat program does not explicitly look for these cuts, and finds them

using a general mechanism that is also useful for finding other kinds of cutting planes.

5.6 Summary

In this chapter, we have described a computer program, named CutSat, that im-

plements the algorithms described in chapter 3. We have also briefly described the

implementation of the pseudo-random problem generators. The results of running

the CutSat program using as input the unsatisfiable DIMACS problems and two sets

of randomly generated problems are presented. For each problem set, both poly-

nomial and exponential form expressions were fitted to the data to minimize the

sum-square error. Finally, we show that the CutSat program finds cutting planes

that are equivalent to diagonal sum cutting planes without specifically looking for

them. The representation of the diagonal sum cuts is very different because CutSat

uses the slack variables, but the effect is exactly equivalent.



Chapter 6

Conclusions and Recommendations

In chapter three, we provided some new algorithms to find strong canonical and lifted

Gomory cutting planes. The new algorithms are based on cutting plane methods for

solving systems of integer linear inequalities, and use heuristics and random search to

find good cutting planes. Because the algorithms themselves are difficult, the theory

to describe the complexity of the algorithms is elusive. In chapter four, we describe

an experiment which was conducted to obtain some information about the complexity

of the cutting plane algorithm. In chapter five, we describe the implementation of the

algorithm as a computer program, and the results of the computational experiment

using that implemented program.

In this chapter, we review those results to form conclusions.

6.1 The Cutting Plane Algorithm

The successful implementation of the CutSat program, which uses integer-only sim-

plex tableau and lifted cutting planes, demonstrates that it is possible to success-

fully implement such complex algorithms. We believe that the integer-only simplex

218



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 219

tableau implementation is the first published implementation of an integer-only sim-

plex method. The implementation of the lifting algorithms is much less difficult that

the theory would seem to indicate, partially because additional theory was developed

to allow the simplified implementation.

6.2 Discussion of Computational Results

For two of the three classes of test problems, the CutSat program found proofs of

unsatisfiability with proof size polynomial in the number of variables.

For the DIMACS problems, the problems are known to have specific structures,

and the CutSat program found short cutting plane proofs that take advantage of the

problem structures. The fact that all but two of the unsatisfiable DIMACS problems

were proved using very short proofs is encouraging, since the DIMACS problems were

presented as challenge problems and are widely believed to be very hard problems

indeed.

For the NSAT problems, the problems were not known to have any special struc-

ture, but the CutSat problem found many small cutting planes consisting of only two

literals. The abundance of such small cutting planes suggests that there is an under-

lying structure. The algorithm used in the nsat generator increases the number of

clauses by “splitting” a previous clause using the rule c → (x∧ c)∨ (¬x∧ c) (Asahiro

et al., 1996). This derivation process may provide the problem structure which was

found by the CutSat program. Previous SAT algorithms have not found or made use

of any underlying structure for NSAT problems.

For the MSAT problems, the CutSat program did not do as well. For these

problems, the CutSat program was able to find many cutting planes having only

small numbers of literals. However, the small cutting planes were found less often in



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 220

larger problems. This may be due to a genuine absence of small cutting planes in

large random problems, or it may be due to the inability of the particular randomized

algorithm to find them efficiently.

In the proofs that were produced for the problems in this experiment, the great

majority of the proof steps found a cutting plane having a number of literals bounded

by the square root of the number of variables in the problem. This result indicates

that small cutting planes may be very common.

6.3 Conclusions

Based on the results of the computational experiment and the criteria set in Chapter

4, we may deem the experiment a success. There is a correlation between the number

of cutting planes and some low-degree polynomial in the size of the problems for two

of the three sets of test problems. This meets the criteria set in section 4.3.5. Hence,

we may conclude that our thesis is supported:

Short cutting-plane proofs of unsatisfiability do exist for many hard SAT

problems. Algorithms and heuristics for finding strong cutting planes can

be useful to find such short refutation proofs.

The experiment demonstrates the effective use of algorithms and heuristics iden-

tified in chapter three to solve a number of hard unsatisfiable SAT problems. The

number of lifted cutting plane steps in the resulting refutation proofs was determined

to be quite small. In two of the three sets of test problems, there is a polynomial

correlation between the number of cutting planes and the size of the SAT problem.

Randomized local search for good cutting planes does succeed surprisingly often.

That is, for the great majority of the proof steps, the CutSat program successfully



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 221

found a small cutting plane. The successful finding of small cutting planes accounts for

the successful finding of short proofs. This observation confirms the theory developed

in section 3.7.

6.4 Implications

This research has demonstrated that short cutting plane proofs do exist for many hard

SAT problems, and that those proofs may often be constructed using algorithms and

heuristics for finding strong cutting planes. It is well known that cutting plane proof

systems are stronger than resolution or model-search proof systems, in the sense that

shorter proofs are possible for at least some problems. We have provided an approach

to actually constructing such short proofs for a variety of problems.

Specific algorithms and heuristics used in this study have been shown to be use-

ful. Search for strong cutting planes which may occur at non-optimal vertices of the

polytope is useful, in the sense that the extended search often finds stronger cutting

planes than are available at the optimal vertices. Modification of the objective func-

tion to direct the cutting plane search is useful in the sense that such modification

helps to find strong cutting planes. Integer lifting of Gomory cutting planes is also

useful because it allows construction of stronger cutting planes from those that are

found by the search algorithms.

Many of the cutting plane proofs constructed by this algorithm are shorter than

proofs constructed by other algorithms for the same problems. For the DIMACS

problems set, direct comparisons are possible. The relative success in finding short

plane proofs indicates that cutting plane methods may be more useful than is com-

monly believed. The relative success in finding small, strong cutting planes suggests

that such cutting planes may be common, and relatively easy to find.



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 222

6.5 Recommendations

Implementation of improved cut-lifting algorithms, perhaps based on the recent work

of Balas et al. (1996), should allow shorter proofs than those found by the CutSat

program. The work of Balas et. al. is oriented to solving integer programming

problems, rather than SAT problems, but it seems that their cutting plane derivations

could be used to find cutting planes for SAT problems.

The analysis of search algorithms for model-search and in other areas such as arti-

ficial intelligence is quite advanced, but very little work has been on search algorithms

that search for strong cutting planes. We are not aware of any other work that con-

siders altering the objective function to assist in the search for small cutting planes.

Also, we are not aware of any other work that considers pivoting to adjacent ver-

tices to find strong cutting planes. The theoretical performance of such cutting-plane

search algorithms is an open question.

The design of optimal search strategies for finding strong cutting planes is also

open. Strategies similar to those previously used for model search, such as tabu search

and multi-start search, may be helpful. A great variety of search strategies is possible

beyond the several considered in this thesis. The ideal solution to this problem would

give an algorithm to solve for the strongest possible cutting plane without having to

search.

A key factor that affects the success of any algorithm for finding small cutting

planes is the number of small cutting planes that exist. An important question

is to determine how common are small cutting planes? That is, do all or most

hard SAT problems possess small, strong cutting planes? If so, are there enough

such strong cutting planes so that an efficient search algorithm may have a high

probability of finding one? The frequency of occurrence of strong cutting planes in



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 223

random problems, or in any certain class of practical problems, is an open question.

6.6 Summary

We gave in chapter three a characterization of the convex integer hull for SAT, and

several algorithms to find strong cutting planes. The new cutting plane algorithm is

a complete algorithm that is capable of proving unsatisfiability. In chapter four and

five, we describe an experiment to estimate the proof complexity of the new cutting

plane algorithms. We found that cutting plane algorithms do find short proofs of

unsatisfiability for a large class of SAT problems, and that strong cutting planes are

very common.

The algorithms presented in this thesis are different from almost all previously

presented algorithms for SAT. The common types of SAT algorithms are based on

either tree-search or resolution. Both of those types cannot be efficient, because

the proof size doubles with each added variable. Cutting plane algorithms have the

property that no branching is needed. Because no branching is needed, it is not

known that small cutting plane proofs are not possible. This thesis suggests that

small cutting plane proofs are indeed possible for many SAT problems.

However, the questions suggested by this result are far more numerous than the

questions settled. The theoretical analysis of why these cutting plane algorithms are

effective for many problems is open. The development of improved cutting plane

search algorithms is also open. The study of specialized search algorithms for finding

strong cutting-planes for SAT problems is barely begun. Because of the importance

of propositional logic to computer science and other fields, we may expect cutting

plane algorithms to provide fertile ground for research for many years to come.



Appendix A

CutSat Program Code

The source code of the CutSat program includes a number of files. The files that

implement specific algorithms and which are not available elsewhere are reproduced

here.

A.1 Parameters

Various algorithms are controlled by parameters which are defined at compile time.

The Parameters.h file contains those definitions.

A.1.1 Parameters.h

//

// Parameter file for CUTSAT implementation.

//

// These parameters control various features of the

// implementation, and may be varied for particular

// classes of problems.

//

// Copyright (c) 2000 Stephen Lee Hansen

//

#ifndef PARAMETERS_H_INCLUDED

#define PARAMETERS_H_INCLUDED

224



APPENDIX A. CUTSAT PROGRAM CODE 225

//////////////////////////////////////////////////////////

//

// PARAMETERS CONTROLLING NUMBER REPRESENTATION

//

//////////////////////////////////////////////////////////

//

// Two modes of integer arithmetic are available:

//

// If USE_EXACT_INTEGER_ARITHMETIC is defined, the

// implementation uses arbitrary-precision integers.

// This is based on (Victor Shoup, "NTL -- a library

// for doing number theory -- version 3.7a")

// Exact arithmetic is very slow, but never

// overflow unless heap memory is exhausted.

//#define USE_EXACT_INTEGER_ARITHMETIC

// If USE_EXACT_INTEGER_ARITHMETIC is not defined,

// the implementation uses "long long" integers, which

// are 64 bits on most machines. 64 bit integers are

// long enough to handle most SAT problems of practical

// size, but can overflow. Overflow may be detected,

// at substantial computational cost, by defining

// the symbol CHECK_64_INTEGER_OVERFLOW.

//#define CHECK_64_INTEGER_OVERFLOW

//////////////////////////////////////////////////////////

//

// PARAMETERS CONTROLLING THE DISPLAY OF THE PROOF

//

//////////////////////////////////////////////////////////

//

// A full proof of unsatisfiability includes the initial

// simplex tableau. That tableau is bulky, and is easy to

// construct from the SAT problem, and so it not very

// interesting. If you want to see the initial simplex

// tableau, define SHOW_INITIAL_TABLEAU.

//#define SHOW_INITIAL_TABLEAU

// A full proof includes the derivations of each cut

// used in the proof. These derivations are bulky, and

// are usually not interesting. However, either those

// derivations (or equivalent information) are needed to

// check a proof. If you want to see the detailed cut

// derivations, define SHOW_CUT_DERIVATIONS.

//#define SHOW_CUT_DERIVATIONS



APPENDIX A. CUTSAT PROGRAM CODE 226

// Alternatively, it is possible to verify that each

// asserted cut is in fact a cut by reproducing the simplex

// tableau representing the basic solution from which the cut

// is derived, and then deriving the cuts from that tableau.

// Hence, we may allow the proof to be checked by enabling the

// proof-checker to reproduce the basic solutions.

// The most consise way to do this is to identify the vector

// of non-basic variables.

#define SHOW_NONBASIC_VARIABLES

// To check that the asserted cut derivations are correct,

// it may be desired to inspect the simplex tableau from which

// each cut is derived. The tableaus are very large, and there

// are as many of them as there are cuts, so this option

// outputs an enormous number of lines. If you want to see

// all of the simplex tableaus, define SHOW_EVERY_TABLEAU.

//#define SHOW_EVERY_TABLEAU

//////////////////////////////////////////////////////////

//

//

//

//////////////////////////////////////////////////////////

//

// CuttingAlgorithm::operator() performs a search for

// cut-improving pivots, starting from the current

// optimal solution, at each iteration.

//

// The primalCutImproving() method simulates a Markov

// process that uses pivot steps that give stronger cuts.

// The method searches for a basic solution that gives

// a local-maximum of cut measure, as measured by the

// CutMeasure class.

//

// Multiple calls to primalCutImproving() from the

// same starting tableau may find different local optimum

// basic solutions, because the randomized choices in

// primalCutImproving may take different paths.

//

// If CUT_IMPROVEMENT_RESTARTS is defined, the

// primalCutImproving() algorithm is restarted from the

// optimal tableau a number of times controlled by the value.

//

//#define CUT_IMPROVEMENT_RESTARTS 3

//////////////////////////////////////////////////////////

//



APPENDIX A. CUTSAT PROGRAM CODE 227

// The randomized algorithm to search for cut-improving

// pivots takes a sample of the cuts from each resulting

// feasible tableau. CUT_SAMPLE_SIZE controls the sample

// size. CUT_SAMPLE_SIZE cutting planes are measured

// for each adjacent feasible vertex of the polytope.

//

// Values may be defined in terms of the variables

// ’rows’, ’cols’, ’tabMeasure’.

// For full (derandomized) search, use ’rows’.

//

// for rsat, msat problems:

#define CUT_SAMPLE_SIZE 25

// for nsat problems:

//#define CUT_SAMPLE_SIZE (1500/cols)

// for dimacs problems:

//#define CUT_SAMPLE_SIZE 15

//////////////////////////////////////////////////////////

//

// CUT_RESAMPLE_COUNT controls re-sampling.

// To protect against too-small values of CUT_SAMPLE_SIZE,

// the cut-improving algorithm may be configured to draw

// as many as 1+CUT_SAMPLE_COUNT independent samples.

//

// This doesn’t seem to help if the sample size is

// at all adequate.

//

//#define CUT_RESAMPLE_COUNT 0

//////////////////////////////////////////////////////////

//

// The objective function maximizes the slacks of prior

// cuts. Using only cuts of optimal vertices has the

// effect of choosing cuts having minimal overlap with

// prior cuts. It may be helpful to limit the search

// to only those vertices. To use only objective-maximal

// vertices, define USE_ONLY_MAXIMAL_PIVOTS

//

//#define USE_ONLY_MAXIMAL_PIVOTS

//////////////////////////////////////////////////////////

//

// CuttingAlgorithm::ApplyCuts adds cuts to the tableau.



APPENDIX A. CUTSAT PROGRAM CODE 228

// Large cuts don’t eliminate much volume from the

// remaining feasible polytope. If DONT_USE_LARGE_CUTS

// is defined, and the best available cut is large/weak,

// ApplyCuts does not add the large cut to the tableau.

//

// The decision is randomized. There is nonzero

// probability that each cut will be used. That assures

// eventual termination even when all available cuts

// are large.

//

// In any case, the objective function modified by the

// cut. That allows the next LP solution to find a

// different optimal vertex, so the next cut-improving

// search can find a different cutting plane.

//

#define AVOID_USING_LARGE_CUTS

//////////////////////////////////////////////////////////

//

// CutMeasure provides comparison operators (>, <, ==, >=, <=)

// that implement the induced partial order on cutting planes.

// The comparison operators use the value() of the CutMeasure,

// which is a floating-point number approximately representing

// the abstract measure.

//

// An assortment of geometric measures, including the distance,

// strength (i.e. fraction of diagonol), and power (i.e. volume)

// of the cutting plane are provided. The selection of

// which to use is done by editing the value() function.

//

// To choose the value() of a cut, define CUT_VALUE_FUNCTION.

// The definition may use the private methods and data members

// of CutMeasure.

//

// #define CUT_VALUE_FUNCTION distance()

// #define CUT_VALUE_FUNCTION diagonolDistance()

// #define CUT_VALUE_FUNCTION strength()

// #define CUT_VALUE_FUNCTION power()

//#define CUT_VALUE_FUNCTION logPower()

//#define CUT_VALUE_FUNCTION (distance() / (count * count * count))

//

#define CUT_VALUE_FUNCTION (log2(strength()*count) - count)

//////////////////////////////////////////////////////////

//

// To limit the amount of time spent on any one problem

// during testing runs, define MAX_RUNNING_TIME in seconds.



APPENDIX A. CUTSAT PROGRAM CODE 229

//

#define MAX_RUNNING_TIME 3600

#endif // def PARAMETERS_H_INCLUDED

A.2 Pseudo-Random Generator

The pseudo-random generators provided in the CodeWarrior development system

were found to be defective. A good quality pseudo-random generator function was

used instead (Carter Jr., 1994; Kirkpatrick & Stoll, 1981). A little function is provided

to initialize and call the R250 generator.

A.2.1 random.cc

#include "r250.hpp"

#include "random.h"

// A usable pseudo random generator

long random()

{

static R250* gener = 0;

if (gener == 0)

{

// Allocate a new generator, seed it,

// and warm it up.

long t = time(0);

gener = new R250(abs(t));

for (int i = 1; i < 1747; i++) gener->rani();

}

return (unsigned int) gener->rani();

}

// A usable pseudo-random bit generator

long randomBit()

{

static long r = 0;



APPENDIX A. CUTSAT PROGRAM CODE 230

static long b = 0;

if (b == 0)

{

b = 1;

r = random();

}

else

{

b = b << 1;

}

return ((r & b) == 0);

}

A.3 CNF Term Structure

The internal representation of a CNF Term is used only to read the problem from

the DIMACS format input file.

A.3.1 CnfTerm.h

#ifndef CNFTERM_INCLUDED

#define CNFTERM_INCLUDED

#include <ctype.h>

#include <vector>

#include <iostream>

// This SAT solver is specialized to CNF propositions.

// General propositions would require a different set of

// classes to reflect the different term structure.

//

// Literals are coded per DIMACS format.

// The absolute value of a literal is the subscript of

// the variable. The sign of the literal is

// negative iff the literal is negated.

// Variable number 0 is not used.

// operator() tests values[abs(variable)]

class Literal

{

public:

Literal();

Literal( int i);



APPENDIX A. CUTSAT PROGRAM CODE 231

int variable;

bool operator()(vector<bool>& values);

};

// A clause is a vector of Literals

class Clause : public vector<Literal>

{

public:

Clause() : vector<Literal>() {}

bool operator()(vector<bool>& values);

};

// Read DIMACS format of a clause

istream& operator>>(istream& is, Clause& clause);

// A CNF term is a vector of Clauses

class CnfTerm : public vector<Clause>

{

public:

CnfTerm() : vector<Clause>()

{variables = clauses = 0;}

int variables; // number of variables

int clauses; // number of clauses

bool operator()(vector<bool>& values);

double fitness(vector<bool>& values);

};

// Read DIMACS format of a CNF problem.

istream& operator>>(istream& is, CnfTerm& cnf);

#endif // CNFTERM_INCLUDED

A.3.2 CnfTerm.cc

#include <iterator>

#include "CnfTerm.h"

Literal::Literal()

{

variable = 0;

}

Literal::Literal(int i)



APPENDIX A. CUTSAT PROGRAM CODE 232

{

variable = i;

}

bool

Literal::operator()(vector<bool>& values)

{

if (variable > 0)

return values[ variable ];

else

return ! values[ -variable ];

}

bool

Clause::operator()(vector<bool>& values)

{

for (iterator i = begin(); i!=end(); ++i)

{

if ( (*i)(values) ) return true;

}

return false;

}

istream&

operator>>(istream& is, Clause& clause)

{

int i;

while ( 1 )

{

is >> i;

if (!is.good()) break;

else if (i == 0) break;

else clause.push_back(Literal(i));

}

return is;

}

bool

CnfTerm::operator()(vector<bool>& values)

{

for (iterator i = begin(); i!=end(); ++i)

{

if ( ! (*i)(values) ) return false;

}

return true;

}

istream&

operator>>(istream& is, CnfTerm& cnf)

{

while (1)



APPENDIX A. CUTSAT PROGRAM CODE 233

{

char c;

is >> c;

if ( !is.good() )

{

break;

}

else if (c == ’p’)

{

// "Problem" line

string format;

is >> format >> cnf.variables >> cnf.clauses;

break;

}

else if ( c == ’c’ )

{

// "Comment" line

string line;

getline(is, line);

continue;

}

else

{

// Ignore debug/trace output of problem generator

string line;

getline(is, line);

continue;

}

}

for (int clauses = 1; clauses <= cnf.clauses; ++clauses)

{

Clause clause;

is >> clause;

cnf.push_back(clause);

}

return is;

}

A.4 Number Types

The CutSat program uses either arbitrary precision integers or fixed precision integers,

according to the definition of type Integer.



