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Abstract 

Coral reefs are one of the most economically important ecosystems on the planet, 

supplying roughly $30 billion USD annually into world economies from the goods and 

services they provide. Despite their great contribution to the world economy, 

anthropogenic influence via carbon dioxide emissions is leading to unprecedented 

changes in the tropical oceans with concerns about subsequent negative impacts on reefs. 

Surface ocean pH has dropped 0.1 units in the past century, representing a thirty percent 

increase in hydrogen ion concentration. In spite of this rapid shift in oceanic chemistry, it 

is unclear if individual species of Caribbean stony corals will be more affected or if there 

are differences in the responses at separate life stages for the impact of ocean 

acidification on calcification. Examined is the relationship between CO2-induced 

seawater acidification, net calcification, photosynthesis, and respiration in three model 

Caribbean coral species: Orbicella faveolata, Montastraea cavernosa, and Dichocoenia 

stokesi, under near ambient (465 ± 5.52 ppm), and high (1451 ± 6.51 ppm) CO2 

conditions. Corals were exposed to each treatment for twelve to fifteen weeks and 

sampled at regular intervals. At each time point, a series of physiological responses were 

assessed: net and instantaneous calcification, gross photosynthetic rate, respiration rate, 

and tissue and skeletal differences utilizing electron microscopy. A species specific 

response was observed for net calcification; D. stokesi and M. cavernosa displayed a 

significant reduction in CaCO3 secreted under OA conditions, while O. faveolata 

fragments showed no significant difference. At the cellular level, transmission electron 

micrographs verified that all species and treatments were actively calcifying. Skeletal 

crystals nucleated by O. faveolata in the high CO2 treatments were statistically longer 

relative to controls indicating that skeleton formation was different in this treatment. 
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These results suggest that the addition of CO2 may cause a shift in the overall energy 

budgets causing a modification of skeletal aragonite crystal structures, rather than 

inhibiting skeletal crystal formation. Consequential to this energy shift, Orbicella 

faveolata belongs in the category of Scleractinian corals that exhibit a lower sensitivity to 

ocean acidification, and existing colonies may continue to calcify and build reefs in the 

face of ocean acidification. It remains unclear, however, what the long term effects of a 

more acidic ocean may be on gamete production, immune response, and lesion recovery 

rates.  

 

Key words: Orbicella faveolata, Dichocoenia stokesi, Montastraea cavernosa, electron 

microscopy, ultrastructure, climate change, calcification 
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Chapter 1 

1 Introduction 

1.1 Importance of Coral Reefs 

Florida is home to the only living coral reef in the continental United States and 

the third longest barrier reef in the world (Chiappone and Sullivan 1996). Coral reefs are 

highly productive ecosystems that provide a variety of valuable goods and services to 

humans (UNEP 2006). These ecosystems are perhaps the most economically important 

on the planet while making up less than 0.2% of the sea floor (Cesar et al. 2003). The net 

present value of the world’s coral reefs have been assessed at nearly $800 billion USD 

(Cesar et al. 2003). Coral reefs introduce approximately $30 billion USD annually into 

world economies from the goods and services they provide including recreation and 

tourism, commercial fisheries, and coastal protection (Costanza et al. 1997; Cesar et al. 

2003; Brander and van Beukering 2013). Despite the provision of multiple services, 

factors such as pollution, overfishing, invasive species, excessive predation, disease, and 

global climate change, have led to the decline of coral reefs (Pandolfi et al. 2011). Nearly 

one fifth of the world’s coral reefs have gone extinct and another 30% of coral reefs are 

expected to be lost in the coming decades unless the factors listed above, particularly the 

effects of global climate change, are mediated (Vernon et al. 2009).  

Coral reefs are among the most diverse ecosystems on the planet; over 600,000 

species have been documented worldwide (Knowlton 2001). As diversity is directly 

related to habitat size, decreasing living reef coverage as a result of anthropogenic 

influence will lead to future species extinctions (Cury et al. 2003). The coral species at 

the greatest risk are those that are long-lived and rarely recruited to new reefs, but serve 

as the structural foundation for the entire coral reef ecosystem. The animals in this group 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3j2qqm3
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are represented by hermatypic scleractinian corals. Coral population densities and overall 

health is a limiting factor for the survival of higher trophic organisms as they are the 

major source of nutrients and shelter in oligotrophic near shore waters (Cury et al. 2003). 

Coral reefs create a nutrient oasis in highly oligotrophic tropical waters in which 

dissolved inorganic carbons are converted to energy via photosynthesis. In corals this 

energy is passed directly from the Symbiodinium sp. producers to the animal host where it 

is used, among other things, to metabolize organic compounds resulting in nutrient rich 

waste products. Communities of marine plants and algae, fish, and invertebrates rely on 

this nutrient source as a means of survival. This process, in which corals support a range 

of higher trophic level species, is referred to as bottom-up control and allows coral to 

indirectly influence higher level organisms. In addition to supporting their own diverse 

set of organisms, coral reefs also protect and are reliant on sea grass beds and mangroves 

– both ecosystems are rich in biodiversity and serve as nursery systems for juvenile coral 

reef fish (Gattuso and Hansson 2011).  

1.2 Ocean Acidification 

Rapidly rising anthropogenic addition of carbon dioxide into the atmosphere is 

changing the chemical composition of seawater at a measurable and alarming rate. For 

decades global warming and climate change have dominated the scientific agenda. The so 

called “other CO2 problem,” ocean acidification (Brewer and Barry 2008; Doney et al. 

2009), however, has recently become a popular topic in marine research. Over the past 

decade marine scientists have been examining the effects of ocean acidification on the 

biological, chemical, and physical components of the ocean (Kleypas et al. 2006; 

Sponberg 2007; Brewer 2009; Vernon et al. 2009; Ries et al. 2010; de Putron et al. 2011; 

Comeau et al. 2012). Carbon dioxide emissions, driven by human contamination 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
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exceeding natural levels, are expected to result in a 2-4°C surface ocean temperature rise 

and a 0.4 pH unit decrease by the end of the century (Calderia and Wicket 2003; Raven et 

al. 2005; IPCC 2013). These changes in pH are developing 100 times faster than any 

records of the past hundreds of millennia (Calderia and Wicket 2003; Raven et al. 2005). 

Yet, little is known about how long term seawater acidification, increased carbon dioxide 

partial pressure, and the pH associated changes to ocean chemistry will influence marine 

organisms (Turley et al. 2006). 

United States carbon emissions have risen drastically since the Industrial 

Revolution. Anthropogenic derived carbon released into the atmosphere will reach one of 

three fates: remain in the atmosphere, be absorbed into the terrestrial biosphere, or be 

taken up into the ocean (Raven et al. 2005). Carbon dioxide moves freely from the 

atmosphere into the water column as it diffuses down the concentration gradient to reach 

equilibrium. The ocean absorbs 10
6
 metric tons of CO2 per hour (Brewer 2009), 

corresponding to a quarter of the global carbon dioxide emitted from the burning of fossil 

fuels, deforestation, and cement production (Le Quere et al. 2009), thus reducing the 

effects of global warming, but creating the crisis of ocean acidification. This rapid 

exchange of carbon dioxide between the surface ocean waters and the atmosphere has led 

to a drop in ocean pH by 0.1 units (Sponberg 2007). As pH is on a log scale, this 

seemingly small drop represents a 30% increase in the number of hydronium ions present 

in surface seawater. 

In May 2013, the atmospheric concentration of carbon dioxide measured at 

Mauna Loa Observatory, Hawaii, reached 400 ppm (see www.CO2Now.org). For the 

first time in the history of humankind, on average for every one million molecules in the 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3znysh7
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1y810tw
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1y810tw
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3whwml4
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3whwml4
http://www.co2now.org/


4 
 

atmosphere, 400 of them were CO2. Approximately 50% of this increase has occurred in 

the last three decades (Feely et al. 2009). In fact, for the past ten years the average annual 

rate of increase has been 2.07 parts per million (ppm), more than double the rate of 

increase in the 1960s (0.9 ppm year
-1

) (Arenasa et al. 2014). In the past 420 kyr, 

atmospheric carbon dioxide rates have not exceeded 300 ppm (Petit et al. 1999). Our 

current atmospheric condition is unprecedented (Petit et al. 1999; Raven et al. 2005; 

Hoegh-Guldberg et al. 2007).  

In seawater, gaseous carbon dioxide reacts to form carbonic acid (Kleypas et al. 

1999a). Carbonic acid (H2CO3) is a weak acid and separates into its constituents based on 

pH. Under standard ocean conditions (pH 8.2-8.0) bicarbonate (HCO3
-
) concentration 

averages 6-10 times higher than that of carbonate (CO3
2-

). However, as CO2 dissolves, 

more H
+
 ions are released, decreasing the pH, and driving the reaction toward 

Figure 1.1: Bjerrum plot showing the range of relative proportions of [HCO3
-
], [CO3

2-
] and [CO2] to DIC in 

seawater taking different temperature, salinity and pressure zones into account. The shaded region reflects 

the range of current ocean surface, while the hashed region reflects the corresponding projected year 2100 

range: taken from the global ocean geochemistry model projections of Turley et al. (2010). 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.35nkun2
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.35nkun2
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ksv4uv
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bicarbonate (Kleypas et al. 1999a) (Fig. 1.1). Following Le Chatelier’s principle, the 

balanced reaction shows that as carbon dioxide increases, the reaction is driven toward 

the products, making carbonate less bioavailable (Eq. 1.1). The decline in pH since the 

Industrial Revolution has led to a reduction of carbonate ion concentrations by nearly 200 

μmol kg
-1

 seawater (Hoegh-Guldberg et al. 2007). 

Evidence from the end-Permian mass extinction provides insight into the potential 

future that we are creating via uncontrolled carbon dioxide emission rates. Characterized 

by high atmospheric levels of CO2 through the eruption of the Siberian trap basalts, 

which expelled 10
17

 – 10
19

 mol CO2, the end-Permian, mass extinction led to the 

extermination of over 85% of marine animals that formed a calcium carbonate skeleton 

proportionally larger than the supporting organic tissue (Knoll et al. 2007). The 

mechanism of this death has been attributed to multiple factors including hypercapnia, a 

condition characterized by elevated levels of carbon dioxide in blood, thus reducing the 

capacity of respiratory components to oxygenate tissues, oxygen depletion, and global 

warming (Knoll et al. 2007). Current concerns regarding the health of marine calcifiers 

mimic these causes, though particularly disturbing is the present rapid, unbuffered 

increase in pCO2.  

1.3 Future Scenarios   

For the past thirty years the rate of carbon dioxide emissions into the atmosphere 

has been 1.79 ppm year
-1

 (IPCC 2013). This rate may be the deciding factor in the future 

of marine calcifiers, as it is two to three orders of magnitude higher than rates recorded 

for the past 420,000 years (Hoegh-Guldberg et al. 2007; Knoll et al. 2007). The 

International Panel on Climate Change (IPCC) created a family of scenarios to predict 

future emission rates which provides the scientific community a standard set of values for 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.z337ya
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.z337ya
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experimentation. The Special Report on Emissions Scenarios (SRES) outlines four 

simulations of our 2100 atmosphere; scientists have used these scenarios to predict what 

the atmospheric carbon dioxide concentrations may be in the future (Table 1.1). 

Changes in the atmosphere, land, ocean, biosphere, or cryosphere both natural and 

anthropogenic, can perturb the Earth’s radiation budget, producing a radiative forcing 

(RF) that affects climate. The Earth’s surface temperature is determined by the energy 

balance between incoming solar radiation and outgoing infrared radiation. Radiative 

forcing is the measurement of the capacity of a gas or other forcing agents to influence 

that energy balance, thereby contributing to climate change (IPCC 2013). Global 

warming occurs when there is an increase in Earth’s energy budget causing a positive 

radiative forcing. Because Greenhouse Gases (GHG’s) absorb infrared radiation and re-

emit it back to the Earth’s surface, thus increasing the Earth’s energy balance, they have 

positive RF values. The radiative forcing of a GHG, such as carbon dioxide, is 

determined by its atmospheric concentration, warming capacity, residence time, and 

spatial distribution (IPCC 2013). 

Table 1.1: The four representative concentration pathways (RCP) developed under the IPCC AR4. Presented by 

Moss et al. (2010). 
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Four representative concentration pathways (RCP’s) were developed to map 

possible outcomes for the composition of the atmosphere (Fig. 1.2). These RCPs were 

designed to capture four possible futures: two in which there is little to no coordinated 

action on reducing global emissions (worst case – RCP8.5 and best case – RCP6.0) and 

two where there is serious global action on climate change (worst case – RCP4.5 and best 

case – RCP 2.6). Simply, RCP8.5 represents ‘business as usual,’ where there is strong 

economic development for the rest of this century, driven primarily by dependence on 

fossil fuels (IPCC 2013). RCP6.0 represents a world that has not developed a global 

coordinated climate policy, but where many localized clean energy initiatives manage to 

stabilize emissions by the latter half of the century. RCP4.5 represents a world that 

implements strong limits on fossil fuel emissions, leading to a peak in GHG emissions by 

mid-century that then start to fall. RCP2.6 represents a world where emissions peak in the 

next few years, and then fall considerably, so that the world becomes carbon neutral by 

about mid-century. 

The current level of radiative forcing, according to the IPCC AR4, is 1.6 Wm
–2

 

(IPCC 2013). Considering the terrestrial surface area of the Earth, this results in a current 

total warming of about 800 terawatts — more than 50 times the world’s average rate of 

energy consumption, which is currently about 15 terawatts. However, in projections that 

model our current trend, RCP8.5, RF levels reach 8.3 Wm
–2

 in 2100 on a rising 

trajectory. This project exposed corals to pCO2 levels forecast by the RCP8.5 scenario: 

present day (~400 ppm) and year 2100 (>1370 ppm). 
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1.4 Skeleton Formation 

Calcium carbonate marine skeleton is deposited as high magnesium calcite 

(echinoderms), aragonite (corals and mollusks), or calcite (coccolithophores and 

foraminifera) (Raven et al. 2005). Each arrangement of the molecular structure results in 

a different solubility; high magnesium calcite is the most soluble followed by aragonite, 

then calcite (Andersson et al. 2008). Caribbean scleractinian corals almost exclusively 

deposit aragonite skeletons. The process of calcification is controlled by the 

concentration of calcium and carbonate in the calcifying matrix. The saturation state of 

aragonite (Ωarag) is a measure of super-saturation of this mineral phase in seawater and is 

measured as  (Equation 2), where the values in the denominator correspond 

Figure 1.2: Time evolution of the total anthropogenic radiative forcing (RF) relative to pre-industrial (about 

1765) between 2000 and 2300 for RCP scenarios as computed by the Integrated Assessment Models (IAMs) 

used to develop those scenarios. Taken from the IPCC’s Fifth Assessment Report, Working Group 1, Chapter 

12, Figure 12.3a (IPCC 2013).  

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
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to 100% saturation (Kleypas et al. 1999a; Kleypas et al. 1999b; Raven et al. 2005). 

Calcium displays conservative properties in seawater, thus, saturation state is based 

predominately on carbonate availability (Cohen and Holcomb 2009). At lower pH values, 

carbonate is less biologically available, therefore lowering the saturation point of all 

mineral forms of calcium carbonate. One hundred years ago, Ωarag averaged 4.6 ± 0.2 (±1 

SD) in tropical regions. Today, these regions average 4.01 ± 0.17 (Gledhill et al. 2008). 

