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Abstract: Under certain conditions, solutions of the nonlocal boundary value 
problem, y(n) = f(x, y, y', ... , y(n- 1)), y(xi) = Yi for 1 < i < n- 1, and 
y(xn) - 2::::~ 1 TiY(TJi) = Yn, are differentiated with respect to boundary con­
ditions, where a < X1 < X2 < · · · < Xn-1 < TJ1 < · · · < TJm < Xn < b, 
r1, ... , rm, Y1, ... , Yn E JR. 
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•. 

1. Introduction 

In this paper, we will be concerned with differentiating solutions of certain 
nonlocal boundary value problems with respect to boundary data for the n-th 
order ordinary differential equation, 

y(n) = f(x, y, y', ... , y(n- 1)), a< X < b, (1) 

satisfying 
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m 

y(xi) = Yi, 1 < i < n- 1, y(x2) - L rkY("'k) = Yn, (2) 
k=1 

where m E N, a < X1 < x2 < · · · < Xn-1 < 'f/1 < · · · < 'f/m < Xn < b, and 
Yb ... , Yn, r1, ... , rm E IR, and where we assume: 

(i) f(x, u1, ... , un) :(a, b) ·x IRn --7]R is continuous; 

(ii) %!i (x, u1, ... , un) : (a, b) x IRn --7]R are continuous, 1 < i < n, 1and 

(iii) Solutions of initial value problems for (1) extend to (a, b). 

We remark that condition (iii) is not necessary for the spirit of this work's 
results, however, by assuming (iii), we avoid continually making statements in 
terms of solutions' maximal intervals of existence. 

I 
Under uniqueness assumptions on solutions of (1), (2), we will establish 

analogues of a result that Hartman [9] attributes to Peano concerning differ­
entiation of solutions of (1) with respect to initial conditions. For our differ­
entiation with respect to boundary conditions results, given a solution y(x) of 
(1), we will give much attention to the variational equation for (1) along y(x), 
which is defined by 

z(n) = t :f (x, y(x), y'(x), ... , y(n-1)(x))z(k-1). (3) 
k=1 Uk 

Interest in multipoint boundary value problems for ordinary differential 
equations has been ongoing for several years, with much attention given to 
positive solutions. To see only few of these papers, we refer the reader to 
papers by Bai and Fang [1], Gupta and Trofimchuk [8], Ma [17], [18], Sukup 
[24] and Yang [25]. 

Likewise for equations on time scales, we suggest the manifold results in 
the papers [2]-[6], [9]-[14], [16], [19]-[23]. In fact, smoothness results have been 
given some consideration for (1), (2) when n = 2 and for specific and general 
values of m; see [7] and [15] as well as arbitrary n; see [12]. 

The theorem for which we seek an analogue, attributed to Peano by Hart­
man, can be stated in the context of (1) as follows: 

Theorem 1. (Peano) Assume that, with respect to (1), conditions (i)­
(iii) are satisfied. Let x0 E (a, b) and y(x) = y(x, x0 , c1 , c2 , ... , en) denote the 
solution of (1) satisfying the initial conditions y(i-1) (xo) = Ci, 1 < i < n. Then, 

(a) for each 1 < i < n, ?c;(x) exists on (a, b), and ai := ?c;Cx) is the solution 
of the variational equation (3) along y(x) satisfying the initial conditions, 

(i-1)( ) • ai xo =uij, 1<i,j<n. 
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(b) /!
0 
(x) exists on (a, b), and /3 := /!

0 
(x) is the solution of the variational 

equation (3) along y(x) satisfying the initial conditions, 

f3(i- 1l(x0 ) = -y(i)(xo), 1 < i < n. 

a n a 
(c) f) y (x) =- LY(k)(xo) a y (x). 

xo k= 1 Ck 

In addition, our analogue of Theorem 1 depends on uniqueness of solutions 
of (1), (2), a condition we list as an assumption: 

(iv) Given a < X1 < X2 < · · · < Xn-1 < 771 < · · · < 'Tlm < Xn < b, if 
y(xi) =,z(xi), 1 < i < n-1, and y(xn)- 2::~1 TkY('Tlk) = z(xn)- 2::;=1 rkz('Tlk), 
where y1~x) and z(x) are solutions of (1), then y(x) _ z(x). 

We "'ill also make extensive use of a similar uniqueness condition on (3) 
along solutions y(x) of (1). 

