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Abstract 

Variable-density, 1 ~- and 2~-layer models are used to examine the behavior of plumes 

resulting from a fresher outflow of transport Mr and salinity Sr into a pre-existing oceanic 

layer of initial thickness HI and salinity Sj. It is found that the plumes exhibit a variety 

of features depending on conditions of the outflow, the situation of the anlbient ocean, and 

external forcing. Perhaps the most interesting feature is that the plume can flow along the 

upstreanl (to the left of the river mouth, looking seaward in the northern hemisphere) coast 

by itself, and the research discussed here is focused on this topic. 

To illustrate how density variations associated with river plumes drive circulations, several 

solutions of geostrophic adjustment to an initially-imposed, V-independent density front are 

investigated. In these solutions, a frontally-trapped alongfront geostrophic current with the 

fresher water to its right (facing in the current direction) is always generated in response 

to the initial pressure gradient across the density front. This density-driven geostrophic 

current is dynamically similar to that resulting from initial disturbances in layer thickness 

h (equivalently, potential vorticity q = f / h) in constant-density models, with low salinity 

(density) in the variable-density model being analogous to the low q in the constant-density 

model. 

Solutions to the 1 ~-layer model driven by river outflow are fundanlentally different in 

low-R" (Rossby number) and high-R" regimes. In the low-R" case, plumes advance along 

both upstream and downstream coasts. IT Mr is less than a critical value Mer (determined 

by /::;.S = Sj - Sr and HI), plumes are coastally-trapped and all the river water;.first flows 

upstream, with some of it, together with some salty water, reversing direction near the plume 

nose to flow along the offshore front, this return flow passes the river mouth and continues 

to flow along the downstream (to the right of the river mouth) coast. When Mr > Mer, the 

plumes expand offshore indefinltely, and some river water must flow downstream directly. 

The evolution of the river plume for the low-Ro solutions can be understood in terms of 

two distinct flow patterns. One is a downstreanl coastal current ("coastal mode") directly 

forced by the river transport; it is dynanlically similar to the response in a linear, constant­

density, l~-layer model, and is responsible for the downstream motion. The other is an 

x 



anticyclonic circulation ("gyre mode") due to geostrophic adjustment of the river plume; 

the coastal current of this circulation is responsible for the upstream motion. Analytical 

solutions illustrate that geostrophic adjustment along the offshore density front generates 

the return flow and that Kelvin waves originating from the plume nose cause the upstream 

flow. They also allow the plume width L and the upstream nose speed c of the nose to be 

determined as a function of model parameters. 

For the high-R" solutions, river water flows directly offshore in a narrow jet. The angle in 

which the jet emerges from the river mouth is found to depend on several non-dimensional 

parameters. Inclusion of entrainment significantly inhibits the upstream plume propagation, 

and makes it difficult to distinguish low-Ro and high-R" solutions. 

In solutions to the 2~-layer model, the upper-layer circulation is not significantly dif­

ferent from that in their l~-layer counterparts. A pre-existing downstream coastal current 

significantly weakens upstream plume propagation; indeed, the upstream advance can be 

completely stopped if the background current is strong enough. Ekman flow and along­

shore currents induced by upwelling-favorable winds push the plume offshore and upstream, 

whereas downwelling-favorable winds result in a coastally trapped plume that is advected 

downstream. 

xi 



CHAPTER 1 

INTRODUCTION 

1.1 Observational background 

In the northern hemisphere, river water typically bends to the right (facing seaward) as it 

flows into the ocean, forming a shallow plume along the right-hand coast. (For convenience, 

the terms "upstream" and "downstream" are introduced to indicate directions oriented to­

ward the left-hand and right-hand coasts, respectively.) Well-documented examples of this 

type of circulation are the outflows from the Delaware Bay (Figure 1; Miinchow and Garvine, 

1993) and the Chesapeake Bay (Boicourt, 1981). In contrast, salinity distributions offshore 

from the mouths of the Changjiang River (Figure 2; also known as the Yangtze River) and 

the Ganges River indicate that some river water flows directly offshore during the summer 

when the discharge is high (Beardsley et al., 1983; Wang, 1988; Murty et al., 1992; Shetye et 

al., 1993). There are also indications that river water can bend to the left to flo~,along the 

upstream coast. A dramatic leftward flow of the Mississippi River outflow occurred after the 

major flood in 1993, with part of the plume flowing eastward along the shelf and eventually 

moving down the west coast of Florida (Walker et al., 1994); according to the authors, the 

eastward flow was externally forced by abnormal westerly wind and by a northward intru­

sion of the Loop current. In addition, the presence of coast ally trapped plumes just north of 

the Yangtze River mouth are suggested by salinity (Figure 8 of Beardsley et al., 1983) and 

suspended sediment (Figure 1 of Cannon et al., 1983). Similarly, a leftward bending of the 

Yellow River plume can be inferred from the accumulation of clay mud in the sediments to 

1 



Figure 1: Typical salinity distributions along the Delaware coast, showing surface salinity 

(upper panel) and a vertical section across the shelf (lower panel) at the location indicated 

by the arrow in the upper paneL The salinity distributions in the upper panel suggest that 

most of the fresher water bends to the right as it exits the Bay mouth. (After Mtinchow 

and Garvine, 1993.) 
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Figure 2: Observed surface salinity distribution during September (upper panel) and Jan­

uary (lower panel), 1986, near the Changjiang River mouth. There is a prominent low­

salinity tongue extending to the northeast in the summer. The salinity distribution in 

the winter suggests that all the river water flows downstream in a narrow band along the 

coast. (After Wang, 1988.) 
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the left of the river mouth (Figure 3; Qin et al., 1990). 

1.2 Theoretical background 

There are already a considerable number of modeling studies that consider the coastal 

circulations driven by river outflow. Here, results from those studies that are most relevant to 

this research are briefly summarized. They are arranged, as much as possible, in a hierarchy 

that varies from dynamically simple to sophisticated systems. There are other studies, not 

reviewed in the following, that examine potentially important processes not present in this 

research. These are, for example, models in which bottom topography and background 

currents are essential dynamical factors (e.g., Beardsley and Hart, 1981; Zhang et al., 1987), 

that examine effects due to external forcing by the winds (Chao, 1988b) , or that require 

supercritical flows (Froude number Fr > 1), that is, currents with speeds greater than the 

gravity-wave speed (e.g., Garvine, 1987; O'Donnell, 1990). The flows in this research are all 

subcritical (Fr < 1). 

1.2.1 Linear, constant-density, 1 !-layer models: Perhaps the simplest ocean model 

for studying river outflow is a linear, 1!-layer, constant-density system in which river water 

with the same density as that of the model's active upper layer is introduced via a side-wall 

boundary condition. Such a system has been considered by Minato (1983). In his solutions, 

a coastal current is generated in response to the outflow that flows almost entirely along the 

downstream coast. When the river mouth is smaller than a Rossby radius of deformation, a 

small amount of water first moves somewhat upstream before reversing to flow dciWnstream. 

The downstream coastal current is created by the radiation of coastal Kelvin waves that 

are excited by the high pressure associated with the geostrophically balanced outflow. The 

upstream component is generated by the radiation of gravity waves, since it does not oc­

cur in a model that assumes alongshore geostrophy. Although this model is too simple to 

have much realism, it does reveal one basic dynamical feature of all river-outflow problems: 

the important role of coastal Kelvin waves in establishing the downstream coastal current. 

Ikeda (1984) and Kundu and McCreary (1986) obtained analogous solutions, the latter using 

a continuously stratified linear model. 
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Figure 3: Sediment distribution in the Gulf of Bohai in the East China Sea. A large patch 

of clay mud, originating from the Yellow (Huanghe) River mouth located at the lower left 

corner, suggests that the river water flow to the left. (After Qin et at., 1990.) 
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1.2.2 Nonlinear, constant-density, l~-layer models: Kubokawa (1991) utilized 

a nonlinear, quasi-geostrophic, constant-density, 1~-layer model to study the behavior of 

outflow from a sea strait. The outflow, with a total transport M., generally consisted of two 

pieces that differ in the values of potential vorticity, q. The value of q for the left-hand was 

q = 0 (relative to the potential vorticity of the ambient sea water), whereas it was q = P < 0 

for the right-hand piece. As in the linear model just discussed, the density of the outflow 

was the same as that ofthe water in the oceanic layer. 

In contrast to the linear case, Kubokawa's nonlinear solutions depended crucially on the 

structure of q across the sea strait and the value of Mr. When the ratio of the transport of 

q = P water to the total transport of the outflow, cp , was less than some critical value, CPer 

(determined by the total transport Mr and P), a steady-state solution developed in which all 

the q = P water flowed downstream in a coastal current bounded by an offshore front of finite 

width. When CPcr < cp < 1, an anticyclonic gyre developed offshore from the mouth of the 

sea strait. When cp = 1, so that all the outflow was q = P water, some water always flowed 

upstream regardless of the value of Mr. In fact, all the outflow turned to flow upstream for 

values of Mr small enough for the properly non-dimensionalized parameter, -P/M., to be 

greater than 1. [These results were duplicated in a constant-density version of our numerical 

model, equations (1) below, that conserved both energy and enstrophy (Arakawa, 1981).J 

The tendency of water with low potential vorticity to concentrate along the upstream coast 

was also reported in Nof (1978) and Hermann et al. (1989). 

Kubokawa's specification of a piecewise distribution of q for the outflow greatly simplified 

the calculation and analysis of his solution. With this choice, the evolution odhe q = P 

water was determined by the advection of the front between the q = P and q = 0 waters 

(i.e. , by contour dynamics method). Velocities that advect the front can be viewed as 

consisting of two parts. The first part is a downstream coastal current established by the 

radiation of coastal Kelvin wave in response to the onset of the outflow, essentially the same 

response as in Minato's solution. The second part is an anti-cyclonic circulation associated 

with the potential vorticity anomaly of the q = P water. Kubokawa focused his attention 

on solutions without upstream propagat ion of q = P water. He only commented on the 

upstream propagation in his cp = 1 solutions, stating that it was due to advection by an 
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"image vortex," since in this case the solution can not separate from the coast. 

1.2.3 General Circulation Models: Nonlinear, general circulation models (GCMs) 

have been used to study river plumes in a number of studies (Chao and Boicourt, 1986; Chao, 

1988a; Chapman and Lentz, 1994; Kourafalou et al., 1996). All these models are driven by 

an input of river water with a density less than that of the sea water. They can have either 

a flat bottom or a sloping shelf. The Chapman and Lentz (1994) model is unique in that 

the momentum-advection terms are neglected. 

Solutions to the GCMs generally produce a downstream coastal current, an anticyclonic 

gyre near the river mouth, and also some upstream movement of river water. For example, 

in a typical test run of the Kourafalou et al. (1996) model without bottom topography, the 

model responded to the outflow by generating first a downstream coastal current, then an 

offshore expansion and upstream advection of river water, and finally unstable waves on the 

downstream flow. 

Because of their complexity, it is difficult to understand the dynamics of the circulations 

in the GCM solutions. However, a comparison among the various solutions provides some 

information about the parameters that control aspects of the solutions. In Chapman and 

Lentz's (1994) solutions, for example, there is never an offshore expansion of the plume near 

the river mouth, suggesting that momentum advection (neglected in their model) plays a 

crucial role in this expansion. In addition, the upstream motion in this model is sensitive 

to the horizontal gradient of density, suggesting that density advection is responsible for the 

upstream movement. 

1.3 Present research 

The goal of this research is to understand the dynamics that determine the response of the 

coastal ocean to river outflow. In particular, under what conditions do river plumes move 

downstream, upstream or expand offshore? Since there is almost no work that explicitly 

discusses the dynamics of upstream movement, a large part of the thesis work is focused on 

this issue. 

The ocean models used are all variable-density, l~-layer and 2~-layer systems in which 
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density is allowed to vary horizontally within each active layer. Thus, in contrast to the 

constant-density layer models discussed in Sections 1.2.1 and 1.2.2, these models can simulate 

the outflow of river water that is fresher than the ocean. Such systems emerged out of 

efforts to include entrainment and thermodynamics in models of the surface mixed layer 

(Schopf and Cane, 1983; de Szoeke and Richman, 1984), and they are now being imbedded 

in GCMs (Chen et al., 1994; Schopf and Loughe, 1995; Bleck et al., 1989). Their advantage is 

dynamical simplicity, which allows processes at work in them to be readily diagnosed. At the 

same time, they are dynamically sophisticated enough to simulate realistically oceanographic 

phenomena that range from large-scale circulations (e.g., Chen et al., 1993) to small-scale 

frontal instabilities (Fukarnachi et al., 1995). In the present context, their major limitation 

is that, since the deep ocean is assumed inert, effects due to shelf topography are explicitly 

excluded. On the other hand, the processes that determine the basic properties of solutions 

(alongfront geostrophic adjustment and radiation of coastal waves) in this study are also 

present in shelf models, and therefore they will provide insights into the dynamics of these 

more complex systems. 

The remainder of the thesis is organized as follows. Chapter 2 describes the models 

used. Chapter 3 reports a sequence of solutions resulting from geostrophic adjustment to 

an initially unbalanced density front, which are intended to reveal dynamical insight into 

circulations driven by horiwntal density gradients. In Chapter 4, solutions and dynamics 

of river-outflow-driven circulations in the 1 !-layer models are discussed. Chapter 5 provides 

a discussion of 2!-layer model solutions that examine effects caused by lower-layer inflow, 
;.;,­

background currents and wind stress. Finally, Chapter 6 provides a summary and discussion. 

Solutions will be compared to others mentioned above at several places in the text. 
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CHAPTER 2 

THE OCEAN MODELS 

Figure 4 provides a schematic diagram of the l~-layer modeL It consists of an oceanic 

mixed layer with initial layer thickness HI, salinity SI and temperature T{, overlying an 

inert deep ocean of salinity Sd and temperature Td where the pressure gradient field vanishes. 

River water with salinity Sr and temperature Tr is introduced into this layer through the 

side wall, thereby generating motion in the layer and forming a fresher water plume. Across 

the front between the plume and the oceanic water, salinities and layer thicknesses vary 

continuously when the model includes horizontal mixing, and discontinuously when it does 

not (as is depicted in Figure 4). The 2~-layer model is an extension of the l~-layer model 

that includes an additional active layer (the lower layer) between the upper layer and the 

deep ocean. 

