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The metric of entropy provides a measure about the randomness of data and a 

measure of information gained by comparing different attributes. Intrusion detection 

systems can collect very large amounts of data, which are not necessarily manageable by 

manual means. Collected intrusion detection data often contains redundant, duplicate, and 

irrelevant entries, which makes analysis computationally intensive likely leading to 

unreliable results. Reducing the data to what is relevant and pertinent to the analysis 

requires the use of data mining techniques and statistics. Identifying patterns in the data is 

part of analysis for intrusion detections in which the patterns are categorized as normal or 

anomalous. Anomalous data needs to be further characterized to determine if 

representative attacks to the network are in progress. Often time subtleties in the data 

may be too muted to identify certain types of attacks.  Many statistics including entropy 

are used in a number of analysis techniques for identifying attacks, but these analyzes can 

be improved upon. This research expands the use of Approximate entropy and Sample 

entropy for feature selection and attack analysis to identify specific types of subtle attacks 

to network systems. Through enhanced analysis techniques using entropy, the granularity 

of feature selection and attack identification is improved. 
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Chapter 1 

Introduction 

 

Background 

 

Intrusion detection systems help identify malicious and dangerous attacks sent to 

networks and computers while allowing normal traffic to arrive at its intended destination. 

In order for intrusion detection systems to identify harmful traffic to computers and 

networks, packets of data are classified to determine if the contents contain malicious 

actions or not. Fields of data representing the traffic flow must be collected and analyzed 

to determine which traffic may pass and which traffic is blocked. The two primary 

methods used for intrusion detection are signature-based systems and anomaly based 

systems. A signature based system attempts to match specific patterns in the packets 

traversing the network for byte strings which are known to be malicious. Anomaly based 

systems analyze the statistics of the traffic to determine if the packet is malicious. 

Data for intrusion detection systems may be collected from multiple sources such 

as system access logs and activity logs. As these disparate sources merge into a single 

corpus of data with many records that may provide insight into the collected activity. 

Each record contains fields that provide information about the activity that the record 

represents. Some of the fields may contain similar, irrelevant, or missing data, which 

could potentially cloud the analysis and the overall quality of data. The amount of data 

collected may also be quite large and impractical to analyze. 
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For anomaly intrusion detection, fields within the data files are referred to as 

features. These features describe a particular aspect of information in the record. Since 

there may be duplicate and irrelevant features contained within the data, using only those 

features directed at the analysis reduces the computing resources and may improve the 

accuracy of the resulting analysis. The process of selecting the data, to include only 

needed features, is termed feature selection. The goal of feature selection is to use only 

the fields that represent the packet activity while maintaining the integrity of the record 

and the integrity of entire data set. 

There are different methods available to select these pertinent features based on 

statistics by using one or more algorithms such as used in artificial intelligence, clustering, 

classification, statistics, and specialized applications targeting specific problems. There 

are no generic solutions to detect each different type of intrusion or anomalous activity. 
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Problem Statement 

 

This research addresses the problem of reducing the number of features and 

correctly identifying relevant features from a set of collected data for an anomaly-based 

intrusion detection system while maintaining integrity of the data. Data acquired for an 

intrusion detection system frequently originates from multiple sources such as system 

activity logs, content of data packets and headers, system calls, memory and disk access 

activities, and other information. Intrusion detection systems may also share these logs 

among other network devices for collaboration in a distributed manner. Reducing the 

amount of data to that which is relevant requires categorizing the information from the 

logs into parameters, also referred to as dimensions.  In a data set of network traffic, 

attacks are identified by the selection of features that represent particular activities. This 

implies that not all attacks are found by the same selection of features in all cases. 

Research conducted by Lima, de Assis, and de Souza (2012) using the KDD CUP 99 

(KDD Cup 99 Data, 1999) data resulted in a different set of attributes for each of the four 

major attack types. Without reducing the number of features, detecting attack patterns 

within the data is more difficult for rule generation, forecasting, or classification (Gheyas 

& Smith, 2010).  One of the problems is that not all of the features are important 

(Velayutham & Thangavel, 2012). Identifying and eliminating redundant and irrelevant 

features within the data, while maintaining the integrity of the corpus, results in features 

which succinctly describe the activity recorded. Reducing the number of features 

pertinent to intrusion detection analysis provides better data manageability, lowers 

computing resource requirements, and usually better results.  
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Dissertation Goal 

 

 

The goal of this research is to present a new method that correctly identifies 

relevant features from an intrusion detection dataset that reduces the amount of data 

required for anomalous activity detection while maintaining the integrity of the data set. 

By reducing the redundant features, irrelevant features, and noise, better results may be 

gained in the analysis of the data for identifying anomalous activities. 

The expected results of this research included the following goals:  

1. Methods to identify relevant features and minimize the number of features 

selected from a source of network traffic data without altering the characteristics 

of the data representation.  

2. Compare results of correctly classified and incorrectly classified as percentages, 

and the features selected with those published by Sharma and Mukjherjee (2012), 

and Lima, et al., (2012) for the KDD CUP 99 data (KDD Cup 99 Data, 1999). 

3. Using real-world data from the SRI Cyber-Threat Analysis Project, apply the 

methods used in goals 1 and 2 to compare and contrast the results with a second 

set of data for correctly classification of attacks and the features selected from the 

analysis. 
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Relevance and Significance 

 

This research focuses on methods that select features from a set of intrusion 

detection system data in an efficient manner while maintaining the integrity of the data to 

represent the traffic and events collected. Many approaches have addressed the problem 

of feature selection. Even with the successes, a significant amount of work is still needed 

to find improved methods of feature selection from intrusion detection system data. 

Tavallaee, Bagheri, Lu, and Ghorbani (2009) state that current approaches to intrusion 

detection are not a mature technology. This problem is still relvant as identified by the 

research of Zuech, Khoshgoftaar, and Wald (2015). Improving detection and feature 

selection are important to provide better analysis results for anomaly detection in 

identifying attacks on network systems.  

Data sources from intrusion detection systems provide a large quantity of data for 

analysis. Since most of the raw intrusion detection data sets contain duplicate and 

irrelevant features, the selection of significant and relevant features is important. The 

feature selection process attempts to discard superfluous data and noise, which in turn 

reduces the overall volume of the data set while maintaining its integrity. This reduced 

data set, in turn, yields to a faster and more accurate analysis. In order to carry out this 

data reduction effort, classification applications analyze the data and identify appropriate 

categories. In addition to the classification, elimination of redundant features from the 

data is necessary. Without doing so makes patterns more difficult to detect (Gheyas & 

Smith, 2010).  
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Barriers and Issues 

 

The problem presented is an on-going issue for selecting features within a data set 

that accurately represents the activity of the collected data. Often these files are large 

since they are generated from disparate sources. The quantity of data must be reduced 

and categorized into a set of events called attributes (Lima et al., 2012). Within the large 

files, the data must be normalized and attributes that best represent the activity must be 

present, while duplicate and non-essential information is eliminated. This may result in 

improved performance and outcome. Having clean and usable data provides the analytic 

applications with a higher probability of obtaining usable results. 

This goal of efficient feature selection is not always met. Even though there may 

be a large volume of anomalous data, not all attacks may appear within the data. In 

addition, there may not be a sufficient number of events present to identify the anomaly 

as an attack or identify it correctly. Properly identifying the features to use is a problem 

since different attacks may need different attributes for the correct identification. 

The research conducted by Lima, et al. (2012) used the C4.5 decision tree model 

based on entropy and compared these results with three other attribute selection methods. 

They conducted their evaluation was using the KDD CUP 99 (KDD Cup 99 Data, 1999) 

data set. 

Tavallaee et al. (2009) described the different attack categories in the 

KDD CUP 99 (KDD Cup 99 Data, 1999) data in the following list. 

 Denial of Service Attack (DOS): denies legitimate users access to a system by 

consuming computing and memory resources. 
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 User to Root (U2R): An attacker gains legitimate access to a system and exploits 

a vulnerability to escalate their privileges to root access.  

 Remote to Local (R2L): A user who does not have an account for legitimate 

access to a system, gains remote access to it through exploiting a vulnerability by 

sending packets over a network. 

 Probing Attack: Gathering information about a network and its computers to 

circumvent its security.  

 

The analysis by Lima et al. (2012) used three different entropy approaches, and 

each approach produced a different set of attributes for identifying the type of attack 

group. Even though some of the features selected were the same, there was overlap in the 

parameter selection, the results were different. Their work showed that varying 

approaches affects results. 

In conducting this research with a feature selection algorithm using entropy as a 

factor in the classification and selection process, evaluating which entropy calculation 

best fits a specific attack, attack type, or a generalized application for all attacks were 

among some of the challenges for consideration. The Shannon entropy is the most 

established measure of uncertainty and mutual information (Alvim, Andrés & 

Palamidessi, 2010). Other entropy methods, such as the Rényi entropy and the Tsallis 

entropy, shared some of the properties with Shannon's approach (Harremoës, 2006). 

Lima et al. (2012) used the Rényi entropy and the Tsallis entropy as additional entropy 

measures in their research.  
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Alazab, Hobbs, Abawajy, and Alazab (2012) identified attack patterns within the 

attack types. Their focus on the U2R attack type in which they identified four new attack 

patterns: httptunnel, ps, sqlattack, and xterm. The following table detailed their 

categorization of the attacks and attack patterns. 

 

Attack Type Attack Pattern 

Probe Ipsweep, nmap, portsweep, satan, mscan, saint 

DoS back, land, neptune, pod, smurf, teardrop, apache2, mailbomb, 

processtable, udpstorm 

U2R Buffer_overflow, loadmodule, perl, rootkit, httptunnel, ps, sqlattack, 

xterm 

R2L ftp_write, guess_password, imap, multihop, phf, spy, warezclient, 

warezmaster, xlook, xsnoop, snmpguess, worm 

 

Other research data sources, such as those referenced in research performed by 

Nguyen, Franke, and Petrović (2012), used the ECLM/PKDD 2007 data and the CSIC 

2010 data. Both of these data sets were tested using data from web application firewalls. 

The ECLM/PKDD 2007 data was from the 18th European Conference on Machine 

Learning and the 11th European Conference on Principles and Practice of Knowledge 

Discovery in Databases (Gallagher, & Eliassi-Rad, 2008). Another set of data used in 

research was by the Spanish National Research Council that developed the CSIC data set. 

This data provided a set of http transactions from an e-commerce site. The purpose was to 

test the protection of web applications (HTTP DATASET CSIC, 2010). 

Even though the KDD CUP 99 data set was not an ideal source, according to 

Tavallaee et al. (2009), variants include the NSL-KDD (NSL-KDD Data Set, 2009) data 



 9  

set. This alleviated and reduced some of the problems with the original KDD CUP 99 

dataset identified by Tavallaee et al. (2009).  

To improve the data available for off-line intrusion detection system research, 

Vasudevan, Harshini, and Selvakumar (2011) evaluated the KDD CUP 99 data set and 

identified a number of shortcomings. They developed their own set of intrusion detection 

system data to represent current network activities. Some of the weaknesses of the KDD 

CUP 99 data set identified included: 

 Many of the attacks used in the data set were fixed and do not exist anymore. 

 Attack sophistication increased while knowledge needed to launch an attack has 

decreased. 

 The attacks were in a naive form and do not represent network behavior. 

 All attacks were preplanned and mixed between host and network. 

 

Guillén, Rodriguez, Páez, and Rodriguez (2012) also supported the concept of the 

KDD CUP 99 data set being outdated. However, they qualified this statement by 

indicating that the results were reliable for analysis purposes, and the data was usable to 

analyze new intrusion detection approaches for machine learning or computational 

intelligence. Their research included using a DARPA data set and a software package 

named Spleen along with the KDD CUP 99 data. Even though the KDD CUP 99 data 

contained shortfalls as noted, it was still considered satisfactory for use with the analysis 

proposed for this research. 

The availability of publically available labeled data sets for intrusion detection 

research was limited. The KDD CUP 99 data set was the most recognizable data store 
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publically available for intrusion detection research. Another set of data that was of 

potential use was named PREDICT was supported by the US Department of Homeland 

Security, Science & Technology Directorate. Users of PREDICT must be vetted and 

agreements signed as to the nature of its usage and disclosure. PREDICT data was not 

labeled, and therefore not satisfactory for this research.  

Other possible data sources for use in the research included the CAIDA (n.d.) and 

SRI (n.d.) data repositories. These sources contained various types of data from internet 

traces. The possibility also existed that data from SRI International located in Menlo Park, 

California had merit since it contained timing data and attack information to provide a 

labeled data set (SRI, n.d.). In reviewing the data sources for a second analysis using 

different data, it was decided that the data from SRI would be the best choice. 

Another area of difficulty was the integration of new calculation algorithms into 

the existing applications chosen for classification and feature selection analysis. 

Depending on the openness and complexity of the applications, incorporating custom 

entropy algorithms into the structure of the programs may be difficult. This challenge was 

overcome by the use of tutorials and papers that described modification of analysis 

applications for customized calculations.  
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Assumptions, Limitations, and Delimitations 

 

Since intrusion detection systems data often contained a collection of logs from 

multiple sources, analyzing and interpreting the data was a challenge. This research made 

two primary assumptions about the data. First was the quality of the data, in that each 

record provides an accurate representation of the information contained within the 

complete packet. The second assumption addressed the problem of consistency in the 

meaning and relationship of the data across the different fields within the record. Since 

one of the data sets was the KDD CUP 99, this collection of data was used in many 

analyzed research projects. Although deficiencies were noted in the Barriers and Issues 

section of this thesis, the KDD CUP 99 is widely accepted as a standard data store for this 

type of analysis. The second set of data for this research originated from the SRI System 

Design Laboratory (SRI, n.d.). Other sources considered were the PREDICT, and the 

CAIDA data repository (CAIDA - The Cooperative Association for Internet Data 

Analysis, n.d.). None of these sources were as thoroughly tested and researched as the 

KDD CUP 99 data.  

Because the fields within each record may be an aggregation of data from more 

than one source, the meanings of similar fields from each source may not be the same. 

This causes inaccuracies in the calculations of results along with a potential bias of the 

data, which impacts the results. There was no control of the representation of the data as 

it was presented in the initial stages of the research. As the research effort progressed, 

adjustments were made as needed to normalize the individual data fields for more 

accurate representation of their intended meanings. 
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An additional data source which has labels and time markings was collected at 

SRI by their Cyber-Threat Analysis Project. An arrangement was made between the 

researcher and provider for use of this data for the analysis (Personal communications 

with Phillip Porras of SRI, May 25, 2014).  

The researcher, to establish boundaries for this research, imposed delimiting 

factors. Since Approximate entropy and Sample entropy are time based, some data, 

which does not have timings associated with the records, as in the KDD CUP 99 data set, 

were simulated. No research was located that assigned timings to the entries in the KDD 

CUP 99 data store. Fares, Sharawy, and Zayed (2011) identified timing in their research, 

where they described the taxonomy of intrusion detection but never applied it in the 

analysis.  

The manner of simulating periodicity within the KDD CUP 99 was established for 

this research. Simulation consisted of applying different windowing sizes and statistics to 

the data. One example used the order of the data as provided and assigned windowing 

intervals based upon recommendations of Yentes et al. (2013). Another method was to 

vary the windowing intervals. In addition, the ordering was assigned to the data analyzed 

at the time. The ordering and windowing in the KDD CUP 99 data was needed and used 

to calculate the Approximate entropy and Sample entropy. This research addressed the 

issue of windowing with a selection of data from the KDD CUP 99 data set. Ordering of 

the records by attack type represent the timing in which they occurred. The results may or 

may not show that ordering was highly critical in the election of attributes for the 

analysis. Experiments during the research indicated how the windowing and parametric 

variation impacted the analysis.  
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The second data set was from SRI. It was a series of data files including a number 

of them in pcap format. Pcap stands for packet capture and contains network traffic 

information. A number of Unix/Linux based utilities were available that deconstructed 

the contents of pcap files. The files from SRI contained timing points and labels 

incorporated within the collection.  

 

Summary 

This research provided additional viewpoints for the use of entropy in feature 

selection. The number of features available in a set of data collected from intrusion 

detection systems may be quite large and unmanageable for manual human manipulation 

and for analysis by computer applications. By reducing the number of features in the data 

set, the goal was to make it more manageable for analysis and enhance the accuracy of 

the results. 

This section also identified some of the challenges that made this research 

difficult. One of the more challenging and difficult problems was the availability of valid 

labeled data which was satisfactory for use in this context. The KDD CUP 99 data set 

was the most widely used and accepted for intrusion detection research purposes. Other 

sources were primarily accessed from non-public sources, which may place restrictions 

on its use. SRI granted permission for this researcher to use data from its Cyber-Threat 

Analysis Project for this research (Personal email Communications with SRI Researcher, 

August 26, 2014). 
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Chapter 2 

Review of Literature 

 

This literature review is a study of research work discussing the development of 

intrusion detection methods and current advances in the field and focuses on the methods 

of feature selection using intrusion detection data. Within the feature selection process, 

the metric of entropy is used in different aspects of data analysis. Subsections in this 

chapter are:  

 Background of Intrusion Detection Systems 

 Data Mining and Feature Selection Methods 

 Entropy Calculations used in feature Selection 

 Shannon entropy 

 Rényi and Tsallis entropy 

 Approximate entropy and Sample entropy 

 Methods and applications used in this research 

 

Background of Intrusion Detection Systems 

 

Anderson (1980) introduced the concept of auditing and surveillance as a way to 

improve the security of a customer’s computer systems. The research focused on the use 

of security audit trails as an important role in detecting unauthorized access to a data set 

or system. He also defined the concepts of threat, risk, vulnerability, attack, and 

penetration. The types of intrusions identified were an internal penetration from within 

the system or an attacker from outside the system via communications lines. Also 
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included was the application of statistics to collected data in order to identify abnormal 

use of the systems. For systems with a large number of users, it was necessary to reduce 

the volume of the data. One of the methods proposed by Anderson was through sampling 

data on a periodic basis. These techniques proposed some of the first methods to monitor 

the security of computer systems. 

Denning (1986) expanded the concept of intrusion detection and developed a 

model for a real-time intrusion detection system. Denning proposed using a real-time 

collection of audit records from attempted break-ins, system penetrations, and abuses 

through the use of system monitoring. Abnormal use information was categorized into 

bundles, called tuples, and models were applied to the data. Denning's analysis detected a 

wide range of intrusions. Some of the detected intrusions identified were without 

knowledge of system vulnerabilities. 

As the complexity of systems grew, the quantity of collected data increased to the 

point where manual processing was impractical and automation was needed. 

Development of automated systems that merged data from multiple sources provided a 

vast array of different aspects of system activity. Collections, such as these, result in 

many dimensions, including possible duplicates, irrelevant features, and general noise. 

Identifying anomalous behavior from bloated data sets produced bad results and taxed 

computational resources (Lima et al., 2012). 

As data was collected from the system and the network device logs, it was 

analyzed, and the results used to protect the systems by developing information, which 

analyzed the traffic and determined if an attack might be taking place. Determining if an 

attack took place was the result of analyzed system and network device logs. Through 
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this effort, different techniques to identify intrusions were developed. The two main 

approaches to categorize intrusion detection systems were misuse detection, and anomaly 

detection (Sharma, & Mukherjee, 2012). A misuse-based system examined the packets 

looking for patterns and signatures of known attacks on the network. Anomaly based 

systems used statistical analysis to compare features of the traffic with a profile of what 

normal traffic flow should look like. A majority of the commercial intrusion detection 

systems used today implemented misuse-based detection because of its high accuracy 

(Tavallaee et al., 2009).  An example of a misuse-based detection program is Snort (n.d.). 

However, the academic community considered anomaly based detection a more powerful 

method due to its potential to detect novel attacks (Tavallaee et al., 2009). 

Research conducted by Gupta, Nath, and Kotagiri (2010) developed a layered 

approach to intrusion detection in which their work used layers in series to identify 

anomalous activity. Each layer detected one of the four groups of intrusions included in 

the KDD CUP 99 data set. A feature selection process was run for each of the four 

intrusion types with the results having a different set of attributes identified. Improved 

accuracy and performance was evident with this model. 

When an intrusion detection system identifies an attack through misuse detection 

or anomaly detection, the action taken may be passive or reactive. A passive intrusion 

detection system logs information when it detects a potential security breach. The 

reactive intrusion detection system takes action when it detects suspicious behavior such 

as discontinuing service to the user or alerting a firewall to block traffic from a particular 

source (Sharma, & Mukherjee, 2012).  



 17  

In both the misuse and anomaly-based intrusion detection systems, the data 

sources provided a large quantity of data for analysis. Since raw intrusion detection data 

sets often contained duplicate and irrelevant features, elimination of this superfluous data 

and noise reduced the volume, which, in turn, yielded a better analysis (Hammer & 

Villmann, 2002). 

Sharma and Mukherjee (2012) focused on the detection of minority attacks since 

current standalone intrusion detection systems were not effective in finding these types of 

attacks. Within the KDD CUP 99 data set, there are four major attack types: DoS, Probe, 

R2L, and U2R. The work of Sharma and Mukherjee examined the attributes that detected 

the R2l and U2R attacks. Sharma and Mukherjee based their work on a layered approach 

by Gupta et al. (2010).  

Anomaly detection included the problem of identifying patterns and behaviors 

that do not conform to the normal traffic data (Bhuyan, Bhattacharyya, & Kalita, 2011). 

Successfully identifying these anomalies had a higher probability when the intruder did 

not know what a legitimate user's activity should look like and what was considered 

anomalous. They refer to work by Kumar and Spafford (1994) regarding the four 

possibilities in detecting an intruder who has no knowledge of the system activity profile 

as denoted in the following list. 

 Intrusive but not anomalous: a false negative since the activity was intrusive but 

not detected or identified as anomalous. 

 Not intrusive but anomalous: a false positive since the legitimate user was 

conducting a non-malicious activity; however, identified as anomalous. 
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 Not intrusive and not anomalous: a true negative since the activity was not 

intrusive or anomalous. 

 Intrusive and anomalous: a true positive since the activity was intrusive and 

identified as anomalous. 

 

In the above list of an intruder's activities as defined by Kumar and Spafford 

(1994), the detection of anomalous behavior differed based on the metrics and 

approaches. The conclusion by Bhuyan et al. (2011) was that some anomaly detection 

methods were better than other methods and more work was needed to focus on lowering 

false alarm rates. 

Data Mining and Feature Selection Methods 

 

Methods for identifying pertinent features that represent the data include 

classification algorithms, genetic algorithms, statistics, and decision trees. These methods, 

developed over the years, usually focused on specific types of problems, such as those 

tuned for attacks, which are rare or minor (Sharma, & Mukherjee, 2012). Even though 

significant academic research and applied implementations focused on intrusion detection, 

these systems still had trouble detecting intrusive activities since new and novel attacks 

were constantly evolving (Sharma, & Mukherjee, 2012). 

Feature selection algorithms used supervised learning when labeled data sets were 

available for training. Unsupervised learning used non-labeled data sets. With labeled 

data sets, the features could distinguish different classifications. Selection of the proper 

method for analyzing data was important, as each data set had its own statistical 
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properties. Using these methods along with classifiers and entropy combinations resulted 

in improved granularity for feature selection. 

Lima et al. (2012) referred to the reduced number of features as attributes. These 

features contained information describing a particular aspect of the activity recorded. 

They accomplish this feature reduction through compressing the collected data with 

methods and applications used in biological research. The feature reduction processes 

conducted by Lima, et al. (2012) used applications that performed clustering, 

classification, and feature selection functions.    

Research conducted by Yentes, Hunt, Schmid, Kaipust, McGrath, and Stergiou 

(2013) investigated the use of Approximate entropy and Sample entropy for the 

measurement of data in a time series. Their data source originated from physiological 

characteristics between young and older adults, such as their gait. These entropy 

calculations included use in a number of other biological research environments 

including heart rate and other biomedical data (Pan, Wang, Liang & Lee, 2011). 

Yentes et al. (2013) used Approximate entropy and Sample entropy calculations 

in their feature selection research with biological data. Each of these different forms of 

entropy calculations provided additional views of the information extracted from the 

available data. 

One of the data sources for this research included the KDD CUP 99 data (KDD 

CUP Data, 1999) set which contained approximately 5 million records of normal and 

attack traffic. Another possible data source was from the Cooperative Association for 

Internet Data Analysis (CAIDA, n.d.) data made available in association with PREDICT 

Repository (PREDICT - Protected Repository for the Defense of Infrastructure Against 



 20  

Cyber Threats, n.d.) supported by the Department of Homeland Security, Science and 

Technology Directorate. In addition, data from SRI International's System Design 

Laboratory investigated intrusion-detection research since 1983 (SRI, n.d.). 

Tavallaee et al. (2009) evaluated the KDD CUP 99 (KDD Cup 99 Data, 1999) 

data set and identified details of its attributes and shortcomings. They resolved a number 

of the issues that resulted in a new data set designated as NSL-KDD (NSL-KDD data set, 

2009). Their new data set, NSL-KDD, has the following advantages: 

1. No redundancy in the training data thereby reducing the bias towards those 

records. 

2. No duplication in the test data thereby reducing the bias towards more frequent 

detection of those duplicates. 

3. Better mix of the levels of difficulty resulting in classification learning rates with 

a more accurate evaluation of different learning techniques. 

4. Record count in the training sets and test data set allowed learning and evaluation 

applications to use the complete range of data without random selection. 

 

The three main characteristics of intrusion detection systems were accuracy, 

extensibility, and adaptability (Om & Kundu, 2012). They proposed a hybrid intrusion 

detection system that utilized incremental learning to detect future attacks. The goal for 

their method was to have a high detection rate and a low false positive rate. To profile the 

network, Om and Kundu (2012) used K-means clustering and K-Nearest Neighbor 

algorithms. Om and Kundu (2012) also used entropy as a feature based statistical method 

to select attributes and eliminate redundant attributes. Their process first removed 



 21  

irrelevant features then calculated mutual information between features and the 

classification.  

The next step was to cluster the data into similar types of objects without using 

classification labels, or unsupervised learning. This unsupervised learning approach 

created groups with different attributes, and the greater the differences occurring among 

the groups actually improved the clustering. When classifying data using an unsupervised 

learning approach, three different methods were used including Naïve Bayes, decision 

tree, and support vector machine.   

A Naïve Bayes classifier algorithm computed the probability of the classes given 

the data, which assumed independence among the features for each class (Dougherty, 

Kohavi, & Sahami, 1995) implemented in the WEKA analysis package. WEKA is an 

acronym for Waikato Environment for Knowledge Analysis (WEKA 3, n.d.). In decision 

tree methods, continuous values were binned during the learning process and a 

dependency map was structured.  

A support vector machine classifier automatically searched vectors with 

classification ability to maximize the margin between the classes. It had excellent 

generalization and high classification accuracy. The standard support vector machine 

algorithm calculated the vectors by solving a quadratic programming problem, whose 

time complexity was exponential. Thus, for large-scale training sets, the computation of 

the standard support vector machine was not practical (Songfeng, Xiaofeng, Nanning, & 

Weipu, 2003). 

Nguyen et al. (2012) researched the use of pattern recognition for intrusion 

detection systems through the application of steadiness and consistency metrics to judge 
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the classifier's performance. Generic Feature Selection is one of the feature selection 

methods discussed by Nguyen et al. A steadiness metric, in the feature selection process, 

quantified and measured the parametric of a specific classifier's performance. The other 

metric implemented by Nguyen et al. was the consistency of the analysis that evaluated 

the feature selection process for a specific classifier. When a variable used in the 

calculation, α was equal to 1, the search strategy was said to be consistent. 

Om and Kundu (2012) used the KDD CUP 99 data to train and test their model. 

They applied 10-fold cross validation to calculate classification accuracy using detection 

rate, false positive rate, classification rate, along with the true positive, true negative, and 

false negative. Their methodology was a three step process. The first step applied a 

feature selection algorithm, which used entropy as one of the statistics. The next step 

clustered the data with unlabeled data using K-means clustering and classification 

methods. The final step was a hybrid classification that assigned classification labels to 

objects. This was accomplished by using one of the following algorithms: K-Nearest 

Neighbor, Naïve Bayes, decision tree, or support vector machines. Om and Kundu (2012) 

concluded that with their hybrid approach and algorithms, they could detect differences 

between normal and anomalous data. 

Lee, Gray, and Kim (2013) discussed the problem of high-dimensional data as 

being commonplace due to advanced sensing systems and storage technologies. These 

massively high-dimensional data sets introduced sparsity, redundancy, and computational 

complexity into the analysis.  High-dimensional data usually had a limited number of 

degrees of freedom, which was the intrinsic dimensionality of the data (Lee et al., 2013). 
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Reducing the dimensionality of the data set reduced some of the problems relating to 

redundancy and computational complexity. 

Research conducted by Zhai, Li, and Zhai (2011) reduced the computing resource 

requirements through the use of sample fuzzy entropy along with a condensed K-Nearest 

Neighbor rule method. This calculation used decision table, fuzzy entropy, and an 

algorithm to determine the fuzzy membership degree of instances in the training data set 

(Zhai et al., 2011). Their research developed two algorithms, which determined the fuzzy 

membership degree in the training data set. A third algorithm implemented the 

Condensed Fuzzy K-Nearest Neighbor (CFKNN) rule based on sample fuzzy entropy. 

