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 Aspect oriented programming languages provide a new composition mechanism between 

the functional sub units as compared to earlier non aspect oriented languages. For this 

reason the refactoring process requires a new approach to the analysis of existing code 

that focuses on how the functions cross cut one another. Aspect mining is a process of 

studying an existing program in order to find these cross cutting functions or concerns so 

they may be implemented using new aspect oriented constructs and thus reduce the 

complexity of the existing code. One approach to the detection of these cross cutting 

concerns generates a method call tree that outlines the method calls made within the 

existing code. The call tree is then examined to find recurring patterns of methods that 

can be symptoms of cross cutting concerns caused by code tangling. The conducted 

research focused on enhancing this approach to detect and quantify cross cutting concerns 

that are a result of code tangling as well as code scattering. The conducted research also 

demonstrates how this aspect mining approach can be used to overcome the difficulties in 

detection caused by variations in the coding structure introduced by over time.  
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Chapter 1 

Introduction 

 

Background  

     The description of the programming process, as described by Kiczales, Lamping, 

Mendhekar, Maeda, Lopes, Loingtier and Irwin (1997), is a process of functional 

decomposition where requirements are broken down into smaller units that represent a 

particular behavior of the program. These functional units are then encapsulated into 

programming language constructs in the form of classes, functions or procedures. In 

order to achieve the programs desired result these constructs are composed and 

coordinated in a logical sequence. Non aspect languages, referred to as general 

programming languages by Kiczales et al., have a single composition mechanism 

available for coordinating the functional units. This mechanism is in the form of method, 

function or procedure calls. The single mechanism forces the programmers to weave 

together the function calls to different programming units within the body of the code. 

This results in blocks of code where multiple functional units are invoked in tandem 

causing the functional units to cross cut each other. Kiczales et al. defines this 

composition of functionality where the functionality is implemented independently but 

executed in tandem with each other as a cross cutting concern. These woven cross cutting 

concerns result in code that is more complex and less readable. Moldovan and Serban 

(2006) also define a cross cutting concern as a feature or function of the program that is 

invoked in multiple places throughout the program or whose implementation is 
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interwoven with other functions or concerns within the program. This definition of a 

cross cutting concern highlights two key symptoms of cross cutting concerns that can be 

found within a programs code. The first symptom is code scattering that is caused when 

references or invocations of a concern's implementation is scattered throughout the code 

(Moldovan & Serban, 2006). This symptom is often seen, in non AOP languages, as 

invocations of a method being replicated throughout various modules of the code. The 

second symptom of a cross cutting concern is code tangling. This condition occurs when 

several different concerns are interleaved with one another in the code (Moldovan & 

Serban, 2006). These symptoms are usually observed as recurring patterns of method 

invocations within the code. 

     The goal of AOP languages, as described by Kiczales et al (1997), is to provide 

programming constructs that clearly define functional units as well as mechanisms to 

cleanly define the compositions of those functional units without having to weave 

function calls within the program code. Using AOP languages concerns that cannot be 

cleanly encapsulated within a single distinct generalized programming procedure become 

candidates for an aspectized solution. For example if a particular functionality can only 

be achieved by calling multiple programming components interwoven together the 

concern is not componentized and would be a candidate for an aspectized solution. The 

visualization of this situation can be illustrated by an example of the observer pattern 

implementation as described by Hannemann and Kiczales (2002). The study shows that 

the concern of generating and passing events between the generators and listeners is 

implemented using two integration method calls. The first integration call is the 

registration of listeners and is usually invoked during the initialization process of the 
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event listener. In this way the concern of registering listeners is woven into the 

components initialization logic. Similarly when the event generator is processing an event 

it invokes the notify methods of the listeners. This results in the notification logic being 

woven into the event handling logic of the event generating component. Hannemann and 

Kiczales (2002) show that by defining appropriate aspect oriented constructs the 

registration and notification method calls can be abstracted into an aspect and removed 

from the initialization and event handling code of the event generating and listener 

components.  

  



4 

 

 

Problem Statement  

     The aspect mining process analyzes the source code or execution data of a target 

program in order to identify a set of candidate cross cutting concerns (Kellens, Mens & 

Tonella, 2007). The difficulty in identifying representations of cross cutting concerns, as 

described by Marin, Deursen and Moonen (2007), is that they can be manifested in the 

source code in several ways. The two most common manifestations of cross cutting 

concerns are either implementations that are scattered throughout the code or concerns 

that are tangled within implementation of other functionality (Ceccato, Marin, Mens, 

Moonen, Tonella & Tourwe, 2005). Isolating these manifestations is a major problem 

during the re-engineering phase (Breu & Krinke, 2004). In order to solve this problem the 

research community has developed a number of different aspect mining approaches.  

     Given the variety of aspect mining approaches Kellens et al. (2007) conducted a study 

comparing several different well known aspect mining techniques. This study revealed a 

number of issues with the various techniques that require further attention and 

improvement. One such issue identified by the study was that aspect mining techniques 

focus on detecting one symptom of cross cutting concerns while ignoring the other. As 

described by the study, static aspect mining techniques that focus on analyzing the target 

programs source code did not include provisions for detecting cross cutting concerns that 

are a result of code tangling. On the other hand dynamic analysis techniques focus on 

analyzing execution traces of the target program and have shown the ability to detect 

symptoms of code tangling. However even amongst these techniques the only 

comprehensive aspect mining technique identified by the study was the 'Dynamic 

Analysis' technique developed by Bruntink, Deursen, Engelen and Tourwe (2005).  
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     Although the dynamic analysis based techniques provide comprehensive detection 

capabilities Kellens et al. (2007) and Ceccato et al. (2005) point out that they require 

significant user effort to apply and therefore do not scale well to large applications. As an 

example Ceccato et al. applied the Formal Concept analysis to the JHotDraw application. 

This required the authors to execute 27 different use cases that were chosen after an 

exhaustive study of the application's documentation. As part of their conclusion Ceccato 

et al. noted that the effectiveness of the dynamic analysis technique is limited by the use 

cases chosen by the users. Based on these studies it can be concluded that for the analysis 

of large applications static analysis techniques would be more practical. However a 

comprehensive static aspect mining technique remains an open problem. 

      In order to overcome the limitations found with static aspect mining techniques Qu 

and Liu (2007) developed a new static aspect mining technique called the Method Call 

Tree. The Method Call Tree approach uses the target source code to generate control flow 

sequences that are similar to the execution traces utilized by the dynamic analysis 

approaches. In this way the Method Call Tree is able to analyze and detect execution 

patterns that are similar to the results of dynamic analysis. While the Method Call Tree 

technique solves one key issue found with static analysis techniques there are still certain 

limitations that require improvement. The first limitation is that this technique does not 

exhibit the ability to detect cross cutting concerns caused by code scattering. The method 

call tree technique also does not account for object oriented programming constructs such 

as polymorphic methods and class hierarchies. For example in the case where method B 

overrides the implementation of method C these methods may represent the same 

concern. If the execution patterns found within the target code include sequences 
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invocations of a method A followed by method B as well as invocation of method A 

followed by method C these patterns together provide a higher degree of evidence of the 

existence of the same cross cutting concern. However since the method call tree does not 

associate inherited methods this approach considers the execution pattern of A and B to 

belong to a different concern than that of A and C. Due to this the evidence of the 

concern is dissipated and can result in the concern being overlooked. The need for 

accounting these object oriented constructs was identified in Marin et al. (2007) and since 

most of the aspect mining techniques are geared towards the analysis of object oriented 

languages it is vital that they account for such features.  

     Most of the aspect mining techniques developed by the research community have 

focused on detecting cross cutting concerns by identifying patterns of method calls within 

the target application. These approaches assume that the implementation of cross cutting 

concerns in the target program is consistent throughout the application. However Mens et 

al. (2008) states the assumption of consistency should be relaxed to account for small 

variations in the code since programmers have different programming styles and also 

because legacy code evolves over time resulting in inconsistent implementations. If these 

variations are not accounted for the detection process may overlook code 

implementations that perform the same cross cutting function but do not exactly follow 

the same pattern. For example the aspect mining techniques developed by Qu and Liu 

(2007) and Breu and Krinke (2004) attempt to identify execution relations. Breu and 

Krinke (2004) describe this approach as finding execution patterns that exist in the same 

composition within the target source code. For example an execution pattern called the 

inside-first-execution relation between a method A and method B denotes that the method 
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B is the first method called within the body of method A. In sample code this would be 

represented by a method definition like A(){ B(); …}. However if there is a case where 

the method definition of A looks like A(){C(); B();…} this implementation would not be 

considered as an inside-first-execution between A and B even if the invocation C does 

not impact the implementation of the cross cutting concern. Such instances like this 

example lead Mens et al. to suggest that aspect mining techniques should be able to 

account for variations in the implementation of cross cutting concerns.  

     In order to overcome the limitations discussed above the conducted research focused 

on enhancing the Method Call Tree aspect mining technique developed by Qu and Liu 

(2007) in order to resolve the short comings described above. The research focused on 

enhancing the method call tree algorithm to incorporate the ability to detect cross cutting 

concerns caused by code scattering and extrapolate the method relationships up the class 

hierarchy of the analyzed code. The research also addressed the issue of not considering 

implementation consistencies in the target code by finding patterns of executions that are 

similar to one another but did not match exactly. 
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Dissertation Goal 

     The conducted research aimed to enhance the existing method call tree aspect mining 

technique, developed by Qu and Liu (2007), in order to address three main problems. The 

first problem the enhanced technique addressed was the lack of ability to detect cross 

cutting concerns caused by code scattering. This goal was achieved by enhancing the tree 

generation process to include a step to record a counter for each method whenever an 

invocation was encountered in the target source code. In this way whenever a method call 

node was added to the call tree the counter for that particular method was also 

incremented resulting in the computation of the fan-in value for each method in the target 

source. The fan-in value has been shown by Marin et al. (2007) to be an effective way to 

identify concerns caused by code scattering. This capability was measured by applying 

the enhanced method call tree to the JHotDraw source code and comparing the findings 

against those published by Marin et al. (2007). The incorporation of the fan-in 

computation within the enhanced algorithm effectively addressed the lack of code 

scattering detection within the method call tree approach. Since the research results Qu 

and Liu (2007) have shown that the method call tree technique is able to generate 

candidate symptoms related to code tangling that are comparable to the results of the 

dynamic analysis technique developed by Breu and Krinke (2004), the enhanced method 

call tree approach combines the abilities of fan-in analysis and dynamic analysis. The 

combination of these abilities fulfilled a research area called out in Ceccato et al. (2007). 

     The second issue that the enhanced approach addressed is the lack of consideration of 

object oriented constructs during the analysis of the original method call tree algorithm. 

Marin et al. (2007) illustrated that accounting for class hierarchies and overridden 
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methods is not a trivial process and impacts the ability to detect symptoms of code 

scattering. The logical conclusion is that these object oriented programming constructs 

impact the implementation of concerns leading to code tangling as well. Current aspect 

mining approaches like the dynamic analysis approach developed by Breu and Krinke 

(2004) as well as the rule based detection technique developed by Vidal, Abait, Marcos, 

Casas and Pace (2009) do not investigate the impact of object oriented programming to 

their respective aspect mining approaches. However the authors in both cases do point 

out that the impact of object oriented programming on the analysis of code tangling 

should be subject of future research. The conducted research attempted to account for 

object oriented programming constructs when analyzing the patterns of method 

invocations that exist within the target source code. The ultimate goal for this 

enhancement was to detect method relationships or tangled code that may exist across 

various levels of the class hierarchies. 

