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Abstract 
  

Predator satiation and prey-size preference were determined for locally caught 
lionfish, schoolmaster, and graysby, all co-occurring predatory fishes in the Florida coral 
reef ecosystem.  Individuals were evaluated by exposing them to wild-caught killifish 
over a gradient of four size classes (20 mm to 60 mm, in 10 mm increments).  Preference 
trials extended over a 2 hr time period and were filmed to determine the order in which 
each prey item was consumed.  Satiation was evaluated by exposing the predators to an 
equal number of excess prey items for 24 hrs and evaluating consumed prey weight.  
Lionfish and schoolmaster showed a significant preference for the smallest size class (20-
30 mm) while the graysby preferred the largest (50-60 mm) and smallest equally.  
Graysby were shown to consume the least amount of food per gram by biomass 
(0.034g/gram predator-1) while lionfish consumed the most (0.079g/gram predator-1).  A 
significant difference was also found between consumption rates of lionfish and 
schoolmaster (0.053g/gram predator-1).  If consumption is compared by length between 
species, lionfish (̅0.051 = ݔg/mm predator-1) and schoolmaster (̅0.061 = ݔg/mm predator-
1) consumption was not significantly different.  These results suggest that lionfish success 
may stem from its ability to target prey sizes not preferred by the graysby while able to 
outcompete schoolmaster for the same prey size class.  However, if the lionfish is 
compared on an individual level to schoolmaster by individual or length, consumption is 
similar, suggesting lionfish consumption is not significantly greater on the reef than the 
native species on an individual basis. 
 
 
 
 
Key words: Pterois volitans, lionfish, Lutjanus apodus, schoolmaster, Cephalopholis 
cruentata, graysby, preference, satiation   
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Introduction  
Lionfish (Pterois sp.) in the western Atlantic are an invasive complex of marine 

fishes from the Indo-Pacific region that are currently colonizing temperate and tropical  
marine environments and outcompeting native fish species, leading to a reduction in 
overall reef health and a degradation of productivity.  Lionfish in the western North 
Atlantic are known to consist of two species, the devil firefish and the red lionfish, P. 
volitans (Hamner et al. 2007).  However, the respective percentages of these species in 
each location are variable spatially and temporally (Hamner et al. 2007), and recent 
molecular evidence has questioned the validity of these species within an Indo-Pacific 
continuum (Wilcox 2014).  For the purposes of this thesis, the term “lionfish” will refer 
to this complex.  The lionfish invasion originated from a small founding population, with 
the point of introduction likely being South Florida (Morris and Akins 2009).  From this 
location, the introduced population has subsequently expanded north through Cape 
Hattaras, North Carolina and south throughout the Caribbean Sea to Brazil (Whitfield et 
al. 2002; Ferreira et al. 2015).  Although the reasons for the rapid colonization and 
success of lionfish has been hypothesized, the mechanism(s) responsible have not been 
tested and confirmed.   

The lionfish complex is the first confirmed example of a non-native marine fish 
colonizing the western North Atlantic (Meister et al. 2005).  The rapid expansion has 
resulted in notable effects on native habitats.  For example, Green et al. (2012) found that 
native predator biomass on continuous natural reef tracts in the Bahamas was reduced by 
65%, while lionfish biomass expanded to 40% of predator biomass.  Due to both its rapid 
and widespread range expansion, and its deleterious effects on populations of coral reef 
fishes, lionfish are considered an invasive species and a serious threat to reef health.   

Lionfish not only affect the intrinsic ecological value of reefs, they also have 
several types of economic impacts.  Predation by lionfish results in the loss of 
charismatic reef fauna as a whole, which affects attraction to recreational diving.  This 
predation also decreases populations of herbivorous fishes, in turn reducing the health of 
associated corals due to the proliferation of algae (Albins and Hixon 2013).  Finally, 
many of the predator species displaced or directly preyed upon by lionfish are important 
to fishing interests.  These species include both the lutjanid snappers and serranid 
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groupers, two groups commonly targeted by both recreational and commercial fishermen 
(Morris and Akins 2009).   

Understanding the reasons for the invasion success of lionfish can assist attempts 
to reduce biological advantages as part of a larger effort to control local populations.  The 
ability to consume large amounts of prey (Albins 2008) as well as reduced predation due 
to venomous spines, may be a contributing factor to the Lionfish’s success (Morris et al. 
2009).  Metabolic release from parasites has been also postulated to be a driver in the 
species’ dominance.  Due to the low parasitic loads within lionfish individuals, compared 
to native species, they may have increased energy that can be set aside for reproductive 
and somatic growth (Albins and Hixon 2013).  The reproductive strategy of the invasive 
species may also influence population expansion due to females being asynchronous, 
indeterminate batch spawners who will spawn as long as conditions are favorable (Morris 
et al. 2011).  This creates a situation where the population can spread rapidly.  Further, 
food resource availability has a significant impact on the health and growth of a given 
population and lionfish may be taking advantage of an underutilized food resource or 
vacant feeding niche.  Niche vacancy could be a product of natural causes or may in part 
be due to overfishing or climate change.  Lionfish population expansion can also be 
influenced by increased ability to utilize prey when available in the form of greater 
predator consumption during times of excess forage.  Both lionfish and native species 
have an effect on community structure through predation.  Lionfish are shown to have a 
significant impact on native fish communities (Cerino et al. 2014).  Laboratory 
experiments attempts to determine if the lionfish has the ability to consume more prey per 
gram than comparable native species, thereby making it more ecologically efficient.  
Efficiency in a biological setting can vary with the intended subject.  Clutter and 
Theilacker (1971) defined gross ecological efficiency as simply the ratio of the energy 
yield in mortality to the energy of prey ingested.  The definition of ecological efficiency 
in a feeding ecology context is a slight modification of the prior version, instead referring 
to the species’ ability to readily take advantage of available resources such as food or 
habitat, and in turn utilize those resources for somatic and reproductive growth.  

There are currently no effective means of eradication, or even control, of lionfish 
being utilized on an ecosystem scale, with the exception of removal by commercial and 
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recreational divers in local areas, as well as incidental by-catch in the existing spiny 
lobster (Panulirus argus) commercial fishery (Akins et al. 2012).  Removal is especially 
difficult in depths greater than recreational dive limits, where divers cannot physically 
access lionfish and hook-and-line catchability is low due to their low affinity for 
consuming presented baits (Barbour et al. 2011). 

Due to the lack of effective direct anthropogenic controls, i.e., physical removal, 
on the spread of lionfish, biological controls may be viable options.  In traditional 
invasive species control, biological control involves importing mortality agents from the 
species’ home range to naturally restrict populations in the introduced area (Messing and 
Wright 2006).  The technique has been used in South Florida for freshwater finfish with 
the introduction of peacock bass (Chichla ocellaris) from South America to control 
invasive cichlid and tilapia species in the canals and Everglades (Trexler et al. 2000).  
However, this technique is very difficult to apply successfully to marine species due to 
the large range of these invasives, and problems associated with identifying species-
specific predators and pathogens within their native range.  Lionfish have colonized the 
western North Atlantic and will potentially extend into the subtropical western South 
Atlantic as well (Ferreira et al. 2015).  Successful implication also requires years of 
testing required to evaluate the effect of introduced biological controls on native 
environments, and commonly fails due to unintended effects to native species (Messing 
and Wright 2006).   

Since introduced biological control is likely not a valid option to control lionfish 
colonization, other avenues must be considered.  Ecosystem based management (EBM) is 
a technique that manipulates communities or complexes of organisms, instead of 
individual species to maintain ecosystem health.  Manipulating certain native species 
populations in order to create favorable competition matchups is a possible option.  In 
order to optimize EBM control methods, a comprehensive understanding of the causes 
for lionfish proliferation is required.  By studying potential factors, the most influential 
can be identified and quantified in order to create favorable conditions to mitigate the 
deleterious effects of invasive species.  Possible causes include niche vacancy, ecological 
release, and lack of predation.  Niche vacancy can manifest itself in the form of increased 
food availability resulting from an underutilized prey size or the outcompeting of other 
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species through increased ecological efficiency or direct antagonism.  This ecological 
release, defined as the niche expansion due to the loss of interspecific competition 
(Wilson 1961; Bolnick et al. 2010), would allow for the greater availability of resources 
as well as an increased number of species or size of potential prey items due to lack of 
competition.  Since lionfish are opportunistic feeders, feeding predominantly on small 
fishes and crustaceans (Fishelson 1997), there is a high potential for niche overlap with 
native species (Sano et al. 1984; Naughton and Saloman 1985; Matheson et al. 1986).   

This project attempts to determine whether the aforementioned reasons (niche 
vacancy and ecological release) are contributing factors for lionfish success through 
evaluations of prey size preference and ecological efficiency for lionfish compared with 
two native predators.  The objective of this study is to better understand the feeding 
ecology and predatory effect of invasive lionfish, and two native predators on small fish 
assemblages, with the intent to analyze prey size preference and differences in prey 
utilization.  These results will provide insight on whether lionfish are in direct 
competition or potentially simply filling an underutilized ecological niche.   