This value is predicted to decrease 0.8 by 2065 and another 0.3 by 2100, potentially 

resulting in an aragonite saturation of 2.8. Trends in global aragonite saturation have 

shown a transition from coral reef to algal communities near Ωarag values of 3.4 (Kleypas 

et al. 1999a). Theoretically, when Ωarag is greater than 1, aragonite should precipitate and 

if Ωarag is less than 1, aragonite will dissolve (Kleypas et al. 1999a). However, there are 

kinetic barriers that require higher saturation states for calcification to occur (Cohen and 

Holcomb 2009). To make calcification more favorable, corals grow their crystals in a 

semi-isolated compartment that allows them to modify and control the carbonate 

chemistry of the calcifying fluid. Newly formed skeleton is surrounded by four layers of 

coral tissue, forming a barrier around the skeleton to avoid direct contact with seawater 

(Fig. 1.3, Cohen and Holcomb 2009).  

Aragonite is produced as micron sized crystals that nucleate, grow, and are 

packed into intricate bundles to form new skeleton (Al-Horani et al. 2003). Corals are 

actively calcifying at all times; the calicoderm, a layer of epithelia on the aboral surface 

of each polyp comprised of simple squamous cells (Glynn et al. 1985), functions to 

facilitate ion transport to create favorable conditions for skeletal secretion. Coral 

calcification occurs in the extracellular space beneath the coral polyp calicoderm. In 

order for calcification to occur, corals must surpass a kinetic threshold based on 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2et92p0
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bicarbonate to carbonate ratios. Ca-ATPase is used to transport Ca
2+

 to the skeletal 

deposition site in exchange for H
+
. This ion exchange leads to concentration increases in 

both calcium and carbonate in the subcalicoblastic space (Fig. 1.3, Al-Horani et al. 2003). 

By pumping hydronium ions out of this space, thus increasing the pH, bicarbonate is 

converted to the skeleton forming carbonate ion. The pH of the calicoblastic fluid has 

been measured at 9.3 during the day, corresponding to an aragonite saturation state of 25 

even though external seawater measured 8.1 and 4, respectively (Al-Horani et al. 2003). 

Removal of hydronium ions to reach a suitable concentration of carbonate is required to 

facilitate skeletal production (Equations 3 and 4). 

Equation 3: Ca
2+

 + CO2 + H2O → CaCO3 + 2H
+
     

Equation 4: Ca
2+

 + HCO3
-
 → CaCO3 + H

+ 

The space below the calicoderm contains a fluid originating from seawater. As 

seawater becomes less basic through ocean acidification, carbonate concentration 

decreases and more energy will be required to remove H
+ 

to the point where calcification 

is thermodynamically favored (Al-Horani et al. 2003). When pH levels drop, more 

carbonate ions are converted into bicarbonate ions. Although bicarbonate is a component 

of the calcification reaction (Equation 4), the percent increase in bicarbonate from 

acidified conditions will not be significant enough to compensate for the reduction of 

Figure 1.3: A conceptual model of light-

enhanced coral calcification taken from Al-

Horani et al. (2003) where A-C represents the 

surface of the epidermis, the gastrodermis, and 

the sub-calicoblastic space respectively.  

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.30j0zll
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.30j0zll
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carbonate (Comeau et al. 2012). Once the oceanic carbonate source is exhausted, 

carbonate ions will be removed from previously calcified substances, such as coral 

skeleton. If the ocean reaches a pH low enough to cause undersaturation of aragonite in 

the calicoblastic fluid, coral skeleton dissolution will be thermodynamically favored. 

1.5 Background Studies 

 The mechanism of biological coral calcification is not fully understood (Cohen 

and McConnaughey 2003; Cohen and Holcomb 2009; Allemand et al. 2011; Ries 2011; 

Comeau et al. 2012). This is in part due to the location of the subcalicoblastic space. 

Therefore, abiogenic aragonite accretion under laboratory conditions has been used to 

compare the composition and morphology of newly formed coral aragonite skeleton 

formed under various aragonite saturation states (Cohen and Holcomb 2009). Abiogenic 

aragonite crystals grew, displaying a morphological resemblance to those grown 

biologically by coral. Nucleation occurred at Ωarag > 20 (high saturation), while growth of 

these crystals was favored at Ωarag= 6-19. Crystal morphology changed gradually through 

reduced saturation states from long, thick, blade-like crystals at Ωarag=20 to short, wide, 

highly faceted crystals at Ωarag=6. The results of this study have important  implications 

for studies of coral growth under various aragonite saturation states, nevertheless skeletal 

structures for most Caribbean species have not been documented under ambient or high 

CO2 conditions.  

Primary polyps (new recruits) of the Atlantic golf ball coral Favia fragum secrete 

aragonite under simulated ocean acidification conditions creating an aragonite saturation 

state (Ωarag) of Ωarag=0.22 (Cohen et al. 2009). Saturation states less than one should 

theoretically lead to dissolution (Kleypas et al. 2006; Cohen and Holcomb 2009)  These 

corals were able to create an internal environment elevating the carbonate concentrations, 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1t3h5sf
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through acid base regulation mechanisms. However, skeleton formation in low aragonite 

saturation lagged days behind calcification in ambient conditions. Aragonite crystals have 

been quantified undergoing gradual changes in the size, shape, orientation, and 

composition based on aragonite saturation state (Cohen et al. 2009; Fig. 1.4). Crystal 

morphology changes from a blade-like 

crystal that has a high length to width 

ratio to crystals that are flatter and 

rhombic in shape as seawater pH and 

therefore Ωarag drop. Interestingly, the 

shape of the coral basal plate became 

irregular as saturation state decreased. 

These  basal plate anomalies, in 

conjunction with an incomplete rim, can 

prevent an effective seal around the 

calcifying region. External seawater in 

the calcifying fluid will exacerbate the 

challenges for calcification the organism 

is already experiencing in a low pH 

environment. Successful calcification is 

dependent on an organism’s ability to 

achieve supersaturation in their calcifying 

fluid. Future success of marine calcifying 

organisms in a high CO2 environment 

could be based on an individual’s ability 

Figure 1.4: Scanning electron micrographs 

showing progressive changes in Favia fragum 

corallite development including reduced growth of 

septa and shrinking of the basal plate (A-D). E-H 

show the changes in crystal morphology that occur 

as saturation state decreases. Saturation states 

being compared are Ωarag=3.71 (A, E), Ωarag=2.40 

(B, F), Ωarag=1.03 (C, G) and Ωarag=0.22 (D, H). 

Taken from Cohen et al. 2009. 



 

13 
 

to overcome this limitation (Cohen et al. 2009). 

The significance of bicarbonate and carbonate concentration in seawater for Favia 

fragum and Porites astreoides new recruit initial calcification has been examined (de 

Putron et al. 2011). In this study  carbonate chemistry parameters  were used to determine 

the saturation state of the experimental seawater. Larvae were allowed to settle on tiles 

and exposed to  treatment CO2 conditions (394±9, 753±12, and 2327±23 ppm) for two 

weeks. After the experimental period, polyps were bleached to remove coral tissue and 

the corallite skeleton was weighed on a microbalance. The results showed a negative 

correlation between the skeletal growth of new recruits and Ωarag for both species. This 

data, paired with that from Cohen et al. (2009), shows that while new F. fragum recruits 

are able to calcify under low aragonite saturation states, there is a change in the 

morphology of new skeletal crystals and mass is negatively impacted. It has not been 

established however, how calcification for adults and new recruits of the same species  

respond to low pH conditions.  

This work is a  comparative study of the effects of high CO2 on calcification in 

three adult coral species including newly settled spat from the threatened Orbicella 

faveolata commonly found in the Florida Reef Tract . Since survivorship at every life 

stage is necessary for organismal survival and development of future generations, 

analyzing life stage response differences may reveal the developmental stage most 

vulnerable to ocean acidification. As suggested by Findlay et al. (2009), organisms may 

be able to adapt by up-regulating calcification or change mineral production in response 

to increased acidity of seawater. This project seeks to evaluate this concept as well as 

determine the impact of high CO2 on coral calcification by raising coral adults 

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.26in1rg
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(Dichocoenia stokesi, Montastraea cavernosa, and O. faveolata) and new recruits (O. 

faveolata) in two high CO2 environments based on the RCP8.5 IPCC scenario.  

1.6 Objectives 

 Ocean associated changes in pH are occurring 100 times faster than in the 

indicated by past records of hundreds of millennia (Petit et al. 1999; Caldeira and Wickett 

2003; Raven et al. 2005); yet, little is known about how long-term seawater acidification, 

increased carbon dioxide partial pressure, and the pH associated changes to ocean 

chemistry will influence the calcification of hermatypic corals (Kleypas et al. 2006). 

Calcification utilizes  up to 20% of a coral’s energy budget (Cohen and McConnaughey 

2003).  Assuming constant availability of nutrients and food, the energy budget for many 

hard corals is fixed, and they can only allocate a fixed amount of energy for calcification. 

Under low pH conditions this may result in incomplete removal of excess protons and 

secretion of a weaker and poorly packed skeleton. The success of a coral reef is 

dependent upon the intricate relationships that exist between the coral’s vertical structure 

and other organisms in the environment. Changes in coral calcification due to ocean 

acidification can negatively influence the quality and characteristics of the reef structure, 

potentially leading to shelter loss and food shortage for other organisms in the reef 

community. This research was conducted to address two specific and distinct questions:  

1. Will decreased pH affect fine scale calcification in O. faveolata recruits and 

adults?  

To address this question, analyses will be conducted to assess differences 

in calcification between O. faveolata juveniles and adults, after being exposed to 

the experimental conditions for two weeks and three months, respectively. 

Successful recruitment and survival of a species is dependent on success at every 
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life stage; therefore, interruptions during either early polyp growth or adult 

calcification could hinder the success of a species. It has been observed that as pH 

decreases and pCO2 increases, coral calcification and skeletal crystal development 

will become more rhombic in shape and less blade-like (Cohen and 

McConnaughey 2003; Cohen and Holcomb 2009; Cohen et al. 2009).  In this 

study (?) crystal length measurements of scanning electron microscopy (SEM) 

micrographs  are quantified in ImageJ (NIH).  

2. Are M. cavernosa and D. stokesi able to acclimate under persistent exposure 

to high pCO2 conditions? 

Corals were  maintained in ambient and high CO2 treatment water for 

fifteen weeks and sampled periodically for scanning and transmission electron 

microscopy. Additionally, fragments were weighed to evaluate growth as 

measured by  the addition of new calcified material. The resulting data shows that 

in these corals calcification was not different, or that fifteen weeks was not a long 

enough for  changes to occur.  

  

https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.2et92p0
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3dy6vkm
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Chapter 2 

Systemic to microscale response of Orbicella faveolata to future ocean CO2 conditions 

2.1  Introduction 

United States carbon emissions have risen drastically since the Industrial 

Revolution when the atmospheric concentration of carbon dioxide was approximately 

280 parts per million (ppm). In May 2013, carbon dioxide concentrations, measured at 

the Mauna Loa Observatory in Hawaii, reached 400 ppm (see www.CO2Now.org). The 

rate of carbon dioxide emission into the atmosphere over the past thirty years has been 

1.79 ppm year
-1

 (IPCC 2013); this time span has attributed to roughly 50% of the global 

change in carbon dioxide concentrations since the late 1700’s  (Feely et al. 2009). Our 

current condition is unprecedented over the past 800,000 years (Petit et al. 1999; Raven et 

al. 2005; Hoegh-Guldberg et al. 2007; Lüthi et al. 2008).  

Over a quarter of all carbon dioxide released post Industrial Revolution has been 

absorbed by the oceans (Calderia and Wicket 2003; Sabine et al. 2004; Sponberg 2007). 

Although mitigating the effects of global warming, the ‘oceanic sink’ (Sabine et al. 2004) 

of carbon dioxide is expected to result in a 0.4 pH unit decrease in the surface oceans by 

the end of the century (Calderia and Wicket 2003; Raven et al. 2005; IPCC 2013). This 

associated change  is progressing 100 times faster than any climate recording oceanic pH 

for the past hundreds of millennia (Calderia and Wicket 2003; Raven et al. 2005). Yet, 

little is known about how long term seawater acidification, increased carbon dioxide 

partial pressure, and the pH associated changes to ocean chemistry will influence marine 

organisms (Turley et al. 2006). 

The seawater changes due to rapidly rising anthropogenic addition of carbon 

dioxide into the atmosphere predicted for the end of the century present major challenges 

http://www.co2now.org/
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1wSGfXzWhDCw6CMAX1XrZlRoSlIWe_ukf3Y2E_AcduWY/edit#heading=h.1ci93xb
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for calcifying organisms. Coral reefs are among the most diverse ecosystems on the 

planet; over 600,000 species have been documented worldwide (Knowlton 2001). The 

vast diversity is due to the structurally complex calcium carbonate foundation of coral 

reef ecosystems. Yet, this rugosity is at risk for degradation by ocean acidification 

(Fabricius et al. 2011; Silbiger and Donahue 2015). The species at the greatest risk are 

hermatypic scleractinian corals that are long-lived and rarely recruited to reefs, but serve 

as the structural foundation for the entire coral reef ecosystem. Nearly one fifth of the 

world’s coral reefs have gone extinct and another 30% of coral reefs are expected to be 

lost in the coming decades unless the effects of global climate change are mediated 

(Vernon et al. 2009; Pandolfi et al. 2011).  

Biogenic calcification occurs within a physiologically controlled environment 

(Al-Horani et al. 2003; Cohen and McConnaughey 2003; McCulloch et al. 2012; 

Holcomb et al. 2014), with scleractinian coral precipitating their calcium carbonate 

skeleton from an extracellular calcifying fluid in a semi-isolated space (Al-Horani et al 

2003; Venn et al. 2011). Corals are able to raise the pH of this fluid during active 

calcification in order to promote the dissolved organic carbon (DIC) components to shift 

toward carbonate (Al-Horani et al. 2003; Holcomb et al. 2014); this is an energy 

expensive process. Net calcification has typically been shown to decline after exposure to 

climate stressors such as ocean acidification, likely in part to the altered energy budget 

(Langdon and Atkinson 2005; Schneider and Erez 2006). The magnitude of the decline 

differs across species and is highly variable (Anthony et al. 2008; Ries et al. 2009, de 

Putron et al. 2011; Pandolfi et al. 2011; Silbiger and Donahue 2015). Recent work has 

found that, although net calcification is declining, corals are still secreting new skeletal 

material (Cohen et al. 2009; McCulloch et al. 2012; Enochs et al. 2014; Holcomb et al. 
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2014; Tambutté et al. 2015). Successful calcification is dependent on an organism’s 

ability to achieve supersaturation in their calcifying fluid; this process is limited by 

energy requirements (McCulloch et al. 2012). Future success of marine calcifying 

organisms in a high CO2 environment could be based on an individual’s ability to 

overcome this limitation (Cohen et al. 2009). 

To date, there have been several studies that evaluated the responses of adult 

corals (Anthony et al. 2008; Marubini et al. 2008; Holcomb et al. 2012; Moya et al. 2012; 

Schoefp et al. 2013; Enochs et al. 2014; Holcomb et al. 2014; Tambutté et al. 2015), 

juveniles (de Putron et al. 2011; Drenkard et al. 2013) or larval physiology and settlement 

(Albright et al. 2008; Cohen et al. 2009; Albright et al. 2010; Albright and Langdon 

2011; Cumbo et al. 2013) under ocean acidification conditions. However, there still 

remains a  gap in knowledge as many projects have included only a few species.  This 

work is a comparative study of the effects of high CO2 on the recently listed threatened 

species, Orbicella faveolata, which is a common reef building species, by rearing adult 

and new recruits in either seawater simulating the present environment or a high CO2 

environment based on the representative concentration pathway 8.5 (RCP8.5) IPCC 

scenario predicted for year 2100. RCP8.5 represents ‘business as usual,’ where there is 

strong economic development for the rest of this century, driven primarily by dependence 

on fossil fuels (IPCC 2013).  

