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PhOSp.lOruS Limitation and Trophic Status in Limestone Quarry Lakes, Dade 

County, Florida 

by Isaac Chase 

Abstract 

While limestone quarry lakes have existed in South Florida for many years, only 

recently have they received serious scrutiny. A thorough understanding of the trophic 

dynamics of these lakes has yet to be achieved. Questions have arisen as to the value of these 

lakes fur such purposes as water reclamatjou. conservation, and recreational use. The purpose 

of this study was twofuld, 1) to investigate the trophic processes within these lakes with 

special regard to phosphorus limitation, and 2) to help provide a better understanding of the 

linmology of these lakes, specifically through the quantification and identification of the 

invertebrate life and water quality analysis. 

The pH in the fuur lakes in this study averaged above 8.0 over a two year period from 

January 1994 to December 1995. The surfu.ce dissolved oxygen averaged 7.1 mg!L during the 

same period. Chlorophyll-a averaged 1.1 mglm' during a six month period from April through 

September 1995. Surfuce total phosphorus levels averaged 0.012 mg!L (0.39 ug-at L·1)over 

the same six month period, which is not indicative of highly productive systems. While 

phytop1ankton were abundant during the two year period, the populations were dominated 

by very small furms of chlorophytes and cyanobacteria. The average alkalinity was high 

(150.4 mg CaCO,fL, 3.0 meq L-1), which is not surprising considering the geochemistry of 

these lakes. However, alkalinity was poorly correlated with the trophic measures (chlorophyll 

a, total phosphorus, alkaline phosphatase activity and orthophosphate). 
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To investigate phosphorus limitation in these lakes, the specific activity of the enzyme 

alkaline phosphatase, secreted by the phytoplankton, was studied over the course of 6 months 

and during a 24 hour period. The assumption was, that if theSe lakes were phosphorus limited, 

then alkaline phosphatase activity should vary inversely with orthophosphate. Furthermore, 

chIorophyn-a should be positively correlated with orthophosphate. In the six-month study the 

Jatter relationship was fuWld to be significant (Speannanr= 0.69; p= 0.0002, n= 24). Alkaline 

phosphatase activity and orthophosphate showed a nearly significant, inverse relationship 

(Spearman r= -0.402, p= 0.051, IF 24). Regression analysis from the diel study also showed 

a significant inverse relationship between alkaline phosphatase activity and orthophosphate 

(r= 0-.548, p= 0.033, n= 12). Alkaline phosphatase activity appears to provide a simple 

means of assaying the degree ofpbosphate limitation and the trophic state of these lakes. 
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I. Introduction and Literature Review 

A. Background 

The formation of many limestone quarry lakes in South Florida has resulted from 

mining by the building materiaJs industry. Rock mines in Dade County provide about half of 

the eighty million tons of construction grade rock used by the state of Florida each year. The 

resuhing lakes are usually rectangular in shape and are similar to bathtubs with nearly vertical 

sides. Mean depths can be 20 m (Hudy and Gregory 1983), which differentiates them from 

JOOst other Florida lakes, ofwbich only a fuw have mean depths greater than 8 meters (Beaver 

and Crisman 1991, Duarte et aI. 1992, Bays and Crisman 1983). While natural Florida lakes 

have received much attention recently, there is still very llmited information available on the 

aquatic biology and trophic dynamics ofthese subtropical, man-made lakes. 

While limestone quarry lakes have existed in South Florida for nearly 50 years, it was 

not until the mid-1980s that mitigation in the fOrm of littoral fringes has been required to 

oflSet the loss of wetland habitats. Several studies of limestone quarries have been conducted 

over the years (Baca et at. 1992, Beaven and McPhearson 1978, Burkart et aI' 1991, Hudy 

and Gregory 1983, Jackson and Maurrasse 1976, Weinberg et at. 1980), but very few have 

included data from lakes with mitigated areas (Baca et aI. 1992, Hudy and Gregory 1983). 

In January of 1994, a comprehensive, two-year study of four such lakes in Dade County was 

undertaken. The Lake Belt Study included a thorough investigation of species diversity and 

abundance, and water quality, in and around these lakes. The study included surveys of fish, 

birds, herpetoliuma; and mammals, as well as invertebrates (phytoplankton, zooplankton, and 

macro invertebrate surveys) and water quality studies. Sampling sites and transect locations 
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were selected based on coordination with Dade County Environmental Resources 

Management (DERM) and Everglades Research Group, Inc. (contractor fur non-lake 

segment of study). 

The study was undertaken to help evaluate a plan proposed by six rock mining 

companies. The plan is to create a large lake region made by mining the areas between 

existing limestone quarries in northwest Dade County. "The Lakebelt Plan", as it is called, is 

hoped to be a public benefit by creating recreational areas, enhancing municipal water supply, 

water conservation and/or reclamation areas, and production of construction grade rock for 

many years to corne (Larson 1992). It would also impact many acres of wetlands, most of 

which have already been impacted by the encroachment of exotic species like Melaleuca 

(Melaleuca quinquenervia) and Australian pine (Casuarina equisetifolia), as well as by 

drainage for agricultural and urban development. 

B. Review 

One concern about these quarry lakes is that they may contribute to contamination of 

the groundwater and eventually the aquifer itself. Yet in a study conducted in Broward 

County, Florida. Weinberg et a1. (1980) found that urban stormwater runoff entering a lake 

was ootcontaminating the ground-water around the lake .. They went on to state that these 

lakes " ... have the potential for reducing some of the effects of urbanization on the 

groundwater flow system.", and they may be a " ... source of increased groundwater recharge, 

counterba1ancing the loss of recharge due to increased surfuce water runoffresulting from 

urbanization and the creation of impervious surfuces. ". 

These lakes have excellent potential for recreation. In a study of eleven Dade County 
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quarry lakes, Baca et al. (1992) found that bass may benefit from deep water because it 

enhances water quality and provides habitat for forage and open-water species. They 

concluded that they were "good bass lakes". During this study both largemouth bass and the 

exotic peacock bass were caught easily on rod and reel in the Rinker North, Tannac and 

Florida Rock lakes. Panlish (bluegill) were seen nesting in the littoral zone of the Rinker 

North lake. Fishing may even lead to improvement in catch size as culling leads to a more 

vigorous population. 

Rock pit lakes also provide good potential as water basins, provided water quality can 

be maintainOO. This requires the use of management techniques that are aimed at controlling 

nutrient enhancement in these lakes. Urban, industrial and agricultural inputs must be 

controlled if these lakes are to remain clean. Burkart et al. (1991) studied a quarry lake in 

Davie, Florida, and fuund the average chlorophyll concentration to be 36.1 mg/m3 
• That lake 

has been receiving effiuent from a wastewater treatment plant for many years, which has 

obviously afrected it. That level of chlorophyll may be considered undesirable by the Florida 

Department ofEnvirorunental Protection (Huber and Brezonik 1982), and it is much higher 

than the average chlorophyll level of 1.1 mg/m3 fuund in this study. 

The water quality in existing quarry lakes and borrow pits is quite variable, however. 

It appears likely that most quarry lakes start out with good water quality and are then 

influenced by local conditions. An example of how good water quality in these lakes can be 

maintained comes from a study by Jackson and Maurrasse (1976). One lake in that study 

(Lake Tahoe, Hialeah, Fla.) was fuund to have better water quality than that coming from the 

tap water in the houses (the report did not specifY if this was municipal or well- water) around 
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the lake. While it may not be practical or possible to attain this high water quality throughout 

the entire Lake Belt, it does seem probable that better than acceptable levels can be achieved 

and maintained with proper management. 

C. Phosphorus Limitation 

Phosphorus limitation may be studied through the analysis of the enzyme a1kaline 

phosphatase, which is secreted by phytoplankton. Several studies concluded that phosphatases 

may be induced by low orthophosphate levels and then repressed when orthophosphate levels 

are no longer 1imiting (Fitzgerald and Nelson 1966, Berman 1970, Smith and KaIff 1981, 

Siuda and Cbrost 1987). In order to compare several lakes, which have differing chlorophyll 

and phosphorus levels, it is necessary to use the chlorophyll-specific a1kaline phosphatase 

activity (APA). This is expressed as a1kaline phosphatase activity in micro moles p

nitrophenylphosphate hydrolyzed per hour divided by milligrams per cubic meter of 

chlorophyll-a. 

