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THE PLAN

1. Is obvious really obvious?

2. Curvature of curves in 3D

3. Curvature of Surfaces in 3D
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CURVES IN 3D

Given parametrically :  𝑟 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 )

𝑟(𝑡0)

𝑟(𝑡1)

 𝑟(𝑡)

 Parametrization by arc-length : 𝑟 𝑠 = (𝑥 𝑠 , 𝑦 𝑠 , 𝑧 𝑠 )

𝑠 =  
𝑡0

𝑡1

 𝑟(𝑡) 𝑑𝑡 =  
𝑡0

𝑡1

(  𝑥)2 + (  𝑦)2 + (  𝑧)2𝑑𝑡



HELIX

 Standard parametrization : 𝑟 𝑡 = (cos 𝑡 , sin 𝑡 , 2𝑡)

 Arc-length parametrization : 𝑟 𝑠 = (cos
𝑠

5
, sin

𝑠

5
,
2𝑠

5
)

  𝑟(𝑠) = 1
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WHAT IS THE DIFFERENCE

Curvature  κ = 
1

𝑅

 R is the radius of the circle which gives the best approximation of the curve near 

the point.



Circle of radius R

R

κ =1/R

 Line

κ = 0

 Helix

κ = ?

 κ is the measure of the rate of change of tangent vector at a  

point as we travel along the curve.

κ(s)=  𝑟(𝑠)



COMPUTING THE CURVATURE

 Arc-length parametrization can be tedious

Twisted Cubic

 𝑟 𝑡 = (𝑡, 𝑡2, 𝑡3)

 𝑠 =  0
𝑡
1 + 4𝑢2 + 9𝑢4 𝑑𝑢 = ? ?

 κ=
 𝑟 𝑡 ×  𝑟(𝑡)

 𝑟(𝑡) 3



T

N

B = T x N

 𝑇 = κ 𝑁

 𝑁 = −κ T + τ 𝐵

 𝐵 = − 𝜏 𝑁

SERRE-FRENET FRAME

𝑟(𝑠)
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Cell Shape Dynamics: From Waves to Migration   ***

Meghan K. Driscoll,1 Colin McCann,1,2 Rael Kopace,1 Tess Homan,1 John T. Fourkas,3,4 Carole Parent,2 and Wolfgang Losert, PLOS, 2012

 Curvature in the study of wave-like characteristics of

amoeba migration. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Driscoll MK[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=McCann C[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kopace R[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Homan T[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fourkas JT[auth]
http://www.ncbi.nlm.nih.gov/pubmed/?term=Parent C[auth]


PARAMETRIC SURFACES

 A surface M in space is a 2 dimensional object, usually given parametrically.

 𝑟 = (𝑥 𝑢, 𝑣 , 𝑦 𝑢, 𝑣 , 𝑧 𝑢, 𝑣 )
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r = (𝒄𝒐𝒔 𝜽 𝒔𝒊𝒏 𝝋 , 𝒔𝒊𝒏 𝜽 𝒔𝒊𝒏 𝝋 , 𝒄𝒐𝒔 𝝋 )

SPHERE



FROM NON-LINEAR TO LINEAR

𝒏

𝒓𝒖

𝒓𝒗

𝒓 = (𝒙 𝒖, 𝒗 , 𝒚 𝒖, 𝒗 , 𝒛 𝒖, 𝒗 )

 𝒓𝒖 = (𝒙𝒖, 𝒚𝒖, 𝒛𝒖)

 𝒓𝒗 = (𝒙𝒗, 𝒚𝒗, 𝒛𝒗)

 𝒏 =
𝒓𝒖×𝒓𝒗

𝒓𝒖×𝒓𝒗

P

T𝑃𝑀M



𝒏(𝑷)

Gauss Map

𝑮:𝑴 → 𝑺𝟐

𝑷 → 𝒏(𝑷)
M

Shape operator is the negative of the derivative of the Gauss map.



CURVATURE FOR SURFACES

Gauss Curvature :  K = 𝜿𝟏 ⋅ 𝜿𝟐

Mean Curvature :  H =
𝜿𝟏+𝜿𝟐

2

Gauss and Mean curvatures 

are determinant and half of 

the trace of the shape 

operator.

