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DISC SEPARATION OF THE SCHUR COMPLEMENT OF
DIAGONALLY DOMINANT MATRICES AND DETERMINANTAL

BOUNDS∗

JIANZHOU LIU† AND FUZHEN ZHANG‡

Abstract. We consider the Geršgorin disc separation from the origin for (doubly) diagonally
dominant matrices and their Schur complements, showing that the separation of the Schur comple-
ment of a (doubly) diagonally dominant matrix is greater than that of the original grand matrix. As
application we discuss the localization of eigenvalues and present some upper and lower bounds for
the determinant of diagonally dominant matrices.
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1. Introduction. Let A be an n × n complex matrix. The famous Geršgorin
theorem gives a union of discs in the complex plane that contain all eigenvalues of A.
An individual disc comprises the complex numbers z for which

|z − aii| ≤ Pi(A),

where

Pi(A) =

n∑
j=1, j �=i

|aij |.

This reveals immediately that if A is strictly diagonally (row) dominant, i.e.,

|aii| > Pi(A)

for all i = 1, 2, . . . , n, then no discs contain O, the origin, and thus A is nonsingular.
In such a case, the quantities |aii| − Pi(A) measure the separations of the discs from
the origin and give estimates of the “shortest” eigenvalue of the matrix.

A well-known result due to Brauer generalizes the Geršgorin theorem to a union
of ovals (of Cassini) that are guaranteed to contain all eigenvalues of A [7, p. 380].
An oval is given to comprise all complex numbers z satisfying

|z − aii||z − ajj | ≤ Pi(A)Pj(A), i < j.
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The Geršgorin discs and the Cassini ovals are both effective tools for locating the
eigenvalues (spectrum) of a square matrix. As the former ensures the nonsingularity
of the strictly diagonally dominant matrices (SD), the latter guarantees the same
property of the strictly doubly diagonally dominant matrices (SDD) [7, p. 381]; recall
that an SDD [10, 13] is a matrix such that for all i and j, 1 ≤ i < j ≤ n,

|aii||ajj | > Pi(A)Pj(A).(1.1)

Doubly diagonally dominant matrices (for which equality in (1.1) is allowed to
occur) are generalizations of diagonally dominant matrices. Both matrix classes pos-
sess the properties of nonsingularity and closedness under the Schur complementation
(see, e.g., [2, 13]). These properties have been demonstrated to serve as rich and basic
tools in numerical analysis (mostly for convergence of iterations) and in matrix anal-
ysis (mostly for deriving matrix inequalities). As a result of Kahan (see [15]) shows a
relation between the fields of values of a matrix and its Schur complement, this study
shows a relation between the Geršgorin discs of a matrix and its Schur complement.

In this paper we first consider the disc separations of the Schur complement; more
precisely, we compare a disc separation of the Schur complement to that of the original
matrix and show that each Geršgorin disc of the Schur complement is paired with a
particular Geršgorin disc of the original matrix; the latter is further from the origin
than the former. As applications of our main results, we then discuss localization
of eigenvalues and present some upper and lower bounds for the determinants of the
diagonally dominant matrices.

We refer the reader to [18, 19] for the spread of a Hermitian matrix, which is
defined to be the largest eigenvalue of the matrix minus the smallest eigenvalue.
It measures the separation between the extreme eigenvalues. One may refer to [1]
for general theory on nonnegative matrices and M -matrices, [3, 4, 5, 6, 9, 13, 16] for
detailed discussions on (generalized) diagonally dominant matrices, [11, 12, 14, 17] for
computational aspects of H-matrices, and [21] for an extensive survey of the results
on the Schur complement.

2. Lemmas. We begin this section by recalling a few terms and results that are
to be used to prove our theorems. Let A = (aij) be an n × n complex matrix. The
comparison matrix, denoted by μ(A) = (cij), of A is defined to be

cij =

{
|aij | if i = j,

−|aij | if i �= j.