(v) Given a < X1 < x2 < · · · < Xn-1 < 'T71 < · · · < 'Tlm < Xn < b, and a 
solution y(x) of (1), if u(xi) = 0, 1 < i < n -1, and u(xn)- 2::;=1 rku('Tlk) = 0, 
where u(x) is a solution of (3) along y(x), then u(x) = 0. 

2. An Analogue of Peano's Theorem for (1), (2) 

In this section, we derive our analogue of Theorem 1 for the nonlocal boundary 
value problem (1), (2). For such a differentiation result, we need continuous 
dependence of solutions on boundary conditions and parameters. Such conti­
nuity is an application of the Brouwer Invariance of Domain Theorem and was 
established in [13]. We state the Continuous Dependence Theorem here: 

' 

Theorem 2. (Continuous Dependence) Assume (i)-(iv) are satisfied with 
respect to (1). Let u(x) be a solution of (1) on (a, b), and let a < c < x1 < 
X2 < · · · < Xn-1 < 771 < · · · < 'Tlm < Xn < d < b and r1, ... , Tm E IR be given. 
Then, there exists a 6 > 0 such that, for 

lxi- til < 6, 1 < i < n, 

I'Tli- Til < 6, lri- Pi I < 6, 1 < i < m, 

lu(xi)- Yil < 6, 1 < i < n- 1, 

and 
m 

lu(xn) - L rku('Tlk) - Ynl < 6, 
k=1 
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there exists a unique solution u8(x) of (1) such that 

w5 ( ti) = Yi, 1 < i < n - 1 , 
m 

uo(tn)- L PkUo(rk) = Yn, 
k=l 

and for 1 < j < n, u~j-l)(x) converges uniformly to u(j-l)(x) as 6 ---t 0 on [c, d]. 

3. Main Result 

We are now in a position to state the main result of this paper. 

Theorem 3. Assume conditions (i)-(v) are satisB.ed. Let u(x) be a solu­

tion of (1) on (a, b). Let n > 2, mEN, and a< x1 < x2 < · · · < Xn-1 < 771 < 
···<17m< Xn <band r1, ... ,rm,ul, ... ,un E IR be given, so that 

where 

Then, 

u(x) = u(x, x1, ... , Xn, u1, ... , Un, 1]1, ... , 1Jm, r1, ... , rm), 

m 

u(xn)- L TkU(1Jk) = Un· 
k=l 

(a) for each 1 < i < n, g:;i (x) exists on (a, b). Moreover, for each 1 < j < 
n- 1, Yj := J;:. (x) solves (3) along u(x) satisfying the boundary conditions 

1 ' 
m 

Yj(Xi) = 6ij, 1 < i < n- 1, Yj(Xn)- L TkYj(1Jk) = 0, 
k=l 

andy~:= /uU., (x) solves (3) along u(x) satisfying the boundary conditions 
m 

Yn(xi) = 0, 1 < i < n- 1, Yn(Xn) - L TkYn(1Jk) = 1. 
k=l 

(b) for each 1 < i < n, g-;. (x) exists on (a, b), Moreover, for each 1 < j < 
n- 1, Zj := s:i (x) SOlves (3) along u(x) Satisfying the boundary COnditions 

m 

Zj(xi) = -u'(xi)fJij, 1 < i < n- 1, Zj(Xn)- L TkYj(1Jk) = 0, 
k=l 
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and Zn := Jx: (x) solves (3) along u(x) satisfying the boundary conditions 
m 

Zn(xi) = 0, 1 < i < n- 1, Zn(Xn)- L TkYj('T!k) = -u'(xn)· 
k=l 

(c) for 1 < j < m, 3~ (x) exists on (a, b), and Wj := 3~ (x) is the solution 
of (3) along u(x) satisfying 

m 

Wj(Xi) = 0, 1 < i < n- 1, Wj(Xn)- L rkwj('T/k) = TjU
1
('T/j)· 

k=l 

(d) for 1 < j < m, £;;(x) exists on (a, b), and Vj := £;;(x) is the solution 
\ ) ) 

of (3~ along u(x) satisfying 
m \' 

1 vj(xi) = 0, 1 < i < n- 1, Vj(xn)- Lrkvj('T!k) = u('T/j)· 
k=l 

Proof Before beginning the proof, we remark that occasionally we will 
suppress some limits of summation, arguments, or subscripts for the sake of 
space. 

For part (a), let 1 < j < n- 1, and consider g;:., since the argument for 
) 

/u~ is similar, we withhold its proof. In this case we designate, for· brevity, 
u(x, X1, ... , Xn, u1, ... , Un, f/1, ... , f/m, r1, ... , rm) by u(x, Uj ). 