APPENDIX A. CUTSAT PROGRAM CODE 234

A.4.1 Integer.h

#ifndef Integer_h

#define Integer_h

#include <stdlib.h>

#include <iostream.h>

#include "Parameters.h"

/////////////////////////////////////////////////////////

#ifdef USE_EXACT_INTEGER_ARITHMETIC

/////////////////////////////////////////////////////////

// Use Victor Shoup’s integer arithmetic package

#define NTL_LONG_LONG long long

#include "NTL/ZZ.h"

#define Integer ZZ

// Define some Integer constants

const Integer MINUSONE = ZZ(INIT_VAL, -1);

const Integer ZERO = ZZ(INIT_VAL, 0);

const Integer ONE = ZZ(INIT_VAL, 1);

const Integer TWO = ZZ(INIT_VAL, 2);

/////////////////////////////////////////////////////////

#else // NOT #ifdef USE_EXACT_INTEGER_ARITHMETIC

/////////////////////////////////////////////////////////

#include <cmath>

//#define CHECK_64_INTEGER_OVERFLOW

#define Integer long long

#define to_Integer (long long)

// Define some Integer constants

const Integer MINUSONE = -1;

const Integer ZERO = 0;

const Integer ONE = 1;

const Integer TWO = 2;

#define IsZero(x) (x == 0)

#define sign(x) (x)

Integer GCD(const Integer& a, const Integer& b);

inline double to_double(Integer x) {return x;}

/////////////////////////////////////////////////////////

#endif // #ifdef USE_EXACT_INTEGER_ARITHMETIC



APPENDIX A. CUTSAT PROGRAM CODE 235

/////////////////////////////////////////////////////////

// In both cases,

#define NonZero(x) (! IsZero(x))

// In both cases, mod() is the same.

inline Integer mod(const Integer& x, const Integer& y)

{

Integer r = (x % y);

if (r >= 0) return r;

else return (r+y);

}

inline int mod(const int& x, const int& y)

{

int r = (x % y);

if (r >= 0) return r;

else return (r+y);

}

// In both cases, lg() is the same.

const Integer TWO16 = (ONE<<16);

const Integer TWO8 = (ONE<<8);

const Integer TWO4 = (ONE<<4);

const Integer TWO2 = (ONE<<2);

const Integer TWO1 = (ONE<<1);

inline size_t

lg(const Integer& x)

{

Integer xa = abs(x);

size_t lx = 0;

while (xa >= TWO16) {lx += 16; xa = xa >> 16;}

if (xa >= TWO8) {lx += 8; xa = xa >> 8;}

if (xa >= TWO4) {lx += 4; xa = xa >> 4;}

if (xa >= TWO2) {lx += 2; xa = xa >> 2;}

if (xa >= TWO1) {lx += 1; xa = xa >> 1;}

return lx;

}

// A routine to help check for overflow when

// we are using finite precision arithmetic.

inline Integer

multiply_and_check_overflow(const Integer& x, const Integer& y)

{

// if (IsZero(x) || IsZero(y)) return ZERO;

#ifdef CHECK_64_INTEGER_OVERFLOW

if (lg(x) + lg(y) > 62)

cout << "POSSIBLE 64 BIT OVERFLOW" << endl;

#endif

return (x * y);



APPENDIX A. CUTSAT PROGRAM CODE 236

}

#endif // #ifndef Integer_h

A.4.2 Integer.cc

#include "Integer.h"

#ifdef USE_EXACT_INTEGER_ARITHMETIC

#else // not #ifdef USE_EXACT_INTEGER_ARITHMETIC

// Use native arithmetic

#include <cmath>

#include "Integer.h"

// This cannot be inline, because it is recursive.

// Recursive inline functions cause some compilers to fail.

Integer GCD(const Integer& a, const Integer& b)

{

if (a < 0) return GCD(-a, b);

else if (b < 0) return GCD(a, -b);

if (IsZero(b)) return a;

else return GCD(b, mod(a,b) );

}

#endif // #ifdef USE_EXACT_INTEGER_ARITHMETIC

A.4.3 Quotient.h

#ifndef Quotient_h

#define Quotient_h

#include "Integer.h"

#include "ostream.h"

class Quotient

{

public:

Quotient()

{num = ZERO; den = ONE;}

Quotient(Integer n, Integer d)



APPENDIX A. CUTSAT PROGRAM CODE 237

{

if (sign(d) < 0) {num = -n; den = -d;}

else {num = n; den = d;}

}

double asDouble() const; // returns value in [0,1]

inline Quotient& operator=(const Quotient& a)

{num = a.num; den = a.den;

return *this;}

inline operator==(const Quotient& a) const

{return ((num*a.den) == (a.num*den));}

inline operator>(const Quotient& a) const

{return ((num*a.den) > (a.num*den));}

inline operator>=(const Quotient& a) const

{return ((num*a.den) >= (a.num*den));}

inline operator<(const Quotient& a) const

{return ((num*a.den) < (a.num*den));}

inline operator<=(const Quotient& a) const

{return ((num*a.den) <= (a.num*den));}

Integer num;

Integer den;

};

ostream& operator<<(ostream& os, const Quotient q);

// Define some Rational constants

const Quotient ONEHALF = Quotient(ONE, TWO);

#endif

A.4.4 Quotient.cc

#include "Quotient.h"

ostream& operator<<(ostream& os, const Quotient q)

{ return (os << q.num << ’/’ << q.den);}

double

Quotient::asDouble() const



APPENDIX A. CUTSAT PROGRAM CODE 238

{

return (to_double(num) / to_double(den));

}

A.5 Cutting Plane Measure

The CutSat program uses class CutMeasure and class TableauMeasure to induce a

partial order of cutting planes. The greatest cutting planes, according to the definition

of this order, are used in the proofs.

A.5.1 CutMeasure.h

//

// Copyright (c) 2000 Stephen Lee Hansen

//

#ifndef CutMeasure_h

#define CutMeasure_h

#include <limits.h>

#include <vector>

#include <set>

#include "Integer.h"

#include "Quotient.h"

#include "Parameters.h"

//

// A Measure on a set is a an additive monotonic set function.

// An Outer Measure o a set is a sub-additive monotonic set

// function \cite(Doob1993, Halmos1950). Either defines a

// partial order of the subsets of a set.

//

// Mathematically, a CutMeasure is a subadditive partial ordering

// of the subsets of a hypercube, where the subsets are defined by

// cutting plane inequalities. The sub-additive property is

// a generalization (to higher dimensions) of the familiar

// geometric triangle inequality.

//

// CutMeasure provides comparison operators (>, <, ==, >=, <=)

// that implement the induced partial order on cutting planes.

// The comparison operators use the value() of the CutMeasure,

// which is a floating-point number approximately representing

// the abstract measure.



APPENDIX A. CUTSAT PROGRAM CODE 239

//

// An assortment of geometric measures, including the distance,

// the strength (fraction of diagonol), and the power (volume)

// of the cutting plane are provided. The selection of

// which to use is done by editing the value() function.

// Several variants of CutMeasure all are based on geometric

// measures such as distance and volume. This makes it very

// easy to see that the various measures are indeed (approximate)

// outer measures.

//

//

class CutMeasure

{

public:

CutMeasure()

: num(ZERO), den(ONE), sum(ZERO),

count(1), cols(0), _value(-1)

{}

CutMeasure(vector<Integer>& cut)

: num(cut[0]*cut[0]), den(ZERO), sum(ZERO),

count(0), cols(cut.size()-1), _value(-1)

{

for (int col = 1; col < cut.size(); col++)

{

if (cut[col] < ZERO)

{

sum += cut[col];

den += cut[col]*cut[col];

count++;

}

}

}

CutMeasure(const CutMeasure& a)

: num(a.num), den(a.den), sum(a.sum),

count(a.count), cols(a.cols), _value(-1)

{}

inline CutMeasure& operator=(const CutMeasure& a)

{

num = a.num;

den = a.den;

count = a.count;

cols = a.cols;

sum = a.sum;

_value = a._value;

return *this;

}



APPENDIX A. CUTSAT PROGRAM CODE 240

// The public interface of a measure is the ordering,

// which is encapsulated as comparison operators.

// The numerical value of any measure is unimportant.

// The important part is that the measure can be used

// to compare two objects.

//

// Which cut is better or more valuable ?

// Operator > compares the values of two cuts.

inline operator>(const CutMeasure& a) const

{return (value() > a.value());}

inline operator>=(const CutMeasure& a) const

{return ( !(a > *this) );}

inline operator<(const CutMeasure& a) const

{return (a > *this);}

inline operator<=(const CutMeasure& a) const

{return (! (*this > a));}

inline operator==(const CutMeasure& a) const

{return ( !(*this > a) && !(a > *this) );}

inline operator!=(const CutMeasure& a) const

{return (! (*this == a));}

// Predicates to answer questions about the cut.

// If a tableau contains no fractional basic variables,

// the best cut has (num == ZERO). We can use this to

// test for integer-valued solutions.

inline bool isIntegral()

{

return IsZero(num);

}

// If a tableau has fractional basic variables, but no

// fractional coeficients in one of those rows, then

// we have a refutation.

inline bool isRefutation()

{

return (NonZero(num) && IsZero(den));

}

//private:

// Internally, the ordering of the measure depends on a

// choice of geometric measures. These are private.

// The only purpose of these geometric measures is to



APPENDIX A. CUTSAT PROGRAM CODE 241

// be used by the comparison operators.

//

// For ease of modification, we provide methods

// to compute various geometric measures of the cut.

// Distance from origin to the cutting plane.

inline double distance() const

{

return sqrt(to_double(num) / to_double(den));

}

// Distance, as a fraction of the diagonol.

inline double strength() const

{

return sqrt(to_double(num) /

(to_double(den) * count));

}

// Power of the cut, computed by interpolation

// of fraction of the points in the hypercube that are

// eliminated by the cut.

double power() const;

// Unfortunately, the power function overflows very easily

// and is expensive to compute. So we want some other

// function that induces approximately the same partial ordering

// that is induced by the power function.

double logPower() const;

// Cosine of angle between the vector orthogonol to the

// cutting plane and the vector that is the diagonol

// of the hypercube. (Ref. e.g. (Shilov1971, )

inline double cos() const

{

return ( - to_double(sum) / (sqrt(to_double(den) * count)));

}

// Sin of the same angle

inline double sin() const

{

// sin() == sqrt(1 - cos()*cos())

// The following just avoids an extra sqrt() call.

double s = to_double(sum);

return sqrt(1.0 - (s*s)/(to_double(den) * count));

}

// Distance from the origin to intersection of the

// cutting plane with the diagonol of the hypercube.

inline double diagonolDistance() const

{

// diagonolDistance = distance() / sin()



APPENDIX A. CUTSAT PROGRAM CODE 242

// The following just avoids the extra sqrt() call.

double d2 = to_double(num) / to_double(den);

// d2 == square of distance()

double s = to_double(sum);

double s2 = 1.0 - (s*s)/(to_double(den) * count);

// s2 == square of sin()

return sqrt(d2 / s2);

}

// The measure of a cut depends on a choice of

// definitions. There are several reasonable

// ways to define the ordering, based on the various

// geometric measures.

//

// For this "test-bed" program, we make it easy

// to modify. To modify, just choose one value calculation

// or define a new one, un-comment the chosen definition,

// and comment-out the others.

inline double value() const

{

if (_value == -1)

{

// cast-away const-ness, so we can cache the value.

CutMeasure* self = (CutMeasure*)this;

// compute the value, using the parameterized

// choice of function.

self->_value = CUT_VALUE_FUNCTION;

}

return _value;

}

//private:

// Direct observations from the cut inequality

Integer num; // square of constant (column 0)

Integer den; // sum of squares of negative coeficients

Integer sum; // sum of coeficients

int count; // count of negative coeficients

int cols; // count of columns (nonbasic vars)

// Computed value is cached to avoid repeated computation.

double _value;

// Allow relatives to access the variables

friend class TableauMeasure;

friend ostream& operator<<(ostream& os, const CutMeasure q);

};

ostream& operator<<(ostream& os, const CutMeasure q);



APPENDIX A. CUTSAT PROGRAM CODE 243

class TableauMeasure

{

public:

TableauMeasure()

: cuts(0), best(), cutRows(0),

sumCounts(0), ties(0),

denominator(), objective()

{}

inline TableauMeasure& operator=(const TableauMeasure& a)

{

cutRows = a.cutRows;

best = a.best;

sumCounts = a.sumCounts;

cuts = a.cuts;

ties = a.ties;

denominator = a.denominator;

objective = a.objective;

return *this;

}

inline void

measureCut(vector<Integer>& cut)

{

// Measure the cut, and keep the strongest measurement

CutMeasure cutMeasure = CutMeasure(cut);

if (cuts == 0)

{

best = cutMeasure;

ties = 1;

}

else if (cutMeasure > best)

{

best = cutMeasure;

ties = 1;

}

else if (cutMeasure == best)

{

ties++;

}

cuts++;

sumCounts += cutMeasure.count;

}

// Which tableau has the best cut?

// (Alternatively: Which vertex of the polytope

// has the best cutting plane?)

// From the perspective of the entire tableau,



APPENDIX A. CUTSAT PROGRAM CODE 244

// the decision may consider not only the cut but

// also other attributes of the tableau.

// The decision is encapsulated in the comparison

// operators of TableauMeasure.

inline operator>(const TableauMeasure& a) const

{

return (

// Keep the strongest cut

((best > a.best)

||

((best == a.best)

&&

// break ties by choosing: smallest denominator

((denominator < a.denominator)

||

((denominator == a.denominator)

&&

// break ties by choosing: fewest fractional coeficients

(((sumCounts/cuts) < (a.sumCounts/a.cuts))

||

(((sumCounts/cuts) == (a.sumCounts /a.cuts))

&&

// break ties by choosing: greatest objective

((objective > a.objective)

||

((objective == a.objective)

&&

false)))))))));

}

inline operator>=(const TableauMeasure& a) const

{return ( !(a > *this) );}

inline operator<(const TableauMeasure& a) const

{return (a > *this);}

inline operator<=(const TableauMeasure& a) const

{return ( !(*this > a) );}

inline operator==(const TableauMeasure& a) const

{return ( !(*this > a) && !(a > *this) );}

inline operator!=(const TableauMeasure& a) const

{return ( !(*this == a) );}

//protected:

int firstCut; // initialization flag

CutMeasure best; // greatest cut in the tableau



APPENDIX A. CUTSAT PROGRAM CODE 245

// Cumulative Observations from all cuts

double cuts; // count of cuts

double sumCounts; // count of nonzero coeficients in all cuts

double ties; // count of cuts tied for best

// Observations from the tableau

int cols; // count of columns in the tableau

double cutRows; // count of cut rows in the tableau

double integralRows; // count of non-cut rows in the tableu

Integer denominator; // denominator of the tableau

Quotient objective; // objective value of the tableau

};

ostream& operator<<(ostream& os, const TableauMeasure q);

#endif

A.5.2 CutMeasure.cc

/*

* 2000 Stephen Hansen

*/

#include "ostream.h"

#include "CutMeasure.h"

#include "Integer.h"

#include <iomanip>

ostream& operator<<(ostream& os, const CutMeasure q)

{

// os << exp2(q.value()) << "(";

os << q.value() << "(";

os << q.num << ’/’ << q.den << "," << q.count ;

os << ")" ;

return os;

}

ostream& operator<<(ostream& os, const TableauMeasure q)

{

os << q.best << " (" << q.ties << " of " << q.cuts << " cuts)";

if (q.denominator != ZERO)

os << " den=" << q.denominator;

return os;



APPENDIX A. CUTSAT PROGRAM CODE 246

}

#include <iostream.h>

#include <vector.h>

#include <math.h>

long double binom( long n, long k);

long double cumBinom( long n, long k);

long double pow2(long n);

long double cutPower(long n, double strength);

// Binomial (cached)

long double binom( long n, long k)

{

static vector< vector< long double > > values;

static vector<long double> row;

if ((k == 0) || (k == n)) return 1;

if ((k < 0) || (k > n)) return 0;

for (long i = values.size(); i <= n; i++)

{

while (row.size() <= i+1) row.push_back(0);

values.push_back(row);

}

if (values[n][k] == 0)

{

values[n][k] = binom(n-1, k-1) + binom(n-1, k);

}

return values[n][k];

}

// Cumulative Binomial (cached)

long double cumBinom( long n, long k)

{

static vector< vector< long double > > values;

static vector<long double> row;

if (k == 0) return 1;

if (k < 0) return 0;

if (k > n) k = n;

for (long i = values.size(); i <= n; i++)

{

while (row.size() <= i+1) row.push_back(0);

values.push_back(row);

}

if (values[n][k] == 0)

{

values[n][k] = cumBinom(n-1, k-1) + cumBinom(n-1, k);



APPENDIX A. CUTSAT PROGRAM CODE 247

}

return values[n][k];

}

// Powers of 2 (cached)

long double pow2(long n)

{

static vector<long double> values;

for (long i = values.size(); i <= n; i++)

{

if (i == 0) values.push_back(1.0);

else values.push_back(2.0 * values[i-1]);

}

return values[n];

}

// Compute the volume of a hypercube that is cut off by

// of a cut of given strength. We approximate the

// volume by assuming that the cut is orthogonol to the

// diagonol of the hypercube. The assumption allows an

// efficient calculation.

double CutMeasure::power() const

{

// How many variables need to be true?

double s = strength() * count;

// How many ways can that number of variables

// be true? (This uses linear interpolation to

// allow for fractional numbers of variables.)

long sup = ceil(s);

long inf = floor(s);

double f = (s - inf);

double ip = cumBinom(count, inf)

+ (f * (binom(count, sup) + binom(count, inf)) / 2);

// divide by the power of 2

return (ip / pow2(count));

}

// Same as above, but use logarithms to avoid using

// the pow2 function.

double CutMeasure::logPower() const

{

// How many variables need to be true?

double s = strength() * count;

// Compute the volume of the cut, assuming

// that it is orthogonol to the diagonol.

double sup = ceil(s);



APPENDIX A. CUTSAT PROGRAM CODE 248

double inf = floor(s);

double f = (s - inf);

double ip = cumBinom(count, inf)

+ (f * (binom(count, sup) + binom(count, inf)) / 2);

// return log_{2}(ip/2^{count)}

return (log2(ip) - count);

}

A.6 The Integer Simplex Tableau

The IntegerSimplex class, and related minor classes, define the data structures and

methods implementing various linear programming algorithms, and some cutting

plane algorithms that are closely related to those linear programming algorithms.

A.6.1 Simplex.h

#ifndef SIMPLEX_H_INCLUDED

#define SIMPLEX_H_INCLUDED

#include <vector.h>

#include "Integer.h"

#include "Quotient.h"

#include "CutMeasure.h"

// Define LP Status

typedef enum

{

CONTINUE = 0,

OPTIMAL = 1,

UNBOUNDED = 2,

FEASIBLE = 3,

INFEASIBLE = 4

} LPStatus;

// A class for the name of a variable

class Variable

{

public:

Variable(const string n, const int s) : name(n)

{ subscript = s; }



APPENDIX A. CUTSAT PROGRAM CODE 249

Variable(const char* n, const int s) : name(n)

{ subscript = s; }

Variable(const Variable& v): name(v.name)

{ subscript = v.subscript; }

Variable()

{ name = "x"; subscript = 0; }

string name;

int subscript;

bool isSlack()

{ return (name == "s"); }

inline operator==(const Variable& v)

{return (subscript == v.subscript && name == v.name);}

};

ostream& operator<<(ostream& os, const Variable& s);

// Define a tableau data structure for the simplex method,

// with utilities, simplex methods, and some variants.

class IntegerSimplex

{

public:

// Constructors

IntegerSimplex(int columns);

IntegerSimplex(const IntegerSimplex& tableau);

~IntegerSimplex();

// Methods for setting the problem into the tableau,

void setObjective(const vector<Integer>& obj);

bool addConstraint(const vector<Integer>& constraint);

// and for removing redundant constraints,

void eraseConstraint(int index);

// Simplex algorithms

LPStatus primalDualSimplex();

LPStatus dualSimplex();

LPStatus primalSimplex();

// The pivot operation

void pivot(int row, int column);



APPENDIX A. CUTSAT PROGRAM CODE 250

// Variant methods for SAT problems

// (These could be defined in a sub-class)

LPStatus primalDualCutLifting();

LPStatus denominatorReduction();

// Methods to measure and improve cutting planes

TableauMeasure primalCutImproving();

TableauMeasure measureCuts();

// Look to see if the current solution is fractional

bool isFractionalSolution();

// Methods for reading the results out of the tableau.

LPStatus readPrimalSolution(Integer& objective,

vector<Integer>& primalVariables,

vector<Integer>& primalSlacks,

Integer& denominator);

LPStatus readDualSolution(Integer& objective,

vector<Integer>& dualVariables,

vector<Integer>& dualSlacks,

Integer& denominator);

// Methods to print rows with variable names

void printObjective(ostream& os) const;

void printEquality(ostream& os, int row) const;

void printInequality(ostream& os, int row) const;

// Method to print the vector of nonbasic variables

void printNonbasicVariables(ostream& os) const;

protected:

//public: // could be protected/private, but public for rapid development

// Submethods for simplex algorithms

LPStatus findFeasibleSolution();

int chooseDualPivotColumn(int &row);

LPStatus chooseDualPivot(int& row, int& column);

int choosePrimalPivotRow(int &column);

LPStatus choosePrimalPivot(int& row, int& column);

// Method for selecting pivots that give small denominator.

LPStatus chooseDenominatorReducingPivot(int &pivot_row, int &pivot_col);

int chooseDenominatorReducingPivotRow(int col);

int chooseDenominatorReducingPivotCol(int col);

// Methods for selecting pivots that give strong cuts.