Two species native to the subtropical western North Atlantic Ocean and tropical 
Caribbean Sea, graysby grouper Cephalopholis cruentata, and schoolmaster snapper 
Lutjanus apodus like lionfish, are benthic, structure-oriented species that do not undergo 
any significant migration.  All three species derive over 50% of their diet from fishes, 
making them dominant piscivores as mature adults (McCleery 2011; Nagelkerken 1979; 
Rooker 1995).Scientific divers in South Florida report observing individuals of all three 
species routinely residing on or within the same structure as these fishes prefer the same 
type of complex habitat.  Occupation of the same habitat should expose the three species 
of interest to the same potential prey items.  Any behavior or morphological variance 
between the three predators would result in prey preference differences.  The variance in 
consumed prey will illustrate the individual feeding niche of the two native species and 
lionfish.  

This laboratory study will evaluate size preference and satiation using a naïve 
prey species; the goldspotted killifish (Floridichthys carpio), a euryhaline species readily 
available in a broad range of sizes and in the quantities required for testing; and is not 
found in the same habitat as the adult experimental predator fishes and is thus a naïve 
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food source to all three experimental predators.  The lack of previous interaction between 
predators and prey reduces any handling or preference bias gained by previous wild 
encounters; Killifish body morphology is also similar to the smaller labrid wrasses, 
apogonid cardinalfishes, and scarid parrotfishes that are commonly consumed by lionfish, 
graysby, and schoolmaster (Albins 2008; Rooker 1995; Randall 1967).  Since the 
resulting data and analysis focuses strictly on prey size, this forage species will act as an 
effective proxy for reef-derived species.   

Studying predator-prey interactions allows for evaluation within communities that 
can facilitate the management of species from an ecosystem perspective (Usmar 2012).  
The lionfish satiation threshold will be compared to the selected native species to 
determine if lionfish have the ability to ingest more prey by mass, resulting in a more 
efficient habitat utilization and greater ability to outcompete native species.  Comparing 
consumption under the same conditions as two co-occurring native species (graysby and 
schoolmaster) further allows for determination of how the impact of lionfish of reef 
habitats relates to native predators.  By focusing on the preference of the introduced 
species when exposed to varying prey size, with comparison to native species, prey size 
overlap can be determined and subsequently manipulated to optimize a particular 
management goal.   
 
Invasive Lionfish 

Due to P. volitans comprising 93% of the population, all data discussed here on 
will refer to this species (Hamner et al. 2007).  Lionfish have a native home range that 
encompasses the western Pacific Ocean from the southern tip of Japan to Australia 
including Micronesia, Indonesia, and French Polynesia (Whitfield et al. 2002).  They are 
commonly encountered in water depths from 0 to 50 m, where they can reach sizes of 
380 mm (Schultz, 1986).  In their introduced range, lionfish are established year round 
from North Carolina to throughout the Caribbean (Whitfield et al. 2007).  Although there 
are no reports of an established population south of the Caribbean, Ferreira et al. (2015) 
has documented a single case of a lionfish found south of the Amazon River freshwater 
effluent.  Individuals can attain over 450 mm total length and have been confirmed to 
survive in depths up to 100 m (Whitfield et al. 2007; Ruiz-Carus et al. 2006).  Lionfish 
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are primarily piscivores over their non-native range, with teleosts comprising 78% of 
prey items by volume.  In the Atlantic they are found in association with rocky 
outcroppings and vertical coral reef structure and artificial reefs (Morris et al. 2009; 
Whitfield et al. 2002).  In the Indo-Pacific, they consume cardinalfish, damselfish, and 
anthias (Fishelson 1997).  In their introduced range, Morris and Akins (2009) found they 
consume similar species, with pomacentrids and labrids comprising 13.9% of their diet in 
the Bahamas.  Albins (2008) had parallel results in the same region with a total of 23 
families of small-bodied reef fish preyed upon by lionfish.  Lionfish exhibit a shift in diet 
with size, feeding more heavily on fish with increasing length (Morris and Akins 2009; 
McCleery 2011).  McCleery (2011) found the shift occurred at roughly 180 mm with 
smaller individuals preferring crustaceans and individuals larger than 300 mm feeding 
almost exclusively on teleosts.  Stomach weights of lionfish collected by Morris and 
Akins (2009) in the Bahamas were greatest at dawn and decreased during the day, 
suggesting that lionfish actively feed during the night.  Green et al. (2011) observed that 
feeding was greatest during crepuscular hours combined with a higher level of overall 
activity and movement. 

Lionfish feeding and consumption has been characterized using multiple methods.  
Using controlled experiments, Fishelson (1997) determined lionfish consumed 0.024g/g 
lionfish, While Cerino et al. (2013) modeled consumption over differing temperatures for 
bioenergetics purposes.  Côté and Maljkovic (2010) and Green et al. (2011) used in situ 
observations and respectively determined feeding rates of 0.038g/g and 0.089g/g for 
lionfish.   
 
Native Schoolmaster  

The schoolmaster is a moderately-sized snapper species found from northern 
Florida south through Brazil (Carpenter 2002).  They are commonly found in depths to 
63 m (Cervigón and Los Roques 1991).  Individuals attain maximum lengths of roughly 
620 mm, but are commonly observed around 350 mm (Randall 1983).  Schoolmaster 
prefer areas of complex bottoms and are often the most dominant snapper species on 
coral reefs in the Caribbean (Randall 1983).  This species is one of the most highly reef-
associated lutjanids and feeds heavily on the cryptic species found there (Randall and 
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Bishop 1967).  The majority of the schoolmaster diet is comprised of scarid parrotfishes 
and acanthurid surgeonfishes, but they have been documented to also consume a variety 
of other reef-associated species (Rooker 1995; Randall and Bishop 1967).  Schoolmaster 
are predominantly crepuscular and overnight feeders.  Area utilized during daylight hours 
averaged 1,291 ±636m2 while nighttime movement ranged 9,950 ±3,120m2, suggesting 
distinct feeding and resting periods (Hitt et al. 2011).  Although schoolmaster are 
documented to feed during the overnight hours, fresh prey items were found in the 
stomachs of individuals throughout the day (Randall and Bishop 1967).  Rooker (1995) 
found a similar pattern and suggested that schoolmaster feed continuously throughout the 
day, with peaks during crepuscular and overnight hours.   

The species experiences an ontogenetic shift from mangrove habitats to offshore 
coral reefs at around 70 mm total length (Rooker, 1995).  Juvenile schoolmaster are 
found only in mangrove prop roots, feeding almost exclusively on invertebrates including 
crabs and amphipods.  Rooker (1995) found that individuals larger than 70 mm can be 
found in both mangrove and coral reef habitats, but have undergone an ontogenetic shift 
to piscivory.  By the time schoolmaster individuals reach 100 mm, 82.6% of prey items 
by occurrence are teleosts (Rooker, 1995).   
 
Native Graysby  

Graysby is a small (<415 mm) grouper species belonging to the family Serranidae 
(Nagelkerken 1979).  The species is endemic to the western Atlantic Ocean and 
Caribbean Sea, extending from North Carolina to as far south as Brazil in depths from 3 
to 40 m.  Due to overfishing of the larger grouper species, graysby are now one of the 
most dominant grouper on many reefs including the Florida Keys, favoring reef habitats 
containing large quantities of coral with high rugosity and relief (Chiappone et al. 2000; 
Nagelkerken 1979).   

Graysby have a distinct home range up to 4000 m2 and are more active at night 
than during the day, when they are most likely in search of food (Popple and Hunte 
2005).  Their territories are highly dependent on available structure, and hard-bottom reef 
was determined to have a greater correlation with graysby abundance than food 
availability (Parrish 1987; Chiappone et al. 2000).  Approximately 50% of individuals 
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become sexually mature by 160 mm, at which point their diet shifts from dominantly 
crustacean to teleost prey (Nagelkerken 1979).  Randall (1967) found similar results, with 
teleosts comprising 66.2% of graysby diet.  Popple and Hunte (2005) noted increased 
movement and predation during crepuscular hours, peaking in the overnight hours.  The 
species had a distinct territory averaging 2102m2, and were highly associated with hard 
structure.  Nagelkerken (1979) found the graysby to be crepuscular, with the fullest 
stomachs collected at 0630 and 1700, while Popple and Hunte (2005) found individual 
graysby to be most active during night hours.   

 
Prey Preference 

Predation is an important factor in influencing the ecological environment at a 
community and population level (Sih et al. 1985; Holmes and McCormick 2010).  These 
influences can have significant impacts on the community structure (Hambright 1994; 
Juanes et al. 2002) and prey morphology (Brönmark and Miner 1992; Poleo et al. 1995).  
Predation is influenced by a variety of characteristics including prey size due to 
selectivity preferences (Ellis and Gibson 1995; Juanes 1994; Sogard 1997). 

The definition of “feeding preference” differs slightly by author.  For example, 
Underwood and Clarke (2006) apply an explanation of when confronted with choices of 
prey, a predator would exhibit a behavior that results in consumption not predicted when 
no choice is available.  This definition is only sensitive to number or mass consumed and 
does not account for time.  However, other authors (e.g., Manly 2006), view preference 
as predator consumption when confronted by prey choice, resulting in an individual 
behavior of choosing the most desirable size prey both earliest and most frequently.  This 
distinction appears not to affect how preference is defined ecologically for a natural 
system, but more for the purpose of quantifying preference in a controlled experimental 
setting.   

