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The introduction of Clebsch representations allows one to formulate the problem
of finding minimum energy solutions for a magneto-fluid as a well-posed problem
in the calculus of variations of multiple integrals. When the latter is subjected to
integral constraints, the Euler—Lagrange equations of the resulting isoperimetric
problem imply that the fluid velocities are collinear with the magnetic field. If, in
particular, one constraint is abolished, Alfv6n velocities are obtained. In view of
the idealized nature of the model treated here, further investigations of more
sophisticated structures by means of Clebsch representations are anticipated.
Preliminary results of a similar calculation utilizing a modified two fluid model
are discussed.

1. Introduction
It is important to find solutions of the variational problem posed by a deter-

mination of minimum free energy bounded plasma structures. These solutions
correspond to force-free or quasi force-free configurations. The concept of force-
free fields has played a major role in both astrophysics and the theory of stable
laboratory plasmas. It has proved to be very useful in investigating possibly
naturally occurring stable states in magnetically confined high temperature
plasmas (Wells & Norwood 1968; Wells 1970, 1976; Taylor 1974). Experi-
mentally it is found that force-free and quasi force-free configurations are very
stable structures, even if the force-freeness is not exact (quasi force-free) or if they
are surrounded by or surround plasma structures that are not force-free.

Since the energy associated with region 0 is generally expressed as an integral
over 0, the problem of the derivation of minimum energy states may be formu-
lated as a variational principle. However, in many cases the nature of the inte-
grand, as presented ah initio by purely physical considerations, is such that these
are not well-posed problems from the point of view of the calculus of variations:
this prohibits the direct application of the simple and yet rigorous techniques of
that discipline. Very often the ad hoc evaluation of the first variation is uncon-
vincing in that it depends on boundary conditions which cannot be motivated
physically or mathematically. Moreover, the conclusions resulting from the
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330 H. Bund, D. E. Wells and L. C. Hawkins

requirement that the first variation vanish cannot be used directly to distinguish
between possible maxima and minima: this in turn entails an appeal to the second
variation, the derivation of which is not only subject to similar objections, but is
often also extremely complicated. These difficulties are severely compounded
when the system is subjected to constraints as prescribed by physical considera-
tions, which gives rise to the so-called problems of Lagrange and/or isoperi-
metric problems, the known theory of which can be safely applied only to properly
defined problems in the calculus of variations.

I t is fortunate that many of these difficulties can be overcome almost effort-
lessly, and yet with perfect rigour, by the introduction of suitably chosen
Clebsch representations. The simplest example of such a representation is the
decomposition of an arbitrary vector field on a three-dimensional Euclidean
space into the sum of a gradient and a scalar multiple of another gradient.
Although such representations have been used sporadically in the past in con-
nexion with the equations of motion of fluid dynamics (Lamb 1932; Bateman
1929, 1930; Eckart 1960; Seliger & Whitham 1968), and also in electromagnetic
theory (Rund 1976, 1977), it would appear that their applicability to the afore-
mentioned complex of ideas has not yet been exploited. It is hoped that the
present paper represents a step in this direction.

In order to substantiate our opening remarks, a brief review is given of some
basic concepts of the calculus of variations of multiple integrals, including a
relatively simple criterion for the distinction between maxima and minima which
does not depend on a direct appeal to the second variation. The power of the
method of Clebsch representations is illustrated by means of a very simple
example (Rund 1976), which, however, may not be entirely devoid of physical
interest. In § 2 Clebsch potentials are used to construct an acceptable Lagrangian
for the energy integral corresponding to a single-species magnetofluid; the explicit
form of the Euler-Lagrange equations is derived, and it is shown that the afore-
mentioned criterion indicates that minimum energy solutions are then obtained.
Since physical considerations appear to prescribe the introduction of integral
constraints, the same problem is treated once more in §3 as an isoperimetric
problem in the calculus of variations. The resulting Euler-Lagrange equations
imply that the velocity field is collinear with the magnetic field; moreover, if one
of the constraints is removed, Alfven velocities are thus obtained. In view of the
simplicity of the model presented here and its rather close qualitative agreement
with experimental observations (Wells 1976), it is evident that more sophisti-
cated models, particularly structures based on many-species magnetofluids,
should be analysed in this manner.