2.1 Governing equations 

2.1.1 Nonlinear, l~-layer model: Equations of motion for the nonlinear, l~-layer 

model are 

Slt + VI· 'VSI = IiS'V2SI + ~(We + Iwel)(SrSIJlhl, 

Tlt + VI · 'VTI = IiT 'V2TI + ~(We + Iwel)(TrTIJlhl , 

12 

(la) 

(lb) 

(lc) 

(ld) 



Figure 4: A schematic diagram of the variable-density, 1~-layer model. Initially, there is 

an oceanic mixed layer of thickness H 1, salinity 8j and temperature Tj overlying a deep 

ocean of salinity 8d and temperature Td • River water with a transport M., salinity 8
r 

and 

temperature Tr is discharged into the upper layer to form a fresher water plume and drive 

the motion. The instantaneous layer thicknesses, velocities, salinities and temperatures 

are h1 , V1, 81 and T1 , respectively. Density jumps across the front between the fresher 

and salty regions when there is no mixing (as illustrated in the figure) and varies smoothly 

when mixing is included. 
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where h1' VI, 8 1 and TI are instantaneous values of layer thickness, velocity, salinity and 

temperature. The quantities /I, Kr and KS are coefficients of horizontal mixing in the momen­

tum, temperature and salinity equations, respectively. The Coriolis parameter f is assumed 

to be constant. 

The depth-integrated pressure gradient in the layer term in (1a) is 

(2) 

where 

(3) 

is the reduced-gravity coefficient, 

(4) 

is the upper layer density, and aT and as are coefficients of expansion. Throughout the 

thesis, PI - ~g~ h~ is referred as the depth-integrated pressure. Equation (2) results from 

requiring that the pressure gradient in the deep layer vanishes, a condition assumed in all 

reduced-gravity models, and for convenience a factor of Pdf PI (>::; 1) is included in the second 

term. Note that the second term of (2) is due to variations of layer thickness, as in a 

constant-density, 1 ~-layer model, whereas the third is caused by horizontal density gradients 

within the layer. The existence of these two terms suggests that there are two distinctively 

different driving mechanisms associated with river outflow: the mass input that causes \1hl 

and the fresher water input that causes \1 g~. This difference is explored in Secti~J]. 3.1.2. 

Velocity We parameterizes entrainment and detrainment, the processes that allow water 

to transfer from one layer to another. Its default value is zero. When specified otherwise, it 

is defined as 

W = He - h1 B(H _ h ) _ hI - Hd B(h _ H ) 
e t e 1 tId, 

e d 
(5) 

where B represents a step function. Parameters He and Hd are prescribed critical values of 

layer thicknesses at which entrainment and detrainment are switched on, respectively, and te 

and td are the corresponding time scales of relaxation. The tenns involving We in equation 

(1) are formulated in such a way that conservation of momentum, mass, salinity and heat is 
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ensured. Equation (5) and variations of it have been successfully used in a number of studies 

(e.g., McCreary and Kundu, 1989). 

Due to the horiwntal mixing on temperature and salinity in equations (lc) and (ld), 

density necessarily varies continuously across the front. For the analytic solutions obtained in 

Section 4.1.3, however, mixing is neglected. In these solutions, density jumps discontinuously 

across the front, and the model equations are those for a constant-density system in the region 

on either side. The system can still be regarded as a 1~-layer, variable-density model, since 

the two regions have different densities and they are both part of the upper layer. 

2.1.2 Linearized, l!-layer model: A nearly linear version of the above model is 

Vlt + JUI + CPy = 0, 

hit + HI (Ulx + Vly) = 0, 

where the depth-averaged pressure is given by 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 

In these equations, variables with a tilde are deviations from a motionless background state 

consisting of a uniform layer of thickness HI, constant density Po , and hence a constant 

reduced-gravity coefficient g~ = g(Pd- Po) / Pd. It is noteworthy to point out that the disturbed 

" reduced-gravity g;. = g(po - PI)/ Pd is directly related to the density perturb~tion by a 

constant. Note that if g;. 0, (6) reduces to the set of linear equations for a constant-density 

layer modeL The g;. term in (7) is the pressure gradient generated by density variations within 

the layer, the equivalent of the third term in equation (2) for the nonlinear modeL 

The linearization of the momentum and continuity equations make it possible to draw 

a parallel between circulations driven by density variation in this model and by potential­

vorticity variation in a constant-density model (see Section 3.1.3) . It also allows the river­

outflow driven circulation to be split into two distinct parts in order to understand the 

dynamics. The only nonlinear terms retained in (6) are the advection terms in equation 
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(6d); they allow the studies of the slow evolution of river plumes, which is necessarily an 

advective process. Note that equation (6d) is derived by combining the inviscid version of 

equations (lc) and (ld) and by using (3) and (4). 

2.1.3 Nonlinear, 2~-layer model: Equations of motion for the upper layer of the 

2~-layer model are 

hlt + 'V. (hlVl) = We, (8b) 

Slt + Vl . 'VSl = K.S'V2S1 + ~(We + Iwe l)(S2-S1)/h1, (8c) 

Tlt + Vl . 'VTl = /Vr'V2Tl + ~(we + Iwel)(T2-T1)/hl, (8d) 

where T = TXi+TYj is the wind stress forcing the model and is set to zero for all the solutions 

except for those in Section 5.3. Equations for the lower layer are 

(h2V2)t + 'V. (V2h2V2) + fk x (h2V2) + h2(~'VP2) = v'V2(h2V2) - bh2V2, (9a) 
P2 

h2t + 'V . (h2V2) = -We, (9b) 

S2t + V2 . 'VS2 = K.S'V2S2 + ~(-We + Iwe l)(Sl-S2)/h2, (9c) 

T2t + V2 • 'VT2 = K.T'V2T2 + H -We + Iwe l)(Tl -T2)/h2 , (9d) 

where h2, V2, S2 and T2 are lower-layer thickness, velocity, salinity and temperature. Depth­

integrated pressure gradients in the two layers are 

(1Oa) 

(lOb) 

where 

(11) 

and 

(12) 
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are the reduced-gravity coefficient and density for the lower layer. The term -bh2V2 IS 

included only for solutions that include forcing by the wind (see Section 5.3). 

2.2 Basin and boundary conditions 

For most numerical solutions, the model basin is a north-south mannel 600 km long and 

150 km wide; however, the width of the channel is increased to 300 km in solutions when a 

large offshore plume develops. For most solutions driven by river outflow, the river mouth 

is centered at y = y = 300 km along the western boundary and has a width W of 25 km. 

The origin of the coordinate system (x, y) is located at the southwestern corner of the basin, 

with x and y being directed toward the east and north, respectively. 

Open northern and southern boundary conditions are imposed in all calculations. They 

are 

(13) 

where subscript i = 1,2 is a layer index. In addition, for the solutions in Chapter 3, linear 

dampers that relax fields to their background state are included within 12.5 km of those 

boundaries. 

No-slip, closed, boundary conditions, 

(14) 

are adopted along the eastern and western boundaries for solutions with horizontal mixing. 

The constraints VV; = KSSix = KTT;x = 0 along these boundaries are not applicable for the 

inviscid systems, so that their boundaries are slippery. 

Within the river mouth (y - ~ W < y < y + ! W), upper-layer boundary conditions are 

(15a) 

(15b) 

where Mr, Sr and Tr are the specified transport, salinity and temperature of the outflow, 

respectively. Note that Tr is set to Ti, the initial temperature of the upper layer. Unless 

specified otherwise, the across-stream structure of the outflow is 

() 
7r. ( Y - Yl) 

Y Y = 2W sm 7r W ' (16) 
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where Yl = Y - ~ W. The time function is 

{ 
tlot 

T(t) = ' 
1, 

0 < t ~ ot 
t> ot, 

(17) 

that is, a ramp with the time scale lit = 1 day. With this choice for ot, inertial oscillations 

are effectively inhibited. Where applicable, lower-layer boundary conditions within the river 

mouth are 

(ISa) 

(ISb) 

The lower-layer transport M2 is not independent from Mr, and its specification is provided 

at the beginning of Chapter 5. 

2.3 Numerical methods and parameter choices 

Numerical solutions are found on a staggered grid, with hi, Si and To points located at 

the center of the grid boxes, and Ui and Vi points located on their meridional and zonal 

edges, respectively (the C-grid of Arakawa and Lamb, 1977). The size of the boxes is usually 

/::;x = /::;y = 2.5 km, which is adequate to resolve plume widths for most solutions; exceptions 

are for some of the solutions that produce the data points in Figure 14, which have very 

narrow plumes, and the grid size is reduced to 1 km for these solutions. Except mixing 

terms which are integrated in time using forward scheme, all other terms are integrated in 

time using the leapfrog scheme. The time step /::;t is 3 minutes. Fields are averaged between 

successive time levels every 41 time steps to inhibit time-splitting instability. 

Terms involving horizontal gradients are generally formulated by using the centered-

difference scheme. An exception is for the advection terms in the salinity and temperature 

equations, where an upwind-difference scheme is used to ensure positive definiteness. Solu­

tions that utilize centered-difference advection can develop salinity values greater than Si 
and less than Sr; however, their overall structure is not much changed, which indicates that 

the additional numerical mixing associated with the upwind scheme is not a problem. 

Unless stated otherwise, parameter values are those listed in Table 1. They are either 

physically realistic or numerically sensible choices. For example, salinity near the mouth of 
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the Changjiang River varies from 5 to 25 during the summer; farther offshore, there is a 

mixed layer in the upper 10-20 m where salinity and temperature are about 30 and 25°C, 

overlying a bottom layer where they are about 33 and 15°C (Limeburner and Beardsley, 

1982). The annual-mean transport of the Changjiang River is 3 x 104 m3/s, with a peak 

value of 4.5 x 104 m3 /s during the summer (Beardsley et al., 1983). In contrast, the annual­

mean discharge of the Delaware River is only 4 x 102 m3 /s, with a peak outflow of 2 x 103 m3 /s 

(Mtinchow and Garvine, 1993). Our standard river transport, Mr = 104 m3/s, corresponds 

to a moderate-to-strong outflow. Note that in the 1~-layer model, 8d and Td have the values 

of 82 and T;, respectively. 
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Table 1: A list of parameter values used in all runs unless specified otherwise. The drag 

coefficient b is zero for all but one of the solutions in Section 5.3, where it is set to 

0.5 x 10-4 S-1. 
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Parameter Notation Value 

Coriolis parameter f 0.8 x 10-4 s-1 

Coeff. of thermal expaJ'lSion aT 2.5 X 1O-4oC-1 

Coeff. of salinity expaJ'lSion as 0.8 X 10-3 

Deep-ocean density Pd 1.024 g/cm3 

Mixing coeffs. 1I, KT, fis 105 cm2/s 

Drag coeff. b o S-1 

Initial layer thicknesses HI, H2 10, 25 m 

Initial layer temperatures T{, T:; 25, 15°C 

Initial layer salinities St, S:;' 30, 35 

Deep-ocean temp. (1~-layer model) Td 15°C 

Deep-ocean temp. (2~-layer model) Td 5°C 

Deep-ocean salinity Sd 35 

Outflow traJ'lSport Mr 104 m3/s 

River temperature Tr 25°C 

River salinity Sr 20 ;:t' 

Thicknesses for We H., Hd 7.5,12.5 m 

Time scales for We t., td 2Llt 

Wind stress r X
, T Y 0, 0 dyn/cm2 
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CHAPTER 3 

GEOSTROPHIC ADJUSTMENT 

Properties of geostrophic adjustment are investigated in this chapter. The investigation 

is intended to provide insights into how horizontal density gradients in the upper layer drive 

circulation in the river-outflow-driven solutions discussed in the next chapter. Specifically, 

in Sections 3.1 and 3.2, responses to an initially unbalanced, y-independent density front 

are obtained using both the linear and nonlinear versions of the variable-density, l!-layer 

model, and they are compared with analogous solutions to constant-density layer models. 

In these solutions, the front between the fresher and salty regions is kept vertically-oriented 

throughout the adjustment. In Section 3.3, an analytic solution is obtained by using a 

combination of constant-density, l!-layer and 2!-layer models that allows the front to slant. 

3.1 Solutions to the linearized, l!-layer model 
~. 

Consider a situation in which initially there is a y-independent density front in a variable-

density, q-layer modeL The front is formed by two quiescent water masses that meet along 

x = O. The initial layer thicknesses and temperatures for both water masses are uniformly 

HI and T{, and the salinities are Si and Sr « Si) in regions to the right (x > 0) and left 

(x < 0) of the front, respectively. The right-hand region is referred as the background state, 

so that Po = Pd[l-O:T(T{-Td)+o:s(Si -Sd)]. There is an unbalanced pressure gradient force 

across the front, and the system subsequently adjust towards equilibrium by gravity-wave 

radiation. 
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3.1.1 Numerical results: The y-independent version of equations (6a)-(6c) is numer­

ically integrated when the parameters are those listed in Table 1. For simplicity, equation 

(6d) is not integrated, so that the density front remains steady. In addition, to minimize 

inertial oscillations, the salinity in the region x < 0 is gradually decreased to its prescribed 

value from Si through a ramp of the form (17) instead of being suddenly imposed. 

Figure 5 shows solutions at day 20, by which time the system has nearly reached a steady 

state. The prominent feature of these solutions is a frontally-trapped alongfront current. The 

maximum speed of this current is attained at the front and its value is 21 cm/s. Note that 

layer thickness hI thins and thickens towards the density front from the left and right sides, 

respectively, consistent with geostrophically balanced current. As a result, hI jumps by 4.9 

m across the front, which has a width of 2.5 km due to the finite grid size. 

3.1.2 Analytical results: The steady-state response can be easily solved for analyt­

ically. Conservation of potential vorticity (factored by a constant HI) for system (6a )-( 6c), 

that is, (lltx - Uly - f.htlt = 0, yields an equation in <I> alone 

-' 

V'2<1> - R+2<1> = -kf29~ + fih, 
90 

(19) 

where R+ = V 9~Ht/ f is the Rossby radius of the background state, and the quantity 

ih = (lltx - Uly - £, hl)t=o is the initial potential vorticity perturbation multiplied by HI· 

For the variable-density model, it is always zero since the initial condition is motionless and 

the layer thickness is unifonnly HI. 

To solve (19), the boundary conditions <I> = 0 as x --t ±oo, as well as the frontafmatching 

conditions 

@ x= O, (20) 

are utilized, where subscripts "-" and "+" denote solutions in regions x < 0 and x > 0, 

respectively. These conditions are the linearized version of the corresponding conditions for 

the nonlinear case in next section. [See the discussion of (24).J 

The resulting solutions are 

(21a) 
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Figure 5: Day-20 numerical (thick curves) and steady-state analytic (thin curves) solu­

tions resulting from geostrophic adjustment of a y-independent density front in a linear, 

variable-density, l!-layer model. The upper panel shows layer thicknesses hI, and the 

lower panel plots the corresponding alongfront velocities VI. For the analytic solution, the 

jump in layer thicknesses across the density front is 6.1 m, and the maximum speed of 

the current is 24.5 cm/s. For the numerical solution, the front has a width of 2.5 km due 

to the finite resolution of the staggered grid, the jump in hI is 4.9 m and the maximum 

speed of the current is 21 cm/s. 
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and the frontal current associated with (21a) is 

- 1 --'H xl'" v = ---g Ie '....-- 4fR+ 1 , 
(21b) 

which follows from geostrophy [the steady-state balance of (6a) and (6b)]. Solution (21) 

demonstrates that the decay scale of the geostrophic current is R+. In addition, VI and hI 

are proportional to ~, indicating that the density gradient is the driving force of the flow. 

