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TRACE AND EIGENVALUE INEQUALITIES FOR ORDINARY AND
HADAMARD PRODUCTS OF POSITIVE SEMIDEFINITE

HERMITIAN MATRICES*

BO-YING WANG AND FUZHEN ZHANG*

Dr. Zhang dedicates this paper to his mother who passed away on February 5, 1994.

Abstract. Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real
numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal
submatrix of A. The following trace and eigenvalue inequalities are shown:

tr(AoB) <_tr(AoBa), c_<0or_> 1,

tr(AoB)a_>tr(AaoBa), 0_a_ 1,

A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O,

Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0.

The equalities corresponding to the inequalities above and the known inequalities

tr(AS) <_ tr(AaSa), lal >_ 1,

and

tr(AB) >_ tr(AaSa), I1

_
1

are thoroughly discussed. Some applications are given.

Key words, trace inequality, eigenvalue inequality, Hadamard product, Kronecker product,
Schur-convex function, majorization

AMS subject classifications. 15A18, 15A39, 15A42, 15A45

1. Introduction. Let A be an n n complex matrix. We denote A(A)
(AI(A),... ,An(A)), where the Ai(A)’s are the eigenvalues of A; furthermore, we ar-
range AI(A)

_ _
An(A) if they are all real. As usual, A o B (aijbj) is the

Hadamard (entrywise or Schur) product of A and B when A and B are of the same
size. For real vectors x (xl,...,xn) and y (Yl,...,Yn) with components in
decreasing order, we write x <_ y ifx _< Yi, i 1,...,n; x -<w y ifx is weakly

k kmajorized by y, i.e., V’.= xi _< =1Y, k 1,...,n; and x -< y if x -<w y and
Ein_ n

Xi Ei--1 Yi.
For any scalar a and any n n diagonalizable matrix A with spectral decomposi-

tion A UDU*, where D diag{A(A),... ,An(A)} and U is unitary, we define (for
more general definition, see [HJ, p. 411])

As UDaU Udiag{(A(A))a,. (An(A))a}U

whenever all the (A(A))a’s make sense, and denote

AS(A) (A(A)) A(A).
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1174 B.-Y. WANG AND F. ZHANG

We write A >_ 0 if A is a positive semidefinite Hermitian matrix, and A _> B if A
and B are Hermitian and A- B >_ 0. Throughout this paper we assume that A _> 0,
B >_ 0, a and 3 are positive numbers unless A and B are both positive definite, in
which case a and/ can be any real numbers, and m is a positive integer. It is well
known [HH, Corollary 2.3] that the product of two positive semidefinite Hermitian
matrices is diagonalizable and has nonnegative eigenvalues.

While studying the moments of the eigenvalues of SchrSdinger Hamiltonians in
quantum mechanics, Lieb and Thirring [LT] first showed (in the setting of operators
on a separable Hilbert space) that

(1) tr(AB) _< tr(ABa)

for any real number a >_ 1.
The inequalities in (1) were extended to unbounded operators by Araki [Ar].

Upper and lower bounds for tr(AB)m and tr(AmBm) when m is a positive integer
were obtained by Marcus [M], Le Couteur [C], and proved again by Bushell and
Trustrum [BT]"

n n

E A(A)A’ (B) < tr(AB)m < tr(A’Bm) < E(A)A’(B)n--i-b
i--1 i----1

In a recent paper, Wang and Gong [WG] generalized the above results in terms
of majorization, and proved

log Al/a(A’Ba) - log AI/(AB), 0 < a < ,
as consequences

(3) A1/’(A’B’) "w A1/Z(AB), 0 < a <_ ,
(4) AI/(AZB) - A/(AB), a <_ < O,

A"(AB) - A(A"B"), la[ _> 1,

and

(6)

We are concerned with analogues of these inequalities for the entrywise product.
A simple example shows that an analogue of (2)

n

n--i+l (B)

_
tr(A o B)m

i--1

(10)does not hold in general: take A 0
the inequality

(1,B= 1 and m 2. However,

n

tr(A" o B") <_ E A(A)A(B)
i----1
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is valid, due to the majorization (see, e.g., [H, p. 146], [BS], or [Z])

),(A o B) -<o A(A) o A(B), whenever A, B >_ 0.

Consequently, we always have

A(A" o B") -<o A(A") o A(B’).

