
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2015

Use of Entropy for Feature Selection with Intrusion
Detection System Parameters
Frank Acker
Nova Southeastern University, afrank@nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Frank Acker. 2015. Use of Entropy for Feature Selection with Intrusion Detection System Parameters. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (370)
http://nsuworks.nova.edu/gscis_etd/370.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Use of Entropy for Feature Selection with Intrusion Detection System Parameters

by

Frank L. Acker

A dissertation in partial fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Computer Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2015

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Use of Entropy for Feature Selection with Intrusion Detection System Parameters

By

Frank L. Acker

November 22, 2015

The metric of entropy provides a measure about the randomness of data and a

measure of information gained by comparing different attributes. Intrusion detection

systems can collect very large amounts of data, which are not necessarily manageable by

manual means. Collected intrusion detection data often contains redundant, duplicate, and

irrelevant entries, which makes analysis computationally intensive likely leading to

unreliable results. Reducing the data to what is relevant and pertinent to the analysis

requires the use of data mining techniques and statistics. Identifying patterns in the data is

part of analysis for intrusion detections in which the patterns are categorized as normal or

anomalous. Anomalous data needs to be further characterized to determine if

representative attacks to the network are in progress. Often time subtleties in the data

may be too muted to identify certain types of attacks. Many statistics including entropy

are used in a number of analysis techniques for identifying attacks, but these analyzes can

be improved upon. This research expands the use of Approximate entropy and Sample

entropy for feature selection and attack analysis to identify specific types of subtle attacks

to network systems. Through enhanced analysis techniques using entropy, the granularity

of feature selection and attack identification is improved.

Acknowledgements

This has been quite an adventure. It involved learning a lot about the subject matter and

of what I can actually accomplish. It is something I did not think was realistically

attainable, but it is here. This would not have been possible without the support of my

family. They provided me the quiet time needed to conduct the work. They also worked

with me to keep me moving forward. Their review and comments were invaluable.

Dr. Cannady provided the guidance and feedback of the needed expectations required to

complete the degree. The committee members, Dr. Barrios and Dr. Cerkez gave

invaluable feedback to improve the research presentation and contents.

A special acknowledgement goes to Phillip Porras of SRI International for his assistance

in providing access to quality data for analysis and sharing his vast knowledge on the

subject of intrusion detection systems. Professional colleagues also constantly

encouraged my efforts to complete.

 v

Table of Contents

Abstract iii

List of Tables vii

Chapters

1. Introduction 1

Background 1

Problem Statement 3

Dissertation Goal 4

Relevance and Significance 5

Barriers and Issues 6

Assumptions, Limitations and Delimitations 11

Summary 13

2. Review of Literature 14

Background of Intrusion Detection Systems 14

Data Mining and Feature Selection Methods 18

Entropy Calculations used in Feature Selection 27

Shannon Entropy 31

Rényi and Tsallis Entropy 32

Approximate and Sample Entropy 34

Methods and applications used in this research 39

3. Methodology 41

Overview of Research Methodology 41

Scientific Research Employed 42

Instrument Development and Validation 43

Resource Requirements 44

Summary 45

4. Results 47

Introduction 47

Computing System Environment 48

Code Modification and Development 49

Configuration File 51

Algorithms for Rényi and Tsallis Entropy Calculations 52

Algorithms for Approximate and Sample Entropy Calculations 52

Eclipse Usage 52

Executing WEKA 53

KDD CUP 99 Data Acquisition and Preparation 54

KDD CUP 99 Analysis Results 57

SRI Malware Data 63

 vi

SRI Malware Data Acquisition and Analysis Method 63

SRI Malware Analysis Data Preparation 69

SRI Malware Results 71

Analysis one – Data labeled by Malware attack 71

Analysis two – Data labeled individually by Malware attack 72

Analysis three – Data labeled individually by Infection type 73

Summary 75

5. Conclusions, Implications, Recommendations, and Summary 78

KDD CUP 99 Data Conclusions 83

SRI Malware Data Conclusions 85

Overall Conclusions 88

Implications 88

Recommendations 89

Summary 91

Appendices

A. Listing of Modified EntropyBasedSplitCrit Class 98

B. Listing of ApproximateEntropy Class 102

C. Listing of SampleEntropy Class 104

D. Listing of fileRead Class 106

E. Listing of entUtils Class 110

F. Listing of EntropyFileInfo.txt 112

G. Listing of Modified build.xml File for Eclipse 113

H. Explanation of Linux commands in selecting attack lines 117

I. Listing of Linux shell script to generate KDD CUP 99 files 118

J. Listing of the KDD CUP 99 features 119

K. Partial listing of DoS.arff file 120

L. Listings of KDD CUP 99 feature extraction shell script and files 122

M. Listings of SRI feature extraction shell script and files 124

N. Listing of the J48 Classification Results 126

O. Listing of the feature extraction shell results 130

P. Partial view of Malware Infection Analysis Page 131

Q. Partial listing of file.sh 132

R. Partial list of downloaded files 134

S. Listing of associations.sh script 135

T. Partial List of files prepended with association names 136

U. Listing of an alerts, rules, BotHunter reports, and virus-labels files 137

V. Listing of bf.sh script and a portion of results 140

W. Listing of Features selected from SRI data 142

X. Partial Listing of SRI.arff file 146

Y. Listing of Java files to read and parse SRI data 147

Z. Results of Analysis using SRI Malware data 160

References 165

 vii

List of Tables

Tables

1. Entropy Configuration File Variables 51

2. Attack Counts (Lima et al., 2012) 56

3. Line counts in KDD CUP 99 .arff data files 56

4. Attack Classification Results 58-59

5. Listing of the Features Selection Count sorted by Feature count 61

6. Summary of KDD CUP 99 attack selected features 62

7. Parametric values used in SRI analysis 70

8. Lowest feature count by entropy type using the full set of SRI Malware data 72

9. Minimum number of features required to identify the individual malware 73

10. Infection type description 74

11. Number of features selected for identifying E2 and E3 infection types 74

12. Average number of features required from the three SRI analyses 87

 1

Chapter 1

Introduction

Background

Intrusion detection systems help identify malicious and dangerous attacks sent to

networks and computers while allowing normal traffic to arrive at its intended destination.

In order for intrusion detection systems to identify harmful traffic to computers and

networks, packets of data are classified to determine if the contents contain malicious

actions or not. Fields of data representing the traffic flow must be collected and analyzed

to determine which traffic may pass and which traffic is blocked. The two primary

methods used for intrusion detection are signature-based systems and anomaly based

systems. A signature based system attempts to match specific patterns in the packets

traversing the network for byte strings which are known to be malicious. Anomaly based

systems analyze the statistics of the traffic to determine if the packet is malicious.

Data for intrusion detection systems may be collected from multiple sources such

as system access logs and activity logs. As these disparate sources merge into a single

corpus of data with many records that may provide insight into the collected activity.

Each record contains fields that provide information about the activity that the record

represents. Some of the fields may contain similar, irrelevant, or missing data, which

could potentially cloud the analysis and the overall quality of data. The amount of data

collected may also be quite large and impractical to analyze.

 2

For anomaly intrusion detection, fields within the data files are referred to as

features. These features describe a particular aspect of information in the record. Since

there may be duplicate and irrelevant features contained within the data, using only those

features directed at the analysis reduces the computing resources and may improve the

accuracy of the resulting analysis. The process of selecting the data, to include only

needed features, is termed feature selection. The goal of feature selection is to use only

the fields that represent the packet activity while maintaining the integrity of the record

and the integrity of entire data set.

There are different methods available to select these pertinent features based on

statistics by using one or more algorithms such as used in artificial intelligence, clustering,

classification, statistics, and specialized applications targeting specific problems. There

are no generic solutions to detect each different type of intrusion or anomalous activity.

 3

Problem Statement

This research addresses the problem of reducing the number of features and

correctly identifying relevant features from a set of collected data for an anomaly-based

intrusion detection system while maintaining integrity of the data. Data acquired for an

intrusion detection system frequently originates from multiple sources such as system

activity logs, content of data packets and headers, system calls, memory and disk access

activities, and other information. Intrusion detection systems may also share these logs

among other network devices for collaboration in a distributed manner. Reducing the

amount of data to that which is relevant requires categorizing the information from the

logs into parameters, also referred to as dimensions. In a data set of network traffic,

attacks are identified by the selection of features that represent particular activities. This

implies that not all attacks are found by the same selection of features in all cases.

Research conducted by Lima, de Assis, and de Souza (2012) using the KDD CUP 99

(KDD Cup 99 Data, 1999) data resulted in a different set of attributes for each of the four

major attack types. Without reducing the number of features, detecting attack patterns

within the data is more difficult for rule generation, forecasting, or classification (Gheyas

& Smith, 2010). One of the problems is that not all of the features are important

(Velayutham & Thangavel, 2012). Identifying and eliminating redundant and irrelevant

features within the data, while maintaining the integrity of the corpus, results in features

which succinctly describe the activity recorded. Reducing the number of features

pertinent to intrusion detection analysis provides better data manageability, lowers

computing resource requirements, and usually better results.

 4

Dissertation Goal

The goal of this research is to present a new method that correctly identifies

relevant features from an intrusion detection dataset that reduces the amount of data

required for anomalous activity detection while maintaining the integrity of the data set.

By reducing the redundant features, irrelevant features, and noise, better results may be

gained in the analysis of the data for identifying anomalous activities.

The expected results of this research included the following goals:

1. Methods to identify relevant features and minimize the number of features

selected from a source of network traffic data without altering the characteristics

of the data representation.

2. Compare results of correctly classified and incorrectly classified as percentages,

and the features selected with those published by Sharma and Mukjherjee (2012),

and Lima, et al., (2012) for the KDD CUP 99 data (KDD Cup 99 Data, 1999).

3. Using real-world data from the SRI Cyber-Threat Analysis Project, apply the

methods used in goals 1 and 2 to compare and contrast the results with a second

set of data for correctly classification of attacks and the features selected from the

analysis.

 5

Relevance and Significance

This research focuses on methods that select features from a set of intrusion

detection system data in an efficient manner while maintaining the integrity of the data to

represent the traffic and events collected. Many approaches have addressed the problem

of feature selection. Even with the successes, a significant amount of work is still needed

to find improved methods of feature selection from intrusion detection system data.

Tavallaee, Bagheri, Lu, and Ghorbani (2009) state that current approaches to intrusion

detection are not a mature technology. This problem is still relvant as identified by the

research of Zuech, Khoshgoftaar, and Wald (2015). Improving detection and feature

selection are important to provide better analysis results for anomaly detection in

identifying attacks on network systems.

Data sources from intrusion detection systems provide a large quantity of data for

analysis. Since most of the raw intrusion detection data sets contain duplicate and

irrelevant features, the selection of significant and relevant features is important. The

feature selection process attempts to discard superfluous data and noise, which in turn

reduces the overall volume of the data set while maintaining its integrity. This reduced

data set, in turn, yields to a faster and more accurate analysis. In order to carry out this

data reduction effort, classification applications analyze the data and identify appropriate

categories. In addition to the classification, elimination of redundant features from the

data is necessary. Without doing so makes patterns more difficult to detect (Gheyas &

Smith, 2010).

 6

Barriers and Issues

The problem presented is an on-going issue for selecting features within a data set

that accurately represents the activity of the collected data. Often these files are large

since they are generated from disparate sources. The quantity of data must be reduced

and categorized into a set of events called attributes (Lima et al., 2012). Within the large

files, the data must be normalized and attributes that best represent the activity must be

present, while duplicate and non-essential information is eliminated. This may result in

improved performance and outcome. Having clean and usable data provides the analytic

applications with a higher probability of obtaining usable results.

This goal of efficient feature selection is not always met. Even though there may

be a large volume of anomalous data, not all attacks may appear within the data. In

addition, there may not be a sufficient number of events present to identify the anomaly

as an attack or identify it correctly. Properly identifying the features to use is a problem

since different attacks may need different attributes for the correct identification.

The research conducted by Lima, et al. (2012) used the C4.5 decision tree model

based on entropy and compared these results with three other attribute selection methods.

They conducted their evaluation was using the KDD CUP 99 (KDD Cup 99 Data, 1999)

data set.

Tavallaee et al. (2009) described the different attack categories in the

KDD CUP 99 (KDD Cup 99 Data, 1999) data in the following list.

 Denial of Service Attack (DOS): denies legitimate users access to a system by

consuming computing and memory resources.

 7

 User to Root (U2R): An attacker gains legitimate access to a system and exploits

a vulnerability to escalate their privileges to root access.

 Remote to Local (R2L): A user who does not have an account for legitimate

access to a system, gains remote access to it through exploiting a vulnerability by

sending packets over a network.

 Probing Attack: Gathering information about a network and its computers to

circumvent its security.

The analysis by Lima et al. (2012) used three different entropy approaches, and

each approach produced a different set of attributes for identifying the type of attack

group. Even though some of the features selected were the same, there was overlap in the

parameter selection, the results were different. Their work showed that varying

approaches affects results.

In conducting this research with a feature selection algorithm using entropy as a

factor in the classification and selection process, evaluating which entropy calculation

best fits a specific attack, attack type, or a generalized application for all attacks were

among some of the challenges for consideration. The Shannon entropy is the most

established measure of uncertainty and mutual information (Alvim, Andrés &

Palamidessi, 2010). Other entropy methods, such as the Rényi entropy and the Tsallis

entropy, shared some of the properties with Shannon's approach (Harremoës, 2006).

Lima et al. (2012) used the Rényi entropy and the Tsallis entropy as additional entropy

measures in their research.

 8

Alazab, Hobbs, Abawajy, and Alazab (2012) identified attack patterns within the

attack types. Their focus on the U2R attack type in which they identified four new attack

patterns: httptunnel, ps, sqlattack, and xterm. The following table detailed their

categorization of the attacks and attack patterns.

Attack Type Attack Pattern

Probe Ipsweep, nmap, portsweep, satan, mscan, saint

DoS back, land, neptune, pod, smurf, teardrop, apache2, mailbomb,

processtable, udpstorm

U2R Buffer_overflow, loadmodule, perl, rootkit, httptunnel, ps, sqlattack,

xterm

R2L ftp_write, guess_password, imap, multihop, phf, spy, warezclient,

warezmaster, xlook, xsnoop, snmpguess, worm

Other research data sources, such as those referenced in research performed by

Nguyen, Franke, and Petrović (2012), used the ECLM/PKDD 2007 data and the CSIC

2010 data. Both of these data sets were tested using data from web application firewalls.

The ECLM/PKDD 2007 data was from the 18th European Conference on Machine

Learning and the 11th European Conference on Principles and Practice of Knowledge

Discovery in Databases (Gallagher, & Eliassi-Rad, 2008). Another set of data used in

research was by the Spanish National Research Council that developed the CSIC data set.

This data provided a set of http transactions from an e-commerce site. The purpose was to

test the protection of web applications (HTTP DATASET CSIC, 2010).

Even though the KDD CUP 99 data set was not an ideal source, according to

Tavallaee et al. (2009), variants include the NSL-KDD (NSL-KDD Data Set, 2009) data

 9

set. This alleviated and reduced some of the problems with the original KDD CUP 99

dataset identified by Tavallaee et al. (2009).

To improve the data available for off-line intrusion detection system research,

Vasudevan, Harshini, and Selvakumar (2011) evaluated the KDD CUP 99 data set and

identified a number of shortcomings. They developed their own set of intrusion detection

system data to represent current network activities. Some of the weaknesses of the KDD

CUP 99 data set identified included:

 Many of the attacks used in the data set were fixed and do not exist anymore.

 Attack sophistication increased while knowledge needed to launch an attack has

decreased.

 The attacks were in a naive form and do not represent network behavior.

 All attacks were preplanned and mixed between host and network.

Guillén, Rodriguez, Páez, and Rodriguez (2012) also supported the concept of the

KDD CUP 99 data set being outdated. However, they qualified this statement by

indicating that the results were reliable for analysis purposes, and the data was usable to

analyze new intrusion detection approaches for machine learning or computational

intelligence. Their research included using a DARPA data set and a software package

named Spleen along with the KDD CUP 99 data. Even though the KDD CUP 99 data

contained shortfalls as noted, it was still considered satisfactory for use with the analysis

proposed for this research.

The availability of publically available labeled data sets for intrusion detection

research was limited. The KDD CUP 99 data set was the most recognizable data store

 10

publically available for intrusion detection research. Another set of data that was of

potential use was named PREDICT was supported by the US Department of Homeland

Security, Science & Technology Directorate. Users of PREDICT must be vetted and

agreements signed as to the nature of its usage and disclosure. PREDICT data was not

labeled, and therefore not satisfactory for this research.

Other possible data sources for use in the research included the CAIDA (n.d.) and

SRI (n.d.) data repositories. These sources contained various types of data from internet

traces. The possibility also existed that data from SRI International located in Menlo Park,

California had merit since it contained timing data and attack information to provide a

labeled data set (SRI, n.d.). In reviewing the data sources for a second analysis using

different data, it was decided that the data from SRI would be the best choice.

Another area of difficulty was the integration of new calculation algorithms into

the existing applications chosen for classification and feature selection analysis.

Depending on the openness and complexity of the applications, incorporating custom

entropy algorithms into the structure of the programs may be difficult. This challenge was

overcome by the use of tutorials and papers that described modification of analysis

applications for customized calculations.

 11

Assumptions, Limitations, and Delimitations

Since intrusion detection systems data often contained a collection of logs from

multiple sources, analyzing and interpreting the data was a challenge. This research made

two primary assumptions about the data. First was the quality of the data, in that each

record provides an accurate representation of the information contained within the

complete packet. The second assumption addressed the problem of consistency in the

meaning and relationship of the data across the different fields within the record. Since

one of the data sets was the KDD CUP 99, this collection of data was used in many

analyzed research projects. Although deficiencies were noted in the Barriers and Issues

section of this thesis, the KDD CUP 99 is widely accepted as a standard data store for this

type of analysis. The second set of data for this research originated from the SRI System

Design Laboratory (SRI, n.d.). Other sources considered were the PREDICT, and the

CAIDA data repository (CAIDA - The Cooperative Association for Internet Data

Analysis, n.d.). None of these sources were as thoroughly tested and researched as the

KDD CUP 99 data.

Because the fields within each record may be an aggregation of data from more

than one source, the meanings of similar fields from each source may not be the same.

This causes inaccuracies in the calculations of results along with a potential bias of the

data, which impacts the results. There was no control of the representation of the data as

it was presented in the initial stages of the research. As the research effort progressed,

adjustments were made as needed to normalize the individual data fields for more

accurate representation of their intended meanings.

 12

An additional data source which has labels and time markings was collected at

SRI by their Cyber-Threat Analysis Project. An arrangement was made between the

researcher and provider for use of this data for the analysis (Personal communications

with Phillip Porras of SRI, May 25, 2014).

The researcher, to establish boundaries for this research, imposed delimiting

factors. Since Approximate entropy and Sample entropy are time based, some data,

which does not have timings associated with the records, as in the KDD CUP 99 data set,

were simulated. No research was located that assigned timings to the entries in the KDD

CUP 99 data store. Fares, Sharawy, and Zayed (2011) identified timing in their research,

where they described the taxonomy of intrusion detection but never applied it in the

analysis.

The manner of simulating periodicity within the KDD CUP 99 was established for

this research. Simulation consisted of applying different windowing sizes and statistics to

the data. One example used the order of the data as provided and assigned windowing

intervals based upon recommendations of Yentes et al. (2013). Another method was to

vary the windowing intervals. In addition, the ordering was assigned to the data analyzed

at the time. The ordering and windowing in the KDD CUP 99 data was needed and used

to calculate the Approximate entropy and Sample entropy. This research addressed the

issue of windowing with a selection of data from the KDD CUP 99 data set. Ordering of

the records by attack type represent the timing in which they occurred. The results may or

may not show that ordering was highly critical in the election of attributes for the

analysis. Experiments during the research indicated how the windowing and parametric

variation impacted the analysis.

 13

The second data set was from SRI. It was a series of data files including a number

of them in pcap format. Pcap stands for packet capture and contains network traffic

information. A number of Unix/Linux based utilities were available that deconstructed

the contents of pcap files. The files from SRI contained timing points and labels

incorporated within the collection.

Summary

This research provided additional viewpoints for the use of entropy in feature

selection. The number of features available in a set of data collected from intrusion

detection systems may be quite large and unmanageable for manual human manipulation

and for analysis by computer applications. By reducing the number of features in the data

set, the goal was to make it more manageable for analysis and enhance the accuracy of

the results.

This section also identified some of the challenges that made this research

difficult. One of the more challenging and difficult problems was the availability of valid

labeled data which was satisfactory for use in this context. The KDD CUP 99 data set

was the most widely used and accepted for intrusion detection research purposes. Other

sources were primarily accessed from non-public sources, which may place restrictions

on its use. SRI granted permission for this researcher to use data from its Cyber-Threat

Analysis Project for this research (Personal email Communications with SRI Researcher,

August 26, 2014).

 14

Chapter 2

Review of Literature

This literature review is a study of research work discussing the development of

intrusion detection methods and current advances in the field and focuses on the methods

of feature selection using intrusion detection data. Within the feature selection process,

the metric of entropy is used in different aspects of data analysis. Subsections in this

chapter are:

 Background of Intrusion Detection Systems

 Data Mining and Feature Selection Methods

 Entropy Calculations used in feature Selection

 Shannon entropy

 Rényi and Tsallis entropy

 Approximate entropy and Sample entropy

 Methods and applications used in this research

Background of Intrusion Detection Systems

Anderson (1980) introduced the concept of auditing and surveillance as a way to

improve the security of a customer’s computer systems. The research focused on the use

of security audit trails as an important role in detecting unauthorized access to a data set

or system. He also defined the concepts of threat, risk, vulnerability, attack, and

penetration. The types of intrusions identified were an internal penetration from within

the system or an attacker from outside the system via communications lines. Also

 15

included was the application of statistics to collected data in order to identify abnormal

use of the systems. For systems with a large number of users, it was necessary to reduce

the volume of the data. One of the methods proposed by Anderson was through sampling

data on a periodic basis. These techniques proposed some of the first methods to monitor

the security of computer systems.

Denning (1986) expanded the concept of intrusion detection and developed a

model for a real-time intrusion detection system. Denning proposed using a real-time

collection of audit records from attempted break-ins, system penetrations, and abuses

through the use of system monitoring. Abnormal use information was categorized into

bundles, called tuples, and models were applied to the data. Denning's analysis detected a

wide range of intrusions. Some of the detected intrusions identified were without

knowledge of system vulnerabilities.

As the complexity of systems grew, the quantity of collected data increased to the

point where manual processing was impractical and automation was needed.

Development of automated systems that merged data from multiple sources provided a

vast array of different aspects of system activity. Collections, such as these, result in

many dimensions, including possible duplicates, irrelevant features, and general noise.

Identifying anomalous behavior from bloated data sets produced bad results and taxed

computational resources (Lima et al., 2012).

As data was collected from the system and the network device logs, it was

analyzed, and the results used to protect the systems by developing information, which

analyzed the traffic and determined if an attack might be taking place. Determining if an

attack took place was the result of analyzed system and network device logs. Through

 16

this effort, different techniques to identify intrusions were developed. The two main

approaches to categorize intrusion detection systems were misuse detection, and anomaly

detection (Sharma, & Mukherjee, 2012). A misuse-based system examined the packets

looking for patterns and signatures of known attacks on the network. Anomaly based

systems used statistical analysis to compare features of the traffic with a profile of what

normal traffic flow should look like. A majority of the commercial intrusion detection

systems used today implemented misuse-based detection because of its high accuracy

(Tavallaee et al., 2009). An example of a misuse-based detection program is Snort (n.d.).

However, the academic community considered anomaly based detection a more powerful

method due to its potential to detect novel attacks (Tavallaee et al., 2009).

Research conducted by Gupta, Nath, and Kotagiri (2010) developed a layered

approach to intrusion detection in which their work used layers in series to identify

anomalous activity. Each layer detected one of the four groups of intrusions included in

the KDD CUP 99 data set. A feature selection process was run for each of the four

intrusion types with the results having a different set of attributes identified. Improved

accuracy and performance was evident with this model.

When an intrusion detection system identifies an attack through misuse detection

or anomaly detection, the action taken may be passive or reactive. A passive intrusion

detection system logs information when it detects a potential security breach. The

reactive intrusion detection system takes action when it detects suspicious behavior such

as discontinuing service to the user or alerting a firewall to block traffic from a particular

source (Sharma, & Mukherjee, 2012).

 17

In both the misuse and anomaly-based intrusion detection systems, the data

sources provided a large quantity of data for analysis. Since raw intrusion detection data

sets often contained duplicate and irrelevant features, elimination of this superfluous data

and noise reduced the volume, which, in turn, yielded a better analysis (Hammer &

Villmann, 2002).

Sharma and Mukherjee (2012) focused on the detection of minority attacks since

current standalone intrusion detection systems were not effective in finding these types of

attacks. Within the KDD CUP 99 data set, there are four major attack types: DoS, Probe,

R2L, and U2R. The work of Sharma and Mukherjee examined the attributes that detected

the R2l and U2R attacks. Sharma and Mukherjee based their work on a layered approach

by Gupta et al. (2010).

Anomaly detection included the problem of identifying patterns and behaviors

that do not conform to the normal traffic data (Bhuyan, Bhattacharyya, & Kalita, 2011).

Successfully identifying these anomalies had a higher probability when the intruder did

not know what a legitimate user's activity should look like and what was considered

anomalous. They refer to work by Kumar and Spafford (1994) regarding the four

possibilities in detecting an intruder who has no knowledge of the system activity profile

as denoted in the following list.

 Intrusive but not anomalous: a false negative since the activity was intrusive but

not detected or identified as anomalous.

 Not intrusive but anomalous: a false positive since the legitimate user was

conducting a non-malicious activity; however, identified as anomalous.

 18

 Not intrusive and not anomalous: a true negative since the activity was not

intrusive or anomalous.

 Intrusive and anomalous: a true positive since the activity was intrusive and

identified as anomalous.

In the above list of an intruder's activities as defined by Kumar and Spafford

(1994), the detection of anomalous behavior differed based on the metrics and

approaches. The conclusion by Bhuyan et al. (2011) was that some anomaly detection

methods were better than other methods and more work was needed to focus on lowering

false alarm rates.

Data Mining and Feature Selection Methods

Methods for identifying pertinent features that represent the data include

classification algorithms, genetic algorithms, statistics, and decision trees. These methods,

developed over the years, usually focused on specific types of problems, such as those

tuned for attacks, which are rare or minor (Sharma, & Mukherjee, 2012). Even though

significant academic research and applied implementations focused on intrusion detection,

these systems still had trouble detecting intrusive activities since new and novel attacks

were constantly evolving (Sharma, & Mukherjee, 2012).

Feature selection algorithms used supervised learning when labeled data sets were

available for training. Unsupervised learning used non-labeled data sets. With labeled

data sets, the features could distinguish different classifications. Selection of the proper

method for analyzing data was important, as each data set had its own statistical

 19

properties. Using these methods along with classifiers and entropy combinations resulted

in improved granularity for feature selection.

Lima et al. (2012) referred to the reduced number of features as attributes. These

features contained information describing a particular aspect of the activity recorded.

They accomplish this feature reduction through compressing the collected data with

methods and applications used in biological research. The feature reduction processes

conducted by Lima, et al. (2012) used applications that performed clustering,

classification, and feature selection functions.

Research conducted by Yentes, Hunt, Schmid, Kaipust, McGrath, and Stergiou

(2013) investigated the use of Approximate entropy and Sample entropy for the

measurement of data in a time series. Their data source originated from physiological

characteristics between young and older adults, such as their gait. These entropy

calculations included use in a number of other biological research environments

including heart rate and other biomedical data (Pan, Wang, Liang & Lee, 2011).

Yentes et al. (2013) used Approximate entropy and Sample entropy calculations

in their feature selection research with biological data. Each of these different forms of

entropy calculations provided additional views of the information extracted from the

available data.

One of the data sources for this research included the KDD CUP 99 data (KDD

CUP Data, 1999) set which contained approximately 5 million records of normal and

attack traffic. Another possible data source was from the Cooperative Association for

Internet Data Analysis (CAIDA, n.d.) data made available in association with PREDICT

Repository (PREDICT - Protected Repository for the Defense of Infrastructure Against

 20

Cyber Threats, n.d.) supported by the Department of Homeland Security, Science and

Technology Directorate. In addition, data from SRI International's System Design

Laboratory investigated intrusion-detection research since 1983 (SRI, n.d.).

Tavallaee et al. (2009) evaluated the KDD CUP 99 (KDD Cup 99 Data, 1999)

data set and identified details of its attributes and shortcomings. They resolved a number

of the issues that resulted in a new data set designated as NSL-KDD (NSL-KDD data set,

2009). Their new data set, NSL-KDD, has the following advantages:

1. No redundancy in the training data thereby reducing the bias towards those

records.

2. No duplication in the test data thereby reducing the bias towards more frequent

detection of those duplicates.

3. Better mix of the levels of difficulty resulting in classification learning rates with

a more accurate evaluation of different learning techniques.

4. Record count in the training sets and test data set allowed learning and evaluation

applications to use the complete range of data without random selection.