     Finally the third problem the conducted research attempted to tackle is the inability to 

account for slight implementation variations within the target code. According to Mens et 

al. (2008) current aspect mining techniques assume that the implementations of cross 

cutting concerns are consistent throughout the program. However given differing 

programming styles there may be variations in the implementations of the cross cutting 

concerns that make the detection of a consistent execution pattern difficult to find. The 

conducted research aimed to show that instead of looking for exact patterns such as 

method A is invoked directly before method B is invoked, the analysis can look for 

patterns such as method A is invoked followed directly or after a few steps by an 

invocation of method B. The conducted research showed that by relaxing the strictness of 



10 

 

 

the patterns the enhanced method call tree approach was able to detect patterns 

overlooked by other aspect mining techniques. The conducted research also introduced a 

number of measurements that can be used to filter out inconsistent patterns that do not 

truly represent symptoms of code tangling. 
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Research Questions 

1) What is the algorithm for merging the execution patterns analysis with the fan-in 

analysis technique? 

2) What impact do class hierarchies have on the detection of symptoms of code tangling? 

3) How much overhead will the extra generation of code tangling candidates affect the 

output of the aspect mining process? 

4) What measurement can be used to determine the consistency of an execution pattern? 

5) Can the control flow information stored in the call tree be used to identify any 

interesting patterns of usage?  
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Relevance and Significance  

     The need for aspect mining is driven by programmers looking to apply the benefits of 

aspect oriented programming to legacy programs written in non aspect oriented 

languages (Tonnella & Ceccato, 2004). Maisikeli and Mitropoulos (2012) point out that 

legacy systems represent a significant investment over time and must constantly adapt to 

changing requirements. These adaptations often lead to the constant maintenance and 

refactoring of the legacy code. Tribbey and Mitropoulos (2012) also point out that the 

evolutionary development process results in implementation of concerns getting scattered 

over an increasing number of modules over time. This phenomenon is evidenced by the 

statistical correlation between the degree of scattering of concerns in the source code and 

the number of defects found in the program (Tribbey & Mitropoulos, 2012). Both 

Maisikeli and Mitropoulos (2012) as well as Tribbey and Mitropoulos (2012) indicate 

that aspect oriented programming constructs would improve the reliability and 

maintainability of the legacy code thus lending support to refactoring legacy application 

code in to aspect oriented programming languages. The refactoring process required to 

move a legacy application to an AOP language can be both difficult and error prone. The 

level of difficulty increases with the size, complexity and lack of documentation of the 

target program (Kellens et al., 2007). These difficulties provide the motivation for the 

development of aspect mining tools that can automate at least some parts of the cross 

cutting concern detection process. The research community has introduced a number of 

different techniques to assist users perform the task of aspect mining but as a study by 

Kellens et al. shows these techniques do not comprehensively address all the challenges 

associated with aspect mining. 



13 

 

 

     Aspect mining approaches can be divided into two broad categories based on the types 

of inputs used during the analysis process (Kellens et al., 2007). The first category are 

known as static analysis approaches and focus on analyzing the existing code to identify 

implementation patterns that are symptomatic of cross cutting concerns. The second 

category, referred to as dynamic analysis techniques, perform analysis on run time 

information gathered by executing the program and capturing data like the execution 

stack.  

     Studies like Kellens et al. (2007) and Ceccato et al. (2005) have shown that the static 

analysis techniques reviewed in those studies did not provide comprehensive detection of 

cross cutting concerns based on both code scattering as well as code tangling. The studies 

showed that static analysis techniques like fan-in analysis are able to detect concerns 

caused by code scattering but do not provide any mechanism for detecting symptoms of 

code tangling. This limitation may prevent these types of aspect mining techniques from 

discovering tangled code that is one of the key motivations for the development of aspect 

oriented programming languages as described by Kiczales et al. (1997). Similarly these 

two studies also point out that dynamic analysis techniques require extensive user 

interaction and knowledge of the target program making it difficult to apply these 

techniques to large programs. The described limitations of both categories prevent them 

from being comprehensive aspect mining approaches that can be used for large legacy 

systems.  

     A recent static aspect mining approach proposed by Qu and Liu (2009) demonstrates a 

static analysis technique that has the ability to detect cross cutting concerns caused by 

code tangling. This technique generates a method call tree and uses it to find patterns of 
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method executions that are similar to dynamic analysis approaches. However this 

technique does not track the number of times methods are invoked across the target 

program. Therefore this method is unable to determine whether a method represents a 

cross cutting concern that is caused due to code scattering. This aspect mining technique 

also does not directly consider method hierarchies and while initial experimentation has 

yielded positive results the authors do note that further experimentation needs to focus on 

testing the algorithm using test programs with deeper inheritance hierarchies. Finally the 

pattern searching step of the algorithm looks for very specific patterns and does not 

account for the variations in implementation. This kind of pattern matching has been 

criticized by Mens at al. (2008) as being too strict and prone to miss interesting execution 

patterns that could be symptoms of code tangling.  

     By enhancing the method call tree approach the conducted research conclusively 

shows that a static aspect mining approach can meet a key aspect mining criteria of 

comprehensive cross cutting concern detection. The research introduced an aspect mining 

technique that aggregates the benefits of scalability and lower user interaction of static 

aspect mining techniques while providing the same detection coverage demonstrated by 

dynamic aspect mining techniques. Furthermore this enhanced aspect mining approach 

demonstrated a way to address variations in implementation that programmers may have 

introduced within the target source code.  
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Barriers and Issues 

     The purpose of an aspect mining technique is to identify code that represents a cross 

cutting concern that is a symptom of code scattering or code tangling (Mens et al., 2008). 

Most of the developed aspect mining techniques focus on detecting symptoms of code 

scattering and ignore the symptoms of code tangling (Mens et al.). Kellens et al. (2007) 

explains that the detection of code tangling requires some high-level information 

regarding the concerns implemented in the system. Techniques like dynamic analysis 

utilize use-case scenarios and can thus examine the methods and their compositions in the 

context of the concerns that are a part of the use-case. This context is difficult to provide 

in static analysis approaches since they focus solely on the structure of the code. This 

ultimately makes it difficult for them to incorporate the ability to detect code tangling. 

     One suggested approach to incorporate the detection of code tangling symptoms is to 

merge the results of different aspect mining approaches (Kellens et al., 2007). Although 

this approach could provide a more comprehensive aspect mining solution Mens et al. 

(2008) point out that merging different aspect mining techniques is not possible due to 

the differences in outputs of the various approaches. Another obstacle in combining 

aspect mining techniques, pointed out by Mens et al., is the level of subjectivity in the 

interpretation of the aspect mining output. Each aspect mining technique provides an 

output that the user has to examine in order to find the cross cutting concerns. This makes 

it difficult to use the output of one aspect mining technique to enhance the output of 

another. In this way merely merging the outputs of multiple aspect mining approaches 

may result in too much data for the users to sort through thus making the aspect mining 

process more difficult. 
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     Aside from the lack of focus on code tangling Mens et al. (2008) discusses the need 

for aspect mining techniques to take into account the variability in the implementation of 

cross cutting concerns. The authors explain that current aspect mining techniques only 

identify potential cross cutting concerns if the code strictly adheres to certain anticipated 

patterns. For example the aspect mining approach developed by Breu and Krinke (2004) 

examines execution traces of a program and uses them to generate relationships like the 

inside-first-execution. Mens et al. postulate that legacy code may not be implemented 

with such uniformity and so aspect mining approaches should factor in variations during 

the analysis.  

Assumptions, Limitations and Delimitations 

     The conducted research assumes that most if not all cross cutting concerns are 

manifested within patterns of method invocations. Certain aspect mining techniques such 

as the clone detection techniques developed by Bruntink, Deursen, Engelen & Tourwe 

(2005) detect cross cutting concerns by analyzing and identifying duplicated code. 

However Bruntink et al. (2005) also explain that code duplication can be caused due to 

improper design choices leading developers to apply a copy-paste-adapt approach while 

developing the code. These kinds of design choices may not necessarily be a 

representation of a cross cutting concern and can be resolved by a more traditional code 

refactoring process that does not involve an aspect oriented solution. The conducted 

research assumed that the target source programs had been optimized for an object 

oriented programming language. Therefore the research limited itself strictly to analyzing 

the method invocations and the detection of possible cross cutting concerns within the 

target program source code.  
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Definition of Terms 

Concern - A part of the application's functionality 

Cross Cutting Concern - Functionality whose implementation are interwoven within the 

program code, usually in the form of recurring sequences of method invocations. 

Code Tangling - A symptom of a cross cutting concern where different concerns 

represented by different functions are interleaved with each other. These patterns of 

method invocations can be observed in multiple places within the code. 

Code Scattering - A symptom of a cross cutting concern where a concern is used across 

several different parts of the application code. This symptom is often represented by a 

method call that is invoked by many different methods and modules across the 

application code.  

Method Call Tree - A tree structure that illustrates a programs flow. The tree contains 

nodes that represent logical control flow statements like if-else conditions and loops as 

well as method invocations. 

Fan-in Value - A numeric count of the number of times a particular method is invoked by 

other modules and methods within the application source code. 

Candidate Seed - A method, method relationship or function that potentially indicates the 

presence of a cross cutting concern. 

Summary 

     The process of aspect mining has been developed to identify cross cutting concerns 

that arise due to the need to intertwine functionality within a program. These cross 
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cutting concerns manifest themselves in the form of method calls that are scattered 

throughout the source code or repeated patterns of interleaved method calls. Aspect 

oriented programming help programmers improve the readability and modularization of 

their code thus lowering the cost of maintaining the legacy code and making the code less 

prone to defects. However the process of determining candidate code for the aspect 

oriented refractoring however can be difficult and error prone. For this reason the 

research community has developed aspect mining tools and techniques to aid users 

identify candidates for refactoring. In order for these aspect mining tools and techniques 

to be effective they must provide comprehensive analysis and be easy to apply. These 

traits have proven to be elusive and current aspect mining techniques focus on detecting 

one symptom of code scattering or code tangling while ignoring the other. Additionally 

many of the techniques developed for the detection of code tangling require the execution 

of a comprehensive set of test cases and gathering run time data for the analysis thus 

requiring significant effort from the user. 

     The conducted research attempted to resolve these problems by combining two static 

analysis techniques that do not require any execution of the target program in order to 

complete the analysis. The first technique is the Fan-in analysis technique developed by 

Marin et al. (2007) that specializes in detecting symptoms of code scattering. The second 

technique is the Method Call Tree technique developed by Qu and Liu (2007) that 

specializes in detecting instances of code tangling. The conducted research demonstrates 

a process that aggregates the two different aspect mining techniques to provide a 

comprehensive aspect mining technique that is able to detect both symptoms of code 

scattering and code tangling. In addition the research has introduced a set of metrics as 
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part of the analysis that aid the users to understand and filter the results of the analysis. In 

this way the conducted research introduced an aspect mining tool that provides a 

complete set of detection capabilities while minimizing the effort required by the users. 
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Chapter 2 

Review of Literature 

Overview  

     The conducted research demonstrated a way to integrate and modify existing aspect 

mining techniques in order to develop a comprehensive aspect mining approach. In order 

to understand the design considerations for the approach it was important to understand 

prior aspect mining techniques and research. The review of literature summarizes and 

highlights aspect mining techniques developed by the research community. The review 

highlights the approach taken by each technique along with the benefits and limitations of 

the approach. Since the focus of the conducted research was to combine aspect mining 

techniques that detect both symptoms of code scattering and code tangling the review 

focused on the types of symptoms the prior aspect mining techniques can detect. In order 

to justify the choice of aspect mining techniques chosen as the basis of the final aspect 

mining approach the review also includes prior studies that evaluate existing aspect 

mining approaches and the criteria used to compare them. These studies form the basis 

for the modifications implemented by the conducted research. Finally the review of 

literature summarizes prior research that has focused on the combination of aspect mining 

techniques.  

The theory and research literature specific to the topic 

    In order to resolve the challenges of detecting cross cutting concerns in existing code 

the research community has developed a number of aspect mining techniques. One 

technique developed by Marin et al. (2007) examines the program code in order to detect 
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cross cutting concerns caused by code scattering. This aspect mining technique relies on 

the computation of a fan-in value that is used to measure the extent to which a method is 

invoked throughout the code. Marin et al. (2007) note that object oriented constructs like 

inheritance hierarchies and overridden methods must be taken into consideration while 

determining the fan-in values. For this reason Marin et al. (2007) also introduced a 

number of rules for calculating the fan-in values for methods in programs written in 

object oriented languages. After applying the rules and computing the fan-in values for 

each method, the methods with a high fan-in value are presented to the user as potential 

methods that represent cross cutting concerns. In order to evaluate the aspect mining 

approach the technique was applied to the Tomcat, PetStore and JHotDraw source code. 