Results showed their method reduced the complexity for K-Nearest Neighbor 

computations using fuzzy entropy. The authors recommend the use of the third algorithm, 

CFKNN, which they claim resulted in a feasible and effective solution. 

Decision trees represented acquired knowledge. The strategy for decision trees 

implemented non-incremental learning from examples (Quinlan, 1986). Quinlan’s 

research also provided a description of induction trees. This work led to the ID3 

application, which evolved into C4.5, used by Lima et al. (2012). Quinlan (1986) 

discussed the concept of Top Down Induction of Decision Trees in which the 

classification was conducted from the top down by considering the frequency of 

occurrences within the data. Through the induction task, the set of objects were a 

collection of attributes where each object belonged to one of a set of mutually exclusive 

classes. The objects in the set of training data had a known class. The mission was to 

develop a classification rule that could determine the class from the attributes of any 

object. A subset of the training data was selected and used to train the classifier in an 
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iterative manner. The remaining entries in the training data were classified against the 

tree. If there were classification errors, these errors were added to the subset of training 

data and the tree were developed again. This process repeated until all the classification 

of the training data was correct. Used in tree generation, the algorithms calculated the 

information gained in an object of data through the use of entropy. 

Alazab et al. (2012) defined classification as a learning function for categorizing 

unseen data into predefined classes. This implied that the data had the records labeled 

according to their classification. When working with cluster algorithms, the data was 

unlabeled. While in clustering, the classes were not predefined. Alazab et al. stated that 

further research into feature selection based intrusion detection was needed.  

Even though a classifier completed its goals, the question arose as to whether the 

outcome of a classifier could be trusted (Nguyen et al., 2012). The feature selection 

process consisted of the method and search strategies for relevant features. Each dataset 

had its own statistical properties, where the feature selection process best represented the 

patterns of the data (Nguyen et al., 2012). 

Bhuyan et al. (2011) further described an intrusion detection architecture. In this 

design, data collection, pre-processing, feature extraction, data typing, normalization, and 

an anomaly detection engine were functions of the system, which identified irrelevant 

parameters for anomaly detection. The detected anomalies were classified into three 

categories based on the following list: 

 Point anomalies: An individual data point was anomalous with respect to the rest 

of the data. 
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 Contextual anomalies: These anomalies consisted of two types: contextual and 

behavioral. The contextual content was with respect to its relation to a certain set 

of attributes. The behavioral is with respect to non-contextual attributes. 

 Collective anomalies: A single point was not anomalous but a collection of single 

points constituted anomalous activity. In order to detect this type of anomaly, the 

appropriate behavioral attributes in the data needed identification. 

 

Feature selection involved maximizing classification accuracy of data. Multiple 

approaches were available for feature selection with the two main feature selection 

models being the wrapper model and filter model. The wrapper model used a learning 

algorithm on subsets of the features and the resulting feature set quality was determined 

by the prediction accuracy (Gheyas & Smith, 2010).  In the filter model, statistical 

criteria generated scores and ranks for the features. This model determined the relevance 

of features through statistical techniques that were independent of any classifier.  

Alelyani, Tang, and Liu (2013) differentiated feature selection and feature 

extraction as approaches to reducing the dimensionality of a data set.  In feature 

extraction, features were projected into a new space with lower dimensionality, while 

feature selection took a subset of features that minimized redundancy while maximizing 

their relevance. Alelyani et al. (2013) expanded the feature selection models to include an 

embedded model and a hybrid model. In their proposed hybrid model, statistical 

measures were used like the filter model, and a subset of the data was chosen with the 

highest classification accuracy. This embedded model implemented feature selection and 

model fitting simultaneously where they selected a set of features based upon a particular 
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classifier. Overall, the filter model worked well with large data sets while the wrapper 

model improved classification accuracy. 

 

Liu and Yu (2005) described a typical feature selection process that consisted of 

four steps.  

1. Generate a subset of features from a set of data. This selection of features 

may be additive in that the null set was the basis and features were added, 

or it may be a subtractive process by starting with all features and 

removing them in a predetermined manner. A complete exhaustive search 

found optimal results. Other options were a sequential search and a 

random search. 

2. Evaluated the subset based on a set of criterion. Different criteria 

evaluations techniques included distance measures, dependency measures, 

and consistency measures. 

3. Determine if the resulting goals were met. This may be a specific 

boundary of features, a better solution was not produced from a previous 

result, or the results were satisfactory based on the classification error rate. 

4. If the goals were met, results were validated and the process terminated. If 

prior knowledge was available, the results could be compared. Often prior 

knowledge was not available and other techniques were employed. These 

may be classification error rates, or conducting “before-and-after” 

experiments. 

Liu & Yu (2005) further discuss the filter and wrapper methods and a hybrid 

combination of the two. Their discussion included real world applications with feature 
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selection and network security. They proposed using data mining algorithms for large 

audit data files to obtain frequency patterns. The patterns were used in automated 

learning and classifiers were applied to determine an intrusion or normal traffic. 

Research conducted by Barot, Chauhan, and Patel (2014) used the KDD CUP 99 

data set and applied different feature selection methods including a Naïve Bayes classifier, 

decision table, correlation based feature selection, and Chi-squared attribute selection. 

Their results showed that using five attributes produced very good performance. Using a 

correlation based feature algorithm along with the decision table majority produced the 

best results. 

 

Entropy calculations used in Feature Selection 

 

Entropy was defined as a statistical metric that related the amount of information 

into a random variable (Lima et al., 2012). Using this definition for entropy, parameters 

used for the identification of an intrusion from activity logs contained randomness within 

the data, which provided information about that data, to the analytic algorithms used. 

Nychis, Sekar, Andersen, Kim, and Zhang (2008) stated that little research has been 

conducted to understand the detection power of entropy-based analysis related to multiple 

traffic distributions. 

Lima et al. (2012) used the Shannon entropy that was included in the WEKA, 

toolkit (Witten & Frank, 2005). Lima et al. then replaced the Shannon entropy with the 

Rényi and the Tsallis entropy formulas and compared the impact of the different entropy 
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calculations on feature selection functionality. The Rényi and Tsallis entropy calculations 

included an α term which adjusted the sensitivity to the probability distribution.  

In a paper on Boltzmann's entropy, Lebowitz (1993) discusses how Boltzmann 

used entropy to describe associating different states of matter between microscopic and 

macroscopic in a statistical manner. The results were in terms of classical Newtonian 

mechanics based on Newton’s laws of motion. The Boltzmann entropy was equal to the 

Boltzmann constant times the log of the absolute phase state (Γ) for a state of M. The 

point showed that entropy extended beyond not only information theory as proposed by 

Shannon (1948) but also had roots in mechanical and quantum systems. 

Lee and He (2009) used entropy with the Chi-square goodness metrics and mean 

and variance to develop traffic profiles and behavior patterns. The concept of relative 

uncertainty created a data profile that used time series to find hidden features in the 

traffic. They used the KDD CUP 99 data set and developed a correlation matrix using 

different features against the true positive, true negative, false positive, and false negative 

measures. Their research reduced the false positives by 3 to 4 percent.  

Barbará, Couto, and Li (2002) proposed a method that clustered the data to reduce 

the entropy rather than using a distance metric. Their approach yielded an NP-Complete 

problem that used heuristics to solve it. They applied this methodology to different types 

of data, including the KDD CUP 99 data set.  The algorithm was effective and compared 

well to other algorithmic methods that used Shannon entropy. 

Research conducted by Nychis et al. (2008) utilized entropy to analyze 

bidirectional traffic with the goal of improving granularity of detection from simple 

volume based metrics. The basis for the data was flow-headers and behavioral features. 
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The parametric data collected from the flow-header consisted of source and destination IP 

addresses and ports, and the flow size. The behavioral attributes were counts of specific 

addresses where an end-host communicated when entering and exiting the system. The 

data used in the analysis originated from collections made in 2005 at Carnegie Mellon 

University. The data consisted of 92TB of traffic with 2.5 billion flows. The data 

segments contained five-minute non-overlapping time slots, and anonymized IP 

addresses.  The entropy for the parameters was normalized and computed. The 

researchers found strong correlation between address and port distributions. The results 

showed that with entropy based anomaly detection, traffic selection required more than 

simple port and address based distributions. Traffic features should originate from traffic 

distributions that complement each other. Also, unidirectional traffic could introduce bias 

into the computing traffic distributions.   

Nychis et al. (2008) concluded that port and address distributions were strongly 

correlated when using entropy during time series analysis. They confirmed this with the 

behavioral metrics and from the analysis of synthetic data. Calculating correlations of 

entropy values during normal periods suggested a new way to provide anomaly detection 

services and they suggested this for future work. 

Velayutham and Thangavel (2012) used entropy for feature selection with Rough 

Set Theory. In their work, both supervised and unsupervised sets of data showed how 

their process produced better results with the unsupervised data. One of their claims 

stated supervised data classification was often unknown or incomplete. In their 

demonstration example, the unsupervised data was grouped by like attributes and the 

entropy was calculated among their values. The minimal entropy was selected and 
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grouped with the remaining attribute sets. This continued iteratively until an entropy of 

zero resulted. The attributes in this set were the reduced group of features that provided 

information about the data set. 

Yurtkan and Demirel (2013) used entropy based feature selection for facial 

recognition. The use of variance and entropy provided measures of uncertainty and 

information content. A high entropy indicated a feature’s position was more variable and 

carried more information. A low entropy was considered a stable feature. Their research 

used Shannon entropy for feature selection in facial expressions. The higher the entropy 

value the greater the chance was that the feature was associated with different 

expressions. 

Özçelik and Brooks (2015) discussed the use of entropy in identifying Distributed 

Denial of Service (DDoS) attacks in a network. If the attacker had knowledge of the 

network traffic entropy, the attacker could spoof the use of entropy to evade the 

identification of a DDoS attacks. With this information, an attack could be constructed to 

maintain the entropy of the traffic within the upper and lower bounds of the entropy 

range considered.  Features used were in the packet headers. Similarly, the attacker could 

construct zombies to send dummy traffic/requests that generate false positives, which 

rendered the intrusion detection system unreliable. To counter this spoofing capability, 

the calculated standard deviation for the traffic was normalized in two limits by 

asymptotically increasing the entropy less than 1 to approaching 1, and conversely 

normalizing entropy larger than 0 to approaching 0. This method enabled the 

identification of spoofing attacks. 
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Shannon Entropy 

 

Claude Shannon (1948) worked at Bell Laboratories and developed a useful 

definition of information produced. The definition stated that if the number of messages 

in a set was finite, then this number was a measure of information when one message was 

chosen from the set. This definition provided the basis for Forward Error Correction and 

communications security (Gappmair, 1999). Shannon’s research in entropy and channel 

capacity became part of the common mechanisms used to monitor and evaluate 

communications systems. Shannon’s application of entropy to information theory was the 

basis for describing variability in a signal. 

Mathematical formulations of entropy in feature selection were as follows. 

Applying feature selection techniques to data sets using a random variable, C, with a 

discrete probability distribution, then the entropy of the expected information was 

determined by the Shannon (1948) entropy defined in the equation below. 

Using this basic formula for Shannon entropy, there are multiple attributes (k),  

where i = 1, .. k. 

 

Where: 

 

H(C) is the entropy of variable C 

pi is the probability of element i in the distribution. 

k is the number of elements. 
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Mutual information I(C;Ai) measures the interdependence between two features, 

i.e. C and Ai, is shown as when using Shannon entropy (Lima et al., 2012). 

 
 

Where: 

I(C;Ai) is the mutual information denoting the dependence between C and Ai. 

H(C) is the entropy of variable C 

H(C|Ai) is the conditional entropy of C given Ai. 

 

Rényi  & Tsallis Entropy 

 

Both the Rényi and Tsallis entropy use a term in their equations identified as α. 

This term makes the entropy results more or less sensitive to the considered probability 

distribution shapes Lima et al. (2012).  

The Rényi entropy is a measure of information of order α. For Rényi entropy, 

Shannon entropy is the limiting case Lima et al. (2012). The formula for Rényi entropy is 

as follows. 

 
Where: 

Rα(C) is Rényi entropy with factor alpha for term C 
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α is an exponential distribution where 0 ≤ α ≠1 

pi
α
 is the probability of element i in the distribution raised to the α term. 

With 0 > α < 1, the mutual information is defined as follows (Lima et al., 2012). 

 

Where: 

IR(C;Ai) is the mutual information of C given A using Rényi entropy 

Rα(C) is Rényi entropy with factor alpha for term C 

Rα(C|Ai) is Rényi entropy with factor alpha for term C given Ai 

 

Constantino Tsallis, a Brazilian physicist, developed an entropy relationship 

integrated within the Boltzmann-Gibbs domain that defined entropy as follows (Johal & 

Tirnakli, 2004). 

 

 

Where: 

Tα(C) is Tsallis entropy with factor alpha for term C 

α is an exponential distribution where 0 ≤ α ≠1 

pi
α
 is the probability of element i in the distribution raised to the α term. 
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The mutual information as noted by IT(C;A) is for Tsallis entropy when α  > 1, the 

dependencies between two variables are defined as follows (Lima et al., 2012). 

 
 

Where: 

IT(C;Ai) is the mutual information of C given Ai using Tsallis entropy 

Tα(C) is Tsallis entropy with factor alpha for term C 

Tα(C|Ai) is Tsallis entropy with factor alpha for term C given Ai 

 

Approximate Entropy and Sample Entropy 

 

 Approximate entropy is the conditional probability of a set of data segments of 

the same duration. There is less complexity with a smaller Approximate entropy, which 

yields a higher probability. Its introduction quantified regularity in a time series (Liu & 

Zhao, 2011).  

Pincus (1991) developed a method to determine the changing system complexity 

in which Approximate entropy could classify complex systems. The use of Approximate 

entropy was applicable to deterministic (predictable), and stochastic (non-deterministic) 

systems. This approximation was good for data sets containing at least 1000 points. 

Approximate entropy is a widely used statistical index that quantifies the 

complexity of a signal used, especially in the fields of heat variability and endocrinology 

(Chen, Solomon, & Chon, 2005). This metric may provide quantitative information about 

noisy and short data in a small sample size. The data may have both deterministic and 

stochastic (non-random and random) attributes. Some of the problems with Approximate 
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entropy includes bias due to self-matches, or duplicates, and is very dependent on sample 

size. 

Yentes et al. (2013) applied Approximate entropy as developed by Pincus (1991) 

for quantifying levels of complexity in time series.  Sample entropy, developed by 

Richmond and Moorman (2000), was less sensitive to the number of data points than 

Approximate entropy and provided a better entropy method for data sets with less than 

200 points. Approximate entropy does have some problems in its use. It is biased towards 

regularity, lacks relative consistency, and parameters must be the same when comparing 

two data sets.  

The smaller the value of the Approximate entropy indicated less complexity 

within the data. This suggested that repeated patterns imply order and therefore resulted 

in a reduced entropy value (Lake, 2011). The calculation required a prior determination 

of two unknown parameters. The variable named r had a recommended value in the range 

of 0.1 to 0.2 times the standard deviation of the data. The other variable named m 

determined the length of the sequences, or window sizes. A third parameter used in the 

entropy equation is N which is the number of data points (Chon, Scully, & Lu, 2009). 

Most entropy definitions were discontinuous to noise (Pincus 1991). Approximate 

entropy used three primary attributes in the calculation. The nomenclature was 

represented by ApEn(m, r, N) for Approximate entropy.  Selection of the attributes 

affected results of the calculation. The m referred to the window size of how many points 

represented a reading. Pincus (1991) started with m equal to 2 as does Yentes et al. 

(2013). The r is a measure of the percentage of the standard deviation.  
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Sample entropy is a negative natural logarithm of the conditional probability that 

two samples of length m with tolerance r would match the next point in the series of m+1. 

If m was too large or r was too small, the template match count would be inadequate for 

confidence estimation of the conditional probability. Conversely, if the m was too small 

and r was too large, all results matched and there would be no discrimination signals 

(Lake, 2011). 

Liu, Liu, Shao, Li, Sun, Wang, and Liu (2011) determined the selection of the r 

variable was controversial. They referred to studies that indicated that as the performance 

of a time series became faster, the selection of r might lead to incorrect conclusions. 

Their work was based on heart failure rate among healthy subjects vs. those that had heart 

failure. They concluded the value of r had a big impact on the results and proposed the 

use of a value that maximized the Approximate entropy. This showed the true complexity 

of the different signals more clearly. 

 

Six steps used to calculate Approximate entropy were described by Pincus and 

Keefe (1992) and are detailed below. 

1. Develop an equally spaced time series: 

 where u(1), u(2), ….. u(N)     where N is the number of values 

 

2. Define m and r. 

  m = length of the time sequence (windows)    use 1, 2, 3, etc. and  

 r = filter  -  usually between 10% to 25% of the standard deviation. 
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3. Define a set of vectors:  x(1), x(2), x(3) ...... x(N)  

         where: x(i) = ( u(1). . . . . u(i + m – 1) ) 

 

4. Use x(1), x(2), x(3) ...... x(N) 

 for each i,   1 ≤ I ≤ N – m – 1 

 

 

Where: 

d is the distance between vectors x(i) and x(j). It is defined as: 

d[x(i), x(j)]  =  max |  u(i + k -1)  - u(j + k -1)  | 

for k = 1, 2, . . . . m. 

 

5. Next define: 

 

To this point, Approximate entropy yielded that  

Φ
m+1

(r) – Φ
m

(r) = the average over i of  

 ln [ probability that | u(j+m) – u(i+m) | ≤ r  

  

  given that  

 | u (j+k) – u (i+k) | ≤ r     for k = 0,1,....m-1 ] 

 

C    (r) = { number of x(j) such that d[ x(i), x(j)] ≤ r } / ( N + m -1 ) 
m 

i 
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6. (ApEn) Approximate entropy equation: 

 

ApEn= Φ
m

(r) – Φ
m+1

(r)    for m and r fixed as in step 2. 

 

Work by Manis (2008) developed a way to increase the speed of approximate 

calculations. In this method, data is assigned buckets, the buckets are examined for 

similarity of data pairs, and updates made to the overall calculation.  

Sinai (2007) explained the entropy of dynamical systems and stated that 

entropy (h) of a measurable transformation of the dynamical system was in a set of 

entropy values for the entropy across the upper bounds of all finite partitions. Sinai (2007) 

further stated that Kolmogorov proved this theorem in a lecture on Bernoulli partitions 

where entropy must be positive. 

Richman and Moorman (2000) developed Sample entropy, which was a variant of 

the Approximate entropy. Sample entropy does not count self-matches and is the negative 

natural logarithm of the conditional probability that two sequences for m points remain 

similar at the next point. Self-matches were not included in the probability calculation. 

Approximate entropy quantifies information about complex data that may be 

noisy and corrupted in both deterministic and stochastic environments (Chen et al., 2005). 

With both Approximate entropy and its variant Sample entropy, the equations use two 

variables that must be predefined. One variable is the embedding dimension, m. The 

second variable is the threshold that acted as a noise filter with the designation of r. 

Chen et al. (2005) referred to a recommendation by Pincus (1991) for slow dynamic 

signals in which r should be 0.1 to 0.26 (10% to 26%) of the standard deviation of the 

data. They also recommended that m should be 1 or 2 for 100 to 5,000 data points. Chen 
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et al. (2005) detailed the calculation for Approximate entropy and Sample entropy in their 

research. Both calculations were six step processes not described in this thesis.  

 

Methods and applications used in this research. 

 

Lima et al. (2012) used different entropy calculations in their research. The most 

used calculation for entropy of computer communications work was that of Shannon 

(1948). Lima et al. (2012) extended the Shannon entropy calculation in the C4.5 

classification algorithm to include Rényi and Tsallis variations of entropy. This compared 

the feature selection ability of the Rényi and Tsallis entropy calculations versus the 

Shannon method. 

Very little research existed that addressed the use of Approximate entropy and 

Sample entropy for use with intrusion detection data. The focus of Approximate entropy 

and Sample entropy calculations was data that exhibited periodicity. The proper data 

must align with the Approximate and Sample entropy models used. 

Sharma and Mukherjee (2012) utilized a Naïve Bayes classifier in WEKA that 

reduced the dimensionality of intrusion detection system data sets.  The Naïve Bayes 

classifier worked well with high dimensionality data sets and had a strong independence 

relation assumption in which the features were independent of a class and the probability 

of one attribute did not influence the probability of the other. They used the entropy-

based supervised discretization. This process transformed continuous models into discrete 

parts for analysis. In particular, the WEKA application calculates a result, iteratively 

removes a feature, and the results are compared for effectiveness. 
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The main classification algorithms used for feature selection were genetic 

algorithms, decision trees, Bayes networks, and neural networks. Lima, et al. (2012) used 

classification models implemented for medical data that included CLONal selection 

ALGorithm (CLONALG), Clonal Selection Classification Algorithm (CRCA), and 

Artificial Immune Recognition Systems (AIRS).  The attribute selection method used by 

Lima et al. (2012) was C4.5. They modified the entropy calculations to include Rényi 

entropy and Tsallis entropy, in addition to the Shannon entropy calculations available in 

C4.5. 

The data mining capabilities of the WEKA software used by Lima et al. (2012) 

provided an extensible environment to modify and insert custom calculations for the 

analysis. Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten (2009) discussed this 

flexibility in their paper on WEKA. Multiple forms of data entry were available, 

including comma separated variables as is contained in the KDD CUP 99 data set. The 

WEKA application was Java based and provisions were available to add custom software. 

The WEKA open-source project specifically focused on open-source data mining systems. 

The research conducted by Lima et al. (2012) incorporated the use of the wrapper 

model into the C4.5 application for their model. They surmised that in general, the 

wrapper method was more effective in selecting the best features.  
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Chapter 3 

Methodology 

 

Overview of Research Methodology 

 

This research incorporated the use of entropy in the statistical methods for feature 

selection to detect network intrusions. The goal was to reduce the number of features 

required to identify anomalies in a set of data from an intrusion detection system. Using 

Approximate and Sample entropy as metrics in the feature selection process was part of 

achieving that goal. The applicability of this method was adapted to the detection of 

different intrusion types that exhibited periodicity or modeled with periodicity.  The 

focus was on the use of the entropy statistic to provide additional information regarding 

the content and variability of data. 

The approach used was based on the use of entropy for feature selection as that 

conducted by Lima et al. (2012). The Lima et al. research utilized the C4.5 decision tree 

modeled with the Shannon, Rényi, and Tsallis entropy calculations as part of the statistics 

for attribute selections. Research conducted by Yentes et al. (2013) used Approximate 

entropy and Sample entropy to measure the randomness of periodic biomechanical data 

such as a person’s walking gait. This research includes the Approximate entropy and 

Sample entropy within the C4.5 decision tree. 
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Specific Research Methods Employed 

 

The Waikato Environment for Knowledge Analysis (WEKA 3, n.d.) software 

framework was used for the C4.5 decision tree generation that is designated as J48 in the 

WEKA classification analysis package. The 10-fold cross validation option validated the 

results. Programming modifications made to WEKA enabled the use of Rényi, Tsallis, 

Approximate, and Sample entropy calculations and combinations.  

Data for the research originated from two different sources. The KDD CUP 99 

data used by Lima et al. (2012) was one source. The second set of data was from SRI 

International in which the data was collected from real-world malware attacks. The use of 

these two different data sources supported a process for validating the methods used in 

identifying anomalies from the KDD CUP 99 data set. The second set of data used the 

same process in finding anomalous activity. 

Following the finalization of the basic methods and techniques mentioned above, 

the applications for classification and feature selection were developed and programs 

written. The next set of activities identified the code development required for Rényi, 

Tsallis, Approximate, and Sample entropy calculations and statistical algorithms. 

Development also included writing programs that acquired, parsed, and formatted the 

data for use in the analysis programs and its associated results.   

Analyzing the results from the decision trees and extracting the features provided 

data to compare metrics from established research by Lima et al. (2012). The metrics 

used for the comparisons examined the classification values and the features selected.  

This started an iterative process of working with both sets of data available, producing 

results, and comparing them with the selected standards. Adjustment made to the 
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methods or calculations to improve the performance and robustness of the results 

continued until no significant improvement was gained by more changes. As the research 

completed, new literature was reviewed for comparison of the techniques and methods to 

validate the conclusions. No additional research was identified that utilized similar 

methodologies. 

Instrument Development and Validation 

 

The primary application used during the analysis was the WEKA program 

(WEKA 3, n.d.). This application contained the tools required for the analysis. 

Modifications made to the WEKA application implemented the Rényi, Tsallis, 

Approximate, and Sample entropy statistic modules developed for this research. The 

general description of the Approximate entropy and Sample entropy algorithms were set 

forth in the paper by Pincus and Keefe (1992). The paper by Hall et al. (2009) provided a 

description of the WEKA program along with its history, accomplishments, and 

capabilities. 

A web site called “The Code Project” contained the C++ code for both the 

Approximate entropy and Sample entropy algorithms that was posted by Chesnokov 

(2008). This downloaded code was validated for correctness by comparing the process 

described by Pincus and Keefe (1992). Modifications were made to the Chesnokov (2008) 

code to translate it into Java code. The Approximate entropy and Sample entropy 

algorithms were integrated into the WEKA J48 tree classification package for feature 

selection. A paper by Bouckaert, Frank, Hall, Holmes, Pfahringer, Reutemann, and 

Witten (2010) described the process of custom code integration into WEKA.  
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The research results presented an objective description of the outcomes with 

tables, graphics, and text along with a discussion of the methods used. Also included 

were references to research literature supporting or refuting the findings. 

 

Resource Requirements 

 

This research utilized the expertise of researchers, computer systems, applications, 

and data. Collaboration occurred via email with committee members, other researchers, 

and peers as needed. These researchers were considered knowledgeable and experts in 

intrusion detection mechanisms, data analysis, and statistics. 

Windows and Linux based computer systems were used for data retrieval, storage, 

development, preparation, and processing. The primary computer used was an HP laptop 

running the Windows 8 operating system (Win8, n.d.). Linux was supported via a virtual 

machine using Oracle VM VirtualBox (VB, n.d.) on the HP laptop. VirtualBox allowed 

the instantiation of virtual machines to run on a system. The Windows 8 system ran 

VirtualBox to support the Ubuntu operating system (Ubuntu, n.d.). The version of 

Ubuntu used in VirtualBox was 14.04.1.  

The Eclipse (n.d.) Integrated Development Environment was used for the Java 

applications and integration into WEKA. Additional development tools were available in 

a Linux environment including vi, javac, etc.  

Two main data sources were used. One was the KDDCUP 99 data file, considered 

one of the standard data sets used for Intrusion Detection research (KDD Cup 1999 

Data, 1999). The second data source originated from the SRI International Cyber-Threat 



 45  

Analysis Project (SRI, n.d.) and this is the first time it was used for feature election in this 

manner. 

Summary 

 

This section described the methodologies used to conduct the research and 

include Approximate, and Sample entropy into the feature selection process. The goal 

was to determine if the Approximate and Sample entropies generated better results than 

the Shannon, Rényi, and Tsallis entropies used by Lima et al. (2012), and the Shannon 

entropy used by Sharma and Mukjherjee (2012). The data acquired for this research was 

KDDCUP 99 data, and data from the SRI Cyber-Threat Analysis project as the second 

source selected. The WEKA application, using the J48 decision tree analysis with the 

10-fold cross validation option, was selected to conduct the analysis. The output from J48 

provided a decision tree analysis for the selected features and classification statistics. The 

output values were extracted and compared with the selected features from Lima et al. 

(2012) and the work of Sharma and Mukjherjee (2012). 

The modification and development of software was needed for this research. The 

open source WEKA application provided the primary package for generation of the 

decision tree analysis. The features identified were part of the decision tree output. The 

WEKA application was modified to include the Rényi, and Tsallis entropies that Lima et 

al. (2012) used, and included the Approximate and Sample entropies. Each of the added 

entropy calculations were made available for the analysis along with the Shannon entropy 

that was included in WEKA. Work by Chesnokov (2008) was the basis for the source 

code used in the Approximate and Sample entropies calculations. The code was then 
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modified for use in WEKA. The approach used for modifying WEKA and including new 

source code were identified by Bouckaert et al. (2010).  
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Chapter 4 

Results 

 

Introduction 

Chapter 4 focuses on the processes used for this research, the results achieved, 

and the research accomplishments during the data acquisition, data preparation, and 

analysis. This work developed new methods for labeling activity in intrusion detection 

system data resulting in multiple views of different entropy calculations in the feature 

selection process. These views provide different options for the selection of relevant 

features from data sets that identify anomalous traffic from intrusion detection system. 

The analysis methodology used multiple entropy statistics developed for the C4.5 

classification tree algorithm.  

The primary analytic tool used for the analysis was the open source WEKA 

application written in Java by the Machine Learning Group at the University of Waikato 

in New Zealand. Being open source, all source code and binaries were available for 

downloaded and modification. Java and Linux shell scripts were the languages used to 

develop additional software applications for this research. 