Let 8 > 0 be as in Theorem 2, 0 < lhl < 8 be given, and define 
1 

Yjh(x) = h [u(x, Uj +h)- u(x, Uj)]. 

Note that u(xj,Uj +h)= Uj + h, and u(xj,Uj) = Uj, so that, for every h =f. 0, 
1 

Yjh(xj) = h [uj + h- uj] 

=1. 

Also, for every h =f. 0, 1 < i < n- 1, i =f. j, 
1 

Yjh(xi) = h [u(xi, Uj +h) - u(xi, Uj )] 

1 
= h [ui- ui] 

=0, 

and for h =f. 0, 
, m 

1 
Yjh(xn) - L TkYjh('T!k) = h [u(xn, Uj +h) - u(xn, Uj )] 

k=l 
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For 2 < i < n, let 

and 

, Ei = Ei(h) = u(i-l)(xj, Uj +h)- fk 

B~~Theorem 2, for 2 < i < n, Ei = Ei(h) - 0 as h- 0. Using the notation 
of Theorem 1 for solutions of initial value problems for (1), viewing the solution 
u(x) as the solution of an initial value problem, and denoting the solution 
u(x) = y(x,xj,Uj,/32,!33 ... ,f3n), we have 

1 
Yjh(x) = h [y(x, Xj, Uj + h, f32 + E2, ... , f3n +En) - y(x, Xj, Uj, (32, ... , f3n)]. 

Then, by utilizing a telescoping sum, we have 
1 

Yjh(x) = h [y(x, Xj, Uj + h,{h + E2, ... , f3n +En) 

- y(x, Xj, Uj, f32 + E2, ... , f3n +En) 

+ y(x, Xj, Uj, f32 + E2, ... , f3n +En) 

-+··· 
- y(x, Xj, Uj, (32, ... , f3n +En) 

+ y(x, Xj, Uj, f32, ... , f3n +En) 

- y(x,xj,uj,/32, ... ,f3n)]. 

By Theorem 1 and the Mean Value Theorem, we obtain 
1 

Yjh(x) = h cq(x, y(x, Xj, Uj, (32 + €2, ... , f3n + En))(uj + h- Uj) 

1 
+ h 0:2(x, y(x, Xj, Uj, f32 + €2, ... , f3n + En))(f32 + E2- f32) 

1 
+ · ·: + h O:n(X, y(x, Xj, Uj, f32, ... , f3n + En))(f3n +En- f3n), 

where o:k(x, y(-)), 1 < k < n, is the solution of the variational equation (3) 
along y( ·) satisfying, 

o:ii-l)(xj) = 6ik, 1 < i < n. 

Furthermore, Uj + h is between Uj and Uj + h, and for 2 < i < n, f3i + Ei is 
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between f3i and f3i + Ei· Now simplifying, 

Yjh(x) =a1 (x, y(x, Xj, Uj + h, f32 + E2, ... , f3n +En)) 
E2 _ + ha2(x, y(x, Xj, Uj, fJ2 + E2, ... , f3n +En) 

+ ... 

' 

Thus, to show h~Yjh(x) exists, it suffices to show, for 2 < i < n, h~ Jt 
exists. 

Npw for 1 < i < n- 1, i =I j, 
~ E2 E \\0 = Yjh(xi) = a1(xi, y(-)) + ha2(xi, y(·)) + · · · + ; an(Xi, y(·)), 

and I 

m 

0 =Yjh(xn)- L TkYjh('f/k, y(·)) 
k=l 

m 

=ai(Xn, y(·))- L rkai('f!k> y(·)) 
k=l 

m 

+ ~ [a2(Xn,y(·))- Lrka2('f!k,y(·))] 
k=l 

m 

+ ~ [an(Xn,y(·))- Lrkan('f!k>Y(·))]. 
k=l 

Hence, we have a system of n -1 equations with n -1 unknowns (note the Xjth 

equation is omitted): 
E2 En 

-ai(XI, y(·)) = ha2(x1, y(·)) + · · · + han(XI, y(·)) 

-a1(x2,y(·)) = ~a2(x2,y(·)) + · · · + ~an(X2,y(·)) 

m 

-ai(Xn, y(·))- L rkal('f/k, y(·)) 
k=l 

= ~ [ a,(xn, y(· )) - ~ r,a,(~k, y(·))] 
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+··· 

+ ~ [an(Xn, y(-))- f rkan('flk, y(-))]. 
k=l 

Define the following matrices: 

-a:= 

-al (xi. y(x, Xj, Uj + h, /32 + E2, ... , /3n +En)) 
-al(X2,y(x,Xj,Uj + h,/32 + E2, ... ,/3n +En)) 