During the mining process the organic top soils are removed from the entire site 

(dernucking), which leaves the excavation pit depleted of organic matter needed to support 

primary production. Mitigation on these lakes involves the construction of shallow 1ittotal 

zones along certain portions of the lake shore. The mitigated area is covered with a thin layer 

of the removed organic materia1 (remucking). This encourages the growth of natural aquatic 

and wetland plants which help form a healthy and productive littoral area. 

Phosphorus (P) deficiency in these quarry lakes may result from the removal of the 

rich top soils from the mining area prior to excavating the pit. However, the limestone 

substrate of these lakes may represent the major fuctor in restricting phosphorus levels. 

14 
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Phosphorus exists in both organic and inorganic forms in the water. Inorganic phosphorus in 

natural waters is represented by phosphoric. acid (H,PO.), which has three dissociation 

products; H2PO .. , HPO/, and PO .. ', collectively called orthophosphate and often 

symbolized, Pi . It is the inorganic forms, specifically orthophosphate ions, which are 

biologically important. Phosphate ions are known to co-precipitate with calcite and aragonite 

in caJcium carbonate solution (Griffin and Jurinak 1974, Kitanoet al 1978). These calcium 

phosphate complexes can then fonn the mineral apatite which precipitates out of solution 

making phosphate unavailable to the phytoplankton (Gulbrandsen and Roberson 1973, Griffin 

and Jurinak 1974, Kitano et aI. 1978). 

The lakes have a high alkalinity due to the calcium carbonate in solution. Phosphate 

interactions are also influenced by other factors such as temperature, pH , other ions, and 

chemical composiPon. Griffin and Jurinak (1974) demonstrated that higher temperatures will 

increase phosphate adsorption on ca1ciumcarbonate. Ions may increase phosphate adsorption, 

as in the case of fluoride or inhibit adsorption, as with sodium and magnesium (Kitano et aI. 

1978). Thus the conditions exist that could restrict the levels of phosphate accumulating in 

these lakes. 

D. Trophic State 

A description of the trophic state helps provide a way of monitoring the 

eutrophication process and can assist in making any management decisions. The primary 

production and trophic state of these lakes should be viewed as being very important in 

understanding the ecology of these lacustrine systems. Natural Florida lakes have received 

quite a bit of attention recently (Agusti et al 1990, 1992; Bays and Crisman 1983, Beaver and 
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Crisman 1991, Canfield 1983, Canfield and Hoyer 1992, Duarte et a1. 1992, Huber and 

Brezonik 1982). However, these quarry lakes mayor may not fit in with the general patterns 

associated with other Florida lakes. 

Initial studies indicate the P concentrations in the fuur study lakes were in the 

oligotrophic/mesotrophic to mesotrophic range based on the Carlson Trophic State Index 

(Carlson 1977) and were probably phosphorus limited (Hudy and Gregory 1983). Trophic 

state indexes (TSI) have been used by others to describe Florida lakes (Huber et a1. 1982, 

Canfield and Hoyer 1992). While the index of Huber , which is based on Chlorophyll-a, works 

well fur most Florida lakes, it is also based on shaIIow, non-stratifYing lakes. Thus, the Huber 

TSI produces greater variation among the sub-indices (chl-a, Secchi depth, and TP) then does 

the Carlson TSI. The TSI of Forsberg and Ryding (1980), which Canfield and Hoyer (1992) 

used, produces even greater variation fur these lakes. 

E. Eutrophication and Productivity 

Wetzel (1983) describes eutrophication as " ... increased productivity, structural 

siInplification of biotic components, and a reduction in the ability of the metabolism of the 

organisms to adapt to imposed changes (reduced stability).". Eutrophication is a natural 

process which occurs as a lake ages. Natural lakes will develop from oligotrophic to eutrophic 

and eventually become dry land. This process is usuaIIy slow and can be measured on a 

geologic time scale. However, man has altered this process by incn:aging the drainage areas 

and nutrient loading. The effect of man-induced eutrophication is to speed up the process. 

This entrophication can lead to noxious algae blooms and the replacement of sport fish 

species with less desirable ones. In this case pollution acts hOt as an inlnoitor of life, but 
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instead causes a massive proliferation of species, some of which are undesirable . 

Water quality may also be negatively impacted by eutrophication. However, it should 

be noted that highly eutrophic waters do not always have poor water quality. Water quality 

can be more subjective and is influenced by prevailing attitudes and the intended uses for the 

lake (Carlson 1977). Highly productive lakes can support dense fish populations because of 

the increased primary production. rfthe water is to be used for municipal or industrial uses, 

then increased algae levels can cause problems in terms of increased costs and bad odors or 

tastes. Usually it is the prolifuration of certain nuisance algae ( especially Cyanophyceae) that 

are responsible for what is perceived as poor water quality. 

Algae production can be influenced by many factors, but nutrition, because of its 

potential for human control, is the focns of most management efforts. While the physical 

factors oflight., temperature, circulation, and stratification are very important, they are usually 

outside our control The macronutrients (nitrogen, phosphorus, and potassium) and the 

micronutrients (iron, magnesium, manganese, copper, zinc, sodiwn, molybdenwn, vanadiwn, 

boron, chlorine, cobalt, silicon, calciwn, thiamine, vitamin B-12, and so on) are all 

constituents of algae nutrition (Jackson and Maurrasse 1976). A surplus or deficit of any of 

these factors can influeuce algae production. Although oligotrophic fresh waters are usually 

considered phosphorus limiting, algae nutrition is not simply based on the levels of nitrogen 

and phosphorus available, but rather by a complex set of interacting factors. 

Another factor which can affect production in lakes is turbidity. The mining process 

produces large amounts offine particulate material, much of which ends up in the lakes. With 

the trophic state index it is possible to make some simple deductions about a lake based on 
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differences in the TSI values. For instance, if the ISI based on Secchi depth is greater than 

the IS! based on chlorophyll-a, then this indicates non-algal turbidity. This is certainly the 

case in these rock pit lakes. The turbidity produced by the fine calcium carbonate material 

may increase shading and thus limit production. The particulates also provide a substrate fur 

phosphate adsorption and removal. 

F. Purpose 

This paper contains an overview of some of the basic Jimnological features of four 

study lakes. Macroinvertebrate, zooplankton, and phytoplankton composition are descn"bed 

as well as basic water quality data. However, emphasis is on descnbing the trophic state of 

theses lakes by analyzing phosphorus as a limiting nutrient and evaluating its relation to other 

water and biological parameters. Based on collected data, these lakes appear to be 

phosphorus limited, which has been reported in other studies (Hudy and Gregory 1983, 

Beaven and McPherson 1977). 

Eutrophication, caused by increased nutrient loading, can be a problem in fresh 

waters. The value of a lake may be considered in terms of its suitability fur municipal, 

industrial, and recreational purposes, as well as the aesthetic quality and desired habitats. 

Infonnation about the nutritional status is essential in developing a management plan fur the 

system in question. This paper provides data about the degree of phosphorus limitation in fuur 

limestone quarry lakes, which may assist in making decisions about how various levels of 

nutrient loading may affect these lakes. 
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ll. Materials and Methods 

A. Lake Descriptions 

Four limestone quarry lakes in Dade County were studied over a two-year period, as 

part of a larger study, by Nova Southeastern UIJiversity. The lakes vary in size, age, depth, 

and amount of littoral area (Figures 1 .and 2, Table 1), and are generally rectangular in shape. 

Florida Rock Lake, which was sti11 being mined, did not have the same rectangular shape 

(Figure 2). Rinker North Lake, has a rounded indention in the northeast corner which is the 

result of a large tailing outflow (Figure 2). Although the littoral fringes are an important 

aspect of these lakes, no attempt was made to correlate amount or quality of littoral area with 

the water quality data. The littoral areas represent a smal1 percentage of the total lake volume 

and probably have a smal1 effect on overall water quality. Surface and groundwater inputs 

probably influence water quality more than the littoral fringes. 

B. Water Analysis 

1. Overview 

Water quality measurements during the two-year Lake Belt study included 

temperature, pH, dissolved oxygen, turbidity, and total phosphorus. The six-month 

phosphorus limitation study began in April 1995 and ended in September 1995 which 

coincided with the smnmer stratification cycle. Orthophosphate (P), alkaline phosphatase 

activity (APA), alkalinity, and chlorophyll-a measurements were taken monthly starting April 

1995 and ending September 1995. Depth profiles of dissolved oxygen were done in the lakes 

over a year period between September 1994 and September 1995. Also, a diel study with 

two-hour sampling intervals was performed in June 1995 at the Rinker North Lake. The 
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measurements, methods, and sampling schedule are shown in Table 2. 