Anomalous and malware data acquired for this research originated from two 

sources. One was the KDD CUP 99 data used by many intrusion detection researchers for 

validating new intrusion detection processes and statistical evaluations. The second data 

source consisted of real-world data collected by the Computer Science Laboratory at SRI 

in Menlo Park, California in cooperation with its director, Phillip Porras. This SRI data 
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originated from malware alerts collected by the BotHunter (BotHunter, n.d.) application 

that identified malware in network traffic.  

 

Computing System Environment 

The computing environment for this research included both Microsoft Windows 

and Linux based operating systems that ran on an HP Envy laptop. The system’s primary 

hardware consisted of an Intel I7 processor, 12 GB of memory, a 1 TB hard disk drive, 

and a 17-inch screen. Microsoft Windows 8.1 was the operating system on the laptop. 

The standard Microsoft Office applications suite was included along with the Oracle VM 

VirtualBox virtualization product.  

Oracle VM VirtualBox version 4.3.12 is a type 2 hypervisor for virtual machine 

support to host the Linux kernel version 3.13.0-35-generic with the Ubuntu operating 

system version 14.04.1. This system configuration supported the concurrent use of a 

Microsoft Windows and Linux environment while also enabling the sharing of files 

between the two operating system applications and their utilities.  

Directory structure for the file systems consisted of two types: the standard 

Microsoft Windows hierarchical structure, and the Linux hierarchical structure. A share 

point established within the MS Windows file system and the Linux file system provided 

a common point to mount file systems.  Any files written below this share point in the file 

directory structure were accessible by both operating systems. 

As identified in the introduction of this chapter, the WEKA source code and 

binaries were available for download from the WEKA website (WEKA 3, n.d.). In 

addition, the files were available for different operating systems. This research 
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downloaded and implemented the Linux version of WEKA as the main development and 

execution platform. WEKA Version 3.4.19 was acquired as a zip file, which was the 

same version used by Lima et al. (2012). The expanded zip package consisted of Java and 

binary code that installed into default directories.  

 

Code Modification and Development 

 

Eclipse version 3.8 provided the Integrated Development Environment to modify 

the WEKA Java source code and develop new Java classes. The WEKA download 

consisted of Java source code files, documentation, and the build.xml support file for use 

within Eclipse.  

Several WEKA Java methods required modification in order to implement the 

new entropy calculations into the source code. Calls to the entropy calculations from the 

WEKA application were for the Java methods in the EntropyBasedSplitCrit.java file. 

The EntropyBasedSplitCrit class contained methods named logFunc(), oldEnt(), and 

newEnt(). The J48 classification algorithms used these methods in the calculation.  

In the downloaded WEKA code, only the Shannon entropy calculation was 

included in the source code. Modifications made to the EntropyBasedSplitCrit class 

added the Rényi, Tsallis, Approximate, and Sample entropy calculations. Selecting the 

entropy calculation to use was a run time configurable option defined in an external file 

that set the values for the current WEKA analysis. The J48 classification tree module 

read the configuration file at run-time. Parametric values, identified in the external file, 

determined the type of entropy algorithm to use and the values for the corresponding 

variables in the program.  
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In the EntropyBasedSplitCrit class, a method created for this analysis, named 

varInitialize(), defined the variables used with the five different entropy calculations. 

This method initiated a program call that read the configuration file then set the 

corresponding parameters. The Rényi and Tsallis entropy calculations were added to the 

existing Java code in the EntropyBasedSplitCrit class by modifying the logFunc(), 

oldEnt(), and newEnt() methods. Appendix A lists the modified 

EntropyBasedSplitCrit class Java code. 

Four additional classes were developed. One was the fileRead class that read and 

parsed the configuration file. The second class, entUtils, provided utilities for use by the 

entropy application, which included a method to calculate standard deviation, stdev(), for 

data passed to it by methods in the classes that calculated Approximate and Sample 

entropies. In addition, a method added to the entUtils class handled the reading of the 

configuration file and printing its parameters. This method, called the fileRead() method 

from the fileRead class, used the results to print attributes and set variables for the 

subsequent calculations. Appendix D lists the Java code for the fileRead class and 

Appendix E lists the entUtils class Java code.  
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Configuration File 

The configuration file, named EntropyInfoFile.txt, was read when the J48 tree 

classification module instantiated the EntropyBasedSplitCrit class. Within the 

configuration file, values used by different entropy calculations were initialized in 

WEKA. Depending on the entropy calculation used, only those variables required for the 

calculations were relevant, variables not needed were ignored.  

Appendix F provides an example of a configuration file. Variables included in the 

external configuration file are listed in Table 1.  

Name Description 

  

etype A numeric designation of the entropy calculation to use.  

   0 = Shannon 

   1 = Rényi  

   2 = Tsallis 

   3 = Approximate 

   4 = Sample 

  

alpha The numerical value for the alpha term in the Rényi and Tsallis entropy 

calculations that denotes the sensitivity to the considered probability 

distribution shapes. Values proposed by Lima et al. (2012) are 0.5 for Rényi 

and 1.2 for Tsallis, however, these values may be set to a value suitable for 

the calculation 

  

m This is the window size for the Approximate and Sample entropy 

calculations. Research by Yentes et al. (2013) proposed a value of 2, but 

may be reset in this configuration file. 

  

r This is the amount of the variance to be used in the calculation of 

Approximate and Sample entropy. Research by Yentes et al. (2013) 

proposed a value of 0.2, but may be reset in this configuration file. 

  

D This is a Boolean variable used to turn on debugging during the 

development and modification of the application. It has no impact on the 

computations. 

Table 1 Entropy Configuration File Variables 
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Algorithms for Rényi and Tsallis Entropy Calculations 

The Literature Review chapter presented details of the Rényi and Tsallis entropy 

calculations. These equations were programmed in Java for this research and added to 

WEKA as logFunc(), oldEnt(), and newEnt() methods in the EntropyBasedSplitCrit 

class. The logic included a series of if statements based upon the etype parameter that 

sets the type of entropy based on the configuration file.   

 

Algorithms for Approximate and Sample Entropy Calculations 

New classes for the Approximate and Sample entropy calculations were 

developed and identified as ApproximateEntropy, and SampleEntropy. These new 

classes were downloaded in the C++ language from Chesnokov (2008), converted to Java 

code, and further modified for use within this research. The methods in these classes were 

programmatically called from the logFunc(), oldEnt(), and newEnt() methods of the 

EntropyBasedSplitCrit class. Appendix B and Appendix C list the modified 

ApproximateEntropy and SampleEntropy Java classes respectively. 

 

Eclipse Usage 

The Eclipse (n.d.) package provided an Integrated Development Environment. Its 

development began at IBM and then the Eclipse Foundation sponsored its support. 

Eclipse, an open source application, enabled the development of programming projects in 

different computer languages, including Java. For this research, Eclipse supported Java 

code development, modifications, compilations, and installation of the weka.jar file. The 

build.xml file, provided in the initial WEKA download, was updated for the purposes of 
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this research in order to compile and install the weka.jar file where needed. Appendix G 

lists the modified build.xml file. 

 

Executing WEKA 

The WEKA application ran in an Ubuntu environment within a virtual machine. 

The command line below started the WEKA GUI and included the required class paths.  

 

java -cp /media/sf_nova/workspace/weka/dist/weka.jar:\ 

/media/sf_nova/data/KDD/wekaclassalgos/wekaclassalgos.jar \ 

-Xmx8192m weka.gui.GUIChooser 

 

In the shell script, the memory allocation increased from the default of 512 MB to 

8192 MB to accommodate large data files. The back slash “\” at the end of the line 

indicated a continuation of the command line. The WEKA source code version 3.4.19 

was used to be consistent with Lima et al. (2012) work. 

The J48 classification tree execution used the ten-fold validation option for the 

analysis. Saved results determined the features selected to construct the classification 

tree. Appendix L and Appendix M list the shell scripts that read the files containing the 

J48 classification tree results. These shell scripts extracted the features used to construct 

the classification tree from the KDD CUP 99 results and the SRI results respectively. 

Appendix N displays the output for the DOS category of the KDD CUP 99 data using 

Shannon entropy.  
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KDD CUP 99 Data Acquisition and Preparation 

This data set contained approximately five million records of attacks and normal 

traffic. The file, downloaded from the KDD CUP 99 website (KDD Cup 1999 Data, 

1999), was in a comma separated value (csv) format that enabled easy manipulation using 

Linux commands. Native WEKA data is in the Attribute-Relation File Format using the 

extension arff. The data set contained 42 columns that describe each entry in the file. 

Appendix J lists the features and their type corresponding to the data designation as 

represented in the arff file. 

Research conducted by Lima et al. (2012) used a subset of the KDD CUP 99 data 

for their analysis. In order to replicate the work by Lima et al., similar attack and normal 

traffic counts were replicated as close as possible, to accurately reproduce their results. 

The specific lines used from the KDD CUP 99 were unknown. Table 2 displays a tally of 

the KDD CUP 99 data available by attack type, and labeled “Available”. The column 

labeled “Count” identified the number of entries of available data used during the 

Lima et al. analysis and used in this research.  A discrepancy identified in the multihop, 

phf, spy, and loadmodule attack counts used by Lima et al. indicated more data than 

supplied within the KDD CUP 99 dataset. For those instances where the “% of Total” 

was greater than 100%, the maximum attack counts of entries were used even when the 

count was less than what Lima et al. (2012) used in their research paper as noted in the 

“Comment” column.  

Using the attack counts listed in Table 3 by Lima et al. (2012) and in this research, 

the files generated used a series of Linux commands pipelined together. This table 

showed the total line counts for each of the files using the required WEKA format, arff. 
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The command line below provides an example for the selection of the “back” attack from 

the DoS category, which originated from a file named kdd.data.csv. This Linux 

command string was repeated for each attack and appended to the proper attack file.  

 

$ cat kdd.data.csv | grep back | shuf –n 1026 >>DoS.csv 

 

Appendix H explains the commands used above. Appendix I lists the complete 

Linux shell script used to generate the different data files that reproduced Lima et al. 

(2012) results. The shell script wrote data to files used in WEKA. Additional information 

entered into the arff files defined the variable names and data types contained in the file. 

Since no timing information was associated with the KDD CUP 99 data, having the same 

attacks grouped together modeled the periodicity for the Approximate and Sample 

entropy. Appendix K provides a partial listing of the file contents for DoS.arff. 
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Category 

   Attack 

 

Available 

 

Count 

 

% of Total 

 

Comment 

DoS     

   back. 2,203 1,026 46.57%  

   land. 21 11 52.38%  

   neptune.  1,072,017 10,401 0.97%  

   pod.   264 69 26.14%  

   smurf. 2,807,886 7,669 0.27%  

   teardrop 979 15 1.53%  

 Normal 972,781 2,573 0.26%  

     

Probe     

   Ipsweep 12,481 586 4.70%  

   Nmap 2,316 151 6.52%  

   Pportsweep. 10,413 155 1.49%  

   Ssatan. 15,892 16 0.10%  

 Normal. 972,781 1,704 0.18%  

     

R2L     

   ftp_write 8 5 62.50%  

   guess_passwd 53 53 100.00%  

   imap 12 11 91.67%  

   multihop. 7 11 157.14% Used 7 

   phf. 4 5 125.00% Used 4 

   spy. 2 4 200.00% Used 2 

   warezclient. 1,020 60 5.88%  

   warezmaster. 20 20 100.00%  

 Normal 972,781 1934 0.20%  

     

U2R     

   loadmodule. 9 10 111.1% Used 9 

   buffer_overflow 30 21 70.00%  

   perl. 3 3 100.0%  

   rootkit. 10 7 70.00%  

 Normal. 972,781 1,676 0.17%  

Table 2- Attack Counts (Lima et al., 2012) 

 

 

 
Category/ 

File name 

Lines in 

arff file 

DoS.arff 21,813 

Probe.arff 2,661 

R2L.arff 2,145 

U2R.arff 1,765 

Table 3 - Line counts in KDD CUP 99 .arff data files 
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KDD CUP 99 Analysis Results 

This section describes the analytic results of this research by replicating the 

approach use by Lima et al. (2012), as closely as possible. The following descriptions and 

tables demonstrated the results were in close agreement with Lima et al. classifications. 

This agreement does not extend to the number of features selected. The feature selected 

and their counts vary significantly between Lima et al. work and this research. 

The WEKA application used files generated for the DoS, Probe, R2L and U2R 

categories as input. Appendix K lists a portion of the arff file for the DoS attack 

category. Appendix N displays a sample of the J48 classification output for the DoS 

attack category. Appendix O shows results of the shell script execution that extracted the 

features from Appendix N.  

Table 4 presents the results of this research using the KDD CUP 99 data with the 

WEKA analysis for the different entropy calculations.  Note that for the Rényi entropy, 

the alpha value was 0.5, and for the Tsallis entropy, the alpha value was 1.2, as 

recommended by Lima et al. (2012). When specifying Approximate and Sample entropy, 

the window size, m, was “2” and the r value was “0.2” for both entropy calculations as 

specified by Yentes et al. (2013). The definitions below describe each column listed in 

the tables. 

 Attack & Entropy = Attack type and entropy used in the calculation 

 Source = Origin of calculation results:  

Research indicates the work conducted in this research. 

Lima described information from Lima et al. (2012). 

Sharma described information from Sharma and Mukherjee (2012). 
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 CC = Correctly classified attacks. 

 ICC = Incorrectly classified attacks. 

 Features Selected = the features published from Lima et al. (2012), 

Sharma and Mukherjee (2012), or the WEKA J48 classification analysis. 

 Qty = Number of features identified.  

 

 
Attack 

  Entropy 

 

Source 

 

CC 

 

ICC 

 

Features Selected 

 

Qty 

DoS      

   Rényi      

 Lima 99.9632% 0.0368%  2, 5, 7, 8, 23, 32, 35, 36, 39 9 

 Research 99.4578% 0.5422%  4, 6, 7, 8, 12, 13, 23, 25, 27, 29, 32, 34, 37, 40 14 

   Shannon      

 Lima 99.9495% 0.0505%  2, 5, 7, 8, 23, 34, 36, 39 8 

 Research 99.9541% 0.0459%  2, 3, 5, 7, 8, 25, 29 7 

 Sharma 99.9000% 0.1000% 5,6,24 3 

   Tsallis      

 Lima 99.9586% 0.0414%  2, 5, 7, 8, 23, 26, 34, 39 8 

 Research 99.9357% 0.0643%  2, 3, 4, 5, 6, 7, 8, 10, 23, 24, 25, 26, 29, 31, 36, 37 16 

   ApEn      

 Research 99.8989% 0.1011%  2, 3, 4, 5, 6, 7, 13, 23, 24, 37 10 

   SampEn      

 Research 99.9081% 0.0919%  2, 3, 4, 5, 6, 7, 13, 23, 24, 36, 37 11 

      

Probe      

   Rényi      

 Lima 99.4266% 0.5734%  1, 2, 5, 6, 25, 30, 32, 33, 37, 38, 40 11 

 Research 96.4778% 3.5222%  2, 3, 4, 5, 6, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 

37 
17 

   Shannon      

 Lima 99.5031% 0.4969%  1, 2, 4, 5, 6, 23, 30, 33, 37, 38, 40 11 

 Research 99.0046% 0.9954%  3, 5, 6, 12, 23, 25, 27, 32, 34, 36, 37, 40, 41 13 

 Sharma 98.8000% 1.2000%  1,5,6,30,33 5 

   Tsallis      

 Lima 99.3119% 0.6881%  1, 2, 4, 6, 23, 30, 31, 33, 37, 38, 40 11 

 Research 99.1577% 0.8423%  2, 3, 5, 25, 29, 34, 35, 36, 37, 39, 40, 41 12 

   ApEn      

 Research 98.4303% 1.5697%  1, 2, 3, 4, 5, 31, 32, 34, 36, 37 10 

   SampEn      

 Research 98.4303% 1.5697%  1, 2, 3, 4, 5, 31, 32, 34, 36, 37 10 

      

 

Note: Table 4 continued on next page 
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Attack 

  Entropy 

 

Source 

 

CC 

 

ICC 

 

Features Selected 

 

Qty 

R2L      

   Rényi      

 Lima 98.9534% 1.4066%  2, 5, 6, 10, 11, 12, 19, 33, 35, 37, 38, 39 12 

 Research 95.6107% 4.3893%  1, 4, 10, 13, 19, 22, 25, 34, 35, 36, 38 11 

   Shannon      

 Lima 98.9058% 1.0942%  1, 3, 5, 6, 9, 10, 11, 17, 19, 22, 32, 33, 35 13 

 Research 98.4733% 1.5267%  1, 3, 5, 6, 10, 11, 12, 14, 17, 33, 36, 38, 39 13 

 Sharma 97.0000% 3.0000%  1, 3, 5, 6, 23, 24, 30, 31, 32, 36 10 

   Tsallis      

 Lima 98.8582% 1.1418%  1,3, 5, 6, 10, 11, 17, 19, 22, 37, 38 11 

 Research 98.1393% 1.8607%  1, 4, 5, 10, 11, 13, 17, 19, 22, 26, 36, 39, 41 13 

   ApEn      

 Research 97.9485% 2.0515%  1, 3, 4, 5, 10, 12, 17, 18, 23, 35, 36, 40 12 

   SampEn      

 Research 97.9485% 2.0515%  1, 3, 4, 5, 10, 12, 17, 18, 23, 35, 36, 40 12 

 

U2R 

     

   Rényi      

 Lima 99.4758% 0.5242%  13, 18, 32, 33, 36 5 

 Research 98.4848% 1.5152%  1, 4, 10, 13, 19, 22, 25, 34, 35, 36, 38 11 

   Shannon      

 Lima 99.5341% 0.4659%  13, 16, 17, 18, 32, 33 6 

 Research 99.0093% 0.9907%  3, 5, 13, 14, 16, 17, 18, 29, 32, 34, 36 11 

 Sharma 80.8000% 19.2000%  1, 3, 5, 6, 10, 11, 13, 14, 16, 17, 31, 32, 33, 34, 36, 

37 
16 

   Tsallis      

 Lima 99.4176% 0.5824%  13, 16, 18, 32, 33 5 

 Research 98.5431% 1.4569%  1, 4, 5, 10, 14, 17, 18, 24, 30, 32, 34, 36, 37 13 

   ApEn      

 Research 98.6014% 1.3986%  2, 3, 6, 10, 12, 14, 17, 18 8 

  SampEn      

 Research 98.6014% 1.3986%  2, 3, 6, 10, 12, 14, 17, 18 8 

Table 4- Attack Classification Results 

 

The features selected, and the quantity of features selected, varied significantly 

among the different entropy types and analysis sources. Table 4 details the results of 

these variations. The bolded feature numbers under the “Features Selected” column 

were common to more than 50% of the analysis results grouped by “Attack” type. The 

table also shows the relationship of the entropy type by attack type used in the calculation 

of correctly classified attacks and the number of features varied. 
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Table 5 presents a different view of the results from Table 4. Table 5 is sorted by 

the number of features found and entropy type, all grouped by attack type. It is observed 

that entries with the minimum number of features selected were not necessarily the best 

correctly classified results for the attack type. The results also showed that the lowest 

number of features selected varied between attack type and entropy type. The Sharma and 

Mukherjee (2012) results were not included since their approach did not use the J48 

classification tree method. 

  

 

The features selected by the approaches used by Lima et al. (2012) and this 

research produced varying results. However, there are commonalities among selected 

features. Table 6 lists the number of features selected by Lima et al. and this research 

along with the number of features selected which were in agreement with the results. 

These counts were taken from the preceding tables to compare the different entropy 

calculations used. This table demonstrates that even though significant variations in the 

results became evident, a subset of feature commonalities existed. 
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Attack 

      # Features 

 

Source 

 

Entropy 

 

CC 

DoS    

7 Research Shannon 99.9541% 

8 Lima Tsallis 99.9586% 

8 Lima Shannon 99.9495% 

9 Lima Rényi 99.9632% 

10 Research ApEn 99.8989% 

11 Research SampEn 99.9081% 

14 Research Rényi 99.4578% 

15 Research Tsallis 99.9357% 

    

Probe    

10 Research ApEn  98.4303 

10 Research SampEn 98.4303 

11 Lima Shannon 99.5031 

11 Lima Rényi 99.4266 

11 Lima Tsallis 99.3119 

12 Research Tsallis 99.1577 

13 Research Shannon 99.0046 

17 Research Rényi 96.4778 

    

R2L    

10 Lima Tsallis 98.8582% 

11 Research Rényi 95.6107% 

12 Lima Rényi 98.8582% 

12 Research ApEn  97.9485% 

12 Research SampEn 97.9485% 

13 Lima Shannon 98.9058% 

13 Research Shannon 98.4733% 

13 Research Tsallis 98.1393% 

    

U2R    

5 Lima Rényi 99.4758% 

5 Lima Tsallis 99.4176% 

6 Lima Shannon 99.5341% 

8 Research ApEn  98.6014% 

8 Research SampEn 98.6014% 

11 Research Shannon 99.0093% 

11 Research Rényi 98.4848% 

13 Research Tsallis 98.5431% 

Table 5 Listing of the Feature Selection Count sorted by Feature count 
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Category/ 
Entropy Research Lima Agreement 

DoS    

Rényi  14 9 4 

Shannon 7 8 4 

Tsallis 16 8 6 

        

Probe    

Rényi  17 11 8 

Shannon 13 11 5 

Tsallis 12 11 3 

        

R2L    

Rényi  11 12 4 

Shannon 13 13 8 

Tsallis 13 10 7 

        

U2R    

Rényi  11 5 2 

Shannon 11 6 5 

Tsallis 13 5 2 

Table 6 Summary of KDD CUP 99 attack selected features 

 

 

In summary, the KDD CUP 99 analysis showed variations existed between the 

results presented by Sharma and Mukherjee (2012), Lima et al. (2012), and this research. 

The following were issues that influenced variations occurring in the results: 

 Methodology used in the calculations for the Rényi and Tsallis entropies 

in the Lima et al. (2012), were very different from the approach used by 

Sharma and Mukherjee (2012). 

 Subset of selected data for the analyses was different, since Lima et al. 

(2012) only listed attack counts.  
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SRI Malware Data 

This section used a real-world data source to validated and compare the approach 

that analyzed the KDD CUP 99 data. This additional data source demonstrated the 

applicability of different entropy calculations for feature selection from a real-world 

collection of data, not previously used for feature selection. Phillip Porras, Director of the 

Computer Science Laboratory at SRI International, provided a source of collected 

malware intrusion data for this research. It consisted of files in pcap and other formats 

that contained malware alerts identified by the BotHunter (n.d.) project. 

BotHunter was a project developed under the Cyber-TA research program by the 

Computer Science Laboratory at SRI International (BotHunter, n.d.). The system 

classified communications from both incoming and outgoing traffic at a network 

boundary. Algorithms detected potential malware intrusions by analyzing the sequence of 

events that occurred during the exchange using a customized version of Snort (n.d.), as 

noted in the BotHunter description. The events were classified and correlated to the 

activity of the malware life cycle model.  

 

SRI Malware Data Acquisition and Analysis Method 

Phillip Porras, at SRI, provided access to the Index of releases for a malware 

(n.d.) website used for this research. The website organized entries by days starting on 

May 1, 2008. Upon selection of a date, the corresponding page was displayed which was 

the “SRI's Multiperspective Malware Infection Analysis Page” for that date. 

Appendix P displays a sample of the web page.  
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Each row in “SRI's Multiperspective Malware Infection Analysis Page” 

contained an alert entry triggered by a match from a Snort rule. Each alert contained 

multiple links to individual text files, available for download, and the complete network 

communications session in compressed pcap format. For this research, ten days of alerts 

yielded 4,328 usable events. The following steps described the process used to acquire 

and synthesize the SRI data for this research. 

 

1. Primary web page. The web page for each date was saved into a file named 

“Multiperspective Malware Analysis Page.htm”. A page from each of the 

following dates was retrieved: 20080501, 20080502, 20080503, 20080504, 

20080505, 20080506, 20080507, 20080508, 20080509, and 20080510. A 

separate directory hosted each date in which the associated malware files 

existed. 

 

2. Identification of files to retrieve. Within the “Multiperspective Malware 

Analysis Page.htm” files, there were many html “href” tags referencing 

URL’s to files for download. A Linux command string to read the 

“Multiperspective Malware Analysis Page.htm” files and select the URL’s 

which contained character strings within the file name required for the 

analysis. The file types contained the character strings of “pcap.gz” and 

“virus-labels” within the URL. These character strings were entered into a file 

name “ll”. Output of this command string created a script file named “file.sh” 

for subsequent execution. A Linux “wget” command prepended each 
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command line for the URL file retrieval. The following command string was 

used: 

 

cat Multiperspective\ Malware\ Analysis\ Page.htm |fgrep -f ll|sed -e 

"s/href/\r\nhref/g"|grep http|cut -f2 -d\"|sed -e "s/^/wget 

/g"  >file.sh 

 

 

The commands in this string sent the contents of the files to the fgrep 

command that selected lines contained in the character strings stored in file ll. 

The sed command put a carriage return and new line characters in front of the 

href tag. The grep selected lines that contained http character string. The cut 

selected the second field from the line using a double quote (“) as the 

delimiter. Lastly, the sed command put a wget character string at the 

beginning of the line. 

 

3. Download of files. Appendix Q displays a portion of the resultant “file.sh” for 

the date of 20080501. This file ran on a command line with the named files 

downloaded to the current directory. Appendix R displays a sample listing of 

the downloaded files. The file extension designators are: 

a. .pcap.gz – the compressed pcap file from the session capture. Step 5 

described the process that expanded these files.  

b. .alerts – contained the alerts generated by BotHunter.  

c. .rules – contained the Snort rules that generated an alert. 

d. .alerts_botHunter.txt – The report generated by BotHunter. 
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e. .virus-labels – Reported the analysis of the suspicious test results from 

VirusTotal (n.d.). It listed the viruses found in the pcap file from 

different Anti-Virus vendors. The file has a hex based name and may 

be associated with multiple pcap files. In some cases, 

multiple .virus-labels files are associated with one pcap file. 

 

Note: Appendix U lists the above named files of alerts, .rules, 

alerts_botHunter.txt, and virus-labels. 

 

4. Organizing files. As shown in Appendix R, the files names did not relate well 

to each other. In order to improve file management, a program listed in 

Appendix S, prepends a sequential numbering scheme to related files. 

Appendix T shows a partial listing of the files for 20080501 and their 

corresponding sequential numbering. The association showed the files with 

the date and numbering “.associations” extensions file in each date directory. 

 

5. Using tcpdump. To process the binary pcap.gz files, the files were 

uncompressed using the Linux “gunzip” command. The “tcpdump” 

command produced a readable text of packet activity. The “tcpdump” 

command line used was used as follows: 

 

cat pcap-file | tcpdump –r - > pcap-file.tcpdump 

 

 



 67  

6. Contents of tcpdump output. The tcpdump files listed the packet activity 

that generated the malware attack records. WEKA used the features extracted 

from these records for the feature selection process using the J48 classification 

tree algorithm. Each of the expanded pcap.gz files generated between less 

than 100 lines to over 80,000 lines of activity after the files were processed by 

“tcpdump”. 

 

7. Malware naming convention. In the files with the virus-labels extension, a 

number of antivirus vendors were listed along with their assignment of their 

name for the malware evaluated. There was no standardized malware naming 

convention that existed among the different antivirus vendors. Only one 

vendor, AntiVir, produced malware entries in all of the files. Not all vendors 

had entries for all the malware files. The AntiVir vendor was selected as the 

antivirus program for naming the malware in this research. Using one vendor 

enabled a consistent and standard naming convention for this research; 

therefore, the malware named by AntiVir provided the naming convention for 

each occurrence.  

 

8. Raw data assembly. The shell script named bf.sh collected all relevant raw 

data from the files and assembled the information into one file that generated 

the .arff file to use in WEKA. Appendix V lists the bf.sh script that ran in 

each date directory and the output generated was saved as date.bf such as  
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“20080501.bf”. All ten of the date.bf files were concatenated into one file, 

named SRI.bf, which was used in the analysis. 

 

9. Feature selection. The next task compiled all the features available for the 

assessment used in the analysis. The features selected originated from the 

tcpdump output, the rules files, and the alerts files.  Reviewing the available 

features and identifying those that had an impact on this analysis resulted in a 

list of twenty-two features including the malware detected. Appendix W lists 

and describes the twenty-two features chosen from the available data.  

 

10. Extracting features. Appendix Y lists the Java application that extracted the 

selected features from the data files. This program read the “SRI.bf” file as 

described in Step 8 and generated the results in a comma separated value (csv) 

format that was used in the data portion of the arff for WEKA. Additional 

information was manually added to the csv-formatted data to make it 

compliant with the WEKA arff formatting requirements. The resulting file 

header information was similar to that in Appendix K but designed for the SRI 

data. See Appendix X for a partial listing of the SRI data in arff format. The 

partial listing displayed the formatted header information for the arff 

information as required by WEKA at the start of the data portion. The total 

number of records for the data portion of the WEKA file was 4,328.  
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11. Analysis in WEKA. Analysis was conducted using WEKA with the arff file 

generated from the SRI Malware data store for May 1, 2008 through 

May 10, 2008. The file contained twelve malware attack types defined in 

Appendix U. The WEKA application ran each of the five entropy calculations 

using the J48 classification tree to determine which features influenced the 

results, and calculated statistics on the results.  