-al (xn, y(x, Xj, Uj + h, /32 + E2, ... , /3n +En))-
m 

L rkal ('flk, y(x, Xj, Uj + h, /32 + E2, ... , f3n +En)) 
k=l 

M(h) := 

a2(x1, y(·)) 
a2(x2, y(·)) 

a3(X1, y(·)) 
a3(x2, y(·)) 

an( XI, y(·)) 
an(X2, y(-)) 

c ·­'- .-

h 

a2(Xn, y(·))- a3(Xn, y(·))-
2: rka2('flk, y(·)) 2: rka3('flk, y(·)) 

an(Xn, y(·))-
2: rkan('flk, y(·)) 

Then the system of equations written in its matrix form is 

-a= M(h)E. 

Note that in the !-llatrix M(h), the solutions y(·) that each a is along are 
not identical. Thus we consider the matrix 

M:= 

a2(x1, u(x)) 
a2(x2, u(x)) 

a3(x1, u(x)) 
a3(x2, u(x)) 

a2(xn, u(x))- a3(xn, u(x))-
2: rka2('flk, u(x)) 2: rka3("lk. u(x)) 

an(XI, u(x)) 
an(X2, u(x)) 

an(Xn, u(x))-
2: rkan('flk, u(x)) 

We claim det(M) =f. 0. Suppose to the contrary that det(M) = 0. Then 
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there exist P2, p3, ... , Pn E lR not all zero such that 

P2 

a2(x1, u(x)) an(xl, u(x)) 0 
a2(x2, u(x)) an(x2, u(x)) 0 

a2(xn, u(x) )­
L ra2(1J, u(x)) 

an(Xn,u(x))­
L ran(rJ, u(x)) 0 

. . 

where the limits of summation and the subscripts of r and 11 have been sup­
pressed. 

Let 

, 
1 

w(x, u(x)) := P2a2(x, u(x)) + p3a3(x, u(x)) + · · · + Pnan(x, u(x)). 

Then\1 , 
I w(xi,u(x)) = 0, 1 < i < n -1, 

and 
m 

w(xn, u(x))- L rkan(rJk, u(x)), 
k=l 

which when coupled with hypothesis (v) yields P2 = P3 = · · · = Pn = 0. This 
is a contradiction to the choice of Pi's. Hence det(M) =f. 0 which means M 
has an inverse. Hence, as a result of continuous dependence, for h =f. 0 and 
sufficiently small, det(M(h)) =f. 0 implying M(h) has an inverse, and therefore, 
we can solve for each Ei/ h, 2 < i < n, using Crammer's rule: 

Ei(h) 1 
--= X 

h IM(h)i 
a2(x1) 

ai-2(Xn)..::.. 
L rai-2("1) 

-al(xn)+ 
L rkal(rJ) 

where each solution ai, 1 < i < n, is along its particular y( ·). 

Note ash--+ 0, det(M(h)) --+ det(M), and so for mt < i < n-1, Ei(h)/h--+ 
det(Mi)/ det(M) := Ai as h--+ 0, where Mi is then- 1 x n- 1 matrix found 
by replacing the appropriate column of the matrix defining M by 

m 

col[,- a1(x1,u(x)), ... , -al(xn,u(x)) + Lrkal(rJk,u(x))]. 
k=l 
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Now let Yj(x) = lim Yih(x), and note by construction of Yjh(x), 
h--+0 

Furthermore, 

au 
Yi(x) = -a (x). 

u· J 

Yi(x) = limyjh(x) =al(x,y(X,Xj,Uj,{h, ... ,f3n)) 
h--+0 

I 

+ A2a2(x,y(x,xj,uj,f32, ... ,f3n)) 
+ 0 0 0 

+ Anan(x, y(x, Xj, Uj, fJ2, ... , f3n)) 
n 

=a1(x,u(x)) + LAiai(x,u(x)), 
i=2 

which is a solution of the variational equation (3) along u(x). In addition, 

Yj(xi) = lim Yih(xi) = 8ij, 1 < i < n- 1, 
h--+0 

and 

Yj(Xn) - f TkYj(TJk) = k~ [Yjh(xn) - f TkYjh(TJk)l = 0. 
k=l k=l 

This completes the argument for g;: .. 
] 

For part (b), let 1 < j < n - 1, and consider ~~ , since the argument for /x~ 
is similar, we omit its proof. This time we designate u(x,x1, ... ,xn,ul, ... ,un, 
'f/1, ... , 'f/m, r1, ... , Tm) by u(x, Xj)· 

Let 8 > 0 be as in Theorem 2, let 0 < \hi < 8 be given, and define 
1 

Zjh(x) = h [u(x_~ Xj +h)- u(x, Xj)]. 