Water samples fur nutrient and mineral analysis were collected from O.5m below the 

surfitce of each lake in acid-washed Nalgene bottles and transported on ice to the laboratory. 

Labor;nory analysis fullowed APHA Standard Methods (1985), Kuenzler and Perras (1965), 

Parsons et a1. (1984), and Murphy and Riley (1962). The methods used for each measurement 

are summarized in Table 2. 

2. Analytical Equipment 

pH was measured in the field using a Cole-Parmer pH meter that was calibrated on 

site using standard buffers. Dissolved oxygen and temperature were measured with a YSI 

Model 51A oxygen meter which was air calibrated on site. A Secchi disk was used to 

determine turbidity. Total P, AP A and Pi were measured on a Bausch and Lomb Spectronic 

88. Cblorophyll-a was measured by the fluorometric method (parsons et aI. 1984) on a Turner 

Model 110 fluorometer. 

3.APA 

The alkaline phosphatase activity follows the method ofKuenzler and Perras (1965). 

However, because whole unfihered lake water was used, the ratios of the constituents in the 

solution were changed. The ratio of 1:1 :2:6 (sample:nitrophenyl phosphate:tris:deionized 

water) was fuund to produce easily detectable measures. The solution was incubated in the 

dark at room temperature and measured every hour for six hours. 
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Figure 2. Map showing location of study lakes. Key: RN=Rinker North Lake, TL=Tarmac 
Lake, FL=Florida Rock Lake, RS=Rinker South Lake. Scale: 1 inch = 1.3 miles. 
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Table 1. Lake Descriptions 

~ Sjze(Acm) Age (Years) Max. Dt:pth (ft.) 

Rinker North 222 24 54 

Tarmac 178 16 64 

Rinker South 72.5 21 48 

Florida Rock 122 20 56 
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Table 2. Sunnnary of sampling activities and methods. Standard methods are used unless 
otherwise indicated. 

Study Component 
Invertebrate Survey 

Zooplankton Survey 

Phytoplankton Survey 

Water Quality 
Total Phosphorus 

Dissolved oxygen 

pH 

Temperature CUC) 

Turbidity (m) 

Orthophosphate 

Alkaline phosphatase act. 

Alkalinity 

Chlorophyll a 

DielStudy 
Total Phosphorus 

Orthophosphate 

Alkaline phosphatase act. 

Alkalinity 

Chlorophyll a 

January 1994- December 1995 
Methods 
Dip Nets (U.S. EPA 1989) 

Plankton Net 

Bottle Sampler 

Persulfute digestionIMolybdenum blue 

YSlmeter 

Cole-Parmer pH meter 

YSI meter 

Secchi disc 

April 1995 - September 1995 

Molybdenum blue 

p-nitrophenylphosphate 

Titration method 

Fluorometric 

June 27. 1995 
Persulfute digestionIMolybdenum blue 

Molybdenum hlue 

p-nitrophenylphosphate 

Titration method 

Fluorometric 

24 

Schedule 
IlMonth x 24 

4/year x2 

4/year x 2 

1/month x24 

lImonth x24 

lImonth x24 

1/month x24 

lImonth x24 

1/month x6 

I/month x6 

I/month x6 

1/month x6 

12 x I 24 hrs 

12 x I 24 hrs 

12 x I 24 hrs 

12 xl 24 hrs 

12 xl 24 hrs 



p 

Algae in the water sample are provided a phosphorus-rich substrate in the form of p-

nitrophenyl phosphate. In order to utilize the phosphate the algae must cleave it from the p-

nitrophenyllOOlecule. This is accomplished by the algae through hydrolysis with the enzyme 

alkaline phosphatase. A model of the basic reaction is shoWll below. 

Alkaline 
+ H20 > 

Phospha1ase 

~ -
OH-P-O 

6-

J~N~ 'lN~ 
o~ '0 0 ' 0 

p-nitrophenyl pbosphatc p-nitropbcool phosphate 

The resulting p-nitrophenol produces a greenish-yellow color which can then be measured 

at 410 nM on the spectrophotometer. 

c. Diel Study 

The diel study took place after summer stratification had begun and was started on 

JlUle 27, 1995 at the Rinker North lake. During this 24 hour period water samples were taken 

from the lake every 2 hours. The samples were kept in a refrigerator at a field office and then 

transported on ice to the laboratory. Chlorophyll-a samples were filtered at the field office and 

the filters were put in darkened vials containing acetone. Analyses included chlorophyll-a, 

alkalinity, total phosphorus, orthophosphate and alkaline phosphatase activity. 

D. Phytoplankton 

Phytoplankton samples were collected quarterly in one selected lake, based on the 

contract requirements for the Lake Belt Study. Only three of the lakes were sampled for 

phytoplankton. Samples were collected by subsurfuce casts and were preserved with 0.5% 
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Lugol's solution in darkened glass bottles. Phytoplankton were identified to genus and 

counted in a hemacytometer at 400x magnification using appropriate keys (Prescott 1962, 

1970; Smith 1950). 

E. Zooplankton 

Zooplankton were collected quarterly from one selected lake according to the contract 

requirements for the Lake Belt Study. Three of the lakes were sampled for phytoplankton. 

A Wisconsin style net (WlldCo., Saginaw, Mich.) which has a 12.7 em mouth, 22.9 em throat 

and 80 micron mesh, was used. Stationary, vertical tows were made from two locations 

within the lake. After hauling the net up at a rate of approximately O.5m1sec, the contents 

were washed into a bucket with distilled water, and the contents of the bucket were washed 

into a vial where the sample was preserved with 70% ethanol. Organisms were identified 

using guides such as Pennak (1989), Needham and Needham (1962), and Pratt (1935) and 

counted using a Sedgewick-Rafter Counting Cell. Individuals per unit volume were calculated 

from the total volume sampled (distance traveled times net mouth diameter). 

F. Macroinvertebrates 

Macroinvertebrates were collected monthly at a selected lake (each lake was 

sampled), using hand nets and manual methods, based on EPA guidelines (1989). A section 

of the littoral area of the lake was sampled until approximately 100 macroinvertebrates were 

collected. These samples were fixed in 10% formalin and then transferred to 70% ethanol. 

Organisms were be identified to a minimum of genus level with the use of various guides, 

including Borror and White (1970), Brigham, Brigham and GniIka (1982), Dunkle (1989), 

Levi, LeviandZim (1968), Needham and Needham (1962), Paulson (1966), Pennak (1989) 
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and Pratt (1935). Data was reported as number of species, total organisms and Shannon 

species diversity. 

G. Statistical Analysis 

The data were organized and analyzed using the computer programs Quattro Pro, 

Harvard Graphics, and Statistica Pearson Product-Momeut correlation matrices for the six

month and diel study data were calculated with Quattro Pro. Graphs were created using 

Quattro Pro and Harvard Graphics. The six-month data from each lake were comhined into 

one data set (n=24) and reanalyzed using Quattro Pro to produce a correlation matrix. This 

data were checked for normality using the program Statistica to perform the Shapiro-Wilk 

W test. Both chlorophyR-a and alkaline phosphatase activity failed the test, which means they 

were not normally distributed. The data set was then subjected to non-parametric testing 

using Spearman Rank Correlation, in order to check the validity of the relationships between 

each variable. 
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ill. Results 

A. General 

Results of the basic water quality measurements including, temperature, dissolved 

oxygen, pH, total phosphorus and Secchi depth ;Ire shown in Table 3. Levels were often 

consistent between lakes (discussed later). Tables 4 and 5 shows the ranking and mean for 

each lake fur the six main variables. Results of the six-month water quality measurements in 

the fuur lakes ;Ire shown in Figures 3 - 6, and the correlation matrices for all variables in each 

lake are shown in Table 6. 

B. Six-Month Study 

I . Rinker North 

From April through September 1995, the Rinker North Lake (Figure 3) had the 

second highest mean total phosphorus (0.013 mgIl), orthophosphate (0.007 mg/l) and 

chlorophyll-a (1.30 mg/m3
), yet this lake had the shallowest Secchi depth (Table 4 and 5). 

