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The dissertation proposes, presents and analyzes a new design pattern, the Mutable Class pattern, 
to support the processing of large-scale heterogeneous data models with multiple families of 
algorithms. Handling data-algorithm associations represents an important topic across a variety 
of application domains. As a result, it has been addressed by multiple approaches, including the 
Visitor pattern and the aspect-oriented programming (AOP) paradigm. Existing solutions, 
however, bring additional constraints and issues. For example, the Visitor pattern freezes the 
class hierarchies of application models and the AOP-based projects, such as Spring AOP, 
introduce significant overhead for processing large-scale models with fine-grain objects. The 
Mutable Class pattern addresses the limitations of these solutions by providing an alternative 
approach designed after the Class model of the UML specification. Technically, it extends a data 
model class with a class mutator supporting the interchangeability of operations. 
 
Design patterns represent reusable solutions to recurring problems. According to the design 
pattern methodology, the definition of these solutions encompasses multiple topics, such as the 
problem and applicability, structure, collaborations among participants, consequences, 
implementation aspects, and relation with other patterns. The dissertation provides a formal 
description of the Mutable Class pattern for processing heterogeneous tree-based models and 
elaborates on it with a comprehensive analysis in the context of several applications and 
alternative solutions. Particularly, the commonality of the problem and reusability of this 
approach is demonstrated and evaluated within two application domains: computational 
accelerator physics and compiler construction. Furthermore, as a core part of the Unified 
Accelerator Library (UAL) framework, the scalability boundary of the pattern has been 
challenged and explored with different categories of application architectures and computational 
infrastructures including distributed three-tier systems.  
 
The Mutable Class pattern targets a common problem arising from software engineering: the 
evolution of type systems and associated algorithms. Future research includes applying this 
design pattern in other contexts, such as heterogeneous information networks and large-scale 
processing platforms, and examining variations and alternative design patterns for solving related 
classes of problems. 
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Chapter 1 
 

Introduction 
 
 

 

Background 

     The design of modern software systems represents a complex task that must consider 

numerous multi-scale multi-domain requirements, technologies, and perspectives. Software 

engineering addresses this task by providing a growing collection of design patterns – reusable 

solutions that were invented, presented, evaluated, and proven in previous projects. There are 

several categories of these design patterns, such as creational, structural, and behavioral 

(Gamma, Helm, Johnson, and Vlissides, 1995). Many of them are developed to encapsulate or 

decouple related concepts. For example, the Bridge pattern decouples an abstraction from its 

implementation; the Strategy pattern encapsulates the implementation of the object behavior into 

separate classes, etc. The choice of the appropriate concept or the combination thereof, is usually 

a tradeoff determined by the project requirements. As a result, the collection of design patterns is 

dynamic and follows the changes in software technologies and applications. 

     The scope, effectiveness, and aptitude of the software applications directly depend on the 

quality and capability of the data models describing and implementing the entities of the 

application domain and their relationships. The application models may vary in many ways: size, 

number of data types, and complexity of data collections. Among the most universal and 

sophisticated data structures used in modern applications are heterogeneous graphs. These allow 

the description of collections of heterogeneous entities connected by an arbitrary number of 

pairwise relationships. To represent hierarchical structures, graphs commonly take the special 
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form of trees.  As a result, heterogeneous graphs became the natural data models of a variety of 

application domains, such as the abstract syntax tree (AST) of compiler systems, the scene 

graphs of visualization toolkits, biological and social networks, etc. 

     The natural accommodation of the application data, however, covers only one of the software 

requirements. Another important and usually contradictory aspect is associated with providing an 

efficient approach for data processing with different algorithms. For example, the AST serves as 

both an internal and intermediate representation of the source program during the different 

phases of the compilation process including context checking, optimization, and code generation. 

Designed after the Interpreter pattern, the AST heterogeneous model maps the language 

grammar into the corresponding hierarchical object-oriented structure designed to capture 

program semantics. Depending on the applied algorithms, each compilation phase introduces an 

additional set of requirements. Moreover, a set of compiler algorithms is not fixed and can vary 

according to the complexity of the target language as well as the function to be performed. As a 

result, the choice of the AST model is not only determined by the structure of the source 

language, but rather is a tradeoff among the various objectives of the processing algorithms. 

Recently, this topic is especially emphasized by modern graph-based processing applications 

(Sun and Han, 2012) bringing a variety of data-mining and machine learning algorithms. 

 

Problem Statement 

     Processing the heterogeneous models in the object-oriented approach is addressed by the 

Visitor pattern (Gamma, Helm, Johnson, and Vlissides, 1995). This pattern groups the different 

types of heterogeneous structure-oriented operations into separate classes and provides a 

consistent mechanism for their interchange. In the context of the compiler system, for example, 
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the Visitor pattern facilitates the development of the AST-based modules by separating the 

different types of AST processing algorithms. The Visitor pattern, however, introduces a serious 

limitation by freezing the existing class hierarchies and preventing any extensions of the 

processed tree structure with new types. There were several attempts aiming to resolve the 

problem of the original Visitor pattern. Within the object-oriented paradigm, the Acyclic Visitor 

Pattern (Martin, Riehle, and Buschmann, 1997) suggested the most consistent alternative 

approach by breaking the dependency cycle with multiple inheritance. But moving strong 

coupling between components from the framework to the application layer does not fully resolve 

the problem. In addition, the design of the Visitor pattern is tailored to traversal scenarios and 

requires the reconsideration or further development of this approach in the context of a node-

centric computational model implemented by the modern large-scale graph processing systems 

such as Google's Pregel (Malawics et al., 2010). In this model, nodes of application structures 

compute algorithms in parallel and communicate directly with one another by sending messages 

along outgoing edges. The model addresses influential algorithms, such as Page Rank (Page, 

Brin, Motwanl, and Winograd, 1998) and Shortest Paths (Gross and Yellen, 2005) for processing 

homogeneous information networks and needs to be extended for supporting heterogeneous 

applications. 

     An aspect-oriented programming (AOP) paradigm brought several ideas addressing similar 

issues. This paradigm introduced a new concept, aspect, associated with the crosscutting 

functional properties of the object-oriented applications and defined the corresponding pointcut-

advice model for integrating object-oriented and aspect modules. In the context of the 

dissertation problem, processing operations can be considered as crosscutting behavior of 

heterogeneous models and therefore be interchanged using the AOP configuration approach. 
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However in the present variant, this approach is defined only on the preprocessor level using 

annotation directives, deferring the implementation issues to the AOP-based projects, such as 

Spring AOP (Walls, 2013). 

 

Dissertation Goal 

     The thesis proposes, presents, and analyzes a new design pattern, called the Mutable Class 

pattern, to support the processing of large-scale heterogeneous data models with multiple 

families of algorithms. The idea of the Mutable Class pattern was initially introduced in the 

framework of the Unified Accelerator Libraries (Malitsky and Talman, 1998) for building 

dynamic associations among heterogeneous physical devices and modeling algorithms.  From the 

conceptual perspective, the Mutable Class approach was designed after the Class model of the 

UML specification (OMG, 2011). Technically, it extends a data model class with is a singleton 

that maintains the behavior of the class objects based on the Strategy pattern (Gamma, Helm, 

Johnson, and Vlissides, 1995). A Strategy encapsulates the implementation of this behavior into 

separate classes and provides the mechanism for their interchange. Later, the solution (i.e., 

Mutable Class pattern) was successfully validated in the context of the JastAdd metacompiler 

construction system (Malitsky, 2008). 

     The goal of this thesis is to formalize and validate the Mutable Class approach through 

analysis of different applications.  In accordance with the software engineering methodology, the 

analysis of each domain starts with the description of the corresponding use case and associated 

projects. This analysis is followed by an examination of the strong and weak features of the 

existing approaches and their comparison with the new prototype or extension based on the 

Mutable Class. 
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Research Questions 

     The thesis addresses the following three questions: 
 

x Can the Mutable Class approach be formalized as a new design pattern for processing 

heterogeneous tree-based models? Design patterns represent reusable solutions to 

recurring problems. According to the design pattern methodology (Gamma, Helm, 

Johnson, and Vlissides, 1995), the definition of these solutions encompasses multiple 

topics, such as the problem and applicability, structure, collaborations among 

participants, consequences, implementation aspects, and relation with other patterns. The 

thesis provides this formal description of the Mutable Class pattern for processing 

heterogeneous tree-based models and elaborates it with a comprehensive analysis of a 

sample code and implementation aspects. In addition, the dissertation includes the quality 

factor assessment of the Mutable Class pattern and comparison with the current 

approaches based on the Visitor pattern and Aspect-Oriented Programming paradigm. 

x Is the Mutable Class approach generic and can be reused in multiple application 

domains? The commonality of the problem and reusability of this design pattern is 

demonstrated within several application domains. Initially, the Mutable Class pattern was 

derived and explored in the context of computational accelerator physics applications. 

Next, it was applied to a compiler construction project. Third, the analysis of one of 

major scientific visualization toolkits revealed a proprietary mechanism that was closely 

related with the Mutable Class approach for processing type-specific algorithms. Finally, 

these studies are complemented with an overview of a new category of heterogeneous 
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models, known as heterogeneous information networks (Sun and Han, 2012), using 

heterogeneous graphs.  

x How scalable is the Mutable Class approach from the perspective of the application 

architecture and computational infrastructure? The original catalog of design patterns 

(Gamma, Helm, Johnson, and Vlissides, 1995) is considered in the context of three 

classes of software: application programs, toolkits, and frameworks. According to the 

previous Unified Accelerator Library (UAL) applications, the Mutable Class approach 

provides an architectural solution addressing all three categories of software. Being part 

of the framework layer, it identified the structure of data-algorithm associations across 

multiple layers of the UAL application toolkit. Simultaneously, the same approach 

defined a consistent mechanism for developing third-party extensions and building 

project-specific applications. Eventually, the UAL applications were deployed on parallel 

clusters and three-tier distributed infrastructure. The thesis aims to present a 

comprehensive analysis of these use cases and explore the corresponding technical 

solutions and scalability issues in the context of other application toolkits. 

 

Barriers and Issues 

     The Mutable Class pattern is designed to provide a general architectural solution addressing 

the multi-layer structure of application toolkits across multiple application domains. As a result, 

the scope of this pattern represents its major challenge. 

     The initial version of the Mutable Class approach was developed within the C++ framework 

of the Unified Accelerator Libraries (Malitsky and Talman, 1998) after refactoring and 

integration of two major accelerator programs, TEAPOT (Schachinger and Talman, 1987) and 
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ZLIB (Yan and Yan, 1990), originally written in the FORTRAN programming language. 

Eventually, the UAL toolkit encompassed nine accelerator libraries and various extensions 

covering different simulation topics (Malitsky et al, 1999; Lin et al., 2009). Such integration was 

driven by demand for complex beam dynamic studies including a combination of several effects 

and dynamic processes. In turn, these composite studies revealed the necessity of the UAL 

parallel extension (D’Imperio et al., 2006). The transition to the high performance computing 

environment demonstrated new capabilities of the Mutable Class-based framework allowing to 

mix together sequential and parallel algorithms. Eventually, the UAL framework was deployed 

on the three-tier distributed infrastructure for developing model-based control systems (Malitsky 

et al., 2010). 

     Consideration of the problems and technical solutions associated with the UAL multi-scale 

projects is the first topic of the thesis study. Two other application domains, compiler 

construction and 3D computer graphics, introduce the additional challenge requiring reverse 

engineering and integration of the Mutable Class approach with existing application toolkits, 

such as the metacompiler construction system JastAdd (Hedin and Magnusson, 2003; Soderberg 

et al., 2013) and the 3D graphics toolkit Open Inventor (Wernecke er al., 1994, Heck, 2010).  

 

Definition of Terms   

x Abstract syntax tree: compiler’s internal hierarchical representation of a program.  

x Accelerator lattice: hierarchical representation of a particle accelerator model composed 

from heterogeneous physical devices like magnets, radiofrequency cavities, and others. 
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x Agent-oriented programming: programming paradigm designed after the concept of 

software agents exhibiting different aspects of the artificial intelligence behavior, such as 

autonomy, reactivity, learning, social ability, and others. 

x Aspect: unit of modularization in the aspect-oriented programming paradigm. It combines 

crosscutting extensions of the conventional program with well-defined places for their 

insertion. 

x Aspect-oriented programming: programming paradigm addressing crosscutting properties 

of conventional programs. 

x Big Data: collection of data sets or streaming data characterized by the new level of four 

dimensions: volume, velocity, variety, and veracity. 

x Clipping: process of removing polygon parts that lie outside a view frustum. 

x Composite pattern: software approach for building a tree structure of heterogeneous 

objects. 

x Culling: process of checking visibility of scene objects within a view frustum. 

x Design pattern: reusable solution for recurring software design problems. 

x Fourth Paradigm: data-intensive shift in science exploration. 

x High-order Taylor map: computational representation of an accelerator sector as a non-

linear transformation of particle coordinates. 

x Heterogeneous graph: collection of nodes connected by edges, where node and edges are 

of different types. 

x Heterogeneous tree: hierarchical collection of nodes with different types, where each 

node may have a value and a collection of other nodes. 

x Metamodel: specification of methodology for creating models. 
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x Proxy pattern: software approach for extending object functionality by creating a 

placeholder of the original object.  

x Registry pattern: software approach suggesting a dedicated class for maintaining and 

querying a dynamic collection of managed objects. 

x Rendering: process of creating an image from a model. 

x Strategy pattern: software approach encapsulating the implementation of algorithms into 

separating classes and making them interchangeable. 

x Scene graph: hierarchical and spatial representation of a graphical scene.  

x Visitor pattern: software approach that groups the different types of heterogeneous 

structure-oriented operations into separate classes and provides a consistent mechanism 

for their interchange. 

x Weaving: procedure for composing aspects of the aspect-oriented programming paradigm 

with components of the conventional program.  

 

List of Acronyms 

x ADXF: Accelerator Description Exchange Format 

x AOP: Aspect-Oriented Programming 

x AST: Abstract Syntax Tree 

x CCM: CORBA Component Model 

x COM: Component Object Model 

x CORBA: Common Object Request Broker Architecture 

x DCOM: Distributed Component Object Model 

x DSL: Domain Specific Language 
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x EJB: Enterprise JavaBeans 

x IR: Intermediate Representation 

x MOF: Meta-Object Facility 

x NF: Normal Form 

x OMG: Object Management Group 

x UML: Unified Modeling Language 

x UAL: Unified Accelerator Libraries 

 

Summary 

     This chapter introduces the dissertation topic, the Mutable Class pattern, and overviews the 

context of the addressed problem, major ideas of the proposed solution, anticipated issues and 

consequences. The Mutable Class pattern is proposed to provide a reusable solution for 

processing large-scale heterogeneous models with different families of algorithms. This task is 

important in the context of multiple application domains, such as computational accelerator 

physics, compiler construction, 3D computer graphics, and heterogeneous information networks. 

As a result, it has been addressed by multiple approaches including the Visitor design pattern and 

the aspect-oriented programming paradigm. However each of these predecessors comes with 

drawbacks. The Mutable Class pattern aims to overcome the limitations of these solutions by 

providing an alternative approach designed after the Class model of the UML specification. The 

pattern extends a data model class with a singleton that maintains the behavior of the class 

objects based on the Strategy pattern. 

     The scope of the dissertation topic is outlined by three research questions. The first question 

is formulated after the design pattern methodology and focuses on reusability aspects of the 
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Mutable Class pattern in the context of three heterogeneous tree-based application models. The 

second question addresses the scalability of this approach from the perspective of the application 

architecture and computational infrastructures. The final question challenges the Mutable Class 

pattern with the new category of large-scale applications, so called heterogeneous information 

networks. These questions introduce multiple technical issues, most of them associated with the 

scope of the Mutable Class applications. As a result, consideration of these questions aims to 

solidify the proposed pattern and identify its application boundaries. 
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Chapter 2 
 

Review of Literature 
 
 

 

     Handling data-procedure associations is one of the major topics in programming languages 

and software design. For example, the object-oriented paradigm superseded procedural 

programming by explicitly combining data members and associated methods into reusable units 

of programming logic. However, for large-scale software projects, data models need to change 

their behavior in the face of different application requirements and environment states. As a 

result, finding an optimal solution represents a complex decision based on the analysis of 

multiple technical approaches implemented in the context of the different application domains. 

     Many existing application models can be described by large-scale hierarchical trees of 

heterogeneous elements. As an illustration, this chapter will consider a virtual world consisting 

of two types of components:  Plains and Mountains. These world components can be grouped 

into bigger areas, called Regions, forming a hierarchical model. Furthermore, the world is not 

static and evolves from version to version by adding new components such as seas, forests, and 

cities. To simplify the example, these extensions are represented by single component X. 

Following the design pattern methodology, the described world can be implemented based on the 

Composite pattern (Gamma, Helm, Johnson, and Vlissides, 1995). As shown in Figure 1, Region 

represents a composite node that can include other Regions and leaf nodes, such as Mountain, 

Plain and X. 

Once the world is built it has to be explored. In computer science, such world exploration 

can be performed by a traversal process that subsequently visits each node of the hierarchical 
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model in some particular order. Usually, the visiting scenarios are defined after the application 

model. As a result, the visitation procedure cannot be fully captured in the model, prompting the 

definition of additional classes, such as Visitor. Many different types of visitors are possible, 

depending of the application.  For example, the world can be explored by either an observer or a 

settler. Moreover, their behavior depends on the types of the world locations, in our case, plains 

and mountains. In computer programs, these place-visitor interactions can be implemented with a 

two-dimensional collection of corresponding methods as shown in Figure 2. 

 

 

 

 

 

 

Figure 1: Game world model designed after the Composite pattern 

 

Figure 2: Two-dimensional collection of methods associated with  
the model-visitor interactions 

 
     While traversing through the world model, methods have to be selected according to runtime 

types of places and visitors. Major object-oriented programming languages, however, only 



14 
 

support a single dispatch mechanism provided by a virtual function. This issue has been 

addressed by the dedicated Visitor pattern (Gamma, Helm, Johnson, and Vlissides, 1995), 

implementing a double-dispatch approach based on the combination of object-oriented 

techniques. Yet, the Visitor pattern was also not ideal, introducing a principal constraint for 

adding new types of model components, such as X in our example. This limitation triggered the 

development of numerous extensions of the original variant (Pati & Hill, 2010) providing partial 

enhancements in the context of different applications. Finally, the same problem was addressed 

by the Aspect-Oriented Programming (AOP) paradigm (Wu et. al, 2005). Recently, this topic 

became especially important with the development of large-scale graph applications. In 

comparison with hierarchical trees, heterogeneous graphs introduce two additional aspects. First, 

they extend the Composite model with a new association, allowing links between leaf nodes as 

shown in Figure 3. Second, large-scale graph applications bring node-centric algorithms in 

addition to traversal procedures. 

 

 

 

 

 

 

Figure 3: Graph-oriented extension of the Composite model 

     The rest of the chapter is structured as follows. The first section provides an overview of the 

original Visitor pattern and its extensions. It is followed by the section describing the aspect-

orient approach. The third section considers the problem of processing trees in the context of 

three application domains: computational accelerator physics, compiler construction, and 3D 
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computer graphics. The final section presents a new direction associated with the development 

and processing of large-scale heterogeneous information networks. 

 

Visitor Approach and Extensions 

     The Visitor pattern (Gamma, Helm, Johnson, and Vlissides, 1995) is a well-known technique 

that allows the application of different types of operations on a collection of heterogeneous 

objects. For example, in the context of our virtual world example, the pattern facilitates 

development of different types of visitors, such as observers or settlers, without modifying the 

world model. The corresponding structure diagram is shown in Figure 4. 

 

 

 

 

 

 

 

 

Figure 4:  Visitor Pattern in the context of the virtual world example 

According to the diagram, the Visitor pattern defines two class hierarchies associated with 

multiple types of model components and multiple types of visitor classes. Traversal algorithms 

are implemented with the two-dimensional collection of methods, differentiated by traversal 

categories and the types of processed objects. Methods from the same traversal categories are 

encompassed into the corresponding Visitor classes, Observer and Settler, for processing the 

entire model structure. Each element of the model structure is algorithm-free and is responsible 
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for implementing a virtual method accept() by passing itself to the appropriate visitor method. 

