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ABSTRACT 

  The sea surface microlayer is a millimeter-scale interfacial layer between the 

atmosphere and the ocean.  A number of studies have suggested that there is a unique 

ecosystem for marine bacteria in the sea surface microlayer, but little information exists 

on the microbial community composition of this ecosystem due to sampling complexities.  

In this work, we present an improved method to sample and compare the bacterial 

diversity of the sea surface microlayer with that of subsurface water at the same site.  

Bacterial samples were collected from the sea surface microlayer with a sampling 

method, which minimized sample contamination from the research platform and the 

subsurface water.  Sampling was conducted using a polycarbonate membrane filter to 

obtain the bacterial community structure at open water and coastal water sites in the 

Straits of Florida.  The microlayer sampling was planned to coincide with synthetic 

aperture radar satellite overpasses (COSMO SkyMed), which capture a range of fine-

scale features on the sea surface.  The presence of surfactants affect the synthetic aperture 

radar imaging process because surfactants in the sea surface microlayer suppress short 

gravity-capillary ocean surface waves, thereby decreasing the backscatter and allowing 

the radar to detect surfactant-covered areas.  Although sources of surfactants vary, certain 

marine bacteria are known to produce and transform surfactants, which suggest that these 

surfactant-related marine bacteria have an important biological influence on fine-scale 

synthetic aperture radar satellite imagery.  Therefore, the comparison between synthetic 

aperture radar satellite images and in situ field samples may be used for interpreting and 

studying fine-scale features on the sea surface.  The surfactant-associated bacterial 

composition of the sampling sites was determined using high-throughput, 454 

pyrosequencing methods.  A total of 61,663 sequences were analyzed and the results 

indicated the presence of surfactant-associated bacteria such as Moraxellaceae, 

Halomonadaceae, Enterobacteriaceae, Bacillaceae, and Nocardiaceae.  By establishing 

these bacterial groups that influence the presence of surfactants, remote sensing 

techniques which involve monitoring the microlayer are expected to be enhanced and 

may provide additional information on the state of the upper ocean ecosystem. 

 

Keywords:  sea surface, synthetic aperture radar, pyrosequencing, bacteria. 
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1.0 Introduction 

1.1 Background 

The sea surface microlayer represents the boundary between the atmosphere and the 

ocean, with a total thickness between 1 and 1,000 µm (Wurl et al. 2011).  Serving as both 

a source and a sink for materials in the atmosphere and the water column, the sea surface 

microlayer (SML) can be summarized as being a micro-habitat that covers about 70% of 

the Earth’s surface (Murrell et al. 2007; Wurl et al. 2011).  Being such a widely 

distributed microbial ecosystem, the SML is often termed neuston to distinguish the 

microorganisms associated with the air-water interface from the subsurface plankton 

(Naumann, 1917).  Despite the thinness of the SML, this interface is distinct from the 

subsurface water below and may play a significant role in biological processes on a 

global scale, including microbial loops (Wurl et al. 2011). 

The neuston was first studied as a new branch of marine biology in 1971 by Yuvenaly 

Zaitsev, where he emphasized the importance of the neuston in the reproductive cycles of 

marine organisms (Zaitsev, 1971).  However, a greater appreciation of the microlayer’s 

role in global-scale microbial processes is now emerging (Cunliffe et al. 2011).  

Consequently, there is renewed interest in the microbiological composition and how this 

may vary in space and time.  The SML results from the accumulation of both discrete 

molecules and larger particles at the air-water interface to form a film (Cunliffe et al. 

2011).  Historically, the depth of the SML has not been well defined, having been 

determined by the prevailing sampling protocol.  Nevertheless, early descriptions of the 

SML depict a distinct entity with a stratified structure comprising an upper lipid layer 

containing highly surface-active molecules overlying a protein-polysaccharide layer 

extending into subsurface waters (Fig. 1.1).  The lipid layer components were typically 

considered to be of low solubility and contain hydrophobic ends extending into the air 

(Cunliffe et al. 2011).  This was the first basic structure referred to as the SML (Hardy, 

1982).  



 
 

 

Surface active molecules 

Lipid layer 

Protein-polysaccharide layer 

Bacterioneuston 
(bacterial community 

of the microlayer) 

Phyto- and zooneuston 

Figure 1.1: Classical Sea Surface Microlayer Model (Adapted from Cunliffe et al. 2011). 
1,000 µm 

The early view of lipids as important surface microlayer components has been revised 

where lipids are no longer considered to be present in such sufficient concentrations 

(Sieburth, 1983).  A more modern model of the SML consists of macromolecules that are 

produced from dissolved organic matter (Fig 1.2).  An important component of this SML 

organic matter is transparent exopolymer particles (TEPs).  These TEPs are sticky gel 

particles produced in the water column by phytoplankton, which expel TEPs in the ocean 

(Alldredge et al. 1993).  The coagulation of dissolved organic matter readily allow TEPs 

to form aggregates in the water column with other particles such as detritus, and as recent 

evidence suggests, some of these TEPs then migrate up to the surface via rising bubbles 

and diffusion, and form a gelatinous film (Cunliffe et al. 2009).  Consequently, as TEPs 

are colonized by microorganisms, a surface microlayer film is believed to be formed. 



 
 

 
Figure 1.2: Modern Sea Surface Microlayer Model (Adapted from Cunliffe et al. 2009). 

The SML is also known to concentrate, in varying degrees, surface active compounds or 

surfactants (Wurl et al. 2011).  These surfactants, such as oleic acid and oleyl alcohol, 

reduce surface tension (Elraies et al. 2009) and are amphiphilic, meaning they can also 

increase the solubility, mobility, and subsequent biodegradation of organic compounds 

(Singh et al. 2007).  A major source of surfactants is through the production by 

phytoplankton, which exude natural surfactants as metabolic by-products (Liss et al. 

1997).  Rising air bubbles coated with surface-active material have been recognized as a 

major transport vector of surfactants from subsurface water to the ocean surface (Liss, 

1975).  When the bubbles burst at the ocean’s surface, a small fraction of the organic 

matter eject into the atmosphere and the remaining fraction is available for the formation 

of surfactant films (Liss, 1975). 

1.2 Microbial Composition in the Microlayer 

Microorganisms are vital to the function of all ecosystems, largely because they exist in 

enormous numbers and so have immense cumulative mass and activity (Whitman et al. 

1998).  They are also more diverse than any other organisms, so it is easy to see why the 

structure of microbial communities, that is, the different kinds of organisms and their 



 
 

abundances, is so important to the way in which ecosystems function (Fuhrman, 2009).  

Even with modern tools however, it is not easy to determine microbial community 

structure and map its variations in space and time (Fuhrman, 2009).  Changes in 

community structure in space and time are very informative because they show us what 

scales a particular sample represents and help us to understand factors that control 

communities (Fuhrman, 2009).  This is crucial for extrapolating from individual samples 

to the world at large (Fuhrman, 2009).  Understanding ecosystem function calls for much 

better knowledge than we have today about microbial processes and interactions 

(Fuhrman, 2009). 

Comparison between studies on the SML composition is problematic because there is 

currently no consensus as to the most appropriate strategy for sampling.  Different 

microlayer samplers yield varying defined depths (Cunliffe et al. 2011).  Therefore, early 

studies that utilized molecular methodologies to study microbial ecology in the SML 

offered conflicting conclusions, as shown in Figure 1.3.  For example, a study comparing 

bacterioneuston (the bacterial community of the surface microlayer) community structure 

with subsurface water bacterial community structure at two sample sites detected no 

consistent difference between the two communities at either site (Agogue, Casamayor, et 

al. 2005).  Similarly, in a study done in the Blyth River estuary, the results indicated that 

the microbial community structures present in both the microlayer and the subsurface 

waters were relatively similar (Cunliffe et al. 2008).  By contrast, surface microlayer 

samples collected off the UK North Sea coast contained a distinct bacterioneuston 

community compared to the subsurface water and was dominated by only two genera: 

Vibrio spp. and Pseudoalteromonas spp. (Franklin et al. 2005).  Moreover, surface 

microlayers of marine and inland waters have reportedly greater biological activity than 

in the subsurface water, as seen in a study of SML samples taken from the Bay of 

Marseilles in France which exhibited higher chlorophyll a concentrations and bacterial 

counts when compared to those in underlying subsurface water, and as a whole contained 

a higher particulate organic fraction (Garabetian, 1991).  Furthermore, when surface 

microlayer samples were collected for a study in the Mediterranean Sea and Atlantic 

Ocean, there were significantly higher rates of bacterial respiration in the SML than 

subsurface water (Reinthaler et al. 2008). 



 
 

 
Figure 1.3: Map of previous studies done on the microbial ecology in the SML. 

Given that these studies were carried out at different locations and during different 

seasons, the differences in results are possibly due to differences in the types of marine 

systems or seasonal effects.  The variability in microbial diversity reported in the 

literature might also be related to natural ecological variability of the enrichment, in 

addition to different sampling devices used to collect the sea surface microlayer (Agogue 

et al. 2004).  Despite different reports on the microlayer microbial community structure, 

bacterial communities thriving at the SML are poorly characterized (Agogue, Casamayor, 

et al. 2005).  Further work is needed to address the importance of microbial communities 

in the sea surface microlayer at a broad range of local, regional, and global scales. 

1.3 Microorganism’s Role in Microlayer Surfactant Concentrations 

A variety of microorganisms are able to produce surfactants and biosurfactants, which are 

surface-active compounds comprised of glycolipids, lipopeptides, phospholipids, esters 

groups and certain polysaccharide-protein complexes (Pogorzelski et al. 2006).  

NNoorrtthh  SSeeaa  
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Surfactants are produced by microbes, secreted either extracellularly or attached to parts 

of cells, predominantly during growth on water-immiscible substrates (Desai et al. 1997).  

Their industrial applications include enhanced oil recovery and surfactant-aided 

bioremediation of water insoluble pollutants (Sullivan, 1998). 