Figure 5 also plots hI = HI + hI and VI for the analytic solution. Both fields are virtually 

identical to their numerical counterparts everywhere except near the density front, where 

the maximum speed (24.5 cm/s) and the jump in hI (6.1 m) are slightly higher than the 

numerical ones, the differences being due to the finite resolution of numerical grid. 

3.1.3 Comparison with constant-density model: The above solutions are similar 

to those in a constant-density model that result from the geostrophic adjustment to an 

initially imposed jump in layer thicknesses (e.g., Gill, 1982). This similarity suggests that 

there is a dynamical connection between the driving mechanisms of density perturbation in 

the variable-density model and of potential-vorticity perturbation in a constant-density layer 

model. That connection is 
-' "'" gl _ _ 2q1 
g~ - l' (22) 

which can be found by equating the two terms on the right-hand side of equation (19). The 

above relation ensures that the two driving forces result in the same geostrophic currents 

when they acts separately .. 

Equation (22) establishes an equivalence between low salinity (high ~) in thi'! variable­

density model and low potential vorticity in a constant-density model: each anomaly drives 

the same geostrophic current. In the above example, g~ = 6.37 cm/s2 and ~ = 7.8 cm/s2
, so 

that q;: = -0.6f, which is equivalent to a perturbation in initial layer thickness ofhj = 6 m. 

This means that the geostrophic adjustment to an initial disturbance of 6 m in layer thickness 

in the region x < 0 in a constant-density model will generate exactly the same geostrophic 

current as discussed above. Moreover, the transient solution for VI is also the same as in 

the corresponding constant-density model since equations (6a)-(6c) have exactly the same 

form in each system. The only difference is that layer thickness in the variable-density model 
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jumps across the front in order for pressure to remain continuous. 

3.2 Solutions to the nonlinear, l~-layer model 

3.2.1 Numerical results: The y-independent, inviscid version of equations (1) is in­

tegrated, and the day-20 solution is shown in Figure 6. It is similar to the linear solution, 

suggesting that the nonlinearity is not a fundamental process. The maximum current (15 

cm/s), and the difference between the lowest and highest hl (2.1 m) across the front, are 

both smaller than their linear counterparts. This weakening is due to internal mixing caused 

by the upwind scheme on salinity during the adjustment (which did not influence the linear 

solution since the density equation was not integrated). 

3.2.2 Analytic results: In this case, the density front is allowed to move during the 

adjustment, and as a result, it shifts to the right by a distance c in the steady state. To 

obtain the steady-state analytic solution, separate solutions are found in the fresher-water 

( - 00 < x < c) and salty water (c < x < +00) regions, and then they are matched across 

the front. The fluid conserves potential vorticity in each region, a consequence of the second 

term followed the first equal sign in (2) being identically zero. It follows that 

(23) 

where j = - and + represent regions of fresher water and salty water, respectively, and 

Rj = v' gjHd f are the Rossby radii in the corresponding regions. To solve (23), boundary 

conditions hj -+ Hl as x -+ ±oo, as well as frontal matching conditions 

19' h2 = 19' h2 
2-- 2++ @x=c, (24) 

are needed. The first condition in (24) results from the constraint u_ = u+, which ensures 

that two water particles initially adjacent to each other across the front will never separate 

during the adjustment: Since dVj/dt + fUj = 0 is true for every water particle, it follows im­

mediately that v_ = V+ and hence g~(h_)x = g~(h+)x by geostrophy. The second condition 

follows from energy conservation. 

The resulting solutions are 

h_ = Hl [1 _ 1 ; 'Y e(x-e)/ R_ ] , (25a) 
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Figure 6: As in Figure 5, expect for nonlinear, variable-density, l~-layer model. For the 

analytic solution, the density front in the steady state shifts to the right by a distance 

c = HR- - R+) = 2.5 km, the jump in layer thicknesses across the front is 4.1 m, and 

the maximum speed of the current is 19.2 cm/s. For the numerical solution, the density 

front is broadened due to implicit mixing on salinity by the upwind advection scheme, 

and there is no jump in hI. The maximum value of VI is 15 cm/s. 
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where 'Y = 14/ R_ < 1, and the corresponding alongfront currents are 

1 - 'Y )/ 
V = - c _ _ e (x-e lL 

- - 2 ' 
1- '" _ I -(x- e)/ R,-V+ - - c_-

2
- e , (25b) 

where c_ = J g~HI is the characteristic wave speed of the fresher water region. The am­

plitudes in both alongfront current VI and thickness perturbation hI - I:h are proportional 

to 1 - 'Y = (R_ - R+) / R_, which in turn is proportional to the density difference between 

the two waters. This property is consistent with that in the linear case. The distance E: is 

obtained from mass conservation for each water mass, which gives 

(26) 

(See Glendening, 1993, for an analogous problem in a constant-density model.) It can be 

proved that as R_ --t R+, the nonlinear solution (25) reduces to the linear one (21). 

This analytic solution is also plotted in Figure 6. Much like the linear solution, a frontally­

trapped geostrophic current is established with a decay scale of R_ (15 krn) and R+ (10 krn) 

in the fresher and salty water regions, respectively. The maximum speed at the front is 

19.2 cm/s, the jump in hI is 4.1 m and the frontal displacement is only 2.5 krn, considerably 

smaller than either R_ or R+. The corresponding numerical solution showed no significant 

shift, probably because of the gradual spin-up of the fresher-water region. 

3.2.3 Comparison with constant-density model: Properties of the above solu­

tions are very much like those obtained from a geostrophic adjustment to an initial distur­

bance in layer thickness in the nonlinear constant-density layer model of Glendenil'lg (1993). 

The common feature in these solutions is that geostrophic adjustment generates a frontally­

trapped current that decays away from the front with a scale of the Rossby radius. Moreover, 

the amplitude of the current and the displacement of the front are both determined by the 

difference in Rossby radii between the two regions. However, the difference in Rossby radii 

is due to density difference in the former and due to layer thickness in the latter. 

Similar to equation (22), a quantitative relation can be found that relates forcing by 

layer-thickness and density anomalies. Suppose initial layer thicknesses are allowed to be 

different, i.e., to be H_ and H+ in the fresher- and salty-water regions, respectively. Then 
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the solution to equation (23), with HI being replaced by H j , for the alongfront velocity is 

- V -(x-E)/14 v+ - e , (27) 

where 
H_IH+,jg'_lg~ -1 

c+, 
1 + JH-IH+ 

V= (28) 

where c+ = Jg~H+. The numerator of the fraction in equation (28) indicates that either 

H_IH+ > 1 in a constant-density model (g~/g~ = 1) or g~/g~ > 1 in a variable-density 

model with initial uniform layer thickness (H_IH+ = 1) can drive a southward geostrophic 

current (V < 0). To quantify the relation between these two forcings, simply equate the 

value of V when H_I H+ = 1 and that when g~1 g~ = 1, which yields 

(29) 

where q± are the corresponding potential vorticities. In the limit g~ - g~ and H_ - H+ are 

small, it can be easily proved that equation (29) reduces to equation (22). 

3.3 Solutions with a slanted front 

3.3.1 Analytical solution: In the previous solutions and throughout the rest of this 

thesis, the density front within the layer is kept vertically oriented. In the real ocean, 

however, fronts are often observed to be tilted, especially in regions where vertical mixing is 

not strong (Young, 1994). Using a combination of constant-density, 1 ~- and 2~-layer models, 

it is possible to obtain an analytic solution with a slanted front that otherwise c6rresponds 

to the solutions in Section 3.2.2; indeed, the initial states are identical in both cases. The 

derivation of this solution is described in Appendix A. 

The thin curves in Figure 7a show the resulting solution. Note that the solution has the 

structures of a 2~-layer model within the frontal zone (c_ < x < c+) and of a q-layer model 

elsewhere. Layer thicknesses for fresher-water and salty-water vanish at x = c+ = 10.5 km 

and x = c- = -5.5 km, respectively. A slanted density front tilts upward from the fresher 

to the salty-water region (upper panel), similar to a cold front in the atmosphere. In the 

fresher-water layer, an alongfront geostrophic current flows everywhere in the direction with 

32 



the salty water to the left. This current attains its maximum velocity (-86.4 cm/s) at 

x = c+. In the salty-water layer, the water flows in the same direction as in the fresher water 

layer for x > 4.2 km; within the frontal zone, there is a region (c < x < 4.2 km) where 

the water flows in the opposite direction, and its maximum velocity (45 cm/s) is attained at 

x =c-. 

3.3.2 Comparison with the variable-density, 1 ~-layer model: For comparison, 

hI and VI from the solution in the previous section are also plotted in Figure 7a (thick curves), 

together with the mean current for the analytic solution, 11 = (h+v+ + h_v_)/(h+ + h_) 

(dashed curve). The two solutions nearly overlap outside the frontal zone, and the numerical 

VI compares reasonably well with 'iJ even inside the frontal zone. This good agreement 

suggests that the variable-density, 1 ~-layer model does properly represent the basic dynamics 

of geostrophic adjustment, despite its restriction to vertically oriented fronts. 

Some properties of the slanted-front solution are missed in solutions to the variable­

density, l~-layer modeL To see this, the latter solution is split into fresher water (h l _ and 

p_) and salty water (h1+ and p+) components such that 

(30) 

Thicknesses h l _ (short-dashed curve) and h1+ (long-dashed curve) are plotted together with 

their counterparts for the slanted-front model (solid curves) in the upper panel of Figure 

7b. The transport for each water type, hI_VI (short-dashed curve) and h1+vI (long-dashed 

curve), as well as their counterparts for the slanted-front model (solid curves), arEf'plotted in 

the lower paneL The total transports of the fresher- and salty-water flows for the variable­

density, 1~-layer solution are -2.6x 104 m3 Is and -2.1 x 104 m3 Is, respectively, whereas they 

are -4.4 x 104 m3 Is and -0.5 x 104 m3 Is, respectively, for the slanted-front solution. Possible 

effects of the weak salty-water transport in the slanted-front solution on river-outflow-driven 

solutions are discussed in Section 4.1.5. 
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Figure 7a: Comparison of steady-state solutions (thin curves) of y-independent, geostrophic 

adjustment for the slanted-front model described in Appendix A with day 20 solutions 

(considered to be in steady state) of the nonlinear, variable-density, l~-layer model from 

Figure 6 (thick curves). The dashed lines in the upper panel indicate the initial interfaces 

between the waters with densities p_ < P+ < Pd. In the slanted-front solution, a frontal 

zone forms in the region c_ < x < c+, and the front tilts upwards towards the salty 

water (of density P+) region. Layer thicknesses h_ and h+ vanish at x = c+ and c, 

respectively (upper panel). In the fresher layer, the current is uniformly southward; 

whereas in the salty layer, it is southward except that a northward flow is generated 

in the region c_ < x < 4.2 km (lower panel). The vertically-averaged alongshore flow 

v = (h_v_ + h+v+}/(h_ + h+) within the frontal zone is also plotted (dashed curve). The 

two solutions nearly overlap outside the frontal zone, and the numerical VI compares well 

with v inside the frontal zone. 
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Figure 7b: Similar to Figure 7a, except contrasting the fresher- and salty-water parts of the 

variable-density, q-layer solution and the slanted-front solution. The upper panel shows 

h1_ (short-dashed curve) and h1+ (long-dashed curve) for the variable-density, l~-layer 

solution, as well as those for the slanted-front model, h_ and h+ (solid curves). The lower 

panel shows the corresponding fresher- and salty-water transports for the two solutions. 

36 



..-. en 
c\I-
E 
U 

"<t 
0 
,...-

X 
~ 

> .r::. 

-25 
o 

5 h P-

E-

, , , 

x (km) 
O 

\ . , 
\ : I , , 

~, I 

! ~ 

, \ , \ 

, , 
, , , , 

\ 

\ 

10 ------.-------.. . -.. - - ------ - ----- ~ --- - -_\,-----, 

Pd 

1 

0 l __ , , , , 
\ , 

- " - "-- , 
\ -1 , , , , , 

.... -_# 

-2 

-3 

37 

f+ 25 

P+ h+ 

, 

;;.' 



CHAPTER 4 

SOLUTIONS TO THE l§-LAYER 
MODEL 

In this chapter, solutions to the l~-layer model that are driven by river outflow are 

discussed. Sections 4.1 and 4.2 contrast solutions when the Rossby number (Ro) of the 

outflow [defined by Ro = 2U / jW, where U is the maximum velocity at the river mouth and 

can be estimated using equation (15a)] is low and high, respectively. Section 4.3 reports 

solutions when entrainment is included, and in this case the difference between the high­

and low-Ro solutions tends to disappear. 

4.1 Low-Ro solutions 

In the low-Ro regime, a prominent feature of solutions is that the plume advances along 

both upstream and downstream coasts (Section 4.1.1). Using multiple time scalejn Section 

4.1.2, it is shown that, in the linear system, the plume motion is controlled by the slow 

advection process after the fast wave passed by. The total flow that advects the plume can 

be split into two distinct parts: a coastal mode and a gyre mode, corresponding to the direct 

forcing by the outflow and salinity variation, respectively. In Section 4.1.3, analytic solutions 

are obtained and the upstream motion is further explained. The variation of solutions with 

parameters is discussed in Section 4.1.4. Finally, the effect on upstream plume is inferred 

in Section 4.1.5 when a slanted density front between the plume and the oceanic water is 

allowed. 
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4.1.1 Typical solutions: 

4.1.1.1 Nonlinear solution: A typicallow-Ro (R" = 0.07) solution is obtained 

when the parameter values listed in Table 1 are used. To illustrate the initial spin-up of the 

solution, the upper panel of Figure 8 plots VI and SI fields 4 days after the onset of outflow; 

in addition, Figure 9 shows latitude-time plot of PI and SI at the coast. A Kelvin-wave 

front, excited at the onset, propagates along the downstream coast and nearly reaches the 

southern boundary after 4 days. Its propagation speed, as measured by the slope of the rise 

in P1(0, y) in the left panel of Figure 9, is about 80 cm/s, consistent with the linear Kelvin­

wave speed Jg;H1 = 80 m/s when g~ is evaluated using Si and T;' Behind the front, the 

rise in P1(0,y) establishes a coastally-trapped southward, geostrophic current (upper panel 

of Figure 8), and its transport is the same as that of the outflow. This response is essentially 

the same as the one in constant-density layer models, such as the "coastal current" in Minato 

(1983) and Ikeda (1984), and the "K-mode" in Kubokawa (1991). The fresher-water plume 

itself, however, develops much more slowly at advective speeds. At day 4, only a small plume 

(shaded region) , with a semi-closed anticyclonic gyre circulating about its edges, has formed 

near the river mouth. 

