
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2016

Enhanced Method Call Tree for Comprehensive
Detection of Symptoms of Cross Cutting
Concerns
Saleem Obaidullah Mir
Nova Southeastern University, saleem@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Saleem Obaidullah Mir. 2016. Enhanced Method Call Tree for Comprehensive Detection of Symptoms of Cross Cutting Concerns. Doctoral
dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (962)
http://nsuworks.nova.edu/gscis_etd/962.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51083242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F962&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Enhanced Method Call Tree for Comprehensive Detection of Symptoms of Cross

Cutting Concerns

By

Saleem Obaidullah Mir

A dissertation report submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2016

We hereby certify that this dissertation, submitted by Saleem Mir, conforms to acceptable

standards and is fully adequate in scope and quality to fulfill the dissertation requirements

for the degree of Doctor of Philosophy.

___ ________________

Francisco J. Mitropoulos, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Renata Rand McFadden, Ph.D. Date

Dissertation Committee Member

___ ________________

Sumitra Mukherjee, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Ronald J. Chenail, Ph.D. Date

Interim Dean, College of Engineering and Computing

College of Engineering and Computing

Nova Southeastern University

2016

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Enhanced Method Call Tree for Comprehensive Detection of Symptoms of Cross

Cutting Concerns

by

Saleem Obaidullah Mir

April 2016

 Aspect oriented programming languages provide a new composition mechanism between

the functional sub units as compared to earlier non aspect oriented languages. For this

reason the refactoring process requires a new approach to the analysis of existing code

that focuses on how the functions cross cut one another. Aspect mining is a process of

studying an existing program in order to find these cross cutting functions or concerns so

they may be implemented using new aspect oriented constructs and thus reduce the

complexity of the existing code. One approach to the detection of these cross cutting

concerns generates a method call tree that outlines the method calls made within the

existing code. The call tree is then examined to find recurring patterns of methods that

can be symptoms of cross cutting concerns caused by code tangling. The conducted

research focused on enhancing this approach to detect and quantify cross cutting concerns

that are a result of code tangling as well as code scattering. The conducted research also

demonstrates how this aspect mining approach can be used to overcome the difficulties in

detection caused by variations in the coding structure introduced by over time.

Acknowledgements

I would like to thank my wife for all the accommodations, support and encouragement

she has provided over the years of this endeavor. She has always been a rock that I could

rely on during the highs and lows of the process. I am thankful for my children’s

understanding when I had to spend time on my academic work rather than spending the

time with them. I would also like to thank my parents for providing me with the

opportunities and background needed to undertake the effort of pursuing a doctorate

degree. I would like to thank my committee members, Dr. Mitropoulos (chair), Dr. Rand

McFadden, and Dr. Mukherjee, for their guidance and helpful feedback. I would

especially like to thank Dr. Mitropoulos for helping me get through times where I was

feeling lost during the dissertation process. Finally I would like to thank all my family,

friends and colleagues who continually showed an interest and provided encouragement

to me over the years of the pursuit.

v

Table of Contents

Abstract ii

List of Tables vii

List of Figures viii

Chapters

1. Introduction 1

 Background 1

 Problem Statement 4

 Dissertation Goal 8

 Research Questions 11

 Relevance and Significance 12

 Barriers and Issues 15

 Assumptions, Limitations and Delimitations 16

 Definition of Terms 17

 Summary 18

2. Review of the Literature 20

 Overview 20

 The theory and research literature specific to the topic 20

 Summary 39

3. Methodology 41

 Overview 41

 Research Methods Employed 41

 Instrument development and validation 46

 Formats for presenting results 48

 Resource requirements 48

 Summary 49

4. Results 50

 Data Analysis 50

 Findings 56

 Summary 63

5. Conclusions, Implications And Recommendations 66

 Conclusions 66

 Implications 69

 Recommendations 70

 Summary 71

Appendices
A. Prototype implementation 73

B. Output of experimental results 74

vi

References 76

vii

List of Tables

1. Sample output table for displaying computed fan-in values 48

2. Sample output table for displaying computed method relationships 48

3. Sample output of inside-first relationships 52

4. Sample output of outside-after relationships 53

5. Execution times for experiments 56

6. Fan-in value differences 57

7. Inside first method relationships detected for createUndoActivity 61

viii

List of Figures

1. Example of a Method Call Tree 42

2. Example of an outside-before relationship matrix 44

3. Example of an enhanced outside-before relationship matrix 44

4. Example of an enhanced outside-before relationship matrix with overrides 45

5. Sample source and related execution paths 51

1

Chapter 1

Introduction

Background

 The description of the programming process, as described by Kiczales, Lamping,

Mendhekar, Maeda, Lopes, Loingtier and Irwin (1997), is a process of functional

decomposition where requirements are broken down into smaller units that represent a

particular behavior of the program. These functional units are then encapsulated into

programming language constructs in the form of classes, functions or procedures. In

order to achieve the programs desired result these constructs are composed and

coordinated in a logical sequence. Non aspect languages, referred to as general

programming languages by Kiczales et al., have a single composition mechanism

available for coordinating the functional units. This mechanism is in the form of method,

function or procedure calls. The single mechanism forces the programmers to weave

together the function calls to different programming units within the body of the code.

This results in blocks of code where multiple functional units are invoked in tandem

causing the functional units to cross cut each other. Kiczales et al. defines this

composition of functionality where the functionality is implemented independently but

executed in tandem with each other as a cross cutting concern. These woven cross cutting

concerns result in code that is more complex and less readable. Moldovan and Serban

(2006) also define a cross cutting concern as a feature or function of the program that is

invoked in multiple places throughout the program or whose implementation is

2

interwoven with other functions or concerns within the program. This definition of a

cross cutting concern highlights two key symptoms of cross cutting concerns that can be

found within a programs code. The first symptom is code scattering that is caused when

references or invocations of a concern's implementation is scattered throughout the code

(Moldovan & Serban, 2006). This symptom is often seen, in non AOP languages, as

invocations of a method being replicated throughout various modules of the code. The

second symptom of a cross cutting concern is code tangling. This condition occurs when

several different concerns are interleaved with one another in the code (Moldovan &

Serban, 2006). These symptoms are usually observed as recurring patterns of method

invocations within the code.

 The goal of AOP languages, as described by Kiczales et al (1997), is to provide

programming constructs that clearly define functional units as well as mechanisms to

cleanly define the compositions of those functional units without having to weave

function calls within the program code. Using AOP languages concerns that cannot be

cleanly encapsulated within a single distinct generalized programming procedure become

candidates for an aspectized solution. For example if a particular functionality can only

be achieved by calling multiple programming components interwoven together the

concern is not componentized and would be a candidate for an aspectized solution. The

visualization of this situation can be illustrated by an example of the observer pattern

implementation as described by Hannemann and Kiczales (2002). The study shows that

the concern of generating and passing events between the generators and listeners is

implemented using two integration method calls. The first integration call is the

registration of listeners and is usually invoked during the initialization process of the

3

event listener. In this way the concern of registering listeners is woven into the

components initialization logic. Similarly when the event generator is processing an event

it invokes the notify methods of the listeners. This results in the notification logic being

woven into the event handling logic of the event generating component. Hannemann and

Kiczales (2002) show that by defining appropriate aspect oriented constructs the

registration and notification method calls can be abstracted into an aspect and removed

from the initialization and event handling code of the event generating and listener

components.

4

Problem Statement

 The aspect mining process analyzes the source code or execution data of a target

program in order to identify a set of candidate cross cutting concerns (Kellens, Mens &

Tonella, 2007). The difficulty in identifying representations of cross cutting concerns, as

described by Marin, Deursen and Moonen (2007), is that they can be manifested in the

source code in several ways. The two most common manifestations of cross cutting

concerns are either implementations that are scattered throughout the code or concerns

that are tangled within implementation of other functionality (Ceccato, Marin, Mens,

Moonen, Tonella & Tourwe, 2005). Isolating these manifestations is a major problem

during the re-engineering phase (Breu & Krinke, 2004). In order to solve this problem the

research community has developed a number of different aspect mining approaches.

 Given the variety of aspect mining approaches Kellens et al. (2007) conducted a study

comparing several different well known aspect mining techniques. This study revealed a

number of issues with the various techniques that require further attention and

improvement. One such issue identified by the study was that aspect mining techniques

focus on detecting one symptom of cross cutting concerns while ignoring the other. As

described by the study, static aspect mining techniques that focus on analyzing the target

programs source code did not include provisions for detecting cross cutting concerns that

are a result of code tangling. On the other hand dynamic analysis techniques focus on

analyzing execution traces of the target program and have shown the ability to detect

symptoms of code tangling. However even amongst these techniques the only

comprehensive aspect mining technique identified by the study was the 'Dynamic

Analysis' technique developed by Bruntink, Deursen, Engelen and Tourwe (2005).

5

 Although the dynamic analysis based techniques provide comprehensive detection

capabilities Kellens et al. (2007) and Ceccato et al. (2005) point out that they require

significant user effort to apply and therefore do not scale well to large applications. As an

example Ceccato et al. applied the Formal Concept analysis to the JHotDraw application.

This required the authors to execute 27 different use cases that were chosen after an

exhaustive study of the application's documentation. As part of their conclusion Ceccato

et al. noted that the effectiveness of the dynamic analysis technique is limited by the use

cases chosen by the users. Based on these studies it can be concluded that for the analysis

of large applications static analysis techniques would be more practical. However a

comprehensive static aspect mining technique remains an open problem.

 In order to overcome the limitations found with static aspect mining techniques Qu

and Liu (2007) developed a new static aspect mining technique called the Method Call

Tree. The Method Call Tree approach uses the target source code to generate control flow

sequences that are similar to the execution traces utilized by the dynamic analysis

approaches. In this way the Method Call Tree is able to analyze and detect execution

patterns that are similar to the results of dynamic analysis. While the Method Call Tree

technique solves one key issue found with static analysis techniques there are still certain

limitations that require improvement. The first limitation is that this technique does not

exhibit the ability to detect cross cutting concerns caused by code scattering. The method

call tree technique also does not account for object oriented programming constructs such

as polymorphic methods and class hierarchies. For example in the case where method B

overrides the implementation of method C these methods may represent the same

concern. If the execution patterns found within the target code include sequences

6

invocations of a method A followed by method B as well as invocation of method A

followed by method C these patterns together provide a higher degree of evidence of the

existence of the same cross cutting concern. However since the method call tree does not

associate inherited methods this approach considers the execution pattern of A and B to

belong to a different concern than that of A and C. Due to this the evidence of the

concern is dissipated and can result in the concern being overlooked. The need for

accounting these object oriented constructs was identified in Marin et al. (2007) and since

most of the aspect mining techniques are geared towards the analysis of object oriented

languages it is vital that they account for such features.

 Most of the aspect mining techniques developed by the research community have

focused on detecting cross cutting concerns by identifying patterns of method calls within

the target application. These approaches assume that the implementation of cross cutting

concerns in the target program is consistent throughout the application. However Mens et

al. (2008) states the assumption of consistency should be relaxed to account for small

variations in the code since programmers have different programming styles and also

because legacy code evolves over time resulting in inconsistent implementations. If these

variations are not accounted for the detection process may overlook code

implementations that perform the same cross cutting function but do not exactly follow

the same pattern. For example the aspect mining techniques developed by Qu and Liu

(2007) and Breu and Krinke (2004) attempt to identify execution relations. Breu and

Krinke (2004) describe this approach as finding execution patterns that exist in the same

composition within the target source code. For example an execution pattern called the

inside-first-execution relation between a method A and method B denotes that the method

7

B is the first method called within the body of method A. In sample code this would be

represented by a method definition like A(){ B(); …}. However if there is a case where

the method definition of A looks like A(){C(); B();…} this implementation would not be

considered as an inside-first-execution between A and B even if the invocation C does

not impact the implementation of the cross cutting concern. Such instances like this

example lead Mens et al. to suggest that aspect mining techniques should be able to

account for variations in the implementation of cross cutting concerns.

 In order to overcome the limitations discussed above the conducted research focused

on enhancing the Method Call Tree aspect mining technique developed by Qu and Liu

(2007) in order to resolve the short comings described above. The research focused on

enhancing the method call tree algorithm to incorporate the ability to detect cross cutting

concerns caused by code scattering and extrapolate the method relationships up the class

hierarchy of the analyzed code. The research also addressed the issue of not considering

implementation consistencies in the target code by finding patterns of executions that are

similar to one another but did not match exactly.