The following observations should serve to clarify the general point of view
adopted in this paper. Let 6A denotef a set of m class C2 functions of n independ-
ent variables x>. In the (n + m)-dimensional configuration space Xn+m of the
variables (x>, 6A) a system of m equations of the form

(1.1)

t For the present, lower case indices j , h, ... range from 1 to n, while capital indices
A, B, ... range from 1 to m. For the physical applications discussed in subsequent sections
n = 3. A comma followed by a subscript denotes partial differentiation; e.g. 04 = 80A/dxi.
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Clebsch representations in MHD 331

defines an %-dimensional subspace Cn oiXn+m, whose tangent spaces are spanned
by the n vectors (Sf, 6A). Let us suppose also that we are given a class C2 Lag-
rangian L = L(x\ 6A, 6A), together with a finite, simply-connected region G in the
domain Xn of the independent variables xK In general, the value of the w-fold
integral .

I(Gn) = L(x\dA,6A)d(x), (1.2)
Jo

where d(x) = dx1 A ... A dxn, (1.3)

depends on the choice of the functions 6A as arguments of the integrand, that is,
on the choice of the subspace Cn (as anticipated by our notation). More precisely,
let Cn: d

A = dA(xj) represent any class C2 subspace of Xn+m which coincides with
Cn on the (n — l)-dimensional boundary 8G of G, i.e.

BA(xi) = 6A(xi) for all x'edG. (1.4)

Unless the Lagrangian is a divergence (a case specifically excluded here), one has
I(Cn) #= I(Cn), and the problem in the calculus of variations as defined by the
integral (1.2) is concerned with the formulation of the conditions which the
subspace Cn must satisfy in order that I(Cn) assumes an extreme value relative
to all other subspaces Cn subject to (1.4). As is well known, a first necessary con-
dition for an extremum of (1.2) is represented by the m Euler-Lagrange equations

E6A{L) = 0, (1.5)

where EgA(L) = ̂ .I^-^A, (1.6)

in which the differential operator dfdx1 is defined by

d____ J__
dx> ~ 8x> + dx> 86B + 8xi8xh86%'

Thus, when written out in full, the Euler-Lagrange equations are

which is a system of m second-order partial differential equations for the functions
6A which define the subspace Cn (the latter being called an extremal whenever
(1.8) is satisfied).

Even if an extremum is attained (which is by no means guaranteed by (1.8)),
one can distinguish between maxima and minima only by invoking further
criteria, of which the simplest is the generalized Weierstrass excess function of
Weyl (Weyl 1935; Rund 1973). At any given point (z», 6A) of Xn+m two re-dimen-
sional planes are spanned by a given pair of vectors (8f, <f>f), (Sf, $f): the excess
function relative to these planes is defined to be

E(xi,6A,<f>f,tf) = L(x\6A^f)-L(x^,6A,<l>f)-d^^^^B-<l,l). (1.9)

If Cn affords an extreme value to the integral (1.2) one generally has

0 (1.10)
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according as this extremum is a minimum or a maximum, where 6A refers to Cn,
while dA refers to any other subspace Gn satisfying the boundary condition
(1.4).f There are, of course, other criteria such as various forms of the Legendre
condition; these are generally expressed in terms of the non-vanishing or other-
wise of nm x nm determinants and therefore involve tedious calculations.

The point that we wish to stress here, however, is that the entire analysis is
meaningless unless the Lagrangian depends explicitly on at least some of the
derivatives 6A. For, ifdL/ddA = 0 for all dA, the Euler-Lagrange equations (1.8)
reduce to dL/ddA = 0,A = 1,..., m, which obviously do not represent a system of
differential equations for the functions 6A{x>) which define the subspace Cn.
Similarly, the condition (1.10) is rendered meaningless under these circum-
stances, while the individual entries of the aforementioned nm x nm deter-
minants associated with the various Legendre conditions vanish identically. (It
should be remarked, however, that these objections are not necessarily valid if
e)L/d6A = 0 for some, but not all 6A.)