Prey-size preference is governed by a combination of behavioral and 
morphological characteristics.  For example, feeding strategy, such as ambush predation 
or corralling, potentially affects size of prey taken.  Orientation on the reef will also 
affect prey composition.  Specifically, cryptic and sedentary predators will interact more 
often with apogonids and gobiids that reside on or within the reef while mobile species 
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that patrol above the reef will have a higher probability of interaction with active 
pomacentrid species such as sergeant majors (Abedufduf saxatilis) and various Chromis 
sp. damselfishes.  

In a strict sense, any prey item that is smaller than the maximum jaw gape of a 
predator, that takes its food whole rather than in bites, is an available food source.  
However, indiscriminate feeding on any potential prey is uncommon, as large potential 
prey might not be able to be swallowed, while the smallest possible prey size is 
mechanically constrained by gill raker gap characteristics.  Furthermore, the ability to 
consume a size range of prey items does not imply willingness to do so.  “Optimal Forage 
Theory” (OFT) states that individuals will target prey items that will maximize the net 
rate of energy intake (Holmes and McCormick 2010).  Optimal prey size is decided by 
numerous factors including nutrition, handling time, satiation level, and chance predation 
success determined by both the behavior and morphology of the predator and prey 
species (Holmes and McCormick 2010).  Smaller prey are easier to capture, but do not 
contain the same amount of energy.  Conversely, as individual prey become larger, they 
may be harder to capture, require longer handling times, and may have reduced capture 
success.  However, large prey items represent more energy, thereby allowing the predator 
to feed less frequently.  Under OFT, predators behaviorally select prey items that 
maximize energy intake while minimizing exposure to other predators, prey defense 
(spines), capture, and handling time.  Plotting the prey size and frequency of predation 
results in a normal distribution with a maximum number of predations at the optimal-
sized prey for a given species (or size class) of predator.  A shortcoming of the OFT 
model is that it assumes a constant motivation across levels of stomach fullness, which is 
not the case in real-time experiments, as the level of stomach fullness may influence the 
targeted size class (Gill 2003). 

Underwood and Clarke (2005) used a two-part experiment for a quantity of each 
variable (prey item) consumed in isolation and a quantity for each of the differing 
variables when exposed together.  These values are then combined into ratios, and these 
ratios are used to evaluate preference.  This method works for situations where the prey 
choices are quantified by weight, and time is not a controlling factor.  However, it would 
be more appropriate in some situations to use number and order consumed, not weight of 
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prey items consumed at the termination of the experiment; for example, comparing 
consumption of a discrete number of fish or shrimp versus the weight of these prey items.  
In those discrete situations, one prey item may be more desirable than the others and thus 
be consumed first.  Species may also skew their prey selection towards smaller or larger 
sized items depending on specific feeding strategies, taste, and experience.  

Prey preference of commercially important species including multiple species of 
groupers has been analyzed in previous studies.  The motivation to collect the resulting 
information has differed, from determining the effect of the  introduced grouper species 
roi (Cephalopholis argus) on the Hawaiian reef ecosystem (Dierking et al. 2009), to 
defining competition and partitioning of food resources between three Red Sea grouper 
species within the genus Cephalopholis (Shpigel and Fishelson 1989).   

To date, lionfish research has utilized stomach content analysis and underwater 
analyses (Shpigel and Fishelson 1989) with complementary data coming from controlled 
experimental trials.  However, stomach content analysis can potentially provide biased 
results because prey must have been consumed within a short amount of time, as items 
with advanced digestion are difficult to identify (Bowen 1996).  Identification is also 
potentially biased towards items of particular sizes and tissue types as differential 
digestion rates also result in some prey items being over- or under-represented (or absent 
entirely) (Bowen 1996).   

Some preference studies have utilized controlled experimental designs in order to 
isolate predatory interactions to isolate factors relevant to prey preference.  Predators 
have been exposed to a spectrum of prey sizes with the trial terminating after one item is 
consumed (Holmes and McCormick 2010).  Stallings (2010) tested the preference of 
juvenile gag grouper for two different types of prey and determined whether prey density 
had an effect on satiation and selectivity.  Preference data has also been used to examine 
the ecosystem effect of predators on fish assemblages (Scharf 2002). 

Although data collected for prey preference and consumption in the natural 
environment has multiple confounding and highly variable factors such as temperature 
and salinity, it gives a snapshot representation of that specific habitat.  Experimental trials 
do not have the ability to readily test variables including competition, predation, and 
available prey simultaneously.  However, experimental tests allow for the most pertinent 
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variables to be tested such as prey preference according to size, while keeping all 
extraneous aforementioned factors constant.  This experiment seeks to evaluate the role 
of predator and prey size class in consumption while maintaining equal prey distribution 
and physiological conditions. 

There are currently limited ways to define and determine the prey selectivity or 
preference of a fish species.  Data can be collected either in situ or through closed loop 
experimentation.  Collecting prey preference data on the reef is difficult due to the cryptic 
nature of many small-bodied prey items, especially those species preyed upon by the 
three species of interest in this study (Bowen 1996).  This crypsis makes determining the 
species and quantities present at any given location for use in proportion analysis 
difficult.  The advent of DNA barcoding however, has allowed for the species to be 
identified but cannot quantify amount consumed (Côté et al. 2013).  Determining prey 
items consumed by the predator is also difficult.  Physical monitoring is often limited to 
daylight hours which poses a problem for detecting fishes that are suspected to be 
crepuscular and nocturnal.  Techniques such as barcoding remove a considerable amount 
of this error from diet analysis and is sensitive enough to detect cryptic species not 
normally observed.  However, barcoding cannot accurately determine the most consumed 
prey type by number or size which is the basis of preference data. 

In situ analysis, however, allows real-time observations of prey species and sizes 
actually being consumed in a natural environment.  Dierking et al. (2009) quantified the 
prey families present over a reef area and compared them to the prey items identified in 
the stomach of the invasive grouper species roi in Hawaii to develop Ivlev’s electivity 
indices that, in turn, indicated either preference or avoidance of each family.  Although 
controlled lab experiments do not allow for all variables within a natural system, they do 
hold all these variables constant to test for preference under fixed conditions.  How to 
quantify the results varies with author, however.  Underwood and Clarke (2005) utilized 
the weight of prey consumed in a two-stage experimental process: the first to set a 
baseline consumed for each prey item, and then a second to determine quantity consumed 
when exposed to all variables simultaneously.  The resulting proportions were analyzed 
to determine preference.  If the proportion of each prey type differs from expected, then 
that difference is considered the preference. 
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This study will use the analytical method of Taplin (2007), which uses discrete 
data (e.g., counts of individual prey items) and assesses the order in which the prey are 
consumed, with those items consumed first being the preferred prey.  Taplin (2007) uses 
a combination of chi squared and paired t-test techniques to determine if there are 
differences both within size classes of each species as well as between species as a whole. 
The methodology differs from traditional techniques including those of Underwood and 
Clarke (2005) that only take into account preference between one predator group.  Taplin 
(2007) is also a better methodology for discrete count data and accounts for time.  The 
chi squared analysis determines whether there is preference within the individuals within 
each species.  Once preference is established, the paired t-test shows if the individuals 
within each species had an overall choice for a particular size class.  The research 
conducted in this paper constructs prey preference distribution curves for two native 
species (graysby and schoolmaster) and one invasive species (lionfish), as well as 
determines the level of overlap and competition between species.  The presence of a 
preference gap between the two native species could suggest additional resource 
partitioning and niche vacancy that the lionfish may be exploiting. 

 
Predator Satiation 

Multiple factors can influence how much food an individual will consume 
including temperature, feeding rate, food availability, and food quality (Cerino et al. 
2013).  In the case of lionfish, a change in temperature from 24°C- 28°C results in a 
220% increase in consumption (Cerino et al. 2013).   Côté and Green (2012) also 
projected an increase in consumption with temperature.  Behavior has a significant effect 
on quantity of food eaten as well, with adult fish consuming 30%-50% of their physical 
maximum volume (Rice and Cochran 1984; Beauchamp et al. 1989; Kitchell et al. 1994; 
Harfman and Brandt 1995).  Evaluation of the consumption by predators is important 
since it is an integral factor in determining ecological impact through bioenergetics 
models (Cerino et al. 2013).  With these models, invasive species impacts on native 
species can be estimated, as shown by Kitchell (1990) in his assessment of sea lamprey 
(Petromyzon marinus) on the native fish community. 
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Utilizing comparison species in conjunction with the target invasive allows for 
relative values to be calculated.  Though satiation values may not reflect actual in situ 
values, relative values allow us to make statements on how lionfish behave compared to 
native species under the same conditions.  Consumption can be determined utilizing 
various methods but differs with the desired outcome, ranging from amount consumed 
over differing temperatures to starvation resilience (Cerino et al. 2013; Fishelson 1997).  
Satiation can be observed in situ or determined in controlled experimentation.  
Observation entails following the desired individual around the habitat on SCUBA or 
from the surface and assumes behavior is not influenced and the animal feeds normally.  
This method has the benefit of allowing the fish to feed on organisms present in their 
acclimatized environment in natural densities and with consideration to catchability 
differences due to structure.  However, observation is constrained to daylight hours and is 
not conducive for long term study due to dive-air constraints and manpower.  In 
experimental trials, satiation can be measured long term by feeding individuals over a 
period of months or years using a specific species of prey as in the work of Fishelson 
(1997).  However, this method potentially results in the experimental fish becoming 
habituated to captivity, thus behaving in ways not observed in the natural environment.  
Specifically, captive trials typically hold influential variables such as temperature 
constant which has a significant impact on satiation.  Also, since they are not exposed to 
predators, captive fishes are able to feed until completely full, an action that would 
normally limit mobility, leaving them more vulnerable to predation.  Cerino et al. (2013) 
attempted to model satiation over differing temperatures using controlled experiments, 
circumventing the issue of constant temperature research such as stomach content 
analysis or direct observation which cannot account for the changing variable.  They 
concluded lionfish consume the most prey by weight at 29.8°C.  To allow for 
comparability across publications, consumption was also corrected for weight and length 
differences between individuals.  A T-K HSD test was then run to determine if there was 
significant differences in prey consumed 