The experimental results generated by Marin at al. (2007) showed that filtering out 

methods with a fan-in value less than 10 greatly reduced the percentage of candidate 

concerns versus the total number of methods in the program. In order to measure the 

accuracy of the approach the percentage of actual concerns versus the number of 

candidate concerns was examined. The results also showed that for different test 

programs the accuracy of the fan-in analysis ranged between 51% and 87%. In 

conclusion the fan-in analysis aspect mining approach has shown to be a viable detection 

system for detecting cross cutting concerns caused by code scattering. However since the 

fan-in computation is concerned with only the number of invocations of a method it does 

not track relationships between these methods and cannot identify whether the 

invocations of the methods follow a particular pattern. For this reason the fan-in analysis 

based aspect mining approach does not provide the ability to detect symptoms of code 

tangling. 
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      Moldovan and Serban (2006) proposed an augmentation to the fan-in analysis method 

that takes into account the fan-in value but also the number of invocations by distinct 

modules within the code. In addition Moldovan and Serban (2006) developed two 

different vector models and analyzed using cluster analysis algorithms. The first vector 

model used was an integer pair comprised of the fan-in value and the number of classes 

that invoke the method. The second vector model pairs the fan-in value along with a bit 

vector that represents whether or not the method is invoked by each of the other methods 

in the code. Using these two vector models Moldovan and Serban (2006) used various 

clustering algorithms to group methods together. The members of the groups formed by 

the cluster analysis are made up of methods that have roughly the same number of 

invocations from a similar number of distinct classes. In this way the cluster based 

approach is able to narrow the focus of the aspect mining process to the groups of 

methods whose distance from the zero vector is above a user specified threshold. The 

methods within these clusters have similar characteristics and represent candidates cross 

cutting concerns. Moldovan and Serban applied the cluster based aspect mining technique 

on JHotDraw and Carla Laffra’s implementation of Dijkstra’s algorithm. The 

experimentation showed that the choice of vector models had a significant impact to the 

cluster models and the precision of the detection although neither model emerged as a 

better choice overall. Based on the results of their experimentation, Moldovan and Serban 

(2006) concluded that the clustering based aspect mining technique was able to narrow 

the number of candidates that the users would need to examine to identify actual cross 

cutting concerns. Since the attributes used for the vector modules were related to the fan-

in value and the number of distinct calls to a method across the various modules of the 
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application, the resulting concerns detected using this approach are all symptoms of code 

scattering. The results of this approach did not provide any insights as to which methods 

or modules are invoked in conjunction with one another and therefore did not provide any 

code tangling detection capabilities. This limitation has been recognized by Moldovan 

and Serban (2006) and was recommended as an area of future research. 

     A different set of vector models were proposed by Tribbey and Mitropoulos (2012) 

that focused on the actual relationships between the methods rather than relying on 

aggregated values. The first model, labeled MFIV, is a N x N matrix where each row 

represents the bit vector that represents whether or not the method is invoked by each of 

the other methods in the program. In this way for a matrix [pij] each pij = 1 if method mi 

is invoked by method mj. In this way the row sums in the matrix equal the fan-in value 

for each method. The second model, labeled MFOV, is the transpose of the MFIV model 

such that each p'ij = 1 if method mj is invoked by method mi and the row sums represent 

the Fan-Out values for each method. The last vector model, labeled MCOM, is a 

combination of MFIV and MFOV and calculated as the product of MFIV and MFOV divided 

by the diagonal value of the result if it is non zero. In addition to these base models 

Tribbey and Mitropoulos (2012) applied a PCA to the matrices to reduce the 

dimensionality of them thus creating three additional models M^FIV and M^FOV and 

M^COM. 

     Based on the experimental results Tribbey and Mitropoulos (2012) found that the new 

vector models impacted the key performance measures DIV, DISP and KPREC that are 

used to evaluate the performance of cluster based aspect mining techniques. The DIV or 

measure of diversity of the clusters describes the degree of how many cross cutting 
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concerns are found in each cluster. For a clustering based aspect mining approach the 

desired value for DIV is as high as possible. The DISP or dispersion measure is a 

measurement of how many clusters the cross cutting concern appears in. For clustering 

based aspect mining approaches the desired DISP value is a value that is close to 1. The 

KPREC measure is generated to assess the recall of the cluster model by measuring the 

percentage of clusters that contain actual cross cutting concerns. For a clustering based 

aspect mining approaches the desired value for KPREC is as high as possible. Tribbey 

and Mitropoulos (2012) found that the MCOM model provided the highest values for the 

DIV and DISP measurements. However the KPREC value for this was very low. 

Conversely the M^COM model provided the highest KPREC value but yielded low values 

for the DIV and DISP measurements. Based on these findings Tribbey and Mitropoulos 

(2012) postulated that higher DIV and DISP measurements may actually lead to a less 

accurate aspect mining model. The research suggested that these measures should not be 

the sole measurement for a cluster based aspect mining algorithm. It should be noted that 

the vector models introduced by Tribbey and Mitropoulos (2012) were also based on the 

fan-in and dispersion of method invocations in the target code. Due to this, the aspect 

mining algorithm focused on identifying symptoms of code scattering but did not provide 

insights into execution patterns that can be symptoms of code tangling.  

     The clustering techniques used by the approaches discussed above utilized clustering 

algorithms that require the user to provide the number of expected clusters (Rand 

McFadden & Mitropoulos, 2012). Rand McFadden and Mitropoulos (2012) proposed 

using model-based clustering techniques instead of the K-means or hierarchical clustering 

algorithms. Their research focused on utilizing six different cluster models that 
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automatically determine the optimum number of clusters for the dataset. The output of 

the new models was compared to the output of clustering algorithms used in prior 

research. The experimental results of the research showed that the model-based clustering 

algorithms reduced the number of clusters that needed to be analyzed for cross cutting 

concerns without significantly impacting the precision of the detection process. As with 

other clustering based aspect mining approaches the vector models used by Rand 

McFadden and Mitropoulos (2012) were based on the fan-in value and the number of 

executions across the various modules of the code. Therefore, as with the other clustering 

based aspect mining algorithms, the output of the model-based clustering technique also 

focuses purely on finding symptoms of code scattering but not code tangling. 

     Another aspect mining technique developed by Zhang and Jacobsen (2007) also 

factors in the fan-in and fan-out values of a method. This technique analyzed the code to 

generate two directed graphs. The first graph represented the programming elements that 

call other elements. The second graph represented the elements that are called by other 

elements (a reverse of the first graph). These graphs were used to rank the popularity of 

each element by applying the page rank algorithm. A high popularity denotes that the 

programming element is referenced by a large number of other elements of the code and 

likely indicative of a scattered concern. The approach also used the page rank algorithm 

to rank the elements based on their significance. The significance denotes how many 

other programming elements a particular element references. According to Zhang and 

Jacobsen (2007) a high significance rank is indicative of a core concern. The 

experimental results of the page rank aspect mining approach did reveal the known 

scattered cross cutting concerns when applied to JHotDraw. However Zhang and 
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Jacobsen (2007) noted that these concerns did not all have the highest popularity ranking 

indicating this approach has a tendency to generate a number of false positives that the 

user will have to analyze and reject. Although the page rank based aspect mining 

approach demonstrated the ability to detect symptoms of code scattering it relies solely 

on counting the number of times a method is invoked or invokes other methods. The 

algorithm does not provide any insight into the relations between methods and is not able 

to provide any insight into symptoms of code tangling. 

     Qu and Liu (2007) introduced an aspect mining technique that translates the target 

code into a method call tree depicting the flow of the program. The call tree is made up of 

nodes that represent the control flow structures (if/else and switch/case blocks) and 

execution branches due to method calls. Once the call tree has been generated it can be 

used to find relationships between methods. These relationships are represented by 

recurring sub trees within the entire method call tree. The experimental results presented 

by Qu and Liu (2007) showed that the method call tree approach has the ability to 

determine invocation patterns between different methods in the source code. Using this 

information the aspect mining algorithm has the ability to generate candidate concerns 

attributed to code tangling. However the method did not include a process of determining 

how often a method is invoked across the source code and for this reason does not detect 

symptoms that are purely a result of code scattering. Furthermore this approach had not 

been applied to any known test program and its results could not be compared to other 

known aspect mining techniques.  

     The aspect mining techniques discussed above analyzed the code and attempted to 

identify possible cross cutting concerns based on method invocations. An entirely 
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different approach was taken by Bruntink, Deursen, Engelen and Tourwe (2005), who 

introduced an aspect mining technique that focused on identifying repeated or cloned 

code. This aspect mining technique uses Abstract Syntax Tree (AST) or Program 

Dependence Graph (PDG) utilities to convert program code into a tree format. The clone 

detection algorithm then attempts to find recurring sub trees that would indicate 

duplicated code. Bruntink et al. postulated that the instances of duplicated code can 

potentially represent symptoms of code scattering. Based on their experimentation 

Bruntink et al. found that this technique was able to identify certain cross cutting 

concerns such as null pointer checking and exception handling in the code of various test 

programs. Aspect mining based on clone detection is a technique that focuses on 

detecting code that is repeated throughout the program. This approach does not directly 

address symptoms of either code scattering or code tangling. 

     Another distinct type of aspect mining focuses on the semantic meaning rather than 

the structural nature of the code being analyzed. This approach to aspect mining has been 

explored by Tourwe and Mens (2004). This approach utilizes the Formal Concept 

Analysis technique developed as a branch of lattice theory to define aspectual views of 

the source code. These aspectual views, as defined by Torwe and Mens (2004), are a set 

of source code entities that have some structural relationship.  

     The first step of this process extract class names along with the methods and their 

parameters from the target program source code. Tourwe and Mens (2004) note that class 

and method names are typically constructed using words that explain the functionality 

that is being implemented. Based on this observation the identifier analysis approaches, 

like the aspectual views approach, splits the function and method names into keywords. 
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The unique keywords or concepts are then filtered and classified into groups. Tourwe and 

Mens (2004) suggest filtering out common words like 'with' and 'an' as well as a series of 

seven classification categories. The first category is a set of concepts where all the 

keywords used in the class name are used in the method names of the class. The second 

category groups concepts from both classes and method names where the keywords of 

the class name occurs in one or more of that class's method parameters. The third 

category groups the concepts of all classes. The fourth category groups keywords of 

method names that match an instance variable of the class, i.e. that are parts of accessor 

methods. The fifth groups keywords from all non accessor method names. The sixth 

category groups all keywords from methods that belong to the same class hierarchy. The 

seventh category defined by Tourwe and Mens (2004) defines crosscutting keywords that 

are part of method names within classes that do not belong to the same class hierarchy. 

Once the concepts have been categorized and grouped the results are displayed to the user 

to provide insights as common themes across the source code and determine what kinds 

of functionality cross cuts the program. 

     The aspectual view mining technique presents a tool that users can use to detect cross 

cutting concerns in their program source code. This technique does not suggest candidate 

crosscutting concerns but relies on the user to identify it based on the categories and 

concepts. One issue noted by Tourwe and Mens (2004) was that the basic nature of the 

filtering and classification process this technique generated a large noisy set of data that 

contained many false positives. 

    The identifier analysis approach to aspect mining has also been explored by Shepard, 

Pollock and Tourwe (2005). This approach extracts keywords from different parts of the 
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code including comments, field names, field/method type names and method names. 