It will be seen shortly that

A1/(A o B) <_ AI/Z(A o B)

for any nonzero real numbers a and such that a <_ . In particular

Am(A o B) <_ A(Am o Bm), m=1,2,

In this paper we first give necessary and sufficient conditions for equalities in
(5), and (6) to hold, then show some eigenvalue inequalities for principal submatrices
and matrix powers. Finally we discuss an analogue of the Lieb-Thirring inequality
(1) .for the Hadamard product and present some applications.

2. Trace inequalities for ordinary product. This section is devoted to the
discussion of the Lieb-Thirring inequality (1) and majorizations (5) and (6). Neces-
sary and sufficient conditions for trace equalities to hold, i.e., for -<o in (5) and (6)
to become -, are given.

In the following (and thereafter), A and B are automatically understood to be
positive definite when a (or ) is negative or equal to 0.

THEOREM 2.1. Let A and B be positive semidefinite Hermitian matrices. Then

(8) tr(AB) < tr(AB), whenever [a[ >_ 1,

and

(9) tr(AB)a >_ tr(AB), whenever [a[ < 1.

Equality holds for some value of a if and only if a -1, 0, 1, or AB BA.
Proof. The inequalities follow from (5) and (6) which have appeared in [WG]. We

need consider only the equality case. Sufficiency is obvious if one recalls that A and B
are simultaneously unitarily diagonalizable when A and B are normal and commute.
To prove necessity, noticing that tr(AB) tr(A-B-)- when a < 0, we may
assume that

tr(AB) tr(AB), for some a > 0, c - 1,

and break down the proof into cases (a) a >_ 2, (b) 1 < a < 2, and (c)0 < a < 1.
Equality holds trivially when a 0, A and B are nonsingular.

(a) a > 2. In this case we claim that tr(AB) tr(ABa) implies that AB BA.
If a 2, i.e., tr(AB)2 tr(A2B2), we assume, without loss of generality, that A

is a diagonal matrix with diagonal entries a1,..., an. Then

2 2 2 2 2tr(A2B2) tr(AB)2 E ai IbiJl E aiajlbij E(hi aj) Ibijl O.
i,j i,j i<j

Thus aibij ajbij for every pair of and j, i.e., AB BA.
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For a > 2, we show that tr(AB) tr(AaBa) implies tr(AB)2 tr(A2B2),
which leads to AB BA, as we have just seen.

If tr(AB)2 tr(A2B2), we apply the strictly increasing and strictly Schur-convex

function (see [MO, p. 60, A.8.a]) -i=1 t/2 to the weak majorization A2(AB) -w
)(A2B2), and get

tr(AB)a <
n n. A/2(A2B2) <_ Ai(AaB) tr(AaBa),

i--1 i--1

where the last inequality follows from (5), a contradiction.
(b) 1 < a < 2. In this case we claim that

tr(AB)x tr(AXBx) for all 1 < x < a.

In fact, if tr(AB)x0 = tr(ABxo) for some x0 and 1 < x0 < a, applying the strictly
increasing and strictly Schur-convex function ’i1 t/ to AX(AB)-<w A(AB),
where -w is strict, we have

n

tr(AB) A(AB)
i--1
n

<AI=(A=oBO)
i----1
n

<_ i(AB), (use (5))
i=1

a contradiction. Thus tr(AB)z tr(AXB) is identically zero for 1 < x < a.
Now expanding tr(AB)x -tr(AXBx) as a series of x and using the fact [Co,

pp. 31, 78] that if a series converges to zero on an open interval, then it converges
to zero on the whole real number line, we have tr(AB)x- tr(AZBx) 0, that is,
tr(AB)x tr(ABx) for all real x > 0, particularly for 2, thus AB BA.

(c) 0 < a < 1. We show that

tr(AB) tr(AB), for all a < x < 1.

Otherwise, tr(AB)x > tr(AXB) for some x0 and c < x0 < 1. Applying the
n ---t.

strictly increasing and strictly Schur-convex function i=1e to log A(ABx) -log A(AB) (see [WG, Theorem 6]) when both of A and B are nonsingular, we have

n

tr(ABa) Ai(A"Ba)
i--1
n

<
i--1
n

i--1

tr(AB)

(use (6))

a contradiction. Due to the same reason as in (b), tr(AB) tr(ABx) for all real
x > 0, thus AB BA when A and B are nonsingular. The singular case can be
accomplished by the usual technique of continuity.
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Notice that when two normal matrices commute they are simultaneously unitarily
diagonalizable. The corollary below is immediate.