Note that for h ¥- 0, 
1 

Zjh(xj) =h[u(xj,Xj +h) -u(xj,Xj)] 

1 . 
= h[u(xj,Xj +h)- u(xj + h,xj +h) 

+ u(xj + h, Xj +h)- u1] 
1 

=- h [u(cxi,h' Xj +h)· h] 

=- u'(cxi,h,Xj +h), 

where Cxi,h lies between Xj and Xj +h. 
c 



CHARACTERIZATION OF PARTIAL DERIVATIVES WITH ... 

Also, for 1 < i < n - 1, i =f; j, and h =f; 0, 
1 

Zjh(xi) = h [u(xi, Xj +h)- u(xi, Xj)] 

1 
=-[ui-ui] 

h 
-0 -. 

In addition, 
m 1 . m · 

Zjh(xn) - L TkZjh(TJk) = h [u(xn, Xj +h) - L TkU(TJk, Xj +h) 
k=l k=l 

m 

- { u(xn, Xj)- L TkU(TJk, Xj).}] 
k=l 

1 
= h [un- Un] 

=0, 

for every h =I' 0. 

Next, for 2 < i < n, let 

/3i = U(i-l)(Xj, Xj), 

Ei = Ei(h) = U(i-l)(Xj, Xj +h)- /3i, 

and 

Et = Et(h) = U(Xj, Xj +h)- Uj. 

245 
1 -

By Theorem 2, for 1 < i < n, Ei --+ 0 as h --+ 0. As in part (a), we 
employ the notation of Theor:em 1 for solutions of initial value problems for 
(1). Viewing the solution u(x) as the solution of an initial value problem, 
u(x) = y(x,xj,Uj,/32,/33, ... ,/3n), and, using a telescoping sum, we have 

1 
Zjh(X) = h [y(x, Xj, Uj + Et, /32 + E2, .. ·, f3n +En) 

- y(x, Xj, Uj, /32, ... , f3n)] 

1 
= h [y(x, Xj, Uj + Et, /32 + E2, ... , f3n +En) 

- y(x, Xj, Uj, /32 + E2, · · ·, f3n +En) 

+ y(x, Xj, Uj, /32 + E2, · · ·, f3n +En) 
- +· .. 
- y(x, Xj, Uj, /32, ... , f3n +En) 

+ y(x, Xj, Uj, /32, ... , f3n +En) 
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I 

Applying the Mean Value Theorem and Theorem 1, 
1 . 

Zjh(x) = h [€1C¥1 (x, y(x, Xj, Uj + €1,fh + €2, ... , f3n +En)) 

+ 0 0 0 

I 

where, for 1 < i < n, f.i lies between/3i andf3i+Ei, and for 1 < k < n, ak(x,y(-)) 
is the solution of (3) along y(·) satisfying, 

(i-1)( ) .. 0 ak Xj = uik, 1 < z < n. 
'. 

H~,nce, to show lim Zjh(x) exists, it suffices to show for 1 < i < n, 
0 h-+0 

exists.' From above, 

lim €
1 =lim z·h(x·) 

h-+0 h h-+0 J J 

=- lim u'(ex. h, x3· +h) 
h-+0 ] ' 

=- u'(xj)· 

Now, by construction, for 1 < i < n- 1, i ~ j, 
€1 €2 €n 

0 = Zjh(xi) = ~a1(xi, y(·)) + ha2(xi, y(-)) + · · · + -,;:an(Xi, y(·)), 

and 
m 

0 =Zjh(xn)- L TkZjh(TJk, y(·)) 
k=1 

~ ~ [ a1 (x~, y( )) - t, r,a1 (ry,, y(·))] + 

~ [a,(x.,y(·))- t,r,a,(ry,,y(·))l 

+··· 

+ €~ [an(Xn, y(·))- f rkan(TJk. y(·))]. 
k=1 

1
0 €i 
liD­

h-+0 h 

Hence, we have a system of n - 1 equations with n - 1 unknowns (note the 
Xjth equation is omit~ed): 

u'(xj)a1((x1,yC)) = ~a2(x1,y(·)) + · · · + ~an(X1,y(·)) 
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m 

u'(xj) [al(xn, y(-))- L Tka1(7Jk. y(·)) J 
k=l 

m 

=~ [a2(Xn,Y(·))- Lrka2(7Jk.Y(·))] 
k=l 

+ ... 
m 

\\ + ~ [an(Xn, y(·))- L Tkan(7Jk, y(·))], 
I k=l 
' which we can represent as a matrix equation u'(xj)a = M(h)E, similar to the 

matrix equation from part (a). 

