A DIFFERENCE EQUATION WITH ANTI-PERIODIC BOUNDARY CONDITIONS

Jeffrey W. Lyons ${ }^{1}$ and Jeffrey T. Neugebauer ${ }^{2}$
${ }^{1}$ Division of Math, Science and Technology
Nova Southeastern University, Fort Lauderdale, FL 33314 USA
${ }^{2}$ Department of Mathematics and Statistics Eastern Kentucky University, Richmond, Kentucky 40475 USA

Abstract

In this paper, we apply an extension of the Leggett-Williams fixed point theorem to the second order difference equation $\Delta^{2} u(k)+f(u(k+1))=0, k \in\{0,1, \ldots, N\}$, satisfying the anti-periodic boundary conditions $u(0)+u(N+2)=0, \Delta u(0)+\Delta u(N+$ $1)=0$. Two important results of this paper involve providing the Green's function for $-\Delta^{2} u(k)=0$ satisfying $u(0)+u(N+2)=0, \Delta u(0)+\Delta u(N+1)=0$ and showing this Green's function satisfies a concavity like property. An example is also given.

Keywords. Fixed Point Theorem, Difference Equation, Antiperiodic, Antisymmetric, Functional.

AMS (MOS) subject classification: 39A10

1. Introduction

In this paper, we will apply an Avery, Anderson, and Henderson [2] fixed point theorem that is an extension of the Leggett-Williams fixed point theorem [10]. Avery and others have been providing fixed point theorems that relax some of the assumptions of the original Leggett-Williams fixed point theorem; for examples, see $[1,3,4,5,6]$.

Here, we consider the second order difference equation

$$
\begin{equation*}
\Delta^{2} u(k)+f(u(k+1))=0, k \in\{0,1, \ldots, N\}, \tag{1.1}
\end{equation*}
$$

satisfying anti-periodic boundary conditions

$$
\begin{equation*}
u(0)+u(N+2)=0, \Delta u(0)+\Delta u(N+1)=0, \tag{1.2}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\Delta u(k)=u(k+1)-u(k)$ is the forward difference operator. We will show that if f satisfies certain conditions, then (1.1), (1.2) has an antisymmetric solution in the sense that $u(N+2-k)=$ $-u(k)$.

While there has been much work done on ordinary differential equations satisfying antiperiodic boundary values (for some examples, see $[7,8,9]$),