COROLLARY 2.2. Let A and B be positive semidefinite Hermitian matrices. If
tr(AS) tr(AB), a - -1, 0, 1, then (AB) AB.

3. Eigenvalue inequalities for principal submatrices. For an n n matrix
A, we use Ak to designate any k k principal submatrix of A, 1 <_ k _< n. A result
of Ando [A, Corollary 4.2] yields the following lemma when one notices that the map
A -- Ak is normalized positive linear (see [A] for the definition).

LEMMA 3.1. Let A be an n n positive semidefinite Hermitian matrix. Then

(10) Ak

_
[(Aa)k] l/a, 1 <_ a < c

and

(11) Ak >_ [(A-)k]-1/, 1 _< a < oo.

The following theorem says that A/X[(AX)k] is a monotone vector-valued function
of X.

THEOREM 3.2. Let A be an n n positive semidefinite Hermitian matrix. Then

(12) A/[(A)k] <_ A/[(A)], whenever <_ , O,

with equality if and only if a or A P(Ak H)PT for some H >_ 0 and some
permutation matrix P.

Proof. For 0 < a _< 1, using (10), we have

(A)k <_ [(A)]= (Ak).
For -1 <_ a < 0, using (11), we have

(A)k >_ [(A)k] (Ak).
Thus

(13) (A}) >_ (A)}, 0 < a _< I,

and

(14) (Ak) <_ (Aa)k, --1 <_ a < O.

For a <_ with the same sign, using (13), we get

(A)/ >_ (AS)k, when 0 < a/[ <_ 1,

and

(A)k/’ >_ (A)k, when 0 < /a <_ 1,

in either case

A/[(A)k] <_ A/[(AZ)k].
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If a _< with different signs, using (14),

(AS)k/s <_ (AZ)k, when 1 <_ 3/a < 0,

(A)/ <_ (AS)k, when 1 < all3 < O,

in either case we have

A1/S[(AS)k] <_ A1/Z[(AZ)].
Thus inequality (12) follows immediately.

Now we discuss the equality case in (12). Without loss of generality, we may as-

sume that A lies in the upper-left corner of A, i.e., we partition A as A 6’*
where H is some positive semidefinite Hermitian matrix. We first consider the case
where a 1 or 1 and a . Suppose

A(Ak)

for some s 0, 1. Then

A(A)

for all x - 0 between s and 1, because of (12). Thus we can always find an interval I
between s and 1 on the positive real number line, such that

AX(Ak) A(A)k, x e I,

that is,

tr(A)-tr(Ax)=0, xeI,

which is the same as

tr(BA)x tr(BXAz) 0, x e I,

where B (Iko o ) Hence AB- BA by Theorem 1, which leads to A-- Ak (R) H
as required.

For general a and/ with a </3 and a/3 0, if

,l/S[(AS)k ,l/[(AZ)k],
we rewrite it as

A[(A)] A/Z[(AZ)] )l{[(A’)l’]k}.

The earlier argument yields As (As)k (R) for some/ >_ 0. Thus

A (AS)1/s [(AS)k] 1/s @ (I)I/s Ak @ H,

where H (/)l/s. [’]
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and

COROLLARY 3.3. If A is an n n positive semidefinite Hermitian matrix, then

A(Ak) <_ A[(A")k], a <_ O or l <_ a,

A(Ak) >_ A[(A")k], 0 < a < 1,

with equality if and only if a O, 1, or A P(Ak @ H)PT.
Lemma 3.1 and Theorem 3.2 yield the following corollary.
COROLLARY 34. Let A-- ( A1 A2 > 0 be an n n matrix, and write

\ A. A3 ]

A ( BI B2 ) where A1 and B1 are corresponding k k principal submatricesB B3
of A and An, respectively. Then

/,A <_ B a >_ 1,

A>_B, 0<a<l,

A <_ B1, -1 < a < O,

Equality in each case holds if and only if one of the following conditions is satisfied:
1. a=l;
2. trA trB1;
3. A2 B2 O, i.e., A A A3.
Moreover (2) and (3) are equivalent when a O, 1. Thus (2) is the same as

A B when a l.
A direct computation gives the inequality (Ak)2 <_ (A2)a. However (Ak)3 _< (A3)k

does not hold in general, as the following example shows.
Take A to be the 4-by-4 matrix with (1,1)-entry 2 and 1 elsewhere, and k 2.

