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NOMENCLATURE 

constant def'j ned by Eq. (6b) 

constant defined by Eq. (58) 

constant defined by Eq. (31c) 

specific heat of the convective fluid 

constant given by Eq. (31d) 

constant given by Eq. (41c) 

transformed stream function defined by Eq. (17) 

auxiliary function defined by Eq. (32a) 

acceleration of gravity 

permeability of the porous medium 

thermal conductivity of the porous medium 

length of the cylinder 

quantity defined by Eq. (31a) 

quantity defined by Eq. (40a) 

quantity defined by Eq. (4la) 

pressure 

surface - integrated heat transfer rate 

quantity defined by Eq. (3lb) 

quantity defined by Eq. (40b) 

quantity defined by Eq. (4lb) 

local heat transfer rate per unit area 

modified local Rayleigh number, Ra = Kp gex(Tw-T )/~~ x 00 00 

radial coordinate 

radius of cylinder 
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Subscripts 

c 

p 

w 

spanwise dimension, S = 2wro 

temperature 

velocity component in x-direction 

reference velocity, ur = KpoogS(Tw-Too)/~ 
reference velocity in r-direction 

axial coordinate 

equivalent thermal diffusivity 

coefficient of thermal expansion 

pseudo-similarity variable defined by Eq. (15) 

dimensionless temperature defined by Eq. (18) 

constant defined by Eq. (6b) 

viscosity of convective fluid 

density of convective fluid 

stretched streamwise coordinate defined by Eq. (16) 

constant defined by ~o = (2/ro) lIKPV~9A 
00 

constant defined by ~L = {2/rO)\lKPoo~~fTw-Too)L 
auxiliary function defined by Eq. (32b) 

stream function 

quantities associated with a cylinder 

quantities associated with a flat plate 

quantities on the surface of the cylinder 

quantities at infinity 
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ABSTRACT 

An analysis is made for free convective flow about a vertical cylinder 

embedded in a saturated porous medium, where surface temperature of the 

cylinder varies as xA, a power function of distance from the leading edge. 

Within the framework of boundary layer approximations, exact solution is 

obtained for the special case where surface temperature varies linearly with 

x, i.e., A = 1. For other values of A, approximate solutions based on local 

similarity and local non-similarity models are obtained. It is found that 

the local similarity solutions are sufficiently accurate for all practical 

purposes. Analytical expressions for local surface heat flux and overall 

surface heat flux are obtained. 
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1. INTRODUCTION 

The study of free convection from the outer surface of a heated vertical 

cylinder embedded in a saturated porous medium has important geophysical and 

engineering applications. For example, as a result of volcanic activities or 

tectonic movements, magmatic intrusion may occur at shallow depths in the 

earth's crust [1]. The intrusive magma may take the form of a cylindrical 

shape. If the intrusive magma is trapped in an aquifer, free convective flow 

can be generated in the groundwater adjacent to the hot intrusives. A study 

of temperature distribution around the intrusives and the associated heat 

flux distribution will aid in an assessment and the evaluation of geothermal 

resources during geophysical exploration. Furthermore, the heat transfer 

coefficients obtained from this study will be useful to estimate the cooling 

rate of intrusive bodies and consequently the life span of a geothermal 

reservoir; it will also be useful to calculate the heat loss of underground 

casing and piping systems for the optimum design of geothermal power plants. 

It has been established that a viable geothermal reservoir for power 

generation must have a hot heat source for the continuous supply of energy, 

and a highly permeable formation to ensure sustained delivery of fluids to 

production wells at adequate rates [2]. Under these conditions, free 

convective flow in geothermal reservoirs will have a high Rayleigh number. 

Accordingly, boundary layer approximations, analogous to the classical 

viscous theory, can be applied to free convective flow in a porous medium. 

This has been done by Wooding [3] to treat the problem of free convection 

about a line source and a point source, as well as for free convection above 

two finite heated vertical plates embedded in a porous medium. The boundary 

layer approximations were also invoked by McNabb [4] to treat the problem 

of free convective flow in a porous medium above a horizontal heated plate. 
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Most recently, Cheng and his co-workers [5,6J have obtained similarity 

solutions for free convection in a porous medium adjacent to vertical and 

horizontal plates with wall temperatures being a power f~nction of distance. 