 

 

SRI Malware Analysis Data Preparation 

This section discusses the analysis of the real-world data that applied five entropy 

types to the feature selection process. In order to get different perspectives of the 

analysis, multiple sets of runs were conducted for each entropy calculation, varied the 

attributes, and focused on different labels and. The Shannon entropy was already 

included in the WEKA application and the Rényi, Tsallis, Approximate, and Sample 

entropy calculations were added to WEKA in a manner consistent with that used by Lima 

et al. (2012). The unique application of this research modeled the data to represent time-

based sequences for the Approximate entropy (ApEn) and Sample entropy (SampEn) in 

the classification model similar to that of Yentes et al. (2013).  

Defining the different combinations for the entropy calculations resulted in 221 

unique parameter configurations that provided detailed results. Each run had the entropy 

type and associated parameters varied as described in Table 7. The tunable parameter for 

the Rényi and Tsallis entropy calculations, the α term, denoted the sensitivity to the 

probability distribution shapes. For the Approximate and Sample entropy calculations the 

tunable parameters were the window size, m, and the amount of the standard deviation 
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used, r. The results compared the number of features selected by the different entropy 

types. The data used was from the SRI BotHunter application and included the complete 

set of 4,328 records labeled with appropriate malware descriptors. 

 

Entropy Parametric values Number of runs 

Shannon None 1 

Rényi α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 11 

Tsallis α = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.99 11 

Approximate 
m = 1, 2, 3, 4, 5, 6, 7, 8, and 9 

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 

99 

Sample m = 1, 2, 3, 4, 5, 6, 7, 8, and 9 

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 

99 

Table 7 - Parametric values used in SRI analysis 

 

Three sets of analyses conducted provided alternative views of the results. Each 

analysis utilized a different approach to the data labeling. The first analysis used the 

complete data set with the ten-malware types as listed in Appendix W. The goal was to 

identify the entropy type that produced the lowest number of features required when 

using all ten malware attacks as the labels.  

The second analysis examined the ten-malware attacks individually by the 

generating ten different data sets, each analyzing one specific attack. This goal was to 

determine the least number of features required to identify individual malware attacks 

labeled within the whole set of data. Ten separate runs were made, one for each malware 

attack as the label.   
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This third analysis looked at the data by infection type labeled as the field Enum 

in Appendix W. This analysis grouped the different malware attacks based upon 

communication flows between the internal host and a set of external hosts into infection 

types identified by the BotHunter application Cheung and Valdes (2009). Each activity 

entry was labeled with the infection type for the analysis.  

 

 

SRI Malware Results 

 

Results of the three analyses are presented. Each one shows that the percent of 

correctly classified values were mostly very high and close to each other numerically, 

however, the number of features required to select the correct malware showed much 

wider variation. The details are discussed in the remainder of this section. 

 

Analysis one – Data labeled by Malware attack 

In this first analysis, the data was labeled with the appropriate malware attack as 

identified in Appendix W. Each entropy calculation varied the parameters with the 

number of runs as shown in Table 7.  The complete results from the WEKA runs for this 

analysis are presented in Appendix Z. The lowest number of features required for each 

entropy type are listed in Table 8.  

Results showed that Tsallis, Sample, and Rényi entropy required six features for 

correct classification of the ten-malware attacks. Tsallis entropy had the highest correctly 

classified value of 99.9312%, followed by Sample entropy at 99.2428%. Rényi entropy 
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also required six features, but the correctly classified percentage was 90.3167%, which 

was 8.9621% to 10.3888% lower than the Tsallis and Sample entropy correctly classified 

values. Shannon entropy had a correctly classified value of 99.8853% but required 8 

features. 

For the Tsallis, Sample, and Rényi entropy calculations, the minimum number of 

features occur at only one point for each of the parameter combinations. This is quite 

different for Approximate entropy since the minimum number of features occur for a 

wide range parameter combinations. As previously noted, all the results for this analysis 

are listed in Appendix Z. These results in Table 8 show that Tsallis and Sample entropy 

require the fewest number of features with the highest correct classification percentage. 

 

Entropy #FS CC Parameters 

    

Tsallis 6 99.9312% alpha=1.9 

    

Sample 6 99.2428% m=1; r=0.2 

    

Rényi 6 90.3167% alpha=0.5 

    

Approximate 7 99.1051% 

 

m=2;r=0.01, 0.1, 0.2 

m=3,4; r=0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7 

m=5,6,7,8,9; r=0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99 

    

Shannon 8 99.8853%  

Table 8 – Lowest feature count by entropy type using the full set of SRI Malware data 

 

 

Analysis two – Data labeled individually by Malware attack 

Analysis two examined the number of features required to identify each specific 

malware attack by each entropy type using the entire data. In these runs, only one 

malware attack examined was labeled with the attack name, and the remaining entries 
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were labeled as “other”. The number of WEKA runs for this analysis was 2,210 since 

there were 221 combinations of the entropy calculations used times the 10 malware 

attacks. WEKA was not able to produce the selection of features that identify the attack 

for several of the entropy combinations. In those cases, an “NA” was entered for the 

number of features. Different methods are available to provide data for missing points as 

in this case that are entered as “NA”. Schafer and Graham (2002) identified different 

processes for interpreting missing data points. A discussion of these missing points is in 

Chapter 5.  Table 9 shows the minimum number of features required for identifying the 

individual attacks by entropy type.  

 

   Malware  Type       

 

BE1 BE2 BE3 BH1 BH2 BH4 ET1 NB SH TFTP 

Approximate NA 2 4 4 3 6 3 4 3 1 

Renyi NA 3 NA 3 3 NA NA 1 2 NA 

Shannon 2 1 1 3 3 4 3 1 3 1 

Tsallis NA 3 NA 3 3 2 3 1 2 1 

Sample NA 10 1 5 2 3 NA 1 NA 1 

Min #FS 2 1 1 3 2 2 3 1 2 1 

Table 9 – Minimum number of features required to identify the individual malware. 

 

Results shown in Table 9 indicate that when considering only one malware attack 

at a time, the Shannon entropy has the highest success rate at requiring the minimum 

number of features for 7 malware types. The remaining order is Tsallis for 6 types, 

Sample for 4 types, Rényi for 3 types, and Approximate entropy for 2 types.  
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Analysis three – Data labeled individually by Infection type 

The BotHunter application by SRI detected bot related malware into five common 

types of infections based upon the communications between the internal and external 

hosts (Cheung & Valdes, 2009). Two infections of the five identified by Cheung and 

Valdes are part of the SRI data store retrieved for this research and contain the ten 

different malware attacks as listed in Appendix W and described in Table 10. In this 

analysis, the label used was the infection designation: E2 or E3.  

 

Infection Description Malware designations 

E2 External-to-internal inbound exploit BE1, NB, SH 

E3 Internal-to-external binary acquisition BE2, BE3, BH1, BH2, BH4, ET1, TFTP 

Table 10 - Infection type description 

 

The results presented in Table 11 show the minimum number of features required 

to identify the infection type for the data provided. All of the correct classification 

percentages are quite close to each other, so the primary difference is in the number of 

features required to identify the infection types in a single run by each entropy. The 

results showed that Sample and Rényi entropy each require 1 feature. 

Infection #FS CC 

Approximate 3 99.8853% 

Renyi 1 99.6329% 

Shannon 4 100.0000% 

Tsallis 3 99.9312% 

Sample 1 99.6329% 

Table 11- Number of features selected for identifying E2 and E3 infection types 
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Summary 

This chapter provided analytic details of the research using the KDD CUP 99 data 

and the SRI Malware data. Work consisted of algorithm development using Java for the 

Rényi, Tsallis, Approximate and Sample entropy algorithms and their integration into the 

open source WEKA application. Additional programs developed in Java and Linux shell 

scripts conducted data manipulation and management.  

The first part of the research duplicated the work by Lima et al. (2012). This 

included creating files that represented the attacks from the KDD CUP 99 data in a 

manner that closely replicated the work of Lima et al. The classification mechanism was 

the WEKA J48 tree classification with the ten-fold validation option. The representative 

files were the run in separate WEKA executions using the Shannon, Rényi, and Tsallis 

entropy in the J48 decision tree calculations. From these runs, a comparison of the correct 

classification percentages and features selected were made. Results showed that the 

correct classification percentages were close to that of Lima et al.; however, the number 

of features selected varied. The next step included the use of Approximate and Sample 

entropy calculations in separate WEKA executions. In general, results showed that the 

correct classification percentages were close to that of Lima et al., however the number of 

features selected varied from the results of Lima et al. These summarized results are in 

Table 5 and Table 6. 

The second part of the research applied a similar process as used for analysis of 

the KDD CUP 99 data to a set of real-world data that has not been used for this pupose. 

The source was from the SRI Cyber Threat Analysis lab using BotHunter application that 

captures malware attacks. Assembly of the data required the retrieveal and processing of 
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multiple files to identify and extract a set of features for the analysis. The WEKA 

application used the J48 classification model and determined the number of features 

required and correct classification percentage for the different sets of data. There were 

three different labeled groups of data used. Each set contained 4,328 activity entries. The 

first group used the different malware attacks as the labels to determine the number of 

featires needed to identify the attacks all together. The second set of data used all the data 

points one at a time. There were ten separate groups of runs made. The data containing 

the specific attack was labeled with that attack identifier, while the entries in the file were 

labeled as “other”. The third set used the infection type as the label from which the data 

acquired contained two infection types. In addition to the three sets of data, the five 

entropy types had their parameters varied to cover a wide set of occurrences for a total of 

221 runs per data set as detailed in Table 7.  

The results showed the following: 

 The first set of data labeled with all of the malware attacks showed that 

Shannon, Sample, and Rényi each required six features to identify the 

malware attacks. The Shannon and Sample entropies each had correct 

classifications above 99%. The Rényi entropy was at 90%. Approximate and 

Tsallis each had correct classifications over 99% but they required seven and 

eight features respectively. Table 8 contains these results. 

 Data sets for the second analysis looked at each of the the malware attacks 

individually for a total of 2,210 runs. Results showed that all the entropies 

except Shannon had at least one instance at which it was not able to identify 

the specific malware. The minimum number of features required for the 
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Shannon had 7, Tsallis with 6, Sample with 4, Rényi with 3, and Approximate 

entropy with 2. 

 The third analysis that labeled the data by infection type showed that Sample 

and Rényi entropies required only one feature, Tsallis entropy required 3 

features, and Shannon entropy required 4 features. All of the entropy types 

had a correct classification rate of well over 99% with Shannon entropy at 

100%. 
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Chapter 5  

Conclusions, Implications, Recommendations, and Summary  

 

The work conducted in this research shows that using different entropy 

calculations and data labeling techniques in the feature selection process impacts the 

results when using intrusion detection data. This research discussed the use of entropy in 

feature selection and results achieved using the KDD CUP 99 data and SRI Malware 

data. Also identified were potential applications of this research to the intrusion detection 

processes and systems. The end of this chapter contains a summary of the entire research 

paper and provides a concise description of the research accomplished and potential 

applications in the use of this work. 

Entropy calculations measure the randomness of data. Comparing two sets of 

entropy calculations provide a measure of information gained between the two 

measurements. Claude Shannon applied entropy to information processing in a paper in 

1948. His formula was straightforward with no tunable parameters and adapted well for 

use with intrusion detection data. Lima et al. (2012) examined the impact of entropy on 

feature selection using Shannon’s formula, they added Rényi and Tsallis entropy 

formulas, and analyzed the same set of data that produced different views of the results.  

This research extended the techniques used by Lima et al. (2012) and added 

Approximate and Sample entropy to the feature selection process using intrusion 

detection data. Approximate and Sample entropy were typically used for biomechanical 
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data analysis in the past (Yentes et al. 2013). This is the first known use of Approximate 

and Sample entropy applied to intrusion detection data. 

Rényi and Tsallis entropy contain a sensitivity factor, called alpha, within the 

calculation. This factor provided a mechanism that adjusted the impact of the probability 

distribution. Approximate and Sample entropy each have two variable parameters. Since 

these entropy types were time based, the variable m defined a sliding window that 

determined the number of points to consider at a time. The second variable is a 

multiplication factor, r, between zero and one, calculated a portion of the standard 

deviation for the number of points within the window.  

Using a specified range of values for these parameters of the Rényi, Tsallis, 

Approximate, and Sample entropy enabled a profile of views of the results for the 

number of features, features selected, and correct classifications percentages. Different 

combinations of these variables produced significantly different results as shown is 

Appendix Z. To determine the best combination for the analysis, an inclusive range of 

variable values must obtain an overall view of the feature count, features selected, and the 

correctly classification result. This was accomplished by using the programs developed 

by the WEKA J48 tool during this research. The results produced a classification tree that 

showed how specific variable values and features contributed to the identification of the 

labeled data. 

Lima et al. (2012) used Shannon, Rényi, and Tsallis entropy to select features 

from a subset of the KDD CUP 99 data set. Their results showed that the Rényi and 

Tsallis entropy calculation performed well with the C4.5 classification tree for feature 

selection with high correct percentage classification values. This research extended 
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Lima’s work to include Approximate and Sample entropy. Results from Approximate and 

Sample entropy were in line with Lima et al. results for correct classification, however 

the feature count and features selected differed from the results Lima et al. reported. In 

order to provide validation to the inclusion of Approximate and Sample entropy to the 

C4.5 classification algorithm, an additional new intrusion detection data set was 

implemented. Data obtained from SRI Cyber Threat Analysis organization was 

assembled during this research into label data sets. This was the first time the SRI data 

was labeled and used to conduct feature selection research.  

Research conducted by Lima et al. (2012) contained recommendations for Rényi 

and Tsallis entropy settings of the alpha term. Yentes et al. (2013) recommended settings 

for the variable parameter settings of window size and statistics terms in Approximate 

and Sample entropy. The recommendations from both these groups enabled their research 

to attain results that were conducive to their findings.  

The work for this thesis extended these findings through the application of Rényi, 

Tsallis, Approximate, and Sample entropy into the C4.5 classification tree analysis using 

a well-known data set, the KDD CUP 99 data; and using a new set of real-world data not 

previously analyzed in this manner, the SRI Malware data. This unique approach 

produced results discussed in the following sections.  

A data-mining package from the University of Waikato in New Zealand, called 

WEKA, was the data mining analysis tool used in this research. Supervised learning by 

the C4.5 decision tree method, developed by Quinlan (1986), was included in WEKA 

within the J48 classification module. Results from the J48 module produced a decision 

tree that identified features observed, their values in the tree, and correctly and 
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incorrectly classified results and percentages. A representation of this decision tree is 

located in Appendix N.  

The C4.5 classification tree analysis was part of WEKA and implemented in Java 

in the J48 module.  The J48 module included the Shannon entropy and this research 

developed the algorithms for Rényi, Tsallis, Approximate, and Sample entropy, and 

integrated them into the WEKA J48 calculation. Each of the Rényi, Tsallis, Approximate, 

and Sample entropy calculations contained parameters that were varied to optimize 

results. Based upon the entropy calculation used, and the parametric values chosen for 

those entropy calculations that contain variables, the resulting J48 classification tree 

identified the features required to classify the activity.  

This research demonstrated that more than one view of the data provided 

additional options in the area of feature selection. The main methodology used to obtain 

different views included:  

 Labeling. The classification tree lists the features and values needed to 

identify an attack or series of attacks based upon how the data was labeled. 

 Entropy and entropy variables values. Created for the analysis, was a 

range of values for the alpha variable in the Rényi and Tsallis entropy 

calculation; and the m and r variables for Approximate, and Sample 

entropy calculations that generated a profile of the different values in the 

results. 

 Comparing different views. Comparing the results from different entropy 

calculations or different views can identify commonalities of features that 
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impact the results. The results can also be used to identify unique features 

that define a specific attack that are not common to other attacks or views. 

 

Using the output of the classification tree provided information for rule generation 

of an intrusion detection system. These rules can examine the traffic for capturing attacks 

traversing across the network. This assumed the static model was representative of the 

actual traffic.  

 

In most dynamic networks, the traffic patterns change over time. To accommodate 

this change, periodically, another set of data would be collected and labeled 

appropriately. The new set of data was analyzed in a static manner as conducted in this 

research. Changes were made in the detection rules that were the most applicable to the 

traffic and resources available.  

By having more than one view of the data available, some options become more 

applicable to different situations such as: 

 Choosing entropy results that minimized the number of features and 

maximized correctly identified percentages.  

 Tradeoffs among the number of features required, specific features 

identified, maximize correct performance, and the ability to extract 

features from the data stream. 

 Select the labeling method that provided the greatest advantage for the 

situation. This may be a result that overlapped certain features for the 

developed rules that share common features. 
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These different scenarios described show some of the power and applicability of 

using the analysis techniques put forth in this research. One application of these results 

may be for rule development in that the information provides a potential starting point 

that can improve, reduce, or stop malicious activity from infecting the computing 

networks and computer systems. Traffic composition generally changes over time and a 

periodic re-evaluation of the parameters should be performed to maintain the freshness of 

the detection capabilities. 

 

Another aspect of the data used in feature selection involved labeling of the data. 

Data labeling enabled multiple views of the results based the entropy, values used in the 

entropy calculation, and the labels of the attack categories. Labeled data enabled the use 

of supervised learning and the method of data labeling defined supplemented the view. In 

the KDD CUP 99 data set, the data was labeled by attack type. In other data sets, the 

labels may be a specific attack or attack groupings. The SRI results section discussed the 

different types of data labeling actions conducted during this research 

 

KDD CUP 99 Data Conclusions  

 

In the KDD CUP 99 data, each activity entry was labeled by a specific category. 

The J48 calculation and selected entropy produced results that named features and their 

associated values used in the classification tree. Table 2 lists the different categories and 

specific attacks within the KDD CUP 99 data. This labeling enabled the quantity and 
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identification of features that classified the specific attack and normal traffic. This 

analysis was conducted using the four attack categories with each of the five entropy 

types. Also, the J48 classification tree included the both the correctly and incorrectly 

classified results and percentages. This provided information as to the effectiveness of a 

specific entropy with the associated parametric settings. 

Constructing sets of KDD CUP 99 data with the same distribution of attacks used 

by Lima et al. (2012) enabled the comparison of the results with this research. The 

analysis employed the WEKA J48 classification tree that identified features and the 

correct classification results for the four attack categories. Conclusions derived from the 

results displayed in Table 5 for the KDD CUP 99 data, were as follows: 

 The correct classifications of attacks were very similar in the DoS (within 

0.5%) and U2R (within 1.0%) categories but the number of features 

selected varied by a count of 8 for both DoS and U2R.  

 The Probe and R2L attack categories varied more in the correct 

classification of the attacks. Nearly 3.0% for Probe and 3.3% for R2L. The 

overall feature counts varied by 7 for Probe and 3 for R2L.  

 The Approximate and Sample entropy values for correctly classified 

attacks were within 1% of the best values and were the same for the Probe, 

R2L, and U2R attack categories. The features selected were also the same 

for these categories.  

 The Approximate and Sample entropy values for the DoS attack category 

were also within 1% of the best values, however the Sample entropy was 

slightly better in the results.  
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 The features selected were different between the Approximate and Sample 

entropy values for the DoS attack category. This was due large to the 

number of duplicate entries in this attack category as compared to the 

other attack categories.  

 The absence of Sharma and Mukherjee (2012) results was due to their use 

of a single entropy, that of Shannon, and they used the Naïve Bayes 

classifier as their method of feature selection. The results that they 

achieved produced lower correct classified values than in this research and 

that of Lima et al. (2012).  

 

Observed differences in the results between Lima et al. (2012) and this research 

were partly due to the selection of the specific records from the KDD CUP 99 data set. 

Other differences observed included the implementation of the Rényi and Tsallis entropy 

calculations within WEKA. Multiple random selections of records from KDD CUP 99 

resulted in varied correctly classified percentages. Since the exact KDD CUP 99 records 

used by Lima et al. were unknown, the approximation of the attack make up used the 

counts documented by Lima et al. Chapter 4 addressed inconsistencies with the attack 

counts in this research. 

 

SRI Malware Data Conclusions  

 

The WEKA J48 tree classification method calculated the results for this research 

using real-world SRI Malware data with the Shannon, Rényi, Tsallis, Approximate, and 

Sample entropies and this was the first time this data was used for entropy research. 
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Depending on the variable parametric values, each entropy type produced some results 

with a low number of features but most had high correct classification percentages as 

shown in Table 8. 

Tsallis and Sample entropy produced the highest correctly classified results of 

99.9312% and 99.2428% respectively, and with the least number of features of 6. Rényi 

entropy also required only 6 features but resulted in the lowest correctly classified results 

of 92.3818%. Appendix Z contains the complete results of the SRI data analysis showing 

the entropy calculations used, parameter settings, correctly classified results, and the 

number of features selected. 

As seen in the results of this research with the SRI data, the agreement with the 

correct classification was within the same general range as that of the KDD CUP 99 data. 

In analyzing SRI data, no previous research existed for this type of study. Most of the 

results were high in values for the correct classification and low for the number of 

features selected, which varied minimally as shown in Table 8.  

When considering the individual malware attacks, described in the analysis of the 

SRI data, the number of features required dropped significantly as detailed in Table 9. 

Examining an individual attack, and generalizing all the remaining data as “other”, 

allowed the analysis to focus on the one specific type of attack and selected these features 

that only identified those activities. 

When labeling the data by infection type, as denoted by enum in Appendix W, 

results were more pronounced as shown in Table 11. The correct classification 

percentages were all over 99% for each entropy type, but the number of features required 

to detect the infection was only 1 for Sample and Rényi entropies, 3 for Approximate and 
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Tsallis entropies, and 4 for Shannon. The infection types along with their associate 

malware attacks are in Table 10.  

When evaluating results of the three analyses together, the averages showed how 

the different entropies and labeling strategies significantly impacted the number of 

features required. The row numbers in Table 12 below referenced a different table 

containing the data. In row 1, the number of features for each entropy type originated 

from Table 8 that corresponds to Full Set of SRI data. In row 2, the number of features 

for each entropy type is from Table 9 that corresponded to Individual Malware. The 

number of features for each entropy type in row 3 is from Table 11 that corresponds to 

Infection Type. 

The WEKA J48 classification tree analysis was unable to produce results with 

certain attack/entropy combinations. Some of the data points in Table 9 contain an “NA” 

for values.  In order to quantify these points, “NA”, a method described by Schafer and 

Graham (2002) as the Available-case analysis, was used. This process considered a 

pairwise inclusion of data to estimate the missing values. The pair assumed for this 

analysis, is the maximum value determined by other calculations, which was 10. Values 

other than 10 for the substitution of “NA” produced similar representative results.  

Labeling Shannon Rényi Tsallis Approximate Sample 

Table 

Ref 

 Full Set of  SRI data 8.0 6.0 6.0 7.0 6.0 8 

Individual Malware 2.2 6.2 4.2 4.2 5.9 9 

Infection Type 4.0 1.0 3.0 3.0 1.0 11 

Average 4.7 4.4 4.3 4.7 4.1  

Table 12 - Average number of features required from the three SRI analyses 
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Results, from Table 12, show how the number of features vary based upon the 

data labeling used. The feature count and average feature count varies for the different 

analyses by using the complete set of data and adjusting the labeling to focus on 

particular views.  

 

Overall Conclusion 

Labeling of data affects the results produced. The results from the classification 

tree provided the number of features, the features selected, and the correct classification 

percentages. The KDD CUP 99 data used only one labeling method in an effort to show 

how the Approximate and Sample entropy calculations impacted the classification tree 

results.  

By having different labeling scenarios available, the selection of features that best 

identified a specific attack was possible in an intrusion detection system. This also 

supported the proposal that subsequent analyses be conducted periodically with a new 

collection of labeled data to keep intrusion detection current with changes occurring in 

network traffic patterns. Knowledge gained from previous results using combination of 

entropies and their variable assignments may shorten the analyses of the newly collected 

data.  

 

Implications  

 

This research supported previous work that showed the feature selection actually 

reduced the number of fields required to analyze intrusion detection data. By analyzing 

different models through the labeling of data to detect specific attacks or groupings of 
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attacks provided additional views of the results and assisted in the selection and 

application that best fit the purpose of the analysis. These techniques should apply to 

other types of data to be analyzed. Where others have used biomechanical data for 

classification and feature selection, this research used intrusion detection data. 

Selection of tunable parameters for the entropy type, in conjunction with C4.5 

classification tree analysis, produced differences in results especially in the features 

selected and number of features selected. Duplicate entries within the data set influenced 

the Sample entropy calculations. Since the Sample entropy suppressed duplicate records 

in the calculations, it generally produced better results than Approximate entropy 

especially with the malware data that contained a large number of duplicate records. 

 

Recommendations  

The use of different labels for the data provided more than one view of the data. 

This enabled the user and implementer additional information from which to choose the 

best results for their needs. These results can assist in better performance of an intrusion 

detection system for specific attacks or groups of attacks by selecting the best 

combination of features that identify the attack. 

 Varying the values of the tunable parameters in the entropy calculations affected 

the results of feature selection. To obtain the best results required multiple runs using 

sequential variation of the parameters that developed a set empirical data to identify the 

optimal number of features required. These runs should be conducted periodically to 

represent the current network traffic. 
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This research focused on the WEKA J48 classification method as used by Lima et 

al. (2012). Results of this thesis supported the additional study of the benefits of entropy 

using Shannon, Rényi, Tsallis, Approximate, and Sample entropy for intrusion detection 

systems data. Different models of the data looked at specific attacks or groupings of 

attacks through the labels associated with the activity. Variation of the tunable parameters 

demonstrated how the features selected could differ based upon the data labeling strategy 

chosen.  
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Summary 

The goal of this research was to minimize the number of features required in a set 

of intrusion detection data that rapidly identifies malicious activity while maintaining the 

integrity of the data set. By reducing the redundant features, irrelevant features, and 

noise, it was possible to decrease the number of features required that rapidly analyze the 

data for identifying anomalous activities. This focus was on the application of entropy in 

feature selection process of labeled data sets. Feature selection is the process of 

identifying features from a set of data that are relevant to the analyses. Reasons for 

feature selection are to reduce the size of the data set and more efficiently use the 

computing resources. Using the C4.5 decision tree developed by Quinlan (1986), the 

results can be readily adapted for developing rules for intrusion detection systems. This 

work also showed the positive impact of how different labeling methods provide 

additional results for implementation of intrusion detection mechanisms. 

This work began by replicating the work of Lima et al. (2012) who used C4.5 

classification tree method in the WEKA data mining analysis tool to select features from 

intrusion detection data. They used a subset of the well-known KDD CUP 99 data file for 

selecting the features required to identify the four-attack types labeled in the data using 

Shannon, Rényi, and Tsallis entropy. WEKA includes the Shannon entropy and Lima et 

al. added the algorithms for Rényi and Tsallis.  

The research for this thesis added the Rényi and Tsallis to WEKA, and replicated 

the results of Lima et al. (2012) to develop a base line of reference that validated the 

entropy calculations developed for the records and integrated into the data-mining tool. 



 92  

Results showed good agreement with Lima et al. for correct classification percentages, 

however, the number of features and specific features varied.  

This research extended the use of entropy in feature selection to include 

Approximate and Sample entropy typically used in time-series based data. Yentes et al. 

(2013) used Approximate and Sample entropy for feature selection with biomechanical 

data. Analysis using these two entropies demonstrated new results with the KDD CUP 99 

data.  

This research programmed four entropy calculations that were added to WEKA 

source code. Each formula contained variables that could be optimized to obtain the 

result. Rényi and Tsallis contained an alpha term that adjusted the sensitivity of the 

entropy calculation’s impact on the results. Approximate and Sample entropy contained 

two adjustable parameters. Since they were time based, one parameter, named m, defined 

how many points were included in a calculation. The second variable, r, defined the 

portion of the standard deviation of the data within the window size, m, to use in the 

entropy calculation. Results of using Approximate and Sample were similar to correct 

classification percentage that Lima et al. (2012) achieved. Again, the number of features, 

and specific features were different.  

In order to validate the process developed for this research, a second set of data 

from SRI Cyber-TA BotHunter (n.d.) project was used. This data was retrieved from a 

series of files that collected different features of the malware attack. Assembling the SRI 

data into a usable format for the WEKA analysis, required the development of additional 

applications using Java and Linux shell scripts that enabled the extraction, conversion, 

normalization, and labeling of the data. 
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Three types of analysis were conducted with the SRI data that used three different 

labeling methods. The first method labeled each row of activity by the specific malware 

identified for that row. The second method labeled considered only one malware attack 

for the rows of that malware and with the remaining rows labeled with “other” resulting 

in ten files for analysis. The third method labeled each row with one of the two infection 

types identified in the SRI data files. These different labeling methods enabled the results 

to show how the combination of labels, different entropy calculations, and variable values 

influenced the number of features, features selected, and the correct classification results.  

The following lists the values for the variables chosen for the Rényi, Tsallis, 

Approximate, and Sample entropy calculations: 

Rényi  

alpha = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. 