Collaborations between the model components and visitors are illustrated by the interaction 

diagram of Figure 5. 

 

 

 

 

 

 

 
Figure 5: Interaction diagram of the Visitor pattern 

 
     The coupling between methods of the Visitor participant and the associated concrete 

Components of the model allows the implementation of double-dispatch behavior in 

conventional single-dispatch object-oriented languages such as C++ and Java. In the context of 

the Visitor pattern, the double-dispatch mechanism provides a convenient and efficient approach 

for adding any number of new Visitor types for the existing application model. This coupling, 

however, introduces a serious limitation. It freezes existing class hierarchies of the world model. 

Particularly, adding the new world component X would require editing all visitor classes by 

adding to each class a visit(x: X) method. From a more general perspective, the Visitor pattern 

violates the dependency inversion principle (Martin, 1996), which requires the independence of 

the abstract layer from its specializations. In the case of the Visitor pattern, the methods of the 

abstract Visitor class are dependent on concrete classes, Plain and Mountain, of the world model. 

     The double-dispatch mechanism of the Visitor pattern plays an instrumental role in a wide 

range of actual applications. As a result, limitations of the original approach generated numerous 
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extensions. The remainder of this section provides a brief overview of the most common 

solutions (Pati and Hill, 2010). 

Extended Type Visitor Pattern 

     The Extended Type Visitor pattern has been developed in the context of application toolkits 

like the SableCC object-oriented compiler (Gagnon and Hendren, 1998). According to this 

approach, the application is divided into the toolkit layer and third-party extension, as shown in 

Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Extended Type Visitor pattern 

      The toolkit layer is designed after the original version of the Visitor pattern. Following the 

object-oriented methodology, model components and visitors of the application extension are 

derived from the corresponding framework classes. To deal with the new model components, the 
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extended visitor adds new methods, such as visit(x: X). Since the accept() method takes the type 

of the framework visitor, changes of the extended visitor interface require dynamic type casting 

in the new model components. Despite the explicit definition of the third-party extension layer, 

the pattern does not provide a solution for managing multiple third-party extensions inside of one 

composite application. As a result, the pattern just propagates the extensibility issues of the 

original Visitor pattern from the toolkit to the application layer.  

Generic Visitor Pattern 

     The Generic Visitor pattern represents another toolkit-oriented approach introduced and 

developed in several papers (Vlissides, 1999; Visser, 2001) and application toolkits such as 

OpenSceneGraph (Martz, 2007). The pattern addresses the extensibility issue of the Visitor 

pattern by adding a generic method visitAny() in the Visitor class as shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Generic Visitor pattern 
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     The combination of the visitAny() method with the Visitor pattern provides a consolidated 

hybrid interface for supporting both predefined and user-specific subsets of model components. 

The generic interface is a well-known technique for dealing with heterogeneous data types. Its 

implementation, however, needs some sort of reflection mechanism that is not universally 

supported by all major programming languages, for example C++. 

Dynamic Dispatcher Visitor Pattern 

     Dynamic Dispatcher Visitor (Buttner et al., 2004) can be considered as an unconventional 

generic variant of the Visitor pattern. It solves the extensibility problem of the original pattern by 

eliminating the accept() method of the model components and moving the dispatching operation 

into the dispatch() method of a new class Dispatcher as shown in Figure 8. The dispatch() 

method serves as a generic interface for selecting the most appropriate visitor method based on a 

particular type of model component. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Dynamic Dispatch Visitor pattern 
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As a generic approach, this pattern introduces an issue similar to that of the Generic Visitor 

pattern of not providing an explicit implementation solution of the generic method dispatch() and 

simply propagating the problem. 

Reflective Visitor Pattern 

     One of the solutions for implementing a generic interface is offered by the Reflective Visitor 

(Mai and Champlain, 2001). Figure 9 illustrates the structure of this pattern. It comes with two 

major changes to the original Visitor pattern. First, like the Dynamic Dispatcher Visitor, the 

pattern breaks cyclic dependencies between visitors and model components by eliminating the 

accept() method. In this case, the dispatching operation is moved into the Visitor classes. 

Second, the pattern applies the reflection mechanism provided by several programming 

languages such as Java and C#. Reflection is used for selecting the appropriate visit() methods 

with respect to the type of the model component. 

 

 
 

 

 

 

 

 

 

Figure 9: Reflective Visitor pattern 
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A similar approach has been developed by Palsberg and Jay (1998) in the context of the 

Walkabout Class Visitor pattern. The authors suggest a compact reflection algorithm that can be 

implemented in the top Visitor class and shared by all visitors. The reflection-based invocation 

of the visitor methods, however, induces a significant performance overhead in comparison with 

direct access. This issue has been tackled by two patterns, Runabout (Grothoff, 2003) and 

Sprintabout (Forax, Duris and Roussel, 2005). Runabout replaces the reflection-based lookup() 

method with a hybrid approach based on the dynamic code map, the Java reflection API and Java 

class-loading mechanism. According to the pattern, the constructor of the Visitor class scans all 

available visit() methods using reflection, generates on-the-fly the corresponding wrapper classes 

for each method, and dynamically loads these classes into the Virtual Machine using Java class-

loading mechanism. Finally, instances of these classes are created and stored in a dynamic code 

map, providing efficient lookup access. In contrast to the Runabout, the Sprintabout pattern 

builds a single class for all methods.  

     In addition to the performance advantage, replacing the Java reflection interface with a 

dynamic map introduces a language-neutral approach for developing generic visitors. One such 

generic visitor is the Normal Form Visitor pattern that will be considered in the next subsection. 

Normal Form Visitor Pattern 

     The Normal Form Visitor pattern is named after the corresponding database normalization 

technique that has been applied by Xiao-Peng and Yuan-Wei (2010). To solve the cyclic 

dependence of the original Visitor pattern, the authors consider requirements of the third normal 

form (3NF) and then break all the transitive dependencies among the pattern classes, like: 

x Base Visitor → Derived Visitor 

x Base Component → Derived Component 
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x Base Visitor → Base Component 

x Derived Component → Base Visitor 

In this set of the non-transitive dependencies, the last one, Derived Component → Base Visitor, 

clearly violated the dependency inversion principle.  To fix it, the authors split relationships 

between visitors and components using the Factory pattern: 

x Base Visitor → Base Visitor Factory 

x Base Visitor Factory → Base Component 

The corresponding product of these transformations is shown in Figure 10. 
 

 

 

 

 

 

 

 

 

 

Figure 10: Normal Form Visitor pattern 

According to the diagram, the Factory pattern separates the visit() methods into multiple wrapper 

classes. These changes also make the pattern consistent with the atomicity requirements of the 
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First Normal Form (1NF) and the interface segregation principle (Martin, 1998). In the context 

of the visitor patterns, Normal Form Visitor is very similar to the Runabout pattern, which it 

modifies with the explicit language-neutral definition of the wrapper classes. Additionally, 

Normal Form Visitor can be considered as a dynamic variant of the Acyclic Visitor pattern that 

is a subject of the next subsection. 

Acyclic Visitor Pattern 

The solution of using multiple wrapper classes originates from the Acyclic Visitor pattern 

(Martin, R., Riehle, D., and Buschmann F, 1997) shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Acyclic Visitor pattern 

In contrast with Runabout and Normal Form Visitor, the pattern suggested an alternative 

approach for composing these classes using multiple inheritance. In this case, the base class 
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Visitor does not have any member functions and is used as a marker interface (Bloch, 2008) in 

the accept() methods of the model structure. The visit() methods are defined corresponding to the 

component-specific abstract visitors: RegionVisitor, PlainVisitor and MountainVisitor. The 

actual visitor class Observer is derived from the basic class (to be accepted by components) and 

implements interfaces of abstract visitors. Similar to Runabout and Normal Form Visitor, this 

scheme breaks the dependency cycle of the original pattern. Multiple inheritance, however, is a 

static mechanism and results in strong coupling between components. 

Visitor Combinator Pattern 
 
     In comparison with the Visitor extensions described in the previous subsections, Visitor 

Combinator (Visser, 2001) addresses orthogonal issues of the original Visitor pattern associated 

with lack of traversal control and resistance to combinations. For solving these limitations, the 

pattern suggested a set of reusable classes called visitor combinators implementing the basic 

traversal strategies, such as identity, sequence, choice and others. The different visitor 

combinators can then be combined to construct complex strategies and enhance traversal control. 

The theoretical formalism of this direction has been thoroughly developed by Oliveira (2007) in 

the context of the Scala programming language. 

 

Aspect-Oriented Approach 

     The Aspect-Oriented Programming (AOP) paradigm originated from several related ideas, 

eventually becoming a consolidated core of many similar paradigms, including adaptive 

programming (Lieberherr, 1996), composition filters (Aksit, Bergmans, and Vupal, 1992), multi-

dimensional separation of concerns (Ossher and Tarr, 1999), and subject-oriented programming 

(Harrison and Ossher, 1993). The original term was introduced by Gregor Kiczales and his 

colleagues in their report at a European Conference on Object-Oriented Programming (Kiczales, 
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et al., 1997). Based on the analysis of several applications, the report identified functional 

properties crosscutting a basic system's structure. One of the examples was a communication 

property of remote method invocation in a distributed document processing system. The 

complete list of these features is quite broad, spanning over security, logging, persistence, 

debugging, and others. Since such properties crosscut a system's basic functionality they could 

not be cleanly encapsulated in the existing programming languages. To address this problem, the 

authors suggested the AOP-based composite implementation consisting of three parts: the 

conventional object-oriented code, the aspect code implementing cross-cut properties and aspect 

weaver metaprogramming mechanism for integrating both conventional and aspect modules. 

     Consideration of the data processing applications, and, particularly, the Visitor use cases in 

the aspect-oriented context, appears quite naturally since they are associated with many of the 

common issues and techniques. For example, the Visitor pattern separates processing operations 

from processed data structures and combines related operations into the Visitor subclass. In 

AOP, these operations can be considered as crosscutting behavior of associated tree nodes and 

therefore represented by the corresponding construct (Wu et al., 2005, 2006). On the other hand, 

unconventional concepts of the AOP approach introduced an alternate angle to the problem and, 

as a result, triggered the development of new solutions. The rest of this section provides an 

overview and comparison of two AOP implementations: AspectJ (Laddad, 2003) and Spring 

AOP (Walls, 2013). This review is preceded with a brief introduction of the AOP model in the 

context of the Visitor pattern. 

AOP model and Visitor pattern 
 
     AOP is a relatively young and iteratively evolving paradigm. After the publication of the 

original paper (Kiczales, et al., 1997), the AOP programming concepts gradually stretched into 
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different areas of software engineering. In turn, this development generated a variety of 

extensions of the AOP concepts entailing different interpretations and terminologies. To address 

this problem, the AOSD-Europe project consolidated aspect-oriented dialects into the Aspect-

Oriented Software Development ontology (Berg, Conejero, and Chitchyan, 2005). Later, this 

work was elaborated on by Schauerhuber and colleagues (2006) into a conceptual reference 

model that was eventually revised (Wimmer, et al, 2011) based on the thorough analysis of 

multiple modeling approaches. The aspect-oriented ontology and reference model highlight the 

following major concepts: 

x Component: element of the conventional (not-aspect-oriented) program 
 

x Crosscutting Concern: structural and behavioral changes that have to be inserted across 

heterogeneous components of the conventional program 

x Joint point: well-defined place in the structure or execution flow of the conventional 

program for attaching the implementation of a crosscutting concern 

x Pointcut: selector of joint points 
 

x Aspect: unit of modularization combining crosscutting concerns with pointcuts 
 

x Weaving: procedure of composing aspects with components of the conventional program 
 
As shown in Figure 12, semantics of these concepts can be naturally demonstrated in the context 

of the Normal Form Visitor pattern. The corresponding UML diagram follows a common 

stereotype-based notation used in many aspect-oriented modeling approaches (Wimmer et al., 

2011). According to the diagram, the Visitor pattern is divided into two parts. The components of 

the data model form the conventional object-oriented part. The aspect part is composed from the 

Visitor classes representing the crosscutting concerns. The accept() method of the Component 

interface is completely decoupled from the Visitor classes and serves as a joint point for 
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attaching the Visitor operations. The Visitor classes are transformed into aspect units, thus 

augmenting the visit() methods with the interceptAccept pointcuts. In comparison with the 

Normal Form Visitor pattern, this diagram does not use the Visitor Factory for connecting the 

Component and Visitor objects. In the aspect-oriented approach, this role is performed by the 

weaving mechanism which is a subject of the AOP implementations, such as AspectJ and Spring 

AOP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: AOP-based Normal Form Visitor pattern 

AspectJ 

     AspectJ (Laddad, 2003) is a general-purpose aspect-oriented Java extension developed by the 

authors of AOP for validating, developing and endorsing the new programming paradigm. In 
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2002, it was transferred to an openly-developed Eclipse project. In AspectJ, the aspect is a 

programming unit written after the conventional Java class using an annotation-based style of 

aspect declarations. Listing 1 illustrates the implementation of the MountainObserver aspect of 

Figure 12. 

 

 

 

 

 

 
 

 
 

Listing 1: Mountain Observer aspect 
 

In this example, the MountainObserver aspect implements the visit() method for processing the 

Mountain data and adds two methods annotated with the pointcut and advice declarations. The 

interceptAccept() pointcut picks out joint points associated with the accept() methods of the 

Mountain class. AspectJ supports eleven different kinds of joint points such as method call, 

method execution, and construction call. Each joint point potentially has access to three objects 

of the contextual state: the currently executing object, the target object, and an array of 

arguments. The interceptAccept() pointcut, particularly, takes a target object m which is an 

instance of the Mountain class. The pointcut, however, does not call the aspect code and needs to 

be augmented with the corresponding invokeVisit() method called advice. In AspectJ, advice can 

be bound with pointcuts with three relationships: before, after, and around. In accordance with 

@Aspect 
public class MountainObserver implement Visitor { 
 
   public void visit(Mountain m) { 
       // implementation of the visit method 
   } 
 
  @Pointcut (“call(void Mountain.accept()) && target(m)”) 
   public void interceptAccept(Mountain m) {} 
 
  @Around(“interceptAccept(m)”) 
  public void invokeVisit(Mountain m) { 
       visit(m); 
  } 
 
} 
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the Around annotation, the invokeVisit() method traps the execution of the joint point and runs 

instead of the accept() method of the Mountain class. 

     The above example is implemented after the AspectJ dynamic joint model that does not 

change the interface of the conventional object-oriented components. In addition, AspectJ 

supports another variant, called introduction, allowing extension of the original classes of the 

conventional programs with inter-type declarations. In both variants, the weaving of changes is 

implemented at compile time using the AspectJ compiler that merges the aspect-oriented 

extensions directly into the byte code. This approach exposes an important issue associated the 

run-time behavior of applying aspects and its comparison to the traditional plug-in mechanism, 

an issue that is especially important in the multi-stage dynamic scenarios. 

Spring AOP 
 
     Spring AOP is a Java aspect-oriented framework implemented as part of the Spring project 

(Walls, 2013). This approach is built around the Spring proprietary container-based architecture 

using the inversion of control (IoC) mechanism for configuring and managing Java objects. 

Inversion of control is an umbrella term associated with various techniques for building dynamic 

dependencies among objects. The corresponding techniques are usually related with several 

design patterns. The Spring AOP framework particularly leverages from two patterns, 

Interceptor and Proxy.  

     Figure 13 shows the interaction diagram of the Interceptor pattern (Schmidt et al., 2000). The 

diagram explains the collaborations between two major participants, Framework and Interceptor. 

In the context of the AOP model, Framework represents the conventional object-oriented 

program and Interceptor corresponds to the crosscutting concern construct of the aspect module. 

According to the diagram, the application instantiates a concrete interceptor and registers it with 
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a dispatcher. The framework subsequently receives an interception event, creates the associated 

context object and notifies the appropriate dispatcher about the occurrence of the event. As 

mentioned in the AspectJ subsection, the context object may contain the executing object, the 

target object, and an array of arguments. Following the framework request, the dispatcher selects 

the related interceptors and invokes their callback methods, passing the context object as an 

argument. Finally, interceptors process the content of the context object and return results to the 

framework. 

 

 

 

 

 

 

 

 

 

Figure 13: Interaction diagram of the Interceptor pattern 

The Interceptor pattern leaves the implementation choice of the Dispatcher service to the 

developer. In Spring AOP, this task is solved after the Proxy pattern, using standard J2SE 

dynamic proxies. Proxy is one of the design patterns presented in the famous book of Gamma, 

Helm, Johnson, and Vlissides (1996). The pattern is used to create a placeholder of the original 

object for extending its functionality without changing its interface. In the context of the AOP 
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framework, it allows interception of the call of the original method and delegates this call to the 

dispatcher of interceptors. The corresponding structure is shown in Figure 14. 

 

 

 

 

 

 

 

Figure 14: AOP Proxy 

     In Spring, the AOP proxies are generated at compile time following the AspectJ annotations. 

The weaving mechanism, however, is performed at run-time. As a result, Spring AOP resolves 

limitations of the AspectJ approach for the enterprise applications. On the other hand, the 

dependence of the AOP framework on the IoC container architecture introduces a significant 

overhead, preventing its application to fine-grain objects such as model components of our 

example. To address the corresponding AOP applications, Spring AOP provides a hybrid 

approach by integrating the AspectJ compiler. 

 

Examples of the Heterogeneous Tree-Based Applications 

     The next subsections consider the problem of processing trees in the context of three 

application domains: computational accelerator physics, compiler construction, and 3D computer 

graphics. All these applications demonstrate the importance of heterogeneous types of 

hierarchical structures where the nodes might have different sets of properties. For example, in 
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the case of compiler construction, each node represents a programming language construct that 

can be a whole program or a tiny assignment statement. Such heterogeneous models bring up the 

main question: how to develop the efficient mechanisms for supporting interchangeable 

collections of type-oriented algorithms.  Resolving this and other related questions will have an 

immediate practical value and create a basis for building future graph-based applications. 

Computational Accelerator Physics  

     The design and operation of modern accelerators, such as the nuclear colliders or synchrotron 

light sources, requires sophisticated, flexible and powerful modeling software. On the one hand, 

the complex problems that need to be studied require non-standard modeling techniques, such as 

tracking two beams, dealing with complex alignment tolerances for triplet assemblies, analyzing 

various insertion devices, etc. On the other hand, large accelerators are becoming international 

collaborative efforts, resulting in the consolidation of various programs into a unified 

environment aiming to facilitate the development and sharing of the most effective algorithms 

and approaches. Moreover, stringent parameters of modern high-intensity machines impose new 

expectations on beam dynamics studies and usually require the combination of several physical 

effects and processes.  

     The central part of this modeling environment is an internal representation of the accelerator 

system. The accelerator is a complex device combining many elements of different physical 

types and heterogeneous attributes, all organized in a nested hierarchical structure. For example, 

Figure 15 shows one of the girder assembles designed for the storage ring of the new National 

Synchrotron Light Source (NSLS-II). This particular girder hosts several magnets of different 

types, such as dipole correctors (red), quadrupoles (yellow) and sextupoles (orange). There are 

many other types of assemblies and each usually addresses one dedicated task. Similar to the 
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pattern-based approach, the accelerator physicist connects the different types of primitive 

assemblies into higher level functional units, such as cells or sectors, with the well-defined 

properties.  And finally, the project-specific configuration of cells and sectors forms the entire 

accelerator lattice design. 