I present the results of an experimental study designed to examine the effect of 

lowered ocean pH, reduced carbonate concentrations, and high pCO2 on the 

microcalcification in Orbicella faveolata.  Several physiological parameters were 

evaluated in order to address the question, “Will decreased pH affect fine scale 

calcification in O. faveolata recruits and adults?” I examined the impact of increased 
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pCO2 on net calcification on O. faveolata adults through buoyant weights and alkalinity 

anomaly. Productivity, which is expected to be influenced by an altered carbonate 

chemistry (Anthony et al. 2008), was documented as oxygen production and consumption 

via photosynthesis and respiration. Using scanning electron microscopy of both adults 

and new recruits, I was able to compare the crystal structure of newly deposited calcium 

carbonate across treatment conditions.   
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2.2 Methods  

2.2.1 Coral collection 

To represent the crucial framework builders on Caribbean coral reefs, I chose the 

recently IUCN listed threatened species, Orbicella faveolata. Considered one of the 

primary reef-building corals in the Caribbean, Orbicella faveolata is one of the top-ten 

most abundant scleractinian corals (Miller et al. 2013). Formerly known as Montastraea 

faveolata (Ellis and Solander 1786), the genus changed in 2012 following a molecular 

and morphometric analysis (Budd et al. 2012).  

Orbicella faveolata adults were collected on June 23
rd

 on a patch reef off Mote’s 

Tropical Research Laboratory (TRL) in Summerland Key, FL. Colonies were transported 

to Mote Marine Laboratory (MML), Sarasota, FL, in seawater saturated bubble wrap, 

where they were fragmented into large sections and allowed to acclimate in the flow 

through system (OASys) for two days. After nine weeks of exposure fragments were 

harvested from the remaining large pieces using a 7” wet tile to remove tissue that may 

have been contaminated with black band disease. Fragments were approximately 4-9 

cm
2
.  I acknowledge that this approach may have affected the response for adult O. 

faveolata in this experimental setup and care was taken to collect data that accurately 

reflect how low pH environments in the absence of disease influence calcification. Each 

tank was supplied with filtered seawater (30 μm) and exposed to T5 fluorescent actinic 

and daylight bulbs, providing an average of 80 µmol m
-2 

s
-1

. Lights were set to a 12h 

light/dark cycle. Corals were fed three times per week ad libitum with a blend of marine 

microalgae (Phyto-Feast). 

Orbicella faveolata spat were settled from spawning events and pooled from 2 

cohorts: one spawned August 16
th

, 2014 (from Horseshoe reef, Key Largo, FL; ~ 2 
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genets) and the other August 17
th

 (combined from Horseshoe and Grecian Rocks reefs; ~ 

8 genets total) (M. Miller and X. Serrano pers. comm.). Larvae were settled onto ceramic 

plugs at a field station in Key Largo, FL. The plugs had been conditioned off-shore at 

Sand Island Reef off Key Largo for three weeks prior to settlement. Forty plugs with O. 

faveolata spat were transported to MML in Sarasota, FL on September 6
th

 where twenty-

seven plugs with identified spat were distributed to eight experimental tanks containing 

Montastraea cavernosa and Dichocoenia stokesi fragments (see Chap. 3). Orbicella 

faveolata spat were reared in ambient and low pH seawater for two weeks, approximately 

three weeks after settlement when initial calcification begins (M. Miller and X. Serrano, 

pers. comm.).  

2.2.2 Experimental Design  

Ambient seawater was pumped into the system from Sarasota Bay, where it was 

treated by ozonation and sand bed filtration to remove particles in excess of 30 μm. A 65 

gallon degas tank tempered the pH of incoming seawater through aeration from an 

outdoor air pump connected to two large air stones sitting at the bottom of the tank. In the 

degas tank water temperature was maintained at 25°C (Delta Star in-line water chiller, 

Aqua Logic, Inc., Hydortheo submersible, 50-100 watt heaters).  Water was transferred 

from the degassing tank through a bulkhead at the bottom to an external pump to each of 

the treatment header tanks. Both ambient and high CO2 tanks contained a pH probe, 

temperature probe, and circulation pump. The high CO2 tank also contained a CO2 gas 

line, which ran to a CO2 tank and electronic regulator to manipulate pCO2. Levels of 

acidification were regulated through a pH stat system (Apex Neptune Jr. Controller with 

pH probe module) set to pH target values of 8.10 and 7.70, corresponding to CO2 

concentrations of 450 ppm and 1450 ppm for the ambient and high CO2 dosing regimens, 



 

22 
 

respectively (Table 2.1). When the pH of this tank rises above a 7.7 point programmed 

into the apex controller (Neptune Systems), power to the electronic regulator is turned on 

and pure CO2 is allowed into the acidified tank. Water flows through a bulkhead at the 

bottom of each of the header tanks and into a 1 inch supply manifold. Flow into each 

individual aquarium (four recruit tanks and one adult coral tank for each treatment) was 

sustained at 75 mL/min to allow for a complete turnover rate of approximately four 

hours. Each aquaria (19 liters) under is held in a water bath under a 12:12 hour light/dark 

regime (T5 Fluorescent Actinic pink and blue daylights).  

pH was measured on the NBS scale using Lab Grade Neptune Systems pH 

probes, each connected to the logger/controller unit via a Neptune Systems Apex 

controller. The experimental CO2 environments were chosen to represent the current 

atmospheric CO2 levels and the RCP8.5 scenario presented in the International Panel on 

Climate Change (IPCC) Fifth Assessment Report (AR5), with year 2100 pCO2 (ppm) 

>1370 ppm (IPCC, 2013; Moss et al. 2010) (Table 1).  Daily measurements of pH 

(Mettler Toledo SevenGo pro), temperature (EcoSense EC300A), and salinity (EcoSense 

EC300A) were compiled with weekly total alkalinity (TA) to determine the distribution 

of carbon species and aragonite saturation state for all treatments (Table 2.1) using the 

program CO2SYS (Lewis and Wallace 1998). Sample collection and storage for TA was 

done in 120 mL borosilicate bottles that were cleaned with 10% HCl and rinsed three 

times with nanopure water. TA was measured using a modification of the open-cell 

titration method (Dickson et al. 2007, SOP 3b) on a Metrohm 916 Ti-Touch automated 

titrator using 0.05M HCl in 0.6M NaCl for 32 g seawater samples. All TA data was 

verified for accuracy using certified reference material (CRM) seawater from the Dickson 

Lab at Scripps Institute (Batch 137); samples were averaged +2.19% from the actual 
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value with a SE of 6.90 µmol kg
-1

. CO2SYS was run using the K1K2 apparent 

equilibrium constants from Mehrback (1973) and refit by Dickson and Millero (1987), 

HSO4
-
 dissociation constants were taken from Uppstrom (1974) and Dickson (1990), and 

pH was on the NBS scale. 

 

2.2.3 Buoyant weight 

Adult coral fragments were weighed as described by Davies (1989), using an 

Ohaus Adventure Pro analytical balance. During the weighing periods, corals were 

suspended on a platform approximately 15 cm into an aquarium filled with treatment 

seawater. Temperature and salinity were recorded after each mass and used to calculate 

seawater density; this remained constant at 1.023 mg/L. Calcification rate was quantified 

from the difference in buoyant wet weights between weeks 10 and 12 as O. faveolata 

adults were fragmented during week 9. Calcification was normalized to tissue surface 

area and expressed as mg CaCO3 cm
-2 

d
-1

.  

2.2.4 Physiology   

Because corals are a holobiont and calcification may be influenced by the activity 

of the mutualistic zooxanthellae and other organisms that make up the coral holobiont, 

productivity data was collected. Photosynthesis was measured as the oxygen production 

from each fragment for one hour under controlled artificial lighting (T9 fluorescent and 4 

Table 2.1: Means (± standard errors) of all measured parameters by treatment header tank, representative of each 

aquarium. pCO2, HCO3
-
, CO3

2-
, CO2, DIC, and Ωarag were all calculated from measured TA and pH samples 

using CO2SYS. 
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LED strip lights)  matching the daytime OASys irradiances of 80 µmol m
-2 

s
-1 

and 

respiration measurements as oxygen consumption during a one hour period in complete 

darkness. Temperature was maintained at 25 °C using a recirculating water bath 

(PolyScience MX Circulating Water Bath). Calibrations were completed prior to each 

measurement using air saturated seawater and blank chambers were used to remove any 

metabolic signal from the water column. Photosynthesis and respiration measurements 

were conducted using four sealed, recirculating respirometry chambers with flow regimes 

simulating natural conditions, each chamber connected to a high-precision fiber-optic 

oxygen meter and logging system (FirestingO2, Pyro Science). Oxygen fluxes of all 

specimens were normalized to tissue surface area determined from geometric analyses of 

digital photographs (ImageJ, NIH).  

2.2.5 Alkalinity Anomaly 

For each light and dark hour in the respirometry chambers, a water sample was 

removed from the chamber and analyzed for total alkalinity using a modification of the 

open-cell titration method (Dickson et al. 2007, SOP 3b) on a Metrohm 916 Ti-Touch 

automated titrator using 0.05 M HCl in 0.6 M NaCl titrant for 32 g seawater samples. 

Water samples were filtered (0.2μm membrane filters) prior to analysis. This alkalinity 

anomaly method (Andersson et al. 2009; Silbiger and Donahue 2015) calculates net 

calcification from changes in total alkalinity from the equation 𝐺 = [
𝑑𝑇𝐴

𝑑𝑡
] /2, where [

𝑑𝑇𝐴

𝑑𝑡
] 

is the change in TA in the chamber during the measurement period (change in TA 

normalized to the volume of water and the surface area of the coral). This change in 

alkalinity over time is calculated from : 
𝑑TA

𝑑𝑡
=

𝑇𝐴𝑎𝑞,𝑡2−𝑇𝐴𝑎𝑞,𝑡1

∆𝑡∗𝑆𝐴
∗ 𝑉𝑜𝑙 ∗ 𝜌, where TAaq,t1 = 

total alkalinity in the chamber at the first sampling time point (µEq kg
-1

), TAaq,t2 = total 
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alkalinity in the chamber at the second sampling time point (µEq kg
-1

), ∆t = time between 

first and second sampling time point (h), SA = surface area of the coral in the chamber 

calculated using ImageJ (cm
-2

), Vol= volume of water in the chamber (L), and ρ = 

Density of seawater (kg L
-1

). The final equation is divided by two because one mole of 

CaCO3 is precipitated or dissolved for every two moles of TA removed or added to the 

water column. Here, G represents the sum of all the calcification processes minus the sum 

of all the dissolution processes in µmol CaCO3 cm
-2

 h
-1

; thus, all positive numbers are net 

calcification, and all negative numbers are negative net calcification (i.e., net dissolution). 

Net daytime calcification (Gday/ is calculated from the first sampling period in the light, 

net nighttime dissolution (Night/ is calculated from the second sampling period in the 

dark. Samples that could not be run immediately were stored in a 2°C refrigerator and 

processed within a week.  

2.2.6 Electron Microscopy  

At the end of twelve weeks a 2 cm
2 

section of tissue and skeleton was removed 

from each of the adults using a dremel tool (Dremel 200). Juveniles were taken from the 

treatment conditions after one and two weeks. Samples were placed in a 50% NaClO 

solution in preparation for scanning electron microscopy (SEM). Juveniles were bleached 

while they were still attached to the plug to ensure no damage to the skeletons. After 

complete tissue removal, the fragments were rinsed with tap water, dried, and mounted 

on carbon adhesive-covered aluminum stubs and coated with palladium. Samples were 

imaged in an FEI XL-30 ESEM/SEM fitted with an Oxford EDS system at the University 

of Miami’s Center for Advanced Microscopy. The columella region was targeted to 

image the crystal structure of newly calcified material. Images were analyzed in ImageJ 
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(NIH) to quantify the length of the largest crystals produced by each species and time 

period.  

2.2.7 Statistical Analysis 

The software program JMP was used to examine independent and interaction 

relationships between treatment variables. All response data to CO2 treatments were 

tested using independent samples t-tests or one-way ANOVA’s. Data were tested for 

variance homogeneity using Levene’s test and normality using the Shapiro-Wilk test. 

Wilcoxon and Kruskal-Wallis tests were run for non-normal sample sets.  
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2.3 Results 

2.3.1 Buoyant Weight  

An independent-samples t-test compared Orbicella faveolata adult mean net 

calcification (mg CaCO3 cm
-2

 d
-1

) between the treatment conditions and  no significant 

difference in O. faveolata growth rates between treatments was observed (n = 7 

individuals, t-test, p>0.05). 

2.3.2 Crystal Length 

Settlement plugs were collected at random from each of the treatment tanks (n=4 

per treatment) after one or two weeks and imaged using scanning electron microscopy 

(Fig. 2.1a). To evaluate differences in crystal length for O. faveolata adults and recruits 

between treatment conditions, independent subjects t-test were run. Where assumptions 

were not met, the Wilcoxon test was used. There was a significant increase in newly 

deposited crystals’ length from ambient to high CO2 seawater. This was the case for 

recruits after one (98%) and two (111%) weeks exposure, as well as for adults after 

twelve weeks (245%; Fig 2.1b, Table 2.2). These results indicate that there are similar 

responses to ocean acidification during the earliest calcification stages and mature adults.   
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 Ambient High CO2    

 M SD n M SD n  t/Chi
2
 df p 

Week 1 recruits* 1.072 0.62 22 2.118 1.25 24  8.5542 1 0.0034 

Week 2 recruits 0.653 0.64 19 1.381 0.49 15  3.625 32 0.0010 

Week 12 Adults * 0.647 0.32 15 2.232 0.87 20  22.090 1 < 0.0001 

*Data run using Wilcoxon test 

Table 2.2: Results of t-test and descriptive statistics for crystal length by treatment for Orbicella faveolata recruits 

and adults. 

 

 

Figure 2.1: Average (mean ± SEM) crystal length (µm) determined from scanning electron micrographs for 

O. faveolata juveniles after one (n=4 per treatment) and two weeks (n=4 per treatment) of exposure and adults 

(n=7 per treatment) under ambient and high CO2 conditions. Images are representative micrographs of the 

crystal structure in the respective treatment. Asterisks represent significant differences in treatment conditions 

determined using independent-samples t-test or the non-parametric Wilcoxon test where appropriate.  
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2.3.3    Physiology  

Orbicella faveolata fragments’ photosynthetic and respiration rates after twelve 

weeks in ambient and high CO2 conditions were examined using an independent samples 

t-test. There was no significant differences in the effect of treatment on oxygen 

production or consumption through photosynthesis and respiration for this species during 

the final sampling period (n=7, t-test, p>0.05).   