8

Dissertation Goal

 The conducted research aimed to enhance the existing method call tree aspect mining

technique, developed by Qu and Liu (2007), in order to address three main problems. The

first problem the enhanced technique addressed was the lack of ability to detect cross

cutting concerns caused by code scattering. This goal was achieved by enhancing the tree

generation process to include a step to record a counter for each method whenever an

invocation was encountered in the target source code. In this way whenever a method call

node was added to the call tree the counter for that particular method was also

incremented resulting in the computation of the fan-in value for each method in the target

source. The fan-in value has been shown by Marin et al. (2007) to be an effective way to

identify concerns caused by code scattering. This capability was measured by applying

the enhanced method call tree to the JHotDraw source code and comparing the findings

against those published by Marin et al. (2007). The incorporation of the fan-in

computation within the enhanced algorithm effectively addressed the lack of code

scattering detection within the method call tree approach. Since the research results Qu

and Liu (2007) have shown that the method call tree technique is able to generate

candidate symptoms related to code tangling that are comparable to the results of the

dynamic analysis technique developed by Breu and Krinke (2004), the enhanced method

call tree approach combines the abilities of fan-in analysis and dynamic analysis. The

combination of these abilities fulfilled a research area called out in Ceccato et al. (2007).

 The second issue that the enhanced approach addressed is the lack of consideration of

object oriented constructs during the analysis of the original method call tree algorithm.

Marin et al. (2007) illustrated that accounting for class hierarchies and overridden

9

methods is not a trivial process and impacts the ability to detect symptoms of code

scattering. The logical conclusion is that these object oriented programming constructs

impact the implementation of concerns leading to code tangling as well. Current aspect

mining approaches like the dynamic analysis approach developed by Breu and Krinke

(2004) as well as the rule based detection technique developed by Vidal, Abait, Marcos,

Casas and Pace (2009) do not investigate the impact of object oriented programming to

their respective aspect mining approaches. However the authors in both cases do point

out that the impact of object oriented programming on the analysis of code tangling

should be subject of future research. The conducted research attempted to account for

object oriented programming constructs when analyzing the patterns of method

invocations that exist within the target source code. The ultimate goal for this

enhancement was to detect method relationships or tangled code that may exist across

various levels of the class hierarchies.

 Finally the third problem the conducted research attempted to tackle is the inability to

account for slight implementation variations within the target code. According to Mens et

al. (2008) current aspect mining techniques assume that the implementations of cross

cutting concerns are consistent throughout the program. However given differing

programming styles there may be variations in the implementations of the cross cutting

concerns that make the detection of a consistent execution pattern difficult to find. The

conducted research aimed to show that instead of looking for exact patterns such as

method A is invoked directly before method B is invoked, the analysis can look for

patterns such as method A is invoked followed directly or after a few steps by an

invocation of method B. The conducted research showed that by relaxing the strictness of

10

the patterns the enhanced method call tree approach was able to detect patterns

overlooked by other aspect mining techniques. The conducted research also introduced a

number of measurements that can be used to filter out inconsistent patterns that do not

truly represent symptoms of code tangling.

11

Research Questions

1) What is the algorithm for merging the execution patterns analysis with the fan-in

analysis technique?

2) What impact do class hierarchies have on the detection of symptoms of code tangling?

3) How much overhead will the extra generation of code tangling candidates affect the

output of the aspect mining process?

4) What measurement can be used to determine the consistency of an execution pattern?

5) Can the control flow information stored in the call tree be used to identify any

interesting patterns of usage?

12

Relevance and Significance

 The need for aspect mining is driven by programmers looking to apply the benefits of

aspect oriented programming to legacy programs written in non aspect oriented

languages (Tonnella & Ceccato, 2004). Maisikeli and Mitropoulos (2012) point out that

legacy systems represent a significant investment over time and must constantly adapt to

changing requirements. These adaptations often lead to the constant maintenance and

refactoring of the legacy code. Tribbey and Mitropoulos (2012) also point out that the

evolutionary development process results in implementation of concerns getting scattered

over an increasing number of modules over time. This phenomenon is evidenced by the

statistical correlation between the degree of scattering of concerns in the source code and

the number of defects found in the program (Tribbey & Mitropoulos, 2012). Both

Maisikeli and Mitropoulos (2012) as well as Tribbey and Mitropoulos (2012) indicate

that aspect oriented programming constructs would improve the reliability and

maintainability of the legacy code thus lending support to refactoring legacy application

code in to aspect oriented programming languages. The refactoring process required to

move a legacy application to an AOP language can be both difficult and error prone. The

level of difficulty increases with the size, complexity and lack of documentation of the

target program (Kellens et al., 2007). These difficulties provide the motivation for the

development of aspect mining tools that can automate at least some parts of the cross

cutting concern detection process. The research community has introduced a number of

different techniques to assist users perform the task of aspect mining but as a study by

Kellens et al. shows these techniques do not comprehensively address all the challenges

associated with aspect mining.

13

 Aspect mining approaches can be divided into two broad categories based on the types

of inputs used during the analysis process (Kellens et al., 2007). The first category are

known as static analysis approaches and focus on analyzing the existing code to identify

implementation patterns that are symptomatic of cross cutting concerns. The second

category, referred to as dynamic analysis techniques, perform analysis on run time

information gathered by executing the program and capturing data like the execution

stack.

 Studies like Kellens et al. (2007) and Ceccato et al. (2005) have shown that the static

analysis techniques reviewed in those studies did not provide comprehensive detection of

cross cutting concerns based on both code scattering as well as code tangling. The studies

showed that static analysis techniques like fan-in analysis are able to detect concerns

caused by code scattering but do not provide any mechanism for detecting symptoms of

code tangling. This limitation may prevent these types of aspect mining techniques from

discovering tangled code that is one of the key motivations for the development of aspect

oriented programming languages as described by Kiczales et al. (1997). Similarly these

two studies also point out that dynamic analysis techniques require extensive user

interaction and knowledge of the target program making it difficult to apply these

techniques to large programs. The described limitations of both categories prevent them

from being comprehensive aspect mining approaches that can be used for large legacy

systems.

 A recent static aspect mining approach proposed by Qu and Liu (2009) demonstrates a

static analysis technique that has the ability to detect cross cutting concerns caused by

code tangling. This technique generates a method call tree and uses it to find patterns of

14

method executions that are similar to dynamic analysis approaches. However this

technique does not track the number of times methods are invoked across the target

program. Therefore this method is unable to determine whether a method represents a

cross cutting concern that is caused due to code scattering. This aspect mining technique

also does not directly consider method hierarchies and while initial experimentation has

yielded positive results the authors do note that further experimentation needs to focus on

testing the algorithm using test programs with deeper inheritance hierarchies. Finally the

pattern searching step of the algorithm looks for very specific patterns and does not

account for the variations in implementation. This kind of pattern matching has been

criticized by Mens at al. (2008) as being too strict and prone to miss interesting execution

patterns that could be symptoms of code tangling.

 By enhancing the method call tree approach the conducted research conclusively

shows that a static aspect mining approach can meet a key aspect mining criteria of

comprehensive cross cutting concern detection. The research introduced an aspect mining

technique that aggregates the benefits of scalability and lower user interaction of static

aspect mining techniques while providing the same detection coverage demonstrated by

dynamic aspect mining techniques. Furthermore this enhanced aspect mining approach

demonstrated a way to address variations in implementation that programmers may have

introduced within the target source code.

15

Barriers and Issues

 The purpose of an aspect mining technique is to identify code that represents a cross

cutting concern that is a symptom of code scattering or code tangling (Mens et al., 2008).

Most of the developed aspect mining techniques focus on detecting symptoms of code

scattering and ignore the symptoms of code tangling (Mens et al.). Kellens et al. (2007)

explains that the detection of code tangling requires some high-level information

regarding the concerns implemented in the system. Techniques like dynamic analysis

utilize use-case scenarios and can thus examine the methods and their compositions in the

context of the concerns that are a part of the use-case. This context is difficult to provide

in static analysis approaches since they focus solely on the structure of the code. This

ultimately makes it difficult for them to incorporate the ability to detect code tangling.

 One suggested approach to incorporate the detection of code tangling symptoms is to

merge the results of different aspect mining approaches (Kellens et al., 2007). Although

this approach could provide a more comprehensive aspect mining solution Mens et al.

(2008) point out that merging different aspect mining techniques is not possible due to

the differences in outputs of the various approaches. Another obstacle in combining

aspect mining techniques, pointed out by Mens et al., is the level of subjectivity in the

interpretation of the aspect mining output. Each aspect mining technique provides an

output that the user has to examine in order to find the cross cutting concerns. This makes

it difficult to use the output of one aspect mining technique to enhance the output of

another. In this way merely merging the outputs of multiple aspect mining approaches

may result in too much data for the users to sort through thus making the aspect mining

process more difficult.

16

 Aside from the lack of focus on code tangling Mens et al. (2008) discusses the need

for aspect mining techniques to take into account the variability in the implementation of

cross cutting concerns. The authors explain that current aspect mining techniques only

identify potential cross cutting concerns if the code strictly adheres to certain anticipated

patterns. For example the aspect mining approach developed by Breu and Krinke (2004)

examines execution traces of a program and uses them to generate relationships like the

inside-first-execution. Mens et al. postulate that legacy code may not be implemented

with such uniformity and so aspect mining approaches should factor in variations during

the analysis.

Assumptions, Limitations and Delimitations

 The conducted research assumes that most if not all cross cutting concerns are

manifested within patterns of method invocations. Certain aspect mining techniques such

as the clone detection techniques developed by Bruntink, Deursen, Engelen & Tourwe

(2005) detect cross cutting concerns by analyzing and identifying duplicated code.

However Bruntink et al. (2005) also explain that code duplication can be caused due to

improper design choices leading developers to apply a copy-paste-adapt approach while

developing the code. These kinds of design choices may not necessarily be a

representation of a cross cutting concern and can be resolved by a more traditional code

refactoring process that does not involve an aspect oriented solution. The conducted

research assumed that the target source programs had been optimized for an object

oriented programming language. Therefore the research limited itself strictly to analyzing

the method invocations and the detection of possible cross cutting concerns within the

target program source code.

17

Definition of Terms

Concern - A part of the application's functionality

Cross Cutting Concern - Functionality whose implementation are interwoven within the

program code, usually in the form of recurring sequences of method invocations.

Code Tangling - A symptom of a cross cutting concern where different concerns

represented by different functions are interleaved with each other. These patterns of

method invocations can be observed in multiple places within the code.

Code Scattering - A symptom of a cross cutting concern where a concern is used across

several different parts of the application code. This symptom is often represented by a

method call that is invoked by many different methods and modules across the

application code.

Method Call Tree - A tree structure that illustrates a programs flow. The tree contains

nodes that represent logical control flow statements like if-else conditions and loops as

well as method invocations.

Fan-in Value - A numeric count of the number of times a particular method is invoked by

other modules and methods within the application source code.

Candidate Seed - A method, method relationship or function that potentially indicates the

presence of a cross cutting concern.

Summary

 The process of aspect mining has been developed to identify cross cutting concerns

that arise due to the need to intertwine functionality within a program. These cross

18

cutting concerns manifest themselves in the form of method calls that are scattered

throughout the source code or repeated patterns of interleaved method calls. Aspect

oriented programming help programmers improve the readability and modularization of

their code thus lowering the cost of maintaining the legacy code and making the code less

prone to defects. However the process of determining candidate code for the aspect

oriented refractoring however can be difficult and error prone. For this reason the

research community has developed aspect mining tools and techniques to aid users

identify candidates for refactoring. In order for these aspect mining tools and techniques

to be effective they must provide comprehensive analysis and be easy to apply. These

traits have proven to be elusive and current aspect mining techniques focus on detecting

one symptom of code scattering or code tangling while ignoring the other. Additionally

many of the techniques developed for the detection of code tangling require the execution

of a comprehensive set of test cases and gathering run time data for the analysis thus

requiring significant effort from the user.

 The conducted research attempted to resolve these problems by combining two static

analysis techniques that do not require any execution of the target program in order to

complete the analysis. The first technique is the Fan-in analysis technique developed by

Marin et al. (2007) that specializes in detecting symptoms of code scattering. The second

technique is the Method Call Tree technique developed by Qu and Liu (2007) that

specializes in detecting instances of code tangling. The conducted research demonstrates

a process that aggregates the two different aspect mining techniques to provide a

comprehensive aspect mining technique that is able to detect both symptoms of code

scattering and code tangling. In addition the research has introduced a set of metrics as

19

part of the analysis that aid the users to understand and filter the results of the analysis. In

this way the conducted research introduced an aspect mining tool that provides a

complete set of detection capabilities while minimizing the effort required by the users.