 

 

 

 

 

 

Figure 15: Girder Assembly 

     The complexity and heterogeneity of this organization prompted a variety of project-specific 

views and implementations of accelerator descriptions. The Accelerator Description Exchange 

Format (Malitsky and Talman, 2006) represents one of the most complete and extensible 

accelerator models addressing different types of accelerator computational tasks. The model is 

built after the modified variant of the Composite pattern (Gamma, Helm, Johnson, and Vlissides, 

1995) including three major participants (see Figure 16): 

z Component: a node in the accelerator tree organization. There are many different types of 

lattice components (e.g., Dipole, Quadrupole, etc.) implemented with the corresponding 

subclasses.  

z Assembly: a named sector or composite elements with a sequence of frames with installed 

accelerator components and insertions.  

z Frame: a layout of installed component. It contains a relative position, misalignments, and a 

reference to an associated component, sector or accelerator element.  
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Figure 16: ADXF accelerator model  

The accelerator description however represents only raw data which has to be processed in order 

to extract the different features or observables characterizing the accelerator performance. The 

list of these features is long including 6D particle coordinates of all particles in a bunch, linear 

lattice functions, geometrical and momentum aberrations, high-order Taylor maps, pseudo 

Hamiltonians and others. As a result, the accelerator physicist usually has to deal with algorithms 

that vary along three orthogonal dimensions as shown in Figure 17. First, algorithms can be 

grouped according to propagating features. Second, different types of accelerator elements 

require individual approaches. Finally, each feature-specific and element-specific procedure can 

be implemented in many ways. For example, in particle tracking applications, algorithms vary 

from the most efficient matrix-based approaches to the most accurate brute-force direct 

integrators of equations of motion.  
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Figure 17: Three-dimensional view of accelerator physics algorithms 

Ideally, all these processing algorithms should be combined and available in the common 

research and development environment. Their integration however introduces a serious problem 

in designing the universal accelerator structure and multi-purpose plug-in framework. As a 

result, in the early history of accelerator simulation, this problem generated a huge compendium 

of single task-oriented accelerator codes (Los Alamos Accelerator Control Group, 1987). An 

important step in their coordination occurred at a workshop for the standardization of the 

accelerator input format based on the MAD input language (Carey and Iselin, 1984). A common 

accelerator input format addressed immediate requests of the multi-team international projects. 

But it did not resolve the principal problems of modern accelerator computational tasks. Their 

solution was dependent on the development of an open and configurable simulation environment 

addressing two major requirements: a generic description of existing and future accelerator 

projects and a universal mechanism for processing accelerator heterogeneous structures with the 

interchangeable collections of accelerator algorithms and approaches.  
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     As a result, in 1995, several developers of accelerator programs formed collaborations in 

order to start two independent projects: CLASSIC (Class Library for Accelerator System 

Simulation and Control) and UAL (Unified Accelerator Libraries). Both projects addressed 

similar goals but used different approaches. The CLASSIC project (Iselin, 1996) aimed to 

refactor and consolidate the existing FORTRAN programs using the Visitor pattern (Gamma, 

Helm, Johnson, and Vlissides, 1995). This pattern however brought a strategic limitation into the 

software framework complicating the integration of new types of accelerator elements and 

physical effects. Such elements were essential research topics in new accelerator projects. In a 

few years, this CLASSIC collaboration was canceled.   

     Facing the same problem, the UAL project suggested replacing the Visitor pattern with the 

new framework based on the Mutable Class concept (Malitsky and Talman, 1998) described in 

the Methodology chapter. This framework had been successfully employed in several major 

accelerator projects significantly extending the scope of initial applications and computer 

environments. For example, the same approach was perfectly deployed on parallel clusters for 

simulating the time-consuming complex scenarios requiring the combination of parallel and 

conventional algorithms. The comprehensive analysis of different use cases is presented in the 

Results chapter.  

Compiler Construction 

     Starting with the invention of high-level programming languages in the 1950s, the 

construction of compilers is now one of the oldest fields of computer science. Since their 

introduction, compilers evolved into the large algorithm-rich systems that have to deal with 

complex multi-step chains of operations: lexical analysis, parsing, semantic analysis, 

optimization and code generation. The results of each step are maintained in an intermediate 

representation (IR) which can be processed multiple times before emitting the target program. 
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The structure of the IR depends on many factors like the complexity of the programming 

language and requirements of processing algorithms. Moreover, many compiler systems, so 

called compiler-compilers, represent configurable automatic builders constructing compilers 

from language grammas described in an extended BNF notation. Such systems are especially 

important for supporting domain-specific languages (DSL) tailored to specific tasks including 

descriptions of domain models, complex query languages, configuration file formats, state 

notation languages, network protocols, and many others. 

     The language structure is determined by its context-free grammar: a set of production rules 

for defining and connecting the language elements.  The production rules of major modern 

general-purpose and domain-specific languages are defined in the form of A → J, where the left-

hand side A consists of a single nonterminal symbol and the right side J is a finite sequence of 

terminals and nonterminals. This grammar and associated semantics naturally suggest the 

hierarchical organization of the compiler's intermediate representation, called Abstract Syntax 

Tree (AST). In the compiler construction, the different variants of intermediate representations 

can be divided into two major categories: homogeneous and heterogeneous ASTs.  

    The homogeneous AST has only a single node type. This design facilitates the development of 

generic frameworks and has been implemented in many popular parser generators, for example, 

ANTLR (Parr and Quong, 1995; Parr, 2013). Being part of a framework, the single node type has 

to encapsulate only the basic data required by all applications. This common dataset includes an 

identifier, a type field, a reference to a parent node, and a collection of children. Such simplicity 

of the homogeneous structure has both strengths and weaknesses. On the one hand, it eases the 

development, maintenance, and documentation of the AST objects. On the other hand, such a 
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universal organization clashes with the heterogeneous nature of programming languages 

encompassing various types of concepts.  

     A heterogeneous AST is built after the Interpreter pattern mapping the language grammar into 

the corresponding hierarchical object-oriented structure as shown in Figure 18. This approach is 

taken by extensible compiler systems, for example, JastAdd (Hedin and Magnusson, 2003; 

Hedin, 2010). There are many variants of the heterogeneous ASTs. In general, the internal nodes 

represent a programming language construct and their children implement alternatives. Such 

organization better captures the program semantics.  As a consequence, heterogeneous ASTs 

allow developers to make superior code and to more effectively apply a full spectrum of the 

powerful techniques offered by object-oriented methodology: built-in type system, 

polymorphism, inheritance, etc. 

 

 

 

 

 

 

 

 

 

Figure 18: Example of the heterogeneous AST model (Hedin and Magnusson, 2003) 

     As discussed earlier, the AST serves as an intermediate representation for the different 

operations of the multi-phase compiler scenarios. Following a common scheme, the associated 

algorithms of the meta-compiler system can be presented in two-dimensional view as shown in 

Figure 19.  First, algorithms can be grouped according to the compiler's phases, such as the 



39 
 

semantic analysis, optimization or code generation. Secondly, algorithms vary for different types 

of the AST nodes.  

 

 

 

 

 

 

Figure 19: Two-dimensional view of compiler-compiler algorithms 

     Similar to the computational accelerator physics domain, the interoperability between the 

compiler internal representations and diverse algorithms introduced a design dilemma. In the 

case of homogeneous structures, the Visitor pattern provides an adequate solution, allowing to 

group algorithms according the compiler's phase and programming language. The simplicity of 

the homogeneous structure however does not come free and eventually results in the complexity 

of processing algorithms. As a result, the multi-language compiler-compilers systems lean 

towards heterogeneous AST structures. In this case, the Visitor pattern does not address 

extensibility requirements and developers need to find alternative solutions. For example, the 

JastAdd configurable metacompiler construction system (Hedin and Magnusson, 2003) 

suggested a composite approach combining the object-oriented mechanism with the proprietary 

declarative implementation of the aspect-oriented concepts. The JastAdd extension mechanism 

however is static and does not resolve the run-time issues associated with the aspect-oriented 

approach. Initially separated in the different files, the JastAdd aspects are eventually merged and 
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disappear into the huge monolithic AST classes preventing its run-time interchange and 

extension. 

     As will be shown in the Methodology chapter, the Mutable Class represents a similar solution 

combining the advantageous features of both the Visitor pattern and aspect-oriented weaving 

approach. On the one hand, it resolves the Visitor dependency cycle by adding the preliminary 

step for weaving algorithms with the processed structure. On the other hand, this weaving 

procedure is not limited by compile-time as in the case of the JastAdd original approach and 

preserves the run-time behavior of the Visitor pattern. To demonstrate the advantage of this 

approach, the Mutable Class pattern was integrated with the JastAdd framework. The 

corresponding application has been presented at the OOPSLA conference (Malitsky, 2008) and 

is thoroughly described in the Results chapter.  

3D Computer Graphics 

     3D computer graphics is probably one of the most prominent domains of computer science. 

Its applications dramatically changed traditional multimedia and technical resources with the 

materialization of new concepts, like virtual reality, and the introduction of new ways of 

visualizing our world. Capturing and presenting the beauty and richness of a 3D environment 

onto a 2D computer screen is a complex procedure involving multiple tasks and algorithms 

implemented in multi-component toolkits.  

     The graphics software stack interacts with the graphics hardware via a low-level API 

designed around the rendering pipeline, processing graphic elements into a video display frame 

buffer. OpenGL (Shreiner et al., 2013) represents one of the most popular rendering API and 

pipeline specifications and is implemented on many hardware platforms and in multiple 

programming languages. In the OpenGL framework, a variety of geometries are specified via a 

small set of geometric primitives based on points, lines, triangles, quadrilaterals, and polygons. 
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In turn, the description of the OpenGL geometric primitives is based on one generic 

representation consisting of a vertex array and a set of state variables. Each vertex has three-

dimensional coordinates and can be explicitly assigned an RGBA color and normal vector. The 

state variables complement the vertex data with other information such as geometric 

transformation, material components, drawing style, and lighting model. The choice of this 

elementary graphics description has been determined by the performance requirements of the 

pipeline algorithms. At the same time, such a low-level approach significantly complicates the 

description of the 3D world objects requiring the explicit definition of vertex coordinates and 

associated parameters or writing numerous object-specific extensions. This gap between the 

complexity of the 3D graphics applications and a low-level hardware-oriented interface is 

addressed by the higher level frameworks, such as Open Inventor (Wernecke et al., 1994; Heck, 

2010) , OpenSceneGraph (Wang and Qian, 2012), and Three.js (Dirksen, 2013)  based on the 

scene graph models.  

     The scene graph is an object-oriented tree data structure providing the application-oriented 

spatial representation of a graphical scene. From the perspective of the design pattern approach, 

scene graph nodes can be considered as a composite adapter processing and delegating drawing 

requests of high-level graphics applications to a low-level rendering pipeline. The 

implementation and hierarchical organization of these nodes vary for the different toolkits. For 

example, the Open Inventor model is built from the nodes of multiple types including group 

nodes (e.g., separator or switch), shapes (e.g., sphere and quad mesh), lights and cameras (e.g., 

perspective or orthographic), property nodes (e.g., material or texture), engines creating the 

dynamic interdependencies among nodes, transformation nodes, and sensors responding to the 
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graph changes. The core of this model is based on a hierarchy of shape nodes that can be divided 

into four categories (see Fig 20): 

x object-oriented wrappers of the OpenGL primitives: points, lines, and polygons 

x simple shapes: cone, cube, sphere, and cylinder  

x non-uniform rational B-spline (NURBS) curves and surfaces  

x 2D and 3D text objects 

To manage the variety of types in a consistent way, the Open Inventor specification directly 

follows the standard object-oriented model and represents each node type with the corresponding 

class. As a result, the collection of the node-specific classes is derived from a common base class 

SoNode and can be combined together. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Shape nodes of the Open Inventor scene graph model 
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The OpenSceneGraph model applies another approach, using the divide and conquer technique 

and the "has-a" relationship to connect the single dedicated node class Geode with a collection of 

geometry objects composed from the separate hierarchy of the Drawable classes. Despite some 

design differences, both toolkits support the comparable catalogs of the geometry types and 

provide a consistent object-oriented mechanism for developing new extensions. 

     The object-oriented structure of the scene graph model not only adapts and extends the low-

level API but also augments the pipeline processing architecture with a framework of the graph 

traversal methods. In the context of this framework, a pipeline-oriented sequence of the 

rendering commands is implemented as a product of the corresponding traversal procedure on 

the scene graph. The drawing traversal allows improvement of the performance of the rendering 

process by optimizing the management of the OpenGL state attributes and grouping of 

commands, called display lists, stored for later execution. Moreover, the same traversal 

technique can be applied to many other important tasks extending the capabilities of the 

rendering pipeline. In addition to rendering, the OpenSceneGraph specification emphasizes two 

major types of traversals: update and culling. The update traversal handles the dynamic 

modifications of the scene graphs prompted directly by either the applications or with callback 

functions assigned to nodes. Culling is a process of checking visibility of scene objects within a 

view frustum involving the 3D bounding box calculations and consideration of the opaque and 

translucent geometries. The collection of scene graph traversals is not limited by three tasks and 

may include other procedures or divided into sub-tasks, such as writing scene graphs into files, 

searching for nodes, or performing application-specific actions. Again, this many-to-many 

association between heterogeneous nodes and different traversal algorithms can be described 

with the two-dimensional view as shown in Figure 21. To deal with multiple traversal 
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algorithms, the Open Inventor and OpenSceneGraph toolkits encapsulated them into dedicated 

classes. Depending on the task, these classes can be generic or associated with the different types 

of scene nodes. 

 

 

 

 

 

Figure 21: Two-dimensional view of scene graph algorithms 

     For bundling multiple processing algorithms together with the graph nodes, the Open Inventor 

team derived an original approach based on the combination of a proprietary run-time system 

and the virtual function mechanism. The approach is described in the context of the Inventor 

Toolmaker (Wernecke et al., 1994) providing guidance for building the Open Inventor 

extensions. According to this specification, each action maintains a list of node-specific static 

methods. When an action is applied, it obtains the type identifier from the processed node and 

dispatches the action request to the selected method. In the case of built-in actions, such as 

SoGLRenderAction or SoGenBoundingBox, all node-specific entries of the action method list 

are assigned a single static method that calls the corresponding built-in virtual function of the 

SoNode base class. Using virtual functions of the scene nodes allows the application of standard 

object-oriented dispatching mechanisms and facilitates the implementation of the action 

algorithms. A set of virtual functions, however, represents a part of the framework interface that 
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cannot be changed for the new extensions. To address the extensibility requirements, the 

OpenSceneGraph team developed one of the proprietary versions of the Generic Visitor pattern. 

(Vlissides, 1999; Visser, 2001). In Open Inventor, this extensibility issue is resolved with the 

consistent registration mechanism that is closely related with the Mutable Class approach. The 

Methodology chapter provides the quality factor assessment of the Mutable Class pattern and 

comparison with different versions of the Visitor pattern including Generic Visitor.   

 

Large-Scale Graph Data Processing 

     The topic of heterogeneous data processing is becoming especially important in the context of 

a new field know as Big Data Science. In particular, this includes the analysis of large-scale 

graph data sets. This filed encompasses multiple application domains, for example, social 

networks, transportation routes, and protein-protein interaction networks. Graph theory itself, 

however, is not new, tracing its origins all the way back to the famous paper on Seven Bridges of 

Konigsberg written by L. Euler in 1736. Since that time, graph structures and algorithms have 

become instrumental for solving multitudes of practical problems in such domains as artificial 

intelligence and operations research, among others. Big Data Analysis, or the so-called “Fourth 

Paradigm” (Hey, Tansley, and Tolle, 2009), introduced a new conceptual landscape requiring the 

reconsideration and refactoring of existing technical solutions.   

     The initial landscape of the Big Data technologies was designed after Google's I/O stack, 

which included the Google File System (GFS), Bigtable distributed storage system, and the 

MapReduce processing framework. GFS (Ghemawat, Gobioff, and Leung, 2003) represented a 

large-scale fault tolerant distributed file system running on commodity computers. To address 

the Big Data requirements, the GFS developers relaxed the POSIX interface, reusing a plain 
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single-master architecture and focusing on the scalability, high-throughput, and fault tolerance 

issues. Bigtable (Chang, et al., 2006) extended GFS with a data storage layer. It resembled the 

architecture of parallel databases, but relaxed the relational data model to confront the scalability 

requirements and to support a soft schema of web-related semi-structured data. The resulting 

architecture was built around a sparse distributed multi-dimensional sorted map with keys and 

values represented by uninterpreted strings. For processing this large-scale distributed data, the 

Google team introduced a new parallel programming framework inspired by two Lisp primitives, 

map and reduce, giving the apt name to this approach, MapReduce (Dean and Ghemawat, 2004). 

The model was designed around the communication-free, so called embarrassingly parallel, use 

case that split the computer-intensive tasks into the parallel map functions that processed 

requests and generated intermediate key/value pairs. The reduce function then received an 

intermediate key with its set of values and merged them together. Such a simplified approach 

now provides a reliable and scalable solution for many web-oriented data processing systems 

including Dremel (Melnik, et al., 2010), further representing Google's influential technology for 

executing queries over nested data. 

     The embarrassingly parallel model of the MapReduce processing framework, however, could 

not address the requirements of all algorithms, and even became an obstacle for many machine 

learning and graph-based applications. One of the major limitations was associated with the 

missing support for the interactive processes. For example, algorithms like gradient descent, 

expectation-maximization, and belief propagation, iteratively refine the space of parameters until 

achieving some termination condition. Additionally, graph models typically involve more 

complex computational dependencies in the data than conventional MapReduce applications. 

Finally, the processing of graph algorithms leans towards an asynchronous model, exhibiting a 
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flexible and dynamic degree of parallelism. These and other shortcomings of the MapReduce 

parallel framework have been addressed by several teams bringing new computational models. 

We now consider the Pregel model developed by the Google team (Malewicz et al., 2010). 

      Pregel is a scalable graph processing system designed after the Bulk Synchronous Parallel 

(BSP) computation model. In accordance with BSP (Valiant, 1990), graph algorithms are 

expressed as a sequence of iterations called supersteps. Each superstep represents atomic units of 

parallel computations. Initially, all vertices are assigned an active status. During a superstep, 

each active vertex V runs the compute() user function that reads messages sent to V in the 

previous superstep, sends messages to other vertices, and modifies the state of V and its outgoing 

edges. The active vertex can deactivate itself by voting to halt and turn to an inactive state. To 

implement such a Pregel program, a developer needs to subclass the predefined Vertex template 

class and override the virtual compute() method. Listing 2 shows the C++ interface of the Vertex 

template and an example of the compute() method implementing the famous PageRank algorithm 

(Page, Brin, Motwanl, and Winograd, 1998).   

 

 

 

 

 

 

 

Listing 2: Vertex API and PageRank implemented in Pregel (Malewicz et al., 2010) 

 

class PageRankVertex  : public Vertex<double, void, double> { 
 public: 
     virtual void Compute(MessageIterator* msgs) { 
 
        if (superstep() >= 1) { 
            double sum = 0; 
            for (; !msgs->Done(); msgs->Next())  
                sum += msgs->Value(); 
            *MutableValue() =  0.15 / NumVertices() + 0.85 * sum; 
       } 
 
       if (superstep() < 30) { 
           const int64 n = GetOutEdgeIterator().size(); 
          SendMessageToAllNeighbors(GetValue() / n); 
        } else { 
          VoteToHalt(); 
       } 
   } 
}; 

template <typename VertexValue, 
                 typename EdgeValue, 
                 typename MessageValue> 
class Vertex { 
   public: 
     virtual void Compute(MessageIterator* msg) = 0; 
    
     const string& vertex_id() const; 
     int64 superstep() const; 
 
     const VertexValue& GetValue(); 
     VertexValue* MutableValue(); 
     OutEdgeIterator GetOutEdgeIterator(); 
 
     void SendMessageTo(const string& dest_vertex, 
                       const MessageValue& message); 
 
     void VoteHalt(); 
}; 
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The Vertex template class is parameterized with three template arguments defining the three 

value types associated with vertices, edges, and messages.  The compute() method takes the 

inbound messages from the vertices, iterates over them and sums the associated values in order 

to calculate the rank of the assigned vertex. In the end of this superstep, the method sends 

messages through outgoing edges. In this particular example, the iteration process is finished 

after achieving superstep 30. 

