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On the Null Space Structure Associated with Trees and
Cycles

Shaun M. Fallata,1,∗, Shahla Nasserasra,2

aDepartment of Mathematics and Statistics, University of Regina, Regina, Sask. Canada, S4S 0A2

Abstract

In this work, we study the structure of the null spaces of matrices associated with
graphs. Our primary tool is utilizing Schur complements based on certain collec-
tions of independent vertices. This idea is applied in the case of trees, and seems
to represent a unifying theory within the context of the support of the null space.
We extend this idea and apply it to describe the null vectors and corresponding
nullities of certain symmetric matrices associated with cycles.

Keywords:Cycle, eigenvector, multiplicity, null space, Schur complement,
independent vertices, tree, positive semidefinite matrix.
2000 MSC:05C50, 15A18.

1. Introduction

Studying eigenvalues and eigenvectors associated with graphs has long been a
topic of significant interest to both theorists and applied mathematicians (see, for
example, the books [3, 4] or the survey paper [5]).

Our primary objective is to focus on the eigenvectors associated with graphs.
Under various conditions, such as no zero coordinates, we verify interesting prop-
erties on the multiplicities of the corresponding eigenvalues. This idea is not novel
and has been used, to a certain degree, in other works such as [1, 7, 14, 15, 17].
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Here, we consider a unifying approach by utilizing Schur complements, which
seeks to encompass a number of known results along with some new and interest-
ing properties for two families of graphs. It is our hope thatthese ideas presented
here will continue to produce results on the spectra of graphs. The two families
we concentrate on here aretreesandcycles. Both are natural starting points for
investigating spectra of graph type problems, and both havea rich history in this
area, see for instance [2, 8, 12, 14, 15, 17].

We will incorporate the notion of the support of a subspace asa measure of
the “structure” for a subspace (see also [14]), which is formally defined in Section
2. This concept of support along with the incorporation of Schur complements
(discussed in Section 2) leads to some interesting properties. In Section 3, we
apply these techniques to trees and extend them further to the case of cycles in
Section 4.

For integersm,n ≥ 1, the set of real matrices of orderm × n is denoted by
Mm,n, andMn,n is abbreviated toMn. For a given simple (no loops or multiple
edges) graphG onn vertices,S(G) denotes the set of all real symmetric matrices
A = [aij ] ∈ Mn such that fori 6= j, aij 6= 0 if and only if {i, j} is an edge
in G; for eachi = 1, 2, . . . , n, aii is free to be chosen. Using the fact that the
main diagonal ofA ∈ S(G) is free, we need only consider homogeneous linear
systems instead of the conventional eigen-equations (Ax = λx) asA andA− λI
both lie inS(G). For a vertexv in G,N(v) denotes the set of vertices ofG that are
adjacent tov, andNp(v) denotes the set of pendent vertices ofG that are adjacent
to the vertexv. Thus,Np(v) ⊆ N(v), for any vertexv. If i is a pendent vertex
(i.e., |N(i)| = 1), the unique neighbor of the vertexi, is denoted byi′. If L is a
subset of the set of vertices of a graphG, then the graph obtained by deleting all
of the vertices ofL and their incident edges, is denoted byG\L. For a positive
integern, Kn denotes the complete graph (all possible edges) onn vertices.

For α, β ⊆ {1, . . . , n}, we letA[α, β] andA(α, β) denote the submatrices
of A obtained by keeping and deleting rows indexed byα and columns indexed
by β, respectively, where bothA[α, α] andA(α, α) are abbreviated toA[α] and
A(α), respectively. ForA ∈ Mn, the null space ofA is denoted byNul(A), and

the nullity ofA is denoted bydimNul(A). For a vectorx =
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, and for any index setα, we let

x[α] denote the subvector ofx with indices fromα. If L ⊆ {1, 2, . . . , n}, then the
complement ofL in {1, 2, . . . , n}, denoted byLc, is the set{1, 2, . . . , n}\L.

Definition 1. Consider a matrixA ∈ Mn and letL ⊆ {1, 2, . . . , n}. If A[L] is
invertible, then theSchur complementofA[L] in A, denoted byA/A[L], is defined
to be

A/A[L] = A(L)−A[Lc, L]A[L]−1A[L,Lc].

In particular, ifA is symmetric,L = {1, 2, . . . , ℓ} for 1 ≤ ℓ < n, andA is
partitioned as

A =

[

A11 A12

AT
12 A22

]

,

whereA11 is of orderℓ× ℓ and invertible, then

A/A[L] = A/A11 = A22 −AT
12A

−1
11 A12.

Throughout this work, the rows and columns of the matrix obtained by the
Schur complement operation inherit the indexing of the original matrix. The same
applies to the labeling of the vertices of the correspondinggraphs.

2. Null space of graphs

For a given graphG andA ∈ S(G), we intend to provide an upper bound on
dimNul(A), by using Schur complements ofA based on subsets of independent
vertices inG. Let V (G) denote the set of vertices ofG. ForL ⊂ V (G), we let
NL(j) = {s ∈ V (G) : s ∈ N(j) ∩ L}. A subset of the vertices,L, of a graphG
is called anindependent set, if there is no edge between any of the vertices inL.