2.3.4 Alkalinity Anomaly 

Orbicella faveolata fragments’ mean light and dark calcification rates (µmol 

CaCO3 cm
-2

 h
-1

) were compared using an independent samples t-test after twelve weeks 

in ambient and high CO2 conditions. There was no significant difference in light 

calcification rates between treatment conditions (t-test, p>0.05). Results from the 

independent samples t-tests indicated, however, that there were significant differences in 

dark calcification rates. Orbicella faveolata ambient (M = 0.154, SD = 0.13, n = 7) 

fragments calcified significantly more than those in high CO2 (M = -0.030, SD = 0.09, n 

= 7), t(12) = -2.995, p = 0.0112, Fig. 2.2).  
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Figure 2.2: Average (mean ± SEM) of dark calcification (µmol CaCO3 cm
-2

 h
-1

) for O. faveolata 

(n=7) for twelve weeks. Asterisks represent significant differences between treatments determined 

using independent-samples t-test. 
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2.4 Discussion 

Of the major environmental factors associated with the global distribution of coral 

reefs, such as temperature, light intensity, and seawater chemistry, most will be disrupted 

under conditions of global climate change (Kleypas et al. 2006). In this study seawater 

chemistry was manipulated to replicate near ambient (pCO2 450 ppm) and predicted 

(pCO2 1450 ppm) atmospheric values for 2100. Orbicella faveolata exhibited no 

significant difference in skeletal deposition rates under control and high CO2 conditions; 

however, individual aragonite crystals in both adult and juvenile O. faveolata were 

statistically longer in the high CO2 treatment. No significant differences were seen in 

photosynthesis or respiration rates. These results suggest that the addition of CO2 may 

cause a shift in the overall energy budgets causing a modification of skeletal aragonite 

crystal structures and/or the organic matrix on which they are formed, rather than 

inhibiting skeletal crystal formation. Consequential to this energy shift, Orbicella 

faveolata may belong in the category of scleractinian corals that exhibit a low sensitivity 

to ocean acidification. 

2.4.1 Net Calcification  

The results of this study suggest that Orbicella faveolata may be able to acclimate 

to a more acidic ocean. Models based on physiochemical responses to ocean acidification 

(Ries 2011) and calcification kinetics in pH buffering (McCulloch et al. 2012) have 

identified two distinct classes of organisms exhibiting a low or high sensitivity to ocean 

acidification. Orbicella faveolata did not lose mass under low pH conditions and 

simultaneously displayed significantly enhanced crystal growth (Fig. 2.1). This 

calcification response to low pH, and therefore low Ωarag, is consistent with  strong 
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internal pH regulation. Pacific coral species Stylophora pistillata, Porites compressa, 

and Montipora verucosa have been found to maintain ambient calcification rates over 

large ranges of Ωarag conditions (Gattuso et al. 1998; Langdon and Atkinson 2005; 

Holcomb et al. 2014). These species may be directing a higher proportion of their energy 

budget to calcification (Pandolfi et al. 2011) or have a strong pH up-regulation 

mechanism in place (McCulloch et al. 2012). Through Ca
2+

-ATPase antiporters in the 

calicodermis, corals remove two protons from the subcalicoblastic fluid in exchange for a 

calcium ion (Al-Horani et al. 2003; Cohen and McConnaughey 2003; Allemand et al. 

2011). This process is energy expensive, but in the presence of excess ATP, corals can 

establish high internal aragonite saturation states despite significant changes in pH (Al-

Horani et al. 2003). The energy required for this ion exchange and therefore calcification 

is derived predominately from photosynthesis; however, Orbicella faveolata did not 

experience a significant change in photosynthetic rate between treatment conditions. 

Energy expenditure during calcification is generally about one-third that produced from 

photosynthesis in Symbiodinium (Gattuso et al. 1999) but the extra energy required to up-

regulate a pH change from 7.7 to 8.1 is less than 1% of the approximately 475 kJ mol
-1

 C
-

1
 (McCulloch et al. 2012) generated through photosynthesis. Therefore, O. faveolata may 

not have needed to increase its energy budget in order to maintain net calcification rates. 

It is also possible that this species may draw from energy reserves to meet the new energy 

requirement (Schoepf et al. 2013). Towle et al. (2015) found that feeding rate and lipid 

content increased in corals experiencing OA conditions, and fed corals were able to 

maintain ambient growth rates at elevated CO2. Corals that had been unfed, however, 

experienced significant decreases in growth with respect to fed conspecifics. Despite the 

lack of significant differences in growth rates between the control and experimental 
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groups, there was a large standard deviation for coral fragments grown in the high CO2 

environment. This could indicate a genotypic variation for O. faveolata in  response to 

OA; restoration practices that are actively out planting this species would benefit from 

knowing which genets are less susceptible to future ocean conditions. While not 

evaluated in this experiment, overall health of coral reef systems may shift drastically 

with the compounding effects of increasing thermal stress from global warming and local 

environmental impacts (Pandolfi et al. 2011; McCulloch et al. 2012; Cumbo et al. 2013; 

Schoepf et al. 2013).  

2.4.2 Physiology 

Stony corals, the framework builders of coral reefs globally, are highly 

susceptible to ocean acidification as their calcium carbonate skeleton represents the 

highest proportion of their mass (Knoll et al. 2007). However, there are multiple partners 

that make up the coral holobiont, all of which interact at the most basic metabolic level 

(Horwitz et al. 2015). Included in the coral holobiont are external and internal microbes, 

endolithic algae, bioeroders, and dinoflagellates.  Symbiodinium, the symbiotic 

dinoflagellate present in zooxanthellate corals, utilize bicarbonate (HCO3
-
) instead of 

CO2(aq), as the primary source for photosynthesis (Kleypas et al. 2006; Brading et al. 

2013). Bicarbonate concentrations will increase about 14% under doubled CO2 

conditions predicted for 2100 (Kleypas et al. 2006). The interaction of these organisms 

includes exchanging energy and nutrient-rich compounds; hence it is necessary to 

consider the role of Symbiodinium energy acquisition through photosynthesis when 

examining the coral host’s physiological calcification process. The relationship between 

photosynthesis and calcification in benthic calcifiers is poorly understood (Kleypas et al. 

2006). Calcification rates can be enhanced by photosynthesis (Gattuso et al. 1999), but 
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the stimulating mechanism remains poorly known (Cohen and McConnaughey 2003). 

Many studies have reported net photosynthetic rates of corals displaying either no or a 

slight increase in response to increased pCO2 (Langdon and Atkinson 2005; Schneider 

and Erez 2006; Anthony et al. 2008). In this study, there was no significant impact of 

ocean acidification on oxygen production, indicating that the photosynthetic benefit of an 

increased CO2 supply may be overridden by the disruption of photophysiological 

processes (Anthony et al. 2008), or that photosynthetic rates are not DIC-limited. Though 

higher concentrations of bicarbonate are present under OA conditions, low pH may 

interfere with the pathway for CO2 accumulation thereby directly affecting the ability of 

the individual symbionts to fix carbon (Anthony et al. 2008). It is also unclear if the 

insignificant impact of OA on photosynthesis and respiration is an acclimation response 

or if excess CO2 does not impact the holobiont in this study. There is a gap in research on 

the molecular and biochemical pathways of the photosynthesis-calcification relationship. 

Understanding this relationship is required before the effect of environmental changes on 

coral physiology can be deciphered.    

2.4.3 Electron Microscopy  

Calcification in multiple life stages plays a critical role in survival, but almost all 

studies of CO2 effects on calcification have focused on adult organisms (Kleypas et al. 

2006). Understanding the effects of OA on calcification in a species’ adults and newly 

settled recruits can help reveal true impacts across individuals’ many life stages. For 

example, slowed juvenile growth may result in  more time spent in the juvenile stage, 

therefore lengthening the period in which  corals are not sexually reproductive. In 

combination with adult loss, population structures would shift toward smaller class sizes, 

decreasing effective population sizes and population fecundity (Albright and Langdon 
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2011). The results from this experiment show a similar response in skeletal structure in 

adults and newly settled O. faveolata recruits in each of the treatment conditions. In high 

CO2 (>1450 ppm) treatment seawater, this species displayed longer crystal growth (Fig. 

2.2), indicating the ability to nucleate and grow crystals more rapidly than corals grown 

in the ambient condition. This response was consistent between different genets. Crystals 

secreted  in corals from the high CO2 treatment displayed the characteristic thin, blade-

like structure, associated with day time growth (Cohen and Holcomb 2009). In contrast to 

this study, the skeleton accreted from Favia fragum spat revealed a reduced length to 

width ratio as saturation state decreased, though all corals reared at various levels of 

aragonite saturation conditions, even to the point of undersaturation, were able to accrete 

and maintain aragonite crystals (Cohen et al. 2009). Venn et al. (2013) found that new 

crystal growth in Stylophora pistillata, as measured by changes in cross-sectional area, 

for corals maintained at pHs 8.0, 7.8, and 7.4 showed no significant difference. These 

results, along with our data, imply that there is a physiological resilience across distinctly 

different species that may alleviate the stress of ocean acidification in order to achieve 

present levels of calcification. Although the results support the concept that specific coral 

species up-regulate pH at the site of calcification resulting in nucleation of new skeletal 

crystals, the variability in crystal structure implies that this may result in  a shift in the 

structural density of the coral (Drenkard et al. 2013). Other studies have found skeletal 

integrity impairments under OA conditions for Caribbean species F. fragum and P. 

astreoides (Cohen et al. 2009; de Putron et al. 2011), which may further reduce the 

resilience of the already degraded population (Enochs et al. 2014;  Holcomb et al. 2014). 

Enhanced extracellular organic matrix gene expression was documented for 

Acropora millepora under high CO2 (1000 ppm) conditions (Moya et al. 2012). This 



 

36 
 

response was quite complex; genetically distinct individuals responded differently to the 

number and location of skeletal organic matrix genes they up-regulated or down-

regulated. This altered expression and overall disturbance of the skeletal organic matrix 

which could explain the variability in size, shape, and orientation of the aragonite crystals 

observed in this and other experiments (Cohen et al. 2009; Cohen and Holcomb 2009; 

Moya et al. 2012; Drenkard et al. 2013; Venn et al. 2013). 

2.4.4 Conclusions  

Although Orbicella faveolata was recently added to the IUCN threatened species 

list, this species appears to be quite resilient in a more acidic environment. This 

observation is based on the results that O. faveolata did not experience any growth deficit 

under high CO2 conditions and crystal structure of recently nucleated skeletal material 

was statistically longer in the low pH treatment (Cohen and Holcomb 2009). This crystal 

length trend existed across generational boundaries as the recently settled spat also 

displayed longer crystals in the high CO2 treatment (Fig. 2.1).  

Any event that leads to the reduction of primary productivity, such as the 

prevalence of disease, can potentially impact coral calcification (Wild et al. 2011). Black 

band disease (BBD) has a widespread distribution throughout the Caribbean, the Red Sea, 

the Indo-Pacific, and the Great Barrier Reef, preferentially infecting large, reef-building 

corals (Richardson 2004). It is one of the more complex and destructive coral diseases 

known, lysing tissue as the band of cyanobacteria progress over the surface of the 

infected coral. The cyanobacteria present within the BBD mat have been shown with 

scanning electron microscopy (SEM) to bore through the CaCO3 coral skeleton at the site 

of infection and to penetrate the coral tissue, contributing to tissue lysis (Miller et al. 

2011; Miller and Richardson  2011). To my knowledge, there have been no studies 
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completed on the impact of BBD on coral calcification directly. Although the Orbicella 

faveolata adults were exposed to BBD prior to this experiment, care was taken to remove 

all diseased areas as well as a 1” margin into the healthy tissue prior to taking any 

physiological readings. Aeby et al. (2015) showed that removing the diseased margin in 

situ lead to a significant reduction in disease prevalence for Montipora sp. in Hawaii. 

Additionally, there was no evidence of cyanobacteria or other components of BBD in the 

transmission electron micrographs of this species.  

The response of coral calcification to ocean acidification is ultimately dictated by 

the limits of coral physiology to acclimate or adapt to a more acidic ocean rather than just 

kinetics alone (McCulloch et al. 2012). pCO2-tolerant corals have been characterized by 

an increased ability to acclimatize to ocean acidification, e.g. by maintaining net 

calcification (Strahl et al. 2015). Robust corals are more likely to persist for longer in a 

future high pCO2 world than those unable to acclimatize. Although many studies have 

evaluated the responses of adult corals (Anthony et al. 2008; Marubini et al. 2008; 

Holcomb et al. 2012; Moya et al. 2012; Schoefp et al. 2013; Enochs et al. 2014; Holcomb 

et al. 2014), juveniles (de Putron et al. 2011; Drenkard et al. 2013) or larval physiology 

and settlement (Albright et al. 2008; Cohen et al. 2009; Albright et al. 2010; Albright and 

Langdon 2011; Cumbo et al. 2013) under ocean acidification conditions, there still 

remains a large gap in knowledge as many projects have included just a few species. It is 

crucial to continue understanding how OA will influence all coral reef organisms as their 

interactions create this ecosystem. Here I found that elevated pCO2 had no significant 

effect on average growth rates or physiology parameters. I also found a distinct 

quantitative difference in the skeletal crystals produced in ambient versus high CO2 

seawater, a relationship that remained between life stages. This seemingly positive 
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response may have drawbacks in the overall energy budget for the coral. If in fact this 

species is directing a higher proportion of their energy budget to calcification there will 

be less resources available for critical functions such as gamete production and immune 

system response. Further studies are needed to uncover the mechanism by which O. 

faveolata is able to lengthen its crystal structure and determine the impacts on other 

parameters.  
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Chapter 3 

Effects of ocean acidification on growth and microcalcification in reef building 

Caribbean species 

3.1  Introduction 

The seawater changes due to rapidly rising anthropogenic addition of carbon 

dioxide into the atmosphere predicted for the end of the century present major challenges 

for calcifying organisms. Over 25% of CO2 produced since the Industrial Revolution has 

been absorbed by the oceans (Calderia and Wicket 2003; Sabine et al. 2004; Sponberg 

2007). Although mitigating the effects of global warming, the ‘oceanic sink’ (Sabine et 

al. 2004) of carbon dioxide is expected to result in a 0.4 pH unit decrease of the surface 

oceans by the end of the century (Calderia and Wicket 2003; Raven et al. 2005; IPCC 

2013), causing the issue of ocean acidification. For the past thirty years, the rate of net 

carbon dioxide emission into the atmosphere has been 1.79 ppm year
-1

 (IPCC 2013). This 

present value is two to three orders of magnitude higher than rates from over the past 

420,000 years (Hoegh-Guldberg et al. 2007; Knoll et al. 2007). The associated changes in 

oceanic pH are developing 100 times faster than any records of the past hundreds of 

millennia (Calderia and Wicket 2003; Raven et al. 2005). Yet, little is known about how 

long term seawater acidification, increased carbon dioxide partial pressure, and the pH 

associated changes to ocean chemistry will influence marine organisms (Turley et al. 

2006). 

For scleractinian corals, biogenic calcification occurs within a physiologically 

controlled environment (Al-Horani et al. 2003; Cohen and McConnaughey 2003; Venn et 

al. 2011; McCulloch et al. 2012; Holcomb et al. 2014). Corals raise the pH of an 

extracellular calcifying fluid in a semi-isolated space during active calcification in order 
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to promote dissolved organic carbon (DIC) components to shift toward carbonate (Al-

Horani et al. 2003; Holcomb et al. 2014). Net calcification has typically been shown to 

decline after exposure to climate stressors such as ocean acidification (Langdon and 

Atkinson 2005; Schneider and Erez 2006). The magnitude of the decline differs among s 

species and is highly variable (Anthony et al. 2008; Ries et al. 2009, de Putron et al. 

2011; Pandolfi et al. 2011; Silbiger and Donahue 2015). Recent work has found that, 

although net calcification is declining, corals are still secreting new skeletal material 

(Cohen et al. 2009; McCulloch et al. 2012; Enochs et al. 2014; Holcomb et al. 2014; 

Tambutté et al. 2015). Successful calcification is dependent on an organism’s ability to 

achieve supersaturation in their calcifying fluid; this process is limited by energy 

requirements (McCulloch et al. 2012). Future success of marine calcifying organisms in a 

high CO2 environment could be based on an individual’s ability to overcome this 

limitation (Cohen et al. 2009). 