TableauMeasure measureCutsAfterPivot(int row, int col, int sampleSize);

TableauMeasure choosePrimalCutImprovingPivot(int &pivot_row, int &pivot_col,

TableauMeasure init_strength);



APPENDIX A. CUTSAT PROGRAM CODE 251

int choosePrimalCutImprovingPivotRow(const int col,

TableauMeasure& strength);

// The artificial objectives (with random purturbations)

// for tie-breaking during pivot-selection (to avoid cycling)

vector<Integer> rowZero;

void initializePrimalRandomness();

void dropPrimalRandomness();

vector<Integer> colZero;

void initializeDualRandomness();

void dropDualRandomness();

public:

// The tableau structure

int rows; // size of the tableau

int cols; //

Integer denominator; // The common denominator

vector<vector<Integer> > mat; // The matrix of numerators

vector<Variable> basic_vars; // primal basis variables

vector<Variable> nonbasic_vars; // dual basis variables

// Miscelaneous data

LPStatus status; //

int nextVar; // Next slack variable number

vector<Integer> originalObjective;

int pivotCounter; // How many pivots were used?

};

ostream& operator<<(ostream& os, const LPStatus& s);

ostream& operator<<(ostream& os, const IntegerSimplex& v);

// Operators that are useful for vectors, but are

// not defined by STL vector class:

template<class T>

ostream& operator<<(ostream& os, const vector<T>& v)

{

for (vector<T>::const_iterator i = v.begin(); i != v.end(); i++)

{

os << *i << "\t";

}

return os;

}

// Sum of two vectors

template <class T>



APPENDIX A. CUTSAT PROGRAM CODE 252

vector<T> operator+(const vector<T> &A,

const vector<T> &B)

{

int N = A.size();

assert(N==B.size());

vector<T> tmp(N);

int i;

for (i=0; i<N; i++)

tmp[i] = A[i] + B[i];

return tmp;

}

// Difference of two vectors

template <class T>

vector<T> operator-(const vector<T> &A,

const vector<T> &B)

{

int N = A.size();

assert(N==B.size());

vector<T> tmp(N);

int i;

for (i=0; i<N; i++)

tmp[i] = A[i] - B[i];

return tmp;

}

// Multiplication (dot-product) of two vectors

template <class T>

vector<T> operator*(const vector<T> &A,

const vector<T> &B)

{

int N = A.size();

assert(N==B.size());

vector<T> tmp(N);

int i;

for (i=0; i<N; i++)

tmp[i] = A[i] * B[i];

return tmp;

}

// Scalar multiplication

template <class T>

vector<T> operator*(const T &A, const vector<T> &B)



APPENDIX A. CUTSAT PROGRAM CODE 253

{

int N = A.size();

assert(N==B.size());

vector<T> tmp(N);

int i;

for (i=0; i<N; i++)

tmp[i] = A * B[i];

return tmp;

}

// Scalar multiplication

template <class T>

vector<T> operator*(const vector<T> &B, const T &A)

{

return operator*(A, B);

}

#endif /* ifndef SIMPLEX_H_INCLUDED */

A.6.2 Simplex.cc

//

// The IntegerSimplex class implements an "integer only"

// primal-dual simplex algorithm, per (Gomory 1963).

//

// An perturbed objective row (column) with random

// perturbations is used to avoid degenerate cycling.

// Any remaining ties are broken randomly.

//

// Calculations are performed using variables of class

// "Integer". Integer objects are assumed to implement

// integer arithmetic operations with precision appropriate

// for the problem.

//

// Copyright (c) 2000 Stephen Lee Hansen

//

#include <vector>

#include <list>

#include <strstream>

#include <string>

#include <stdlib.h>

#include <assert.h>

#include "Parameters.h"

#include "Integer.h"



APPENDIX A. CUTSAT PROGRAM CODE 254

#include "Simplex.h"

#include "random.h"

extern void keepMacHappy();

IntegerSimplex::IntegerSimplex(int columns)

: mat(), denominator(ONE),

originalObjective(1+columns, ZERO),

basic_vars(),

nonbasic_vars(1+columns),

rows(0),

cols(columns),

rowZero(),

colZero()

{

// provide an empty row for the objective function

vector<Integer> objective = vector<Integer>(1+columns, ZERO);

mat.push_back(objective);

basic_vars.push_back(Variable("x",0));

// assign names to the primal nonbasic (dual basic) variables

nextVar = 1;

for (int j = 1; j<= cols; j++)

{

nonbasic_vars[j] = Variable("x", nextVar++);

}

// Initialize number of first slack variable

nextVar = 1;

}

// Copy constructor

IntegerSimplex::IntegerSimplex(const IntegerSimplex& st)

: mat(st.mat), denominator(st.denominator),

basic_vars(st.basic_vars),

nonbasic_vars(st.nonbasic_vars),

originalObjective(st.originalObjective),

rows(st.rows),

cols(st.cols),

nextVar(st.nextVar),

status(st.status),

rowZero(st.rowZero),

colZero(st.colZero)

{}

// Destructor -- just need to invoke instance-variable

// destructors. (Some compilers do not invoke them for

// classes that do not have explicit destructors.)

IntegerSimplex::~IntegerSimplex()

{}

bool



APPENDIX A. CUTSAT PROGRAM CODE 255

IntegerSimplex::addConstraint(const vector<Integer>& constraint)

{

assert(constraint.size() == 1+cols);

assert(mat.size() == 1+rows);

assert(basic_vars.size() == 1+rows);

// Do not add duplicate constraints

for (int row = 1; row <= rows; row++)

if (constraint == mat[row])

return false;

// Add the new row to the matrix

rows++;

mat.push_back(constraint);

// and give it a slack (dual) (primal basis) variable

basic_vars.push_back(Variable("s",nextVar));

nextVar++;

return true;

}

void

IntegerSimplex::eraseConstraint(int row)

{

assert(row <= rows);

mat.erase(&mat[row]);

basic_vars.erase(&basic_vars[row]);

if (colZero.size() >= row) colZero.erase(&colZero[row]);

--rows;

}

void

IntegerSimplex::setObjective(const vector<Integer>& obj)

{

// objective coeficients are stored in mat[0]

// mat[0,0] is the objective value.

assert (obj.size() == 1+cols);

originalObjective = mat[0] = obj;

}

// Methods to manage the perturbation row and column.

void

IntegerSimplex::initializePrimalRandomness()

{

// Initialize elements of column zero for each row.

Integer randomness;

colZero = vector<Integer>(1+rows);

for (int row = 0; row <= rows; row++)

{



APPENDIX A. CUTSAT PROGRAM CODE 256

randomness = random() & 0xffffff;

colZero[row] = randomness * denominator;

}

}

void

IntegerSimplex::initializeDualRandomness()

{

Integer randomness;

rowZero = vector<Integer>(1+cols);

for (int col = 0; col <= cols; col++)

{

randomness = random() & 0xffffff;

rowZero[col] = randomness * denominator;

}

}

void

IntegerSimplex::dropPrimalRandomness()

{

colZero = vector<Integer>();

}

void

IntegerSimplex::dropDualRandomness()

{

rowZero = vector<Integer>();

}

// This shuffle() function is adapted from std::random_shuffle.

// The random number generator used by random_shuffle is

// really bad. This version uses a decent RNG.

template <class RandomAccessIterator>

inline void

shuffle(RandomAccessIterator first, RandomAccessIterator last)

{

if (first != last)

for (RandomAccessIterator i = first + 1; i != last; ++i)

{

long r = random() % ((i - first) + 1);

iter_swap(i, first + r);

}

}

//////////////////////////////////////////////////////////////

//

// PRIMAL-DUAL SIMPLEX METHOD

//

// This is actually a DUAL-PRIMAL method.

// We first find a feasible solution, then find



APPENDIX A. CUTSAT PROGRAM CODE 257

// an optimal feasible solution.

LPStatus

IntegerSimplex::primalDualSimplex()

{

findFeasibleSolution();

if (status == INFEASIBLE) return status;

primalSimplex();

return status;

}

// To find a feasible starting solution, we use a dual

// simplex method with a dummy objective row. The real

// objective row is carried along in mat[rows+1]

LPStatus

IntegerSimplex::findFeasibleSolution()

{

int j;

// Search for negative coeficients in the objective

Integer m = ZERO;

for (j = 0; j <= cols ; j++)

if (mat[0][j] < m) m = mat[0][j];

// If no negative coeficients, we can just

// use a dual simplex method.

if (m >= 0) return (dualSimplex());

// Otherwise, we must use a modified objective.

// Stash the real objective at the end.

int realRows = rows;

mat.push_back(mat[0]);

rows = realRows+1;

// Add an integer to each coeficient in the objective

// to obtain a non-negative objective row.

m = mod(m, denominator) - m;

for (j = 0; j <= cols ; j++)

mat[0][j] = mat[0][j] + m;

// Use dual pivots to find a feasible solution

initializeDualRandomness();

pivotCounter = 0;

while(true)

{

int leaving_col, entering_row;

// Choose a pivot among the real constraint rows,

// but carry the real objective through the pivots.



APPENDIX A. CUTSAT PROGRAM CODE 258

rows = realRows;

chooseDualPivot(entering_row, leaving_col);

rows = realRows+1;

if (status != CONTINUE) break;

// Otherwise, this is just like dualSimplex.

pivot(entering_row, leaving_col);

}

dropDualRandomness();

cout << pivotCounter << " dual pivots were used " << endl;

// restore the real objective function, as modified

// by the pivots.

rows = realRows;

mat[0] = mat[rows+1];

mat.erase(&mat[rows+1]);

// cout << "After pivots, the real objective row is:" << endl;

// cout << mat[0] << endl;

return status;

}

///////////////////////////////////////////////////////

//

// DUAL SIMPLEX METHODS

//

///////////////////////////////////////////////////////

//

// Choose the dual pivot that gives the greatest

// decrease in the objective function. This choice

// tends to require fewer pivots than the traditional

// steepest-descent method.

int

IntegerSimplex::chooseDualPivotColumn(int &row)

{

// Allow the GUI OS to get control occasionally

keepMacHappy();

// Choose the col with the smallest (absolute value) negative ratio

int best_col = -1; // Best column

Quotient best_M_q; // Major part of best quotient

Quotient best_u_q; // micro part of best quotient

for ( int j=1; j<=cols; j++ )

{

if (( sign(mat[row][j]) < 0) && (sign(mat[0][j]) >= 0))

{

// Compute (Major,micro) quotient for this column.

Quotient M_q = Quotient(mat[0][j],-mat[row][j]);



APPENDIX A. CUTSAT PROGRAM CODE 259

Quotient u_q = Quotient(rowZero[j],-mat[row][j]);

// Keep the column with smallest (Major,micro) quotient,

// And break ties randomly.

if ( (best_col == -1)

||

(M_q < best_M_q)

||

( (M_q == best_M_q)

&&

( (u_q < best_u_q)

||

( (u_q == best_u_q)

&&

randomBit()))))

{

best_M_q = M_q;

best_u_q = u_q;

best_col = j;

}

}

}

//cout << "chooseDualPivotCol, row=" << row <<" col=" << best_col

// << " q =" << q << endl;

return best_col;

}

LPStatus

IntegerSimplex::chooseDualPivot(int &pivot_row, int &pivot_col)

{

int row;

int col;

int best_row = -1;

int best_col = -1;

Quotient best_M_value;

Quotient best_u_value;

/* preset, no infeasible constraint rows remain */

status = FEASIBLE;

for (row=1; row<=rows; row++ )

{

if (sign(mat[row][0]) >= 0) continue;

// found an infeasible constraint. Now look for

// a pivot to eliminate that infeasibility.

col = chooseDualPivotColumn(row);

if (col == -1)

{



APPENDIX A. CUTSAT PROGRAM CODE 260

// no feasible pivot exists in an infeasible row

best_row = row;

status = INFEASIBLE;

// cout << "INFEASIBLE row:" << best_row << endl;

// cout << "INFEASIBLE row:" << mat[row] << endl;

// cout << " mat[0]:" << mat[0] << endl;

// cout << " denominator:" << denominator << endl;

break;

}

// Keep the pivot that gives the greatest objective decrease.

// And break ties randomly.

Quotient M_value = Quotient(-mat[0][col]*mat[row][0], mat[row][col]);

Quotient u_value = Quotient(-rowZero[col]*mat[row][0], mat[row][col]);

if ((best_row == -1)

||

(M_value < best_M_value)

||

( (M_value == best_M_value)

&&

( (u_value < best_u_value)

||

( (u_value == best_u_value)

&&

randomBit()))))

{

best_row = row;

best_col = col;

best_M_value = M_value;

best_u_value = u_value;

status = CONTINUE;

// cout << "The pivot position (" << best_row << "," << best_col << ")"

// << " has value " << best_M_value << endl;

}

}

pivot_row = best_row;

pivot_col = best_col;

return status;

}

LPStatus

IntegerSimplex::dualSimplex()

{

int row,col;

initializeDualRandomness();

pivotCounter = 0;



APPENDIX A. CUTSAT PROGRAM CODE 261

while (true)

{

chooseDualPivot( row, col);

if (status != CONTINUE) break;

pivot( row, col);

}

dropDualRandomness();

cout << pivotCounter << " dual pivots were used " << endl;

return status;

}

///////////////////////////////////////////////////////

//

// CUT LIFTING

//

///////////////////////////////////////////////////////

//

// The lifting algorithms do not care about the objective.

// value -- only whether or not it is less than zero.

// So we provide a specialized version that returns

// a decision of whether or not the optimal value is

// less than zero. This gives the lifting algorithm

// a speedup.

//

// Note that this is a DUAL-PRIMAL method.

//

LPStatus

IntegerSimplex::primalDualCutLifting()

{

findFeasibleSolution();

if (status == INFEASIBLE) return status;

if (sign(mat[0][0]) >= 0) return status;

// Then apply primal pivots until we obtain

// a non-negative value, or can determine that

// the optimal value is negative.

initializePrimalRandomness();

while (sign(mat[0][0]) < 0)

{

int row,col;

choosePrimalPivot( row, col);

if (status != CONTINUE) break;

pivot( row, col);

}

dropPrimalRandomness();

return status;

}



APPENDIX A. CUTSAT PROGRAM CODE 262

///////////////////////////////////////////////////////

//

// PRIMAL SIMPLEX METHODS

//

///////////////////////////////////////////////////////

// Choose the dual pivot that gives the greatest

// decrease in the objective function. This choice

// tends to require fewer pivots than the traditional

// steepest-descent method.

int

IntegerSimplex::choosePrimalPivotRow(int &col)

{

// Allow the GUI OS to get control occasionally

keepMacHappy();

// Choose the row with the smallest positive ratio

int best_row = -1;

Quotient best_M_q; // Major part of best quotient

Quotient best_u_q; // micro part of best quotient

for ( int i=1; i<=rows; i++ )

{

if (( sign(mat[i][col]) > 0) && ( sign(mat[i][0]) >= 0))

{

// Compute (Major,micro) quotient for this column.

Quotient M_q = Quotient(mat[i][0],mat[i][col]);

Quotient u_q = Quotient(colZero[i],mat[i][col]);

// Keep the row with smallest (Major,micro) quotient,

// And break ties randomly.

if ( (best_row == -1)

||

(M_q < best_M_q)

||

( (M_q == best_M_q)

&&

( (u_q < best_u_q)

||

( (u_q == best_u_q)

&&

randomBit()))))

{

best_M_q = M_q;

best_u_q = u_q;

best_row = i;

}

}

}

return best_row;

}



APPENDIX A. CUTSAT PROGRAM CODE 263

LPStatus

IntegerSimplex::choosePrimalPivot(int &pivot_row, int &pivot_col)

{

int row;

int col;

int best_col = -1;

int best_row = -1;

Quotient best_M_value; // Major part of best pivot value

Quotient best_u_value; // micro part of best pivot value

// preset, no infeasible constraint rows remain

status = OPTIMAL;

// // To randomize the order of visiting the columns:

// vector<int> columns = vector<int>(cols);

// for (col = 1; col <= cols; col++) columns[col-1] = col;

// shuffle(columns.begin(), columns.end());

// for (int j=0; j<cols; j++ )

// {

// col = columns[j];

for (col = 1; col <= cols; col++)

{

if (sign(mat[0][col]) >= 0) continue;

// Found a suboptimal column.

row = choosePrimalPivotRow(col);

if (row == -1)

{

// no finite pivot exists in a suboptimal column

best_col = col;

status = UNBOUNDED;

break;

}

// Keep the pivot that gives the greatest objective increase.

// Break ties randomly

Quotient M_value = Quotient(-mat[0][col]*mat[row][0], mat[row][col]);

Quotient u_value = Quotient(-mat[0][col]*colZero[row], mat[row][col]);

if ((best_row == -1)

||

(M_value > best_M_value)

||

( (M_value == best_M_value)

&&

( (u_value > best_u_value)

||

( (u_value == best_u_value)

&&



APPENDIX A. CUTSAT PROGRAM CODE 264

randomBit()))))

{

best_row = row;

best_col = col;

best_M_value = M_value;

best_u_value = u_value;

status = CONTINUE;

//cout << "The pivot position (" << best_row << "," << best_col << ")"

//<< " has value " << pivot_value << endl;

}

}

pivot_row = best_row;

pivot_col = best_col;

return status;

}

LPStatus

IntegerSimplex::primalSimplex()

{

int row,col;

initializePrimalRandomness(); // init the tiebreaker

pivotCounter = 0;

while(true)

{

choosePrimalPivot( row, col);

if (status != CONTINUE) break;

pivot(row, col);

}

dropPrimalRandomness();

cout << pivotCounter << " primal pivots were used " << endl;

return status;

}

///////////////////////////////////////////////////////

//

// DENOMINATOR REDUCTION METHODS

//

///////////////////////////////////////////////////////

int

IntegerSimplex::chooseDenominatorReducingPivotRow(int col)

{

// Allow the GUI OS to get control occasionally

keepMacHappy();



APPENDIX A. CUTSAT PROGRAM CODE 265

// Choose the row with the smallest ratio,

// and the smallest (primal) pivot element

int best_row = -1;

Quotient best_quotient;

Integer bestElement;

for ( int row=1; row<=rows; row++ )

{

if ( sign(mat[row][col]) > 0)

{

Quotient quotient = Quotient(mat[row][0],mat[row][col]);

if ( (best_row == -1) ||

(quotient < best_quotient) ||

( (quotient == best_quotient) && (mat[row][col] < bestElement))

)

{

bestElement = mat[row][col];

best_quotient = quotient;

best_row = row;

}

}

}

//cout << "choosePrimalPivotRow, col=" << col << " row=" << best_row

// << " quotient =" << quotient << endl;

return best_row;

}

int

IntegerSimplex::chooseDenominatorReducingPivotCol(int row)

{

// Allow the GUI OS to get control occasionally

keepMacHappy();

// Choose the column with the smallest ratio,

// and the smallest (dual) pivot element

int best_col = -1;

Quotient best_quotient;

Integer bestElement;

for ( int col=1; col<=cols; col++ )

{

if (sign(mat[row][col]) < 0)

{

Quotient quotient = Quotient(mat[0][col],mat[row][col]);

if ((best_col == -1) ||

(quotient > best_quotient) ||



APPENDIX A. CUTSAT PROGRAM CODE 266

((quotient == best_quotient) && (mat[row][col] > bestElement))

)

{

bestElement = mat[row][col];

best_quotient = quotient;

best_col = col;

}

}

}

return best_col;

}

LPStatus

IntegerSimplex::chooseDenominatorReducingPivot(int &pivot_row, int &pivot_col)

{

int row;

int col;

int best_col = -1;

int best_row = -1;

Integer best_denominator = denominator;

// preset, no denominator-reducing pivots remain

status = OPTIMAL;

// Randomize the order of visiting the columns

vector<int> columns = vector<int>(cols);

for (col = 1; col <= cols; col++) columns[col-1] = col;

shuffle(columns.begin(), columns.end());

for (int j=0; j<cols; j++ )

{

col = columns[j];

//#define REDUCE_DENOMINATOR_WITHOUT_OBJECTIVE

#ifndef REDUCE_DENOMINATOR_WITHOUT_OBJECTIVE

// Use only pivots that do not change the objective

if (sign(mat[0][col]) != 0) continue;

#endif

// find a pivot in this column

row = chooseDenominatorReducingPivotRow(col);

if (row == -1) continue;

// Keep the pivot that gives the denominator nearest ONE.

if (abs(mat[row][col]) < best_denominator)

{

best_row = row;

best_col = col;

best_denominator = abs(mat[row][col]);

status = CONTINUE;

//cout << "The pivot position (" << best_row << "," << best_col << ")"

//<< " has value " << pivot_value << endl;



APPENDIX A. CUTSAT PROGRAM CODE 267

}

}

for (row=1; row<=rows; row++ )

{

// Use only dual pivots that preserve primal feasibility

if (sign(mat[row][0]) != 0) continue;

// find a pivot in this column

col = chooseDenominatorReducingPivotCol(row);

if (col == -1) continue;

// Keep the pivot that gives the smallest denominator.

if (abs(mat[row][col]) < best_denominator)

{

best_row = row;

best_col = col;

best_denominator = abs(mat[row][col]);

status = CONTINUE;

//cout << "The pivot position (" << best_row << "," << best_col << ")"

//<< " has value " << pivot_value << endl;

}

}

pivot_row = best_row;

pivot_col = best_col;

return status;

}

//

// A method that can be applied to OPTIMAL (primal

// and dual feasible) tableau to reduce the denominator.

//

// This gives an equlvalent optimal solution, that

// is better only in the sense that it is expressed

// using a lower denominator.