At this point, we omit the part of the proof where we solve show M(h) has 
nonzero determinant as it is nearly identical to the method used in part (a). 
Instead, we simply provide the formula for each Ed h, 2 < i < n : 

Ei (h) 1 
-h- = IM(h)i X 

a2(x1) 

ai-2(Xn)­
L: rai-2 

u'(cxi,h)x 
[a1 (xn) - 2::: ra1] 

where each solution ai, 1 < i < n, is along its particular y(-). As a result of 
continuous dependence, we are able to take the limit for each Ed h, 2 < i < n. 
Denote hlim Edh := Bi, 2 < i < n. 

-o 
Now let Zj(x) = lim Zjh(x), and note by construction of Zjh(x), 

h-->0 

Furthermore, 

fJu 
Zj(x) = -f) (x). 

x· J 

Zj(x) =lim Zjh(x) =- u'(xj)al(x, y(x, Xj, Uj, /32, ... , f3n)) 
h--.0 

+ B2cr.2(x, y(x, Xj, Uj, /32, ... , f3n)) 

+··· 
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+ Bnetn(x, y(x, Xj, Uj ,{h, ... , f3n)) 
n 

=- u'(xj)al(x, u(x)) + L Biai(x, u(x)), 
i=2 

which is a solution of the variational equation (3) along u(x). 
"l 

In addition, from above observations, Zj(x) satisfies the boundary conditions 

Zj(Xi) = hlim Zjh(xi) = -8iju
1
(xj), 1 < i < n- 1, 

-+0 

and 

Zj(Xn)- f TkZj('r/k) = lim [Zjh(X2)- f TkZjh(f!k)l = 0. 
h-+0 

'\ k=l k=l 

This completes the proof for g~. 

For (c), we fix 1 < j < m, and this time we designate 
u(x,x1, ... ,Xn,ul, ... ,un,f!l, ... ,f!m,rl, ... ,rm) by u(X,f!j)· 
Let 8 > 0 be as in Theorem 2, let 0 < lhl < 8 be given, and define 

1 
Wjh(x) = h [u(x, 'r/j +h)- u(x, 'r/j)]. 

Note that for h -:f. 0, 
m 

Wjh(Xj)- L TkWjh(f!k) 
k=l 
1 m 

= h [u(xj, 'r/j +h)- L rku(f!k, 'r/j +h) 
k=l 

m 

-u(xj,'r/) + Lrku(f!k,f!j)] 
k=l 

. m-

= ~ [u(xj, 'r/j +h)- L rku(f!k, 'r/j +h) 
k=l 

- TjU(f!j + h, 'r/j +h) + TjU(f!j + h, 'r/j +h) - Un] 
r. " 

= hJ [u(c.r,.,.,'r/j +h)· h] 
], 

=rju'(ery h,'r/j +h), ], 

where eryi ,h lies between 'r/j and 'r/j + h. Also, for 1 < i < n - 1 and h -:f. 0 

1 
Wjh(xi) = h [u(xi, 'r/j +h) - u(xi, 'r/j )] 

1 
=-[ui-ui] 

h 



CHARACTERIZATION OF PARTIAL DERIVATIVES WITH... 249 
' -

-0 -. 
Next, for 2 < i < n, let 

and 

By Theorem 2, for 2 < i < n, Ei = Ei(h) -t 0 as h -t 0. We em­
ploy the notation of Theorem 1 for solutions of initial value problems for 
(1). Viewing the solution u(x) as the solution of an initial value problem, 
u(x) = y(x, Xj, Uj, fh,{h, ... , f3n), and using a telescoping sum, we have 

'I 1 
\\ Wjh(x) =h[y(X,Xj,Uj,/32+E2,···,f3n+En) 
\ 
I - y(x, Xj, Uj, /32, ... , f3n)] 

1 
= h [y(x, Xj, Uj, /32 + E2, ... , f3n +En) 

- y(X,Xj,Uj,/32, ... ~f3n +En) 

+ y(x, Xj, Uj, /32, ... , f3n +En) 
- + ... 
- y(x, Xj, Uj, /32, ... , f3n)]. 