In this paper we shall study convective flow about a vertical heated 

cylinder embedded in a saturated porous medium, where surface temperature of 

the cylinder varies asxA
, a power function of distance from the leading edge. 

Within the framework of bounday layer approximations, exact solution is obtained 

for the special case where surface temperature varies linearly with x, i.e., 

A = 1. For other values of A, approximate solutions based on local similarity 

and local non-similarity methods [7,8] are obtained. It is found that the 

local similarity solutions are sufficiently accurate for'all practical purposes. 

2. FORMULATION OF THE PROBLEM 

Consider the prob,lem of steady free convection about a vertical cylinder 

of radius ro' with a prescribed axial symmetric wall temperature, is embedded 

in a saturated porous medium as shown in Fig. 1. If we assume that 1) the 

convective fluid and the porous medium are everywhere in local thermodynamic 

equilibrium, 2) the temperature of the fluid is everywhere below boiling, 

3) properties of the fluid and the porous medium is everywhere isotropic and 

homogeneous, and 4) Boussinesq approximation is employed, the governing 

equations in a cylindrical coordinate system are given by 

a a _ 
ar(rv) + -ax(ru) - 0 

u = -'$.1.££ + pg) 
lJ ,ax 
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v = _K~ 
~! ar 

tJI. + vaT = [1 ~ r. aT)+ a
2
TJ ax ar a r ar \rar 2 ' ax 

(3) 

(4) 

where u, and v are the velocity components in x and r-directions, p, ~, and S 

are the density, viscosity, and the thermal expansion coefficient of the 

fluid, K is the permeability of the saturated porous medium, a = km/(PCp)f is 

the equivalent thermal diffusivity where ~ denoting the thermal conductivity 

of the saturated porous medium and (PCp)f the density and specific heat of the 

fluid. T, p, and g are respectively the temperature, pressure, and the 

gravitational acceleration. The subscript "00" denotes the condition at 

infinity. The appropriate boundary conditions for the problem are 

r = ro ' v = 0 , T = T = T + AxA 
w 00 

(6a,b) 

r + 00 , U = 0 , T = T 00 
(7a,b) 

where A > O. in Eq. (6b) we have assumed that the prescribed waii temperature 

is a power function of distance from the leading edge. 

The continuity equation is automatically satisfied by introducing the 

stream function $ as 

ru = ~ ar and rv = -~ ax 

The governing equations and boundary conditions in terms of $ and Tare 

given by 
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and 

r-+ oo , 

~= 0 oX 

(9) 

(10) 

(11) 

(12) 

with the remaining two boundary conditions for T being given by Eqs. (6b) and (7b). 

3. BOUNDARY LAYER EQUATIONS 

The boundary layer approximations similar to those by Wooding [3J, McNabb [4], 

Cheng & ~1inkowycz [5J, and Cheng & Chang [6J can now be applied if we assume 

that convection takes place within a thin layer adjacent to the vertical surface 

of the cylinder. With these simplifications, Eqs. (9) and (10) become 

and 

a f. aT) = (~aT _ ~ aT) aar\rar ar ax ax ar . 

(13 ) 

(14 ) 

We now attempt to transform Eqs. (13) and (14) into a set of ordinary 

differential equations. For this purpose we introduce the following new 

dimensionless variables 

~ = 1... !lax = 2x _l_ 
ro KPooSg (Tw-Too) r .. rr;;;­o ,. Rax 
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where Rax = KpoogSX(Tw-Too)/~a is the modified local Rayleigh number in a saturated 

porous medium. It is worth mentioning that for a thin boundary layer where r 

does not differ appreciably from ro' the quantity inside the bracket in Eq. (15) 

reduces to y (where y = r-ro) and consequently n reduces to the flat plate 

similarity variable given in Ref. 5. Next we introduce the dimensionless 

stream function and temperature F and e given by 

T-T 
8{~,n) = =---=00_ T -T w 00 

(17) 

(18 ) 

which are identical to the relations for a flat plate [5J except that F is now 

a function of both ~ and nand ro is introduced to give proper dimension for ~. 