After filtering out common dictionary words the remaining keywords are used to identify 

lexical chains that are sequences of distinct words that have an equivalent semantic 

meaning. These lexical chains are then provided to the user who can use these lexical 

chains as clues during the analysis of the code. Experiments using the PetStore 

application code showed that this technique can be used as useful guide when examining 

the code. By studying the lexical chains a user can see if multiple methods have common 

synonyms that may indicate that a concern is being replicated by multiple methods and is 

a possible candidate for refactoring. This aspect mining approach can therefore indirectly 

support the detection of a scattered concern. This approach does not provide any real 

insight to the execution relationships between concerns unless the method name contains 

descriptions of multiple functions. Therefore this technique cannot be considered to be an 

approach that would be useful for detecting symptoms of code tangling. Shepard et al. 

(2005) also note that this aspect mining technique is very subjective and requires 

significant user interaction.  

     The aspect mining techniques discussed above are described by Kellens et al. (2007) 

as static mining techniques since they attempt to identify cross cutting concerns without 

using any run time information. Other dynamic analysis techniques have been developed 

that identify cross cutting concerns by analyzing run time data collected by executing the 

program (Kellens et al.). Breu and Krinke (2004) introduce an aspect mining approach 

based on analyzing the execution traces generated by executing the program using a 

special runtime environment that records methods invocations as they are pushed and 

popped from the execution stack. Breu and Krinke (2004) utilized the event traces to 
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identify method execution relationships that may indicate a symptom of code tangling. 

These patterns describe a sequence of method invocations that include patterns of one 

method calling others as well as methods that are invoked in consistent sequences. If an 

execution relationship is found repeatedly in the execution traces the methods in the 

pattern is flagged as a potential cross cutting concern (Breu & Krinke, 2004). Based on 

the experimental results Breu and Krinke (2004) found that this aspect mining technique 

identified all expected cross cutting concerns without generating any false positives. It is 

important to note that the dynamic analysis aspect mining technique detects cross cutting 

concerns that are a result of repeated execution patterns between methods. These types of 

cross cutting concerns are representative of symptoms of code tangling. The dynamic 

analysis approach however does not detect whether a method is invoked from multiple 

locations within the target source code unless it is part of a commonly found execution 

pattern. In this way the dynamic analysis technique is not be able to detect a cross cutting 

concern whose only symptom is code scattering.  

     Tonella and Ceccato (2004) combine the dynamic analysis approach with a branch of 

lattice theory known as concept analysis in a new technique for aspect mining. This 

approach identifies methods that are commonly found in the execution traces generated 

by multiple use cases. The intuition behind this approach is that methods commonly 

executed across multiple use cases represent functions that cross cut the application. 

Tonella and Ceccato (2004) applied this technique to Carla Laffra's implementation of 

the Dijkstra algorithm. The results of the experiments matched the expected cross cutting 

concerns determined by independently studying several use cases. As described above the 

formal concept analysis based aspect mining approach determines cross cutting concerns 
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based on how many different use cases refer to a given method. Methods that are found 

in execution traces of multiple use cases typically indicate that the concern represented 

by the method is scattered across the application. Therefore the focus of this aspect 

mining approach aimed at detecting symptoms of scattering. This aspect mining approach 

however does not examine the relationships between methods that would indicate a 

frequently occurring execution pattern. Therefore this aspect mining technique is not 

suitable for detecting symptoms of code tangling. 

     Another variation of the dynamic analysis of execution traces has been introduced by 

Vidal et al. (2009). This approach uses an association rule mining algorithm to find 

patterns of method pairings across different use cases. This approach treats the scenarios 

or use cases as transactions and the methods invoked in each execution trace as the items 

in the transaction. The experimental results, not published by the authors, did show that 

this approach has the potential to be a viable aspect mining technique (Vidal et al.). 

According to Vidal et al. the analysis of the association rules can reveal several 

interesting features of target source code. The single item frequent itemsets indicate 

methods that are commonly executed throughout the various use cases. These frequent 

methods represent candidate concerns caused due to code scattering. Secondly larger 

frequent itemsets in the form A → B indicate that these methods are commonly invoked 

in some sequence throughout the code. These kinds of relationships may indicate a 

symptom of code tangling. However the reliability of such rules is not as high as other 

code tangling detection techniques because the association rule focuses on the occurrence 

of the methods in the execution traces but does not determine whether the method 

invocations follow a specific execution pattern. Due to this reason the code tangling 
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related candidates generated by the association rule mining approach may result in more 

false positives than other aspect mining approaches. 

     The only runtime information used by aspect mining techniques discussed above 

analyzes the sequence of method invocations. Maisikeli and Mitropoulos (2010) explored 

an aspect mining approach that analyzes software features derived through method calls, 

parameter sharing and method. The software features are extracted from a collection of 

execution traces and used to create a matrix where each row represents a vector of the six 

features of the method. This matrix was then used as an input to a Self Organizing Map 

(SOM) clustering utility to reorganize the data sets of similar methods. The resulting 

clusters are organized so that each cluster contains a central node surrounded by other 

nodes that have similar characteristics. The resulting clusters are then analyzed in a 

manner similar to other clustering methods described above. The central methods in the 

clusters are candidates of concerns caused due to code scattering. According to Maisikeli 

and Mitropoulos (2010) if multiple methods of the same class are found to map to the 

same class the pairing can represent a symptom of code tangling. However as in Vidal et 

al. (2009) the self organizing maps based aspect mining technique does not evaluate 

patterns of executions so candidates of code tangling concerns may generate more false 

positives than other code tangling detection processes. The experimental results 

generated by the study showed that this technique was able to identify all cross cutting 

concerns discovered by other aspect mining methods (Maisikeli & Mitropoulos, 2010) 

with a precision that matched or exceeded other dynamic aspect mining techniques.  

     Given the wide range of aspect mining approaches Ceccato, Marin, Mens, Moonen, 

Tonella & Tourwe (2005) analyzed three aspect mining approaches that represent 
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common themes and methodologies found within aspect mining techniques. The 

approaches selected in the study were the fan-in analysis introduced by Marin et al. 

(2007), the formal concept analysis approach developed by Tonella and Ceccato (2004) 

and the identifier analysis technique of aspectualized views developed by Tourwe and 

Mens (2004). These techniques were applied to the JHotDraw 5.4b source code. Ceccato 

et al. (2005) note the aspect mining process did not have defined benchmark metrics 

making it impossible to develop a quantitative evaluation of these approaches. Therefore 

the study used a set of qualitative criteria for the comparison of the chosen techniques.  

     While applying the fan-in analysis technique Ceccato et al. (2005) observed that the 

fan-in analysis was useful for detecting concerns exemplified by three distinct situations. 

The first situation is when a functionality is implemented through a method so that the 

crosscutting behavior resides in the explicit calls to that particular method. The second 

situation arises when a concern is implemented using common functionality scattered 

through the code. These situations are detected by identifying similarities between the 

calling contexts. The third situation arises when a functionality is super imposed down a 

hierarchy of classes. In this case the concern is associated with single method but 

becomes a central theme across a class hierarchy.  

     Similarly Ceccato et al. (2005) found that the candidate concerns detected by the 

identifier analysis developed by Tourwe and Mens (2004), could be categorized into one 

of three categories. The first category included concerns that appeared like traditional 

aspects that did not pertain to any specific business functionality but were needed in order 

to implement the functionality across the application like registering listeners and 

persistence. The second category of concerns were concerns that were more closely 
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related to the actual business logic of the program. These kinds of concerns, in the 

JHotDraw application, included drawing figures, moving objects, etc. The final category 

were concerns that highlighted language specific functions like iterating over collections. 

These types of concerns relied on or extended language specific library functions. 

     During the application of the Formal Concept Analysis based dynamic analysis aspect 

mining technique Ceccato et al. (2005) first defined 27 use-cases to be used to generate 

the test data needed to apply the dynamic analysis. During this phase Ceccato et al. 

(2005) observed two criteria for identifying cross cutting concerns. The first criteria was 

that the concern should be associated with a describable functionality like 'send to back' 

or 'handle messages'. The second criteria was that the classes involved in the functionality 

have a different primary responsibility that may get tangled within a use case.  

     After applying each aspect mining technique Ceccato et al. (2005) observed that each 

technique exhibited some strengths and some weaknesses when compared to one another. 

The fan-in analysis was found to be particularly well suited to fining concerns that depict 

contract enforcement or consistent behavior that is scattered throughout the code. 

Ceccator et al. (2005) found that these kinds of concerns were filtered out during the 

dynamic analysis and were not identified by the identifier analysis because their naming 

scheme is often unique. However Ceccato et al. (2005) do note that if a concern has a 

small foot print the fan-in analysis technique has a tendency to overlook it. The identifier 

analysis also generated a large result set that contained a significant number of false 

positives, making the overall detection difficult. The study also found that the candidate 

concerns had a tendency of being incomplete such that certain methods or functions were 

not considered to belong to an aspect when they should have been. The results of 
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applying the dynamic analysis showed that this technique was able to detect some 

candidates missed by fan-in analysis when multiple methods represent a single concern. 

In these cases the concern is widely utilized but is filtered out by the fan-in analysis 

because each implementing method is not explicitly invoked many times. However 

Ceccato et al. (2005) noted that the dynamic analysis approach is limited by the scenarios 

or use cases chosen to generate the data for analysis and overlooks code that is not part of 

the executed use cases. For this reason Ceccato et al. (2005) recommended that a 

comprehensive cross cutting concern detection process incorporate a combination of 

techniques to provide complete detection capabilities.  

     The difficulties and problems and challenges have further been explored by Mens et 

al. (2008). As part of their study Mens et al. (2008) describe five major issues associated 

with aspect approaches. The first issue is the poor precision of many aspect mining 

techniques. The poor precision refers to the low percentage of relevant aspects in the set 

of candidate aspects generated by an aspect mining approach. This implies that the aspect 

mining approach generates a large set of noisy data that contains a large number of false 

positives. As Mens et al. (2008) describe aspect mining techniques with poor precision 

decrease the scalability and ease of use of the aspect mining technique. The second 

problem described by Mens et al. (2008) is the issue of poor recall that is tendency of the 

aspect mining technique overlook all of the actual aspects present in the code. The issue 

of poor recall results in a lack of precision in the aspect mining process. The third issue 

related to aspect mining techniques is the subjectivity of the process. As Mens et al. 

(2008) point out many of the aspect mining techniques use some user defined 

assumptions during the aspect mining process to filter results or categorize candidates. 
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These assumptions can vary from user to user making the process ambiguous to some 

degree. Due to this issue the same aspect mining process can yield different results when 

applied by different users. The fourth issue described by Mens et al. (2008) is the issue of 

scalability of certain aspect mining techniques. As described by Ceccato et al. (2005) 

dynamic analysis based aspect mining techniques require the users to identify and 

execute a number of use cases in order to capture the data used by the dynamic aspect 

mining techniques. Such issues require a significant amount of user involvement and can 

ultimately make using them infeasible for large complex programs. The final issue 

described by Men et al. (2008) is the lack of empirical validation. This issue does not 

necessarily impact the aspect mining techniques but is a critique of existing studies. The 

study points out that many aspect mining techniques have been published as proof of 

concepts that lack comparisons with other research. These studies point out that the 

aspect mining techniques demonstrate the ability to detect interesting candidates but do 

not provide a measure of quantitative results.  

     Based on the problems identified, Mens et al. (2008) also present three major root 

causes from which the earlier described problems originate. One of the issues identified 

by Mens et al. (2008) is the aspect mining techniques try to establish a general purpose 

approach to identifying cross cutting concerns. The study postulates that developing 

specific approaches tailored to certain types of cross cutting concerns may be more 

effective. The study also points out that aspect mining approaches rely on strong 

assumptions about consistency of patterns that indicate the symptoms of cross cutting 

concerns. In addition Mens et al. (2008) also point out that aspect mining techniques 

generally only generate and display evidence of a cross cutting concern while ignoring 
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evidence that contradicts the existence of the concern. This can ultimately result in false 

positives. Another issue found in aspect mining techniques described in the study is that 

most aspect mining approaches focus on detecting either symptoms of code scattering or 

code tangling but not both. For this reason the aspect mining techniques can suffer from 

incomplete results. Additionally Mens et al. (2008) also point out that many aspect 

mining techniques do not use the semantic information available within the code to aid in 

the cross cutting concern detection process. The study points out that the semantic 

information can miss out on symptoms that are masked by code duplications in the target 

program. In addition to these issues Mens et al. (2008) also points out that the definition 

of what constitutes a cross cutting concern makes it difficult define and validate aspect 

mining processes. This issue also results in the subjectivity of the aspect mining process 

that ultimately affects the precision and ease of use of an aspect mining technique. The 

final issue with current aspect mining techniques described in the study is the inadequate 

representation of results. The study points out that each technique presents results in 

different formats and granularities. These differences make it difficult to compare and/or 

combine the results of different aspect mining approaches as well as making it difficult 

for the end user to reconcile the outputs of the aspect mining approaches.  