      Current web-oriented algorithms, such as the PageRank and community detection methods, 

are usually based on homogeneous graphs built from generic nodes connected with links of the 

same relation type. Real-world models, however, represent far more complex graphs, consisting 

of heterogeneous vertices and edges. For example, a healthcare information system includes a set 

of object types, such as doctor, patient, disease, and treatment, and multiple types of relations 

among these objects. In the context of the Big Data analysis domain, such systems are known as 

heterogeneous information networks. Sun and Han in their manuscript (2012) provided a 

comprehensive comparison and overview of the corresponding data-mining algorithms. 

Particularly, the authors identified the following six categories: 

x ranking-based clustering: collection of hybrid approaches allowing to cluster one type of 

object (e.g., venues) based on a proximity measure calculated from the ranking of other 

types of objects (e.g., authors) and links in the network; 

x classification of heterogeneous information networks: generalized variants of the 

homogeneous applications extended with classes composed of multi-typed data (e.g., 

movies, directors, and actors) sharing a common topic (e.g., genre). Following the idea of 

ranking-based clustering, the accuracy of these algorithms can be further enhanced with 

ranking techniques; 
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x meta-path-based similarity search: methods for finding similarity in networks using meta-

paths defined as composite relations between different types of objects (e.g., venue-

paper-author-paper-venue and venue-paper-topic-paper-venue); 

x meta-path-based relationship prediction: a category of supervised models for predicting 

relationships across heterogeneous typed objects; 

x relation strength-aware clustering with incomplete attributes: collection of probabilistic 

clustering models taking into account heterogeneous links between objects and an 

incomplete attribute space (e.g., user-provided attributes); 

x user-guided clustering via meta-path selection: composite clustering approaches using 

weighted meta-path combinations selected by supervised procedures. 

The original paper of the Pregel framework does not provide an explicit solution for managing 

heterogeneous use cases. In fact, the generic interface of the Vertex class cannot adapt to a 

variety of scenarios and needs to be reconsidered from the perspective of the corresponding 

design patterns, such as Visitor. The brief analysis shows that the application of the Visitor 

pattern introduces two principal constraints. First, the pattern assumes the well-defined data 

model of the application domain. In the context of heterogeneous information networks, this 

requirement would hardly be acceptable. Second, the Visitor-based traversal approach clashes 

with the behavior of the Pregel processing model. As a result, this problem requires new 

solutions. In contrast with tree-based applications, processing heterogeneous graphs however 

represents a very new field accumulated a few research papers. Therefore, the dissertation 

overviews this category of applications to highlight the direction for future studies that will be 

discussed in the final chapter.  
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Summary 

The chapter presents the problem of processing heterogeneous models addressed by the Mutable 

Class design pattern. This overview includes two major topics. The first topic is dedicated to the 

analysis of existing solutions, including the Visitor pattern, its various extensions, and the aspect-

oriented approach. Each solution is explained with the corresponding class diagram and a brief 

description of its strong and weak features. The second topic considers four application domains 

introducing this problem. Three of them deal with heterogeneous tree-based models. These are 

computational accelerator physics, compiler construction, and 3D computer graphics. The fourth 

use case represents a new direction associated with the development and processing of large-

scale heterogeneous information networks. 
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Chapter 3 
 

Methodology 
 
 

 

     The chapter overviews the Mutable Class pattern designed to provide an extensible run-time 

solution for processing heterogeneous data models with multiple families of algorithms. The idea 

of the Mutable Class was initially introduced in the framework of the United Accelerator 

Libraries (Malitsky and Talman, 1998) for building dynamic associations among heterogeneous 

physical devices and modeling algorithms. Later, the approach was successfully validated in the 

context of the JastAdd metacompiler construction system (Malitsky, 2008). To present this 

approach, the chapter is broken into three sections. The first section introduces the conceptual 

model based on the UML specification. The second section provides a formal description of the 

Mutable Class according to the design pattern methodology (Gamma, Helm, Johnson, and 

Vlissides, 1995). The third section assesses and compares its quality characteristics with existing 

solutions described in the previous chapter. 

 

Mutable Class Approach 

     The Mutable Class approach was designed after the Class model of the Unified Modeling 

Language (UML) specification. UML is a standard software engineering language developed 

from the consolidation of three major object-oriented methodologies: the Booch method (1991), 

object-modeling technique (Rumbaugh et al., 1990), and object-oriented software engineering 

(Jacobson, 1992). As a modeling specification, UML represents a metamodel for instantiating 

user-specific object-oriented models. To support the model-driven architecture (MDA) tools, the 
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Object Management Group (OMG) developed the Meta-Object Facility (MOF) augmenting the 

UML specification with a meta-metamodeling layer. Figure 22 shows the corresponding example 

from the UML specification (OMG, 2011) illustrating the UML four-layer metamodel hierarchy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Example of the four-layer metamodel hierarchy (OMG, 2011) 

According to this architecture, the UML metamodel elements, such as Attribute, Class, and 

InstanceSpecification, are instantiated from the Class meta-metaclass of the MOF layer and 

instantiated by the user model including the Video class and the :Video object. The bottom layer 

contains the run-time instances of the user model classes, such as aVideo. 

     The UML specification is organized into two parts: Infrastructure and Superstructure. The 

UML Infrastructure consists of abstract and common modeling elements that are reused by both 

the MOF and UML layers. In the case of MOF, the Infrastructure metaclasses are imported 

without changes, while in the case of UML these model elements are extended with the new 
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features. The UML Superstructure defines the structural, behavior, and auxiliary constructs used 

in the UML diagrams. All of these constructs are directly or indirectly based on the Kernel 

package encapsulating the core modeling concepts, including classes, associations, and packages. 

The streamlined diagram of the Class metaclass is shown in Figure 23.  

 

 

 

 

 

 

 

 

Figure 23: Streamlined diagram of the UML Class metaclass 

According to the UAL specification (OMG, 2011):  

“Class is a kind of classifier whose features are attributes and operations. Attributes of a  

class are represented by instances of Property that are owned by the class. Some of these 

attributes represent the navigable ends of binary associations”. 

In addition to the structure definition, the UML Infrastructure provides two extensibility 

mechanisms specified in the Redefinitions and Changeabilities packages. The Redefinition 

package introduces an abstract metaclass RedefinableElement that is associated with capability 

to be redefined “more specifically or differently in the context of another classifier that 

specializes (directly or indirectly) the context classifier” (OMG, 2011). In Figure 23, 

RedefinableElement is specialized by Classifier, Property, and Operation. This platform-
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independent semantics directly corresponds to the inheritance mechanism of the object-oriented 

programming languages, such as C++ and Java. The Changeabilities package specializes the 

StructuralFeature metaclass by adding an attribute defining if the value of this feature can be 

modified. For features representing the navigable ends of binary associations, the Changeabilities 

mechanism corresponds to the composition approach of object-oriented models including the 

component-oriented technologies, like COM, DCOM, CORBA Component Model (CCM), and 

Enterprise JavaBeans (EJB). 

     Inheritance and composition are two major approaches used in the object-oriented software 

design. According to the authors of the design pattern book (Gamma, Helm, Johnson, and 

Vlissides, 1995), the composition approach provides the preferred solution, improving the 

coupling and cohesion characteristics of software systems. The Changeabilities mechanism of 

the UML specification, however, does not support the interchangeability of operations. The 

Mutable Class approach addresses this issue on the user model level by instantiating a 

changeable operation as the ComponentOperation class and adding the ComponentMutator 

singleton that implements the Component-ComponentOperation binary association as shown in 

Figure 24. 

 

 

 

 

 

 
 

Figure 24: Mutable Class approach 
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The encapsulation of interchangeable operations into dedicated classes has been suggested by the 

Strategy pattern (Gamma, Helm, Johnson, and Vlissides, 1995). Figure 25 shows the structure of 

this pattern using the Mutable Class terminology.  

 

 

 

 

Figure 25: Structure of the Strategy pattern  

The Strategy pattern contains two primary classes: Component and ComponentOperation. The 

Component object maintains a reference to the ComponentOperation instance and serves as the 

context of operation invocation. The Mutable Class approach assigns these two roles to separate 

participants according to the definition of the metaclass Operation of the UML specification 

(OMG, 2011): “An operation is owned by a class and may be invoked in the context of objects 

that are instances of that class”.  In this model (see Figure 26), the ComponentMutator singleton 

represents the extension of the Component class, maintains a reference of the 

ComponentOperation instance, and invokes it in the context of the Component object.  

   

 

 

 

 

 

Figure 26: Structure of the Mutable Class model 
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To manage multiple Mutable Classes, they can be configured with the Component Mutator 

Linker as shown in Figure 27. This linker maintains a registry of mutators and provides a 

runtime configuration mechanism for binding them with registries of operations.  

 

 

 

 

 

 

Figure 27: Class diagram of the Mutable Class configuration approach 

     The Mutable Class configuration approach is related to the aspect-oriented programming 

(AOP) paradigm, augmenting the inheritance and composition mechanisms with the weaving 

procedure for inserting structural and behavioral features across multiple classes of the object-

oriented programs. These crosscutting changes are associated with different aspects of software 

systems, for example, persistence and logging. From the perspective of the AOP paradigm, the 

Mutable Class addresses the timing aspect associated with the evolution of software programs. 

On the system level, the timing aspect is already addressed by multiple technologies, like version 

control systems or update managers of operating systems. In software application, this topic is 

closely related to the agent-oriented programming paradigm, focusing on the development of the 

agent-based dynamic environments. 

     The new programming paradigms, however, introduce significant overhead associated with 

the broad scope of new concepts and the impedance mismatch with the existing object-oriented 
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programming languages. In contrast with these paradigms, the Mutable Class approach follows 

the incremental development procedure starting with a lightweight solution addressing the 

immediate applications. The next section presents the Mutable Class approach in the context of 

the design pattern for processing heterogeneous tree-based models.  

 

Mutable Class Pattern 

Intent 

      Provide an efficient run-time mechanism for processing large-scale heterogeneous models 

with multiple data processing algorithms. 

Motivation 

      The development of the Mutable Class pattern was motivated by applications associated with 

data processing of large-scale heterogeneous models, such as computational accelerator physics 

models, abstract syntax trees, 3D scene graphs, and information networks. To facilitate the 

description of the addressed problems and corresponding solutions, the approach can be 

illustrated with a simplified example that uses an imaginary game world. In our case, this world 

is built by employing a combination of numerous components from a limited set of types such as 

Mountains. These components are then assembled and grouped into Regions, thus forming a 

hierarchical model. Once the world is generated, it needs to be inhabited and explored by 

multiple teams, such as observers and settlers, each using different strategies and missions. 

While a standard game edition then provides a basic set of model components and explorers, it 

can also grow by integrating multiple third-party extensions including new components such as 

forests and cities. In our example, they are represented by single component X. The 

corresponding class diagram of these component-strategy associations is shown in Figure 28. 
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Figure 28: Component-strategy associations of the imaginary game application 

     The diagram follows the Strategy pattern (Gamma, Helm, Johnson, and Vlissides, 1995) 

separating object state and behavior, implementing each of them in dedicated classes. The 

Strategy pattern, however, does not define a mechanism for managing collections of these 

classes, nor for building associations between components and strategies. This issue has been 

addressed by the Visitor pattern (Gamma, Helm, Johnson, and Vlissides, 1995), which suggests 

combining component-specific operations, such as visit(r: Region) and visit(m: Mountain), into 

the strategy-specific Visitor classes. This hard-coded approach, however, freezes class 

hierarchies of the application models, preventing new extensions. Particularly, adding the new 

world component X requires editing all visitor classes by adding to each class a visit(x: X) 

method. The Mutable Class approach resolves this extensibility limitation by splitting the Visitor 

hard-coded monolithic interface into fully decoupled component-specific singletons, so called 

class mutators, implementing component-operation associations (see Figure 29). A class mutator 
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connects a component-specific class with Strategy-based interchangeable operations. In the same 

time, it augments the Strategy pattern with an efficient mechanism for configuring component-

operation associations of any number of components via a single instance. As a result, the 

mutable class model represents a triplet consisting of the component class, mutator and Strategy-

based operation. As shown in Figure 29, mutable classes of the basic model and third-party 

extensions can be independently developed and combined together into the corresponding 

registries of mutators and operations.  The Component Mutator Linker maintains a registry of 

mutators and provides a runtime configuration mechanism linking mutable class triplets for the 

selected registry of operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Mutable Class-based structure of the imaginary game application 
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Applicability 

The Mutable Class pattern should be used when: 

x a model structure represents a large-scale heterogeneous model that has to be processed 

with different operations depending on types of model components; 

x processing operations can be developed and added after the definition of the model 

structure; 

x a class hierarchy of the model structure is not fixed and can be extended with new 

component types; 

x model-associated operations can be changed dynamically according to application-

specific scenarios, for example, finite state machines or agent-oriented adaptable systems. 

Structure and Participants 
 
The Mutable Class pattern provides an architectural solution that addresses the multi-layer 

structure of composite applications. Figure 30 shows the corresponding class diagram. The 

diagram encompasses the following participants: 

x Component: base class of the model components. It defines a common interface, 

including a method for processing components; 

x ComponentMutator: common interface of the component type-specific mutators. It 

defines the accept() method for setting the component operation. In addition, it serves as 

Marker Interface (Grand, 1998) used by the registry of component type-specific mutators; 

x ComponentOperation: common interface of the component type-specific operations. It 

serves as Marker Interface (Grand, 1998) used by the ComponentMutator interface and 

registries of component type-specific operations; 
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x ComponentA and ComponentB: concrete classes of model components providing 

access to heterogeneous component members and implementing the process() method by 

propagating its call to the corresponding component mutator; 

x ComponentA_Mutator and ComponentB_Mutator: concrete classes of the component 

type-specific mutators. They maintain an operation shared by instances of concrete 

component classes, ComponentA and ComponentB. The operation can be defined using 

the accept() method of the Component interface. In addition, these classes introduce the 

component type-specific process() methods that serve as Proxies (Gamma, Helm, 

Johnson, and Vlissides, 1995) of their operations; 

x ComponentA_Operation and ComponentB_Operation: interfaces of component type-

specific operations defining the process() method that takes the instance of the concrete 

component class as an argument; 

x ComponentA_Operation1 and ComponentB_Operation1: component type-specific 

operations of the Operation1 category; 

x ComponentA_Operation2 and ComponentB_Operation2: component type-specific 

operations of the Operation2 category; 

x ComponentMutatorLinker: linker of the component mutators. It maintains a registry of 

mutators and implements the join() method for binding mutators with operations using an 

operation registry as an argument; 

x ComponentOperationRegistry: common interface of the operation registries. It serves 

as a Marker Interface (Grand, 1998) used by the linker of component mutators; 

x Operation1_Registry and Operation2_Registry: registries of the component type-

specific operations belonging to the Operation1 and Operation2 categories. 
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Figure 30: Class diagram of the Mutable Class pattern 

Collaborations 

In the Mutable Class pattern, the processing of the data model consists of three steps: 

x registering component-specific mutators and operations; 

x joining the mutator-operation associations; 

x performing operations on elements of the heterogeneous hierarchical structure. 

Following the design pattern description format, interactions among participants at each step can 

be explained with a corresponding sequence diagram. The first step is illustrated by Figure 31. 

As described in the Motivation subsection, mutable classes of the basic model and its extensions 
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can be developed and registered independently from each other.  The registration process can be 

implemented with many approaches, for example, by using a dedicated configuration module of 

a high level application program or some static initializer of a component-specific library. Figure 

31 shows the latter case. According to this diagram, the initializer program consequently creates 

a mutator singleton and operation instances and updates the corresponding registries.  

 

 

 

 

 

 

 

 

Figure 31: Registering a mutator and operations of the ComponentA class 

     The second step assigns or reassigns mutators with the new category of operations. As shown 

in Figure 32, this step is initiated by a client calling the join() method of the mutatorLinker 

object. This method takes an instance of the Operation1_Registry class as an argument and 

sequentially iterates through entries of pairs containing ids and component mutators. In this 

particular example, the first entry is associated with the ComponentA class. Thus, mutatorLinker 

takes the corresponding id, selects an operation, and binds it with the component mutator within 

the accept() method.  As a result, the same operation object of the mutator singleton can be 

accessed by multiple components of the same type.  
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Figure 32: Interactions for binding data processing algorithms 

    The third step includes the processing of the ComponentA instance (see Figure 33). According 

to the Mutable Class pattern, the instance propagates the application request through the 

associated component mutator to the operation assigned in the previous step. The Mutable Class 

pattern does not address the instantiation of the ComponentA objects that can be created by 

conventional constructors as shown in Figure 33 or Factory patterns. This is consistent with the 

Mutable Class conceptual approach that is designed as an extension of the programming 

language type system. Similar to the Visitor pattern, it belongs to the category of behavioral 

patterns and aims to support the interchangeability of operations for already instantiated 

components.  

 

 

 

 

 

 

Figure 33: Interactions for data processing of the ComponentA instance 
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Consequences 

The Mutable Class pattern consolidates the benefits provided by multiple design patterns and 

approaches: 

x As the Strategy and Visitor patterns, the Mutable Class defines a consistent approach for 

managing families of related algorithms. These algorithms are separated from the data 

model and can be easily changed without affecting the model classes; 

x The Mutable Class resolves the extensibility issue of the Visitor pattern by breaking its 

dependency cycle and adding the preliminary step for weaving algorithms with the 

processed structure. The weaving procedure is an essential part of the Aspect-Oriented 

Programming (AOP) paradigm, providing the mechanism for dealing with crosscutting 

concerns in the object-oriented languages; 

x Compared to the AOP approach, the Mutable Class pattern introduces a light-weight 

object-oriented solution, avoiding the overhead associated with the new programming 

paradigm. 

The Mutable Class pattern also presents a drawback of the associated design patterns: 

x As the Strategy and Visitor patterns, the Mutable Class forces the data model classes to 

provide access to their internal states for data processing algorithms. This in turn may 

compromise their encapsulation. 

Sample Code 

     As described in the Structure and Participants section, the Mutable Class pattern can be 

associated with the category of architectural patterns that specify a horizontal framework and 

multi-layer structure across different vertical application domains. On the framework layer, the 

Mutable Class is based on three primary concepts: Component, ComponentOperation, and 
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ComponentMutator. In C++, these concepts can be implemented with the corresponding abstract 

classes as shown in Listing 3.  

 

 

 

 

 

 

Listing 3: Framework layer of the Mutable Class pattern 

Each abstract class defines a common interface implemented by hierarchy of the application 

domain classes. In this approach, the ComponentMutator-derived classes play a special role 

connecting model components with associated data processing operations. For many 

applications, this role is generic and does not depend on the application model. Then the 

structure of the ComponentMutator-derived classes can be implemented generically using one 

C++ class template GenericMutator<T> parameterized over hierarchy of the component-specific 

types (see Listing 4). Following the general definition of the Class concept, GenericMutator<T> 

is implemented after the Singleton pattern (Gamma, Helm, Johnson, and Vlissides, 1995) to 

maintain the T-specific operations shared by the extent of the T instances. According to this 

pattern, the singleton of GenericMutator<T> can be accessed with the static method 

get_instance(). In addition to the singleton interface, GenericMutator<T> implements the 

accept() method inherited from ComponentMutator and introduces the new method process(). 

Both methods are associated with the GenericOperation<T> interface defined in Listing 5. The 

accept() method assigns a pointer to the instance implementing this interface and the process() 

class Component { 
 public: 
  virtual void process() = 0; 
}; 
 
class ComponentOperation { 
 public: 
  virtual ~ComponentOperation() {} 
}; 
 
typedef shared_ptr<ComponentOperation> ComponentOperationPtr; 
 
class ComponentMutator { 
 public: 
  virtual void accept(ComponentOperationPtr op) = 0; 
}; 
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method delegates a request to this instance. Downcasting in the accept() method allows to 

resolve the type safety issue of data processing interfaces. 

 

 

 

 

 

   

 
 

Listing 4: GenericMutator class template 

 

 

 
 

Listing 5: GenericOperation class template 
 
 The design with separated component-specific operations is closely related with the Normal 

Form Visitor approach (Xiao-Peng and Yuan-Wei, 2010). Formally, it addresses the interface 

segregation principle (Martin, 1998) aiming to enhance flexibility of the overall system. In the 

context of the Mutable Class applications, the approach facilitates the independent development 

of the third-party extensions, like the X component and associated operations, and mixed them 

together with other mutable classes using the registry-based configuration mechanism. 