𝜿𝟏 𝜿𝟐

 𝜿𝟏 = 𝒎𝒊𝒏𝒊𝒎𝒖𝒎

 𝜿𝟐 = 𝒎𝒂𝒙𝒊𝒎𝒖𝒎

M





Two dimensional creatures cannot compute 𝜿𝟏 and 𝜿𝟐 using infinitesimal 

ruler and protractor BUT they can determine K = 𝜿𝟏 ⋅ 𝜿𝟐. This means, 2D 

creatures can determine the shape of their world without stepping out to 

3rd dimension!

GAUSS’S THEOREM EGREGIUM

𝐾 = −
1

2 𝐸𝐺
(
𝜕

𝜕𝑣

𝐸𝑣

𝐸𝐺
+

𝜕

𝜕𝑢

𝐺𝑢

𝐸𝐺
)

𝑬 = 𝒓𝒖 ∙ 𝒓𝒖

G = 𝒓𝒗 ∙ 𝒓𝒗



 Rotating, moving or bending the surface does not change the Gauss 

curvature but, stretching or breaking does.

 Two surfaces with the same Gauss curvature are “locally” the same, but not 

globally!!!

K=0 K=0





VARIOUS SURFACES



CURVATURE IN ARCHITECTURE AND DESIGN



MINIMAL SURFACES

 A surface M is minimal if  𝐇 =
𝜿𝟏+𝜿𝟐

2
= 0

 Any planar surface is minimal (NOT INTERESTING)

 A Gyroid (VERY INTERESTING)

Gyroid structures are found in certain 

surfactant or lipid mesophases and block 

copolymers.

 THEOREM: Every soap film is a physical 
model of a minimal surface.



The interpretation of the Costa-Hoffman-Meeks minimal surface as 

insertion of multiple directional holes connecting the top to the water 

and the water at the bottom to the sky provided a single gesture 

combining all aspects.         -Tobias Walliser

Image: LAVA

COSTA-HOFFMAN-MEEK SURFACE



CONCEPT OF A LINE

 y=mx+b

slope-intercept

𝒓 𝒕 = (𝒕,𝒎𝒕 + 𝒃)

parametric

 In general, a line in space is given by 𝑟 𝑡 = 𝑃 + 𝑡𝑢. So,   𝑟 = 0

P
𝒖



𝒏

V

𝜵𝒖V

𝑢

 The covariant derivative 𝜵𝒖V of vector field V

is the projection of the change of vector field in

𝑢 direction onto the tangent plane. 

𝛼(𝑡)

 A curve 𝛼(𝑡) on the surface is called a 

“Geodesic”  if     𝛻  ∝  ∝ = 0

Geodesics are the “lines” of curved spaces

 V is parallel along a curve 𝛼(𝑡) if

𝜵  𝜶𝐕 = 𝟎



Flat

Curved



𝑲 ≠ 𝟎 𝑲 = 𝟎

MERCATOR PROJECTION



ω

PARALLEL TRANSPORT AND HOLONOMY

 The parallel vector V is rotated by ω

as it moved along the latitude 𝑣0 .

V

ω = - 2 π sin (𝑣0) 

 But, 2D inhabitants of the sphere could not

observe the rotation since V is parallel. For them,

vector field moves “parallel” along the latitude.



“YOU ARE INVITED TO SEE THE EARTH IS SPINNING”

 An iron ball of 28 kg is suspended

by a 67 meter ( about 220 ft ) wire.

 Using this experiment, in 1851,

Foucault proved that the earth 

is spinning.



V

**By Cleon Teunissen

 Rod is long. So, swings can be seen as

tangential to the sphere.

 Pendulum moves slowly around latitude

so, we ignore centripetal force on it. Only 

gravitation acts on the pendulum .

 V is parallel along the latitude. It has holonomy

ω = - 2 π sin (𝑣0) 

**

THEOREM: Earth rotates along its latitude circles. 



GAUSS CURVATURE MEAN CURVATURE

 INTRINSIC  DEPENDS ON HOW SURFACE IS PLACED

 INVARIANT UNDER CERTAIN DEFORMATIONS  NOT INVARIANT

 STRENGHT, RESISTANCE  SURFACE TENSION, AREA MINIMIZING

 MOST FUNDAMENTAL

GEOMETRIC PROPERTY

 GREAT TOOL FOR NOISE REDUCTION

IN DIGITAL IMAGING



CURVATURE IN HIGHER DIMENSIONS

𝑅𝜇𝜐 −
1

2
𝑅𝑔𝜇𝜐 + Λ𝑔𝜇𝜐 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜐

Curvature Matter & energy