The three main characteristics of intrusion detection systems were accuracy,

extensibility, and adaptability (Om & Kundu, 2012). They proposed a hybrid intrusion

detection system that utilized incremental learning to detect future attacks. The goal for

their method was to have a high detection rate and a low false positive rate. To profile the

network, Om and Kundu (2012) used K-means clustering and K-Nearest Neighbor

algorithms. Om and Kundu (2012) also used entropy as a feature based statistical method

to select attributes and eliminate redundant attributes. Their process first removed

 21

irrelevant features then calculated mutual information between features and the

classification.

The next step was to cluster the data into similar types of objects without using

classification labels, or unsupervised learning. This unsupervised learning approach

created groups with different attributes, and the greater the differences occurring among

the groups actually improved the clustering. When classifying data using an unsupervised

learning approach, three different methods were used including Naïve Bayes, decision

tree, and support vector machine.

A Naïve Bayes classifier algorithm computed the probability of the classes given

the data, which assumed independence among the features for each class (Dougherty,

Kohavi, & Sahami, 1995) implemented in the WEKA analysis package. WEKA is an

acronym for Waikato Environment for Knowledge Analysis (WEKA 3, n.d.). In decision

tree methods, continuous values were binned during the learning process and a

dependency map was structured.

A support vector machine classifier automatically searched vectors with

classification ability to maximize the margin between the classes. It had excellent

generalization and high classification accuracy. The standard support vector machine

algorithm calculated the vectors by solving a quadratic programming problem, whose

time complexity was exponential. Thus, for large-scale training sets, the computation of

the standard support vector machine was not practical (Songfeng, Xiaofeng, Nanning, &

Weipu, 2003).

Nguyen et al. (2012) researched the use of pattern recognition for intrusion

detection systems through the application of steadiness and consistency metrics to judge

 22

the classifier's performance. Generic Feature Selection is one of the feature selection

methods discussed by Nguyen et al. A steadiness metric, in the feature selection process,

quantified and measured the parametric of a specific classifier's performance. The other

metric implemented by Nguyen et al. was the consistency of the analysis that evaluated

the feature selection process for a specific classifier. When a variable used in the

calculation, α was equal to 1, the search strategy was said to be consistent.

Om and Kundu (2012) used the KDD CUP 99 data to train and test their model.

They applied 10-fold cross validation to calculate classification accuracy using detection

rate, false positive rate, classification rate, along with the true positive, true negative, and

false negative. Their methodology was a three step process. The first step applied a

feature selection algorithm, which used entropy as one of the statistics. The next step

clustered the data with unlabeled data using K-means clustering and classification

methods. The final step was a hybrid classification that assigned classification labels to

objects. This was accomplished by using one of the following algorithms: K-Nearest

Neighbor, Naïve Bayes, decision tree, or support vector machines. Om and Kundu (2012)

concluded that with their hybrid approach and algorithms, they could detect differences

between normal and anomalous data.

Lee, Gray, and Kim (2013) discussed the problem of high-dimensional data as

being commonplace due to advanced sensing systems and storage technologies. These

massively high-dimensional data sets introduced sparsity, redundancy, and computational

complexity into the analysis. High-dimensional data usually had a limited number of

degrees of freedom, which was the intrinsic dimensionality of the data (Lee et al., 2013).

 23

Reducing the dimensionality of the data set reduced some of the problems relating to

redundancy and computational complexity.

Research conducted by Zhai, Li, and Zhai (2011) reduced the computing resource

requirements through the use of sample fuzzy entropy along with a condensed K-Nearest

Neighbor rule method. This calculation used decision table, fuzzy entropy, and an

algorithm to determine the fuzzy membership degree of instances in the training data set

(Zhai et al., 2011). Their research developed two algorithms, which determined the fuzzy

membership degree in the training data set. A third algorithm implemented the

Condensed Fuzzy K-Nearest Neighbor (CFKNN) rule based on sample fuzzy entropy.

Results showed their method reduced the complexity for K-Nearest Neighbor

computations using fuzzy entropy. The authors recommend the use of the third algorithm,

CFKNN, which they claim resulted in a feasible and effective solution.

Decision trees represented acquired knowledge. The strategy for decision trees

implemented non-incremental learning from examples (Quinlan, 1986). Quinlan’s

research also provided a description of induction trees. This work led to the ID3

application, which evolved into C4.5, used by Lima et al. (2012). Quinlan (1986)

discussed the concept of Top Down Induction of Decision Trees in which the

classification was conducted from the top down by considering the frequency of

occurrences within the data. Through the induction task, the set of objects were a

collection of attributes where each object belonged to one of a set of mutually exclusive

classes. The objects in the set of training data had a known class. The mission was to

develop a classification rule that could determine the class from the attributes of any

object. A subset of the training data was selected and used to train the classifier in an

 24

iterative manner. The remaining entries in the training data were classified against the

tree. If there were classification errors, these errors were added to the subset of training

data and the tree were developed again. This process repeated until all the classification

of the training data was correct. Used in tree generation, the algorithms calculated the

information gained in an object of data through the use of entropy.

Alazab et al. (2012) defined classification as a learning function for categorizing

unseen data into predefined classes. This implied that the data had the records labeled

according to their classification. When working with cluster algorithms, the data was

unlabeled. While in clustering, the classes were not predefined. Alazab et al. stated that

further research into feature selection based intrusion detection was needed.

Even though a classifier completed its goals, the question arose as to whether the

outcome of a classifier could be trusted (Nguyen et al., 2012). The feature selection

process consisted of the method and search strategies for relevant features. Each dataset

had its own statistical properties, where the feature selection process best represented the

patterns of the data (Nguyen et al., 2012).

Bhuyan et al. (2011) further described an intrusion detection architecture. In this

design, data collection, pre-processing, feature extraction, data typing, normalization, and

an anomaly detection engine were functions of the system, which identified irrelevant

parameters for anomaly detection. The detected anomalies were classified into three

categories based on the following list:

 Point anomalies: An individual data point was anomalous with respect to the rest

of the data.

 25

 Contextual anomalies: These anomalies consisted of two types: contextual and

behavioral. The contextual content was with respect to its relation to a certain set

of attributes. The behavioral is with respect to non-contextual attributes.

 Collective anomalies: A single point was not anomalous but a collection of single

points constituted anomalous activity. In order to detect this type of anomaly, the

appropriate behavioral attributes in the data needed identification.

Feature selection involved maximizing classification accuracy of data. Multiple

approaches were available for feature selection with the two main feature selection

models being the wrapper model and filter model. The wrapper model used a learning

algorithm on subsets of the features and the resulting feature set quality was determined

by the prediction accuracy (Gheyas & Smith, 2010). In the filter model, statistical

criteria generated scores and ranks for the features. This model determined the relevance

of features through statistical techniques that were independent of any classifier.

Alelyani, Tang, and Liu (2013) differentiated feature selection and feature

extraction as approaches to reducing the dimensionality of a data set. In feature

extraction, features were projected into a new space with lower dimensionality, while

feature selection took a subset of features that minimized redundancy while maximizing

their relevance. Alelyani et al. (2013) expanded the feature selection models to include an

embedded model and a hybrid model. In their proposed hybrid model, statistical

measures were used like the filter model, and a subset of the data was chosen with the

highest classification accuracy. This embedded model implemented feature selection and

model fitting simultaneously where they selected a set of features based upon a particular

 26

classifier. Overall, the filter model worked well with large data sets while the wrapper

model improved classification accuracy.

Liu and Yu (2005) described a typical feature selection process that consisted of

four steps.

1. Generate a subset of features from a set of data. This selection of features

may be additive in that the null set was the basis and features were added,

or it may be a subtractive process by starting with all features and

removing them in a predetermined manner. A complete exhaustive search

found optimal results. Other options were a sequential search and a

random search.

2. Evaluated the subset based on a set of criterion. Different criteria

evaluations techniques included distance measures, dependency measures,

and consistency measures.

3. Determine if the resulting goals were met. This may be a specific

boundary of features, a better solution was not produced from a previous

result, or the results were satisfactory based on the classification error rate.

4. If the goals were met, results were validated and the process terminated. If

prior knowledge was available, the results could be compared. Often prior

knowledge was not available and other techniques were employed. These

may be classification error rates, or conducting “before-and-after”

experiments.

Liu & Yu (2005) further discuss the filter and wrapper methods and a hybrid

combination of the two. Their discussion included real world applications with feature

 27

selection and network security. They proposed using data mining algorithms for large

audit data files to obtain frequency patterns. The patterns were used in automated

learning and classifiers were applied to determine an intrusion or normal traffic.

Research conducted by Barot, Chauhan, and Patel (2014) used the KDD CUP 99

data set and applied different feature selection methods including a Naïve Bayes classifier,

decision table, correlation based feature selection, and Chi-squared attribute selection.

Their results showed that using five attributes produced very good performance. Using a

correlation based feature algorithm along with the decision table majority produced the

best results.

Entropy calculations used in Feature Selection

Entropy was defined as a statistical metric that related the amount of information

into a random variable (Lima et al., 2012). Using this definition for entropy, parameters

used for the identification of an intrusion from activity logs contained randomness within

the data, which provided information about that data, to the analytic algorithms used.

Nychis, Sekar, Andersen, Kim, and Zhang (2008) stated that little research has been

conducted to understand the detection power of entropy-based analysis related to multiple

traffic distributions.

Lima et al. (2012) used the Shannon entropy that was included in the WEKA,

toolkit (Witten & Frank, 2005). Lima et al. then replaced the Shannon entropy with the

Rényi and the Tsallis entropy formulas and compared the impact of the different entropy

 28

calculations on feature selection functionality. The Rényi and Tsallis entropy calculations

included an α term which adjusted the sensitivity to the probability distribution.

In a paper on Boltzmann's entropy, Lebowitz (1993) discusses how Boltzmann

used entropy to describe associating different states of matter between microscopic and

macroscopic in a statistical manner. The results were in terms of classical Newtonian

mechanics based on Newton’s laws of motion. The Boltzmann entropy was equal to the

Boltzmann constant times the log of the absolute phase state (Γ) for a state of M. The

point showed that entropy extended beyond not only information theory as proposed by

Shannon (1948) but also had roots in mechanical and quantum systems.

Lee and He (2009) used entropy with the Chi-square goodness metrics and mean

and variance to develop traffic profiles and behavior patterns. The concept of relative

uncertainty created a data profile that used time series to find hidden features in the

traffic. They used the KDD CUP 99 data set and developed a correlation matrix using

different features against the true positive, true negative, false positive, and false negative

measures. Their research reduced the false positives by 3 to 4 percent.

Barbará, Couto, and Li (2002) proposed a method that clustered the data to reduce

the entropy rather than using a distance metric. Their approach yielded an NP-Complete

problem that used heuristics to solve it. They applied this methodology to different types

of data, including the KDD CUP 99 data set. The algorithm was effective and compared

well to other algorithmic methods that used Shannon entropy.

Research conducted by Nychis et al. (2008) utilized entropy to analyze

bidirectional traffic with the goal of improving granularity of detection from simple

volume based metrics. The basis for the data was flow-headers and behavioral features.

 29

The parametric data collected from the flow-header consisted of source and destination IP

addresses and ports, and the flow size. The behavioral attributes were counts of specific

addresses where an end-host communicated when entering and exiting the system. The

data used in the analysis originated from collections made in 2005 at Carnegie Mellon

University. The data consisted of 92TB of traffic with 2.5 billion flows. The data

segments contained five-minute non-overlapping time slots, and anonymized IP

addresses. The entropy for the parameters was normalized and computed. The

researchers found strong correlation between address and port distributions. The results

showed that with entropy based anomaly detection, traffic selection required more than

simple port and address based distributions. Traffic features should originate from traffic

distributions that complement each other. Also, unidirectional traffic could introduce bias

into the computing traffic distributions.

Nychis et al. (2008) concluded that port and address distributions were strongly

correlated when using entropy during time series analysis. They confirmed this with the

behavioral metrics and from the analysis of synthetic data. Calculating correlations of

entropy values during normal periods suggested a new way to provide anomaly detection

services and they suggested this for future work.

Velayutham and Thangavel (2012) used entropy for feature selection with Rough

Set Theory. In their work, both supervised and unsupervised sets of data showed how

their process produced better results with the unsupervised data. One of their claims

stated supervised data classification was often unknown or incomplete. In their

demonstration example, the unsupervised data was grouped by like attributes and the

entropy was calculated among their values. The minimal entropy was selected and

 30

grouped with the remaining attribute sets. This continued iteratively until an entropy of

zero resulted. The attributes in this set were the reduced group of features that provided

information about the data set.

Yurtkan and Demirel (2013) used entropy based feature selection for facial

recognition. The use of variance and entropy provided measures of uncertainty and

information content. A high entropy indicated a feature’s position was more variable and

carried more information. A low entropy was considered a stable feature. Their research

used Shannon entropy for feature selection in facial expressions. The higher the entropy

value the greater the chance was that the feature was associated with different

expressions.

Özçelik and Brooks (2015) discussed the use of entropy in identifying Distributed

Denial of Service (DDoS) attacks in a network. If the attacker had knowledge of the

network traffic entropy, the attacker could spoof the use of entropy to evade the

identification of a DDoS attacks. With this information, an attack could be constructed to

maintain the entropy of the traffic within the upper and lower bounds of the entropy

range considered. Features used were in the packet headers. Similarly, the attacker could

construct zombies to send dummy traffic/requests that generate false positives, which

rendered the intrusion detection system unreliable. To counter this spoofing capability,

the calculated standard deviation for the traffic was normalized in two limits by

asymptotically increasing the entropy less than 1 to approaching 1, and conversely

normalizing entropy larger than 0 to approaching 0. This method enabled the

identification of spoofing attacks.

 31

Shannon Entropy

Claude Shannon (1948) worked at Bell Laboratories and developed a useful

definition of information produced. The definition stated that if the number of messages

in a set was finite, then this number was a measure of information when one message was

chosen from the set. This definition provided the basis for Forward Error Correction and

communications security (Gappmair, 1999). Shannon’s research in entropy and channel

capacity became part of the common mechanisms used to monitor and evaluate

communications systems. Shannon’s application of entropy to information theory was the

basis for describing variability in a signal.

Mathematical formulations of entropy in feature selection were as follows.

Applying feature selection techniques to data sets using a random variable, C, with a

discrete probability distribution, then the entropy of the expected information was

determined by the Shannon (1948) entropy defined in the equation below.

Using this basic formula for Shannon entropy, there are multiple attributes (k),

where i = 1, .. k.

Where:

H(C) is the entropy of variable C

pi is the probability of element i in the distribution.

k is the number of elements.

 32

Mutual information I(C;Ai) measures the interdependence between two features,

i.e. C and Ai, is shown as when using Shannon entropy (Lima et al., 2012).

Where:

I(C;Ai) is the mutual information denoting the dependence between C and Ai.

H(C) is the entropy of variable C

H(C|Ai) is the conditional entropy of C given Ai.

Rényi & Tsallis Entropy

Both the Rényi and Tsallis entropy use a term in their equations identified as α.

This term makes the entropy results more or less sensitive to the considered probability

distribution shapes Lima et al. (2012).

The Rényi entropy is a measure of information of order α. For Rényi entropy,

Shannon entropy is the limiting case Lima et al. (2012). The formula for Rényi entropy is

as follows.

Where:

Rα(C) is Rényi entropy with factor alpha for term C

 33

α is an exponential distribution where 0 ≤ α ≠1

pi
α
 is the probability of element i in the distribution raised to the α term.

With 0 > α < 1, the mutual information is defined as follows (Lima et al., 2012).

Where:

IR(C;Ai) is the mutual information of C given A using Rényi entropy

Rα(C) is Rényi entropy with factor alpha for term C

Rα(C|Ai) is Rényi entropy with factor alpha for term C given Ai

Constantino Tsallis, a Brazilian physicist, developed an entropy relationship

integrated within the Boltzmann-Gibbs domain that defined entropy as follows (Johal &

Tirnakli, 2004).

Where:

Tα(C) is Tsallis entropy with factor alpha for term C

α is an exponential distribution where 0 ≤ α ≠1

pi
α
 is the probability of element i in the distribution raised to the α term.

 34

The mutual information as noted by IT(C;A) is for Tsallis entropy when α > 1, the

dependencies between two variables are defined as follows (Lima et al., 2012).

Where:

IT(C;Ai) is the mutual information of C given Ai using Tsallis entropy

Tα(C) is Tsallis entropy with factor alpha for term C

Tα(C|Ai) is Tsallis entropy with factor alpha for term C given Ai

Approximate Entropy and Sample Entropy

 Approximate entropy is the conditional probability of a set of data segments of

the same duration. There is less complexity with a smaller Approximate entropy, which

yields a higher probability. Its introduction quantified regularity in a time series (Liu &

Zhao, 2011).

Pincus (1991) developed a method to determine the changing system complexity

in which Approximate entropy could classify complex systems. The use of Approximate

entropy was applicable to deterministic (predictable), and stochastic (non-deterministic)

systems. This approximation was good for data sets containing at least 1000 points.

Approximate entropy is a widely used statistical index that quantifies the

complexity of a signal used, especially in the fields of heat variability and endocrinology

(Chen, Solomon, & Chon, 2005). This metric may provide quantitative information about

noisy and short data in a small sample size. The data may have both deterministic and

stochastic (non-random and random) attributes. Some of the problems with Approximate

 35

entropy includes bias due to self-matches, or duplicates, and is very dependent on sample

size.

Yentes et al. (2013) applied Approximate entropy as developed by Pincus (1991)

for quantifying levels of complexity in time series. Sample entropy, developed by

Richmond and Moorman (2000), was less sensitive to the number of data points than

Approximate entropy and provided a better entropy method for data sets with less than

200 points. Approximate entropy does have some problems in its use. It is biased towards

regularity, lacks relative consistency, and parameters must be the same when comparing

two data sets.

The smaller the value of the Approximate entropy indicated less complexity

within the data. This suggested that repeated patterns imply order and therefore resulted

in a reduced entropy value (Lake, 2011). The calculation required a prior determination

of two unknown parameters. The variable named r had a recommended value in the range

of 0.1 to 0.2 times the standard deviation of the data. The other variable named m

determined the length of the sequences, or window sizes. A third parameter used in the

entropy equation is N which is the number of data points (Chon, Scully, & Lu, 2009).

Most entropy definitions were discontinuous to noise (Pincus 1991). Approximate

entropy used three primary attributes in the calculation. The nomenclature was

represented by ApEn(m, r, N) for Approximate entropy. Selection of the attributes

affected results of the calculation. The m referred to the window size of how many points

represented a reading. Pincus (1991) started with m equal to 2 as does Yentes et al.

(2013). The r is a measure of the percentage of the standard deviation.

 36

Sample entropy is a negative natural logarithm of the conditional probability that

two samples of length m with tolerance r would match the next point in the series of m+1.

If m was too large or r was too small, the template match count would be inadequate for

confidence estimation of the conditional probability. Conversely, if the m was too small

and r was too large, all results matched and there would be no discrimination signals

(Lake, 2011).

Liu, Liu, Shao, Li, Sun, Wang, and Liu (2011) determined the selection of the r

variable was controversial. They referred to studies that indicated that as the performance

of a time series became faster, the selection of r might lead to incorrect conclusions.

Their work was based on heart failure rate among healthy subjects vs. those that had heart

failure. They concluded the value of r had a big impact on the results and proposed the

use of a value that maximized the Approximate entropy. This showed the true complexity

of the different signals more clearly.

Six steps used to calculate Approximate entropy were described by Pincus and

Keefe (1992) and are detailed below.

1. Develop an equally spaced time series:

 where u(1), u(2), ….. u(N) where N is the number of values

2. Define m and r.

 m = length of the time sequence (windows) use 1, 2, 3, etc. and

 r = filter - usually between 10% to 25% of the standard deviation.

 37

3. Define a set of vectors: x(1), x(2), x(3) x(N)

 where: x(i) = (u(1). u(i + m – 1))

4. Use x(1), x(2), x(3) x(N)

 for each i, 1 ≤ I ≤ N – m – 1

Where:

d is the distance between vectors x(i) and x(j). It is defined as:

d[x(i), x(j)] = max | u(i + k -1) - u(j + k -1) |

for k = 1, 2, m.

5. Next define:

To this point, Approximate entropy yielded that

Φ
m+1

(r) – Φ
m

(r) = the average over i of

 ln [probability that | u(j+m) – u(i+m) | ≤ r

 given that

 | u (j+k) – u (i+k) | ≤ r for k = 0,1,....m-1]

C (r) = { number of x(j) such that d[x(i), x(j)] ≤ r } / (N + m -1)
m

i

 38

6. (ApEn) Approximate entropy equation:

ApEn= Φ
m

(r) – Φ
m+1

(r) for m and r fixed as in step 2.

Work by Manis (2008) developed a way to increase the speed of approximate

calculations. In this method, data is assigned buckets, the buckets are examined for

similarity of data pairs, and updates made to the overall calculation.

Sinai (2007) explained the entropy of dynamical systems and stated that

entropy (h) of a measurable transformation of the dynamical system was in a set of

entropy values for the entropy across the upper bounds of all finite partitions. Sinai (2007)

further stated that Kolmogorov proved this theorem in a lecture on Bernoulli partitions

where entropy must be positive.

Richman and Moorman (2000) developed Sample entropy, which was a variant of

the Approximate entropy. Sample entropy does not count self-matches and is the negative

natural logarithm of the conditional probability that two sequences for m points remain

similar at the next point. Self-matches were not included in the probability calculation.

Approximate entropy quantifies information about complex data that may be

noisy and corrupted in both deterministic and stochastic environments (Chen et al., 2005).

With both Approximate entropy and its variant Sample entropy, the equations use two

variables that must be predefined. One variable is the embedding dimension, m. The

second variable is the threshold that acted as a noise filter with the designation of r.

Chen et al. (2005) referred to a recommendation by Pincus (1991) for slow dynamic

signals in which r should be 0.1 to 0.26 (10% to 26%) of the standard deviation of the

data. They also recommended that m should be 1 or 2 for 100 to 5,000 data points. Chen

 39

et al. (2005) detailed the calculation for Approximate entropy and Sample entropy in their

research. Both calculations were six step processes not described in this thesis.

Methods and applications used in this research.

Lima et al. (2012) used different entropy calculations in their research. The most

used calculation for entropy of computer communications work was that of Shannon

(1948). Lima et al. (2012) extended the Shannon entropy calculation in the C4.5

classification algorithm to include Rényi and Tsallis variations of entropy. This compared

the feature selection ability of the Rényi and Tsallis entropy calculations versus the

Shannon method.

Very little research existed that addressed the use of Approximate entropy and

Sample entropy for use with intrusion detection data. The focus of Approximate entropy

and Sample entropy calculations was data that exhibited periodicity. The proper data

must align with the Approximate and Sample entropy models used.

Sharma and Mukherjee (2012) utilized a Naïve Bayes classifier in WEKA that

reduced the dimensionality of intrusion detection system data sets. The Naïve Bayes

classifier worked well with high dimensionality data sets and had a strong independence

relation assumption in which the features were independent of a class and the probability

of one attribute did not influence the probability of the other. They used the entropy-

based supervised discretization. This process transformed continuous models into discrete

parts for analysis. In particular, the WEKA application calculates a result, iteratively

removes a feature, and the results are compared for effectiveness.

 40

The main classification algorithms used for feature selection were genetic

algorithms, decision trees, Bayes networks, and neural networks. Lima, et al. (2012) used

classification models implemented for medical data that included CLONal selection

ALGorithm (CLONALG), Clonal Selection Classification Algorithm (CRCA), and

Artificial Immune Recognition Systems (AIRS). The attribute selection method used by

Lima et al. (2012) was C4.5. They modified the entropy calculations to include Rényi

entropy and Tsallis entropy, in addition to the Shannon entropy calculations available in

C4.5.

The data mining capabilities of the WEKA software used by Lima et al. (2012)

provided an extensible environment to modify and insert custom calculations for the

analysis. Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten (2009) discussed this

flexibility in their paper on WEKA. Multiple forms of data entry were available,

including comma separated variables as is contained in the KDD CUP 99 data set. The

WEKA application was Java based and provisions were available to add custom software.

The WEKA open-source project specifically focused on open-source data mining systems.

The research conducted by Lima et al. (2012) incorporated the use of the wrapper

model into the C4.5 application for their model. They surmised that in general, the

wrapper method was more effective in selecting the best features.

 41

Chapter 3

Methodology

Overview of Research Methodology

This research incorporated the use of entropy in the statistical methods for feature

selection to detect network intrusions. The goal was to reduce the number of features

required to identify anomalies in a set of data from an intrusion detection system. Using

Approximate and Sample entropy as metrics in the feature selection process was part of

achieving that goal. The applicability of this method was adapted to the detection of

different intrusion types that exhibited periodicity or modeled with periodicity. The

focus was on the use of the entropy statistic to provide additional information regarding

the content and variability of data.

The approach used was based on the use of entropy for feature selection as that

conducted by Lima et al. (2012). The Lima et al. research utilized the C4.5 decision tree

modeled with the Shannon, Rényi, and Tsallis entropy calculations as part of the statistics

for attribute selections. Research conducted by Yentes et al. (2013) used Approximate

entropy and Sample entropy to measure the randomness of periodic biomechanical data

such as a person’s walking gait. This research includes the Approximate entropy and

Sample entropy within the C4.5 decision tree.

 42

Specific Research Methods Employed

The Waikato Environment for Knowledge Analysis (WEKA 3, n.d.) software

framework was used for the C4.5 decision tree generation that is designated as J48 in the

WEKA classification analysis package. The 10-fold cross validation option validated the

results. Programming modifications made to WEKA enabled the use of Rényi, Tsallis,

Approximate, and Sample entropy calculations and combinations.

Data for the research originated from two different sources. The KDD CUP 99

data used by Lima et al. (2012) was one source. The second set of data was from SRI

International in which the data was collected from real-world malware attacks. The use of

these two different data sources supported a process for validating the methods used in

identifying anomalies from the KDD CUP 99 data set. The second set of data used the

same process in finding anomalous activity.

Following the finalization of the basic methods and techniques mentioned above,

the applications for classification and feature selection were developed and programs

written. The next set of activities identified the code development required for Rényi,

Tsallis, Approximate, and Sample entropy calculations and statistical algorithms.

Development also included writing programs that acquired, parsed, and formatted the

data for use in the analysis programs and its associated results.

Analyzing the results from the decision trees and extracting the features provided

data to compare metrics from established research by Lima et al. (2012). The metrics

used for the comparisons examined the classification values and the features selected.

This started an iterative process of working with both sets of data available, producing

results, and comparing them with the selected standards. Adjustment made to the

 43

methods or calculations to improve the performance and robustness of the results

continued until no significant improvement was gained by more changes. As the research

completed, new literature was reviewed for comparison of the techniques and methods to

validate the conclusions. No additional research was identified that utilized similar

methodologies.

Instrument Development and Validation

The primary application used during the analysis was the WEKA program

(WEKA 3, n.d.). This application contained the tools required for the analysis.

Modifications made to the WEKA application implemented the Rényi, Tsallis,

Approximate, and Sample entropy statistic modules developed for this research. The

general description of the Approximate entropy and Sample entropy algorithms were set

forth in the paper by Pincus and Keefe (1992). The paper by Hall et al. (2009) provided a

description of the WEKA program along with its history, accomplishments, and

capabilities.

A web site called “The Code Project” contained the C++ code for both the

Approximate entropy and Sample entropy algorithms that was posted by Chesnokov

(2008). This downloaded code was validated for correctness by comparing the process

described by Pincus and Keefe (1992). Modifications were made to the Chesnokov (2008)

code to translate it into Java code. The Approximate entropy and Sample entropy

algorithms were integrated into the WEKA J48 tree classification package for feature

selection. A paper by Bouckaert, Frank, Hall, Holmes, Pfahringer, Reutemann, and

Witten (2010) described the process of custom code integration into WEKA.

 44

The research results presented an objective description of the outcomes with

tables, graphics, and text along with a discussion of the methods used. Also included

were references to research literature supporting or refuting the findings.

Resource Requirements

This research utilized the expertise of researchers, computer systems, applications,

and data. Collaboration occurred via email with committee members, other researchers,

and peers as needed. These researchers were considered knowledgeable and experts in

intrusion detection mechanisms, data analysis, and statistics.

Windows and Linux based computer systems were used for data retrieval, storage,

development, preparation, and processing. The primary computer used was an HP laptop

running the Windows 8 operating system (Win8, n.d.). Linux was supported via a virtual

machine using Oracle VM VirtualBox (VB, n.d.) on the HP laptop. VirtualBox allowed

the instantiation of virtual machines to run on a system. The Windows 8 system ran

VirtualBox to support the Ubuntu operating system (Ubuntu, n.d.). The version of

Ubuntu used in VirtualBox was 14.04.1.

The Eclipse (n.d.) Integrated Development Environment was used for the Java

applications and integration into WEKA. Additional development tools were available in

a Linux environment including vi, javac, etc.

Two main data sources were used. One was the KDDCUP 99 data file, considered

one of the standard data sets used for Intrusion Detection research (KDD Cup 1999

Data, 1999). The second data source originated from the SRI International Cyber-Threat

 45

Analysis Project (SRI, n.d.) and this is the first time it was used for feature election in this

manner.