As evident by a reduction approaching 80% in small reef-associated fishes on 
Bahamian reefs, lionfish are considered voracious predators on coral reef communities 
(Albins and Hixon 2008; Green et al. 2011).  The reduction of reef-associated fishes has 
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also resulted in changes to the underlying community structure (Albins and Hixon 2008; 
Albins 2013; Green et al. 2012).  Changes include overall reductions in adult reef fish 
abundance, a proliferation of algae, and a reduction in available prey for native species 
(Albins 2013).  Such a decline suggests that individual lionfish are consuming 
considerably more forage than individual native predators.  The ecological impact of 
lionfish could be effectively modeled if physiological response and restriction were 
sufficiently understood (Cooke and Hill 2010).   
 Fishelson (1997) calculated consumption and starvation rates of lionfish in long-
term, controlled environmental settings using brackish water tilapia (Family Cichlidae) 
and mosquitofish (Gambusia affinis) as prey species.  Mass loss due to starvation 
decreased with increasing body size, potentially due to a reduction in metabolic 
expenditure.  Normal consumption for a 350 g lionfish was calculated to be 0.024 grams 
of prey weight per grams of lionfish weight (g/g predator-1) at 25-26°C.  Introduced 
individuals in the western Atlantic potentially have a different consumption rate than 
their native Indo-Pacific range due to the increased availability of resources.  To expand 
on the work of Fishelson (1997), Cerino et al. (2013) created a bioenergetics model of 
invasive lionfish from the Western Atlantic over differing water temperatures in an effort 
to collect a more comprehensive outlook on their potential ecological impact.  Prey for 
trials included mummichogs (Fundulus heteroclitus), and grass shrimp (Palaemonetes 
spp.) for satiation and metabolic rate respectively.  Maximum consumption for lionfish 
was found to occur at 29.8°C.  Data collected by field estimates support a higher 
consumption at warmer temperatures, a potential issue if current climate trends were to 
continue (Côté and Green 2012).  Cerino et al. (2013) subsequently concluded that the 
determined Fishelson’s value was within the calculated range for consumed prey weight 
at 25°C for the Western Atlantic stock, albeit higher than expected according to the 
bioenergetics model.   

Lionfish satiation has also been calculated utilizing underwater observation.  
Green et al. (2011) and Côté and Maljkovic (2010) followed individual lionfish over the 
reef, recorded their behavior and prey consumed, and calculated consumption rates of 
0.089 g/g predator-1 and 0038 g/g predator-1 respectively from estimated lengths and 
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extrapolated weights.  Similar studies on satiation have not been published for graysby or 
schoolmaster species, however. 
 
Materials and Methods 
 
Test Subject Collection and Husbandry 
 Live test subjects for lab experiments were collected off of the Ft. Lauderdale and 
Islamorada reef tracts from October 19, 2014 to July 4, 2015, using either hook-and-line 
or hand net.  Lionfish were caught exclusively with plastic-sided or -coated nets to reduce 
fin entanglement that could result in physical damage or create additional stress on the 
animal.  The majority of captures were carried out using two hand nets to prevent the 
lionfish from escaping back into the reef structure, which predominantly consisted of 
holes or caves.  Most individuals were caught during daylight hours, with a few 
individuals caught at dusk.  

Graysby and schoolmaster were collected using both hook-and-line and hand net 
methods.  Non-offset 2/0 to 4/0 circle hooks were used due to the common ambush-and-
swallow feeding strategy of the two native species.  Two graysby were also inadvertently 
caught in nets while targeting schoolmaster.  Schoolmaster were caught using two 
different methods that varied with time of day (or light level).  Tickle sticks were used to 
coax schoolmaster individuals taking shelter within coral heads and cave structure into a 
precisely positioned hand net; roughly half of the tested schoolmaster were caught using 
this method.  During crepuscular hours, with the diminishing light conditions, 
schoolmaster would strike baits with increased intensity.  At this time, hook-and-line 
capture methods were used.  A pair of snorkelers would enter the water with fishing rods 
and drop the live or dead shrimp bait down into the middle of the schools of schoolmaster 
and wait until an acceptable sized individual consumed the bait.  Unfortunately, this 
period of concentrated feeding would last for only 30-45 minutes, at which point the 
school would dissipate over the reef and light levels would decrease to the point at which 
targeted bait presentation become impossible.   
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 Once caught, individuals of all three species, were immediately brought to the 
boat, vented if necessary, and placed in a continuous flow livewell system.  If the 
individual required venting, it was placed on a wet towel, had its eyes covered with a 
second wet towel, and vented with a hollow 22-gauge needle.  Gentle pressure was 
applied to the abdomen to facilitate gas removal and ensure the air bladder was 
completely evacuated.  Vented individuals were then monitored for signs of stress due to 
barotrauma including heavy operculum movement, floating, or loss of equilibrium.  
Those individuals that did not regain normal behavior after 3 hrs were removed and 
euthanized by severing the spinal column.  The majority of graysby and all of the lionfish 
were vented, and both species seemed very susceptible to air bladder expansion.  None of 
the schoolmaster required venting, with only one individual euthanized after the 3 hr 
observation period.   

Collected schoolmaster and graysby were quickly measured and released alive if 
not between 40 mm to 240 mm total length.  Any undersized or damaged lionfish were 
euthanized by severing the spinal cord immediately distal to the cranium.  While Cerino 
et al. (2013) found lionfish around the 260 mm range to be the most commonly 
encountered size in the Bahamas, lionfish collected by Morris and Akins (2009) averaged 
217±7 mm.  Lionfish caught in the targeted depths off Fort Lauderdale and Islamorada 
were closer in size range to lengths observed by Morris and Akins (2009), averaging 216 
mm.  By utilizing the size classes most commonly caught on shallow reefs for all three 
species, a representative portion of the natural population was characterized in ensuing 
experimental trials.  The average size for lionfish was smaller than the corresponding 
length at which it is legal to retain schoolmaster, and smaller than the common size for 
graysby.  Only individuals of the correct size and without damage to the jaw hinge or 
vital organs (e.g., gills) were retained to minimize experimental bias.  All individual 
experimental fish were collected in waters shallower than 15 m depth to prevent 
excessive internal damage from barotrauma and ensure optimal condition.   

Upon return from sampling trips, collected test subjects were placed in three 
monospecific quarantine tanks for a minimum of 14 days.  From two days after capture 
until the experimental trials, individual experimental fish were fed a diet of Atlantic 
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silversides (Menidia menidia) ad libitum of varying sizes (15-40 mm) to reduce 
habituation to any particularly-sized prey item.   

The three circular quarantine tanks were black and contained 60 gallons of 
saltwater (Figure 1).  Each circular tank had a ten gallon sump containing filter media to 
facilitate mechanical and bio-filtration.  Circulating pumps facilitated a turnover rate of 
1893 liters l/h and contained a 40 watt ultraviolet filter to prevent the proliferation of 
pathogens.  Within each tank were two 150 mm diameter by 300 mm long polyvinyl 
chloride (PVC) tubing pieces to mimic structure and reduce handling stress by giving the 
collected individuals a place to hide.  Artificial lighting was set on a 12L:12D regimen 
with a daytime intensity of 400-1000 lux.  Tanks were kept at ambient temperature of 24-
25°C.  Ionized copper (Cupramine©) was added in concentrations ranging from 0-0.25 
ppm to further prevent the proliferation of pathogens in test animals that may have 
compromised immune systems due to handling stress.  Twenty percent water changes 
were performed weekly to inhibit the buildup of organic nitrogen and other organic 
material.  Water quality checks to measure levels of ammonia, nitrite, and nitrate were 
performed biweekly when fish were first introduced into a quarantine tank then reduced 
to weekly once levels stabilized.   

Feeding occurred daily around 1800 hours.  Food not consumed after 30 min was 
removed.  The overall health of the test fish was assessed during this time, taking careful 
note of changes in behavior, coloration, fin condition, and eye clarity.  Any individual 
fish that appeared to have declining health was removed and either placed in a separate 
tank or euthanized.  

Experimental trials were run under constant artificial lighting conditions.  To 
mimic crepuscular feeding and reduce light shock, light intensity was maintained at 400-
1000 lux, levels similar to overcast and crepuscular conditions.  Corresponding to the 
periods of simulated darkness, experimental trials began at 1800 and terminated at 2000 
to maximize feeding behavior during maximum crepuscular activity and standardize 
across individual trials and species.  Water temperature was maintained between 24-25°C 
since all three species reside in tropical to subtropical waters with comparable 
temperatures.  Salinity was maintained between 33 and 35 ppt. 
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Human interaction and disturbance was minimized with the use of a wide angle 
camera, a 60 cm tan cardboard barrier above the lip of the tank, and a blue backdrop 
surrounding the experimental tanks to isolate them from ambient movement and visual 
distractions (Figure 2).  The experimental room was a locked, minimum-access space, 
and “do not enter” signs were posted on the doors.  All of the three test species are highly 
associated with the benthic environment, and plain brown cardboard was used to create a 
tank bottom that mimicked a hard-bottom or sand substrate. 