It can be shown that velocity components in terms of the new variables 

are 

Kp B9(Tw-T) 
00 00 F u = ---=-:---

~ n 
, 

( 19) 

and 

r 0 VaKPooB9 (Tw-T) r 1 
\I =- . fl-).){nF -FF) - (l+,\)F 
~ 2r ~ L \. ."' \ .. n -'" f,: I • 1\. J (20) 

whereas the governing equations (13) and (14) with appropriate boundary conditions 

in terms of the new variables are 

(21) 

l [(l+~n)~J + (1+:\) F8 -:\F 8 = 1-:\ ~(F 8 -8 F ) 
an an 2 n n 2 n ~ n ~ (22) 

F(~,O) = 0 , 8(~,0) = 1 (~3a,b) 
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a(~,co) = 0 (24a,b) 

It is worth noting that Eqs. (21) and (22) are identical to those for free 

convection about a vertical flat plate [5J if ~ = O. Thus, any deviation from 

~ = 0 is a measure of transverse curvature effects. We shall now obtain 

approximate solutions for A ~ 1 and exact solutions for A = 1. 

4. APPROXIMATE SOLUTIONS FOR A ~ 1 

A. Local Similarity Solution 

When the value of ~ or the values of e~ and F~ are both small, the 

right-hand side of Eq. (22) can be deleted. With this approximation, 

Eqs. (21-24) do not have derivatives with respect to ~.and thus can be 

considered as a coupled pair of ordinary differential equations with ~ 

regarded as a prescribed parameter. This is the so-called local similarity 

approximation. Thus, the local similarity equations are given by 

F" = 81 (25) 
and 

{l+~T))a" + (~ + l;AF)e ' - AF'e = 0 , (26) 

with boundary conditions given by 

F{~,O) = 0 , e{~,o) = 1 , (27a,b) 

F' (~,co) = 0 , e(~,co) = 0 (28a,b) 

where the primes denote partial differentiation with respect to T). 

We now obtain numerical solution to Eqs. (25) and (26) by an integral 

method. To this end, we first integrate Eq. (25) and impose condition 

(27a) and (27b) to give 

F(~,T)) = J: a(~,T))dT) 
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We now turn our attention to Eq. (26) which can be considered as a second­

order ordinary differential equation for 8. The solution for e is given by 

where Pl (t;,n) :: [t; + l?'F(t;,n) ] / (l+t;n) (31a) 

and 
0=1 1 

(3lb) 

(3lc) 

(3ld) 

with constants (3lc) and (3ld) obtained by imposing Eq. (30) with boundary 

conditions (27) and (28). 

By assigning a successive value of t; and assuming initial profile for 

a, values of stream function and temperature at a particular location 

(t;,n) can be obtained by iteration from the integrals given by Eqs. (29) 

and (30). The solution thus obtained is an approximate one since some 

terms in the energy equation are assumed to be small. 

B. Local Non-Similarity Solution 

More accurate results can be obtained by the so-called local non­

similarity solution which retains the full energy equation. To this end, 

we let 

(32a) 
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(32b) 

and Eqs. (21) and (22) can be rewritten as 

FII = 8 1 , (33) 

(l+E;n)8 11 + (E;+';AF+l 2Ai;G) 8 I = AF I8 + 12ACFI<P (34) 

It is noted that Eqs. (33) and (34) do not have derivatives with respect 

to E;. However, we now have four unknowns and therefore two more equations 

are needed. For this purpose, we differentiate Eqs. (33) and (34) with 

respect to E; to give 

Gil = <pI (35) 

(l+E;n)<p 1I + (t;~)<pI:;: (l+A)FI<p+AGle-(1+G)81-nell + l-AC~(FI<p-eIG) (36) 2 2 2 aE; 

where we have made use of Eq. (32). 

If the last term of Eq. (36) vanishes, Eqs. (33-36) can be considered 

as a set of coupled ordinary differential equations with t; regarded as a 

pa"'''' .... '' ... e''' T\..." 'a,..t t,,~~ .;,.. van.:- .... .:~g -rna" .:,c el'th-~ ,.. -r a ( .... 11 "I") ,'-101l11::\, I. 1111:: I;) 1::1111 I;) 1;)11111;)1 II II t::r- ~ u ~ r cp-o \l :s 

small. 