Fortunately, in many cases these difficulties can be overcome with great ease
and elegance by the use of Clebsch representations, namely if some or all of the
dependent functions 6A can be expressed in terms of Clebsch potentials. For,
under these conditions, the substitution of 0A into the Lagrangian endows the
latter with the required derivatives, namely the derivatives of the Clebsch
potentials, the potentials themselves now playing the role of the dependent
functions. This device then allows one to bring the entire theory of the calculus of
variations to bear on the problem at hand.

The following simple example serves to illustrate this technique. Let x1

(j = 1,2,3) represent the Cartesian co-ordinates of a three-dimensional Euclidean
space Es, on which there is defined a differentiable vector field with components
Xh, which are required to assume prescribed values on the boundary 30 of some
region G in E3. I t is now required to find the conditions which the field Xh must
satisfy in order that the integral

±jXhXhd(x) (1.11)

assume an extreme value subject to the given boundary conditions. When the
problem is thus stated, the integral (1.11) does not give rise to a well-posed
problem in the calculus of variations in the sense of the above remarks. However,
it is now recalled that any differentiable vector field in E3 admits a Clebsch
representation of the form a,/,. an

where ijr, Q, P are suitably chosen class C% Clebsch potentials. Accordingly the
integrand in (1.11) can be expressed in the form

t There are exceptions to this rule (Rund 1973, p. 283). This is because, strictly speaking,
one should only construct excess functions relative to appropriate fields of extremals. Since
there are n ways of constructing such fields (Rund 1973, Supplementary Appendix), there
are n distinct excess functions, of which (1.9) is the simplest. However, this function is
adequate for our present purposes.
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which is of the type examined above, with n = 3, m = 3, and 61 = i/r, 02 = P,

and accordingly the Euler-Lagrange equations (1.8) now assume the form

which can be combined to yield

Of these, the last pair indicates that Xj is parallel to the intersection of the level
surfaces P = const., Q = const, in E3. Thus the most general solution of this pair
of equations is given by an «p

where a(xh) is some scalar function of position, while eihk denotes the three-
dimensional permutation symbol. Because of the skew-symmetry properties of
the latter, we can express (1.17) in the form

v 8 /_ap\ d idf n8P
X* = °^*tei \QH?) = ^ W \W« + Q8xl

or, if we use (1.12) once more,

which is equivalent to X = trcurlX. (1-18)

Moreover, the first member of (1.16) is simply

divX = 0, (1.19)

which guarantees the existence of a vector field Y such that

X = curlY. (1.20)

The equations (1.18), (1.19) constitute necessary conditions which the field Xh

must satisfy in order that the integral (1.11) assume an extreme value.f
Let us now turn to the excess function (1.9), which must be evaluated at each

f If X is identified with a magnetic field B, the integral (1.11) represents the energy of
the field in the region 0; thus our problem is a minimum energy problem. The latter had
been considered in an entirely different manner and under far more restrictive hypotheses
by S. Chandrasekhar & L. Woltjer (1958), and L. Woltjer (1958), who also arrived at the
conclusion that B is parallel to curl B (see (1.18)). However, the treatment of these authors
presupposes the representation B = curl A, which in our case, follows directly from the
Euler-Lagrange equations (see (1.20)).
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334 H. Bund, D. R. Wells and L. C. Hawkins

point (a1, x2, xz, i/r, Q, P) of the configuration space X6. In terms of our present
notation (1.9) becomes

tf(a* f,Q,P, ftPPit f>pP,) = L(a* f,Q,P, f,,-,Py

-L(^,^Q,^,,P,)-^-(^ft

or,ifweuse(1.12)-(1.14), with XA = ^>

so that E ^ 0 for all ^>;-, P j with equality if and only if \jr;. = i/rp Pj = Py Thus,
any extremum of the integral (1.11), attained by means of (1.18), (1.19), will be a
minimum.

The method outlined above will be applied to a more complicated problem in
the next section.