A matrix A is an M -matrix if it can be written in the form A = mI − P , where
P is a nonnegative matrix and m > ρ(P ), the spectral radius of P . Note that if A
is an M -matrix, then so is the Schur complement of A and detA > 0 (see, e.g., [8,
Chap. 2, sec. 2.5]). A matrix A is an H-matrix if μ(A) is an M -matrix. We denote
by Hn and Mn the sets of n× n H- and M -matrices, respectively.

For matrix A = (aij), we denote |A| = (|aij |). If the entries of the matrix A are
all nonnegative, then we write A ≥ 0. For real matrices A and B of the same size, if
A−B is a nonnegative matrix, we designate A ≥ B.

Lemma 1. If A is an H-matrix, then

[μ(A)]−1 ≥ |A−1|.(2.1)

Proof. For the proof, see, e.g., [8, pp. 117, 131].
Lemma 2. If A ∈ SDn or SDDn, then μ(A) ∈ Mn, i.e., A ∈ Hn.
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Lemma 3. If A ∈ SDn or SDDn and α is a proper subset of N ≡ {1, 2, . . . , n},
then the Schur complement of A is in SD|αc| or SDD|αc|, where αc = N − α is the
complement of α in N and |αc| is the cardinality of αc.

Lemmas 2 and 3 can be found in, e.g., [8, p. 114] and [13, Theorem 2.1].

We recall that the Schur complement of A with respect to the nonsingular sub-
matrix A(α), denoted by A/A(α) or simply A/α, is defined to be

A(αc) −A(αc, α)[A(α)]−1A(α, αc),(2.2)

where A(α, β) stands for the submatrix of A lying in the rows indexed by α and the
columns indexed by β; A(α) is an abbreviation for A(α, α).

Our next lemma, showing a way of constructing M -matrices from a given SD
matrix, is key to the proofs of our theorems in the following section.

Lemma 4. Let A ∈ SDn, α = {i1, i2, . . . , ik} be a proper subset of N , and let
αc = N − α = {j1, j2, . . . , jl}, k + l = n. For any jt ∈ αc, denote

Bjt ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x −|ajti1 | . . . −|ajtik |

−
l∑

u=1
|ai1ju |
... μ[A(α)]

−
l∑

u=1
|aikju |

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, x > 0.

Then Bjt is a doubly diagonally dominant matrix if and only if

x ≥ max
1≤w≤k

Piw(A)

|aiwiw |

k∑
v=1

|ajtiv |.(2.3)

When strict inequality in (2.3) holds, Bjt is an M -matrix of order k + 1, and thus
detBjt > 0. If equality in (2.3) occurs, then detBjt ≥ 0.

Proof. For simplicity, write Bjt ≡ B ≡ (bpq). The off-diagonal entries of B are all
nonpositive. Notice that b11 = x, bw+1,w+1 = |aiwiw |, w = 1, 2, . . . , k, and

P1(B) =

k∑
v=1

|ajtiv |, Pw+1(B) = Piw(A).

In order for B to be strictly doubly diagonally dominant, for each w,

|b11||bw+1,w+1| = x|aiwiw | > P1(B)Pw+1(B) =

k∑
v=1

|ajtiv | Piw(A),

which yields (2.3), while for w, y = 1, 2, . . . , k with w �= y, since A ∈ SDn,

|bw+1,w+1||by+1,y+1| = |aiwiw ||aiyiy | > Piw(A)Piy (A) = Pw+1(B)Py+1(B).

Therefore, by definition, B is strictly doubly diagonally dominant. By Lemma 2,
B = μ(B) is an M -matrix and thus detB > 0. The equality case follows from a
continuity argument (with x + ε in Bjt and letting ε → 0+).
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3. Disc separation of the Schur complement. Let A be an n×n SD. Then
all diagonal entries of A are necessarily nonzero. Moreover, each disc {z : |z − aii| ≤
Pi(A)} is separated from the origin, and |aii| − Pi(A) is the (shortest) distance from
the disc to the origin. As the Schur complement of an SD is strictly diagonally
dominant, we are interested in the separations of the discs of the Schur complements
from the origin compared with those of the original matrix. Our first theorem shows
that the discs of the Schur complements are separated further from the origin. For

this purpose, consider the ratios
|aiviv |−Piv (A)

|aiviv |
, and define for each jt ∈ αc

wjt = min
1≤v≤k

|aiviv | − Piv (A)

|aiviv |

k∑
u=1

|ajtiu |.(3.1)

Note that for a number a, nonsingular matrix S, and vectors x and y

1

detS
det

(
a x
y S

)
= a− xS−1y.