Then, by the Mean Value Theorem and Theorem 1, 
1 

Wjh(x) = h [a2(x,y(X,Xj,Uj,/32 + €2, ... ,/3n + En))(/32 + E2- /32) 

+ ... 
+ Un(x, y(x, Xj, Uj, /32, ... , f3n + En))(f3n +En- f3n)] 
E2 -

=-,;:a2(x,y(x,Xj,Uj:f32 + E2, ... ,/3n +En)) 

+··· 
+ ~ Un (X, y (X, X j , Uj, /32, ... , f3n + En)), 

where, for 2 < i < n, Ei lies between /3i and /3i + Ei, and, for 1 < k < 
n, ak(x,y(·)) is the solution of (3) along y(·) satisfying 

aii-l)(xj) = 6ik, 1 < i < n. 

Thus, to show lim Wjh(x) exists, it suffices to show, for 2 < i < n, lim Ei 
h-+0 h-+0 h 

exists. Now for 1 < i < n- 1, i =f. j, 
E2 E3 En 

0 = Wjh(xi) = ha2(xi, y(·)) + ha3(xi, y(·)) + · · · + -;;:an(Xi, y(·)), 
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m 

TjU1(Cqi,h,7Jj +h) =Wjh(xn)- L TkWjh(7Jk, y(·)) 
k=l 

~ ~ [ <>2(Xn, y(·))- t, Tk<>2(~., y(·))] 

+ ~ [ <>,(xn, y(·)) - t, rk<>3(~k. y( )) ] 

+ ... 

+ ~ [ <>n(Xn, y(·)) - t, rk<>n(~k• Y(·)) ]· 

Hence, we have a system of n- 1 equations with n- 1 unknowns (note the 
Xjth equation is omitted): 

0 = ~ a2(x1, y(·)) + · · · + ~ an(XI, y(·)), 

r1u'(eqi,h' 7Jj +h)=~ [a2(Xn, y(·))- f rka2(7Jk, y(·))l 
k=l 

+··· 

+ ~ h(x.,y(·))- t,rk<>n(~.,y(·))], 
which we can represent as a matrix equation a= M(h)E, similar to the matrix 
equation from part (a). 

As was done in part (b), we omit proof that M(h) has nonzero determinant. 
Instead, we simply provide the formula for each 
Ei/h, 2 < i < n : 

Ei(h) 1 
-h- = IM(h)l X 
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ai-2(Xn)-
L rai-2 Tju'(eqj,h) 

where each solution ai, 2 < i < n, is along its particular y(·). As a result of 
continuous dependence, we are able to take the limit for each Ei/ h, 2 < i < n. 
Denote hlim Ei/h := ci, 2 < i < n. 

--+0 

Now let Wj(x) = lim Wjh(x), and note by construction of Wjh(x), 
h--+0 

au 
Wj(x) = ~(x). 

U'f}j '\ 
\I Furthermore, 
\ 

Wj(x) =lim Wjh(x) 
h--+0 

n 

= L Ciai(x, y(x, Xj, Uj, {32, ... , f3n)) 
i=2 
n 

= L Ciai(x, u(x)), 
i=2 

which is a solution of the variational equation (3) along u(x). 

In addition, from above observations, Wj(x) satisfies the boundary condi­
tions 

and 

Wj(Xn)- f. TkWj(1Jk)) = ~~ [Wjh(Xn)- f. TkWjh(1Jk)l = TjU
1
(1Jj)· 

k=l k=l 

This completes the proof for g~. 

It remains to verify part (d). Fix 1 < j < m as before and consider 
~· Again, let <5 '> 0 be as in Theorem 2, 0 < lhl < <5 be given, denote 

1 

u(x, XI,··., Xn, u1, ... , Un, 1]1, · .. , 1Jm, r1, ... , rm) 
by u(x,rj), and define 

1 
Vjh(x) = h [u(x, Tj +h)- u(x, rj)]. 
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Note that for h =I= 0, 

\\ 

m 

Vjh(Xj)- L TkVjh(TJk) 
k=l 

1 m 
= h [u(xj, Tj +h)- L rku(TJk, rj +h) 

k=l 
m 

- u(xj,rj) + 'l:rkU(TJk,rj)] 
k=l 

1 m 
= h [u(xj, Tj +h)- L rku(TJk, Tj +h) 

k=l 

- hu(ryj, Tj +h)+ hu(TJj, Tj +h)- Un J 

=U(TJj,Tj +h). 

Also, for 1 < i < n - 1 and h =I= 0 
1 

Vjh(xi) = h [u(xi, Tj +h)- u(xi, rj)] 

1 
= h [ui- ui] 

=0. 