In this setting, it is conceivable that such bounds could be applied to other
related problems, including determination of, or useful bounds on, the maximum
nullity over allA in S(G). Our idea is based on the adjacency inG, and whileA
is fixed, it is meant to be arbitrary (up to certain conditionson the main diagonal).
In addition, investigating the nullities of symmetric matrices associated with a
graph and with additional constraints on the main diagonal (such as the adjacency
matrix), are of current research interest.

Our study begins, naturally, by investigating combinatorial constraints on the
nullity for a fixed matrix inS(G) upon consideration of an independent set of



vertices. The next result, while natural from a purely matrix theoretic standpoint,
does, in turn, provide interesting insight into the influence that the adjacencies in
G have on the nullity of a matrix inS(G).

Theorem 2.1. Consider a graphG on n vertices and letA ∈ S(G). Suppose
L = {1, . . . , ℓ} is an independent set of vertices inG such thatA[L] is invertible,
then

i. dimNul(A) ≤ n− ℓ,

ii. Ax = 0 if and only if

xi = −
1

aii

∑

j∈N(i)

aijxj , for i ∈ L (1a)

and

A/A[L]x(ℓ) = 0, (1b)

iii. dimNul(A) = dimNul(A/A[L]).

Proof. Observe that (i) follows as a simple consequence of the rank-nullity theo-
rem in basic linear algebra, and the fact thatrankA ≥ rankA[L] = ℓ. Further-
more, sincerank(A/A[L]) = rankA − ℓ, wheneverA[L] is invertible, it follows
that

dimNul(A/A[L]) = n− ℓ− (rankA− ℓ) = n− rank(A) = dimNul(A),

which establishes (iii).

Upon closer inspection of the linear systemAx = 0, we see that ifA ∈ S(G)
is partitioned in the following form, whereA11 = A[L] ∈ Mℓ is diagonal

A =

[

A11 A12

AT
12 A22

]

,

then, fori ∈ L, the ith row of the linear systemAx = 0 is of the formaiixi +
∑

j∈N(i)

aijxj = 0. SinceA11 is invertible,aii 6= 0 for all i ∈ L,

xi = −
1

aii

∑

j∈N(i)

aijxj , for i ∈ L, (2)

and hence (1a) holds. It is useful to note that sinceL is an independent set of
vertices,A[L] is diagonal and is assumed to be invertible. To show (1b), observe



that the(j, k) entry ofAT
12A[L]

−1A12 equals

∑

t∈N(j)∩N(k)
t∈L

ajtatk
att

. (3)

Thus, thejth row ofA/A[L]x(ℓ) is



ajj −
∑

t∈NL(j)

a2jt
att



xj +

n
∑

k=ℓ+1
k 6=j









ajk −
∑

t∈N(j)∩N(k)
t∈L

ajtatk
att









xk. (4)

Let rj denote thejth row of A and letA′ be the matrix obtained fromA by
performing the elementary row operations−

aji

aii
ri + rj → rj , for all i ∈ L and

j = ℓ + 1, . . . , n, with aji 6= 0. Then, thejth row ofA′x is precisely (4). This
holds for allj ∈ Lc, and sinceA′[Lc, {1, . . . , n}]x(ℓ) = 0, thenA/A[L]x(ℓ) = 0.

For the converse, suppose (1a) and (1b) hold. From the partitioned form ofA,
assume

[

A11 A12

AT
12 A22

] [

x1

x2

]

=

[

y1
y2

]

.

From (1a), we havey1 = 0. HenceA11x1 = −A12x2. Using (1b), we have

0 = A22x2 −AT
12A

−1
11 A12x2 = A22x2 −AT

12A
−1
11 (−A11x1) = y2.

For a symmetric matrixA = [aij ] ∈ Mn, the notationΓ(A) is used to denote
the simple graph on vertices{1, . . . , n}, where there is an edge between vertices
i andj (i 6= j) if and only if aij 6= 0; aii is immaterial in the determination of
Γ(A). For a given graphG onn vertices andA ∈ S(G), letL1 be a maximal set
of independent vertices ofG where the corresponding diagonal entries ofA are
nonzero. Apply Theorem 2.1 to obtain the matrixA/A[L1] of ordern− |L1| with
the same nullity as ofA. This process can be repeated until either the resulting
matrix is of order2× 2, and hence has nullity at most two, or the resulting matrix
is of the form

[

0 B
Bt C

]

,

where a maximal set of independent vertices, sayLs with |Ls| = s, is labeled first,
0 ∈ Ms, andC has zero diagonal entries. In the case of trees and cycles, wecan
label the vertices (isolating independent sets) so that theresulting graph at each
step of this method is well-defined, and is in fact of the same type, and therefore,
a similar argument applies on the resulting graph. For example, if T is a tree, then
the vertices ofT can be labeled so that under the conditions of Theorem 2.1,T \L



is a tree, and for anyA ∈ S(T ), the matrixA/A[L] is in S(T \L).