Then (A3)2- A2)3 ( 1416 1412 ), which is not positive semidefinite.

It is well known that A o B is the principal submatrix of the Kronecker product
A (R) B lying in the intersections of rows and columns 1, n / 2,..., n2 of A (R) B.
Considering A (R) B in Theorem 3.2 in place of A and noticing that (A (R) B)t A (R) B
for any real number t, we have the following theorem.

THEOREM 3.5. Let A and B be positive semidefinite Hermitian matrices. Then

(15) AI/a(A o B)

_
A1/f(A o B), whenever a <_ 3, a/3 O.

It is immediate that for A, B,..., C positive semidefinite Hermitian matrices

A/"(A" o B o o C) <_ A/(A o B o o C), a <_ , a/3 O.

Taking fl 1, a 1, and 1 in Theorem 3.5, respectively, we get the following
corollary.

COROLLARY 3.6. Let A, B >_ O. Then

A"(AoB)<_(A"oB), a<_Oor a>_l,
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and

AS (A o B) >_ A(AsoBs), 0<a<l.

It is noted in 4 that equality holds in (15) or Corollary 3.6 if and only if A and
B have the structures described in Theorem 4.1 oF a fl 0 in (15) or if a 0, 1
in Corollary 3.6.

4. Trace inequalities for Hadamard product. The following is an analogue
of Theorem 2.1 for the Hadamard product.

THEOREM 4.1. Let A, B >_ O. Then for any real number a

(16) tr(AoB)s<_tr(AsoBs), if a <_ O or 1

and

(7) tr(AoB)s>_tr(Asobs), ifO<a<l.

Equality occurs if and only if one of the following conditions is satisfied:
(i) a=0 orl;
(ii) (AoB)s=AsoBs

(iii) there exists a permutation matrix P such that

A (R) B P[(A o B)@ HIPT

for some H >_ 0;
(iv) there exists a permutation matrix P such that PAPT DA ( 0 ( and

PBPT DB ( ( O,where DA and DB are invertible diagonal matrices of the same

size, and [ are positive semidefinite Hermitian matrices each with the same size
as 0 in the other direct sum;

(v) (A o B)(X o Y) (AX) o (BY) for all n m matrices X and Y, where m is
an integer.

Moreover, (ii), (iii), (iv) and (v) are equivalent when 0, 1.

Proof. The trace inequalities (16) and (17) follow from Corollary 3.6. We need dis-
cuss only the equality case. We assume a - 0, 1, and show that "equality" =(ii)(iii)
(iv)=v(v), (iv)=v(ii), and (v)=v(iv).

Consider the Kronecker product (A (R) B)s As (R) Bs and note that As o Bs is a
principal submatrix of As (R) Bs, consequently of (A (R) B)s, lying in the same position
as A o B does in A (R) B. If tr(A o B)s tr(As o BS), then (ii), equivalently (iii),
results from Corollary 3.4. To obtain (iv), we notice that for any permutation matrix
Q

trQ(A o B)SQT trQ(As o BS)QT

and

tr(QAQT o QBQT)s tr(QAQT)s o.(QBQT)s.

Thus we may assume bll 0 if B 0 and consider the first row of A (R) B (aijB).
allbll appears in A o B; for j > 1 cub11 lies on none of columns 1, n + 2,..., n2. In

other words, if R(A (R) B)RT ( A o.B A2 ) for some permutation matrix R, thenA2 Aa
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aljbll is contained in A2. Applying Corollary 3.4 or by (iii), we have A2 0. Hence
alibi1 0, and alj 0 for j > 1. Interchanging the roles of A and B, we
obtain blj bjl 0 for j > 1 if all 0. Repeating the argument for all bii 0, we
see that for some permutation matrix S

SBST

* * b

SAST

where b,..., b are the nonzero b,,’s and n-k is an (? k)-square positive semidef-
inite Hermitian matrix. Let al,..., as be those of a,..., a which are nonzero, then
we have a permutation matrix P such that

pApT

a 0

0 as
Ot

An-s-t

pBpT

bl 0

0 b8

On--s--t

where bl,..., bs are not equal to zero. (iv) follows. Thus we have proved the implica-
tions "equality" =(ii)=(iii)=(iv).