     Based on the observations in the studies performed by Ceccato et al. (2005) and Mens 

et al. (2008) some studies have been conducted to combine different aspect mining 

approaches in order to validate the results of each technique and fill in any gaps of the 

detection processes. One such study was performed by Ceccato, Marin, Mens, Moonen, 

Tonella and Tourwe (2006) as an extension of their previous study. In this study Ceccato 

et al. (2006) combine the results of the fan-in computation, formal concept analysis of 
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identifiers and the formal concept analysis of execution traces to analyze the JHotDraw 

source code. The combination was achieved by using the fan-in analysis and dynamic 

analysis results to generate candidate seeds. The method names are then used to generate 

a list of class and method identifiers that are related to each candidate seed. These 

identifiers are used as a basis for the identifier analysis to determine the nearest concept 

for the candidate method names. The methods contained in the nearest concept are then 

added to the original list of candidate seeds to aggregate the results of all three aspect 

mining techniques. The final expanded list can then be revised and filtered to determine 

the final candidate concerns.  

     As a result of the experimentation Ceccato et al. (2006) found that using the fan-in 

analysis and dynamic analysis techniques to pre filter the results of the identifier analysis 

improved the overall scalability of the aspect mining process. In terms of seed quality the 

results showed that three out of four of the candidate seeds exhibited greater recall and 

precision while the recall and precision of the last seed decreased.  

     Another framework, called Timna, for combining aspect mining approaches was 

developed by Shepherd, Palm, Pollock and Chu-Carroll (2005). This approach combined 

different aspect mining techniques to generate a set of classification rules using a training 

program. The training is carried out by labeling known candidates in a training program 

and applying each aspect mining approach to the training program code. This step results 

in a set of rules that are specific to a particular aspect mining approach. The rules from 

each aspect mining technique are aggregated to generate a propositional statement to be 

used in the classification step later on. Once the system has been trained each individual 

aspect mining technique is applied to the target program. For each method the various 
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results of each aspect mining technique is collected and checked to see if it matches a 

propositional statement generated during the training phase. If a match is found the 

method is marked as a candidate concern. If a matching propositional statement is not 

found the method is not considered to be a part of a cross cutting concern. In this way all 

the methods can be checked to determine if do or do not represent a cross cutting 

concern.  

     In order to test the Timna framework Shepherd et al. (2005) used the JHotDraw 

program code to train the system and used the train system to detect cross cutting concern 

in the PetStore program source code. Based on their experimental results Shepherd et al 

(2005) found that the aggregated results of fan-in analysis and cloning detection had 

better precision and recall than just using the fan-in computation in general. However 

Shepherd et al. (2005) did note that certain combinations of aspect mining techniques 

resulted in varying degrees of precision and recall for different kinds of candidates. Given 

the way the candidates were labeled it was not possible to determine what kind of 

candidate concerns benefited from this approach. Given this there more research is 

needed to evaluate the benefit of this approach.  

Summary 

     The research community has developed a wide range of aspect mining techniques. The 

various approaches can be split into two broad categories. The first category of aspect 

mining techniques tries to locate cross cutting concerns by examining the program source 

code. These techniques, known as static aspect mining techniques, use a wide range of 

approaches that include counting method invocations, detecting patterns of repeated code 

and semantic deconstruction of code elements. The second category of aspect mining 
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approaches utilizes execution traces as basis for the analysis and are known as dynamic 

analysis techniques. These techniques often utilize techniques such as cluster analysis or 

concept analysis to determine groups methods that represent common themes or 

concerns. Despite the differences in the approaches these various aspect mining 

techniques suffer from a common set of issues like being too specialized in the detection 

of a particular type of cross cutting concern and attempting to apply a one size fits all 

approach to all kinds of concerns. For this reason studies have shown that aspect mining 

techniques need to be improved before they can be widely used. One approach used to try 

to improve the aspect mining techniques is by combining different techniques during the 

analysis. These approaches do seem to provide some benefit in regards to the accuracy of 

the aspect mining process but do not entirely resolve all the issues nor do they provide 

consistent improvements in all cases. 
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Chapter 3 

Methodology 

Overview 

     The conducted research aimed to identify an aspect mining approach that combines 

two existing aspect mining techniques in order to aggregate their cross cutting concern 

detection capabilities. The conducted research started by outlining how the two 

computations could be merged and what improvements needed to be made to the existing 

algorithms. After the opportunities of combination had been analyzed the research 

focused on the development of an enhanced and unified algorithm that incorporated the 

features of the existing aspect mining algorithms. Based on this unified algorithm the 

research then focused on building a prototype implementation of the algorithm and used 

it to test the viability of the new approach. The prototype was tested by using it to analyze 

well known test programs like JHotDraw, Carla Laffra's implementation of the Dijkstra 

shortest path algorithm and the Graffiti application. The generated output was then 

compared to its composite approaches to verify whether the combination did indeed 

aggregate the abilities of its component parts.  

Specific research method(s) to be employed  

     The conducted research aimed to create a single aspect mining approach that unifies 

the algorithms defined by the fan-in aspect mining approach developed by Marin et al. 

(2007) and the method call tree approach developed by Qu and Liu (2007). The process 

of defining the final algorithm took advantage of the fact that both algorithms were static 
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analysis approaches and so both algorithms analyze the method invocations of the target 

program source code to generate certain metrics used to judge the presence of a concern.  

     The original method call tree algorithm reads the target source code and uses control 

flow statements and method invocations to generate a tree structure that provides a 

visualization of the code logic. An example of a method call tree is shown in figure 1 

below. 

 

As the figure shows when the method call tree algorithm reads a method call within the 

target code the method is added to the tree. However no further information regarding the 

method call is captured. After the tree is generated for the entire target program the 

structure of the tree is examined to identify repetitions of nodes within the branches of 

the trees. These repetitions indicate the presence of repeated method calls and may 

indicate the existence of a cross cutting concern due to code tangling.  

     The conducted research modified the basic method call tree algorithm by introducing 

two major modifications to the algorithm. The first modification is the integration of the 

If 

methB 

methC 

I 

E 

methX() 

{ 

    if(cond){ 

      methB(); 

    }else{ 

      methC(); 

   } 

   methD(); 

} 

 

Seq 

methD 

Seq Seq 

Figure 1 - Example of a Method Call Tree  
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fan-in computation as described Marin et al. (2007). The process of integrating the fan-in 

computation required a number counting rules to be incorporated in the method call tree 

algorithm. Marin et al. (2007) defines the set of rules for computing fan-in values for 

over ridden methods within a class hierarchy. For this reason the algorithm presented by 

Marin et al. (2007) includes a process to track class hierarchies during the analysis of the 

target source code. On the other hand Qu and Liu (2007) did not address the impact of 

class hierarchies and overridden methods to the generation and analysis of the method 

call tree. The enhanced algorithm integrated the fan-in computation by modifying the 

method call tree generation so that when a method definition is read the method 

definition and hierarchy is maintained in a look up table. This entry maintains the method 

name and its class hierarchy information along with a fan-in counter. After the method’s 

meta data is captured the enhanced algorithm processed the method body as described by 

Qu and Liu (2007) in order to generate the set of method relationships. 

    The method body processing described by Qu and Liu (2007) involves reading the 

method body line by line examining each line for method calls and control flow 

constructs. When the algorithm encounters a method invocation it logs the relationship 

between the calling method and the method being invoked by adding the invocation node 

to the call tree. After the call tree is generated the tree is traversed in order to determine 

inside-first, inside-last, outside-before and outside-after relations between the methods as 

described by Breu and Krinke (2004). The algorithm developed by Qu and Liu (2007) 

accomplishes this by maintaining a matrix for each relationship where each cell 

represents a counter that increments every time the relationship between the methods in 

the row and column is encountered in the call tree. For example the matrix in figure 2 
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below would represent the matrix generated for the outside-before relationship for the 

sample code in figure 1. 

 methB methC methD methX 

methB 0 0 0 0 

methC 0 0 0 0 

methD 1 1 0 0 

methX 0 0 0 0 

Figure 2 – Example of an outside-before relationship matrix  

The enhanced algorithm changed the matrix so the cells maintain a list of distances 

between the two methods in the relationship. These lists allow the computation of the 

count of the relationship and also allow the computation of the consistency of the 

relationship. For the sample code below the derived outside-before relationship matrix 

generated by the enhanced algorithm is shown in figure 3. 

methX() 

{ 

    if(cond){ 

      methB(); 

    }else{ 

      methC(); 

   } 

   methD(); 

} 

methY() 

{ 

    if(cond){ 

      methB(); 

    }else{ 

      methC(); 

   } 

   methA(); 

   methD(); 

} 

 methA methB methC methD methX 

methA {} {} {} {} {} 

methB {1} {} {} {} {} 

methC {1} {} {} {} {} 

methD {} {1,2} {1, 2} {} {} 

methX {} {} {} {} {} 

 

Figure 3 – Example of an enhanced outside-before relationship matrix 
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In this way the algorithm calculates the count of the relationship as well as the average 

distance between the method calls and the variance in the distances where this 

relationship is found.  

     In addition to the altering the structure of the matrix and the data collection approach 

the new algorithm incorporated the hierarchical considerations introduced for computing 

fan-in values, introduced by Marin et al. (2007), while computing the relationships 

between methods. For example one such rule is that when an overriding method 

invocation is encountered, the fan-in counter for that method as well as its super method 

is incremented. The enhanced algorithm applied similar rules while determining the 

inside-first, inside-last, outside-before and outside-after relationships. In this way if a 

distance is being added to a cell in a relationship matrix the distance is also added to the 

cell of the methods super implementation. This process is illustrated in the example 

below where methA is an overridden implementation of the method superA.  

methA extends superA 

methX(){ 

    if(cond){ 

      methB(); 

    }else{ 

      methC(); 

   } 

   methD(); 

} 

methY(){ 

    if(cond){ 

      methB(); 

    }else{ 

      methC(); 

   } 

   methA(); 

   methD(); 

} 

 superA methA methB methC methD methX 

superA {} {} {} {} {} {} 

methA {} {} {} {} {} {} 

methB {1} {1} {} {} {} {} 

methC {1} {1} {} {} {} {} 

methD {} {} {1,2} {1, 2} {} {} 

methX {} {} {} {} {} {} 

 

Figure 4 – Example of an enhanced outside-before relationship matrix with overrides 
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As shown in the diagram every instance where the outside-before relationship for methA 

is captured the same relationship is added for the method superA. Once the relationship 

data was captured the enhanced algorithm computed the four metrics that a user could use 

to filter the results of the analysis and identify frequent method relationships that are 

likely to be instances of cross cutting concerns. The first metric computed for the method 

relationships was the count of the relationship that is calculated as the number of 

instances where the method relationship was encountered in the target code. The second 

metric was the average distance of the relationship that is average of all distances 

captured for the relationship. The third metric was the standard deviation of the distances 

from the average distance for the relationship. The final metric was the confidence factor 

for the relationship. The confidence factor for an outside relationship A outside before or 

after B indicates the likelihood the method A will be invoked before or after the 

invocation of the method B based on the relationship type. Similarly for an inside 

relationship the confidence factor for a relationship B inside first or last A indicated the 

likelihood that an implementation of method A will contain an invocation of the method 

B. 