3. Trees

In this section, Theorem 2.1 is applied to the case of trees topresent alter-
nate and elementary proofs for several known results. This is one motivation for
applying our unifying approach with regard to the spectra ofacyclic matrices.

SupposeT is a tree onn ≥ 3 vertices, that is,T is a connected graph onn
vertices with no cycles. LetL1 be the set of pendent vertices ofT , andLi denote
the set of pendent vertices ofT \ ∪i−1

j=1 Lj. Label the vertices ofT so that the
vertices ofL1 come first, and the vertices inLi−1 come before the vertices inLi.
With this labeling, ifA ∈ S(T ), thenA is of the following form where the block
Aij ∈ M|Li|×|Lj| denotes the adjacency of vertices inLi to the vertices inLj

A =











A11 A12 . . . A1k

AT
12 A22 . . . A2k

...
. . .

...
AT

1k AT
2k . . . Akk











.

We call such a labeling apendent labeling. Since eachLi, for i = 1, . . . , k− 1, is
the set of pendent vertices of a tree, all of the diagonal blocksAii, i = 1, . . . , k−1,
are in fact diagonal matrices. The last set of vertices,Lk, obtained from the pen-
dent labeling of a treeT , contains either one or two vertices. Otherwise, there is a
tree withn ≥ 3 vertices where all of the vertices are pendent, which is impossible.
Throughout this work, trees are labeled with the pendent labeling unless otherwise
stated.

Lemma 3.1. Consider a treeT with the pendent labeling and letA ∈ S(T ). If
A[L1] is invertible, then

1. A[Lc
1, L1]A[L1]

−1A[L1, L
c
1] is a diagonal matrix.

2. The diagonal entry ofA[Lc
1, L1]A[L1]

−1A[L1, L
c
1] corresponding to the

vertext of the original treeT is equal to
∑

i∈Np(t)

a2ti
aii

.

Proof.

1. Since a set of pendent vertices is an independent set, Theorem 2.1 can be
applied. On the other hand, ift is a pendent vertex, thent /∈ N(j) ∩N(k)
for anyj, k, j 6= k. This implies that all of the terms in (3) are zero, except
possibly the diagonal entries.



2. The sum
∑

i∈Np(t)

a2ti
aii

is equal to the sum in (3) in the proof of Theorem 2.1,

for j = k.

The next result is a basic consequence of Lemma 3.1 and will bean important
fact needed in this section.

Corollary 3.2. Under the hypotheses of Lemma 3.1, the matricesA/A[L1] and
A(L1) have equal off-diagonal entries. Therefore,A/A[L1] ∈ S(T \L1).

Let A(0) = A, A(1) = A/A[L1], andA(s) = A(s−1)/A(s−1)[Ls] for s =
1, . . . , k − 1. Using Corollary 3.2,A(s) ∈ S(Ts), for eachs ∈ {0, 1, . . . , k − 1},
whereTs is obtained from the treeT by deleting the vertices in∪s

i=1Li. We let
T0 = T .

Lemma 3.3. Suppose a treeT has vertices partitioned asL1, . . . , Lk with the
pendent labeling. If all upper left blocksA(s)[Ls+1] of the Schur complements
A(s), s = 0, 1, . . . , k − 1, are invertible, thendimNul(A) = 0. That is,A is
invertible.

Proof.Consider the equationAx = 0. By repeating the proof of Theorem 2.1 for
eachA(s)[Ls+1], s = 1, 2, . . . , k − 1, we know that all of the entries ofx can be
written as a linear combination of the entries ofx corresponding to the vertices in
Lk. ButLk has either one or two entries. So the last equationA(k−1)x[Lk] = 0
implies that eitherxn = 0, or xn−1 = xn = 0, depending on the size ofLk. By
backward substitution, this implies thatx = 0. Thus,Ax = 0 has only the trivial
solution, which meansA is invertible.

For a vectorx = [xi] ∈ R
n, thesupportof x, denoted bysup x, is the set

of indicesi ∈ {1, 2, . . . , n}, wherexi 6= 0. If S ⊂ R
n is a set of vectors, then

thesupportof S, denoted bysup S, is the set of indicesi ∈ {1, 2, . . . , n}, where
xi 6= 0 for somex ∈ S. It is not difficult to verify that, ifS is a subspace ofRn

andsup S = {1, . . . , n}, thenS must contain a vectorx in which each coordinate
of x is nonzero. Such a vector is called atotally nonzerovector. Our first fact
deals with the case that there is a totally nonzero null vector for a matrix inS(T ).

Theorem 3.4. [14, Thm. 1] For a treeT on n ≥ 3 vertices andA ∈ S(T ), if
sup Nul(A) = {1, 2, . . . , n}, thendimNul(A) = 1.