As the rain forests of the ocean, coral reefs are among the most diverse 

ecosystems on the planet due to the structurally complex calcium carbonate foundation of 

coral reef ecosystems (Knoll et al. 2007). This three-dimensional structure is at risk to be 

degraded by ocean acidification (Fabricius et al. 2011; Silbiger and Donahue 2015). 

Nearly one fifth of the world’s coral reefs have gone extinct and another 30% are 

expected to be lost in the coming decades unless the effects of global climate change are 

mediated (Vernon et al. 2009; Pandolfi et al. 2011). There have been several studies that 

evaluated the responses of adult corals (Anthony et al. 2008; Marubini et al. 2008; 

Holcomb et al. 2012; Moya et al. 2012; Schoefp et al. 2013; Enochs et al. 2014; Holcomb 

et al. 2014; Tambutté et al. 2015), juveniles (de Putron et al. 2011; Drenkard et al. 2013), 

or larval physiology and settlement (Albright et al. 2008; Cohen et al. 2009; Albright et 
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al. 2010; Albright and Langdon 2011; Cumbo et al. 2013) under ocean acidification 

conditions. However, there still remains a gap in knowledge as many projects have 

included only a few species.  

In this study  comparison of the effects of high CO2 on calcification was 

examined by raising adult Dichocoenia stokesi and Montastraea cavernosa fragments in 

a high CO2 environment based on the RCP8.5 IPCC scenario. RCP8.5 represents 

‘business as usual’ where there is strong economic development for the rest of this 

century, driven primarily by dependence on fossil fuels (IPCC 2013). Investigation of the 

effects of ocean acidification on two key physiological processes was made and electron 

microscopy utilized for ultrastructural examination of coral skeletal structure.  The 

impact of increased pCO2 on net calcification through buoyant weights and alkalinity 

anomaly were examined. Productivity, which is expected to be influenced by an altered 

carbonate chemistry (Anthony et al. 2008), was documented as oxygen production and 

consumption via photosynthesis and respiration. Using SEM, the crystal structures of 

newly deposited calcium carbonate were compared across treatment conditions for each 

species.  Dichocoenia stokesi and Montastraea cavernosa represent some of the most 

common and major framework building corals in the Florida Reef Tract. 

Examined is  the effect of lowered ocean pH, reduced carbonate concentrations, 

and high pCO2 on the microcalcification of corals using two species to address the 

following questions: Do morphometrically distinct hermatypic coral species: M. 

cavernosa and D. stokesi  respond differently to ocean acidification?  Do M. cavernosa 

and D. stokesi acclimate or change their response over time under persistent exposure to 

high pCO2 conditions? 
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3.2 Methods  

3.2.1 Coral collection 

Montastraea cavernosa and Dichocoenia stokesi are two mounding hermatypic 

scleractinian corals commonly found on fore-reef habitats and represent two of the 

crucial framework builders on Caribbean coral reefs. Four M. cavernosa and D. stokesi 

colonies were collected at 7-10 m depth from BC1 reef off Ft. Lauderdale, FL on August 

16
th

, 2014 using a hammer and chisel. Dichocoenia stokesi (Milne, Edwards, and Haime 

1848) is among the most common coral in the Florida Keys and Dry Tortugas, with 

population abundance estimates close to 100 million colonies in 2005 (Miller et al. 2013). 

Dichocoenia stokesi is hypothesized to be robust and may be well suited to acclimate to 

lowered oceanic pH values induced by high atmospheric carbon dioxide values given its 

large population numbers, broad distribution among multiple habitat types, and high 

relative abundance among all corals in the Florida Reef Tract (Miller et al. 2013). The 

reef coral Montastraea cavernosa is a common, widely distributed species, easily 

identified by its distinct large fleshy polyps and large mounding structure (Budd et al. 

2011). Water depth distribution extends from 0.5 to 95 m. Highest occurrences have been 

found at intermediate to deep reef depths of 10–60 m (Goreau 1959; Goreau and Wells 

1967). This species geographic distribution extends across the Caribbean, as far north as 

Bermuda in the North Atlantic, and to Brazil in the South Atlantic and the Gulf of Guinea 

in the Eastern Atlantic (Laborel 1974; Sterrer 1986); such a wide distribution suggests 

that M. cavernosa has an evolutionary predisposition to acclimate to less than favorable 

environmental conditions.  

Colonies were transported to Mote Marine Laboratory (MML), Sarasota, FL, in 

seawater saturated bubble wrap, where they were allowed to acclimate in the flow 
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through system (OASys) for two days. Corals were held in 20 L aquaria supplied with 

sand bed filtered (30 μm) Sarasota Bay seawater (flow rate 75 mL min
-1

) at a salinity of 

35 ppt, temperature of 25 °C, and irradiance of 80 µmol photons m
-2 

s
-1 

on a 12h 

light/dark cycle (T5 fluorescent actinic and daylight bulbs). Eight 4 cm
2
 fragments were 

removed from each colony using a 7” wet tile saw and placed in separate flow-through 

tanks (n=8). By using fragments from multiple colonies of each species, this experiment 

can evaluate a species level response to ocean acidification. 

3.2.2 Experimental Design  

The experimental facility consisted of 8 flow-through aquaria (20 liters) under a 

12:12 hour light/dark regime (T5 Fluorescent Actinic pink and blue daylights), receiving 

sand bed filtered reef seawater (30 μm) from two temperature-controlled (Delta Star in-

line water chiller, Aqua Logic, Inc., Hydortheo submersible, 50-100 watt heaters) CO2 

mixing tanks (Fig. 3.1). All experimental tanks were kept at a flow rate close to 75 

mL/min to allow for a complete turnover rate of approximately four hours. Levels of 

acidification were regulated through a pH stat system (Apex Neptune Jr. Controller with 

pH probe module) set to pH target values of 8.10 and 7.70, corresponding to CO2 

concentrations of 450 ppm and 1450 ppm for the ambient and high CO2 dosing regimens, 

respectively (Table 2). pH was measured on the NBS scale using Lab Grade Neptune 

Systems pH probes, each connected to the logger/controller unit via a Neptune Systems 

Apex controller. The experimental CO2 environments were chosen to simulate the current 

atmospheric CO2 levels and the RCP8.5 scenario presented in the International Panel on 

Climate Change (IPCC) Fifth Assessment Report (AR5), with year 2100 pCO2 (ppm) 

>1370 ppm (IPCC, 2013; Moss et al. 2010).  Daily measurements of pH (Mettler Toledo 

SevenGo pro), temperature (EcoSense EC300A), and salinity (EcoSense EC300A) were 
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compiled with weekly total alkalinity (TA) to determine the distribution of carbon species 

and aragonite saturation state for all treatments (Table 3.1) using the program CO2SYS 

(Lewis and Wallace 1998). Sample collection and storage for TA was done in 120 mL 

borosilicate bottles that were cleaned with 10% HCl and rinsed three times with nanopure 

water. TA was measured using a modification of the open-cell titration method (Dickson 

et al. 2007, SOP 3b) on a Metrohm 916 Ti-Touch automated titrator using 0.05M HCl in 

0.6M NaCl for 32 g seawater samples. All TA data was verified for accuracy using 

certified reference material (CRM) seawater from the Dickson Lab at Scripps Institute 

(CRM # 137). CO2SYS was run using the K1K2 apparent equilibrium constants from 

Mehrback (1973) and refit by Dickson and Millero (1987), HSO4
-
 dissociation constants 

were taken from Uppstrom (1974) and Dickson (1990), and pH was on the NBS scale.  
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Figure 3.1: A schematic of the microcosm system at Mote Marine Laboratory’s OASys lab. Ambient 

seawater is pumped into the system from Sarasota Bay, where it is treated by ozonation and sand bed 

filtration to remove particles in excess of 30 μm. The 65 gallon degas tank tempers the pH of incoming 

seawater through aeration from an outdoor air pump connected to two large air stones sitting at the bottom of 

the tank. Water is transferred from the degassing tank through a bulkhead at the bottom to an external pump 

to each of the treatment header tanks. Both ambient and high CO2 tanks contain a pH probe, temperature 

probe, and circulation pump. The high CO2 tank also contains a CO2 gas line, which runs to a CO2 tank and 

electronic regulator to manipulate pCO2. When the pH of this tank rises above a 7.7 point programed into the 

apex controller (Neptune Systems), power to the electronic regulator is turned on and pure CO2 is allowed 

into the acidified tank. Water flows through a bulkhead at the bottom of each of the header tanks and into a 1 

inch supply manifold. Flow is controlled in each individual aquarium. 
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Table 3.1: Means (± standard errors) of all measured parameters by treatment header tank. 

pCO2, HCO3
-
, CO3

2-
,  

CO2, DIC, and Ωarag were l calculated from measured TA and pH samples using CO2SYS 

 

          

3.2.3 Buoyant weight 

  Buoyant weights were measured prior to the start of the experiment and after one, 

three, and fifteen weeks in the treatment conditions using an Ohaus Adventure Pro 

analytical balance; aquaria were held at 25.0 ± 0.5 °C throughout this period. 

Temperature and salinity were recorded for every weighing to calculate seawater density. 

Weights were measured as described by Davies (1989). Calcification rate was quantified 

from the difference in buoyant wet weights between the week measured and the initial 

mass (week 0). Data was normalized to tissue surface area and expressed as mg CaCO3 

cm
-2 

d
-1

.  

3.2.4 Physiology   

Productivity was measured for D. stokesi and M. cavernosa fragments after one, 

three, and fifteen weeks in the experimental conditions. Four fragments of each species 

and treatment were placed into one of four sealed, recirculating respirometry chambers 

and agitated using a magnetic stirrer. Physiology measurements were performed at the 

same temperature and seawater chemistry as the experimental tanks. Photosynthesis was 

measured as the oxygen production for one hour under controlled artificial lighting (T9 

fluorescent and 4 LED strip lights)  matching the daytime OASys irradiances of 80 µmol 

photons m
-2 

s
-1 

and respiration measurements as oxygen consumption during a one hour 
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period in complete darkness. Each chamber was connected to a high-precision fiber-optic 

oxygen meter and logging system (FirestingO2, Pyro Science). Before measurements 

were taken, sensors were calibrated against air-saturated seawater. Oxygen fluxes of all 

specimens were estimated by regressing oxygen data against time and normalized to 

tissue surface area determined from geometric analyses of digital photographs (ImageJ, 

NIH).  

3.2.5 Alkalinity Anomaly 

For each light and dark hour in the respirometry chambers, a water sample was 

removed from the chamber and analyzed for total alkalinity using a modification of the 

open-cell titration method (Dickson et al. 2007, SOP 3b) on a Metrohm 916 Ti-Touch 

automated titrator using 0.05 M HCl in 0.6 M NaCl titrant for 32 g seawater samples. 

Water samples were filtered (0.2μm membrane filters) prior to analysis. This alkalinity 

anomaly method (Andersson et al. 2009; Silbiger and Donahue 2015) calculates net 

calcification from changes in TA. Samples that could not be run immediately were stored 

in a 2°C refrigerator and processed within a week. Calcification was determined using the 

alkalinity anomaly method (Smith and Key 1975; Riebesell et al. 2010).  In this study 

calcification rates were normalized to surface area. 

3.2.6 Electron Microscopy  

At weeks 1, 3, and 15 a coral sub-sample was removed from each treatment 

condition. An approximate 2 cm
2 

section of tissue and skeleton was removed from the 

adults using a dremel tool (Dremel 200) and placed in a 50% NaClO solution and 

thoroughly rinsed in fresh water in preparation for scanning electron microscopy (SEM). 

Additional coral fragments, cut for a maximum surface area of 1 cm
2
 were prepared for 

TEM analysis by immersing them into 2% glutaraldehyde in 0.05 M sodium cacodylate-
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buffered filtered seawater immediately after removal from experimental aquaria. In the 

laboratory, the glutaraldehyde fixative was refreshed, and fragments were transferred to 

and rinsed in 0.05 M sodium cacodylate filtered seawater buffer (3× for 10 min each), 

and post fixed in 1% osmium tetroxide in buffer for 30 min. After an additional 3 buffer 

washes, the fragments were dehydrated in a graded series of ethanol, with a final 

concentration of 100%. Small sub fragments were created using the larger TEM pieces to 

remove most of the calcium carbonate. The coral fragments used for SEM were mounted 

on carbon adhesive-covered aluminum stubs and coated with palladium. Samples were 

imaged in an FEI XL-30 ESEM/SEM fitted with an Oxford EDS system. For TEM 

analysis, the calcified sub fragments in 100% ethanol were embedded in Spurr© 

embedding resin. A Sorval MT-2 ultramicrotome fitted with a diamond knife was used to 

cut sections of the coral and skeleton embedded in the blocks. Sections were placed on 

copper grids and left unstained. Since calcified material was sectioned, uranyl acetate 

stain was not used; an acidic stain would dissolve the sectioned calcium carbonate 

skeleton, which was a subject of this study. Sections were imaged utilizing a CM-20 

Philips TEM fitted with a Gatan digital camera in the EM Core Facility at the University 

Of Miami Miller School Of Medicine. 

After coating with a 20nm layer of Pd in a plasma sputter coater, skeleton 

fragments were examined at several magnifications in the SEM. The columella was  

targeted to image the crystal structure of newly calcified skeleton. Images were analyzed 

in ImageJ (NIH) to quantify the length of the crystals produced by each species and time 

period. TEM images were examined to  gain information about the cellular process of 

calcification under each treatment. Areas observed include the epidermis, gastrodermis 
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and  included zooxanthellae, as well as the calicoderm, to assess potential effects on coral 

tissue and calcification.  

3.2.7 Statistical Analysis 

The software program JMP was used to examine independent and interaction 

relationships between treatment variables. Individual aquariums were analyzed to verify 

that there were no differences between treatment tanks. After confirming non-significant 

difference between tanks, data was pooled in subsequent analyses and specimens were 

used as replicates. Net calcification (buoyant weight), crystal length, oxygen production 

and consumption from physiology parameters and calcification data from alkalinity 

anomaly for all three species were evaluated to compare CO2 treatments (ambient, pHNBS 

8.14, pCO2 450 ppm and high CO2, pHNBS 7.71, pCO2 1450 ppm) and species-specific 

responses. Each species response to these variables after fifteen weeks to CO2 treatments 

were tested using an independent samples t-test. To compare data that was collected 

across various time points, repeated measures ANOVA was run by species with treatment 

condition at the model effect. For data that violated Mauchly’s Test of Sphericity, a 

correction was used; the Greenhouse-Geisser correction was applied if the estimated 

epsilon (ε) is less than 0.75 and the Huynd-Feldt correction was used if the estimated 

epsilon (ε) is greater than 0.75. When there were significant differences in the interaction 

of time and treatment, an independent one-way ANOVA was used to examine where the 

differences were. Data were tested for variance homogeneity using Levene’s test and 

normality using the Shapiro-Wilk test. Kruskal-Wallis and Wilcoxon tests were run for 

non-normal sample sets for the t-tests and one-way ANOVAs respectively.  
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3.3 Results 

3.3.1 Buoyant Weight  

Independent-samples t-tests were run to compare mean net calcification (mg 

CaCO3 cm
-2

 d
-1

) between the treatment conditions for each species over the experimental 

period. Dichocoenia stokesi fragments grown in high CO2 seawater (M = -0.532, SD = 

0.15, n = 7) [t(11) = -3.550, p = 0.0046](Fig. 3.2a) experienced a statistically significant 

800% decrease in growth rate compared to those grown in ambient seawater (M = 0.073, 

SD = 0.42, n = 6).. Montastraea cavernosa  exhibited a 343% decrease in growth rate 

after fifteen weeks of exposure. Fragments in high CO2 (M = -0.310, SD = 0.13, n = 6) 

[t(12) = 2.554, p = 0.0253] (Fig. 3.2a) also displayed a significant decrease in growth 

from those in the ambient treatment (M = -0.070, SD = 0.20, n = 8)). To compare 

buoyant weights for D. stokesi and M. cavernosa over time, a repeated measures 

ANOVA was run with treatment as the model effect. There were no significant 

differences in net calcification across time for Dichocoenia stokesi fragments after fifteen 

weeks between time points sampled or treatment conditions (p>0.05). Additionally, there 

was no interaction between treatment and time, indicating that the fragments in each CO2 

condition did not differ in their response over time (p>0.05) (Fig. 3.3a). Montastraea 

cavernosa fragments, however, exhibited a significant  treatment effect [F(1,12) = 

10.0668, p = 0.0080], time [F(2,11) = 16.9989, p = 0.0004] and the interaction of both 

variables [F(2,11) = 7.6092, p = 0.0084]. To find where M. cavernosa displayed 

differences, a one-way between subjects ANOVA was run for each treatment condition. 