Summary

This section described the methodologies used to conduct the research and

include Approximate, and Sample entropy into the feature selection process. The goal

was to determine if the Approximate and Sample entropies generated better results than

the Shannon, Rényi, and Tsallis entropies used by Lima et al. (2012), and the Shannon

entropy used by Sharma and Mukjherjee (2012). The data acquired for this research was

KDDCUP 99 data, and data from the SRI Cyber-Threat Analysis project as the second

source selected. The WEKA application, using the J48 decision tree analysis with the

10-fold cross validation option, was selected to conduct the analysis. The output from J48

provided a decision tree analysis for the selected features and classification statistics. The

output values were extracted and compared with the selected features from Lima et al.

(2012) and the work of Sharma and Mukjherjee (2012).

The modification and development of software was needed for this research. The

open source WEKA application provided the primary package for generation of the

decision tree analysis. The features identified were part of the decision tree output. The

WEKA application was modified to include the Rényi, and Tsallis entropies that Lima et

al. (2012) used, and included the Approximate and Sample entropies. Each of the added

entropy calculations were made available for the analysis along with the Shannon entropy

that was included in WEKA. Work by Chesnokov (2008) was the basis for the source

code used in the Approximate and Sample entropies calculations. The code was then

 46

modified for use in WEKA. The approach used for modifying WEKA and including new

source code were identified by Bouckaert et al. (2010).

 47

Chapter 4

Results

Introduction

Chapter 4 focuses on the processes used for this research, the results achieved,

and the research accomplishments during the data acquisition, data preparation, and

analysis. This work developed new methods for labeling activity in intrusion detection

system data resulting in multiple views of different entropy calculations in the feature

selection process. These views provide different options for the selection of relevant

features from data sets that identify anomalous traffic from intrusion detection system.

The analysis methodology used multiple entropy statistics developed for the C4.5

classification tree algorithm.

The primary analytic tool used for the analysis was the open source WEKA

application written in Java by the Machine Learning Group at the University of Waikato

in New Zealand. Being open source, all source code and binaries were available for

downloaded and modification. Java and Linux shell scripts were the languages used to

develop additional software applications for this research.

Anomalous and malware data acquired for this research originated from two

sources. One was the KDD CUP 99 data used by many intrusion detection researchers for

validating new intrusion detection processes and statistical evaluations. The second data

source consisted of real-world data collected by the Computer Science Laboratory at SRI

in Menlo Park, California in cooperation with its director, Phillip Porras. This SRI data

 48

originated from malware alerts collected by the BotHunter (BotHunter, n.d.) application

that identified malware in network traffic.

Computing System Environment

The computing environment for this research included both Microsoft Windows

and Linux based operating systems that ran on an HP Envy laptop. The system’s primary

hardware consisted of an Intel I7 processor, 12 GB of memory, a 1 TB hard disk drive,

and a 17-inch screen. Microsoft Windows 8.1 was the operating system on the laptop.

The standard Microsoft Office applications suite was included along with the Oracle VM

VirtualBox virtualization product.

Oracle VM VirtualBox version 4.3.12 is a type 2 hypervisor for virtual machine

support to host the Linux kernel version 3.13.0-35-generic with the Ubuntu operating

system version 14.04.1. This system configuration supported the concurrent use of a

Microsoft Windows and Linux environment while also enabling the sharing of files

between the two operating system applications and their utilities.

Directory structure for the file systems consisted of two types: the standard

Microsoft Windows hierarchical structure, and the Linux hierarchical structure. A share

point established within the MS Windows file system and the Linux file system provided

a common point to mount file systems. Any files written below this share point in the file

directory structure were accessible by both operating systems.

As identified in the introduction of this chapter, the WEKA source code and

binaries were available for download from the WEKA website (WEKA 3, n.d.). In

addition, the files were available for different operating systems. This research

 49

downloaded and implemented the Linux version of WEKA as the main development and

execution platform. WEKA Version 3.4.19 was acquired as a zip file, which was the

same version used by Lima et al. (2012). The expanded zip package consisted of Java and

binary code that installed into default directories.

Code Modification and Development

Eclipse version 3.8 provided the Integrated Development Environment to modify

the WEKA Java source code and develop new Java classes. The WEKA download

consisted of Java source code files, documentation, and the build.xml support file for use

within Eclipse.

Several WEKA Java methods required modification in order to implement the

new entropy calculations into the source code. Calls to the entropy calculations from the

WEKA application were for the Java methods in the EntropyBasedSplitCrit.java file.

The EntropyBasedSplitCrit class contained methods named logFunc(), oldEnt(), and

newEnt(). The J48 classification algorithms used these methods in the calculation.

In the downloaded WEKA code, only the Shannon entropy calculation was

included in the source code. Modifications made to the EntropyBasedSplitCrit class

added the Rényi, Tsallis, Approximate, and Sample entropy calculations. Selecting the

entropy calculation to use was a run time configurable option defined in an external file

that set the values for the current WEKA analysis. The J48 classification tree module

read the configuration file at run-time. Parametric values, identified in the external file,

determined the type of entropy algorithm to use and the values for the corresponding

variables in the program.

 50

In the EntropyBasedSplitCrit class, a method created for this analysis, named

varInitialize(), defined the variables used with the five different entropy calculations.

This method initiated a program call that read the configuration file then set the

corresponding parameters. The Rényi and Tsallis entropy calculations were added to the

existing Java code in the EntropyBasedSplitCrit class by modifying the logFunc(),

oldEnt(), and newEnt() methods. Appendix A lists the modified

EntropyBasedSplitCrit class Java code.

Four additional classes were developed. One was the fileRead class that read and

parsed the configuration file. The second class, entUtils, provided utilities for use by the

entropy application, which included a method to calculate standard deviation, stdev(), for

data passed to it by methods in the classes that calculated Approximate and Sample

entropies. In addition, a method added to the entUtils class handled the reading of the

configuration file and printing its parameters. This method, called the fileRead() method

from the fileRead class, used the results to print attributes and set variables for the

subsequent calculations. Appendix D lists the Java code for the fileRead class and

Appendix E lists the entUtils class Java code.

 51

Configuration File

The configuration file, named EntropyInfoFile.txt, was read when the J48 tree

classification module instantiated the EntropyBasedSplitCrit class. Within the

configuration file, values used by different entropy calculations were initialized in

WEKA. Depending on the entropy calculation used, only those variables required for the

calculations were relevant, variables not needed were ignored.

Appendix F provides an example of a configuration file. Variables included in the

external configuration file are listed in Table 1.

Name Description

etype A numeric designation of the entropy calculation to use.

 0 = Shannon

 1 = Rényi

 2 = Tsallis

 3 = Approximate

 4 = Sample

alpha The numerical value for the alpha term in the Rényi and Tsallis entropy

calculations that denotes the sensitivity to the considered probability

distribution shapes. Values proposed by Lima et al. (2012) are 0.5 for Rényi

and 1.2 for Tsallis, however, these values may be set to a value suitable for

the calculation

m This is the window size for the Approximate and Sample entropy

calculations. Research by Yentes et al. (2013) proposed a value of 2, but

may be reset in this configuration file.

r This is the amount of the variance to be used in the calculation of

Approximate and Sample entropy. Research by Yentes et al. (2013)

proposed a value of 0.2, but may be reset in this configuration file.

D This is a Boolean variable used to turn on debugging during the

development and modification of the application. It has no impact on the

computations.

Table 1 Entropy Configuration File Variables

 52

Algorithms for Rényi and Tsallis Entropy Calculations

The Literature Review chapter presented details of the Rényi and Tsallis entropy

calculations. These equations were programmed in Java for this research and added to

WEKA as logFunc(), oldEnt(), and newEnt() methods in the EntropyBasedSplitCrit

class. The logic included a series of if statements based upon the etype parameter that

sets the type of entropy based on the configuration file.

Algorithms for Approximate and Sample Entropy Calculations

New classes for the Approximate and Sample entropy calculations were

developed and identified as ApproximateEntropy, and SampleEntropy. These new

classes were downloaded in the C++ language from Chesnokov (2008), converted to Java

code, and further modified for use within this research. The methods in these classes were

programmatically called from the logFunc(), oldEnt(), and newEnt() methods of the

EntropyBasedSplitCrit class. Appendix B and Appendix C list the modified

ApproximateEntropy and SampleEntropy Java classes respectively.

Eclipse Usage

The Eclipse (n.d.) package provided an Integrated Development Environment. Its

development began at IBM and then the Eclipse Foundation sponsored its support.

Eclipse, an open source application, enabled the development of programming projects in

different computer languages, including Java. For this research, Eclipse supported Java

code development, modifications, compilations, and installation of the weka.jar file. The

build.xml file, provided in the initial WEKA download, was updated for the purposes of

 53

this research in order to compile and install the weka.jar file where needed. Appendix G

lists the modified build.xml file.

Executing WEKA

The WEKA application ran in an Ubuntu environment within a virtual machine.

The command line below started the WEKA GUI and included the required class paths.

java -cp /media/sf_nova/workspace/weka/dist/weka.jar:\

/media/sf_nova/data/KDD/wekaclassalgos/wekaclassalgos.jar \

-Xmx8192m weka.gui.GUIChooser

In the shell script, the memory allocation increased from the default of 512 MB to

8192 MB to accommodate large data files. The back slash “\” at the end of the line

indicated a continuation of the command line. The WEKA source code version 3.4.19

was used to be consistent with Lima et al. (2012) work.

The J48 classification tree execution used the ten-fold validation option for the

analysis. Saved results determined the features selected to construct the classification

tree. Appendix L and Appendix M list the shell scripts that read the files containing the

J48 classification tree results. These shell scripts extracted the features used to construct

the classification tree from the KDD CUP 99 results and the SRI results respectively.

Appendix N displays the output for the DOS category of the KDD CUP 99 data using

Shannon entropy.

 54

KDD CUP 99 Data Acquisition and Preparation

This data set contained approximately five million records of attacks and normal

traffic. The file, downloaded from the KDD CUP 99 website (KDD Cup 1999 Data,

1999), was in a comma separated value (csv) format that enabled easy manipulation using

Linux commands. Native WEKA data is in the Attribute-Relation File Format using the

extension arff. The data set contained 42 columns that describe each entry in the file.

Appendix J lists the features and their type corresponding to the data designation as

represented in the arff file.

Research conducted by Lima et al. (2012) used a subset of the KDD CUP 99 data

for their analysis. In order to replicate the work by Lima et al., similar attack and normal

traffic counts were replicated as close as possible, to accurately reproduce their results.

The specific lines used from the KDD CUP 99 were unknown. Table 2 displays a tally of

the KDD CUP 99 data available by attack type, and labeled “Available”. The column

labeled “Count” identified the number of entries of available data used during the

Lima et al. analysis and used in this research. A discrepancy identified in the multihop,

phf, spy, and loadmodule attack counts used by Lima et al. indicated more data than

supplied within the KDD CUP 99 dataset. For those instances where the “% of Total”

was greater than 100%, the maximum attack counts of entries were used even when the

count was less than what Lima et al. (2012) used in their research paper as noted in the

“Comment” column.

Using the attack counts listed in Table 3 by Lima et al. (2012) and in this research,

the files generated used a series of Linux commands pipelined together. This table

showed the total line counts for each of the files using the required WEKA format, arff.

 55

The command line below provides an example for the selection of the “back” attack from

the DoS category, which originated from a file named kdd.data.csv. This Linux

command string was repeated for each attack and appended to the proper attack file.

$ cat kdd.data.csv | grep back | shuf –n 1026 >>DoS.csv

Appendix H explains the commands used above. Appendix I lists the complete

Linux shell script used to generate the different data files that reproduced Lima et al.

(2012) results. The shell script wrote data to files used in WEKA. Additional information

entered into the arff files defined the variable names and data types contained in the file.

Since no timing information was associated with the KDD CUP 99 data, having the same

attacks grouped together modeled the periodicity for the Approximate and Sample

entropy. Appendix K provides a partial listing of the file contents for DoS.arff.

 56

Category

 Attack

Available

Count

% of Total

Comment

DoS

 back. 2,203 1,026 46.57%

 land. 21 11 52.38%

 neptune. 1,072,017 10,401 0.97%

 pod. 264 69 26.14%

 smurf. 2,807,886 7,669 0.27%

 teardrop 979 15 1.53%

 Normal 972,781 2,573 0.26%

Probe

 Ipsweep 12,481 586 4.70%

 Nmap 2,316 151 6.52%

 Pportsweep. 10,413 155 1.49%

 Ssatan. 15,892 16 0.10%

 Normal. 972,781 1,704 0.18%

R2L

 ftp_write 8 5 62.50%

 guess_passwd 53 53 100.00%

 imap 12 11 91.67%

 multihop. 7 11 157.14% Used 7

 phf. 4 5 125.00% Used 4

 spy. 2 4 200.00% Used 2

 warezclient. 1,020 60 5.88%

 warezmaster. 20 20 100.00%

 Normal 972,781 1934 0.20%

U2R

 loadmodule. 9 10 111.1% Used 9

 buffer_overflow 30 21 70.00%

 perl. 3 3 100.0%

 rootkit. 10 7 70.00%

 Normal. 972,781 1,676 0.17%

Table 2- Attack Counts (Lima et al., 2012)

Category/

File name

Lines in

arff file

DoS.arff 21,813

Probe.arff 2,661

R2L.arff 2,145

U2R.arff 1,765

Table 3 - Line counts in KDD CUP 99 .arff data files

 57

KDD CUP 99 Analysis Results

This section describes the analytic results of this research by replicating the

approach use by Lima et al. (2012), as closely as possible. The following descriptions and

tables demonstrated the results were in close agreement with Lima et al. classifications.

This agreement does not extend to the number of features selected. The feature selected

and their counts vary significantly between Lima et al. work and this research.

The WEKA application used files generated for the DoS, Probe, R2L and U2R

categories as input. Appendix K lists a portion of the arff file for the DoS attack

category. Appendix N displays a sample of the J48 classification output for the DoS

attack category. Appendix O shows results of the shell script execution that extracted the

features from Appendix N.

Table 4 presents the results of this research using the KDD CUP 99 data with the

WEKA analysis for the different entropy calculations. Note that for the Rényi entropy,

the alpha value was 0.5, and for the Tsallis entropy, the alpha value was 1.2, as

recommended by Lima et al. (2012). When specifying Approximate and Sample entropy,

the window size, m, was “2” and the r value was “0.2” for both entropy calculations as

specified by Yentes et al. (2013). The definitions below describe each column listed in

the tables.

 Attack & Entropy = Attack type and entropy used in the calculation

 Source = Origin of calculation results:

Research indicates the work conducted in this research.

Lima described information from Lima et al. (2012).

Sharma described information from Sharma and Mukherjee (2012).

 58

 CC = Correctly classified attacks.

 ICC = Incorrectly classified attacks.

 Features Selected = the features published from Lima et al. (2012),

Sharma and Mukherjee (2012), or the WEKA J48 classification analysis.

 Qty = Number of features identified.

Attack

 Entropy

Source

CC

ICC

Features Selected

Qty

DoS

 Rényi

 Lima 99.9632% 0.0368% 2, 5, 7, 8, 23, 32, 35, 36, 39 9

 Research 99.4578% 0.5422% 4, 6, 7, 8, 12, 13, 23, 25, 27, 29, 32, 34, 37, 40 14

 Shannon

 Lima 99.9495% 0.0505% 2, 5, 7, 8, 23, 34, 36, 39 8

 Research 99.9541% 0.0459% 2, 3, 5, 7, 8, 25, 29 7

 Sharma 99.9000% 0.1000% 5,6,24 3

 Tsallis

 Lima 99.9586% 0.0414% 2, 5, 7, 8, 23, 26, 34, 39 8

 Research 99.9357% 0.0643% 2, 3, 4, 5, 6, 7, 8, 10, 23, 24, 25, 26, 29, 31, 36, 37 16

 ApEn

 Research 99.8989% 0.1011% 2, 3, 4, 5, 6, 7, 13, 23, 24, 37 10

 SampEn

 Research 99.9081% 0.0919% 2, 3, 4, 5, 6, 7, 13, 23, 24, 36, 37 11

Probe

 Rényi

 Lima 99.4266% 0.5734% 1, 2, 5, 6, 25, 30, 32, 33, 37, 38, 40 11

 Research 96.4778% 3.5222% 2, 3, 4, 5, 6, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35,

37
17

 Shannon

 Lima 99.5031% 0.4969% 1, 2, 4, 5, 6, 23, 30, 33, 37, 38, 40 11

 Research 99.0046% 0.9954% 3, 5, 6, 12, 23, 25, 27, 32, 34, 36, 37, 40, 41 13

 Sharma 98.8000% 1.2000% 1,5,6,30,33 5

 Tsallis

 Lima 99.3119% 0.6881% 1, 2, 4, 6, 23, 30, 31, 33, 37, 38, 40 11

 Research 99.1577% 0.8423% 2, 3, 5, 25, 29, 34, 35, 36, 37, 39, 40, 41 12

 ApEn

 Research 98.4303% 1.5697% 1, 2, 3, 4, 5, 31, 32, 34, 36, 37 10

 SampEn

 Research 98.4303% 1.5697% 1, 2, 3, 4, 5, 31, 32, 34, 36, 37 10

Note: Table 4 continued on next page

 59

Attack

 Entropy

Source

CC

ICC

Features Selected

Qty

R2L

 Rényi

 Lima 98.9534% 1.4066% 2, 5, 6, 10, 11, 12, 19, 33, 35, 37, 38, 39 12

 Research 95.6107% 4.3893% 1, 4, 10, 13, 19, 22, 25, 34, 35, 36, 38 11

 Shannon

 Lima 98.9058% 1.0942% 1, 3, 5, 6, 9, 10, 11, 17, 19, 22, 32, 33, 35 13

 Research 98.4733% 1.5267% 1, 3, 5, 6, 10, 11, 12, 14, 17, 33, 36, 38, 39 13

 Sharma 97.0000% 3.0000% 1, 3, 5, 6, 23, 24, 30, 31, 32, 36 10

 Tsallis

 Lima 98.8582% 1.1418% 1,3, 5, 6, 10, 11, 17, 19, 22, 37, 38 11

 Research 98.1393% 1.8607% 1, 4, 5, 10, 11, 13, 17, 19, 22, 26, 36, 39, 41 13

 ApEn

 Research 97.9485% 2.0515% 1, 3, 4, 5, 10, 12, 17, 18, 23, 35, 36, 40 12

 SampEn

 Research 97.9485% 2.0515% 1, 3, 4, 5, 10, 12, 17, 18, 23, 35, 36, 40 12

U2R

 Rényi

 Lima 99.4758% 0.5242% 13, 18, 32, 33, 36 5

 Research 98.4848% 1.5152% 1, 4, 10, 13, 19, 22, 25, 34, 35, 36, 38 11

 Shannon

 Lima 99.5341% 0.4659% 13, 16, 17, 18, 32, 33 6

 Research 99.0093% 0.9907% 3, 5, 13, 14, 16, 17, 18, 29, 32, 34, 36 11

 Sharma 80.8000% 19.2000% 1, 3, 5, 6, 10, 11, 13, 14, 16, 17, 31, 32, 33, 34, 36,

37
16

 Tsallis

 Lima 99.4176% 0.5824% 13, 16, 18, 32, 33 5

 Research 98.5431% 1.4569% 1, 4, 5, 10, 14, 17, 18, 24, 30, 32, 34, 36, 37 13

 ApEn

 Research 98.6014% 1.3986% 2, 3, 6, 10, 12, 14, 17, 18 8

 SampEn

 Research 98.6014% 1.3986% 2, 3, 6, 10, 12, 14, 17, 18 8

Table 4- Attack Classification Results

The features selected, and the quantity of features selected, varied significantly

among the different entropy types and analysis sources. Table 4 details the results of

these variations. The bolded feature numbers under the “Features Selected” column

were common to more than 50% of the analysis results grouped by “Attack” type. The

table also shows the relationship of the entropy type by attack type used in the calculation

of correctly classified attacks and the number of features varied.

 60

Table 5 presents a different view of the results from Table 4. Table 5 is sorted by

the number of features found and entropy type, all grouped by attack type. It is observed

that entries with the minimum number of features selected were not necessarily the best

correctly classified results for the attack type. The results also showed that the lowest

number of features selected varied between attack type and entropy type. The Sharma and

Mukherjee (2012) results were not included since their approach did not use the J48

classification tree method.

The features selected by the approaches used by Lima et al. (2012) and this

research produced varying results. However, there are commonalities among selected

features. Table 6 lists the number of features selected by Lima et al. and this research

along with the number of features selected which were in agreement with the results.

These counts were taken from the preceding tables to compare the different entropy

calculations used. This table demonstrates that even though significant variations in the

results became evident, a subset of feature commonalities existed.

 61

Attack

 # Features

Source

Entropy

CC

DoS

7 Research Shannon 99.9541%

8 Lima Tsallis 99.9586%

8 Lima Shannon 99.9495%

9 Lima Rényi 99.9632%

10 Research ApEn 99.8989%

11 Research SampEn 99.9081%

14 Research Rényi 99.4578%

15 Research Tsallis 99.9357%

Probe

10 Research ApEn 98.4303

10 Research SampEn 98.4303

11 Lima Shannon 99.5031

11 Lima Rényi 99.4266

11 Lima Tsallis 99.3119

12 Research Tsallis 99.1577

13 Research Shannon 99.0046

17 Research Rényi 96.4778

R2L

10 Lima Tsallis 98.8582%

11 Research Rényi 95.6107%

12 Lima Rényi 98.8582%

12 Research ApEn 97.9485%

12 Research SampEn 97.9485%

13 Lima Shannon 98.9058%

13 Research Shannon 98.4733%

13 Research Tsallis 98.1393%

U2R

5 Lima Rényi 99.4758%

5 Lima Tsallis 99.4176%

6 Lima Shannon 99.5341%

8 Research ApEn 98.6014%

8 Research SampEn 98.6014%

11 Research Shannon 99.0093%

11 Research Rényi 98.4848%

13 Research Tsallis 98.5431%

Table 5 Listing of the Feature Selection Count sorted by Feature count

 62

Category/
Entropy Research Lima Agreement

DoS

Rényi 14 9 4

Shannon 7 8 4

Tsallis 16 8 6

Probe

Rényi 17 11 8

Shannon 13 11 5

Tsallis 12 11 3

R2L

Rényi 11 12 4

Shannon 13 13 8

Tsallis 13 10 7

U2R

Rényi 11 5 2

Shannon 11 6 5

Tsallis 13 5 2

Table 6 Summary of KDD CUP 99 attack selected features

In summary, the KDD CUP 99 analysis showed variations existed between the

results presented by Sharma and Mukherjee (2012), Lima et al. (2012), and this research.

The following were issues that influenced variations occurring in the results:

 Methodology used in the calculations for the Rényi and Tsallis entropies

in the Lima et al. (2012), were very different from the approach used by

Sharma and Mukherjee (2012).

 Subset of selected data for the analyses was different, since Lima et al.

(2012) only listed attack counts.

 63

SRI Malware Data

This section used a real-world data source to validated and compare the approach

that analyzed the KDD CUP 99 data. This additional data source demonstrated the

applicability of different entropy calculations for feature selection from a real-world

collection of data, not previously used for feature selection. Phillip Porras, Director of the

Computer Science Laboratory at SRI International, provided a source of collected

malware intrusion data for this research. It consisted of files in pcap and other formats

that contained malware alerts identified by the BotHunter (n.d.) project.

BotHunter was a project developed under the Cyber-TA research program by the

Computer Science Laboratory at SRI International (BotHunter, n.d.). The system

classified communications from both incoming and outgoing traffic at a network

boundary. Algorithms detected potential malware intrusions by analyzing the sequence of

events that occurred during the exchange using a customized version of Snort (n.d.), as

noted in the BotHunter description. The events were classified and correlated to the

activity of the malware life cycle model.

SRI Malware Data Acquisition and Analysis Method

Phillip Porras, at SRI, provided access to the Index of releases for a malware

(n.d.) website used for this research. The website organized entries by days starting on

May 1, 2008. Upon selection of a date, the corresponding page was displayed which was

the “SRI's Multiperspective Malware Infection Analysis Page” for that date.

Appendix P displays a sample of the web page.

 64

Each row in “SRI's Multiperspective Malware Infection Analysis Page”

contained an alert entry triggered by a match from a Snort rule. Each alert contained

multiple links to individual text files, available for download, and the complete network

communications session in compressed pcap format. For this research, ten days of alerts

yielded 4,328 usable events. The following steps described the process used to acquire

and synthesize the SRI data for this research.

1. Primary web page. The web page for each date was saved into a file named

“Multiperspective Malware Analysis Page.htm”. A page from each of the

following dates was retrieved: 20080501, 20080502, 20080503, 20080504,

20080505, 20080506, 20080507, 20080508, 20080509, and 20080510. A

separate directory hosted each date in which the associated malware files

existed.

2. Identification of files to retrieve. Within the “Multiperspective Malware

Analysis Page.htm” files, there were many html “href” tags referencing

URL’s to files for download. A Linux command string to read the

“Multiperspective Malware Analysis Page.htm” files and select the URL’s

which contained character strings within the file name required for the

analysis. The file types contained the character strings of “pcap.gz” and

“virus-labels” within the URL. These character strings were entered into a file

name “ll”. Output of this command string created a script file named “file.sh”

for subsequent execution. A Linux “wget” command prepended each

 65

command line for the URL file retrieval. The following command string was

used:

cat Multiperspective\ Malware\ Analysis\ Page.htm |fgrep -f ll|sed -e

"s/href/\r\nhref/g"|grep http|cut -f2 -d\"|sed -e "s/^/wget

/g" >file.sh

The commands in this string sent the contents of the files to the fgrep

command that selected lines contained in the character strings stored in file ll.

The sed command put a carriage return and new line characters in front of the

href tag. The grep selected lines that contained http character string. The cut

selected the second field from the line using a double quote (“) as the

delimiter. Lastly, the sed command put a wget character string at the

beginning of the line.

3. Download of files. Appendix Q displays a portion of the resultant “file.sh” for

the date of 20080501. This file ran on a command line with the named files

downloaded to the current directory. Appendix R displays a sample listing of

the downloaded files. The file extension designators are:

a. .pcap.gz – the compressed pcap file from the session capture. Step 5

described the process that expanded these files.

b. .alerts – contained the alerts generated by BotHunter.

c. .rules – contained the Snort rules that generated an alert.

d. .alerts_botHunter.txt – The report generated by BotHunter.

 66

e. .virus-labels – Reported the analysis of the suspicious test results from

VirusTotal (n.d.). It listed the viruses found in the pcap file from

different Anti-Virus vendors. The file has a hex based name and may

be associated with multiple pcap files. In some cases,

multiple .virus-labels files are associated with one pcap file.

Note: Appendix U lists the above named files of alerts, .rules,

alerts_botHunter.txt, and virus-labels.

4. Organizing files. As shown in Appendix R, the files names did not relate well

to each other. In order to improve file management, a program listed in

Appendix S, prepends a sequential numbering scheme to related files.

Appendix T shows a partial listing of the files for 20080501 and their

corresponding sequential numbering. The association showed the files with

the date and numbering “.associations” extensions file in each date directory.

5. Using tcpdump. To process the binary pcap.gz files, the files were

uncompressed using the Linux “gunzip” command. The “tcpdump”

command produced a readable text of packet activity. The “tcpdump”

command line used was used as follows:

cat pcap-file | tcpdump –r - > pcap-file.tcpdump

 67

6. Contents of tcpdump output. The tcpdump files listed the packet activity

that generated the malware attack records. WEKA used the features extracted

from these records for the feature selection process using the J48 classification

tree algorithm. Each of the expanded pcap.gz files generated between less

than 100 lines to over 80,000 lines of activity after the files were processed by

“tcpdump”.

7. Malware naming convention. In the files with the virus-labels extension, a

number of antivirus vendors were listed along with their assignment of their

name for the malware evaluated. There was no standardized malware naming

convention that existed among the different antivirus vendors. Only one

vendor, AntiVir, produced malware entries in all of the files. Not all vendors

had entries for all the malware files. The AntiVir vendor was selected as the

antivirus program for naming the malware in this research. Using one vendor

enabled a consistent and standard naming convention for this research;

therefore, the malware named by AntiVir provided the naming convention for

each occurrence.

8. Raw data assembly. The shell script named bf.sh collected all relevant raw

data from the files and assembled the information into one file that generated

the .arff file to use in WEKA. Appendix V lists the bf.sh script that ran in

each date directory and the output generated was saved as date.bf such as

 68

“20080501.bf”. All ten of the date.bf files were concatenated into one file,

named SRI.bf, which was used in the analysis.

9. Feature selection. The next task compiled all the features available for the

assessment used in the analysis. The features selected originated from the

tcpdump output, the rules files, and the alerts files. Reviewing the available

features and identifying those that had an impact on this analysis resulted in a

list of twenty-two features including the malware detected. Appendix W lists

and describes the twenty-two features chosen from the available data.

10. Extracting features. Appendix Y lists the Java application that extracted the

selected features from the data files. This program read the “SRI.bf” file as

described in Step 8 and generated the results in a comma separated value (csv)

format that was used in the data portion of the arff for WEKA. Additional

information was manually added to the csv-formatted data to make it

compliant with the WEKA arff formatting requirements. The resulting file

header information was similar to that in Appendix K but designed for the SRI

data. See Appendix X for a partial listing of the SRI data in arff format. The

partial listing displayed the formatted header information for the arff

information as required by WEKA at the start of the data portion. The total

number of records for the data portion of the WEKA file was 4,328.