The quasi-equilibrium response at day 40 is shown in the middle and lower panels of 

Figure 8. Remarkably, all the river water bends to flow along the upstream coast as it exits 

the river mouth. At the nose of the plume, the fresher water, together with some ambient 

sea water forms a return flow further offshore. This return flow circulates offshore from 

the river mouth, and then continues to flow southward along the downstream coq;>t. In the 

upstream region, the front advances northward along the coast, at an average speed of 6.1 

cm/s, as measured by the slope of the drop in SI on the upstream coast in the right panel of 

Figure 9. A region where hi is shallower than the initial layer thickness HI develops within 

the plume everywhere in the upstream region (shaded region in the lower panel of FigureS). 

In the downstream region, the flow is uniformly to the south, and the plume is narrower and 

weaker than the upstream one. 

Unstable waves with a wavelength of about 50 km develop on the offshore density front. 

The nature of this instability has not been identified, since it is not the major concern of this 
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Figure 8: A typical low-Ro solution for the nonlinear, variable-density, l!-layer model, 

showing velocities VI and salinities 81 at day 4 (upper panel) and day 40 (middle panel) 

and hI at day 40 (lower panel). The contour interval for hI is 0.2 m, and regions where 

hI < HI (10 m) are shaded. Regions where 8 1 < 22.5, 22.5 < 8 1 < 25 and 25 < 81 < 29 

are indicated by dark, medium and light shading, respectively. All the river water first 

bends to the left to flow along the upstream coast. Near the plume nose, some fresher 

water turns ar01111d to flow, together with the some salty water, southward. 
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Figure 9: Latitude-time plots showing coastal depth-integrated pressure P1 (0, y) scaled by 

105 (left panel), and salinity 8 1 (0, y) (right panel) for the solution in Figure 8. Contour 

intervals are 105 cm3/s2 for PI and 0.5 for salinity. In the downstream region, a coastal 

Kelvin wave propagates southward from the river mouth, generating a jump in PI across 

the mouth and raising it everywhere along the downstream coast (left panel). The plume 

propagates northward at an average speed of 6.1 cm/s (right panel). 
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study; however, it is likely to be the same sort of instability discussed in Fukamachi et al. 

(1996), namely, the ageostrophic baroclinic instability. The unstable waves do not appear 

when the mixing coefficient v is large enough; for instance, a value of v equal to 5 x 10 cm2/s 

is sufficient to eliminate them in this solution. 

4.1.1.2 Linear solution: A solution to the linear system (6) is also obtained, and 

it is shown at day 40 in the upper and middle panels of Figure 10. Similar to the nonlinear 

solution in Figure 8, all the river water first bends to the left as it exits the river mouth, a 

return flow forms further offshore, hi shallows in the upstream plume region, and the plume 

advances along both coasts with the plume being narrower downstream than upstream. Note 

that in the upstream region the density front and its associated circulation are approximately 

parallel to the coast (Y~lndependent) behind the upstream front. The primary difference from 

the nonlinear response is that the instability is eliminated. The strong similarity between 

linear and nonlinear solutions demonstrates that nonlinearities in the momentum equations 

are not fundamentally important for determining the plume evolution in the low-Ro regime. 

4.1.2 Coastal mode and gyre mode: In this section, the fundamental processes are 

explored that determine plume evolution under approximation of quasi-geostrophy, which is 

the case for alllow-Ro motion. As will be seen, the evolution ofthe river plume is determined 

by two dynamically distinct processes: a downstream coastal current (coastal mode) driven 

by the mass input and an anticyclonic circulation (gyre mode) driven by the variation of 

salinity. 

Let's begin by formally recognizing that there are two distinct time scales:m system 

(6): t' = 0(1/ f) associated with the geostrophic adjustment and the advection time scale 

T = O(£/U), where £ and U are characteristic scales of length and velocity. For low-Ro 

motion, t' /T = Ro = U / (J £) « 1, so that the advection is a much slower process than 

geostrophic adjustment. With this restriction, multiple time scales, 

, 
t =t, (31) 

are introduced, and fields are considered to depend explicitly on both variables, 

q(x, y, t) = q(x, y, t'; T), (32) 
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Figure 10: As in Figure 8, expect for solutions to the linear, variable-density, l~-layer 

model. The three plots are VI and 81 (upper panel) and hI (middle panel) at day 40 

when Mr = 104 m3 /s, and VI and 81 at day 120 when Mr = 3 X 104 m3/s (lower panel). 

Note that, in the lower panel, the basin extends to x = 1200 km. For the Mr = 10
4 

m3 /s solution, the density front is nearly y-independent behind the nose in the upstream 

region. For the Mr = 3 X 104 m3 /s solution, the plume is widest at the river mouth and 

becomes progressively narrower towards the nose. 

45 



0 8 
0 0 0 CD 0 C\I 

""" """ 
C\I 

~ >- ~ , 
<l! ~ • 

Cl ... Cl .. "'." Cl 0 
f ,,'l. .. 0 

\, . ~ 

h~/, .... ' ~ 

Il"'~'''' I 
~t-rJ.4-Yv 0 § · ' 0 ..!!1 t ... ~ ",'" v III 

'" ~ · ' E 
~ t-+ ....... v ..!!1 

• v '" b E ,~.~ .' , E ~ 

b :i>v .... v, b x .... :~.+./ .... C") 

II II II 
~ ,,_.<1 .' 

~~ ~ ~ ,tV,.'.' 
- 0 0 · " 0 0 

,t <. v 
.... co 

• 'v .+ • 
'f' ' + v 
" .• 4- ...... 0 
fl ,.+ .v 

0 

• • v 

..... 
.+ • 

H • 
+ ' r, l-+ ,+'" v 

~ 

E 0 E 8 l v - 0 ~ ~ \.>.J. ... v '" ~ CD 

.' v 
>- >-

",v. ...... 
• .J. .... y 

• • v ~. v 

.... '" v 

..... v 
, v .1 . , 

:/-' • v 0 § 
• v 

0 

i . C\I 

• • I" 
:' v " 

• v !f.: {I v g · , .1 v · , .' 
.' v • v .j.' v 

0 
• v 8 l.J. v 0 

• v 
~ C\I 

.j.' v 
v v 

!+ ... v 

• v 8 
• .v · ' I I 

~ 

• v eli • v ~.v ... v (f) 

• v i~ t~ 
> 1 J,~V I - -> .s::. 0 0 c 0 0 0 0 0 0 8 III 0 III 0 III 

(W)j) X 
~ 

(W)j) x 
~ 

(W)j) x 
~ 

46 



where q can be any of the fields i:h, VI, hI or 'iiI. Time derivatives are then given 

(33) 

by usual chain rule. An exception is that, since g;. is determined only by advection, it is 

assumed to be a function of only slow time so that ~t' = o. 
Expressed in terms of t' and T, equations (6) become 

- -
hlt' + RohlT + HI (Ulx + VIY) = 0, 

(34a) 

(34b) 

(34c) 

(34d) 

In equation (34d), the factor of the advection terms emerges as a result of scaling analysis. 

Boundary conditions are 

Ul(O, y, t') = uo(y)O(t), 

where Uo is the offshore velocity at the river mouth. 

Introducing the expansion, 

into (34) yields to lowest order 

as x ---* 00, 

(35a) 

(35b) 

(36) 

(37a) 

(37b) 

(37c) 

(37d) 

Because equations (37a)-(37c) are linear, it is possible to split UlO, VlO and hlO into two 

Parts, 

QlO(X, y, t'; T) = qK(X, y, t'; T) + qa(x, y; T), (38) 
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such that variables with subscript K are those caused only by the volume transport of the 

outflow, and nothing to do with the salinity variations, whereas those with subscript G are 

caused only by the salinity difference. These two components are referred as the "coastal 

mode" and the "gyre mode", respectively. 

The coastal mode is determined by the equations 

subject to boundary condition 

(39a) 

(39b) 

(39c) 

(40) 

Equations (39) and (40) describe the adjustment to a mass inflow when the density is the 

same as that of oceanic layer; it takes place in a time scale of O(J-l). They are the same set 

of equations as for Minato's (1983) model-B and Kubokawa's (1991) K-mode. As shown in 

lVIinato's analytic results, the response of this mode features the propagation of a transient 

coastal Kelvin wave, and after its passage, a steady geostrophic flow is established along the 

downstream coast. The nonlinear, viscid version of this coastal-mode solution also appeared 

in the nonlinear numerical solutions discussed earlier in this chapter (upper panel of Figure 

8, Figure 9). Here, a solution of the coastal mode is obtained by numerically integrating 

system (39) when an outflow of Mr = 104 m3 /s and Sr = Sr = 30 is prescribed at the 

river mouth, and the day 40 response is shown in the upper panel of Figure 11a which is 

considered t' --> 00. This solution is consistent with the aforementioned studies of Minato 

(1983) and Kubokawa (1991). 

The gyre mode is governed by equations 

- JVG + <Px = 0, 

JUG + <pY = 0, 
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Figure lla: As in Figure 8, except showing Vl for the coastal mode (upper panel), Vl and 

Sdor the gyre mode (lower panel). The salinity field of day 40 solution (upper panel of 

Figure 10) in the linear model is used to obtain the gyre mode. 
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(41d) 

subject to boundary condition 

UG = cI>y = 0 @ x= o , (42) 

where in this case cI> = g~hG + !Hl~O. Note that even though the velocity is in geostrophic 

balance with the pressure, the system experiences constant evolution due to the advection 

of 9lO. Equation (41d) is essentially the same as the one that determines the evolution of 

the low-potential-vorticity water in Kubokawa's (1991) study. 

To obtain the gyre-mode solution, equation (41d) is ll1nnerically integrated forward in 

time with a time step of 0.5 day, which is small enough to resolve plume advection. Through­

out the integration, velocities UK and VK are taken to be those shown in the upper panel 

of Figure lla since the coastal-mode solution reaches a steady state after the passage of 

Kelvin wave (and hence t' is effectively (0). Velocities uG and vG are determined at the 

beginning of each time step from equations (41a)-(41c) and boundary condition (42). The 

three equations yield equation (19) with iii = 0, and the boundary condition is equivalent 

to cI> = 0 which is applied at all channel boundaries. This system is then solved for cI> by 

a standard S.O.R. method. The lower panel of Figure lla shows the resulting gyre-mode 

response at day 40. 

The complete solution, that is, a superposition of the panels in Figure lla, is shown in 

Figure llb. 

A comparison of this solution with the one obtained by numerically integrating equation 

(6) (upper and middle panel of Figure 10) shows good agreement, demonstratirig that the 

separation of the response into coastal and gyre modes is dynamically correct and useful. 

Note that the coastal mode is responsible for all downstream flow along the coast, since the 

coastal current is directed upstream everywhere for the gyre mode (lower panel of Figure 

lla). In contrast, the gyre mode is responsible for all upstream motion, since there is no 

northward alongshore current associated with the coastal mode (upper panel of Figure lla). 

Properties of the linear solution have a lot in common with those in Kubokawa's (1991) 

solution (compare our Figure 10 with his Figure 5b). This is not surprising, because the 

~<)\(ernin.g equations for plume evolution have similar forms in each system, being advection 
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Figure llb: As in Figure 8, except showing V1 and 81 (upper panel) and h1 (lower panel) 

for the quasi-geostrophic solution at day 40. The solution is essentially the same as the 

linear solution in the upper two panels of Figure 10. 
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of salinity in this study and potential vorticity anomalies in his study [compare equation 

(41d) with his (2.12)J. Moreover, the coastal modes in the two models are identical, both 

being linear responses to the transport of the river outflow; the gyre modes are similar in the 

two models, with the salinity anomaly in this model being analogous to the low potential­

vorticity anomaly in his model. 

4.1.3 Analytic solutions: Based on the structure of the circulation in Figure 10, 

quasi-equilibrium solutions in the low-R., regime can be characterized by the schematic dia­

gram in Figure 12. In the upstream region, the plume nose continues to propagate northward 

at speed c with a shape that does not change in time. Behind the nose, the density front 

is V-independent and has reached a steady state at x = L. The current is northward near 

the coast and southward offshore along the density front. In the downstream region, the 

flow pattern is the same as the part with southward flow in the upstream region. (There is 

also a plume nose in the downstream region, but it is not considered in this thesis.) Given 

this simple structure, it is possible to solve for the across-shore structure of the flow in 

both upstream and downstream regions, and to determine L and c as a function of model 

parameters. The discussion begins by considering two geostrophic adjustment problems of 

idealized plume shapes, and then the connection is made between these solutions with the 

river-outflow-driven circulations. 

4.1.3.1 Coastal front: Consider a similar situation to the one discussed in Section 

3.2, except that the density front l is at x = L and there is a lateral wall at x = O. The 

solution can be obtained in the same manner, but in this case, the boundary:<tondition 

VI (0, y) = 0 at the wall is also imposed, which in terms of hI is 

@ x = O. (43) 

This constraint follows from the momentum balance, dvI/dt + lUI = 0, and the closed 

condition UI(O, y) = O. The resulting solution is 

h_ = HI {1 + 1; 'Y [_e(x-L) / lL - e-L/lLe-x/ lL 1 }, (44a) 

-;-;1 S:;-:t~ri-ct::-ly-sp-e-aki:-':-n-g,-m-as-s-c-oI1S-er-va-ti-o-n-requires that the final location of the front is shifted slightly toward 

the salty-water region from its initial position (Glendening, 1993). For our purposes, it is not necessary to 
calculate this shift. 
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Figure 12: Schematic diagram of the analytic solution driven by river outflow. River water 

with a transport of Mr bends to the left as it exits the river mouth, and a coastally 

trapped plume advances northward at speed c. Some of the river water, together with 

some salty water, returns from near the plume nose to flow southward along the front, and 

this return flow eventually flows along the downstream coast. The thick curve indicates 

the plume edge, and the dashed curve designates where the current reverses direction. 

The solution is y-independent away from the nose and the river mouth. In the upstream 

region the response is solution (50) with M = Mr. In the downstream region it is (50) 

with the replacement x --> x + Xo. Widths L and Xo are provided in equations (54) and 

(51). 
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h+ = HI {I + 1;,,' [e-(x-L)/14 _ e-2L/R-e-(x-L)/14 ] } , 

and the corresponding alongfront, geostrophic currents, v_ and v+, are 

v_ = c_ 1 ; '[_e(x-L)/R- +e-L/R-e-x/R-J, 

v+ = c_ 1-, [_e-(x-L)/14 + e-2L/R-e-(x-L)/14 j. 
2 

(44b) 

(45a) 

(45b) 

The first term in each of the solutions (44) and (45) corresponds to unbounded solution 

(25); the second term is due to the existence of the boundary, and is generated by the 

radiation of gravity waves from the coast. In spite of the presence of the coastal boundary, 

this solution has similar properties to its unbounded counterpart. In particular, a frontally 

trapped southward current is generated everywhere in both fresher and salty water regions. 

4.1.3.2 Nose front: Now let's consider what happens when a northern end is 

added. At the plume nose, geostrophic adjustment generates a current that tends to draw 

water away from the coast. However, the presence ofthe coast does not permit normal flow, 

and therefore hI has to thin. This thinning signal radiates down the coast as a Kelvin wave, 

and hI is thinner everywhere near the coast after its passage. To a good approximation, the 

following boundary condition results 

@x = O. (46) 

Condition (46) follows from an integration of the time-independent version of alongshore 

component of equation (la) along the coast when the second term is neglected, which is 

reasonable for low-Ro motion. 