Proof. Consider a pendent labeling forT and supposex ∈ Nul(A) is a totally
nonzero vector. There is such a vector sincesup Nul(A) = {1, 2, . . . , n}. Using
the pendent labeling, for eachi ∈ L1, theith row of the equationAx = 0 is of the
form aiixi + aii′xi′ = 0. Sincexiaii′xi′ 6= 0, we haveaii 6= 0, so the diagonal



submatrixA[L1] has nonzero diagonal entries, and therefore, it is invertible, and
A(1) = A/A[L1] ∈ S(T \L1) = S(T1), by Corollary 3.2. Sincex is totally
nonzero, repeating the above argument fors = 2, . . . , k − 2, we deduce that each
of the submatricesA(s)[Ls+1] of the Schur complementsA(s), s = 0, 1, . . . , k−2
are invertible, andA(s) ∈ S(Ts), by Corollary 3.2. Moreover, using Theorem 2.1
repeatedly, the entries ofx corresponding to the vertices inL1 ∪ . . . ∪ Lk−1 are
all nonzero scalar multiples of the entries ofLk. SodimNul(A) ≤ |Lk| ≤ 2.
If |Lk| = 1, using the fact thatA is not invertible, the proof is complete. If
|Lk| = 2, then the last system of equations obtained by the above process is
A(k−1)x[Lk] = 0, whereA(k−1) is a2 × 2 nonzero matrix andx[Lk] is a totally
nonzero vector with2 entries. Therefore, the entries ofx[Lk] are multiples of each
other, that isxn−1 = αxn, for someα 6= 0. Thus every entry ofx can be written
as a nonzero scalar multiple ofxn, which impliesdimNul(A) = 1.

See also [14] for additional results making use of the notionof support on the
null space of trees and the corresponding nullities.

According to the previous theorem totally nonzero null vectors forces main
diagonal entries associated with pendent vertices to be nonzero. As an example
consequence, it follows that the (0,1) adjacency matrix of atree can never have a
totally nonzero null vector. In particular, there must exist ani with 1 ≤ i ≤ n such
thatxi = 0 for all null vectorsx. Equivalently, theith standard basis vector must
be in the range of this (0,1) adjacency matrix associated with a tree. Along these
lines, it makes sense to consider thoseA ∈ S(T ) with nonzero main diagonal.
For instance, the subcollection of positive semidefinite matrices inS(T ).

Using Theorem 2.1, restricted to the positive semidefinite case inS(T ) allows
us to recover a known fact which previously relied on rather powerful results (see
also [9]). Recall that a real symmetric matrix ispositive semidefiniteif it has
nonnegative eigenvalues.

Corollary 3.5. SupposeT is a tree onn ≥ 3 vertices. IfA ∈ S(T ) is a positive
semidefinite matrix, thendimNul(A) ≤ 1.

Proof. Let A ∈ S(T ) be a positive semidefinite matrix. It is clear that ifaii = 0,
thenaij = aji = 0, for all j = 1, . . . , n. Therefore, the diagonal entries ofA can-
not be zero (otherwise there would be zero entries corresponding to some edges of
T , which contradictsA ∈ S(T )). This implies thatA[L1] is invertible, and thus,
the Schur complementA/A[L1], is also a positive semidefinite matrix (see [10,
Thm. 7.7.6]). Now, using Theorem 2.1 repeatedly, we havedimNul(A) ≤ 1.

If A is a symmetric matrix with an eigenvalueλ, the algebraic multiplicity
of λ is denoted bymultA(λ). Now that the positive semidefinite case has been
studied, we have the next result as a basic consequence.



Corollary 3.6. Let A ∈ S(T ) with spectrumσ(A) = {λ1, λ2, . . . , λn}. If λ1 ≤
λ2 ≤ . . . ≤ λn, thenmultA(λ1) = multA(λn) = 1.

Proof. The matrixA′ = A − λ1I ∈ S(T ) has eigenvalues0 ≤ λ2 − λ1 ≤
. . . ≤ λn − λ1, so it is positive semidefinite. Therefore, using Corollary3.5,
multA(λ1) = dimNul(A′) = 1. To show thatmultA(λn) = 1, note that the
matrixA′′ = −A+λnI ∈ S(T ) has eigenvalues0 ≤ λn−λn−1 ≤ . . . ≤ λn−λ1,
so it is positive semidefinite, and hence Corollary 3.5 implies the desired result.

It has long been known that the eigenvalues associated with apath are distinct
(see [6]). Recall that apath, Pn, consists of verticesv1, v2, . . . , vn and edges
v1v2, v2v3, . . . , vn−1vn. In fact, it is easy to verify that if1 andn are pendent
vertices ofPn, then for anyA ∈ S(Pn), from the equationsAx = 0 andx1 = 0,
it follows thatx = 0. Hence using null vectors only, we may also deduce that for
anyA ∈ S(Pn), the eigenvalues ofA have multiplicity one (that is, they are all
simple).

Restricting matrices inS(T ) to contain a totally nonzero null vector implies
that the dimension of the null space was at most one. From thiswe were able to
recover some results on the nullities of positive definite matrices associated with
trees.

A natural place to move forward is to consider other graphs with large collec-
tions of independent vertices, such as cycles. However, even for cycles, there exist
matrices with nullity more than one, but they have totally nonzero null vectors.