 69

11. Analysis in WEKA. Analysis was conducted using WEKA with the arff file

generated from the SRI Malware data store for May 1, 2008 through

May 10, 2008. The file contained twelve malware attack types defined in

Appendix U. The WEKA application ran each of the five entropy calculations

using the J48 classification tree to determine which features influenced the

results, and calculated statistics on the results.

SRI Malware Analysis Data Preparation

This section discusses the analysis of the real-world data that applied five entropy

types to the feature selection process. In order to get different perspectives of the

analysis, multiple sets of runs were conducted for each entropy calculation, varied the

attributes, and focused on different labels and. The Shannon entropy was already

included in the WEKA application and the Rényi, Tsallis, Approximate, and Sample

entropy calculations were added to WEKA in a manner consistent with that used by Lima

et al. (2012). The unique application of this research modeled the data to represent time-

based sequences for the Approximate entropy (ApEn) and Sample entropy (SampEn) in

the classification model similar to that of Yentes et al. (2013).

Defining the different combinations for the entropy calculations resulted in 221

unique parameter configurations that provided detailed results. Each run had the entropy

type and associated parameters varied as described in Table 7. The tunable parameter for

the Rényi and Tsallis entropy calculations, the α term, denoted the sensitivity to the

probability distribution shapes. For the Approximate and Sample entropy calculations the

tunable parameters were the window size, m, and the amount of the standard deviation

 70

used, r. The results compared the number of features selected by the different entropy

types. The data used was from the SRI BotHunter application and included the complete

set of 4,328 records labeled with appropriate malware descriptors.

Entropy Parametric values Number of runs

Shannon None 1

Rényi α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 11

Tsallis α = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.99 11

Approximate
m = 1, 2, 3, 4, 5, 6, 7, 8, and 9

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99

99

Sample m = 1, 2, 3, 4, 5, 6, 7, 8, and 9

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99

99

Table 7 - Parametric values used in SRI analysis

Three sets of analyses conducted provided alternative views of the results. Each

analysis utilized a different approach to the data labeling. The first analysis used the

complete data set with the ten-malware types as listed in Appendix W. The goal was to

identify the entropy type that produced the lowest number of features required when

using all ten malware attacks as the labels.

The second analysis examined the ten-malware attacks individually by the

generating ten different data sets, each analyzing one specific attack. This goal was to

determine the least number of features required to identify individual malware attacks

labeled within the whole set of data. Ten separate runs were made, one for each malware

attack as the label.

 71

This third analysis looked at the data by infection type labeled as the field Enum

in Appendix W. This analysis grouped the different malware attacks based upon

communication flows between the internal host and a set of external hosts into infection

types identified by the BotHunter application Cheung and Valdes (2009). Each activity

entry was labeled with the infection type for the analysis.

SRI Malware Results

Results of the three analyses are presented. Each one shows that the percent of

correctly classified values were mostly very high and close to each other numerically,

however, the number of features required to select the correct malware showed much

wider variation. The details are discussed in the remainder of this section.

Analysis one – Data labeled by Malware attack

In this first analysis, the data was labeled with the appropriate malware attack as

identified in Appendix W. Each entropy calculation varied the parameters with the

number of runs as shown in Table 7. The complete results from the WEKA runs for this

analysis are presented in Appendix Z. The lowest number of features required for each

entropy type are listed in Table 8.

Results showed that Tsallis, Sample, and Rényi entropy required six features for

correct classification of the ten-malware attacks. Tsallis entropy had the highest correctly

classified value of 99.9312%, followed by Sample entropy at 99.2428%. Rényi entropy

 72

also required six features, but the correctly classified percentage was 90.3167%, which

was 8.9621% to 10.3888% lower than the Tsallis and Sample entropy correctly classified

values. Shannon entropy had a correctly classified value of 99.8853% but required 8

features.

For the Tsallis, Sample, and Rényi entropy calculations, the minimum number of

features occur at only one point for each of the parameter combinations. This is quite

different for Approximate entropy since the minimum number of features occur for a

wide range parameter combinations. As previously noted, all the results for this analysis

are listed in Appendix Z. These results in Table 8 show that Tsallis and Sample entropy

require the fewest number of features with the highest correct classification percentage.

Entropy #FS CC Parameters

Tsallis 6 99.9312% alpha=1.9

Sample 6 99.2428% m=1; r=0.2

Rényi 6 90.3167% alpha=0.5

Approximate 7 99.1051%

m=2;r=0.01, 0.1, 0.2

m=3,4; r=0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7

m=5,6,7,8,9; r=0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99

Shannon 8 99.8853%

Table 8 – Lowest feature count by entropy type using the full set of SRI Malware data

Analysis two – Data labeled individually by Malware attack

Analysis two examined the number of features required to identify each specific

malware attack by each entropy type using the entire data. In these runs, only one

malware attack examined was labeled with the attack name, and the remaining entries

 73

were labeled as “other”. The number of WEKA runs for this analysis was 2,210 since

there were 221 combinations of the entropy calculations used times the 10 malware

attacks. WEKA was not able to produce the selection of features that identify the attack

for several of the entropy combinations. In those cases, an “NA” was entered for the

number of features. Different methods are available to provide data for missing points as

in this case that are entered as “NA”. Schafer and Graham (2002) identified different

processes for interpreting missing data points. A discussion of these missing points is in

Chapter 5. Table 9 shows the minimum number of features required for identifying the

individual attacks by entropy type.

 Malware Type

BE1 BE2 BE3 BH1 BH2 BH4 ET1 NB SH TFTP

Approximate NA 2 4 4 3 6 3 4 3 1

Renyi NA 3 NA 3 3 NA NA 1 2 NA

Shannon 2 1 1 3 3 4 3 1 3 1

Tsallis NA 3 NA 3 3 2 3 1 2 1

Sample NA 10 1 5 2 3 NA 1 NA 1

Min #FS 2 1 1 3 2 2 3 1 2 1

Table 9 – Minimum number of features required to identify the individual malware.

Results shown in Table 9 indicate that when considering only one malware attack

at a time, the Shannon entropy has the highest success rate at requiring the minimum

number of features for 7 malware types. The remaining order is Tsallis for 6 types,

Sample for 4 types, Rényi for 3 types, and Approximate entropy for 2 types.

 74

Analysis three – Data labeled individually by Infection type

The BotHunter application by SRI detected bot related malware into five common

types of infections based upon the communications between the internal and external

hosts (Cheung & Valdes, 2009). Two infections of the five identified by Cheung and

Valdes are part of the SRI data store retrieved for this research and contain the ten

different malware attacks as listed in Appendix W and described in Table 10. In this

analysis, the label used was the infection designation: E2 or E3.

Infection Description Malware designations

E2 External-to-internal inbound exploit BE1, NB, SH

E3 Internal-to-external binary acquisition BE2, BE3, BH1, BH2, BH4, ET1, TFTP

Table 10 - Infection type description

The results presented in Table 11 show the minimum number of features required

to identify the infection type for the data provided. All of the correct classification

percentages are quite close to each other, so the primary difference is in the number of

features required to identify the infection types in a single run by each entropy. The

results showed that Sample and Rényi entropy each require 1 feature.

Infection #FS CC

Approximate 3 99.8853%

Renyi 1 99.6329%

Shannon 4 100.0000%

Tsallis 3 99.9312%

Sample 1 99.6329%

Table 11- Number of features selected for identifying E2 and E3 infection types

 75

Summary

This chapter provided analytic details of the research using the KDD CUP 99 data

and the SRI Malware data. Work consisted of algorithm development using Java for the

Rényi, Tsallis, Approximate and Sample entropy algorithms and their integration into the

open source WEKA application. Additional programs developed in Java and Linux shell

scripts conducted data manipulation and management.

The first part of the research duplicated the work by Lima et al. (2012). This

included creating files that represented the attacks from the KDD CUP 99 data in a

manner that closely replicated the work of Lima et al. The classification mechanism was

the WEKA J48 tree classification with the ten-fold validation option. The representative

files were the run in separate WEKA executions using the Shannon, Rényi, and Tsallis

entropy in the J48 decision tree calculations. From these runs, a comparison of the correct

classification percentages and features selected were made. Results showed that the

correct classification percentages were close to that of Lima et al.; however, the number

of features selected varied. The next step included the use of Approximate and Sample

entropy calculations in separate WEKA executions. In general, results showed that the

correct classification percentages were close to that of Lima et al., however the number of

features selected varied from the results of Lima et al. These summarized results are in

Table 5 and Table 6.

The second part of the research applied a similar process as used for analysis of

the KDD CUP 99 data to a set of real-world data that has not been used for this pupose.

The source was from the SRI Cyber Threat Analysis lab using BotHunter application that

captures malware attacks. Assembly of the data required the retrieveal and processing of

 76

multiple files to identify and extract a set of features for the analysis. The WEKA

application used the J48 classification model and determined the number of features

required and correct classification percentage for the different sets of data. There were

three different labeled groups of data used. Each set contained 4,328 activity entries. The

first group used the different malware attacks as the labels to determine the number of

featires needed to identify the attacks all together. The second set of data used all the data

points one at a time. There were ten separate groups of runs made. The data containing

the specific attack was labeled with that attack identifier, while the entries in the file were

labeled as “other”. The third set used the infection type as the label from which the data

acquired contained two infection types. In addition to the three sets of data, the five

entropy types had their parameters varied to cover a wide set of occurrences for a total of

221 runs per data set as detailed in Table 7.

The results showed the following:

 The first set of data labeled with all of the malware attacks showed that

Shannon, Sample, and Rényi each required six features to identify the

malware attacks. The Shannon and Sample entropies each had correct

classifications above 99%. The Rényi entropy was at 90%. Approximate and

Tsallis each had correct classifications over 99% but they required seven and

eight features respectively. Table 8 contains these results.

 Data sets for the second analysis looked at each of the the malware attacks

individually for a total of 2,210 runs. Results showed that all the entropies

except Shannon had at least one instance at which it was not able to identify

the specific malware. The minimum number of features required for the

 77

Shannon had 7, Tsallis with 6, Sample with 4, Rényi with 3, and Approximate

entropy with 2.

 The third analysis that labeled the data by infection type showed that Sample

and Rényi entropies required only one feature, Tsallis entropy required 3

features, and Shannon entropy required 4 features. All of the entropy types

had a correct classification rate of well over 99% with Shannon entropy at

100%.

 78

Chapter 5

Conclusions, Implications, Recommendations, and Summary

The work conducted in this research shows that using different entropy

calculations and data labeling techniques in the feature selection process impacts the

results when using intrusion detection data. This research discussed the use of entropy in

feature selection and results achieved using the KDD CUP 99 data and SRI Malware

data. Also identified were potential applications of this research to the intrusion detection

processes and systems. The end of this chapter contains a summary of the entire research

paper and provides a concise description of the research accomplished and potential

applications in the use of this work.

Entropy calculations measure the randomness of data. Comparing two sets of

entropy calculations provide a measure of information gained between the two

measurements. Claude Shannon applied entropy to information processing in a paper in

1948. His formula was straightforward with no tunable parameters and adapted well for

use with intrusion detection data. Lima et al. (2012) examined the impact of entropy on

feature selection using Shannon’s formula, they added Rényi and Tsallis entropy

formulas, and analyzed the same set of data that produced different views of the results.

This research extended the techniques used by Lima et al. (2012) and added

Approximate and Sample entropy to the feature selection process using intrusion

detection data. Approximate and Sample entropy were typically used for biomechanical

 79

data analysis in the past (Yentes et al. 2013). This is the first known use of Approximate

and Sample entropy applied to intrusion detection data.

Rényi and Tsallis entropy contain a sensitivity factor, called alpha, within the

calculation. This factor provided a mechanism that adjusted the impact of the probability

distribution. Approximate and Sample entropy each have two variable parameters. Since

these entropy types were time based, the variable m defined a sliding window that

determined the number of points to consider at a time. The second variable is a

multiplication factor, r, between zero and one, calculated a portion of the standard

deviation for the number of points within the window.

Using a specified range of values for these parameters of the Rényi, Tsallis,

Approximate, and Sample entropy enabled a profile of views of the results for the

number of features, features selected, and correct classifications percentages. Different

combinations of these variables produced significantly different results as shown is

Appendix Z. To determine the best combination for the analysis, an inclusive range of

variable values must obtain an overall view of the feature count, features selected, and the

correctly classification result. This was accomplished by using the programs developed

by the WEKA J48 tool during this research. The results produced a classification tree that

showed how specific variable values and features contributed to the identification of the

labeled data.

Lima et al. (2012) used Shannon, Rényi, and Tsallis entropy to select features

from a subset of the KDD CUP 99 data set. Their results showed that the Rényi and

Tsallis entropy calculation performed well with the C4.5 classification tree for feature

selection with high correct percentage classification values. This research extended

 80

Lima’s work to include Approximate and Sample entropy. Results from Approximate and

Sample entropy were in line with Lima et al. results for correct classification, however

the feature count and features selected differed from the results Lima et al. reported. In

order to provide validation to the inclusion of Approximate and Sample entropy to the

C4.5 classification algorithm, an additional new intrusion detection data set was

implemented. Data obtained from SRI Cyber Threat Analysis organization was

assembled during this research into label data sets. This was the first time the SRI data

was labeled and used to conduct feature selection research.

Research conducted by Lima et al. (2012) contained recommendations for Rényi

and Tsallis entropy settings of the alpha term. Yentes et al. (2013) recommended settings

for the variable parameter settings of window size and statistics terms in Approximate

and Sample entropy. The recommendations from both these groups enabled their research

to attain results that were conducive to their findings.

The work for this thesis extended these findings through the application of Rényi,

Tsallis, Approximate, and Sample entropy into the C4.5 classification tree analysis using

a well-known data set, the KDD CUP 99 data; and using a new set of real-world data not

previously analyzed in this manner, the SRI Malware data. This unique approach

produced results discussed in the following sections.

A data-mining package from the University of Waikato in New Zealand, called

WEKA, was the data mining analysis tool used in this research. Supervised learning by

the C4.5 decision tree method, developed by Quinlan (1986), was included in WEKA

within the J48 classification module. Results from the J48 module produced a decision

tree that identified features observed, their values in the tree, and correctly and

 81

incorrectly classified results and percentages. A representation of this decision tree is

located in Appendix N.

The C4.5 classification tree analysis was part of WEKA and implemented in Java

in the J48 module. The J48 module included the Shannon entropy and this research

developed the algorithms for Rényi, Tsallis, Approximate, and Sample entropy, and

integrated them into the WEKA J48 calculation. Each of the Rényi, Tsallis, Approximate,

and Sample entropy calculations contained parameters that were varied to optimize

results. Based upon the entropy calculation used, and the parametric values chosen for

those entropy calculations that contain variables, the resulting J48 classification tree

identified the features required to classify the activity.

This research demonstrated that more than one view of the data provided

additional options in the area of feature selection. The main methodology used to obtain

different views included:

 Labeling. The classification tree lists the features and values needed to

identify an attack or series of attacks based upon how the data was labeled.

 Entropy and entropy variables values. Created for the analysis, was a

range of values for the alpha variable in the Rényi and Tsallis entropy

calculation; and the m and r variables for Approximate, and Sample

entropy calculations that generated a profile of the different values in the

results.

 Comparing different views. Comparing the results from different entropy

calculations or different views can identify commonalities of features that

 82

impact the results. The results can also be used to identify unique features

that define a specific attack that are not common to other attacks or views.

Using the output of the classification tree provided information for rule generation

of an intrusion detection system. These rules can examine the traffic for capturing attacks

traversing across the network. This assumed the static model was representative of the

actual traffic.

In most dynamic networks, the traffic patterns change over time. To accommodate

this change, periodically, another set of data would be collected and labeled

appropriately. The new set of data was analyzed in a static manner as conducted in this

research. Changes were made in the detection rules that were the most applicable to the

traffic and resources available.

By having more than one view of the data available, some options become more

applicable to different situations such as:

 Choosing entropy results that minimized the number of features and

maximized correctly identified percentages.

 Tradeoffs among the number of features required, specific features

identified, maximize correct performance, and the ability to extract

features from the data stream.

 Select the labeling method that provided the greatest advantage for the

situation. This may be a result that overlapped certain features for the

developed rules that share common features.

 83

These different scenarios described show some of the power and applicability of

using the analysis techniques put forth in this research. One application of these results

may be for rule development in that the information provides a potential starting point

that can improve, reduce, or stop malicious activity from infecting the computing

networks and computer systems. Traffic composition generally changes over time and a

periodic re-evaluation of the parameters should be performed to maintain the freshness of

the detection capabilities.

Another aspect of the data used in feature selection involved labeling of the data.

Data labeling enabled multiple views of the results based the entropy, values used in the

entropy calculation, and the labels of the attack categories. Labeled data enabled the use

of supervised learning and the method of data labeling defined supplemented the view. In

the KDD CUP 99 data set, the data was labeled by attack type. In other data sets, the

labels may be a specific attack or attack groupings. The SRI results section discussed the

different types of data labeling actions conducted during this research

KDD CUP 99 Data Conclusions

In the KDD CUP 99 data, each activity entry was labeled by a specific category.

The J48 calculation and selected entropy produced results that named features and their

associated values used in the classification tree. Table 2 lists the different categories and

specific attacks within the KDD CUP 99 data. This labeling enabled the quantity and

 84

identification of features that classified the specific attack and normal traffic. This

analysis was conducted using the four attack categories with each of the five entropy

types. Also, the J48 classification tree included the both the correctly and incorrectly

classified results and percentages. This provided information as to the effectiveness of a

specific entropy with the associated parametric settings.

Constructing sets of KDD CUP 99 data with the same distribution of attacks used

by Lima et al. (2012) enabled the comparison of the results with this research. The

analysis employed the WEKA J48 classification tree that identified features and the

correct classification results for the four attack categories. Conclusions derived from the

results displayed in Table 5 for the KDD CUP 99 data, were as follows:

 The correct classifications of attacks were very similar in the DoS (within

0.5%) and U2R (within 1.0%) categories but the number of features

selected varied by a count of 8 for both DoS and U2R.

 The Probe and R2L attack categories varied more in the correct

classification of the attacks. Nearly 3.0% for Probe and 3.3% for R2L. The

overall feature counts varied by 7 for Probe and 3 for R2L.

 The Approximate and Sample entropy values for correctly classified

attacks were within 1% of the best values and were the same for the Probe,

R2L, and U2R attack categories. The features selected were also the same

for these categories.

 The Approximate and Sample entropy values for the DoS attack category

were also within 1% of the best values, however the Sample entropy was

slightly better in the results.

 85

 The features selected were different between the Approximate and Sample

entropy values for the DoS attack category. This was due large to the

number of duplicate entries in this attack category as compared to the

other attack categories.

 The absence of Sharma and Mukherjee (2012) results was due to their use

of a single entropy, that of Shannon, and they used the Naïve Bayes

classifier as their method of feature selection. The results that they

achieved produced lower correct classified values than in this research and

that of Lima et al. (2012).

Observed differences in the results between Lima et al. (2012) and this research

were partly due to the selection of the specific records from the KDD CUP 99 data set.

Other differences observed included the implementation of the Rényi and Tsallis entropy

calculations within WEKA. Multiple random selections of records from KDD CUP 99

resulted in varied correctly classified percentages. Since the exact KDD CUP 99 records

used by Lima et al. were unknown, the approximation of the attack make up used the

counts documented by Lima et al. Chapter 4 addressed inconsistencies with the attack

counts in this research.

SRI Malware Data Conclusions

The WEKA J48 tree classification method calculated the results for this research

using real-world SRI Malware data with the Shannon, Rényi, Tsallis, Approximate, and

Sample entropies and this was the first time this data was used for entropy research.

 86

Depending on the variable parametric values, each entropy type produced some results

with a low number of features but most had high correct classification percentages as

shown in Table 8.

Tsallis and Sample entropy produced the highest correctly classified results of

99.9312% and 99.2428% respectively, and with the least number of features of 6. Rényi

entropy also required only 6 features but resulted in the lowest correctly classified results

of 92.3818%. Appendix Z contains the complete results of the SRI data analysis showing

the entropy calculations used, parameter settings, correctly classified results, and the

number of features selected.

As seen in the results of this research with the SRI data, the agreement with the

correct classification was within the same general range as that of the KDD CUP 99 data.

In analyzing SRI data, no previous research existed for this type of study. Most of the

results were high in values for the correct classification and low for the number of

features selected, which varied minimally as shown in Table 8.

When considering the individual malware attacks, described in the analysis of the

SRI data, the number of features required dropped significantly as detailed in Table 9.

Examining an individual attack, and generalizing all the remaining data as “other”,

allowed the analysis to focus on the one specific type of attack and selected these features

that only identified those activities.

When labeling the data by infection type, as denoted by enum in Appendix W,

results were more pronounced as shown in Table 11. The correct classification

percentages were all over 99% for each entropy type, but the number of features required

to detect the infection was only 1 for Sample and Rényi entropies, 3 for Approximate and

 87

Tsallis entropies, and 4 for Shannon. The infection types along with their associate

malware attacks are in Table 10.

When evaluating results of the three analyses together, the averages showed how

the different entropies and labeling strategies significantly impacted the number of

features required. The row numbers in Table 12 below referenced a different table

containing the data. In row 1, the number of features for each entropy type originated

from Table 8 that corresponds to Full Set of SRI data. In row 2, the number of features

for each entropy type is from Table 9 that corresponded to Individual Malware. The

number of features for each entropy type in row 3 is from Table 11 that corresponds to

Infection Type.

The WEKA J48 classification tree analysis was unable to produce results with

certain attack/entropy combinations. Some of the data points in Table 9 contain an “NA”

for values. In order to quantify these points, “NA”, a method described by Schafer and

Graham (2002) as the Available-case analysis, was used. This process considered a

pairwise inclusion of data to estimate the missing values. The pair assumed for this

analysis, is the maximum value determined by other calculations, which was 10. Values

other than 10 for the substitution of “NA” produced similar representative results.

Labeling Shannon Rényi Tsallis Approximate Sample

Table

Ref

 Full Set of SRI data 8.0 6.0 6.0 7.0 6.0 8

Individual Malware 2.2 6.2 4.2 4.2 5.9 9

Infection Type 4.0 1.0 3.0 3.0 1.0 11

Average 4.7 4.4 4.3 4.7 4.1

Table 12 - Average number of features required from the three SRI analyses

 88

Results, from Table 12, show how the number of features vary based upon the

data labeling used. The feature count and average feature count varies for the different

analyses by using the complete set of data and adjusting the labeling to focus on

particular views.

Overall Conclusion

Labeling of data affects the results produced. The results from the classification

tree provided the number of features, the features selected, and the correct classification

percentages. The KDD CUP 99 data used only one labeling method in an effort to show

how the Approximate and Sample entropy calculations impacted the classification tree

results.

By having different labeling scenarios available, the selection of features that best

identified a specific attack was possible in an intrusion detection system. This also

supported the proposal that subsequent analyses be conducted periodically with a new

collection of labeled data to keep intrusion detection current with changes occurring in

network traffic patterns. Knowledge gained from previous results using combination of

entropies and their variable assignments may shorten the analyses of the newly collected

data.

Implications

This research supported previous work that showed the feature selection actually

reduced the number of fields required to analyze intrusion detection data. By analyzing

different models through the labeling of data to detect specific attacks or groupings of

 89

attacks provided additional views of the results and assisted in the selection and

application that best fit the purpose of the analysis. These techniques should apply to

other types of data to be analyzed. Where others have used biomechanical data for

classification and feature selection, this research used intrusion detection data.

Selection of tunable parameters for the entropy type, in conjunction with C4.5

classification tree analysis, produced differences in results especially in the features

selected and number of features selected. Duplicate entries within the data set influenced

the Sample entropy calculations. Since the Sample entropy suppressed duplicate records

in the calculations, it generally produced better results than Approximate entropy

especially with the malware data that contained a large number of duplicate records.

Recommendations

The use of different labels for the data provided more than one view of the data.

This enabled the user and implementer additional information from which to choose the

best results for their needs. These results can assist in better performance of an intrusion

detection system for specific attacks or groups of attacks by selecting the best

combination of features that identify the attack.

 Varying the values of the tunable parameters in the entropy calculations affected

the results of feature selection. To obtain the best results required multiple runs using

sequential variation of the parameters that developed a set empirical data to identify the

optimal number of features required. These runs should be conducted periodically to

represent the current network traffic.

 90

This research focused on the WEKA J48 classification method as used by Lima et

al. (2012). Results of this thesis supported the additional study of the benefits of entropy

using Shannon, Rényi, Tsallis, Approximate, and Sample entropy for intrusion detection

systems data. Different models of the data looked at specific attacks or groupings of

attacks through the labels associated with the activity. Variation of the tunable parameters

demonstrated how the features selected could differ based upon the data labeling strategy

chosen.

 91

Summary

The goal of this research was to minimize the number of features required in a set

of intrusion detection data that rapidly identifies malicious activity while maintaining the

integrity of the data set. By reducing the redundant features, irrelevant features, and

noise, it was possible to decrease the number of features required that rapidly analyze the

data for identifying anomalous activities. This focus was on the application of entropy in

feature selection process of labeled data sets. Feature selection is the process of

identifying features from a set of data that are relevant to the analyses. Reasons for

feature selection are to reduce the size of the data set and more efficiently use the

computing resources. Using the C4.5 decision tree developed by Quinlan (1986), the

results can be readily adapted for developing rules for intrusion detection systems. This

work also showed the positive impact of how different labeling methods provide

additional results for implementation of intrusion detection mechanisms.

This work began by replicating the work of Lima et al. (2012) who used C4.5

classification tree method in the WEKA data mining analysis tool to select features from

intrusion detection data. They used a subset of the well-known KDD CUP 99 data file for

selecting the features required to identify the four-attack types labeled in the data using

Shannon, Rényi, and Tsallis entropy. WEKA includes the Shannon entropy and Lima et

al. added the algorithms for Rényi and Tsallis.

The research for this thesis added the Rényi and Tsallis to WEKA, and replicated

the results of Lima et al. (2012) to develop a base line of reference that validated the

entropy calculations developed for the records and integrated into the data-mining tool.

 92

Results showed good agreement with Lima et al. for correct classification percentages,

however, the number of features and specific features varied.

This research extended the use of entropy in feature selection to include

Approximate and Sample entropy typically used in time-series based data. Yentes et al.

(2013) used Approximate and Sample entropy for feature selection with biomechanical

data. Analysis using these two entropies demonstrated new results with the KDD CUP 99

data.

This research programmed four entropy calculations that were added to WEKA

source code. Each formula contained variables that could be optimized to obtain the

result. Rényi and Tsallis contained an alpha term that adjusted the sensitivity of the

entropy calculation’s impact on the results. Approximate and Sample entropy contained

two adjustable parameters. Since they were time based, one parameter, named m, defined

how many points were included in a calculation. The second variable, r, defined the

portion of the standard deviation of the data within the window size, m, to use in the

entropy calculation. Results of using Approximate and Sample were similar to correct

classification percentage that Lima et al. (2012) achieved. Again, the number of features,

and specific features were different.

In order to validate the process developed for this research, a second set of data

from SRI Cyber-TA BotHunter (n.d.) project was used. This data was retrieved from a

series of files that collected different features of the malware attack. Assembling the SRI

data into a usable format for the WEKA analysis, required the development of additional

applications using Java and Linux shell scripts that enabled the extraction, conversion,

normalization, and labeling of the data.

 93

Three types of analysis were conducted with the SRI data that used three different

labeling methods. The first method labeled each row of activity by the specific malware

identified for that row. The second method labeled considered only one malware attack

for the rows of that malware and with the remaining rows labeled with “other” resulting

in ten files for analysis. The third method labeled each row with one of the two infection

types identified in the SRI data files. These different labeling methods enabled the results

to show how the combination of labels, different entropy calculations, and variable values

influenced the number of features, features selected, and the correct classification results.

The following lists the values for the variables chosen for the Rényi, Tsallis,

Approximate, and Sample entropy calculations:

Rényi

alpha = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.

Tsallis

alpha = 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.99.

Approximate and Sample

m = 1, 2, 3, 4, 5, 6, 7, 8, and 9.

r = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.

The C4.5 classification tree, developed by Quinlan (1986), was implemented in

the WEKA analysis package as the J48 module programmed in Java. The code developed

for this research for the Rényi, Tsallis, Approximate, and Sample entropy calculations

was integrated into the J48 module. Output from the J48 module provided a classification

 94

tree that identified the structure with features names, their values, and dependencies as

shown below.

Partial sample of a classification tree

SWBn = 0

| seqRange <= 102: other (349.0)

| seqRange > 102

| | toPort <= 8147

| | | priority <= 1: WIN (2127.0)

| | | priority > 1

| | | | toPort <= 470: other (70.0)

| | | | toPort > 470: WIN (305.0)

| | toPort > 8147

| | | toPort <= 9996: other (35.0)

| | | toPort > 9996: WIN (16.0)

SWBn = 1

| enum = E2

| | seqRange <= 1260: WIN (4.0)

| | seqRange > 1260: other (34.0)

| enum = E3: other (1418.0)

 o

 o

 o

In the table below, multiple labeling methods demonstrated how the number of

features varied based upon how the data was labeled. The row labeled “Individual

Malware” was an average of the number of features required to identify the ten unique

malware attacks. The bottom row labeled “Average” was an equally weighted average of

the three labeling methods in the table.