Where assumptions were not met, the Kruskal-Wallis test was used. Montastraea 

cavernosa fragments in the ambient condition displayed a significant increase in growth 

rate over time [F(2,33) = 7.1427, p = 0.0026]. Post hoc comparisons using the Tukey 
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HSD test indicated a significant increase in growth rate (mg CaCO3 cm
-2

 d
-1

) in fragments 

from one week of exposure (M = -1.856, SD = 1.81, n = 16) to those after three (M = -

0.228, SD = 0.70, n = 12) and fifteen weeks (M = -0.070, SD = 0.20, n = 8), all in 

ambient seawater (Fig. 3.3c). In contrast, Montastraea cavernosa fragments in the high 

CO2 condition did not experience any significant change in growth rate over time (one-

way ANOVA, p>0.05). 

3.3.2 Crystal Length 

Independent-samples t-tests were conducted to compare the lengths of recently 

nucleated crystals for D. stokesi and M. cavernosa in ambient and high CO2 conditions. 

Data was derived from scanning electron micrographs of the columella region for each 

treatment at  20,000x magnification (Fig. 3.2c). The nonparametric Wilcoxon test was 

used for data that did not meet the statistical assumptions for the independent-samples t-

test. In both species there was a significant difference in crystal length in each treatment 

during the final sampling period (Table 3.2, Fig. 3.2b). The results show that the 

simulation of future ocean acidification conditions led to a significant reduction in crystal 

length.  

 

 Ambient High CO2    

 M SD n M SD N  t/Chi
2
 df p 

D. stokesi 2.836 0.17 10 1.185 0.17 10  -6.846 18 <.0001 

M. cavernosa* 0.681 0.21 10 0.288 0.07 10  13.7303 1 0.0002 

*Data run using Wilcoxon test 

 

 

Table 3.2: Results of t-test and descriptive statistics for crystal length by treatment. 
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Figure 3.2: Box plot diagrams of  net calcification via buoyant weight (mg CaCO3 cm
-2

 h
-1

) (A) and average 

(mean ± SEM) of  crystal length (µm) (B) determined from scanning electron micrographs (C) for D. stokesi 

and M. cavernosa  fragments under ambient (pHNBS 8.14) and high CO2 (pHNBS 7.71) conditions. Asterisks 

represent significant differences between treatments, t-test p<0.05. All scale bars are 2 µm.  
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To compare crystal length  in D. stokesi and M. cavernosa over time, a one-way 

between subjects ANOVA was run for each treatment condition. Where assumptions 

were not met, the Kruskal-Wallis test was run. A repeated measures ANOVA was not 

used as each time point utilized different fragments and therefore the data do not meet the 

assumption of dependence. There were no significant differences in crystal length over 

time for D. stokesi fragments grown in either ambient or high CO2 treatments (Kruskal-

Wallis, p>0.05). A one-way ANOVA revealed that there was a significant change in 

crystal length during the fifteen week experimental period in M. cavernosa fragments 

grown in the ambient seawater [F(2,30) = 94.0202, p < 0.0001].  Post hoc comparisons 

using the Tukey HSD test indicated significant differences between crystal lengths (µm) 

between those reared for three weeks (M = 2.640, SD = 0.44, n = 10) compared to those 

after one (M = 0.858, SD = 0.38, n = 13) or fifteen weeks (M = 0.681, SD = 0.21, n = 10) 

(Fig. 3.3d). Montastraea cavernosa fragments in the high CO2 condition displayed a 

significant fluctuation in crystal length over time as well [H(2) = 11.8347, p = 0.0027]. 

Both ambient and high CO2 fragments for M. cavernosa showed a sharp rise in crystal 

length at week three, which was not observed  after fifteen weeks in the experimental 

system.  
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Figure 3.3: Average (mean ± SEM) net calcification (mg CaCO3 cm
-2

 d
-1

) via buoyant weight (top row) and 

average (mean ± SEM) crystal length (µm) (bottom row) for D. stokesi (A,B) and M. cavernosa (C,D) fragments 

grown under ambient (pHNBS 8.14) and high CO2 (pHNBS 7.71) conditions across the three sampling periods. 

Data was analyzed using a one-way ANOVA or a Kruskal-Wallis test where assumptions were not met. 
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3.3.3    Physiology  

An independent samples t-test was performed to compare each of the D. stokesi 

and M. cavernosa fragments mean photosynthetic and respiration rates after fifteen weeks 

in ambient or high CO2 conditions.  There was no significant effect of treatment for each 

of the species during the final sampling period on oxygen production or consumption 

through photosynthesis and respiration (t-test, p>0.05).   

To investigate if there were changes in the mean photosynthetic rate over time, a 

repeated measures ANOVA was run by species with the effect of treatment. Where the 

assumption of sphericity was not met, the Greenhouse-Geisser correction was used. 

There were no significant differences in oxygen production over time in Dichocoenia 

stokesi fragments after fifteen weeks between time points sampled or treatment 

conditions (G-G, p>0.05). Additionally, there was no interaction between treatment and 

time, indicating that the fragments in each CO2 condition did not differ in their response 

over time (G-G, p>0.05) (Fig. 3.4a). Montastraea cavernosa fragments had a significant 

effect of treatment [F(1,5) = 8.7985,  p = 0.0313] and time [F(2,11) = 16.9989, p = 

0.0004] on mean photosynthetic rates, but not the interaction of both. These results 

indicate that increased carbon dioxide concentrations may have a positive impact on 

zooxanthellate productivity, albeit a temporary one, but this is a coral species specific 

response and may be related to the Symbiodium sp. clade present.  

To investigate if there were changes in  mean respiration rates over time, a 

repeated measures ANOVA was run by species with the effect of treatment. Where the 

assumption of sphericity was not met, the Greenhouse-Geisser correction was used. 

There were no significant differences in oxygen consumption over time in Dichocoenia 

stokesi fragments after fifteen weeks between time points sampled or treatment 
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conditions (G-G, p>0.05). Additionally, there was no interaction between treatment and 

time, indicating that the fragments in each CO2 condition did not differ in their response 

over time (G-G, p>0.05) (Fig. 3.4b). Montastraea cavernosa fragments had a significant 

effect over time [F(2,11) = 16.9989, p = 0.0004] only. Montastraea cavernosa fragments 

displayed a significant reduction over time in respiration rate, regardless of treatment. 

There was a significant drop in oxygen consumption (µmol O2 cm
-2

 h
-1

) for M. cavernosa 

ambient fragments from week one (M = -0.022, SD = 0.002, n = 4) to weeks three (M = -

0.014, SD = 0.003, n = 4) and fifteen (M = -0.011, SD = 0.003, n = 8) in (Fig. 3.4d). 

Similarly, there were significant reductions in oxygen production over each measured 

time point for M. cavernosa fragments grown in the high CO2 treatment from week one 

(M = -0.021, SD = 0.005, n = 4) to week fifteen weeks of exposure (M = -0.011, SD = 

0.003, n = 5) in high CO2 conditions (Fig. 3.4d). Given the similarity of these 

relationships, it is clear that a factor other than pCO2 is influencing respiration rates, such 

as reduced stress over time due to acclimation to new seawater. 
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3.3.4 Alkalinity Anomaly 

An independent samples t-test was performed to compare D. stokesi and M. 

cavernosa fragments’ mean light and dark calcification rates (µmol CaCO3 cm
-2

 h
-1

) in 

ambient and high CO2 conditions after fifteen weeks exposure. There were no significant 

differences in light calcification rates between treatment conditions for both of the 

species (t-test, p>0.05). Results from the independent samples t-tests indicated, however, 

that there were significant differences in dark calcification rates for Montastraea 

cavernosa only (Fig. 3.5). Montastraea cavernosa fragments grown in ambient seawater 

Figure 3.4: Average (mean ± SEM) oxygen production (µmol O2 cm
-2

 h
-1

) from photosynthesis (top row) and 

consumption via respiration (bottom row) for D. stokesi (A,B) and M. cavernosa (C,D) under ambient (pHNBS 

8.14) and high CO2 (pHNBS 7.71) treatments across the three sampling periods. Data was analyzed using a one-

way ANOVA or a Kruskal-Wallis test where assumptions were not met. 
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(M = -0.118, SD = 0.15, n = 8) calcified significantly less after one hour in the dark than 

those in high CO2 (M = 0.061, SD = 0.10, n = 5), t(11) = 2.335, p = 0.0395, while 

Dichocoenia stokesi fragments were not significantly different between treatments (t-test, 

p>0.05).  

A two-way repeated measures ANOVA  was used to analyze data for both light 

and dark calcification  over three different time points for each species. There were no 

significant differences between the means of the treatment conditions, time point 

sampled, or the interaction of both. Both M. cavernosa and D. stokesi did not differ in 

their response overtime for light and dark calcification rates as determined through 

alkalinity anomaly under ambient and high CO2 conditions.  

 

Figure 3.5: Average (mean ± SEM) of dark calcification (µmol CaCO3 cm
-2

 h
-1

) for D. stokesi and M. 

cavernosa in ambient (n=4,8) and high CO2 (n=7,5) conditions for fifteen weeks. Asterisks represent 

significant differences (p < 0.05) between treatments determined using independent-samples t-test.  
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3.4 Discussion 

Both Dichocoenia stokesi and Montastraea cavernosa exhibited a significant 

reduction in skeletal deposition rates after fifteen weeks exposure to high CO2 conditions. 

This trend followed in newly deposited crystal length, where there was a significant 

reduction in crystal extension under the simulation of future oceans. No significant 

differences were seen in photosynthesis or respiration rates between treatment conditions; 

however, respiration rates for M. cavernosa displayed a significant reduction over time. 

These results suggest that the addition of CO2 may cause a shift in the overall energy 

budgets causing a modification of skeletal aragonite crystal structures, rather than 

inhibiting skeletal crystal formation. Consequential to this energy shift, Dichocoenia 

stokesi and Montastraea cavernosa belong category group of scleractinian corals that 

exhibit a high sensitivity to ocean acidification (Ries 2011),  and existing colonies will 

likely experience reduced growth rates or a decrease in the density of skeletal material in 

the face of ocean acidification.  

3.4.1 Net Calcification  

Recently developed models have identified two distinct classes of organisms 

exhibiting a low or high sensitivity to ocean acidification (Ries 2011; McCulloch et al. 

2012). Measurements of growth rate paired with crystal structure data show that D. 

stokesi and M. cavernosa are at a high risk to experience growth impairments in ocean 

acidification conditions (Ries 2011; McCulloch et al. 2012). The crystal structure implies, 

along with reduced growth rates, that there may be a shift in the density and structural 

integrity of theses corals (Drenkard et al. 2013). Despite negative growth rates for M. 

cavernosa and D. stokesi in the high CO2 treatment, both species were actively calcifying 
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under high CO2 conditions as evidenced by the movement of organic matrix into the 

subcalicoblastic space through transmission electron micrographs (Fig. 5.2, appendix). 

Other studies have found skeletal integrity impairments under OA conditions for 

Caribbean species, which may further reduce the resilience of the already degraded 

population (Enochs et al. 2014; Holcomb et al. 2014; Tambutté et al. 2015). This 

sensitivity may be attributed to an inability to up-regulate pH of the subcalicoblastic 

fluid, removing fewer protons from the calcifying fluid under acidified conditions than 

under control conditions (Ries 2011). For restoration purposes, determining which 

species and genotypes are most resistant to climate change factors will be essential. 

  While both M. cavernosa and D. stokesi had a negative net calcification from 

buoyant weight measurements after fifteen weeks in high CO2 conditions (-0.553 ± 0.25 

and -0.532 ± 0.06 mg CaCO3 cm
-2

 d
-1

 respectively), neither exhibited significant 

differences via alkalinity anomaly between the ambient and low pH seawater for light 

calcification. In addition, M. cavernosa experienced an increase in dark calcification in 

the high carbon dioxide treatment. Schoepf et al. (2013) also reported insignificant results 

for net calcification between treatment conditions across a wide range of pCO2 values 

and coral species. The discrepancy with the buoyant weight data (e.g. loss of mass in 

ambient conditions for M. cavernosa) may relate to the surface area of the calcified 

skeletal structure that is exposed to seawater conditions. Even though the corals were 

successfully calcifying, as evidenced by data produced using the alkalinity anomaly 

technique and TEM images (Fig. 5.2, appendix), a loss of mass would occur if there was 

net dissolution taking place away from the active calcification sites over the entire diurnal 

period. Dissolution could be hidden from alkalinity anomaly data as the sampling period 

was only for one hour in a continuous process. Internal skeletal bioeroders were present 
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in M. cavernosa; bioeroders secrete an acidic compound to help create space in the 

CaCO3 skeleton (Hutchings 1986). Their presence in ambient conditions contributes to 

the dissolution of skeletal material, but reduced pH in the water column due to ocean 

acidification may reduce the energy expense on these endolithic organisms and lead to 

even higher rates of erosion (Silbiger and Donahue 2015).  

3.4.2 Physiology 

The organisms that will be most susceptible under conditions of ocean 

acidification are those characterized by low basal metabolic rates, limited or no 

circulatory systems, and that precipitate a calcium carbonate skeleton proportionally 

larger than the organic component (Knoll et al. 2007). Stony corals, the framework 

builders of coral reefs globally, are a dominant group included in this description. The 

coral holobiont encompasses multiple organisms beyond the coral itself including 

bacteria and virus in the external mucus, tissue, and skeleton, zooxanthellae, endolithic 

algae, and bioeroders.  All of these components interact; exchanging energy and nutrient-

rich compounds. For this reason it is necessary to consider the role of energy acquisition 

through photosynthesis when looking at the coral hosts’ physiological calcification 

mechanism. The relationship between photosynthesis and calcification in benthic 

calcifiers is poorly understood (Kleypas et al. 2006). Calcification rates can be enhanced 

by photosynthesis (Gattuso et al. 1999), but the stimulating mechanism remains poorly 

known (Cohen and McConnaughey 2003). Many studies have reported net 

photosynthetic rates of corals displaying either no response to increased pCO2 or a slight 

increase (Langdon and Atkinson 2005; Schneider and Erez 2006; Anthony et al. 2008; 

Lürig and Kunzmann 2015). In this study, D. stokesi did not experience any significant 

change in photosynthetic output over time for fragments grown in high CO2 conditions. 
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However,  M. cavernosa fragments on average produced more oxygen in the high CO2 

treatment, regardless of the time sampled. These results indicate that increased carbon 

dioxide concentrations may have a positive impact on zooxanthellate productivity, but 

this is a coral species specific response and may be related to the Symbiodium clade 

present. Symbiodinium species are host specific; a single symbiont population was found 

in 92% of coral hosts in the Bahamas (LaJeunesse 2002). Montastraea cavernosa 

colonies collected from 2.5m were found to have only one type of symbiont of the C3e 

clade, while D. stokesi from the same location had only B1 Symbiodinium (LaJeunesse 

2002). These genetic differences in zooxanthellae would explain the conflicting 

photosynthesis response for each of these species. Because growth deficiencies were 

experienced under OA conditions, additional energy supplied for photosynthesis by M. 

cavernosa symbionts did not mask the inefficiencies for pH regulation in the 

subcalicoblastic fluid. 