4. Cycles

A cycleCn consists of verticesv1, v2, . . . , vn and edgesv1v2, v2v3, . . . , vn−1vn,
vnv1. In this section, we review a well known result on the nullityof matrices in
S(Cn). In the case for which all of the diagonal entries ofA ∈ S(Cn) are zero,
the structure of the null vectors ofA ∈ S(Cn) are explicitly described. For the
cases for which all of the diagonal entries are nonzero, or there are both zero and
nonzero diagonal entries, an algorithm is provided that will implicitly determine
the structure of the null vectors. It will be advantageous tointroduce different
labeling schemes on the vertices for each case.

The first type of labeling ofCn, is the usual method of ordering the vertices of
a cycle. That is, they are ordered asv1, v2, . . . , vn, wherev1v2, v2v3, . . . , vn−1vn, vnv1
are the edges ofCn. We call this labeling aconsecutive labeling. The next result
offers a basic upper bound on the nullity of a cycle, which is known, see for in-
stance [5]. However, our approach relies heavily on eigenvector structure as in
Section 3.



Theorem 4.1. For the cycleCn on n vertices,dimNul(A) ≤ 2. Therefore, the
multiplicity of each eigenvalue of a cycle is at most two.

Proof. SupposeCn is labeled by the consecutive labeling, and letA = [aij ] ∈
S(Cn). Consider the linear system of equationsAx = 0 for a vectorx ∈ R

n.
Then, the submatrixA′ = A[{2, 3, . . . , n − 1}, {1, 2, . . . , n}] ∈ Mn−2,n has
linearly independent rows, therefore, it has rankn−2. HencedimNul(A) ≤ 2.

In order to explicitly describe the null vectors ofA ∈ S(Cn), we consider two
base cases: (i) all of the diagonal entries ofA are zero (discussed in Subsection
4.1); (ii) all of the diagonal entries ofA are nonzero (discussed in Subsection
4.2). Each case is described below and is then extended algorithmically, with
some limitations, to the case of arbitrary main diagonal in Subsection 4.3.

4.1. Zero Diagonal Entries

Using the consecutive labeling, the following results characterize the eigen-
vectors of a matrixA ∈ S(Cn), when all of the diagonal entries are assumed to
be zero. In the following results, addition in subscripts istaken modulon.

Lemma 4.2. Let n = 2k ≥ 4, and considerA ∈ S(Cn), with aii = 0, for all
i = 1, 2, . . . , n. ThenA is singular if and only if

a12
a1,2k

= (−1)k
k−1
∏

i=1

a2i,2i+1

a2i+1,2i+2

and in this casedimNul(A) = 2. Moreover, every nonzero null vectorx of A is
either totally nonzero, or satisfies the following property

xi = 0 ⇐⇒ xi+1 6= 0, for all i = 1, . . . , n.

Proof. SupposeCn is labeled consecutively. Using rowsr2, r4, . . . , r2k−2, r2k,
and rowsr1, r3, . . . , r2k−1, respectively, each of the components of a null vector
x can be written in terms ofx1 or x2 as

r2 : x3 = −a12

a23

x1 r1 : x2k = − a12

a1,2k
x2

r4 : x5 = a34a12

a45a23
x1 r3 : x4 = −a23

a34
x2

... r5 : x6 = a45a23

a56a34

x2

r2k−2 : x2k−1 = (−1)k−1

k−1
∏

i=1

a2i−1,2i

a2i,2i+1
x1

...

r2k : x2k−1 = −
a1,2k

a2k−1,2k
x1. r2k−1 : x2k=(−1)k−1

k−1
∏

i=1

a2i,2i+1

a2i+1,2i+2
x2.



If A is not invertible, then there is a nonzero null vector ofA, thus eitherx1 6= 0
orx2 6= 0, which in turn implies either rowsr2k−2 andr2k give the same value for
x2k−1 or rowsr1 andr2k−1 give the same value forx2k, or perhaps both equations
hold. That is, at least one of the equalities below must hold

a1,2k
a2k−1,2k

= (−1)k
k−1
∏

i=1

a2i−1,2i

a2i,2i+1
(5)

or
a12
a1,2k

= (−1)k
k−1
∏

i=1

a2i,2i+1

a2i+1,2i+2
. (6)

However, by direct computations we can show that (5) and (6) are, in fact, equiv-
alent. Hence ifA is not invertible, then (5) (equivalently (6)) holds. Clearly, if
(5) holds, thenA is not invertible as well. The equivalence between (5) and (6),
also implies that ifA is not invertible, then every null vector ofA is of the form
x = x1g1 + x2g2, where

g1 =



























1
0

−a12

a23

0
...
0

−
a1,2k

a2k−1,2k

0



























, g2 =























0
1
0

−a23

a34

...
0
a12

a1,2k























.

Sinceg1, g2 are linearly independent vectors, the nullity ofA is two. To show the
last statement, we consider the following cases.