According to the class diagram of Figure 30, the Mutable Class configuration framework 

consists of a mutator linker and registries of operations. Their implementation is shown in 

Listing 6.  

 

template <class T> 
class GenericMutator : public ComponentMutator { 
 public: 
 
  static GenericMutator<T>* get_instance(); 
 
  virtual void accept(ComponentOperationPtr op); 
 
  void process(T* component); 
 
 public: 
 
  shared_ptr< GenericOperation<T> > operation; 
}; 

template<class T> 
GenericMutator<T>* GenericMutator<T>::get_instance(){ 
    static GenericMutator<T> singleton; 
    return& singleton;  
} 
 
template<class T> 
void GenericMutator<T>::process(T* component){ 
  operation->process(component); 
} 
 
template<class T> 
void GenericMutator<T>::accept(ComponentOperationPtr op){ 
  operation =  
    dynamic_pointer_cast< GenericOperation<T>,  ComponentOperation >(op); 
} 

template <class T>  
class GenericOperation : public ComponentOperation { 
 public: 
 
  virtual void process(T* component) = 0; 
}; 
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Listing 6: Linker of component mutators and registry of observers 

The registration procedure can be further automated with generic initializers, 

MutatorInitializer<T>   and ObserverInitializer<T, TObserver> parameterized over hierarchy of 

the component-specific types and observers (see Listing 7). The initializers emulate the Java 

static initialization blocks allowing the independent registration of different mutable classes. 

 

 

 

 

 

 

Listing 7: MutatorInitializer and ObserverInitializer 

The MutatorInitializer<T>, ObserverInitializer<T, TObserver>, GenericMutator<T>, and 

GenericOperation<T> class templates establish a framework for registering and connecting the 

class ComponentMutatorLinker  { 
 public: 
 
  static ComponentMutatorLinker* get_instance(); 
 
  void join(ComponentOperationRegistry* r); 
 
  map<type_index, ComponentMutator*> mutators; 
}; 
 
ComponentMutatorLinker* ComponentMutatorLinker::get_instance(){ 
  static ComponentMutatorLinker singleton; 
  return &singleton; 
} 
 
void ComponentMutatorLinker::join(ComponentOperationRegistry* r){ 
  map<type_index, ComponentMutator*>::iterator it; 
  for(it = mutators.begin(); it != mutators.end(); it++){ 
    it->second->accept(r->operations[it->first]); 
  } 
} 

Class ComponentOperationRegistry { 
  public: 
 
    map<type_index, ComponentOperationPtr > operations; 
}; 
 
class ObserverRegistry  :  
    public ComponentOperationRegistry { 
 public: 
 
  static ObserverRegistry* get_instance(); 
}; 
 
ObserverRegistry* ObserverRegistry::get_instance(){ 
  static ObserverRegistry singleton; 
  return &singleton; 
} 
 
 
 
 
 

template <class T>  
class MutatorInitializer { 
 public: 
    MutatorInitializer(); 
}; 
 
template<class T> 
MutatorInitializer<T>::MutatorInitializer(){ 
 
   ComponentMutatorLinker* mutatorLinker = 
       ComponentMutatorLiner::get_instance(); 
 
   mutatorLinker->mutators[typeid(T)] =  
      GenericMutator<T>::get_instance(); 
} 
 

template <class T, class TObserver>  
class ObserverInitializer { 
 public: 
    ObserverInitializer(); 
}; 
 
template<class T, class TObserver> 
ObserverInitializer<T, TObserver>:ObserverInitializer(){ 
 
   ObserverRegistry* observerRegistry = 
       ObserverRegistry::get_instance(); 
 
   observerRegistry->operations[typeid(T)] =  
      ComponentOperationPtr(new TObserver()); 
} 
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component types and data processing algorithms. This framework is application-neutral and can 

be illustrated with the demonstration example from the Motivation section. Listing 8 and Listing 

9 show the implementation of two example's components, Region and Mountain. Both 

components have a similar structure of interfaces consisting of common and specialized parts. 

The common interface includes the process() method inherited from the Component class. This 

method redirects a method call together with the component data to an actual operation 

implementation maintained by a singleton of the corresponding component mutator. The 

specialized part of the component interface provides access to the component-specific data, such 

as the Region collection of its components or the Mountain height. To simplify the 

demonstration example, setters and getters of the specialized interfaces have been replaced with 

the direct access to component members. 

 
 
 
 
 
 
 
 
 
 
 
 

Listing 8: Region and RegionMutator classes 
 
 
 
 
 
 
 
 
 
 
 

Listing 9: Mountain and MountainMutator classes 

typedef shared_ptr<Component> ComponentPtr; 
 
class Region: public Component { 
 public: 
  // Component API 
  virtual void process(); 
 
  // Region API 
  list<ComponentPtr> components; 
}; 
 
typedef GenericMutator<Region> RegionMutator; 

void Region::process() { 
  RegionMutator::get_instance()->process(this);  
} 

MutatorInitializer<Region> regionMutatorInitializer; 

class Mountain: public Component { 
 public: 
  // Component API 
  virtual void process(); 
 
  // Mountain API 
  double height; 
}; 
 
typedef GenericMutator<Mountain> MountainMutator; 

void Mountain::process() { 
  MountainMutator::get_instance()->process(this);  
} 

MutatorInitializer<Mountain> mountainMutatorInitializer 
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     Similar to the Visitor pattern, data processing operations of the Mutable Class are 

implemented independently from data structures. In contrast to the original version of the Visitor 

pattern, operations of different components, for example Region and Mountain, are fully 

decoupled as shown in Listing 10 and Listing 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 10: RegionObserver class 
 
 
 
 
 
 
 
 

 

 

Listing 11: MountainObserver class 

Finally, the main program of Listing 12 demonstrates the major steps of the Mutable Class 

application. It starts with the construction of the application model. In this example, the model 

includes only one region and one mountain. In the next step, the linker of component mutators 

takes a collection of observers and connects each component type with the corresponding 

operation. The final step processes the model with connected observers. 

 
 

class RegionObserver : public GenericOperation<Region> { 
 public: 
 
  virtual void process(Region* r); 
}; 
 
void RegionObserver::process(Region* r){ 
  list<ComponentPtr>::iterator it; 
  for(it = r->components.begin(); it != r->components.end(); it++){ 
    (*it)->process(); 
  } 
} 
 
ObserverInitializer<Region, RegionObserver> regionObserverInitializer; 

class MountainObserver : public GenericOperation<Mountain> { 
 public: 
 
  virtual void process(Mountain* m); 
}; 
 
void MountainObserver::process(Mountain* m){ 
  cout << typeid(Mountain).name() << ", height: " << m->height << endl; 
} 
 
ObserverInitializer<Mountain, MountainObserver> mountainObserverInitializer 
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Listing 12: Main program  

 
Implementation 
 
     The sample code presented in the previous section outlines a typical structure of the Mutable 

Class application highlighting several implementation topics: 

x The structure of the Mutable Class application has several layers encompassing an 

application-neutral framework, application domain toolkit, third-party extensions, and 

high level configuration layer. 

x Similar to the Visitor pattern, the Component objects serve as front ends for traversing a 

data model by providing the process() method. In Listing 3, this method does not have 

arguments suggesting that the intermediate results (e.g., the OpenGL rendering state) 

must be maintained outside of the data model. This case can be illustrated by adding the 

Observer class as shown in Listing 13. 

 

 
 

Listing 13: Observer class 

main() { 
 
  // Build the model 
 
  Region model; 
 
  model.components.push_back(ComponentPtr(new Mountain())); 
 
  // Join component types with observers 
 
   ComponentMutatorLinker* mutatorLinker = ComponentMutatorLinker::get_instance(); 
   ObserverRegistry* observerRegistry = ObserverRegistry::get_instance(); 
 
  mutatorLinker->join(observerRegistry); 
 
  // Process observers on a model 
 
  model.process(); 
 
  … 
 
} 

class Observer { 
 public: 
   static double results; 
}; 
 



72 
 

The static member of the Observer class represents results accumulated during the traversal of 

the model. To facilitate the access to the Observer state, it can be inherited by the component 

operations. Listing 14 shows the corresponding version of the MountainObserver class updating 

the Observer results according to some algorithm. 

 

 

 

 
 

Listing 14: MountainObserver class with the Observer state 
 

x As shown in Listing 8 and Listing 9, interfaces of different components and associated 

operations are fully decoupled. These examples illustrate a consistent procedure for 

developing data model components across multiple applications using toolkits and third-

party extensions. 

x The application model may use hierarchical relationships between component classes 

including the inheritance of members and methods. The Mutable Class pattern does not 

prevent such relationships. Moreover, the pattern supports the reuse of algorithms by 

ancestor components. This case is not unusual since some categories of algorithms may 

use only a common subset of component members defined in both the parent and 

descendant classes. In the Mutable Class approach, such the sparse associations can be 

handled by the Component Mutator Linker using, for example, the XML description. 

Relation to the Visitor Pattern 
 
     The Mutable Class pattern has been developed as an alternative approach of the Visitor 

pattern providing a consistent mechanism for processing heterogeneous models with multiple 

class MountainObserver : public GenericOperation<Mountain>, public Observer  { 
 public: 
 
  virtual void process(Mountain* m); 
}; 
 
void MountainObserver::process(Mountain* m){ 
   results += 1.2*m->height; 
} 
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algorithms. The Visitor pattern addresses this task by combining component-specific methods 

into the algorithm-specific Visitor classes and implementing the run-time double-dispatch 

approach for binding these methods with corresponding components. The Visitor combined 

interface, however, freezes class hierarchies of application models and prevents the introduction 

of new component types. For example, adding the new component X would require to extend 

this interface with the new visit(x: X) method and to change all visitor classes. The Mutable 

Class pattern resolves this limitation of the Visitor pattern by replacing its monolithic interface 

with extendable registries of operations and introducing a run-time linking step connecting 

mutable classes with the selected registry of operations.  

     The development and integration of the new component types can be naturally illustrated with 

the sample code of the demonstration example. According to the Sample Code framework, the 

mutable class triplet of the new component X would include three classes: X, XMutator, and 

XObserver. As show in Listing 15 and Listing 16, their implementation follows the common 

procedure for developing the Region and Mountain classes.  As a new component type, the 

specialized part of the X interface introduces a new member y that is accessed with the process() 

method of XObserver. 

 
 
 
 
 
 
 
 
 
 
 

Listing 15: X and XMutator classes 

 

class X: public Component { 
 public: 
  // Component API 
  virtual void process(); 
 
  // X API 
  double y; 
}; 
 
typedef GenericMutator<X> XMutator; 
 

 

void X::process() { 
   XMutator::get_instance()->process(this);  
} 

MutatorInitializer<X> xMutatorInitializer; 
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Listing 16: XObserver class 

These classes can be packaged in a third-party library and linked with the X-aware application 

without affecting other libraries. The corresponding main program is shown in Listing 17.  It 

differs from the original program of Listing 12 only in the construction of the application model 

including the X component. In the practical applications, the model is usually created with the 

Builder pattern (Gamma, Helm, Johnson, and Vlissides, 1995) based on another registry of 

component-specific instances with the Factory methods. This tiny example demonstrates the 

principal advantage over the Visitor pattern for processing extendable heterogeneous models. 

 
 
 

 

 

 

 

 

 

 

 

Listing 17: Main program using the new component X 
 

class XObserver : public GenericOperation<X> { 
 public: 
 
  virtual void process(X* x); 
}; 
 
void XObserver::process(X* x){ 
  cout << typeid(X).name() << ", y: " << x->y << endl; 
} 
ObserverInitializer<X, XObserver> xObserverInitializer 
 

main() { 
 
  // Build the model 
 
  Region model; 
 
  model.components.push_back(ComponentPtr(new Mountain())); 
  model.components.push_back(ComponentPtr(new X())); 
 
  // Join component types with observers 
 
   ComponentMutatorLinker* mutatorLinker = ComponentMutatorLinker::get_instance(); 
   ObserverRegistry* observerRegistry = ObserverRegistry::get_instance(); 
 
  mutatorLinker->join(observerRegistry); 
 
  // Process observers on a model 
 
  model.process(); 
 
 …. 
 
} 



75 
 

Quality Factor Assessment 

      Design patterns represent proven solutions distilled and elaborated from successful products. 

These solutions however rarely provide an unconditional cure, and have both positive and 

negative characteristics. Furthermore, the assessment of software design is a complex task 

dealing with many vague concerns. The ISO/IEC 25010 System and Software Quality 

Requirements and Evaluation standard (2011) aims to straighten the decision-making process by 

identifying a product quality model derived from the consolidation of several software metrics 

suites. The resulting quality model is based on eight quality characteristics: functional suitability, 

performance efficiency, compatibility, usability, reliability, security, maintainability, and 

portability. Since each of these characteristics covers too broad a topic, the ISO/IEC 25010 

standard further divides them into the supporting sub-characteristics as shown in Appendix A. 

     The problem of heterogeneous model processing is primarily related to the maintainability 

sub-characteristics. The assessment of the aspect-oriented approach has added the performance 

efficiency topic dealing with the consideration of time behavior and resource utilization. Finally, 

to differentiate several existing solutions, such as the Reflection and Normal Form patterns, the 

analysis has included the portability characteristic. Table 1 summarizes and compares the 

corresponding quality attributes of existing approaches derived in this thesis from a thorough 

analysis of the literature on the Visitor pattern (Gamma, Helm, Johnson, and Vlissides, 1995; 

Martin, Riehle, and Buschmann, 1997; Vlissides, 1999; May and Champlain, 2001; Grothoff, 

2003; Buttner et al., 2004; Forax, Duris and Roussel, 2005; Xiao-Peng and Yuan-Wei, 2010; Pati 

& Hill, 2013) and the AOP paradigm (Kiczales et al., 1997; Laddad, 2003; Wu et al., 2005; 

Walls, 2013).  
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Approaches Performance 
efficiency 

Maintainability Portability 
Reusability Modularity Modifiability 

Visitor  
 

high 
 

n/a for multiple  
third-party 
extensions 

low; strong 
coupling 
between model 
and visitor’s 
interfaces 

n/a for model 
extensions 

language-
independent 

Extended 
Type  
Visitor 

 
high 

 

 
" 

 
" 

normal; based on 
inheritance 

language-
independent 

Acyclic 
Visitor 

 
high 

limited; based on 
the C++ multiple 
inheritance 

normal; based on 
inheritance 

 
" 

based on  
the C++ multiple 
inheritance 

Generic 
Visitor  

unclear; depends  
on an external 
reflection 
mechanism 

unclear; depends 
on an external 
reflection 
mechanism 

unclear; depends 
on an external 
reflection 
mechanism 

unclear; depends 
on an external 
reflection 
mechanism 

unclear; depends 
on an external 
reflection 
mechanism 

Dynamic 
Dispatch 
Visitor 

 
" 

 
" 

 
" 

 
" 

 
" 

Reflective 
Visitor  

depends on the 
approach: 
Walkabout:  low 
Runabout: high 
Sprintabout: high 

 
 

high 

limited; coupling 
between 
application and 
configuration 
interfaces 

 
 

high 

based on the 
Java reflection 
API and class 
loading 

Normal 
Form  
Visitor 

 
high 

 
high 

 
" 

 
high 

language-
independent 

AspectJ high limited; only at 
compile time 

high high based on  the 
Java byte code 

Spring 
AOP 

low high high high language-
independent 

Mutable 
Class 

high high high high language-
independent 

 

Table 1: Assessment of quality attributes for existing and proposed approaches 

      The evolution of the Visitor extensions follows two general rules suggested by the authors of 

the design pattern book (Gamma, Helm, Johnson, and Vlissides, 1995): association over 

aggregation and object composition over class inheritance. These good practice principles 

primarily address two software quality metrics, coupling and cohesion (Stevens, Myers, and 

Constantine, 1974), associated with the maintainability aspects. Following these rules, the 

Acyclic Visitor approach improved the original version of the Visitor pattern by breaking the 

monolithic interface aggregating loosely related methods into different components and 
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recombining them together using multiple inheritance. The Reflective and Normal Form Visitors 

replace inheritance with the composition approach. The Normal Form Visitor pattern still does 

not resolve coupling between application and configuration modules. This topic has been 

addressed by the pointcut-advice model and weaving procedure of the aspect-oriented 

programming (AOP) paradigm. The scope of this paradigm, however, introduces a significant 

challenge that leads to the limited bytecode-based solution of the AspectJ compiler or the 

resource utilization overhead of the Spring AOP container architecture.       

     As shown in Table 1, the Mutable Class represents an optimal approach combining the 

advantageous features of both the Visitor-based patterns and the AOP paradigm. This 

combination becomes especially important in the context of the new heterogeneous information 

network applications. Technically, the advantage of the Mutable Class pattern is achieved with 

the extra level of indirection that can be considered as another form of object composition 

(Gamma, Helm, Johnson, and Vlissides, 1995). The next chapter will validate and demonstrate 

the preliminary analysis of this chapter in the context of two application domains. 

 

Summary 

    The chapter presents the conceptual approach and formal description of the Mutable Class 

pattern addressing the first research question of the dissertation. The approach is designed after 

the UML metamodel as an extension of the Class concept to support the interchangeability of 

operations.  Technically, it extends the application class with a singleton that maintains the 

reference to the interchangeable operation designed after the Strategy pattern. Adherence to the 

UML metamodel level facilitates the generalization of the Mutable Class approach as the 

corresponding design pattern for actual applications. Particularly, the chapter deliberately 
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describes this solution in the context of processing the large-scale heterogeneous tree-based 

models.  The description follows the formal design pattern format and covers multiple topics, 

such as intent, motivation, applicability, structure, collaboration among participants, and 

implementation aspects. Finally, the chapter assesses quality characteristics of the Mutable Class 

pattern according to the ISO/IEC 25010 standard and compares the proposed approach with 

existing solutions described in Review of Literature. 
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Chapter 4 
 

Results 
 
 
 

    The chapter presents the application of the Mutable Class pattern to two application domains, 

computational accelerator physics and compiler construction.  

 

Computational Accelerator Physics 
 
    A brief overview of computational accelerator physics was already presented in Chapter 2. 

Specifically, it introduced a three-dimensional view of accelerator physics algorithms. To 

facilitate their applications, in 1995, the Unified Accelerator Libraries (UAL) project (Malitsky 

and Talman, 1996) suggested an open architecture in which diverse computational algorithms 

were connected together via common accelerator objects such as Element, Bunch, Twiss, etc. 

The architecture immediately led to the consideration of new types of simulation studies 

involving combinations of conventional approaches and various extensions. The implementation 

of composite scenarios, however, required a consistent and efficient mechanism for managing 

many-to-many associations among simulation algorithms and heterogeneous elements of 

accelerator models. The dedicated analysis of existing design patterns did not identify an optimal 

solution that would address all requirements of the UAL simulation environment. Therefore, the 

new approach was derived after merging ideas of two design patterns, Strategy (Gamma, Helm, 

Johnson, and Vlissides, 1995) and Type Object (Martin, Riehle, and Buschmann, 1997). The 

Strategy pattern encapsulated the implementation of the behavior into separate classes and 

provided the mechanism for their interchange. Its structure was already discussed in Chapter 3 

and shown in Figure 25. The Type Object encapsulated the common class data in a singleton of 
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the additional class, the so called Type Class or Class Type. Eventually, the structure of the new 

approach was refined after the Class model of the Unified Modeling Language specification and 

transformed into the Mutable Class pattern (see Figure 30). The corresponding instantiation of 

this pattern in the context of the accelerator physics domain is shown in Figure 34.  It captures 

the element and approach dimensions of a three-dimensional view of accelerator algorithms (see 

Figure 17). The extension of the pattern with the Observable dimension will be considered later 

in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Mutable Class pattern in the context of accelerator algorithms (Figure 17) 
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    The Mutable Class framework (Malitsky and Talman, 1998) boosted the development of the 

UAL applications.  At the same time, new applications incrementally extended the scope of the 

new pattern by challenging it from different angles. The following subsections provide an 

overview of this consistent development starting with the analysis of new physical devices and 

concluding with large-scale model-based control systems. 