Labeling Shannon Rényi Tsallis Approximate Sample

 Full Set of SRI data 8.0 6.0 6.0 7.0 6.0

Individual Malware 2.2 6.2 4.2 4.2 5.9

Infection Type 4.0 1.0 3.0 3.0 1.0

Average 4.7 4.4 4.3 4.7 4.1

 95

Since the overall composition of packets that flow across a network may evolve

over time, analyzing the features and their values used for the rules periodically focused

to identifying new attacks to the network and the computer systems attached. Conducting

subsequent analyses would require collecting traffic into a set of files used for analysis.

This collection may consist of a complete set of traffic at collection points, only packet

headers, or the traffic may be a filtered to eliminate known good and/or known bad

traffic.

This research showed how several different techniques in the use of entropy for

feature selection provided benefits by reducing the volume of data for identifying attacks

against computers and networks. Other accomplishments included:

 The five entropy calculations made showed how the results differ for

number of features selected, specific features selected, and correctly

classified results.

 The classification tree output provided the information needed to identify

the number of features, the specific features, and the correctly classified

results for the labeled set of data.

 Different labeling methodologies had an impact by constructing a table

that shows the results referencing the number of features required across

multiple scenarios.

 When using Rényi, Tsallis, Approximate, and Sample entropy, the values

assigned to the parameters impacted the results. By substituting a range of

 96

values for those parameters, a profile of the results created to determine

the least number of features required to identify a specific attack.

 Using the classification tree output, the parameters for use in an intrusion

detection are presented and directly applicable to rule development.

Other implications from this research were identified that the analysis must be

conducted periodically to maintain operation of the intrusion detection system at optimal

performance level as network traffic changes over time. This research showed positive

impact and advanced the feasibility of using multiple entropy calculations to reduce the

number of features required to identify specific methods for intrusion detection data. The

full complements of analyses available demonstrated the different options available to

identify malware. It also showed how labeling the data could optimize the number of

features selected as shown in the different examples. An implementer can apply these

results to the intrusion detection system based upon their needs and environment of the

networks and computer systems.

 97

Appendices

 98

Appendix A: Listing of Modified EntropyBasedSplitCrit Class

This is the Java listing of the modified EntropyBasedSplitCrit Class.

/*

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation; either version 2 of the License, or

 * (at your option) any later version.

 *

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with this program; if not, write to the Free Software

 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

 */

/*

 * EntropyBasedSplitCrit.java

 * Copyright (C) 1999 Eibe Frank

 *

 */

/*

 * This class has the following modifications made in order

 * to accommodate the use of different entropy calculations

 *

 * Method varInitialize() = initializes entropy variable

 * by instantiating a call to the method that reads the

 * configuration file. Also prints out the parameters used.

 *

 * Method logFunc() = modified to use the different entropy calculations

 * calculations.

 *

 * Method oldEnt() = modified to use the different entropy calculations

 * calculations.

 *

 *

 * Author: Frank Acker – December 2014

 */

package weka.classifiers.trees.j48;

/**

 * "Abstract" class for computing splitting criteria

 * based on the entropy of a class distribution.

 *

 * @author Eibe Frank (eibe@cs.waikato.ac.nz)

 * @version $Revision: 1.5 $

 */

public abstract class EntropyBasedSplitCrit extends SplitCriterion{

 private static final long serialVersionUID = 1L;

/** The log of 2. */

 protected static double log2 = Math.log(2);

 public double alpha; // for Reni and Tsallis entropy

 public int ET; // entropy type number

 99

 public int m; // window size for ApEn and SampEn

 public double r; // & of standard deviation for ApEn and SampEn.

 public boolean D; // Debugger

 private static ApproximateEntropy ae = new ApproximateEntropy();

 public static SampleEntropy se = new SampleEntropy();

 private static boolean readFile = false; // read file once per execution

 public static entUtils eu = new entUtils();

 public static fileRead fr = new fileRead();

 public final void varInitialize() {

 eu.getFileInfo();

 ET = fr.getEType();

 alpha = fr.getAlpha();

 m = fr.getM();

 r = fr.getR();

 D = fr.getD();

 String C = ",";

 if (D) System.out.println("varInitialize - readFile");

 if (D) System.out.println("ET, alpha, m, r, D " + ET + C + alpha + C

+ m + C + r + C + D);

 }

 /**

 * Help method for computing entropy.

 */

 public final double logFunc(double num) {

 if (!readFile) {

 readFile = true;

 varInitialize();

 if (D) System.out.println("logFunc - readFile");

 }

 // Constant hard coded for efficiency reasons

 if (num < 1e-6) return 0;

 if (ET == 0) return num*Math.log(num)/log2;

 if (ET == 1) return Math.pow(num, alpha);

 if (ET == 2) return Math.pow(num, alpha);

 if (ET == 3) {

 return num*Math.log(num)/log2;

 }

 if (ET == 4) {

 return num*Math.log(num)/log2;

 }

 return -99.0; // entered to satisify eclipse

 }

/**

 * Computes entropy of distribution before splitting.

 */

 public final double oldEnt(Distribution bags) {

 double returnValue = 0;

 int j;

 if (D) System.out.println("oldEnt - bags.numClasses()="+bags.numClasses());

 if (ET == 0 || ET == 1 || ET == 2) {

 for (j=0;j<bags.numClasses();j++) {

 returnValue = returnValue + logFunc(bags.perClass(j));

 100

 if (D) System.out.println("oldEnt - j="+j+"

bags.perClass(j)="+bags.perClass(j));

 }

 }

 if (ET == 3 || ET == 4) {

 double [] apsampClasses = new double[bags.numClasses()];

 for (j = 0; j < bags.numClasses(); j++) {

 apsampClasses[j] = bags.perClass(j);

 if (D) System.out.println("oldEnt AE - j="+j+"

bags.perClass(j)="+bags.perClass(j)+" apsampClasses[j]="+apsampClasses[j]);

 }

 if (ET == 3) returnValue = returnValue + ae.ApEn(apsampClasses,m,r);

 if (ET == 4) returnValue = returnValue +

se.SampEn(apsampClasses,m,r);

 }

 if (D) System.out.println("oldEnt - bags.total()="+bags.total());

 if (ET == 0 || ET == 3 || ET == 4) return logFunc(bags.total()) -

returnValue;

 if (ET == 1) return (((Math.log (logFunc(bags.total()))/log2)/(1.0 -

alpha)) - ((Math.log(returnValue)/log2))/(1.0 - alpha));

 if (ET == 2) return ((logFunc(bags.total()))/(alpha - 1.0)) - (returnValue

/(alpha - 1.0));

 return 0.0;

 }

 /**

 * Computes entropy of distribution after splitting.

 */

 public final double newEnt(Distribution bags) {

 double returnValue = 0;

 int i,j;

 if (D) System.out.println("newEnt - bags.numBags="+bags.numBags());

 if (D) System.out.println("newEnt - bags.numClasses="+bags.numClasses());

 for (i=0;i<bags.numBags();i++){

 if (ET ==0 || ET == 1 || ET == 2) {

 for (j=0;j<bags.numClasses();j++) {

 returnValue = returnValue+logFunc(bags.perClassPerBag(i,j));

 if (D) System.out.println("newEnt - i,j="+i+","+j+"

bags.perClassPerBag(i,j)="+bags.perClassPerBag(i,j) + "

returnValue="+returnValue);

 }

 }

 if (ET == 3 || ET == 4) {

 double [] apsampClasses = new double[bags.numClasses()];

 for (j = 0; j < bags.numClasses(); j++) {

 apsampClasses[j] = bags.perClass(j);

 if (D) System.out.println("oldEnt AE/SE - j="+j+"

bags.perClass(j)="+bags.perClass(j)+" apsampClasses[j]="+apsampClasses[j]);

 }

 if (ET == 3) returnValue = returnValue + ae.ApEn(apsampClasses,m,r);

 if (ET == 4) returnValue = returnValue +

se.SampEn(apsampClasses,m,r);

 }

 returnValue = returnValue-logFunc(bags.perBag(i));

 if (D) System.out.println("newEnt - i="+i+"

bags.perBag(i)="+bags.perBag(i)+" returnValue="+returnValue);

 }

 return -returnValue;

 }

 /**

 101

 * Computes entropy after splitting without considering the

 * class values.

 */

 public final double splitEnt(Distribution bags) {

 double returnValue = 0;

 int i;

 if (D) System.out.println("splitEnt");

 for (i=0;i<bags.numBags();i++)

 returnValue = returnValue+logFunc(bags.perBag(i));

 return logFunc(bags.total())-returnValue;

 }

}

 102

Appendix B: Listing of ApproximateEntropy Class

package weka.classifiers.trees.j48;

/**

 * Class for computing Approximate Entropy

 * based on the entropy of a class distribution.

 *

 * @version $Revision: 1.0 $

 */

/* Approximate Entropy

 * basic code retrieved Oct 18, 2014 from

 * http://www.codeproject.com/Articles/27030/ \

 * Approximate-and-Sample-Entropies-Complexity-Metric

 *

 * It has since been modified for use in this application.

 *

 * Author: Frank Acker – December 2014

 */

public class ApproximateEntropy extends EntropyBasedSplitCrit{

 /**

 *

 */

 private static final long serialVersionUID = 1L;

 /* Approximate Entropy

 * basic code retrieved Oct 18, 2014 from

 * http://www.codeproject.com/Articles/27030/Approximate-and-Sample-

Entropies-Complexity-Metric

 *

 * It has since been modified for use in this application

 */

public double ApEn(double data[], int m, double r) {

 /*

 * data[] is an double array of the data collected for ApEn calculation

 * m is the window size = default is 2

 * r is the multiplier of the standard deviation to use = default to 0.2

 */

 entUtils eu = new entUtils();

 fileRead fr = new fileRead();

 boolean D = fr.getD();

 int Cm = 0, Cm1 = 0, i, j, k;

 int N = data.length;

 // check that m is not less than the data length

 if (m > N)

 m = N;

 double err = 0.0, sum = 0.0;

 //double r = 0.2;

 // Calculate std dev

 double std = eu.stdev(data);

 err = std * r;

 if (D) System.out.println("ApEn - N="+N+" r="+r+" std="+std+"

err="+err);

http://www.codeproject.com/Articles/27030/

 103

 for (i = 0; i < N - (m + 1) + 1; i++) {

 Cm = Cm1 = 0;

 for (j = 0; j < N - (m + 1) + 1; j++) {

 boolean eq = true;

 for (k = 0; k < m; k++) {

 if (D) System.out.println("ApEn - i,j,k="+i+","+j+","+k+"

data[i+k]="+data[i+k]+" data[j+k]="+data[j+k]+" err="+err);

 if (Math.abs(data[i+k] - data[j+k]) > err) {

 if (D) System.out.println("ApEn - Math.abs(data[i+k] -

data[j+k]) > err is true");

 eq = false;

 break;

 }

 }

 if (eq) Cm++;

 k = m;

 if (eq && Math.abs(data[i+k] - data[j+k]) <= err)

 Cm1++;

 }

 if (Cm > 0 && Cm1 > 0){

 double dCm = (double)Cm;

 double dCm1 = (double)Cm1;

 if (D) System.out.println("ApEn -dCm="+dCm+" dCm1="+dCm1);

 sum += Math.log(dCm / dCm1)/log2;

 }

 }

 if (D) System.out.println("ApEn - N="+N+" m="+m+" sum="+sum);

 double apenreturnvalue;

 if ((N - m) == 0) {

 apenreturnvalue = 0;

 } else {

 apenreturnvalue = sum / (double)(N - m);

 }

 if (D) System.out.println("ApEn - apenreturnvalue="+apenreturnvalue);

 return apenreturnvalue;

 }

}

 104

Appendix C: Listing of SampleEntropy Class

package weka.classifiers.trees.j48;

/**

 * Class for computing Sample Entropy

 * based on the entropy of a class distribution.

 *

 * basic code retrieved Oct 18, 2014 from

 * http://www.codeproject.com/Articles/27030/

 *
 * Approximate-and-Sample-Entropies-Complexity-Metric

 *

 * It has since been modified for use in this application

 *

 * Author: Frank Acker – December 2014

 *

 * @version $Revision: 1.0 $

 */

public class SampleEntropy extends EntropyBasedSplitCrit{

 private static final long serialVersionUID = 1L;

 public double SampEn(double data[], int m, double r) {

 /*

 * data[] is an double array of the data collected for ApEn

calculation

 * m is the window size = default is 2

 * r is the multiplier of the standard deviation to use =

default to 0.2

 */

 int N = data.length;

 // check that m is not less than the data length

 if (m > N)

 m = N;

 entUtils eu = new entUtils();

 fileRead fr = new fileRead();

 boolean D = fr.getD();

 int Cm = 0, Cm1 = 0, i, j, k;

 double std = eu.stdev(data);

 double err = std * r;

 if (D) System.out.println("SampEn - N="+N+" r="+r+" std="+std+"

err="+err);

 for (i = 0; i < N - (m + 1) + 1; i++) {

 for (j = i + 1; j < N - (m + 1) + 1; j++) {

 boolean eq = true;

 //m - length series

 for (k = 0; k < m; k++) {

 if (D) System.out.println("SampEn -

i,j,k="+i+","+j+","+k+" data[i+k]="+data[i+k]+" data[j+k]="+data[j+k]+"

err="+err);

 if (Math.abs(data[i+k] - data[j+k]) > err) {

 if (D) System.out.println("SampEn -

Math.abs(data[i+k] - data[j+k]) > err is true");

 eq = false;

 break;

http://www.codeproject.com/Articles/27030/

 105

 }

 }

 if (eq) Cm++;

 //m+1 - length series

 k = m;

 if (eq && Math.abs(data[i+k] - data[j+k]) <= err)

 Cm1++;

 }

 }

 if (Cm > 0 && Cm1 > 0) {

 double dCm = (double)Cm;

 double dCm1 = (double)Cm1;

 return (Math.log(dCm / dCm1))/log2;

 } else {

 return 0.0;

 }

 }

}

 106

Appendix D: Listing of fileRead Class

package weka.classifiers.trees.j48;

import java.io.*;

/*

 * This class was written in order to

 * support the reading of the configuration

 * file and parse its parameters.

 *

 * Author: Frank Acker – December 2014

 */

public class fileRead extends EntropyBasedSplitCrit{

 /* The Entropy Type (etype) is designated in the

 * Entropy Information file defined as variable

 * in this class as: "fileName".

 *

 * The entropy indicator number is as follows:

 * etype = 0 - Shannon

 * etype = 1 - Rényi

 * etype = 2 - Tsallis

 * etype = 3 - Approximate

 * etype = 4 - Sample

 */

 public static int etype;

 public static boolean D = false; // debugger switch

 /* The alpha term is used in the Rényi and Tsallis entropy calculations.

 * If no alpha term is defined in the value is set to a 0.

 * The default for Rényi entropy is 0.5.

 * The default for Tsallis entropy is 1.2.

 */

 public static double alpha;

 double defaultAlpha = 0;

 double defaultRényiAlpha = 0.5;

 double defaultTsallisAlpha = 1.2;

 /* "r" is a measure of the percentage of the standard deviation

 * to consider for ApEn and SampEn.

 * Default is 0.2 as defined by Yentes et al. (2013) but must

 * be entered in the ENtropy Information File

 */

 public static double r = 0.2;

 double defaultR = -1.0;

 public final String fileName = "/media/sf_nova/data/EntropyInfoFile.txt";

 /* "m" is a windows size to use for the series length

 * Used for ApEn and SampEn.

 * Default is 2 as defined by Yentes et al. (2013) but must

 * be entered in the ENtropy Information File

 */

 public static int m = 2;

 int defaultM = -1;

 public long filemod = 0;

 public boolean updatedFile(){

 File file = new File(fileName);

 long ifilemod = file.lastModified();

 107

 if (ifilemod == filemod)

 return false;

 else {

 System.out.println("updtaedFile - ifilemod= "+ ifilemod + "

filemod="+ filemod);

 filemod = ifilemod;

 return true;

 }

 }

 public boolean fileRead() {

 // This will reference one line at a time

 String line = null;

 try {

 // FileReader reads text files in the default encoding.

 FileReader fileReader =

 new FileReader(fileName);

 // Always wrap FileReader in BufferedReader.

 BufferedReader bufferedReader =

 new BufferedReader(fileReader);

 while((line = bufferedReader.readLine()) != null) {

 // get rid of any spaces in line

 String line1 = line.replace(" ","");

 String[] parts = line1.split("=");

 if (parts[0].equals("etype")) {

 etype = Integer.parseInt(parts[1]);

 if (fr.D) System.out.println("=+=etype="+etype);

 }

 if (parts[0].equals("alpha")) {

 alpha = Double.parseDouble(parts[1]);

 if (fr.D) System.out.println("===ET="+etype+ " alpha ="+

alpha);

 }

 if (parts[0].equals("m")) {

 m = Integer.parseInt(parts[1]);

 }

 if (parts[0].equals("r")) {

 r = Double.parseDouble(parts[1]);

 }

 if (parts[0].equals("D")) {

 System.out.println("fileRead - Hit D - parts[1]="+parts[1]);

 if (parts[1].equals("true")) D = true;

 if (parts[1].equals("false")) D = false;

 //if (parts[1].equalsIgnoreCase("true")) D = true;

 //if (parts[1].equalsIgnoreCase("false")) D = false;

 System.out.println("D="+D);

 }

 }

 // Always close files.

 bufferedReader.close();

 }

 108

 catch(FileNotFoundException ex) {

 System.err.println("Unable to open file '" + fileName + "'");

 return false;

 }

 catch(IOException ex) {

 System.err.println("Error reading file '" + fileName + "'");

 return false;

 }

 // check for valid etype

 if (etype <0 || etype >4) {

 System.out.println("Bad or no Entropy Type (etype) defined.

Entered value:" + etype);

 return false;

 }

 // check Rényi alpha

 if (etype == 1 && alpha == defaultAlpha) {

 alpha = defaultRényiAlpha;

 System.out.println("Alpha for Tsallis Entropy set to " + alpha);

 }

 // check Tsallis alpha

 if (etype == 2 && alpha == defaultAlpha) {

 alpha = defaultTsallisAlpha;

 System.out.println("Alpha for Tsallis Entropy set to " + alpha);

 }

 // check Approximate and Sample entropy values

 if (etype == 2 || etype == 3) {

 if (r == defaultR) {

 System.out.println("No \"r\" value for Approximate Entropy

entered");

 System.exit(1);

 }

 if (m == defaultM) {

 System.out.println("No \"m\" value for Approximate Entropy

entered");

 System.exit(1);

 }

 }

 return true;

 }

 public int getEType () {

 if (fr.D) System.out.println("getEType="+etype);

 return etype;

 }

 public double getAlpha() {

 return alpha;

 }

 public String getETName() {

 String etname[] = new String[] {"Shannon", "Rényi", "Tsallis",

"Approximate", "Sample"};

 return etname[etype];

 }

 public int getM() {

 return m;

 }

 109

 public double getR() {

 return r;

 }

 public boolean getD() {

 if (D) System.out.println("getD D="+D);

 return D;

 }

}

 110

Appendix E: Listing of entUtils Class

The following is a list of the entUtils class which is used in support of the entropy

calculations.

package weka.classifiers.trees.j48;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

/* entUtils

 * This class contains utilities for the entropy calculations,

 * standard deviation, and prints the configuration

 * files parameters settings.

 *

 * Author: Frank Acker December 2014.

 */

public class entUtils extends EntropyBasedSplitCrit {

 private static final long serialVersionUID = 1L;

 public double stdev(double data[]) {

 int i;

 double mean = 0.0;

 int dlen = data.length;

 double sum1 = 0.0;

 for (i = 1; i < dlen; i++)

 mean += data[i]/dlen;

 for (i = 1; i < dlen; i++)

 sum1 += Math.pow((data[i] - mean),2)/dlen;

 double result = Math.sqrt(sum1);

 return result;

 }

 public void getFileInfo() {

 DateFormat dateFormat = new SimpleDateFormat("MM/dd/yyyy

HH:mm:ss");

 Date d = new Date();

 System.out.println("WEKA Analysis for Entropy Research");

 System.out.print("\nDate and time for this run is ");

 System.out.println(dateFormat.format(d));

 fileRead fr = new fileRead();

 //Read the configuration file if it hasn't been done already

 if (!fr.fileRead()) System.exit (1);

 // Get the entropy values for use and print out.

 ET = fr.getEType();

 alpha = fr.getAlpha();

 m = fr.getM();

 r = fr.getR();

 D = fr.getD();

 System.out.println("Using " + fr.getETName() + " Entropy.");

 if (ET == 1 || ET == 2)

 System.out.println("The alpha term is set to " + alpha);

 if (ET == 3 || ET == 4) {

 111

 System.out.println("Window size (m) = " + m);

 System.out.println("% of standard deviation (r) = " + r);

 }

 System.out.println("Debugger is "+ D);

 }

}

 112

Appendix F: Listing of EntropyFileInfo.txt

Below is a listing of the configuration file for an analysis using the Tsallis entropy

calculation. The “#” symbol at the beginning of the line indicates a comment and the line

is ignored. This file is changed for each type of entropy calculation or when parameter

settings are made.

The Entropy Type (etype) is designated in the

Entropy Information file defined as variable

in this class as: "fileName".

The entropy indicator number is as follows:

* etype = 0 - Shannon

* etype = 1 - Rényi

* etype = 2 - Tsallis

* etype = 3 - Approximate

* etype = 4 - Sample

The alpha term is used for Rényi and Tsallis

entropy calculations. The work by Lima et al. (2012)

determined the following values were best in

research:

Rényi alpha = 0.5

Tsallis alpha = 1.2

etype = 2

alpha = 1.2

#alpha = 0.5

m = 2

r = 0.2

#D = false

 113

Appendix G: Listing of Modified build.xml File for Eclipse

Below is the modified file used by Eclipse to compile the Java code and install the

current weka.jar file for use.

<project name="weka" default="compile" basedir=".">

<!--

 ===

 Ant build file for weka. Tested with ant 1.6.5 and Junit 3.8.2. Requires

 JavaMail and the java activation framework for mailing unit test results.

 Type ant -projecthelp for targets and descriptions.

 Assumes weka and tests (if unit testing) are in the same directory.

 Build file can reside and be executed from either inside weka or the

 directory containing weka.

 Modified to only build the components needed for the weka.jar file to

 Support the research.

 Author: Frank Acker October 2014.

 $Revision: 7185 $

 ===

-->

 <!-- set global properties for this build -->

 <property name="src" value="/media/sf_nova/weka/weka-src/weka-

src/src/main/java"/>

 <property name="src-test" value="/media/sf_nova/weka/weka-src/weka-

src/src/test/java"/>

 <property name="lib" value="/media/sf_nova/weka/weka-src/weka-src/lib" />

 <property name="regression_tests_root" value="src/test/resources/wekarefs"/>

 <property name="build" value="/media/sf_nova/workspace/weka/build"/>

 <property name="dist" value="/media/sf_nova/workspace/weka/dist"/>

 <property name="doc" value="doc"/>

 <property name="reports" value="reports"/>

 <property name="javac_max_memory" value="4096m"/>

 <property name="run_tests_fail" value="true"/>

 <property name="headless" value="false"/>

 <property name="macdistrib" value="osx-distrib"/>

 <property name="debug" value="on" />

 <target name="init_all">

 <!-- Create the time stamp -->

 <tstamp/>

 </target>

 <!-- general classpath definition, incl. CLASSPATH env. variable,

 // but jars in lib directory have precedence over the CLASSPATH variable -->

 <path id="project.class.path">

 <fileset dir="${lib}">

 <include name="*.jar"/>

 <include name="*.zip"/>

 </fileset>

 <pathelement location="${build}/classes"/>

 <pathelement location="${build}/testcases"/>

 <pathelement path="${java.class.path}" />

 </path>

 114

<!--

 ==

 Compilation and documentation making stuff

 ==

-->

 <target name="init_compile" depends="init_all">

 <!-- Create the build directory structure used by compile -->

 <mkdir dir="${build}/classes"/>

 </target>

 <!-- Compile the java code from ${src}weka into ${build}/classes -->

 <target name="compile" depends="init_compile"

 description="Compile weka and deposit class files in build/classes">

 <javac srcdir="${src}"

 fork="yes" memoryMaximumSize="${javac_max_memory}"

 destdir="${build}/classes"

 optimize="${optimization}"

 debug="${debug}"

 deprecation="${deprecation}"

 source="1.4" target="1.4">

 <classpath refid="project.class.path" />

 </javac>

 <copy todir="${build}/classes" >

 <fileset dir="${src}">

 <include name="weka/**/*.gif"/>

 <include name="weka/**/*.jpeg"/>

 <include name="weka/**/*.jpg"/>

 <include name="weka/**/*.props"/>

 <include name="weka/**/*.txt"/>

 <include name="weka/**/DatabaseUtils.props.*"/>

 <include name="weka/gui/beans/README*"/>

 </fileset>

 </copy>

 <rmic base="${build}/classes"

 classname="weka.experiment.RemoteEngine"/>

 </target>

<!--

 ===

 Release making stuff

 ===

-->

 <target name = "init_dist" depends="init_all">

 <!-- Create the distribution directory -->

 <mkdir dir="${dist}"/>

 </target>

 <!-- Put everything in ${path_modifier}${build}/classes into the weka.jar

file -->

 <target name="exejar" depends="compile, init_dist"

 description="Create an executable jar file in ./dist">

 <jar jarfile="${dist}/weka.jar"

 basedir="${build}/classes">

 <manifest>

 <attribute name="Main-Class" value="weka.gui.GUIChooser"/>

 </manifest>

 </jar>

 </target>

 115

 <!-- Put all .java, and .props files into ${path_modifier}${dist}/weka-

src.jar-->

 <target name="srcjar" depends="init_dist, init_all"

 description="Create a jar file containing weka source in ./dist">

 <!-- jar up the source -->

 <jar jarfile="${dist}/weka-src.jar"

 basedir=".">

 <include name="*.xml"/>

 <include name="src/**/*.gif"/>

 <include name="src/**/*.java"/>

 <include name="src/**/*.jpeg"/>

 <include name="src/**/*.jpg"/>

 <include name="src/**/*.props"/>

 <include name="src/**/*.txt"/>

 <include name="src/**/*.xml"/>

 <include name="src/**/*.cost"/>

 <include name="src/**/*.arff"/>

 <include name="lib/**/*.jar"/>

 <include name="src/**/DatabaseUtils.props.*"/>

 <include name="src/**/weka/gui/beans/README*"/>

 </jar>

 </target>

 <!-- make a jar file containing just the stuff needed for running a remote

experiment server -->

 <target name="remotejar" depends="compile, init_dist"

 description="Create a jar file containing classes for remote experiments

in ./dist">

 <jar jarfile="${dist}/remoteEngine.jar"

 basedir="${build}/classes"

includes="weka/experiment/*_*.class,weka/experiment/RemoteEngine*.class,weka/ex

periment/Compute.class,weka/experiment/Task.class,weka/experiment/TaskStatusInf

o.class,weka/core/Queue*.class"/>

 <copy todir="${dist}" >

 <fileset dir="${src}/weka/experiment">

 <include name="remote.policy"/>

 <include name="remote.policy.example"/>

 </fileset>

 </copy>

 <jar jarfile="${dist}/remoteExperimentServer.jar"

 basedir="${dist}"

 includes="remoteEngine.jar,remote.policy,remote.policy.example"/>

 <delete file="${dist}/remoteEngine.jar"/>

 <delete file="${dist}/remote.policy"/>

 <delete file="${dist}/remote.policy.example"/>

 </target>

 <!-- Writes $release version number to weka/core/version.txt -->

 <target name="set_version">

 <echo message="${release}" file="${src}/weka/core/version.txt"/>

 <echo message="${release}" file="${build}/classes/weka/core/version.txt"/>

 </target>

 <!-- Make a release -->

 <target name="release" depends="set_version, exejar, remotejar, srcjar"

 description="Make a release in ${release}. Run with -Drelease=<number of

release (eg. 3-4-1)>.">

 <!-- copy the docs to dist/docs -->

 <copy todir="weka-${release}/weka-${release}/doc" >

 <fileset dir="${doc}"/>

 116

 </copy>

 <copy todir="weka-${release}/weka-${release}">

 <fileset dir="${dist}"/>

 </copy>

 <copy todir="weka-${release}/weka-${release}/data">

 <fileset dir="../wekadocs/data"/>

 </copy>

 <copy todir="weka-${release}/weka-${release}">

 <fileset dir="../wekadocs">

 <include name="README*"/>

 <include name="*.pdf"/>

 <include name="COPYING"/>

 <include name="documentation.*"/>

 <include name="weka.gif"/>

 <include name="weka.ico"/>

 </fileset>

 </copy>

 <zip destfile="weka-${release}.zip"

 basedir="weka-${release}"/>

 </target>

</project>

 117

Appendix H: Explanation of Linux commands in selecting attack lines

In generating the data files from the KDD CUP 99 data to mimic the data used by

Lima et al. (2012), a series of Linux commands are used and pipelined together to

produce the needed results as in the following entry.