We are now ready to present our main result.
Theorem 1. Let A be an n × n SD, α = {i1, i2, . . . , ik} ⊂ N , αc = N − α =

{j1, j2, . . . , jl}, k+ l = n. Let wjt be defined as in (3.1) and denote A/α = (a′ts). Then

|a′tt| − Pt

(
A

α

)
≥ |ajtjt | − Pjt(A) + wjt ≥ |ajtjt | − Pjt(A) > 0(3.2)

and

|a′tt| + Pt

(
A

α

)
≤ |ajtjt | + Pjt(A) − wjt ≤ |ajtjt | + Pjt(A).(3.3)

Proof. Note that, by (2.1) and Lemma 2,

{μ[A(α)]}−1 ≥ [A(α)]−1.

For t = 1, 2, . . . , l, by definition of the Schur complement (2.2), we compute

|a′tt| − Pt

(
A

α

)
= |a′tt| −

l∑
s�=t
s=1

|a′ts|

=

∣∣∣∣∣∣∣ajtjt − (ajti1 , . . . , ajtik)[A(α)]−1

⎛
⎜⎝

ai1jt
...

aikjt

⎞
⎟⎠
∣∣∣∣∣∣∣

−
l∑

s�=t
s=1

∣∣∣∣∣∣∣ajtjs − (ajti1 , . . . , ajtik)[A(α)]−1

⎛
⎜⎝

ai1js
...

aikjs

⎞
⎟⎠
∣∣∣∣∣∣∣

≥ |ajtjt | −
l∑

s�=t
s=1

|ajtjs | −
l∑

s=1

∣∣∣∣∣∣∣(ajti1 , . . . , ajtik)[A(α)]−1

⎛
⎜⎝

ai1js
...

aikjs

⎞
⎟⎠
∣∣∣∣∣∣∣

≥ |ajtjt | −
l∑

s�=t
s=1

|ajtjs | −
l∑

s=1

(|ajti1 |, . . . , |ajtik |){μ[A(α)]}−1

⎛
⎜⎝

|ai1js |
...

|aikjs |

⎞
⎟⎠
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= |ajtjt | − Pjt(A) +

k∑
u=1

|ajtiu | + wjt − wjt

−
l∑

s=1

(|ajti1 |, . . . , |ajtik |){μ[A(α)]}−1

⎛
⎜⎝

|ai1js |
...

|aikjs |

⎞
⎟⎠

= |ajtjt | − Pjt(A) + wjt

+

k∑
u=1

|ajtiu | − wjt − (|ajti1 |, . . . , |ajtik |){μ[A(α)]}−1

⎛
⎜⎜⎜⎜⎜⎝

l∑
s=1

|ai1js |
...

l∑
s=1

|aikjs |

⎞
⎟⎟⎟⎟⎟⎠

= |ajtjt | − Pjt(A) + wjt

+
1

det{μ[A(α)]} det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k∑
u=1

|ajtiu | − wjt −|ajti1 | . . . −|ajtik |

−
l∑

s=1
|ai1js |
... μ[A(α)]

−
l∑

s=1
|aikjs |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= |ajtjt | − Pjt(A) + wjt +
1

det{μ[A(α)]} detB,

where B is the matrix containing μ[A(α)] on the right-hand side. By taking x in

Lemma 4 to be
∑k

u=1 |ajtiu |−wjt (which is greater than or equal to the expression on
the right-hand side of (2.3) by computation), we see detB ≥ 0, and thus (3.2) follows.