Biosurfactants have several advantages over chemical surfactants, such as lower toxicity, 

higher biodegradability, better environmental compatibility, and specific activity at 

extreme temperatures, pH, and salinity (Desai et al. 1997).  Due to their structural 

diversity and environmental compatibility, their production makes them very attractive in 

their potential areas of use (Lang et al. 1999).  A possible additional source of these 

biosurfactants may be from zooplankton. 

While some microorganisms produce surfactants, there are strains of bacteria that have 

been shown to degrade surface-active substances.  A community of strains from the 

genus Pseudomonas, for example, removes surface-active substances from waste waters 

(Klimenko et al. 2004).  Pseudomonas rathonis, Pseudomonas alcaligenes TR, 

Pseudomonas aureofaciens, and Pseudomonas mendocina are all surfactant degraders, 

capable of degrading anionic and nonionic surface-active substances (Klimenko et al. 

2004).  Furthermore, microorganisms that are immobilized on the surface are often 

capable of oxidizing compounds that normally do not lend themselves to destruction 

(Klimenko et al. 2004). 

Some considerations regarding which bacterial populations are responsible for biological 

degradation in the marine environment are that all species may not be able to be 

cultivated in the lab (Rusch et al. 2007).  Even though marine microbes are the most 

abundant life form in the ocean, they remain elusive because only a small percentage can 

be grown and studied (Rusch et al. 2007).  Often less than one percent of bacterial cells 

form colonies on standard culture media (Agogue, Casamayor, et al. 2005).  Since such a 

small percentage of microbial taxa can currently be cultured from the environment, the 

ocean serves as a potential source of new marine organisms (Sfanos et al. 2005).  

Therefore, cultivation-independent methods need to be utilized in order to look at 

population dynamics (Murrell et al. 2007). 



 
 

1.4 Food Webs and Horizontal Transport in the Microlayer 

Food webs in aquatic environments are exemplified by the microbial loop (Fig 1.4), in 

which protists such as flagellates and ciliates prey on bacterial cells and are in turn 

preyed upon by relatively larger aquatic organisms (Pomeroy, 1974).  Trophic 

interactions can influence the structure of microbial loop communities, for example, 

when protists selectively target a particular bacterial group and in turn profoundly affect 

their bacterial community structuring (Pernthaler, 2005).  Certain amoeba and ciliates 

actively feed on bacterial cells at the SML interface and microscopic surveys of the SML 

have revealed the presence of flagellate and ciliate protists, indicating that complex 

protist communities are present (Joux et al. 2006).  The protists grazing in the SML 

therefore contribute to the structure of the film, because ciliates in particular are able to 

produce significant amounts of surface-active organic compounds that are part of the 

surface microlayer film (Kujawinski et al. 2002). 

 
Figure 1.4: Energy flow of the microbial loop. (Adapted from Moen, 2005) 

The location of surface microlayers also makes them a highly dynamic system (Cunliffe 

et al. 2011).  Exchange with the atmosphere is strongly influenced by the microbiological 

nature of surface microlayers (Cunliffe et al. 2011).  As the microlayer contains differing 

concentrations of bacterioneuston compared to underlying subsurface waters, horizontal 

transport in the sea surface microlayer may be of particular importance as a mechanism in 

bacterial community structuring (Hale et al. 1997).  If sea surface microlayer transport 



 
 

acts independently of subsurface water circulation, it may be difficult to accurately 

predict the fate of bacterioneuston from subsurface water circulation patterns (Hale et al. 

1997).  Therefore, rates of surfactant spreading and the extent to which the chemistry and 

biology of surface waters may be altered are unclear.  Also, the composition of marine 

aerosols formed from bursting bubbles at the sea surface changes in response to the 

occurrence of dense microlayers (O’Dowd et al. 2004).  These marine aerosols contain 

microorganisms, therefore bubble bursting and aerosol formation is an important 

transport mechanism for microlayer components (Kuznetsova et al. 2005; Russell et al. 

2010). 

1.5 Solar Radiation’s Effect on the Microlayer 

Unlike those in the underlying waters, organisms within the SML receive maximal solar 

radiation, in particular UV radiation, which has the potential to cause direct DNA damage 

or indirect damage via the formation of destructive intermediates (Cunliffe et al. 2011).  

Although microorganisms in the SML are exposed to high intensities of UV radiation, 

high concentrations of toxic organic substances and heavy metals, and unstable 

temperature and salinity conditions, the SML has been reported to have high abundances 

of microorganisms, suggesting that the bacterioneuston has developed strategies to 

survive in this extreme environment (Agogue, Joux et al. 2005).  Bacteria within the 

SML studied under exposure to solar radiation and in the dark showed similar 

abundances and activity (Sintes et al. 2006).  Furthermore, as concluded from a study 

done off coastal waters in the northwest Mediterranean Sea, pigmented bacteria were not 

more resistant to solar radiation than non-pigmented bacteria, indicating that resistance to 

radiation is well distributed among bacterial species present in the surface microlayer 

(Agogue, Joux et al. 2005). 

There are, however, conflicting reports on the effects of UV radiation on the neuston.  

For example, a study done on surface microlayers off California showed neuston 

communities not to be measurably affected by either visible or UV radiation (Carlucci et 

al. 1985), while a similar study in Chesapeake Bay showed effects from both (Bailey et 

al. 1983).  Moreover, photo-damage does occur to phytoplankton in the microlayer when 

under an excessive increase of UV-B radiation, which could affect their subsequent 



 
 

production of surfactants (Falkowska et al. 2005).  Photodegradation is an important UV 

effect in surface microlayers and it may be a primary transformation mechanism 

(Cunliffe et al. 2011).  Further investigations are necessary to characterize the 

mechanisms involved in the resistance of marine bacteria to solar radiation. (Agogue, 

Joux et al. 2005). 

1.6 Sea Surface Microlayer of Synthetic Aperture Radar Remote Sensing 

Synthetic aperture radar (SAR) satellite imagery is used for a wide variety of 

environmental applications and is quite an effective tool for monitoring the sea surface 

(Wiley, 1985).  SAR is implemented by mounting a single antenna on a moving platform, 

such as a satellite (Fig 1.5).  Microwave pulses are transmitted by the antenna towards the 

ocean surface and the microwave energy scattered back to the satellite is measured (Liew, 

2001).  The radar forms an image by using the time delay of the backscattered signal and 

uses long-range propagation characteristics, which produce high resolution images and 

capture fine-scale features on the ocean surface (Angus, 2008).  The SAR satellite images 

can also provide broad-area imaging during both night and day (Angus, 2008).  

Therefore, advantages of SAR capabilities include minimum constraints on time-of-day 

as well as atmospheric conditions. 

 
Figure 1.5: SAR radar pulse. (Adapted from Liew, 2001) 
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By establishing the bacterial groups that influence the presence of surfactants, remote 

sensing techniques which involve monitoring the surface of the ocean will be enhanced.  

This is because SAR images of the surface of the ocean are affected by the presence of 

surfactants, which change the backscatter characteristics of the ocean (Angus, 2008).  

Surfactants are detected by the radar because they dampen gravity-capillary ocean 

surface waves, thereby decreasing the backscatter (Alpers et al. 2008).  As a result, 

surfactant-covered areas appear dark in SAR images relative to surfactant-free areas (Fig 

1.6).  Although sources of surfactants vary, certain marine bacteria are known to produce 

and degrade surfactants, which make them valuable ecological contributors (Satpute et al. 

2010).  Therefore, these surfactant-related marine bacteria may have an important 

biological influence on fine-scale SAR satellite imagery. 

 
Figure 1.6: COSMO SkyMed satellite image showing surfactant and surfactant-free 
areas.  The bright spot in the middle is a rain signature. 
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The Earth observation satellite system, constellation of small satellites for the 

Mediterranean basin observation (COSMO SkyMed), was used in this study.  This 

observation satellite is funded by the Italian Ministry of Research and Ministry of 

Defense and is conducted by the Italian Space Agency, utilized by both military and 

civilians (Candela et al. 2003).  The system includes four medium-sized satellites 

equipped with SAR sensors with global coverage of the planet (Fig 1.7).  Observations of 

any area of interest can be repeated several times a day in all weather conditions (Italian 



 
 

Space Agency, 2007).  The imagery can then be applied to environmental monitoring, as 

well as mapping, hazard analysis, and defense assurance. 

 
Figure 1.7: The four COSMO SkyMed satellites monitoring the Earth. (Photo credit: 
ASI) 

2.0 Objectives 

2.1 Significance 

Surfactants suppress short gravity-capillary surface waves of the ocean.  This effect is 

most pronounced under low and moderate wind speed conditions (Alpers et al. 2008).  

These surfactants may be of anthropogenic origin or naturally produced by marine 

organisms such as bacteria and phytoplankton, and possibly other organisms.  The 

connection from surfactants to microorganisms is not clear, however.  Surfactants might 

also be produced from the decay of organic material.  Anecdotal evidence suggests a 

possible connection between surfactants and zooplankton, where zooplankton secrete 

surface active agents under stormy conditions, in a stress response (Hühnerfuss, private 

communication).  Those surface active agents then act to reduce turbulence and waves, 

which would lower the stress on the zooplankton.  Although this implies a potential link 

between zooplankton and surfactant production, the association between surfactants and 

marine bacteria is still one that needs to be better established. 



 
 

This research is significant for understanding what types of marine bacteria dwell within 

the microlayer and subsurface water in coastal versus open water regions, in order to 

offer a better understanding of how these microbial populations effect surfactant 

production and transformation.  The comparison between synthetic aperture radar 

satellite imagery and in situ field samples is also important, because these comparisons 

may be used for interpreting SAR satellite imagery in application to studying fine-scale 

features on the sea surface.  Results from this study are expected to be useful for: 

environmental monitoring, applications in monitoring biological properties of the sea 

surface microlayer across the globe, as well as future studies that pose questions 

regarding the sea surface microlayer. 

2.2 Hypotheses 

The objectives of this research are to test the following hypotheses: 

1. Higher surfactant-associated bacterial diversity is present in the sea surface 

microlayer compared to the subsurface waters in both coastal and open water 

regions. 