Respiration values are typically stable under ocean acidification conditions 

(Leclercq et al. 2002; Anthony et al. 2008), consistent with what was experienced during 

this experiment.  There was no significant effect of OA on respiration between treatments 

for each species after fifteen weeks of exposure. However, there was a clear and 

significant decrease in M. cavernosa respiration rates over time in either treatment. Given 

the similarity of these relationships, it is clear that a factor other than pCO2 is influencing 

respiration rates, such as reduced stress over time due to acclimation to new seawater. 

These results indicate that, while carbon dioxide concentrations do not have an impact on 

oxygen consumption through respiration, these species are both acclimating over time to 

seawater conditions outside their normal conditions. This information may indicate 

ability for these species to adjust their energy budgets overtime to a more acidic ocean. 
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2.4.3 Electron Microscopy  

 Both Dichocoenia stokesi and Montastraea cavernosa experienced similar 

responses to ocean acidification with respect to nucleation of new skeletal crystals as 

measured by examining individual crystal lengths. They experienced no significant 

changes in length from week one to week fifteen of the experiment, regardless of 

treatment, and displayed a significant reduction in length from the control to the high 

CO2 seawater. It appears that the impacts to crystal length are immediate and do not 

acclimate over time. As soon as the corals were exposed to the high CO2 the change in 

the carbonate chemistry of the seawater led to a decrease in the extension of recently 

nucleated crystals. This may indicate that OA leads to a down-regulation of carbonic 

anhydrases, leading to a poor acid base regulation system. Carbonic anhydrases (CA) are 

enzymes that are responsible for the interconversion of carbon dioxide and bicarbonate. 

To this effect, the precipitation of calcium carbonate is promoted in the presence of CA 

(Rahman and Oomori 2010), which are strongly linked to pH regulation (Moya et al. 

2012). Moya et al. (2012) found that OA lead to decreased expression of many CA’s for 

Acropora millepora; furthermore 53% of this class of molecules responded to elevated 

CO2. 

Where skeletal material was present, all transmission electron micrographs 

illustrated the movement of organic matrix vacuoles to the subcalicoblastic space to 

initiate the nucleation of new skeletal material (Fig. 5.2, appendix). Corals have been 

documented producing new skeleton under pH levels as low as pHT 7.17 (Holcomb et al. 

2014). This same study found, however, that lateral growth rates (measured as changes in 

skeletal area) declined progressively with decreasing seawater pH, and growth was 

significantly reduced at pHT 7.16 relative to ambient conditions (Holcomb et al. 2014). 
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The results of Holcomb et al. (2014) and this study suggest that crystal structure 

undergoes a species specific change in order to meet the energy demands of the organism 

(Fig. 3.2c). 

Enhanced extracellular organic matrix gene expression was documented for 

Acropora millepora under high CO2 (1000 ppm) conditions (Moya et al. 2012). 

Genetically distinct individuals responded differently toward the number and location of 

skeletal organic matrix genes they up-regulated or down-regulated, emphasizing the 

complexity of the dependence of microcalcification on the organic matrix. This altered 

expression and overall disturbance of the skeletal organic matrix could explain the 

changes in size, shape, and orientation of the aragonite crystals observed in this 

experiment as well as others (Cohen et al. 2009; Cohen and Holcomb 2009; Moya et al. 

2012; Drenkard et al. 2013; Venn et al. 2013; Tambutté et al. 2015). 

A recurring message in current ocean acidification research is that reduced 

calcium carbonate skeletal density is likely to be experienced by the end of the century. 

Enochs et al. (2014) found that high CO2 levels (820-920 μatm) did not have an effect on 

skeletal extension but depressed the density of the skeletal crystals deposited. This was 

inferred as elevated pCO2 did not affect linear extension, surface area, or volume of 

Acropora cervicornis, but significant differences were found in buoyant weight 

measurements between the treatments. The results of this study show that calcification of 

the Caribbean reef building species D. stokesi and M. cavernosa is negatively impacted 

under high pCO2 conditions that are predicted to occur by the end of the century, and, 

with a shift in skeletal crystal structure, this may lead to reductions in skeletal density.  
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3.4.4 Conclusions  

While it is unclear if M. cavernosa and D. stokesi are able to acclimate to 

persistent under exposure to high pCO2 conditions, trends over time imply that fifteen 

weeks may not have been enough for these corals to acclimate to the shift in the 

carbonate system. In being transported and placed in a new seawater system, these corals 

experienced a change in water temperature, dissolved organics, nutrient levels, as well as 

light levels. Data from this experiment suggests that M. cavernosa may be better suited to 

physiologically acclimate to a more acidic ocean compared to D. stokesi. Montastraea 

cavernosa displayed a reduction in respiration rates, and a linear increase in 

photosynthetic activity, net calcification, and light calcification during the three sampling 

periods for both treatment conditions. Dichocoenia stokesi, however, experienced linear 

decreases in both net calcification and light calcification. To test the hypothesis that M. 

cavernosa is better suited to acclimate to high CO2 conditions, studies should monitor 

individual genotypes. The time it takes for this species to acclimate may  not be feasible 

for laboratory experimentation.  

The response of coral calcification to ocean acidification is ultimately dictated by 

the limits of coral physiology to acclimate or adapt to a more acidic ocean rather than just 

kinetics alone (McCulloch et al. 2012). It is crucial to continue understanding how OA 

will influence all coral reef organisms as their interactions create this ecosystem. Found 

here is that elevated pCO2 significantly affected net calcification, while having no 

negative effect on physiology parameters. Other members of the coral holobiont, such as 

endolithic algae and bacterial communities, may mask a physiological response of the 

coral animal to high CO2 conditions. A distinct qualitative difference in the skeletal 

crystals produced in ambient versus high CO2 seawater, a relationship that varied 
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between species was also found. The results suggest that as pCO2 levels increase over 

time, coral growth will be influenced by altering skeletal density of recent and previously 

deposited skeletal crystals. This could have broad implications for the structural integrity 

and longevity of Caribbean coral colonies that must withstand natural physical and 

biological disturbances under increased OA scenarios.  

Through lowered skeletal density, ocean acidification could be linked to the 

decline of coral reefs with an associated loss in biodiversity, productivity, and revenue. 

Given the strong interactions that work together in the coral holobiont to support the 

biological production of calcium carbonate, the coral animal cannot be evaluated in 

isolation. Instead, other impacts such as photophysiology response and energy balance 

must be evaluated in synergy (Anthony et al. 2008). As scientists, it is our intention to 

develop and demonstrate innovative tools and technologies for providing information and 

capacity to adequately prepare for climate-induced changes in the marine environment. A 

major goal this research is to gain a better understanding of the influence of a more acidic 

ocean and to establish ways for climate scientists, impact assessment modelers, air and 

water quality managers, and other stakeholders to co-produce information necessary to 

form sound policy in relation to ocean acidification and its impact on marine water 

quality under a changing climate. This discussion is necessary to examine the mechanism 

behind species specific response to a less alkaline world. 
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Chapter 4 

4 Discussion 

Of the major environmental factors associated with the global distribution of coral 

reefs, most will be disrupted under conditions of global climate change (Kleypas et al. 

2006). To date, there have been many studies evaluating the responses of adult corals 

(Anthony et al. 2008; Marubini et al. 2008; Holcomb et al. 2012; Moya et al. 2012; 

Schoefp et al. 2013; Enochs et al. 2014; Holcomb et al. 2014), juveniles (de Putron et al. 

2011; Drenkard et al. 2013) or larval physiology and settlement (Albright et al. 2008; 

Cohen et al. 2009; Albright et al. 2010; Albright and Langdon 2011; Cumbo et al. 2013) 

under ocean acidification conditions. However, there still remains a gap in knowledge as 

many projects have included just a handful of species. It is crucial to continue 

understanding how OA will influence all coral reef organisms as their interactions create 

this ecosystem. Here I found that elevated pCO2 significantly affected net calcification in 

some, but not all tested species, while having no effect on physiology parameters or 

calcification via alkalinity anomaly. I also found a distinct quantitative difference in the 

skeletal crystals produced in ambient versus high CO2 seawater. Crystal structure for O. 

faveolata under high CO2 most closely resembled D. stokesi fragments grown in the 

control treatment. This suggests that CO2 levels influence growth by altering skeletal 

density of recent and previously deposited skeletal crystals. This could have broad 

implications for the structural integrity and longevity of Caribbean coral colonies that 

must withstand natural physical and biological disturbances under increased OA 

scenarios. The economic benefits of coral reefs come from recreation, tourism, fisheries, 

pharmaceuticals, and coastal protection. All of these factors, including the invaluable 

biodiversity, are a result of the three dimensional structure of a reef created by 
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hermatypic corals. The production of a structurally sound coral skeleton is therefore 

required to create and maintain these valuable ecosystems.  

Recent evidence suggests that OA leads to an increase in corallite calyx (the 

perimeter around a given corallite), decreasing the total number of corallites in a given 

area of living tissue (Tambutté et al. 2015). This change decreases the skeletal density 

and increases the porosity of a given sample. From this information, it may be implied 

that species exhibiting smaller polyps initially (such as O. faveolata) and those with 

greater skeletal densities (e.g. D. stokesi) may not suffer as much if the corallite calyx 

size increased.  

The goal of this project was to answer two specific questions to further our understanding 

of coral reef dynamics in a more acidic ocean:  

1. Will decreased pH affect fine scale calcification in O. faveolata recruits and 

adults?  

2. Are M. cavernosa and D. stokesi able to acclimate under persistent exposure 

to high pCO2 conditions? 

4.1 Net Calcification  

Both buoyant weight and alkalinity anomaly methods yield net calcification 

values; i.e., gross calcification minus dissolution. The buoyant weight and alkalinity 

anomaly methods have the advantage of being nondestructive (Kleypas et al. 2006), but 

do not always agree with each other (E. Hall, pers. comm.). Because the corals used in 

this experiment are imperforate, there is only a small portion of the mass that represents 

the tissue components, and thus, greater than 99% of the mass is skeletal material (Davies 

1989). Net calcification has typically been shown to decline with climate stressors such 
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as ocean acidification. The magnitude of decline differs between species and is highly 

variable (Anthony et al. 2008; Ries et al. 2009, de Putron et al. 2011; Pandolfi et al. 2011; 

Silbiger and Donahue 2015). While both M. cavernosa and D. stokesi had a negative net 

calcification from buoyant weight measurements after fifteen weeks in high CO2 

conditions (-0.553 ± 0.25 and -0.532 ± 0.06 mg CaCO3 cm
-2

 d
-1

 respectively), neither 

exhibited significant values between the ambient and low pH seawater using the 

alkalinity anomaly technique.  

The discrepancy in the buoyant weight data (e.g. loss in mass in ambient 

conditions for M. cavernosa) may relate to the surface area of the calcified skeletal 

structure that is exposed to seawater conditions. Even though the corals were successfully 

calcifying, as evidenced by data produced using the alkalinity anomaly technique and 

TEM images (Fig. 5.2, appendix), a loss of mass would occur if there was net dissolution 

taking place away from the active calcification sites over the entire diurnal period. 

Dissolution could be hidden from alkalinity anomaly data as the sampling period was 

only for one hour in a continuous process. The discrepancy with the buoyant weight data 

(e.g. loss of mass in ambient conditions for M. cavernosa) may also relate to the surface 

area of the calcified skeletal structure that is exposed to seawater conditions.  

Montastraea cavernosa experienced a trifecta of circumstances that explain a negative 

net calcification rate even in ambient conditions: low light and dark calcification rates, 

high skeletal exposure, and the presence of natural bioeroders in the internal skeleton. 

Bioeroders secrete an acidic compound to help create space in the CaCO3 skeleton 

(Hutchings 1986). Their presence in ambient conditions contributes to the dissolution of 

skeletal material, but reduced pH in the water column due to ocean acidification may 

reduce the energy expense on these endolithic organisms and lead to even higher rates of 
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erosion (Silbiger and Donahue 2015). Previous studies have also presented insignificant 

results for net calcification between treatment conditions across a wide range of pCO2 

values and coral species (Schoepf et al. 2013). 

In this experiment, O. faveolata had no significant change in growth under both 

buoyant weight measurements and displayed elongated crystal structures compared to the 

control (Fig. 2.1). This unusual response of calcification in a low pH, and therefore low 

Ωarag, environment may be explained by the genetic variation leading to a range of 

species sensitivity to OA. Some corals maintain ambient calcification rates over large 

ranges of Ωarag conditions, possibly explained as evolution selecting for 

species/genotypes that are highly efficient calcifiers or those that direct a higher 

proportion of their energy budget to calcification (Pandolfi et al. 2011). This lowered 

sensitivity compared to the other species may be explained in the pH up-regulation 

system of the calcifying fluid. Through Ca-ATPase antiporters in the calicodermis, coral 

remove two protons from the subcalicoblastic fluid in exchange for a calcium ion (Al-

Horani et al. 2003; Holcomb et al. 2009). This process is energy expensive, but in the 

presence of excess ATP, corals can establish high internal aragonite saturation states 

despite sharp changes in pH. Energy expenditure on calcification is generally around one-

third of that produced from photosynthesis of Symbiodinium sp. (McCulloch et al. 2012). 

Although the results support the idea that corals may be able to up-regulate pH at the site 

of calcification resulting in nucleation of new skeletal crystals, the crystal structure 

implies that there may be a shift in the structural density of the coral (McCulloch et al. 

2012). Other studies have found skeletal integrity impairments under OA conditions for 

Caribbean species, which may further reduce the resilience of the already degraded 

population (McCulloch et al. 2012; Enochs et al. 2014; Holcomb et al. 2014; Tambutté et 
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al. 2015). Additionally, overall health of coral reef systems may shift drastically with the 

compounding effects of increasing thermal stress from global warming and local 

environmental impacts (Pandolfi et al. 2011; McCulloch et al. 2012; Cumbo et al. 2013; 

Schoepf et al. 2013). For restoration purposes, determining which species and genotypes 

are most resistant to climate change factors will be essential. 

Despite the significant differences determined through buoyant weight data, there 

were no significant results for light calcification and only inconclusive significance for 

dark calcification (i.e. dark calcification was higher in the CO2 treatment for M. 

cavernosa where growth rate had significantly decreased and vice versa for O. faveolata) 

using the alkalinity anomaly technique. This inconsistency in calcification data can be 

explained.  I measured carbonate uptake over a two hour period; this period of time is 

likely too short to cover the range of internal chemical conditions that the corals 

experience daily. Additionally, by recording buoyant weights at the beginning and 

throughout the experiment, this data can take into account full diurnal cycles and any 

mechanical erosion that takes place slowly in the tanks. A species specific trend across 

time emerges when all the data is combined. Day time calcification decreased over time 

for D. stokesi in both treatment conditions (Fig. 3.6a), which corresponds well to buoyant 

weight data. This negative trend indicates that D. stokesi has a low acclimation potential, 

though large standard error bars may point to genotypic variance. Montastraea 

cavernosa, despite having a negative net calcification over the experimental period, had a 

linear increase in light calcification rates for both the ambient and high CO2 treatment. 