Orthophosphate appeared only weakly inversely related (r= -0.668, p= 0.074) to AP A in the 

six month data (Table 6). 

2. Tarmac Lake 

The Tarmac Lake (Figure 4) was the deepest and had the second lowest mean total 

phosphorus (0.011 mgII), orthophosphate (0.004 mgIl) and chlorophyll-a (0.949 mg/m3
), but 

had the deepest Secchi depth by far (Table 4 and 5). Orthophosphate had a significant (r= -

0.829, p= 0.021) inverse relationship with AP A. Total phosphorus and orthophosphate were 

directly related to cblorophyll-a (r= 0.816, p= 0.024 and r= 0.707, p= 0.058 respectively) 

(Table 6). 

28 



p 

7 

Table 3. Two year water quality measurements. Averages are given for Feb. 1994 - Dec. 

1995. 

Temp. (0C) 

DO(mg/L) 

pH 

TP (mg/L) 

Secchi depth (m) 

Rinker 

North 

26.8 

7.1 

8.1 

.015 

1.01 

Tarmac 

272 

6.8 

8.13 

.010 

2.42 

29 

Rinker 

South 

26.9 

7.2 

8.26 

.013 

1.40 

Florida 

Rock 

26.7 

7.3 

8.12 

.010 

1.35 

Lake 

Means 

26.9 

7.1 

8.15 

.012 

1.55 



Table 4. Lake ranking fur each variable mean in the six-month study (Apr. 1995-Sep. 1995), 
from highest (1) to lowest (4) (deepest or clearest to shallowest for Secchi depth). 

Chl a Secchi Total Orthoph- APA A1kaIinity 
depth Phos. osphate 

Rinker North 2 4 2 2 3 2 

Tarmac 3 I 3 3 1 1 

Rinker South 1 3 1 1 4 3 

Florida Rock 4 2 4 4 2 4 

Table S. Mean values fur each variable in each lake, Apr. 1995-Sep. 1995. Standard deviation 
is in parenthesis. 

Rinker North Tarmac Rinker South Florida Rock 

Secchi Depth 1.03 2.13 1.44 1.53 
(m) (0.14) (0.37) (0.42) (0.51) 

Alkalinity 151.822 176.962 149.219 123.692 
(mgCaC03/L) (4.989) . (20.662) (15.692) (6.130) 

TotalPhos. 0.013 0.011 0.014 0.010 
(mg/L) (0.005) (0.004) (0.007) (.003) 

Orthophos. · 0.007 0.004 0.008 0.003 
(mg/L) (0.002) (0.001) (0.001) (0.001) 

Chl.-a 1.294 0.949 1.875 0.263 
(mglm3) (0.825) (0.695) (1.784) (0.121) 

APA 0.065 0.148 0.051 0.089 
(uMIhr/mgChl.a) (0.087) (0.165) (0.024) (0.087) 
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Figure 3. Six-month (Apr.-Sep.1995) data from Rinker North Lake. n = 6. Error bars 
represent standard error of the mean. 
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Figure 4. Six-month (Apr.-Sep. 1995) data from Tarmac Lake. n = 6. Error bars 
represent standard error of the mean. 
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Figure S. Six-month (Apr.-Sep 1995) data from Rinker South Lake. n = 6. Error bars 
represent standard error of the mean. 
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Figure 6. Six-month (Apr.-Sep. 1995) data from Florida Rock Lake. n = 6. Error bars 
represent standard error of the mean. 
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Table 6. Correlation matrices of six-month data for each lake. 
(n=6) 
*For p=O.05 minimum r=O.729 

uFor p=O.OI minimum r=O.882 
Rinker North 

SD A1k 

1.000 

-0.565 1.000 

0.422 0.183 

TP 

1.000 

0.121 0.566 0.1145" 

-0.792" 0.600 0.095 

0.222 -0.863" -0.217 

Tarmac 
SD Alk TP 

Sec:chi Depth 1.000 

Alkalinity -0.344 1.000 

Total Phospho.". -0.254 -0.108 1.000 

Orthophosphate -0.704 0.034 0.694 

ChlorophyU.-a -0.588 0.093 0.816" 

1'04 

1.000 

0.370 

-0.668 

1'04 

1.000 

0.707 

Alkaline phOSPhatase 0.836" -0.086 -0.661 -0.829" 

Rinker South 
SD AIk TP 1'04 

Seechi Depth 1.000 

Alkalinity -0.702 1.000 

Total Phospho.". 0.157 0.372 1.000 

Orthophosphate -0.324 0.571 0.530 1.000 

ChlorophyU-a -0.576 0.773· 0.241 0.888*· 

Alkaline phosphatase 0.587 ·0.729· -0.193 ·0.570 

Florida Rock 
SD AIk TP 1'04 

Seechi Depth 1.000 
I. . . 0.158 1.000 

Total Phosphorus -0.094 0.571 1.000 

Orthophosphate 0.354 -0.479 0.248 1.000 

ChlorophyD-8 ·0.587 0.560 0.385 -0.668 

Alkaline Phosphatase 0.659 -0.399 -0.167 0.652 
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ChI. APA 

1.000 

·0.344 1.000 

ChI. APA 

1.000 

-0.711 1.000 

ChI. APA . 

1.000 

-0.751 1.000 

Chi a APA 

1.000 

-0.684 1.000 



3. Rinker South 

The Rinker South Lake (Figure 5) had the highest mean total phosphorus (0.014 

mg/l), orthophosphate 0(.008 mg/I) and chlorophyll-a (1.875 mglm3
). This lake also had the 

lowest overall APA level. There was a very significant (F 0.888, p= 0.009) direct 

relationship between orthophosphate and chlorophyll-a, but the inverse relation of 

orthophosphate to APA was nonsignificant (r= -0.570, p= 0.119). 

4. Florida Rock 

The Florida Rock Lake (Figure 6) had the lowest mean total phosphorus (0.01 mgIl), 

orthophosphate (0.003 mg!I) and chlorophyU-a (0.263 mg/~). Again, these measurements 

do not coincide with Secchi depth which was only the second deepest. No other significant 

relationships in chemical or biological data were apparent in the analysis from this lake. 

5. Summary of Six-Month Study Results 

The results for the six-month data were mixed, but strong correlations between 

phosphorus or phosphate, and the alkaline phosphatase activity, or chlorophyll-a, were 

apparent in at least two lakes. The Carlson Trophic State indexes for each lake are shown 

in Table 7. It should be noted that the lake with the shallowest Secchi depth does not 

correspond with the lake having the highest chIorophyll-a and vice versa (Table 4). Table 8 

gives the criteria of the Carlson trophic state index based on Secchi depth, total phosphorus 

and chIorophyll-a. Because of turbidity caused by all the calcium carbonate material, Secchi 

depth was a poor indicator of chlorophyll-a and trophic status. 

C. Analysis of Combined Data 

Because of the small data set for the individual lakes, the six-month data were 
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Table 7. Carlson Trophic State Index values associated with each component in the study 
lakes. Huber and Brezonik values are in parenthesis. 

Secchi Total Chi. 
~ Depth Phosphorus 1I 

Rinker North 
Tarmac 
Rinker South 
Florida Rock 

60 (59) 
49 (37) 
55 (49) 
54 (47) 

41 (37) 
37 (30) 
42 (38) 
37 (30) 

Table 8. Carlson Trophic State Index table (1977). 

Secchi Total 
Depth Phosphorus 

IS! (m) (mgbn3) 
0 64 0.75 
10 32 1.5 
20 oligotrophic 16 3 
30 8 6 
40 mesotrophic 4 12 
50 2 24 
60 eutrophic 1 48 
70 0.5 96 
80 0.25 192 
90 0.12 384 
100 0.062 768 

37 

33 (21) 
30 (16) 
37 (26) 
17 (.2.4) 

Chi. 
a 
(mli\{m3) 
0.04 
0.12 
0.34 
0.94 
2.6 
6.4 
20 
56 
154 
427 
1183 
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combined (n= 24). Figures 7 and 8 show the relationships of orthophosphate to AP A and 

Chl.-a, respectively, for the combined six-month data from all lakes. Table 9 shows the 

correlation matrix (pearson Product Moment) for the combined data This combined data 

set shows significant relationships between orthophosphate and chloropbyll-a (direct r= 

0.622, p= 0.0006), and between orthophosphate and APA (inverse r= -0.418, p= 0.021). 