Analysis of New Physical Devices 
 
     The construction of modern accelerator complexes is an expensive enterprise designed for 

new scientific mission studies aiming to assess theoretical hypotheses or to extend the horizons 

of existing experimental data. Scientific challenges lead to the design and consideration of new 

types of physical devices or more accurate treatment of high-order beam effects. In the context of 

existing accelerator programs, the implementation of new elements or effects introduced several 

issues associated with the changes of internal data structures for accommodating new sets of 

element and algorithm parameters. Moreover, in most cases, these sets were not well defined and 

changed according to different engineering designs and computational approaches. UAL 

addressed these requirements by proposing a generic solution based on the combination of the 

C++ propagation framework implemented after the Mutable Class approach (Malitsky and 

Talman, 1998) and Perl-based interface (Malitsky and Talman, 1996) supporting interactive 

insertions of project-specific extensions. Figure 35 shows the overall diagram of the UAL-based 

application. The main part of the UAL toolkit consisted of the accelerator model designed after 

the Standard Machine Format (Malitsky et al., 1995), the TEAPOT tracking algorithms 

(Schachinger and Talman, 1987) refactored after the Mutable Class pattern, and the UI::Shell 

Perl class providing a user-oriented interface to the C++ classes of the UAL components. Adding 

a new device required two extensions: implementation of the C++ library with the corresponding 
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mutable class and a new Perl class, Project::UI::Shell, with a few project-specific commands for 

accessing new attributes and inserting this device into the UAL environment. The approach was 

successfully applied to three different projects: Relativistic Heavy Ion Collider (RHIC) at 

Brookhaven National Laboratory (BNL), Cornel Electron-positron Storage Ring (CESR), and 

Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). The 

following paragraphs provide a brief overview of corresponding applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: UAL-based approach for adding new devices 

     The RHIC accelerator complex is a chain of several accelerators, such as Electron Beam Ion 

Source, Linac, Booster, Alternating Gradient Synchrotron, and two rings of Relativistic Heavy 

Ion Collider built for the exploration of quark-gluon plasma and spin physics of protons. The 
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acceleration of polarized protons is achieved with special helical dipoles, called Siberian snakes. 

At the design phase, these devices were not supported by conventional accelerator codes and 

required dedicated research and development effort. Since the description of helical dipoles 

mismatched with other accelerator elements, they were implemented by the new Mutable Class 

based on the mapping approach using Taylor series. Figure 36 shows the corresponding 

application that can be elaborated by the Perl script.  

 

 

 

 

 

 

 

 

 

 

Figure 36: RHIC application 

     For the typical simulation scenario, the RHIC script began with the instantiation and 

initialization of a singleton of the Standard Machine Format (SMF) class representing an 

accelerator model in the UAL environment. The SMF model consisted of four layers comprising 

definitions of various parameters, elements, hierarchical view of accelerator, and flat sequence of 

elements with assigned individual magnetic fields and misalignment errors. In early version of 

the RHIC application, layers were initialized with a set of corresponding programs reading data 



84 
 

from distributed sources. As a result, building of the RHIC operational version was a laborious 

and error-prone procedure dealing with tens of thousands of elements and their individual 

characteristics. At this point, however, the accelerator model included only conventional 

elements and was thoroughly benchmarked with other accelerator programs. For the UAL 

applications, this was considered as a starting point for new studies. With the Mutable Class 

approach, the insertion of new elements required only a single method of the RHIC::UI::Shell 

interface that replaced conventional elements with Taylor maps of helical dipoles. Under the 

hood, the method reassigned element nodes of the accelerator models and associated with them 

the Mutable class of map-based algorithms. The approach was effectively used in the 

optimization of the RHIC design and operation studies (Pilat, F. et al, 1997 and 1999). 

     A similar approach was applied in beam dynamic studies at the Cornell Electron Storage Ring 

(CESR). Most of CESR elements were described by conventional attributes. But there were two 

element types, wiggler and element with the superimposed quadrupole and solenoid fields that 

required new extensions (see Figure 37).  

 

 

 

 

 

 

 

 

Figure 37: CESR application 
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As in the RHIC case with a helical dipole, wiggler’s field satisfied Maxwell equations and was 

propagated with the Differential Algebra approach for producing corresponding Taylor maps. 

The CESR superimposed element represented a completely new type with unique project-

specific parameters. Within the Mutable Class framework, both elements, however, were treated 

uniformly using the CESR-specific pairs of element-algorithm associations. As a result, the 

major effort was associated with the construction of the SMF object from distributed data 

sources used by local conventional programs.  All components of the new simulation 

environment were glued together within the CESR::UI package that provided a uniform CESR-

specific user interface to SMF data and UAL tracking, analysis, and fitting libraries. The CESR 

application (Malitsky and Pelaia, 1998) confirmed and generalized the RHIC-based approach 

and helped to further consolidate and refine the Mutable Class framework. Moreover, the 

approach was rapidly reused for the development and integration of new modules for simulating 

beam-beam effects in the context of the CESR upgrade (Koyama, Malitsky, and Talman, 1998). 

     The success of the RHIC and CESR applications lead to the extension of the US-LHC 

collaboration with a new direction focusing on the development of the modeling ecosystem 

based on the MAD and UAL software. MAD is an abbreviation of the Methodical Accelerator 

Design code developed by the CERN team (Carey and Iselin, 1984) and successfully applied for 

the design of most accelerator projects. UAL complements the MAD design and optimization 

capabilities with the Mutable Class framework for supporting new extensions. To exchange 

accelerator descriptions between two programs, the US-LHC collaboration introduced the 

Standard eXchange Format (SXF) that consolidated the joined software development and 

simulation studies (Pilat et al., 1998; Malitsky and Talman, 1998; Fisher, Pilat and Ptitsin, 1999). 

Soon, the format was accepted by many other teams and replaced project-specific formats in 
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various projects. Later, the SXF project was transformed into the MADX-UAL suite (Malitsky, 

et al., 2004) bringing together the MAD design algorithms and the UAL simulation libraries and 

project-specific extensions (see Figure 38). As a result, the SXF format significantly facilitated 

the application of the Mutable Class extensions to other facilities. Eventually, changes in 

computer technologies and new accelerator applications gradually accumulated a set of new 

requirements which resulted in the subsequent XML-based versions (Malitsky and Talman, 

1998; Malitsky and Talman, 2006). 

 

 

 

 

 

 

 

Figure 38: MADX-UAL suite 

Integration of Multiple Effects 
   
    Designs and parameters of high-intensity machines, such as the Spallation Neutron Source 

(SNS) accumulator ring, imposed new expectations on the beam dynamics studies. One of the 

major scientific and technical challenges was the extremely strict requirement on uncontrolled 

beam loss at 10-4 level. In order to describe and analyze such low-level losses, one should closely 

reproduce all actual effects of a realistic machine. Some of them, such as field errors and 

misalignments were supported in general-purpose accelerator codes. Other effects, such as space 

charge and collimator surface grazing, were actual only for high intensity hadron rings and 
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distributed into a set of independent specialized programs. The mismatch among diverse data 

formats, units, and notations complicated the usage of these programs and increased the risk of 

errors and misinterpretations. Besides, the accurate simulation of the very low beam loss 

required the simultaneous consideration of several different effects in a single scenario. The 

Mutable Class framework and the Perl-based dynamic interface of the UAL open environment 

addressed all these tasks. As a result, for the SNS project, the UAL was extended with three 

accelerator libraries (see Figure 39):  ACCSIM (Jones, 1997), ORBIT (Galambos et al., 1999) 

and AIM (Cameron, Fedotov, and Malitsky, 2002). The following paragraphs provide a brief 

overview of extended features: injection painting, collimator, space charge, and diagnostics. 

    

 

 

 

 

 

 

Figure 39: SNS application 

      Injection painting is a multi-turn injection procedure for filling a large phase space volume of 

beam distribution in order to reduce the space charge effect and to minimize the number of 

traversals through the injection foil. The ACCSIM code offered the most comprehensive 

approach for optimization and simulation of these dynamical processes. The control of the 

different scenarios however was hidden behind of the ACCSIM input language impeding the 

inclusion of new physical effects (field errors, misalignments, etc.). In UAL, all these dynamical 
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processes were implemented with the Perl interface that provided a direct access to the UAL 

packages via the configuration mechanism of the Mutable Class framework. 

    To protect the SNS ring from spreading up beam halo of the accumulated beam, it was 

equipped with the composite collimation system including four adjustable tantalum thin scrapers 

and three shielded long secondary collimators. The design of this system depended on many 

factors, such as an injection painting scheme, lattice parameters, and others. Then the simulation 

model had to be adaptable to an arbitrary combination of lattice and collimator variants. In 

general, it could be achieved by implementing the collimator system as an insertion device and 

splitting the one-turn tracking procedure into three steps: propagating particles (with a 

conventional programs) from the injection point to the collimator system, applying the collimator 

algorithms, and completing the turn by following particles back to the injection point. In the 

UAL environment, this scenario was implemented with a new Perl module complementing the 

injection painting procedure. Moreover, the UAL framework supported multiple representations 

of the collimator module. For example, this module could be implemented as a local adapter to 

the High Energy Physics shared libraries, such as GEANT 4. The integration of the accelerator 

and high energy physics software however introduced the significant overhead and was 

implemented later in the context of other projects (Fine, Malitsky, and Talman, 2006). For the 

SNS project, the ACCSIM approach was accepted as an optimal solution providing a necessary 

set of algorithms for particle-target interactions such as Landau and Bethe-Bloch energy loss 

distributions, Moliere multiple scattering, and nuclear interactions.  

    The major impact on halo growth and uncontrolled beam loss in the SNS ring was determined 

the space charge effect.  Its implementation represented a difficult task involving the trade-off 

between the performance and accuracy of available algorithms. The Mutable Class framework of 
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the UAL environment addressed this issue by providing a uniform mechanism for selection and 

comparison of alternative approaches. The analysis of different algorithms suggested the  “two-

and-a-half“ approximation of the ORBIT program representing the three dimensional space 

charge effect with a distributed collection of two-dimensional transverse kicks and one master 

node that updated a longitudinal beam distribution after each turn. To facilitate the 

implementation and employment of new modules, the SNS team developed a benchmark 

infrastructure shown in Figure 40 and Table 2. It inherited and generalized the previous 

methodology for the incremental development and analysis of the Mutable Class extensions and 

their subsequent integration into composite scenarios.  

Figure 40: SNS benchmark infrastructure 

Table 2: Accelerator programs used in the SNS project 

Features UAL MAD ORBIT DIMAD ACCSIM TEAPOT SIMPSONS 
        

Interface Perl 
API 

MAD 
language 

Super 
Code 

dialect of 
MAD 

DIMAD 
output 

dialect of 
MAD 

TEAPOT 
output 

MAD standard elements yes yes yes yes yes yes yes 
design & optimization  yes  yes    
element errors & 
correction 

yes yes  yes  yes  

tracking yes yes yes yes yes yes yes 
mapping any 

order 
third 
order 

linear 
order 

second 
order 

linear 
order 

second 
order 

 

injection painting yes  yes  yes   
collimation yes    yes   
space charge yes  yes  yes yes yes 
instrumentation models yes       
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    According to the UAL approach, the SNS simulation environment was organized as an 

additional package integrating together the UAL libraries SNS-specific extensions. Below, there 

is a list of some beam dynamics topics considered in the context of the SNS package: 

x single-particle tasks, including such effects as kinematic non-linearity, non-linear tune-

spread, dynamic aperture, and resonance driven diffusion maps (Fedotov et al., 2000; 

Papaphilippou, 2001) 

x effect of space charge during transverse painting (Fedotov, Wei, and Gluckstern, 2001) 

x optimization of painting bump functions  

x combined tune spread due to the space charge, chromaticity and other nonlinearities 

(Fedotov et al, 2001) 

x imperfection resonance crossing in the presence of space charge with corresponding 

choice of working points and intensity limitation (Malitsky et al, 2002) 

x effect of ½ coherent resonance crossing in the presence of high-order resonances 

x coherent resonance crossing of coupling resonances 

x collective instability due to the transverse impedance (Fedotov et al., 2002) 

An ability to study a complex combination of several effects provided scientists with the realistic 

model for beam losses and intensity limitation. For example, Figure 41 shows blow-up of beam 

profile due to skew-quadrupole sum resonance.  In the absence of the space charge the strength 

of introduced skew-quadrupole component (tilt of 0.2 mrad) was not sufficient for particles to be 

trapped into the resonance. However, the space charge depressed the tunes, and some particles 

were trapped even for a relatively small skew-quadrupole components. Note that observed 

resonance was not the space-charge induced resonance since, in this case, it was driven by the 

skew-quadrupole field, and space charge played only a secondary role. Such resonance could be 
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corrected using the decoupling schemes. However, the vicinity of this dominant sum resonance 

made many working points less attractive. Additional problems with these working points 

surfaced when one included the effect of the quadrupole fringe fields. As a result, researchers 

observed a significant beam loss due to the combined effect of the space charge and fringe fields.  

 

 

 

 

 

 

 

Figure 41: Blow-up of beam profile due to skew-quadrupole sum resonance in the presence of 
space charge: blue color (in the middle) - no space charge, no errors; yellow color - space charge, 
no errors; red color - space charge, expected errors and quadrupole tilt (0.2 mrad); green color – 
space charge, expected errors and quadrupole tilt (1 mrad). 
 
     Finding the best choice of working point became very challenging for the SNS due to its 

special characteristics of a very large tune spread mainly associated with the space charge, 

chromaticity and magnet fringe fields. Figures 42 and 43 show the tune spreads and 

corresponding resonance driven loss curves for two working points (6.23, 6.20) and (6.4, 6.3).   

    The imperfection errors were excited at a level slightly higher than expected to get a 

conservative estimate. The full 1060-turn injection was then performed for each of beam 

intensities with beam losses at the end of accumulation recorded for a specific acceptance. The 

working point (6.23, 6.20) was essentially free from resonance losses apart from some low loss 

due to the resonances above the working point and chromatic tune spread. For high beam 

intensities the tune was effectively depressed by space charge. The intensity limitation for this 
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working point was associated with the coherent beam response near the tune of 6.0. However, 

this limitation was due to the structure resonances and thus was very strict. For the working point 

(6.4, 6.3), the loss curve demonstrated impact of each individual resonance crossed during 

accumulation. The strong loss at low intensity was due to the sum sextupole resonance. Other 

loss peaks were due to the 3rd and 4th order resonances, which were crossed for higher beam 

intensity. 

 

 

 

 

 

 

 
Figure 42: Tune spreads for working points (6.23, 6.20) and (6.4, 6.3), respectively. 

 
 

 

 

 

 

 

Figure 43: Loss curves for working points (6.23, 6.20) and (6.4, 6.3), respectively 

     Minimization of beam loss in the SNS ring was highly dependent on proper control of the 

tune footprint. In addition to the challenge of accurate measurement in the presence of large tune 

spread, large dynamic range was required to permit measurement through the accumulation 
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cycle. There were many possibilities for measuring coherent and incoherent tune and tune shift 

in the SNS Ring (Cameron, Fedotov, and Malitsky, 2002): 

x coherent (dipole) tune/tune shift from impulse excitation 

x incoherent tune from injection oscillations 

x incoherent tune from Schottky 

x incoherent tune from quadrupole mode oscillation 

x incoherent tune from resonance crossing 

x incoherent tune from Beam Transfer Function (BTF) 

To facilitate the design of measurement systems, UAL was extended with the Accelerator 

Instrumentation Module (AIM) providing a set of diagnostics devices implemented after the 

Mutable Class framework.  

Extending the Element-Algorithm association with the Probe dimension  
 
     Different use cases of the UAL open architecture were eventually generalized into the 

Element-Algorithm-Probe analysis pattern (Malitsky and Talman, 1998) introducing the three-

dimensional view of accelerator algorithms. The pattern was inspired by the famous discussion 

around the quantum measurement problem involving interactions of macroscopic objects with 

microscopic world of particles. Following this measurement scenario, the pattern described 

simulation applications as interactions of probes with elements. From this perspective, probes 

represented any observable objects for which continuous evolution was meaningful and the 

evolution was caused by elements making up an application model. For example, in accelerator 

applications, probes can be 6D phase space coordinates of particles, lattice functions such as 

Twiss functions and dispersion functions, transfer matrices and nonlinear truncated power series, 

survey coordinates, wake fields, and others. The Probe objects were easily accommodated within 
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the Mutable Class pattern by adding the additional argument into the processing methods as 

shown in Figure 44.  

 

 

 

 

 

 

 

 

 

Figure 44: Implementation of the Element-Algorithm-Probe analysis pattern 
 

Each Probe type started a new category of algorithms. In most cases, these types were 

independent. Therefore, corresponding algorithms were implemented by different accelerator 

libraries following the original version of the Mutable Class pattern. The Spin type however 

represented a composite case involving the simultaneous consideration of another type, Position 

of particles. Since the particle motion was already implemented in the TEAPOT library, the spin 

propagators were developed after the Decorator pattern (Gamma, Helm, Johnson, and Vlissides, 

1995) augmenting the TEAPOT tracking algorithms with the SPINK approach as shown in 

Figure 45.  

    The SPINK program (Luccio, 1995) was originally written for the RHIC project at 

Brookhaven National Laboratory and employed for years to study the behavior of polarized 

protons in all stages of the accelerator complex. SPINK used a composite approach including the 
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second order maps of the orbital module and additional spin matrices rotating a spin in each 

accelerator element. This approach had the advantage of very high computational speed. 

However, the second order truncation of the orbit module introduced serious constraints for 

accurate long-turn simulation studies of the new High Energy Physics experiment aiming to 

measure an electric dipole moment (EDM) at unprecedented level of 10-29 e.cm. Therefore, the 

integration of the SPINK approach and TEAPOT symplectic tracking engine represented a 

natural and perfect solution and was implemented by the EDM team (Lin et al., 2009).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 45: Integration of the TEAPOT and SPINK algorithms based on the combination of the 
Mutable Class and Decorator patterns 

 
 
Accelerator Propagator Description Format 
 
    The variety and evolution of accelerator approaches suggested that an optimal program 

interface should be built as the combination of compact dynamic scripts and large well-

structured input files containing the description of accelerator elements and computational 

algorithms. Initially, the UAL environment used only accelerator description files and the 

configuration of corresponding propagation algorithms was directly specified in user scripts. 

Eventually, the accumulated experience with multiple applications was transformed into the 

definition of a new specification, Accelerator Propagator Description Format (APDF), 
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complementing accelerator files (such as SXF or ADXF) with the description of accelerator-

algorithm associations (see Figure 46).  

 

 

 

 

 

 

Figure 46: The configuration of the UAL propagator based on the SXF and APDF files 

    Technically, the APDF format formalized the Mutable Class configuration mechanism with 

the explicit specification. The structure of the APDF file (Malitsky and Talman, 2006) was 

designed around two XML elements: Propagator and Link. The Propagator represented a 

heterogeneous hierarchical structure of the Mutable Class instances maintaining element-

algorithm associations. The Link statement defined these associations using the following 

attributes:  

x types: regular expression for selecting accelerator nodes with specified element types, 

e.g., “quadrupole|sextupole” 

x elements: regular expression for selecting accelerator nodes with specified design names, 

e.g., “q1|q2” 

x algorithm: full class name of the associated propagator, e.g., “TEAPOT::MltTracker” 

Despite the simplicity of the XML schema, the APDF description addressed the wide spectrum 

of applications ranging from small tasks to full-scale realistic beam dynamic studies 

encompassing heterogeneous algorithms and special effects. For example, Listing 18 shows the 
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<propagator id = “teapot” ring = “rhic” > 
   <link algorithm = ”TEAPOT::DriftTracker” types = “default” /> 
   <link algorithm – “TEAPOT::SectorTracker” types = “sector” /> 
   <link algorithm =  “TEAPOT::DriftTracker” types = “marker|drift|[vh]monitor|monitor” /> 
   <link algorithm = “TEAPOT::DipoleTracker” types = “sbend” /> 
   <link algorithm = “TEAPOT::MltTracker” types = “quadrupole|sextupole|multipole|[vh]kicker|kicker” /> 
   <link algorithm = “TEAPOT::RFCavityTracker” types = “rfcavity” /> 
</propagator> 

<propagator id = “mia” ring = “rhic” > 
   . . . 
   <link algorithm =  “TEAPOT::DriftTracker” types = “marker|drift|[vh]monitor” /> 
   . . . 
   <link algorithm = “MIA::BPM” types = monitor” /> 
</propagator> 

APDF-based description of the full-scale TEAPOT tracking engine. The file includes a few lines 

binding the TEAPOT algorithms with element types.  