Tsallis 

alpha = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.99. 

Approximate and Sample  

m = 1, 2, 3, 4, 5, 6, 7, 8, and 9. 

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. 

 

The C4.5 classification tree, developed by Quinlan (1986), was implemented in 

the WEKA analysis package as the J48 module programmed in Java. The code developed 

for this research for the Rényi, Tsallis, Approximate, and Sample entropy calculations 

was integrated into the J48 module. Output from the J48 module provided a classification 
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tree that identified the structure with features names, their values, and dependencies as 

shown below. 

Partial sample of a classification tree 

 
SWBn = 0 

|   seqRange <= 102: other (349.0) 

|   seqRange > 102 

|   |   toPort <= 8147 

|   |   |   priority <= 1: WIN (2127.0) 

|   |   |   priority > 1 

|   |   |   |   toPort <= 470: other (70.0) 

|   |   |   |   toPort > 470: WIN (305.0) 

|   |   toPort > 8147 

|   |   |   toPort <= 9996: other (35.0) 

|   |   |   toPort > 9996: WIN (16.0) 

SWBn = 1 

|   enum = E2 

|   |   seqRange <= 1260: WIN (4.0) 

|   |   seqRange > 1260: other (34.0) 

|   enum = E3: other (1418.0) 

                 o 

                 o 

                 o 

 

 
 

In the table below, multiple labeling methods demonstrated how the number of 

features varied based upon how the data was labeled. The row labeled “Individual 

Malware” was an average of the number of features required to identify the ten unique 

malware attacks. The bottom row labeled “Average” was an equally weighted average of 

the three labeling methods in the table. 

 

Labeling Shannon Rényi Tsallis Approximate Sample 

 Full Set of  SRI data 8.0 6.0 6.0 7.0 6.0 

Individual Malware 2.2 6.2 4.2 4.2 5.9 

Infection Type 4.0 1.0 3.0 3.0 1.0 

Average 4.7 4.4 4.3 4.7 4.1 
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Since the overall composition of packets that flow across a network may evolve 

over time, analyzing the features and their values used for the rules periodically focused 

to identifying new attacks to the network and the computer systems attached. Conducting 

subsequent analyses would require collecting traffic into a set of files used for analysis. 

This collection may consist of a complete set of traffic at collection points, only packet 

headers, or the traffic may be a filtered to eliminate known good and/or known bad 

traffic.  

 

This research showed how several different techniques in the use of entropy for 

feature selection provided benefits by reducing the volume of data for identifying attacks 

against computers and networks. Other accomplishments included: 

 The five entropy calculations made showed how the results differ for 

number of features selected, specific features selected, and correctly 

classified results.  

 The classification tree output provided the information needed to identify 

the number of features, the specific features, and the correctly classified 

results for the labeled set of data. 

 Different labeling methodologies had an impact by constructing a table 

that shows the results referencing the number of features required across 

multiple scenarios. 

 When using Rényi, Tsallis, Approximate, and Sample entropy, the values 

assigned to the parameters impacted the results. By substituting a range of 



 96  

values for those parameters, a profile of the results created to determine 

the least number of features required to identify a specific attack.  

 Using the classification tree output, the parameters for use in an intrusion 

detection are presented and directly applicable to rule development. 

 

Other implications from this research were identified that the analysis must be 

conducted periodically to maintain operation of the intrusion detection system at optimal 

performance level as network traffic changes over time. This research showed positive 

impact and advanced the feasibility of using multiple entropy calculations to reduce the 

number of features required to identify specific methods for intrusion detection data. The 

full complements of analyses available demonstrated the different options available to 

identify malware. It also showed how labeling the data could optimize the number of 

features selected as shown in the different examples. An implementer can apply these 

results to the intrusion detection system based upon their needs and environment of the 

networks and computer systems. 
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Appendix A: Listing of Modified EntropyBasedSplitCrit Class 

This is the Java listing of the modified EntropyBasedSplitCrit Class. 

/* 

 *    This program is free software; you can redistribute it and/or modify 

 *    it under the terms of the GNU General Public License as published by 

 *    the Free Software Foundation; either version 2 of the License, or 

 *    (at your option) any later version. 

 * 

 *    This program is distributed in the hope that it will be useful, 

 *    but WITHOUT ANY WARRANTY; without even the implied warranty of 

 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

 *    GNU General Public License for more details. 

 * 

 *    You should have received a copy of the GNU General Public License 

 *    along with this program; if not, write to the Free Software 

 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 

 */ 

 

/* 

 *    EntropyBasedSplitCrit.java 

 *    Copyright (C) 1999 Eibe Frank 

 * 

 */ 

 
/* 

 *    This class has the following modifications made in order 

 *    to accommodate the use of different entropy calculations 

 *     

 *      Method varInitialize() = initializes entropy variable 

 *      by instantiating a call to the method that reads the  

 *      configuration file. Also prints out the parameters used. 

 *       

 *      Method logFunc() = modified to use the different entropy calculations 

 *      calculations. 

 *       

 *      Method oldEnt() = modified to use the different entropy calculations 

 *      calculations. 

 *       

 *       

 *    Author: Frank Acker – December 2014   

 */ 

 
package weka.classifiers.trees.j48; 

 

/** 

 * "Abstract" class for computing splitting criteria 

 * based on the entropy of a class distribution. 

 * 

 * @author Eibe Frank (eibe@cs.waikato.ac.nz) 

 * @version $Revision: 1.5 $ 

 */ 

public abstract class EntropyBasedSplitCrit extends SplitCriterion{ 

  

 private static final long serialVersionUID = 1L;  

 

/** The log of 2. */ 

  protected static double log2 = Math.log(2); 

  public double alpha; // for Reni and Tsallis entropy 

  public int ET; // entropy type number 
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  public int m; // window size for ApEn and SampEn 

  public double r; // & of standard deviation for ApEn and SampEn. 

  public  boolean D; // Debugger 

   

  private static ApproximateEntropy ae = new ApproximateEntropy(); 

  public static SampleEntropy se       = new SampleEntropy(); 

   

  private static boolean readFile = false; // read file once per execution 

  public static entUtils eu = new entUtils(); 

  public static fileRead fr = new fileRead();    

 

 

   

  public final void varInitialize() { 

  eu.getFileInfo(); 

   

  ET    = fr.getEType(); 

  alpha = fr.getAlpha(); 

  m     = fr.getM(); 

     r     = fr.getR(); 

     D     = fr.getD(); 

     String C = ","; 

     if (D) System.out.println("varInitialize - readFile");    

     if (D) System.out.println("ET, alpha, m, r, D " + ET + C + alpha + C 

+ m + C + r + C + D); 

  } 

  /** 

   * Help method for computing entropy. 

   */ 

  public final double logFunc(double num) { 

 

   if (!readFile) { 

   readFile = true; 

         varInitialize(); 

         if (D) System.out.println("logFunc - readFile"); 

   } 

    

    // Constant hard coded for efficiency reasons 

    if (num < 1e-6) return 0; 

    if (ET == 0) return num*Math.log(num)/log2; 

    if (ET == 1) return Math.pow(num, alpha); 

    if (ET == 2) return Math.pow(num, alpha); 

    if (ET == 3) { 

     return num*Math.log(num)/log2; 

    } 

    if (ET == 4) { 

     return num*Math.log(num)/log2; 

    } 

    return -99.0; // entered to satisify eclipse 

  } 

   

/** 

   * Computes entropy of distribution before splitting. 

   */ 

  public final double oldEnt(Distribution bags) { 

 

    double returnValue = 0; 

    int j; 

    if (D) System.out.println("oldEnt - bags.numClasses()="+bags.numClasses()); 

     

    if (ET == 0 || ET == 1 || ET == 2) { 

       for (j=0;j<bags.numClasses();j++) { 

           returnValue = returnValue + logFunc(bags.perClass(j)); 
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           if (D) System.out.println("oldEnt - j="+j+" 

bags.perClass(j)="+bags.perClass(j));            

       } 

    } 

    if (ET == 3 || ET == 4) { 

     double [] apsampClasses = new double[bags.numClasses()]; 

     for (j = 0; j < bags.numClasses(); j++) { 

      apsampClasses[j] = bags.perClass(j); 

      if (D) System.out.println("oldEnt AE - j="+j+" 

bags.perClass(j)="+bags.perClass(j)+" apsampClasses[j]="+apsampClasses[j]); 

     } 

     if (ET == 3) returnValue = returnValue + ae.ApEn(apsampClasses,m,r); 

  if (ET == 4) returnValue = returnValue + 

se.SampEn(apsampClasses,m,r); 

    } 

       

    if (D) System.out.println("oldEnt - bags.total()="+bags.total()); 

    if (ET == 0 || ET == 3 || ET == 4) return logFunc(bags.total()) - 

returnValue; 

    if (ET == 1) return (((Math.log (logFunc(bags.total()) )/log2)/(1.0 - 

alpha)) - ((Math.log(returnValue)/log2))/(1.0 - alpha)); 

    if (ET == 2) return ((logFunc(bags.total()))/(alpha - 1.0)) - (returnValue 

/(alpha - 1.0)); 

    return 0.0; 

  } 

 

  /** 

   * Computes entropy of distribution after splitting. 

   */ 

  public final double newEnt(Distribution bags) { 

     

    double returnValue = 0; 

    int i,j; 

    if (D) System.out.println("newEnt - bags.numBags="+bags.numBags()); 

    if (D) System.out.println("newEnt - bags.numClasses="+bags.numClasses()); 

    for (i=0;i<bags.numBags();i++){ 

      if (ET ==0 || ET == 1 || ET == 2) { 

     for (j=0;j<bags.numClasses();j++) { 

     returnValue = returnValue+logFunc(bags.perClassPerBag(i,j)); 

     if (D) System.out.println("newEnt - i,j="+i+","+j+" 

bags.perClassPerBag(i,j)="+bags.perClassPerBag(i,j) + " 

returnValue="+returnValue); 

     } 

      } 

      if (ET == 3 || ET == 4) { 

     double [] apsampClasses = new double[bags.numClasses()]; 

       for (j = 0; j < bags.numClasses(); j++) { 

        apsampClasses[j] = bags.perClass(j); 

        if (D) System.out.println("oldEnt AE/SE - j="+j+" 

bags.perClass(j)="+bags.perClass(j)+" apsampClasses[j]="+apsampClasses[j]); 

       } 

       if (ET == 3) returnValue = returnValue + ae.ApEn(apsampClasses,m,r); 

  if (ET == 4) returnValue = returnValue + 

se.SampEn(apsampClasses,m,r); 

      } 

      returnValue = returnValue-logFunc(bags.perBag(i)); 

      if (D) System.out.println("newEnt - i="+i+" 

bags.perBag(i)="+bags.perBag(i)+" returnValue="+returnValue); 

    } 

    return -returnValue; 

  } 

 

  /** 



 101  

   * Computes entropy after splitting without considering the 

   * class values. 

   */ 

  public final double splitEnt(Distribution bags) { 

 

    double returnValue = 0; 

    int i; 

    if (D) System.out.println("splitEnt"); 

    for (i=0;i<bags.numBags();i++) 

      returnValue = returnValue+logFunc(bags.perBag(i)); 

    return logFunc(bags.total())-returnValue; 

  } 

} 
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Appendix B: Listing of ApproximateEntropy Class 

package weka.classifiers.trees.j48; 

 

/** 

 * Class for computing Approximate Entropy 

 * based on the entropy of a class distribution. 

 * 

 * @version $Revision: 1.0 $ 

 */ 

/* Approximate Entropy 

 * basic code retrieved Oct 18, 2014 from  

 * http://www.codeproject.com/Articles/27030/ \ 

 *     Approximate-and-Sample-Entropies-Complexity-Metric 

 *  

 * It has since been modified for use in this application. 

 *       

 *    Author: Frank Acker – December 2014   

 */ 

 

public  class ApproximateEntropy extends EntropyBasedSplitCrit{ 

 

  /** 

  *  

  */ 

 private static final long serialVersionUID = 1L; 

 

   

  /* Approximate Entropy 

   * basic code retrieved Oct 18, 2014 from  

   * http://www.codeproject.com/Articles/27030/Approximate-and-Sample-

Entropies-Complexity-Metric 

   *  

   * It has since been modified for use in this application 

   */ 

 

public double ApEn(double data[], int m, double r) { 

 

  /* 

   *  data[] is an double array of the data collected for ApEn calculation 

   *  m is the window size = default is 2 

   *  r is the multiplier of the standard deviation to use  = default to 0.2 

   */ 

    

      entUtils eu = new entUtils(); 

      fileRead fr = new fileRead(); 

       

      boolean D = fr.getD(); 

   

          int Cm = 0, Cm1 = 0, i, j, k; 

          int N = data.length; 

          // check that m is not less than the data length 

          if (m > N)  

           m = N; 

           

          double err = 0.0, sum = 0.0; 

          //double r = 0.2; 

          // Calculate std dev 

          double std = eu.stdev(data); 

          err = std * r; 

          if (D) System.out.println("ApEn - N="+N+" r="+r+" std="+std+" 

err="+err); 

http://www.codeproject.com/Articles/27030/
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          for ( i = 0; i < N - (m + 1) + 1; i++) { 

             Cm = Cm1 = 0; 

             for ( j = 0; j < N - (m + 1) + 1; j++) { 

                boolean eq = true; 

                for (k = 0; k < m; k++) { 

                    if (D) System.out.println("ApEn - i,j,k="+i+","+j+","+k+" 

data[i+k]="+data[i+k]+" data[j+k]="+data[j+k]+" err="+err); 

                    if (Math.abs(data[i+k] - data[j+k]) > err) { 

                       if (D) System.out.println("ApEn - Math.abs(data[i+k] - 

data[j+k]) > err is true"); 

                       eq = false; 

                       break; 

                    } 

                 } 

                 if (eq) Cm++; 

                 k = m; 

                 if (eq && Math.abs(data[i+k] - data[j+k]) <= err) 

                     Cm1++; 

             } 

 

             if (Cm > 0 && Cm1 > 0){ 

                double dCm  = (double)Cm; 

                double dCm1 = (double)Cm1; 

                if (D) System.out.println("ApEn -dCm="+dCm+" dCm1="+dCm1);                

    

               sum += Math.log(dCm / dCm1)/log2;   

             }   

          } 

          if (D) System.out.println("ApEn - N="+N+" m="+m+" sum="+sum);  

          double apenreturnvalue; 

          if ((N - m) == 0) { 

           apenreturnvalue = 0; 

          } else { 

           apenreturnvalue = sum / (double)(N - m); 

          } 

           

          if (D) System.out.println("ApEn - apenreturnvalue="+apenreturnvalue); 

    return apenreturnvalue; 

  } 

} 
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Appendix C: Listing of SampleEntropy Class 

package weka.classifiers.trees.j48; 

 

/** 

 * Class for computing Sample Entropy 

 * based on the entropy of a class distribution. 

 * 

 * basic code retrieved Oct 18, 2014 from  

 * http://www.codeproject.com/Articles/27030/  

  * 
 *     Approximate-and-Sample-Entropies-Complexity-Metric 

 *  

 * It has since been modified for use in this application 

 *       

 *    Author: Frank Acker – December 2014   

 *       

 * @version $Revision: 1.0 $ 

 */ 

 

public class SampleEntropy extends EntropyBasedSplitCrit{ 

  

 private static final long serialVersionUID = 1L; 

 

 public double SampEn(double data[], int m, double r) { 

   

    /* 

     *  data[] is an double array of the data collected for ApEn 

calculation 

     *  m is the window size = default is 2 

     *  r is the multiplier of the standard deviation to use  = 

default to 0.2 

     */ 

   

        int N = data.length; 

        // check that m is not less than the data length 

        if (m > N)  

         m = N; 

         

        entUtils eu = new entUtils(); 

         

        fileRead fr = new fileRead(); 

        boolean D = fr.getD(); 

         

        int Cm = 0, Cm1 = 0, i, j, k; 

        double std = eu.stdev(data); 

        double err = std * r; 

        if (D) System.out.println("SampEn - N="+N+" r="+r+" std="+std+" 

err="+err); 

        for (i = 0; i < N - (m + 1) + 1; i++) { 

                for (j = i + 1; j < N - (m + 1) + 1; j++) {       

                        boolean eq = true; 

                        //m - length series 

                        for (k = 0; k < m; k++) { 

                           if (D) System.out.println("SampEn - 

i,j,k="+i+","+j+","+k+" data[i+k]="+data[i+k]+" data[j+k]="+data[j+k]+" 

err="+err); 

                           if (Math.abs(data[i+k] - data[j+k]) > err) { 

                            if (D) System.out.println("SampEn - 

Math.abs(data[i+k] - data[j+k]) > err is true"); 

                               eq = false; 

                               break; 

http://www.codeproject.com/Articles/27030/
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                           } 

                        } 

                        if (eq) Cm++; 

 

                        //m+1 - length series 

                        k = m; 

                        if (eq && Math.abs(data[i+k] - data[j+k]) <= err) 

                                Cm1++; 

                } 

        } 

 

        if (Cm > 0 && Cm1 > 0) { 

         double dCm  = (double)Cm; 

           double dCm1 = (double)Cm1;      

         return (Math.log(dCm / dCm1))/log2; 

        } else { 

            return 0.0; 

        } 

 } 

} 
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Appendix D: Listing of fileRead Class 

package weka.classifiers.trees.j48; 

import java.io.*; 

 

/* 

 *    This class was written in order to 

 *    support the reading of the configuration 

 *    file and parse its parameters. 

 * 

 *    Author: Frank Acker – December 2014  

 */  

 

 

public class fileRead extends EntropyBasedSplitCrit{ 

  

 /* The Entropy Type (etype) is designated in the  

  * Entropy Information file defined as variable  

  * in this class as: "fileName". 

  *  

  * The entropy indicator number is as follows: 

  * etype = 0 - Shannon 

  * etype = 1 - Rényi 

  * etype = 2 - Tsallis 

  * etype = 3 - Approximate 

  * etype = 4 - Sample 

  */ 

  

 public static int etype; 

 public static boolean D = false; // debugger switch 

  

 /* The alpha term is used in the Rényi and Tsallis entropy calculations. 

  * If no alpha term is defined in the value is set to a 0. 

  * The default for Rényi entropy is 0.5. 

  * The default for Tsallis entropy is 1.2. 

  */ 

 public static double alpha; 

 double defaultAlpha = 0; 

 double defaultRényiAlpha = 0.5; 

 double defaultTsallisAlpha = 1.2; 

  

 /* "r" is a measure of the percentage of the standard deviation  

  * to consider for ApEn and SampEn.  

  * Default is 0.2 as defined by Yentes et al. (2013) but must 

  * be entered in the ENtropy Information File 

  */ 

 public static double r = 0.2;  

 double defaultR = -1.0; 

 public final String fileName = "/media/sf_nova/data/EntropyInfoFile.txt"; 

  

 /* "m" is a windows size to use for the series length  

  * Used for ApEn and SampEn.  

  * Default is 2 as defined by Yentes et al. (2013) but must 

  * be entered in the ENtropy Information File 

  */ 

 public static int m = 2;  

 int defaultM = -1; 

 public long filemod = 0; 

 

 public boolean updatedFile(){ 

     File file = new File(fileName); 

     long ifilemod = file.lastModified(); 
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     if (ifilemod == filemod) 

      return false; 

     else { 

      System.out.println("updtaedFile - ifilemod= "+ ifilemod + " 

filemod="+ filemod); 

      filemod = ifilemod; 

      return true; 

     } 

 } 

    

    public boolean fileRead() { 

 

        // This will reference one line at a time 

        String line = null; 

        try { 

            // FileReader reads text files in the default encoding. 

            FileReader fileReader =  

                new FileReader(fileName); 

 

            // Always wrap FileReader in BufferedReader. 

            BufferedReader bufferedReader =  

                new BufferedReader(fileReader); 

 

            while((line = bufferedReader.readLine()) != null) { 

 

             // get rid of any spaces in line 

                String line1 = line.replace(" ",""); 

                String[] parts = line1.split("="); 

 

                if (parts[0].equals("etype")) { 

                 etype = Integer.parseInt(parts[1]); 

                 if (fr.D) System.out.println("=+=etype="+etype); 

 

                } 

                 

                if (parts[0].equals("alpha")) { 

                    alpha = Double.parseDouble(parts[1]); 

                    if (fr.D) System.out.println("===ET="+etype+ " alpha ="+ 

alpha); 

 

                } 

                 

                if (parts[0].equals("m")) { 

                 m = Integer.parseInt(parts[1]); 

                } 

                 

                if (parts[0].equals("r")) { 

                 r = Double.parseDouble(parts[1]); 

                } 

                 

                if (parts[0].equals("D")) { 

                 System.out.println("fileRead - Hit D - parts[1]="+parts[1]); 

                 if (parts[1].equals("true")) D = true; 

                 if (parts[1].equals("false")) D = false; 

                 //if (parts[1].equalsIgnoreCase("true")) D = true; 

                 //if (parts[1].equalsIgnoreCase("false")) D = false; 

                 System.out.println("D="+D); 

                } 

            }  

            // Always close files. 

            bufferedReader.close();    

        } 
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        catch(FileNotFoundException ex) { 

         System.err.println("Unable to open file '" + fileName + "'"); 

         return false; 

        } 

        catch(IOException ex) { 

            System.err.println("Error reading file '" + fileName + "'"); 

            return false; 

        } 

         

        // check for valid etype 

        if (etype <0 || etype >4) { 

         System.out.println("Bad or no Entropy Type (etype) defined. 

Entered value:" + etype); 

         return false; 

        } 

         

        // check Rényi alpha 

        if (etype == 1 && alpha == defaultAlpha) { 

         alpha = defaultRényiAlpha; 

         System.out.println("Alpha for Tsallis Entropy set to " + alpha); 

        } 

         

        // check Tsallis alpha 

        if (etype == 2 && alpha == defaultAlpha) { 

         alpha = defaultTsallisAlpha; 

         System.out.println("Alpha for Tsallis Entropy set to " + alpha); 

        } 

         

        // check Approximate and Sample entropy values 

        if (etype == 2 || etype == 3) { 

         if (r == defaultR) { 

          System.out.println("No \"r\" value for Approximate Entropy 

entered"); 

          System.exit(1); 

         } 

         if (m == defaultM) { 

          System.out.println("No \"m\" value for Approximate Entropy 

entered"); 

          System.exit(1); 

         } 

        } 

        return true; 

    } 

     

    public int getEType () { 

     if (fr.D) System.out.println("getEType="+etype); 

     return etype; 

    } 

     

    public double getAlpha() { 

     return alpha; 

    } 

     

    public String getETName() { 

     String etname[] = new String[] {"Shannon", "Rényi", "Tsallis", 

"Approximate", "Sample"}; 

     return etname[etype]; 

    } 

     

    public int getM() { 

     return m; 

    } 
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    public double getR() { 

     return r; 

    } 

     

    public boolean getD() { 

     if (D) System.out.println("getD D="+D); 

     return D; 

    } 

} 
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Appendix E: Listing of entUtils Class 

The following is a list of the entUtils class which is used in support of the entropy 

calculations. 

package weka.classifiers.trees.j48; 

 

import java.text.DateFormat; 

import java.text.SimpleDateFormat; 

import java.util.Date; 

 

 

/* entUtils 

 * This class contains utilities for the entropy calculations,  

 * standard deviation, and prints the configuration 

 * files parameters settings. 

 * 

 * Author: Frank Acker December 2014. 

 */ 

 

 

public  class entUtils extends EntropyBasedSplitCrit { 

 

 private static final long serialVersionUID = 1L; 

 

 public double stdev(double data[]) { 

     int i; 

     double mean = 0.0; 

     int dlen = data.length; 

     double sum1 = 0.0; 

     for (i = 1; i < dlen; i++)  

      mean += data[i]/dlen; 

     for (i = 1; i < dlen; i++) 

      sum1 += Math.pow((data[i] - mean),2)/dlen; 

     double result = Math.sqrt(sum1); 

     return result; 

  } 

     

 public void getFileInfo() { 

     

       DateFormat dateFormat = new SimpleDateFormat("MM/dd/yyyy 

HH:mm:ss"); 

       Date d = new Date(); 

       System.out.println("WEKA Analysis for Entropy Research"); 

       System.out.print("\nDate and time for this run is "); 

       System.out.println(dateFormat.format(d)); 

       fileRead fr = new fileRead(); 

        

       //Read the configuration file if it hasn't been done already 

       if (!fr.fileRead()) System.exit (1); 

       // Get the entropy values for use and print out. 

       ET = fr.getEType(); 

       alpha = fr.getAlpha(); 

       m = fr.getM(); 

       r = fr.getR(); 

       D = fr.getD(); 

       System.out.println("Using " + fr.getETName() + " Entropy."); 

       if (ET == 1 || ET == 2) 

          System.out.println("The alpha term is set to " + alpha); 

       if (ET == 3 || ET == 4) { 
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        System.out.println("Window size (m)             = " + m); 

        System.out.println("% of standard deviation (r) = " + r); 

       } 

       System.out.println("Debugger is "+ D); 

    } 

} 
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Appendix F: Listing of EntropyFileInfo.txt 

Below is a listing of the configuration file for an analysis using the Tsallis entropy 

calculation. The “#” symbol at the beginning of the line indicates a comment and the line 

is ignored. This file is changed for each type of entropy calculation or when parameter 

settings are made. 

# The Entropy Type (etype) is designated in the  

# Entropy Information file defined as variable  

# in this class as: "fileName". 

#  

# The entropy indicator number is as follows: 

#  * etype = 0 - Shannon 

#  * etype = 1 - Rényi 

#  * etype = 2 - Tsallis 

#  * etype = 3 - Approximate 

#  * etype = 4 - Sample 

# 

# The alpha term is used for Rényi and Tsallis 

# entropy calculations. The work by Lima et al. (2012) 

# determined the following values were best in 

# research: 

#    Rényi alpha   = 0.5 

#    Tsallis alpha = 1.2 

# 

etype =  2 

alpha = 1.2 

#alpha = 0.5 

m = 2 

r = 0.2 

#D = false 
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Appendix G: Listing of Modified build.xml File for Eclipse 

Below is the modified file used by Eclipse to compile the Java code and install the 

current weka.jar file for use. 

<project name="weka" default="compile" basedir="."> 

<!--  

  =========================================================================== 

   Ant build file for weka. Tested with ant 1.6.5 and Junit 3.8.2. Requires 

   JavaMail and the java activation framework for mailing unit test results. 

 

   Type ant -projecthelp for targets and descriptions. 

   Assumes weka and tests (if unit testing) are in the same directory. 

   Build file can reside and be executed from either inside weka or the 

   directory containing weka. 

 

   Modified to only build the components needed for the weka.jar file to 

   Support the research. 

  

   Author: Frank Acker October 2014. 