It is convenient to represent the solution as the sum of the y-independent response (44) 

and a free solution generated by the Kelvin wave. The free solution is 

(47) 

where 1t is its amplitude. It is a solution to the homogeneous version of equation (23) that 

decays as x ~ 00 and satisfies matching conditions (24). Application of boundary condition 

(46) to the superposition of h'-- from (47) and (44a) yields, 

(48) 
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where X = 1 - e-L / lL . Equation (48) means that the Kelvin wave acts to thin t he layer 

thickness. 

The hi field is then 

h_ = HI {I + 1 ; 'Y [_ e(X-L)/R- _ e-L/R-e-x/lL - 2xe-x/R_] } , (49a) 

h+ = H I {I + 1; 'Y [e-(x-L)/14 - e-2L/R-e-(x-L)/14 - 2xe- L/R- e-(X-L)/R+] } , (49b) 

and, by geostrophy, the VI field is 

v_ = c-1; 'Y [_e(x-L) /R- + e-L/R-e-x/R- + 2xe-X/R_] , (50a) 

V+ = c_ 1; 'Y [_e-(x-L)/14 + e- 2L/ lLe-(x-L)/14 + 2xe-L/ lLe-(x-L)/14] . (50b) 

The last terms on the right-hand sides of equations (49) and (50) are the contributions from 

the Kelvin-wave radiation, and they act to reverse the flow to be northward near the coast 

through the thinning of hI' 

Since there is southward flow near the offshore density front, the coastal current changes 

its direction somewhere offshore west of the front. This location is 

(51) 

which follows from setting v_(xo) = 0 in equation (50a). According to (51) , Xo satisfies the 

inequality!L ::; Xo ::; L , the lower and upper limits being approached as L -+ 00 and L -t 0, 

respectively. The total upstream transport of fresher water is therefore 

(52) 

where boundary condition (46) has been utilized. 

4.1.3.3 Identification with river-outflow-driven circulations: To identify the 

above solution with the river-outflow-driven circulation depicted in Figure 12, simply sets 

M in equation (52) equal to the transport of river outflow Mr. An inherent assumption in 

making this identification is that the river outflow has the same uniform potential vorticity 

f / HI as the surrounding water. This assumption ignores both the relative vorticity of the 

outflow and the property that hi t hickens southward across the river mouth. Because Ro is 
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small, however, potential vorticity remains close to f / HI, and the asswnption is a reasonable 

one. (See the discussion at the end of Section 4.1.4.) 

According to (52), M decreases to zero in the limit L -+ 0 when the response to the 

density front and Kelvin wave completely overlap, and increases to a maximum value 

(53) 

as L ...... 00 when they are completely separate and hence h_(xo,Y) --> HI. The existence of 

Mer shows that there is an upper limit for the outflow transport beyond which the equilibrium 

state shown in Figure 12 cannot be attained; in this regime, the density front must instead 

continue to expand offshore. 

Solutions (49) and (50) are plotted in Figure 13, when parameter values are those from 

Table 1. A comparison with their y-independent counterparts (44) and (45), plotted in the 

same figure, illustrates the role of the transient Kelvin wave in thinning hI and reversing the 

flow near the coast. Also plotted in the same figure are the nonlinear and linear solutions 

driven by river outflow shown in Figures 8 and 10, respectively. For the linear solution, 

the section was taken at y = 400 km. For the nonlinear solution, the average for a single 

wavelength (from y = 400 km to 460 km) are adopted. The hI fields from the numerical 

solution and analytic solution agree in that they all are shallower near the coast. Differences 

are that: 1) there is a discontinuity across the density front for analytic solution; and 2) hI is 

thilUler near the coast for the linear solution. The latter is because the linearized version of 

coastal condition (24), 9~hI +!~ HI = 0, is established in the linear solution. The VI field of 
;.. 

the numerical linear solution compares well everywhere with the analytic one. In contrast, 

the structure of the nonlinear solution is altered considerably because it includes horizontal 

nlixing and utilizes a no-slip coastal boundary condition. 

4.1.3.4 Plume width: Equation (52) can be rewritten as h_(xo,y)/HI = TJ if 

M = Mr, where TJ = VrP(l- , 2) + ,2, and rP = Mr/Mcr. With the aid of equations (49) 

and (51), it can then be shown that 

.!:...- = cosh-1 (1- ,) + In (1- ,) , 
~ I-TJ I-TJ 

(54) 
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Figure 13: As in Figures 5 and 6, expect showing the acrossfront hI and VI fields in the 

upstream region for analytic (thin curves), nonlinear (thick curves) and linear (thick­

dashed curves)) solutions driven by a river outflow. For the linear solution, the section is 

taken at day 40 and at y = 400 km; for the nonlinear solution, the fields are taken at day 

40 and are averaged over one wavelength (from y = 400 km to 460 km) of the unstable 

wave (see Figure 8). Also shown is the analytic solution (44) and (45), the y-independent 

solution that results from geostrophic adjustment to a density front at x = L (thin dashed 

curve). This solution represents the response in the analytic river model before the Kelvin 

wave arrives from the nose region, and has southward flow throughout the entire region. 

A comparison of this solution with the corresponding river-outflow-driven solution (thin 

curves) shows that the Kelvin wave thins the layer and reverses the flow to the northward 

near the coastal wall. 
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where the first term on the right-hand side is xo/ R_ and the second is (L - xo)/ R_. Note 

that L/ R_ depends only on two independent non-dimensional variables, c/J and T 

4.1.3.5 Nose propagation speed c: To obtain an expression for the nose prop­

agation speed c, imagine a rectangular box in a reference frame moving with the nose with 

its northern edge ahead of the nose, southern edge in the y-independent region behind it, 

western edge at x = 0, and eastern edge at the far channel wall (essentially x = 00). Since 

there is no change in the amount of fresher water within this box, an integration of the hi 

equation in the moving reference frame over the fresh-water region yields 

1L h_v_dx - c 1L h_dx = 0, (55) 

Likewise, applying the same argument to the salty water yields 

[00 h+v+dx = - c [l L 

H1dx + [00 (HI - hIldX] . (56) 

Equation (56) points toward the importance of the southward transport of salty water in the 

plume dynamics. Because of this flow, salty water is continuously depleted from the upstream 

region, and mass conservation then requires that the plume propagates northward to replace 

this loss. With the relation JoL h_v_dx = (g~/2f) [h_(L, y) - 'YHIJ [h_(L, y) + 'YHIJ and 

solution (49), direct calculation of c from (55) gives 

..!:... _ X2 b + h 2(1 - 'Y)] 
t.c - 2L/ R_ - (1 - 'Y)x(2 + X)' 

(57) 

where t.c = y'g'-HI - y'g~HI' Like L/R_, c/I5,:c also depends only on c/J and 'Y . ;' 

At this point, the analytic solution in the upstream region is completed. From its 

derivation, it is clear that two key processes are involved in upstream plume propagation: 

geostrophic adjustment across the density front drives the return flow, and Kelvin-wave ad­

justment causes upstream flow near the coast. Another property illustrated by the analytic 

solution is that the plume width L increases monotonically with Mr until it reaches a critical 

value Mer beyond which a steady-state solution is no longer possible. 

4.1.3.6 Downstream solution: To find solutions in the downstream region, the 

COastal condition P1(0, y') = P1(0, y) + f Mr is utilized, where y' and y denote any location 
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just downstream and upstream of the river mouth, respectively, which follows from the 

property that the outflow adjusts to geostrophic balance. In addition, the relation PI (xo, y) = 

PI (0, y) + f Mr follows from geostrophy and the fact that the upstream transport between 

the coast and x = Xo is Mr. Therefore, 

(58) 

It follows that the flow field in the downstream region is identical to the upstream solution 

from x = Xo to infinity; hence, simply replacing x in equations (49) and (50) by Xo + x gives 

the solution in the downstream region. 

A comparison of numerical solutions with analytic ones in this region shows considerable 

difference. This is because the plume width is much narrower (L - Xo = 3.5 krn) than its 

upstream counterpart, and hence it is difficult for the numerical solutions to resolve. 

4.1.4 Parameter variation (L and c curves): Figure 14 plots L/R_ (upper panel) 

and c/b..c (lower panel) versus <p for I = 0.59,0.67 and 0.79 (thin, thick and dashed curves, 

respectively) as calculated from equations (54) and (57), which correspond to salinities Sr = 

15, 20 and 25, respectively. The dependence of both L/ R_ and c/ b..c on I is weak in this 

parameter range. The L/ R_ curves increase monotonically from zero to 00 as <p varies 

from 0 to 1, and (54) is no longer meaningful for <p > 1 because in that case 'f} > 1. (In 

Kubokawa's, 1991, study, a similar criterion exists that divides the solutions into a steady 

and non-steady modes.) The c/ b..c curves first increase with <p but eventually decrease to 0 

because L / R_ -> 00 as <p -> 1. ." 

Figure 14 also plots data points of L/ R_ and c/ b..c determined from solutions to the linear 

(solid symbols) and nonlinear (open symbols) numerical models when ,= 0.67. (Data points 

for other values of I are close to those shown, differing in a manner consistent with the shifts 

in the analytic curves.) The plotted points are obtained from two sequences of solutions in 

which Mr is varied and HI is either 10 m (circles) or 7.5 m (triangles). Width L is defined 

by the offshore location of the (Sr + Si)/2 salinity contour. For the linear solutions, L is 

measured by the width of the y-independent region that forms behind the nose when <p ;S 0.4 

(upper panel of Figure 10); it is the maximum frontal width just upstream from the river 
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Figure 14: Plots of L/ R_ (upper panel) and c/ ~c (lower panel) versus ¢>. The three curves 

are determined from the analytic expressions (54) and (57) where'Y = 0.59,0.67 and 0.79 

(thin, thick and dashed curves, respectively), which correspond to salinities Sr = 15,20 

and 25, respectively. Data points are obtained from two sequences of the linear (solid 

symbols) and nonlinear (open symbols) solutions in which Mr is varied and HI is 10 m 

(circles) for one and 7.5 m (triangles) for the other when 'Y = 0.67. In the L/R_ plot, 

data points from the linear solutions closely follow the analytic curve, but those from the 

nonlinear solutions deviate markedly for ¢> ;:: 0.2 since then the river water first flows 

offshore. In the c/ ~c plot, data points lie above the analytic curves for ¢> ;:: 0.4 because 

the fronts are narrower near the nose than predicted analytically. 
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mouth when r/> ~ 0.4 (lower panel of Figure 10). For the nonlinear solutions with unstable 

waves, L is the average value over an integral number of wavelengths in a region between 

the nose and the river mouth. Speeds c are determined from y-t plots (like right panel of 

Figure 9) of 8 1(0, y), by measuring the slope of the upstream isohalines during the first 10 

days of the integration. For the linear solutions this slope remains unchanged throughout 

the integration, but for the nonlinear solutions it decreases slightly because 8 1 rises at the 

coast due to horizontal mixing. 

Data points of L/ R_ from the linear solutions compare well with the analytic curves, 

confirming that the two models share a common dynamics. In contrast , points from the 

nonlinear solutions compare well only for r/> ;S 0.2. They differ markedly at higher r/> values 

because the structure of the nonlinear response changes completely, with all the river water 

first flowing directly offshore (see Figure 15 below). Data points of c/ t3.c from the nonlinear 

solutions compare well with the analytic curve for r/> ;S 0.2, but they are somewhat smaller 

for the linear solution in this parameter range. For larger values of r/>, c/ t3.c points from both 

the nonlinear and linear solutions lie above the analytic curve because the frontal width near 

the plume nose does not continue to increase (lower panels of Figure 10). 

It has been assumed in the analytic model that the river water has uniform potential 

vorticity f / HI. However, the boundary condition at the river mouth (15) for the numerical 

model does not necessarily satisfy this requirement. Nevertheless, the analytic solutions 

compare well with the numerical ones, suggesting that the solutions are not sensitive to the 

potential vorticity anomaly in low-Ro regime. To confirm this statement, Y(y) in equation 

(16) is replaced by either of the linear ramp functions, Y± = [1±2(y-y)/WJlW, th~refore the 

potential vorticity associated with this shear is also changed. The results, however, are not 

changed significantly. The reason for this insensitivity is that the potential-vorticity anomaly 

(relative to its undisturbed background value f / HI) due to the shear flow at the river mouth 

is overwhelmed by the equivalent potential-vorticity anomaly due to the density effect as 

indicated by equation (22). For example, the shear flow contributes to a potential-vorticity 

anomaly of (2Mr/ Hw'l f)(f / Hd, which yields 0.04(f / HI) when the parameters in Thble 1 

are used. In contrast, the contribution from the density effect is @/f)(f/Hd = 0.6(f / HI). 
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4.1.5 Inferences from the slanted-front solution: In the preceding low-R" solu­

tion, the dominant feature is that river water flows predominantly along the upstream coast. 

As demonstrated by our analytical solution, the upstream speed is related to the southward 

return flow of the salty water, which is generated by geostrophic adjustment across the front 

[see equation (56)]. As discussed in Section 3.3, the southward salty-water flow is much less 

when the density front is allowed to slant. This difference may suggest that the plume will 

propagate upstream much more slowly in a system that allows slanted fronts. Unfortunately, 

the y-independent slanted-front in Section 3.3 can not be extended to include a nose front 

(because it is unclear how to impose the coastal boundary condition), and so this possibility 

can not be checked. 

4.2 High-Ro solutions 

4.2.1 Typical solutions: Figure 15 shows day-40 solutions to the nonlinear numerical 

model for the outflow transports Mr = 3, 5 and 8 x 104 m3/s, which correspond to Rossby 

numbers Ro = 0.21, 0.33 and 0.53, respectively. A common feature in these solutions is that 

the river water flows directly offshore from the river mouth in a narrow jet, with anticyclonic 

and cyclonic eddies developing on its southern and northern sides. Note that the angle at 

which the jet leaves the river mouth is sensitive to M., with the jet bending more to the 

south as Mr is increased. The transition from a coastally trapped to an offshore-jet response 

is visible in Figure 14 in that the data points for the nonlinear solutions begin to deviate 

abruptly from the linear ones when <p ~ 0.4 (also compare the structures of the solutions in 
#~. 

Figure 8 and the upper panel of Figure 15 for which <p = 0.2 and 0.6, respectively). 

Similar changes occur when Mr is fixed at 104 m3 /s and either Hl or t:..S = Si - Sr is 

decreased, since a decrease in these variables raises <p and Ro (in the case of Hl)' Figure 16 

shows a sequence of solutions when Hl = 5.5, 4, and 3 m for which R" = 0.13, 0.18, and 

0.23. With these choices, the structures of the solutions, including the jet angles, are sirnilar 

to those in the corresponding panels of Figure 15. 