Non-parametric analysis of the combined data using Spearman Rank Order 

Correlations again showed a significant direct relationship between orthophosphate and 

chlorophyll-a (Spearman r= 0.69, p= 0.0002, n= 24), and a nearly significant inverse 

relationship between orthophosphate and AP A (Spearman r= -0.402, p= 0.051, n= 24). The 

other apparent relationships in the combined data were not significant. 

D.Diel Study Results 

The diel study was performed on June 27, 1995 at the Rinker North lake (Figure 10). 

The correlation matrix (pearson Product Moment) for the data is shown in Table 10. There 

was a significant inverse relationship (r= -0.548, p= 0.033) between APA and 

orthophosphate. Alkalinity did not correlate well with the other variables in the diel or the 

six-month study. 

E. Dissolved Oxygen 

Dissolved oxygen data are presented in Table 11. The average surface dissolved 

oxygen measure was 7.1 mg/L for the entire study (Table 3). During winter the lakes 

circulated freely and dissolved oxygen remained high through the entire water column. In 

summer the lakes stratified and a nearly anoxic layer formed near the OOttoll). 
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Figure 7. Scatter plot of APA vs PO., for combined data, with regression line. 

cJ 0.5 
0) 

E :c 0.4 
a: 
a.. 
zO.3 
(5 
E 
2,0.2 

l_ 

Spearman r = -0.402, P = 0.051, n = 24 

• 

• • • 

~ 

~ 0.1 
« 

---=---- • 

~ 0 

:----- • 
• • • I .-;. --• , • 

« 0.002 0.004 0.006 0.008 
Orthophosphate (mg/l) 

39 

-- . 
0.010 



Figure 8. Scatter plot of Chi. a vs PO., for combined data, with regression line. 
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Table 9. Correlation matrix of the combined six month data fur all four lakes. 
(n=24) 
*for p=O.05 minimum r=0.344 

**fur p=O.Ol minimum r=0.472 

Combined Six Month Data 

SD Alk TP 

Seccbi Deptb (SD) 1.000 

Alkalinity (Alk) 0.192 1.000 

Total Pb ... pboru. (TP) -0.135 0.139 1.000 

Orthophospbate (PO") -0.404· 0.167 0.570·* 

Chloropbyll-a (CHL) -0.361* 0.389* 0.397* 

Alkaline Pbo.phatl.e (AP A) 0.586** 0.067 ·0.347* 

PO" CHL 

UlOO 

0.622** 1.000 

-0.418* -0.362 

APA 

1.000 
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Figure 9. Data for the diel study, June 27, 1995, at Rinker North Lake; n = 12. Error bars 
represent standard error of the mean. 
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Table 10. Correlation matrix for the die! study at Rinker North lake. 
(n = 12) 
*for p=O.05 minimmn r=0.497 
**for p=O.Ol minimmn r=O.658 

Rinker North Diel Study 

Alk TP P04 

1.000 

-0.184 1.000 
-U59 0.274 1.000 

0.373 -0.248 0.341 

ChI a 

1.000 
0.016 -0.117 -~.548* -0.466 
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Table 11. Dissolved oxygen data (single measures), September 1994 through September 
1995. 
* S = Stratified M = Mixed. 

Dissolved Oxygen 

Locatjon ~ Surfilce nWL Bottom SLM* 

IDiLL 
Rinker North 9/11194 6.2 1.8 S 

Rinker North 12/28/94 8.8 9 M 

Rinker North 2/13/95 8.7 10.4 M 

Rinker South 2/13/95 8.9 10.7 M 

Tarmac 4/12/95 8.1 10.5 M 

Florida Rock 4/12/95 8.6 10.2 M 

Florida Rock 7/14/95 7.7 0.3 S 

Tarmac 9/14/95 8.2 0.5 S 
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F. Phytoplankton 

The relative abundance of major phytoplankton groups is shown in Figure 10. 

Plankton samples were taken from only three lakes. Phytoplankton in the Tarmac and Rinker 

South lakes were about 50010 Cyanophyta and 50010 Chlorophyta. The Rinker North lake was 

27% Cyanophyta and 72% Chlorophyta. Most of the phytoplankton were small furms with 

only a Jew of the larger fi1amentous algae. Diatoms were scarce and together with all oth~ 

rare algae groups compromised only 1% or less of the total. During the entire two year 

period there were no noxious algae blooms or bad odors noted in the lakes. 

O. Macroinvertebrates 

Macroinvertebrate samples were taking from the littoral areas of all lakes, although 

the majority of samples were taken from the Rinker North location. Table 12 shows the 

Shannon diversity indices fur the lakes. Both the Rinker North and Rinker South lakes were 

within the range of 2.79 to 3.08, which was similar to that reported by Rader (1994) in a 

study of the Everglades using similar methods. The remaining two lakes had slightly lower 

diversity index values. Crustacea and gastropods were the dominant groups. Of these, the 

shrimp PaJaemonetes pa/udosus and the snail PJryse//a sp. were most abundant. Numerous 

apple snails (Pomacea paludosa) were found at the Rinker North and Florida Rock lakes. 

Many types of aquatic insects and insect larvae were also fuund. 

A total of 65 species of invertebrates was identified. 

H. Zooplankton 

Zooplankton at the Rinker North Lake were dominated by copepods from the 

families Cyclopidae and Diaptomidae. In the Tarmac Lake these copepods were also 
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common, but the small cladoceran Bosmina sp. was the most abundant organism. A few 

other rotifers, cladocerans and ostracods were also round at the three sampled lakes. The one 

sampling event at the Rinker South Lake reveaIed a composition similar to the Rinker North 

Lake; however this was overshadowed by a large bloom of the dinoflagellate Ceratium 

hirundinella. 
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Figure 10. Graphical display ofpbytoplankton abundance. 
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Table 12. Macroinvertebrate Shannon Index per lake. 

Number of Mean 
Times S-W 
Sampled Index 

Rinker North 14 2.8 

Tarmac 5 2.63 

Rinker South 1 2.97 

Florida rock 2 2.41 
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IV. Disc:ussioJi 

A. Rinker North Lake 

Phosphorus limitation, indicated by the direc:t relationships between PO/ and 

chlorophyll-a, and by the inverse relationship of APA and POi3, was not obvious in the 

Rinker North Lake from the six month study data, but such evidence was apparent in the diel 

study, when there was an inverse relationship between APA and orthophosphate (Figure 9 

and Table 1 O)~ The fluctuations seen in the diel study were similar in magnitude to those in 

the six-month study. The inverse APA vs POi3 and direc:t PO/ vs chl.-a patterns in the six

month study may have been an echo of the diel relationships or they may represent actua1 

seasonal changes. Correlations from the diel study imply that fluctuations in phosphate 

limitation take place over periods ofhours. This suggests that the pbytoplankton exert tight 

physiological control over AP A and respond rapidly to changes in phosphate availability. 

Inputs of particulate material from large tailing mounds located on the east side of 

the lake probably contributed to the shallow Secchi depth. Based on the TSI for chlorophyll

a this lake was near the mesotrophic range (Table 7). 

B. Tarmac Lake 

In the Tarmac Lake, indications of phosphorus limitation were seen in terms of the 

significant direc:t relationship ofChl.-a with TP and the inverse association of AP A and P04• 

There was a large increase in Chl.-a and a drop in APA which corresponded to increases in 

TP and P04•
3 between June and July. (Figure 4). While this lake was the clearest in the 

study group, the alkalinity was highest, which suggests that alkalinity was not primarily 

influenced by the amount of suspended particulate material. The TSI of 30 for chlorophyll-a 
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is in the oligo-mesotrophic range. It is not known if the brown-colored water in this lake bad 

an effect on the productivity. 

C. Rinker South Lake 

Chlorophyll-a and orthophosphate were closely related in the Rinker South Lake, 

which is an indication of phosphorus limitation (Table 6). Rinker South, which was the 

smallest and shallowest, probably has portions which are not stratified in swnmer. This may 

help to increase the phosphate levels by keeping more nutrients in circulation. 

D. Florida Rock Lake 

The Florida Rock Lake studies did not demonstrate any significant relationship in 

the biological/chemical parameters. This is not surprising since the Florida Rock Lake was 

still being actively mined and was therefore a highly disturbed system. According to the TSI 

fur chlorophyll-a, this lake would be in the oligotrophic range. 