2. An unconstrained minimum energy problem
We shall consider a single species plasma with mass and charge density p and

pe respectively, whose velocity field is denoted by v. We consider this fluid to
carry all currents and mass motions. There is, in addition, a fluid of opposite
electrical charge which is stationary in the laboratory frame and whose mass is
negligible compared to moving single species fluid. Then, if v is the particle den-
sity, we may write ,„ v

J> J p = mv, pe = ev, (2.1)
where m and e are constants. Also, if e0 and/t0 denote the (constant) permittivity!
and permeability, respectively, while E and B respectively represent the electric
field strength and the magnetic induction, the (4,4) component of the energy-
momentum tensor density prescribes the following expression (Rund 1978) for
the energy density:

W = UeoE2+B2//io) + $pv2+pe<t>+pV + vU(v), (2.2)

where <j>, V denote the electrostatic and gravitational potentials respectively,
while U represents a pressure term which is derivable from the equation of state
p = f(v) as a solution of the equation

v*U'(v) =/(v). (2.3)

In accordance with standard practice in magnetohydrodynamics we shall
neglect (Kippenhahn & Mollenhoff 1975) the terms E2, pe$in (2.2). Moreover, if
the equation of state is of the form p = Mvt =f(v), with constant M and y, it
follows from (2.3) that ^ = p/{y_ ^ (2 4 )

and, under these circumstances, the expression (2.2) reduces precisely to the
expression for the energy density given by Bernstein et al. (1958). However, in

f The rationalized MKSQ system is used for all units.
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the present context, the relation (2.4) will not be assumed, but the gravitational
potential V will be neglected. Thus we shall accept

W = lB*//io + lpv* + vU(v) (2.5)

as the appropriate expression for the energy density. Also, since it is consistent
with the approximations made above to neglect the displacement current
e0 SE/dt, Maxwell's equations in the form

div B = 0, curl B = /t0 j (2.6)

will be used below, where j denotes the current density

j = p e v . (2.7)
The total energy contained in a region G is given by

= f Wd(x),
JG

(2.8)

and we shall now endeavour to obtain the conditions which our field variables
must satisfy in order that this integral assume a minimum value. From the
remarks of the previous section it is evident that the expression (2.5) cannot
serve as a suitable Lagrangian for this problem unless we introduce Clebsch
potentials. Following a general procedure described elsewhere (Rund, 1978), we
therefore use a Clebsch representation of the generalized momenta

p i = mvj + eAp (2.9)

where A is the vector potential of the electromagnetic field; that is, we put

mVj + eAj = df/dx* + Q dP/dx>, (2.10)

to which we adjoin the usual representation

B = curlA. (2.11)
By means of these relations the expressions B2 and v2 can be eliminated from
(2.5), which give rise to an acceptable Lagrangian of the type

L(v,Q,Ah,i/r>pPpAhj) = \liv\ehklAlk){emAltk)

+ \fm-*{ftj + QPt - eAt) (fj + QPj - eAt) + vU(v). (2.12)

Thus, in the notation of the previous section, we have n = 3, m = 7, and we shall
now derive the explicit forms of the Euler-Lagrange equations (1.8).

To this end we note that, by virtue of (2.11) and (2.12),

(elrsAs_r) = ft-^5,, (2.13)
j

= Kle«>W = -^(onvl B)h,
S° that h (af-) = Kle«>W = -^(onvl B)h, (2.14)

or, if we use (2.1) and (2.7),

8L/dAh = -pevh = -jh. (2.15)
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336 H. Bund, D. B. Wells and L. C. Hawkins

In the notation (1.6) we therefore have

EAh(L) = -(^cmlB-j)h. (2.16)

Accordingly the three Euler-Lagrange equations corresponding to the depend-
ent functions Ah yield nothing new: they are merely the second set of Maxwell's
equations as displayed in (2.6). On the other hand, since

we obtain E^L) = -^ (vvh), (2.19)

together with EP{L) = A (vQvh), (2.20)