1. If x1 = x2 = 0, thenx = 0.

2. If x1 = 0, x2 6= 0 (orx2 = 0, x1 6= 0), then the vectorx is a scalar multiple
of g2 (or g1), which has the properties in the statement of the theorem.

3. If x1x2 6= 0, then by the structure of vectorsg1 andg2, the vectorx is
totally nonzero.

By a similar method to the proof of Lemma 4.2, we can extend this to the odd
case as follows (using the same notation as above)

(−1)k−1a1,2k+1

a12

k
∏

i=1

a2i−1,2i

a2i,2i+1
=

(−1)ka1,2k+1

a2k,2k+1

k−1
∏

i=1

a2i+1,2i+2

a2i,2i+1
.



This implies that(−1)k−1 = (−1)k, which is a contradiction. Therefore,x1 =
x2 = 0. This implies thatx = 0, which meansA is invertible (see also [13],
where cycle expansions of determinants could also be considered).

Lemma 4.3. Let n = 2k + 1, k ≥ 1, A ∈ S(Cn), andaii = 0, i = 1, 2, . . . , n.
ThenA is invertible, that isdimNul(A) = 0.

Describing the nullities of matrices inS(Cn) with zero main diagonal via
explicit descriptions of the their null vectors leads to a better understanding of
the null space structure of cycles and perhaps even beyond toinclude graphs that
contain cycles (such as unicyclic graphs), and perhaps to anelementary proof of
the converse to Corollary 3.5.

Note that, in the case ofn even, when the nullity ofA is two, there is a to-
tally nonzero null vector. That is, whensup Nul(A) = {1, 2, . . . , n}, we have
dimNul(A) = 2. Thus, Theorem 3.4, which holds for trees, is not valid for the
case of an even cycle.

4.2. Nonzero Diagonal Entries

SupposeG is a graph and letv be a vertex ofG. ForA ∈ S(G), with avv 6= 0,
the graphΓ(A/avv) is well defined whereA/avv is the Schur complement ofavv
in A. Supposeu andw are adjacent tov. Then, using (3) in the proof of Theorem
2.1, the(u,w) entry ofA/avv = [a

(v)
ij ] equalsauw − auvavw

avv
. Figures 1 and 2

describe the relationship between the graphG andΓ(A/avv) for two neighbors of
v; adjacencies among non-neighbors ofv are unchanged fromG to Γ(A/avv).

The following remarks are immediate consequences of the above definition.

1. In general, the entrya(v)uw = auw − auvavw

avv
can be both zero and nonzero

depending on the matrixA. Therefore, if there is an edge betweenu and
w in G, there may or may not be an edge betweenu andw in the graph
Γ(A/avv). That is, it is not possible to predict the graphΓ(A/avv) in gen-
eral.

2. If N(v), the set of neighbors ofv, forms an independent set inG, then
Γ(A/avv) is the graph obtained fromG by deletingv and all of its incident
edges, and adding all edges between pairs of vertices inN(v).

Regarding Remark 1, when studying some specific families of matrices, it
is possible to predict the graphΓ(A/A[L]). For instance, ifA is a weighted or
generalized Laplacian matrix associated with a graphG (see [16] for a definition),
then using Lemma 4.5, the(u,w) entry ofA/A[L] is nonzero, ifu andw have a
common neighborv ∈ L. Therefore, for any vertexv ∈ L, every pair of vertices
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Figure 1:Γ(A/avv), when there is an edge between two neighbors ofv
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Figure 2:Γ(A/avv), when there is no edge between two neighbors ofv

u, w ∈ N(v) are connected by an edge inΓ(A/A[L]). This follows from the
following fact.

Proposition 4.4. Let G be a graph onn vertices and supposev1 andv2 are not
adjacent. Then forA ∈ S(G) with av1v1av2v2 6= 0,

(A/A[v1])/(A/A[v1])[v2] = A/A[v1, v2].

Proof.Sincev1 andv2 are not adjacent, the vertices ofG can be labeled so thatA
is of the following form

A =





av1v1 0 r1
0 av2v2 r2
rT1 rT2 A22



 .

It is straightforward to see that

(A/A[v1])/(A/A[v1])[v2] = A22 −
1

av1v1
rT1 r1 −

1

av2v2
rT2 r2 = A/A[v1, v2].

Lemma 4.5. SupposeA ∈ Mn is a (weighted) Laplacian matrix associated with
a connected graphG onn ≥ 4 vertices, and letL be an independent set of vertices



in G. Then, forv ∈ L andu,w ∈ N(v), the(u,w) entry ofA/A[L] is nonzero.
Moreover,A/A[L] is a Laplacian matrix associated withΓ(A/A[L]).