//

// When several alternative solutions have the same objective

// value, the simplex method using an artificial objective

// chooses one of them at random. This function has the

// effect of modifying the artificial objective to choose

// the optimal solution with the lesser denominator.

//

LPStatus

IntegerSimplex::denominatorReduction()

{

int row,col;

// This applies only to optimal tableau!



APPENDIX A. CUTSAT PROGRAM CODE 268

if (status != OPTIMAL) return status;

while(true)

{

// Choose a zero-cost pivot that gives

// a smaller denominator, if one is available.

chooseDenominatorReducingPivot( row, col);

if (status != CONTINUE) break;

cout << "Denominator Reducing pivot is:" << mat[row][col] << endl;

// Take that pivot

pivot(row, col);

}

status = OPTIMAL;

return status;

}

///////////////////////////////////////////////////////

//

// CUT STRENGTHENING METHOD

//

///////////////////////////////////////////////////////]

//

// Methods to do a local search, to find pivots that reduce the

// number of fractions in the tableau.

//

// Look to see if the current solution is fractional

bool

IntegerSimplex::isFractionalSolution()

{

for (int row = 1; row <= rows; row++)

{

// If fractional basic variable value, we need a cut.

if (NonZero( mod(mat[row][0], denominator)))

{

return true;

}

}

return false;

}

// Measure the available cuts in the current tableau

TableauMeasure

IntegerSimplex::measureCuts()

{

// Preset that no cuts are possible



APPENDIX A. CUTSAT PROGRAM CODE 269

TableauMeasure tabMeasure = TableauMeasure();

vector<Integer> cut = vector<Integer>(1+cols);

int countCutRows = 0;

int countIntegralRows = 0;

for (int row = 1; row <= rows; row++)

{

if (sign(mod(mat[row][0], denominator)) != 0)

{

// Form the Gomory cut

for (int col = 0; col <= cols; col++)

cut[col] = - mod(mat[row][col], denominator);

// Measure the cut, and keep the best/worst cut measures

tabMeasure.measureCut(cut);

++countCutRows;

}

else

{

++countIntegralRows;

}

}

// Capture observations about the tableau.

tabMeasure.objective = Quotient(mat[0][0], denominator);

tabMeasure.denominator = denominator;

tabMeasure.cols = cols;

tabMeasure.cutRows = countCutRows;

tabMeasure.integralRows = countIntegralRows;

cout <<"measureCuts: " << tabMeasure << endl;

return tabMeasure;

}

// Measure the cut measure that would result after a given pivot

TableauMeasure

IntegerSimplex::measureCutsAfterPivot(int row, int col, int sampleSize)

{

TableauMeasure tabMeasure = TableauMeasure();

int countCutRows = 0;

int countIntegralRows = 0;

vector<Integer> cut = vector<Integer>(1+cols);

int firstCut = 1;

int i,j;

// Compute some common factors

Integer element = mat[row][col];



APPENDIX A. CUTSAT PROGRAM CODE 270

Integer s = ONE;

Integer sd = denominator;

Integer abselement = element;

if (sign(element) < 0)

{

abselement = -element;

s = MINUSONE;

sd = -denominator;

}

// Always measure the cut of the pivot row

if ( NonZero(mod(s * mat[row][0], abselement)))

{

// Count the non-integral rows in the tableau

++countCutRows;

// Limit the sample of cuts

sampleSize--;

// Form the cut of the pivot row

for (j = 0; j <= cols; j++)

if (j != col)

{

if (IsZero(mat[row][j]))

cut[j] = ZERO;

else

cut[j] = - mod(s * mat[row][j], abselement);

}

cut[col] = - mod(sd, abselement);

// Measure the cut

tabMeasure.measureCut(cut);

}

else

{

++countIntegralRows;

}

// Consider the nonpivot rows in a uniform random order.

vector<int> Rows(rows);

for ( i=0; i < rows; i++) Rows[i] = i+1;

for (int rowIdx = 0; rowIdx < rows; rowIdx++ )

{

// Choose a random row from remaining rows.

unsigned long r = random() % (rows - rowIdx);

if (r != 0) swap(Rows[rowIdx], Rows[rowIdx+r]);

i = Rows[rowIdx];

// not the pivot row

if (i == row) continue;



APPENDIX A. CUTSAT PROGRAM CODE 271

// Compute the constant (column 0) that would

// result after the pivot.

// (We compute the partial products separately,

// to avoid some of the arithmetic.)

Integer P1 = ZERO;

if (NonZero(mat[i][0]))

P1 = mat[i][0] * element;

Integer P2 = ZERO;

if (NonZero(mat[row][0]) && NonZero(mat[i][col]))

P2 = mat[row][0] * mat[i][col];

cut[0] = - mod( (P1 - P2) / sd , abselement);

// If it is integral, this row is not a cut row.

if (IsZero(cut[0]))

{

++countIntegralRows;

continue;

}

// Count the non-integral rows in the tableau

++countCutRows;

// Limit the sample of cuts

if (sampleSize <= 0) break;

sampleSize--;

// Compute the Gomory cut of the selected row.

for (j = 1; j <= cols; j++)

if (j == col)

{

// Pivot column

cut[col] = - mod ( -s * mat[i][col], abselement);

}

else

{

// Non-pivot column

Integer P1 = ZERO;

if (NonZero(mat[i][j]))

P1 = mat[i][j] * element;

Integer P2 = ZERO;

if (NonZero(mat[row][j]) && NonZero(mat[i][col]))

P2 = mat[row][j] * mat[i][col];

cut[j] = - mod( (P1 - P2) / sd , abselement);

}

// Measure the cut

tabMeasure.measureCut(cut);

}



APPENDIX A. CUTSAT PROGRAM CODE 272

// Record some observations about the tableau.

// Save the objective value, denominator, and column count

// for this resulting tableau.

tabMeasure.objective =

Quotient(((mat[0][0]*mat[row][col])-(mat[row][0]*mat[0][col]))

/ denominator , mat[row][col]);

tabMeasure.denominator = abs(mat[row][col]);

tabMeasure.cols = cols;

tabMeasure.cutRows = countCutRows;

tabMeasure.integralRows = countIntegralRows;

return tabMeasure;

}

int /*row*/

IntegerSimplex::choosePrimalCutImprovingPivotRow(const int col,

TableauMeasure& tabMeasure)

{

// Allow the GUI OS to get control occasionally

keepMacHappy();

// Choose a row with the smallest ratio, similar to the

// selection made by primal pivot selection, so that all satisfied

// constraints remain satisfied after the pivot.

Quotient quotient;

Quotient best_quotient;

vector<int> pivotRows = vector<int>();

int pivotRowCount = 0;

// Find the possible primal pivot rows in this column

// Take a quick look for ZERO ratios

for ( int row=1; row <= rows; row++ )

{

if ( IsZero(mat[row][0]) && NonZero(mat[row][col]) )

{

pivotRows.push_back(row);

pivotRowCount++;

}

}

// If no ZERO ratios, we must compute the other

// ratios to find the minimum non-negative ratio.

if (pivotRowCount == 0)

{

#ifdef USE_ONLY_MAXIMAL_PIVOTS

if (IsZero(mat[0][col]))

#endif

for ( int row=1; row <= rows; row++ )



APPENDIX A. CUTSAT PROGRAM CODE 273

{

if ( sign(mat[row][col]) > 0)

{

// Found a possible pivot row,

// check the quotient for the primal pivot

quotient = Quotient(mat[row][0],mat[row][col]);

if ((pivotRowCount == 0) || (quotient < best_quotient))

{

best_quotient = quotient;

pivotRows = vector<int>();

pivotRows.push_back(row);

pivotRowCount = 1;

}

else if (quotient == best_quotient)

{

pivotRows.push_back(row);

pivotRowCount++;

}

}

}

}

// In either case, we now have a list of the possible

// pivot elements. There might not be any.

if (pivotRowCount == 0) return -1;

// How many pivots should we try in this column?

// We want to find a good pivot when one exists, and

// there usually are not very many eligible pivot rows.

int pivotSampleSize = pivotRowCount;

// For each of those pivots, how many cuts should we examine?

// We want a good probability of finding a stronger cut when

// one exists, without spending a lot of effort to do so.

int cutSampleSize = CUT_SAMPLE_SIZE;

// Search the possible primal pivots in this column,

// to find one that gives maximum cut measure.

int best_row = -1;

shuffle(pivotRows.begin(), pivotRows.end());

for (int i = 0; i < pivotSampleSize; i++ )

{

int row = pivotRows[i];

// Measure a sample of the Gomory cuts that

// would be generated after taking this pivot.

TableauMeasure pivotTabMeasure =

measureCutsAfterPivot( row, col, cutSampleSize);

// If the pivot gives an integer solution,



APPENDIX A. CUTSAT PROGRAM CODE 274

// or a refutation, we’re done!

if ( pivotTabMeasure.best.isIntegral() ||

pivotTabMeasure.best.isRefutation() )

{

tabMeasure = pivotTabMeasure;

best_row = row;

break;

}

// Keep the pivot that gives the best cut,

// the least worst cut,

// or the smallest denominator.

if (pivotTabMeasure > tabMeasure)

{

tabMeasure = pivotTabMeasure;

best_row = row;

//cout << "col=" << col << " row=" << best_row << " " << tabMeasure << endl;

}

}

//if (best_row != -1)

//cout << "choosePrimalCutImprovingPivotRow: col=" << col << " row=" << best_row

// << " tabMeasure =" << tabMeasure

// << endl;

return best_row;

}

TableauMeasure

IntegerSimplex::choosePrimalCutImprovingPivot(int &pivot_row, int &pivot_col,

TableauMeasure initTableauMeasure)

{

// Preset no cut-improving pivots exist

TableauMeasure tabMeasure = initTableauMeasure;

pivot_col = -1;

pivot_row = -1;

status = OPTIMAL;

int row;

int col;

//cout << "Look for cut-improving pivot. Initial denominator is " <<

// denominator << " and initial measure is " << tabMeasure << endl;

// Search the columns in a random order

vector<int> columns = vector<int>(cols);

for (col = 1; col <= cols; col++) columns[col-1] = col;

shuffle(columns.begin(), columns.end());

for (int j=0; j<cols; j++ )

{

col = columns[j];



APPENDIX A. CUTSAT PROGRAM CODE 275

// find a cut-improving pivot in this column

TableauMeasure pivotTabMeasure = tabMeasure;

row = choosePrimalCutImprovingPivotRow(col, pivotTabMeasure);

if (row == -1) continue;

// If a cut gives an integer solution,

// or a refutation, we’re done

if ( pivotTabMeasure.best.isIntegral() ||

pivotTabMeasure.best.isRefutation() )

{

pivot_row = row;

pivot_col = col;

status = CONTINUE; // One more pivot

break;

}

// There are several approaches that might be reasonable

// to select from among several cut-improving pivots.

// The algorithm to decide between several cut-improving

// pivots is encapsulated in class TableauMeasure.

if (pivotTabMeasure > tabMeasure)

{

// Found an improvement

pivot_row = row;

pivot_col = col;

tabMeasure = pivotTabMeasure;

status = CONTINUE;

}

}

return tabMeasure;

}

// A method that can be applied to an OPTIMAL (primal

// and dual feasible) tableau to improve the measure

// of the available Gomory cuts.

TableauMeasure

IntegerSimplex::primalCutImproving()

{

int row,col;

int samples = 0;

// Measure the best cut in the current tableau.

TableauMeasure tabMeasure = measureCuts();

if (status != OPTIMAL) return tabMeasure;

while(true)

{

// If no feasible solution, we’re done.

if (tabMeasure.best.isRefutation()) break;



APPENDIX A. CUTSAT PROGRAM CODE 276

// If no cuts exist, we’re done.

if ( tabMeasure.best.isIntegral() ) break;

// Choose a pivot

TableauMeasure pivotTabMeasure =

choosePrimalCutImprovingPivot(row, col, tabMeasure);

// If no feasible pivot, we’re done.

if (status != CONTINUE) break;

// If we found a strictly stronger cut, take it

if (pivotTabMeasure.best > tabMeasure.best)

{

// Take that pivot

samples = 0;

pivot(row, col);

cout << "Cut-improving pivot." << "\tCutMeasure=" << pivotTabMeasure

// << " row=" << row << " col=" << col

<< endl << flush;

tabMeasure = pivotTabMeasure;

continue;

}

// Pivots that give lower denominators (or other

// tableau improvement, per the TableauMeasure)

// are also taken.

if ((pivotTabMeasure.best == tabMeasure.best)

&&

(pivotTabMeasure.denominator < tabMeasure.denominator) )

{

// Take that pivot

samples= 0;

pivot(row, col);

cout << "Denominator-reducing pivot." << "\tmeasure=" << pivotTabMeasure

// << " row=" << row << " col=" << col

<< endl << flush;

tabMeasure = pivotTabMeasure;

continue;

}

#ifdef CUT_RESAMPLE_COUNT

// (Optionally) repeat the search for a

// cut-improving pivot a few times before

// giving up. This protects against a too-small

// sample size in the probabilistic search.

if (samples < CUT_RESAMPLE_COUNT) // Pick a limit

{

samples++;

continue;



APPENDIX A. CUTSAT PROGRAM CODE 277

}

#endif

// Else, we have the best cut we’re going to find.

break;

}

return tabMeasure;

}

///////////////////////////////////////////////////////

//

// ALL-INTEGER PIVOT -- Per (Gomory 1963, example 3)

//

///////////////////////////////////////////////////////

// Function to pivot the all-integer matrix, with optional

// perturbation objectives (rowZero and colZero).

void

IntegerSimplex::pivot(int row, int col)

{

int i,j;

// Allow the GUI to get control occasionally

keepMacHappy();

// Swap the variable names

swap(basic_vars[row], nonbasic_vars[col]);

// Compute some common factors

Integer element = mat[row][col];

Integer sd = denominator;

int s = 1;

if (sign(element) < 0)

{

sd = -denominator;

s = -1;

}

// Do the purturbation row, if it is present

if (rowZero.size() > 0)

{

for (j = 0; j <= cols; j++) if (j != col)

{

rowZero[j] =

(multiply_and_check_overflow(rowZero[j],element) -

multiply_and_check_overflow(mat[row][j],rowZero[col]))

/ sd;

}

if (s > 0) rowZero[col] = -rowZero[col];

}



APPENDIX A. CUTSAT PROGRAM CODE 278

// Do the purturbation column, if it is present

if (colZero.size() > 0)

{

for ( i=0; i <= rows; i++) if (i != row)

{

colZero[i] =

(multiply_and_check_overflow(colZero[i],element) -

multiply_and_check_overflow(colZero[row],mat[i][col]))

/ sd;

}

if (s < 0) colZero[row] = -colZero[row];

}

// Do the nonpivot rows.

for ( i=0; i <= rows; i++) if (i != row)

{

// Do the non-pivot columns in the non-pivot rows

for (j = 0; j <= cols; j++) if (j != col)

{

mat[i][j] =

(multiply_and_check_overflow(mat[i][j], element) -

multiply_and_check_overflow(mat[row][j], mat[i][col]))

/ sd;

}

}

// Do the pivot row

if (s < 0)

for (j = 0; j <= cols; j++) if (j != col)

mat[row][j] = - mat[row][j];

// Do the pivot column

if (s > 0)

for (i = 0; i <= rows; i++) if (i != row)

mat[i][col] = - mat[i][col];

// Do the pivot element

mat[row][col] = sd;

// Store the new common denominator

denominator = abs(element);

// And count the pivot

pivotCounter++;

}

///////////////////////////////////////////////////////

//

// Methods for reading and printing

//



APPENDIX A. CUTSAT PROGRAM CODE 279

///////////////////////////////////////////////////////

LPStatus

IntegerSimplex::readPrimalSolution(Integer& objective,

vector<Integer>& primalVariables,

vector<Integer>& primalSlacks,

Integer& den)

{

primalVariables = vector<Integer>(1+cols, ZERO);

primalSlacks = vector<Integer>(1+rows, ZERO);

// Iterate through the primal basis variables

// reading off the primal solution.

for (int i=1; i<= rows; i++)

{

Variable var = basic_vars[i];

if ( ! var.isSlack() )

{

primalVariables[var.subscript] = mat[i][0];

}

else // if ( var.isSlack() )

{

primalSlacks[var.subscript] = mat[i][0];

}

}

// Then re-compute the primal solution

Integer sum = ZERO;

for (int j = 1; j <= cols; j++)

{

// Accumulate the objective value.

sum += originalObjective[j] * primalVariables[j];

}

objective = sum;

// Return 1-based vectors of variable values

primalVariables.erase(&primalVariables[0]);

primalSlacks.erase(&primalSlacks[0]);

den = denominator;

return status;

}

LPStatus

IntegerSimplex::readDualSolution(Integer& objective,

vector<Integer>& dualVariables,

vector<Integer>& dualSlacks,

Integer& den)

{



APPENDIX A. CUTSAT PROGRAM CODE 280

dualVariables = vector<Integer>(1+rows, ZERO);

dualSlacks = vector<Integer>(1+cols, ZERO);

// Iterate through the primal basis variables

// reading off the primal solution.

for (int i=1; i<= cols; i++)

{

Variable var = nonbasic_vars[i]; // (aka dual basic vars)

if (var.isSlack())

{

// Primal slack is dual variable

dualVariables[var.subscript] = mat[0][i];

}

else // if (!var.isSlack())

{

// Primal variable is dual slack

dualSlacks[var.subscript] = mat[0][i];

}

}

// Then re-compute the primal solution value

Integer sum = ZERO;

for (int j = 1; j <= cols; j++)

{

// Accumulate the objective value.

sum += originalObjective[j] * dualSlacks[j];

}

objective = sum;

// Return 1-based vectors of variable values

dualVariables.erase(&dualVariables[0]);

dualSlacks.erase(&dualSlacks[0]);

den = denominator;

return status;

}

void

IntegerSimplex::printObjective(ostream&os) const

{

int nonzeros = 0;

for (int col = 1; col <= cols; col++)

{

if (sign(mat[0][col]) != ZERO)

{

// Second and subsequent terms must have an operator

if (nonzeros > 0)

{

if (sign(mat[0][col]) >= ZERO)

os << " +" ;



APPENDIX A. CUTSAT PROGRAM CODE 281

else

os << " "; // The ’-’ will be printed by the Integer

}

// output the coeficient and the variable

os << mat[0][col] << nonbasic_vars[col];

nonzeros++;

// put 10 per line

if ((nonzeros % 10) == 0) os << endl;

}

}

// If there are no terms,

if (nonzeros == 0) os << "0";

if ((nonzeros % 10) != 0) os << endl;

}

// Method to print one row of the tableau, as

// an inequality form.

void

IntegerSimplex::printInequality(ostream&os , int row) const

{

int nonzeros = 0;

for (int col = 1; col <= cols; col++)

{

if (sign(mat[row][col]) != ZERO)

{

// Second and subsequent terms must have an operator

if (nonzeros > 0)

{

if (sign(mat[row][col]) >= ZERO)

os << " +" ;

else

os << " "; // The ’-’ will be printed by the Integer

}

// output the coeficient and the variable

os << mat[row][col] << nonbasic_vars[col];

nonzeros++;

// put 10 per line

if ((nonzeros % 10) == 0) os << endl;

}

}

// If there are no terms,

if (nonzeros == 0) os << "0";

// the \le sign and the constant

os << " <= " << mat[row][0] << endl ;



APPENDIX A. CUTSAT PROGRAM CODE 282

}

// Method to print one row of the tableau, as

// an equality form. This form prints an equation

// that includes a primal basis variable.

void

IntegerSimplex::printEquality(ostream&os , int row) const

{

os << denominator << basic_vars[row];

int nonzeros = 1;

for (int col = 1; col <= cols; col++)

{

if (sign(mat[row][col]) != ZERO)

{

if (sign(mat[row][col]) > ZERO)

os << " +" ;

else

os << " ";

// output the coeficient and the variable

os << mat[row][col] << nonbasic_vars[col];

nonzeros++;

// put 10 per line

if ((nonzeros % 10) == 0) os << endl;

}

}

// If there are no terms,

if (nonzeros == 0) os << "0";

// the \le sign and the constant

os << " = " << mat[row][0] << endl ;

}

// print the list of nonbasic variables

void

IntegerSimplex::printNonbasicVariables(ostream&os) const

{

int columns = 0;

for (int j = 1; j <= cols; j++)

{

os << " " << nonbasic_vars[j] ;

columns++;

// put 12 per line

if ((j < cols) && ((columns % 12) == 0))

os << endl;

}

os << endl;



APPENDIX A. CUTSAT PROGRAM CODE 283

}

ostream& operator<<(ostream& os, const LPStatus& s)

{

switch ( s )

{

case CONTINUE:

os << "CONTINUE";

break;

case OPTIMAL:

os << "OPTIMAL";

break;

case UNBOUNDED:

os << "UNBOUNDED";

break;

case FEASIBLE:

os << "FEASIBLE";

break;

case INFEASIBLE:

os << "INFEASIBLE";

break;

default:

os << "(" << (int)s << ")";

break;

}

return os;

}

ostream& operator<<(ostream& os, const Variable& s)

{

return (os << s.name << s.subscript);

}

// A stream output operator for the entire tableau.

ostream& operator<<(ostream& os, const IntegerSimplex& v)

{

os << "Maximize:" << endl;

v.printObjective(os);

os << "Such that:" << endl;

for ( int row = 1; row <= v.rows; row++)

{

v.printEquality(os, row);

}

return os;

}



APPENDIX A. CUTSAT PROGRAM CODE 284

A.7 The Cutting Algorithm

The CuttingAlgorithm class and related minor classes, define the data structures and

methods implementing the cutting plane algorithms for solution of SAT problems.