2. Different surfactant-associated bacterial diversity is present in the coastal sea 

surface microlayer compared to the open water sea surface microlayer. 

3. Sea surface features detected with satellite remote sensing techniques can be 

linked to the presence of surfactant-associated bacteria in the near surface 

layer of the ocean. 

Hypothesis 1: As discussed in section 1.2, studies showed conflicting results on 

microlayer composition; however one study did find higher bacterial counts in the sea 

surface microlayer when compared to subsurface water (Garabetian, 1991).  This seems 

more likely considering all the biological activity that occurs at the SML interface.  Since 

surfactants are known to concentrate in the sea surface as well, a greater diversity of 

surfactant-associated bacteria is expected in the microlayer.  Two sampling sites 

comparing microlayer and subsurface waters were tested to examine these results, using 

454 pyrosequencing technology to determine bacterial groups present. 



 
 

Hypothesis 2: Different surfactant-associated bacterial diversity is expected in the coastal 

microlayer as compared to the open water microlayer due to expected differences in 

oceanographic properties in coastal areas.  In the sampling region from this study, there 

may be a coastal counter-current where water moves in the opposite direction than the 

Gulf Stream (Soloviev et al. 2012).  This may produce different biophysical water 

properties in the coastal area compared to the Gulf Stream.  To test this hypothesis, 454 

pyrosequencing was utilized to determine bacterial groups present in two sampling sites 

comparing coastal and open water microlayers. 

Hypothesis 3:  In order to examine this hypothesis, sea surface microlayer sampling was 

conducted during COSMO SkyMed satellite overpasses.  Additional samples were 

collected in slick and out of slick areas during the RADARSAT-2 satellite overpass by 

Naoko Kurata, which are discussed in the companion thesis (Kurata, 2012). 

3.0 Materials and Methods 

3.1 Study Areas 

Samples have been collected at a coastal and open water site in the Straits of Florida on 

September 13, 2011.  Four samples were used to pursue DNA analysis.  The first sample 

set was comprised of a microlayer sample and corresponding subsurface water sample, 

collected from the open ocean approximately five miles offshore.  The second sample set 

was comprised of a microlayer sample and a corresponding subsurface water sample, 

collected from coastal water approximately one mile from the shore.  Two additional 

control samples were collected earlier on September 10, 2011.  These controls were used 

to check for potential bias that could be introduced by bacteria in the air and/or from the 

sampler itself.  The control samples also determine whether selective adsorption to the 

sample surface exists (Agogue et al. 2004).  All samples are summarized in Table 3.1 

with further references to provide details of the sampling conditions.  The sampling areas 

represent four environments: coastal microlayer, coastal subsurface water, open water 

microlayer, and open water subsurface.  Although there were numerous other samples 

taken on different days, the samples from these days were used for downstream analysis 

in this pilot project, because they were the cleanest in terms of no subsurface 



 
 

contamination, they were collected during a satellite overpass, and were also properly 

recorded to ensure the new method was carefully followed.  Even though there were 

other samples collected that met these criteria, we had to limit the number of samples to 

be analyzed in this project, due to the relatively high cost of DNA pyrosequencing. 

Table 3.1: Details of all sampling conditions in the Straits of Florida. 
Sample Date 

Time (EST) 
Coordinates  
     (GPS) 

# of Samples 

SML 
OW 

9/13/2011 
8:41am 

N26°06.858 
W79°59.890 

       1 

SSW 
OW 

9/13/2011 
8:51am 

N26°06.999 
W79°59.926 

       1 

SML 
CW 

9/13/2011 
9:29am 

N26°06.719 
W80°04.248 

       1 

SSW 
CW 

9/13/2011 
9:36am 

N26°06.825 
W80°04.299 

       1 

Control 
   Air 

9/10/2011 
10:55am 

N26°09.948 
W79°59.653 

1 

Control 
Empty 

9/10/2011 
10:59am 

N/A 1 

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

The sample sets were collected during a COSMO SkyMed satellite overpass at 7:21am 

(Fig 3.1).  The comparisons between SAR satellite images taken of the sampling region 

with the in situ field samples can potentially aid in establishing the link between the 

presence of surfactant-associated bacteria in the microlayer and SAR imagery of the sea 

surface.  Therefore, further applications in studying fine-scale features on the sea surface 

and remote sensing techniques used in monitoring the microlayer are expected to be 

enhanced. 



 
 

 
Figure 3.1: COSMO SkyMed satellite image showing sampling locations on 9/13/2011.  
The bright spot near the sampling locations is a rain signature. 

3.2 Sea Surface Microlayer Sample Collection 

Two SML samples were collected, one from a coastal region and another from an open 

water region, using polycarbonate membrane filters (47mm diameter, 0.2µm pore size).  

These filters retain particles or microorganisms larger than their pore size primarily by 

surface capture (Advantec MFS, Inc. 2005).  A great deal of creativity was involved in 

developing a proper technique to sample the microlayer without subsurface 

contamination.  Initially, a forcep method was attempted, which was replicated from a 

previously published study (Franklin et al. 2005).  This method involved standing on the 

dive platform of the research vessel and very carefully placing a polycarbonate 

membrane filter on the surface of the ocean with sterile forceps.  The filter was placed 

onto the surface of the water for 10 seconds (in calm conditions).  However, after testing 

this sampling method and finding that is was inadequate for use in the high energy 

environment of the coastal and open ocean waters off South Florida, and was leading to a 

contamination of the SML samples with subsurface water, a new sampling method was 

developed. 



 
 

A superior approach to sample the SML was first tested in the NSUOC boat basin, which 

provided a calm and controlled area where the technique could be developed and a 

preliminary sample set was more easily obtained.  Once this sampling method was 

perfected, samples were then collected from the Straits of Florida.  This new and 

improved method consisted of attaching a membrane filter to a fly-fishing nymph hook, 

which was pre-sterilized in ethanol.  The fly-fishing nymph hook was then tied to 

sterilized fly-fishing line, creating a loop on the opposite end of the hook.  The filter, 

hook, and line were all placed inside a sterile, plastic zip-lock bag until sampling 

commenced (Fig 3.2).  Then when we arrived at the sampling location of interest, the 

loop created on the fly-fishing line was attached to a snap-swivel at the end of a fishing 

pole.  The zip-lock bag containing the membrane filter was then opened, freeing the filter 

to cast out from the bow of the research vessel (Fig 3.2).  By using the fishing pole, we 

were able to gain control in allowing the filter to only touch the sea surface, without 

submerging and this also provided more space between the sample and the research 

vessel, which eliminated potential contamination from the ship wake.  After 

approximately ten seconds, the filter was removed from the surface and with the use of 

sterile forceps, removed from the fly-fishing nymph hook (Fig 3.2).  The filter was then 

placed into a new and sterile, plastic zip-lock bag where it was immediately stored on dry 

ice.  This process was repeated, per sampling location and all filters that submerged were 

rejected.  The filters were later stored at -80°C until further DNA analysis was performed. 

Figure 3.2: Sampling technique developed for the sea surface microlayer. 

3.3 Subsurface Water Sample Collection 

Two subsurface water samples were collected from the corresponding microlayer sample 

sites by pumping water from approximately twenty centimeters of depth below the 



 
 

surface.  The pumping was performed by a portable peristaltic pump (Fig 3.3).  This 

pumping system allows fluid to travel through just the interior of the tubing without 

touching other pump components.  There is no need for tubing connectors, but instead 

spring loaded clamps grip the exterior portion of the peristaltic tubing and secure it 

during operation, which reduces the risk of contamination because the tubing and water 

sample were never in direct contact with the pump mechanics.  The tubing was sterilized 

prior to sampling by pumping ethanol through.  Subsurface water was then pumped from 

the stern of the ship into a sterile, plastic zip-lock bag, filling the bag approximately 

halfway with water.  A polycarbonate membrane filter was then dipped into the pumped 

water, by use of sterile forceps (Fig 3.3).  After dipping the membrane filter for 

approximately ten seconds, the filter was transferred into a new and sterile, plastic zip-

lock bag.  This process was repeated at each sampling location.  Both the bags containing 

the pumped water and the membrane filters were immediately stored on dry ice.  Later 

the water and filters were stored at -80°C until processing in the lab. 

 
Figure 3.3: Sampling technique developed for the subsurface water. 

3.4 Control Sample Collection 

Control samples were collected on the same polycarbonate membrane filters.  One 

control was exposed solely to air (referred to as ‘control air’) for approximately 10 

seconds and then placed in a sterile, plastic zip-lock bag.  This control was used to check 

for potential bacterial contamination introduced in the air.  The other control sample 

(referred to ‘control empty’) was not exposed to any elements, but instead was 

immediately transferred from its original container straight into a sterile, plastic zip-lock 

bag.  This control was used to check for potential bacterial contamination introduced 



 
 

from the sampler itself.  Both of these control samples were stored at -80°C until 

processing in the lab. 

3.5 DNA Lab Analysis 

3.5.1 DNA Extraction and Purification 

Direct extraction of total DNA was initially taken from cells on the polycarbonate 

membrane filter samples taken in the NSUOC boat basin by use of a RapidWater DNA 

Isolation Kit.  This kit is a tool for isolation of genomic DNA from a variety of filtered 

water samples (MO-BIO Laboratories, Inc. 2010).  The kit can isolate high quality DNA 

from common filter membrane types and is designed for low DNA concentration 

samples.  However, after processing the preliminary samples and not achieving positive 

results, a different kit was used. 

A QIAamp DNA Investigator Kit was instead used to extract the DNA from the 

polycarbonate membrane filters (following protocol: isolation of total DNA from paper 

and similar materials).  This kit provided fast and efficient purification of genomic DNA 

from the samples.  The main principle of this kit that makes it so efficient is it required 

the polycarbonate membrane filters to be cut into small pieces before extraction began.  