Instrument development and validation  

    In order to demonstrate the abilities of the new approach the conducted research 

included a prototype implementation of the enhanced algorithm. The prototype was a 

Java program that took a target program source code as an input, performed the aspect 

mining analysis described above and output the computed fan-in values and method 

relationships. The sample implementation focused on parsing and analysis of programs 

implemented in Java. Constraining the target programs to Java programs did limit the 
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sample size that could be analyzed by the prototype to some degree. However many of 

the prior research tools developed by the research community including Breu and Kirnke 

(2004), Marin et al. (2007) and Qu and Liu (2007) also focus on the analysis of Java 

programs. In this way the sample implementation was able to analyze the same set of 

target programs that have been analyzed by the other baseline aspect mining techniques. 

Validation criteria 

     One of the main objectives of the research was to combine the ability to detect 

concerns caused by code scattering and concerns caused by code tangling within a single 

analysis process. In order to achieve this result the research merged the fan-in 

computation introduced by Marin et al. (2007) with the method call tree analysis 

approach introduced by Qu and Liu (2007). In order to judge the success of the new 

algorithm the research utilized a prototype implementation to analyze the JHotDraw 

application source code. The results of this experiment were compared against the 

findings published by Marin et al. (2007) in order to ensure that results of the code 

scattering detection were consistent with the original fan-in computation algorithm. The 

success criteria for the experiment was based on whether the prototype identified the 

same set of high fan-in methods as were identified in Marin et al. (2007). 

     Similarly the validation for the detection code tangling concerns required that the new 

algorithm be validated against results from prior research. However since the study 

presented by Qu and Liu (2007) did not include detailed test results, a different study was 

chosen to validate the experiments. In this case the method relationships generated by the 

experiments were measured against the findings published by Breu and Krinke (2004). 

The comparison was based on the output generated by the analysis of the Graffiti source 
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code since this code base was used as the inputs for the experiments published by Breu 

and Krinke (2004). 

Formats for presenting results  

     The output of the new aspect mining technique combined the computation of fan-in 

values and the generation of method relationships. Therefore the output of the prototype 

consisted of two tables. The first table depicted by table 1 listed each method analyzed 

along with the computed fan-in value for the method. 

Method Name Fan-In Value 

  

Table - 1: Sample output table for displaying computed fan-in values 

The second table generated as part of the experimental results displayed the method 

relationships determined by the enhanced method call tree. Typically, in prior research, 

the method relations are displayed as a list however the output of the new algorithm also 

included the consistency measurements of average distance, variance and the confidence 

factor of the relationship. Therefore the results of the method relationships followed the 

structure depicted in table 2.  

Relationship Average Distance Std Dev in Distance Confidence Factor 

    

Table 2 - Sample output table for displaying computed method relationships 

Resource requirements  

     The evaluation of aspect mining algorithms rely on sample applications that have 

known set of cross cutting concerns in order to provide a benchmark output for 
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comparison. The enhanced method call tree aspect mining approach was validated using 

the source code and prior analysis of the Carla Laffra implementation of the Dijkstra 

algorithm, the JHotDraw application and the Graffiti application. Therefore the research 

relied on obtaining the source code for these target application as experimental resources. 

Summary 

     The conducted research aimed to fulfill its research goals by merging the fan-in 

computation with the computation of the method relationships generated by the method 

call tree analysis. The new algorithm achieved this by using the source code of the target 

program to generate the method call tree that was traversed in order to generate the 

method relationships. As part of this process whenever a method call was encountered the 

fan-in value for the encountered method was incremented and the method relationship 

was also captured. When capturing the data for the method relationships the algorithm 

recorded a list of distances for every instance encountered for that method relationship. 

This allowed the enhanced method call tree algorithm to compute the mean distance and 

deviation for each relationship as well as the confidence factor. In addition to capturing 

the relationship for the method encountered the enhanced method call tree approach also 

records the instance of the method relationship for the super class implementations of the 

method. 

    In order to test the abilities of the new algorithm the research included an 

implementation of the algorithm developed using Java. The implementation was used to 

analyze the source code of the JHotDraw application and the Graffiti application. The  

experimental results were compared against the results published by Marin et al. (2007) 

and Breu and Krinke (2004).   
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Chapter 4 

Results 

Data Analysis 

     In order to determine the effectiveness of the enhanced method call tree algorithm a 

set of test programs were used to generate a series of method call trees for every method 

within the target source code. The test programs chosen for these tests were the 

JHotDraw application, the Graffiti application and the Carla Laffra implementation of the 

Dijkstra algorithm. The enhanced method call tree algorithm was applied to each sample 

program to first generate the call trees that depict the sequence of method calls occurring 

within each functional unit within the program. These call trees then formed the basis of 

the raw data used for the computation steps that counted the number of times a method 

was invoked, that is the fan-in count of each method, as well as the method relationships 

between the methods within the target source code. 

     The first step of the data analysis transformed the method call tree into a series of 

execution paths. These execution were generated by traversing the call tree and listing all 

the method calls made within the path as shown in the sample execution trace for the 

method CTXCommandMenu.enable figure 5 below. 

Program Source Code Generated execution traces 
public void enable(String name, boolean state) { 

  for (int i = 0; i < getItemCount(); i++) { 

    JMenuItem item = getItem(i); 

     if (name.equals(item.getLabel())) { 

      item.setEnabled(state); 

      return; 

    } 

  } 

} 

[ 

 [CTXCommandMenu.getItemCount,                       

CTXCommandMenu.getItem, 

null.getLabel, null.setEnabled, #END#],  

[CTXCommandMenu.getItemCount, 

CTXCommandMenu.getItem, 

null.getLabel] 

] 
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Figure 5 - Sample source and related execution paths 

 

 

The execution paths provided a means of analyzing the method relationships as described 

in Breu and Krinke (2004). As shown in figure 5 above, the execution traces included 

both invocations of the implemented classes as well as calls made to standard library 

classes. In the case where a standard library calls were detected the class names were set 

to null within the trace output and were disregarded in any further calculations. One 

observation noted during the experimentation was that execution branches caused by 

conditional statements like 'if' statements resulted in a combinatorial explosion of the 

number of possible execution paths that can occur. For example the method call tree for 

the action method in the class Options resulted in 433 execution paths due to the high 

number of nested if conditions.  

     After generating the execution paths for a method the execution paths were used to 

calculate the fan-in of each method invoked within the execution paths as well as the 

method relationships with the invoked methods. The fan-in computation methodology 

employed by the modified method call tree approach differs slightly from the fan-in 

computation outlined by Marin et al. (2007). The difference was a result of using the 

execution traces as the input for the computation processes. Since a single block of code 

can result in multiple execution traces, due to branching instructions, this resulted in a 

larger number of method invocations than the count of the instances of the method within 

the code.  

     The second part of the trace analysis process was the computation of method 

relationships. The enhanced call tree approach captured the inside-first, inside-last, 
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outside-before and outside-after relationships outlined by Breu and Krinke (2004). 

However, as outlined in the approach section, the enhanced method call tree algorithm 

did not limit the relationship identification to the first instance of a method invocation 

with the execution trace as was done in earlier approaches. For example given the 

execution trace for the CTXCommandMenu.enable, shown in figure 5 earlier method 

relationship computation approaches would identify a single inside-first method relation 

between CTXCommandMenu.enable and CTXCommandMenu.getItemCount. However 

the enhanced method call tree approach generates the relationships shown in the table 3 

below 

Relationship Distance Number of instances 

CTXCommandMenu.getItemCount ∈⫟ 

CTXCommandMenu.enable 

1 2 

CTXCommandMenu.getItem ∈⫟ 

CTXCommandMenu.enable 

2 2 

Table - 3: Sample output of inside-first relationships 

The distance denotes the order of method invocation within the execution trace and help 

form the final decision of whether the method relationship is both frequent and 

consistent.  

     Similar to inside-first and inside-last relationships the enhanced method call tree 

approach also analyzed the execution traces to generate outside-before and outside-after 

relationships. These relationships as described by Breu and Krinke (2004) denote a 

relationship where a method B is invoked before or after a method A within an execution 

trace. In a similar fashion as the inside relationships, the enhanced method call tree 

approach did not limit the analysis to the immediate neighbors when determining the 
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outside-before and outside-after relationships. For example given the execution trace for 

the DrawApplication.loadDrawing method in the JHotDraw application 

[DrawApplication.restore, Drawing.setTitle, DrawApplication.newWindow, 

DrawApplication.showStatus] 

Table 4 shows the outside-after relationships created for the DrawApplication.restore and 

Drawing.setTitle methods 

Relationship Number of instances Distance 

DrawApplication.setTitle ↼ 
DrawApplication.restore 

1 1 

DrawApplication. newWindow ↼ 
DrawApplication.restore 

1 2 

DrawApplication. showStatus ↼ 
DrawApplication.restore 

1 3 

DrawApplication. newWindow ↼ 
DrawApplication. setTitle 

1 1 

DrawApplication. showStatus ↼ 
DrawApplication. setTitle 

1 2 

Table - 4: Sample output of outside-after relationships 

As shown in the example in order to compute an outside-after relationship only 

subsequent method invocations were considered by the computation. That means that 

DrawApplication.restore↼Drawing.setTitle with a distance of -1, was not considered for 

an outside-after relationship. The reasoning for this is that such relationships are better 

tracked using the outside-before relationship.  

     The final step of the analysis used the data from the fan-in computation and method 

relationships to determine frequent and consistent code patterns that could indicate a 

cross cutting concern also referred to as a seed. The frequency of a relationship is 

captured by number of instances the relationship was detected within the execution 



54 

 

 

traces. This indicator is a good measurement for outside-before and outside-after 

relationships since it describes how often the two methods can be found tangled together. 

However this indicator is not very relevant for inside-first and inside-last relationship 

since the number of instances of a relationship is always 1. Therefore when considering 

the inside-first and inside-last relationships the analysis focused on the number of 

instances a particular method occurs as the first or last method call whenever the 

implementation of the method is overridden.  

     Along with the frequency of the relationship the other important indicator for 

determining the viability of a seed was the consistency of the relationship. The 

consistency was determined by measuring the average distance recorded for all instances 

of a relationship. When determining the consistency of any relationship the desired 

average distance would be 1. In addition to the average distance the standard deviation 

was computed to see the degree of variability in distances for a noisy relationship. For a 

relationship to be consistent the standard deviation ideally would be zero. The final 

indicator useful for determining candidate seeds is the confidence of the relationship. The 

confidence of a relationship is the number of instances of the relationship/ the fan-in 

value for the method. If the confidence score approaches 1 that is an indication that the 

particular is very tightly coupled to the other method within the relationship. This would 

indicate that the methods are highly tangled. It should be noted however that a method 

can be tangled with several different concerns. For example if a method B is consistently 

executed after method A as well as method C the confidence of the relationships B ↼ A 

and B ↼ C with respect to B would not be close to 1.  
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     The determination of the method relationships was enhanced to broaden the detection 

scheme beyond immediate neighboring method calls. This approach was found to be 

viable as seen in the case of the inside first relationship with the Init method calls within 

the GraphCanvas class. The Init method is invoked as the first method call within the 

GraphCanvas constructor, GraphCanvas.clear, GraphCanvas.reset, and as the second 

method call in the GraphCanvas.showexample method. Despite the Init method not being 

called as the first method in the GraphCanvas.showexample method the enhanced method 

call tree approach did detect the potential inside-first relationship. By computing the 

overall mean distance for each of the invocation instances the data clearly showed that 

the Init method is consistently invoked at the beginning of each method. This also makes 

sense given the purpose of the Init method is to initialize components prior to the drawing 

activities. Using the outside-before and outside-after relationships the results of the 

experiments using the JHotDraw application showed a consistent very tight coupling 

between the UndoableAdapter.setUndoable and UndoableAdapter.setRedoable methods. 

The results showed that the distance between the invocations had a mean distance of 1, 

indicating they are always adjacent to one another. The confidence factor of the 

relationship was also 1 showing that the methods were always invoked as a pair. This 

relationship is also intuitive based on the nature of the functionality of these methods. 