In a similar way, one may show that

|a′tt| + Pt

(
A

α

)
= |a′tt| +

l∑
s�=t
s=1

|a′ts|

≤ |ajtjt | + Pjt(A) − wjt −
1

det{μ[A(α)]} detB

≤ |ajtjt | + Pjt(A) − wjt

≤ |ajtjt | + Pjt(A).

This reveals (3.3).

The inequalities (3.2) immediately yield the following well-known result [2].

Corollary 1. The Schur complement of an SD is strictly diagonally dominant.

Corollary 2. Let A ∈ SDn and take α = {1, 2, . . . , n− 1}. Then

|ann| + max
1≤i≤n−1

Pi(A)

|aii|
Pn(A) ≥

∣∣∣∣Aα
∣∣∣∣ ≥ |ann| − max

1≤i≤n−1

Pi(A)

|aii|
Pn(A) > 0.

Proof. Notice that αc contains only one element jt = n. Thus, A/α is nothing
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but a number, and so Pt(A/α) = 0, and, from (3.1),

wjt = wn = min
1≤i≤n−1

|aii| − Pi(A)

|aii|

n−1∑
u=1

|anu|

= min
1≤i≤n−1

(
1 − Pi(A)

|aii|

)
Pn(A)

= Pn(A) − max
1≤i≤n−1

Pi(A)

|aii|
Pn(A).

Substituting this into (3.2) and (3.3) results in the desired inequalities.

Remark 1. Corollary 2 can be proven directly by computation. Note that

Pn(A) − wn = Pn(A) max
1≤i≤n−1

Pi(A)

|aii|
.

Corollary 3. Let A = (aij) ∈ SDn (complex). Denote A−1 = (aij). Then

aii > 0 ⇐⇒ aii > 0.

If d+(X) stands for the number of positive entries on the main diagonal of X,

d+[A(α)] = d+[A−1(α)].

Proof. Without loss of generality, take aii = ann. Then ann = (A/β)−1, where
β = {1, 2, . . . , n− 1} (see, e.g., [20, p. 37]). Since A is an SD, by (3.2), A/β > 0, and
thus ann > 0. The identity d+[A(α)] = d+[A−1(α)] follows at once.

Remark 2. The tth disc of A/α is paired with the jtth disc of A.

Now we turn our attention to doubly diagonally dominant matrices. If A is in
SDD but not in SD, by (1.1), there is one and only one index i0, say, such that

|ai0i0 | ≤ Pi0(A).(3.4)

Theorem 2. Let A be an n × n SDD and i0, 1 ≤ i0 ≤ n, be such as in (3.4).
Then for any index set α containing i0, writing α = {i1, i2, . . . , ik}, αc = N − α =
{j1, j2, . . . , jl}, and A/α = (a′ts),

|a′tt| − Pt

(
A

α

)
≥ |ajtjt | − Pjt(A) +

(
1 − Pi0(A)

|ai0i0 |

) k∑
v=1

|ajtiv |(3.5)

≥ |ajtjt | −
Pi0(A)

|ai0i0 |
Pjt(A) > 0(3.6)

and

|a′tt| + Pt

(
A

α

)
≤ |ajtjt | + Pjt(A) −

(
1 − Pi0(A)

|ai0i0 |

) k∑
v=1

|ajtiv |

≤ |ajtjt | +
Pi0(A)

|ai0i0 |
Pjt(A).
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Proof. Once again we compute, by definition (2.2),

|a′tt| − Pt

(
A

α

)
= |a′tt| −

l∑
s�=t
s=1

|a′ts|

=

∣∣∣∣∣∣∣ajtjt − (ajti1 , . . . , ajtik)[A(α)]−1

⎛
⎜⎝

ai1jt
...

aikjt

⎞
⎟⎠
∣∣∣∣∣∣∣

−
l∑

s�=t
s=1

∣∣∣∣∣∣∣ajtjs − (ajti1 , . . . , ajtik)[A(α)]−1

⎛
⎜⎝

ai1js
...