Cutting the filters into pieces successfully yielded better results, most likely because there 

was more surface area available for DNA material to be extracted from.  A total volume 

of 40µl of DNA was extracted from the polycarbonate membrane filters of each sample. 

DNA cleanup was then performed on that 40µl of extracted DNA, using the same 

QIAamp kit (following appendix B: cleanup of DNA).  This DNA cleanup offered high 

DNA purity and concentration.  The resulting purified DNA totaled 20µl for each sample, 

and performed well in downstream analyses. 

3.5.2 Polymerase Chain Reaction 

Once the DNA was extracted and purified from the filters, polymerase chain reaction 

(PCR) was then performed.  PCR amplifies the desired DNA sequence, which for this 

case was the bacterial 16S rRNA gene.  This gene is highly conserved between different 

species of bacteria and contains hyper-variable regions which can provide species-



 
 

specific signature sequences useful for bacterial identification (Coenye et al. 2003; Rusch 

et al. 2007).  The relationships between 16S genes reflect evolutionary relationships 

between organisms and therefore a comparison of 16S gene sequence similarities is 

usually used as the ‘gold standard’ for taxonomic identification at the species level 

(Armougom et al. 2009).  Universal primers 27F and 1492R (detailed in Table 3.2) were 

used to target and amplify the 16s rRNA genes of different species of bacteria. 

Table 3.2: Universal primers used in polymerase chain reaction. 
Primer Primer Sequence 5’ to 3’ Target Group Reference 
27F AGAGTTTGATCMTGG Universal Lane, 1991 
1492R TACCTTGTTACGACTT Universal Lane, 1991 

 

The following PCR reaction was setup for each sample, which consisted of: 
1.0 µl of DNA (as extracted earlier) 
1.0 µl of 27F primer 
1.0 µl of 1492R primer 
2.5 µl of buffer 
0.5 µl of dNTPs 
0.5 µl of Qiagen Taq polymerase 
18.5 µl of molecular grade H2O 
25.0 µl total per sample reaction 
 
A master mix containing all of the above components was prepared to facilitate pipetting, 

and then divided according to the number of samples/reactions (6 for this study).  This 

master mix was prepared on ice, with the molecular grade water and buffer added first, 

and the Taq polymerase added last.  Then PCR was facilitated in a thermocycler.  The 

specific PCR cycle conditions are summarized in Table 3.3, to provide further details of 

the settings administered. 

Table 3.3: PCR cycle conditions. 
Step Cycles Temperature (°C) Duration 

1. Initial Denaturation 1 95 2 minutes 
2. Denaturation 1 95 30 seconds 
3. Annealing 1 50 30 seconds 
4. Elongation 1 72 1 minute 
5. Repeat #2 - 4 30   
6. Final Elongation 1 72 5 minutes 
7. Cooling 1 4 forever 

 



 
 

Normally after PCR cycles have completed, an agarose gel is prepared in order to 

visualize the PCR products.  However in this case, and in order to conserve as much PCR 

product for downstream analysis, no gel was prepared but instead nested PCR was 

immediately performed. 

3.5.3 Amplicon Library Construction (Nested PCR) 

Often following the first PCR amplification of the 16S rRNA gene, non-specific binding 

in products occurs due to the amplification of unexpected primer binding sites.  

Therefore, a second PCR reaction (referred to as nested PCR) is a modification that 

reduces that non-specific binding.  In this study, nest PCR was utilized to prepare 

amplicon libraries for downstream amplicon sequencing.  Amplicon library construction 

involves two fusion primers, intended to amplify a secondary target within the first run 

PCR product (Roche Applied Science, 2007).  When preparing DNA samples for 

amplicon libraries, the fusion primers must be designed according to the particular 

requirements of the experiment. 

Specific fusion primers were designed in constructing amplicon libraries for each sample 

of this study (Roche Applied Science, manual version 001-2009).  Each forward fusion 

primer contained a directional Primer-A sequence at the 5-prime end of the 

oligonucleotide (Fig 3.4; Table 3.4).  This sequence binds to the DNA capture beads and 

anneals the amplification and sequencing primers of emPCR kits (Roche Applied 

Science, 2007).  The Primer-A sequences end with a four-base sequencing key “TCAG”, 

used in downstream software for base calling and to recognize legitimate library reads 

(shown in red in Fig 3.4).  A unique multiplex identifier (MID, also referred to as a 

‘barcode’) sequence was then attached after the sequencing key, which allows for 

independent samples to be pooled together for sequencing (Roche Applied Science, 

2009).  Each sample was assigned with its own, 10-nucleotide barcode (Table 3.5), which 

also allows for automated software identification of samples after sequencing and 

subsequent bioinformatic segregation (Parameswaran et al. 2007).  The reverse primer 

designs (Primer-B) did not require a MID because the amplicon libraries were 

unidirectionally sequenced, meaning the amplicons were only sequenced from fusion 

Primer-A.  Finally, following the MID was a template-specific primer (shown in purple 



 
 

in Fig 3.4), or for the reverse primers the template-specific primer followed the 

sequencing key.  The template-specific primers (357F, 805R) were designed to anneal to 

either side of the target to be sequenced (detailed in Table 3.4).  This end also served as 

the PCR amplification primer during library preparation (454 Life Sciences, 2006). 

 

 

 

Figure 3.4: Schematic representation of an Amplicon library product (Adapted from 
Roche Applied Science, 2007).  
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Table 3.4: Directional and template-specific primer sequences used to construct all 
amplicon libraries. 

Primer Primer Sequence 5’ to 3’ Reference 
Primer-A 
(forward) 

CCATCTCATCCCTGCGTGTCTCCGAC Roche Applied Science, 
2007 

357F TACGGGAGGCAGCAG Lane, 1991 
Primer-B 
(reverse) 

CCTATCCCCTGTGTGCCTTGGCAGTC Roche Applied Science, 
2007 

805R GACTACCAGGGTATCTAATC Sfanos et al. 2005 
 

Table 3.5: Unique Multiplex Identifier (MID) sequences assigned to individual samples 
in constructing amplicon libraries. 

Sample MID ID# MID Sequence 5’ to 3’ Reference 
SML 
 OW 

MID9 TAGTATCAGC Roche Applied Science, 2007 

SSW 
OW 

MID10 TCTCTATGCG Roche Applied Science, 2007 

SML 
CW 

MID11 TGATACGTCT Roche Applied Science, 2007 

SSW 
CW 

MID12 TACTGAGCTA Roche Applied Science, 2007 

Control 
   Air 

MID5 ATCAGACACG Roche Applied Science, 2007 

Control 
Empty 

MID8 CTCGCGTGTC Roche Applied Science, 2007 

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 



 
 

The following reaction was setup for each sample using a FastStart High Fidelity PCR 
System kit (Roche Applied Science, version 6.0), which consisted of: 
5.0 µl of DNA (PCR product of first reaction) 
1.0 µl of Fusion forward primer 
1.0 µl of Fusion reverse primer 
5.0 µl of FastStart High Fidelity buffer 
1.0 µl of dNTPs 
1.0 µl of FastStart High Fidelity Taq polymerase 
41.0 µl of molecular grade H2O 
55.0 µl total per sample reaction 

Again, the above reaction was prepared on ice, with the molecular grade water and 

FastStart High Fidelity buffer added first, and the FastStart High Fidelity Taq polymerase 

added last.  The same PCR cycle conditions summarized in Table 3.3 were again 

administered.  Then, after the PCR cycles completed, an agarose gel was prepared in 

order to visualize the nested PCR products (Fig 3.5). 

The following 1% agarose gel was prepared, which consisted of: 
50.0 ml of TAE buffer 
500.0 mg of agarose powder 
5.0 µl of Sybrsafe 

The agarose powder was mixed in the buffer and microwaved until the agarose was 

dissolved.  The solution was then cooled until warm to the touch and the sybrsafe was 

added.  The gel was mixed well, poured into a boat, and cooled for another 15 minutes (to 

solidify).  The first lane of the gel was loaded with 6.0 µl of 100bp DNA ladder 

(BioLabs, Inc. N3231S).  The subsequent lanes were loaded with 1.0 µl of loading dye 

and 5.0 µl of the nested PCR product.  The gel ran for one hour at 120 volts. 

 



 
 

         
Figure 3.5: Agarose gel pictures of the nested PCR products from the 4 samples collected 
on 9/13/2011 (Agarose Gel 1) and the two control samples collected on 9/10/2011 
(Agarose Gel 2).  On the far right is the 100bp DNA ladder key, showing standard marker 
sizes (BioLabs, Inc. N3231S). 

As seen on the agarose gel pictures in Figure 3.5, the bands of all the samples were near 

the 500 base pair marker of the DNA ladder.  This was an important requirement in 

designing the amplicon libraries.  The amplicon could not be any longer than 500 base 

pairs, from end to end (including the fusion primers) because templates longer than this 

do not amplify well in downstream emulsion-based clonal amplification.  Therefore, an 

insert size of 448 base pairs was accomplished by using the template-specific primers 

(357F, 805R), which was still sufficient to cover two of the hyper-variable regions of the 

16S rRNA gene. 

However, the bands in agarose gel 1 showed smearing and contained multiple bands that 

were not targeted.   A method to eradicate the smearing and multiple bands would be to 

perform an agarose gel extraction.  However in an effort to conserve time, no gel 

extraction was administered but instead the amplicon libraries were purified before 

undergoing emulsion-based clonal amplification in the next step (by the University of 

Florida). 

After the amplicon libraries were prepared, they were placed on dry ice and shipped 

overnight to the University of Florida (UF), ICBR Genomics Division, where emulsion-
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based clonal amplification and 454 pyrosequencing were administered.  The UF lab 

preferred to have at least 300ng of each target amplicon library.  Meaning, the microlayer 

and subsurface samples all had approximately 10ng/µl, so then 30µl (or 300ng) of each 

sample was needed to send to UF.  To ensure that UF had enough product to work with, 

40µl (or 400ng) of each sample were sent to their lab.  The control samples, however, 

both had more mass and therefore a smaller volume was required to send to the UF lab.  