 

 

   $Revision: 7185 $ 

  =========================================================================== 

--> 

 

  <!-- set global properties for this build --> 

  <property name="src" value="/media/sf_nova/weka/weka-src/weka-

src/src/main/java"/> 

  <property name="src-test" value="/media/sf_nova/weka/weka-src/weka-

src/src/test/java"/> 

  <property name="lib" value="/media/sf_nova/weka/weka-src/weka-src/lib" /> 

  <property name="regression_tests_root" value="src/test/resources/wekarefs"/> 

  <property name="build" value="/media/sf_nova/workspace/weka/build"/> 

  <property name="dist"  value="/media/sf_nova/workspace/weka/dist"/> 

  <property name="doc"  value="doc"/> 

  <property name="reports"  value="reports"/> 

  <property name="javac_max_memory" value="4096m"/> 

  <property name="run_tests_fail" value="true"/> 

  <property name="headless" value="false"/> 

  <property name="macdistrib" value="osx-distrib"/> 

  <property name="debug" value="on" /> 

    

  <target name="init_all"> 

    <!-- Create the time stamp --> 

    <tstamp/> 

  </target> 

 

   <!-- general classpath definition, incl. CLASSPATH env. variable, 

   // but jars in lib directory have precedence over the CLASSPATH variable --> 

  <path id="project.class.path"> 

    <fileset dir="${lib}"> 

      <include name="*.jar"/> 

      <include name="*.zip"/> 

    </fileset> 

    <pathelement location="${build}/classes"/> 

    <pathelement location="${build}/testcases"/> 

    <pathelement path="${java.class.path}" /> 

  </path> 
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<!--  

 ============================================================================ 

 Compilation and documentation making stuff 

 ============================================================================ 

--> 

 

  <target name="init_compile" depends="init_all"> 

    <!-- Create the build directory structure used by compile --> 

    <mkdir dir="${build}/classes"/> 

  </target> 

 

  <!-- Compile the java code from ${src}weka into ${build}/classes --> 

  <target name="compile" depends="init_compile"  

   description="Compile weka and deposit class files in build/classes"> 

    <javac srcdir="${src}"  

      fork="yes" memoryMaximumSize="${javac_max_memory}" 

      destdir="${build}/classes" 

      optimize="${optimization}" 

      debug="${debug}" 

      deprecation="${deprecation}" 

      source="1.4" target="1.4"> 

 

      <classpath refid="project.class.path" />  

    </javac> 

    <copy todir="${build}/classes" > 

       <fileset dir="${src}"> 

         <include name="weka/**/*.gif"/> 

         <include name="weka/**/*.jpeg"/> 

         <include name="weka/**/*.jpg"/> 

         <include name="weka/**/*.props"/> 

         <include name="weka/**/*.txt"/> 

         <include name="weka/**/DatabaseUtils.props.*"/> 

         <include name="weka/gui/beans/README*"/> 

       </fileset> 

    </copy> 

    <rmic base="${build}/classes" 

       classname="weka.experiment.RemoteEngine"/> 

  </target> 

 

<!-- 

  =========================================================================== 

  Release making stuff 

  =========================================================================== 

--> 

 

  <target name = "init_dist" depends="init_all"> 

    <!-- Create the distribution directory --> 

    <mkdir dir="${dist}"/> 

  </target> 

 

  <!-- Put everything in ${path_modifier}${build}/classes into the weka.jar 

file --> 

  <target name="exejar" depends="compile, init_dist" 

   description="Create an executable jar file in ./dist"> 

    <jar jarfile="${dist}/weka.jar"  

      basedir="${build}/classes"> 

     <manifest> 

       <attribute name="Main-Class" value="weka.gui.GUIChooser"/> 

     </manifest> 

    </jar> 

  </target> 
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  <!-- Put all .java, and .props files into ${path_modifier}${dist}/weka-

src.jar--> 

  <target name="srcjar" depends="init_dist, init_all" 

   description="Create a jar file containing weka source in ./dist">   

    <!-- jar up the source --> 

    <jar jarfile="${dist}/weka-src.jar"  

      basedir="."> 

      <include name="*.xml"/> 

      <include name="src/**/*.gif"/> 

      <include name="src/**/*.java"/> 

      <include name="src/**/*.jpeg"/> 

      <include name="src/**/*.jpg"/> 

      <include name="src/**/*.props"/> 

      <include name="src/**/*.txt"/> 

      <include name="src/**/*.xml"/> 

      <include name="src/**/*.cost"/> 

      <include name="src/**/*.arff"/> 

      <include name="lib/**/*.jar"/> 

      <include name="src/**/DatabaseUtils.props.*"/> 

      <include name="src/**/weka/gui/beans/README*"/> 

    </jar> 

  </target> 

 

  <!-- make a jar file containing just the stuff needed for running a remote 

experiment server --> 

  <target name="remotejar" depends="compile, init_dist" 

   description="Create a jar file containing classes for remote experiments 

in ./dist"> 

     <jar jarfile="${dist}/remoteEngine.jar" 

      basedir="${build}/classes" 

      

includes="weka/experiment/*_*.class,weka/experiment/RemoteEngine*.class,weka/ex

periment/Compute.class,weka/experiment/Task.class,weka/experiment/TaskStatusInf

o.class,weka/core/Queue*.class"/> 

     <copy todir="${dist}" > 

       <fileset dir="${src}/weka/experiment"> 

          <include name="remote.policy"/> 

          <include name="remote.policy.example"/> 

       </fileset> 

    </copy> 

    <jar jarfile="${dist}/remoteExperimentServer.jar" 

     basedir="${dist}" 

     includes="remoteEngine.jar,remote.policy,remote.policy.example"/> 

     <delete file="${dist}/remoteEngine.jar"/> 

     <delete file="${dist}/remote.policy"/> 

     <delete file="${dist}/remote.policy.example"/> 

   </target> 

 

 

  <!-- Writes $release version number to weka/core/version.txt -->     

  <target name="set_version"> 

    <echo message="${release}" file="${src}/weka/core/version.txt"/> 

    <echo message="${release}" file="${build}/classes/weka/core/version.txt"/> 

  </target> 

 

  <!-- Make a release --> 

  <target name="release" depends="set_version, exejar, remotejar, srcjar" 

   description="Make a release in ${release}. Run with -Drelease=&lt;number of 

release (eg. 3-4-1)&gt;."> 

    <!-- copy the docs to dist/docs --> 

 

    <copy todir="weka-${release}/weka-${release}/doc" > 

       <fileset dir="${doc}"/> 
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    </copy> 

    <copy todir="weka-${release}/weka-${release}"> 

       <fileset dir="${dist}"/> 

    </copy> 

    <copy todir="weka-${release}/weka-${release}/data"> 

       <fileset dir="../wekadocs/data"/> 

    </copy> 

    <copy todir="weka-${release}/weka-${release}"> 

       <fileset dir="../wekadocs"> 

         <include name="README*"/> 

  <include name="*.pdf"/> 

  <include name="COPYING"/> 

         <include name="documentation.*"/> 

         <include name="weka.gif"/> 

         <include name="weka.ico"/> 

       </fileset> 

    </copy> 

    <zip destfile="weka-${release}.zip"  

     basedir="weka-${release}"/> 

  </target> 

</project> 
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Appendix H: Explanation of Linux commands in selecting attack lines 

In generating the data files from the KDD CUP 99 data to mimic the data used by 

Lima et al. (2012),  a series of Linux commands are used and pipelined together to 

produce the needed results as in the following entry.  

$ cat kdd.data.csv | grep back | shuf –n 1026 >>DoS.csv 

 

In the example above, a description of the Linux commands is as follows: 

Command Description 

  

cat List the contents of the given to standard out. 

  

grep This command looks for the given character string, in this case “back”, 

in each line. If it is found, the line is written to standard out. 

  

shuf This command reads from standard input and outputs the results in 

random order. The “-n 1026” options indicates to output 1,026 lines. It 

is similar to the “sort –R” command but runs much faster. 

  

>>DoS.csv This is a redirection of standard output to concatenate the results to the 

file DoS.csv. If DoS.csv does not exist, it will be created. 
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Appendix I: Listing of Linux shell script to generate KDD CUP 99 files 

The listing for the Linus shell script to generate the files for use in reproducing the 

Lima et al. (2012) results is as follows: 

echo `date`  Dos.arff 

>Dos.arff 

cat kddcup.data.csv |grep ,back.$|shuf -n 1026 >>DoS.arff 

cat kddcup.data.csv |grep ,land.$|shuf -n 11 >>DoS.arff 

cat kddcup.data.csv |grep ,neptune.$|shuf -n 10401 >>DoS.arff 

cat kddcup.data.csv |grep ,pod.$|shuf -n 69 >>DoS.arff 

cat kddcup.data.csv |grep ,smurf.$|shuf -n 7669 >>DoS.arff 

cat kddcup.data.csv |grep ,teardrop.$|shuf -n 15 >>DoS.arff 

cat kddcup.data.csv |grep ,normal.$|shuf -n 2573 >>DoS.arff 

 

echo `date`  Probe.arff 

>Probe.arff 

cat kddcup.data.csv |grep ,ipsweep.$|shuf -n 586 >>Probe.arff 

cat kddcup.data.csv |grep ,nmap.$|shuf -n 151 >>Probe.arff 

cat kddcup.data.csv |grep ,portsweep.$|shuf -n 155 >>Probe.arff 

cat kddcup.data.csv |grep ,satan.$|shuf -n 16 >>Probe.arff 

cat kddcup.data.csv |grep ,normal.$|shuf -n 1704 >>Probe.arff 

 

echo `date`  R2L.arff 

>R2L.arff 

cat kddcup.data.csv |grep ,ftp_write.$|shuf -n 5 >>R2L.arff 

cat kddcup.data.csv |grep ,guess_passwd.$|shuf -n 53 >>R2L.arff 

cat kddcup.data.csv |grep ,imap.$|shuf -n 11 >>R2L.arff 

cat kddcup.data.csv |grep ,multihop.$|shuf -n 7 >>R2L.arff 

cat kddcup.data.csv |grep ,phf.$|shuf -n 4 >>R2L.arff 

cat kddcup.data.csv |grep ,spy.$|shuf -n 2 >>R2L.arff 

cat kddcup.data.csv |grep ,warezclient.$|shuf -n 60 >>R2L.arff 

cat kddcup.data.csv |grep ,warezmaster.$|shuf -n 20 >>R2L.arff 

cat kddcup.data.csv |grep ,normal.$|shuf -n 1934 >>R2L.arff 

 

echo `date`  U2R.arff 

>U2R.arff 

cat kddcup.data.csv |grep ,loadmodule.$|shuf -n 9 >>U2R.arff 

cat kddcup.data.csv |grep ,buffer_overflow.$|shuf -n 21 >>U2R.arff 

cat kddcup.data.csv |grep ,perl.$|shuf -n 3 >>U2R.arff 

cat kddcup.data.csv |grep ,rootkit.$|shuf -n 7 >>U2R.arff 

cat kddcup.data.csv |grep ,normal.$|shuf -n 1676 >>U2R.arff 

 

echo `date`  Dos.arff 

cat Dos.arff|cut -f42 -d,|sort|uniq -c 

echo `date`  Probe.arff 

cat Probe.arff|cut -f42 -d,|sort|uniq -c 

echo `date`  R2L.arff 
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Appendix J: Listing of the KDD CUP 99 features 

The table below is the KDD CUP 99 data set features and its definition in the arff 

file from the KDD CUP 99 web site (KDD Cup 1999 Data, 1999). 

Number Feature Name Feature Type or values 

1 duration continuous. 

2 protocol_type symbolic. 

3 service symbolic. 

4 flag symbolic. 

5 src_bytes continuous. 

6 dst_bytes continuous. 

7 land symbolic. 

8 wrong_fragment continuous. 

9 urgent continuous. 

10 hot continuous. 

11 num_failed_logins continuous. 

12 logged_in symbolic. 

13 num_compromised continuous. 

14 root_shell continuous. 

15 su_attempted continuous. 

16 num_root continuous. 

17 num_file_creations continuous. 

18 num_shells continuous. 

19 num_access_files continuous. 

20 num_outbound_cmds continuous. 

21 is_host_login symbolic. 

22 is_guest_login symbolic. 

23 count continuous. 

24 srv_count continuous. 

25 serror_rate continuous. 

26 srv_serror_rate continuous. 

27 rerror_rate continuous. 

28 srv_rerror_rate continuous. 

29 same_srv_rate continuous. 

30 diff_srv_rate continuous. 

31 srv_diff_host_rate continuous. 

32 dst_host_count continuous. 

33 dst_host_srv_count continuous. 

34 dst_host_same_srv_rate continuous. 

35 dst_host_diff_srv_rate continuous. 

36 dst_host_same_src_port_rate continuous. 

37 dst_host_srv_diff_host_rate continuous. 

38 dst_host_serror_rate continuous. 

39 dst_host_srv_serror_rate continuous. 

40 dst_host_rerror_rate continuous. 

41 dst_host_srv_rerror_rate continuous. 

42 class back,buffer_overflow,ftp_write,guess_pass

wd,imap,ipsweep,land,loadmodule,multihop,

neptune,nmap,normal,perl,phf,pod,portswee

p,rootkit,satan,smurf,spy,teardrop,warezc

lient,warezmaster. 
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Appendix K: Partial listing of DoS.arff file 

The following is a partial listing of the DoS.arff file. It shows the formatting 

requirements as defined at the WEKA website (WEKA 3, n.d.). The other arff files used 

in the analysis each follow this format. At the end of this listing, the data continues to the 

complete length of the data. 

@relation "DoS data to reproduce Lima (2012) results" 

 

@attribute duration numeric  

@attribute protocol_type {tcp,icmp,udp} 

@attribute service {aol,http_8001,http,smtp,finger,domain,domain_u,auth,telnet,

ftp,eco_i,ntp_u,ecr_i,other,private,pop_3,ftp_data,rje,time,mtp,link,remote_job

,gopher,ssh,name,whois,login,imap4,daytime,ctf,nntp,shell,IRC,nnsp,harvest,http

_443,http_2784,exec,printer,efs,courier,uucp,klogin,kshell,echo,discard,systat,

supdup,iso_tsap,hostnames,csnet_ns,pop_2,sunrpc,uucp_path,netbios_ns,netbios_ss

n,netbios_dgm,sql_net,vmnet,bgp,Z39_50,ldap,netstat,urh_i,X11,urp_i,pm_dump,tft

p_u,tim_i,red_i} 

@attribute flag {SF,S1,REJ,S2,S0,S3,RSTO,RSTR,RSTOS0,OTH,SH} 

@attribute src_bytes numeric  

@attribute dst_bytes numeric  

@attribute land {0,1} 

@attribute wrong_fragment numeric  

@attribute urgent numeric  

@attribute hot numeric  

@attribute num_failed_logins numeric  

@attribute logged_in {0,1} 

@attribute num_compromised numeric  

@attribute root_shell numeric  

@attribute su_attempted numeric  

@attribute num_root numeric  

@attribute num_file_creations numeric  

@attribute num_shells numeric  

@attribute num_access_files numeric  

@attribute num_outbound_cmds numeric  

@attribute is_host_login {0,1} 

@attribute is_guest_login {0,1} 

@attribute count numeric  

@attribute srv_count numeric  

@attribute serror_rate numeric  

@attribute srv_serror_rate numeric  

@attribute rerror_rate numeric  

@attribute srv_rerror_rate numeric  

@attribute same_srv_rate numeric  

@attribute diff_srv_rate numeric  

@attribute srv_diff_host_rate numeric  

@attribute dst_host_count numeric  

@attribute dst_host_srv_count numeric  

@attribute dst_host_same_srv_rate numeric  

@attribute dst_host_diff_srv_rate numeric  

@attribute dst_host_same_src_port_rate numeric  

@attribute dst_host_srv_diff_host_rate numeric 

@attribute dst_host_serror_rate numeric 

@attribute dst_host_srv_serror_rate numeric 

@attribute dst_host_rerror_rate numeric 

@attribute dst_host_srv_rerror_rate numeric 

@attribute class {normal.,back.,land.,neptune.,pod.,smurf.,teardrop.} 
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@data 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,32,32,1.00,0.00,0.03,0.00,0.03,0.03,0.03,0.03,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,228,228,1.00,0.00,0.00,0.00,0.00,0.00,0.06,0.06,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,178,178,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.04,0.04,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back. 

7,tcp,http,RSTR,20440,1460,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.33,0

.33,1.00,0.00,0.00,26,26,1.00,0.00,0.04,0.00,0.00,0.00,0.35,0.35,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,3,0.00,0.00,0.00,0.3

3,1.00,0.00,0.67,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.01,0.01,0.04,0.04,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,172,172,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,164,164,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,7,0.00,0.00,0.00,0.2

9,1.00,0.00,0.43,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,6,0.00,0.00,0.00,0.1

7,1.00,0.00,0.33,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.04,0.04,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.01,0.01,0.04,0.04,back. 

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back. 

5,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,31,31,1.00,0.00,0.03,0.00,0.00,0.00,0.35,0.35,back. 
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Appendix L: Listings of KDD CUP 99 feature extraction shell script and files 

The following is a listing of the shell script to extract the features used in the J48 

classification tree results file for the KDD CUP 99 data. 

 
TEMP1=attemp.txt 

TEMP2=attlist.txt 

TEMP3=attnums.txt 

TEMP4=TEMP3$$ 

TEMP5=TEMP4$$ 

A=/media/sf_nova/data/KDD/attributes_names 

f=$1 

cat $f|sed -e "s/^/ /g" >$TEMP4 

firstpipe=`grep -n "^ |" $TEMP4|head -1|cut -f1 -d:` 

echo firstpipe = $firstpipe 

starthere=`expr $firstpipe - 1` 

echo starthere = $starthere 

lastpipe=`grep -n "^ |" $TEMP4|tail -1|cut -f1 -d:` 

echo lastpipe = $lastpipe 

tail -n+$starthere $TEMP4|head -1>$TEMP1 

grep -n "^ |" $TEMP4>>$TEMP1 

>$TEMP2 

>$TEMP3 

atnum=0 

for i in `cat $A` 

do 

   atnum=`expr $atnum + 1` 

   c=`grep " $i" $TEMP1|wc -l` 

   echo $atnum $i $c 

   if  

      [ $c -gt 0 ] 

   then 

      echo $atnum $i>>$TEMP2 

      echo -n "$atnum " >>$TEMP3 

   fi 

done 

echo >>$TEMP3 

cat $TEMP3|sed -e "s/ /, /g"|sed -e "s/, $//" >$TEMP4 

cat $TEMP4>$TEMP3 

rm $TEMP4 

nl $TEMP2 

cat $TEMP3 

rm -rf $TEMP1 $TEMP2 $TEMP3 

 

 

(Continued on next page) 

  



 123  

(Appendix L continued) 

 

The following is a list of the feature names used by the shell script to parse the 

J48 results file from the KDD CUP 99 data. 

 
duration 

protocol_type 

service 

flag 

src_bytes 

dst_bytes 

land 

wrong_fragment 

urgent 

hot 

num_failed_logins 

logged_in 

num_compromised 

root_shell 

su_attempted 

num_root 

num_file_creations 

num_shells 

num_access_files 

num_outbound_cmds 

is_host_login 

is_guest_login 

count 

srv_count 

serror_rate 

srv_serror_rate 

rerror_rate 

srv_rerror_rate 

same_srv_rate 

diff_srv_rate 

srv_diff_host_rate 

dst_host_count 

dst_host_srv_count 

dst_host_same_srv_rate 

dst_host_diff_srv_rate 

dst_host_same_src_port_rate 

dst_host_srv_diff_host_rate 

dst_host_serror_rate 

dst_host_srv_serror_rate 

dst_host_rerror_rate 

dst_host_srv_rerror_rate 

attack 
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Appendix M: Listings of SRI feature extraction shell script and files 

The following is a listing of the shell script to extract the features used in the J48 

classification tree results file for the SRI data. 

TEMP1=attemp.txt 

TEMP2=attlist.txt 

TEMP3=attnums.txt 

TEMP4=TEMP3$$ 

TEMP5=TEMP4$$ 

A=/media/sf_nova/data/SRI/bin/SRIattributes_names 

f=$1 

cat $f|sed -e "s/^/ /g" >$TEMP4 

firstpipe=`grep -n "^ |" $TEMP4|head -1|cut -f1 -d:` 

echo firstpipe = $firstpipe 

starthere=`expr $firstpipe - 1` 

echo starthere = $starthere 

lastpipe=`grep -n "^ |" $TEMP4|tail -1|cut -f1 -d:` 

echo lastpipe = $lastpipe 

tail -n+$starthere $TEMP4|head -1>$TEMP1 

grep -n "^ |" $TEMP4>>$TEMP1 

>$TEMP2 

>$TEMP3 

atnum=0 

for i in `cat $A` 

do 

   atnum=`expr $atnum + 1` 

   c=`grep " $i" $TEMP1|wc -l` 

   echo $atnum $i $c 

   if  

      [ $c -gt 0 ] 

   then 

      echo $atnum $i>>$TEMP2 

      echo -n "$atnum " >>$TEMP3 

   fi 

done 

echo >>$TEMP3 

cat $TEMP3|sed -e "s/ /, /g"|sed -e "s/, $//" >$TEMP4 

cat $TEMP4>$TEMP3 

rm $TEMP4 

nl $TEMP2 

cat $TEMP3 

rm -rf $TEMP1 $TEMP2 $TEMP3 

 

(Continued on next page) 
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(Appendix M continued) 

 

The following is a list of the feature names used by the shell script to parse the 

J48 results file from the SRI data. 

date 

index 

timemms 

frPort 

toPort 

flags 

seqRange 

ack 

win 

pktLength 

SWB 

SWBn 

smb 

rrq 

warn 

nop 

val 

ecr 

enum 

priority 

service 

Mesg 
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Appendix N: Listing of the J48 Classification Results 

The following is the output from WEKA with the KDD CUP 99 data using the 

J48 classification algorithm with Shannon entropy. There is one of these files for each 

run of the data and entropy combinations. 

 
=== Run information === 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     DoS data to reproduce Lima (2012) results 

Instances:    21764 

Attributes:   42 

              duration 

              protocol_type 

              service 

              flag 

              src_bytes 

              dst_bytes 

              land 

              wrong_fragment 

              urgent 

              hot 

              num_failed_logins 

              logged_in 

              num_compromised 

              root_shell 

              su_attempted 

              num_root 

              num_file_creations 

              num_shells 

              num_access_files 

              num_outbound_cmds 

              is_host_login 

              is_guest_login 

              count 

              srv_count 

              serror_rate 

              srv_serror_rate 

              rerror_rate 

              srv_rerror_rate 

              same_srv_rate 

              diff_srv_rate 

              srv_diff_host_rate 

              dst_host_count 

              dst_host_srv_count 

              dst_host_same_srv_rate 

              dst_host_diff_srv_rate 

              dst_host_same_src_port_rate 

              dst_host_srv_diff_host_rate 

              dst_host_serror_rate 

              dst_host_srv_serror_rate 

              dst_host_rerror_rate 

              dst_host_srv_rerror_rate 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 
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J48 pruned tree 

------------------ 

 

same_srv_rate <= 0.48 

|   src_bytes <= 14: neptune. (10354.0) 

|   src_bytes > 14: normal. (28.0/1.0) 

same_srv_rate > 0.48 

|   src_bytes <= 20309 

|   |   serror_rate <= 0.59 

|   |   |   wrong_fragment <= 0 

|   |   |   |   protocol_type = tcp: normal. (2015.0/1.0) 

|   |   |   |   protocol_type = icmp 

|   |   |   |   |   src_bytes <= 373: normal. (23.0) 

|   |   |   |   |   src_bytes > 373: smurf. (7670.0/1.0) 

|   |   |   |   protocol_type = udp: normal. (502.0) 

|   |   |   wrong_fragment > 0 

|   |   |   |   protocol_type = tcp: pod. (0.0) 

|   |   |   |   protocol_type = icmp: pod. (68.0) 

|   |   |   |   protocol_type = udp: teardrop. (14.0) 

|   |   serror_rate > 0.59 

|   |   |   land = 0: neptune. (47.0) 

|   |   |   land = 1: land. (11.0) 

|   src_bytes > 20309 

|   |   service = aol: back. (0.0) 

|   |   service = http_8001: back. (0.0) 

|   |   service = http: back. (1025.0) 

|   |   service = smtp: back. (0.0) 

|   |   service = finger: back. (0.0) 

|   |   service = domain: back. (0.0) 

|   |   service = domain_u: back. (0.0) 

|   |   service = auth: back. (0.0) 

|   |   service = telnet: back. (0.0) 

|   |   service = ftp: back. (0.0) 

|   |   service = eco_i: back. (0.0) 

|   |   service = ntp_u: back. (0.0) 

|   |   service = ecr_i: back. (0.0) 

|   |   service = other: back. (0.0) 

|   |   service = private: back. (0.0) 

|   |   service = pop_3: back. (0.0) 

|   |   service = ftp_data: normal. (7.0) 

|   |   service = rje: back. (0.0) 

|   |   service = time: back. (0.0) 

|   |   service = mtp: back. (0.0) 

|   |   service = link: back. (0.0) 

|   |   service = remote_job: back. (0.0) 

|   |   service = gopher: back. (0.0) 

|   |   service = ssh: back. (0.0) 

|   |   service = name: back. (0.0) 

|   |   service = whois: back. (0.0) 

|   |   service = login: back. (0.0) 

|   |   service = imap4: back. (0.0) 

|   |   service = daytime: back. (0.0) 

|   |   service = ctf: back. (0.0) 

|   |   service = nntp: back. (0.0) 

|   |   service = shell: back. (0.0) 

|   |   service = IRC: back. (0.0) 

|   |   service = nnsp: back. (0.0) 

|   |   service = harvest: back. (0.0) 

|   |   service = http_443: back. (0.0) 

|   |   service = http_2784: back. (0.0) 

|   |   service = exec: back. (0.0) 

|   |   service = printer: back. (0.0) 
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|   |   service = efs: back. (0.0) 

|   |   service = courier: back. (0.0) 

|   |   service = uucp: back. (0.0) 

|   |   service = klogin: back. (0.0) 

|   |   service = kshell: back. (0.0) 

|   |   service = echo: back. (0.0) 

|   |   service = discard: back. (0.0) 

|   |   service = systat: back. (0.0) 

|   |   service = supdup: back. (0.0) 

|   |   service = iso_tsap: back. (0.0) 

|   |   service = hostnames: back. (0.0) 

|   |   service = csnet_ns: back. (0.0) 

|   |   service = pop_2: back. (0.0) 

|   |   service = sunrpc: back. (0.0) 

|   |   service = uucp_path: back. (0.0) 

|   |   service = netbios_ns: back. (0.0) 

|   |   service = netbios_ssn: back. (0.0) 

|   |   service = netbios_dgm: back. (0.0) 

|   |   service = sql_net: back. (0.0) 

|   |   service = vmnet: back. (0.0) 

|   |   service = bgp: back. (0.0) 

|   |   service = Z39_50: back. (0.0) 

|   |   service = ldap: back. (0.0) 

|   |   service = netstat: back. (0.0) 

|   |   service = urh_i: back. (0.0) 

|   |   service = X11: back. (0.0) 

|   |   service = urp_i: back. (0.0) 

|   |   service = pm_dump: back. (0.0) 

|   |   service = tftp_u: back. (0.0) 

|   |   service = tim_i: back. (0.0) 

|   |   service = red_i: back. (0.0) 

 

Number of Leaves  :  81 

 

Size of the tree :  91 

 

 

Time taken to build model: 0.63 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances       21754               99.9541 % 

Incorrectly Classified Instances        10                0.0459 % 

Kappa statistic                          0.9993 

Mean absolute error                      0.0002 

Root mean squared error                  0.0115 

Relative absolute error                  0.1098 % 

Root relative squared error              3.8271 % 

Total Number of Instances            21764      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.999     0          0.997     0.999     0.998    normal. 

  0.999     0          1         0.999     1        back. 

  1         0          1         1         1        land. 

  1         0          1         1         1        neptune. 

  0.986     0          1         0.986     0.993    pod. 

  0.999     0          1         0.999     1        smurf. 

  0.933     0          1         0.933     0.966    teardrop. 

 

=== Confusion Matrix === 
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     a     b     c     d     e     f     g   <-- classified as 

  2571     0     0     1     0     1     0 |     a = normal. 

     1  1025     0     0     0     0     0 |     b = back. 

     0     0    11     0     0     0     0 |     c = land. 

     0     0     0 10401     0     0     0 |     d = neptune. 

     1     0     0     0    68     0     0 |     e = pod. 

     5     0     0     0     0  7664     0 |     f = smurf. 

     1     0     0     0     0     0    14 |     g = teardrop. 
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Appendix O: Listing of the feature extraction shell results  

Below is the output of the shell script showing the features used in the J48 

Classification tree for the KDD CUP 99 DoS attack category using Shannon entropy. The 

last line of the output is the feature numbers used. 

1 duration 0 

2 protocol_type 6 

3 service 70 

4 flag 0 

5 src_bytes 6 

6 dst_bytes 0 

7 land 2 

8 wrong_fragment 2 

9 urgent 0 

10 hot 0 

11 num_failed_logins 0 

12 logged_in 0 

13 num_compromised 0 

14 root_shell 0 

15 su_attempted 0 

16 num_root 0 

17 num_file_creations 0 

18 num_shells 0 

19 num_access_files 0 

20 num_outbound_cmds 0 

21 is_host_login 0 

22 is_guest_login 0 

23 count 0 

24 srv_count 0 

25 serror_rate 2 

26 srv_serror_rate 0 

27 rerror_rate 0 

28 srv_rerror_rate 0 

29 same_srv_rate 1 

30 diff_srv_rate 0 

31 srv_diff_host_rate 0 

32 dst_host_count 0 

33 dst_host_srv_count 0 

34 dst_host_same_srv_rate 0 

35 dst_host_diff_srv_rate 0 

36 dst_host_same_src_port_rate 0 

37 dst_host_srv_diff_host_rate 0 

38 dst_host_serror_rate 0 

39 dst_host_srv_serror_rate 0 

40 dst_host_rerror_rate 0 

41 dst_host_srv_rerror_rate 0 

42 attack 0 

     1 2 protocol_type 

     2 3 service 

     3 5 src_bytes 

     4 7 land 

     5 8 wrong_fragment 

     6 25 serror_rate 

     7 29 same_srv_rate 

2, 3, 5, 7, 8, 25, 29 

 

  



131 

Appendix P: Partial view of Malware Infection Analysis Page  

This image below shows the page from the SRI's Multiperspective Malware Infection Analysis Page. It consists of multiple 

columns and links to other files for down load.
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Appendix Q: Partial listing of file.sh  

 

# head -40 file.sh  

wget http://www.cyber-ta.org/releases/malware/2008-05-

01-analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHu

nter.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/84cf85439891727b7c6d6e32f2caca7e/84cf8543989172

7b7c6d6e32f2caca7e.virus-labels 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/91e84b30547650f710f220117e031029/91e84b30547650

f710f220117e031029.virus-labels 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/ab989d919b6d0eb454a24f5ace298dc0/ab989d919b6d0e

b454a24f5ace298dc0.virus-labels 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/d930d42d1283f036888801c27f486285/d930d42d1283f0

36888801c27f486285.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHu

nter.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunt

er.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts_botH

unter.txt 

wget 

http://www.cyber-ta.org/releases/malware/SOURCES/ac331591236cd22abd082d1b9ab488

e2/ac331591236cd22abd082d1b9ab488e2.virus-labels 



133 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts_botHun

ter.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts_botHun

ter.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/76b4ab852ec50e9b1a959dd8139a41f5/76b4ab852ec50e

9b1a959dd8139a41f5.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.rules 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts_botHun

ter.txt 

wget http://www.cyber-

ta.org/releases/malware/SOURCES/ccf7ce9bb50a0861e755df41dce9528d/ccf7ce9bb50a08

61e755df41dce9528d.virus-labels 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz 

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz.alerts 
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Appendix R: Partial list of downloaded files  

The following is a partial list of downloaded files from the Linux “ls” command. 