8P
EQ(L) = -vvh—h (2.21)

and Ev(L) = -[%mv2+U(v) + vU'(v)]. (2.22)

The Euler-Lagrange equations

B+(L) = 0, EP{L) = 0, EQ(L) = 0, (2.23)

may be combined to yield

i K 0 = °> ^|=0, ^g = 0. (2.24)

Following the procedure of the previous section, we deduce from the latter pair
of these equations that

8QdP 8 I8f n8P

or, if we use (2.10) and (2.11),

v = <r curl (mv + eA) = mar curl v + ecrB. (2.25)

The first member of (2.24) is simply

div(vv) = 0, (2.26)

while the Euler-Lagrange equation corresponding to (2.22) obviously reflects
some kind of Bernoullian theorem by virtue of (2.3).

Let us now turn to an examination of the excess function (1.9) for this par-
ticular problem. From (2.12) and (2.10) it follows that, at any point

(x1, x2, Xs, v, f, Q, P, Av A2> A3)

of the configuration space Xlf},

L(v, Q, Ah> fiP Pp Ahij)-L(v, Q, Ah, ftj> Pp AKi) = \^\B2-B2) + \p{v* - v*).

(2.27)
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Also, using (2.13) and (2.11), we find that

=l*>o eijh^i(Ahj — Ah •)

= ^ 1 B. (cur lA-cur lA) = / j^B.B - / ^ J B 2 , (2.28)

while (2.17) and (2.18) yield

°¥, h °*. h
= vvh{mvh + eAh) - vvh(mvh + eAh)

= pv.v-/w2. (2.29)

When (2.27)-(2.29) are substituted in the definition (1.9) of the excess function,
it is found that the latter may be reduced to the form

£ = ^ 0 - 1 | B - B | 2 + ^ | y - v | 2 , (2.30)

from which it follows that E ^ 0, with equality if and only if Bh = Bh and
vh = vh. Thus, if an extremum of the energy integral (2.8) is obtained as a conse-
quence of the equations (2.25) and (2.26) which govern the motion, this extremum
must be a minimum.

3. The constrained minimum energy problem as an isoperimetric
problem

It is likely that the problem treated in the previous section reflects an over-
simplification from a physical point of view since no constraints whatsoever were
imposed on the system. As has been observed elsewhere (Woltjer 1960; Taylor
1974; Wells 1976), a more realistic model may be obtained when two integral
constraints are introduced, namely

Ix = const., 72 = const., (3.1)

where Ix=\ A.Bd(x), (3.2)
JG

72= f B.vd(x). (3.3)
JG

(The weakest condition under which the conditions (3.1) are applicable will be
discussed in the Appendix.)

The more general problem concerning the extreme values of the energy integral
(2.8) subject to the integral constraints (3.1) is nothing other than an isoperi-
metric problem in the calculus of variations, provided that the latter is formu-
lated as a well-posed problem by means of Clebsch potentials. This has already
been accomplished as far as the energy integral (2.8) is concerned; therefore it
merely remains to do the same in a consistent manner for the constraint integrals
(3.2) and (3.3). Under these circumstances, then, the general theory of multiple
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338 H. Rund, D. R. Wells and L. C. Hawkins

integral isoperimetric problems (Rund 1972) may be invoked. Thus, if in accord-
ance with (3.2) and (3.3) we put T . _

L*l = A . r> W-4)

and L2 = B.v, (3.5)

this theory entails that a necessary condition for an extreme value of the integral
(2.8) subject to the constraints (3.1) is given by the system of equations

E,(L) + A1E.(Lt) + AaE,(Lt) = O, (3.6)

where z denotes in turn each of the dependent functions Av A2, Az, i/r, Q, P, while
Ax, A2 represent Lagrange multipliers which are constant on each extremal (that
is, on each solution of the entire system (3.6)).

The explicit form of (3.6) will now be derived. When (2.11) is substituted in
(3.4) it is seen that r . , . . .