Again, this data follows the patterns of the buoyant weight results, supporting the idea 

that M. cavernosa has high acclimation potential for a more acidic ocean, given enough 

time. Montastraea cavernosa and O. faveolata displayed higher light calcification rates in 
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ambient seawater across all time periods, contrary to photosynthesis results, indicating 

that the relationship between calcification and Symbiodinium activity may be uncoupled.  

4.2 Physiology 

The organisms that will be most vulnerable under conditions of ocean 

acidification are those characterized by low basal metabolic rates, limited or no 

circulatory system, and that precipitate a calcium carbonate skeleton proportionally larger 

than the organic component (Knoll et al. 2007). Stony corals, the framework builders of 

coral reefs globally, are a dominant group included in this description. However, there are 

multiple partners that make up the holobiont. All of these components interdepend at the 

most basic metabolic level (Horwitz et al. 2015).  Symbiodinium, the symbiotic 

dinoflagellate present in zooxanthellate corals, such as the ones used in this experiment, 

utilize bicarbonate (HCO3
-
) instead of CO2(aq), as the primary source for photosynthesis 

(Kleypas et al. 2006; Brading et al. 2013). Bicarbonate concentrations will increase about 

14% under doubled CO2 conditions (Kleypas et al. 2006). Extrinsic sources of carbon for 

the host include zooplankton and particulate organic carbon (POC). The interaction of 

these organisms includes exchanging energy and nutrient-rich compounds, hence it is 

imperative to consider the role of Symbiodinium energy acquisition through 

photosynthesis when looking at the coral host’s physiological process of calcification. 

The relationship between photosynthesis and calcification in benthic calcifiers remains 

poorly understood (Kleypas et al. 2006). Previous research has documented that 

calcification rates in corals can be enhanced by photosynthesis (Gattuso et al. 1999), but 

the stimulating mechanism remains poorly known (Cohen and McConnaughey 2003). 

Many studies have reported net photosynthetic rates of corals displaying either no 

response to increased pCO2 or a slight increase (Langdon and Atkinson 2005; Schneider 
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and Erez 2006; Anthony et al. 2008; Lürig and Kunzmann 2015). In this study, though 

some significantly higher photosynthetic rates were seen at increased CO2 concentrations 

for M. cavernosa (Fig. 3.4c), the trend did not lead to an increased accumulation of 

skeletal material. Symbiodinium species are host specific; a single symbiont population 

was found in 92% of coral hosts in the Bahamas (LaJeunesse 2002). Montastraea 

cavernosa colonies collected from 2.5m were found to have only one type of symbiont of 

the C3e clade, while D. stokesi from the same location had only B1 Symbiodinium, and 

O. faveolata was found to only host clade C7 (LaJeunesse 2002). These genetic 

differences in zooxanthellae would explain the conflicting photosynthesis response for 

each of these species. Because growth deficiencies were experienced under OA 

conditions, additional energy supplied for photosynthesis by M. cavernosa symbionts did 

not mask the inefficiencies for pH regulation in the subcalicoblastic fluid. For the species 

that experienced a non-significant photosynthetic response to increase pCO2, it’s 

plausible that the photosynthetic benefit of an increased CO2 supply may be overridden 

by the disruption of photophysiological processes (Anthony et al. 2008). Though higher 

concentrations of bicarbonate are present under OA conditions, low pH may interfere 

with the pathway for CO2 accumulation thereby directly affecting the ability of the 

individual symbionts to fix carbon (Anthony et al. 2008). There is a gap in research on 

the molecular and biochemical pathways of the photosynthesis-calcification relationship; 

understanding this relationship is required before the effect of environmental changes on 

coral physiology can be deciphered.  

High respiration rates can be an indication of high metabolic activity and stress 

(Lürig and Kunzmann 2015) or evidence that the coral animal is not receiving enough 

energy from Symbiodinium photosynthesis. Montastraea cavernosa had a reduced 
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respiration rate over time, regardless of treatment. During an eight week study, Anthony 

et al. (2008) found significant depressions in daily productivity (hourly rate of 

photosynthesis – respiration integrated over the day) for Acropora intermedia and Porites 

lobata at pH conditions of 7.70-7.60. In some cases productivity dropped close to zero 

and it was determined that the simulated ocean acidification conditions affected net 

photosynthetic rates only, whereas rates of dark respiration were relatively stable. Stable 

respiration rates were also present for Leclercq et al. (2002). While this study suggests 

that experimental duration, specifically the length of acclimation, can influence the 

organisms response to OA (i.e., respiration and photosynthesis rates of D. stokesi and M. 

cavernosa changed linearly over the experimental period indicating they were not 

completed acclimated, see Fig. 3.4), it is likely that biological aspects have a stronger 

influence on the sensitivity of coral calcification to OA than differences in methods 

(Scheopf et al. 2013). There is a clear trend toward a reduction in respiration over time 

for D. stokesi and M. cavernosa, observable both treatment conditions. This may indicate 

that the corals become less stressed as they continuously acclimating to new seawater 

environments, regardless of the carbonate system composition.  

4.3 Electron Microscopy  

Where skeletal material was present, all transmission electron micrographs 

confirmed the movement of organic matrix vacuoles to the subcalicoblastic space to 

initiate the nucleation of new skeletal material (Fig. 5.2, appendix). Corals have been 

documented producing new skeleton under pH levels as low as pHT 7.17 (Holcomb et al. 

2014). This same study found, however, that lateral growth rates (measured as changes in 

skeletal area) declined progressively with decreasing seawater pH, and growth was 

significantly reduced at pHT 7.16 relative to ambient conditions (Holcomb et al. 2014). 
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Enhanced extracellular organic matrix gene expression was documented for Acropora 

millepora under high CO2 (1000 ppm) conditions (Moya et al. 2012). Individuals 

responded differently toward the number and location of skeletal organic matrix genes 

they up-regulated or down-regulated, emphasizing the complexity of the dependence of 

microcalcification on the organic matrix. This altered expression and overall variability in 

production of the skeletal organic matrix could explain the changes in size, shape, and 

orientation of the aragonite crystals observed in this experiment as well as others (Cohen 

et al. 2009; Cohen and Holcomb 2009; Moya et al. 2012). 

For many organisms, the function of CaCO3 varies with life cycle stage (e.g., 

planktonic stages, recruitment), but almost all studies of CO2 effects on calcification have 

focused on adults (Kleypas et al. 2006). Understanding the effects of OA on calcification 

for newly settled recruits as well as understanding how adults of the same species 

responds helps us understand the true impact of OA across an individual. Slowed juvenile 

growth would mean more time spend in the juvenile stage therefore lengthening the 

period where the corals are not sexually reproductive. In combination with adult loss, 

population structures would shift toward smaller class sizes, decreasing effective 

population sizes and population fecundity (Albright and Langdon 2011). The results from 

this experiment show a similar response in skeletal structure for adult and newly recruited 

O. faveolata in each of the treatment conditions. In high CO2 (>1450 ppm) treatment 

seawater, this species displayed longer crystal growth (Fig. 2.1), indicating the ability to 

nucleate and grow crystals more efficiently than corals grown in the ambient condition 

(Cohen and Holcomb 2009). This appears to be a species specific response and was 

consistent between different genets.  Growth of juvenile spat, from the brooding Favia 

fragum, was unaffected by OA induced by significantly elevated levels of CO2 (Drenkard 
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et al. 2013). However, Cohen et al. (2009) found that the shape of the basal plate of F. 

fragum spat became distorted as saturation state decreased. The irregular basal plate, 

paired with an incomplete rim, can prevent an effective seal around the calcifying region. 

Exposure to external seawater in the calcifying fluid will exacerbate the challenges for 

calcification the organism is already experiencing in a low pH environment (Cohen et al. 

2009).  Qualitatively, I did not see a difference in rim development between treatment 

conditions and across time (Fig. 5.1, appendix). Venn et al. (2013) found that new crystal 

growth for Stylophora pistillata, as measured by changes in cross-sectional area, for 

corals maintained at pH 8, pH 7.8, and pH 7.4 showed no significant difference. These 

results, along with our data, imply that there is a physiological resilience across many 

distinctly different species when considering active calcification.  

A recurring message in current ocean acidification research is that reduced 

calcium carbonate skeletal density is likely to be experienced by the end of the century. 

Enochs et al. (2014) found that high CO2 levels (820-920 μatm) did not have an effect on 

skeletal extension but depressed the density of the skeletal crystals deposited. This was 

inferred as elevated pCO2 did not affect linear extension, surface area, or volume of 

Acropora cervicornis but significant differences were found in buoyant weight 

measurements between the treatments. The results of this study and that of Enochs et al. 

(2014) show that calcification of the Caribbean reef building species D. stokesi and M. 

cavernosa is negatively impacted under high pCO2 conditions that are predicted to occur 

by the end of the century through reductions in skeletal density. There does not appear to 

be a trend over time in crystal length, though this may be influenced by the difficulty in 

imaging identical locations between different species and across time.  
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The mechanism of coral calcification is not fully understood (Cohen and 

McConnaughey 2003; Cohen and Holcomb 2009; Allemand et al. 2011; Ries 2011), 

largely in part to the small size and location of the subcalicoblastic space. Two well 

explored models are the physicochemical model, which asserts that the calcifying fluid of 

corals is initially similar to that of their external seawater and skeletal accretion occurs 

when arag is increased via Ca-ATPase-driven exchange of Ca
2+

 and H
+
 ions across the 

coral tissue (e.g. Al-Horani et al. 2003, Cohen and McConnaughey 2003, Cohen and 

Holcomb 2009; Allemand et al. 2011), and the biological model that describes 

calcification as a function of calicoblastic cell and organic matrix activity (Houlbreque et 

al. 2009) completely independent of the chemical changes in the coral’s external seawater 

(Meibom et al. 2008). This study, along with recent work on gene expression (Moya et al. 

2012), suggests that a combination of these models drives skeletal crystal formation. 

Enhanced extracellular organic matrix gene expression was documented for Acropora 

millepora under high CO2 (1000 ppm) conditions (Moya et al. 2012), that is, the 

chemistry of the seawater (physicochemical model) lead to a shift in the expression of 

organic matrix genes (biological model), likely resulting in growth changes. The present 

study shows that altered seawater chemistry, achieved via carbon dioxide elevation, can 

cause a shift in the morphology of crystal structure, supporting the physicochemical 

model. However, calcification was occurring at low pH values, evidenced by the 

presence of organic matrix vacuoles passing from the calicoblastic endoderm into the 

calcifying fluid (Fig. 5.2, appendix). The organic matrix supports the nucleation of 

calcium carbonate in conditions that may not be thermodynamically favorable 

(Houlbreque et al. 2009), indicating that the biological model is equally valid. Ultimately, 

the level of dependence of microcalcification on the organic matrix is still unknown. 
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4.4 Conclusions and Future Research 

In addressing the question: “Will changes in pH affect fine scale calcification 

during the earliest life history stages and in adults of O. faveolata,” the answer is yes. 

Though O. faveolata was recently added to the IUCN threatened species list, this species 

appears to be well suited for a more acidic environment. This observation is based on the 

results that O. faveolata grew significantly better than M. cavernosa and D. stokesi under 

high CO2 conditions. Additionally, the crystal structure of recently nucleated skeletal 

material was statistically longer in the low pH treatment, an indication of healthier 

growth (Cohen and Holcomb 2009). This crystal length trend existed across generational 

boundaries as the recently settled spat also displayed longer crystals in the high CO2 

treatment. Ideally, it would be best to rear adults in high CO2 seawater through the 

process of sexual reproduction and to settle out individuals with known parents to 

evaluate the adaptation potential for this species. However, rearing spat is difficult 

without the obstacle of reduced pH and few survive to adult hood (N. Fogarty pers. 

comm.). In being able to sustain and even enhance calcification under high CO2 

conditions, O. faveolata could be diverting energy away from other critical life processes 

such as tissue growth or reproduction. This relatively short (12 week) experiment cannot 

quantify changes in other physiology aspects; understanding the long term effects of 

ocean acidification would require a longer experimental period. 

While it is unclear if M. cavernosa and D. stokesi are able to acclimate to 

persistent exposure to high pCO2 conditions, trends over time imply that fifteen weeks 

may not have been long enough for these corals to adjust to the new seawater (Sarasota 

Bay vs Atlantic), let alone the change in the carbonate system. Data from this experiment 

supports the idea that M. cavernosa may be better suited to physiologically acclimate to a 
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more acidic ocean in comparison to D. stokesi. M. cavernosa displayed a reduction in 

respiration rates, a linear increase in photosynthetic activity, net calcification via buoyant 

weights, and light calcification during the three sampling periods for both treatment 

conditions. Dichocoenia stokesi, however, experienced linear decreases in both mass 

change and light calcification. To prove the hypothesis that M. cavernosa is better suited 

to acclimate to high CO2 conditions, studies are needed to determine exactly what length 

of time is required to acclimate for individual genotypes of this species. The time it takes 

for this species to acclimate may be unfeasible for laboratory experimentation.  

Through lowered skeletal density, ocean acidification could be linked to the 

decline of coral reefs leading to an associated loss in biodiversity, productivity, and 

revenue. Given the strong interactions that work together in the coral holobiont to support 

the biological production of calcium carbonate, the coral animal cannot be evaluated in 

isolation. Instead, other impacts such as photophysiology response and energy balance 

must be evaluated in synergy (Anthony et al. 2008). It is our intention as scientists to 

develop and demonstrate innovative tools and technologies for providing information and 

capacity to adequately prepare for climate-induced changes in the marine environment. A 

major goal this research is to gain a better understanding of the influence of a more acidic 

ocean and to establish ways for climate scientists, impact assessment modelers, air and 

water quality managers, and other stakeholders to co-produce information necessary to 

form sound policy in relation to ocean acidification and its impact on marine water 

quality under a changing climate. This discussion is necessary to examine the mechanism 

behind species specific response to a less alkaline world. 
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5 Appendix 1: Supplementary Material 

 

Figure 5.1: Scanning electron micrographs displaying juvenile Orbicella faveolata spat imaged after one (A,B) 

or two (C,D) weeks in high CO2 (pHNBS 7.71, A,C) and ambient (pHNBS 8.14, B,D) conditions. Scale bars are 

200 µm for A,B and 500µ m for C,D. All images were captured under advisement of Pat Blackwelder at the 

University of Miami’s Center for Advanced Microscopy. 

  

 

Figure 5.1: Scanning electron micrographs of  juvenile Orbicella faveolata spat imaged after one (A,B) or two 

(C,D) weeks in high CO2 (pHNBS 7.71, A,C) and ambient (pHNBS 8.14, B,D) conditions. Scale bars are 200 µm 

for A,B and 500µ m for C,D.  

  



 

81 
 

 

 

 

 

 

 

 

 

  

Figure 5.2: Transmission electron micrographs displaying the calcification interface in D. stokesi, week 3, high 

CO2 (A), and M. cavernosa, weeks 1 and 3, high CO2 (B and C respectively). The calicoderm (1) produces 

vacuole containing organic matrix (2), which are then exocytosed by the cells (3) into the subcalicoblastic fluid 

(4) where they serve as the nucleation  sites for new skeletal crystals (5).  
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