 
 

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz 

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts 

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts_botHunter.txt 

213.197.10.57_130.107.208.13_10.2.32.207.rules 

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz 

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts 

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts_botHunter.txt 

213.22.217.163_130.107.192.209_10.2.32.216.rules 

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz 

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts 

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHunter.txt 

217.96.39.133_130.107.251.229_10.2.32.216.rules 

220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz 

220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz.alerts 

220.213.33.230_130.107.167.170_10.2.32.212.rules 

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels 

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels.1 

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels.2 

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz 

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts 

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts_botHunter.txt 

60.52.103.123_130.107.245.17_10.2.32.205.rules 

76b4ab852ec50e9b1a959dd8139a41f5.virus-labels 

84cf85439891727b7c6d6e32f2caca7e.virus-labels 

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz 

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts 

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts_botHunter.txt 

85.15.254.56_130.107.209.212_10.2.32.201.rules 

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz 

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts 

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunter.txt 

88.9.48.154_130.107.215.192_10.2.32.212.rules 

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz 

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts 

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHunter.txt 

90.189.210.154_130.107.176.98_10.2.32.213.rules 

91e84b30547650f710f220117e031029.virus-labels 

ab989d919b6d0eb454a24f5ace298dc0.virus-labels 

ac331591236cd22abd082d1b9ab488e2.virus-labels 

ccf7ce9bb50a0861e755df41dce9528d.virus-labels 

d930d42d1283f036888801c27f486285.virus-labels 

 

 

Many more files are downloaded per the commands in the “files.sh” file. 
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Appendix S: Listing of associations.sh script 

The following is a listing of the script that generates the associations to improve 

the naming conventions for the downloaded files. 

# cat associate.sh 

# associate.sh 

# this script looks through files.sh and 

# creates an association for each pcap.gz 

# file. The contents contain: 

#    pcap.gz filename 

#     

Date=20080501 

Seq=0 

for f in `cat file.sh|cut -f8 -d\/` 

do 

   p=`echo $f|grep "pcap.gz$"|wc -l` 

   if  

      [ $p -eq 1 ] 

   then 

      Seq=`expr $Seq + 1` 

   fi 

   OutFile=$Date-$Seq 

   F=$OutFile-$f 

   A=$OutFile-associations.file 

   echo $f ==> $F 

   if  

      [ $p -eq 1 ] 

   then 

      #Seq=`expr $Seq + 1` 

      echo Pcap and Other associated files >$A 

   fi 

   echo $F >>$A 

   cat $f >$F 

done 
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Appendix T: Partial List of files prepended with association names 

Below is a partial list of the files for the date of 20080501 with the date and 

association numbers prepended to the file names. 

 
20080501-1-84cf85439891727b7c6d6e32f2caca7e.virus-labels 

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap 

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts 

20080501-1-

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHunter.txt 

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts.E3 

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.tcpdump 

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.rules 

20080501-1-91e84b30547650f710f220117e031029.virus-labels 

20080501-1-ab989d919b6d0eb454a24f5ace298dc0.virus-labels 

20080501-1-associations.file 

20080501-1-.AV 

20080501-1-d930d42d1283f036888801c27f486285.virus-labels 

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap 

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts 

20080501-2-

85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts_botHunter.txt 

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts.E3 

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.tcpdump 

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.rules 

20080501-2-associations.file 

20080501-2-.AV 

20080501-2-cd05c2e205bc9a84ad14e188d17eadd4.virus-labels 

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap 

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts 

20080501-3-

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHunter.txt 

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts.E3 

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.tcpdump 

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.rules 

20080501-3-5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels 

20080501-3-associations.file 

20080501-3-.AV 

20080501-4-5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunter.txt 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts.E3 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.tcpdump 

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.rules 

20080501-4-associations.file 

20080501-4-.AV 
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Appendix U: Listing of an alerts, rules, BotHunter reports, and virus-labels files 

The following is an alerts file. 

$ cat 20080501-158-201.250.57.61_130.107.136.236_10.2.32.214.pcap.gz.alerts 

05/01-20:02:15.451167  [**] [1:3000006:99] E3[rb]  BotHunter MALWARE executable 

upload [**] [Classification: Misc activity] [Priority: 3] {TCP} 

201.250.57.61:4915 -> 130.107.136.236:445 

05/01-20:02:15.478900  [**] [1:299998:1] E2[rb] SHELLCODE x86 inc ebx NOOP [**] 

[Classification: Executable code was detected] [Priority: 1] {TCP} 

201.250.57.61:4915 -> 130.107.136.236:445 

05/01-20:02:15.478900  [**] [1:21390:5] E2[rb] REGISTERED FREE SHELLCODE x86 

inc ebx NOOP [**] [Classification: Executable code was detected] [Priority: 1] 

{TCP} 201.250.57.61:4915 -> 130.107.136.236:445 

05/01-20:02:15.504635  [**] [1:299998:1] E2[rb] SHELLCODE x86 inc ebx NOOP [**] 

[Classification: Executable code was detected] [Priority: 1] {TCP} 

201.250.57.61:4915 -> 130.107.136.236:445 

05/01-20:02:15.504635  [**] [1:21390:5] E2[rb] REGISTERED FREE SHELLCODE x86 

inc ebx NOOP [**] [Classification: Executable code was detected] [Priority: 1] 

{TCP} 201.250.57.61:4915 -> 130.107.136.236:445 

05/01-20:02:17.855834  [**] [1:2000427:9] E3[rb] ET POLICY PE EXE Install 

Windows file download [**] [Classification: Misc activity] [Priority: 3] {TCP} 

201.250.57.61:1156 -> 130.107.136.236:1033 

05/01-20:03:08.315644  [**] [1:2404005:1142] E4[rb] ET DROP Known Bot C&C 

Server Traffic (group 6)  [**] [Classification: A Network Trojan was detected] 

[Priority: 1] {TCP} 130.107.136.236:1034 -> 211.96.97.44:7000 

05/01-20:04:42.444922  [**] [1:2000352:6] E6[rb] ET ATTACK RESPONSE IRC - dns 

request on non-std port [**] [Classification: Potential Corporate Privacy 

Violation] [Priority: 1] {TCP} 130.107.136.236:1034 -> 211.96.97.44:7000 

 

The following is a rules file 

$ cat 20080501-158-201.250.57.61_130.107.136.236_10.2.32.214.rules 

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"E3[rb]  BotHunter MALWARE 

executable upload"; flow:established,to_server; content:"ftp"; content: "echo"; 

content: ".exe"; nocase; classtype: misc-activity; sid:3000006; rev:99; ) 

 

The following is a botHunter.txt file which reports the BotHunter findings. 

cat 20080501-158-

201.250.57.61_130.107.136.236_10.2.32.214.pcap.gz.alerts_botHunter.txt 

Score:            1.8 (>= 0.8) 

Infected Target:  130.107.136.236 

Infector List:    201.250.57.61 

Egg Source List:  201.250.57.61 

C & C List:       211.96.97.44 (3) 

Peer Coord. List: <unobserved> 

Resource List:    <unobserved> 

Observed Start:   05/01/2008 20:02:15.000 PDT 

Report End:       05/01/2008 20:02:15.504 PDT 

Gen. Time:        05/01/2008 20:04:44.289 PDT 

 

INBOUND SCAN 

    <unobserved> 

 

EXPLOIT 

    201.250.57.61 (6) (20:02:15.000 PDT-20:02:15.504 PDT) 

       event=1:1390 (2) {tcp} E2[rb] REGISTERED FREE SHELLCODE x86 inc ebx NOOP 

          2: 445<-4915 (20:02:15.478 PDT-20:02:15.504 PDT) 

       ------------------------- 
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       event=1:2001944 {tcp} E2[rb] BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill 

ASN1 exploit attempt 

          445<-4915 (20:02:15.478 PDT) 

       ------------------------- 

       event=1:3003 {tcp} E2[rb] NETBIOS SMB-DS Session Setup NTMLSSP unicode 

asn1 overflow attempt 

          445<-4915 (20:02:15.000 PDT) 

       ------------------------- 

       event=1:99998 (2) {tcp} E2[rb] SHELLCODE x86 inc ebx NOOP 

          2: 445<-4915 (20:02:15.478 PDT-20:02:15.504 PDT) 

 

EXPLOIT (slade) 

    <unobserved> 

 

EGG DOWNLOAD 

    201.250.57.61 (2) (20:02:15.451 PDT) 

       event=1:2001684 {tcp} E3[rb] BLEEDING-EDGE Malware Windows executable 

sent from remote host, Win32 

          1033<-1156 (20:02:17.855 PDT) 

       ------------------------- 

       event=1:3000006 {tcp} E3[rb]  BotHunter MALWARE executable upload 

          445<-4915 (20:02:15.451 PDT) 

 

C and C TRAFFIC 

    211.96.97.44 (3) (20:04:41.993 PDT) 

       event=1:2000345 {tcp} E4[rb] BLEEDING-EDGE ATTACK RESPONSE IRC - Nick 

change on non-std port 

          1034->7000 (20:04:41.993 PDT) 

       ------------------------- 

       event=1:2002024 {tcp} E4[rb] BLEEDING-EDGE TROJAN IRC NICK command 

          1034->7000 (20:04:41.993 PDT) 

       ------------------------- 

       event=1:2002025 {tcp} E4[rb] BLEEDING-EDGE TROJAN IRC JOIN command 

          1034->7000 (20:04:42.223 PDT) 

 

PEER COORDINATION 

    <unobserved> 

 

OUTBOUND SCAN 

    46.113.10.222 (20:04:44.289 PDT) 

       event=1:2001569 {tcp} E5[rb] BLEEDING-EDGE Behavioral Unusual Port 445 

traffic, Potential Scan or Infection 

          1046->445 (20:04:44.289 PDT) 

     

    201.250.57.61 (20:04:44.289 PDT) 

       event=555:5555005 {tcp} E5[sc] scade detected scanning of 6 IPs (fail 

ratio=0:0/6):  

          0->0 (20:04:44.289 PDT) 

 

ATTACK PREP 

    <unobserved> 

 

DECLARE BOT 

    <unobserved> 

 

tcpslice 1209697335.000 1209697335.505 inputFile.tcpd | tcpdump -r - -w 

outputFile.tcpd 'host 130.107.136.236' 

 

============================== SEPARATOR ================================ 
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The following is virus-labels file.. 

 
$ cat 20080501-158-7e28dac8de2cdb7f5f03766ff6500063.virus-labels 

Antivirus Detection Summary: file 7e28dac8de2cdb7f5f03766ff6500063 

 

  1: AhnLab-V3             found [Win32/Kolab.worm.200441] 

  2: AntiVir               found [TR/Crypt.XPACK.Gen] 

  3: Authentium            found nothing 

  4: Avast                 found nothing 

  5: AVG                   found nothing 

  6: BitDefender           found [Packer.PrivateExeProtector.A] 

  7: CAT-QuickHeal         found [I-Worm.Kolab.re] 

  8: ClamAV                found nothing 

  9: DrWeb                 found [Win32.IRC.Bot] 

 10: eSafe                 found [Suspicious File] 

 11: eTrust-Vet            found [Win32/ForBot.VC] 

 12: Ewido                 found nothing 

 13: F-Prot                found nothing 

 14: F-Secure              found [Net-Worm.Win32.Kolab.qw] 

 15: FileAdvisor           found nothing 

 16: Fortinet              found [W32/Kolab.QW!worm.im] 

 17: Ikarus                found [Packer.PrivateExeProtector.A] 

 18: Kaspersky             found [Net-Worm.Win32.Kolab.qw] 

 19: McAfee                found nothing 

 20: Microsoft             found nothing 

 21: NOD32v2               found [Win32/Kolab.QW] 

 22: Norman                found [W32/Smalltroj.DYQU] 

 23: Panda                 found nothing 

 24: Prevx1                found [WORM.VARIANT!WORM] 

 25: Rising                found nothing 

 26: Sophos                found [Mal/Generic-A] 

 27: Sunbelt               found nothing 

 28: Symantec              found [W32.Spybot.Worm] 

 29: TheHacker             found nothing 

 30: VBA32                 found [Net-Worm.Win32.Kolab.qw] 

 31: VirusBuster           found nothing 

 32: Webwasher-Gateway     found [Trojan.Crypt.XPACK.Gen] 

 

 

CREDITS:  Antivirus malware test results are from submissions to 

www.virustotal.com. 
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Appendix V: Listing of bf.sh script and a portion of results 

 

The following is a listing of the bf.sh script used to extract pertinent data from the 

existing files in each date directory. 

 

# cat bf.sh 

for j in `ls *alerts|grep "-"|cut -f2 -d-|sort -n` 

do 

   E=`ls 20??????-$j-*alerts` 

   T=`ls 20??????-$j-*tcpdump` 

   R=`ls 20??????-$j-*rules` 

   echo "+++++++++++++++++++++++++++++++++++" 

   echo "+++++++++++++++++++++++++++++++++++" 

   echo E=$E 

   echo T=$T 

   echo R=$R 

    

   for i in `grep E3 $E|cut -f2-3 -d:|cut -f1 -d\ ` 

   do  

      echo Search Term 

      echo $i 

      echo =====tcpdump entry 

      echo -n TP= 

      grep $i $T|grep -v 10.2. 

      echo =====Alert entry 

      echo -n AE= 

      grep $i $E 

      echo =====Actual Alert 

      echo -n AA= 

      grep $i $E | cut -f4 -d\]|cut -f1 -d\[ 

      echo ============= 

      echo 

   done 

done 

 

Below is a portion of the results of running the bf.sh script for the date of 

20080501. The length of the files for each date is 3,229 lines to 8,649 lines long. 

+++++++++++++++++++++++++++++++++++ 

+++++++++++++++++++++++++++++++++++ 

E=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts 

T=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.tcpdump 

R=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.rules 

File Reference 

FR=20080501-1 

Search Term 

ST=17:51.525715 

=====tcpdump entry 

TP=02:17:51.525715 IP 90.189.210.154.4619 > 130.107.176.98.445: Flags [.], seq 

1165743534:1165744974, ack 3737182244, win 64711, length 1440SMB-over-TCP 

packet:(raw data  

or continuation?) 

=====Alert entry 
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AE=05/01-00:17:51.525715  [**] [1:3000006:99] E3[rb]  BotHunter MALWARE 

executable upload [**] [Classification: Misc activity] [Priority: 3] {TCP} 

90.189.210.154:4619 ->  

130.107.176.98:445 

=====Actual Alert 

AA=  BotHunter MALWARE executable upload  

============= 

 

File Reference 

FR=20080501-1 

Search Term 

ST=17:54.399343 

=====tcpdump entry 

TP=02:17:54.399343 IP 90.189.210.154.1596 > 130.107.176.98.1033: Flags [P.], 

seq 1196786334:1196786846, ack 3738074074, win 64800, length 512 

=====Alert entry 

AE=05/01-00:17:54.399343  [**] [1:2001683:3] E3[rb] BLEEDING-EDGE Malware 

Windows executable sent from remote host [**] [Priority: 0] {TCP} 

90.189.210.154:1596 -> 130.107 

.176.98:1033 

=====Actual Alert 

AA= BLEEDING-EDGE Malware Windows executable sent from remote host  

============= 

 

File Reference 

FR=20080501-1 

Search Term 

ST=17:54.399343 

=====tcpdump entry 

TP=02:17:54.399343 IP 90.189.210.154.1596 > 130.107.176.98.1033: Flags [P.], 

seq 1196786334:1196786846, ack 3738074074, win 64800, length 512 

=====Alert entry 

AE=05/01-00:17:54.399343  [**] [1:2001683:3] E3[rb] BLEEDING-EDGE Malware 

Windows executable sent from remote host [**] [Priority: 0] {TCP} 

90.189.210.154:1596 -> 130.107 

.176.98:1033 

=====Actual Alert 

AA= BLEEDING-EDGE Malware Windows executable sent from remote host 

============= 
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Appendix W: Listing of Features selected from SRI data 

Fields used for the feature selection analysis in WEKA. 

 
Field 

Num 

 

Name 

 

Description 

 

Values 

    

1 Date Date of data in yyyymmdd 20080501 … 20080510 

    

2 Index Reference of data file Numeric 

    

3 Timemms Time of day of incident in microseconds Numeric 

    

4 frPort From port number Numeric 

    

5 toPort To port number Numeric 

    

6 Flags TCP flags in packet NA, ACK, flags, PUSH&ACK 

    

7 seqRange Range of pack numbers Numeric 

    

8 ack Byte count in exchange Numeric 

    

9 win Bytes count of window size Numeric 

    

10 pktLength Byte count of data sent Numeric 

    

11 SWR Additional info with length NA, RRQ, SMB, WARNING 

    

12 SWRn Indicator if RRQ, SMB, or Warning present 0, 1 

    

13 Smb Server Message Block message NA, SMB-over-TCP 

    

14 Rrq Read Request message NA, svchost.exe 

    

15 Warn Warning of packet continuation NA, Packet continued 

    

16 Nop Count of NOP in options Numeric 

    

17 Val Sender timestamp info Numeric 

    

18 Ecr Echo reply timestamp info Numeric 

    

19 Enum Alert E indicator  E2, E3 

    

20 Priority Priority of alert Numeric 

    

21 Service Type of protocol used TCP, UDP 

    

22 aMesg Alert message indicator BE1, BE2, BE3, BH1, BH2, BH4, 

ET1, NB, SH, TFTP 
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The first three fields are used as references for trace back to the initial data file. 

Fields 13, 14, and 15 have a value taken from the tcpdump line for the incident. An NA 

or other value are acceptable for this field as identified in the above table. 

Below is an expanded description of the fields: 

1. The date is that designated by the SRI web site which contains the data. 

2. Index is a number generated to keep better management of the different files for each 

day. All the files with the same index are from the same incident. The main files for 

each incident are the tcpdump file, the alert file, virus-labels, rules, and the 

associations file. 

3. Timemms is the time of day in microseconds. The time taken from the tcpdump files 

for the incident which matches the search term. 

4. The frPort field is port number contained in the source IP field in the tcpdump file. 

5. The toPort field is port number contained in the destination IP field in the tcpdump 

file. 

6. Flags are the TCP flags in many of the tcpdump entries. In the data used for the 

analysis, the following flags were used: 1) ACK 2) PUSH&ACK. 

7. The seqRange feature uses the difference of the values in the seq parameter from the 

tcpdump output.  

8. The ack is the number of bytes in the exchange. 

9. The win is the widow size in bytes. 

10. The pktLength is the number of bytes in the packet. 

11. SWR is a feature which indicates which, if any, additional information is appended to 

the packet length parameter. The possibilities are “RRQ”, “SMB”, or “WARNING”.  
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12. The SWRn feature indicates if a “RRQ”, “SMB”, or “WARNING” was present. 

13. The Smb is the type of Server Message Block test presented. For the data used, it is 

only “SMB-over-TCP”. 

14. The Rrq is the Read Request message. For the data used, it is only “svchost.exe”. 

15. The Warn id the “Warning of packet continuation”.  For the data used, it is only 

“Packet continued”. 

16. The Nop is in the options field in the tcpdump output. This parameter contains a 

count of the number of “nop” entries there are between the brackets in the options 

field. 

17. The Val value is a time stamp in the options field. The parameter “TS val” between 

the brackets is a timestamp from the sender. 

18. The Ecr value is a time stamp in the options field. The parameter “ecr” between the 

brackets is an echo reply timestamp from the sender.  

19. The Enum feature comes from the rules files which is a BotHunter message. This 

E number is associated with the infection type. For the data used, the values are “E2”, 

or “E3”. 

20. The Priority feature is a numeric value in the alerts file . 

21. The Service feature is the type of protocol in the tcpdump file. For the data used, the 

values are “TCP”, or “UDP”. 

22. The aMesg feature is a shortened version of the Alert message indicator from the 

alerts file. For the data used, the values are “BE1”, “BE2”, “BE3”, “BH1”, “BH2”, 

“BH4”, “ET1”, “NB”, “SH”, or “TFTP”. The table following this list shows the 

expanded description of each value. 
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aMesg Enum Description  Count 

    

BE1 E2 BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit 

attempt 

4 

    

BE2 E3 BLEEDING-EDGE Malware Windows executable sent from remote 

host, Win32 

2128 

    

BE3 E3 BLEEDING-EDGE VIRUS Sasser Transfer _up.exe 35 

    

BH1 E3 BotHunter HTTP-based .exe Upload on backdoor port 353 

    

BH2 E3 BotHunter MALWARE executable upload 1356 

    

BH4 E3 BotHunter Scrip-based Windows egg download .exe 170 

    

ET1 E3 ET POLICY PE EXE Install Windows file download 150 

    

NB E2 NETBIOS SMB-DS Session Setup NTMLSSP unicode asn1 overflow 

attempt 

22 

    

SH E2 SHELLCODE x86 inc ebx NOOP 12 

    

TFTP E3 TFTP GET .exe from external source 128 
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Appendix X: Partial Listing of SRI.arff file 

@relation "SRI data" 

 

@attribute date {20080501,20080502,20080503,20080504,20080505,20080506,20080507

,20080508,20080509,20080510} 

@attribute index NUMERIC 

@attribute timemms NUMERIC 

@attribute frPort NUMERIC 

@attribute toPort NUMERIC 

@attribute flags {NA,ACK,flags,PUSH&ACK} 

@attribute seqRange NUMERIC 

@attribute ack NUMERIC 

@attribute win NUMERIC 

@attribute pktLength NUMERIC 

@attribute SWB {NA,RRQ,SMB,WARNING} 

@attribute SWBn {0,1} 

@attribute smb {NA,SMB-over-TCP} 

@attribute rrq {svchost.exe,NA} 

@attribute warn {NA,Packet_continued} 

@attribute nop NUMERIC 

@attribute val NUMERIC 

@attribute ecr NUMERIC 

@attribute enum {E2,E3} 

@attribute priority NUMERIC 

@attribute service {TCP,UDP} 

@attribute Mesg {BE1,BE2,BE3,BH1,BH2,BH4,ET1,NB,SH,TFTP} 

 

@data 

%date,index,timemms,frPort,toPort,flags,seqRange,ack,win,pktLength,SWR,SWRn,smb

,rrq,warn,nop,val,ecr,enum,priority,service,aMesg 

20080501,1,8271525715,4619,445,ACK,1440,3737182244,64711,1440,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2 

20080501,1,8274399343,1596,1033,PUSH&ACK,512,3738074074,64800,512,NA,0,NA,NA,NA

,0,0,0,E3,0,TCP,BE2 

20080501,1,8274399343,1596,1033,PUSH&ACK,512,3738074074,64800,512,NA,0,NA,NA,NA

,0,0,0,E3,0,TCP,BE2 

20080501,1,8297720956,1038,80,PUSH&ACK,45,3632878526,17520,45,NA,0,NA,NA,NA,0,0

,0,E3,3,TCP,BH1 

20080501,1,8297722080,1039,80,PUSH&ACK,47,851293562,17520,47,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,BH1 

20080501,1,8297723954,1040,80,PUSH&ACK,44,311488835,17520,44,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,BH1 

20080501,2,8762681249,48983,445,ACK,1452,1619850869,64217,1452,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2 

20080501,2,8765115020,49214,1028,ACK,1452,1620640693,64240,1452,NA,0,NA,NA,NA,0

,0,0,E3,3,TCP,ET1 

20080501,3,8991897517,1630,445,ACK,1460,26535918,64151,1460,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2 

20080501,3,8994461706,1705,1033,ACK,1460,27935892,64240,1460,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,ET1 

20080501,4,9206779357,4004,445,ACK,1440,488988015,65446,1440,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2 

20080501,4,9209229243,4010,1033,ACK,1440,489801999,65535,1440,NA,0,NA,NA,NA,0,0

,0,E3,3,TCP,ET1 

20080501,5,9610941864,3786,445,ACK,1448,64185918,64052,1448,SMB,1,SMB-over-

TCP,NA,NA,2,831416,2662,E3,3,TCP,BH2 

20080501,5,9612600730,3820,1033,ACK,1448,64785892,64064,1448,NA,0,NA,NA,NA,2,83

1433,0,E3,3,TCP,ET1 

20080501,6,9689209897,3750,445,ACK,1460,3862234534,17431,1460,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2 
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Appendix Y Listing of Java files to read and parse SRI data 

This appendix contains the listings of five Java classes use to parse the SRI data and 

fomat it for usin in WEKA. The order of the listings are: 
 util1.java 

 util2.java 

 util3.java 

 util4.java 

 dv.java 

=================== 

util1.java 

 

import java.io.*; 

 

/* 

 * This class is supports the retrieval of the raw SRI  

 * malware data from multiple files. The output writes 

 * the data into an intermediate file that is read by  

 * other applications.  

 * 

 * Author: Frank Acker, December 2014 

 */ 

 

 

public class util1 { 

 

  util2 u2 = new util2(); 

  util3 u3 = new util3(); 

 

  public void po () { 

     System.out.println("FR="+dv.FRinfo); 

     System.out.println("ST="+dv.STinfo); 

     System.out.println("TP="+dv.TPinfo); 

     System.out.println("AE="+dv.AEinfo); 

     System.out.println("AA="+dv.AAinfo); 

  }   

 

  public void nullInfo() { 

     dv.FRinfo     = dv.NULL; 

     dv.STinfo     = dv.NULL; 

     dv.TPinfo     = dv.NULL; 

     dv.AEinfo     = dv.NULL; 

     dv.AAinfo     = dv.NULL; 

     dv.frIP       = "0";   

     dv.frPort     = "0";   

     dv.toIP       = "0";   

     dv.toPort     = "0";   

     dv.Flags      = "0";   

     dv.seqRange   = 0; 

     dv.ackThere   = 0; 
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     dv.ackValue   = 0; 

     dv.winThere   = 0; 

     dv.winValue   = 0; 

     dv.pktLength  = 0; 

     dv.smbType    = dv.NA;  

     dv.rrqType    = dv.NA;  

     dv.smbFound   = false; 

     dv.warnType   = dv.NA; 

     dv.warnFound  = false; 

     dv.flagsNum   = 0; 

     dv.seqNum     = 0; 

     dv.winNum     = 0; 

     dv.lengthNum  = 0; 

     dv.ackNum     = 0; 

     dv.optType    = dv.NA; 

     dv.optNum     = 0; 

     dv.rrqNum     = 0; 

     dv.nopCount   = 0; 

     dv.valNum     = -99; 

     dv.ecrNum     = -99; 

     dv.valValue   = 0; 

     dv.ecrValue   = 0; 

     dv.attackType = dv.NULL; 

 

     // From AE line 

     dv.aeEnum      = dv.NULL; // E3 

     dv.aeAMsg      = dv.NULL; // Alert message 

     dv.aeAMsgDesig = dv.NULL; // Alert message designator 

     dv.aePriority  = 0;    // Alert Priority 

     dv.aeService   = dv.NULL; // Alert network service used 

  } 

 

  //static String[] stuff = new String[256]; 

   public long timecalcmms(String stuff) { 

      if (stuff.length() == 0) return 0; 

      String [] ts = stuff.split(":"); 

      long hr = 0, min = 0; 

      try { 

         hr = Long.parseLong(ts[0]) * 3600 * 1000000; 

      }catch(NumberFormatException ex){ 

         System.out.println("OOPS in timecalamms-hr 

string="+stuff+"="); 

         System.out.println("OOPS in timecalamms-hr 

ts[0]="+ts[0]+"="); 

      } 

      try { 

         min = Long.parseLong(ts[1]) * 60 * 1000000; 

      //}catch(NumberFormatException ex){ 

      }catch(ArrayIndexOutOfBoundsException ex){ 

         System.out.println("OOPS in timecalamms-min 

string="+stuff+"="); 

         System.out.println("OOPS in timecalamms-min 

ts[1]="+ts[1]+"="); 

      } 
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      Double sec = 0.0; 

      try { 

         sec = Double.parseDouble(ts[2]) *1000000.0; 

      //}catch(NumberFormatException ex){ 

      }catch(ArrayIndexOutOfBoundsException ex){ 

         System.out.println("OOPS"); 

         System.out.println("OOPS in timecalamms-sec 

string="+stuff+"="); 

         System.out.println("OOPS in timecalamms-sec 

ts[2]="+ts[2]+"="); 

      } 

      Long mmsec = hr + min + sec.longValue(); 

      return mmsec; 

       

   } 

 

   public void getFlags(String [] TPvar) { 

      String s; 

      String flagInfo = TPvar[dv.flagsNum+1]; 

      if (dv.flagsNum > 0) { 

 

         String [] FlagSym = {".", "F","F.","FP","P","P.","R", 

                               "R.","S","S."}; 

         String [] FlagDesc = {"ACK", "Finish","Finish&ACK", 

            "FIN&Pish","PUSH","PUSH&ACK","RST","RST&ACK", 

            "SYN","SYN&ACK"}; 

         flagInfo = flagInfo.replace("[",""); 

         flagInfo = flagInfo.replace("]",""); 

         flagInfo = flagInfo.replace(",",""); 

    

         int i; 

         for (i=0; i<FlagSym.length; i++) { 

            if (flagInfo.equals(FlagSym[i])) { 

               dv.Flags = FlagDesc[i]; 

               break; 

            } 

         } 

      } 

 

      // Seq 

      if (dv.seqNum > 0 ) 

         dv.seqRange = getSeqRange(TPvar[dv.seqNum+1]); 

 

      // ack 

      if (dv.ackNum > 0) { 

         dv.ackThere = 1; 

         s = TPvar[dv.ackNum+1].replace(",",""); 

         dv.ackValue = Long.parseLong(s); 

      } 

 

      // win 

      if (dv.winNum > 0) { 

         dv.winThere = 1; 

         s = TPvar[dv.winNum+1].replace(",",""); 
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         dv.winValue = Integer.parseInt(s); 

      } 

 

      // options 

      if (dv.optNum >0)  

         u3.optManage(TPvar); 

          

 

      // length 

      if (dv.lengthNum > 0) { 

         s = TPvar[dv.lengthNum+1].replace(",",""); 

         s = s.replace(":",""); 

         // check if alphas are butted up to length 

         boolean ok = true; 

         if (s.contains(dv.aSMB) && ok) { 

            u3.lenSplit(s, TPvar, dv.aSMB); 

            ok = false; 

         }  

         if (s.contains(dv.aRRQ) && ok) { 

            u3.lenSplit(s, TPvar, dv.aRRQ); 

            ok = false; 

         } 

         if (s.contains(dv.aWARN) && ok) { 

            u3.lenSplit(s, TPvar, dv.aWARN); 

            ok = false; 

         } 

         if (ok)  

            dv.pktLength = Integer.parseInt(s); 

      } 

   } 

 

 

   public Long getSeqRange(String data) { 

      data = data.replace(",",""); 

      String [] numz = data.split(":"); 

      if (numz.length >1) { 

         long num1 = Long.parseLong(numz[0]); 

         long num2 = Long.parseLong(numz[1]); 

         return (long) (num2-num1); 

      } 

      return (long)0; 

   } 

 

   public Boolean allInfo() { 

      if (dv.FRinfo.equals(dv.NULL) || 

          dv.STinfo.equals(dv.NULL) || 

          dv.TPinfo.equals(dv.NULL) || 

          dv.AEinfo.equals(dv.NULL) || 

          dv.AAinfo.equals(dv.NULL) ) { 

         return false; 

      } 

      return true; 

   } 
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   // method to sort input string to proper variables 

   public void inSort (String input) { 

      String c2 = ""; 

 

      if (input.length() > 2) { 

         c2 = input.substring(0,2); 

      } 

      if (c2.equals(dv.FR)) { // File Reference 

         dv.FRinfo = input; 

      } 

 

      if (c2.equals(dv.ST)) { // Search Term 

         dv.STinfo = input; 

      } 

 

      if (c2.equals(dv.TP)) { // TCP Dump 

         dv.TPinfo = input; 

      } 

 

      if (c2.equals(dv.AE)) { // Alert Entry 

         dv.AEinfo = input; 

      } 

 

      if (c2.equals(dv.AA)) { // Actual Alert 

         dv.AAinfo = input; 

      } 

 

   } 

} 

 

 

================== 

util2.java 

 
import java.io.*; 

 

/* 

 * This class is supports the retrieval of the raw SRI  

 * malware data from multiple files. The output writes 

 * the data into an intermediate file that is read by  

 * other applications.  