Li = A.curlA = emAkApA,

so that JTJ^=ekjhAk> o f =ehkjAj,k> (3-7)

which gives EJJLLJ) = 2ekjhAkJ = -2 (curl A)A = - 2 B h , (3.8)

this being the only contribution to (3.6) from Lv With respect to L2, we must
substitute not only from (2.11) but also from the original Clebsch representation
(2.10), thus obtaining

L2 = eiupA^t^ = m-hj^Ap^j + QP^-eA,). (3.9)

Hence ^ = , , , ,„ f | = -^BAh = -±.Bh, (3.10)

[ e 1
curlv B . (3.11)

m Jft

wrB'wr^'^ (312)
so that, by virtue of the first member of (2.6),

Ef{L2) = m^d ivB = 0 (3.13)

identically. Similarly,

f=B^'iB^- <315»
Hence, if the first member of (2.6) is used once more,

together with EQ(L2) = --BhPh = - - B . V P . (3.17)
lib lib
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We are now in a position to write (3.6) explicitly. Recalling that EAh{L) = 0
identically because of the second member of (2.6),f it is seen with the aid of (3.8)
and (3.11) that (3.6), with z = Ah, is simply

-2A1B- A2 (curl v - (e/m) B) = 0,

or (2AX - (e/m) A2) B + A2 curl v = 0. (3.18)

According to (3.13), the case when z = ft in (3.6), does not affect the latter, so
that we are left with (2.19) unchanged:

div(/rv) = 0. (3.19)

From (2.21) and (3.17) it follows that, with z = Q, (3.6) becomes

(/>v + A2B).VP = 0. (3.20)

Finally, with the aid of (2.20) and (3.16), it is found for the case when z = P, that
(3.6) reduces to ^ {vQy) + {^/m) BVQ = Q ( 3 2 1 )

Thus the Euler-Lagrange equations (3.6) of our isoperimetric problem imply the
system (3.18)-(3.21), on which the entire subsequent analysis is to be based.

First, we observe that an application of (3.19) to (3.22) reduces the latter to the
f ° r m (/>v + A2B).VQ = 0, (3.22)

and this, together with (3.20), implies the existence of a scalar function ft,(xh) such
t h a t ov + A B / * ( V Q x V P ) (3.23)

Second, it follows directly from the Clebsch representation (2.10) that

m curl v + e curl A = curl (Vf + QVP) = (VQ x VP),

so that VQx VP = mcurlv + eB. (3.24)

A comparison of this with (3.23) yields

/imcurlv = /ov + (A2-^e)B. (3.25)

Without loss of generality we may assume that A2 # 0 (for, if we were to put
A2 = 0, this would entail the removal of the second of the constraints (3.1)). We
may then write (3.18) as mvU = {e/m_Ui/K)^ ( 3 - 2 6 )

which may be combined with (3.25) to give

pv = aB, (3.27)

where a = 2/i(e — m\/\^ — A2. (3.28)

Moreover, it follows from (3.26) that the flow is irrotational if the constant

/g = e/m-2A1/A2 (3.29)

| It must be noted that this result depends explicitly on (2.7), which is applicable only
to a single-species fluid. The result for a multi-species fluid will, in general, be more com-
plex than (3.18).
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340 H. Bund, D. R. Wells and L. G. Hawkins

vanishes; since we wish to exclude this case, we shall assume that /? 4= 0. Also, the
second member of (2.6) can be expressed in the form

pv = m/tjf V 1 curl B, (3.30)

and accordingly the relations (3.26), (3.27) and (3.30) can be combined into the
f o r m p\ = aB = a/?-1 curl v = w / ^ V 1 curl B. (3.31)

Thus, unless the flow is irrotational, the Euler-Lagrange equations of our iso-
perimetric problem imply that the four vector fields v, B, curl v, curl B are collinear.
In this connexion it should be noted that in general a is not a constant; this is due
to the appearance of the scalar fi in (3.28). In fact, it we take the divergence of
(3.27), at the same time noting (3.19) and the first member of (2.6), we obtain

Va.B = 0, (3.32)

which shows that the gradient field of a is normal to the general direction of the
flow. Similarly, by taking the curl of (3.27), we find that

a curl B = p curl v + V/> x v — Va x B,

or, if we use (3.31),

a2/?-1 curl B = m/tjfV1/) curl B + afi-^Vp x v - Va x B),

from which it follows, again because of (3.31),

(a2/?-1 - m/tjf V > ) (curl B. v) = 0.