20

Chapter 2

Review of Literature

Overview

 The conducted research demonstrated a way to integrate and modify existing aspect

mining techniques in order to develop a comprehensive aspect mining approach. In order

to understand the design considerations for the approach it was important to understand

prior aspect mining techniques and research. The review of literature summarizes and

highlights aspect mining techniques developed by the research community. The review

highlights the approach taken by each technique along with the benefits and limitations of

the approach. Since the focus of the conducted research was to combine aspect mining

techniques that detect both symptoms of code scattering and code tangling the review

focused on the types of symptoms the prior aspect mining techniques can detect. In order

to justify the choice of aspect mining techniques chosen as the basis of the final aspect

mining approach the review also includes prior studies that evaluate existing aspect

mining approaches and the criteria used to compare them. These studies form the basis

for the modifications implemented by the conducted research. Finally the review of

literature summarizes prior research that has focused on the combination of aspect mining

techniques.

The theory and research literature specific to the topic

 In order to resolve the challenges of detecting cross cutting concerns in existing code

the research community has developed a number of aspect mining techniques. One

technique developed by Marin et al. (2007) examines the program code in order to detect

21

cross cutting concerns caused by code scattering. This aspect mining technique relies on

the computation of a fan-in value that is used to measure the extent to which a method is

invoked throughout the code. Marin et al. (2007) note that object oriented constructs like

inheritance hierarchies and overridden methods must be taken into consideration while

determining the fan-in values. For this reason Marin et al. (2007) also introduced a

number of rules for calculating the fan-in values for methods in programs written in

object oriented languages. After applying the rules and computing the fan-in values for

each method, the methods with a high fan-in value are presented to the user as potential

methods that represent cross cutting concerns. In order to evaluate the aspect mining

approach the technique was applied to the Tomcat, PetStore and JHotDraw source code.

The experimental results generated by Marin at al. (2007) showed that filtering out

methods with a fan-in value less than 10 greatly reduced the percentage of candidate

concerns versus the total number of methods in the program. In order to measure the

accuracy of the approach the percentage of actual concerns versus the number of

candidate concerns was examined. The results also showed that for different test

programs the accuracy of the fan-in analysis ranged between 51% and 87%. In

conclusion the fan-in analysis aspect mining approach has shown to be a viable detection

system for detecting cross cutting concerns caused by code scattering. However since the

fan-in computation is concerned with only the number of invocations of a method it does

not track relationships between these methods and cannot identify whether the

invocations of the methods follow a particular pattern. For this reason the fan-in analysis

based aspect mining approach does not provide the ability to detect symptoms of code

tangling.

22

 Moldovan and Serban (2006) proposed an augmentation to the fan-in analysis method

that takes into account the fan-in value but also the number of invocations by distinct

modules within the code. In addition Moldovan and Serban (2006) developed two

different vector models and analyzed using cluster analysis algorithms. The first vector

model used was an integer pair comprised of the fan-in value and the number of classes

that invoke the method. The second vector model pairs the fan-in value along with a bit

vector that represents whether or not the method is invoked by each of the other methods

in the code. Using these two vector models Moldovan and Serban (2006) used various

clustering algorithms to group methods together. The members of the groups formed by

the cluster analysis are made up of methods that have roughly the same number of

invocations from a similar number of distinct classes. In this way the cluster based

approach is able to narrow the focus of the aspect mining process to the groups of

methods whose distance from the zero vector is above a user specified threshold. The

methods within these clusters have similar characteristics and represent candidates cross

cutting concerns. Moldovan and Serban applied the cluster based aspect mining technique

on JHotDraw and Carla Laffra’s implementation of Dijkstra’s algorithm. The

experimentation showed that the choice of vector models had a significant impact to the

cluster models and the precision of the detection although neither model emerged as a

better choice overall. Based on the results of their experimentation, Moldovan and Serban

(2006) concluded that the clustering based aspect mining technique was able to narrow

the number of candidates that the users would need to examine to identify actual cross

cutting concerns. Since the attributes used for the vector modules were related to the fan-

in value and the number of distinct calls to a method across the various modules of the

23

application, the resulting concerns detected using this approach are all symptoms of code

scattering. The results of this approach did not provide any insights as to which methods

or modules are invoked in conjunction with one another and therefore did not provide any

code tangling detection capabilities. This limitation has been recognized by Moldovan

and Serban (2006) and was recommended as an area of future research.

 A different set of vector models were proposed by Tribbey and Mitropoulos (2012)

that focused on the actual relationships between the methods rather than relying on

aggregated values. The first model, labeled MFIV, is a N x N matrix where each row

represents the bit vector that represents whether or not the method is invoked by each of

the other methods in the program. In this way for a matrix [pij] each pij = 1 if method mi

is invoked by method mj. In this way the row sums in the matrix equal the fan-in value

for each method. The second model, labeled MFOV, is the transpose of the MFIV model

such that each p'ij = 1 if method mj is invoked by method mi and the row sums represent

the Fan-Out values for each method. The last vector model, labeled MCOM, is a

combination of MFIV and MFOV and calculated as the product of MFIV and MFOV divided

by the diagonal value of the result if it is non zero. In addition to these base models

Tribbey and Mitropoulos (2012) applied a PCA to the matrices to reduce the

dimensionality of them thus creating three additional models M^FIV and M^FOV and

M^COM.

 Based on the experimental results Tribbey and Mitropoulos (2012) found that the new

vector models impacted the key performance measures DIV, DISP and KPREC that are

used to evaluate the performance of cluster based aspect mining techniques. The DIV or

measure of diversity of the clusters describes the degree of how many cross cutting

24

concerns are found in each cluster. For a clustering based aspect mining approach the

desired value for DIV is as high as possible. The DISP or dispersion measure is a

measurement of how many clusters the cross cutting concern appears in. For clustering

based aspect mining approaches the desired DISP value is a value that is close to 1. The

KPREC measure is generated to assess the recall of the cluster model by measuring the

percentage of clusters that contain actual cross cutting concerns. For a clustering based

aspect mining approaches the desired value for KPREC is as high as possible. Tribbey

and Mitropoulos (2012) found that the MCOM model provided the highest values for the

DIV and DISP measurements. However the KPREC value for this was very low.

Conversely the M^COM model provided the highest KPREC value but yielded low values

for the DIV and DISP measurements. Based on these findings Tribbey and Mitropoulos

(2012) postulated that higher DIV and DISP measurements may actually lead to a less

accurate aspect mining model. The research suggested that these measures should not be

the sole measurement for a cluster based aspect mining algorithm. It should be noted that

the vector models introduced by Tribbey and Mitropoulos (2012) were also based on the

fan-in and dispersion of method invocations in the target code. Due to this, the aspect

mining algorithm focused on identifying symptoms of code scattering but did not provide

insights into execution patterns that can be symptoms of code tangling.

 The clustering techniques used by the approaches discussed above utilized clustering

algorithms that require the user to provide the number of expected clusters (Rand

McFadden & Mitropoulos, 2012). Rand McFadden and Mitropoulos (2012) proposed

using model-based clustering techniques instead of the K-means or hierarchical clustering

algorithms. Their research focused on utilizing six different cluster models that

25

automatically determine the optimum number of clusters for the dataset. The output of

the new models was compared to the output of clustering algorithms used in prior

research. The experimental results of the research showed that the model-based clustering

algorithms reduced the number of clusters that needed to be analyzed for cross cutting

concerns without significantly impacting the precision of the detection process. As with

other clustering based aspect mining approaches the vector models used by Rand

McFadden and Mitropoulos (2012) were based on the fan-in value and the number of

executions across the various modules of the code. Therefore, as with the other clustering

based aspect mining algorithms, the output of the model-based clustering technique also

focuses purely on finding symptoms of code scattering but not code tangling.

 Another aspect mining technique developed by Zhang and Jacobsen (2007) also

factors in the fan-in and fan-out values of a method. This technique analyzed the code to

generate two directed graphs. The first graph represented the programming elements that

call other elements. The second graph represented the elements that are called by other

elements (a reverse of the first graph). These graphs were used to rank the popularity of

each element by applying the page rank algorithm. A high popularity denotes that the

programming element is referenced by a large number of other elements of the code and

likely indicative of a scattered concern. The approach also used the page rank algorithm

to rank the elements based on their significance. The significance denotes how many

other programming elements a particular element references. According to Zhang and

Jacobsen (2007) a high significance rank is indicative of a core concern. The

experimental results of the page rank aspect mining approach did reveal the known

scattered cross cutting concerns when applied to JHotDraw. However Zhang and

26

Jacobsen (2007) noted that these concerns did not all have the highest popularity ranking

indicating this approach has a tendency to generate a number of false positives that the

user will have to analyze and reject. Although the page rank based aspect mining

approach demonstrated the ability to detect symptoms of code scattering it relies solely

on counting the number of times a method is invoked or invokes other methods. The

algorithm does not provide any insight into the relations between methods and is not able

to provide any insight into symptoms of code tangling.

 Qu and Liu (2007) introduced an aspect mining technique that translates the target

code into a method call tree depicting the flow of the program. The call tree is made up of

nodes that represent the control flow structures (if/else and switch/case blocks) and

execution branches due to method calls. Once the call tree has been generated it can be

used to find relationships between methods. These relationships are represented by

recurring sub trees within the entire method call tree. The experimental results presented

by Qu and Liu (2007) showed that the method call tree approach has the ability to

determine invocation patterns between different methods in the source code. Using this

information the aspect mining algorithm has the ability to generate candidate concerns

attributed to code tangling. However the method did not include a process of determining

how often a method is invoked across the source code and for this reason does not detect

symptoms that are purely a result of code scattering. Furthermore this approach had not

been applied to any known test program and its results could not be compared to other

known aspect mining techniques.

 The aspect mining techniques discussed above analyzed the code and attempted to

identify possible cross cutting concerns based on method invocations. An entirely

27

different approach was taken by Bruntink, Deursen, Engelen and Tourwe (2005), who

introduced an aspect mining technique that focused on identifying repeated or cloned

code. This aspect mining technique uses Abstract Syntax Tree (AST) or Program

Dependence Graph (PDG) utilities to convert program code into a tree format. The clone

detection algorithm then attempts to find recurring sub trees that would indicate

duplicated code. Bruntink et al. postulated that the instances of duplicated code can

potentially represent symptoms of code scattering. Based on their experimentation

Bruntink et al. found that this technique was able to identify certain cross cutting

concerns such as null pointer checking and exception handling in the code of various test

programs. Aspect mining based on clone detection is a technique that focuses on

detecting code that is repeated throughout the program. This approach does not directly

address symptoms of either code scattering or code tangling.

 Another distinct type of aspect mining focuses on the semantic meaning rather than

the structural nature of the code being analyzed. This approach to aspect mining has been

explored by Tourwe and Mens (2004). This approach utilizes the Formal Concept

Analysis technique developed as a branch of lattice theory to define aspectual views of

the source code. These aspectual views, as defined by Torwe and Mens (2004), are a set

of source code entities that have some structural relationship.

 The first step of this process extract class names along with the methods and their

parameters from the target program source code. Tourwe and Mens (2004) note that class

and method names are typically constructed using words that explain the functionality

that is being implemented. Based on this observation the identifier analysis approaches,

like the aspectual views approach, splits the function and method names into keywords.

28

The unique keywords or concepts are then filtered and classified into groups. Tourwe and

Mens (2004) suggest filtering out common words like 'with' and 'an' as well as a series of

seven classification categories. The first category is a set of concepts where all the

keywords used in the class name are used in the method names of the class. The second

category groups concepts from both classes and method names where the keywords of

the class name occurs in one or more of that class's method parameters. The third

category groups the concepts of all classes. The fourth category groups keywords of

method names that match an instance variable of the class, i.e. that are parts of accessor

methods. The fifth groups keywords from all non accessor method names. The sixth

category groups all keywords from methods that belong to the same class hierarchy. The

seventh category defined by Tourwe and Mens (2004) defines crosscutting keywords that

are part of method names within classes that do not belong to the same class hierarchy.

Once the concepts have been categorized and grouped the results are displayed to the user

to provide insights as common themes across the source code and determine what kinds

of functionality cross cuts the program.

 The aspectual view mining technique presents a tool that users can use to detect cross

cutting concerns in their program source code. This technique does not suggest candidate

crosscutting concerns but relies on the user to identify it based on the categories and

concepts. One issue noted by Tourwe and Mens (2004) was that the basic nature of the

filtering and classification process this technique generated a large noisy set of data that

contained many false positives.