 
 
   
 
 
 
 

Listing 18: APDF description of the TEAPOT tracking engine 
 
By changing one line and adding a new MIA::BPM propagator, the example can be transformed 

into the Model Independent Analysis (MIA) application for collecting turn-by-turn data from 

beam position monitors (BPMs) as shown in Listing 19: 

 
 
 
 
 
 
 

Listing 19: APDF description of the Model Independent Analysis (MIA) propagator 
 
In this example, MIA::BPM is an application-specific class that collects turn-by-turn data and 

writes them in some common container that is analyzed by the MIA prost-processing library.   

     Adherence to the conventional accelerator type system however introduced serious 

constraints for multiple applications. To resolve this issue, the APDF format added a more 

flexible mechanism for associating propagation algorithms with groups of elements using name-

based regular expressions. From the general perspective, elements of these groups can be 

considered as instances of new transient types, Mutable Groups. The approach required the 

corresponding extension of the original Mutable Class pattern presented in Chapter 3. 
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Specifically, it moved element-mutator associations into the parent class as shown in Figure 47 

and Figure 48.   

 

 

 

 

 

 

 

Figure 47: Class diagram of the Mutable Group variant of the Mutable Class pattern 
 

 

 

 

 

 

 

 

 

 

Figure 48: Object diagram of the Mutable Group variant of the Mutable Class pattern 
 

    In the new variant, elements (e.g., Markers) aggregated a pointer to a base class of element-

specific mutators and downcasted it to the appropriate type (e.g., MarkerMutator) in the 

process() command.  The Mutable Group extension complicated the configuration procedure 
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with the additional step for selecting groups of elements and building element-mutator 

associations. On the other hand, it significantly facilitated and generalized multiple applications 

by superimposing conventional elements with element-independent physical effects, such as 

space charge and beam-beam effects, or additional functionality, for example, measurement and 

connection with an interactive analysis and visualization toolkit (Fine, Malitsky, and Talman, 

2006).  

    In addition, the name-based selection approach created a powerful platform for building 

efficient online modeling engines using the optimal combination of algorithms associated with 

different accelerator sectors (Malitsky, Satogata, and Talman, 2003).  For example, chromatic 

effects are a typical accelerator feature modeled by many conventional element-by-element and 

differential algebra-based algorithms. The power of these approaches however significantly 

diminished their computation speed, tending to make them unacceptable for online applications. 

With the APDF configuration mechanism, an element-by-element offline engine can be 

optimized by representing regular “arc” sectors with linear matrices (see Listing 20). 

 
 
 
 
 

Listing 20: Fast TEAPOT 
 

The same approach can be applied to other online applications for studying localized dominant 

effects (for example, interaction regions) or employing different approximations within the 

context of machine studies and operations. As a result, the combination of the Mutable Group 

framework together the SXF and APDF specifications created prerequisites for expanding the 

scope of the UAL off-line simulation environment towards online accelerator control systems.  

 

<propagator id = “fast_teaport” ring = “rhic” > 
   . . . 
   <link algorithm =  “TEAPOT::MatrixTracker” elements  = “arc.*” /> 
   . . . 
</propagator> 
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Three-tier model-based control system 
 
    The modern accelerator complexes represent large billion-dollar-scale projects involving the 

design, manufacturing, and operation of a variety of engineering devices and systems, such as 

superconducting and warm high precision magnets, power supplies, RF, vacuum and cryogenic 

systems, diagnostics, equipment and personal protection systems, etc. The integration and 

control of these heterogeneous distributed facilities require advanced control systems. For 

example, the control system of the new National Synchrotron Light Source II (NSLS-II) project 

encompasses 150,000 physical I/O connections and 400,000 computed variables. To provide the 

comprehensive control and automation, this data has to be continuously monitored, correlated, 

archived, and processed in the different feedback systems and model-based high-level 

applications.     

    As in many industrial facilities (OMG, 2005), a typical accelerator control system is built after 

a three tier architecture illustrated in Figure 49.  

 

 

 

 

 

 

 

 

 

Figure 49: Typical three-tier high level application environment 
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In this environment, front end computers controlling physical devices form the bottom tier. 

Middle layer servers, such as Virtual Accelerator or Online Model, maintain common data 

structures and algorithms which are shared and used by an open collection of top tier thick and 

thin client applications. 

     Despite their common conceptual architecture, new accelerator projects routinely started with 

a new development of the model-based system, re-implementing a long list of proprietary and 

non-interoperable applications. This practice was determined by two associated problems: a lack 

of standard accelerator-oriented high-level middleware and, as a result, a lack of a middleware 

framework for hosting the different accelerator models and algorithms. This problem has been 

addressed by the EPICS-DDS project (Malitsky et al., 2009; 2010) extending the two-tier 

architecture of the Experimental Physics and Industrial Control System (EPICS) with the OMG 

Data Distribution Service middleware and the UAL framework.  

    DDS (OMG, 2015) is a new communication paradigm suitable for a range of computing 

environments, from small networked embedded systems to large-scale information backbones. 

At the core of DDS is the Data-Centric Publish-Subscribe (DCPS) standard API connecting 

applications running on heterogeneous platforms via a global distributed data space. Applications 

that want to share information with others can use this global data space to declare their intent to 

publish data that is categorized into one or more topics of interests to participants. Similar, 

applications that want to access topics of interests can also use this data space to declare their 

intent to become subscribers. The underlying DDS middleware propagates data samples written 

by publishers into the global data space, where it is disseminated to interested subscribers. 

    EPICS-DDS specialized the DDS topic-oriented approach in the context of accelerator model-

based control systems. According to the EPICS-DDS uniform scenario, middle layers servers 
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maintained states of topics shared by other servers and high-level clients. The Machine server 

represented a central component of this facility. It maintained a state of magnet strengths. Other 

participants subscribed to the Machine server for synchronizing their containers. Particularly, the 

Online Model and Virtual Accelerator servers recalculated and updated their own states of the 

design optics and turn-by-turn beam data respectively. The UAL framework complemented this 

generic service-oriented interface with the consistent configuration mechanism for building 

project-specific computational engines. For example, Figure 50 shows a structure of the Virtual 

Accelerator (VA) server.  

 

 

Figure 50: Virtual Accelerator server 

    A server front end provides a communication with the Machine server and transferred data 

updates to a corresponding computational backend consisting of the UAL accelerator model and 

propagator. The consistency among accelerator models of distributed servers are determined by 

common initialization data sources, such as accelerator exchange files (e.g., SXF or ADXF) or 

accelerator control databases. Similar to the UAL off-line applications, the accelerator model can 

be extended with new element types and the DDS communication protocol supports these 

extensions with dynamic self-described data types of the DDS Extensible and Dynamic Topic 

Types specification (OMG, 2014).  The propagator part of the computational backend is server-

specific and is configured with the APDF (accelerator propagator description format) files. As a 
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result, EPICS-DDS preserves the extensibility and flexibility of the Mutable Class framework in 

the context of large-scale model-based control systems. 

 

Compiler Construction 

    Similar to computational accelerator physics studies, compiler construction relies on multiple 

collections of algorithms associated with the different phases of the compilation process, 

including context checking, optimization, and code generation. The connectivity of these phases 

is provided by an intermediate model, called Abstract Syntax Tree (AST), representing the 

source program. Chapter 2 overviewed two categories of the AST structures, homogeneous and 

heterogeneous, and discussed advantages of the latter approaches. The example of the 

heterogeneous AST model is shown in Figure 18. It maps programming language constructs, 

such as the if statement, into the corresponding data structures improving modularity and 

cohesion of compiler systems. As shown in Figure 19, the heterogeneous model adds a new 

dimension to a collection of compiler algorithms leading to their two-dimensional view.  This 

type of system is addressed by the Mutable Class pattern (see Figure 30) and the corresponding 

instantiation of this pattern is shown in Figure 51.   

    The section considers the application of the Mutable Class pattern in the context of the 

JastAdd extensible compiler construction system (Hedin and Magnusson, 2003; Hedin, 2010).  

In contrast with alternate projects, JastAdd introduces an ideal platform for such studies. First, its 

highly configurable framework and the Mutable Class pattern are driven by the same conceptual 

objective that facilitates their comparison and integration. Second, JastAdd combines the object-

oriented approach with the aspect-oriented weaving mechanism.  



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Mutable Class-based structure of compiler algorithms (Figure 19) 
 

    The impact of aspect-orientation on compiler development was thoroughly discussed by Wu 

and colleagues (Wu et al., 2006). Adhering to the Visitor pattern as a strategic direction, the 

authors consistently developed an aspect-oriented version based on the elaborated comparison of 

the pattern’s object-oriented features and the AspectJ programming language concepts, such as 

inter-type declarations, pointcut-advice model, aspect field and methods, and aspect inheritance. 

The suggested aspect-oriented approach was proof tested in a case study of the proprietary 
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RelationJava compiler. The JastAdd compiler system generated an extensible Java compiler 

JastAddJ (Eman and Hedin, 2007) elevating the research applications to the next level.  

     The rest of this section is broken down into two parts. First, it gives a brief overview of the 

JastAdd framework and then introduces the new extension based on the Mutable Class pattern. 

JastAdd Framework 

    JastAdd (Hedin and Magnusson, 2003; Hedin, 2010) is a configurable metacompiler 

construction system. For achieving a higher level of extensibility it is designed after a composite 

approach combining the object-oriented mechanism with the proprietary declarative 

implementation of the aspect-oriented concepts. The JastAdd framework and the generated 

compilers are implemented in the object-oriented language Java, but the language grammar and 

related processing algorithms are defined in a collection of the external text files. These files 

represent key components of the extensible mechanism in the JastAdd compilation process 

which is organized as a sequence of the file-processing steps (see Figure 52): generation of the 

parser according to the context-free grammar, translation of the abstract grammar file, building 

the AST classes from the integration of the declarative and imperative behaviors, and compiling 

a source program.  

     In JastAdd, a parser is generated with external tools, the usual choice being one of two open-

source parser generators: JJTree and Beaver. Both tools work according to a similar scheme. 

They read files with the context-free grammar of the compiling language and generate a Java 

class that associates the grammar production rules with the construction of the AST nodes. This 

tree-building mechanism is integrated with the JastAdd framework by implementing the 

corresponding interface of the AST classes. The parser generators do not impose any constraints 

on the AST implementation and the actual structure of the abstract syntax tree is defined in the 
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additional abstract grammar .ast file.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 52: The three steps of the JastAdd compilation process: (a) building a parser, (b) building 
the AST classes, (c) compiling a source program 
 
    The context-free and abstract grammars outline only the backbone of the abstract syntax tree. 

Its implementation, behavior and extensions are defined in other external .jrag and .jadd files. 

Each file, .jrag and .jadd, represents the particular crosscutting functionality (or aspect) of the 

AST-oriented operations, such as name analysis, type checking, and others. During the 

generation of the AST classes, JastAdd processes all these files and inserts the fields and 

methods into the appropriate nodes. The two types of these files correspond to the two types of 

node behaviors: declarative and imperative.  

   The declarative behavior is specified in .jrag files and includes the inter-type declarations 

written in Reference Attributed Grammars (RAG). The RAG language uses a slightly extended 

and modified variant of Java semantics. Each class consists of a list of attribute declarations, 

method declarations, and equations. Attribute declarations are written like field declarations, but 
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aspect PrettyPrint { 
 
  … 
 
// dump the AST to standard output 
 
public String Program.dumpTree() { 
    StringBuffer s = new StringBuffer(); 
    for(Iterator iter = compilationUnitIterator(); iter.hasNext(); ) { 
      CompilationUnit cu = (CompilationUnit)iter.next(); 
      if(cu.fromSource()) {  
        s.append(cu.dumpTree()); 
      } 
    } 
    return s.toString(); 
  } 
 
 public void ASTNode.dumpTree(StringBuffer s, int j) { 
    for(int i = 0; i < j; i++) { 
      s.append("  "); 
    } 
    s.append(dumpString() + "\n"); 
    for(int i = 0; i < getNumChild(); i++) 
      getChild(i).dumpTree(s, j + 1); 
  } 
… 
} 

with additional modifiers. In the resulting tree, all attributes of .jrag files are included in the 

corresponding AST nodes and complimented with the public access methods. 

    The .jadd files encapsulate the imperative code of the node-specific algorithms. In the context 

of the Visitor pattern, each file corresponds to the concrete Visitor addressing the particular task. 

The .jadd files use the conventional Java syntax and contain a list of visit-like methods 

associated with the different AST nodes. For example, Listing 21 shows an extract of the 

PrettyPrint.jadd file with a collection of the AST dumpTree methods.  

 

 

 

 

 

 

 

 

 

Listing 21: Extract of the PrettyPrint.jadd file with the PrettyPrint aspect. 

In accordance with the aspect-oriented terminology, this file represents the JastAdd-based aspect 

for printing of the AST structure. Since JastAdd weaves the .jadd file into the AST classes, the 

implementation of the aspect methods takes into account the AST class hierarchy. The weaving 

process is scalable and can be simultaneously applied to many other aspects, such as type 

checking, code generation, and others. 

     The JastAdd system was applied to build the full-scale extensible Java compiler JastAddJ 
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(Ekman and Hedin, 2007). According to the benchmark results, it outperformed other extensible 

Java compilers, like Polyglot and JaCo and was only within a factor of three slower than Javac, a 

standard compiler in Sun JDK. Additionally, the implementation of the JastAddJ compiler 

demonstrated and confirmed the extensibility mechanism of the JastAdd system.  This JastAdd 

extension mechanism however is static and does not resolve the same run-time issues associated 

with the aspect-oriented approach. Initially separated in the different files, the JastAdd aspects 

are eventually merged and disappear into the huge monolithic AST classes preventing its run-

time interchange and extension.  

Mutable Class-based JastAdd Extension 

     According to the Mutable Class approach, each node of the AST is associated with the 

corresponding class type which maintains a pointer to the AST Node Algorithm instance. The 

AST traversing procedure does not access this instance directly and delegates the request via the 

AST process method. Drawing an analogy with the Visitor pattern, the Mutable Class approach 

replaces the Visitor run-time selection mechanism with prior binding. Figure 53 illustrates this 

delegation scheme on the example of the AST Program class.  The algorithm for processing 

objects of this class is already selected and connected with ProgramMutator by some external 

procedure.  

    The extra level of indirection in the Mutable Class approach brings flexibility to the overall 

framework. According to the aspect-oriented terminology, the Mutator serves as a joint point 

between the extent of the AST nodes and the woven algorithm. The advantage of this scheme is 

especially visible in multi-type models like the heterogeneous AST structures. Continuing the 

analogy with the Visitor pattern, one can consider the registry of algorithms as an extensible 

alternative variant of the Visitor classes. 
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Figure 53: The delegation scheme of the algorithm invocation in the AST program node based 
on the Mutable Class approach. 
 
    The collection of algorithms can be dynamically changed in many different ways. Two of 

them are illustrated in Listing 22. In the first example, the algorithm of the MethodAccess node 

has been replaced with some local version. As shown in Figure 53, the Mutable Class delegation 

scheme does not require the implementation of all types in the algorithm hierarchy and the 
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  // Example 1: Replacing algorithm of the MethodAccess node  
 
    dumptree.AlgorithmRegistry dtRegistry = dumptree.AlgorithmRegistry.getInstance(); 
 
    // replace or add algorithm for the corresponding node type 
    dtRegistry.getAlgorithms().put("MethodAccess", new MethodAccessAlgorithm () { 
        public void process(MethodAccess ma, Object probe){  
            StringBuffer s = (StringBuffer) probe; 
            s.append("\n *** "); 
            s.append(ma.getClass().getName()); 
            s.append(" - New method access algorithm \n\n"); 
        } 
    });    
 
    // connect algorithms with the corresponding node types 

    MutatorLinker.getInstance().join(dtRegistry)   

    // define the propagated object (probe) 
    StringBuffer probe1 = new StringBuffer(); 
 
    // propagate it through AST 
    program.process(probe1); 
     
    // postprocess the probe 
    System.out.println(probe1.toString());        
 
    // Example 2: Applying a new collection of algorithms 
     
    NewAlgorithmRegistry myRegistry = NewAlgorithmRegistry.getInstance(); 
               
    // connect algorithms with the corresponding node types 
    MutatorLinker.getInstance().join(myRegistry); 
     
    // define the propagated object (probe) 
    int[] probe2 = new int[1]; 
    probe2[0] = 0; 
     
    // propagate it through AST 
    treePrinter.program.process(probe2); 
     
    // postprocessed the probe 
    System.out.println(“number of nodes = " + probe2[0]);    
 
                                                                                                                 

original set of algorithms can be augmented with the new entries for more precise processing of 

particular nodes.  In the same way, the collection of algorithms can be extended to support new 

AST classes because of the evolution of the language grammar and constructs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Listing 22: Two examples illustrating the run-time weaving mechanism of the Mutable Class 
approach.  
 
The second example shows the application of the new collection of algorithms to the same AST 

structure. Rebinding of processing algorithms is done with the single method of MutatorLinker. 

As a result, the different phases of compilation procedure can be dynamically loaded and 

combined in the boundary of the common application.    

     The integration of the Mutable Class approach with the JastAdd framework was natural and 

did not require any changes in the existing classes (Malitsky, 2008). The JastAdd compilation 
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process was extended with two steps:  implementation of the Mutable Class delegation scheme 

and refactoring the JastAdd files with the imperative code into the reusable collections of the 

corresponding algorithms.  The Mutable Class delegation scheme (see Figure 53) is based on the 

AST Mutator classes and requires the additional process methods in the nodes of the AST 

structure. The hierarchical tree of AST Mutators was automatically generated from the abstract 

grammar .ast file. Following the JastAdd procedure, the propagate methods of the AST nodes 

were defined as the declarative behavior in file .jrag file and woven in the subsequent step. In the 

new scheme, files with the imperative code were not included in the weaving step and were 

instead replaced with the run-time libraries. As a result, the approach added run-time dynamics 

to the compiler implementation. First, it facilitated the interchange, comparison and composition 

of the third-party extensions. Second, it allowed the combination of different compiler phases 

into a single application.  

 

Summary 

    The chapter addresses the second and third research questions of the dissertation. First, it 

demonstrates reusability of the Mutable Class pattern in the context of two application domains:  

computational accelerator physics and compiler construction. Moreover, the corresponding 

applications were implemented in two programming languages, C++ and Java. Second, these 

studies explore the scalability boundary of the pattern from the perspective of the application 

architecture and computational infrastructure.  As shown in this chapter, the Mutable Class 

model became a core part of the Unified Accelerator Library (UAL) framework employed in 

various types of application programs and deployed on parallel clusters and three-tier distributed 

infrastructure. 
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Chapter 5 
 

Conclusions, Recommendations, and Summary 
 
 
 
 

Conclusions 

    The dissertation proposed a new approach, Mutable Class, for processing heterogeneous 

models and provided a comprehensive study addressing three research topics: formalization of 

this approach as a design pattern, validation of its reusability in the context of two application 

domains, and analysis of the scalability boundary of pattern-based applications including 

distributed three-tier systems. 