The details of each amplicon library sent to UF are summarized in Table 3.6. 

Table 3.6: The mass and appropriate volumes of each amplicon library sent to the 
University of Florida. 

Sample SML 
 OW 

SSW 
 OW 

SML 
 CW 

SSW 
 CW 

Control 
    Air 

Control 
 Empty 

ng/µl ~10 ~10 ~10 ~10    ~40   ~20 
Volume (µl)    40    40    40    40       15     15 
DNA Size ~500bp ~500bp ~500bp ~500bp   ~500bp  ~500bp 

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

3.5.4 Emulsion-Based Clonal Amplification 

Once the amplicon libraries arrived at the University of Florida’s ICBR Genomics 

Division lab, sample processing began with Quality Control, which evaluated the 

amplicon libraries for size and quantity to ensure the samples were pure (no primers).  As 

suspected, the data showed the presence of smaller fragments, so the samples underwent 

cleanup to remove these smaller fragments.  Equal amounts from each sample were then 

pooled based on their concentrations and the pooled DNA was quantitated again before 

being subjected to emulsion-based clonal amplification (emPCR). 

The emPCR amplification process was performed on the whole amplicon library, using a 

GS FLX Titanium emPCR Kit (Roche Applied Science, manual version FLX.Ti.00 – 

USM-00056.B).  In emPCR, the DNA fragments were physically separated in an 

emulsion.  This allowed for bias-free amplification of the DNA molecules by entrapping 

them in lipid microreactors, which eliminated any competition from multiple templates 

(Schuster, 2008).  Meaning that during the PCR, each DNA fragment was independently 

confined into a droplet of oil and water containing the PCR reagents (Armougom et al. 



 
 

2009).  This emPCR is a unique process that eradicated the need for cloning the target 

sequences because the templates were handled in bulk within their respective emulsions 

(Margulies et al. 2005).  The entire amplification process consisted of seven main steps 

and took a few hours, where the final product was a sequencing-ready library of clonally 

amplified, single-stranded DNA fragments.  The DNA library was then loaded onto a 

picotiter plate (PTP) device, where the clonally amplified fragments were distributed 

evenly and were then ready for sequencing. 

3.5.5 454 Pyrosequencing 

The amplified DNA fragments that were previously loaded onto the PTP device were 

inserted into and sequenced on a Genome Sequencer FLX Instrument (Roche Applied 

Science, instrument version GS FLX – 2.0.01).  This instrument automatically performed 

and monitored the sequencing reactions in all the wells of the PTP device simultaneously, 

providing a unique technology that efficiently sequenced the single DNA molecules and 

enabled a comprehensive view into the diversity of the environmental samples of this 

study. 

The Genome Sequencer process is referred to as 454 pyrosequencing because the 

sequencing technology is based on the detection of pyrophosphates released during DNA 

synthesis (Parameswaran et al. 2007).  Therefore, this DNA sequencing method follows a 

‘sequencing-by-synthesis’ principle, which relies on efficient detection of the sequential 

incorporation of natural nucleotides during the synthesis of DNA (Ronaghi et al. 1998).   

Pyrosequencing is thus a technique built on a 4-enzyme real-time monitoring of DNA 

synthesis by bioluminescence (Ahmadian et al. 2006).  The pyrosequencing technique 

includes four enzymes that are involved in a cascade reaction system (Fig 3.6).  When a 

nucleotide is introduced in the DNA-strand, a detectable light signal is produced 

(Ahmadian et al. 2006).  Therefore, a light signal is only detected if a base pair is formed 

with the DNA template, and the signal strength is proportional to the number of 

nucleotides incorporated in a single nucleotide flow (Armougom et al. 2009). 



 
 

 
Figure 3.6: Principle of pyrosequencing technology. 
A single-stranded DNA template is incubated with the enzymes, DNA polymerase, ATP 
sulfurylase, luciferase and apyrase. The incorporation of a nucleotide is accompanied by 
release of pyrophosphate (PPi). The ATP sulfurylase converts PPi to ATP. The signal 
light produced by the luciferase-catalyzed reaction in presence of ATP is detected by a 
charge coupled device (CCD) camera and integrated as a peak in a Pyrogram. The 
process continues with addition of the next dNTP and the nucleotide sequence of the 
complementary DNA strand is inferred from the signal peaks of the pyrogram. 
(Armougom et al. 2009). 

The output of the sequencing run contained raw DNA sequencing data that was further 

analyzed using software, according to the objectives of this study.  However, analyzing 

such massive nucleotide sequence collections can overwhelm existing computational 

resources and analytic methods (Cai et al. 2011).  Therefore, sophisticated software that 

can handle this massive dataset was required. 

3.6 Data Analysis - Bioinformatics 

In order to take the sequencing data from raw sequences to interpretation, the quantitative 

insights into microbial ecology (QIIME) software was utilized.  QIIME is an open-source 



 
 

software pipeline built using the PyCogent toolkit and supports a wide range of microbial 

community analysis and visualizations (Caporaso et al. 2010).  This software thus 

provided a robust platform for combining the experimental datasets and for rapidly 

obtaining new insights about various microbial communities targeted in this study. 

The following analyses were performed using QIIME (software version 1.5.0) and are 
further addressed in the proceeding results: 

• The DNA sequence reads were filtered for quality and multiplexed reads were 
assigned to samples by nucleotide barcode (parameter: barcode type = 10). 

• Operational taxonomic units were picked based on sequence similarity within the 
reads, and a representative sequence from each was chosen. 

• The operational taxonomic units were assigned to a taxonomic identity using 
reference databases. 

• Communities were then summarized according to their taxonomic compositions. 

• Diversity metrics were calculated for each sample to compare the types of 
communities, using the taxonomic assignments. 

4.0 Results 

4.1 Preliminary Study 

In the preliminary analysis of the samples collected from the NSUOC boat basin, DNA 

was cloned following the initial PCR.  In order to identify what bacterial populations 

were present in our samples, individual DNA fragments needed to be separated, which 

was facilitated by DNA cloning.  DNA sequencing was then administered to determine 

the order of nucleotide bases of targeted DNA.  From the sequenced data, information 

regarding the taxonomic origins of the samples was obtained through the basic local 

alignment search tool (BLAST) program.  This program allows for the comparison of the 

sequenced data with a library or database of sequences, and then identifies library 

sequences that resemble the original sequence. 

The preliminary sequencing analysis suggested the presence of bacteria related to a strain 

of uncultured gammaproteobacteria, previously isolated from coastal sediment along a 

hydrocarbon contamination gradient (BLAST accession: FR670377.1; EC-value: 97%).  



 
 

Many genera of the gammaproteobacteria are known to be involved in surfactant 

production and degradation, which is discussed later. 

This preliminary study indicated that the bacterial composition of the sea surface 

microlayer could be effectively determined using the proposed sampling method.  

Therefore, further DNA analysis was warranted.  Instead of cloning DNA fragments, the 

subsequent samples were processed using next generation 454 pyrosequencing 

technology (as discussed in section 3.5.5) and then analyzed in QIIME (section 3.6) to 

compensate for the small sample size and to achieve more comprehensive results. 

4.2 Assigning Samples to Multiplex Reads 

The output from the 454 pyrosequencing run produced a total 61,663 raw sequences.  The 

sequences were not evenly distributed among all the samples, but in fact the subsurface 

coastal water contained the largest number (Table 4.1).  Also, the number of sequences 

was remarkably lower in both the controls, as compared to the rest of the samples, 

signifying a lower number of bacterial populations present within the control samples. 

Table 4.1: The distribution of raw sequences among each sample. 
Sample SML 

 OW 
SSW 
 OW 

SML 
 CW 

SSW 
 CW 

Control 
    Air 

Control 
 Empty 

Total 

# of Sequences 15,814 10,963 7,560 19,925   3,514   3,887 61,663
SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

Assigning multiplexed reads to the samples according to their nucleotide barcode in 

QIIME allowed for quality filtering of the above sequences, based on the characteristics 

of each sequence.  This task removed any low quality or ambiguous reads, which allowed 

for proper subsequent operational taxonomic unit (OTU) picking and taxonomic 

assignment. 

4.3 Picking Operational Taxonomic Units 

Using QIIME software, all the sequences from all of the samples were clustered into 

OTUs, based on their level of sequence similarity.  In other words, OTUs are clusters of 

sequences, frequently intended to represent some degree of taxonomic relatedness (Sun et 



 
 

al. 2010).  For example, when sequences are clustered at 97% sequence similarity, each 

resulting cluster is typically thought of as representing a species (Crawford et al. 2009).  

Although the current techniques for picking OTUs are known to be imperfect, 

determining exactly how OTUs should be defined, and what they represent, is an active 

area of research (Crawford et al. 2009). 

A total of 695 OTUs were picked from the raw sequence data.  The distribution of those 

OTUs among each sample is outlined in Table 4.2.  Since each OTU may be made up of 

many related sequences, a representative sequence from each OTU was picked for 

downstream analysis.  This representative sequence was then used for taxonomic 

identification of the OTU. 

Table 4.2: The distribution of operational taxonomic units among each sample. 
Sample SML 

 OW 
SSW 
 OW 

SML 
 CW 

SSW 
 CW 

Control 
    Air 

Control 
 Empty 

Total 

# of OTUs 136   67   201  112     70    109   695 
SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

As shown in Table 4.2, there were more OTUs in the microlayer samples from both open 

and coastal water as compared to their corresponding subsurface samples.  This indicated 

higher microbial diversity present in the SML samples, however that does not necessarily 

mean those OTUs were surfactant related.  Further analyses of the targeted surfactant-

associated bacterial populations are addressed later. 