 The identifier analysis approach to aspect mining has also been explored by Shepard,

Pollock and Tourwe (2005). This approach extracts keywords from different parts of the

29

code including comments, field names, field/method type names and method names.

After filtering out common dictionary words the remaining keywords are used to identify

lexical chains that are sequences of distinct words that have an equivalent semantic

meaning. These lexical chains are then provided to the user who can use these lexical

chains as clues during the analysis of the code. Experiments using the PetStore

application code showed that this technique can be used as useful guide when examining

the code. By studying the lexical chains a user can see if multiple methods have common

synonyms that may indicate that a concern is being replicated by multiple methods and is

a possible candidate for refactoring. This aspect mining approach can therefore indirectly

support the detection of a scattered concern. This approach does not provide any real

insight to the execution relationships between concerns unless the method name contains

descriptions of multiple functions. Therefore this technique cannot be considered to be an

approach that would be useful for detecting symptoms of code tangling. Shepard et al.

(2005) also note that this aspect mining technique is very subjective and requires

significant user interaction.

 The aspect mining techniques discussed above are described by Kellens et al. (2007)

as static mining techniques since they attempt to identify cross cutting concerns without

using any run time information. Other dynamic analysis techniques have been developed

that identify cross cutting concerns by analyzing run time data collected by executing the

program (Kellens et al.). Breu and Krinke (2004) introduce an aspect mining approach

based on analyzing the execution traces generated by executing the program using a

special runtime environment that records methods invocations as they are pushed and

popped from the execution stack. Breu and Krinke (2004) utilized the event traces to

30

identify method execution relationships that may indicate a symptom of code tangling.

These patterns describe a sequence of method invocations that include patterns of one

method calling others as well as methods that are invoked in consistent sequences. If an

execution relationship is found repeatedly in the execution traces the methods in the

pattern is flagged as a potential cross cutting concern (Breu & Krinke, 2004). Based on

the experimental results Breu and Krinke (2004) found that this aspect mining technique

identified all expected cross cutting concerns without generating any false positives. It is

important to note that the dynamic analysis aspect mining technique detects cross cutting

concerns that are a result of repeated execution patterns between methods. These types of

cross cutting concerns are representative of symptoms of code tangling. The dynamic

analysis approach however does not detect whether a method is invoked from multiple

locations within the target source code unless it is part of a commonly found execution

pattern. In this way the dynamic analysis technique is not be able to detect a cross cutting

concern whose only symptom is code scattering.

 Tonella and Ceccato (2004) combine the dynamic analysis approach with a branch of

lattice theory known as concept analysis in a new technique for aspect mining. This

approach identifies methods that are commonly found in the execution traces generated

by multiple use cases. The intuition behind this approach is that methods commonly

executed across multiple use cases represent functions that cross cut the application.

Tonella and Ceccato (2004) applied this technique to Carla Laffra's implementation of

the Dijkstra algorithm. The results of the experiments matched the expected cross cutting

concerns determined by independently studying several use cases. As described above the

formal concept analysis based aspect mining approach determines cross cutting concerns

31

based on how many different use cases refer to a given method. Methods that are found

in execution traces of multiple use cases typically indicate that the concern represented

by the method is scattered across the application. Therefore the focus of this aspect

mining approach aimed at detecting symptoms of scattering. This aspect mining approach

however does not examine the relationships between methods that would indicate a

frequently occurring execution pattern. Therefore this aspect mining technique is not

suitable for detecting symptoms of code tangling.

 Another variation of the dynamic analysis of execution traces has been introduced by

Vidal et al. (2009). This approach uses an association rule mining algorithm to find

patterns of method pairings across different use cases. This approach treats the scenarios

or use cases as transactions and the methods invoked in each execution trace as the items

in the transaction. The experimental results, not published by the authors, did show that

this approach has the potential to be a viable aspect mining technique (Vidal et al.).

According to Vidal et al. the analysis of the association rules can reveal several

interesting features of target source code. The single item frequent itemsets indicate

methods that are commonly executed throughout the various use cases. These frequent

methods represent candidate concerns caused due to code scattering. Secondly larger

frequent itemsets in the form A → B indicate that these methods are commonly invoked

in some sequence throughout the code. These kinds of relationships may indicate a

symptom of code tangling. However the reliability of such rules is not as high as other

code tangling detection techniques because the association rule focuses on the occurrence

of the methods in the execution traces but does not determine whether the method

invocations follow a specific execution pattern. Due to this reason the code tangling

32

related candidates generated by the association rule mining approach may result in more

false positives than other aspect mining approaches.

 The only runtime information used by aspect mining techniques discussed above

analyzes the sequence of method invocations. Maisikeli and Mitropoulos (2010) explored

an aspect mining approach that analyzes software features derived through method calls,

parameter sharing and method. The software features are extracted from a collection of

execution traces and used to create a matrix where each row represents a vector of the six

features of the method. This matrix was then used as an input to a Self Organizing Map

(SOM) clustering utility to reorganize the data sets of similar methods. The resulting

clusters are organized so that each cluster contains a central node surrounded by other

nodes that have similar characteristics. The resulting clusters are then analyzed in a

manner similar to other clustering methods described above. The central methods in the

clusters are candidates of concerns caused due to code scattering. According to Maisikeli

and Mitropoulos (2010) if multiple methods of the same class are found to map to the

same class the pairing can represent a symptom of code tangling. However as in Vidal et

al. (2009) the self organizing maps based aspect mining technique does not evaluate

patterns of executions so candidates of code tangling concerns may generate more false

positives than other code tangling detection processes. The experimental results

generated by the study showed that this technique was able to identify all cross cutting

concerns discovered by other aspect mining methods (Maisikeli & Mitropoulos, 2010)

with a precision that matched or exceeded other dynamic aspect mining techniques.

 Given the wide range of aspect mining approaches Ceccato, Marin, Mens, Moonen,

Tonella & Tourwe (2005) analyzed three aspect mining approaches that represent

33

common themes and methodologies found within aspect mining techniques. The

approaches selected in the study were the fan-in analysis introduced by Marin et al.

(2007), the formal concept analysis approach developed by Tonella and Ceccato (2004)

and the identifier analysis technique of aspectualized views developed by Tourwe and

Mens (2004). These techniques were applied to the JHotDraw 5.4b source code. Ceccato

et al. (2005) note the aspect mining process did not have defined benchmark metrics

making it impossible to develop a quantitative evaluation of these approaches. Therefore

the study used a set of qualitative criteria for the comparison of the chosen techniques.

 While applying the fan-in analysis technique Ceccato et al. (2005) observed that the

fan-in analysis was useful for detecting concerns exemplified by three distinct situations.

The first situation is when a functionality is implemented through a method so that the

crosscutting behavior resides in the explicit calls to that particular method. The second

situation arises when a concern is implemented using common functionality scattered

through the code. These situations are detected by identifying similarities between the

calling contexts. The third situation arises when a functionality is super imposed down a

hierarchy of classes. In this case the concern is associated with single method but

becomes a central theme across a class hierarchy.

 Similarly Ceccato et al. (2005) found that the candidate concerns detected by the

identifier analysis developed by Tourwe and Mens (2004), could be categorized into one

of three categories. The first category included concerns that appeared like traditional

aspects that did not pertain to any specific business functionality but were needed in order

to implement the functionality across the application like registering listeners and

persistence. The second category of concerns were concerns that were more closely

34

related to the actual business logic of the program. These kinds of concerns, in the

JHotDraw application, included drawing figures, moving objects, etc. The final category

were concerns that highlighted language specific functions like iterating over collections.

These types of concerns relied on or extended language specific library functions.

 During the application of the Formal Concept Analysis based dynamic analysis aspect

mining technique Ceccato et al. (2005) first defined 27 use-cases to be used to generate

the test data needed to apply the dynamic analysis. During this phase Ceccato et al.

(2005) observed two criteria for identifying cross cutting concerns. The first criteria was

that the concern should be associated with a describable functionality like 'send to back'

or 'handle messages'. The second criteria was that the classes involved in the functionality

have a different primary responsibility that may get tangled within a use case.

 After applying each aspect mining technique Ceccato et al. (2005) observed that each

technique exhibited some strengths and some weaknesses when compared to one another.

The fan-in analysis was found to be particularly well suited to fining concerns that depict

contract enforcement or consistent behavior that is scattered throughout the code.

Ceccator et al. (2005) found that these kinds of concerns were filtered out during the

dynamic analysis and were not identified by the identifier analysis because their naming

scheme is often unique. However Ceccato et al. (2005) do note that if a concern has a

small foot print the fan-in analysis technique has a tendency to overlook it. The identifier

analysis also generated a large result set that contained a significant number of false

positives, making the overall detection difficult. The study also found that the candidate

concerns had a tendency of being incomplete such that certain methods or functions were

not considered to belong to an aspect when they should have been. The results of

35

applying the dynamic analysis showed that this technique was able to detect some

candidates missed by fan-in analysis when multiple methods represent a single concern.

In these cases the concern is widely utilized but is filtered out by the fan-in analysis

because each implementing method is not explicitly invoked many times. However

Ceccato et al. (2005) noted that the dynamic analysis approach is limited by the scenarios

or use cases chosen to generate the data for analysis and overlooks code that is not part of

the executed use cases. For this reason Ceccato et al. (2005) recommended that a

comprehensive cross cutting concern detection process incorporate a combination of

techniques to provide complete detection capabilities.

 The difficulties and problems and challenges have further been explored by Mens et

al. (2008). As part of their study Mens et al. (2008) describe five major issues associated

with aspect approaches. The first issue is the poor precision of many aspect mining

techniques. The poor precision refers to the low percentage of relevant aspects in the set

of candidate aspects generated by an aspect mining approach. This implies that the aspect

mining approach generates a large set of noisy data that contains a large number of false

positives. As Mens et al. (2008) describe aspect mining techniques with poor precision

decrease the scalability and ease of use of the aspect mining technique. The second

problem described by Mens et al. (2008) is the issue of poor recall that is tendency of the

aspect mining technique overlook all of the actual aspects present in the code. The issue

of poor recall results in a lack of precision in the aspect mining process. The third issue

related to aspect mining techniques is the subjectivity of the process. As Mens et al.

(2008) point out many of the aspect mining techniques use some user defined

assumptions during the aspect mining process to filter results or categorize candidates.

36

These assumptions can vary from user to user making the process ambiguous to some

degree. Due to this issue the same aspect mining process can yield different results when

applied by different users. The fourth issue described by Mens et al. (2008) is the issue of

scalability of certain aspect mining techniques. As described by Ceccato et al. (2005)

dynamic analysis based aspect mining techniques require the users to identify and

execute a number of use cases in order to capture the data used by the dynamic aspect

mining techniques. Such issues require a significant amount of user involvement and can

ultimately make using them infeasible for large complex programs. The final issue

described by Men et al. (2008) is the lack of empirical validation. This issue does not

necessarily impact the aspect mining techniques but is a critique of existing studies. The

study points out that many aspect mining techniques have been published as proof of

concepts that lack comparisons with other research. These studies point out that the

aspect mining techniques demonstrate the ability to detect interesting candidates but do

not provide a measure of quantitative results.

 Based on the problems identified, Mens et al. (2008) also present three major root

causes from which the earlier described problems originate. One of the issues identified

by Mens et al. (2008) is the aspect mining techniques try to establish a general purpose

approach to identifying cross cutting concerns. The study postulates that developing

specific approaches tailored to certain types of cross cutting concerns may be more

effective. The study also points out that aspect mining approaches rely on strong

assumptions about consistency of patterns that indicate the symptoms of cross cutting

concerns. In addition Mens et al. (2008) also point out that aspect mining techniques

generally only generate and display evidence of a cross cutting concern while ignoring

37

evidence that contradicts the existence of the concern. This can ultimately result in false

positives. Another issue found in aspect mining techniques described in the study is that

most aspect mining approaches focus on detecting either symptoms of code scattering or

code tangling but not both. For this reason the aspect mining techniques can suffer from

incomplete results. Additionally Mens et al. (2008) also point out that many aspect

mining techniques do not use the semantic information available within the code to aid in

the cross cutting concern detection process. The study points out that the semantic

information can miss out on symptoms that are masked by code duplications in the target

program. In addition to these issues Mens et al. (2008) also points out that the definition

of what constitutes a cross cutting concern makes it difficult define and validate aspect

mining processes. This issue also results in the subjectivity of the aspect mining process

that ultimately affects the precision and ease of use of an aspect mining technique. The

final issue with current aspect mining techniques described in the study is the inadequate

representation of results. The study points out that each technique presents results in

different formats and granularities. These differences make it difficult to compare and/or

combine the results of different aspect mining approaches as well as making it difficult

for the end user to reconcile the outputs of the aspect mining approaches.