 * 

 * Author: Frank Acker, December 2014 

 */ 

 

public class util2 { 

 

    util3 u3 = new util3(); 

    util4 u4 = new util4(); 

    boolean header = true; 

 

   public void pdvFlags() { 
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      System.out.println("dv.flagsNum="+dv.flagsNum); 

      System.out.println("dv.seqNum="+dv.seqNum); 

      System.out.println("dv.winNum="+dv.winNum); 

      System.out.println("dv.lengthNum="+dv.lengthNum); 

      System.out.println("dv.ackNum="+dv.ackNum); 

      System.out.println("dv.optNum="+dv.optNum); 

      System.out.println("dv.valNum="+dv.valNum); 

      System.out.println("dv.ecrNum="+dv.ecrNum); 

      System.out.println("dv.rrqNum="+dv.rrqNum); 

   } 

 

   public void setTPNums(String[] TPvar) { 

      String t[] = dv.TPinfo.split("="); 

      //String[] TPvar = t[1].split(" "); 

      int j; 

      for (j=0; j<TPvar.length; j++) {  

         System.out.println(j + "  " + TPvar[j]); 

         if (TPvar[j].equals(dv.aFlags))  dv.flagsNum  = j; 

         if (TPvar[j].equals(dv.aSeq))    dv.seqNum    = j; 

         if (TPvar[j].equals(dv.aWin))    dv.winNum    = j; 

         if (TPvar[j].equals(dv.aLength)) dv.lengthNum = j; 

         if (TPvar[j].equals(dv.aAck))    dv.ackNum    = j; 

         if (TPvar[j].contains(dv.aOpt))    dv.optNum    = j; 

         if (TPvar[j].contains(dv.aVal)) { 

            dv.valNum    = j; 

            dv.valValue  = u3.justNums(TPvar[dv.valNum + 1]); 

         } 

         if (TPvar[j].contains(dv.aEcr)) { 

            dv.ecrNum    = j; 

            dv.ecrValue  = u3.justNums(TPvar[dv.ecrNum + 1]); 

         } 

         if (TPvar[j].contains(dv.aRRQ)) { 

            dv.rrqNum = j; 

            dv.rrqType = TPvar[j+1].replace("\"",""); 

         } 

      } 

   } 

 

   public void getIPnPort(String [] TPvar) { 

      String ipInfo[] = TPvar[2].split("\\."); 

      // get the port numbers 

      String s=ipInfo[0]; 

      s=s.concat(".");s=s.concat(ipInfo[1]);s=s.concat("."); 

      s=s.concat(ipInfo[2]);s=s.concat(".");s=s.concat(ipInfo[3]); 

      dv.frIP=s; 

      dv.frPort = ipInfo[4]; 

      ipInfo = TPvar[4].split("\\."); 

      s=ipInfo[0]; 

      s=s.concat(".");s=s.concat(ipInfo[2]);s=s.concat("."); 

      s=s.concat(ipInfo[1]);s=s.concat(".");s=s.concat(ipInfo[3]); 

      dv.toIP=s; 

      dv.toPort = ipInfo[4].replace(":",""); 

   } 

   public void prtOutVars() { 
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   // From TCP Dump line 

      System.out.println("+++OUTPUT VALUES+++"); 

      System.out.println("frIP="+dv.frIP); 

      System.out.println("frPort="+dv.frPort); 

      System.out.println("toIP="+dv.toIP); 

      System.out.println("toPort="+dv.toPort); 

      System.out.println("Flags="+dv.Flags); 

      System.out.println("seqRange="+dv.seqRange); 

      System.out.println("ackThere="+dv.ackThere); 

      System.out.println("ackValue="+dv.ackValue); 

      System.out.println("winThere="+dv.winThere); 

      System.out.println("winValue="+dv.winValue); 

      System.out.println("pktLength="+dv.pktLength); 

      System.out.println("smbType="+dv.smbType); 

      System.out.println("rrqType="+dv.rrqType); 

      System.out.println("warnType="+dv.warnType); 

      System.out.println("optType="+dv.optType); 

      System.out.println("nopCount="+dv.nopCount); 

      System.out.println("valValue="+dv.valValue); 

      System.out.println("ecrValue="+dv.ecrValue); 

  

      System.out.println("aeEnum="+dv.aeEnum);     

      System.out.println("aeAMsg="+dv.aeAMsg);     

      System.out.println("aeAMsgDesig="+dv.aeAMsgDesig);  

      System.out.println("aePriority="+dv.aePriority); 

      System.out.println("aeService"+dv.aeService);  

 

      if (dv.header) u4.csvHeader(); 

      u4.csvOut(); 

   } 

} 

 

 

 

=================== 

util3.java 

 

import java.io.*; 

 

/* 

 * This class is supports the retrieval of the raw SRI  

 * malware data from multiple files. The output writes 

 * the data into an intermediate file that is read by  

 * other applications.  

 * 

 * Author: Frank Acker, December 2014 

 */ 

 

public class util3 { 

 

   public void lenSplit(String s, String [] TPvar, String type) { 

      String stLength = dv.NULL; 
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      String msg      = dv.NULL; 

      int i; 

      for (i=1; i<=s.length(); i++) { 

         String c = s.substring(i-1,i); 

         if (dv.nums.contains(c)) { 

            stLength += c; 

         } else { 

            break; 

         } 

      } 

      int ii; 

      for (ii= i; ii<= s.length(); ii++) { 

         String c = s.substring(ii-1,ii); 

         msg += c; 

      } 

      s = stLength; 

       

      dv.pktLength = Integer.parseInt(s); 

      for (i=dv.lengthNum+2; i<TPvar.length; i++) { 

         msg += " ";  

         msg += TPvar[i]; 

      } 

System.out.println("type="+type+"   msg="+msg); 

      if (type.contains(dv.aSMB))  dv.smbType  = "SMB-over-TCP"; 

      if (type.contains(dv.aWARN)) dv.warnType = "Packet_continued"; 

      if (type.contains(dv.aRRQ))  dv.rrqType  = msg; 

   } 

 

   public void optManage(String [] TPvar) { 

 

      dv.optType = dv.NULL; 

      int i; 

      for (i=dv.optNum+1; i<dv.lengthNum; i++) { 

         dv.optType += TPvar[i]; 

         dv.optType += " "; 

      } 

      dv.optType = dv.optType.replace("[",""); 

      dv.optType = dv.optType.replace("]",""); 

      String [] optTemp = dv.optType.split(","); 

//System.out.println("Looking for NOP"); 

      for (i=0; i<optTemp.length; i++) { 

         if (optTemp[i].contains(dv.aNop)) dv.nopCount++; 

      } 

 

   } 

 

   public int justNums (String s) { 

      int i, n; 

      String snum = dv.NULL; 

      for (i=1; i<=s.length(); i++) { 

         String c = s.substring(i-1,i); 

         if (dv.nums.contains(c)) { 

            snum += c; 

         } else { 
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            break; 

         } 

      } 

      return(Integer.parseInt(snum)); 

   } 

} 

 

 

=================== 

util4.java 

import java.io.*; 

 

/* 

 * This class is supports the retrieval of the raw SRI  

 * malware data from multiple files and reads 

 * the data from the intermediate file and formats it for  

 * use in WEKA. 

 * 

 * Author: Frank Acker, December 2014 

 */ 

 

public class util4 { 

 

   public void csvHeader() { 

 

      System.out.print("csvHead="); 

      System.out.print("frPort"); 

      System.out.print(","+"toPort"); 

      System.out.print(","+"flags"); 

      System.out.print(","+"seqRange"); 

      System.out.print(","+"ack"); 

      System.out.print(","+"win"); 

      System.out.print(","+"pktLength"); 

      System.out.print(","+"smb"); 

      System.out.print(","+"rrq"); 

      System.out.print(","+"warn"); 

      System.out.print(","+"nop"); 

      System.out.print(","+"val"); 

      System.out.print(","+"ecr"); 

      System.out.print(","+"enum"); 

      System.out.print(","+"aMesg"); 

      System.out.print(","+"priority"); 

      System.out.print(","+"service"); 

 

      System.out.println(); 

    

      dv.header = false; 

   } 

   public void csvOut() { 

 

      System.out.print("csvOut="); 

      System.out.print(dv.frPort); 
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      System.out.print(","+dv.toPort); 

      System.out.print(","+dv.Flags); 

      System.out.print(","+dv.seqRange); 

      System.out.print(","+dv.ackValue); 

      System.out.print(","+dv.winValue); 

      System.out.print(","+dv.pktLength); 

      System.out.print(","+dv.smbType); 

      System.out.print(","+dv.rrqType); 

      System.out.print(","+dv.warnType); 

      System.out.print(","+dv.nopCount); 

      System.out.print(","+dv.valValue); 

      System.out.print(","+dv.ecrValue); 

 

      System.out.print(","+dv.aeEnum); 

      System.out.print(","+dv.aeAMsgDesig); 

      System.out.print(","+dv.aePriority); 

      System.out.print(","+dv.aeService); 

 

      System.out.println(); 

 

 

   } 

 

   public void aeParse(String aeLine) { 

 

      int i, e; 

      // find the " E" char string 

      e = aeLine.indexOf(" E"); 

      // get the E and number after it 

      dv.aeEnum = "E"; 

      dv.aeEnum += aeLine.charAt(e+2); 

    

      dv.aeAMsg = dv.NULL; 

      // move ahead 8 spaces. the next should be the  

      // beginning of the Alert message 

      e +=8; 

      char c; 

      while ((c = aeLine.charAt(e++)) != '[') { 

         dv.aeAMsg += c; 

      } 

      // get the attack designator 

      int msgLen2 = dv.aeAMsg.length()/2; 

      String msg2 = dv.aeAMsg.substring(msgLen2/2,msgLen2); 

 

      for (i=0; i<dv.attacks.length; i++) { 

         //if (dv.aeAMsg.contains(dv.attacks[i])) { 

         if (dv.attacks[i].contains(msg2)) { 

            dv.aeAMsgDesig = dv.attackDesig[i]; 

            break; 

         } 

      } 

 

      // get the Priority 

      e = aeLine.indexOf("Priority"); 
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      c = aeLine.charAt(e + 10); 

      dv.aePriority = Character.getNumericValue(c);  

 

      // get the service type 

      e = aeLine.indexOf("{") + 1; 

      while ((c = aeLine.charAt(e++)) != '}') { 

         dv.aeService += c; 

      } 

 

   } 

} 

 

 

 

=================== 

dv.java 

 
import java.io.*; 

 

/* This class contains the variables used by the different  

 * methods in this set of java programs  

 * 

 * Author: Frank Acker, December 2014 

 */ 

 

 

public class dv { 

 

   static String NULL = ""; 

   static String NA = "NA"; 

   static String EQ = "=";  // Equals sign 

 

   // Triggers from bf files 

   static String FR = "FR"; // File Reference 

   static String ST = "ST"; // Search Term 

   static String TP = "TP"; // Tcpdump entry 

   static String AE = "AE"; // Alert entry 

   static String AA = "AA"; // Actual Alert 

 

   // Contents of complete lines 

   static String FRinfo = NULL; // File Reference info 

   static String STinfo = NULL; // Search Term info 

   static String TPinfo = NULL; // Tcpdump entry info 

   static String AEinfo = NULL; // Alert entry info 

   static String AAinfo = NULL; // Actual Alert info 

 

   // Search terms in lines 

   static String aFlags  = "Flags"; 

   static String aSeq    = "seq"; 

   static String aWin    = "win"; 

   static String aLength = "length"; 

   static String aAck    = "ack"; 
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   static String aSMB    = "SMB"; 

   static String aWARN   = "WARNING"; 

   static String aRRQ    = "RRQ"; 

   static String aOpt    = "options"; 

   static String aNop    = "nop"; 

   static String aEcr    = "ecr"; 

   static String aVal    = "val"; 

 

   // Position markers 

   static int flagsNum   = 0; 

   static int  seqNum    = 0; 

   static int  winNum    = 0; 

   static int  lengthNum = 0; 

   static int  ackNum    = 0; 

   static int  optNum    = 0; 

   static int  rrqNum    = 0; 

   static int  valNum    = -99; 

   static int  ecrNum    = -99; 

 

   // Variables used in the output file 

   // From TCP Dump line 

   static String frIP     = "0"; 

   static String frPort   = "0"; 

   static String toIP     = "0"; 

   static String toPort   = "0"; 

   static String Flags    = "0"; 

   static long seqRange   = 0; 

   static int ackThere    = 0; 

   static long ackValue   = 0; 

   static int winThere    = 0; 

   static int winValue    = 0; 

   static int pktLength   = 0; 

   static String smbType  = NA; 

   static String rrqType  = NA; 

   static String warnType = NA; 

   static String optType  = NA; 

   static int nopCount    = 0; 

   static int valValue    = 0; 

   static int ecrValue    = 0; 

   static String attackType = NULL; 

 

   // From AE line 

   static String aeEnum      = NULL; // E3 

   static String aeAMsg      = NULL; // Alert message 

   static String aeAMsgDesig = NULL; // Alert message designator 

   static int    aePriority  = 0;    // Alert Priority 

   static String aeService   = NULL; // Alert network service used 

 

   // Other variables for use 

   static boolean smbFound = false; 

   static boolean warnFound = false; 

   static String nums = "0123456789"; 

   static boolean header = true; 
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   static String [] attacks = { 

     "BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt 

", 

     "BLEEDING-EDGE Malware Windows executable sent from remote 

host, Win32", 

     "BLEEDING-EDGE VIRUS Sasser Transfer _up.exe ", 

     "BotHunter HTTP-based .exe Upload on backdoor port", 

     "BotHunter MALWARE executable upload", 

     "BotHunter Malware Windows executable (PE) sent from remote 

host", 

     "BotHunter Scrip-based Windows egg download .exe", 

     "ET POLICY PE EXE Install Windows file download", 

     "ET WORM Sasser Transfer _up.exe ", 

     "NETBIOS SMB-DS Session Setup NTMLSSP unicode asn1 overflow 

attempt ", 

     "SHELLCODE x86 inc ebx NOOP", 

     "TFTP GET .exe from external source"}; 

 

     static String [] attackDesig = {"BE1","BE2","BE3","BH1","BH2", 

          "BH3","BH4","ET1","ET2","NB","SH","TFTP"}; 

    

} 

 

 

 

 

 

  



160 

Appendix Z – Results of Analysis using SRI Malware data 

 
ENTROPY PARAMS CC #FS 

Approximate 
   

 
m=1;r=0.01 99.0821 7 

 
m=1;r=0.1 99.0821 7 

 
m=1;r=0.2 99.0821 7 

 
m=1;r=0.3 99.0821 7 

 
m=1;r=0.4 99.0821 7 

 
m=1;r=0.5 99.0821 7 

 
m=1;r=0.6 99.0821 7 

 
m=1;r=0.7 99.0821 7 

 
m=1;r=0.8 99.0821 7 

 
m=1;r=0.9 99.0821 7 

 
m=1;r=0.99 99.0821 7 

    
 

m=2;r=0.01 99.1051 7 

 
m=2;r=0.1 99.1051 7 

 
m=2;r=0.2 99.1051 7 

 
m=2;r=0.3 99.0821 7 

 
m=2;r=0.4 99.0821 7 

 
m=2;r=0.5 99.0821 7 

 
m=2;r=0.6 99.0821 7 

 
m=2;r=0.7 99.0821 7 

 
m=2;r=0.8 99.0821 7 

 
m=2;r=0.9 99.0821 7 

 
m=2;r=0.99 99.0821 7 

    
 

m=3;r=0.01 99.1051 7 

 
m=3;r=0.1 99.1051 7 

 
m=3;r=0.2 99.1051 7 

 
m=3;r=0.3 99.1051 7 

 
m=3;r=0.4 99.1051 7 

 
m=3;r=0.5 99.1051 7 

 
m=3;r=0.6 99.1051 7 

 
m=3;r=0.7 99.1051 7 

 
m=3;r=0.8 99.0821 7 

 
m=3;r=0.9 99.0821 7 

 
m=3;r=0.99 99.0821 7 

    
 

m=4;r=0.01 99.1051 7 

 
m=4;r=0.1 99.1051 7 

 
m=4;r=0.2 99.1051 7 

 
m=4;r=0.3 99.1051 7 

 
m=4;r=0.4 99.1051 7 

 
m=4;r=0.5 99.1051 7 

 
m=4;r=0.6 99.1051 7 

 
m=4;r=0.7 99.1051 7 

 
m=4;r=0.8 99.0821 7 

 
m=4;r=0.9 99.0821 7 

 
m=4;r=0.99 99.0821 7 
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ENTROPY PARAMS CC #FS 
Approximate 

   
 

m=5;r=0.01 99.1051 7 

 
m=5;r=0.1 99.1051 7 

 
m=5;r=0.2 99.1051 7 

 
m=5;r=0.3 99.1051 7 

 
m=5;r=0.4 99.1051 7 

 
m=5;r=0.5 99.1051 7 

 
m=5;r=0.6 99.1051 7 

 
m=5;r=0.7 99.1051 7 

 
m=5;r=0.8 99.1051 7 

 
m=5;r=0.9 99.1051 7 

 
m=5;r=0.99 99.1051 7 

    
 

m=6;r=0.01 99.1051 7 

 
m=6;r=0.1 99.1051 7 

 
m=6;r=0.2 99.1051 7 

 
m=6;r=0.3 99.1051 7 

 
m=6;r=0.4 99.1051 7 

 
m=6;r=0.5 99.1051 7 

 
m=6;r=0.6 99.1051 7 

 
m=6;r=0.7 99.1051 7 

 
m=6;r=0.8 99.1051 7 

 
m=6;r=0.9 99.1051 7 

 
m=6;r=0.99 99.1051 7 

    
 

m=7;r=0.01 99.1051 7 

 
m=7;r=0.1 99.1051 7 

 
m=7;r=0.2 99.1051 7 

 
m=7;r=0.3 99.1051 7 

 
m=7;r=0.4 99.1051 7 

 
m=7;r=0.5 99.1051 7 

 
m=7;r=0.6 99.1051 7 

 
m=7;r=0.7 99.1051 7 

 
m=7;r=0.8 99.1051 7 

 
m=7;r=0.9 99.1051 7 

 
m=7;r=0.99 99.1051 7 

    
 

m=8;r=0.01 99.1051 7 

 
m=8;r=0.1 99.1051 7 

 
m=8;r=0.2 99.1051 7 

 
m=8;r=0.3 99.1051 7 

 
m=8;r=0.4 99.1051 7 

 
m=8;r=0.5 99.1051 7 

 
m=8;r=0.6 99.1051 7 

 
m=8;r=0.7 99.1051 7 

 
m=8;r=0.8 99.1051 7 

 
m=8;r=0.9 99.1051 7 

 
m=8;r=0.99 99.1051 7 

    
 

m=9;r=0.01 99.1051 7 

 
m=9;r=0.1 99.1051 7 

 
m=9;r=0.2 99.1051 7 

 
m=9;r=0.3 99.1051 7 

 
m=9;r=0.4 99.1051 7 

 
m=9;r=0.5 99.1051 7 

 
m=9;r=0.6 99.1051 7 

 
m=9;r=0.7 99.1051 7 

 
m=9;r=0.8 99.1051 7 

 
m=9;r=0.9 99.1051 7 

 
m=9;r=0.99 99.1051 7 
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ENTROPY PARAMS CC #FS 
Sample 

   

 
m=1;r=0.01 95.732 7 

 
m=1;r=0.1 95.8926 8 

 
m=1;r=0.2 99.2428 6 

 
m=1;r=0.3 98.6232 10 

 
m=1;r=0.4 97.2006 9 

 
m=1;r=0.5 97.7283 9 

 
m=1;r=0.6 96.5351 9 

 
m=1;r=0.7 96.8105 10 

 
m=1;r=0.8 96.6269 10 

 
m=1;r=0.9 96.4892 9 

 
m=1;r=0.99 96.581 9 

    
 

m=2;r=0.01 93.9881 11 

 
m=2;r=0.1 93.9192 11 

 
m=2;r=0.2 95.2501 10 

 
m=2;r=0.3 96.2827 9 

 
m=2;r=0.4 95.8697 8 

 
m=2;r=0.5 95.8697 9 

 
m=2;r=0.6 95.8008 10 

 
m=2;r=0.7 95.8467 13 

 
m=2;r=0.8 95.6631 9 

 
m=2;r=0.9 95.9615 9 

 
m=2;r=0.99 95.2731 10 

    
 

m=3;r=0.01 93.7357 10 

 
m=3;r=0.1 93.7357 10 

 
m=3;r=0.2 93.7357 10 

 
m=3;r=0.3 93.4144 10 

 
m=3;r=0.4 93.8045 10 

 
m=3;r=0.5 93.6668 11 

 
m=3;r=0.6 93.3685 11 

 
m=3;r=0.7 93.4374 11 

 
m=3;r=0.8 93.4144 10 

 
m=3;r=0.9 94.0799 10 

 
m=3;r=0.99 93.0932 10 

    
 

m=4;r=0.01 93.0014 10 

 
m=4;r=0.1 93.0014 10 

 
m=4;r=0.2 93.0014 10 

 
m=4;r=0.3 93.0014 10 

 
m=4;r=0.4 93.0014 10 

 
m=4;r=0.5 93.0014 10 

 
m=4;r=0.6 93.0014 10 

 
m=4;r=0.7 93.7816 10 

 
m=4;r=0.8 93.7816 10 

 
m=4;r=0.9 93.7816 10 

 
m=4;r=0.99 94.1028 11 
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ENTROPY PARAMS CC #FS 
Sample 

   
 

m=5;r=0.01 92.9555 10 

 
m=5;r=0.1 92.9555 10 

 
m=5;r=0.2 92.9555 10 

 
m=5;r=0.3 92.9555 10 

 
m=5;r=0.4 92.726 10 

 
m=5;r=0.5 92.726 10 

 
m=5;r=0.6 93.0702 10 

 
m=5;r=0.7 93.0702 10 

 
m=5;r=0.8 93.3915 10 

 
m=5;r=0.9 93.6668 10 

 
m=5;r=0.99 93.598 10 

    
 

m=6;r=0.01 92.1983 10 

 
m=6;r=0.1 92.1983 10 

 
m=6;r=0.2 92.1983 10 

 
m=6;r=0.3 92.1983 10 

 
m=6;r=0.4 92.1983 10 

 
m=6;r=0.5 92.1983 10 

 
m=6;r=0.6 92.1983 10 

 
m=6;r=0.8 93.0014 10 

 
m=6;r=0.9 93.0014 10 

 
m=6;r=0.99 93.0702 10 

    
 

m=7;r=0.01 92.1983 10 

 
m=7;r=0.1 92.1983 10 

 
m=7;r=0.2 92.1983 10 

 
m=7;r=0.3 92.1983 10 

 
m=7;r=0.4 92.1983 10 

 
m=7;r=0.5 92.0606 10 

 
m=7;r=0.6 91.877 10 

 
m=7;r=0.7 92.6801 10 

 
m=7;r=0.8 92.5425 10 

 
m=7;r=0.9 92.5425 10 

 
m=7;r=0.99 92.5425 10 

    
 

m=8;r=0.01 92.1983 10 

 
m=8;r=0.1 92.1983 10 

 
m=8;r=0.2 92.1983 10 

 
m=8;r=0.3 92.1983 10 

 
m=8;r=0.4 92.1983 10 

 
m=8;r=0.5 92.1983 10 

 
m=8;r=0.6 92.1983 10 

 
m=8;r=0.7 92.1983 10 

 
m=8;r=0.8 92.1983 10 

 
m=8;r=0.9 92.1983 10 

 
m=8;r=0.99 92.1983 10 

    
 

m=9;r=0.01 92.1983 10 

 
m=9;r=0.1 92.1983 10 

 
m=9;r=0.2 92.1983 10 

 
m=9;r=0.3 92.1983 10 

 
m=9;r=0.4 92.1983 10 

 
m=9;r=0.5 92.1983 10 

 
m=9;r=0.6 92.1983 10 

 
m=9;r=0.7 92.1983 10 

 
m=9;r=0.8 92.1983 10 

 
m=9;r=0.9 92.1983 10 

 
m=9;r=0.99 92.1983 10 
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ENTROPY PARAMS CC #FS 
Shannon 

 
99.8853 8 

    ENTROPY PARAMS CC #FS 
Tsallis 

   
 

alpha = 1.01 99.9082 7 

 
alpha = 1.1 99.9082 8 

 
alpha = 1.2 99.7476 10 

 
alpha = 1.3 99.7935 10 

 
alpha = 1.4 99.8853 10 

 
alpha = 1.5 99.9082 7 

 
alpha = 1.6 99.8853 10 

 
alpha = 1.7 99.9082 8 

 
alpha = 1.8 99.9312 8 

 
alpha = 1.9 99.9312 6 

 
alpha = 1.99 99.8623 7 

    ENTROPY PARAMS CC #FS 
Rényi 

   

 
alpha = 0.01 90.8903 7 

 
alpha = 0.1 90.9133 7 

 
alpha = 0.2 92.3818 7 

 
alpha = 0.3 91.7164 7 

 
alpha = 0.4 91.3722 9 

 
alpha = 0.5 90.3167 6 

 
alpha = 0.6 89.7201 6 

 
alpha = 0.7 88.9399 9 

 
alpha = 0.8 88.894 6 

 
alpha = 0.9 87.4484 7 

 
alpha = 0.99 73.4511 7 
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