$ cat kdd.data.csv | grep back | shuf –n 1026 >>DoS.csv

In the example above, a description of the Linux commands is as follows:

Command Description

cat List the contents of the given to standard out.

grep This command looks for the given character string, in this case “back”,

in each line. If it is found, the line is written to standard out.

shuf This command reads from standard input and outputs the results in

random order. The “-n 1026” options indicates to output 1,026 lines. It

is similar to the “sort –R” command but runs much faster.

>>DoS.csv This is a redirection of standard output to concatenate the results to the

file DoS.csv. If DoS.csv does not exist, it will be created.

 118

Appendix I: Listing of Linux shell script to generate KDD CUP 99 files

The listing for the Linus shell script to generate the files for use in reproducing the

Lima et al. (2012) results is as follows:

echo `date` Dos.arff

>Dos.arff

cat kddcup.data.csv |grep ,back.$|shuf -n 1026 >>DoS.arff

cat kddcup.data.csv |grep ,land.$|shuf -n 11 >>DoS.arff

cat kddcup.data.csv |grep ,neptune.$|shuf -n 10401 >>DoS.arff

cat kddcup.data.csv |grep ,pod.$|shuf -n 69 >>DoS.arff

cat kddcup.data.csv |grep ,smurf.$|shuf -n 7669 >>DoS.arff

cat kddcup.data.csv |grep ,teardrop.$|shuf -n 15 >>DoS.arff

cat kddcup.data.csv |grep ,normal.$|shuf -n 2573 >>DoS.arff

echo `date` Probe.arff

>Probe.arff

cat kddcup.data.csv |grep ,ipsweep.$|shuf -n 586 >>Probe.arff

cat kddcup.data.csv |grep ,nmap.$|shuf -n 151 >>Probe.arff

cat kddcup.data.csv |grep ,portsweep.$|shuf -n 155 >>Probe.arff

cat kddcup.data.csv |grep ,satan.$|shuf -n 16 >>Probe.arff

cat kddcup.data.csv |grep ,normal.$|shuf -n 1704 >>Probe.arff

echo `date` R2L.arff

>R2L.arff

cat kddcup.data.csv |grep ,ftp_write.$|shuf -n 5 >>R2L.arff

cat kddcup.data.csv |grep ,guess_passwd.$|shuf -n 53 >>R2L.arff

cat kddcup.data.csv |grep ,imap.$|shuf -n 11 >>R2L.arff

cat kddcup.data.csv |grep ,multihop.$|shuf -n 7 >>R2L.arff

cat kddcup.data.csv |grep ,phf.$|shuf -n 4 >>R2L.arff

cat kddcup.data.csv |grep ,spy.$|shuf -n 2 >>R2L.arff

cat kddcup.data.csv |grep ,warezclient.$|shuf -n 60 >>R2L.arff

cat kddcup.data.csv |grep ,warezmaster.$|shuf -n 20 >>R2L.arff

cat kddcup.data.csv |grep ,normal.$|shuf -n 1934 >>R2L.arff

echo `date` U2R.arff

>U2R.arff

cat kddcup.data.csv |grep ,loadmodule.$|shuf -n 9 >>U2R.arff

cat kddcup.data.csv |grep ,buffer_overflow.$|shuf -n 21 >>U2R.arff

cat kddcup.data.csv |grep ,perl.$|shuf -n 3 >>U2R.arff

cat kddcup.data.csv |grep ,rootkit.$|shuf -n 7 >>U2R.arff

cat kddcup.data.csv |grep ,normal.$|shuf -n 1676 >>U2R.arff

echo `date` Dos.arff

cat Dos.arff|cut -f42 -d,|sort|uniq -c

echo `date` Probe.arff

cat Probe.arff|cut -f42 -d,|sort|uniq -c

echo `date` R2L.arff

 119

Appendix J: Listing of the KDD CUP 99 features

The table below is the KDD CUP 99 data set features and its definition in the arff

file from the KDD CUP 99 web site (KDD Cup 1999 Data, 1999).

Number Feature Name Feature Type or values

1 duration continuous.

2 protocol_type symbolic.

3 service symbolic.

4 flag symbolic.

5 src_bytes continuous.

6 dst_bytes continuous.

7 land symbolic.

8 wrong_fragment continuous.

9 urgent continuous.

10 hot continuous.

11 num_failed_logins continuous.

12 logged_in symbolic.

13 num_compromised continuous.

14 root_shell continuous.

15 su_attempted continuous.

16 num_root continuous.

17 num_file_creations continuous.

18 num_shells continuous.

19 num_access_files continuous.

20 num_outbound_cmds continuous.

21 is_host_login symbolic.

22 is_guest_login symbolic.

23 count continuous.

24 srv_count continuous.

25 serror_rate continuous.

26 srv_serror_rate continuous.

27 rerror_rate continuous.

28 srv_rerror_rate continuous.

29 same_srv_rate continuous.

30 diff_srv_rate continuous.

31 srv_diff_host_rate continuous.

32 dst_host_count continuous.

33 dst_host_srv_count continuous.

34 dst_host_same_srv_rate continuous.

35 dst_host_diff_srv_rate continuous.

36 dst_host_same_src_port_rate continuous.

37 dst_host_srv_diff_host_rate continuous.

38 dst_host_serror_rate continuous.

39 dst_host_srv_serror_rate continuous.

40 dst_host_rerror_rate continuous.

41 dst_host_srv_rerror_rate continuous.

42 class back,buffer_overflow,ftp_write,guess_pass

wd,imap,ipsweep,land,loadmodule,multihop,

neptune,nmap,normal,perl,phf,pod,portswee

p,rootkit,satan,smurf,spy,teardrop,warezc

lient,warezmaster.

 120

Appendix K: Partial listing of DoS.arff file

The following is a partial listing of the DoS.arff file. It shows the formatting

requirements as defined at the WEKA website (WEKA 3, n.d.). The other arff files used

in the analysis each follow this format. At the end of this listing, the data continues to the

complete length of the data.

@relation "DoS data to reproduce Lima (2012) results"

@attribute duration numeric

@attribute protocol_type {tcp,icmp,udp}

@attribute service {aol,http_8001,http,smtp,finger,domain,domain_u,auth,telnet,

ftp,eco_i,ntp_u,ecr_i,other,private,pop_3,ftp_data,rje,time,mtp,link,remote_job

,gopher,ssh,name,whois,login,imap4,daytime,ctf,nntp,shell,IRC,nnsp,harvest,http

_443,http_2784,exec,printer,efs,courier,uucp,klogin,kshell,echo,discard,systat,

supdup,iso_tsap,hostnames,csnet_ns,pop_2,sunrpc,uucp_path,netbios_ns,netbios_ss

n,netbios_dgm,sql_net,vmnet,bgp,Z39_50,ldap,netstat,urh_i,X11,urp_i,pm_dump,tft

p_u,tim_i,red_i}

@attribute flag {SF,S1,REJ,S2,S0,S3,RSTO,RSTR,RSTOS0,OTH,SH}

@attribute src_bytes numeric

@attribute dst_bytes numeric

@attribute land {0,1}

@attribute wrong_fragment numeric

@attribute urgent numeric

@attribute hot numeric

@attribute num_failed_logins numeric

@attribute logged_in {0,1}

@attribute num_compromised numeric

@attribute root_shell numeric

@attribute su_attempted numeric

@attribute num_root numeric

@attribute num_file_creations numeric

@attribute num_shells numeric

@attribute num_access_files numeric

@attribute num_outbound_cmds numeric

@attribute is_host_login {0,1}

@attribute is_guest_login {0,1}

@attribute count numeric

@attribute srv_count numeric

@attribute serror_rate numeric

@attribute srv_serror_rate numeric

@attribute rerror_rate numeric

@attribute srv_rerror_rate numeric

@attribute same_srv_rate numeric

@attribute diff_srv_rate numeric

@attribute srv_diff_host_rate numeric

@attribute dst_host_count numeric

@attribute dst_host_srv_count numeric

@attribute dst_host_same_srv_rate numeric

@attribute dst_host_diff_srv_rate numeric

@attribute dst_host_same_src_port_rate numeric

@attribute dst_host_srv_diff_host_rate numeric

@attribute dst_host_serror_rate numeric

@attribute dst_host_srv_serror_rate numeric

@attribute dst_host_rerror_rate numeric

@attribute dst_host_srv_rerror_rate numeric

@attribute class {normal.,back.,land.,neptune.,pod.,smurf.,teardrop.}

 121

@data

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,32,32,1.00,0.00,0.03,0.00,0.03,0.03,0.03,0.03,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,228,228,1.00,0.00,0.00,0.00,0.00,0.00,0.06,0.06,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,178,178,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.04,0.04,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back.

7,tcp,http,RSTR,20440,1460,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.33,0

.33,1.00,0.00,0.00,26,26,1.00,0.00,0.04,0.00,0.00,0.00,0.35,0.35,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,3,0.00,0.00,0.00,0.3

3,1.00,0.00,0.67,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.01,0.01,0.04,0.04,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,172,172,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,164,164,1.00,0.00,0.01,0.00,0.00,0.00,0.01,0.01,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,7,0.00,0.00,0.00,0.2

9,1.00,0.00,0.43,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.05,0.05,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,6,0.00,0.00,0.00,0.1

7,1.00,0.00,0.33,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.04,0.04,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.01,0.01,0.04,0.04,back.

0,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.03,0.03,back.

5,tcp,http,SF,54540,8314,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.0

0,1.00,0.00,0.00,31,31,1.00,0.00,0.03,0.00,0.00,0.00,0.35,0.35,back.

 122

Appendix L: Listings of KDD CUP 99 feature extraction shell script and files

The following is a listing of the shell script to extract the features used in the J48

classification tree results file for the KDD CUP 99 data.

TEMP1=attemp.txt

TEMP2=attlist.txt

TEMP3=attnums.txt

TEMP4=TEMP3$$

TEMP5=TEMP4$$

A=/media/sf_nova/data/KDD/attributes_names

f=$1

cat $f|sed -e "s/^/ /g" >$TEMP4

firstpipe=`grep -n "^ |" $TEMP4|head -1|cut -f1 -d:`

echo firstpipe = $firstpipe

starthere=`expr $firstpipe - 1`

echo starthere = $starthere

lastpipe=`grep -n "^ |" $TEMP4|tail -1|cut -f1 -d:`

echo lastpipe = $lastpipe

tail -n+$starthere $TEMP4|head -1>$TEMP1

grep -n "^ |" $TEMP4>>$TEMP1

>$TEMP2

>$TEMP3

atnum=0

for i in `cat $A`

do

 atnum=`expr $atnum + 1`

 c=`grep " $i" $TEMP1|wc -l`

 echo $atnum $i $c

 if

 [$c -gt 0]

 then

 echo $atnum $i>>$TEMP2

 echo -n "$atnum " >>$TEMP3

 fi

done

echo >>$TEMP3

cat $TEMP3|sed -e "s/ /, /g"|sed -e "s/, $//" >$TEMP4

cat $TEMP4>$TEMP3

rm $TEMP4

nl $TEMP2

cat $TEMP3

rm -rf $TEMP1 $TEMP2 $TEMP3

(Continued on next page)

 123

(Appendix L continued)

The following is a list of the feature names used by the shell script to parse the

J48 results file from the KDD CUP 99 data.

duration

protocol_type

service

flag

src_bytes

dst_bytes

land

wrong_fragment

urgent

hot

num_failed_logins

logged_in

num_compromised

root_shell

su_attempted

num_root

num_file_creations

num_shells

num_access_files

num_outbound_cmds

is_host_login

is_guest_login

count

srv_count

serror_rate

srv_serror_rate

rerror_rate

srv_rerror_rate

same_srv_rate

diff_srv_rate

srv_diff_host_rate

dst_host_count

dst_host_srv_count

dst_host_same_srv_rate

dst_host_diff_srv_rate

dst_host_same_src_port_rate

dst_host_srv_diff_host_rate

dst_host_serror_rate

dst_host_srv_serror_rate

dst_host_rerror_rate

dst_host_srv_rerror_rate

attack

 124

Appendix M: Listings of SRI feature extraction shell script and files

The following is a listing of the shell script to extract the features used in the J48

classification tree results file for the SRI data.

TEMP1=attemp.txt

TEMP2=attlist.txt

TEMP3=attnums.txt

TEMP4=TEMP3$$

TEMP5=TEMP4$$

A=/media/sf_nova/data/SRI/bin/SRIattributes_names

f=$1

cat $f|sed -e "s/^/ /g" >$TEMP4

firstpipe=`grep -n "^ |" $TEMP4|head -1|cut -f1 -d:`

echo firstpipe = $firstpipe

starthere=`expr $firstpipe - 1`

echo starthere = $starthere

lastpipe=`grep -n "^ |" $TEMP4|tail -1|cut -f1 -d:`

echo lastpipe = $lastpipe

tail -n+$starthere $TEMP4|head -1>$TEMP1

grep -n "^ |" $TEMP4>>$TEMP1

>$TEMP2

>$TEMP3

atnum=0

for i in `cat $A`

do

 atnum=`expr $atnum + 1`

 c=`grep " $i" $TEMP1|wc -l`

 echo $atnum $i $c

 if

 [$c -gt 0]

 then

 echo $atnum $i>>$TEMP2

 echo -n "$atnum " >>$TEMP3

 fi

done

echo >>$TEMP3

cat $TEMP3|sed -e "s/ /, /g"|sed -e "s/, $//" >$TEMP4

cat $TEMP4>$TEMP3

rm $TEMP4

nl $TEMP2

cat $TEMP3

rm -rf $TEMP1 $TEMP2 $TEMP3

(Continued on next page)

 125

(Appendix M continued)

The following is a list of the feature names used by the shell script to parse the

J48 results file from the SRI data.

date

index

timemms

frPort

toPort

flags

seqRange

ack

win

pktLength

SWB

SWBn

smb

rrq

warn

nop

val

ecr

enum

priority

service

Mesg

 126

Appendix N: Listing of the J48 Classification Results

The following is the output from WEKA with the KDD CUP 99 data using the

J48 classification algorithm with Shannon entropy. There is one of these files for each

run of the data and entropy combinations.

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2

Relation: DoS data to reproduce Lima (2012) results

Instances: 21764

Attributes: 42

 duration

 protocol_type

 service

 flag

 src_bytes

 dst_bytes

 land

 wrong_fragment

 urgent

 hot

 num_failed_logins

 logged_in

 num_compromised

 root_shell

 su_attempted

 num_root

 num_file_creations

 num_shells

 num_access_files

 num_outbound_cmds

 is_host_login

 is_guest_login

 count

 srv_count

 serror_rate

 srv_serror_rate

 rerror_rate

 srv_rerror_rate

 same_srv_rate

 diff_srv_rate

 srv_diff_host_rate

 dst_host_count

 dst_host_srv_count

 dst_host_same_srv_rate

 dst_host_diff_srv_rate

 dst_host_same_src_port_rate

 dst_host_srv_diff_host_rate

 dst_host_serror_rate

 dst_host_srv_serror_rate

 dst_host_rerror_rate

 dst_host_srv_rerror_rate

 class

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

 127

J48 pruned tree

same_srv_rate <= 0.48

| src_bytes <= 14: neptune. (10354.0)

| src_bytes > 14: normal. (28.0/1.0)

same_srv_rate > 0.48

| src_bytes <= 20309

| | serror_rate <= 0.59

| | | wrong_fragment <= 0

| | | | protocol_type = tcp: normal. (2015.0/1.0)

| | | | protocol_type = icmp

| | | | | src_bytes <= 373: normal. (23.0)

| | | | | src_bytes > 373: smurf. (7670.0/1.0)

| | | | protocol_type = udp: normal. (502.0)

| | | wrong_fragment > 0

| | | | protocol_type = tcp: pod. (0.0)

| | | | protocol_type = icmp: pod. (68.0)

| | | | protocol_type = udp: teardrop. (14.0)

| | serror_rate > 0.59

| | | land = 0: neptune. (47.0)

| | | land = 1: land. (11.0)

| src_bytes > 20309

| | service = aol: back. (0.0)

| | service = http_8001: back. (0.0)

| | service = http: back. (1025.0)

| | service = smtp: back. (0.0)

| | service = finger: back. (0.0)

| | service = domain: back. (0.0)

| | service = domain_u: back. (0.0)

| | service = auth: back. (0.0)

| | service = telnet: back. (0.0)

| | service = ftp: back. (0.0)

| | service = eco_i: back. (0.0)

| | service = ntp_u: back. (0.0)

| | service = ecr_i: back. (0.0)

| | service = other: back. (0.0)

| | service = private: back. (0.0)

| | service = pop_3: back. (0.0)

| | service = ftp_data: normal. (7.0)

| | service = rje: back. (0.0)

| | service = time: back. (0.0)

| | service = mtp: back. (0.0)

| | service = link: back. (0.0)

| | service = remote_job: back. (0.0)

| | service = gopher: back. (0.0)

| | service = ssh: back. (0.0)

| | service = name: back. (0.0)

| | service = whois: back. (0.0)

| | service = login: back. (0.0)

| | service = imap4: back. (0.0)

| | service = daytime: back. (0.0)

| | service = ctf: back. (0.0)

| | service = nntp: back. (0.0)

| | service = shell: back. (0.0)

| | service = IRC: back. (0.0)

| | service = nnsp: back. (0.0)

| | service = harvest: back. (0.0)

| | service = http_443: back. (0.0)

| | service = http_2784: back. (0.0)

| | service = exec: back. (0.0)

| | service = printer: back. (0.0)

 128

| | service = efs: back. (0.0)

| | service = courier: back. (0.0)

| | service = uucp: back. (0.0)

| | service = klogin: back. (0.0)

| | service = kshell: back. (0.0)

| | service = echo: back. (0.0)

| | service = discard: back. (0.0)

| | service = systat: back. (0.0)

| | service = supdup: back. (0.0)

| | service = iso_tsap: back. (0.0)

| | service = hostnames: back. (0.0)

| | service = csnet_ns: back. (0.0)

| | service = pop_2: back. (0.0)

| | service = sunrpc: back. (0.0)

| | service = uucp_path: back. (0.0)

| | service = netbios_ns: back. (0.0)

| | service = netbios_ssn: back. (0.0)

| | service = netbios_dgm: back. (0.0)

| | service = sql_net: back. (0.0)

| | service = vmnet: back. (0.0)

| | service = bgp: back. (0.0)

| | service = Z39_50: back. (0.0)

| | service = ldap: back. (0.0)

| | service = netstat: back. (0.0)

| | service = urh_i: back. (0.0)

| | service = X11: back. (0.0)

| | service = urp_i: back. (0.0)

| | service = pm_dump: back. (0.0)

| | service = tftp_u: back. (0.0)

| | service = tim_i: back. (0.0)

| | service = red_i: back. (0.0)

Number of Leaves : 81

Size of the tree : 91

Time taken to build model: 0.63 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 21754 99.9541 %

Incorrectly Classified Instances 10 0.0459 %

Kappa statistic 0.9993

Mean absolute error 0.0002

Root mean squared error 0.0115

Relative absolute error 0.1098 %

Root relative squared error 3.8271 %

Total Number of Instances 21764

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.999 0 0.997 0.999 0.998 normal.

 0.999 0 1 0.999 1 back.

 1 0 1 1 1 land.

 1 0 1 1 1 neptune.

 0.986 0 1 0.986 0.993 pod.

 0.999 0 1 0.999 1 smurf.

 0.933 0 1 0.933 0.966 teardrop.

=== Confusion Matrix ===

 129

 a b c d e f g <-- classified as

 2571 0 0 1 0 1 0 | a = normal.

 1 1025 0 0 0 0 0 | b = back.

 0 0 11 0 0 0 0 | c = land.

 0 0 0 10401 0 0 0 | d = neptune.

 1 0 0 0 68 0 0 | e = pod.

 5 0 0 0 0 7664 0 | f = smurf.

 1 0 0 0 0 0 14 | g = teardrop.

 130

Appendix O: Listing of the feature extraction shell results

Below is the output of the shell script showing the features used in the J48

Classification tree for the KDD CUP 99 DoS attack category using Shannon entropy. The

last line of the output is the feature numbers used.

1 duration 0

2 protocol_type 6

3 service 70

4 flag 0

5 src_bytes 6

6 dst_bytes 0

7 land 2

8 wrong_fragment 2

9 urgent 0

10 hot 0

11 num_failed_logins 0

12 logged_in 0

13 num_compromised 0

14 root_shell 0

15 su_attempted 0

16 num_root 0

17 num_file_creations 0

18 num_shells 0

19 num_access_files 0

20 num_outbound_cmds 0

21 is_host_login 0

22 is_guest_login 0

23 count 0

24 srv_count 0

25 serror_rate 2

26 srv_serror_rate 0

27 rerror_rate 0

28 srv_rerror_rate 0

29 same_srv_rate 1

30 diff_srv_rate 0

31 srv_diff_host_rate 0

32 dst_host_count 0

33 dst_host_srv_count 0

34 dst_host_same_srv_rate 0

35 dst_host_diff_srv_rate 0

36 dst_host_same_src_port_rate 0

37 dst_host_srv_diff_host_rate 0

38 dst_host_serror_rate 0

39 dst_host_srv_serror_rate 0

40 dst_host_rerror_rate 0

41 dst_host_srv_rerror_rate 0

42 attack 0

 1 2 protocol_type

 2 3 service

 3 5 src_bytes

 4 7 land

 5 8 wrong_fragment

 6 25 serror_rate

 7 29 same_srv_rate

2, 3, 5, 7, 8, 25, 29

131

Appendix P: Partial view of Malware Infection Analysis Page

This image below shows the page from the SRI's Multiperspective Malware Infection Analysis Page. It consists of multiple

columns and links to other files for down load.

132

Appendix Q: Partial listing of file.sh

head -40 file.sh

wget http://www.cyber-ta.org/releases/malware/2008-05-

01-analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHu

nter.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/84cf85439891727b7c6d6e32f2caca7e/84cf8543989172

7b7c6d6e32f2caca7e.virus-labels

wget http://www.cyber-

ta.org/releases/malware/SOURCES/91e84b30547650f710f220117e031029/91e84b30547650

f710f220117e031029.virus-labels

wget http://www.cyber-

ta.org/releases/malware/SOURCES/ab989d919b6d0eb454a24f5ace298dc0/ab989d919b6d0e

b454a24f5ace298dc0.virus-labels

wget http://www.cyber-

ta.org/releases/malware/SOURCES/d930d42d1283f036888801c27f486285/d930d42d1283f0

36888801c27f486285.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHu

nter.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunt

er.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts_botH

unter.txt

wget

http://www.cyber-ta.org/releases/malware/SOURCES/ac331591236cd22abd082d1b9ab488

e2/ac331591236cd22abd082d1b9ab488e2.virus-labels

133

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts_botHun

ter.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/5f78ff609da4fc5e699ccf4cbac77bc1/5f78ff609da4fc

5e699ccf4cbac77bc1.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts_botHun

ter.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/76b4ab852ec50e9b1a959dd8139a41f5/76b4ab852ec50e

9b1a959dd8139a41f5.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.rules

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts_botHun

ter.txt

wget http://www.cyber-

ta.org/releases/malware/SOURCES/ccf7ce9bb50a0861e755df41dce9528d/ccf7ce9bb50a08

61e755df41dce9528d.virus-labels

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz

wget http://www.cyber-ta.org/releases/malware/2008-05-01-

analysis/ARCHIVE/220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz.alerts

134

Appendix R: Partial list of downloaded files

The following is a partial list of downloaded files from the Linux “ls” command.

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts

213.197.10.57_130.107.208.13_10.2.32.207.pcap.gz.alerts_botHunter.txt

213.197.10.57_130.107.208.13_10.2.32.207.rules

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts

213.22.217.163_130.107.192.209_10.2.32.216.pcap.gz.alerts_botHunter.txt

213.22.217.163_130.107.192.209_10.2.32.216.rules

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHunter.txt

217.96.39.133_130.107.251.229_10.2.32.216.rules

220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz

220.213.33.230_130.107.167.170_10.2.32.212.pcap.gz.alerts

220.213.33.230_130.107.167.170_10.2.32.212.rules

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels.1

5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels.2

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts

60.52.103.123_130.107.245.17_10.2.32.205.pcap.gz.alerts_botHunter.txt

60.52.103.123_130.107.245.17_10.2.32.205.rules

76b4ab852ec50e9b1a959dd8139a41f5.virus-labels

84cf85439891727b7c6d6e32f2caca7e.virus-labels

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts

85.15.254.56_130.107.209.212_10.2.32.201.pcap.gz.alerts_botHunter.txt

85.15.254.56_130.107.209.212_10.2.32.201.rules

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts

88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunter.txt

88.9.48.154_130.107.215.192_10.2.32.212.rules

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHunter.txt

90.189.210.154_130.107.176.98_10.2.32.213.rules

91e84b30547650f710f220117e031029.virus-labels

ab989d919b6d0eb454a24f5ace298dc0.virus-labels

ac331591236cd22abd082d1b9ab488e2.virus-labels

ccf7ce9bb50a0861e755df41dce9528d.virus-labels

d930d42d1283f036888801c27f486285.virus-labels

Many more files are downloaded per the commands in the “files.sh” file.

135

Appendix S: Listing of associations.sh script

The following is a listing of the script that generates the associations to improve

the naming conventions for the downloaded files.

cat associate.sh

associate.sh

this script looks through files.sh and

creates an association for each pcap.gz

file. The contents contain:

pcap.gz filename

Date=20080501

Seq=0

for f in `cat file.sh|cut -f8 -d\/`

do

 p=`echo $f|grep "pcap.gz$"|wc -l`

 if

 [$p -eq 1]

 then

 Seq=`expr $Seq + 1`

 fi

 OutFile=$Date-$Seq

 F=$OutFile-$f

 A=$OutFile-associations.file

 echo $f ==> $F

 if

 [$p -eq 1]

 then

 #Seq=`expr $Seq + 1`

 echo Pcap and Other associated files >$A

 fi

 echo $F >>$A

 cat $f >$F

done

136

Appendix T: Partial List of files prepended with association names

Below is a partial list of the files for the date of 20080501 with the date and

association numbers prepended to the file names.

20080501-1-84cf85439891727b7c6d6e32f2caca7e.virus-labels

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts

20080501-1-

90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts_botHunter.txt

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts.E3

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.tcpdump

20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.rules

20080501-1-91e84b30547650f710f220117e031029.virus-labels

20080501-1-ab989d919b6d0eb454a24f5ace298dc0.virus-labels

20080501-1-associations.file

20080501-1-.AV

20080501-1-d930d42d1283f036888801c27f486285.virus-labels

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts

20080501-2-

85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts_botHunter.txt

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.gz.alerts.E3

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.pcap.tcpdump

20080501-2-85.96.201.158_130.107.212.30_10.2.32.201.rules

20080501-2-associations.file

20080501-2-.AV

20080501-2-cd05c2e205bc9a84ad14e188d17eadd4.virus-labels

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts

20080501-3-

217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts_botHunter.txt

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.gz.alerts.E3

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.pcap.tcpdump

20080501-3-217.96.39.133_130.107.251.229_10.2.32.216.rules

20080501-3-5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels

20080501-3-associations.file

20080501-3-.AV

20080501-4-5f78ff609da4fc5e699ccf4cbac77bc1.virus-labels

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts_botHunter.txt

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.gz.alerts.E3

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.pcap.tcpdump

20080501-4-88.9.48.154_130.107.215.192_10.2.32.212.rules

20080501-4-associations.file

20080501-4-.AV

137

Appendix U: Listing of an alerts, rules, BotHunter reports, and virus-labels files

The following is an alerts file.