E.EffectofAUkafuU~ 

Alkalinity did not correlate wen with either phosphate or total phosphorus. While this 

was unexpected it does not rule out the possibility that calcium carbonate may restrict the 

amount of usable phosphorus. Even the clearest lake (Tarmac) was still being disturbed by 

mining activity and tailing inputs. Orthopbosphate levels appeared to fluctuate less than total 

phosphorus which may be an indication of biological controls exerted by the phytoplankton. 

F. Dissolved Oxygen and Stratification 

In spite of the high turbidity, these lakes maintained good dissolved oxygen in the 

upper layer of the lakes (Table 11) throughout the study. Low points in dissolved oxygen 

corresponded to periods where the thermocline probably broke down and mixing with the 
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lower anoxic layer occurred. These lakes exhibit a warm monomictic (i.e., stratified in 

summer) pattern which has been reported in other deep Florida lakes (Beaver and Crisman 

1991). Destratification occurs as winter approaches and the surface temperatures of the 

lakes cool and begin to sink. The mixing process is increased by winds until the thermocline 

breaks down completely and winter turnover occurs. As sununer approaches the surface is 

heated fiIster than the heat can be removed by mixing and the water becomes less dense and 

more resistant to mixing which initiates summer stratification. 

Depth profiles of dissolved oxygen revealed that mixing occurred for a period of at 

least 5 months during winter and spring. The profiles showed that a nearly anoxic layer 

formed along the bottom of the lakes in the summer. During winter and spring dissolved 

oxygen values remained high all the way to the bottom of the lakes. This is important 

because it enables nutrients from bottom sediments and water to be recirculated to the top 

layers. During the period of circulation the dissolved oxygen values were near the air 

saturation point throughout the entire water co1unm, suggesting rather low rates of microbial 

oxygen consumption. 

G. Plankton and Invertebrates 

Phytoplankton structure and composition in these lakes was similar to that reported 

by Lewis (1974) in Lake Lanao, Phillippines. A low nutrient environment may explain the 

dominance of small algal forms which can flourish because they have low subsistence quotas 

and high maxinlaI growth rates (Agusti et a1 1990). It appears that the plankton communities 

in these lakes may resemble tropical lakes more than temperate ones. 

Bacterial counts were not done, but the lack of microzooplarikton would tend to 
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suggest that bacterial populations were low (Bays and Crisman 1983). According to Siuda 

(1984), the bulk ofpoosphatase activity (80010) in the epilimnion comes from phytoplankton. 

In a study ofhard water marl lakes, Wetzel (1972) noted that, "Loss of labile organics onto 

carbonates causes substrate limitation for bacterial populations which in turn limits 

regeneration of inorganic nutrients and organic micro-nutrients". Although most Florida 

lakes are not nutrient limited (Agusti et al. 1990), these lakes are approaching the 

mesotrophic level where nutrient constraints are probably most important (Agusti et al. 

1992). 

While the littoral areas created by the mining companies are an important aspect of 

these lakes, no attempt was made to compare trophic status or phosphorus limitation with 

the amount or quality of littoral region. The littoral zone may have a positive impact on 

water quality by filtering water and returning nutrients to the deeper water (Wetzel 1983), 

but the retmned nutrients are subject to inactivation through carbonate interactions (Wetzel 

1972). However, rich macroinvertebrate populations may be sustained in these littoral areas, 

which are a benefit to both aquatic and terrestrial vertebrates. 

H. Phosphorus Limitation 

The results seem to indicate that primary production in these lakes is phosphorus 

limited. The relationship between AP A and orthophosphate fullow the hypothesized inverse 

pattern (Figure 7). This relationship was most pronounced in the Rinker North and Tarmac 

lakes, while it was less evident in the Rinker South lake. There was also a positive 

relationship between orthophosphate and chlorophyll-a (Figure 8), which also suggests 

phosphorus limitation, especially in the Rinker South lake. The TSI fur chlorophyll-a was 
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a more reliable indicator of lIlItrient limits and relarionships than either Secchi depth or total 

phosphorus. 

This research does not prove that phosphorus is the only limiting nutrient in these 

lakes, and several other fiIctors may be involved in controlIing primary production. The total 

phosphorus concentrations were well below the 0.1 mg L·1 value suggested by Canfield 

(1983) as the upper limit of phosphate limitation in Florida lakes. 

I. Conclusions 

1. Trophic Status 

Based on the index for chlorophyll-a (Carlson 1977) the lakes were in the 

oligotrophic to mesotrophic range. Both the Tarmac and Florida Rock lakes scored a TSI 

of 37 for total phosphorus but had chlorophyll-a scores of 30 and 17 respectively. The 

Tarmac lake had only slightly higher orthophosphate than the Florida Rock Lake, but with 

significantly higher chlorophyll-a levels, it had the greatest overall AP A. This would be 

expected from a system that has a higher demand for usable phosphorus. 

2. Management 

A phosphorus-limited trophic status has serious management implications fur the 

future use of these lakes and the developing of surrounding areas. Dramatic increases in the 

TSI of these lakes wonld be the predictable resnlt of inputs from furtilizers, waste water or 

other sources. Excessive phosphate inputs could possibly decrease the value of these lakes 

for human use. 
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Appendix A 

Data For April Through September 1995 

Rinker North Lake 

Secchi Alk TP P04 ChL-a APA 
I (meters) (me/L) (me/L) I(melm~ DMNPP CbI-a 

April 0.820 157.944 0.015 0.009 2.950 0.009 
May 1.000 IS2.306 0.012 0.008 1.220 0.029 
June 0.9S0 lS3.381 O.OOS O.OOS 0.988 0.037 
July 1.220 149.S19 0.017 0.009 0.91S 0.030 
Aueust 1.120 154.4S0 0.019 0.008 0.773 0~043 

September 1.070 143.330 1).011 O.OOS 0.91S 0.240 
lAl'era2e l.O30 lS1.822 0013 0007 !,~4 006S 
IStd Error 0057 2Jl3'7 0..002 OAl!.1 0~7 0..035 

TannacLake 

Secchi Alk TP P04 ChLa APA 
• (meters) (mWL) (mWL) (mwm") UMNPP CbI-a 

~ril 1.800 208.946 O.OIS 0.006 1.780 0.001 
Mav 1.9S0 188.322 0.007 0.003 0.439 0.100 
June 2.430 18S5SS 0.004 0.003 0.110 0.421 
July 1.7S0 161.338 0.012 O.OOS 1.77S 0.028 
AU2Ust 2.120 lS7.170 0.012 0.006 0.675- 0.064 
September 2.700 160.440 0.013 0.003 0;91S 0.276 

hID 176.962 0.011 0004 0.949 11..148 
Std Error I!...W ~ 0.002. OOO~ ~ 0.067 
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Appendix A 

Data for April through September 1995, continued. 

Rinker South Lake 

Secchi Alk TP P04 ChLa APA 
. (meters) .. \ (m2fL) (m2fL) "' .uMNPPi ChHt) 

April 1.050 171.473 0.018 0.010 . 5.470 0;018 
May 1.300 161.028 0.022 0.008 1.293 0.062 
June 0.900 150.936 0.002 0.007 1.592 0.042 
July 1.930 146.099 0.013 0.008 1.043 0.051 
AU2Ust 1.650 137.920 0.019 0.008 1.122 0.043 
S~tember 1.820 127.860 0.009 0.008 0.732 0.090 

1441 149219 OU4 n.OQ& 1875 0.JlS1 

~ U7Z 64!Ki 0JI.!)l 00003 . ' ll.12.8 M1.0 

Florida Rock Lake 

Secchi Alk TP P04 ChLa APA 
I (meters) ~moC (m2/L) (m2IL) . I(mwm~) uMNPP. ChHtJ 

A~ril 1.100 128.007 0.012 0.003 0.470 0.056 
MI!Y 1.856 127.400 0.007 0.002 0.293 0.027 
June 0.830 118.132 0.007 0.003 0.256 0.031 
Juiv 2.260 121.112 0.008 0.004 0.110 0.253 
AURUst 1.650 131.430 0.014 0.004 0.268 0.045 
September 1.560 116.070 0.010 0.005 0.183 0.122 

Lm 123 692 Mlll n003 Q..263 0.089 
StdError ~ ~ 0.001 O.OO~ ~. 0.1l36 
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AppendiIA 