4.2.2 Dynamics: It is hypothesized that the formation of the offshore jet is due to the 

momentum-advection terms since it does not develop in the low-Ro solutions. To demonstrate 
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Figure 15: As in Figure 8, except showing VI and 81 of the high-Ro solutions to the 

nonlinear model when Mr = 3 X 104 m3/s (upper panel), 5 x 104 m3/s (middle panel) and 

8 x 104 m3/s (lower panel), which correspond to Ro = 0.21, 0.33 and 0.53, respectively. 

To illustrate the downstream flow field better, the river mouth is shifted northward to 

fj = 400 km. The solutions differ from the low-Ro solution in Figure 8 in that all the river 

water first flows directly offshore from the river mouth, with only a portion eventually 

recirculating to form an upstream plume. The offshore jet bends more to the south as Mr 

mcreases. 
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Figure 16: As in Figure 8, except showing VI and 81 of the high-Ro solutions to the 

nonlinear model when HI = 5.5 m (upper panel), 4 m (middle panel) and 3 m (lower 

panel), which correspond to Ro = 0.13, 0.18 and 0.23, respectively. The offshore jet bends 

more to the south as HI decreases. 
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this point, Figure 17 shows a solution to the nonlinear model with the momentum-advection 

terms dropped (which essentially sets R" = 0) for Mr = 5 x 1(j4 m3/s, corresponding to 

¢ = 1.02. In contrast to the solution in the middle panel of Figure 15, the river outflow does 

not flow directly offshore, but rather extends along both upstream and downstream coasts. It 

is concluded that momentum advection is essential for the formation of an offshore jet. This 

solution is similar to those in Figure 10, but unlike those solutions it continues to expand 

offshore indefinitely since </J > l. 

Kubokawa's (1991) high-transport solutions with f:,.q < 0 (his Figure 5a) and Chapman 

and Lentz's (1994) solutions (their Figure 3) respond like the one in Figure 17, with the 

outflow advancing rapidly along both coasts and expanding slowly offshore. In the Chap­

man and Lentz (1994) solutions, however, the offshore expansion eventually ceases due to 

the presence of a bottom boundary layer. In addition, most of the outflow flows directly 

downstream, a difference that likely results from their value of </J (which is estimated to be 

considerably greater than 5) being much larger than ours (</J = 1 for Mr = 5 X 104 m3/s). 

Indeed, in a solution similar to Figure 15 but with f:,.S = 2 (so that </J = 5), 88 % of the 

outflow bends southward to flow along the downstream coast. 

4.2.3 Jet angle: An interesting feature of above high-R" solutions is that they all 

formed an offshore jet which enters the ocean at different angles a. In the following, an 

approximate expression for estimating a in terms of model parameters is developed. 

The underlying hypothesis of the estimate is that a has the same direction as the max­

imum offshore velocity at the river mouth. For the Y(y) profile given in (16), the location 

of maximum offshore velocity is close to the midpoint of the river mouth. The offshore 

component there is 

( _) 7rMr ) 
Urn 0, Y = 2HlW' (59 

which follows from equation (15a) and the assumption that hl is uniformly H l . To obtain 

the alongshore component, it is assumed that near the river mouth the solution is like the 

low-Ro solution, and so can be split into a coastal mode and a gyre mode. The downstream 
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Figure 17: As in middle and lower panels of Figure 8, except showing the solution to the 

nonlinear model when the momentum advection terms are neglected and Mr = 5 X 104 

m3/s. The solution is similar in structure to the one in the lower panel of Figure 10, 

except that it continues to expand offshore indefinitely. In contrast to the corresponding 

nonlinear solution in the middle panel of Figure 15, there is no offshore jet. 
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component due to the coastal mode is, 

(0 -) = ~ l Y 
MrY(y') d I 

Vc ,y R H W y, 
+ 112 1 

(60) 

where Y2 = Y + W/2. Equation (60) follows from equation (39) by assuming alongshore 

geostrophy subject to boundary condition (40). The upstream component due to the gyre 

mode can be directly obtained from (50) by setting x = 0, yielding 

(61) 

Recall from the low-Ro solution that X is a function of Land R_, and hence depends on the 

upstream transport of fresher water. For the high-Ro solutions, however, all the river water 

does not flow upstream, as can be seen in Figure 15. At this point, then, X is regarded as 

an unspecified constant to be determined. 

Based on these three velocity components, 

(62) 

Carrying out the integral in (60), and use (59) and (61), yields 

-1 [W ( 4'YX)] 
a = tan 7rR+ 1 - (1 + 'Y) cP . (63) 

Note that variables in equation (63) other than X are precisely determined in tenns of model 

parameters. 

A property of the high-Ro solutions is that less river water goes upstream as R!i;, increases, 

indicating that X should be a decreasing function of Ro. For simplicity, this decrease is 

represented by the linear function 

x= { o otherwise, 
(64) 

for which X varies from 0 to 1. Parameter fj is determined by making the best fit with 

numerical results, which gives fj = 1.5. 

Figure 18 compares values of a obtained from the numerical runs an with the correspond­

ing value from equation (63) aa. Data points (an, aa) from 28 randomly chosen runs are 

75 



Figure 18: Comparison of the jet angle estimated from equation (63), aa, with the angle 

measured from the corresponding numerical model, an. Each triangle symbol "!l" repre­

sents a data point from one of the solution listed in Table 2. The points tend to cluster 

about the line aa = an, indicating the agreement between aa and an· 
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included in the figure. The parameters used to obtain these runs are listed in Table 2, and 

they cover a wide range of values for H l , Sr and Mr. The fact that the points tend to fallon 

the line an = aa indicates the good agreement between the numerical and analytic values. 

Linear regression shows that the correlation coefficient between an and aa is 0.95 and the 

standard deviation is 80
• 

In contrast to their low-Ro counterparts (see the end of Section 4.1.4), the high-Ro solu­

tions are moderately sensitive to the current shear ( at the river mouth. For example, when 

Y(y) is replaced by Y+, solution (upper panel of Figure 19) differs from the one in the middle 

panel of Figure 15 in that the jet angle near the river mouth is shifted slightly to the left 

and less fresher water flows upstream. When Y(y) is replaced by Y_ (lower panel of Figure 

19), the plume does not expand as far offshore as for the one with Y(y), and more fresher 

water flows upstream. This sensitivity to the structure of Y (y) happens because ( is larger 

in the high-Ro solution, and consequently, its effect on the outflow potential vorticity is no 

longer negligible. 

4.3 Solutions with entrainment 

An important process involved in upstream propagation is the thinning of hl within 

the plume. Since mixed-layer processes affect hl, they can therefore be expected to affect 

plume propagation. To investigate this possibility, Figure 20 shows two solutions when 

entrainment is included in the nonlinear model. Note that detrainment is not allowed in this 

case by setting Hd to be a very large value in equation (5). The upper and middle panels 
." 

show the solution when He = Hl = 10 m and te = 1 day, whim assumes that the oceanic 

mixed layer can "recover" from the introduction of fresher water within a day or so. As for 

the We = 0 solution in Figure 8, the solution develops an upstream plume, but it propagates 

mum more slowly northward. One reason for this slowing is that We thickens hl within 

the plume considerably (compare hl panels in Figures 8 and 20), thereby weakening the 

upstream coastal current. Another reason is that We increases the density of the plume by 

entraining salty and colder water into the upper layer (compare the shaded areas in the upper 

panels of Figures 8 and 20), which also weakens upstream geostrophic flow by increasing the 
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Figure 19: Similar to the middle panel of Figure 15, except that Y+ (upper panel) and L 

(lower panel), defined at the end of Section 3, are used as the outflow profiles. 
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Table 2: A list of table for the parameter values used in Figure 18. A total of 28 runs were 

chosen in which M" HI and Sr are specified for each run. Then the non-dimensional 

variables Ro and tjJ are determined in terms of these model parameters. 
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No. Mr(a) H I (m) as R. <P an (deg) aa (deg) 

1 5 10 10 0.33 1.0 10 9 

2 4 10 10 0.28 0.8 4 -6 

3 3 10 10 0.21 0.6 -28 -32 

4 2 10 10 0.14 0.4 -47 -59 

5 2 10 5 0.15 0.8 -16 -28 

6 3 10 5 0.21 1.2 11 1 

7 4 10 5 0.26 1.6 29 15 

8 5 10 5 0.31 2.0 40 23 

9 5 10 15 0.35 0.7 -10 -2 

10 4 10 15 0.28 0.5 -30 -25 

11 8 10 10 0.53 1.6 42 32 

12 2.5 5 10 0.33 2.0 38 26 

13 10 20 10 0.33 0.5 -21 -25 
14 7 10 10 0.50 1.4 34 30 
15 6 10 10 0.42 1.2 27 22 
16 4 5 20 0.85 1.6 47 39 
17 3 5 15 0.55 1.6 34 34 
18 2 5 10 0.36 1.6 23 24 
19 1 5 5 0.18 1.6 11 10 
20 2.5 5 20 0.44 1.0 8 23 
21 1.8 5 15 0.32 1.0 0 9 
22 1.2 5 10 0.23 1.0 - 6 

;.-
-3 

23 0.6 5 5 0.12 1.0 -13 -21 
24 0.9 5 5 0.16 1.4 1 4 
25 1.8 5 10 0.32 1.4 15 19 
26 2.6 5 15 0.47 1.4 26 29 
27 3.5 5 20 0.67 1.4 35 39 
28 4.4 5 25 1.0 1.4 43 39 
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Figure 20: As in Figure 8, except for solutions to the nonlinear, variable-density, 1 ~-layer 

model that include entrainment when te = 1 day (upper and middle panels) and when 

te = 211t (lower panel). The value of He is the same as HI in this case. Detrainment is 

not allowed by specifying Hd to be a very large value in equation (5). The shading in 

the middle panel indicates where hI ;S HI, and hence where We =I O. In the te = 1 day 

solution, the plume advances northward more slowly and salinity is higher than in the 

corresponding We = 0 solution (Figure 8). In the te = 211t solution, there is almost no 

northward plume propagation. 
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upper-layer density. When te = 2!lt (lower panel), hI can never become much less than HI, 

and the upstream propagation is almost eliminated. 

Solutions (not shown) with larger Mr (say Mr = 3 X 104 m3/s and 5 x 104 m3 /s), and 

therefore larger Ro, possess similar features with those in Figure 20. The jets that exist in 

the corresponding We = 0 solutions are absent here, suggesting that the entrainment process 

makes it difficult or impossible to distinguish low- and high-Ro solutions. 
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CHAPTER 5 

SOLUTIONS TO THE 2§-LAYER 
MODEL 

The intention in this chapter is to simulate river-outflow-driven circulations as realistically 

as possible. For this purpose, the 2~-layer model is utilized, since circulations and water 

properties in many estuaries, as well as the adjacent coastal ocean, often exhibit a two-layer 

structure, with fresher water flowing into the ocean in the upper layer and saline water being 

drawn into the estuary in the lower layer. The strength of lower-layer inflow is determined by 

mixing processes within the estuary. Suppose that fresh water (8 = 0) enters the estuary at 

its upstream end, and continues to flow downstream towards the estuary mouth in the upper 

layer. During its path, saline water can be entrained into the upper layer due to vertical 

mixing, so that the downstream transport and salinity of the upper layer increases towards 

the river mouth. To compensate for the loss of saline water in the lower layer, an inflow of 
." transport M2 at the estuary mouth must occur. Observational evidence demonstrating the 

flow of shelf water into estuaries can be found in several studies, (e.g., Pape and Garvine, 

1982, Norcross and Stanley, 1967, and Bumpus, 1973). Suppose further that the system has 

reached a steady state in which both mass and salt are conserved within the estuary. Then, 

since the water drawn into the estuary is entrained into the upper layer and eventually flows 

hack into the ocean in the upper layer, there is no net salt transport across the river mouth, 

that is, 

(65) 
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A verification of equation (65) is reported in Garvine (1991) for the case of Delaware Bay 

mouth, where he estimates a seaward salt flux is roughly balanced by a landward salt flux. 

It follows from equation (65) that the transport of the inflow is 

(66) 

Equation (66) is used as the boundary condition for the lower layer throughout this chapter. 

First, in Section 5.1, the effect of lower-layer inflow is considered. Then, in Section 5.2, 

solutions are discussed when an alongshore background current is present. Finally, in Section 

5.3 solutions are presented when an alongshore wind forces the system. 

5.1 Effect of lower-layer inflow 

Figure 21 shows the solution to the 2~-layer model 40 days after the onset of outflow 

and inflow at the river mouth in the upper and lower layers, respectively. The parameter 

values used are those listed in Table 1, which imply that M2 is 57% of the outflow. In 

the upper layer (upper panel), the solutions are quite similar to the corresponding 1~-layer 

solution in Figure 8: All the river water first bends to flow along the upstream coast, with 

some of it reversing direction at the plume nose to form a return flow along the offshore 

density front that eventually flows along the downstream coast. In addition, the nose slowly 

advances northward at a speed of about 6.4 cm/s, leaving behind a region where the upper 

layer becomes shallower than Hl (not shown). In the lower layer (middle panel), the flow 

is generally directed opposite to the upper-layer flow, and the water that is drawn into the 
.. ' 

estuary is all from the downstream region. Contours of hl +h2 (bottom panel) are geostrophic 

streamlines for V2, and hence this field illustrates this lower-layer flow pattern even more 

clearly than the arrow plot does. 

The linear version of this solution is shown in Figure 22a. The primary features in the 

linear solution are the same as in the nonlinear one, except for the absence of unstable waves. 

In addition, the offshore scale of the downstream current is narrower in comparison to its 

nonlinear counterpart, apparently due to the absence of horizontal mixing. Fields in the 

Upper layer (upper panel) are very similar to their 1!-layer counterparts (upper panel of 
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Figure 21: A solution to the nonlinear, 2~-layer model when lower-layer flow into the river 

mouth is included, showing velocities VI and salinities 81 (upper panel), V2 (middle panel) 

and hI + h2 (lower panel) at day 40. Contour interval for hI + h2 is 0.1 m. Regions where 

81 < 22.5, 22.5 < 81 < 25 and 25 < 8 1 < 29 are indicated by dark, medium and light 

shading, respectively. A prominent feature of this solution is that the flow in the lower 

layer is generally in the opposite direction to the upper layer flow. 
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Figure 22a: As in Figure 21, except for the solution to the linear, 2~-layer modeL Like its 

l~-layer counterpart shown in the upper and middle panels of Figure 10, the instability 

is absent, and the plume is y-independent behind the nose in the upstream region. 
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Figure 10), suggesting that upper layer solution is not sensitive to either the existence of an 

active lower layer or the inflow at the river mouth. 