$ cat 20080501-158-201.250.57.61_130.107.136.236_10.2.32.214.pcap.gz.alerts

05/01-20:02:15.451167 [**] [1:3000006:99] E3[rb] BotHunter MALWARE executable

upload [**] [Classification: Misc activity] [Priority: 3] {TCP}

201.250.57.61:4915 -> 130.107.136.236:445

05/01-20:02:15.478900 [**] [1:299998:1] E2[rb] SHELLCODE x86 inc ebx NOOP [**]

[Classification: Executable code was detected] [Priority: 1] {TCP}

201.250.57.61:4915 -> 130.107.136.236:445

05/01-20:02:15.478900 [**] [1:21390:5] E2[rb] REGISTERED FREE SHELLCODE x86

inc ebx NOOP [**] [Classification: Executable code was detected] [Priority: 1]

{TCP} 201.250.57.61:4915 -> 130.107.136.236:445

05/01-20:02:15.504635 [**] [1:299998:1] E2[rb] SHELLCODE x86 inc ebx NOOP [**]

[Classification: Executable code was detected] [Priority: 1] {TCP}

201.250.57.61:4915 -> 130.107.136.236:445

05/01-20:02:15.504635 [**] [1:21390:5] E2[rb] REGISTERED FREE SHELLCODE x86

inc ebx NOOP [**] [Classification: Executable code was detected] [Priority: 1]

{TCP} 201.250.57.61:4915 -> 130.107.136.236:445

05/01-20:02:17.855834 [**] [1:2000427:9] E3[rb] ET POLICY PE EXE Install

Windows file download [**] [Classification: Misc activity] [Priority: 3] {TCP}

201.250.57.61:1156 -> 130.107.136.236:1033

05/01-20:03:08.315644 [**] [1:2404005:1142] E4[rb] ET DROP Known Bot C&C

Server Traffic (group 6) [**] [Classification: A Network Trojan was detected]

[Priority: 1] {TCP} 130.107.136.236:1034 -> 211.96.97.44:7000

05/01-20:04:42.444922 [**] [1:2000352:6] E6[rb] ET ATTACK RESPONSE IRC - dns

request on non-std port [**] [Classification: Potential Corporate Privacy

Violation] [Priority: 1] {TCP} 130.107.136.236:1034 -> 211.96.97.44:7000

The following is a rules file

$ cat 20080501-158-201.250.57.61_130.107.136.236_10.2.32.214.rules

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"E3[rb] BotHunter MALWARE

executable upload"; flow:established,to_server; content:"ftp"; content: "echo";

content: ".exe"; nocase; classtype: misc-activity; sid:3000006; rev:99;)

The following is a botHunter.txt file which reports the BotHunter findings.

cat 20080501-158-

201.250.57.61_130.107.136.236_10.2.32.214.pcap.gz.alerts_botHunter.txt

Score: 1.8 (>= 0.8)

Infected Target: 130.107.136.236

Infector List: 201.250.57.61

Egg Source List: 201.250.57.61

C & C List: 211.96.97.44 (3)

Peer Coord. List: <unobserved>

Resource List: <unobserved>

Observed Start: 05/01/2008 20:02:15.000 PDT

Report End: 05/01/2008 20:02:15.504 PDT

Gen. Time: 05/01/2008 20:04:44.289 PDT

INBOUND SCAN

 <unobserved>

EXPLOIT

 201.250.57.61 (6) (20:02:15.000 PDT-20:02:15.504 PDT)

 event=1:1390 (2) {tcp} E2[rb] REGISTERED FREE SHELLCODE x86 inc ebx NOOP

 2: 445<-4915 (20:02:15.478 PDT-20:02:15.504 PDT)

138

 event=1:2001944 {tcp} E2[rb] BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill

ASN1 exploit attempt

 445<-4915 (20:02:15.478 PDT)

 event=1:3003 {tcp} E2[rb] NETBIOS SMB-DS Session Setup NTMLSSP unicode

asn1 overflow attempt

 445<-4915 (20:02:15.000 PDT)

 event=1:99998 (2) {tcp} E2[rb] SHELLCODE x86 inc ebx NOOP

 2: 445<-4915 (20:02:15.478 PDT-20:02:15.504 PDT)

EXPLOIT (slade)

 <unobserved>

EGG DOWNLOAD

 201.250.57.61 (2) (20:02:15.451 PDT)

 event=1:2001684 {tcp} E3[rb] BLEEDING-EDGE Malware Windows executable

sent from remote host, Win32

 1033<-1156 (20:02:17.855 PDT)

 event=1:3000006 {tcp} E3[rb] BotHunter MALWARE executable upload

 445<-4915 (20:02:15.451 PDT)

C and C TRAFFIC

 211.96.97.44 (3) (20:04:41.993 PDT)

 event=1:2000345 {tcp} E4[rb] BLEEDING-EDGE ATTACK RESPONSE IRC - Nick

change on non-std port

 1034->7000 (20:04:41.993 PDT)

 event=1:2002024 {tcp} E4[rb] BLEEDING-EDGE TROJAN IRC NICK command

 1034->7000 (20:04:41.993 PDT)

 event=1:2002025 {tcp} E4[rb] BLEEDING-EDGE TROJAN IRC JOIN command

 1034->7000 (20:04:42.223 PDT)

PEER COORDINATION

 <unobserved>

OUTBOUND SCAN

 46.113.10.222 (20:04:44.289 PDT)

 event=1:2001569 {tcp} E5[rb] BLEEDING-EDGE Behavioral Unusual Port 445

traffic, Potential Scan or Infection

 1046->445 (20:04:44.289 PDT)

 201.250.57.61 (20:04:44.289 PDT)

 event=555:5555005 {tcp} E5[sc] scade detected scanning of 6 IPs (fail

ratio=0:0/6):

 0->0 (20:04:44.289 PDT)

ATTACK PREP

 <unobserved>

DECLARE BOT

 <unobserved>

tcpslice 1209697335.000 1209697335.505 inputFile.tcpd | tcpdump -r - -w

outputFile.tcpd 'host 130.107.136.236'

============================== SEPARATOR ================================

139

The following is virus-labels file..

$ cat 20080501-158-7e28dac8de2cdb7f5f03766ff6500063.virus-labels

Antivirus Detection Summary: file 7e28dac8de2cdb7f5f03766ff6500063

 1: AhnLab-V3 found [Win32/Kolab.worm.200441]

 2: AntiVir found [TR/Crypt.XPACK.Gen]

 3: Authentium found nothing

 4: Avast found nothing

 5: AVG found nothing

 6: BitDefender found [Packer.PrivateExeProtector.A]

 7: CAT-QuickHeal found [I-Worm.Kolab.re]

 8: ClamAV found nothing

 9: DrWeb found [Win32.IRC.Bot]

 10: eSafe found [Suspicious File]

 11: eTrust-Vet found [Win32/ForBot.VC]

 12: Ewido found nothing

 13: F-Prot found nothing

 14: F-Secure found [Net-Worm.Win32.Kolab.qw]

 15: FileAdvisor found nothing

 16: Fortinet found [W32/Kolab.QW!worm.im]

 17: Ikarus found [Packer.PrivateExeProtector.A]

 18: Kaspersky found [Net-Worm.Win32.Kolab.qw]

 19: McAfee found nothing

 20: Microsoft found nothing

 21: NOD32v2 found [Win32/Kolab.QW]

 22: Norman found [W32/Smalltroj.DYQU]

 23: Panda found nothing

 24: Prevx1 found [WORM.VARIANT!WORM]

 25: Rising found nothing

 26: Sophos found [Mal/Generic-A]

 27: Sunbelt found nothing

 28: Symantec found [W32.Spybot.Worm]

 29: TheHacker found nothing

 30: VBA32 found [Net-Worm.Win32.Kolab.qw]

 31: VirusBuster found nothing

 32: Webwasher-Gateway found [Trojan.Crypt.XPACK.Gen]

CREDITS: Antivirus malware test results are from submissions to

www.virustotal.com.

140

Appendix V: Listing of bf.sh script and a portion of results

The following is a listing of the bf.sh script used to extract pertinent data from the

existing files in each date directory.

cat bf.sh

for j in `ls *alerts|grep "-"|cut -f2 -d-|sort -n`

do

 E=`ls 20??????-$j-*alerts`

 T=`ls 20??????-$j-*tcpdump`

 R=`ls 20??????-$j-*rules`

 echo "+++++++++++++++++++++++++++++++++++"

 echo "+++++++++++++++++++++++++++++++++++"

 echo E=$E

 echo T=$T

 echo R=$R

 for i in `grep E3 $E|cut -f2-3 -d:|cut -f1 -d\ `

 do

 echo Search Term

 echo $i

 echo =====tcpdump entry

 echo -n TP=

 grep $i $T|grep -v 10.2.

 echo =====Alert entry

 echo -n AE=

 grep $i $E

 echo =====Actual Alert

 echo -n AA=

 grep $i $E | cut -f4 -d\]|cut -f1 -d\[

 echo =============

 echo

 done

done

Below is a portion of the results of running the bf.sh script for the date of

20080501. The length of the files for each date is 3,229 lines to 8,649 lines long.

+++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++

E=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.gz.alerts

T=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.pcap.tcpdump

R=20080501-1-90.189.210.154_130.107.176.98_10.2.32.213.rules

File Reference

FR=20080501-1

Search Term

ST=17:51.525715

=====tcpdump entry

TP=02:17:51.525715 IP 90.189.210.154.4619 > 130.107.176.98.445: Flags [.], seq

1165743534:1165744974, ack 3737182244, win 64711, length 1440SMB-over-TCP

packet:(raw data

or continuation?)

=====Alert entry

141

AE=05/01-00:17:51.525715 [**] [1:3000006:99] E3[rb] BotHunter MALWARE

executable upload [**] [Classification: Misc activity] [Priority: 3] {TCP}

90.189.210.154:4619 ->

130.107.176.98:445

=====Actual Alert

AA= BotHunter MALWARE executable upload

=============

File Reference

FR=20080501-1

Search Term

ST=17:54.399343

=====tcpdump entry

TP=02:17:54.399343 IP 90.189.210.154.1596 > 130.107.176.98.1033: Flags [P.],

seq 1196786334:1196786846, ack 3738074074, win 64800, length 512

=====Alert entry

AE=05/01-00:17:54.399343 [**] [1:2001683:3] E3[rb] BLEEDING-EDGE Malware

Windows executable sent from remote host [**] [Priority: 0] {TCP}

90.189.210.154:1596 -> 130.107

.176.98:1033

=====Actual Alert

AA= BLEEDING-EDGE Malware Windows executable sent from remote host

=============

File Reference

FR=20080501-1

Search Term

ST=17:54.399343

=====tcpdump entry

TP=02:17:54.399343 IP 90.189.210.154.1596 > 130.107.176.98.1033: Flags [P.],

seq 1196786334:1196786846, ack 3738074074, win 64800, length 512

=====Alert entry

AE=05/01-00:17:54.399343 [**] [1:2001683:3] E3[rb] BLEEDING-EDGE Malware

Windows executable sent from remote host [**] [Priority: 0] {TCP}

90.189.210.154:1596 -> 130.107

.176.98:1033

=====Actual Alert

AA= BLEEDING-EDGE Malware Windows executable sent from remote host

=============

142

Appendix W: Listing of Features selected from SRI data

Fields used for the feature selection analysis in WEKA.

Field

Num

Name

Description

Values

1 Date Date of data in yyyymmdd 20080501 … 20080510

2 Index Reference of data file Numeric

3 Timemms Time of day of incident in microseconds Numeric

4 frPort From port number Numeric

5 toPort To port number Numeric

6 Flags TCP flags in packet NA, ACK, flags, PUSH&ACK

7 seqRange Range of pack numbers Numeric

8 ack Byte count in exchange Numeric

9 win Bytes count of window size Numeric

10 pktLength Byte count of data sent Numeric

11 SWR Additional info with length NA, RRQ, SMB, WARNING

12 SWRn Indicator if RRQ, SMB, or Warning present 0, 1

13 Smb Server Message Block message NA, SMB-over-TCP

14 Rrq Read Request message NA, svchost.exe

15 Warn Warning of packet continuation NA, Packet continued

16 Nop Count of NOP in options Numeric

17 Val Sender timestamp info Numeric

18 Ecr Echo reply timestamp info Numeric

19 Enum Alert E indicator E2, E3

20 Priority Priority of alert Numeric

21 Service Type of protocol used TCP, UDP

22 aMesg Alert message indicator BE1, BE2, BE3, BH1, BH2, BH4,

ET1, NB, SH, TFTP

143

The first three fields are used as references for trace back to the initial data file.

Fields 13, 14, and 15 have a value taken from the tcpdump line for the incident. An NA

or other value are acceptable for this field as identified in the above table.

Below is an expanded description of the fields:

1. The date is that designated by the SRI web site which contains the data.

2. Index is a number generated to keep better management of the different files for each

day. All the files with the same index are from the same incident. The main files for

each incident are the tcpdump file, the alert file, virus-labels, rules, and the

associations file.

3. Timemms is the time of day in microseconds. The time taken from the tcpdump files

for the incident which matches the search term.

4. The frPort field is port number contained in the source IP field in the tcpdump file.

5. The toPort field is port number contained in the destination IP field in the tcpdump

file.

6. Flags are the TCP flags in many of the tcpdump entries. In the data used for the

analysis, the following flags were used: 1) ACK 2) PUSH&ACK.

7. The seqRange feature uses the difference of the values in the seq parameter from the

tcpdump output.

8. The ack is the number of bytes in the exchange.

9. The win is the widow size in bytes.

10. The pktLength is the number of bytes in the packet.

11. SWR is a feature which indicates which, if any, additional information is appended to

the packet length parameter. The possibilities are “RRQ”, “SMB”, or “WARNING”.

144

12. The SWRn feature indicates if a “RRQ”, “SMB”, or “WARNING” was present.

13. The Smb is the type of Server Message Block test presented. For the data used, it is

only “SMB-over-TCP”.

14. The Rrq is the Read Request message. For the data used, it is only “svchost.exe”.

15. The Warn id the “Warning of packet continuation”. For the data used, it is only

“Packet continued”.

16. The Nop is in the options field in the tcpdump output. This parameter contains a

count of the number of “nop” entries there are between the brackets in the options

field.

17. The Val value is a time stamp in the options field. The parameter “TS val” between

the brackets is a timestamp from the sender.

18. The Ecr value is a time stamp in the options field. The parameter “ecr” between the

brackets is an echo reply timestamp from the sender.

19. The Enum feature comes from the rules files which is a BotHunter message. This

E number is associated with the infection type. For the data used, the values are “E2”,

or “E3”.

20. The Priority feature is a numeric value in the alerts file .

21. The Service feature is the type of protocol in the tcpdump file. For the data used, the

values are “TCP”, or “UDP”.

22. The aMesg feature is a shortened version of the Alert message indicator from the

alerts file. For the data used, the values are “BE1”, “BE2”, “BE3”, “BH1”, “BH2”,

“BH4”, “ET1”, “NB”, “SH”, or “TFTP”. The table following this list shows the

expanded description of each value.

145

aMesg Enum Description Count

BE1 E2 BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit

attempt

4

BE2 E3 BLEEDING-EDGE Malware Windows executable sent from remote

host, Win32

2128

BE3 E3 BLEEDING-EDGE VIRUS Sasser Transfer _up.exe 35

BH1 E3 BotHunter HTTP-based .exe Upload on backdoor port 353

BH2 E3 BotHunter MALWARE executable upload 1356

BH4 E3 BotHunter Scrip-based Windows egg download .exe 170

ET1 E3 ET POLICY PE EXE Install Windows file download 150

NB E2 NETBIOS SMB-DS Session Setup NTMLSSP unicode asn1 overflow

attempt

22

SH E2 SHELLCODE x86 inc ebx NOOP 12

TFTP E3 TFTP GET .exe from external source 128

146

Appendix X: Partial Listing of SRI.arff file

@relation "SRI data"

@attribute date {20080501,20080502,20080503,20080504,20080505,20080506,20080507

,20080508,20080509,20080510}

@attribute index NUMERIC

@attribute timemms NUMERIC

@attribute frPort NUMERIC

@attribute toPort NUMERIC

@attribute flags {NA,ACK,flags,PUSH&ACK}

@attribute seqRange NUMERIC

@attribute ack NUMERIC

@attribute win NUMERIC

@attribute pktLength NUMERIC

@attribute SWB {NA,RRQ,SMB,WARNING}

@attribute SWBn {0,1}

@attribute smb {NA,SMB-over-TCP}

@attribute rrq {svchost.exe,NA}

@attribute warn {NA,Packet_continued}

@attribute nop NUMERIC

@attribute val NUMERIC

@attribute ecr NUMERIC

@attribute enum {E2,E3}

@attribute priority NUMERIC

@attribute service {TCP,UDP}

@attribute Mesg {BE1,BE2,BE3,BH1,BH2,BH4,ET1,NB,SH,TFTP}

@data

%date,index,timemms,frPort,toPort,flags,seqRange,ack,win,pktLength,SWR,SWRn,smb

,rrq,warn,nop,val,ecr,enum,priority,service,aMesg

20080501,1,8271525715,4619,445,ACK,1440,3737182244,64711,1440,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2

20080501,1,8274399343,1596,1033,PUSH&ACK,512,3738074074,64800,512,NA,0,NA,NA,NA

,0,0,0,E3,0,TCP,BE2

20080501,1,8274399343,1596,1033,PUSH&ACK,512,3738074074,64800,512,NA,0,NA,NA,NA

,0,0,0,E3,0,TCP,BE2

20080501,1,8297720956,1038,80,PUSH&ACK,45,3632878526,17520,45,NA,0,NA,NA,NA,0,0

,0,E3,3,TCP,BH1

20080501,1,8297722080,1039,80,PUSH&ACK,47,851293562,17520,47,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,BH1

20080501,1,8297723954,1040,80,PUSH&ACK,44,311488835,17520,44,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,BH1

20080501,2,8762681249,48983,445,ACK,1452,1619850869,64217,1452,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2

20080501,2,8765115020,49214,1028,ACK,1452,1620640693,64240,1452,NA,0,NA,NA,NA,0

,0,0,E3,3,TCP,ET1

20080501,3,8991897517,1630,445,ACK,1460,26535918,64151,1460,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2

20080501,3,8994461706,1705,1033,ACK,1460,27935892,64240,1460,NA,0,NA,NA,NA,0,0,

0,E3,3,TCP,ET1

20080501,4,9206779357,4004,445,ACK,1440,488988015,65446,1440,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2

20080501,4,9209229243,4010,1033,ACK,1440,489801999,65535,1440,NA,0,NA,NA,NA,0,0

,0,E3,3,TCP,ET1

20080501,5,9610941864,3786,445,ACK,1448,64185918,64052,1448,SMB,1,SMB-over-

TCP,NA,NA,2,831416,2662,E3,3,TCP,BH2

20080501,5,9612600730,3820,1033,ACK,1448,64785892,64064,1448,NA,0,NA,NA,NA,2,83

1433,0,E3,3,TCP,ET1

20080501,6,9689209897,3750,445,ACK,1460,3862234534,17431,1460,SMB,1,SMB-over-

TCP,NA,NA,0,0,0,E3,3,TCP,BH2

147

Appendix Y Listing of Java files to read and parse SRI data

This appendix contains the listings of five Java classes use to parse the SRI data and

fomat it for usin in WEKA. The order of the listings are:
 util1.java

 util2.java

 util3.java

 util4.java

 dv.java

===================

util1.java

import java.io.*;

/*

 * This class is supports the retrieval of the raw SRI

 * malware data from multiple files. The output writes

 * the data into an intermediate file that is read by

 * other applications.

 *

 * Author: Frank Acker, December 2014

 */

public class util1 {

 util2 u2 = new util2();

 util3 u3 = new util3();

 public void po () {

 System.out.println("FR="+dv.FRinfo);

 System.out.println("ST="+dv.STinfo);

 System.out.println("TP="+dv.TPinfo);

 System.out.println("AE="+dv.AEinfo);

 System.out.println("AA="+dv.AAinfo);

 }

 public void nullInfo() {

 dv.FRinfo = dv.NULL;

 dv.STinfo = dv.NULL;

 dv.TPinfo = dv.NULL;

 dv.AEinfo = dv.NULL;

 dv.AAinfo = dv.NULL;

 dv.frIP = "0";

 dv.frPort = "0";

 dv.toIP = "0";

 dv.toPort = "0";

 dv.Flags = "0";

 dv.seqRange = 0;

 dv.ackThere = 0;

148

 dv.ackValue = 0;

 dv.winThere = 0;

 dv.winValue = 0;

 dv.pktLength = 0;

 dv.smbType = dv.NA;

 dv.rrqType = dv.NA;

 dv.smbFound = false;

 dv.warnType = dv.NA;

 dv.warnFound = false;

 dv.flagsNum = 0;

 dv.seqNum = 0;

 dv.winNum = 0;

 dv.lengthNum = 0;

 dv.ackNum = 0;

 dv.optType = dv.NA;

 dv.optNum = 0;

 dv.rrqNum = 0;

 dv.nopCount = 0;

 dv.valNum = -99;

 dv.ecrNum = -99;

 dv.valValue = 0;

 dv.ecrValue = 0;

 dv.attackType = dv.NULL;

 // From AE line

 dv.aeEnum = dv.NULL; // E3

 dv.aeAMsg = dv.NULL; // Alert message

 dv.aeAMsgDesig = dv.NULL; // Alert message designator

 dv.aePriority = 0; // Alert Priority

 dv.aeService = dv.NULL; // Alert network service used

 }

 //static String[] stuff = new String[256];

 public long timecalcmms(String stuff) {

 if (stuff.length() == 0) return 0;

 String [] ts = stuff.split(":");

 long hr = 0, min = 0;

 try {

 hr = Long.parseLong(ts[0]) * 3600 * 1000000;

 }catch(NumberFormatException ex){

 System.out.println("OOPS in timecalamms-hr

string="+stuff+"=");

 System.out.println("OOPS in timecalamms-hr

ts[0]="+ts[0]+"=");

 }

 try {

 min = Long.parseLong(ts[1]) * 60 * 1000000;

 //}catch(NumberFormatException ex){

 }catch(ArrayIndexOutOfBoundsException ex){

 System.out.println("OOPS in timecalamms-min

string="+stuff+"=");

 System.out.println("OOPS in timecalamms-min

ts[1]="+ts[1]+"=");

 }

149

 Double sec = 0.0;

 try {

 sec = Double.parseDouble(ts[2]) *1000000.0;

 //}catch(NumberFormatException ex){

 }catch(ArrayIndexOutOfBoundsException ex){

 System.out.println("OOPS");

 System.out.println("OOPS in timecalamms-sec

string="+stuff+"=");

 System.out.println("OOPS in timecalamms-sec

ts[2]="+ts[2]+"=");

 }

 Long mmsec = hr + min + sec.longValue();

 return mmsec;

 }

 public void getFlags(String [] TPvar) {

 String s;

 String flagInfo = TPvar[dv.flagsNum+1];

 if (dv.flagsNum > 0) {

 String [] FlagSym = {".", "F","F.","FP","P","P.","R",

 "R.","S","S."};

 String [] FlagDesc = {"ACK", "Finish","Finish&ACK",

 "FIN&Pish","PUSH","PUSH&ACK","RST","RST&ACK",

 "SYN","SYN&ACK"};

 flagInfo = flagInfo.replace("[","");

 flagInfo = flagInfo.replace("]","");

 flagInfo = flagInfo.replace(",","");

 int i;

 for (i=0; i<FlagSym.length; i++) {

 if (flagInfo.equals(FlagSym[i])) {

 dv.Flags = FlagDesc[i];

 break;

 }

 }

 }

 // Seq

 if (dv.seqNum > 0)

 dv.seqRange = getSeqRange(TPvar[dv.seqNum+1]);

 // ack

 if (dv.ackNum > 0) {

 dv.ackThere = 1;

 s = TPvar[dv.ackNum+1].replace(",","");

 dv.ackValue = Long.parseLong(s);

 }

 // win

 if (dv.winNum > 0) {

 dv.winThere = 1;

 s = TPvar[dv.winNum+1].replace(",","");

150

 dv.winValue = Integer.parseInt(s);

 }

 // options

 if (dv.optNum >0)

 u3.optManage(TPvar);

 // length

 if (dv.lengthNum > 0) {

 s = TPvar[dv.lengthNum+1].replace(",","");

 s = s.replace(":","");

 // check if alphas are butted up to length

 boolean ok = true;

 if (s.contains(dv.aSMB) && ok) {

 u3.lenSplit(s, TPvar, dv.aSMB);

 ok = false;

 }

 if (s.contains(dv.aRRQ) && ok) {

 u3.lenSplit(s, TPvar, dv.aRRQ);

 ok = false;

 }

 if (s.contains(dv.aWARN) && ok) {

 u3.lenSplit(s, TPvar, dv.aWARN);

 ok = false;

 }

 if (ok)

 dv.pktLength = Integer.parseInt(s);

 }

 }

 public Long getSeqRange(String data) {

 data = data.replace(",","");

 String [] numz = data.split(":");

 if (numz.length >1) {

 long num1 = Long.parseLong(numz[0]);

 long num2 = Long.parseLong(numz[1]);

 return (long) (num2-num1);

 }

 return (long)0;

 }

 public Boolean allInfo() {

 if (dv.FRinfo.equals(dv.NULL) ||

 dv.STinfo.equals(dv.NULL) ||

 dv.TPinfo.equals(dv.NULL) ||

 dv.AEinfo.equals(dv.NULL) ||

 dv.AAinfo.equals(dv.NULL)) {

 return false;

 }

 return true;

 }

151

 // method to sort input string to proper variables

 public void inSort (String input) {

 String c2 = "";

 if (input.length() > 2) {

 c2 = input.substring(0,2);

 }

 if (c2.equals(dv.FR)) { // File Reference

 dv.FRinfo = input;

 }

 if (c2.equals(dv.ST)) { // Search Term

 dv.STinfo = input;

 }

 if (c2.equals(dv.TP)) { // TCP Dump

 dv.TPinfo = input;

 }

 if (c2.equals(dv.AE)) { // Alert Entry

 dv.AEinfo = input;

 }

 if (c2.equals(dv.AA)) { // Actual Alert

 dv.AAinfo = input;

 }

 }

}

==================

util2.java

import java.io.*;

/*

 * This class is supports the retrieval of the raw SRI

 * malware data from multiple files. The output writes

 * the data into an intermediate file that is read by

 * other applications.

 *

 * Author: Frank Acker, December 2014

 */

public class util2 {

 util3 u3 = new util3();

 util4 u4 = new util4();

 boolean header = true;

 public void pdvFlags() {

152

 System.out.println("dv.flagsNum="+dv.flagsNum);

 System.out.println("dv.seqNum="+dv.seqNum);

 System.out.println("dv.winNum="+dv.winNum);

 System.out.println("dv.lengthNum="+dv.lengthNum);

 System.out.println("dv.ackNum="+dv.ackNum);

 System.out.println("dv.optNum="+dv.optNum);

 System.out.println("dv.valNum="+dv.valNum);

 System.out.println("dv.ecrNum="+dv.ecrNum);

 System.out.println("dv.rrqNum="+dv.rrqNum);

 }

 public void setTPNums(String[] TPvar) {

 String t[] = dv.TPinfo.split("=");

 //String[] TPvar = t[1].split(" ");

 int j;

 for (j=0; j<TPvar.length; j++) {

 System.out.println(j + " " + TPvar[j]);

 if (TPvar[j].equals(dv.aFlags)) dv.flagsNum = j;

 if (TPvar[j].equals(dv.aSeq)) dv.seqNum = j;

 if (TPvar[j].equals(dv.aWin)) dv.winNum = j;

 if (TPvar[j].equals(dv.aLength)) dv.lengthNum = j;

 if (TPvar[j].equals(dv.aAck)) dv.ackNum = j;

 if (TPvar[j].contains(dv.aOpt)) dv.optNum = j;

 if (TPvar[j].contains(dv.aVal)) {

 dv.valNum = j;

 dv.valValue = u3.justNums(TPvar[dv.valNum + 1]);

 }

 if (TPvar[j].contains(dv.aEcr)) {

 dv.ecrNum = j;

 dv.ecrValue = u3.justNums(TPvar[dv.ecrNum + 1]);

 }

 if (TPvar[j].contains(dv.aRRQ)) {

 dv.rrqNum = j;

 dv.rrqType = TPvar[j+1].replace("\"","");

 }

 }

 }

 public void getIPnPort(String [] TPvar) {

 String ipInfo[] = TPvar[2].split("\\.");

 // get the port numbers

 String s=ipInfo[0];

 s=s.concat(".");s=s.concat(ipInfo[1]);s=s.concat(".");

 s=s.concat(ipInfo[2]);s=s.concat(".");s=s.concat(ipInfo[3]);

 dv.frIP=s;

 dv.frPort = ipInfo[4];

 ipInfo = TPvar[4].split("\\.");

 s=ipInfo[0];

 s=s.concat(".");s=s.concat(ipInfo[2]);s=s.concat(".");

 s=s.concat(ipInfo[1]);s=s.concat(".");s=s.concat(ipInfo[3]);

 dv.toIP=s;

 dv.toPort = ipInfo[4].replace(":","");

 }

 public void prtOutVars() {

153

 // From TCP Dump line

 System.out.println("+++OUTPUT VALUES+++");

 System.out.println("frIP="+dv.frIP);

 System.out.println("frPort="+dv.frPort);

 System.out.println("toIP="+dv.toIP);

 System.out.println("toPort="+dv.toPort);

 System.out.println("Flags="+dv.Flags);

 System.out.println("seqRange="+dv.seqRange);

 System.out.println("ackThere="+dv.ackThere);

 System.out.println("ackValue="+dv.ackValue);

 System.out.println("winThere="+dv.winThere);

 System.out.println("winValue="+dv.winValue);

 System.out.println("pktLength="+dv.pktLength);

 System.out.println("smbType="+dv.smbType);

 System.out.println("rrqType="+dv.rrqType);

 System.out.println("warnType="+dv.warnType);

 System.out.println("optType="+dv.optType);

 System.out.println("nopCount="+dv.nopCount);

 System.out.println("valValue="+dv.valValue);

 System.out.println("ecrValue="+dv.ecrValue);

 System.out.println("aeEnum="+dv.aeEnum);

 System.out.println("aeAMsg="+dv.aeAMsg);

 System.out.println("aeAMsgDesig="+dv.aeAMsgDesig);

 System.out.println("aePriority="+dv.aePriority);

 System.out.println("aeService"+dv.aeService);

 if (dv.header) u4.csvHeader();

 u4.csvOut();

 }

}

===================

util3.java

import java.io.*;

/*

 * This class is supports the retrieval of the raw SRI

 * malware data from multiple files. The output writes

 * the data into an intermediate file that is read by

 * other applications.