4.4 Taxonomic Identity of Operational Taxonomic Units 

Each of the representative sequences mentioned in the previous section were assigned to 

taxonomic identities using the established database, Ribosomal Database Project (RDP) 

classifier, version 2.2 (Wang et al. 2007).  This database provided information on the 

microbial lineages found within the samples.  For each OTU considered, there was an 

RDP taxonomy assignment with a numerical confidence of that assignment.  Then using 

those taxonomic assignments, an OTU heatmap (Fig 4.1) was assembled, which displays 

the OTU abundance in each sample and the taxonomic assignment for each OTU.  The 



 
 

counts on the heatmap are colored based on the contribution of each OTU to the total 

OTU count present in the sample (i.e. blue: contributes low percentage of OTUs to 

sample; red: contributes high percentage of OTUs).  This provided a convenient way to 

look for organisms (and their lineages) of interest in this study. 

 
Figure 4.1: Operational Taxonomic Unit Heatmap. 

Kingdom Phylum Class Order Family SML      
OW

SSW      
OW

SML      
CW

SSW      
CW

Control   
Air

Control
Empty #OTU ID

Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 424 7 1 1 58
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 3 397 79
Bacteria Cyanobacteria Chloroplast Stramenopiles N/A 4 1 31 107
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae 174 350 256 144 165
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 327 470
Bacteria Cyanobacteria Chloroplast Stramenopiles N/A 312 515
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 1 298 744
Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 345 323 842
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Litincolaceae 298 844
Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae 3 672 1 1033
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 251 1144
Bacteria Bacteroidetes Flavobacteria N/A N/A 373 1 1145
Bacteria Bacteroidetes Flavobacteria N/A N/A 1278 1171
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 305 6 528 1297
Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 4 222 97 1374
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales N/A 3 312 1377
Bacteria Proteobacteria Alphaproteobacteria Rickettsiales N/A 104 513 5 493 1416
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 1 1666 1 1430
Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 121 879 1579
Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae 2355 1 3 3 1693
Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 2 6 95 2 1801
Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae 985 231 30 1804
Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae 201 175 1892
Bacteria Proteobacteria Alphaproteobacteria Rickettsiales N/A 221 2075
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 837 2106 405 581 216 453 2171
Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae 449 1 2195
Bacteria Cyanobacteria Synechococcophycideae Synechococcales Synechococcaceae 93 257 26 113 2256
Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae 319 2 293 2274
Bacteria Firmicutes Bacilli Bacillales Staphylococcaceae 92 798 1 68 2455
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae 1385 3 2491
Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae 119 1 427 2598
Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae 92 22 410 2687
Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 527 3 2770
Bacteria Firmicutes Bacilli Bacillales N/A 12 2 2 3 2876
Bacteria Proteobacteria Alphaproteobacteria Rickettsiales N/A 119 65 671 2899
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae 101 420 2902
Bacteria Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae 698 1987 861 2140 292 591 3028
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae 341 3084
Bacteria Cyanobacteria Synechococcophycideae Synechococcales Synechococcaceae 15 244 116 255 24 3195
Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae 1 537 3508
Bacteria Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 1 1 55 1 599 222 3527
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae 121 1 215 3560
Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae 1 634 3738
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae 350 133 833 3752
Bacteria Firmicutes Bacilli Lactobacillales Carnobacteriaceae 2 366 3765
Bacteria Bacteroidetes Sphingobacteria Sphingobacteriales N/A 454 765 1 3769
Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 627 6 3840
Bacteria Firmicutes Bacilli Bacillales Bacillaceae 198 369 3906
Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales N/A 624 3966
Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 4 3986
Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 2 22 1098 4010
Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae 802 440 3239 4044

Consensus Lineage Samples

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

 



 
 

4.5 Community Summary by Bacterial Taxonomic Composition 

Each OTU was further grouped into categories based on their different taxonomic levels, 

or the rank-based classification of bacteria.  In biology, the scientific classification 

system establishes a hierarchy of rank in which each organism is assigned to (Linnaeus, 

1758).  In the currently accepted hierarchy of biological classification there are nine 

major taxonomic levels which include: Life, Domain, Kingdom, Phylum, Class, Order, 

Family, Genus and Species (Fig 4.2).  With Life being the highest rank, there are then 

three domains that branch from Life: Archaea, Bacteria, and Eukaryotes.  These domains 

have several different conventions between them and between their subdivisions in terms 

of taxonomy, and as such are studied by different disciplines (Woese et al. 1990).  

Following the bacteria domain is Kingdom, which includes six groups (animalia, archaea, 

bacteria, fungi, plantae, and protista).  Next is Phylum, the taxonomic rank below 

kingdom, which is further analyzed in the following section. 

 
Figure 4.2: The hierarchy of biological classification, containing nine major taxonomic 
levels. 



 
 

4.5.1 Phylum Taxonomic Classification 

The phylum rank can be defined as grouping organisms based on a certain degree of 

morphological or developmental similarity, or with a certain degree of evolutionary 

relatedness (Valentine, 2004).  In the classification system, there are over 29 bacterial 

phyla divisions that have been cultured and many others that cannot currently be cultured 

(Madigan et al. 2009).  The uncultured groups are known solely by metagenomics 

(methods to analyze environmental DNA) and if included, the number of bacterial phyla 

would reach 52 or higher (Rappe et al. 2003).  The distribution and relative abundance of 

the bacterial populations on the phylum level, found within each sample of this study are 

illustrated in Figure 4.3 and Table 4.3 respectively, and are useful for providing a broad 

overview of the important bacterial groups present. 

   

 
Figure 4.3: Phylum taxonomic assignment distribution in each sample. 
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Table 4.3: Relative abundance of phylum level bacterial populations present within each 
sample. 

Sample SML 
OW 

SSW 
OW 

SML 
 CW 

SSW 
 CW 

Control 
    Air 

Control 
 Empty 

Date         
Time (EST) 

9/13/2011 
8:41 am 

9/13/2011 
8:51 am 

9/13/2011 
9:29 am 

9/13/2011 
9:36 am 

9/10/2011   
10:55am 

9/10/2011 
10:59am 

Proteobacteria 
Phylum 

61% 48% 46% 36% 62% 65% 

Firmicutes 
Phylum 

20% 23% 30% 26% 2% 5% 

Actinobacteria 
Phylum 

6% 19% 15% 13% 13% 19% 

Bacteroidetes 
Phylum 

10% 2% 2% 10% 18% 6% 

Cyanobacteria 
Phylum 

2% 6% 4% 4% 1% 0% 

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 

4.5.1.1 Proteobacteria Phylum 

Phylum: Proteobacteria   Phylum: Proteobacteria 
Class: Gammaproteobacteria   Class: Gammaproteobacteria 
Order: Pseudomonadales   Order: Pseudomonadales 
Family: Pseudomonadaceae   Family: Moraxellaceae 
Genus: Pseudomonas - degrade aromatic Genus: Acinetobacter – produce 
     hydrocarbons                      biosurfactants 
 
Phylum: Proteobacteria   Phylum: Proteobacteria 
Class: Gammaproteobacteria   Class: Gammaproteobacteria 
Order: Oceanospirillales   Order: Enterobacteriales 
Family: Halomonadaceae   Family: Enterobacteriaceae 
Genus: Halomonas – produce   Genus: Enterobacter – produce 
             biosurfactants      biosurfactants 

The results show that Proteobacteria were the most abundant bacterial group present 

throughout all the samples in the phylum level.  This bacterial phylum contains many 

genera (listed above) of bacteria that are able to degrade aromatic hydrocarbons (Zocca et 

al. 2004) or that have been reported to produce biosurfactants (Satpute et al. 2010).  This 

bacterial group is also responsible for nitrogen fixation as well as converting energy from 

light through photosynthesis (Stackebrandt et al. 1988).  Although this group was present 



 
 

in all samples, the highest percentage was found in the sea surface microlayer sample 

taken from the open water.  Considering the SML is where exposure to the sun is most 

extreme, and this phylum is known for photosynthesis, their large presence in the 

microlayer would enable high productivity for photosynthesis.  Although the abundance 

of Proteobacteria was slightly less in the SML sample taken from coastal water as 

compared to the open water, there was still a greater percentage present in the microlayer 

samples than in their corresponding subsurface water samples.  This indicates that more 

of this bacterial group dwells in the microlayer. 

Moreover, because this phylum contains numerous genera that are known to either 

produce surfactants or degrade aromatic hydrocarbons, their potential influence on 

surfactant production and transformation is of high interest.  Considering this phylum 

group is widely dispersed in microlayer and subsurface waters, they may play a role in 

surfactant production and transformation throughout the whole water column. 

It is also important to take into consideration the high percentages in both the control 

samples for this phylum.  In view of the ‘empty’ control sample showing 65% 

proteobacteria present, there may be considerable contamination regarding this bacterial 

phylum. 

4.5.1.2 Firmicutes Phylum 

Phylum: Firmicutes 
Class: Bacilli 
Order: Bacillales 
Family: Bacillaceae 
Genus: Bacillus – produce biosurfactants 

Firmicutes were the next largest phylum of bacteria present in all samples.  Firmicutes 

contain the bacterial genus, Bacillus, which is known to produce biosurfactants (Satpute 

et al. 2010).  They are also found in various environments, can survive extreme 

conditions, and produce energy through photosynthesis (Wolf et al. 2004).  The highest 

abundance of this bacterial group was present in the coastal microlayer.  The other 

samples had similar percentages, with only slight variations.  Most importantly, this 



 
 

group was present in very low numbers in the control groups, indicating little 

contamination in water samples. 

Considering that this phylum contains the surfactant producer, Bacillus and was most 

abundant in the coastal microlayer, perhaps this group plays a significant role in 

surfactant concentration within the sea surface. 

4.5.1.3 Actinobacteria Phylum 

Phylum: Actinobacteria 
Class: Actinobacteria 
Order: Actinomycetales 
Family: Nocardiaceae  
Genus: Rhodococcus – produce biosurfactants 

Actinobacteria are a phylum of bacteria that include some of the most common marine 

and freshwater life, playing an important role in decomposition of organic materials and 

thereby playing a vital part in organic matter turnover and carbon cycling (Ventura et al. 