aikjs

⎞
⎟⎠
∣∣∣∣∣∣∣

≥ |ajtjt | − Pjt(A) +

(
1 − Pi0(A)

|ai0i0 |

) k∑
v=1

|ajtiv | +
Pi0(A)

|ai0i0 |

k∑
v=1

|ajtiv |

−
l∑

s=1

(|ajti1 |, . . . , |ajtik |){μ[A(α)]}−1

⎛
⎜⎝

|ai1js |
...

|aikjs |

⎞
⎟⎠

= |ajtjt | − Pjt(A) +

(
1 − Pi0(A)

|ai0i0 |

) k∑
v=1

|ajtiv |

+
1

det{μ[A(α)]} det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pi0
(A)

|ai0i0
|

k∑
v=1

|ajtiv | −|ajti1 | . . . −|ajtik |

−
l∑

s=1
|ai1js |
... μ[A(α)]

−
l∑

s=1
|aikjs |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= |ajtjt | − Pjt(A) +

(
1 − Pi0(A)

|ai0i0 |

) k∑
v=1

|ajtiv | +
1

det{μ[A(α)]} det B̃,

where B̃ is the large size matrix containing μ[A(α)]. By taking x in Lemma 4 to

be
Pi0 (A)

|ai0i0 |
∑k

v=1 |ajtiv |, we see that det B̃ ≥ 0, and thus (3.5) follows. Replacing∑k
v=1 |ajtiv | in (3.5) by Pjt(A) results in (3.6). The second set of inequalities in the

theorem are similarly proven.

4. Applications: Bounds for determinants and localization of eigenval-
ues. In this section we make use of the results in the previous section to present some
upper and lower bounds for determinants. Also, as an application of Theorem 1, we
show a result on the localization of eigenvalues of the diagonally dominant matrices.

Let {j1, j2, . . . , jn} be a rearrangement of the elements in N = {1, 2, . . . , n}.
Denote α1 = {jn}, α2 = {jn, jn−1}, . . . , αn = {j1, j2, . . . , jn} = N . Then αn−k+1 −
αn−k = {jk}, k = 1, 2, . . . , n, with α0 = ∅, and

Pjk [A(αn−k+1)] =
∑

u∈αn−k

|ajku|.
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Let J represent any rearrangement {j1, j2, . . . , jn} of the elements in N with α1,
α2, . . ., αn defined as above.

Theorem 3. Let A be an n× n SD. Then

detA ≥ max
J

n∏
k=1

{
|ajkjk | − max

u∈αn−k

Pu[A(αn−k+1)]

|auu|
Pjk [A(αn−k+1)]

}
(4.1)

and

detA ≤ min
J

n∏
k=1

{
|ajkjk | + max

u∈αn−k

Pu[A(αn−k+1)]

|auu|
Pjk [A(αn−k+1)]

}
.(4.2)

Proof. For the first inequality, since αn−k is contained in αn−k+1 and αn−k+1 −
αn−k = {jk}, we have, by Corollary 2, for each k,∣∣∣∣A(αn−k+1)

αn−k

∣∣∣∣ ≥ |ajkjk | − max
u∈αn−k

Pu[A(αn−k+1)]

|auu|
Pjk [A(αn−k+1)] > 0.

It follows that

detA| =

∣∣∣∣ detA

det[A(αn−1)]

∣∣∣∣
∣∣∣∣det[A(αn−1)]

det[A(αn−2)]

∣∣∣∣ · · ·
∣∣∣∣det[A(α2)]

det[A(α1)]

∣∣∣∣ |det[A(α1)]|

=

∣∣∣∣det

(
A

αn−1

)∣∣∣∣
∣∣∣∣det

[
A(αn−1)

αn−2

]∣∣∣∣ · · ·
∣∣∣∣det

[
A(α2)

α1

]∣∣∣∣ |detA(α1)|

= |ajnjn |
n−1∏
k=1

∣∣∣∣A(αn−k+1)

αn−k

∣∣∣∣
≥ |ajnjn |

n−1∏
k=1

{
|ajkjk | − max

u∈αn−k

Pu[A(αn−k+1)]

|auu|
Pjk [A(αn−k+1)]

}
.