    After the first publication of the book “Design Patterns: Elements of Reusable Object-Oriented 

Software” (Gamma, Helm, Johnson, and Vlissides, 1995), the catalog of software design patterns 

has accumulated numerous solutions spanning multiple categories of software design topics. The 

integrity and consistency of this collection has been determined by a standard format. The 

dissertation followed the formal procedure and presented the Mutable Class pattern through a 

sequence of required sections: intent, motivation, applicability, structure, and others. The 

corresponding description clearly identified its relationship with the Visitor pattern, addressing 

the same intent and motivation. The Visitor pattern, however, introduced a serious limitation by 

freezing the class hierarchy of application. This limitation was explicitly recognized in the 

pattern specification (Gamma, Helm, Johnson, and Vlissides, 1995). Therefore, the dissertation 

thoroughly analyzed this issue in the context of dedicated extensions of the Visitor pattern and 

showed that it cannot be resolved within the Visitor framework. As a result, the Mutable Class 

pattern introduced a new approach based on the Class model of the UML specification (OMG, 
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2011). Technically, it augmented the Class model with the Strategy pattern, implementing the 

mutation mechanism for interchangeable operations.  According to the standard outline of the 

pattern description, this composite approach was unambiguously expressed with the UML class 

and interaction diagrams, demonstrated with a sample code, and elaborated with implementation 

aspects. 

    The idea of the Mutable Class pattern was introduced in the context of the framework of 

Unified Accelerator Libraries (Malitsky and Talman, 1998), addressing actual applications of 

computational accelerator physics. UAL was designed to establish a universal platform for 

modeling existing and future accelerator projects with an open and configurable set of 

accelerator algorithms. The significant scope of this environment provided an excellent testbed 

for the incremental development and validation of the Mutable Class pattern. Moreover, this 

approach boosted the development of new types of simulation studies, such as insertion and 

analysis of new physical devices, integration of multiple effects, consideration of new categories 

of observables propagated by algorithms, and extension of algorithms for selected groups of 

heterogeneous elements. The corresponding applications were implemented in multiple 

accelerator projects and presented at various conferences and workshops. 

    The accumulated experience with accelerator tasks confirmed the extensibility solution of the 

Mutable Class pattern and encouraged further exploration within other application domains, such 

as 3D computer graphics and compiler construction. Open Inventor (Wernecke et al., 1994; 

Heck, 2010) is one of major scientific visualization toolkits establishing a de facto standard of 

the 3D scene graph model and application programming interface. Analysis of its source code 

revealed a proprietary mechanism that was closely related with the Mutable Class approach for 

processing type-specific algorithms. Therefore, the dissertation considered the implementation of 
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the Mutable Class pattern in the context of the compiler construction domain, particularly, the 

JastAdd metacompiler construction system (Hedin and Magnusson, 2003; Soderberg et al., 

2013). In contract with the Open Inventor toolkit, JastAdd introduced a solution designed after 

the aspect-oriented programming (AOP) paradigm. According to this approach, algorithms and 

extensions of data models were defined as aspects and merged with object-oriented data models 

using an aspect-oriented compiler. The approach, however, was static leading to composite 

monolithic classes. The Mutable Class pattern resolved this issue by bringing the run-time 

mechanism for managing the JastAdd aspects. In addition, this project highlighted the 

relationship between the Mutable Class pattern and the AOP approach. 

     The final research topic was dedicated to the scalability analysis of the Mutable Class pattern. 

Being a core part of the UAL framework, the pattern was challenged in different projects and 

settings. The initial applications addressed immediate requirements of modern accelerator 

facilities, such as RHIC and LHC, for evaluating effects of new physical devices. These studies 

eventually accumulated major accelerator libraries and numerous proprietary algorithms into a 

common integrated environment. In turn, this environment triggered the development of realistic 

beam dynamic models encompassing multiple physical effects and dynamic multi-stage 

processes. The scale of studies, especially space charge simulations with millions of particles, 

required significant computational resources. The Mutable Class pattern addressed this demand 

by providing a flexible mechanism for mixing conventional and parallel algorithms associated 

with different types of elements of the same model. This approach was further developed for 

mixing simulation algorithms with subscribers of third-party visualization and analysis 

toolkits. The success and experience with simulation studies encouraged extending the scope of 

the UAL applications with the three-tier distributed accelerator control system. As a result, the 
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Mutable Class pattern was used as a common configuration framework for building the middle 

layer of model-based servers processing different algorithms triggered by operator’s requests or 

changes in control devices.   

 

Recommendations 

    The Mutable Class pattern has been developed as an alternative approach to the Visitor pattern 

to support the evolution and extensions of heterogeneous application models. As described in the 

Review of Literature, the Visitor ecosystem encompasses multiple application domains, such as 

compiler construction and 3D computer graphics. Therefore, it will be important to consider the 

Mutable Class pattern in the context of the next versions of existing Visitor-based toolkits or new 

Visitor-oriented projects.  

    This Visitor-to-Mutable Class transition will facilitate the consolidation of accumulated legacy 

third-party applications and bring a consistent mechanism for the development and configuration 

of new extensions. Technically, the Mutable Class framework can be integrated after the Adapter 

pattern (Gamma, Helm, Johnson, and Vlissides, 1995). The corresponding approach is 

comprehensively described in Results within the Mutable Class-based extension of the JastAdd 

metacompiler construction system. According to this example, the node interface of the original 

model needs to be extended with the process () method associated with the Mutable Class 

pattern. Then, each heterogeneous node can be updated to implement this method or extended 

with the corresponding specializations. In the case of the JastAdd application, the development 

of many extensions was automated by reusing the JastAdd aspect-oriented compilation 

procedure. As a result, the Mutable Class pattern augmented the original static approach with the 

run-time mechanism for interchanging different compilation phases.   
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    The relationship of the Mutable Class pattern with the Aspect Oriented Programming (AOP) 

paradigm highlighted another topic associated with the further development of the Mutable Class 

run-time mechanism with the AOP conceptual model, including the implementation of Aspects, 

Pointcuts and other major concepts. This direction will approach three tasks. First, it can 

significantly enhance the upgrade of the Visitor-based toolkits with a more consistent framework 

for managing run-time extensions. Next, it can facilitate composite studies described in the 

Results chapter in the context of computational accelerator physics projects. Moreover, 

corresponding integrated models can be further generalized for joining several intra- and inter-

domain libraries or toolkits.  Finally, the Mutable Class pattern can be considered for deriving a 

generic aspect-oriented reference model bringing run-time mutability to object-oriented 

applications.  

    Recently, the processing of heterogeneous models with multiple algorithms becomes 

especially actual in the context of large-scale data-intensive computational platforms driven by 

requirements of industrial and scientific applications. One of them, SciIO1, was proposed to 

address several major research themes defined in the Working Group Report of the Accelerator 

Scientific Knowledge Discovery (ASKD) workshop (2013): 

1. knowledge acquisition, management, and sharing 

2. rapid knowledge-based response and decision making mechanisms 

3. data and knowledge fusion 

4. dynamic resource collection, discovery, allocation, and management 

5. composition and execution of end-to-end scientific processes 

6. human computer interaction 

7. trust and attribution 
                                                           
1 Malitsky, N. (2015). Assessment of the Spark Approach for NSLS-II. Computational Science Center Seminar, BNL 
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This list was compiled from 21 science drivers including high energy physics and light source 

facilities, materials genome, and others. The SciIO project aims to facilitate the steering of 

efforts by providing an integrated framework for developing and composing many-to-many 

associations between multiple processing algorithms and heterogeneous data sources. The 

proposed approach uses the integration concept from two angles: conceptual and technical. 

Within the conceptual view, the platform aims to provide a common data science environment 

for building a path from data to information to knowledge as shown in Figure 54.  

Figure 54: Knowledge discovery process model 

The diagram only outlines an abstract sketch of the knowledge data discovery path without 

describing the complexity of this topic. In fact, there are a variety of different knowledge 

discovery process models in industrial (Mariscal, Marban, and Ferndez, 2010) and scientific 

(DOE ASCAC, 2013) application domains. The scope and scale of their implementation 

introduce a serious technical challenge and require significant resources. Therefore, the project 

endorses the integration approach built around a Spark programming model (Zaharia, 2013). In 

contrast with existing data management and analytics systems, this model provides a consistent 

framework for in-situ processing of various algorithms with a variety of data sources. For 

example, Spark already supports SQL engines, machine-learning techniques, graph-based 

algorithms and several relational and NoSQL databases. Therefore, the SciIO project proposes to 
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extend the Spark ecosystem with the heterogeneous data of experimental facilities and new types of 

algorithms for implementing different phases of the knowledge discovery path (see Figure 55). Recently, 

this approach has been included in the DOE SBIR proposal (Pazandak, 2015) that combines the scopes of 

scientific-oriented facilities and emerging Industrial Internet of Things (IIoT) applications.  

Figure 55: Spark-based integrated platform 

    In order to provide coverage of a broad set of applications, the design of the SciIO integrated 

platform is adhered to a generic data model of the latest version of the Hierarchical Data Format 

(HDF5) that has become a de facto standard for a wide range of application domains (HDF, 

1997-2015). The HDF5 model is based on four primary concepts: multi-dimensional datasets, 

user-defined datatypes, attributes for containing metadata information, and groups for 

composing a collection of datasets into the hierarchical structures. As mentioned above, Spark 

already supports several important categories of applications including graph algorithms. For 

example, the GraphX module introduces the highly optimized implementation of the property 

graph based on the three distributed collections: VertexRDD, EdgeRDD, and EdgeTriplet. This 
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property graph model, however, does not provide an efficient implementation of hierarchical tree 

algorithms. Therefore, SciIO aims to add a new module with the TreeRDD collection of key-

value pairs with values maintaining branches of heterogeneous trees.  

    According to the Visitor and Mutable Class patterns, the processing of heterogeneous trees 

with multiple families of algorithms relies on the run-time configuration mechanism that needs 

to be controlled from the Spark client application. This type of interface is not supported by the 

Spark programming model and requires the development of corresponding extension.  Moreover, 

this requirement highlights a conceptual issue and its TreeRDD-based solution can be considered 

as a prototype for advancing the Spark programming model with the next level of flexibility 

expected by scientific-oriented applications.  On the other hand, the Spark-based applications 

introduce another conceptual issue affecting the Mutable Class pattern. Specifically, new data-

intensive applications consistently move from structured models towards semi-structured and 

unstructured datasets. As a result, corresponding run-time configuration mechanisms of model-

algorithm associations require more flexible variants, like Mutable Group (see Figure 48), or 

new solutions. 

 

Summary 

    The dissertation introduced a new design pattern, Mutable Class, to support the processing of 

large-scale heterogeneous data models with multiple families of algorithms. The pattern captures 

two fundamental concepts: heterogeneity (of data models) and mutability (of associated 

processes). As a result, it addresses multiple applications. Particularly, the dissertation explored 

this design pattern in several application domains, such as computational accelerator physics, 

compiler construction, and 3D computer graphics. The analysis showed that all these 
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applications can be considered from the perspective of a heterogeneous tree-based data model 

and a two-dimensional view of processing algorithms. The first dimension of this view is 

associated with the different tasks of algorithms. For example, in the context of compiler 

construction, it corresponds to the different phases of a compilation process, such as lexical 

analysis, parsing, semantic analysis, optimization and code generation. The second dimension is 

induced by the data types of heterogeneous application models. For example, in compiler 

construction, data types represent different nodes of Abstract Syntax Tree, such as a program, 

block, if statement, and others. According to the two-dimensional view of algorithms, data-

algorithm associations need to be dynamically changed in complex multi-phase applications. 

This requirement is not explicitly supported by modern programming language models and 

represent an important target of multiple software engineering approaches.  

    The dissertation considered two major approaches to address this problem: the Visitor pattern 

and the aspect-oriented programming paradigm. The Visitor pattern slices a two-dimensional 

matrix of algorithms into type-specific collections of type-associated algorithms and implements 

these collections with separate classes. As a result, the pattern provides a consistent mechanism 

for interchanging type-specific algorithms. The approach however introduces a serious limitation 

by freezing the class hierarchies of application models. The aspect-oriented programming (AOP) 

paradigm brings new ideas addressing similar issues from a different perspective. Particularly, it 

augments the object-oriented model with a weaving mechanism for inserting structural and 

behavioral changes across heterogeneous components of conventional (not-aspect-oriented) 

programs. The dissertation analyzed two influential implementations of the AOP approach: 

AspectJ and Spring AOP.  AspectJ is an original aspect-oriented Java extension developed by the 

authors of AOP to validate and endorse the new programming paradigm. This implementation, 
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however, is based on a compiler that merges the aspect-oriented declarations into the Java byte 

code. Spring AOP extends the AspectJ static approach with a run-time mechanism based on the 

Interceptor and Proxy patterns. The mechanism addresses enterprise-level applications, but 

introduces a significant overhead, preventing its integration in the context of fine-grain 

application models, such as abstract syntax trees or scene graphs. 

    The Mutable Class pattern represents a composite solution combining the best features of both 

the Visitor pattern and the AOP paradigm. Conceptually, it is designed as an extension of the 

object-oriented class model by adding the mutability concept. From this perspective, the pattern 

is related to the AOP paradigm, augmenting the inheritance and composition mechanisms with a 

weaving procedure for changing data-algorithm associations. On the other hand, this procedure 

does not introduce any overhead associated with the AOP paradigm and can be directly applied 

within the existing object-oriented applications and approaches. As a result, it preserves the run-

time behavior of the Visitor pattern. Technically, the Mutable Class pattern replaces the Visitor 

monolithic interface with extendable registries of operations and adds a run-time linking step 

serving as a lightweight weaving mechanism for connecting objects of processed models with 

the selected registry of operations. This additional step is fully consistent with the design pattern 

methodology and can be considered as the extra level of indirection improving coupling and 

cohesion metrics of the object-oriented applications. 

     The dissertation provided a formal description of the Mutable Class pattern and evaluated its 

applicability and value in the context of two application domains: computational accelerator 

physics and compiler construction. Historically, the idea of the Mutable Class pattern was 

introduced for building an open simulation environment addressing multiple tasks of accelerator 

studies (Malitsky and Talman, 1998).  As a result, the pattern became a core part of the Unified 
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Accelerator Libraries (UAL) framework that integrated major accelerator approaches, numerous 

extensions, and applied to several accelerator projects, such as Relativistic Heavy Ion Collider 

(RHIC) at Brookhaven National Laboratory (BNL), Cornell Electron-positron Storage Ring 

(CESR), Large Hadron Collider (LHC) at the European Organization for Nuclear Research 

(CERN), the Spallation Neutron Source (SNS) accumulator ring at the Oak Ridge National 

Laboratory, and others. The applications challenged and confirmed the approach within different 

contexts and infrastructures ranging from task-specific extensions to facility-wide online model-

based control systems. Moreover, the Mutable Class pattern facilitated the development of a new 

direction in accelerator computational studies involving the integration of multiple physical 

effects.  

     Following the design pattern methodology, the assessment of the Mutable Class model 

required another vertical application domain for testing its generalization ability. Therefore, the 

dissertation extended the scope of the pattern analysis with the JastAdd extensible compiler 

construction system. For archiving a higher level of extensibility, JastAdd implemented its own 

variant of the aspect-oriented weaving mechanism and represented a principally new platform for 

these studies. Similar to the AspectJ compiler, the JastAdd extension mechanism was static, 

leading to the huge monolithic classes that merged multiple processing algorithms with the 

application model. The Mutable Class pattern enhanced this approach by replacing these classes 

with dynamic associations and providing run-time support of their interchange and composition 

with the third-party extensions.   

    The Mutable Class pattern targeted a fundamental topic of software engineering, the evolution 

of type systems and associated algorithms. In the spirit of the design pattern methodology, it 

highlighted the essence of a problem and provided the corresponding solution addressing 
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immediate practical applications. As a result, this approach and associated concepts can be, and 

need to be, further developed in the context of new tasks and technologies.  The development of 

emerging technologies is driven by dramatic increases in multiple V’s (Volume, Velocity, 

Variety, Value, and Veracity) of Big Data. Moreover, the Variety is becoming one of the most 

challenging requirements of new applications. This topic is directly related to major aspects of 

the Mutable Class pattern.  New data models, such as heterogeneous information networks (Sun 

and Han, 2012), and large-scale computing platforms, like Spark (Zaharia, 2013), extend the 

context of this pattern and raise the demand for future studies.   
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Appendix A: ISO/IEC 25010 Product Quality Model (2011) 

Characteristics Sub-characteristics Definition 
Function suitability  degree to which a product or system provides functions that meets 

stated and implied needs when used under specified conditions 
 function 

completeness 
degree to which the set of functions covers all the specified tasks 
and user objectives 

 function 
correctness 

degree to which a product or system provides the correct results 
with the needed degree of precision 

 function 
appropriateness 

degree to which the functions facilitates the accomplishment of 
specified tasks and objectives 

Performance efficiency  performance relative to the amount of resources used under stated 
conditions 

 time behavior degree to which the response and processing times and throughput 
rates of a product or system, when performing its functions, meet 
requirements 

 resource utilization degree to which the amounts and types of resources used by a 
product or system, when performing its functions, meet 
requirements 

 capacity degree to which the maximum limits of a product or system 
parameter meet requirements 

Compatibility  degree to which a product, system or component can exchange 
information with other products, systems or components, and/or 
perform its required functions, while sharing the same hardware or 
software environment 

 co-existence degree to which a product can perform its required functions 
efficiently while sharing a common environment and resources 
with other products, without detrimental impact on any other 
product 

 interoperability degree to which two or more systems, products or components can 
exchange information and use the information that has been 
exchanged 

Usability  degree to which a product or system can be used by specified users 
to achieve specified goals with effectiveness, efficiency and 
satisfaction in a specified context of use 

 appropriateness 
recognizability 

degree to which users can recognize whether a product or system 
is appropriate for their needs 

 learnability degree to which a product or system can be used by specified users 
to achieve specified goals of learning to use the product or system 

 operability degree to which a product or system has attributes that make it 
easy to operate and control 

 user error 
protection 

degree to which a system protects users against making errors 

 user interface 
aesthetics 

degree to which a user interface enables pleasing and satisfying 
interaction for the user 

 accessibility degree to which a product or system can be used by people with 
the widest range of characteristics and capabilities 

Reliability  degree to which a system, product or component performs 
specified functions user specified conditions for a specified period 
of time 

 maturity degree to which a system, product or component meets needs for 
reliability under normal operation 

 availability degree to which a system, product or component is operational and 
accessible when required for use 
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 fault tolerance degree to which a system, product or component operates as 
intended despite the presence of hardware or software faults 

 recoverability degree to which, in the event of an interruption or a failure, a 
product or system can recover the data directly affected and re-
establish the desired state of the system 

Security  degree to which a product or system protects information and data 
so that persons or other products or systems have the degree of 
data access appropriate to their types and levels of authorization 

 confidentiality degree to which a product or system ensures that data are 
accessible only to those authorized to have access 

 integrity degree to which a system, product or component prevents 
unauthorized access to, or modification of, computer programs or 
data 

 non-repudiation degree to which actions or events ca be proven to have taken place, 
so that the events or actions cannot be repudiated later 

 accountability degree to which the actions of an entity can be traced uniquely to 
the entity 

 authenticity degree to which the identity of a subject or resource can be proved 
to be the one claimed 

Maintainability  degree of effectiveness and efficiency with which a product or 
system can be modified by the intended maintainers 

 modularity degree to which a system or computer program is composed of 
discrete components such that a change to one component has 
minimal impact on the other components 

 reusability degree to which an asset can be used in more than one system, or 
in building other assets 

 analysability degree of effectiveness and efficiency with which it is possible to 
assess the impact on a product or system of an intended change to 
one or more of its parts, or to diagnose a product for deficiencies 
or causes of failures, or to identity parts to be modified 

 modifiability degree to which a product or system can be effectively and 
efficiently modified without introducing defects or degrading 
existing product quality 

 testability degree of effectiveness and efficiency with which test criteria can 
be established for a system, product or component and tests can be 
performed to determine whether those criteria have been met 

Portability  degree of effectiveness and efficiency with which a system, 
product or component can be transferred from one hardware, 
software or other operational or usage environment to another 

 adaptability degree to which a product or system can effectively and efficiently 
be adapted to different or evolving hardware, software or other 
operational or usage environments 

 installability degree of effectiveness and efficiency with which a product or 
system can be successfully installed and/or uninstalled in a 
specified environment 

 replaceability degree to which a product can replace another specified software 
product for the same purpose in the same environment 
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