Direct computations give (iv)=(ii) and (iv)=(v). To see (v)=(iv), we take X A
and Y B in (v). Then (A o B)2 A2 o B2 which results in (iv), as seen.

Going back to Theorem 3.5, we see equality in (15) holds, that is,

A(A’ o B) A’/Z[(A’)/’ o (B)/],

if and only if either a # 0 or A and B have the structures described in the
previous theorem, by applying Theorem 4.1 to As and Ba.



1182 B.-Y. WANG AND F. ZHANG

5. Applications. The Lieb-Thirring inequality (1) may be investigated for a
variety of real-valued matrix functions in the place of the trace function. We consider,
as an example, the matrix function--sum of principal minors. Let Ek(X) denote the

of all the ( nk ) k-square principal minors of the n n matrix X, let Ek(x)sum

denote the kth elementary symmetric function of the row vector x, and let Ck(X)
denote the kth compound matrix of Z. Then (see [MM, pp.18, 24])

(8) Ek(X) trCk(X) Ek(ik(X)).

THEOREM 5.1. Let A and B be positive semidefinite Hermitian matrices. Then

(19) Ek(AB)s <_ Ek(ASBS), la[ >_ 1,

(20) Ek(AB)s >- Ek(ASBS), 1,

(21) Ek(AoB)S <_Ek(ASoBS), a<_O or l <_a,

and

(22) E(A o B)s >_ E(AsoBs), O <_ a <_ l.

Equality holds in (19) or (20) if and only if a -1, O, 1 or the kth compound matrices

of A and B commute, and equality holds in (21) or (22) if and only if a 0, 1, the
rank of As o Ba is less than k, or A and B have the structures described in Theorem
4.1.

Proof. Noting that Ck(XY) Ck(X)Ck(Y)) and applying (18), we have for
> 1,

E AB s trCk AB S

tr(Ck(A)C(B))s

<_ tr(Ck(A))S(Ck(B))s (by Theorem 1)
Ek(ASBS).

Equality holds if and only if Ck(A)C(B) Ck(B)Ck(A). The inequality is reversed
when [a <_ 1.

For the case of the entrywise product and a _< 0 or 1 _< a, we have

E(A o B)s Ek(AS(A o B))
<_ Ek(A(As o BS)) (by Corollary 3.3)
E(As o

Equality occurs if and only if either As(AoB) A(AS oBs) or each term of E(A(AS o

Bs)) vanishes. The former results in the structures of A and B given in Theorem 4.1
when a - 0, 1, and the latter is equivalent to A(As o Bs) containing at least n- k + 1
zeros, that is, to rank(As o Bs) < k. The case 0 _< a <_ 1 is similarly discussed, gl

Remark 1. Theorems 2.1 and 4.1 are obtained if one takes k 1 in the previous
theorem. If k n, then (19) is the identity det(AB)s det(ASBS), and (21)
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becomes det(A o B) <_ det(Aa o Ba), both sides of which vanish when one of A and
B is singular, since rank(A o S) <_ rank(A (R) S) rank(A)rank(S).

Remark 2. Regarding Theorem 3.5, we can also prove, by using a result of Ando
[A, Theorems 10 and 11], that for A, B >_ 0,

(A o B)1/ <_ (An o B)1/ a_</<_-i or l<_a_</.

The inequality above does not hold for all a <_/, a/ : 0, as the following example
shows:

Take a= l/3, l A B ( 2 1)
3

1 1 Then (A1/30 B1/3)3 A o B, since

(169 64)(73 22)det[A o B (A1/3 o B1/3)3] det[ 64 25 22 7 -36 < 0.

In general, (A o B)3 : A3 o B3. However, the inequality (A o B)2 _< A2 o B2 holds,
as seen in [A], [HI, or [Z].

Acknowledgments. Dr. Zhang wishes to thank Professor E. H. Lieb for drawing
his attention to [Ar] and Professor R. A. Horn and the referee for helpful suggestions
and valuable comments.
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