To separate predator and prey, experimental tanks were equipped with a clear, 
perforated, Lexan© partition bisecting the space and creating equal sized chambers.  A 
second, smaller perforated piece was placed across the corner containing the vertical 
drain pipe to prevent prey items from hiding from the predator or to allow the camera to 
confirm a successful strike (Figure 3). 

 
Prey Item Collection and Husbandry 

Goldspotted killifish (Floridichthys carpio), the prey item used for lab 
experimentation, were caught using a 15 m bag seine net with 6.35 mm mesh in the 
Whiskey Creek tidal waterway system, located immediately south of John U Lloyd State 
Park in Dania Beach, Florida.  All killifish captured were immediately placed in a 5 gal 
bucket with an aeration pump.  Fish were measured and retained if they matched one of 
the four size categories of 25, 35, 45, and 55 mm.  Individuals that were not within 2 mm 
of these values were released back to the point of capture.  Killifish larger than 60 mm 
were only seasonally present while individuals smaller than 20 mm experienced very 
high mortality in captivity, likely due to handling stress.  

The killifish were fed chunks of de-shelled penaeid shrimp or silversides on a 
daily basis and kept for a maximum of two weeks in holding tanks to reduce autogenic 
differences in individual health and visual appearance.  Freshly caught individuals were 
retained for a minimum of 48 hrs before being used in trials to allow for acclimation to 
tank conditions and prevent feeding bias towards individuals with differing coloration.  
Salinity and temperature was kept identical to the quarantine and experimental tanks to 
reduce shock during feeding trials. 
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Figure 1. Photo of the quarantine tanks. Black tubes on tanks are UV filtration units. Blue 
bins are sumps containing biofiltration media and overflow back into the main tanks. All 
three tank systems are isolated from each other 
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Figure 2. Photo of the experimental tanks in testing mode.  Image includes the restricted 
light bar, GoPro mounting brackets, and cardboard divider. 
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Figure 3. Photo of the interior of experimental tanks.  Note the dividers to allow for prey 
item acclimation, blue backdrop and tan bottom, and drain isolator 
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Predator Preference 
Individual predators to be tested were starved for 48 hrs to empty the digestive 

tract.  Twelve prey items, three each from four size intervals (20 to 60 mm in 10 mm 
increments), were placed in the empty side of the experimental tank and allowed to 
acclimate for a minimum of 1 hr to a maximum of 2 hrs.  At exactly 1800 hours, the 
partitions on both tanks were removed, and the ensuing interactions recorded using wide-
angle video cameras oriented above and to the side of the tank in order to get an 
unobstructed view of prey item size and predation events.  The video cameras used were 
1080-pixel high-definition GoPro cameras (GoPro, Inc.; San Mateo, CA) with a viewing 
angle of 120°.  Video recording continued for 2 hrs, the duration of the experiment with 
the termination signaled by the light timer shutting off.  Upon completion, the overhead 
light was turned back on, and any remaining prey items were removed, recorded, and 
discarded. 

A total of 12 control trials, excluding predators, were run to quantify any prey loss 
or other autogenic changes not attributed to predation, to allow triple the number of 
replicates as variables for use in parametric analysis (Williams and Titus, 1988).  Twelve 
killifish were used for each trial in the same ratios used in experimental trials were 
allowed to acclimate for 2 hrs, at which point the partition was removed with interactions 
recorded using a wide-angle video camera mounted above the reservoir.  Any mortalities 
or change in the killifish behavior were noted.  All fish were accounted for and no 
significant change in behavior or appearance was noted. 

Recorded videos were downloaded onto an external hard drive and given a unique 
identifier.  Upon analysis, time when the divider was lifted was noted and subtracted 
from the following predation time to get an exact time of the strike.  Time, size, and order 
of all feeding events were recorded.  Total number of consumed prey items observed on 
the video was compared to the number recorded on the original data sheet to ensure an 
accounting of all prey items.   

  This study followed the analytical method of Taplin (2007), which used discrete 
data (e.g., counts of individual prey items) and assessed the order in which the prey were 
consumed, with those items consumed first being the preferred prey size.  Each prey item 
was given a rank, with the first consumed being 1, the second given a value of 2, etc., 
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continuing until all consumed prey items are given a value.  The prey items not consumed 
are considered tied for last and are thus given an average of the remaining ranks.  Then 
Kruskal-Wallis/Wilcoxon tests were run within each individual or species and summed to 
determine whether individuals of that particular species displayed a preference.  Paired t-
tests were used to determine whether there is a preferred size class between individuals of 
each species.  The preferred size class between species was then compared to determine 
if there is size overlap.  Significance for all statistical tests was assessed at  = 0.05. 

 
Predator Satiation  

Test predators from the initial size preference experiment remained inside the 
partitioned test tank and were starved for 46 hrs.  They were not starved for a full 48 hrs 
to allow for the experiments to begin at 1800 hours, the same time as the two hour 
experiment and quarantine feeding.)  Twenty individual prey items, five from four size 
classes between 20 to 60 mm in 10 mm increments, were placed as a group in a bin lined 
with a paper towel and covered, and the total weight was recorded.  Prey was placed in 
the empty side of the experimental tank and allowed to acclimate for 2 hrs to ambient 
water conditions.  The empty bin and paper towel was weighed with the resulting value 
representing weight of the bin, paper, and water lost when the fish contacted the paper 
towel; this number was subtracted from the original total weight to give an actual prey 
weight.  

Following the 2 hr acclimation of the prey, at 1800 hours, the partition was 
removed and the test predator allowed to interact with the prey.  Individual trials lasted 
24 hrs to allow for each predator to feed during the light phase they preferred in an 
attempt to mimic natural behavior.  At the termination of the trial, the remaining prey 
were removed, weighed, counted, and identified by size.  The test predators were 
removed from the tank, placed in an empty quarantine tank, starved for 48 hrs to evacuate 
their digestive system, and then removed and euthanized by severing the spinal column.  
Each fish was weighed and measured as total length, then a rudimentary necropsy was 
performed.  The stomach and intestines were examined for residual food in the digestive 
tract in order to ensure an accurate predator weight that was not affected by differences in 
consumption between individuals.  Viscera were also evaluated to ascertain the overall 
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health of the individual to ensure that data collected were from a healthy individual not 
otherwise hindered by illness or internal injury. 

A total of 12 control trials were run to quantify any prey loss or other autogenic 
changes not attributed to predation.  For example, mass loss or gain due to growth or 
starvation must be accounted for in order to get an accurate measure of mass lost by 
predation and not autogenic changes.  Twenty individual prey items, five from each size 
class, were weighed and placed in the empty side of the experimental tank.  Prey items 
were kept for 26 hrs, then removed and weighed again.  Any mortalities and autogenic 
differences in mass loss were recorded.  Mass loss over the 24 hr trial was deemed 
negligible and thus prey weight data did not have a correction applied. 
 Since the collected data points within each group did not exhibit normal 
distribution, a Welch’s ANOVA was utilized to assess differences in mean consumption 
between the three species.  The Tukey-Kramer HSD (T-K) test was then used to analyze 
differences between the groups due to the low sensitivity to groups with differing sample 
size between data sets.  Significance for all statistical tests was again assessed at  = 
0.05. 
 
Results 
Foraging Behavior 

 Observations of feeding strategy for the tested predators noted a difference in 
behavior between all three species.  Lionfish corralled their prey using flared pectoral 
fins, allowing ample time to inspect and select a particular prey item.  Graysby used a 
combination of darting and ambush strategies that varied between individuals.  When 
darting, the graysby would face the killifish roughly one body length away, then rush 
straight through the school and consume a single item.  If the event was unsuccessful, the 
predator would not continue to chase the prey, but instead regain a peripheral position in 
preparation of another strike.  In ambushing, the graysby would approach the killifish 
roughly a half a body length away then quickly strike the prey.  Schoolmaster used a 
“frenzy” style of feeding, with the test fish repeatedly striking into the school of prey in 
rapid succession.  Individuals would change directions and undertake erratic movements 
for 30 sec or longer.  
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Preference Trials 

A total of 64 individuals were tested over both experimental trials: 22 graysby, 22 
lionfish, and 20 schoolmaster.  Test individuals ranged in length from 173 mm to 287 
mm (̅ݔ length = 238.1 mm), with each species having a distinct size class (Figure 4).  
Schoolmaster were the largest (̅ݔ length = 256.2 mm) followed by graysby (̅238.3 = ݔ 
mm) and lionfish (̅216.7 = ݔ mm).  Schoolmaster and graysby were the only group pair to 
have a significantly similar size distribution (p=0.0497). 

Individual predator weights ranged from 79.3 g to 479.4 g (̅227.4 = ݔ g), and 
varied significantly by species (Figure 5).  Schoolmaster were the largest of the tested 
predators (̅ݔ weight = 227.4 g), followed by graysby (̅223.23 = ݔ g), and lionfish (̅ݔ = 
153.64 g).  All three species followed a similar length-weight frequency growth curve, 
with schoolmaster exhibiting a slight increase in g/mm compared to the other two test 
species indicating a more robust body structure (Figure 6).  