Proof. Consider a labeling of vertices for which the verticesv, u, w appear in
the given order. We know thatA is an irreducible singularM -matrix (see [11,
Section 2.5]), sorankA = n − 1, and every proper principal submatrix ofA is a
nonsingularM -matrix. SupposeL = {v} andu,w ∈ N(v). Then the principal
submatrix ofA

A[v, u, w] =





avv avu avw
auv auu auw
awv awu aww





is an invertibleM -matrix, and hence is inverse positive (see [11, Section 2.5]). In
particular, the(2, 3) entry ofA[v, u, w]−1 is positive, i.e. (−1)

detA[v,u,w](avvauw −

auvavw) > 0. Thus,auw − auvavw

avv
< 0, which means the(u,w) entry ofA/A[L]

is negative. Straightforward computations show that the diagonal entry in each
row (or column) ofA/A[L] equals to the sum of the off diagonal entries of that
row (or column), thusA/A[L] is a Laplacian matrix associated withΓ(A/A[L]).
If L has more than one vertex, then using Proposition 4.4 repeatedly completes
the proof.

For any weighted Laplacian matrixA of a given graphG, Spielman in [16]
studied algorithms that provide a fast method to solve the linear system of equa-
tions Ax = b. Various methods are investigated in [16] which either provide
the exact solution for the linear system or an approximationof the solution. One
method to give the exact solution of the linear systemAx = b is Gaussian elimi-
nation. In order to perform a fast Gaussian elimination on a positive semidefinite
matrixA, one may find a permutation matrixP such that Cholesky factorization
of PTAP may be computed easily; see [16]. We note that finding such a permuta-
tion matrix is equivalent to a re-labeling of the vertices ofG. Lemma 4.5 implies
that performing Cholesky factorization on a maximal independent set of vertices
in G, reduces the homogeneous linear systemAx = 0 to one of smaller size,
namelyA/A[L]x(L) = 0. Moreover, in this caseA/A[L] is a Laplacian matrix
for the graphΓ(A/A[L]). This graph is obtained fromG by deleting the vertices
of L and joining every pair of vertices{u,w} in G\L with a common neighbor
v ∈ L by an edge. Clearly, this process can be repeated on the graphΓ(A/A[L]).

Returning to cycles, consider a vertexv in the cycleCn, n ≥ 4 with avv 6= 0.
Supposeu,w are neighbors ofv. Since there is no edge betweenu andw, using
Figure 2 and Theorem 2.1, the symmetric matrixA/avv = [a

(v)
ij ] is in S(Cn−1)



with

a
(v)
ij =































−auvavw

avv
, if (i, j) = (u,w)

auu −
a2

uv

avv
, if (i, j) = (u, u)

aww −
a2

vw

avv
, if (i, j) = (w,w)

aij , otherwise.

Using Theorem 2.1, this process can be performed simultaneously on a maximal
independent set of vertices, sayL1, with avv 6= 0, for all v ∈ L1, and from the
above identities the resulting graph is a cycle, that isΓ(A/A[L1]) = Cn−|L1|.
Now, if n ≥ 4, and all of the diagonal entries ofA are nonzero, then the vertices
can be labeled so that Theorem 2.1 can be applied repeatedly on the largest in-
vertible diagonal submatrix of each resulting matrix. We call such a labeling an
alternate labeling, and define it as follows: consider the vertices ofCn lying on
the circumference of a circle where the edges are part of the circumference. Begin
by labeling some vertex ofCn, 1. Moving in a clockwise direction from vertex
i, name the second unlabeled vertexi + 1. Repeat this process until all of the
vertices but one are labeled. The last unlabeled vertex is then labeledn. Figure 3
shows an alternate labeling ofC7. Having this labeling, a matrixA ∈ S(G) can

u u u

u u

u u

7 4 1

3

25

6

Figure 3: An alternate labeling ofC7

be partitioned in the form

A =

[

A11 A12

AT
12 A22

]

whereA11 ∈ M⌊n
2
⌋ is a diagonal matrix. LetL = {1, 2, . . . , ⌊n

2 ⌋}. In the case
of nonzero diagonal entries,A11 = A[L] is invertible, thus using Theorem 2.1,
dimNul(A) = dimNul(A/A[L]). Moreover, in the equationAx = 0, eachxi,
i ∈ L is a linear combination of two variablesxr andxs wherer, s ∈ {⌊n

2 ⌋ +
1, . . . , n}, and the linear systemAx = 0, can be reduced toA/A[L]x(⌊n

2 ⌋) =
0. Now, if the diagonal entries of the matrixA/A[L] are nonzero, the above



process can be repeated since the inherited labeling is precisely in the desired
from. Furthermore, if at each stage the resulting diagonal block corresponding
to an independent set of vertices is invertible, then Theorem 2.1 can be reapplied
until the resulting graph has either 3 or 4 vertices, depending onn. This provides
an algorithm to compute the nullity of a matrixA ∈ S(Cn), when the diagonal
entries of both the original matrix and resulting matrices at each step are nonzero,
an example for this case is the class of positive semidefinitematrices inS(Cn).
The algorithm has the following properties: (i) Theorem 2.1can be applied to a
maximal independent set of vertices; (ii) if the resulting graph at each step has
at least 3 vertices, then it is still a cycle; (iii) the resulting graph at each step, has
already been labeled so that Theorem 2.1 can be applied to a maximal independent
set of vertices.