Data for die. study at Rinker North Lake. June 1995 

Rinker North Lake 24 Hour 

61 



AppendixB 
Data from Two Year Study- Water Quality 

Rinker North Florida Rock Tarmac Rinker 80uth 

Feb. 28, 1994 

Temp. Celsius 22.500 22.900 22.400 23.100 

DOmgiL 8.400 8.300 8.400 8.400 

PH 8.330 8.460 8.410 8.440 

March, 31 

Terup. Celsius 25.200 25.800 26.000 

DOmgiL 8.200 7.750 8.100 

PH 8.570 8.380 8.460 

Pbos.mgiL 0.000 0.000 0.000 0.000 

Turbidity (sOm) 0.900 0.850 0.950 

April 28 

Temp. Celsius 26.000 27.000 27.000 27.000 

DOmgiL 7.300 7.700 7.500 8.000 

PH 8.120 8.510 8.240 8.400 

Phos. mgiL 0.012 0.013 0.011 0.011 

Turbidity (80m) 0.750 0.840 1.250 1.050 

Ma:l::26,1994 

Temp. Celsius 28.000 28.000 27.000 28.000 

DOmgiL 7.000 7.600 7.200 6.400 

PH 8.170 8.120 8.340 8.400 

Phos.mgiL 0.011 0.006 0.010 0.010 

Turbidity (80m) 1.080 0.660 3.050 1.240 

Juue 16, 1994 

Temp. Celsius 31.000 30.000 32.000 30.000 

DOmgiL 7.200 7.200 7.400 7.800 

PH 8.270 8.450 8.270 8.500 

Phos.mgiL 0.013 0.012 0.012 0.012 

Turbidity (80m) 1.200 0.900 1.000 1.500 

Jul:l:: 30, 1994 

Temp. Celsius 31.000 30.000 31.000 29.000 

DOmgiL 6.800 6.700 7.400 7.800 

PH 8.000 8.570 8.500 8.420 

Phos.mgiL 0.023 0.008 0.009 0.017 

Turbidity (80m) 1.200 1.100 3.200 1.500 
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AppendixB 
Data from Two Year Study- Water Quality, Continued. 

Rinker North Florida Rock Tannac Rinker South 

August 31, 1994 

Temp. Celsius 30.000 30.000 31.500 30.000 

DOmgIL 6.600 7.800 6.500 6.400 

PH 8.190 7.890 8.090 8.310 

Phos.mgIL 0.011 0.007 0.008 0.009 

Turbidity (SDm) 1.250 2.310 3.100 1.650 

Sel!tember 27,1994 

Temp. Celsius 28.000 28.000 28.000 28.000 

DOmgIL 6.300 6.400 6.400 6.200 

PH 8.000 meter fault 8.200 meter fault 

Phos.mgIL 0.007 0.003 0.003 0.003 

Turbidity (SDm) 0.930 2.100 2.940 1.700 

October 26, 1994 

Temp. Celsius 29.000 27.000 29.000 27.000 

DOmgIL 4.300 6.800 4.600 7.300 

PH 7.610 7.470 7.750 7.520 

Phos.mgIL 0.006 0.004 0.003 0.002 

Turbidity (SDm) 1.000 1.700 2.220 1.600 

November 23,1994 

Temp. Celsius 29.000 28.500 29.000 29.000 

DOmgIL 6.800 7.700 6.200 7.300 

PH 8.250 7.360 7.830 7.280 

Phos. mgIL 0.012 0.016 0.010 0.013 

Turbidity (SDm) 0.800 1.100 2.500 1.500 

December 22, 1994 

Temp. Celsius 25.000 25.000 24.000 25.000 

DOmgIL 3.200 6.800 4.300 5.500 

PH 8.460 8.260 8.050 8.100 

Phos.mgIL 0.018 0.007 0.008 0.013 

Turbidity (SDm) 0.820 0.850 3.000 1.250 

63 



AppendixB 
Data from Two Year Study- Water Quality, Continued. 

Rinker North Florida Rock Tarmac Rinker South 

January 25, 1995 

Temp. Celsius 21.300 21.500 20.300 21.500 

DOmgIL 9.400 8.200 7.800 7.900 

PH 8.160 8.060 7.820 8.060 

Phos.mgIL 0.016 0.009 0.013 0.006 

Turbidity (SDm) 1.000 1.500 3.100 1.200 

February 28, 1995 

Temp. Celsius 23.000 23.500 24.000 25.000 

DOmgIL 8.700 7.600 7.200 8.300 

PH 8.050 8.110 8.000 8.390 

Phos. mgIL 0.014 0.011 0.008 0.010 

Turbidity (SDm) 1.050 1.000 2.900 1.030 

March 28,1995 

Temp. Celsius 26.500 28.000 25.500 29.000 

DOmgIL 8.100 8.200 8.100 7.400 

PH 8.310 8.300 8.330 8.590 

Phos.mgIL 0.011 0.005 0.005 0.012 

Turbidity (SDm) 1.250 1.050 3.050 1.100 

Al!ril30, 1995 

Temp. Celsius 29.000 28.000 31.000 28.000 

DOmgIL 7.800 6.200 8.200 5.800 

PH 8.190 8.320 8.350 8.430 

Phos.mgIL O.oJ5 0.012 0.015 O.oJ8 

Turbidity (SDm) 0.820 1.100 1.800 1.050 
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AppendixB 
Data from Two Year Stndy- Water Quality, Continued. 

RmkerNorth Florida Rock Tarmac Rmker South 

Mal 23, 1995 

T eIilp. Celsius 30.500 30.000 32.500 30.000 

DOmgiL meter fault 6.300 meter fault meter fault 

PH 8.460 8.370 8.430 8.600 

Phos.mgiL 0.012 0.007 0.007 0.022 

Turbidity (sOm) 1.000 1.&50 1.950 1.300 

June 21, 1995 

Temp. Celsius 29.000 27.000 28.500 28.000 

DOmgiL 7.700 6.600 6.400 5.200 

PH 8.180 8.240 8.410 8.440 

Phos.mgiL 0.005 0.007 0.004 0.002 

Turbidity (SDm) 0.950 0.830 2.430 0.900 

Jull26, 1995 

Temp. Celsius 29.000 30.000 30.000 30.500 

DOmgiL 4.300 5.100 6.500 8.000 

PH 7.920 8.280 8.250 &.600 

Phos.mgiL 0.017 0.008 0.012 0.013 

Turbidity (sOm) 1.220 2.260 1.750 1.930 

August 30, 1995 

Temp. Celsius 30.500 30.500 30.000 30.500 

DOmgiL 7.600 7.300 6.700 7.600 

PH 8.170 8.100 8.040 8.390 

Phos.mgiL 0.019 0.014 0.012 0.019 

Turbidity (sOm) 1.120 1.650 2.120 1.650 
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AppendixB 
Data from Two Year Study- Water Quality, Continued. 

Rinker North Florida Rock Tarmac Rinker South 

S=etember 30, 1995 

Temp. Celsius 27.000 26.000 27.000 27.000 

DOmgiL 5.300 7.800 3.700 4.400 

PH 7.800 7.950 8.110 8.420 

Pbos.mgiL 0.011 0.010 0.013 0.009 

Turbidity (SDm) 1.070 1.500 2.700 1.820 

October 26, 1995 

Temp. Celsius 24.000 24.000 25.500 24.000 

DOmgiL 7.800 7.700 7.800 7.600 

PH 7.960 8.200 8.130 8.400 

Phos.mgiL 0.018 0.008 0.006 0.011 

Turbidity (SDm) 0.700 1.450 2.000 1.900 

November 28, 1995 

Temp. Celsius 20.500 21.000 20.000 20.500 

DOmgiL 8.200 7.600 7.500 7.400 

PH 7.800 7.800 7.720 7.840 

Phos.mgiL 0.025 0.020 0.022 0.026 

Turbidity (SDm) 0.900 1.500 2.200 1.650 

December 6, 1995 

Temp. Celsius 21.000 21.500 21.000 21.000 

DOmgiL 8.800 8.100 7.500 8.800 

PH 7.850 8.160 7.900 8.540 

Pbos.mgiL 0.031 0.028 0.024 0.027 

Turbidity (SDm) 1.120 1.750 2.430 1.450 
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AppendixB 
Data from Two Year Study- Phytoplankton. 