2007).  This phylum also contains Rhodococcus, a genus of bacteria that produce 

biosurfactants (Satpute et al. 2010).  The subsurface of the open water sample contained 

the highest abundance of this group, with the corresponding microlayer sample having 

considerably less of a percentage.  Conversely, in the coastal water samples, there was a 

higher percentage in the microlayer than in the subsurface waters but not as much of a 

stark difference between the two.  This data reveals some insight into the possible role 

that Actinobacteria may play in the production of surfactants throughout the water 

column.   Furthermore, it seems their proposed influence on surfactant concentration is 

greatest in the coastal subsurface waters. 

Bear in mind that the control samples did show a substantial percentage of this group, 

therefore there may be significant contamination in the other samples in regards to this 

bacterial phylum. 

4.5.1.4 Bacteroidetes Phylum 

The next phylum of bacteria present in all the samples was Bacteroidetes.  Although there 

are no known genera from this phylum that are directly related to surfactant production or 



 
 

transformation, Bacteroidetes are known to be widely distributed in the environment, 

including seawater and could therefore be potentially surfactant related (Gupta et al. 

2007).  Interestingly, the results from this phylum show inverse abundances for open 

water versus coastal water.  Meaning, there was a greater percentage present in the open 

water microlayer than the corresponding subsurface, but equal and opposite abundances 

in the coastal waters.  Because this group is known to be widely distributed in seawater, 

this could explain for the varying abundance results. 

The control samples here also contained a significant percentage of this phylum, 

so there may be considerable contamination in the water samples. 

4.5.1.5 Cyanobacteria Phylum 

Cyanobacteria are the last bacterial phylum that was present in all water samples.  Again, 

this phylum does not contain any known genera that are directly related to surfactant 

production or transformation, however, they can be found in oceans and freshwater, 

forming biofilms in marine environments (Flores, 2008).  Aquatic cyanobacteria are best 

known for the highly visible blooms that can form in the marine environment that have a 

blue-green appearance.  These blooms are toxic and frequently lead to closure of 

recreational waters.  Cyanobacteria also produce exopolysaccharides, which are 

carbohydrate polymers that form a layer surrounding the cells that help them to withstand 

or resist adverse and extreme environmental conditions (Satpute et al. 2010).  Despite 

there being no known genera from this phylum directly related to surfactants, there are 

many marine microbes that have yet to be identified.  Therefore, cyanobacteria could 

potentially have a surfactant influence. 

Cyanobacteria were more abundant in the open water subsurface than the corresponding 

microlayer, but present in equal percentages from coastal microlayer and subsurface 

waters.  It is important to also note that the results show no cyanobacteria present in the 

control ‘empty’ sample, meaning there was no contamination introduced in the samples 

from this phylum. 

 

 



 
 

4.5.2 Family Taxonomic Classification 

Although Class and Order are the sequential taxonomic ranks that follow Phylum, the 

Family rank is the most specific classification the data analysis produced in this study and 

therefore contains the most valuable information regarding which surfactant-associated 

bacterial groups were present in the samples.  Family is a stable taxonomic level for 

evolutionary studies, containing groups of organisms with a large degree of evolutionary 

relatedness (Sahney et al. 2010).  Furthermore, the family taxonomic level is often used 

in biodiversity studies because genera and species cannot always be confidently 

identified (Sahney et al. 2010).  The following results reveal the surfactant-associated 

bacterial populations found in the samples on the family level of classification (illustrated 

in Figure 4.4).  Bacterial diversity was calculated in Table 4.4 for each sample based on 

the parameter, VF, which is defined as the ratio of the number of surfactant-associated 

bacterial groups in an individual sample to the total number of identified surfactant-

associated bacterial groups in all samples (9 families in our analysis). 

 
Figure 4.4: Distribution of the family taxonomic surfactant-associated bacterial 
populations found in each sample. 
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Table 4.4: Diversity and relative abundance of family level surfactant-associated bacterial 
populations present within each sample. 

 Sample SML        
OW 

SSW 
OW 

SML 
CW 

SSW 
CW 

Control
Air 

Control 
Empty 

 Date             
Time (EST) 

9/13/2011
8:41 am 

9/13/2011 
8:51 am 

9/13/2011 
9:29 am 

9/13/2011 
9:36 am 

9/10/2011   
10:55am 

9/10/2011  
10:59am 

Phylum Family       
Proteobacteria Moraxellaceae 18% 0% 0% 0% 0% 5% 
Proteobacteria Halomonadaceae 3% 3% 4% 8% 0% 0% 
Proteobacteria Enterobacteriaceae 1% 0% 0% 0% 7% 6% 
Firmicutes Bacillaceae 1% 0% 5% 0% 0% 0% 
Actinobacteria Nocardiaceae 0% 0% 0% 1% 0% 0% 
Actinobacteria Propionibacteriaceae 5% 18% 13% 11% 9% 18% 
Proteobacteria Sphingomonadaceae 0% 6% 0% 0% 0% 0% 
Proteobacteria Vibrionaceae  1% 0% 0% 2% 0% 0% 
Proteobacteria Rhodospirillaceae 6% 0% 0% 4% 0% 0% 
 Diversity among 

surfactant-associated 
bacteria, VF 

0.78 0.33 0.33 0.56 0.22 0.33 

SML OW = sea surface microlayer, open water SSW OW = subsurface water, open water 
SML CW = sea surface microlayer, coastal water SSW CW = subsurface water, coastal water 
Control Air = sample exposed only to air  Control Empty = sample not exposed to any elements 
Open Water = ~5 miles offshore    Coastal Water = ~1 mile from coastline 
VF = number of surfactant-associated bacterial families present in an individual sample ÷ the total number 

of identified surfactant-associated bacterial families in all samples 

4.5.2.1 Moraxellaceae Family 

Phylum: Proteobacteria 
Class: Gammaproteobacteria 
Order: Pseudomonadales 
Family: Moraxellaceae 
Genus: Acinetobacter – produce biosurfactants 

The Moraxellaceae family are a part of the Proteobacteria phylum and are an important 

group of bacteria that were found in this study because Moraxellaceae are known to occur 

in water or soil and contain the genus, Acinetobacter, which are reported to produce 

biosurfactants (Rossau et al. 1991).  The results show that Moraxellaceae were only 

present in the open water microlayer sample and were also the family with the largest 



 
 

abundance for that sample.  This data indicates that the Moraxellaceae family might play 

an important role in surfactant production in the sea surface microlayer. 

However, the ‘empty’ control sample did contain a noteworthy percentage of this 

group.  Therefore, there may be contamination regarding this bacterial family. 

4.5.2.2 Halomonadaceae Family 

Phylum: Proteobacteria 
Class: Gammaproteobacteria 
Order: Oceanospirillales 
Family: Halomonadaceae 
Genus: Halomonas – produce biosurfactants 

Halomonadaceae are another significant family from the Proteobacteria phylum that 

include Halomonas, a genus of bacteria that are known to produce biosurfactants (Satpute 

et al. 2010).  In the open water, this group was present in equal numbers for both the 

microlayer and subsurface samples.  However, in coastal waters, the abundance of 

Halomonadaceae was twice as high in the subsurface water than the corresponding 

microlayer.  This might imply that Halomonadaceae are influential in surfactant 

production in the coastal water column.  Most importantly, this group was not present in 

the control samples, verifying no contamination. 

4.5.2.3 Enterobacteriaceae Family 

Phylum: Proteobacteria 
Class: Gammaproteobacteria  
Order: Enterobacteriales 
Family: Enterobacteriaceae 
Genus: Enterobacter – produce biosurfactants 

A third family from the Proteobacteria phylum that was found in this study were the 

Enterobacteriaceae.  This family contains the bacterial genus Enterobacter, which are 

recognized as biosurfactant producers as well (Satpute et al. 2010).  Enterobacteriaceae 

were only found in the open water microlayer sample, however in a very low percentage.  

From this data it could appear that Enterobacteriaceae have a possible influence in 

surfactant production within the sea surface, although there were considerable 

abundances present in the control samples, signifying contamination from this family. 



 
 

4.5.2.4 Bacillaceae Family 

Phylum: Firmicutes 
Class: Bacilli 
Order: Bacillales 
Family: Bacillaceae 
Genus: Bacillus – produce biosurfactants 

Bacillaceae are a family from the Firmicutes phylum.  They are significant to this study 

because they contain the genus, Bacillus, which is documented as a surfactant producer 

(Satpute et al. 2010).  Bacillaceae were present only in the microlayer samples from both 

coastal and open waters.  Because this group contains a bacterial genus that is known to 

produce biosurfactants, their presence solely in the microlayer reveals a potential 

influence in surfactant concentration within the sea surface.  Moreover, this family was 

also not present in the control samples, confirming no contamination. 

4.5.2.5 Nocardiaceae Family 

Phylum: Actinobacteria 
Class: Actinobacteria 
Order: Actinomycetales 
Family: Nocardiaceae 
Genus: Rhodococcus – produce biosurfactants 

The family Nocardiaceae are part of the Actinobacteria phylum and are commonly found 

in water and soil (Stackebrandt et al. 1997).  They also contain Rhodococcus, a genus of 

bacteria that are reported to produce biosurfactants (Satpute et al. 2010).  Additionally, 

Nocardiaceae can degrade hydrocarbons and have been proposed as bioremediation 

agents for environmental spills (Aislabie el al. 1998).  This family was only found in the 

subsurface from coastal waters, therefore having a potential role in surfactant 

transformation in the coastal water column.  However, this bacterial group was present in 

a very low percentage.  The control samples did not have any presence of this family, 

ensuring no contamination. 

4.5.2.6 Propionibacteriaceae Family 

Another family from the Actinobacteria phylum, Propionibacteriaceae, were present in 

significant numbers for all samples in this study.  Much like their phylum abundance 

results, the subsurface of the open water sample contained the highest percentage of this 



 
 

group, with the corresponding microlayer sample having considerably less of a 

percentage.  Conversely, in the coastal water samples, there was a higher percentage in 

the microlayer than in the subsurface waters but not as much of a stark difference 

between the two.  Although there are no known genera from this family that are directly 

related to surfactant production or transformation, because these bacteria include some of 

the most common marine and freshwater life and play an important role in the 

decomposition of organic materials, it is important to note their continual presence 

(Ventura et al. 2007).  Additionally, considering Propionibacteriaceae are reported to play 

an important role in the decomposition of organic materials, they could also contribute to 

surfactant transformation in the water column. 