This implies (4.1). The inequality (4.2) in the theorem is similarly proven.
Notice that when A ∈ SDn, for any 1 ≤ k ≤ n and u ∈ αn−k,

0 ≤ Pu[A(αn−k+1)]

|auu|
≤ 1.

We have the following claim immediately from the theorem.
Corollary 4. Let A be an n× n SD. Then

detA ≥ max
J

n∏
k=1

⎧⎨
⎩|ajkjk | −

∑
u∈αn−k

|ajku|

⎫⎬
⎭

and

detA ≤ min
J

n∏
k=1

⎧⎨
⎩|ajkjk | +

∑
u∈αn−k

|ajku|

⎫⎬
⎭ .

Example. Let n = 3 and take j1 = 3, j2 = 1, and j3 = 2. With α1 = {j3} = {2},
α2 = {j3, j2} = {1, 2}, and α3 = {j3, j2, j1} = {1, 2, 3}, by Corollary 4, we have for
any A ∈ SD3

|detA| ≥ |a22|(|a33| − |a31| − |a32|)(|a11| − |a12|)
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and

|detA| ≤ |a22|(|a33| + |a31| + |a32|)(|a11| + |a12|).

For an analogous result for SDDs, let I denote all rearrangements of the elements
in N with α1 = {i0 ≡ jn}, where

|ai0i0 | ≤ Pi0(A).

The proof of the following theorem is similar to that of the previous theorem.
Theorem 4. Let A ∈ SDDn with |ai0i0 | ≤ Pi0(A). Then

detA ≥ max
I

|ai0i0 |
n−1∏
k=1

{
|ajkjk | −

Pi0 [A(αn−k+1)]

|ai0i0 |
Pjk [A(αn−k+1)]

}

and

detA ≤ min
I

|ai0i0 |
n−1∏
k=1

{
|ajkjk | +

Pi0 [A(αn−k+1)]

|ai0i0 |
Pjk [A(αn−k+1)]

}
.

We conclude the article by presenting a result that falls in the localization of
eigenvalues of the diagonally dominant matrices.

Theorem 5. Let A ∈ SDn be a matrix with real diagonal entries and α be a
proper subset of N = {1, 2, . . . , n}. Then A/α and A(αc) have the same number of
eigenvalues whose real parts are greater (less) than w (resp., −w), where

w = min
j∈αc

[
|ajj | − Pj(A) + min

|aii| − Pi(A)

|aii|
∑
i∈α

|aji|
]
.

Proof. By (3.2) in Theorem 1, the matrix μ(A/α) − wI is diagonally dominant,
and thus is A/α − wI. In addition, by Theorem 1 again, since a′tt − w > 0 if and
only if a′tt > 0, there are the same number of positive entries on the main diagonals
of A/α − wI and A/α; that is, d+(A/α − wI) = d+(A/α). Thus, by the Geršgorin
theorem, A/α − wI has d+(A/α) eigenvalues with positive real part (on the open
right-half complex plane). On the other hand, the eigenvalues of A/α − wI are the
eigenvalues of A/α minus w, so A/α has d+(A/α) eigenvalues with positive real part
greater than w. Observe that A−1(αc) = (A/α)−1 (see, e.g., [20, p. 184]) and further
that (A/α)−1 and A/α have the same number of eigenvalues with positive real part.
By Corollary 3, we conclude that A/α and A(αc) have the same number of eigenvalues
whose real parts are greater than w. For the number of negative parts of eigenvalues,
the above argument works with −A/α in place of A/α.

An immediate geometric explanation of Theorem 5 is that if the principal sub-
matrix A(αc) has no eigenvalue between the vertical lines x = −w and x = w, i.e.,
the band |z| ≤ w, then the Schur complement A/α has no eigenvalue in the band.
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