A total of 64 fish of the three predator species were subjected to preference 
testing.  Of those, 61 yielded usable data: 20 graysby, 21 lionfish, and 20 schoolmaster.  
Three fish were excluded since they did not consume any prey items within the 2 hr 
experiment.  Between all three species, a total of 346 successful predation events were 
documented.  Graysby accounted for 87, lionfish 156, and schoolmaster 103 predation 
events.  Time of feeding and time to first successful predation was similar between 
lionfish and graysby, with schoolmaster not feeding until over 30 mins had passed (Table 
1).  The overall feeding interval for all three species was 51 ±1 min (Table 1).   
 When only the first predation is considered, graysby consumed most of their prey 
in the 50-60 mm size class (8 individuals, 38% of the total).  Lionfish and schoolmaster 
consumed the most individuals in the 20-30 mm with 8 (38%) and 11 (55%) individuals 
respectively (Table 2).  Both rank and count data analytical methods suggested that there 
is prey-size selectivity for all three species tested.  Utilizing count data only from the first 
three combined predation events suggests that lionfish in the tested size range preferred 
the 20-30 mm size class (44%) with a decrease in number consumed as size increased.  
The 30-40 mm and 40-50 mm size classes had similar preference, making up 24% and 
23% of consumption respectively, with a sharp decrease for the largest size at 10% 
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(Figure 7).  This consumption pattern holds true when the second and third predation 
events are included as well.  The 50-60 mm size class was the most consumed by graysby 
with 22 (39%).  The 20-30 mm size class remained the most consumed by lionfish and 
schoolmaster with 27 (44%) and 26 (45%), respectively (Table 3). 

The most consumed size class over the full 2 hr experiment for graysby was 50-60 
mm with 31 with 20-30 mm close behind with 28 (Table 4).  Two size classes, 20-30 mm 
and 30-40 mm, were the most consumed for lionfish, with 51 individuals each.  
Schoolmaster consumed the most prey in the 20-30 mm size class, with 37 individuals, 
followed closely behind by the 50-60 mm size class with 31 individuals (Table 4).  
 When all 12 potential prey items were ranked according to Taplin (2007), similar 
results were obtained.  Graysby chose prey in the 50-60 mm size class earliest, with an 
average predation rank of 5.64.  Lionfish and schoolmaster both preferred the 20-30 mm 
size class of prey, with ranks of 4.79 and 4.88 respectively (Table 5). 

Using the Wilcoxon test methodology, the data indicated preference within each 
species, with all p-values being significant (p≤0.05).  Graysby showed the weakest 
correlation (p=0.01) while lionfish and schoolmaster had strong correlations (p< 0.0001, 
df=3) (Table 6).  Within each size class of each species, paired t-tests were utilized to 
determine significant difference.  Graysby had significant difference (p≤0.0098) between 
all groups with the exception of 50-60 mm against 20-30 mm (p=0.4662) and 40-50 mm 
against 30-40 mm (p=0.6948).  Lionfish showed significant differences (p≤0.05) between 
all groups.  Schoolmaster had significant differences between all size class groups except 
40-50 mm against 30-40 mm (p=0.0831) and 50-60 mm against 40-50 mm (p=0.0862) 
(Table 7).  
 When the first three consumed prey lengths are compared to the corresponding 
predator length, predator size adjusted preference coefficients are created (Figure 8).  
Lionfish exhibited no significant difference (p> 0.1251) between the two native species. 
Schoolmaster and graysby showed a significant difference (p=0.033) between 
coefficients. 
 Gape height differences were analyzed using an ANOVA and T-K to determine 
whether the three test species had similar prey size constraints.  Graysby were 
significantly different (p<0.001) from both the lionfish and schoolmaster.  Lionfish and 
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schoolmaster did not exhibit a significant difference (p=0.4127) in means.  To account 
for the difference in gape height with prey size consumed, prey length by predator gape 
height coefficients were created (Figure 9). All three species were not significantly 
different (p>0.0518) from each other.  
 
Satiation Trials 

Average available prey biomass was 29.96 g with only one schoolmaster 
consuming all of the offered prey.  The remaining fish in the trials consumed from 0.1 g 
to 27.1 g in prey weight, but averaged 11.03 g.  Schoolmaster consumed the most on 
average (̅ݔ consumption =15.73 g), followed by lionfish (̅10.81 = ݔ g) and graysby (̅ݔ = 
6.99 g).  All three species were found to be significantly different from each other 
(p≤0.0378) using the (T-K) test. 

To account for differences in weight both within and between species, a 
coefficient of grams of prey consumed per gram of predator for each individual trial was 
calculated.  The coefficient is calculated by dividing the total number of grams the 
predator consumed by either the total length or weight of the predator.  This method of 
consumption comparison has been utilized in numerous previous studies (e.g., Côté and 
Maljkovic 2010; Fishelson 1997; Green et al. 2011).  Coefficients ranged from 0.129 
g/gram predator-1 for a lionfish to 0.0003g/gram predator-1 for a graysby with a mean of 
0.056g/gram predator-1 overall.  Lionfish had the greatest average mass consumed (̅ݔ = 
0.079g/gram predator-1) followed by schoolmaster (̅0.053 = ݔg/gram predator-1) and 
graysby (̅0.034 = ݔg/gram predator-1).  Significant differences were found between the 
three species (p<0.0001) using Welch’s ANOVA.  The (T-K) test was used to analyze 
differences between individual species.  All three species were confirmed to be 
significantly different from each other (Table 8). 
 Since length is a common measurement to determine maturity, fecundity, and 
catchability in commercial and recreational fisheries, a coefficient of grams of prey 
consumed per mm of predator was also calculated.  Coefficients ranged from 0.0003 
g/mm predator-1 from graysby to 0.104 g/mm predator-1 for a schoolmaster.  
Schoolmaster had the largest mean coefficient (̅0.061 = ݔg/mm predator-1) followed by 
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lionfish (̅0.051 = ݔg/mm predator-1) and graysby (̅0.029 = ݔg/mm predator-1).  Significant 
difference existed between lionfish and graysby (p=0.0020), and schoolmaster and 
graysby (p<0.0001) with no difference when comparing lionfish and schoolmaster 
(p=0.1833) using the (T-K) test (Figure 10). 

 To further address the issue of differences in predator weight between 
species, power functions using predator-prey weight coefficients plotted over predator 
weight were calculated (Figure 11).  The resulting functions showed that schoolmaster 
and lionfish decrease consumption per pound with increasing weight.  Graysby, however, 
exhibited an increase in consumption. 
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Figure 4. One-way analysis of total length by species. Circles provide visual 
representation of the Tukey-Kramer HSD analysis of degree of length overlap between 
species.  Horizontal line represents the overall mean of all individual length values.  
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Figure 5. Summary of one-way analysis of total weight by species. Circles provide visual 
representation of the Tukey-Kramer HSD analysis of degree of weight overlap between 
species.  Horizontal line represents the overall mean of all individual weight values.  
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Figure 6. Graph of length-weight frequency of the three test species. 
 

 
  

0
100
200
300
400
500
600

150 170 190 210 230 250 270 290

Pre
dat

or w
eig

ht (
g)

Predator length (mm)

Length-weight frequency

Graysby Lionfish Schoolmaster



 

32  

Table 1. Summary of beginning and ending time of predation for each species. Values in 
parentheses are standard deviations of corresponding time values (decimal minutes). All 
numbers are in minutes and decimal minutes. 
 

Species First Predation Final Predation Feeding Interval 
Graysby 7.58 (9.00) 55.60 (36.81) 50.54 (37.63) 
Lionfish 3.91 (3.53) 55.42 (29.10) 51.52 (29.40) 

Schoolmaster 33.40 (25.38) 81.87 (31.27) 51.02 (25.83) 
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Table 2. Distribution table of the first consumed prey items by species and size class.  
Top row shows size classes of prey items in mm. 

Species 20-30 30-40 40-50 50-60 
Graysby 24% 29% 10% 38% 
Lionfish 38% 29% 19% 14% 

Schoolmaster 55% 10% 10% 25% 
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Figure 7. Prey consumption of first three prey items over available size classes by 
species. 
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Table 3. Distribution of the first three consumed prey items by species and size class.  
Top row shows size classes of prey items in mm. 

Species 20-30 30-40 40-50 50-60 
Graysby 30% 16% 14% 39% 
Lionfish 44% 24% 23% 10% 

Schoolmaster 45% 10% 17% 28% 
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Table 4. Total number of prey items consumed over the entire two hour duration of 
selectivity trials.  Top row shows size classes of prey items in mm. 

Species 20-30 30-40 40-50 50-60 
Graysby 28 12 16 31 
Lionfish 51 51 37 17 

Schoolmaster 37 14 21 31 
Total 116 77 74 79 
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Table 5. Average rank values of preference for each species by size. Rank was assigned 
by order consumed, with the first given a value of 1 etc. Top row shows size classes of 
prey items in mm.  Rank was determined by the chronological order in which the prey 
items were consumed with the first prey item eaten given a value of 1, the second, 2, and 
so on. 