Since v. curl B 4= 0, it is evident that the scalar a is given by

a = + kpi, (3.33)

where k = [m/i^ftfe]* (3.34)

is a constant. Accordingly the relation (3.27) can now be expressed in the form

v = ±kp~lB, (3.35)

while (3.32), combined with (3.33), shows that

V/).B = 0 (3.36)

and V/0.v = 0, (3.37)

indicating that the mass density gradient is normal to the direction of the flow.
Both a and p are constant on a flux or stream tube.

Remark 1. As noted above, the analysis following (3.25) depends on the
assumption that A2 4= 0. On the other hand, if the first of the constraints (3.1) is
removed, which is tantamount to setting Ax = 0, no significant consequences
arise. Indeed, the only change is reflected in (3.29), which then reduces to /? = e/m,
in which case the constant (3.34) becomes

k = Ho* (3.38)

and in this case (3.35) corresponds to Alfven velocities

v = ±(ft,p)"*B. (3.39)
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Remark 2. The simplest solution of the equations (3.20) and (3.22) is represented
bvy pv + A2B = 0. (3.40)

This is the solution considered by Wells (1976), and, according to the general
relation (3.23), this would correspond to the case /i = 0. However, under these
circumstances it follows from (3.28) that a = —A2, which is a constant for any
configuration that is consistent with the Euler-Lagrange equations, and accord-
ingly (3.33) implies that the mass density p is constant. It is therefore concluded
that the special solution (3.40) would correspond to an incompressible flow, while
the result (3.31) corresponds to 'isochoric flow' defined by (3.37).

If one considers a simple two-fluid model instead of the single-species fluid
analysed above, one has T . .

J J = ne(vi-ve);

u = ~vi+^ve but Pz^po.
Po Po

Hence u x v{.

If one now assumes that all of the kinetic energy is carried by the heavy positive
ions, then the Lagrange density is unchanged and (2.12) is still valid. If one then
proceeds to determine the resulting Euler-Lagrange equations one finds

B =yff-1curlu,

pu = aB + (/t/o/A2) ve,

a/ft curl u = mptoh-1 curl B + p\e y,

a B = m/iQl e~x curl B + pyve where y = (jioe
+/m+—/t/A2).

One sees that force-freeness and collinearity are still maintained if the assump-
tion is made that vt and ve are everywhere parallel. In that case (3.31) is some-
what modified but the essential collinearity of all four vector fields u, B, curlu
and curl B is maintained.

The more general case in which the kinetic energy terms of both the heavy
positive ions and electrons are maintained in the Lagrange density will be the
subject of a later paper.

This research was sponsored in part by NSF GP 43070 and in part by NSP
PHY74 08237 A02.

Appendix. The constraints
In this Appendix the constraint equations (3.1) will be derived from first

principles, with special emphasis on the weakest conditions which must be
satisfied by the electromagnetic field in order that these equations be valid. No
appeal whatsoever is made in this analysis to the approximations introduced at
the beginning of § 2.
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342 H. Bund, D. B. Wells and L. C. Hawkins

We shall begin with the integral Jx as given by (3.2). In terms of the usual 4-
potential representation

B = curlA, E = -V<j>-8A/8t, (A 1)

we have

div[(ExA) + 94B] = A.curlE-E.curlA + V^.B

= - A. curl [8A/8t] - 2E. B - B. 8A/8t,

so that |-(A.B) = -2E.B-div[(ExA) + ̂ B]) (A 2)
ot

which is merely an identity resulting from the representation (A 1). When (A 2)
is integrated over a fixed region G, the unit normal to the boundary 80 of 6 being
denoted by n, it follows from the divergence theorem that the integral (3.2) is
constant in time, provided that

E.B = 0 throughout G (A3)

and n.[(ExA) + 0B] = O on 8G. (A 4)