 Based on the observations in the studies performed by Ceccato et al. (2005) and Mens

et al. (2008) some studies have been conducted to combine different aspect mining

approaches in order to validate the results of each technique and fill in any gaps of the

detection processes. One such study was performed by Ceccato, Marin, Mens, Moonen,

Tonella and Tourwe (2006) as an extension of their previous study. In this study Ceccato

et al. (2006) combine the results of the fan-in computation, formal concept analysis of

38

identifiers and the formal concept analysis of execution traces to analyze the JHotDraw

source code. The combination was achieved by using the fan-in analysis and dynamic

analysis results to generate candidate seeds. The method names are then used to generate

a list of class and method identifiers that are related to each candidate seed. These

identifiers are used as a basis for the identifier analysis to determine the nearest concept

for the candidate method names. The methods contained in the nearest concept are then

added to the original list of candidate seeds to aggregate the results of all three aspect

mining techniques. The final expanded list can then be revised and filtered to determine

the final candidate concerns.

 As a result of the experimentation Ceccato et al. (2006) found that using the fan-in

analysis and dynamic analysis techniques to pre filter the results of the identifier analysis

improved the overall scalability of the aspect mining process. In terms of seed quality the

results showed that three out of four of the candidate seeds exhibited greater recall and

precision while the recall and precision of the last seed decreased.

 Another framework, called Timna, for combining aspect mining approaches was

developed by Shepherd, Palm, Pollock and Chu-Carroll (2005). This approach combined

different aspect mining techniques to generate a set of classification rules using a training

program. The training is carried out by labeling known candidates in a training program

and applying each aspect mining approach to the training program code. This step results

in a set of rules that are specific to a particular aspect mining approach. The rules from

each aspect mining technique are aggregated to generate a propositional statement to be

used in the classification step later on. Once the system has been trained each individual

aspect mining technique is applied to the target program. For each method the various

39

results of each aspect mining technique is collected and checked to see if it matches a

propositional statement generated during the training phase. If a match is found the

method is marked as a candidate concern. If a matching propositional statement is not

found the method is not considered to be a part of a cross cutting concern. In this way all

the methods can be checked to determine if do or do not represent a cross cutting

concern.

 In order to test the Timna framework Shepherd et al. (2005) used the JHotDraw

program code to train the system and used the train system to detect cross cutting concern

in the PetStore program source code. Based on their experimental results Shepherd et al

(2005) found that the aggregated results of fan-in analysis and cloning detection had

better precision and recall than just using the fan-in computation in general. However

Shepherd et al. (2005) did note that certain combinations of aspect mining techniques

resulted in varying degrees of precision and recall for different kinds of candidates. Given

the way the candidates were labeled it was not possible to determine what kind of

candidate concerns benefited from this approach. Given this there more research is

needed to evaluate the benefit of this approach.

Summary

 The research community has developed a wide range of aspect mining techniques. The

various approaches can be split into two broad categories. The first category of aspect

mining techniques tries to locate cross cutting concerns by examining the program source

code. These techniques, known as static aspect mining techniques, use a wide range of

approaches that include counting method invocations, detecting patterns of repeated code

and semantic deconstruction of code elements. The second category of aspect mining

40

approaches utilizes execution traces as basis for the analysis and are known as dynamic

analysis techniques. These techniques often utilize techniques such as cluster analysis or

concept analysis to determine groups methods that represent common themes or

concerns. Despite the differences in the approaches these various aspect mining

techniques suffer from a common set of issues like being too specialized in the detection

of a particular type of cross cutting concern and attempting to apply a one size fits all

approach to all kinds of concerns. For this reason studies have shown that aspect mining

techniques need to be improved before they can be widely used. One approach used to try

to improve the aspect mining techniques is by combining different techniques during the

analysis. These approaches do seem to provide some benefit in regards to the accuracy of

the aspect mining process but do not entirely resolve all the issues nor do they provide

consistent improvements in all cases.

41

Chapter 3

Methodology

Overview

 The conducted research aimed to identify an aspect mining approach that combines

two existing aspect mining techniques in order to aggregate their cross cutting concern

detection capabilities. The conducted research started by outlining how the two

computations could be merged and what improvements needed to be made to the existing

algorithms. After the opportunities of combination had been analyzed the research

focused on the development of an enhanced and unified algorithm that incorporated the

features of the existing aspect mining algorithms. Based on this unified algorithm the

research then focused on building a prototype implementation of the algorithm and used

it to test the viability of the new approach. The prototype was tested by using it to analyze

well known test programs like JHotDraw, Carla Laffra's implementation of the Dijkstra

shortest path algorithm and the Graffiti application. The generated output was then

compared to its composite approaches to verify whether the combination did indeed

aggregate the abilities of its component parts.

Specific research method(s) to be employed

 The conducted research aimed to create a single aspect mining approach that unifies

the algorithms defined by the fan-in aspect mining approach developed by Marin et al.

(2007) and the method call tree approach developed by Qu and Liu (2007). The process

of defining the final algorithm took advantage of the fact that both algorithms were static

42

analysis approaches and so both algorithms analyze the method invocations of the target

program source code to generate certain metrics used to judge the presence of a concern.

 The original method call tree algorithm reads the target source code and uses control

flow statements and method invocations to generate a tree structure that provides a

visualization of the code logic. An example of a method call tree is shown in figure 1

below.

As the figure shows when the method call tree algorithm reads a method call within the

target code the method is added to the tree. However no further information regarding the

method call is captured. After the tree is generated for the entire target program the

structure of the tree is examined to identify repetitions of nodes within the branches of

the trees. These repetitions indicate the presence of repeated method calls and may

indicate the existence of a cross cutting concern due to code tangling.

 The conducted research modified the basic method call tree algorithm by introducing

two major modifications to the algorithm. The first modification is the integration of the

If

methB

methC

I

E

methX()

{

 if(cond){

 methB();

 }else{

 methC();

 }

 methD();

}

Seq

methD

Seq Seq

Figure 1 - Example of a Method Call Tree

43

fan-in computation as described Marin et al. (2007). The process of integrating the fan-in

computation required a number counting rules to be incorporated in the method call tree

algorithm. Marin et al. (2007) defines the set of rules for computing fan-in values for

over ridden methods within a class hierarchy. For this reason the algorithm presented by

Marin et al. (2007) includes a process to track class hierarchies during the analysis of the

target source code. On the other hand Qu and Liu (2007) did not address the impact of

class hierarchies and overridden methods to the generation and analysis of the method

call tree. The enhanced algorithm integrated the fan-in computation by modifying the

method call tree generation so that when a method definition is read the method

definition and hierarchy is maintained in a look up table. This entry maintains the method

name and its class hierarchy information along with a fan-in counter. After the method’s

meta data is captured the enhanced algorithm processed the method body as described by

Qu and Liu (2007) in order to generate the set of method relationships.

 The method body processing described by Qu and Liu (2007) involves reading the

method body line by line examining each line for method calls and control flow

constructs. When the algorithm encounters a method invocation it logs the relationship

between the calling method and the method being invoked by adding the invocation node

to the call tree. After the call tree is generated the tree is traversed in order to determine

inside-first, inside-last, outside-before and outside-after relations between the methods as

described by Breu and Krinke (2004). The algorithm developed by Qu and Liu (2007)

accomplishes this by maintaining a matrix for each relationship where each cell

represents a counter that increments every time the relationship between the methods in

the row and column is encountered in the call tree. For example the matrix in figure 2

44

below would represent the matrix generated for the outside-before relationship for the

sample code in figure 1.

 methB methC methD methX

methB 0 0 0 0

methC 0 0 0 0

methD 1 1 0 0

methX 0 0 0 0

Figure 2 – Example of an outside-before relationship matrix

The enhanced algorithm changed the matrix so the cells maintain a list of distances

between the two methods in the relationship. These lists allow the computation of the

count of the relationship and also allow the computation of the consistency of the

relationship. For the sample code below the derived outside-before relationship matrix

generated by the enhanced algorithm is shown in figure 3.

methX()

{

 if(cond){

 methB();

 }else{

 methC();

 }

 methD();

}

methY()

{

 if(cond){

 methB();

 }else{

 methC();

 }

 methA();

 methD();

}

 methA methB methC methD methX

methA {} {} {} {} {}

methB {1} {} {} {} {}

methC {1} {} {} {} {}

methD {} {1,2} {1, 2} {} {}

methX {} {} {} {} {}

Figure 3 – Example of an enhanced outside-before relationship matrix

45

In this way the algorithm calculates the count of the relationship as well as the average

distance between the method calls and the variance in the distances where this

relationship is found.

 In addition to the altering the structure of the matrix and the data collection approach

the new algorithm incorporated the hierarchical considerations introduced for computing

fan-in values, introduced by Marin et al. (2007), while computing the relationships

between methods. For example one such rule is that when an overriding method

invocation is encountered, the fan-in counter for that method as well as its super method

is incremented. The enhanced algorithm applied similar rules while determining the

inside-first, inside-last, outside-before and outside-after relationships. In this way if a

distance is being added to a cell in a relationship matrix the distance is also added to the

cell of the methods super implementation. This process is illustrated in the example

below where methA is an overridden implementation of the method superA.

methA extends superA

methX(){

 if(cond){

 methB();

 }else{

 methC();

 }

 methD();

}

methY(){

 if(cond){

 methB();

 }else{

 methC();

 }

 methA();

 methD();

}

 superA methA methB methC methD methX

superA {} {} {} {} {} {}

methA {} {} {} {} {} {}

methB {1} {1} {} {} {} {}

methC {1} {1} {} {} {} {}

methD {} {} {1,2} {1, 2} {} {}

methX {} {} {} {} {} {}

Figure 4 – Example of an enhanced outside-before relationship matrix with overrides

46

As shown in the diagram every instance where the outside-before relationship for methA

is captured the same relationship is added for the method superA. Once the relationship

data was captured the enhanced algorithm computed the four metrics that a user could use

to filter the results of the analysis and identify frequent method relationships that are

likely to be instances of cross cutting concerns. The first metric computed for the method

relationships was the count of the relationship that is calculated as the number of

instances where the method relationship was encountered in the target code. The second

metric was the average distance of the relationship that is average of all distances

captured for the relationship. The third metric was the standard deviation of the distances

from the average distance for the relationship. The final metric was the confidence factor

for the relationship. The confidence factor for an outside relationship A outside before or

after B indicates the likelihood the method A will be invoked before or after the

invocation of the method B based on the relationship type. Similarly for an inside

relationship the confidence factor for a relationship B inside first or last A indicated the

likelihood that an implementation of method A will contain an invocation of the method

B.

Instrument development and validation

 In order to demonstrate the abilities of the new approach the conducted research

included a prototype implementation of the enhanced algorithm. The prototype was a

Java program that took a target program source code as an input, performed the aspect

mining analysis described above and output the computed fan-in values and method

relationships. The sample implementation focused on parsing and analysis of programs

implemented in Java. Constraining the target programs to Java programs did limit the

47

sample size that could be analyzed by the prototype to some degree. However many of

the prior research tools developed by the research community including Breu and Kirnke

(2004), Marin et al. (2007) and Qu and Liu (2007) also focus on the analysis of Java

programs. In this way the sample implementation was able to analyze the same set of

target programs that have been analyzed by the other baseline aspect mining techniques.

Validation criteria

 One of the main objectives of the research was to combine the ability to detect

concerns caused by code scattering and concerns caused by code tangling within a single

analysis process. In order to achieve this result the research merged the fan-in

computation introduced by Marin et al. (2007) with the method call tree analysis

approach introduced by Qu and Liu (2007). In order to judge the success of the new

algorithm the research utilized a prototype implementation to analyze the JHotDraw

application source code. The results of this experiment were compared against the

findings published by Marin et al. (2007) in order to ensure that results of the code

scattering detection were consistent with the original fan-in computation algorithm. The

success criteria for the experiment was based on whether the prototype identified the

same set of high fan-in methods as were identified in Marin et al. (2007).

 Similarly the validation for the detection code tangling concerns required that the new

algorithm be validated against results from prior research. However since the study

presented by Qu and Liu (2007) did not include detailed test results, a different study was

chosen to validate the experiments. In this case the method relationships generated by the

experiments were measured against the findings published by Breu and Krinke (2004).