Species 20-30 30-40 40-50 50-60 
Graysby 6.03 7.23 7.09 5.64 
Lionfish 4.79 5.56 6.97 8.68 

Schoolmaster 4.88* 7.75 7.14 6.23 
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Table 6. Chi squared analysis of rank data by species. 
Species Chi Squared P value 
Graysby 12.68 0.01 
Lionfish 54.01 < 0.0001 

Schoolmaster 27.62 < 0.0001 
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Table 7. Paired t-test analysis of rank data (p-value) for each species between size 
classes. Top row shows size classes of prey items in mm. 

Species 
30-40 vs 

20-30 
40-50 vs 

30-40 
50-60 vs 

40-50 
40-50 vs 

20-30 
50-60 vs 

20-30 
50-60 vs 

30-40 
Graysby 0.0017 0.6948 0.0028 0.0098 0.4662 0.006 
Lionfish 0.0469 0.0012 0.0002 0.0002 <0.0001 <0.0001 

Schoolmaster <0.0001 0.0831 0.0862 <0.0001 0.0236 0.0008 
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Figure 8. One-way analysis of prey length by predator length by species.  Also shown are 
circles representing the Tukey-Kramer HSD analysis of degree of overlap between 
species.  The horizontal line represents the average of all individual size coefficient 
values. 
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Figure 9. One-way analysis of prey length by predator gape height by species.  Also 
shown are circles representing the Tukey-Kramer HSD analysis of degree of overlap 
between species.  The horizontal line represents the average of all individual coefficient 
values. 
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Table 8. Tukey-Kramer HSD summary for total consumption by gram of predator 
between species. 

Species p-value 
Graysby vs Lionfish <0.0001 

Graysby vs Schoolmaster 0.0245 
Schoolmaster vs Lionfish 0.0014 
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Figure 10. One-way analysis of weight consumed per millimeter by species.  Also shown 
are circles representing the Tukey-Kramer HSD analysis of degree of g/g predator-1 
overlap between species.  The horizontal line represents the average of all individual 
consumption values.  
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Figure 11, A, B, & C. Fitted power functions calculating the change in prey consumption 
(g) over predator size (mm). R2 value represent the coefficient of determination and is a 
calculation of how well the calculated function represents the data. 
A. 

 
B. 

 
C. 
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Discussion 
 

Physical removal is currently one of the most used control measures of lionfish in 
the Caribbean (Morris et al. 2009).  However, in areas not frequently visited by divers, 
there are currently minimal population control measures, either ecological or 
anthropogenic (Valdivia et al. 2014).  Determining what size class of prey fishes that both 
lionfish and native competitors target can allow managers to create favorable competitive 
population schemes including increased individual size of native species or the 
population as a whole.  To facilitate the creation of these schemes, the reasons for 
proliferation must be determined, including through evaluations of prey size preference 
and ecological efficiency.  The objective of this project was to better understand the 
feeding ecology and predatory effect of lionfish, graysby, and schoolmaster on small fish 
assemblages, with the intent to analyze prey size preference and differences in prey 
utilization.  These results provide additional insight on whether lionfish are in direct 
competition or potentially simply filling an underutilized ecological niche.  
 
Prey Preference 

Time to first consumption and termination of feeding was highly variable within 
each species.  Although lionfish and graysby appeared to begin and end feeding quicker 
than the schoolmaster, there were large standard deviations for each species and the times 
were not significantly different (P>0.05).  Differing behavior between the species could 
also have had an impact on time of first consumption.  We observed that lionfish and 
graysby were not as disturbed by the presence of people and movement over the tank.  
Schoolmaster were very wary and easily startled, however, requiring several minutes to 
resume normal behavior.  This startle reflex behavior for schoolmaster could explain the 
longer time required to begin feeding and is supported by the fact that feeding intervals 
were nearly the same for all three species when standard deviation is considered.  
Although schoolmaster had delayed feeding, they continued later into the 2 hr 
experiment, for a total amount of consumption time similar to lionfish and graysby. 

When all consumed prey items over the 2 hr duration of the experiment are 
compared to the distribution of the first three prey items, the significance of the most 
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preferred size class decreases from 39 to 36%, 44 to 33%, and 45 to 36% for graysby, 
lionfish, and schoolmaster respectively.  This suggests collecting data of consumed prey 
items over a time interval results in a dilution of the actual preferred prey as the chance of 
equal exposure across all prey sizes decreases.  If all three individuals of a size class are 
consumed, an exclusion of the preferred prey can occur.  The lack of preferred prey will 
cause an artificial shift in diet to the less preferred sizes that would not have occurred if 
the number of available prey was unlimited.  For this reason, data was not considered 
past the third consumed prey item in this discussion.   

Lionfish exhibited a consumed prey distribution that resembles the traditional 
OFT curve.  The two native species, however, displayed a bimodal distribution that does 
not follow traditional models.  The consumed prey distribution of lionfish followed he 
OFT curve which theoretically peaks at the most preferred prey and decreases as prey get 
farther away from optimal size (Figure 3).  Lionfish feeding mimicked this trend with the 
smallest size class being the optimum prey and consumption occurrence decreasing as the 
size deviated from ideal.  However, due to available size class constraints in the 
experimental design, the left side of the OFT curve is not evident.  These constraints were 
caused by the inability to collect and maintain prey smaller than 25 mm.  As previously 
noted, prey items of that size range had a high post-capture mortality rate and were 
difficult to contain within the experimental tanks.  Future research should shift prey size 
focus to sizes smaller than 25 mm to confirm the left hand tail of the preference curve.   

Schoolmaster preferred the smallest size class (45%) at the same rate as lionfish. 
However, the 50-60 mm size class was the next most consumed (28%).  Graysby 
preferred to consume the largest size class available (39%), with the smallest size being 
the second most preferred (30%).  The preference distributions of the native species had 
two peaks in size preference, occurring at both ends of the spectrum, resulting in a 
bimodal distribution which does not follow the theoretical OFT curve.  The distribution is 
more pronounced in graysby feeding which has relatively equal nodes while 
schoolmaster has a definitive peak at the smaller end of the spectrum followed by a less 
pronounced preference at the largest size class. 
 Using the ranking system described by Taplin (2007) for all prey consumed 
within the 2 hr experimental window resulted in a similar preference outcome.  The 50-
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60 mm size class had the lowest rank (5.64) for graysby, followed by 20-30 mm class 
(6.03).  Schoolmaster preferred the 20 to 30 mm size class (4.88) with 50-60 mm second 
(6.23).  
 A chi squared analysis of individual lionfish displayed a significant overall 
preference, which allowed us to test which size class was preferred for the species as a 
whole.  Lionfish demonstrated significant difference in rank between all size classes, 
thereby supporting evidence of a preference for particular size classes and not random 
feeding (T-K, P<0.05).  Rank comparison of 30-40 mm against 20-30 mm size classes 
showed an extension of the optimal prey curve with 30-40 being closest in rank to the 
most preferred size class.  Lionfish exhibited an increase in rank compared to size, with 
the 20-30 mm size class having the lowest rank (4.79) and 50-60 mm having the highest 
(8.68) mimicking the distribution curve using the count data above.  Stomach content 
analysis of lionfish in previous studies have shown that they prefer small prey relative to 
their body length.  For example, Morris and Akins (2009) found the average size of 
consumed teleost prey was 25 mm for lionfish averaging 201 mm in length which 
supports the findings of this study.  Furthermore, their data showed that selected prey size 
remained small with the largest lionfish, 424 mm in length, consuming prey with an 
average size less than 30mm.  The Morris and Akins (2009) finding of small sized prey 
preference for larger lionfish also supports the validity of our experimentally derived prey 
curves, as their data from the natural environment was equivalent. 

Graysby showed a co-preference for the largest (50-60 mm) size class.  However, 
the difference in rank between the most preferred size class and the 20-30 mm size class 
was insignificant (P>0.05) and the species exhibited the same bimodal distribution seen 
above with count data.  The inability to show a difference between the two top consumed 
classes suggests that both are preferred by graysby and not a display of minimum 
vulnerable size, due to the reduced selection of the middle size classes.  The lack of 
difference in rank between the middle size classes can be attributed to the low numbers 
consumed of both classes, showing they were equally selected in low numbers.  If only a 
minimum and maximum vulnerable predation scheme existed, preference would be equal 
across all classes.  Although there are no published data for graysby on prey size from 
stomach content analysis, in situ observations by Albins (2013) on patch reef 
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communities using lionfish and a grouper species similar to graysby, coney 
(Cephalopholis fulva), found that coney consumed relatively larger prey items, while 
lionfish had a significant impact on juvenile reef fish recruitment. 