Similar relationships were observed for the FigureEnumeration.nextFigure and 

FigureEnumeration.hasNextFigure methods. In this case there is some variability 

observed since the mean distance between the two methods was found to be 1.7 however 

the confidence factor of 1 showed that these two methods are tightly coupled. This 
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relationship is obvious since the hasNextFigure is a check prior to invoking the 

nextFigure method to obtain the next element in the enumeration.  

Findings 

     The enhanced method call tree aspect approach successfully combined the fan-in 

computation with the identification of the method relationships. Moreover the 

combination of the two techniques resulted in a way that adds additional measurement of 

confidence factor that can aid in the identification of candidate seeds. Despite the 

combinations of two aspect mining related computations the performance of the overall 

algorithm was found to be very efficient. The processing times for the each of the test 

programs analyzed by the enhanced method call tree implementation are shown in the 

table 5 below. 

 JHotDraw Graffiti Carla Laffra 

Total processing time (ms) 5546 10524 1158 

Class meta data collection (ms) 2674 8249 707 

Tree generation time (ms) 195 178 25 

Fan-in computation time (ms) 60 20 11 

Method relationship computation time (ms) 1034 267 125 

Table 5 - Execution times for experiments 

     When comparing the results of the fan-in computation experimental results showed 

that the fan-in values calculated by the new approach tended to be higher than those 

calculated by Marin et al. (2007). The table 6 below shows the differences in the high 

fan-in methods captured by the research and those captured by Marien et al. (2007).  
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Results from Marin et al. (2007) Generated experimental results 

Class/ Method   Fan-in Class/ Method   Fan-in 

Undoable 25 (Max) Undoable.undo 59 

Storable <all methods> 22 (Total) Storable <all methods> 29 (Total) 

.willChange 25 .willChange 34 

Figure.changed 36 Figure.changed 58 

Figure.addFigureChangeListener 11 Figure.addFigureChangeListener 14 

AbstractCommand.execute 24 15 AbstractCommand.execute 26 

DecoratorFigure.containsPoint  DecoratorFigure.containsPoint 18 

Table 6 - Fan-in value differences 

The variation of the result was caused by the fact the enhanced method call tree approach 

calculates the fan-in value based on the number of method invocation within execution 

traces while the calculation by Marin et a. (2007) counted the fan-in by the number of 

occurrences of the method invocation within the source code. However when the results 

of the computation were compared it was found that both approaches identified a similar 

set of methods with high fan-in values. Since the purpose of the fan-in value is to provide 

a relative ranking of frequently invoked methods the results of the two approaches are 

consistent.  

     In addition to the fan-in computation, the enhanced method call tree approach 

demonstrated the ability to generate the set of method relationships as described in prior 

research such as Breu and Krinke (2004). In order to test the method relationship 

detection capabilities the algorithm was used to analyze the source code of the Graffiti 

application. The analysis results were compared to the findings described by Breu and 

Krinke (2004) that was also based the analysis of the Graffiti.  

     The first finding described by Breu and Krinke (2004) was the evidence of the logging 

concern. The dynamic analysis technique detected this concerned incidentally because 

the Graffiti application extended a standard Java API formatting class to format the log 
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messages. The call to the log formatting was captured as part of the execution traces 

collected during the experimentation since it was invoked by the Java API. This concern 

was not detected by the enhanced call tree method since the implementation of the 

concern relied on the java.util.logging.Formatter standard Java API class that is called 

from within the java.util.logging.Logger API. As mentioned earlier the enhanced method 

call tree analysis focuses purely on functional concerns implemented by the target source 

and thus filtered out any calls to standard API methods. 

     As part of their analysis of concerns implemented within the Graffiti code Breu and 

Krinke (2004) identified the outside after relationship between the methods 

MainFrame.addSessionListener and the methods isSessionListener in multiple different 

classes. After examining the code Breu and Krinke (2004) found that the 

isSessionListener is defined in the interface GenericPlugin whose sub classes were 

detected in the execution traces. The enhanced method call tree algorithm also detected 

the relationship between the GenericPlugin.isSessionListener and the 

MainFrame.addSessionListener. In the case of the enhanced method call tree approach 

the directly links the relationship between the GenericPlugin interface and the 

MainFrame class without requiring any investigation into the code. In addition to 

detecting the relationship between the two methods, the enhanced method call tree 

approach shows that the average distance between the two method calls is 1 meaning that 

the relationship between the two methods is very consistent and since confidence factor 

of the relationship is 97% the methods are very tightly coupled together. These inferences 

were consistent with the explanation provided by Breu and Krinke (2004) after the 

examination of the Graffiti code. In a similar manner another outside after relationship 
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discussed by Breu and Krinke (2004) is the relationship between the methods 

GenericPluginAdapter.getAlgorithms and the getName method of multiple different 

algorithm classes. After analysis of the code these algorithm classes were found to sub 

classes of the GenericPlugin class. This relationship was also detected by the enhanced 

method call tree algorithm. In the case of the enhanced method call tree algorithm the 

relationship between the two methods were automatically detected at the base class level. 

The enhanced method call tree approach found that the average distance between the 

getName and getAlgorithms was about two method calls. This differs from the analysis 

performed by Breu and Krinke (2004). Analysis of the code shows that between the 

getAlgorithms call and the getName there is a conditional call to processPathInformation. 

It is possible that this condition was never met during the testing by execution traces 

approach so this method call would not have been detected by Breu and Krinke (2004). 

     In addition to the outside before/after relationships Breu and Krinke (2004) discuss the 

inside first/last method relationship of the MainFrame.isSessionActive within the 

isEnabled method of the FileCloseAction, ViewNewAction, and RunAlgorithm, 

EditUndoAction and EditredoAction classes. These relationships were also detected by 

the enhanced method call tree algorithm for each individual class. In addition, since the 

isEnabled method is a defined within the base class GraffitiAction, the inside first 

relationship between the MainFrame.isSessionActive and the isEnabled was 

automatically extrapolated to the base class GraffitiAction. This relationship between the 

GraffitiAction and the isEnabled method was also identified by Breu and Krinke (2004) 

on further manual analysis of the code.  
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     The results of the experiments show that the enhanced call tree method is able to 

determine relationships between methods that are comparable to dynamic aspect mining 

techniques. The application of these relationships in terms of detecting tangled concerns 

is illustrated by comparing the relationships found by the enhanced method call tree 

approach and the observations of the JHotDraw application made by Marin et al. (2007). 

As part of the analysis of the JHotDraw source code Marin at al. (2007) observed that the 

undo and redo concerns are tangled within the implementations of the functional 

procedures like the cut operation. The CutCommand class is responsible for 

implementing the cut functionality within the JHotDraw application and the execute 

method of the class contains the actual logic performed for the operation. In the 

JHotDraw application code the functional concerns of undo operations rely on the 

methods AbstractCommand.createUndoActivity and AbstractCommand.setUndoActivity 

in order to track changes that can later be reversed as part of the undo function itself. It is 

important to note that these functions themselves do not implement the logic of the undo 

functionality but are essential for collecting the data upon which the undo functional 

concern can operate. Since the undo functionality needs to maintain the history of all 

operations the data collection of undo concern is tangled throughout the other drawing 

functionality provided by the JHotDraw application. The manifestation of this tangled 

concerns result in the AbstractCommand.createUndoActivity, 

AbstractCommand.setUndoActivity and Undoable.setAffectedFigures method calls are 

found within the implementation of user commands such as the CutCommand.execute 

method and multiple methods within various painting tool implementation classes like 

TextTool. These manifestations of tangled concerns are illustrated by inside first or inside 
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last method relations since these method relationships detect invocations of a tangled 

concerns within an implementation of some functionality. These types of relationships 

were observed in the enhanced method call tree algorithm output as shown in the table 7 

below. 

Relationship Mean Distance Number of 

instances 

BorderTool.createUndoActivity∈⫟ 
BorderTool.action 

2 1 

BorderTool.createUndoActivity∈⫟ 
BorderTool.reverseAction 

2 1 

BringToFrontCommand.createUndoActivity∈⫟ 
BringToFrontCommand.execute 

3 1 

ChangeAttributeCommand.createUndoActivity∈⫟ 
ChangeAttributeCommand.execute 

3 1 

ChangeConnectionHandle.createUndoActivity∈⫟ 
ChangeConnectionHandle.invokeStart 

3 1 

ConnectionTool.createUndoActivity∈⫟ 
ConnectionTool.mouseDown 

2 1 

ConnectionTool.createUndoActivity∈⫟ 
ConnectionTool.mouseUp 

18 2 

ConnectionTool.createUndoActivity∈⫟ 
SplitConnectionTool.mouseDown 

24 2 

ConnectionTool.createUndoActivity∈⫟ 
Tool.mouseDown 

4 1 

CreationTool.createUndoActivity∈⫟ 
CreationTool.mouseUp 

4 1 

CutCommand.createUndoActivity∈⫟ 
CutCommand.execute 

3 1 

DeleteCommand.createUndoActivity∈⫟ 
DeleteCommand.execute 

3 1 

DragTracker.createUndoActivity∈⫟ 
DragTracker.mouseDown 

6.7 3 

DuplicateCommand.createUndoActivity∈⫟ 
DuplicateCommand.execute 

3 1 

FontSizeHandle.createUndoActivity∈⫟ 
FontSizeHandle.invokeStart 

2 1 

GroupCommand.createUndoActivity∈⫟ 
GroupCommand.execute 

3 1 

InsertImageCommand.createUndoActivity∈⫟ 
InsertImageCommand.execute 

3 1 

PasteCommand.createUndoActivity∈⫟ 
PasteCommand.execute 

7 2 
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PolygonHandle.createUndoActivity∈⫟ 
PolygonHandle.invokeStart 

2 1 

PolygonScaleHandle.createUndoActivity∈⫟ 
PolygonScaleHandle.invokeStart 

1 1 

PolygonTool.createUndoActivity∈⫟ 
PolygonTool.mouseDown 

7 1 

PolyLineHandle.createUndoActivity∈⫟ 
PolyLineHandle.invokeStart 

2 1 

RadiusHandle.createUndoActivity∈⫟ 
RadiusHandle.invokeStart 

2 1 

ResizeHandle.createUndoActivity∈⫟ 
ResizeHandle.invokeStart 

2 1 

ScribbleTool.createUndoActivity∈⫟ 
ScribbleTool.mouseDown 

4 1 

SelectAllCommand.createUndoActivity∈⫟ 
SelectAllCommand.execute 

3 1 

SendToBackCommand.createUndoActivity∈⫟ 
SendToBackCommand.execute 

3 1 

TextAreaTool.createUndoActivity∈⫟ 
TextAreaTool.beginEdit 

11.5 4 

TextTool.createUndoActivity∈⫟ 
TextTool.endEdit 

5 1 

TriangleRotationHandle.createUndoActivity∈⫟ 
TriangleRotationHandle.invokeStart 

2 1 

UngroupCommand.createUndoActivity∈⫟ 
UngroupCommand.execute 

3 1 

Table 7 - Inside first method relationships detected for createUndoActivity 

As shown by table 7 the individual number of inside first method relationships between 

the createUndoActivity method and the other functional methods can be quite large 

making it difficult to understand the concepts that these relationships actually depict. 

However an examination of the class hierarchies provided by the enhanced method call 

tree algorithm can summarize the 32 individual relationships into the following 8 method 

relationships listed below. 

 Tool.createUndoActivity ∈⫟AbstractTool.action 

Tool.createUndoActivity ∈⫟Tool.mouseDown 

Tool.createUndoActivity ∈⫟Tool.mouseup 

Tool.createUndoActivity ∈⫟ BorderTool.reverseAction 

Tool.createUndoActivity ∈⫟ TextAreaTool.beginEdit 



63 

 

 

Tool.createUndoActivity ∈⫟ TextTool.endEdit 

Command.createUndoActivity ∈⫟ Command.execute 

Handle.createUndoActivity ∈⫟ Handle.invokeStart 

 

This summarized list makes it easier to understand how the undo functionality is woven 

throughout the functionality of the JHotDraw application.  