If the last term in Eq. (36) is deleted, we have 

(37) 

Eqs. (33), (34), (35), and (37) are referred to as the first level of 

truncation of a local non-similarity model, which can be considered as 

four coupled ordinary differential equations for F, 8, G, and <p with E; 

regarded as a parameter. These equations are to be solved subject to the 

following boundary conditions 
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F(~,O) ::: 0 , 8(~,O) = 1 (38a) 

F' (~,co) = 0 , e(~,co) = 0 (38b) 

G(~,O) = 0 , cf>(~,O) = 0 (38c) 

G1 (~,co) = 0 , cf>(~,co) = 0 (38d) 

Thus the local non-similarity solution retains the full energy equation with 

approximations made in a subsidiary equation, and therefore, the local non­

similarity solution is expected to be more accurate than the local similarity 

solution. 

Numerical solution to the local non-similarity equations can also be 

obtained by the integral method described previously for the local similarity 

solution. Integrating Eqs. (33) and (35) we have 

G(~,n) = fncf>(~,n')dn' 
o 

(39a) 

(39b) 

The solution to Eq. (34) ;s identical to Eq. (3D) in form, but with Pl and 

Ql replaced by P2 and Q2 where 

(40a) 

(40b) 

Similarly, the solution to Eq. (37) is also given by Eq. (30), but with 

P" Q" and D, replaced by P3, Q3' and D3 where 
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D = 0 3 

(4la) 

(4lb) 

(41c) 

By assigning a value for ~ and with an initial guess of 6 and ¢, solutions 

to F, G. 6, and ¢ can be obtained by iteration. 

Presumably, more accurate results can be obtained by introducing subsidiary 

equations from successive differentiation of the energy equation and deleting 

the terms involving ~ derivatives in the last subsidiary equation. From the 

previous work by Sparrow and Yu [7J and by Minkowycz and Sparrow [8J, it is 

shown that the first level of truncation of the local non-similarity solution 

is sufficiently accurate, and therefore, higher level of truncations have 

not been pursued in this paper. 

5. EXACT SOLUTION FOR A = 1 

It is interesting to note that exact solution for Eqs. (13) and (14) are 

possible if wall temperature varies linearly with height. For the special case 

of A = 1, Eqs. (15-18) are given by 

T-T 
e(n):: Ax

oo 
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where both n and ~o are independent of x with n depending only on r and ~o 

is a constant. Furthermore, for ~ = 1, the right-hand side of Eq. (22) 

vanishes exactly. Thus Eqs. (21) and (22) become 

a [ aeJ -- (1+~ n)-- + Fe -F e = 0 an 0 an n n 

F(O) = 0 , e(o} = 1 

F'(oo) = 0, e(oo) = 0 

(46) 

(47) 

(48) 

(49) 

Eqs. (46-49) are identical to Eqs. (25-28) with ~ = 1 and ~ = ~o' Thus 

the solutions to the local similarity solution is an exact one for A = 1, and is 

an approximate one for A r 1. 

6. RESULTS AND DISCUSSION 

Computations for local similarity solutions given by Eqs. (25-28) as well 

as the first level truncation of the local non-similarity solutions given by 

Eqs. (33-35) and Eqs. (37-38) are carried out for ~ = 0, 1/4, 1/3, 1/2 and 3/4. 

Exact numerical solution given by Eqs. (46-49) for A = 1 are also obtained for 

, the range of ~o from 0 to 20. According to Eq. (21) and Eq. (24), the values 

of e and F' (where F' = u/u r and ur = poo9SK(Tw-Too)/~) are the same for any n. 

Thus these values are plotted as the vertical coordinate in Fig. 1. The 

difference in values between the local similarity solution and the local 

non-similarity solution is too small to be plotted in the figures. It is 

shown in these figures that both the dimensionless temperature and vertical 

velocity have a maximum value of 1 at n = 0; their values decrease as n is 

increased. The boundary layer thickness is shown to be increasing when either 
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A is decreased or ~ is increased. The magnitude of temperature gradient at 

the wall, i.e., [-e'(~,O,A)],is shown to be increasing as ~ or A is increased. 

The variation of[-e'(~,O,A)] with respect to ~ and A are also tabulated in 

Table 1. 