This class is procedure-centric, having very little data, and has the primary purpose

of providing an environment for implementation of cutting plane algorithms.

A.7.1 CuttingAlgorithm.h

#ifndef CUTTINGALGO_H_INCLUDED

#define CUTTINGALGO_H_INCLUDED

#include <set.h>

#include "CnfTerm.h"

#include "Integer.h"

#include "Simplex.h"

class CuttingAlgorithm

{

public:

CuttingAlgorithm(ostream& proof)

: PROOF(proof), term(0), tableau(0), seconds(0) {}

~CuttingAlgorithm()

{if (tableau) delete tableau;}

bool operator()(CnfTerm* term);

void report(ostream& answerFile);

void constructTableau(CnfTerm* term);

protected:

int originalRowCount;

CnfTerm* term;

IntegerSimplex* tableau;

LPStatus status;

clock_t startTicks; // Starting time, in ticks.



APPENDIX A. CUTSAT PROGRAM CODE 285

long seconds; // Running time, in seconds.

ostream& PROOF; // File to write the proof.

LPStatus solve(IntegerSimplex& tableau);

// Generate a set of cuts, and try to lift one of them.

LPStatus applyCuts(IntegerSimplex& tableau);

void constructCuts(int row, IntegerSimplex& tableau, IntegerSimplex& cuts);

// Apply sequential integer lifting

void cutLifting(int row, IntegerSimplex& cuts, IntegerSimplex& tableau);

// Utility to add a cut to a tableau, suppressing duplicates

int addCut(vector<Integer>& cut, IntegerSimplex& tableau);

};

#include <list.h>

template<class T>

ostream& operator<<(ostream& os, const list<T>& v)

{

for (list<T>::const_iterator i = v.begin(); i != v.end(); i++)

{

os << *i << "\t";

}

return os;

}

#endif /* ifndef CUTTINGALGO_H_INCLUDED */

A.7.2 CuttingAlgorithm.cc

//

// Copyright (c) 2000 Stephen Lee Hansen

//

#include <assert.h>

#include <list.h>

#include <set.h>

#include <map.h>

#include "Parameters.h"

#include "CuttingAlgorithm.h"

extern void keepMacHappy();

extern unsigned int random();



APPENDIX A. CUTSAT PROGRAM CODE 286

bool

CuttingAlgorithm::operator()(CnfTerm* theTerm)

{

term = theTerm;

constructTableau(theTerm);

originalRowCount = tableau->rows;

startTicks = clock();

// apply the lifting-enabled cutting plane algorithm

// to generate and lift cutting planes.

status = solve(*tableau);

seconds = (clock() - startTicks)/CLOCKS_PER_SEC;

if (status == INFEASIBLE)

{

PROOF << "NO FEASIBLE SOLUTION EXISTS." << endl << flush;

}

else if (status == FEASIBLE)

{

PROOF << "FOUND A FEASIBLE SOLUTION." << endl << flush;

}

else if (status == CONTINUE)

{

PROOF << "MAXIMUM TIME EXPIRED." << endl << flush;

}

return status;

}

void

CuttingAlgorithm::constructTableau(CnfTerm* theTerm)

{

term = theTerm;

tableau = new IntegerSimplex(term->variables);

vector<Integer> objective = vector<Integer>(1+term->variables, ZERO);

vector<Integer> constraint = vector<Integer>(1 + term->variables, ZERO);

// For each Boolean variable in the term, construct an

// inequality that limits the range of the variable.

// (Non-negativity is enforced by the algorithm.)

for (int var = 1; var <= term->variables; var++)

{

for (int j = 1; j <= term->variables; j++)

{

constraint[j] = ZERO;

}

constraint[0] = ONE;

constraint[var] = ONE;



APPENDIX A. CUTSAT PROGRAM CODE 287

tableau->addConstraint(constraint);

}

// For each clause in the term, construct a linear

// constraint from the clause and add it to the tableau

CnfTerm::iterator clause;

for (clause=term->begin(); clause!=term->end(); ++clause)

{

// The linear inequality must be a "\le" form.

// (\vee L_i) === (\sum -L_i \le -1 )

// The RHS constant is stored in constraint[0]

// Form the inequality corresponding to the empty clause

constraint[0] = MINUSONE;

for (int j = 1; j <= term->variables; j++)

constraint[j] = ZERO;

// Then add the literals to that inequality

Clause::iterator lit;

for (lit = clause->begin(); lit != clause->end(); ++lit)

{

int var = lit->variable;

if ((var < 0) && (constraint[-var] <= ZERO))

{

// If previous literals give:

// -\sum (others) \le -b

// subtracting the new negated literal (1 - X_I) gives:

// x_i - \sum (others) \le -b + 1

var = -var;

constraint[var] += ONE;

constraint[0] += ONE;

}

else if ((var > 0) && (constraint[var] >= ZERO))

{

// If previous literals give:

// -\sum (others) \le -b

// subtracting the new literal x_i gives:

// -x_i - \sum (others) \le -b

constraint[var] -= ONE;

}

}

// objective is sum of slack variables

// (negated sum of constraints)

objective = objective + constraint;



APPENDIX A. CUTSAT PROGRAM CODE 288

tableau->addConstraint(constraint);

}

tableau->setObjective(objective);

}

void

CuttingAlgorithm::report(ostream& os)

{

Integer objective;

vector<Integer> primalVariables;

vector<Integer> primalSlacks;

Integer denominator;

// Print the results, in DIMACS format

os << "c" << endl;

if (status == INFEASIBLE)

{

os << "c The term is NOT satisfiable." << endl;

}

else if (status == FEASIBLE)

{

os << "c The term IS satisfiable." << endl;

os << "c" << endl;

tableau->readPrimalSolution(objective,

primalVariables, primalSlacks, denominator);

for (int var=0; var<primalVariables.size(); var++)

if (sign(primalVariables[var]) > ZERO)

primalVariables[var] = ONE;

os << "c The primal variable vector is: " <<

primalVariables << endl;

}

else if (status == CONTINUE)

{

os << "c No Solution -- Time Expired." << endl << flush;

}

os << "c" << endl;

int cuts = tableau->rows - originalRowCount;

os << "c " << cuts << " lifted cutting planes were used in "

<< seconds << " seconds." <<endl;

os << "c" << endl;

os << "c The DIMACS \"solution\" line:" << endl;

os << "s cnf ";

if (status == INFEASIBLE) os << "0";

else if (status == FEASIBLE) os << "1";

else if (status == CONTINUE) os << "?";

os << " " << term->variables << " " << term->clauses << endl;



APPENDIX A. CUTSAT PROGRAM CODE 289

os << "c" << endl;

os << "c The DIMACS \"timing\" line:" << endl;

os << "t cnf ";

if (status == INFEASIBLE) os << "0";

else if (status == FEASIBLE) os << "1";

else if (status == CONTINUE) os << "?";

os << " " << term->variables << " " << term->clauses

<< " " << seconds << " " << cuts << endl;

os << flush;

}

/////////////////////////////////////////////////////////////////////////

//

// CUTTING PLANE ALGORITHMS

//

/////////////////////////////////////////////////////////////////////////

//

LPStatus

CuttingAlgorithm::solve(IntegerSimplex& tableau)

{

#ifdef SHOW_INITIAL_TABLEAU

PROOF << "THE INITIAL SIMPLEX TABLEAU:" << endl;

PROOF << tableau;

#endif

while (1)

{

#ifdef MAX_RUNNING_TIME

seconds = (clock() - startTicks)/CLOCKS_PER_SEC;

if (seconds > MAX_RUNNING_TIME)

{

status = CONTINUE;

break;

}

#endif

// Solve the LP to optimal

status = tableau.primalDualSimplex();

// Test for termination (unsatisfiable)

if (status == INFEASIBLE) break;

// If there are multiple optimal solutions,

// choose one with a small common denominator.

tableau.denominatorReduction();

// Use pivots to increase the measure of the Gomory cuts.



APPENDIX A. CUTSAT PROGRAM CODE 290

#ifdef CUT_IMPROVEMENT_RESTARTS

// Multi-start local search for cut-improving pivots.

IntegerSimplex bestTableau = IntegerSimplex(tableau);

TableauMeasure bestMeasure = bestTableau.measureCuts();

for (int i = 1; i <= CUT_IMPROVEMENT_RESTARTS; i++)

{

IntegerSimplex aTableau = IntegerSimplex(tableau);

TableauMeasure aMeasure = aTableau.primalCutImproving();

if (aMeasure > bestMeasure)

{

bestTableau = aTableau;

bestMeasure = aMeasure;

}

}

tableau = bestTableau;

#else

// Single local search for cut-improving pivots.

tableau.primalCutImproving();

#endif

// To allow the reader to verify the proof, we must identify

// the basic solution from which the cuts are derived. The

// most concise way to do this is to display the vector of

// nonbasic variables. This makes it possible for the

// proof verifier to verify that each alleged cut is actually

// a valid cut.

#ifdef SHOW_EVERY_TABLEAU

PROOF << "THE SIMPLEX TABLEAU:" << endl;

PROOF << tableau;

#endif

#ifdef SHOW_NONBASIC_VARIABLES

PROOF << "THE NONBASIC VARIABLES:" << endl;

tableau.printNonbasicVariables(PROOF);

#endif

// Look for fractions in the solution

if (tableau.isFractionalSolution())

{

// Generate and lift one or more cutting planes

status = applyCuts(tableau);

}

else // No fractions

{

status = FEASIBLE;

break; // satisfied and integer

}

}

return status;



APPENDIX A. CUTSAT PROGRAM CODE 291

}

// A function to apply cuts.

LPStatus

CuttingAlgorithm::applyCuts(IntegerSimplex& tableau)

{

// cout << "dualSimplexIteration" << endl;

int cols = tableau.cols;

Integer den = tableau.denominator;

int row;

//

// Construct a set of available cuts.

//

// We will store the cuts in a tableau

IntegerSimplex cuts = IntegerSimplex(tableau);

// Construct Gomory cuts of the given rows

// (Note that we may construct a cut of the objective,

// since the objective is a sum of constraints.)

int firstCutRow = tableau.rows +1;

for (row = 1; row <= tableau.rows; row++)

{

// If fractional basic variable value, we have a cut.

if (mod(tableau.mat[row][0], tableau.denominator) != ZERO)

{

// Contruct one or more cuts from this row

constructCuts(row, tableau, cuts);

}

}

cout << "count of Gomory cuts = " << cuts.rows - firstCutRow + 1 << endl;

// Find the maximum of the measures of the cuts

CutMeasure bestMeasure;

int firstTime = 1;

for (row = firstCutRow; row <= cuts.rows; row++)

{

CutMeasure measure = CutMeasure(cuts.mat[row]);

if (firstTime || (measure > bestMeasure))

{

firstTime = 0;

bestMeasure = measure;

}

// cout << "Candidate Gomory cut:" << endl;

// cuts.printInequality(cout, row);

}



APPENDIX A. CUTSAT PROGRAM CODE 292

// For each candidate cut that has the required measure,

// try to lift that cut to obtain a stronger cut.

for (row = firstCutRow; row <= cuts.rows; row++)

{

// Choose only the strong cuts

CutMeasure measure = CutMeasure(cuts.mat[row]);

if (measure < bestMeasure) continue;

PROOF << "THE CANDIDATE CUT: "<< endl;

cuts.printInequality(PROOF, row);

cout << "The candidate cut has measure: " << measure << endl;

#ifdef AVOID_USING_LARGE_CUTS

// Large cuts do not reduce the volume of the polytope by

// much at all, so they contribute little to the proof.

// Also, we must carry every cut through all of the

// succeeding pivots and searches, so there is a

// computational cost.

int sqrc = sqrt(cuts.cols);

if ((measure.count <= sqrc) ||

(mod(random(),cols) < (cols/(1+measure.count-sqrc))))

#endif

{

// NEGATIVE LIFTING

// (Tests forcing a variable >= 1.)

cutLifting(row, cuts, tableau);

PROOF << "THE LIFTED CUT: " << endl ;

cuts.printInequality(PROOF, row);

measure = CutMeasure(cuts.mat[row]);

cout << "The lifted cut has measure: " << measure << endl;

// Add the new cut to the tableau, and add a line to the

// proof indicating that the cut has been used.

int r = addCut(cuts.mat[row], tableau);

PROOF << " is added to the tableau with slack variable: "

<< tableau.basic_vars[r] << endl;

}

// If the new cut is unsatisfiable, we have enough cuts

if (measure.isRefutation()) break;

// Modify the objective function for next time.

tableau.mat[0] = tableau.mat[0] + cuts.mat[row];

// cout << " is added to the objective row." << endl;

// Add only one strong cut per iteration

break;



APPENDIX A. CUTSAT PROGRAM CODE 293

}

return CONTINUE;

}

void

CuttingAlgorithm::constructCuts(int row,

IntegerSimplex& tableau,

IntegerSimplex& cuts)

{

// cout << "constructCut" << endl;

// cout << " row = " << row << endl

// << " tableau.mat[row] =" << tableau.mat[row] << endl ;

Integer den = tableau.denominator;

int cols = tableau.cols;

int col;

vector<Integer> vcut = vector<Integer>(1+cols, ZERO);

// Construct Gomory cut of the selected row (with \lambda == 1)

vector<Integer> cut = vector<Integer>(1+cols, ZERO);

for (col = 0; col <= cols ; col++)

cut[col] = - mod(tableau.mat[row][col], den);

// Add the plain Gomory cut to the tableau

int cutRow = cuts.addConstraint(cut);

if (cutRow)

{

//#define SHOW_CUT_DERIVATIONS

#ifdef SHOW_CUT_DERIVATIONS

PROOF << "The equality: " << endl;

cuts.printEquality(PROOF, row);

PROOF << " with denominator " << tableau.denominator;

PROOF << " generates the candidate Gomory cut:" << endl;

cuts.printInequality(PROOF, cuts.rows);

#endif

}

}

void

CuttingAlgorithm::cutLifting(int row,

IntegerSimplex& cuts, IntegerSimplex& tableau)

{

int col;

LPStatus status;

int cols = cuts.cols;

Integer den = cuts.denominator;

int liftAttempts = 0;



APPENDIX A. CUTSAT PROGRAM CODE 294

int liftsFound = 0;

// Lift first the variables that have the largest negative

// coeficients in the cut row. Within one coeficient-value,

// lift first the variables that give the greatest total infeasibility.

multimap<Integer,int> liftCols;

for (col = 1; col <= cols; col++)

{

if (sign(cuts.mat[row][col]) < ZERO)

{

// Measure the infeasibility that would result from

// forcing the variable in column col to one.

Integer infeasibility = ZERO;

for (int i = 1; i <= cuts.rows; i++)

{

Integer inf = cuts.mat[i][col] - cuts.mat[i][0];

if (inf > ZERO) infeasibility += inf;

}

// If any, insert that variable into liftCols with

// a weight determined by the coeficient and the

// infeasibility.

if (infeasibility > ZERO)

{

Integer weight = ( cuts.mat[row][col] * 1000000000)

+ infeasibility;

liftCols.insert(pair<const Integer,int>(weight , col));

}

}

}

// Attempt the lifts in the order determined by the weighting.

multimap<Integer,int>::iterator iter;

for (iter = liftCols.begin(); iter != liftCols.end(); iter++)

{

col = iter->second;

// Limit the amount of lifting that will be attempted.

int noLifts = liftAttempts - liftsFound;

if (noLifts * noLifts > cuts.cols) break;

liftAttempts++;

// Try to lift by adding the inequality $(1 - x_col) \ge 1$

// to the (\ge) cut inequality. We know that this is true for

// for $x_col \eq 0$, so we need to test for $x_col \ge 1$.

//

// Form an LP to test the lift of the cut. We maximize

// the variable side of the cut, subject to $x_col \ge 1$.

// If the max is less than the rhs of the cut, then the

// proposed cut is valid.

// Initialize a tableau.



APPENDIX A. CUTSAT PROGRAM CODE 295

IntegerSimplex t = IntegerSimplex(cuts);

// Set the objective to minimize the cut.

// (Note that objective[0] == -cuts.mat[row][0],

// so we may compare the max to ZERO, later.)

for (int j = 0; j <= cols; j++)

t.mat[0][j] = - cuts.mat[row][j];

// Add the constraint: $x_col \ge 1$

vector<Integer> v = vector<Integer>(1+cols, ZERO);

v[0] = v[col] = -den;

t.addConstraint(v);

// And force x_col into the basis.

t.pivot(t.rows, col);

// Solve for the maximum feasible solution

status = t.primalDualCutLifting();

// If the LP is infeasible, we can fix the variable

// $(x_col \not\ge 1 \longrightarrow x_col \le 0)$

if (status == INFEASIBLE)

{

#define BASISPREVENTION

#ifdef BASISPREVENTION

// Prevent this variable from ever entering the basis.

int i;

for (i = 0; i <= cuts.rows; i++)

cuts.mat[i][col] = ZERO;

for (i = 0; i <= tableau.rows; i++)

tableau.mat[i][col] = ZERO;

#else

// Form a constraint to fix the variable to ZERO.

vector<Integer> fix = vector<Integer>(1+cols, ZERO);

fix[col] = den;

addCut(fix, cuts);

addCut(fix, tableau);

#endif

PROOF << "FOUND A FIXED VARIABLE: "

<< tableau.nonbasic_vars[col] << " = 0" << endl ;

liftsFound++;

}

else if (sign(t.mat[0][0]) < ZERO) // !

{

// LP is feasible, but we have a lift.

PROOF << "FOUND A LIFT. The term: "

<< cuts.mat[row][col] << tableau.nonbasic_vars[col]

<< " is lifted to: "

<< cuts.mat[row][col]+den << tableau.nonbasic_vars[col]

<< endl << flush;



APPENDIX A. CUTSAT PROGRAM CODE 296

cuts.mat[row][col] += den;

liftsFound++;

}

}

}

// Procedure to add a cut to a tableau, rejecting duplicates

int

CuttingAlgorithm::addCut(vector<Integer>& cut,

IntegerSimplex& tableau)

{

int row;

// Do not add duplicate cuts

for (row = 1; row <= tableau.rows; row++)

if (cut == tableau.mat[row])

return row;

// Add the cut to the tableau.

tableau.addConstraint(cut);

row = tableau.rows;

return row;

}



Appendix B

Msat Generator Program Code

The pseudo-random SAT problem generator for the Mk
m,n model of random SAT

problem is implemented in a “C” program named msat. The source file of the msat

program is msat.c.

B.1 msat.c

#include <stdlib.h>

#include <sys/types.h>

#include <time.h>

#include "vector.h"

#include "algo.h"

#include "stream.h"

extern "C"

{

long random();

int srandom( unsigned seed);

}

/*ARGSUSED*/

main(int argc,

char* argv[],

char* /* envp[] is not used */ )

297



APPENDIX B. MSAT GENERATOR PROGRAM CODE 298

{

srandom(time(0));

int variables;

cerr << "variables?";

cin >> variables;

float ratio;

cerr << "ratio?";

cin >> ratio;

int clauses = variables * ratio;

vector<int> vars = vector<int>(variables);

for (int variable = 0; variable < variables; variable++)

vars[variable] = variable+1;

cout << "p cnf " << variables << " " << clauses << endl;

for (int clause = 1; clause <= clauses; clause++)

{

random_shuffle(vars.begin(), vars.end());

for (int literal = 0; literal < 3; literal++)

{

if (random() & 1)

{

cout << -vars[literal] << " " ;

}

else

{

cout << vars[literal] << " ";

}

}

cout << 0 << endl;

}

}



Appendix C

A Complete Unsatisfiability Proof

For unsatisfiable input problems, the CutSat program produces a proof of unsatisfia-

bility. The reader may be interested to see a small example. The example presented

here has only 30 variables, and only 127 clauses.

C.1 Example Problem

This section displays the input file that was used to generate the proof given in section

C.2, below. The input file was generated using the RSAT pseudo-random problem

generator (Asahiro et al., 1996). One alteration was made to accommodate the paper

width. The RSAT program does not insert carriage control characters into the display

of the CNF predicate following the label “### 3SAT CNF Predicate ###”. Newline

characters were inserted manually, to enable display of the resulting very long line.

The CutSat program ignores extraneous input lines until it finds a line having

the character “p” in column one. This behavior serves to eliminate the need to edit

generated problem files, which commonly include extra lines preceding the actual

DIMACS format SAT problem. The RSAT problem generator, and the other problem

299



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 300

file generators provided by Asahiro et al. (1996), each produce a considerable number

of such extra lines. In this example, the actual DIMACS format SAT problem begins

with the line that reads “p cnf 30 127”.