     In addition to the tangled concerns the results of the outside before/after method 

relationships showed other interesting insights into the JHotDraw application. For 

example the one of the interesting common method relationships is the outside 

relationships found between the methods getUndoActivity or createUndoActivity and the 

setUndoActivity methods within the Handle and Command class hierarchies. Further 

examination of the code based on these relationships shows that the handling of the undo 

functionality usually follows a pattern of setUndoActivity(createUndoActivity()) or 

setUndoActivity(getUndoActivity()). These behaviors fall into the consistent behavior or 

contract enforcement classifications of cross cutting concerns described by Marin et al. 

(2007). 

Summary  

     The enhanced method call tree static analysis approach was applied to the JHotDraw, 

Carla Laffra implementation of the Dijkstra algorithm and the Graffiti application source 

codes. The output of the experiments generated the method call trees for each method 

within the target source code. These call trees were used to generate the complete list of 

all execution paths the target source code could follow. The execution paths were then 

used to compute the fan-in for each method as well as generate a series of inside-first, 

inside-last, outside-before and outside-after relationships. For each of these relationships 
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four metrics were computed namely the number of instances of the relationship, the 

average distance between the methods in the relationship, the standard deviation from the 

mean distance of both methods in the relationship and the confidence factor of the 

relationship. Finally these metrics were utilized to identify frequent method relationships 

that represent candidate seeds of cross cutting concerns.  

     The experiments showed that results generated by enhanced method call tree approach 

generated fan-in values higher than those generated by the method employed by Marin, 

Deursen and Moonen (2007). However the results of both approaches flagged similar 

methods as having high fan-in values. In addition to the fan-in computation the research 

also showed that it is possible for a static analysis technique to identify interesting 

method relationships using the four metrics described above.  

     The experimental results of the analysis of the Graffiti source code were compared to 

the findings described by Breu and Krinke (2004). When comparing the results of the 

approaches both approaches highlighted similar outside after and inside first/last method 

relationships. The only discrepancy between the two approaches was that the enhanced 

method call tree approach did not highlight the logging concern since the concern was 

implemented via standard Java API's that were excluded from the enhanced method call 

tree analysis. All other method relationships described by Breu and Krinke (2004) were 

also identified by the enhanced method call tree approach. During the comparison it was 

noted that many of the findings described by Breau and Krinke (2004) required an in 

depth review of the actual target code especially when identifying relationships spanning 

class hierarchies. However these hierarchical relationships were automatically 

highlighted within the results of the enhanced method call tree approach. The research 
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also showed how the metrics of mean distance, number of instances and confidence could 

also be used to determine the relevancy of the method relationships. 

     Finally the research showed that the code tangling concerns discovered within the 

JHotDraw source code as described by Marin, Deursen and Moonen (2007) are 

represented by the inside first method relationships detected by the enhanced method call 

tree. In addition the research revealed a series of outside after relationships that depict a 

cross cutting concerns classified as consistent behavior and/or contract enforcement cross 

cutting concerns.  
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Chapter 5 

Conclusions, Implications And Recommendations  

Conclusions 

     One of the goals of the enhanced method call tree was to integrate the computation of 

fan-in analysis and the generation of method relationships into a single aspect mining 

algorithm. The research has successfully incorporated these two aspect mining 

approaches into a single algorithm by generating the fan-in values for each method in the 

target code as well as generating a series of inside-first, inside-last, outside-before and 

outside-after relationships. The experimental results and comparisons of findings with 

prior research has shown that the output of the new algorithm is consistent with the 

outputs of prior approaches namely Marin, Deursen and Moonen (2007) as well as Breau 

and Krinke (2004). 

     The second goal of the research was to incorporate the object oriented class hierarchy 

structure into the determination of method relationships. As shown by the experimental 

results the enhanced method call tree was able to use the class hierarchy to extrapolate 

method relationships up the class hierarchy. While comparing the experimental results 

with analysis performed by Breu and Krinke (2004) the utility of extrapolating these 

results allows the user to understand the conceptual relationships between functional 

components without having to refer directly to the target source code.  

     The final goal of the research was to incorporate the ability to find execution patterns 

in the target code even when the target code contained inconsistencies in implementation. 

The research demonstrated that some inconsistencies can be captured by expanding the 
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method relationship detection beyond the immediate neighbors. The research also 

showed that the relaxation of the strict rules aids in identifying the interesting 

relationships. This was highlighted by the tangled concern of the undo functionality 

within the JHotDraw application. As shown in the experimental results there exists a 

clear relationship between the createUndoActivity and methods like the execute method. 

However the experimental results also show that the undo related functions are almost 

never called as the first method call in any functions implementation also that the undo 

related methods tend to follow a quite random distance from the beginning of the method 

implementations. 

     In addition to the main three goals of the research the research also attempted to find 

answers to five research questions. The first of these questions was the definition of an 

algorithm that incorporates the merging of the fan-in analysis and the identification of 

execution patterns. The approach outlined above outlines the steps of creating the 

execution tree for source code and traversing the tree to generate the execution paths. The 

research shows that these execution paths can then be used to compute the fan-in values 

for methods encountered in the execution path. These same execution paths can also be 

used to compute the method relationships between various methods in the target source 

code. 

     The second question the research attempted to explore was the impact of class 

hierarchies on the detection of code tangling. The research showed that extrapolating 

method relationships up a class hierarchy makes it easier to interpret conceptual 

relationships between functional areas within the target source code.  



68 

 

 

     The third question explored by the research was the performance impact of the 

computation of the method relationships on the aspect mining process. During the 

generation of the experimental results the run times noted for the various processes were 

summarized in table 5. The table showed that the method relationship generation phase 

accounted for between roughly 5 to 20% of the overall execution time. However overall 

the enhanced method call tree analysis approach executed in an adequate timeframe in 

each experiment. It should be noted that the memory usage spiked during the method 

relationship generation phase as compared to fan-in computation phase. This spike was 

caused by the number of combinations of the method relationships is higher than the total 

number of methods in the source code. The fan-in computation phase computes a single 

value for each method so the memory requirements are bound by the number of methods 

in the target source. The method relationship computation can expands with the number 

of method calls within the body of the target source. The memory usage can be a limiting 

factor for the enhanced method call tree analysis approach and future versions will have 

to optimize the memory handling techniques to ensure that the process can handle the 

analysis of large applications. 

     The fourth question explored by the research was the identification of metrics that can 

be used to measure the consistency of a method relationship. The research demonstrated 

how the three metrics namely the mean distance between the methods in the relationship, 

the standard deviation from the mean distance of the occurrences of the method 

relationships and the confidence factor of the method relationships can be computed by 

the enhanced method call tree algorithm. The conducted research also showed how these 



69 

 

 

measurements can be used to analyze the interestingness and consistency of the method 

relationships identified by the algorithm. 

     The final question explored by the conducted research was whether the control flow 

information stored in the call tree can be used to identify any interesting patterns in 

source code. As part of the analysis of the experimental results it was noted that in a 

number of places calls to methods like MainFrame.isSessionActive were made prior to an 

if condition in the Graffiti code base. However the conducted research could not discern 

how such information would provide any valuable insights into the target code.  

     Overall the research has shown that the enhanced method call tree approach was 

successful in achieving the goals it had set out to achieve. The research has shown that 

this approach can be used as a comprehensive static code analysis tool for the detection 

of both code scattering and code tangling cross cutting concerns. Also the enhanced 

method call tree approach exhibits a number of desirable traits in an aspect mining 

approach in that it is quick to execute, provides reasoning and metrics as part of the 

output that the user can leverage and does not require that the user be very familiar with 

the target application being analyzed.  

Implications 

     The conducted research introduces a viable comprehensive static analysis approach 

for detecting cross cutting concerns. The ability to detect cross cutting concerns due to 

code scattering and code tangling using a static analysis approach provides a number of 

benefits. Static analysis techniques allow the target code to be analyzed without requiring 

any special run time environments as are needed by dynamic analysis techniques. 
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Furthermore the static analysis approach like the enhanced method call tree approach 

require very little prior understanding of the target source code being analyzed. This in 

turn makes it much faster to run the analysis and generate the results for analysis. In 

addition the research has also introduced metrics that provides guidelines for analyzing 

the results generated by the analysis. These metrics provide meaningful data points to the 

users helping them to fine tune and justify the design changes being made as part of the 

aspect refactoring exercise. 

Recommendations 

     The conducted research has introduced an approach using an enhanced method call 

tree generation process for identifying candidate seeds using the fan-in computation and 

method relationships. The counters calculated by the computation were generated based 

on the number of occurrences of a method invocation within execution paths. The 

research identified this as being somewhat misleading since it can lead to inflated counts 

that cannot be directly correlated by a casual examination of the target source code. 

Future research should focus supplementing the execution path counts with an additional 

counter of distinct method bodies. This should make the generated data easier to analyze. 

Secondly the research did not focus on creating general guidelines for the metrics of 

number of instances, mean distance of methods, standard deviation of distances from the 

mean and the confidence of the method relations. Further research should be done to 

establish meaningful tolerances for these metrics to optimize the number of candidate 

seeds captured and precision of the candidates detected. Research can also focus on using 

these metrics as an input to cluster based detection algorithms as demonstrated by 

Maisikeli & Mitropoulos (2010).  
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     One observation made during the research was that conceptual patterns could be 

discerned in the target code that did not necessarily translate into method relationships. 

For example in the JHotDraw source code the UndoActivity has multiple relationships 

with a number of methods within the various Figures classes. When observed 

individually each method relationship was not frequent enough to become a candidate 

seed. However overall there seems to be concept linking the UndoActivity and the 

manipulation with the various Figures classes. Further research should be conducted to 

incorporate a concept analysis feature similar to Tourw´e & Mens (2004) or an NLP 

based approach as described by Shepherd, Pollock & Tourw´e (2005).  

     In order to account for implementation inconsistencies within the target code the 

research focused on expanding the detection of method relationships beyond the next 

neighbor. This approach can account for variations that may be caused by methods not 

always being invoked within a specific sequence. However other relationships could 

possibly be observed if the trees of the called methods are also considered in the 

execution path. These types of relationships would not be detected by the shallow search 

employed by the current algorithm. Further research can be done to use the method 

relationships to generate transitive relationships that would be able to detect such 

potential method relationships.  

Summary 

     The research showed that the enhance method call tree analysis approach successfully 

achieve its three primary goals. The first goal was achieved by successfully merging the 

fan-in computation with the method call tree generation algorithm. The second goal was 

achieved by modifying the method relationship calculation to bubble up the relationships 
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to the super class implementation of the overridden methods. The final goal was achieved 

by adding the capability to determine the method relationships even if the method 

invocations were not called in a consistent sequence. These features showed that it was 

possible to develop an aspect mining approach that executes quickly, produces results 

that are easy to interpret and that does not require any special tools or prior knowledge of 

the target code in order to perform the analysis.  

     In order to enhance this static analysis tool further research should be performed in 

order to capture frequency of relationships within distinct method implementations. Other 

enhancements can focus on including an identifier analysis approach to the method 

relationships in order to determine dependent concepts or concerns within the 

functionality of the target code. Another enhancement should focus on using the method 

relationships to find transitive relationships in order to uncover dependencies obfuscated 

by nested method invocations. Finally further research can be performed to find optimal 

tolerances for the metrics generated by the enhanced method call tree approach. 
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Appendices 

Appendix A 

Prototype Implementation  

1. Java source code files 

2. Dependent libraries 
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Appendix B 

Output of experimental results  

1. Fan-in results for the Carla Laffra implementation of the Dijstkra algorithm 

2. Method relationship results for the Carla Laffra implementation of the Dijstkra 

algorithm 

3. Fan-in results for the JHotDraw application 

4. Method relationship results for the JHotDraw application 

5. Fan-in results for the Graffiti application 

6. Method relationship results for the Graffiti application 
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3.  
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