The local surface heat flux can be computed from 

_ (aT) qc - -km ar r=r 
o 

(50) 

which can be expressed in terms of dimensionless varables to give 

(51 ) 

where it should be noted that ~ = ~o for A = 1.Eq. (51) is identical to the 

corresponding expression for free convection about a vertical flat plate [5] 

if the quantities [-el(~,O,A,)] is replaced by [-el(O,A)]. It follows, therefore, 

the ratio of the surface heat flux along a vertical cylinder to that of a flat 

plate embedded in the same porous medium and with the same wall temperature 

variation is given by 

(52) 

where the subscripts "C" and "p" are used to denote the quantities associated 

with a cylinder and a flat piate respectively. Numerical results for Eq. (52) 

based on both local similarity solution and local non-similarity solution 

are tabulated in Table 2 and are also plotted in Fig. 2 where it is shown that 

the difference in values is maximum for A = a and decrease to zero as A approaches 

1. For a fixed value of ~, the local heat flux ratio decreases as A increases. 
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For a fixed value of A, the local heat flux ratio increases quadratically 

for 0<~<3 and increases linearly when ~>3 . 

. The overall surface heat flux for a cylinder with a length L can be 

computed from 

Q = sJL q (x)dx 
c 0 c , 

where S is the spanwise dimension which is equal to 2nro for a cylinder 

with radius roo Substituting Eq. (51) into Eq. (53) and performing the 

integration, we have 

Q = c 

Vp gSK 2 
Sk A3/ 2 

00 ~-e'(~ O)J , for A=l m lla. 2 0' 

(53) 

(54a) 

where ~L =;0 KPooS~(~w-Too)L· It is noted that the integration for A = 1 can 

be carried out explicitly since ~o is a constant and independent of x. 

We now consider the ratio of total surface heat transfer for a vertical 

cylinder to that of a vertical flat plate with the same length embedded in a 

porous medium. The total surface heat flux for a vertical flat plate with a 

length L and a width S = 2nro embedded in a porous medium is given by [5J 

(55) 

It follows that the ratio of Eqs. (54) to Eq. (55) gives 

[ -e' (~o' 0, A) J A = 1 = -,.--::-;--r.:--::-r......--"":"":'-":'" 
[ -e' (O,A}]A=l 

(56a) 
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and 

(56b) 

Numerical integration was carried out for the integral in Eq. (56b) with A = 0, 

1/4, 1/3, 1/2, and 3/4 for the range of ~L from 0 to 10. It is found that (1) the 

values of Qc/Qp given by Eq. (56b) is practically independent of A (within 4%) 

for both the local similarity and the local non-similarity solution; (2) the 

difference in values given by the local similarity and the non-local similarity 

solution is within 2% as is shown in Fig. 3. Thus we may conclude from the 

numerical results that 

(57) 

It foll ows that 

~
9SK 1+3A 

Q 'U.C Sk A3/ 2 
00 (_2_)L 2 

c = m ].lex. 1+3A (58) 

,where the values of C, which ;s tabulated in Table 3, depends on ~L and A for 

. A I 1, and depends on ~o for A = 1. 
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TABLE 1 VALUES OF [-el(~,A,O)] 