The comparison was based on the output generated by the analysis of the Graffiti source

48

code since this code base was used as the inputs for the experiments published by Breu

and Krinke (2004).

Formats for presenting results

 The output of the new aspect mining technique combined the computation of fan-in

values and the generation of method relationships. Therefore the output of the prototype

consisted of two tables. The first table depicted by table 1 listed each method analyzed

along with the computed fan-in value for the method.

Method Name Fan-In Value

Table - 1: Sample output table for displaying computed fan-in values

The second table generated as part of the experimental results displayed the method

relationships determined by the enhanced method call tree. Typically, in prior research,

the method relations are displayed as a list however the output of the new algorithm also

included the consistency measurements of average distance, variance and the confidence

factor of the relationship. Therefore the results of the method relationships followed the

structure depicted in table 2.

Relationship Average Distance Std Dev in Distance Confidence Factor

Table 2 - Sample output table for displaying computed method relationships

Resource requirements

 The evaluation of aspect mining algorithms rely on sample applications that have

known set of cross cutting concerns in order to provide a benchmark output for

49

comparison. The enhanced method call tree aspect mining approach was validated using

the source code and prior analysis of the Carla Laffra implementation of the Dijkstra

algorithm, the JHotDraw application and the Graffiti application. Therefore the research

relied on obtaining the source code for these target application as experimental resources.

Summary

 The conducted research aimed to fulfill its research goals by merging the fan-in

computation with the computation of the method relationships generated by the method

call tree analysis. The new algorithm achieved this by using the source code of the target

program to generate the method call tree that was traversed in order to generate the

method relationships. As part of this process whenever a method call was encountered the

fan-in value for the encountered method was incremented and the method relationship

was also captured. When capturing the data for the method relationships the algorithm

recorded a list of distances for every instance encountered for that method relationship.

This allowed the enhanced method call tree algorithm to compute the mean distance and

deviation for each relationship as well as the confidence factor. In addition to capturing

the relationship for the method encountered the enhanced method call tree approach also

records the instance of the method relationship for the super class implementations of the

method.

 In order to test the abilities of the new algorithm the research included an

implementation of the algorithm developed using Java. The implementation was used to

analyze the source code of the JHotDraw application and the Graffiti application. The

experimental results were compared against the results published by Marin et al. (2007)

and Breu and Krinke (2004).

50

Chapter 4

Results

Data Analysis

 In order to determine the effectiveness of the enhanced method call tree algorithm a

set of test programs were used to generate a series of method call trees for every method

within the target source code. The test programs chosen for these tests were the

JHotDraw application, the Graffiti application and the Carla Laffra implementation of the

Dijkstra algorithm. The enhanced method call tree algorithm was applied to each sample

program to first generate the call trees that depict the sequence of method calls occurring

within each functional unit within the program. These call trees then formed the basis of

the raw data used for the computation steps that counted the number of times a method

was invoked, that is the fan-in count of each method, as well as the method relationships

between the methods within the target source code.

 The first step of the data analysis transformed the method call tree into a series of

execution paths. These execution were generated by traversing the call tree and listing all

the method calls made within the path as shown in the sample execution trace for the

method CTXCommandMenu.enable figure 5 below.

Program Source Code Generated execution traces
public void enable(String name, boolean state) {

 for (int i = 0; i < getItemCount(); i++) {

 JMenuItem item = getItem(i);

 if (name.equals(item.getLabel())) {

 item.setEnabled(state);

 return;

 }

 }

}

[

 [CTXCommandMenu.getItemCount,

CTXCommandMenu.getItem,

null.getLabel, null.setEnabled, #END#],

[CTXCommandMenu.getItemCount,

CTXCommandMenu.getItem,

null.getLabel]

]

51

Figure 5 - Sample source and related execution paths

The execution paths provided a means of analyzing the method relationships as described

in Breu and Krinke (2004). As shown in figure 5 above, the execution traces included

both invocations of the implemented classes as well as calls made to standard library

classes. In the case where a standard library calls were detected the class names were set

to null within the trace output and were disregarded in any further calculations. One

observation noted during the experimentation was that execution branches caused by

conditional statements like 'if' statements resulted in a combinatorial explosion of the

number of possible execution paths that can occur. For example the method call tree for

the action method in the class Options resulted in 433 execution paths due to the high

number of nested if conditions.

 After generating the execution paths for a method the execution paths were used to

calculate the fan-in of each method invoked within the execution paths as well as the

method relationships with the invoked methods. The fan-in computation methodology

employed by the modified method call tree approach differs slightly from the fan-in

computation outlined by Marin et al. (2007). The difference was a result of using the

execution traces as the input for the computation processes. Since a single block of code

can result in multiple execution traces, due to branching instructions, this resulted in a

larger number of method invocations than the count of the instances of the method within

the code.

 The second part of the trace analysis process was the computation of method

relationships. The enhanced call tree approach captured the inside-first, inside-last,

52

outside-before and outside-after relationships outlined by Breu and Krinke (2004).

However, as outlined in the approach section, the enhanced method call tree algorithm

did not limit the relationship identification to the first instance of a method invocation

with the execution trace as was done in earlier approaches. For example given the

execution trace for the CTXCommandMenu.enable, shown in figure 5 earlier method

relationship computation approaches would identify a single inside-first method relation

between CTXCommandMenu.enable and CTXCommandMenu.getItemCount. However

the enhanced method call tree approach generates the relationships shown in the table 3

below

Relationship Distance Number of instances

CTXCommandMenu.getItemCount ∈⫟

CTXCommandMenu.enable

1 2

CTXCommandMenu.getItem ∈⫟

CTXCommandMenu.enable

2 2

Table - 3: Sample output of inside-first relationships

The distance denotes the order of method invocation within the execution trace and help

form the final decision of whether the method relationship is both frequent and

consistent.

 Similar to inside-first and inside-last relationships the enhanced method call tree

approach also analyzed the execution traces to generate outside-before and outside-after

relationships. These relationships as described by Breu and Krinke (2004) denote a

relationship where a method B is invoked before or after a method A within an execution

trace. In a similar fashion as the inside relationships, the enhanced method call tree

approach did not limit the analysis to the immediate neighbors when determining the

53

outside-before and outside-after relationships. For example given the execution trace for

the DrawApplication.loadDrawing method in the JHotDraw application

[DrawApplication.restore, Drawing.setTitle, DrawApplication.newWindow,

DrawApplication.showStatus]

Table 4 shows the outside-after relationships created for the DrawApplication.restore and

Drawing.setTitle methods

Relationship Number of instances Distance

DrawApplication.setTitle ↼
DrawApplication.restore

1 1

DrawApplication. newWindow ↼
DrawApplication.restore

1 2

DrawApplication. showStatus ↼
DrawApplication.restore

1 3

DrawApplication. newWindow ↼
DrawApplication. setTitle

1 1

DrawApplication. showStatus ↼
DrawApplication. setTitle

1 2

Table - 4: Sample output of outside-after relationships

As shown in the example in order to compute an outside-after relationship only

subsequent method invocations were considered by the computation. That means that

DrawApplication.restore↼Drawing.setTitle with a distance of -1, was not considered for

an outside-after relationship. The reasoning for this is that such relationships are better

tracked using the outside-before relationship.

 The final step of the analysis used the data from the fan-in computation and method

relationships to determine frequent and consistent code patterns that could indicate a

cross cutting concern also referred to as a seed. The frequency of a relationship is

captured by number of instances the relationship was detected within the execution

54

traces. This indicator is a good measurement for outside-before and outside-after

relationships since it describes how often the two methods can be found tangled together.

However this indicator is not very relevant for inside-first and inside-last relationship

since the number of instances of a relationship is always 1. Therefore when considering

the inside-first and inside-last relationships the analysis focused on the number of

instances a particular method occurs as the first or last method call whenever the

implementation of the method is overridden.

 Along with the frequency of the relationship the other important indicator for

determining the viability of a seed was the consistency of the relationship. The

consistency was determined by measuring the average distance recorded for all instances

of a relationship. When determining the consistency of any relationship the desired

average distance would be 1. In addition to the average distance the standard deviation

was computed to see the degree of variability in distances for a noisy relationship. For a

relationship to be consistent the standard deviation ideally would be zero. The final

indicator useful for determining candidate seeds is the confidence of the relationship. The

confidence of a relationship is the number of instances of the relationship/ the fan-in

value for the method. If the confidence score approaches 1 that is an indication that the

particular is very tightly coupled to the other method within the relationship. This would

indicate that the methods are highly tangled. It should be noted however that a method

can be tangled with several different concerns. For example if a method B is consistently

executed after method A as well as method C the confidence of the relationships B ↼ A

and B ↼ C with respect to B would not be close to 1.

55

 The determination of the method relationships was enhanced to broaden the detection

scheme beyond immediate neighboring method calls. This approach was found to be

viable as seen in the case of the inside first relationship with the Init method calls within

the GraphCanvas class. The Init method is invoked as the first method call within the

GraphCanvas constructor, GraphCanvas.clear, GraphCanvas.reset, and as the second

method call in the GraphCanvas.showexample method. Despite the Init method not being

called as the first method in the GraphCanvas.showexample method the enhanced method

call tree approach did detect the potential inside-first relationship. By computing the

overall mean distance for each of the invocation instances the data clearly showed that

the Init method is consistently invoked at the beginning of each method. This also makes

sense given the purpose of the Init method is to initialize components prior to the drawing

activities. Using the outside-before and outside-after relationships the results of the

experiments using the JHotDraw application showed a consistent very tight coupling

between the UndoableAdapter.setUndoable and UndoableAdapter.setRedoable methods.

The results showed that the distance between the invocations had a mean distance of 1,

indicating they are always adjacent to one another. The confidence factor of the

relationship was also 1 showing that the methods were always invoked as a pair. This

relationship is also intuitive based on the nature of the functionality of these methods.

Similar relationships were observed for the FigureEnumeration.nextFigure and

FigureEnumeration.hasNextFigure methods. In this case there is some variability

observed since the mean distance between the two methods was found to be 1.7 however

the confidence factor of 1 showed that these two methods are tightly coupled. This

56

relationship is obvious since the hasNextFigure is a check prior to invoking the

nextFigure method to obtain the next element in the enumeration.

Findings

 The enhanced method call tree aspect approach successfully combined the fan-in

computation with the identification of the method relationships. Moreover the

combination of the two techniques resulted in a way that adds additional measurement of

confidence factor that can aid in the identification of candidate seeds. Despite the

combinations of two aspect mining related computations the performance of the overall

algorithm was found to be very efficient. The processing times for the each of the test

programs analyzed by the enhanced method call tree implementation are shown in the

table 5 below.

 JHotDraw Graffiti Carla Laffra

Total processing time (ms) 5546 10524 1158

Class meta data collection (ms) 2674 8249 707

Tree generation time (ms) 195 178 25

Fan-in computation time (ms) 60 20 11

Method relationship computation time (ms) 1034 267 125

Table 5 - Execution times for experiments

 When comparing the results of the fan-in computation experimental results showed

that the fan-in values calculated by the new approach tended to be higher than those

calculated by Marin et al. (2007). The table 6 below shows the differences in the high

fan-in methods captured by the research and those captured by Marien et al. (2007).

57

Results from Marin et al. (2007) Generated experimental results

Class/ Method Fan-in Class/ Method Fan-in

Undoable 25 (Max) Undoable.undo 59

Storable <all methods> 22 (Total) Storable <all methods> 29 (Total)

.willChange 25 .willChange 34

Figure.changed 36 Figure.changed 58

Figure.addFigureChangeListener 11 Figure.addFigureChangeListener 14

AbstractCommand.execute 24 15 AbstractCommand.execute 26

DecoratorFigure.containsPoint DecoratorFigure.containsPoint 18

Table 6 - Fan-in value differences

The variation of the result was caused by the fact the enhanced method call tree approach

calculates the fan-in value based on the number of method invocation within execution

traces while the calculation by Marin et a. (2007) counted the fan-in by the number of

occurrences of the method invocation within the source code. However when the results

of the computation were compared it was found that both approaches identified a similar

set of methods with high fan-in values. Since the purpose of the fan-in value is to provide

a relative ranking of frequently invoked methods the results of the two approaches are

consistent.

 In addition to the fan-in computation, the enhanced method call tree approach

demonstrated the ability to generate the set of method relationships as described in prior

research such as Breu and Krinke (2004). In order to test the method relationship

detection capabilities the algorithm was used to analyze the source code of the Graffiti

application. The analysis results were compared to the findings described by Breu and

Krinke (2004) that was also based the analysis of the Graffiti.