However, the control samples did contain a significant percentage of this group, 

suggesting contamination from this bacterial family. 

4.5.2.7 Sphingomonadaceae Family 

Another group that was found at the family level was Sphingomonadaceae.  There are no 

known genera from this family that are directly related to surfactant production or 

transformation, however, this group is known by their ability to degrade some aromatic 

compounds, which makes them of interest to environmental remediation (Balkwill et al. 

2006).  These bacteria were only found in the open water subsurface sample, revealing a 

possible influence in surfactant transformation in the water column.  Additionally, this 

family was not present in the control samples, confirming no contamination. 

4.5.2.8 Vibrionaceae and Rhodospirillaceae Families 

Vibrionaceae and Rhodospirillaceae are the last noteworthy family groups of bacteria 

present in the samples of this study.  Although neither is directly linked to having genera 

that produce or transform surfactants, Vibrionaceae inhabit fresh or salt water and most 

bioluminescent bacteria belong to this family (Madigan et al. 2005).  They are also 

typically found as symbionts of deep-sea animals and members of this family can 

synthesize an ancient and powerful marine neurotoxin that protects some fish (Madigan 

et al. 2005).  Rhodospirillaceae are mainly comprised of purple non-sulfur bacteria, 

which produce energy through photosynthesis (Dworkin et al. 2005).  They are often 

found in anaerobic aquatic environments, such as mud and stagnant water (Garrity et al. 



 
 

2005).  Both of these families were found in the open water microlayer and the coastal 

subsurface water, but not at all in their corresponding sampling locations.  Additionally, 

these groups were not present in the control samples, meaning there was no 

contamination introduced from these families. 

5.0 Discussion 

The 454 pyrosequencing platform utilized in this study was able to generate sufficient 

coverage for assembling the bacterial groups present in the sea surface microlayer and 

subsurface waters, which were otherwise inaccessible with lower-throughput sequencing 

methods because pyrosequencing analyzed hundreds of communities simultaneously, 

integrating information from all samples.  The results revealed known and unknown 

microbes, further stressing the importance of taxonomy independent analysis, such as 

QIIME (Oh et al. 2006).  And because many environmental microbes have not been 

formally described yet, this taxonomic independent analysis allowed for ecological 

estimations to characterize the microbial communities present.  The pyrosequencing 

technology also eliminated the need of laboratory isolation and cultivation of individual 

species, and thereby opened the hidden world of microbial communities in the 

environment that have previously been poorly characterized (Sun et al. 2010). 

5.1 Major Findings 

The results of this study emphasize: 

(1) Table 4.4 shows the diversity parameter, VF, for surfactant-associated marine bacterial 

families, as identified in this study.  The open water sea surface microlayer had larger 

diversity of surfactant-associated bacterial families (VF = 0.78) than its corresponding 

subsurface water (VF =0.33).  However, the microlayer of the coastal water had less 

diversity of surfactant-associated bacterial families (VF = 0.33) than its corresponding 

subsurface sample (VF = 0.56).  These findings support the first hypothesis in the open 

water, but not in the coastal water. 

(2) Of the two microlayer regions evaluated in this study, the coastal microlayer had 

lower diversity of surfactant-associated bacterial families (VF = 0.33) as compared to the 

open water microlayer (VF = 0.78), which supports the second hypothesis.  This may be 



 
 

associated with biophysical properties of coastal and open ocean water masses in the 

sampling area. 

Note that the improved method of the SML sampling developed in this work has been 

applied only to a limited number of samples.  Future work implementing this method will 

be required to make conclusions based on more substantial statistics. 

(3)  Since surfactant-associated bacteria are linked to presence of surfactants on the sea 

surface, this may have implications for detecting surfactant-associated marine bacteria 

from space.  This is due to the effect of surfactants on short gravity-capillary waves 

affecting SAR imagery, which has been widely reported in the literature (e.g., Alpers et 

al. 1989) but not in relation to marine bacteria.  In our study, there was precipitation in 

the area of sampling during experimentation (seen as rain signature on the COSMO 

SkyMed satellite image, Fig 3.1) therefore we have not been able to definitively show 

that the presence of surfactants on the sea surface can be positively identified on SAR 

imagery.  A companion thesis (Kurata, 2012) further explored this question by taking 

samples inside and outside slick areas and found greater diversity in the SML slick 

compared to non-slick SML, which was consistent with the corresponding SAR satellite 

image.  This is in support of the third hypothesis. 

This study examined the bacterial composition of the SML by capturing a snapshot of 

biogeographic patterns, which is often the case when sampling at single stations (Hewson 

et al. 2006).  However, because ocean surface waters are dynamic and vertically mixed 

over relatively short time scales, composition of bacterial assemblages on very small 

scales has been demonstrated to vary remarkably (Long et al. 2001).  This was reflected 

in the results of this study, which found varying results in microlayer and subsurface 

water, at coastal and open waters. 

Additionally, marine bacteria that are rare in one season can be abundant in another.  For 

example, in a four-year time-series study, a variety of taxa were undetectable in some 

months, but then made up several percent of the community in other months (Brown et 

al. 2005).  This could be attributed by the fact that bacterial taxonomic composition in the 

SML is believed to result from selective environmental factors, such as resource 



 
 

availability, the physical environment, and physical disturbances (Torsvik et al. 2002).  

All of the aforementioned factors can vary remarkably from season to season. 

6.0 Conclusions 

This pilot project introduces a new approach to sampling the sea surface microlayer and 

the importance of bacteria groups that effect the concentration of surfactants within the 

microlayer and subsurface of coastal and open waters in the Straits of Florida.  The 

primary goal of this work was to understand the bacterial groups that are surfactant 

related in the microlayer in order to apply this knowledge to remote sensing techniques. 

6.1 Limitations 

The marine environment is vast, but there have only been a few microbiological studies 

done on the sea surface microlayer using molecular biology techniques.  These, in total, 

have only covered less than one km2 of the ocean.  Efforts must therefore focus on a 

wider range of environments, using a universal sampling strategy in order to gain a more 

comprehensive understanding of this vast ecosystem.  A continuing challenge is to better 

understand the links between microbial diversity and ecosystem function.  For surface 

microlayer research to make progress in the future, multidisciplinary studies are essential. 

Characterizations of bacterial groups could significantly improve by comparing larger 

sample sets at testing sites.  This work took a small set of six samples because the focus 

was on formulating and perfecting an accurate sampling method.  Therefore, future work 

implementing this method will require taking a larger sampling set and a larger area 

under consideration to provide more statistically significant results and to further validate 

that this new sampling approach can be replicated. 

Additionally, the bioinformatic analysis was able to produce bacterial family taxonomic 

classification.  Although several potential surfactant-associated bacterial families were 

found, this study cannot conclude that all play a direct role in surfactant concentration in 

the SML and subsurface waters.  However, further analysis into the genus and/or species 

level of classification would ensure proper identification of surfactant-related bacterial 

groups present within the samples. 



 
 

Moreover, because microbial communities, as part of natural ecosystems, are inherently 

complex, a more holistic approach can yield complementary data to help determine how 

particular organisms in a system occur together and vary with environmental parameters 

(Fuhrman, 2009).  The traditional tools of microbiology tend to provide a narrow view, 

studying each organism in isolation.  However, microbial communities include many 

interactions with protists and viruses, therefore all of these organisms should ultimately 

be included in the analysis; otherwise important controlling factors will be missed 

(Kirchman, 2008).  This allows us to examine the potential interactions between 

organisms and aspects of the niches of microorganisms within extremely complex and 

dynamic natural communities. 

6.2 Implications for Future Research (Future Envisions) 

The limited data set obtained in this pilot project is not sufficient to definitively assess the 

microbial effects on the production and transformation of surfactants within the 

microlayer on a global scale.  Instead, this research provides a baseline of data that 

demonstrates how well the proposed methods work and allow for other studies to be done 

that pose questions regarding the sea surface microlayer.  This unique approach shows 

promise and further studies are needed with more robust sampling sets. 

Future experiments on this research should first create a protocol for ensuring proper 

sterilization of the filters used for sampling.  Although the polycarbonate membrane 

filters that were used in this study are commonly used for filtering water and for sampling 

without prior sterilization, there was significant contamination in several of the ‘empty’ 

filter samples that theoretically should not have had any presence of bacteria (Table 4.4).  

Contamination was diligently avoided by staying out of the ship wake and by using 

sterile instruments when sampling, but there were still strong numbers present.  Therefore 

trying other, more sterile filter types or a metal mesh that can be sterilized is necessary to 

gather better results. 

Further research in quantifying the absolute number of bacterial populations that are 

present in the sea surface microlayer and subsurface water is also important.  This study 

offers the relative abundance of bacteria that have a potential effect on surfactant 



 
 

concentrations in the microlayer and subsurface waters, however, real-time PCR could be 

utilized to quantify absolute abundance, by amplifying targeted bacteria.  Real-time PCR, 

also called quantitative real time PCR (qPCR) is a technique that enables both detection 

and quantification of one or more specific sequences of a DNA sample (Kubista et al. 

2006).  This technique produces an absolute number of target DNA molecules by 

comparison with DNA standards (Dhanasekaran et al. 2010).   

Not that long ago it seemed almost hopeless to sort out the identities and 

interrelationships among the trillions of microorganisms in a cubic meter of sea water, let 

alone a few hectares of ocean (Kirchman, 2008).  But the new sampling method that we 

developed here, in addition to the high-throughput DNA sequencing technique used in 

this study can greatly advance the analysis of marine microbial community structures, 

especially for measurements spread over space and time.  This will allow scientists to 

continue to follow, model and eventually predict the distributions of microorganisms and 

their activities, which is a critical aspect for understanding cycles in our oceans.   
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