Now, for 2 < i < n, let 

/3.- u<i-l)(x· r·) 
t- )l J ' 

and 

Ei = Ei(h) = U(i-l)(Xj,Tj +h)- f3i· 

By Theorem 2, for 2 < i < n,. Ei = Ei(h) ---* 0 as h ---* 0. We em­
ploy the notation of Theorem 1 for. solutions of initial value problems for 
(1). Viewing the solution u(x) as the solution of an initial value problem, 
u(x) = y(x,xj,Uj,/32,/33, ... ,/3n), and using a telescoping sum, we have 

1 
Vjh(X) = h [y(x, Xj, Uj, /32 + E2, ... , f3n +En) 

- y(x,Xj,Uj,/32, ... ,/3n)] 
1 

= h [y(x, Xj, Uj, /32 + E2, ... , f3n +En) 

- y(x, Xj, Uj, /32,.;., f3n +En) 

+ y(x, Xj, Uj, /32, ... , f3n +En) 
- + ... 
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- y(x, Xj, Uj ,/h ... , .Bn)]. 

By the Mean Value Theorem and Theorem 1, 
1 

Vjh(x) = h [a2(x, y(x, Xj, Uj, .62 + €2, ... , .Bn + En))(,62 + E2- .62) 

+··· 
+ an(x, y(x, Xj, Uj, ,62, ... , .Bn + En))(.Bn +En- .Bn)] 
E2 -

=-,;a2(x, y(x, Xj, Uj, .62 + E2, ... , .Bn +En)) 

+··· 
, 1 + ~ an(x, y(x, Xj, Uj, .62, ... , .Bn +En)), 

where\1 for 2 < i < n, .Bi + Ei lies between .Bi and .Bi + Ei and, for 1 < k < 
n, ak('x, y(·)) is the solution of (3) along y(·) satisfying 

aki-l)(xj) = 8ik, 1 < i < n. 

Therefore, to show lim Vjh(x) exists, it suffices to show, for 2 < 2 < 
h-o 

n, lim Ehi exists. 
h-o 
Now for 1 < i < n - 1, i -=/= j, 

E2 E3 En 
0 = Vjh(xi) = ha2(xi, y(·)) + -,;aa(xi, y(·)) + · · · + -,;an(Xi, y(·)), 

and 
m 

u(r/j, Tj +h) =Vjh(xn)- L TkVjh('r/k) 
k=l 

= ~ [ a,(x., y(·))- t, r,a,(ry,, y(·))l 

+ ~ [aa~Xn, y(-))- f rkaa(f!k, y(·))l 
k=l 

+ ... 

+ E; [an(Xn, y(·))- f rkan(f!k, y(·))]. 
k=l 

Hence, we have a system of n- 1 equations with n- 1 unknowns (note the 
Xjth equation is omitted): 

E2 En ( 
0 = ha2(x1,y(·)) +···+han x1,y(·)), 
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u(7Jj, Tj +h)=~ [a2(xn, y(·))- f rka2(7Jk, y(·))l 
k=l 

+··· 

+ ~ [ <>n(Xn, y(·)) - ~ Tk<>n(~k> y(·)) ]· 

which~\we can represent as a matrix equation a= M(h)E, similar to the matrix 
equati~m from part (a). -

\ 
As was done in parts (b) and (c), we omit proof that M(h) has nonzero 

determinant. Instead, we simply provide the formula for each Ei/h, 2 < i < n: 

Ei (h) 1 
--= X 

h IM(h)l 
a2(x1) 

ai-2(Xn)-
2:: rai-2 

ai(xn)-
u( ru) 2::::: rai 

where each solution ai, 2 < i < n, is along its particular y(·). As a result of 
continuous dependence, we are able to take the limit for each Ei/ h, 2 < i < n. 
Denote~~ Ei/h := Di, 2 < i < n. 

Now let Vj(x) = lim Vjh(x), and note by construction of Vjh(x), 
h--+0 

Furthermore, 

' au 
Vj(x) = ~(x). 

ur­J 

Vj(x) =lim Vjh(x) 
h--+0 

n 

= LDiai(x,y(x,xj,Uj,{h, ... ,/3n)) 
i=2 

n 

= L Diai(x, u(x)), 
i=2 

which is a solution of the variational equation (3) along u(x). 

In addition, from above observations, wj(x) satisfies the boundary condi-
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tions 

and 

Vj(Xn)- f rkVj(1Jk)) = ~~ [Vjh(Xn)- f rkVjh(1Jk)l = U(1Jj)· 
k=l k=l 

This completes the proof for g;: . 
J 

0 
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