The dynamics of the northward downstream coastal current in the lower layer are similar 

to those of the upper-layer "fast" response, and involve the radiation of Kelvin waves along 

the downstream coast (Sections 4.1.1 and 4.1.2). In this case, however, the spin-up involves 

the radiation of both baroclinic modes of the 2!-layer system. (See Appendix B for a review 

of the vertical modes in a 2!-layer model.) To demonstrate this point, consider the response 

of a linear, 2!-layer system to an upper-layer mass outflow Mr into the ocean and a lower­

layer inflow M2 = -0.57 Mr directly underneath. As a result, coastal currents in both layers 

will be established via the radiation of Kelvin waves, which generate the values of coastal 

pressures along the downstream coast, Pl(O) and P2(0). By geostrophy, these two pressures 

arepl(O) ~ fMr/H1 andp2(0) ~ -0.57fMr/H2. 

Since the system is linear, the total response can be represented by the sum of responses 

for its two baroclinic modes 

( :: ) = pl1Pl + p2
1P2, (67) 

where 1Pl and 1P2 are the structure functions for each mode, given in equation (B5) of Appen-

dix B, and pl and p2 are their corresponding amplitudes. The solution along the downstream 

coast is found by solving the equation 

P:x - f:pn = _f:pn(t = 0), 
en en 

n = 1,2 (68) 

subject to boundary conditions pn = pn(o) at x = 0 and pn = 0 as x --> 00 when p:~.(t = 0) = 

o. Equation (68) results from conservation of potential vorticity of the system (B7). 

The solution is the free wave that decays away from the coast, 

(69) 

where pn(o) can be obtained from Pi (0) via equation (67). The velocity fields for earn mode 

are obtained from (69) by geostrophy, and the velocities in each layer are calculated from 

equation (67) with P replaced by v. 

The two panels of Figure 22b show the upper-layer (upper panel) and lower-layer (lower 

panel) currents in the downstream region (y = 50 lan) as obtained from the numerical model 
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(thick curves) and from the sum ofresponses for each mode (short-dashed curves). The two 

curves for each layer compare reasonably well with each other, suggesting that the numerical 

solution can be accurately represented as a superposition of mode responses. Differences 

between the two types of solutions happen because the former includes a component driven 

by the plume which is missed in the latter. The contributions of each mode (long-dashed 

curve for mode 1 and thin-solid curve for mode 2) are also plotted in each panel, showing that 

the response of mode 2 dominates the total response. In particular, mode-2 northward flow 

overwhelms mode-l southward flow in the lower layer, so that the total current is directed 

northward. 

Lower-layer northward flow along the downstream coast is also present in other models. 

For example, in Chao and Boicourt's (1986) solution, there is northward flow near the bottom 

along the downstream coast that is stronger near the river mouth and weaker downstream 

(their Figure 10). They interpreted this flow to be the result of the radiation of a first­

mode baroclinic Kelvin wave (which is equivalent to our second-mode Kelvin wave when the 

bottom of layer 2 is the sea floor. 

Similarly, the circulation in the upstream region can be interpreted as the sum of re­

sponses for each vertical mode. In this case, the circulation is considered to be driven by 

an initial upper-layer patch of high pressure associated with the plume, that is, Pl = Pr and 

112 = 0 at t = O. According to (67), initial pressures corresponding to each mode are then 

pl(t = 0) = 0.67pT and p2(t = 0)= 0.33pT. The steady-state pressure field for each mode 

can then be found from equation (68) subject to boundary conditions pn = 0 at x = 0 and as 

x --+ 00. Equation (68) is solved numerically within a finite domain extending fro"ih x = 0 to 

x = 150 km, the eastern boundary being far enough offshore to represent infinity provided 

the forcing is coast ally confined. 

The resulting solution is shown in Figure 22c when Pr is obtained from a river-outflow­

driven solution to the linearized version of equation (lOa). Specifically, Pr is determined from 

the day-40 salinity field along 400 km in that solution. In this case, the numerical and modal 

solutions are extremely close, suggesting that the numerical response in the upstream region 

can be viewed as being driven primarily by the upper-layer pressure field due to the input 

of fresher water. Again, the mode-2 response dominates mode-1 response in the lower-layer 
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Figure 22b: Across-shore structure of alongshore velocities in the downstream region, show­

ing upper- and lower-layer flows in the top and bottom panels, respectively. Each panel 

plots four curves: the day-40 solution to the linear, 2~-layer model with lower-layer inflow 

along a section at y = 50 km (thick-solid curve), the superposition of the responses of 

both baroclinic modes (short-dashed curve), the contributions to VI from mode 1 (long­

dashed curve) and mode 2 (thin-solid curve). In the bottom panel, the mode-2 response 

dolninates the total response, accounting for the existence of a northward coastal current 

in the lower layer. 
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Figure 22c: Similar to Figure 22b, except for the upstream region. The numerical solution 

is taken along a section at y= 400 km after 40 days. As for its downstream counterpart, 

the mode-2 response dominates the total response for the lower-layer flow, accounting for 

southward flow near the coast and northward flow offshore. 
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flow, so that the total lower-layer flow is essentially opposite to that in the upper layer. 

It is noteworthy that the lower layer develops any flow at all, considering that the initial 

lower-layer pressure P2(t = 0) is everywhere zero. This property is a consequence of the 

two modes having different Rossby radii: If cd I = C2/ I in equation (68), it follows that 

p2/pl = p2(t = O)/pl(t = 0), and hence P2 = P2(t = 0) = o. When cdl fo c2/1, their 

responses have different horizontal structures, and therefore can never cancel each other in 

the lower layer. 

5.2 Effect of a background current 

In this section, the influence of a background current Vb on the evolution of river plume is 

investigated. In all the runs, Vb is directed downstream and has no variation in the alongshore 

direction. Initially, it is uniform within 30 km from the coast and linearly decreases to zero 

from 30 km to 40 km offshore, as shown by the dashed line in the upper panel of Figure 24 for 

the case of Vb = -10 em/ s. This current is imposed in both layers with the same magnitude. 

The initial layer thicknesses are prescribed so that the pressures in both layers geostrophically 

balance Vb. However, because of the no-slip boundary condition and horizontal mixing, this 

initial state necessarily undergoes adjustment to accommodate these constraints. The solid 

curves in the same panel show the across-shore profiles of this current at day 10, 20, 30 and 40 

during the adjustment under the influence of mixing without forcing by river outflow. Other 

parameters are those listed in Table 1. As can be seen, the initial adjustment is rapid, and 

then slows down significantly. For this reason, in all the runs the river outflow is switched 

on at day 10. 

Figure 23 shows the day 30 solution (20 days after the onset of the upper-layer outflow 

and lower-layer inflow) when Vb is -10 cm/s and other parameters are the same as those 

for the solution in Figure 21. The plume is trapped in the background current and moves 

swiftly along the downstream coast. It also advances slowly along the upstream coast (upper 

panel), but there are no unstable waves. In the lower layer, the flow is uniformly downstream 

(middle panel) and all the water drawn into the estuary is from the upstream coast, as can 

also be seen from the curvature of hl + h2 contours near the river mouth (lower panel) since 
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Figure 23: Similar to Figure 21, except for the solution at day 30 (20 days after the onset 

of river outflow) when a downstream background current Vi, = -10 cmls is included. 

Contour intervals for hl + h2 is 1 m. River water flows predominantly downstream, but 

there is still upstream motion. 
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contours of hi + h2 are streamlines of lower-layer flow. 

Solutions for other values of v" show similar features as in Figure 23, except that plumes 

move downstream more rapidly and advance upstream more slowly as Iv" I increases. This 

influence is revealed in Figure 25, which is a latitude-time plot of coastal salinity 8 1 (0, y) 

when v" = -10 cmls (upper panel), -15 cmls (middle panel) and -20 cmls (lower panel). 

When the magnitude of v" is increased to 20 cmls, the upstream plume is virtually stopped, 

as indicated by the nearly vertical slope of 81 (0, y) in the upstream region. 

The above results suggest that the speed of upstream motion of the plume is determined 

by a competition between the strength of upstream motion in the absence of v" and the 

ability for the background current to shift it downstream. To demonstrate this point, the 

difference between these two components, that is, 'ih(x) - 1v,,1 where "i:h(x) is a measure of 

the strength of upstream motion without any influence of v", is plotted in the lower panel of 

Figure 24. To estimate 'ih(x) , the alongshore velocity behind the upstream plume nose for 

a well-developed plume is taken to be its average value over a wavelength of unstable wave 

(375 km < y < 425 km) for the solution in the upper panel of Figure 21. The background 

current v" is taken after 30 days adjustment under the influence of mixing. The offshore 

profiles of VI (x) -1v,,1 are shown for v" = -10 cmls (solid curve), -15 cmls (thick dashed 

curve) and -20 cmls (thin dashed curve), respectively. The positive side on these curves in 

the nearshore region measures the ability of the northward current generated by the plume to 

overcome the southward background current, thereby causing upstream motion. Moreover, 

the magnitude of 'ih (x) - I v" I on the positive side is consistent with the speed of upstream 

motion in solutions with the influence of v,,; for example, the upstream speed is""'5 emls in 

the solution with v" = -10 emls, as measured by the slope of 81(0,y) on the coast in the 

upper panel of Figure 25; the magnitude of Vl(X) - Iv" I on the positive side is also about 5 

cmls (solid eurve in the lower panel of Figure 24) . 

Unlike solutions with v" = 0, such as those in Figure 15, a large offshore plume together 

with the offshore jet does not develop for higher transport and hence higher RD. For example, 

a solution with Mr = 3 X 104 m3/s and v" = -10 emls has a similar solution to the one in 

the upper panel of Figure 23, except that the plume moves more rapidly to the south. 

101 



Figure 24: The upper panel shows the adjustment of a background current Vb under the 

influence of no-slip boundary condition and horizontal mixing. Parameters used are those 

from Table 1, except that no river outflow is imposed. Initially, Vb is imposed in both 

layers, and it is uniformly -10 cmls within the region 0 < x < 30 Ian and linearly tapers 

off from 30 Ian to 40 km (dashed lines). The initial hI and h2 are specified such that 

pressures in both layers geostrophically balance Vb. The subsequent profiles at day 10, 

20, 30 and 40 are represented by solid curves in the order such that IVbI decreases with 

time in the near-shore region (0 < x < 10 km), respectively. The lower panel shows the 

offshore structure of Vl(X) - IVbI, where 1h(x) is the average within a wavelength (375 

Ian < y < 425 km) of alongshore flow shown in the upper panel of Figure 23, and IVbI 
is 10 cmls (solid curve), 15 cmls (thick dashed curve) and 20 cmls (thin dashed curve), 

respectively. All the Vb are the results after 30 days adjustment under the influences of 

no-slip boundary condition and mixing. 
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Figure 25: Latitude-time plots of salinity on the coast 8 1(0, y) in a sequence of solutions 

under the influence of Vb. The background currents Vb are -10 cm/s (upper panel), -15 

cm/s (middle panel) and -20 cm/s (lower panel), respectively. Note that as IVbI increases, 

the upstream motion slows down and even stops when Vb = -20 cm/s. 
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5.3 Effect of wind forcing 

In this section, the influences of both upwelling-favorable and a downwelling-favorable 

alongshore winds T Y are investigated. In each case, the river plume is allowed to develop for 

10 days, then a uniform wind with magnitude of 0.5 dyn/cm2 is gradually switched on within 

1 day using the ramp defined in equation (17) . The use of the ramp significantly subdues 

inertial oscillations. The wind remains steady for another 9 days, and the responses at day 

15 (5 days after the switch-on of wind) and 20 are described and compared with the day-l0 

solution. In all cases, a lower-layer inflow at the river mouth with a transport specified by 

equation (66) is imposed. Entrainment or detrainment parameterized by equation (5) is also 

included. 

The drag term -bh2V2 is also included in equation (9a). Without this term, the Ekman 

drift driven by an upwelling-favorable wind (for example) rapidly advects upper-layer water 

away from the coast, h2 then decreases at the coast due to entrainment into the upper 

layer, and the solution eventually blows up when h2 --> o. Analogous problems occur when 

the model is forced by downwelling-favorable wind. As will be seen, the inclusion of drag 

generates an across-shore flow in the lower layer that largely compensates for the Ekman 

drift, and as a result it delays the occurrence of h2 being zero near the coast; this delay 

allows us to examine wind-driven effects for a longer period of time. 

The value of b used for the solutions shown here is b = 0.5 X 10-4 S-1. Note that this 

value is of the same order as the Coriolis parameter f , so that the ageostrophic component 

of lower-layer flow can be as large as the geostrophic one. The physical meaning of b is not 
:" 

clear in a reduced-gravity modeL It can be regarded as analogous to bottom stress in a 

2-layer system with a drag coefficient of bh2 = 0.125 cmls when h2 = H; = 25 m. This value 

for bh2 is consistent with drag coefficients commonly used in modeling studies; for example, 

in a study of the withdrawal of shelf water into an estuary, Masse (1990) chose a linear drag 

coefficient of 0.1 cm/s. 

Figure 26 shows the solution at day 10, just before the onset of alongshore winds. In 

this solution, parameters used are those from Table 1, except that a larger horizontal mixing 

coefficient 1/ = 5 x lOS cm2/s is adopted. The upper-layer circulation (upper panel) is similar 
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Figure 26: Solutions of the nonlinear, 2~-layer model with both We and a drag term -bh2V2 

included. Parameters used are those in Table 1, except that v = 5 X 105 cm2/s and 

b = 0.5 X 10-4 S-I. Solution is shown for VI and 81 (upper panel) and V2 (lower panel) 

at day 10. The shading scale for 8 1 is the same as in Figure 21. 
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to that in many of the previous solutions (for example, in Figure 8 and 21). At this time, 

a plume has developed near the river mouth with more fresher water concentrated on the 

upstream coast (upper panel) . In the lower layer (lower panel), water is drawn from all the 

directions into the estuary, but mostly from the downstream coast. 

With the forcing by an upwelling-favorable alongshore wind, an offshore Ekman flow, 

U e = T Y / f HI = 6.3 cm/s, is generated in the upper layer. As a result, the upper interface is 

raised in the nearshore region. The rate at which it is raised can be estimated as H1ue/R2 , 

where R2 is the Rossby radius associated with the second vertical mode, which is C2/ f = 7.25 

km (see the value of C2 and discussion of vertical modes in Appendix B). Using the above 

values, the value is 0.9 x 10-2 cm/s, implying that it takes only 0.3 days for hi to become 

less than He (7.5 m). From then on, entrainment ensures that hI remains greater than he, 

as required by equation (5). Figure 27 shows the transverse circulation at y = 200 km, 

a location south of the river mouth where there is no river water at all. As can be seen, 

a salinity (density) front forms in the upper layer due to the entrainment, and the front 

advances offshore at a speed consistent with that of the Ekman drift. To avoid confusion, 

note that this density front exists between the upper-layer ambient water and the entrained 

lower-layer water, so that it has nothing to do with the river plume. Also note that h2 

continuously thins at the coast; eventually it will become zero there, and the calculation 

must stop. 