***** 3SAT-Generator for Random CNF Predicates *****

How many variables ? 1 ... 500 30

Literal Distribution

(0) Specify Literal Distribution

(1) Flat Distribution

(2) Normal Distribution

(3) Input Ratio(Clause/Variable)

Select[ 0 - 3 ]: 3

Input the ratio(Clause/Variable) 4.25

Clauses except Random Ones: 0

Clause Remove: 0

@@@@@@@@@@@ OUTPUT @@@@@@@@@@@

### Literal Distribution ###

N[ 1]= 6 N[ 1’]= 6

N[ 2]= 6 N[ 2’]= 6

N[ 3]= 7 N[ 3’]= 6

N[ 4]= 6 N[ 4’]= 6

N[ 5]= 6 N[ 5’]= 6

N[ 6]= 7 N[ 6’]= 7

N[ 7]= 6 N[ 7’]= 6

N[ 8]= 7 N[ 8’]= 6

N[ 9]= 6 N[ 9’]= 7

N[10]= 7 N[10’]= 7

N[11]= 6 N[11’]= 6

N[12]= 6 N[12’]= 6

N[13]= 6 N[13’]= 6

N[14]= 6 N[14’]= 6

N[15]= 7 N[15’]= 6

N[16]= 8 N[16’]= 6

N[17]= 6 N[17’]= 7

N[18]= 7 N[18’]= 6

N[19]= 6 N[19’]= 6

N[20]= 6 N[20’]= 6

N[21]= 6 N[21’]= 6

N[22]= 6 N[22’]= 8

N[23]= 6 N[23’]= 7

N[24]= 6 N[24’]= 7

N[25]= 7 N[25’]= 6

N[26]= 6 N[26’]= 8

N[27]= 6 N[27’]= 6



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 301

N[28]= 6 N[28’]= 7

N[29]= 6 N[29’]= 6

N[30]= 6 N[30’]= 7

Total of literals :: 381

Number of clauses :: 127

### 3SAT CNF Predicate ###

(13’27’28’)(10 18 22’)(11’18’26’)(5’10 22 )(16 16 17’)(3’17’29 )(1’8 22 )

(10’19 26’)(2’5 26 )(7 11 14’)(2 6’10’)(18 20 23’)(20’21’27’)(2’6’14 )

(12’19 30 )(5’21’25 )(1’19’22 )(6 9’16’)(9’26’28 )(9’22’23’)(9’17 25’)

(13’17’21 )(2 18 29’)(4’15’27 )(3 8’21’)(10 20 30 )(15 18’25 )(11’27’28’)

(3’18 27 )(19’25’30’)(3’20 29’)(1’2’30’)(8’13’25 )(4’9 29 )(15 22’24 )

(1’16 16’)(4 23 30’)(10’15’19 )(6 7’23 )(5’10’28 )(3’18 29’)(13’23’26 )

(2’6 24’)(1’10 24’)(10 15 23’)(11’17’26’)(12’23 29’)(12’17’24’)(3 9’12 )

(12 24’28 )(17’18’23 )(1 13 28 )(10’10’28 )(10 20 26 )(8’19’21 )

(12 16’18 )(6 13 27 )(1 8 24’)(6 7’30’)(15’19 28’)(12 13’19 )(14’19’29 )

(3 10 21 )(15’20’28’)(21 28’30’)(4’6’9 )(22 26 29 )(15 22 26’)(7 10’14’)

(24 24’27 )(17 26 27 )(6’17 22’)(3 14’21 )(12’18’25 )(11 14 25 )(5 8’30 )

(4 23’28’)(16 16’27’)(1 8 19 )(2’13 28’)(3 7’17 )(6’11 14 )(7 18’30’)

(5’23 27 )(15 16’22’)(7’8’21’)(2 16 22 )(4’21’29’)(23 23’25’)(4’12’29 )

(6 7 14 )(5’5’18’)(7’16 25 )(5 26’26’)(7’8’20 )(15’16 17’)(11’13 30 )

(5 11’20’)(1 1 24 )(4 9 24’)(17 18 30’)(11 13 20’)(2’15 24 )(7 7 25’)

(3’25’28 )(2 5 9 )(6’14 27’)(9 13 24 )(4 12 21’)(1 11’19’)(9’14’22’)

(11 26 29 )(2 11 14 )(4 8 30 )(5 8 22’)(9 15’25 )(13’19’22’)(3 21 24 )

(20 27’30 )(3’6 16 )(2 8 15 )(3 23’29’)(6’12 25’)(4 4’14’)(12’17 20’)

(1’16’26’)(8 9’20’)

c

c NOTE: Random

c

p cnf 30 127

-13 -27 -28 0

10 18 -22 0

-11 -18 -26 0

-5 10 22 0

16 16 -17 0

-3 -17 29 0

-1 8 22 0

-10 19 -26 0

-2 5 26 0

7 11 -14 0

2 -6 -10 0

18 20 -23 0

-20 -21 -27 0

-2 -6 14 0

-12 19 30 0

-5 -21 25 0



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 302

-1 -19 22 0

6 -9 -16 0

-9 -26 28 0

-9 -22 -23 0

-9 17 -25 0

-13 -17 21 0

2 18 -29 0

-4 -15 27 0

3 -8 -21 0

10 20 30 0

15 -18 25 0

-11 -27 -28 0

-3 18 27 0

-19 -25 -30 0

-3 20 -29 0

-1 -2 -30 0

-8 -13 25 0

-4 9 29 0

15 -22 24 0

-1 16 -16 0

4 23 -30 0

-10 -15 19 0

6 -7 23 0

-5 -10 28 0

-3 18 -29 0

-13 -23 26 0

-2 6 -24 0

-1 10 -24 0

10 15 -23 0

-11 -17 -26 0

-12 23 -29 0

-12 -17 -24 0

3 -9 12 0

12 -24 28 0

-17 -18 23 0

1 13 28 0

-10 -10 28 0

10 20 26 0

-8 -19 21 0

12 -16 18 0

6 13 27 0

1 8 -24 0

6 -7 -30 0

-15 19 -28 0

12 -13 19 0

-14 -19 29 0

3 10 21 0

-15 -20 -28 0

21 -28 -30 0

-4 -6 9 0

22 26 29 0



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 303

15 22 -26 0

7 -10 -14 0

24 -24 27 0

17 26 27 0

-6 17 -22 0

3 -14 21 0

-12 -18 25 0

11 14 25 0

5 -8 30 0

4 -23 -28 0

16 -16 -27 0

1 8 19 0

-2 13 -28 0

3 -7 17 0

-6 11 14 0

7 -18 -30 0

-5 23 27 0

15 -16 -22 0

-7 -8 -21 0

2 16 22 0

-4 -21 -29 0

23 -23 -25 0

-4 -12 29 0

6 7 14 0

-5 -5 -18 0

-7 16 25 0

5 -26 -26 0

-7 -8 20 0

-15 16 -17 0

-11 13 30 0

5 -11 -20 0

1 1 24 0

4 9 -24 0

17 18 -30 0

11 13 -20 0

-2 15 24 0

7 7 -25 0

-3 -25 28 0

2 5 9 0

-6 14 -27 0

9 13 24 0

4 12 -21 0

1 -11 -19 0

-9 -14 -22 0

11 26 29 0

2 11 14 0

4 8 30 0

5 8 -22 0

9 -15 25 0

-13 -19 -22 0

3 21 24 0



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 304

20 -27 30 0

-3 6 16 0

2 8 15 0

3 -23 -29 0

-6 12 -25 0

4 -4 -14 0

-12 17 -20 0

-1 -16 -26 0

8 -9 -20 0

C.2 Proof of the Example Problem

When the CutSat program is run, one of the output files created is a proof file.

If the problem is unsatisfiable, the contents of the resulting proof file is a proof of

unsatisfiable. A proof file that was produced from the input given in section C.1,

above, is reproduced in this section. Interpretation and checking of the proof is

discussed in section 5.2.

For this run, the symbol SHOW INITIAL TABLEAU was defined, so the initial tableau

is displayed. This provides an example of a tableau. The reader may wish to com-

pare this tableau with the problem representation in the input file. In addition,

the symbol SHOW NONBASIC VARIABLES was defined, so the vector of nonbasic vari-

able names is displayed at each iteration. This allows the reader to observe the

much more concise proof format that results. The symbols SHOW EVERY TABLEAU and

SHOW CUT DERIVATIONS were not defined for this run.

THE INITIAL SIMPLEX TABLEAU:

Maximize:

1x1 -1x3 -1x5 +1x7 -1x8 +1x9 -1x10 -1x15 -1x16 +1x17

-1x18 +2x22 +1x23 +1x24 -1x25 +1x26 +1x28 +1x30

Such that:

1s1 +1x1 = 1

1s2 +1x2 = 1

1s3 +1x3 = 1

1s4 +1x4 = 1

1s5 +1x5 = 1

1s6 +1x6 = 1



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 305

1s7 +1x7 = 1

1s8 +1x8 = 1

1s9 +1x9 = 1

1s10 +1x10 = 1

1s11 +1x11 = 1

1s12 +1x12 = 1

1s13 +1x13 = 1

1s14 +1x14 = 1

1s15 +1x15 = 1

1s16 +1x16 = 1

1s17 +1x17 = 1

1s18 +1x18 = 1

1s19 +1x19 = 1

1s20 +1x20 = 1

1s21 +1x21 = 1

1s22 +1x22 = 1

1s23 +1x23 = 1

1s24 +1x24 = 1

1s25 +1x25 = 1

1s26 +1x26 = 1

1s27 +1x27 = 1

1s28 +1x28 = 1

1s29 +1x29 = 1

1s30 +1x30 = 1

1s31 +1x13 +1x27 +1x28 = 2

1s32 -1x10 -1x18 +1x22 = 0

1s33 +1x11 +1x18 +1x26 = 2

1s34 +1x5 -1x10 -1x22 = 0

1s35 -1x16 +1x17 = 0

1s36 +1x3 +1x17 -1x29 = 1

1s37 +1x1 -1x8 -1x22 = 0

1s38 +1x10 -1x19 +1x26 = 1

1s39 +1x2 -1x5 -1x26 = 0

1s40 -1x7 -1x11 +1x14 = 0

1s41 -1x2 +1x6 +1x10 = 1

1s42 -1x18 -1x20 +1x23 = 0

1s43 +1x20 +1x21 +1x27 = 2

1s44 +1x2 +1x6 -1x14 = 1

1s45 +1x12 -1x19 -1x30 = 0

1s46 +1x5 +1x21 -1x25 = 1

1s47 +1x1 +1x19 -1x22 = 1

1s48 -1x6 +1x9 +1x16 = 1

1s49 +1x9 +1x26 -1x28 = 1

1s50 +1x9 +1x22 +1x23 = 2

1s51 +1x9 -1x17 +1x25 = 1

1s52 +1x13 +1x17 -1x21 = 1

1s53 -1x2 -1x18 +1x29 = 0

1s54 +1x4 +1x15 -1x27 = 1

1s55 -1x3 +1x8 +1x21 = 1

1s56 -1x10 -1x20 -1x30 = -1

1s57 -1x15 +1x18 -1x25 = 0



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 306

1s58 +1x11 +1x27 +1x28 = 2

1s59 +1x3 -1x18 -1x27 = 0

1s60 +1x19 +1x25 +1x30 = 2

1s61 +1x3 -1x20 +1x29 = 1

1s62 +1x1 +1x2 +1x30 = 2

1s63 +1x8 +1x13 -1x25 = 1

1s64 +1x4 -1x9 -1x29 = 0

1s65 -1x15 +1x22 -1x24 = 0

1s66 -1x4 -1x23 +1x30 = 0

1s67 +1x10 +1x15 -1x19 = 1

1s68 -1x6 +1x7 -1x23 = 0

1s69 +1x5 +1x10 -1x28 = 1

1s70 +1x3 -1x18 +1x29 = 1

1s71 +1x13 +1x23 -1x26 = 1

1s72 +1x2 -1x6 +1x24 = 1

1s73 +1x1 -1x10 +1x24 = 1

1s74 -1x10 -1x15 +1x23 = 0

1s75 +1x11 +1x17 +1x26 = 2

1s76 +1x12 -1x23 +1x29 = 1

1s77 +1x12 +1x17 +1x24 = 2

1s78 -1x3 +1x9 -1x12 = 0

1s79 -1x12 +1x24 -1x28 = 0

1s80 +1x17 +1x18 -1x23 = 1

1s81 -1x1 -1x13 -1x28 = -1

1s82 +1x10 -1x28 = 0

1s83 -1x10 -1x20 -1x26 = -1

1s84 +1x8 +1x19 -1x21 = 1

1s85 -1x12 +1x16 -1x18 = 0

1s86 -1x6 -1x13 -1x27 = -1

1s87 -1x1 -1x8 +1x24 = 0

1s88 -1x6 +1x7 +1x30 = 1

1s89 +1x15 -1x19 +1x28 = 1

1s90 -1x12 +1x13 -1x19 = 0

1s91 +1x14 +1x19 -1x29 = 1

1s92 -1x3 -1x10 -1x21 = -1

1s93 +1x15 +1x20 +1x28 = 2

1s94 -1x21 +1x28 +1x30 = 1

1s95 +1x4 +1x6 -1x9 = 1

1s96 -1x22 -1x26 -1x29 = -1

1s97 -1x15 -1x22 +1x26 = 0

1s98 -1x7 +1x10 +1x14 = 1

1s99 -1x27 = 0

1s100 -1x17 -1x26 -1x27 = -1

1s101 +1x6 -1x17 +1x22 = 1

1s102 -1x3 +1x14 -1x21 = 0

1s103 +1x12 +1x18 -1x25 = 1

1s104 -1x11 -1x14 -1x25 = -1

1s105 -1x5 +1x8 -1x30 = 0

1s106 -1x4 +1x23 +1x28 = 1

1s107 -1x1 -1x8 -1x19 = -1

1s108 +1x2 -1x13 +1x28 = 1



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 307

1s109 -1x3 +1x7 -1x17 = 0

1s110 +1x6 -1x11 -1x14 = 0

1s111 -1x7 +1x18 +1x30 = 1

1s112 +1x5 -1x23 -1x27 = 0

1s113 -1x15 +1x16 +1x22 = 1

1s114 +1x7 +1x8 +1x21 = 2

1s115 -1x2 -1x16 -1x22 = -1

1s116 +1x4 +1x21 +1x29 = 2

1s117 +1x4 +1x12 -1x29 = 1

1s118 -1x6 -1x7 -1x14 = -1

1s119 +1x5 +1x18 = 1

1s120 +1x7 -1x16 -1x25 = 0

1s121 -1x5 +1x26 = 0

1s122 +1x7 +1x8 -1x20 = 1

1s123 +1x15 -1x16 +1x17 = 1

1s124 +1x11 -1x13 -1x30 = 0

1s125 -1x5 +1x11 +1x20 = 1

1s126 -1x1 -1x24 = -1

1s127 -1x4 -1x9 +1x24 = 0

1s128 -1x17 -1x18 +1x30 = 0

1s129 -1x11 -1x13 +1x20 = 0

1s130 +1x2 -1x15 -1x24 = 0

1s131 -1x7 +1x25 = 0

1s132 +1x3 +1x25 -1x28 = 1

1s133 -1x2 -1x5 -1x9 = -1

1s134 +1x6 -1x14 +1x27 = 1

1s135 -1x9 -1x13 -1x24 = -1

1s136 -1x4 -1x12 +1x21 = 0

1s137 -1x1 +1x11 +1x19 = 1

1s138 +1x9 +1x14 +1x22 = 2

1s139 -1x11 -1x26 -1x29 = -1

1s140 -1x2 -1x11 -1x14 = -1

1s141 -1x4 -1x8 -1x30 = -1

1s142 -1x5 -1x8 +1x22 = 0

1s143 -1x9 +1x15 -1x25 = 0

1s144 +1x13 +1x19 +1x22 = 2

1s145 -1x3 -1x21 -1x24 = -1

1s146 -1x20 +1x27 -1x30 = 0

1s147 +1x3 -1x6 -1x16 = 0

1s148 -1x2 -1x8 -1x15 = -1

1s149 -1x3 +1x23 +1x29 = 1

1s150 +1x6 -1x12 +1x25 = 1

1s151 +1x12 -1x17 +1x20 = 1

1s152 +1x1 +1x16 +1x26 = 2

1s153 -1x8 +1x9 +1x20 = 1

THE NONBASIC VARIABLES:

s127 s119 s61 s105 s122 s132 s131 s3 s93 s95 s108 s146

s110 s143 s68 x11 x17 s85 x22 s82 s2 s31 s89 s126

s59 s70 s84 s47 s76 s96

THE CANDIDATE CUT:

-4s119 -1s61 -4s105 -3s122 -4s132 -3s131 -5s3 -2s108 -3s146 -5s2



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 308

-2s31 -5s59 -6s70 <= -6

THE NONBASIC VARIABLES:

s87 s119 s43 s105 s92 s109 s131 s121 s93 s95 s133 s104

s110 s143 s40 s63 s102 s85 x22 s82 s129 s151 s20 s126

x23 x3 s127 s47 s76 s96

THE CANDIDATE CUT:

-2s131 -2s104 -2s40 <= -2

THE LIFTED CUT:

-2s131 -2s104 -2s40 <= -2

is added to the tableau with slack variable: s154

THE NONBASIC VARIABLES:

s37 s119 s131 s124 s92 s109 s137 s121 s148 x3 s133 s98

s41 s143 s112 s11 s125 s85 x2 s82 s63 s16 s151 s126

s66 s34 s53 s118 s76 s96

THE CANDIDATE CUT:

-1s98 -1s41 -1x2 -1s118 <= -1

FOUND A LIFT. The term: -1x2 is lifted to: 1x2

THE LIFTED CUT:

-1s98 -1s41 +1x2 -1s118 <= -1

is added to the tableau with slack variable: s155

THE NONBASIC VARIABLES:

s37 s119 s131 s80 s92 s109 s137 s93 s102 s55 s133 s90

s13 s143 s112 s52 s125 s121 x2 s82 s15 s16 s141 s126

s45 s34 x23 s48 x30 s96

THE CANDIDATE CUT:

-1s90 -1s13 -1s45 -1x30 <= -1

FOUND A LIFT. The term: -1s90 is lifted to: 1s90

THE LIFTED CUT:

1s90 -1s13 -1s45 -1x30 <= -1

is added to the tableau with slack variable: s156

THE NONBASIC VARIABLES:

s37 s119 s55 s80 s92 s109 s137 s43 s102 s11 s133 s90

s58 s143 x3 s83 s125 s121 s88 s82 s15 s16 s78 s126

s66 s34 s85 s60 s54 s96

THE CANDIDATE CUT:

-2s92 -2s43 -3s11 -3s58 -3x3 -1s83 -4s125 -1s121 -3s82 <= -4

FOUND A LIFT. The term: -4s125 is lifted to: 1s125

THE LIFTED CUT:

-2s92 -2s43 -3s11 -3s58 -3x3 -1s83 +1s125 -1s121 -3s82 <= -4

is added to the tableau with slack variable: s157

THE NONBASIC VARIABLES:

s37 s119 s55 s40 s39 s109 s129 s116 s102 s43 s133 s90

s48 s143 s79 s114 s125 s121 s88 s47 s15 s16 s78 s126

s66 s34 s82 s14 s54 s96

THE CANDIDATE CUT:

-3s129 -3s90 -3s79 -3s125 -3s47 -3s126 -3s34 -3s82 <= -3

THE NONBASIC VARIABLES:

s37 s119 s55 s40 s39 s109 s129 s116 s102 s43 s133 s90

s48 s143 s79 s114 s125 s121 s88 s47 s15 s16 s78 s126

s66 s34 s82 s14 s54 s96

THE CANDIDATE CUT:



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 309

-3s129 -3s90 -3s79 -3s125 -3s47 -3s126 -3s34 -3s82 <= -3

FOUND A LIFT. The term: -3s126 is lifted to: 3s126

FOUND A LIFT. The term: -3s82 is lifted to: 3s82

THE LIFTED CUT:

-3s129 -3s90 -3s79 -3s125 -3s47 +3s126 -3s34 +3s82 <= -3

is added to the tableau with slack variable: s158

THE NONBASIC VARIABLES:

s142 s119 s55 x3 s67 s109 s83 s91 s106 s60 s133 x20

s122 s41 s143 s100 s71 s77 s88 s156 s64 s16 s139 s126

s66 s155 s127 s62 s54 s96

THE CANDIDATE CUT:

-6x3 -3s109 -3s41 -3s77 -3s88 -6s156 -3s126 -6s155 -3s62 <= -6

THE NONBASIC VARIABLES:

s60 s119 s142 s136 s42 s109 s83 s91 s144 s87 s133 x20

x8 s41 s143 s100 x29 s137 s101 s156 s37 s16 s15 s126

s66 s36 s132 s128 s54 s96

THE CANDIDATE CUT:

-2s87 -2x8 -2s126 <= -2

FOUND A LIFT. The term: -2s87 is lifted to: 2s87

THE LIFTED CUT:

2s87 -2x8 -2s126 <= -2

is added to the tableau with slack variable: s159

THE NONBASIC VARIABLES:

s8 s119 s127 s48 s114 s73 s83 s91 s16 s87 s133 s81

s159 s54 s131 s100 s121 s137 s101 s93 s151 s89 x29 s85

s66 s64 s122 s128 s36 s96

THE CANDIDATE CUT:

-1s127 -1s159 -1x29 -1s64 <= -1

FOUND A LIFT. The term: -1x29 is lifted to: 1x29

FOUND A FIXED VARIABLE: s159 = 0

THE LIFTED CUT:

-1s127 +1x29 -1s64 <= -1

is added to the tableau with slack variable: s160

THE NONBASIC VARIABLES:

x1 s119 s160 s48 s114 s36 s83 s139 s111 s87 s137 s81

s159 s54 s80 s100 s121 s84 s101 s93 s103 s138 s105 x2

s66 s125 s122 s51 s63 s96

THE CANDIDATE CUT:

-1x1 -3s119 -1s114 -2s111 -4s137 -1s84 -2s105 -1s125 -1s122 <= -4

THE NONBASIC VARIABLES:

s79 s119 s160 s48 s59 s94 s112 s139 s73 s87 s41 s81

s159 s54 s128 s100 s121 s89 x19 x23 s49 s138 s34 x2

s66 s117 s122 s51 s154 s96

THE CANDIDATE CUT:

-2s119 -2s160 -4s112 -3s54 -2s128 -3s100 -1s121 -2s89 -3x19 -3x23

-2s49 -3s66 <= -4

THE NONBASIC VARIABLES:

s79 s119 s160 s48 s39 s94 s103 s139 s73 s87 s154 s57

s159 s134 s61 s129 s121 s89 s83 s88 s71 s115 s149 s27

s50 s116 s122 s51 s109 s96

THE CANDIDATE CUT:



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 310

-4s73 -4s87 -4s154 -4s61 -4s129 -4s83 -4s71 -4s149 -4s122 <= -4

THE NONBASIC VARIABLES:

s79 s119 s160 s48 s146 s94 s117 s139 s73 s87 s41 s38

s159 s134 s36 s138 s121 s89 s124 s88 s120 s115 s129 s27

s50 s58 s49 s51 s109 s96

THE CANDIDATE CUT:

-1s146 -1s124 -1s129 -1s27 <= -1

FOUND A LIFT. The term: -1s129 is lifted to: 1s129

THE LIFTED CUT:

-1s146 -1s124 +1s129 -1s27 <= -1

is added to the tableau with slack variable: s161

THE NONBASIC VARIABLES:

s79 s119 s9 s48 s82 s103 s117 s139 x29 s87 s41 s66

s159 s134 s36 s138 s121 s113 s114 s88 s107 s125 s77 s153

s50 s63 s49 s51 s109 s96

THE CANDIDATE CUT:

-2s79 -2s119 -1s9 -1s103 -2s121 -1s77 -1s49 -1s51 <= -2

THE NONBASIC VARIABLES:

s79 s119 s160 s48 s82 s94 x21 s139 x29 s87 s41 s66

s159 s134 s36 s138 s121 s113 s78 s88 s107 s125 s77 s153

s50 s63 s49 s51 s109 s96

THE CANDIDATE CUT:

-1s160 -1x29 -1s36 -1s78 -1s77 <= -1

FOUND A FIXED VARIABLE: s78 = 0

FOUND A LIFT. The term: -1s36 is lifted to: 1s36

FOUND A FIXED VARIABLE: x29 = 0

FOUND A FIXED VARIABLE: s160 = 0

THE LIFTED CUT:

1s36 -1s77 <= -1

is added to the tableau with slack variable: s162

THE NONBASIC VARIABLES:

s79 s93 s160 s48 s155 s94 s106 s139 x29 s87 s41 s58

s159 s101 s147 s138 s121 s85 s78 s120 s57 s89 s162 s153

s136 s63 s128 s51 s46 s96

THE CANDIDATE CUT:

-1s48 -1s147 -1s162 <= -1

FOUND A FIXED VARIABLE: s48 = 0

FOUND A FIXED VARIABLE: s147 = 0

FOUND A FIXED VARIABLE: s162 = 0

THE LIFTED CUT:

0 <= -1

is added to the tableau with slack variable: s163

NO FEASIBLE SOLUTION EXISTS.

c

c The term is NOT satisfiable.

c

c 10 lifted cutting planes were used in 4 seconds.

c

c The DIMACS "solution" line:

s cnf 0 30 127

c



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 311

c The DIMACS "timing" line:

t cnf 0 30 127 4 10

C.3 Example CutSat Session Transcript

When the CutSat program is run, it interacts with the user via the “cin” and “cout”

streams. The transcript of the session which produced the proof given in section C.2

is displayed in this section. The output produced to the cout stream during a session

is not part of the formal proof. For formal purposes, it should be considered as

commentary or ignored entirely.

Cnf Filename>rsat-30-4.25-1.cnf

Cnf Filename>go

read 127 clauses.

34 dual pivots were used

30 primal pivots were used

measureCuts: -21.1421(324/2170,22) (6 of 127 cuts) den=21

Cut-improving pivot. CutMeasure=-12.3685(36/195,13) (2 of 25 cuts) den=7

count of Gomory cuts = 6

The candidate cut has measure: -12.3685(36/195,13)

0 dual pivots were used

24 primal pivots were used

Denominator Reducing pivot is:4

measureCuts: -14(4/56,14) (40 of 130 cuts) den=4

Cut-improving pivot. CutMeasure=-3(4/12,3) (10 of 25 cuts) den=4

count of Gomory cuts = 3

The candidate cut has measure: -3(4/12,3)

14 dual pivots were used

4 dual pivots were used

21 dual pivots were used

The lifted cut has measure: -3(4/12,3)

8 dual pivots were used

15 primal pivots were used

Denominator Reducing pivot is:4

Denominator Reducing pivot is:2

measureCuts: -11(1/11,11) (92 of 92 cuts) den=2

Cut-improving pivot. CutMeasure=-4(1/4,4) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -4(1/4,4)

9 dual pivots were used

8 dual pivots were used

9 dual pivots were used

21 dual pivots were used



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 312

The lifted cut has measure: -3(1/3,3)

9 dual pivots were used

8 primal pivots were used

Denominator Reducing pivot is:4

Denominator Reducing pivot is:2

measureCuts: -13(1/13,13) (91 of 91 cuts) den=2

Cut-improving pivot. CutMeasure=-4(1/4,4) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -4(1/4,4)

22 dual pivots were used

15 dual pivots were used

12 dual pivots were used

16 dual pivots were used

The lifted cut has measure: -3(1/3,3)

6 dual pivots were used

8 primal pivots were used

Denominator Reducing pivot is:5

measureCuts: -12.2545(16/74,13) (25 of 131 cuts) den=5

Cut-improving pivot. CutMeasure=-10.3847(16/75,11) (4 of 25 cuts) den=5

Cut-improving pivot. CutMeasure=-8.39214(16/62,9) (4 of 25 cuts) den=5

count of Gomory cuts = 4

The candidate cut has measure: -8.39214(16/62,9)

17 dual pivots were used

12 dual pivots were used

10 dual pivots were used

17 dual pivots were used

19 dual pivots were used

11 dual pivots were used

17 dual pivots were used

The lifted cut has measure: -7.26178(16/46,8)

10 dual pivots were used

7 primal pivots were used

measureCuts: -8(9/72,8) (23 of 131 cuts) den=6

count of Gomory cuts = 5

The candidate cut has measure: -8(9/72,8)

0 dual pivots were used

0 primal pivots were used

measureCuts: -8(9/72,8) (23 of 131 cuts) den=6

count of Gomory cuts = 5

The candidate cut has measure: -8(9/72,8)

19 dual pivots were used

12 dual pivots were used

3 dual pivots were used

34 dual pivots were used

12 dual pivots were used

17 dual pivots were used

19 dual pivots were used

17 dual pivots were used

The lifted cut has measure: -6(9/54,6)

5 dual pivots were used

27 primal pivots were used



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 313

measureCuts: -21.7185(4096/15943,23) (2 of 154 cuts) den=67

Cut-improving pivot. CutMeasure=-8.5(144/648,9) (2 of 25 cuts) den=18

Denominator-reducing pivot. measure=-8.5(36/162,9) (6 of 25 cuts) den=9

count of Gomory cuts = 8

The candidate cut has measure: -8.5(36/162,9)

0 dual pivots were used

20 primal pivots were used

Denominator Reducing pivot is:6

measureCuts: -7(9/63,7) (33 of 134 cuts) den=6

Cut-improving pivot. CutMeasure=-3(9/27,3) (7 of 25 cuts) den=6

Denominator-reducing pivot. measure=-3(4/12,3) (13 of 25 cuts) den=4

count of Gomory cuts = 3

The candidate cut has measure: -3(4/12,3)

29 dual pivots were used

28 dual pivots were used

24 dual pivots were used

The lifted cut has measure: -2(4/8,2)

14 dual pivots were used

14 primal pivots were used

Denominator Reducing pivot is:-4

Denominator Reducing pivot is:2

measureCuts: -8(1/8,8) (91 of 91 cuts) den=2

Cut-improving pivot. CutMeasure=-4(1/4,4) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -4(1/4,4)

8 dual pivots were used

5 dual pivots were used

21 dual pivots were used

0 dual pivots were used

The lifted cut has measure: -2(1/2,2)

20 dual pivots were used

0 primal pivots were used

measureCuts: -21.2589(16/126,22) (28 of 141 cuts) den=5

Cut-improving pivot. CutMeasure=-8.98174(16/39,10) (3 of 25 cuts) den=5

Cut-improving pivot. CutMeasure=-8.039(16/38,9) (7 of 25 cuts) den=5

count of Gomory cuts = 4

The candidate cut has measure: -8.039(16/38,9)

0 dual pivots were used

19 primal pivots were used

measureCuts: -12.0405(16/55,13) (25 of 129 cuts) den=5

Cut-improving pivot. CutMeasure=-11.3863(16/82,12) (3 of 25 cuts) den=5

count of Gomory cuts = 4

The candidate cut has measure: -11.3863(16/82,12)

0 dual pivots were used

24 primal pivots were used

measureCuts: -10.4312(196/980,11) (8 of 150 cuts) den=21

Cut-improving pivot. CutMeasure=-9(16/144,9) (6 of 25 cuts) den=8

count of Gomory cuts = 7

The candidate cut has measure: -9(16/144,9)

0 dual pivots were used

14 primal pivots were used



APPENDIX C. A COMPLETE UNSATISFIABILITY PROOF 314

measureCuts: -10(1/10,10) (98 of 98 cuts) den=2

Cut-improving pivot. CutMeasure=-4(1/4,4) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -4(1/4,4)

8 dual pivots were used

15 dual pivots were used

13 dual pivots were used

15 dual pivots were used

The lifted cut has measure: -3(1/3,3)

3 dual pivots were used

13 primal pivots were used

measureCuts: -15.5543(16/138,16) (20 of 138 cuts) den=5

Cut-improving pivot. CutMeasure=-7.66096(4/20,8) (13 of 25 cuts) den=3

Cut-improving pivot. CutMeasure=-7.54373(4/17,8) (12 of 25 cuts) den=3

count of Gomory cuts = 2

The candidate cut has measure: -7.54373(4/17,8)

0 dual pivots were used

2 primal pivots were used

Denominator Reducing pivot is:2

measureCuts: -9(1/9,9) (78 of 78 cuts) den=2

Cut-improving pivot. CutMeasure=-5(1/5,5) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -5(1/5,5)

3 dual pivots were used

15 dual pivots were used

21 dual pivots were used

13 dual pivots were used

0 dual pivots were used

The lifted cut has measure: -1(1/1,1)

17 dual pivots were used

0 primal pivots were used

measureCuts: -12(1/12,12) (109 of 109 cuts) den=2

Cut-improving pivot. CutMeasure=-3(1/3,3) (25 of 25 cuts) den=2

count of Gomory cuts = 1

The candidate cut has measure: -3(1/3,3)

7 dual pivots were used

2 dual pivots were used

0 dual pivots were used

The lifted cut has measure: nan(1/0,0)

0 dual pivots were used

c

c The term is NOT satisfiable.

c

c 10 lifted cutting planes were used in 4 seconds.

c

c The DIMACS "solution" line:

s cnf 0 30 127

c

c The DIMACS "timing" line:

t cnf 0 30 127 4 10



References

Aarts, E., & Lenstra, J. K. (1997). Local search in combinatorial optimization. John
Wiley & Sons.

Abramsky, S., Gabbay, D. M., & Maibaum, T. S. E. (Eds.). (1992). Handbook of logic
in computer science: Volume 2 background: Computational structures. Oxford:
Clarendon Press.

Arora, S., Lund, C., Motwani, R., Sudan, M., & Szegedy, M. (1998). Proof verification
and the hardness of approximation problems. Journal of the Association for
Computing Machinery, 45 (3), 501–555.

Asahiro, Y., Iwama, K., & Miyano, E. (1996). Random generation of test instances
with controlled attributes. In D. S. Johnson & M. A. Trick (Eds.), DIMACS
series on discrete mathematics and theoretical computer science: Cliques, color-
ing, and satisfiability: Second DIMACS implementation challenge october 11–
13, 1993 (Vol. 26, pp. 377–393). Providence, RI: American Mathematical So-
ciety.

Balas, E. (1990). Finding out whether a valid inequality is facet defining. In R. Kan-
nan & W. R. Pulleyblank (Eds.), Proceedings of the 1st integer programming
and combinatorial optimization conference (pp. 45–60). Waterloo, ON, Canada:
University of Waterloo Press.

Balas, E., Ceria, S., Cornuéjols, G., & Natraj, N. (1996). Gomory cuts revisited.
Operations Research Letters, 19 (1), 1–9.

Balas, E., & Clausen, J. (Eds.). (1995). Lecture notes in computer science 920:
Integer programming and combinatorial optimization, 4th international IPCO
conference (Vol. 920). Copenhagen, Denmark: Springer Verlag.

Balas, E., & Jeroslow, R. (1972). Canonical cuts on the unit hypercube. SIAM
Journal on Applied Mathematics, 23 (1), 61–69.

Balas, E., & Ng, S. M. (1989a). On the set covering polytope: II. Lifting the facets
with coefficients in {0,1,2}. Mathematical Programming, 45, 1–20.

315



REFERENCES 316

Balas, E., & Ng, S. M. (1989b). On the set covering polytope: I. All the facets with
coefficients in {0,1,2}. Mathematical Programming, 43, 57–69.

Balas, E., & Zemel, E. (1984). Lifting and complementing yields all the facets of
positive zero-one programming polytopes. In Mathematical programming (rio
de janeiro, 1981) (pp. 13–24). Amsterdam: North-Holland.

Barendregt, H. P. (1984). The lambda calculus: Its syntax and semantics (2nd ed.).
North Holand.

Barth, P. (1993). Linear 0-1 inequalities and extended clauses. In A. Voronkov
(Ed.), Lecture notes in computer science 698: Logic programming and automated
reasoning, 4th international conference, LPAR’93, st. petersburg, russia, july
13-20, 1993, proceedings (pp. 40–51). Petersburg, Russia: Springer Verlag.

Barth, P. (1994). Simplifying clausal satisfiability problems. In J. P. Jouannaud
(Ed.), Lecture notes in computer science 845: Constraints in computational
logics. proceedings (pp. 19–33). Munich, Germany: Springer Verlag.

Barth, P. (1995). A Davis-Putnam based enumeration algorithm for linear pseudo-
boolean optimization (Tech. Rep. No. MPI-I-95-2-003). Im Stadtwald, D 66123
Saarbrücken, Germany: Max-Planck Institut für Informatik.

Barth, P. (1996). Logic-based 0-1 constraint programming. Boston: Klewer Academic.

Beame, P., Impagliazzo, R., Kraj́ıček, J., Pitassi, T., Pudlak, P., & Woods, A. (1992).
Exponential lower bounds for the pigeonhole principle. In N. Alon (Ed.), Pro-
ceedings of the 24th annual ACM symposium on the theory of computing (pp.
200–220). Victoria, B.C., Canada: ACM Press.

Beame, P., & Pitassi, T. (1996). Simplified and improved resolution lower bounds. In
Proceedings 37th annual symposioum on foundations of computer science (pp.
274–282). Burlington, Vermont: IEEE Computer Society.

Bernays, P. (1991). Axiomatic set theory. New York: Dover Publications. (Original
work published 1968)

Bibel, W. (1990). Short proofs of the pigeonhole formulas based on the connection
method. Journal of Automated Reasoning, 6 (3), 287–297.

Bibel, W., & Eder, E. (1993). Methods and calculi for deduction. In D. M. Gabbay,
C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in artificial intelligence
and logic programming: Volume 1 logical foundations (pp. 68–183). Oxford:
Clarendon Press.

Blair, C. (1976). Two rules for deducing valid inequalities for 0-1 problems. SIAM
Journal on Applied Mathematics, 31 (4), 614–617.



REFERENCES 317

Bockmayr, A., & Eisenbrand, F. (1997). On the chvátal rank of polytopes in the
0/1 cube (Tech. Rep. No. MPI-I-97-2-009). Im Stadwald, 66123 Saarbrucken
(Germany): Max-Planck-Institut Für Informatik. (Available: http://www.mpi-
sb.mpg.de/∼eisen/)

Bonet, M. L., Esteban, J. L., Galesi, N., & Johannsen, J. (1998). Exponential sepa-
rations between restricted resolution and cutting plane proof systems. Elec-
tronic Colloquium on Computational Complexity, 5 (TR98-035). (Available:
www.eccc.uni-trier.de/eccc-local/Lists/TR-1998.html)

Book, R. V. (Ed.). (1991, April). Lecture notes in computer science 488: Rewriting
techniques and applications: 4th international conference, RTA-91. Como, Italy:
Springer Verlag.

Book, R. V. (Ed.). (1993, June). Lecture notes in computer science 690: Rewriting
techniques and applications: 5th international conference, RTA-93. Montreal,
Canada: Springer Verlag.

Boole, G. (1958). An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities. New York: Dover. (Original
work published 1854)

Buss, S. R. (1987). Polynomial size proofs of the propositional pigeonhole principle.
Journal of Symbolic Logic, 52 (4), 916–927.

Carter Jr., E. F. (1994). R250. (Available: http://www.taygeta.com/random.xml)

Ceria, S., Cornuéjols, G., & Dawande, M. (1995). Combining and strengthing gomory
cuts. In E. Balas & J. Clausen (Eds.), Lecture notes in computer science 920:
Integer programming and combinatorial optimization, 4th international IPCO
conference (Vol. 920, pp. 438–451). Copenhagen, Denmark: Springer Verlag.

Church, A. (1936a). A note on the entscheidungsproblem. The Journal of Symbolic
Logic, 1, 40–41. (Correction, ibid., pp. 101-102)

Church, A. (1936b). An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58, 345–363.

Church, A. (1941). The calculi of lambda-conversion. Princeton, NJ: Princton Uni-
versity Press.

Church, A. (1956). Introduction to mathematical logic (revised ed.). Princeton, NJ:
Princeton University Press.

Church, A., & Rosser, J. B. (1936). Some properties of conversion. Transactions of
the American Mathematical Society, 39, 472–482.



REFERENCES 318

Chvátal, V. (1973). Edmund polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics, 4, 305–337.

Chvátal, V. (1983). Linear programmig. New York: W. H. Freeman and Co.

Chvátal, V. (1984). Cutting-plane proofs and the stability number of a graph (Tech-
nical Report No. 84326). Rheinische Friedrich-Wilhelms-Universität, Bonn: In-
stitut für Ökonometrie und Operations Research.

Chvátal, V., & Szemerédi, E. (1988). Many hard examples for resolution. Journal of
the Association for Computing Machinery, 35, 759–770.

Clote, P. (1995). Cutting plane and Frege proofs. Information and Computation,
121 (1), 103–122.

Comon, H., & Jouannaud, J.-P. (Eds.). (1993, May). Lecture notes in computer sci-
ence 909: Term rewriting: French spring school of theoretical computer science.
Font Romeux, France: Springer Verlag.

Cook, S., & Reckhow, R. (1974). On the lengths of proofs in the propositional calculus
(preliminary version). In Conference record of sixth annual ACM symposium
on theory of computing (pp. 135–148). Seattle, Washington: ACM.

Cook, S., & Reckhow, R. (1979). The relative efficiency of propositional proof systems.
Journal of Symbolic Logic(1), 36-50.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Conference
record of third annual ACM symposium on theory of computing (pp. 151–158).
Shaker Heights, Ohio: ACM.

Cook, W., Coullard, C. R., & Turán, G. (1987). On the complexity of cutting plane
proofs. Discrete Applied Mathematics, 18 (1), 25–38.

Cook, W. J. (1990). Cutting-plane proofs in polynomial space. Mathematical Pro-
gramming, 47 (1), 11–18.

Cornuéjols, G., & Sassano, A. (1989). On the 0, 1 facets of the set covering polytope.
Mathematical Programming, 43 (1), 45–55.

Crescenzi, P., & Kann, V. (1995). A compendium of NP optimization problems (Tech.
Rep. No. SI/RR-95/02). Dipartimento di Scienze dell´Informazione, Università
di Roma “La Sapienza”. (Available: http://www.nada.kth.se/nada/theory/-
problemlist.html)

Curry, H. B. (1977). Foundations of mathematical logic. Dover Publications, Inc.
(Original work published 1963)



REFERENCES 319

Dantsin, E. Y. (1997). Algorithmics of propositional satisfiability problems. In
V. Kreinovich & G. Mints (Eds.), Problems of reducing the exhaustive search
(pp. 5–22). Providence, RI: American Mathematical Society.

Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton
University Press.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem
proving. Communications of the ACM, 5, 394–397.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7, 201–215.

Dershowitz, N. (1987). Termination of rewriting. In J.-P. Jouannaud (Ed.), Rewriting
techniques and applications (pp. 69–115). London: Academic Press. (Reprinted
from Journal of Symbolic Computation, 1987, 3 [1&2])

Dershowitz, N. (Ed.). (1989, April 3–5). Lecture notes in computer science 355:
Rewriting techniques and applications: 3rd international conference, RTA-89.
Chapel Hill, NC: Springer Verlag.

Dershowitz, N., & Jouannaud, J.-P. (1994). Rewrite systems. In J. V. Leeuwen (Ed.),
Handbook of theoretical computer science: Vol. B: Formal models and semantics
(pp. 243–320). Cambridge, MA: MIT Press.

Deskins, W. E. (1978). Basic concepts in algebra. In W. H. Beyer (Ed.), CRC
standard mathematical tables (25th ed., pp. 16–22). West Palm Beach, Florida:
CRC Press.

DIMACS Center for Mathematics and Theoretical Computer Science. (1993a, May
8). Satisfiability suggested format. (Available: ftp://dimacs.rutgers.edu/pub/-
challenge/satisfiabiliy/doc/satformat.ps)

DIMACS Center for Mathematics and Theoretical Computer Science. (1993b). DI-
MACS SAT benchmarks. (Available: ftp://dimacs.rutgers.edu/pub/challenge/-
satisfiability/benchmarks/cnf)

Doob, J. L. (1993). Measure theory. New York: Springer.

Dorfman, R., Samuelson, P. A., & Solow, R. M. (1987). Linear programming and
economic analysis. New York: Dover. (Original work published 1958)

Dowling, W. F., & Gallier, J. H. (1984). Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming,
1 (3), 267–284.



REFERENCES 320

Du, D., Gu, J., & Pardalos, P. M. (Eds.). (1997). DIMACS series on discrete
mathematics and theoretical computer science: Satisfiability problem: Theory
and applications (Vol. 35). Providence, RI: American Mathematical Society.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics
(Journal Canadien de Mathématiques), 17, 449-467.

Eisinger, N., & Ohlbach, H. J. (1993). Deduction systems based on resolution. In
D. M. Gabbay, C. J. Hogger, & J. A. Robinson (Eds.), Handbook of logic in
artificial intelligence and logic programming: Volume 1 logical foundations (pp.
183–271). Oxford: Clarendon Press.

Epstein, R. L. (1995). The semantic foundations of logic: Propositional logics (second
ed.). New York: Oxford University Press.

Ershov, Y. E., & Palyutin, E. A. (1984). Mathematical logic (V. Shokurov, Trans.).
Moscow: Mir Publishers. (Original work published 1979)

Evan, S. A., Itai, A., & Shamir, A. (1976). On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5, 691–703.

Evans, T. (1951). On multiplicative systems defined by generators and relations. I.
normal form theorems. Proc. Cambridge Phil. Soc., 47, 637–649.

Fages, F. (1983). Formes canoniques dans les algèbres booléennes et application à la
démonstration automatique en logique du premier ordre. Thèse de 3ème cycle,
University de Paris VI, Paris.

Fiduccia, C., & Mattheyses, R. (1982). A linear-time heuristic for improving network
partition. 175–181.

Franco, J. (1989). On the occurrence of null clauses in random instances of satis-
fiability (Tech. Rep. No. TR 291). Bloomington, Indiana: Computer Science
Department, Indiana University.

Franco, J. (1997). Relative size of certain polynomial time solvable subclasses of
satisfiability. In D. Du, J. Gu, & P. M. Pardalos (Eds.), DIMACS series on
discrete mathematics and theoretical computer science: Satisfiability problem:
Theory and applications (Vol. 35, pp. 211–223). Providence, RI: American
Mathematical Society.

Franco, J., Dunn, J. M., & Wheeler, W. H. (1992). Recent work at the interface of
logic, combinatorics, and computer science. Annals of Mathematics and Artifi-
cial Intelligence, 6, 1–16. (Special issue on Logic and Combinatorics. Available:
http://www.ece.uc.edu/∼franco/content.html)



REFERENCES 321

Franco, J., & Gelder, A. V. (1998). A perspective on certain polynomial time solv-
able classes of satisfiability (Tech. Rep.). University of Cincinnati, Cincinnati,
OH 45221: Computer Science Department. (To appear in Journal of Global
Optimization. Available: http://www.ece.uc.edu/∼franco/content.html)

Franco, J., & Ho, Y. C. (1986). On the probabilistic performance of algorithms
for the satisfiability problem (Tech. Rep. No. TR 167). Bloomington, Indiana:
Computer Science Department, Indiana University.

Freeman, J. W. (1995). Improvements to propositional satisfiability search algorithms.
Unpublished doctoral dissertation, University of Pensylvania.

Freese, R., Jezek, J., & Nation, J. B. (1993). Term rewrite systems for lattice theory.
Journal of Symbolic Computation, 16 (3), 279–288.

Gabbay, D. M. (1992). Elements of algorithmic proof. In S. Abramsky, D. M. Gabbay,
& T. S. E. Maibaum (Eds.), Handbook of logic in computer science: Volume 2
background: Computational structures (pp. 311–413). Oxford: Clarendon Press.

Gabbay, D. M., Hogger, C. J., & Robinson, J. A. (Eds.). (1993). Handbook of logic
in artificial intelligence and logic programming: Volume 1 logical foundations.
Oxford: Clarendon Press.

Galil, Z. (1974). The complexity of resolution procedures for theorem proving (Tech.
Rep. No. TR 75-223). Ithaca, New York: Dept. of Computer Science, Cornell
University. (Available: http://cs-tr.cs.cornell.edu:80/Dienst/UI/2.0/Describe/-
ncstrl.cornell%2fTR75-223)

Galil, Z. (1975a). The complexity of resolution procedures for theorem proving in the
propositional calculus. Unpublished doctoral dissertation, Cornell University.
(Also published as a technical report (Galil, 1975b))

Galil, Z. (1975b). The complexity of resolution procedures for theorem prov-
ing in the propositional calculus (Tech. Rep. No. TR 75-239). Ithaca, New
York: Dept. of Computer Science, Cornell University. (Available: http://cs-
tr.cs.cornell.edu:80/Dienst/UI/2.0/Describe/ncstrl.cornell%2fTR75-239)

Ganzinger, H. (Ed.). (1996, July). Lecture notes in computer science 1103: Rewrit-
ing techniques and applications: 7th international conference, RTA-96. New
Brunswick, NJ: Springer Verlag.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-Completeness. New York: W. H. Freeman and Company.



REFERENCES 322

Gärtner, B., & Ziegler, G. M. (1994). Randomized simplex algorithms on Klee-Minty
cubes. In 35th annual symposium on foundations of computer science (pp.
502–510). Santa Fe, New Mexico. (Available: http://elib.zib.de:88/preprints/-
shadows/SC-94-07.html)

Gödel, K. (1992). On formally undecidable propositions of principia mathematica and
related systems (B. Meltzer, Trans.). New York: Dover Publications. (Reprinted
from Monatshefte Für Mathematic und Physik, 1931, 38, 173-198)

Goerdt, A. (1991). Cutting plane versus frege proof systems. In E. Boerger, H. K.
Buening, M. M. Richter, & W. Schoenefeld (Eds.), Lecture notes in computer
science 533: Proceedings of computer science logic (CSL ’90) (Vol. 533, pp.
174–194). Berlin: Springer-Verlag.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs.
Bulletin American Mathematical Society, 64, 275–278.

Gomory, R. E. (1963). An algorithm for integer solutions to linear programs. In R. L.
Graves & P. Wolfe (Eds.), Recent advances in mathematical programming (pp.
269–302). New York: McGraw Hill.

Gondran, M. (1973). Un outil pour la programmation en nombres entires. la méthode
des congruences décroissantes. Revue Française d’Automatique, Informatique,
et Recherche Opérationelle, 3, 35–54.

Gu, J., Purdom, P., Franco, J., & Wah, B. (1997). Algorithms for satisfiability (SAT)
problem: A survey. In D. Du, J. Gu, & P. M. Pardalos (Eds.), DIMACS series
on discrete mathematics and theoretical computer science: Satisfiability prob-
lem: Theory and applications (Vol. 35, pp. 19–151). Providence, RI: American
Mathematical Society.

Gu, Z., Nemhauser, G. L., & Savelsbergh, M. W. P. (1995). Sequence independent
lifting of cover inequalities. In E. Balas & J. Clausen (Eds.), Lecture notes in
computer science 920: Integer programming and combinatorial optimization, 4th
international IPCO conference (Vol. 920, pp. 452–461). Copenhagen, Denmark:
Springer Verlag.

Halmos, P. R. (1950). Measure theory. New York: D. van Nostrand Company, Inc.

Hankin, C. (1993). Lambda calculi: A guide for computer scientists. Oxford: Claren-
don Press.

H̊astad, J. (1997). Some optimal inapproximability results. In Proceedings of the
twenty-ninth annual ACM symposium on theory of computing (pp. 1–10). El
Paso, Texas.



REFERENCES 323

H̊astad, J. T. (1987). Computational limitations for small-depth circuits. Cambridge,
MA: MIT Press. (ACM Doctoral Dissertation Award, 1986)

Heering, J., Mienke karl, Möller, B., & Nipkow, T. (Eds.). (1993, September). Lecture
notes in computer science 816: Higher-order algebra, logic, and term rewriting:
First international workshop, HOA-93. Amsterdam, The Netherlands: Springer
Verlag.

Herbrand, J. (1967). Investigations in proof theory: The properties of true proposi-
tions (B. Dreben & J. van Heijenoort, Trans.). In J. van Heijenoort (Ed.), From
Frege to Godel: A source book in mathematical logic, 1879–1931 (pp. 525–581).
Cambridge, MA: Harvard University Press. (Original work published 1930)

Hochbaum, D. S. (Ed.). (1995). Approximation algorithms for NP-hard problems.
Boston, MA: PWS Publishing Company.

Hooker, J. N. (1992). Generalized resolution for 0-1 linear inequalities. Annals of
Mathematics and Artificial Intelligence, 6, 271–286.

Hsiang, J. (1982). Topics in automated theorem proving and program generation
(Tech. Rep. No. R-82-1113). Urbana, IL: Department of Computer Science,
University of Illinois.

Hsiang, J. (1983). Topics in automated theorem proving and program generation.
Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign.
(Abstract DAI-B 43/12, p. 4056, Jun 1983. Also published as a technical report
(Hsiang, 1982).)

Hsiang, J. (Ed.). (1995, April). Lecture notes in computer science 914: Rewriting tech-
niques and applications: 6th international conference, RTA-95. Kaiserslautern,
Germany: Springer Verlag.

Hsiang, J., & Huang, G. S. (1997). Some fundamental properties of Boolean ring
normal forms. In D. Du, J. Gu, & P. M. Pardalos (Eds.), DIMACS series on
discrete mathematics and theoretical computer science: Satisfiability problem:
Theory and applications (Vol. 35). Providence, RI: American Mathematical
Society. (Available: http://www.csie.ntu.edu.tw/∼hsiang/dimacs1.ps)

Jeroslow, R. G., & Kortanek, K. O. (1971). On an algorithm of gomory. SIAM
Journal on Applied Mathematics, 21 (1), 55–60.

Johnson, D. S., & Trick, M. A. (Eds.). (1996). DIMACS series on discrete mathemat-
ics and theoretical computer science: Cliques, coloring, and satisfiability: Second
DIMACS implementation challenge october 11–13, 1993 (Vol. 26). Providence,
RI: American Mathematical Society.



REFERENCES 324

Jouannaud, J.-P. (Ed.). (1987). Rewriting techniques and applications. London:
Academic Press. (Reprinted from Journal of Symbolic Computation, 1987,
3 [1&2])

Joy, S., Mitchell, J., & Borchers, B. (1997). A branch and cut algorithm for MAX-
SAT and weighted MAX-SAT. In D. Du, J. Gu, & P. M. Pardalos (Eds.),
DIMACS series on discrete mathematics and theoretical computer science: Sat-
isfiability problem: Theory and applications (Vol. 35, pp. 519–536). Providence,
RI: American Mathematical Society.

Jünger, M., Reinelt, G., & Thienel, S. (1995). Practical problem solving with cutting
plane algorithms in combinatorial optimization. In J. E. Goodman, R. Pollack,
& W. Steiger (Eds.), DIMACS series on discrete mathematics and theoreti-
cal computer science: Combinatorial optimization: Papers from the DIMACS
special year (Vol. 20, pp. 111–152). Providence, RI: American Mathematical
Society.

Kalai, G. (1992). A subexponential randomized simplex algorithm (extended ab-
stract). In Proceedings of the twenty-fourth annual ACM symposium on the
theory of computing (pp. 475–482). Victoria, British Columbia, Canada.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller
& J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103).
New York: Plenum Press.

Kirkpatrick, S., & Stoll, E. P. (1981). A very fast shift-register sequence random
number generator. Journal of Computational Physics, 40 (2), 517–526.

Klop, J. W. (1992). Term rewriting systems. In S. Abramsky, D. M. Gabbay, &
T. S. E. Maibaum (Eds.), Handbook of logic in computer science: Volume 2
background: Computational structures (pp. 1–116). Oxford: Clarendon Press.

Knuth, D. E., & Bendix, P. B. (1970). Simple word problems in universal algebras.
In J. Leech (Ed.), Computational problems in abstract algebra (p. 263-297).
Permagon Press.

Kraj́ıček, J. (1997). Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. Journal of Symbolic Logic, 62 (2),
457–486.

Kullmann, O. (1998). New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science. (To appear. Available: http://mi.informatik.uni-
frankfurt.de/people/kullmann/papers.html)

Le Chenadec, P. (1986). Canonical forms in finitely presented algebras. New York:
John Wiley & Sons, Inc.



REFERENCES 325

Lescanne, P. (Ed.). (1987, May). Lecture notes in computer science 256: Rewriting
techniques and applications. Bordeaux, France: Springer Verlag.

Lewis, H. R. (1978). Renaming a set of clauses as a horn set. Journal of the
Association for Computing Machinery, 25, 134–135.

Løkkentangen, A., & Glover, F. (1997). Surrogate constraint analysis – new heuristics
and learning schemes for satisfiability problems. In D. Du, J. Gu, & P. M. Parda-
los (Eds.), DIMACS series on discrete mathematics and theoretical computer
science: Satisfiability problem: Theory and applications (Vol. 35, pp. 537–572).
Providence, RI: American Mathematical Society.

Mendelson, E. (1987). Introduction to mathematical logic (Third ed.). Monterey,
California: Wadsworth & BrooksCole.

Minoux, M. (1986). Mathematical programming: Theory and algorithms (S. Vajda,
Trans.). Chichester, UK: John Wiley & Sons. (Original work published 1983)

Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge, UK:
Cambridge University Press.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization.
New York: John Wiley & Sons.

Newman, M. H. A. (1942). On theories with a combinatorial definition of “equiva-
lence”. Ann. Math., 43, 223–243.

Nobili, P., & Sassano, A. (1989). Facets and lifting procedures for the set covering
polytope. Mathematical Programming, 45B(1), 111–137.

Padberg, M. W. (1975). A note on zero-one programming. Operations Research, 23,
833-837.

Peled, U. (1977). Properties of the facets of binary polytopes. Annals of Discrete
Mathematics, 1, 435–456.

Plaza, J. A. (1996). Soundness and completeness versus lifting property. In J. Calmet,
J. A. Campbell, & J. Pfalzgraf (Eds.), Lecture notes in computer science 1138:
Artificial intelligence and symbolic mathematical computation: Proceedings of
the international conference, AISMC-3 (pp. 354–364). Steyr, Austria: Springer
Verlag.

Pudlák, P. (1997). Lower bounds for resolution and cutting plane proofs and mono-
tone computations. Journal of Symbolic Logic, 62 (3), 981–998.

Quine, W. V. O. (1951). Mathematical logic (Revised ed.). New York: Harper &
Row.



REFERENCES 326

Quine, W. V. O. (1952). The problem of simplifying truth functions. American Math.
Monthly, 59 (8), 521–531.

Resende, M. G. C., & Feo, T. A. (1996). A GRASP for satisfiability. In D. S. Johnson
& M. A. Trick (Eds.), DIMACS series on discrete mathematics and theoretical
computer science: Cliques, coloring, and satisfiability: Second DIMACS imple-
mentation challenge october 11–13, 1993 (Vol. 26, pp. 499–520). Providence,
RI: American Mathematical Society.

Robinson, J. A. (1965). A machine oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12, 23-41.

Russell, B. (1938). Principles of mathematics (second ed.). New York: W. W. Norton
& Co. (Original work published 1902)

Salomaa, A. (1973). Formal languages. Orlando, Florida: Academic Press.

Sassano, A. (1989). On the facial structure of the set covering polytope. Mathematical
Programming, 44 (2), 181–202.

Schrijver, A. (1986). Theory of linear and integer programming. Chichester, UK:
John Whley & Sons.

Selman, B., Kautz, H., & Cohen, B. (1996). Local search strategies for satisfiability
testing. In D. S. Johnson & M. A. Trick (Eds.), DIMACS series on discrete
mathematics and theoretical computer science: Cliques, coloring, and satisfia-
bility: Second DIMACS implementation challenge october 11–13, 1993 (Vol. 26,
pp. 521–531). Providence, RI: American Mathematical Society.

Selman, B., Levesque, H., & Mitchell, D. (1992). A new method for solving hard
satisfiability problems. In Proceedings of AAAI ’92 (pp. 440–446). AAAI Press.

Shoup, V. (1999). Ntl: A library for doing number theory. (Available: http://-
www.shoup.net/ntl)

Smale, S. (1983). On the average number of steps in the simplex method of linear
programming. Mathematical programming, 27, 241–262.

Spears, W. M. (1996). Simulated annealing for hard satisfiability problems. In
D. S. Johnson & M. A. Trick (Eds.), DIMACS series on discrete mathematics
and theoretical computer science: Cliques, coloring, and satisfiability: Second
DIMACS implementation challenge october 11–13, 1993 (Vol. 26, pp. 533–555).
Providence, RI: American Mathematical Society.

Stoll, R. R. (1961). Sets, logic, and axiomatic theories. San Francisco, CA: W. H.
Freeman and Co.



REFERENCES 327

Stoll, R. R. (1979). Set theory and logic. New York: Dover Publications. (Original
work published 1963)

Suppes, P. (1972). Axiomatic set theory. New York: Dover Publications. (Original
work published 1960)

Tovey, C. A. (1997). Local improvement in discrete structures. In Local search in
combinatorial optimization. John Wiley & Sons.

Truemper, K. (1998). Effective logic computation. New York: John Wiley & Sons.

Turing, A. (1936–1937). On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, ser. 2, 42,
230–265. (Correction, ibid, vol. 43, pp. 544-546, 1937)

Urquhart, A., & Fu, X. (1996). Simplified lower bounds for propositional proofs.
Notre Dame Journal of Formal Logic, 37 (4), 523–544.

Vizvári, B. (1989). Two algorithms to get strong Gomory cuts. Optimization, 20 (1),
117–126.

von Neumann, J. (1986). The general and logical theory fo automata. In W. Aspray
& A. Burks (Eds.), (pp. 391–431). Cambridge, MA: The MIT Press. (Original
work published 1948)

Wang, J. (1997). Branching rules for propositional satisfiability. In D. Du, J. Gu, &
P. M. Pardalos (Eds.), DIMACS series on discrete mathematics and theoretical
computer science: Satisfiability problem: Theory and applications (Vol. 35, pp.
351–364). Providence, RI: American Mathematical Society.

Whitehead, A. N., & Russell, B. (1950). Principia mathematica (second ed.). London:
Cambridge University Press. (Original work published 1912)

Wolfram, S. (1999). The mathematica book (4th ed.). New York: Cambridge Univer-
sity Press.

Wolsey, L. A. (1976). Facets and strong valid inequalities for integer programs.
Operations Research, 24, 367–372.

Wolsey, L. A. (1998). Integer programming. New York: John Wiley & Sons.

Zane, F. (1998). Circuits, CNFs, and satisfiability (boolean circuits, circuit complex-
ity). Unpublished doctoral dissertation, University of California, San Diego,
San Diego, CA.

Zemel, E. (1978). Lifting the facets of zero-one polytopes. Mathematical Program-
ming, 15, 268–277.



REFERENCES 328

Zhang, H. (1997). SATO: An efficient propositional theorem prover. In W. McCune
(Ed.), Lecture notes in artificial intelligence 1249: Automated deduction – cade-
14: 14th international conference on automated deduction (Vol. 1249, pp. 272–
275). Townsville, North Queensland, Australia: Springer Verlag.


	Nova Southeastern University
	NSUWorks
	2000

	Complete Randomized Cutting Plane Algorithms for Propositional Satisfiability
	Stephen Lee Hansen
	Share Feedback About This Item
	NSUWorks Citation


	Dissertation.dvi