 *

 * Author: Frank Acker, December 2014

 */

public class util3 {

 public void lenSplit(String s, String [] TPvar, String type) {

 String stLength = dv.NULL;

154

 String msg = dv.NULL;

 int i;

 for (i=1; i<=s.length(); i++) {

 String c = s.substring(i-1,i);

 if (dv.nums.contains(c)) {

 stLength += c;

 } else {

 break;

 }

 }

 int ii;

 for (ii= i; ii<= s.length(); ii++) {

 String c = s.substring(ii-1,ii);

 msg += c;

 }

 s = stLength;

 dv.pktLength = Integer.parseInt(s);

 for (i=dv.lengthNum+2; i<TPvar.length; i++) {

 msg += " ";

 msg += TPvar[i];

 }

System.out.println("type="+type+" msg="+msg);

 if (type.contains(dv.aSMB)) dv.smbType = "SMB-over-TCP";

 if (type.contains(dv.aWARN)) dv.warnType = "Packet_continued";

 if (type.contains(dv.aRRQ)) dv.rrqType = msg;

 }

 public void optManage(String [] TPvar) {

 dv.optType = dv.NULL;

 int i;

 for (i=dv.optNum+1; i<dv.lengthNum; i++) {

 dv.optType += TPvar[i];

 dv.optType += " ";

 }

 dv.optType = dv.optType.replace("[","");

 dv.optType = dv.optType.replace("]","");

 String [] optTemp = dv.optType.split(",");

//System.out.println("Looking for NOP");

 for (i=0; i<optTemp.length; i++) {

 if (optTemp[i].contains(dv.aNop)) dv.nopCount++;

 }

 }

 public int justNums (String s) {

 int i, n;

 String snum = dv.NULL;

 for (i=1; i<=s.length(); i++) {

 String c = s.substring(i-1,i);

 if (dv.nums.contains(c)) {

 snum += c;

 } else {

155

 break;

 }

 }

 return(Integer.parseInt(snum));

 }

}

===================

util4.java

import java.io.*;

/*

 * This class is supports the retrieval of the raw SRI

 * malware data from multiple files and reads

 * the data from the intermediate file and formats it for

 * use in WEKA.

 *

 * Author: Frank Acker, December 2014

 */

public class util4 {

 public void csvHeader() {

 System.out.print("csvHead=");

 System.out.print("frPort");

 System.out.print(","+"toPort");

 System.out.print(","+"flags");

 System.out.print(","+"seqRange");

 System.out.print(","+"ack");

 System.out.print(","+"win");

 System.out.print(","+"pktLength");

 System.out.print(","+"smb");

 System.out.print(","+"rrq");

 System.out.print(","+"warn");

 System.out.print(","+"nop");

 System.out.print(","+"val");

 System.out.print(","+"ecr");

 System.out.print(","+"enum");

 System.out.print(","+"aMesg");

 System.out.print(","+"priority");

 System.out.print(","+"service");

 System.out.println();

 dv.header = false;

 }

 public void csvOut() {

 System.out.print("csvOut=");

 System.out.print(dv.frPort);

156

 System.out.print(","+dv.toPort);

 System.out.print(","+dv.Flags);

 System.out.print(","+dv.seqRange);

 System.out.print(","+dv.ackValue);

 System.out.print(","+dv.winValue);

 System.out.print(","+dv.pktLength);

 System.out.print(","+dv.smbType);

 System.out.print(","+dv.rrqType);

 System.out.print(","+dv.warnType);

 System.out.print(","+dv.nopCount);

 System.out.print(","+dv.valValue);

 System.out.print(","+dv.ecrValue);

 System.out.print(","+dv.aeEnum);

 System.out.print(","+dv.aeAMsgDesig);

 System.out.print(","+dv.aePriority);

 System.out.print(","+dv.aeService);

 System.out.println();

 }

 public void aeParse(String aeLine) {

 int i, e;

 // find the " E" char string

 e = aeLine.indexOf(" E");

 // get the E and number after it

 dv.aeEnum = "E";

 dv.aeEnum += aeLine.charAt(e+2);

 dv.aeAMsg = dv.NULL;

 // move ahead 8 spaces. the next should be the

 // beginning of the Alert message

 e +=8;

 char c;

 while ((c = aeLine.charAt(e++)) != '[') {

 dv.aeAMsg += c;

 }

 // get the attack designator

 int msgLen2 = dv.aeAMsg.length()/2;

 String msg2 = dv.aeAMsg.substring(msgLen2/2,msgLen2);

 for (i=0; i<dv.attacks.length; i++) {

 //if (dv.aeAMsg.contains(dv.attacks[i])) {

 if (dv.attacks[i].contains(msg2)) {

 dv.aeAMsgDesig = dv.attackDesig[i];

 break;

 }

 }

 // get the Priority

 e = aeLine.indexOf("Priority");

157

 c = aeLine.charAt(e + 10);

 dv.aePriority = Character.getNumericValue(c);

 // get the service type

 e = aeLine.indexOf("{") + 1;

 while ((c = aeLine.charAt(e++)) != '}') {

 dv.aeService += c;

 }

 }

}

===================

dv.java

import java.io.*;

/* This class contains the variables used by the different

 * methods in this set of java programs

 *

 * Author: Frank Acker, December 2014

 */

public class dv {

 static String NULL = "";

 static String NA = "NA";

 static String EQ = "="; // Equals sign

 // Triggers from bf files

 static String FR = "FR"; // File Reference

 static String ST = "ST"; // Search Term

 static String TP = "TP"; // Tcpdump entry

 static String AE = "AE"; // Alert entry

 static String AA = "AA"; // Actual Alert

 // Contents of complete lines

 static String FRinfo = NULL; // File Reference info

 static String STinfo = NULL; // Search Term info

 static String TPinfo = NULL; // Tcpdump entry info

 static String AEinfo = NULL; // Alert entry info

 static String AAinfo = NULL; // Actual Alert info

 // Search terms in lines

 static String aFlags = "Flags";

 static String aSeq = "seq";

 static String aWin = "win";

 static String aLength = "length";

 static String aAck = "ack";

158

 static String aSMB = "SMB";

 static String aWARN = "WARNING";

 static String aRRQ = "RRQ";

 static String aOpt = "options";

 static String aNop = "nop";

 static String aEcr = "ecr";

 static String aVal = "val";

 // Position markers

 static int flagsNum = 0;

 static int seqNum = 0;

 static int winNum = 0;

 static int lengthNum = 0;

 static int ackNum = 0;

 static int optNum = 0;

 static int rrqNum = 0;

 static int valNum = -99;

 static int ecrNum = -99;

 // Variables used in the output file

 // From TCP Dump line

 static String frIP = "0";

 static String frPort = "0";

 static String toIP = "0";

 static String toPort = "0";

 static String Flags = "0";

 static long seqRange = 0;

 static int ackThere = 0;

 static long ackValue = 0;

 static int winThere = 0;

 static int winValue = 0;

 static int pktLength = 0;

 static String smbType = NA;

 static String rrqType = NA;

 static String warnType = NA;

 static String optType = NA;

 static int nopCount = 0;

 static int valValue = 0;

 static int ecrValue = 0;

 static String attackType = NULL;

 // From AE line

 static String aeEnum = NULL; // E3

 static String aeAMsg = NULL; // Alert message

 static String aeAMsgDesig = NULL; // Alert message designator

 static int aePriority = 0; // Alert Priority

 static String aeService = NULL; // Alert network service used

 // Other variables for use

 static boolean smbFound = false;

 static boolean warnFound = false;

 static String nums = "0123456789";

 static boolean header = true;

159

 static String [] attacks = {

 "BLEEDING-EDGE EXPLOIT MS04-007 Kill-Bill ASN1 exploit attempt

",

 "BLEEDING-EDGE Malware Windows executable sent from remote

host, Win32",

 "BLEEDING-EDGE VIRUS Sasser Transfer _up.exe ",

 "BotHunter HTTP-based .exe Upload on backdoor port",

 "BotHunter MALWARE executable upload",

 "BotHunter Malware Windows executable (PE) sent from remote

host",

 "BotHunter Scrip-based Windows egg download .exe",

 "ET POLICY PE EXE Install Windows file download",

 "ET WORM Sasser Transfer _up.exe ",

 "NETBIOS SMB-DS Session Setup NTMLSSP unicode asn1 overflow

attempt ",

 "SHELLCODE x86 inc ebx NOOP",

 "TFTP GET .exe from external source"};

 static String [] attackDesig = {"BE1","BE2","BE3","BH1","BH2",

 "BH3","BH4","ET1","ET2","NB","SH","TFTP"};

}

160

Appendix Z – Results of Analysis using SRI Malware data

ENTROPY PARAMS CC #FS

Approximate

m=1;r=0.01 99.0821 7

m=1;r=0.1 99.0821 7

m=1;r=0.2 99.0821 7

m=1;r=0.3 99.0821 7

m=1;r=0.4 99.0821 7

m=1;r=0.5 99.0821 7

m=1;r=0.6 99.0821 7

m=1;r=0.7 99.0821 7

m=1;r=0.8 99.0821 7

m=1;r=0.9 99.0821 7

m=1;r=0.99 99.0821 7

m=2;r=0.01 99.1051 7

m=2;r=0.1 99.1051 7

m=2;r=0.2 99.1051 7

m=2;r=0.3 99.0821 7

m=2;r=0.4 99.0821 7

m=2;r=0.5 99.0821 7

m=2;r=0.6 99.0821 7

m=2;r=0.7 99.0821 7

m=2;r=0.8 99.0821 7

m=2;r=0.9 99.0821 7

m=2;r=0.99 99.0821 7

m=3;r=0.01 99.1051 7

m=3;r=0.1 99.1051 7

m=3;r=0.2 99.1051 7

m=3;r=0.3 99.1051 7

m=3;r=0.4 99.1051 7

m=3;r=0.5 99.1051 7

m=3;r=0.6 99.1051 7

m=3;r=0.7 99.1051 7

m=3;r=0.8 99.0821 7

m=3;r=0.9 99.0821 7

m=3;r=0.99 99.0821 7

m=4;r=0.01 99.1051 7

m=4;r=0.1 99.1051 7

m=4;r=0.2 99.1051 7

m=4;r=0.3 99.1051 7

m=4;r=0.4 99.1051 7

m=4;r=0.5 99.1051 7

m=4;r=0.6 99.1051 7

m=4;r=0.7 99.1051 7

m=4;r=0.8 99.0821 7

m=4;r=0.9 99.0821 7

m=4;r=0.99 99.0821 7

161

ENTROPY PARAMS CC #FS
Approximate

m=5;r=0.01 99.1051 7

m=5;r=0.1 99.1051 7

m=5;r=0.2 99.1051 7

m=5;r=0.3 99.1051 7

m=5;r=0.4 99.1051 7

m=5;r=0.5 99.1051 7

m=5;r=0.6 99.1051 7

m=5;r=0.7 99.1051 7

m=5;r=0.8 99.1051 7

m=5;r=0.9 99.1051 7

m=5;r=0.99 99.1051 7

m=6;r=0.01 99.1051 7

m=6;r=0.1 99.1051 7

m=6;r=0.2 99.1051 7

m=6;r=0.3 99.1051 7

m=6;r=0.4 99.1051 7

m=6;r=0.5 99.1051 7

m=6;r=0.6 99.1051 7

m=6;r=0.7 99.1051 7

m=6;r=0.8 99.1051 7

m=6;r=0.9 99.1051 7

m=6;r=0.99 99.1051 7

m=7;r=0.01 99.1051 7

m=7;r=0.1 99.1051 7

m=7;r=0.2 99.1051 7

m=7;r=0.3 99.1051 7

m=7;r=0.4 99.1051 7

m=7;r=0.5 99.1051 7

m=7;r=0.6 99.1051 7

m=7;r=0.7 99.1051 7

m=7;r=0.8 99.1051 7

m=7;r=0.9 99.1051 7

m=7;r=0.99 99.1051 7

m=8;r=0.01 99.1051 7

m=8;r=0.1 99.1051 7

m=8;r=0.2 99.1051 7

m=8;r=0.3 99.1051 7

m=8;r=0.4 99.1051 7

m=8;r=0.5 99.1051 7

m=8;r=0.6 99.1051 7

m=8;r=0.7 99.1051 7

m=8;r=0.8 99.1051 7

m=8;r=0.9 99.1051 7

m=8;r=0.99 99.1051 7

m=9;r=0.01 99.1051 7

m=9;r=0.1 99.1051 7

m=9;r=0.2 99.1051 7

m=9;r=0.3 99.1051 7

m=9;r=0.4 99.1051 7

m=9;r=0.5 99.1051 7

m=9;r=0.6 99.1051 7

m=9;r=0.7 99.1051 7

m=9;r=0.8 99.1051 7

m=9;r=0.9 99.1051 7

m=9;r=0.99 99.1051 7

162

ENTROPY PARAMS CC #FS
Sample

m=1;r=0.01 95.732 7

m=1;r=0.1 95.8926 8

m=1;r=0.2 99.2428 6

m=1;r=0.3 98.6232 10

m=1;r=0.4 97.2006 9

m=1;r=0.5 97.7283 9

m=1;r=0.6 96.5351 9

m=1;r=0.7 96.8105 10

m=1;r=0.8 96.6269 10

m=1;r=0.9 96.4892 9

m=1;r=0.99 96.581 9

m=2;r=0.01 93.9881 11

m=2;r=0.1 93.9192 11

m=2;r=0.2 95.2501 10

m=2;r=0.3 96.2827 9

m=2;r=0.4 95.8697 8

m=2;r=0.5 95.8697 9

m=2;r=0.6 95.8008 10

m=2;r=0.7 95.8467 13

m=2;r=0.8 95.6631 9

m=2;r=0.9 95.9615 9

m=2;r=0.99 95.2731 10

m=3;r=0.01 93.7357 10

m=3;r=0.1 93.7357 10

m=3;r=0.2 93.7357 10

m=3;r=0.3 93.4144 10

m=3;r=0.4 93.8045 10

m=3;r=0.5 93.6668 11

m=3;r=0.6 93.3685 11

m=3;r=0.7 93.4374 11

m=3;r=0.8 93.4144 10

m=3;r=0.9 94.0799 10

m=3;r=0.99 93.0932 10

m=4;r=0.01 93.0014 10

m=4;r=0.1 93.0014 10

m=4;r=0.2 93.0014 10

m=4;r=0.3 93.0014 10

m=4;r=0.4 93.0014 10

m=4;r=0.5 93.0014 10

m=4;r=0.6 93.0014 10

m=4;r=0.7 93.7816 10

m=4;r=0.8 93.7816 10

m=4;r=0.9 93.7816 10

m=4;r=0.99 94.1028 11

163

ENTROPY PARAMS CC #FS
Sample

m=5;r=0.01 92.9555 10

m=5;r=0.1 92.9555 10

m=5;r=0.2 92.9555 10

m=5;r=0.3 92.9555 10

m=5;r=0.4 92.726 10

m=5;r=0.5 92.726 10

m=5;r=0.6 93.0702 10

m=5;r=0.7 93.0702 10

m=5;r=0.8 93.3915 10

m=5;r=0.9 93.6668 10

m=5;r=0.99 93.598 10

m=6;r=0.01 92.1983 10

m=6;r=0.1 92.1983 10

m=6;r=0.2 92.1983 10

m=6;r=0.3 92.1983 10

m=6;r=0.4 92.1983 10

m=6;r=0.5 92.1983 10

m=6;r=0.6 92.1983 10

m=6;r=0.8 93.0014 10

m=6;r=0.9 93.0014 10

m=6;r=0.99 93.0702 10

m=7;r=0.01 92.1983 10

m=7;r=0.1 92.1983 10

m=7;r=0.2 92.1983 10

m=7;r=0.3 92.1983 10

m=7;r=0.4 92.1983 10

m=7;r=0.5 92.0606 10

m=7;r=0.6 91.877 10

m=7;r=0.7 92.6801 10

m=7;r=0.8 92.5425 10

m=7;r=0.9 92.5425 10

m=7;r=0.99 92.5425 10

m=8;r=0.01 92.1983 10

m=8;r=0.1 92.1983 10

m=8;r=0.2 92.1983 10

m=8;r=0.3 92.1983 10

m=8;r=0.4 92.1983 10

m=8;r=0.5 92.1983 10

m=8;r=0.6 92.1983 10

m=8;r=0.7 92.1983 10

m=8;r=0.8 92.1983 10

m=8;r=0.9 92.1983 10

m=8;r=0.99 92.1983 10

m=9;r=0.01 92.1983 10

m=9;r=0.1 92.1983 10

m=9;r=0.2 92.1983 10

m=9;r=0.3 92.1983 10

m=9;r=0.4 92.1983 10

m=9;r=0.5 92.1983 10

m=9;r=0.6 92.1983 10

m=9;r=0.7 92.1983 10

m=9;r=0.8 92.1983 10

m=9;r=0.9 92.1983 10

m=9;r=0.99 92.1983 10

164

ENTROPY PARAMS CC #FS
Shannon

99.8853 8

 ENTROPY PARAMS CC #FS
Tsallis

alpha = 1.01 99.9082 7

alpha = 1.1 99.9082 8

alpha = 1.2 99.7476 10

alpha = 1.3 99.7935 10

alpha = 1.4 99.8853 10

alpha = 1.5 99.9082 7

alpha = 1.6 99.8853 10

alpha = 1.7 99.9082 8

alpha = 1.8 99.9312 8

alpha = 1.9 99.9312 6

alpha = 1.99 99.8623 7

 ENTROPY PARAMS CC #FS
Rényi

alpha = 0.01 90.8903 7

alpha = 0.1 90.9133 7

alpha = 0.2 92.3818 7

alpha = 0.3 91.7164 7

alpha = 0.4 91.3722 9

alpha = 0.5 90.3167 6

alpha = 0.6 89.7201 6

alpha = 0.7 88.9399 9

alpha = 0.8 88.894 6

alpha = 0.9 87.4484 7

alpha = 0.99 73.4511 7

165

References

Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for

intrusion detection system. 2012 International Symposium on Communications

and Information Technologies, 296-301.

Alelyani, S., Tang, J., & Liu, H. (2013). Feature Selection for Clustering: A Review.

Retrieved March 12, 2013 from

Alvim, M., Andrés, M., & Palamidessi, C. (2010). Probabilistic information flow.

Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,

314-321.

Anderson, J. (1980). Computer security threat monitoring and surveillance. (Technical

Report), Washington, PA, James E Anderson Co.

Barbará, D., Couto, J., & Li, Y. (2002). COOLCAT: an entropy-based algorithm for

categorical clustering. Proceedings of the eleventh international conference on

Information and knowledge management, 582-589.

Barot, V., Chauhan, S., & Patel, B. (2014). Feature Selection for Modeling Intrusion

Detection. International Journal of Computer Network and Information Security,

7, 56-62.

BotHunter (n.d.). BotHunter Central. Retrieved from http://www.bothunter.net/

Bhuyan, M., Bhattacharyya, D., & Kalita, J. (2011). Survey on incremental approaches

for network anomaly detection. International Journal of Communications and

Information Security, 3(3), 226-239.

Bouckaert, R., Frank, E., Hall, M., Holmes, G., Pfahringer, B., Reutemann, P., & Witten,

I. (2010). WEKA---Experiences with a Java Open-Source Project. The Journal of

Machine Learning Research, 9999, 2533-2541.

CAIDA - The Cooperative Association for Internet Data Analysis. (n.d.). Retrieved

August 5, 2014 from http://www.caida.org

Chen, X., Solomon, I., & Chon, K. (2005). Comparison of the use of Approximate

entropy and sample entropy: applications to neural respiratory signal. In

Engineering in Medicine and Biology Society, 2005. 27th Annual International

Conference of the IEEE-EMBS 2005, 4212-4215.

Chesnokov, Y. (2008). Approximate and sample entropies complexity. Retrieved April 3,

2014 from http://www.codeproject.com/Articles/27030/Approximate-and-

Sample-Entropies-Complexity-Metric

http://www.codeproject.com/Articles/27030/Approximate-and-Sample-Entropies-Complexity-Metric
http://www.codeproject.com/Articles/27030/Approximate-and-Sample-Entropies-Complexity-Metric

166

Cheung, S., & Valdes, A. (2009). Malware characterization through alert pattern

discovery. Proceedings of the 2nd USENIX conference on Large-scale exploits

and emergent threats: botnets, spyware, worms, and more.

Chon, K., Scully, C., & Lu, S. (2009). Approximate entropy for all signals. Engineering

in Medicine and Biology Magazine, 28(6), 18-23.

Denning, D. (1986). An intrusion-detection model. Software Engineering, IEEE

Transactions on, (2), 222-232.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised

discretization of continuous features. Proceedings of the Twelfth International

Conference of Machine Learning, 194-202.

Eclipse (n.d.). Eclipse. Retrieved from www.eclipse.org.

Fares, A., Sharawy, M. I., & Zayed, H. H. (2011). Intrusion Detection: Supervised

Machine Learning. Journal of Computing Science and Engineering, 5(4), 305-313.

Gallagher, B., & Eliassi-Rad, T. (2008). Classification of http attacks: a study on the

ECML/PKDD 2007 discovery challenge. Center for Advanced Signal and Image

Sciences Workshop.

Gappmair, W. (1999). Claude E. Shannon: The 50th anniversary of information theory.

Communications Magazine, 37(4), 102-105.

Gheyas, I., & Smith, L. (2010). Feature subset selection in large dimensionality domains.

Pattern Recognition, 43(1), 5-13.

Guillén, E., Rodriguez, J., Páez, R., & Rodriguez, A. (2012). Detection of Non-Content

Based Attacks Using GA with Extended KDD Features. In Proceedings of the

World Congress on Engineering and Computer Science (1).

Gupta, K., Nath, B., & Kotagiri, R. (2010). Layered approach using conditional random

fields for intrusion detection. IEEE Transactions on Dependable and Secure

Computing, 7(1), 35-49.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The

WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter,

11(1), 10-18.

Harremoës, P. (2006). Interpretations of Rényi entropies and divergences. Physica A:

Statistical Mechanics and its Applications, 365(1), 57-62.

Hammer, B., & Villmann, T. (2002). Generalized relevance learning vector quantization.

Neural Networks, 15(8), 1059-1068.

167

HTTP DATASET CSIC 2010. (2010). Retrieved February 3, 2013 from

http://iec.csic.es/dataset/

Index of releases for malware. (n.d.). Retrieved from http://www.cyber-

ta.org/releases/malware/

Johal, R. S., & Tirnakli, U. (2004). Tsallis versus Rényi entropic form for systems with

q-exponential behaviour: the case of dissipative maps. Physica A: Statistical

Mechanics and its Applications, 331(3), 487-496.

KDD Cup 1999 Data. (1999). Retrieved March 5, 2012 from

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Kumar, S., & Spafford, E. (1994). An application of pattern matching in intrusion

detection. Purdue University, Technical Report CSD-TR-94-013.

Lake, D. (2011). Improved entropy rate estimation in physiological data. Engineering in

Medicine and Biology Society, 1463-1466

Lebowitz, J. (1993). Boltzmann's entropy and time's arrow. Physics Today, 46, 32-32.

Lee, K., Gray, A., & Kim, H. (2013). Dependence maps, a dimensionality reduction with

dependence distance for high-dimensional data. Data Mining and Knowledge

Discovery, 26(3), 512-532.

Lee, T., & He, J. (2009). Entropy-based profiling of network traffic for detection of

security attack. TENCON 2009-2009 IEEE Region 10 Conference, 1-5.

Lima, C., de Assis, F. & de Souza, C. (2012). An empirical investigation of attribute

selection techniques based on Shannon, Rényi and Tsallis entropies for network

intrusion detection. American Journal of Intelligent Systems, 2(5), 111-117.

Liu, C., Liu, C., Shao, P., Li, L., Sun, X., Wang, X., & Liu, F. (2011). Comparison of

different threshold values r for Approximate entropy: application to investigate

the heart rate variability between heart failure and healthy control groups.

Physiological Measurement, 32(2), 167.

Liu, C., & Zhao, L. (2011). Using fuzzy measure entropy to improve the stability of

traditional entropy measures. Computing in Cardiology, 681-684.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for

classification and clustering. IEEE Transactions on Knowledge and Data

Engineering, 17(4), 491-502.

http://iec.csic.es/dataset/
http://www.cyber-ta.org/releases/malware/
http://www.cyber-ta.org/releases/malware/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

168

Manis, G. (2008). Fast computation of approximate entropy. Computer methods and

programs in biomedicine, 91(1), 48-54.

Nguyen, H., Franke, K., & Petrović, S. (2012). Reliability in a feature-selection process

for intrusion detection. Reliable Knowledge Discovery, 203-218.

NSL-KDD Data Set (2009). The NSL-KDD Data Set. Retrieved March 25, 2013 from

http://nsl.cs.unb.ca/NSL-KDD/

Nychis, G., Sekar, V., Andersen, D., Kim, H., & Zhang, H. (2008). An empirical

evaluation of entropy-based traffic anomaly detection. Proceedings of the 8
th

ACM SIGCOMM Conference on Internet measurement, 151-156.

Özçelik, İ., & Brooks, R. (2015). Deceiving entropy based DoS detection. Computers &

Security, 48, 234-245.

Om, H., & Kundu, A. (2012, March). A hybrid system for reducing the false alarm rate of

anomaly intrusion detection system. 1st International Conference on Recent

Advances in Information Technology, 131-136.

Pan, Y., Wang, Y., Liang, S., & Lee, K. (2011). Fast computation of sample entropy and

Approximate entropy in biomedicine. Computer methods and programs in

biomedicine, 104(3), 382-396.

Pincus, S. (1991). Approximate entropy as a measure of system complexity. Proceedings

of the National Academy of Sciences, 88(6), 2297-2301.

Pincus, S., & Keefe, D. (1992). Quantification of hormone pulsatility via an Approximate

entropy algorithm. Am J Physiol, 262(5 Pt 1), E741-E754.

PREDICT - Protected Repository for the Defense of Infrastructure Against Cyber Threats.

(n.d.). Retrieved October 24, 2013 from https://www.predict.org/.

Quinlan, J. (1986). Induction of decision trees. Machine learning, 1, (1), 81-106.

Richman, J., & Moorman, J. (2000). Physiological time-series analysis using

Approximate entropy and sample entropy. American Journal of Physiology-Heart

and Circulatory Physiology, 278(6), H2039-H2049.

Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art.

Psychological methods, 7(2), 147.

Shannon, C. (1948). A mathematical theory of communication. The Bell System

Technical Journal, 27, 379-423.

169

Sharma, N., & Mukherjee, S. (2012). Layered approach for intrusion detection using

naïve Bayes classifier. In Proceedings of the International Conference on

Advances in Computing, Communications and Informatics, 639-644.

Sinai, Y. (2007). Metric entropy of dynamical system. Retrieved March 20, 2013 from

http://web.math.princeton.edu/facultypapers/Sinai/MetricEntropy2.pdf

Snort. (n.d.) Welcome to the new Snort.org. Retrieved July 28, 2014 from

https://www.snort.org/

Songfeng, Z., Xiaofeng, L., Nanning, Z., & Weipu, X. (2003). Unsupervised clustering

based reduced support vector machines. Acoustics, Speech, and Signal Processing,

II-821 – II-824.

SRI. (n.d.). Intrusion detection. Retrieved July 22, 2014 from

http://csl.sri.com/programs/intrusion/

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. (2009). A detailed analysis of the

KDD CUP 99 data set. Proceedings of the Second IEEE Symposium on

Computational Intelligence for Security and Defence Applications.

Ubuntu. (n.d.), Ubuntu Operating System. Retrieved from http://www.ubuntu.com

Vasudevan, A., Harshini, E., & Selvakumar, S. (2011). SSENet-2011: A network

intrusion detection system dataset and its comparison with KDD CUP 99 dataset.

2011 Second Asian Himalayas International Conference on Internet, 1-5.

VB. (n.d.). Oracle VM VirtualBox. Retrieved from https://www.virtualbox.org/

Velayutham, C., & Thangavel, K. (2012, March). A novel entropy based unsupervised

feature selection algorithm using rough set theory. Advances in Engineering,

Science and Management (ICAESM), 156-161

VirusTotal (n.d.). VirusTotal. Retrieved from https://www.virustotal.com.

WEKA 3. (n.d.) Weka 3: Data mining software in Java. Retrieved from

http://www.cs.waikato.ac.nz/ml/weka/

Win8. (n.d.) Microsoft Windows 8 Operating System. Retrieved from

http://windows.microsoft.com/en-us/windows/home

Witten, I., & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann.

https://www.virtualbox.org/
https://www.virustotal.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://windows.microsoft.com/en-us/windows/home

170

Yentes, J., Hunt, N., Schmid, K., Kaipust, J., McGrath, D., & Stergiou, N. (2013). The

Appropriate use of Approximate entropy and sample entropy with short data sets.

Annals of biomedical engineering, 41(2), 349-365.

Yurtkan, K., & Demirel, H. (2013). Entropy-based feature selection for improved 3D

facial expression recognition. Signal, Image and Video Processing, 1-11.

Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015). Intrusion detection and Big

Heterogeneous Data: a Survey. Journal of Big Data, 2(1), 1-41.

Zhai, J., Li, N., & Zhai, M. (2011). The condensed fuzzy k-nearest neighbor rule based

on sample fuzzy entropy. 2011 International Conference on Machine Learning

and Cybernetics, 1, 282-286.

	Nova Southeastern University
	NSUWorks
	2015

	Use of Entropy for Feature Selection with Intrusion Detection System Parameters
	Frank Acker
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1453932473.pdf.k5T35