A plan view of VI and Sl is shown in Figure 28 after 15 (upper panel) and 20 days 

(middle panel), and V2 and S2 (lower panel) at day 20. The upper-layer flow features offshore 

Ekman flow in the far field. The alongshore flow in the nearshore region is the r€Sult of the 

geostrophic response to the landward decrease of pressure due to offshore Ekman flow. A 

band of strong alongshore flow develops within the migrating density front; it is caused by 

the pressure gradient associated with the density front [see equation (lOa)]. The river plume 

is pushed offshore and elongated northward (shaded region). Such a solution is much like the 

situation during the Mississippi-River flood in 1993 (Walker et al., 1994), when river water 

flowed eastward along the continental shelf and eventually reached the Florida Strait. In the 

lower layer, water also flows generally northward, a geostrophic response to the decrease of 

pressure in the nearshore region. The onshore component to V2 results from bottom drag. 
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Figure 27: Transverse circulation and salinity along a section at day 15 (upper panel) and 

20 (lower panel) under an upwelling-favorable wind of r Y = 0.5 dyn/cm2 , which started 

at day 10 corresponding to the situation shown in Figure 26. The section is taken at 

y = 200 km, where no plume is found. Unlike the shading scale for 8 1 in Figure 26, the 

dark-shaded region indicates the initial upper layer water with salinity 8i = 30, while 

the unshaded region represents initial lower layer water of salinity 82 = 35. Due to 

entrainment, a density front formed in the upper layer, and it migrates offshore at the 

speed consistent with the Ekman drift. 
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Figure 28: Plane view of the solution in Figure 27, showing velocity V 1 and salinity 81 at 

day 15 (upper panel) and 20 (middle panel) and velocity V2 at day 20 (lower panel). The 

shading scale for 81 is the same as in Figure 26. Note that river plume is much salty due 

to the mixing with the entrained lower layer water of salinity 8i· 
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The situation is drastically different under forcing by downwelling-favorable wind (Fig­

ure 29). In this case, the transverse circulation reverses because an onshore Ekman flow 

is generated in the upper layer. Ail a result, a density front forms in the lower layer and 

migrates offshore. In the upper layer, water generally flows southward, and the plume is 

pushed against the coast and downstream (upper and middle panel of Figure 30). In the 

lower layer, the flow is downstream and offshore (lower panel of Figure 30). Such a solution 

is similar to the Changjiang River plume during winter (lower panel of Figure 2). 
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Figure 29: Similar to Figure 27 except for an across-shore section at y = 350 km under 

downwelling-favorable wind T Y = -0.5 dyn/cm2. A density front founs in the lower layer 

and migrates offshore. 
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Figure 30: Plane view of the solution in Figure 29, showing V1 and 81 at day 15 (upper 

panel) and 20 (middle panel), and V2 and 82 at day 20 (lower panel). Shading scales for 

81 and 8 2 are the same as in Figure 26. 
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CHAPTER 6 

SUMMARY AND DISCUSSION 

In this study, variable-density, 1 ~- and 2~-layer models have been used to examine the 

behavior of plumes formed by discharging fresher water of transport Mr and salinity Sr from 

a river mouth into a pre-existing, upper layer (oceanic mixed layer) of initial layer thickness 

HI and salinity Si > Sr. The river mouth is always located somewhere along the western 

boundary of a north-south J-plane chamlel basin. Solutions exhibit a variety of features 

depending on conditions of both the river outflow (M" Sr) and the oceanic mixed layer (HI, 

Si). Pre-existing background currents and forcing by wind stress also affect their behavior 

significantly. A particularly interesting property is that in most solutions part of the plume 

moved upstream (northward) without external forcing. Much of the effort of this research 

was focused on the mechanisms that cause this feature. 

In Chapter 3, properties of geostrophy adjustment in the variable-density, l~-layer model 

are investigated. This investigation provides dynamical insights into circulatiorui"driven by 

horizontal variations of density, and currents driven in this way are an important component 

of river-outflow-driven solutions discussed in Chapter 4. Specifically, the adjustment to 

an initially unbalanced y-independent density front generates a frontally-trapped current 

flowing in the direction with the fresher water to its right. Such a solution is found to 

be very similar to the one that results from an initial disturbance in layer thickness (i. e., 

potential vorticity) in a constant-density model. The quantitative relation between salinity 

anomaly and potential vorticity anomaly in a linear system is found to be ~/g~ = -21ii1 J. 
In Chapter 4, circulations driven only by river outflow in the 1 ~-layer model are discussed. 
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Properties of solutions in low Rossby number (R,,) regime differ fundamentally from those in 

high-Ro regime. In the low-R" regime, the prominent feature of solutions is that the plume 

advances along both upstream and downstream coasts and expands offshore. If Mr is less 

than a critical value MeT [see equation (53)) determined by HI and t!.S = (Si - Sr ), the 

offshore expansion eventually stops, and a quasi-equilibrium state is reached. In this quasi­

equilibrium state, all the river water first turns northward to flow along the upstream coast, 

and some of it, together with some ambient sea water, reverses direction near the upstream 

plume nose to flow southward along the front between the plume and oceanic water. This 

return flow passes the river mouth and continues to flow along the downstream coast (see 

Figure 12). In contrast, when Mr is greater than Mer. the plume expands offshore forever 

and some river water must turn to flow directly southward at the river mouth. 

Several dynamical investigations help to reveal the mechanisms that cause upstream 

plume propagation. In Section 4.1.2, it was demonstrated that the circulation can be split 

into two distinct parts: a coastal mode and a gyre mode. The coastal mode is a southward­

flowing downstream coastal current induced only by the mass input of the outflow and is 

responsible for the plume to move downstream; the gyre mode is an anticyclonic gyre due to 

the response to the high pressure associated with the plume, and it is the northward current 

of this gyre that moves the plume upstream. In Section 4.1.3, it was shown further in a 

hierarchy of analytic solutions that the geostrophic adjustment generates the return flow 

along the plume front and that Kelvin waves originating from the plume nose causes the 

northward coastal current by thinning hI near the coast. The upstream motion can also be 
."<> 

explained alternatively by appealing to mass conservation of salty and fresher waters: the 

return flow drains some oceanic water from the upstream region, and hence fresher water 

must move northward to replace it by continuity [see the discussions of equation (56)). 

In the high-Ro regime, momentum advection causes river water to flow directly offshore 

in a narrow jet. The angle at which the jet emerges from the mouth is largely determined 

by two competing factors: the ability of river water to flow upstream due to the gyre mode 

and the ability to flow downstream due to the coastal mode. Equation (63) provides a 

formula which determines the angle in terms of model parameters. The agreement with 

the numerical results are impressive, but the explanation is still some what empirical. The 
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\Uldedying dynamics of this result deserve further attention. 

When entrainment is included, the upstream propagation is significantly inhibited. This 

happens because: i) the entrainment prevents the shallowing of hl near the plume nose, 

thereby preventing the northward coastal current from being established via Kelvin-wave 

radiation; and ii) it decreases the density variation between the plume and the oceanic water, 

and hence the strength of plume-driven circulation. In addition, inclusion of entrainment 

makes the distinction between low- and high-Ro solutions impossible because the entrainment 

prevents the formation of jet in the latter case. 

In Chapter 5, a 2~-layer model is used to examine the influences of lower-layer inflow 

into the estuary, a backgro\Uld current v", and forcing by alongshore winds. The lower­

layer inflow hardly changes the upper-layer response from its 1~-layer cO\Ulterpart (compare 

Figures 21 and 22a with Figures 8 and 10). In the lower layer, it generates flows that 

generally are directed opposite to the upper-layer currents, owing to the dominant response 

of the second baroclinic mode. A pre-existing downstream coastal current tends to enhance 

the downstream motion and to inhibit the upstream motion. In fact, the upstream flow can 

be completely stopped if v" is strong enough (see the discussion of lower panel of Figure 24). 

An upwelling-favorable wind generates a coastal circulation that advects the plume offshore 

and northward, whereas a downwelling-favorable wind traps it to the coast and advects it 

southward. 

Our solutions have a number of features in co=on with those in other models. For 

example, our low-Ro solutions to the 1~-layer model are similar to Kubokawa's (1991) quasi­

geostrophic solution. The dynamical link between them is revealed by equation (21) in which 

a low salinity (high~) in our variable-density model is demonstrated to be analogous to low 

potential vorticity in his model. In fact, the governing equation for the plume evolution in 

our solutions [equation (41d)] has the same form as his does [his equation (2.12)]. Moreover, 

our non-dimensional transport ¢J (Mr/Mcr) is equivalent to his P/ho, with our solution for 

¢J < 1 corresponding to his solution for (P/ho)-l < 1, and vice versa (see his Figure 5). 

The similarity between our solution and Kubokawa's is also shown by the following: when 

the outflow is assumed to have piece-wise structure in salinity with only the right-hand 

portion being fresher water but the left-hand portion being as salty as the ambient sea 
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water, solutions do exist in which all the fresher water flows downstream, consistent with 

his solutions. In contrast to Kubokawa's solutions, our low-Ro solutions are not sensitive to 

the outflow structure at the river mouth (see the discussion at the end of Section 4.1.4). 

The similarity between our low-Ro solutions and those in Chapman and Lentz's (1994) 

study suggests that they share some common dynamics. For example, in their model an 

increase in b.p enhances the upstream motion (see their Figure 9), a feature consistent with 

our solutions. Likewise, our high-Ro solutions have features in common with those in some 

GCM solutions. For example, plumes in solutions reported by Chao and Boicourt (1986; 

their Figure 6) and by Kourafalou et al. (1996; their Figure 2) have large offshore bulges 

near the river mouth; however, they do not exhibit a distinct offshore jet, possibly because 

the vertical mixing in GCMs inhibits its formation. 

Observed plumes typically flow predominantly downstream or spread offshore, and there 

is little direct evidence for internally generated upstream propagation of the sort present 

in our low-Ro solutions. A number of factors can inhibit upstream propagation in the real 

ocean. For example, the interaction between the river water and the ambient sea water may 

result in a slanted, rather than a vertically-oriented, density front; this may cause weaker 

upstream plume propagation because the alongfront geostrophic adjustment in this case 

involves weaker salty-water flow (see Section 4.1.5 and Appendix A). In addition, if there 

is no oceanic mixed layer, corresponding to HI = 0 in our model, Mer = 0 [equation (53)], 

indicating that river water should not go upstream at all. Finally, other fadors such as the 

vertical mixing, downstream background currents and downwelling-favorable winds also tend 

to inhibit the upstream motion. On the other hand, our high-Ro solutions have 'features in 

common with observed outflow circulations (for example, compare the upper panel of Figure 

2 with the top panel of Figure 15), suggesting that this is the most realistic dynamical regime 

for our modeL 
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APPENDIX A 

SOLUTION WITH A SLANTED 
FRONT 

Here, solutions are obtained of geostrophic adjustment to a y-independent density front, 

analogous to the analytic solution in Section 3.2, except that the density front is allowed 

to slant. The upper panel of Figure 7a illustrates the final structure of the front. Because 

the front is slanted, there are three distinct regions: fresher-water (x < E:_) and salty-water 

(x ~ E:+) regions where the system is like a 14-layer model, and a middle region where fresher 

water overlies salty water (c ::; x < E:+) like a 24-layer modeL Our method of solution 

is an extension of the one discussed by Stommel and Veronis (1980) , who considered the 

geostrophic adjustment of a y-independent front in a 2-layer modeL 

In the fresher-water and salty-water regions, the governing equations simplify to equations 

(23). In the middle region, the model is essentially a 2!-layer system, in which the pressures .". 
are 

(AI) 

Potential-vorticity conservation and geostrophy then yield equations for h_ and h+ that are 

coupled together, resulting in the fourth-order equation 

for either h_ or h+. 

The general solution in the fresher-water region is 

h = H + Ae(x-<-)/ IL - 1 , 
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since the term that grows in x must be discarded. Similarly, in the salty-water region, it is 

(A4) 

In the middle region, the general solution to equation (A2) for h_ can be written 

h_ = HI + Csinh~+ + Dcosh~+ + Esinh~_ + Fcosh~_, (A5) 

where ~± = a±x, and 

(A6) 

Similarly, the general solution for h+ is 

where Sj = 1 - (R~ - R!)a;' 

There are total of S constants to be determined, namely, A-F, c- and c+. The matching 

conditions 

h+ = 0, h_ and v_ are continuous 

h_ = 0, h+ and v+ are continuous 

Mass is conserved for both fresher and salty water. 

(ASa) 

(ASb) 

(ASc) 

provide the S constraints needed to find them. To solve for these unknowns, an initial value 
;":1. 

of c+ is given, and then the system can be reduced to a set of 5 linear algebra equations 

in four unknowns, and any of 4 equations can be used to find them. However, their results 

may not satisfy the 5th equation unless the initial value of c+ is a solution. By guessing c+ 

iteratively, this 5th equation will be eventually satisfied and then the solutions for the four 

unknowns are found. Finally, the remaining three can be represented by the 5 determined 

unknowns. 
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APPENDIXB 

VERTICAL MODES 

Consider a linear, constant-density, 2~-layer system which can be driven either by mass 

input and output near the river mouth in the upper and lower layer, respectively, or by a 

prescribed initial pressure field. The equations are 

1 
Uit - IVi + -Pix = 0, 

Pi 

1 
Vit + lUi + -Piy = 0, 

Pi 

hit + Hi(Uix + ViY) = 0, 

(BIa) 

(BIb) 

(BIc) 

where subscript i = 1,2 is the layer index. The relation between hi and Pi can be expressed 

as 

(B2a) 

(B2b) 

where D..P2I' D..P3I and D..P32 are density differences between layers as the subscripts indicate. 

With the replacement of hI, h2 in (BI) by (B2), equation (BI) becomes a coupled set of 

equations in Ui, Vi and Pi· 

Let q be u, V or p. Then, variables qI and q2 can be decomposed into 2 vertical modes 

according to 

(B3) 
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where '1j;1 and '1j;2 define the mode structures, and ql and q2 are their corresponding ampli­

tudes. The mode structures are the eigenfunctions of the matrix 

1 

(B4) 
gH1f).P21 

1 f).P31 

gH2f).P21 f).P32 

yielding 

'1j;n = ( An ~ all ) , (B5) 

a12 

where n = 1, 2 is a mode index. In the above, An is the eigenvalue and defined as 

with n = 1 corresponding to the minus sign for the term with square root. The eigenvalue An 

is often written in the alternate form en = A~1/2, which has unit of velocity and is referred 

to as the characteristic speed for each mode. Equations for the amplitudes, denoted by 

superscript n, are 

u~ - fvn + p~ = 0, 

v~ + fun + p; = 0, 

1 n n n 
2P , +ux +Vy = 0, 

n 

which have the same form as the linear, shallow-water equation. 

(B7a) 

(B7b) 

(B7c) 

Using the parameters in Table 1, the two characteristic speeds are c] = 101<cm/s and 

C2 = 58 cm/s. The corresponding eigenfunctions are 

'1j;1 = ( 1 ), 
0.45 

'1j;2 = ( 1 ), 
-0.89 

(B8) 

which indicate that flows are in the same direction in both layers for the first mode, whereas 

they are oppositely directed for the second mode. 
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