 The first finding described by Breu and Krinke (2004) was the evidence of the logging

concern. The dynamic analysis technique detected this concerned incidentally because

the Graffiti application extended a standard Java API formatting class to format the log

58

messages. The call to the log formatting was captured as part of the execution traces

collected during the experimentation since it was invoked by the Java API. This concern

was not detected by the enhanced call tree method since the implementation of the

concern relied on the java.util.logging.Formatter standard Java API class that is called

from within the java.util.logging.Logger API. As mentioned earlier the enhanced method

call tree analysis focuses purely on functional concerns implemented by the target source

and thus filtered out any calls to standard API methods.

 As part of their analysis of concerns implemented within the Graffiti code Breu and

Krinke (2004) identified the outside after relationship between the methods

MainFrame.addSessionListener and the methods isSessionListener in multiple different

classes. After examining the code Breu and Krinke (2004) found that the

isSessionListener is defined in the interface GenericPlugin whose sub classes were

detected in the execution traces. The enhanced method call tree algorithm also detected

the relationship between the GenericPlugin.isSessionListener and the

MainFrame.addSessionListener. In the case of the enhanced method call tree approach

the directly links the relationship between the GenericPlugin interface and the

MainFrame class without requiring any investigation into the code. In addition to

detecting the relationship between the two methods, the enhanced method call tree

approach shows that the average distance between the two method calls is 1 meaning that

the relationship between the two methods is very consistent and since confidence factor

of the relationship is 97% the methods are very tightly coupled together. These inferences

were consistent with the explanation provided by Breu and Krinke (2004) after the

examination of the Graffiti code. In a similar manner another outside after relationship

59

discussed by Breu and Krinke (2004) is the relationship between the methods

GenericPluginAdapter.getAlgorithms and the getName method of multiple different

algorithm classes. After analysis of the code these algorithm classes were found to sub

classes of the GenericPlugin class. This relationship was also detected by the enhanced

method call tree algorithm. In the case of the enhanced method call tree algorithm the

relationship between the two methods were automatically detected at the base class level.

The enhanced method call tree approach found that the average distance between the

getName and getAlgorithms was about two method calls. This differs from the analysis

performed by Breu and Krinke (2004). Analysis of the code shows that between the

getAlgorithms call and the getName there is a conditional call to processPathInformation.

It is possible that this condition was never met during the testing by execution traces

approach so this method call would not have been detected by Breu and Krinke (2004).

 In addition to the outside before/after relationships Breu and Krinke (2004) discuss the

inside first/last method relationship of the MainFrame.isSessionActive within the

isEnabled method of the FileCloseAction, ViewNewAction, and RunAlgorithm,

EditUndoAction and EditredoAction classes. These relationships were also detected by

the enhanced method call tree algorithm for each individual class. In addition, since the

isEnabled method is a defined within the base class GraffitiAction, the inside first

relationship between the MainFrame.isSessionActive and the isEnabled was

automatically extrapolated to the base class GraffitiAction. This relationship between the

GraffitiAction and the isEnabled method was also identified by Breu and Krinke (2004)

on further manual analysis of the code.

60

 The results of the experiments show that the enhanced call tree method is able to

determine relationships between methods that are comparable to dynamic aspect mining

techniques. The application of these relationships in terms of detecting tangled concerns

is illustrated by comparing the relationships found by the enhanced method call tree

approach and the observations of the JHotDraw application made by Marin et al. (2007).

As part of the analysis of the JHotDraw source code Marin at al. (2007) observed that the

undo and redo concerns are tangled within the implementations of the functional

procedures like the cut operation. The CutCommand class is responsible for

implementing the cut functionality within the JHotDraw application and the execute

method of the class contains the actual logic performed for the operation. In the

JHotDraw application code the functional concerns of undo operations rely on the

methods AbstractCommand.createUndoActivity and AbstractCommand.setUndoActivity

in order to track changes that can later be reversed as part of the undo function itself. It is

important to note that these functions themselves do not implement the logic of the undo

functionality but are essential for collecting the data upon which the undo functional

concern can operate. Since the undo functionality needs to maintain the history of all

operations the data collection of undo concern is tangled throughout the other drawing

functionality provided by the JHotDraw application. The manifestation of this tangled

concerns result in the AbstractCommand.createUndoActivity,

AbstractCommand.setUndoActivity and Undoable.setAffectedFigures method calls are

found within the implementation of user commands such as the CutCommand.execute

method and multiple methods within various painting tool implementation classes like

TextTool. These manifestations of tangled concerns are illustrated by inside first or inside

61

last method relations since these method relationships detect invocations of a tangled

concerns within an implementation of some functionality. These types of relationships

were observed in the enhanced method call tree algorithm output as shown in the table 7

below.

Relationship Mean Distance Number of

instances

BorderTool.createUndoActivity∈⫟
BorderTool.action

2 1

BorderTool.createUndoActivity∈⫟
BorderTool.reverseAction

2 1

BringToFrontCommand.createUndoActivity∈⫟
BringToFrontCommand.execute

3 1

ChangeAttributeCommand.createUndoActivity∈⫟
ChangeAttributeCommand.execute

3 1

ChangeConnectionHandle.createUndoActivity∈⫟
ChangeConnectionHandle.invokeStart

3 1

ConnectionTool.createUndoActivity∈⫟
ConnectionTool.mouseDown

2 1

ConnectionTool.createUndoActivity∈⫟
ConnectionTool.mouseUp

18 2

ConnectionTool.createUndoActivity∈⫟
SplitConnectionTool.mouseDown

24 2

ConnectionTool.createUndoActivity∈⫟
Tool.mouseDown

4 1

CreationTool.createUndoActivity∈⫟
CreationTool.mouseUp

4 1

CutCommand.createUndoActivity∈⫟
CutCommand.execute

3 1

DeleteCommand.createUndoActivity∈⫟
DeleteCommand.execute

3 1

DragTracker.createUndoActivity∈⫟
DragTracker.mouseDown

6.7 3

DuplicateCommand.createUndoActivity∈⫟
DuplicateCommand.execute

3 1

FontSizeHandle.createUndoActivity∈⫟
FontSizeHandle.invokeStart

2 1

GroupCommand.createUndoActivity∈⫟
GroupCommand.execute

3 1

InsertImageCommand.createUndoActivity∈⫟
InsertImageCommand.execute

3 1

PasteCommand.createUndoActivity∈⫟
PasteCommand.execute

7 2

62

PolygonHandle.createUndoActivity∈⫟
PolygonHandle.invokeStart

2 1

PolygonScaleHandle.createUndoActivity∈⫟
PolygonScaleHandle.invokeStart

1 1

PolygonTool.createUndoActivity∈⫟
PolygonTool.mouseDown

7 1

PolyLineHandle.createUndoActivity∈⫟
PolyLineHandle.invokeStart

2 1

RadiusHandle.createUndoActivity∈⫟
RadiusHandle.invokeStart

2 1

ResizeHandle.createUndoActivity∈⫟
ResizeHandle.invokeStart

2 1

ScribbleTool.createUndoActivity∈⫟
ScribbleTool.mouseDown

4 1

SelectAllCommand.createUndoActivity∈⫟
SelectAllCommand.execute

3 1

SendToBackCommand.createUndoActivity∈⫟
SendToBackCommand.execute

3 1

TextAreaTool.createUndoActivity∈⫟
TextAreaTool.beginEdit

11.5 4

TextTool.createUndoActivity∈⫟
TextTool.endEdit

5 1

TriangleRotationHandle.createUndoActivity∈⫟
TriangleRotationHandle.invokeStart

2 1

UngroupCommand.createUndoActivity∈⫟
UngroupCommand.execute

3 1

Table 7 - Inside first method relationships detected for createUndoActivity

As shown by table 7 the individual number of inside first method relationships between

the createUndoActivity method and the other functional methods can be quite large

making it difficult to understand the concepts that these relationships actually depict.

However an examination of the class hierarchies provided by the enhanced method call

tree algorithm can summarize the 32 individual relationships into the following 8 method

relationships listed below.

 Tool.createUndoActivity ∈⫟AbstractTool.action

Tool.createUndoActivity ∈⫟Tool.mouseDown

Tool.createUndoActivity ∈⫟Tool.mouseup

Tool.createUndoActivity ∈⫟ BorderTool.reverseAction

Tool.createUndoActivity ∈⫟ TextAreaTool.beginEdit

63

Tool.createUndoActivity ∈⫟ TextTool.endEdit

Command.createUndoActivity ∈⫟ Command.execute

Handle.createUndoActivity ∈⫟ Handle.invokeStart

This summarized list makes it easier to understand how the undo functionality is woven

throughout the functionality of the JHotDraw application.

 In addition to the tangled concerns the results of the outside before/after method

relationships showed other interesting insights into the JHotDraw application. For

example the one of the interesting common method relationships is the outside

relationships found between the methods getUndoActivity or createUndoActivity and the

setUndoActivity methods within the Handle and Command class hierarchies. Further

examination of the code based on these relationships shows that the handling of the undo

functionality usually follows a pattern of setUndoActivity(createUndoActivity()) or

setUndoActivity(getUndoActivity()). These behaviors fall into the consistent behavior or

contract enforcement classifications of cross cutting concerns described by Marin et al.

(2007).

Summary

 The enhanced method call tree static analysis approach was applied to the JHotDraw,

Carla Laffra implementation of the Dijkstra algorithm and the Graffiti application source

codes. The output of the experiments generated the method call trees for each method

within the target source code. These call trees were used to generate the complete list of

all execution paths the target source code could follow. The execution paths were then

used to compute the fan-in for each method as well as generate a series of inside-first,

inside-last, outside-before and outside-after relationships. For each of these relationships

64

four metrics were computed namely the number of instances of the relationship, the

average distance between the methods in the relationship, the standard deviation from the

mean distance of both methods in the relationship and the confidence factor of the

relationship. Finally these metrics were utilized to identify frequent method relationships

that represent candidate seeds of cross cutting concerns.

 The experiments showed that results generated by enhanced method call tree approach

generated fan-in values higher than those generated by the method employed by Marin,

Deursen and Moonen (2007). However the results of both approaches flagged similar

methods as having high fan-in values. In addition to the fan-in computation the research

also showed that it is possible for a static analysis technique to identify interesting

method relationships using the four metrics described above.

 The experimental results of the analysis of the Graffiti source code were compared to

the findings described by Breu and Krinke (2004). When comparing the results of the

approaches both approaches highlighted similar outside after and inside first/last method

relationships. The only discrepancy between the two approaches was that the enhanced

method call tree approach did not highlight the logging concern since the concern was

implemented via standard Java API's that were excluded from the enhanced method call

tree analysis. All other method relationships described by Breu and Krinke (2004) were

also identified by the enhanced method call tree approach. During the comparison it was

noted that many of the findings described by Breau and Krinke (2004) required an in

depth review of the actual target code especially when identifying relationships spanning

class hierarchies. However these hierarchical relationships were automatically

highlighted within the results of the enhanced method call tree approach. The research

65

also showed how the metrics of mean distance, number of instances and confidence could

also be used to determine the relevancy of the method relationships.

 Finally the research showed that the code tangling concerns discovered within the

JHotDraw source code as described by Marin, Deursen and Moonen (2007) are

represented by the inside first method relationships detected by the enhanced method call

tree. In addition the research revealed a series of outside after relationships that depict a

cross cutting concerns classified as consistent behavior and/or contract enforcement cross

cutting concerns.

66

Chapter 5

Conclusions, Implications And Recommendations

Conclusions

 One of the goals of the enhanced method call tree was to integrate the computation of

fan-in analysis and the generation of method relationships into a single aspect mining

algorithm. The research has successfully incorporated these two aspect mining

approaches into a single algorithm by generating the fan-in values for each method in the

target code as well as generating a series of inside-first, inside-last, outside-before and

outside-after relationships. The experimental results and comparisons of findings with

prior research has shown that the output of the new algorithm is consistent with the

outputs of prior approaches namely Marin, Deursen and Moonen (2007) as well as Breau

and Krinke (2004).

 The second goal of the research was to incorporate the object oriented class hierarchy

structure into the determination of method relationships. As shown by the experimental

results the enhanced method call tree was able to use the class hierarchy to extrapolate

method relationships up the class hierarchy. While comparing the experimental results

with analysis performed by Breu and Krinke (2004) the utility of extrapolating these

results allows the user to understand the conceptual relationships between functional

components without having to refer directly to the target source code.