Since the direction of the vector A is essentially arbitrary by virtue of the possi-
bility of introducing gauge transformations, the latter condition can be satisfied
in general if and only if n B = Q Q n ^ ( A g )

and n. (E x A) = 0 for any vector field A, which implies that E must be parallel
ton , that is, E = TQ o n dG> ( A 6 )

where T denotes some scalar. Thus the conditions (A 3), (A 5) and (A 6) ensure that
the integral (3.2) is constant in time,.\ In passing we observe also that (A 5) is
sufficient to establish the gauge-invariance of that integral. For, under the gauge
transformation A -> A = A + V^, we have

f K.Bd{x) = f (A.
Jo Jo

= ( A.Bd(x)+( div^B)^), (A 7)
Ja Jsa

in which the last integral vanishes by virtue of (A 5). Also the conditions (A 5)
and (A 6) imply that E.B = 0 on 8G, which is consistent with (A 3). Equation
(A 5) implies a perfect fluid where E = — v x B.

Let us now turn to the integral I2 as given by (3.3). For the discussion of the
latter we shall require not only the representation (A 1), but also the Eulerian
equations of motion , .,. .„ „, „ . . . .

M pdv/dt = pe(E + vxB)-Vp, (A 8)
in which d/dt denotes the convected derivative, together with the Maxwell

(A 9)

t It should be remarked that these conditions are considerably weaker than those im-
posed by Woltjer (1960) in the course of his derivation of the constraint equations (3.1).
This is related to the fact that Woltjer uses a special gauge.
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Because of the identity

dv/dt = dv/Bt + |Vt;2 - v x curl v, (A 10)

we can write (A 8) in the form

d\/dt = v x curl v - | W + £(E + v x B) - p~x^p, (All)

where k = e/m. Hence

B.dv/S* = B.(vxcurlv)-£B.W! + A;E.B-/r-1B.Vp. (A 12)

Now, with the aid of the equation of state: p = f(v), taken in conjunction with
(2.3), it is easily verified that ^ i v , „ V[J-M], (A 13)

where the function F(v) is given by

mF(v) = U(v) + vU'(v). (A 14)

Thus p-W.Vp = B.V[F(v)] = div [F(v) B], (A 15)

while B. Vw2 = div (v* B). (A 16)

When (A 15) and (A 16) are substituted in (A 12), the latter becomes

B.dv/^ = B.(vxcurlv) + JfcE.B-div[|i>2B + .F(v)B]. (A 17)

Also, from (A 9) it follows that

v.dB/dt = -v.curlE

= div (v x E ) - E . curl v, (A 18)

which, when added to (A 17), yields

(8/8t)(B.v) = B.(vxcurlv)+ifcE.B-E.curlv

- div |>2B + F(v) B - (v x E)],

or (3/0*) (B.v) = [E + (vxB)].(fcB-curlv)

-d iv |> 2 B + l<T(v)B-(vxE)]. (A 19)

This is the expression which we have been seeking. The constancy in time of the
integral (3.3) is ensured whenever

[E + (v x B)]. (ifcB - curl v) = 0 throughout 0, (A 20)

and [>2+.F(>;)](B.n)-(vxE).n = 0 on 8G. (A21)

However, the latter condition is satisfied automatically if (A 5) and (A 6) hold,
while (A 20) is certainly valid if Ohm's law in the form

E = - ( v x B ) (A 22)

is applicable. But this, in turn, implies the condition (A 3). It is therefore con-
cluded that the conditions (A 5), (A 6) and (A 22) are sufficient to guarantee the
validity of the constraint equations (3.1). Moreover, when (A 22) and (A 6) are
combined, one obtains T n = _ ( V x B ) , (A 23)

and hence V. n = 0, (A 24)
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344 H. Bund, D. R. Wells and L. C. Hawkins

which is precisely what one would expect from a purely physical point of view.
Note that (A 22) implies a fluid with zero viscosity. The constraint Ix depends
critically on the assumption of zero Ohmic resistance while 72 depends on zero
Ohmic resistance and zero viscosity.
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