Schoolmaster had a bimodal preference rank as well, with the 20-30 mm size 
class being the most preferred followed by the 50-60 mm size class.  This result differs 
from the graysby, however, due to the significant difference in rank between the classes.  
Rooker (1995) found that schoolmaster regularly consumed prey in the 20-30 mm size 
range and preyed on fish much smaller than their gape size, although he found no 
significant correlation of predator size with prey size. 
 Both native species did not exhibit an expected predation curve; the lowest ranked 
(i.e. preferred) classes were on either end of the size spectrum.  This distribution scheme 
does not follow the theoretical optimal foraging curve (Holmes and McCormick 2010) 
with a normal distribution with a single preferred prey item.  Instead, it suggests a 
bimodal distribution with preference for small individuals with potentially high 
catchability and large individuals with high energy input.  The discrepancy could also be 
due to differences in catchability between the different size classes.  However, this seems 
unlikely given the naïve nature of both the prey and predator (resulting in little to no 
avoidance), the tendency of the predator to lock into a single prey item before striking, 
and the agility of the smallest size class.  Alternatively, selectivity could be influenced by 
hunting style with both native species using an ambush style of feeding, while lionfish 
would corral their prey.  Schoolmaster would also routinely use a “frenzy” style of 
feeding, with the test fish repeatedly striking into the school of fish in rapid succession, 
possibly in an attempt to disorient and separate the school.  The outcome was usually a 
low overall strike success rate but consumption of a few individuals in roughly the same 
amount of time as the other two predator species.  However, all methods resulted in 
preference for the small size class and lionfish had repeated opportunities to consume the 
largest size class but chose to pursue the smaller size classes.  The data may support the 
theory that while small, recruiting juvenile reef species may not be the most optimal prey, 
schoolmaster and graysby may inherently utilize the resource as a way to augment their 
predominantly large-bodied prey.  
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 When predator body size and gape height is accounted for in the influence of 
preference, the overall trend differs.  Lionfish exhibited a preference for prey items by 
length that suggests that they prefer the same sized prey as both of the native species.  
Schoolmaster and graysby exhibited a separation of consumed prey size suggesting a 
version of niche partitioning.  The weight correction is beneficial for modeling purposes 
as it allows for comparison between species.  However, there are issues with applying 
these results to a population level as the three species exhibit a natural difference in size 
resulting in different prey sizes selected on the reef.  Gape height by prey length 
coefficients by species showed that all three species consume roughly the same sized 
prey when corrected for gape suggesting that gape may play a role in influencing 
preference.  Coefficient data also shows that lionfish, graysby, and schoolmaster may be 
consuming prey at the lower end of their potential prey sizes.   

Evidence from the present work allows speculation that lionfish may not be 
indiscriminately consuming all available prey on the reef, but rather feeding selectively 
upon certain size-classes.  Observational data from Green and Côté (2014) supports this 
conclusion.  Small-bodied reef fish are heavily fed upon naturally as adults by the native 
predatory fishes.  Lionfish may not be consuming all available reef fishes, but primarily 
impacting the recruitment of the juvenile small-bodied reef species.  With recruitment 
diminished, consumption by the native predators of the adult reef fish may lead to an 
overall collapse of the population.  Albins (2013) noted this phenomenon on patch reef 
communities between lionfish and coney, a grouper species similar to graysby.  He found 
that coney consumed relatively larger prey items, while lionfish had a significant impact 
on juvenile reef fish recruitment. 
 
Predator Satiation 

In terms of absolute weight consumed, schoolmaster ate 4.9 g more per individual 
predator fish than lionfish.  However, prey weight consumed could not be directly 
compared because the three species did exhibit significant length or weight overlap 
between groups.  Ideally, maintaining all three species to a small length or weight range 
in order to compare the species on an individual to individual basis would have been 
preferred.  However, size-specific targeting for all three species was not possible due to 
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the limited size range and abundance of individuals available at the collection sites.  
Specifically, lionfish in both the Islamorada and Fort Lauderdale collection locations 
were significantly smaller both in size and weight compared to all available schoolmaster 
and most graysby.  The reason for the absence of lionfish greater than 225 mm is not 
specifically known, although the high levels of recreational dive effort in those locations 
suggest that there is also a high rate of lionfish removal by individual divers.   

Significant difference did not exist between the coefficient of mean consumed 
mass of prey per mm for schoolmaster and lionfish leading to the conclusion that 
schoolmaster and lionfish consume comparable amounts of prey at the same lengths.  
Tested individuals of both species were representative of the most commonly available 
size classes on the reef.  Schoolmaster were found to be significantly larger than available 
lionfish in this habitat, suggesting that in the community from which these fish were 
collected, schoolmaster are consuming more prey biomass per fish than lionfish. 

Lionfish consumed significantly more prey than both schoolmaster and graysby 
by gram unit of body weight.  Graysby and schoolmaster consumed prey at levels of 43% 
and 67% respectively compared to lionfish.  This could be an artifact of the disparity in 
robustness (Increased weight/length coefficient) between schoolmaster and lionfish 
within this size range.  Fishelson (1997) calculated weight per unit length for his well-fed 
experimental lionfish with values (0.75 g/mm-1) marginally higher than calculated in this 
study (0.68 g/mm-1) for comparable size classes.  The discrepancy may be caused in part 
by habituation to artificial conditions and an abundance of food used in this study that 
was not experienced by wild caught test subjects.  However, the slight increase in the 
coefficient is not enough to significantly affect the results found here as schoolmaster 
(1.18 g/mm-1) weigh significantly more per mm than both graysby and lionfish.  Since 
schoolmaster weigh almost twice as much per mm, an individual of both species of 
identical length, consuming identical amounts of prey, would result in a g/g predator-1 
rate half that of lionfish.  Although models take differences in the length-weight 
frequency into consideration, assessments using count data or mass data independently 
will result in a skewed overall calculated consumed biomass if proper estimators are not 
used as correction factors.  
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The lionfish consumption rate of 0.079 g/g predator-1 is more than double the rate 
found by Fishelson (1997) of 0.024 g/g predator-1 at a temperature 1°C greater.  Côté and 
Maljkovic (2010) published similar results with a coefficient of 0.038 g/g predator-1 at an 
identical temperature regime.  Although consumption is sensitive to temperature 
fluctuations, especially for ectothermic fishes, it alone cannot account for such a large 
difference.  Green et al. (2011) calculated a rate of 0.089 g/g predator-1, which is similar 
to results found in this study, considering that the ambient water temperature was 1°C 
warmer.  The increased rate of consumption due to the 48 hr starvation preformed in this 
experiment is also likely not the cause for the discrepancy, since Fishelson (1997) noted 
that many of the lionfish in his experiment would choose not to feed for periods of 24 hr 
or longer after a big meal. 

The prior diet studies calculated consumption of lionfish using grams of prey 
consumed per gram predator-1, making it difficult to compare across species due to the 
inherent differences in body morphology.  Both schoolmaster and graysby displayed 
consumption rates closer to the calculated lionfish values in comparison studies, though 
they were significantly lower than lionfish values derived from this study.  Although the 
feeding rate of lionfish among studies differ and indicate require further research in this 
regard is warranted the feeding rate calculated from this study can be directly compared 
to the two native species tested under identical conditions, something previous studies 
cannot accomplish due to differences in experimental design and physiological 
conditions.   

When differences in weight is taken into account in conjunction with 
consumption coefficients, trends showing how feeding changes with size are realized.  
Schoolmaster and lionfish exhibited similar functions with decreasing rates of mass-
specific prey consumption with size.  Graysby, however, increased their consumption as 
body mass increased.  Feeding strategy may be influencing these differences as all three 
species displayed very different feeding techniques.   

With enough information on the most influential drivers of lionfish success, the 
invasive species can potentially be limited using EBM controls.  Techniques would 
include increasing size limits or reducing bag limits of potential key competitors such as 
schoolmaster and graysby.  Altering the population structure of these native species 
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would increase their overall impact on the reef community, preventing niche vacancy and 
increasing competition with lionfish populations, by reducing available prey and limiting 
growth (Usmar 2015).  Ecological impacts (prey preference and consumption) of the two 
native species could also contribute to the quantification of variables relating to 
physiological responses and limitations for use as species-specific parameters in 
ecological models (Cooke and Hill 2010).  

 
Conclusion 
 
   Research has done little to solve the question of how and why the western 
Atlantic invasive lionfish is so prolific and detrimental.  Using this controlled 
experimental design, lionfish clearly prefer a small size class of prey when exposed to a 
spectrum of available targets.  Graysby, popularly assumed to utilize the same niche, co-
preferred the largest and smallest size classes available and thus appear to partially 
compete for prey with lionfish of similar size.  Schoolmaster feeding trials suggest that 
they may potentially compete with lionfish, as the preferred size classes of prey were not 
significantly different.  The results highlight the need for further studies in the natural 
environment on the behavior and interaction of schoolmaster with lionfish in a similar 
fashion to those currently being undertaken for graysby and lionfish  

Values derived here show that schoolmaster have comparable consumption rates 
at the same size (length) as lionfish, making it a potential candidate as a biocontrol tool to 
naturally restrict the proliferation of local lionfish populations.  Fisheries managers could 
utilize this finding in ecosystem-based fishery management schemes.  By modifying size 
and bag limits for the schoolmaster, managers could optimize the species’ biomass in an 
effort to increase competition and reduce prey resources available to lionfish.  If 
performed successfully, the effects of lionfish could be minimized, thus mitigating some 
of the damage done to the small-bodied reef species and overall reef health. 

Per unit of biomass, lionfish are more effective at consuming available prey from 
a population biomass standpoint than two ecologically important reef species, thereby 
likely contributing to their proliferation.  This study suggests that lionfish success stems 
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from its ability to target prey sizes not preferred by the graysby.  The invasive species 
may also be able to outcompete schoolmaster for the same prey size class. This may be 
due to a depletion of commercially and recreationally targeted schoolmaster populations, 
the lionfish’s ability to locate and feed more rapidly, or a combination of unaccounted 
factors.   
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