A=O A=1/4 A=1/3 A=1/2 A=3/4 A=l 

~ LS* LNS** LS* r LNS** LS* LNS** LS* LNS** LS* LNS**- Exact 
-

0.25 .4855 .4899 .6748 .6729 .7234 .7240 .8177 .8167 .9383 .9385 1.046 

0.50 .5272 .5332 .7186 .7175 .7672 .7688 .8620 .8616 .9832 .9837 1.091 

0.75 .5664 .5747 .7609 .7604 .8096 .8120 .9050 .9052 1.026 1.028 1.135 

1.00 .6049 .6149 .8021 .8023 .8510 .8540 .9471 .9478 1.069 1.071 1.179 

2.00 .7517 .7668 .9587 .9607 1.009 1.014 1 .106 1.110 1.233 1.235 1.345 

3.00 .8915 .9085 1.106 1. 110 1.158 1. 164 1.259 1.263 1.387 1.390 1.502 

4.00 1.024 1.044 1.268 1.252 1.301 1.308 1.405 1.409 1.537 1.540 1.654 

5.00 1.154 1.176 1.381 1.391 1.441 1.449 1.549 1.553 1. 683 I 1. 687 1.803 

6.00 1.283 1.305 1.518 1.529 1.580 1.589 1 .691 1.696 1.829 1.833 1.952 

7.00 1.413 1.435 1.655 1.667 1.727 1.729 1.835 1.839 1.976 1.980 2.102 

8.00 1.544 1.565 1.795 1.806 1.868 1.870 1.980 1.984 2.124 2.128 2.253 

9.00 1.678 1.696 1.937 1.947 2.006 2.013 2.127 2.130 2.276 2.278 2.407 

10.00 1.815 1.830 2.083 2.091 2.153 2.159 2.278 2.280 2.429 2.432 2.564 

*LS -- Local similarity solution 

**LNS -- Local non-similarity solution 
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TABLE 2 LOCAL HEAT FLUX RATIO, qc(~)/qp(~) 

A=O A=1/4 A=1/3 A=1/2 A=3/4 A=l I 
~ LS* LNS** LS* LNS** LS* LNS** LS* LNS** LS* LNS** Exact 

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.50 1.183 1.202 1.140 1.140 1. 132 1.132 1.125 1.125 1 .101 1 .101 1.090 

1.00 1.362 1.386 1.271 1.272 1.257 1.258 1.241 1.242 1.200 1.200 1 .178 

1.50 1.531 1.561 1.399 1.400 1.371 1.372 1.350 1.351 1.294 1.294 1.262 

2.00 1.696 1.727 1.520 1.522 1.486 1.488 1.450 1.452 1.383 1.384 1.343 

2.50 1.853 1.889 1.637 1.641 1.597 1.601 1.549 1.552 1.469 1.470 1.420 

3.00 2.005 2.044 1.753 1.759 1.707 1.712 1.648 1.652 1.554 1.556 1.496 

4.00 2.304 2.351 1.976 1.986 1.919 1.927 1.840 1.845 1.721 1.723 1.649 

5.00 2.601 2.645 2.192 2.205 2.123 2.133 2.030 2.036 1.887 1.890 1.801 I 
6.00 2.894 2.941 2.411 2.429 2.330 2.342 2.221 2.227 2.053 2.056 1. 951 

7.00 3.189 3.236 2.631 2.650 2.538 2.551 2.410 2.417 2.218 2.221 2.102 

8.00 3.481 3.530 2.851 2.870 2.747 2.760 2.602 2.609 2.385 2.389 2.254 

9.00 3.771 3.821 3.071 3.090 2.953 2.967 I 2.791 2.799 2.551 2.555 2.406 

10.00 4.060 4.110 3.289 3.309 3.159 3.173 2.981 2.989 2.721 2.725 2.561 

*LS -- Local similarity solution 

**LNS -- Local non-similarity solution 
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C(~L,A) C(~o) 

~L or ~o A=O A=1/4 A=1/3 A=1/2 A=3/4 ),:::1 

0.0 .4440 .6303 .6788 .7615 .8926 1.000 

0.5 .4840 .6900 .7400 .8300 .9729 1.090 

1.0 .5230 .7425 .7996 .8970 1.051 1.178 

1.5 .5603 .7954 .8566 .9610 1.126 1.262 

2.0 .5962 .8464 .9116 1.023 1.199 1.343 

2.5 .6305 .8950 .9639 1.081 1.267 1.420 

3.0 .6642 .9429 1.015 1.139 1.335 1.496 

4.0 .7322 1.039 1.119 1.256 1.472 1.649 

5.0 .7996 1. 135 1.223 1.371 1.608 1.801 

6.0 .8662 1.230 1.324 1.486 1. 741 1. 951 

7.0 .9333 1.325 1.427 1.601 1.876 2.102 

8.0 1.001 1.421 1.530 1.716 2.012 2.254 

9.0 1.068 1.517 1.633 1.832 2.148 2.406 

10.0 1.137 1.614 1. 738 1.950 2.286 2.561 
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Fig. 2 LOCAL SURFACE HEAT TRANSFER RATIO FOR SELECTED VALUES OF A 
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