 The final goal of the research was to incorporate the ability to find execution patterns

in the target code even when the target code contained inconsistencies in implementation.

The research demonstrated that some inconsistencies can be captured by expanding the

67

method relationship detection beyond the immediate neighbors. The research also

showed that the relaxation of the strict rules aids in identifying the interesting

relationships. This was highlighted by the tangled concern of the undo functionality

within the JHotDraw application. As shown in the experimental results there exists a

clear relationship between the createUndoActivity and methods like the execute method.

However the experimental results also show that the undo related functions are almost

never called as the first method call in any functions implementation also that the undo

related methods tend to follow a quite random distance from the beginning of the method

implementations.

 In addition to the main three goals of the research the research also attempted to find

answers to five research questions. The first of these questions was the definition of an

algorithm that incorporates the merging of the fan-in analysis and the identification of

execution patterns. The approach outlined above outlines the steps of creating the

execution tree for source code and traversing the tree to generate the execution paths. The

research shows that these execution paths can then be used to compute the fan-in values

for methods encountered in the execution path. These same execution paths can also be

used to compute the method relationships between various methods in the target source

code.

 The second question the research attempted to explore was the impact of class

hierarchies on the detection of code tangling. The research showed that extrapolating

method relationships up a class hierarchy makes it easier to interpret conceptual

relationships between functional areas within the target source code.

68

 The third question explored by the research was the performance impact of the

computation of the method relationships on the aspect mining process. During the

generation of the experimental results the run times noted for the various processes were

summarized in table 5. The table showed that the method relationship generation phase

accounted for between roughly 5 to 20% of the overall execution time. However overall

the enhanced method call tree analysis approach executed in an adequate timeframe in

each experiment. It should be noted that the memory usage spiked during the method

relationship generation phase as compared to fan-in computation phase. This spike was

caused by the number of combinations of the method relationships is higher than the total

number of methods in the source code. The fan-in computation phase computes a single

value for each method so the memory requirements are bound by the number of methods

in the target source. The method relationship computation can expands with the number

of method calls within the body of the target source. The memory usage can be a limiting

factor for the enhanced method call tree analysis approach and future versions will have

to optimize the memory handling techniques to ensure that the process can handle the

analysis of large applications.

 The fourth question explored by the research was the identification of metrics that can

be used to measure the consistency of a method relationship. The research demonstrated

how the three metrics namely the mean distance between the methods in the relationship,

the standard deviation from the mean distance of the occurrences of the method

relationships and the confidence factor of the method relationships can be computed by

the enhanced method call tree algorithm. The conducted research also showed how these

69

measurements can be used to analyze the interestingness and consistency of the method

relationships identified by the algorithm.

 The final question explored by the conducted research was whether the control flow

information stored in the call tree can be used to identify any interesting patterns in

source code. As part of the analysis of the experimental results it was noted that in a

number of places calls to methods like MainFrame.isSessionActive were made prior to an

if condition in the Graffiti code base. However the conducted research could not discern

how such information would provide any valuable insights into the target code.

 Overall the research has shown that the enhanced method call tree approach was

successful in achieving the goals it had set out to achieve. The research has shown that

this approach can be used as a comprehensive static code analysis tool for the detection

of both code scattering and code tangling cross cutting concerns. Also the enhanced

method call tree approach exhibits a number of desirable traits in an aspect mining

approach in that it is quick to execute, provides reasoning and metrics as part of the

output that the user can leverage and does not require that the user be very familiar with

the target application being analyzed.

Implications

 The conducted research introduces a viable comprehensive static analysis approach

for detecting cross cutting concerns. The ability to detect cross cutting concerns due to

code scattering and code tangling using a static analysis approach provides a number of

benefits. Static analysis techniques allow the target code to be analyzed without requiring

any special run time environments as are needed by dynamic analysis techniques.

70

Furthermore the static analysis approach like the enhanced method call tree approach

require very little prior understanding of the target source code being analyzed. This in

turn makes it much faster to run the analysis and generate the results for analysis. In

addition the research has also introduced metrics that provides guidelines for analyzing

the results generated by the analysis. These metrics provide meaningful data points to the

users helping them to fine tune and justify the design changes being made as part of the

aspect refactoring exercise.

Recommendations

 The conducted research has introduced an approach using an enhanced method call

tree generation process for identifying candidate seeds using the fan-in computation and

method relationships. The counters calculated by the computation were generated based

on the number of occurrences of a method invocation within execution paths. The

research identified this as being somewhat misleading since it can lead to inflated counts

that cannot be directly correlated by a casual examination of the target source code.

Future research should focus supplementing the execution path counts with an additional

counter of distinct method bodies. This should make the generated data easier to analyze.

Secondly the research did not focus on creating general guidelines for the metrics of

number of instances, mean distance of methods, standard deviation of distances from the

mean and the confidence of the method relations. Further research should be done to

establish meaningful tolerances for these metrics to optimize the number of candidate

seeds captured and precision of the candidates detected. Research can also focus on using

these metrics as an input to cluster based detection algorithms as demonstrated by

Maisikeli & Mitropoulos (2010).

71

 One observation made during the research was that conceptual patterns could be

discerned in the target code that did not necessarily translate into method relationships.

For example in the JHotDraw source code the UndoActivity has multiple relationships

with a number of methods within the various Figures classes. When observed

individually each method relationship was not frequent enough to become a candidate

seed. However overall there seems to be concept linking the UndoActivity and the

manipulation with the various Figures classes. Further research should be conducted to

incorporate a concept analysis feature similar to Tourw´e & Mens (2004) or an NLP

based approach as described by Shepherd, Pollock & Tourw´e (2005).

 In order to account for implementation inconsistencies within the target code the

research focused on expanding the detection of method relationships beyond the next

neighbor. This approach can account for variations that may be caused by methods not

always being invoked within a specific sequence. However other relationships could

possibly be observed if the trees of the called methods are also considered in the

execution path. These types of relationships would not be detected by the shallow search

employed by the current algorithm. Further research can be done to use the method

relationships to generate transitive relationships that would be able to detect such

potential method relationships.

Summary

 The research showed that the enhance method call tree analysis approach successfully

achieve its three primary goals. The first goal was achieved by successfully merging the

fan-in computation with the method call tree generation algorithm. The second goal was

achieved by modifying the method relationship calculation to bubble up the relationships

72

to the super class implementation of the overridden methods. The final goal was achieved

by adding the capability to determine the method relationships even if the method

invocations were not called in a consistent sequence. These features showed that it was

possible to develop an aspect mining approach that executes quickly, produces results

that are easy to interpret and that does not require any special tools or prior knowledge of

the target code in order to perform the analysis.

 In order to enhance this static analysis tool further research should be performed in

order to capture frequency of relationships within distinct method implementations. Other

enhancements can focus on including an identifier analysis approach to the method

relationships in order to determine dependent concepts or concerns within the

functionality of the target code. Another enhancement should focus on using the method

relationships to find transitive relationships in order to uncover dependencies obfuscated

by nested method invocations. Finally further research can be performed to find optimal

tolerances for the metrics generated by the enhanced method call tree approach.

73

Appendices

Appendix A

Prototype Implementation

1. Java source code files

2. Dependent libraries

74

Appendix B

Output of experimental results

1. Fan-in results for the Carla Laffra implementation of the Dijstkra algorithm

2. Method relationship results for the Carla Laffra implementation of the Dijstkra

algorithm

3. Fan-in results for the JHotDraw application

4. Method relationship results for the JHotDraw application

5. Fan-in results for the Graffiti application

6. Method relationship results for the Graffiti application

75

3.

76

References

Breu, S. & Krinke, J. (2004). Aspect Mining Using Event Traces. In Proceedings of

the 19th IEEE international conference on Automated software engineering.

September 2004. Pages 310 - 315.

Bruntink, M., Deursen, A. V. , Engelen R. V. & Tom Tourwe T. (2005). On the Use

of Clone Detection for Identifying Crosscutting Concern Code. IEEE

Transactions on Software Engineering. October 2005. Pages 804-818.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P. & Tourwe., T. (2005). A

Qualitative Comparison of Three Aspect Mining Techniques. In Proceedings of

the 13th International Workshop on Program Comprehension (IWPC '05). May

2005. Pages 13-22.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P. & Tourwe., T. (2006).

Applying and combining three different aspect mining techniques. Software

Quality Control, v.14 n.3. September 2006. Pages 209-231.

Shepherd D., Palm J., Pollock L., Chu-Carroll M. (2005). Timna: A Framework for

Automatically Combining Aspect Mining Analyses. Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering. 2005.

Pages 184 - 193.

Hannemann, J. & Kiczales. G. (2002). Design pattern implementation in Java and

aspectJ. In Proceedings of the 17th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications (OOPSLA '02).

November 2002. Pages 161-173.

Kellens, A., Mens, K. & Tonella, P. (2007). A survey of automated code-level aspect

mining techniques. In Transactions on aspect-oriented software development IV,.

Lecture Notes In Computer Science, Vol. 4640. Springer-Verlag. January 2007.

Pages 143-162.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C. V., Maeda, C., &

Mendhekar, A. (1997). Aspect-Oriented Programming. European Conference on

Object-Oriented Programming (ECOOP), Finland. Springer-Verlag LNCS 1241.

June 1997. Pages 220 - 245.

Vidal, S., Abait, E. S., Marcos, C., Casas, S., & Pace, J. A. D. (2009). Aspect mining

meets rule-based refactoring . Proceedings of the 1st workshop on Linking aspect

technology and evolution (PLATE '09). March 2009. Pages 23-27.

77

Maisikeli, S. G. & Mitropoulos, F.J. (2010). Aspect mining using Self-Organizing

Maps with method level dynamic software metrics as input vectors. Proceedings

of the 2nd International Conference on Software Technology and Engineering

(ICSTE). October 2010. Pages 212-217.

Marin, M., Deursen, A. V. & Moonen, L. (2007). Identifying Crosscutting Concerns

Using Fan-In Analysis. ACM Trans. Softw. Eng. Methodol. 17, 1, Article 3.

December 2007. Pages 1- 37.

Marin, M., Moonen, L. & Deuresen, A. V. (2005). A Classification of Crosscutting

Concerns. Proceedings of the 21st IEEE International Conference on Software

Maintenance (ICSM'05). September 2005. Pages 673 - 676.

Mens, K., Kellens, A. & Krinke, J. (2008). Pitfalls in Aspect Mining. In Proceedings

of the 2008 15th Working Conference on Reverse Engineering (WCRE '08).

October 2008. Pages 113-122.

Moldovan, G. S & Serban, G. (2006). Aspect Mining using a Vector-Space Model

Based Clustering Approach. In Proceedings of Linking Aspect Technology and

Evolution (LATE) Workshop. March 2006.

Qu, L. & Liu, D. (2007). Aspect Mining Using Method Call Tree. In Proceedings of

the 2007 International Conference on Multimedia and Ubiquitous Engineering

(MUE '07). April 2007. Pages 407-412.

Rand McFadden, R. & Mitropoulos, F. J. (2012). Aspect mining using model-based

clustering. Proceedings of the 2012 Southeastcon. March 2012. Pages 1-8.

Shepard, D., Pollock, L. & Tourwe, T. (2005). Using language clues to discover

crosscutting concerns. Proceedings of the 2005 workshop on Modeling and

analysis of concerns in software. July 2005. Pages 1 - 6.

Tonella, P. & Ceccato, M. (2004). Aspect Mining through the Formal Concept

Analysis of Execution Traces. In Proceedings of the 11th Working Conference on

Reverse Engineering (WCRE '04). November 2004. Pages 112-121.

Tourwe, T. & Mens K., (2004). Mining aspectual views using formal concept

analysis. In: Source Code Analysis and Manipulation Workshop (SCAM). July 2004.

Pages 97 - 106.

Tribbey W. & Mitropoulos. F. J. (2012). Construction and analysis of vector space

models for use in aspect mining. In Proceedings of the 50th Annual Southeast

Regional Conference (ACM-SE '12). March 2012. Pages 220-225.

78

Zhang, C. & Jacobsen, H. (2007). Efficiently mining crosscutting concerns through

random walks. In Proceedings of the 6th international conference on Aspect-

oriented software development (AOSD '07). March 2007. Pages 226-238.

	Nova Southeastern University
	NSUWorks
	2016

	Enhanced Method Call Tree for Comprehensive Detection of Symptoms of Cross Cutting Concerns
	Saleem Obaidullah Mir
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1461948311.pdf._AmUV