Note that, here at the first step, only⌊n
2 ⌋ of the diagonal entries corresponding

to the vertices inL need to be nonzero, and not all of the vertices ofCn. Sim-
ilarly, at each step we only need nonzero diagonal entries for the corresponding
independent set.

4.3. Both Zero and Nonzero Diagonal Entries

In the previous two subsections, the null vector structure and corresponding
nullity for the extreme cases of either all main diagonal entries are zero or all main
diagonal entries are nonzero were described.

A natural progression would then be to consider the situation of a matrix in
S(Cn) with arbitrary main diagonal. We could proceed as in Subsection 4.2 by
reducing the size of the cycle according to independent vertices with nonzero
main diagonal entries (we alluded to this in Subsection 4.2,when we noted the
algorithm would still apply as long as there were a sufficientnumber of nonzero
main diagonal entries).

The procedure, unfortunately, is tedious to carry out sinceat each stage we
need to check for nonzero diagonal entries associated with collections of indepen-
dent vertices, and such conditions cannot be verified combinatorially before hand.
One strategy would then be to reduce as much as possible the number of vertices
to produce a smaller sized cycle, and not disturbing the nullity. From here another
inductive technique may be applied. To this end, we are stillpursuing other algo-
rithmic ideas in hopes of getting a better handle on nullities with an eye towards
maximum nullity of a graph. The following example illustrates the algorithm in
the case of both zero and and nonzero diagonal entries for cycles.

Example 4.6. ConsiderA ∈ S(C7) with three nonzero diagonal entries lying on
a path on three vertices ofC7. Following the alternate labeling given in Figure 3,
and without loss of generality supposea11a22a66 6= 0. ThenA ∈ S(C7) is of the
following from
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7 4 1

3

25

6 A =





















1 2 3 4 5 6 7

1 a11 0 0 a14 0 a16 0
2 0 a22 0 0 a25 a26 0
3 0 0 0 0 a35 0 a37
4 a14 0 0 0 0 0 a47
5 0 a25 a35 0 0 0 0
6 a16 a26 0 0 0 a66 0
7 0 0 a37 a47 0 0 0





















.

Figure 4:C7 andA ∈ S(C7) with a11a22a66 6= 0

ForL1 = {1, 2}, we have

s s s

s s

s s

7 4 1

3

25

6 A(1) =

















3 4 5 6 7

3 0 0 a35 0 a37

4 0 −
a2

14

a11

0 −a14a16

a11

a47

5 a35 0 −
a2

25

a22

−a25a26

a22

0

6 0 −a14a16

a11

−a25a26

a22

a66 −
a2

16

a11

−
a2

26

a22

0

7 a37 a47 0 0 0

















Figure 5:L1 = {1, 2} andA(1) = A/A[L1] ∈ S(C5)

with
x1 = −a14

a11

x4 −
a16

a11

x6

x2 = −a25

a22

x5 −
a26

a22

x6.

ThenL2 = {4, 5} and
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s s

s s

7 4 1

3

25

6 A(2) =









3 6 7

3
a22a

2

35

a2

25

−a26a35

a25

a37

6 −a26a35

a25

a66 −a16a47

a14

7 a37 −a16a47

a14

a11a
2

47

a2

14









Figure 6:L2 = {4, 5} andA(2) = A(1)/A(1)[L2] ∈ S(C3)

with
x4 = −a16

a14
x6 +

a11a47

a2

14

x7

x5 = a22a35

a2

25

x3 −
a26

a25
x6.

Finally,L3 = {3} and



s s s

s s

s s

7 4 1

3

25

6 A(3) =

[

6 7

6 a66 −
a2

26

a22

−a16a47

a14

+ a25a26a37

a22a35

7 −a16a47

a14

+ a25a26a37

a22a35

a11a
2

47

a2

14

−
a2

25
a2

37

a22a
2

35

]

Figure 7:L3 = {3} andA(3) = A(2)/A(2)[L3] ∈ S(K2)

with

x3 =
a25a26
a22a35

x6 −
a225a37
a22a235

x7.

By substituting backward we have

x5 =
a37
a35

x7

x2 = −
a25a37
a22a35

x7 −
a26
a22

x6

x1 = −
a47
a14

x7.

Hence every null vector ofA is of the from

x =























−a47

a14

x7

−a26

a22

x6 −
a25a37

a22a35

x7

a25a26

a22a35

x6 −
a2

25
a37

a22a
2

35

x7

−a16

a14
x6 +

a11a47

a2

14

x7

a37

a35
x7

x6

x7























= x6





















0
−a26

a22
a25a26

a22a35

−a16

a14

0
1
0





















+ x7























−a47

a14

−a25a37

a22a35

−
a2

25
a37

a22a
2

35
a11a47

a2

14
a37

a35

0
1























.

Solving the equationA(3)x = 0 given by

[

a66 −
a2

26

a22

−a16a47

a14

+ a25a26a37

a22a35

−a16a47

a14

+ a25a26a37

a22a35

a11a
2

47

a2

14

−
a2

25
a2

37

a22a
2

35

]

[

x6

x7

]

= 0,

will completely describe the null space ofA.
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