August 25,1994 

Order Family Species 

Rinker North 

#IL 

Chlorococcales Scenedesmaceae Scenedesmus sp. 

Crucigenia sp. 

C1osteriopsis .p. 

Characiaceae Schroederia .p. 

Oocystaceae Ankistrodesmus sp. 2475000 
Palmellococcus sp. 825000 

Selanastrum sp. 825000 

Hydrodictyaceae Pediastrum sp. 

Zygnematales Desmidiaceae Arthrodesmus sp. 

Zygnemataceae Zygnema sp. 

Mesotaeniaceae Mesotaeniwn sp. 33000 

Netriwn sp. 33000 

Volvocales Volvocaceae Eudorina sp. 

Chlamydomonadaceae Polytoma sp. 
Chlamydomonas sp. . 

U10trichales Protococcaceae Protococcus sp. 8250000 I 
I 

Tetrasporales Coccomyxaceae Coccomyxa sp. 4950000 • 
ChIorangiaceae StyIosphaeridwn sp. I 

Oscillatoria1es Oscillatoriaceae Spirulina sp. 

Osclllatoria sp. 33000 

Nostocaceae Aulosira sp. 
Anabaena sp. 33000 

RivuIariaceae Calothrix sp. 1650000 

Chroococcales Chroococcaceae Eucapsis sp. 
Coelosphaeriwn sp. 
Rhabdoderma sp. 5775000 

Centrales Coscinodiscaceae Cyclotella sp. 

Pennales FragiIariaceae FragiIaria sp. 

Synedra sp. 825000 

Naviculaceae Navicula sp. 33000 
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AppendixB 
Data from Two Year Stody- Phytoplankton, continued. 

December 8, 

1994 

Order Family Species 

Rinker North 

#IL 

Oscillatoriales Oscillatoriaceae Spiru1ina sp. 

Oscillatoria sp. 10000 

Nostocaceae Aulosira sp. 

Anabaena sp. 

Rivulariaceae Calotbrix sp. 

Cbroococcales Cbroococcaceae Eucapsis sp. 

Coetosphaerium sp. 

Rhabdodenna sp. 8000000 

Aphanocapsa sp. 500000 

CbIorococcales Seenedesmaceae Scenedesmus sp. 

Crucigenia sp. 

Closteriopsis sp. 

Characiaceae Scbroederia sp. 

Oocystaceae Aokistrodesmus sp. 

Palmellococcus sp. 

Selanastrum sp. 

Chlorococcaceae CbIorococcum sp. 

Hydrodictyaceae Pediastrum sp. 

Zygnematales Desmidiaceae Artbrodesmus sp. 5680000 

Staurastrum sp. 

Zygoemataceae Zygoema sp. 

Mesotaeniaceae Mesotaenium sp. 1750000 

Netrium sp. 

Volvocales Volvocaceae Eudorina sp. 

Cblamydomouadaceae Polytoma sp. 10000 

Cblamydomonas sp. 

Ulottichales Protococcaceae Protococcus sp. 12000000 

Ulotrichaceae Hormidiopsis sp. 10000 

Tetrasporales Coccomysaceae Coccomyxa sp. 

Nannochloris sp. 4000000 

Pennales Fragllariaceae Fragi1aria sp. 

Synedra sp. 

Naviculaceae Navicula sp. 10000 
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AppendixB 
Data from Two Year Study- Phytoplankton, continued. 

March 8, 1995 

Order Family Species 
Rinker North 

#IL 

Oscil1atoriales Oscillatoriaceae SpiruJina sp. 10000 

Oscillatoria sp. 

Lyngbya sp. 

Nostocaceae Aulosira sp. 

Anabaena sp. 

Rivulariaceae Calothrix sp. 

Chroococcales Chroococcaceae Eucapsis sp. 

Coelosphaerium sp. 

Rhabdoderma sp. 4250000 

Aphanocapsa sp. 1600000 
Synechocystis sp. 250000 

Polycystis sp. 

ChlorococcaIes Scenedesmaceae Scenedesmus sp. 

Crucigenia sp. 

Closteriopsis sp. 

Characiaceae Schroederia sp. 

Oocystaceae Ankistrodesmus sp. 600000 
Ankistrodesmus convolutus 1000000 

Chlorella sp. 8000000 

PaImellococcus sp. 

Selanastrum sp. 250000 
Westella linearis 250000 

Chlorococcaceae Chlorococcum sp. 

Hydrodictyaceae Pediastrum sp. 

Tetrasporales Coccomyxaceae Coccomyxa sp. 8000000 

Nannochloris sp. 

Chlorangiaceae Stylosphaeridum sp. 

CryptomonadaIes Cryptochrysidaceae Rhodomonas sp. 10000 

ChrysomonadaIes Mal1omonadaceae Mallomonas sp. 10000 

Ochromonadaceae Dinobryon sertularia 10000 

Centrales Coscinodiscaceae Cyclotella sp. 10000 

Pennales Fragi1ariaceae Fragilaria sp. 

Synedra sp. 

Naviculaceae Navicula sp. 10000 
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AppendixB 
Data from Two Year Study- Phytoplankton, continued. 

May II, 1995 

Order Family Species 

Rinker South 

#IL 

Oscillatoriales Oscillatoriaceae Spirulina sp. 250000 
Oscillatoria sp. 500000 
Lyngbya sp. 

Nostocaceae Aulosira sp. 10000 
Anabaena sp. 

Rivulariaceae Calothrix sp. 

Chroococcales Chroococcaceae Eucapsis sp. 

Coelosphaerimn sp. 

Rhabdoderma sp. 20000000 
Aphanocapsa sp. 

Synechocystis sp. 1500000 
Aphanothece sp. 

Polycystis sp. 

Gloeothece sp. 10000 

ChIorocoeca1es Scenedeslllilceae Scenedesmus sp. 

Crucigenia sp. 30000 
Closteriopsis sp. 1250000 

Characiaceae Schroederia sp. 

Oocystaceae Ankistrodesmus sp. 

Ankistrodesmus COIlvolutus 

ChIorella sp. 8000000 

Tetrasporales Coccomyxaceae Coccomyxa sp. 8000000 
Nannochloris sp. 

ChIorangiaceae Stylosphaeridum sp. 

Chrysomonadales Mallornonadaceae Mallomonas sp. 

Ochromonadaceae pmobryon sertularia 

Ceratimn birnndinella 50000 
Peridinum sp. 10000 

Centrales Coscmodiscaceae Cyclotella sp. 

Pennales Fragilariaceae Fragilaria sp. 

Synedra sp. 

Naviculaceae Navicula sp. 250000 
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AppendixB 
Data from Two Year Study- Phytoplankton, continued. 

September 14, 1995 

Order Family Species 

Tannac 

#IL 

Chroococcales Chroococcaceae Eucapsis sp. 

Coelosphaerium sp. 

Rbabdoderma sp. 16000000 
Aphanocapsa sp. 

Synechocystis sp. 750000 
Aphanolhece sp. 

Polycystis .p. 120000 
Gloeolhece sp. 

Chroococcus sp. 20000 

Cblorococcales Scenedesmaceae Scenedesmus sp. 

Crucigenia sp. 10000 
Closteriopsis .p. 4000000 

Characiaceae Schroederia sp. 

Oocystaeeae Ankistrodesmus sp. 

Ankistrodesmus convolutus 30000 
Cblorella sp. 8000000 

TetrasporaJes Coccomyxaceae Coccornyxa sp. 500000 
Nannochloris sp. 

Cblorangiaceae Stylosphaeridum sp. 

Centrales Coscioodiscaceae Cyclotella sp. 

Pennales Fragilariaceae Fragilaria sp. 

Synedra sp. 

Naviculaceae Navicula sp. 20000 
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AppendixB 
Data from Two Year Study- Phytoplankton, continued. 

December 8, 1995 
Order Family Species 

Tarmac 

#IL 

Chroococcales Chroococcaceae Eucapsis sp. 

Coelosphaerium sp. 

Rbabdodenna sp. 20000000 
Aphanocapsa sp. 

Synecbocystis sp. 250000 
Aphanothece sp. 

Polycystis sp. 500000 
GIoeothece sp. 

Chroococcus sp. 

CbIorococcales Scenedesmaceae Scenedesmus sp. 

Crucigenia sp. 

Closteriopsis sp. 750000 

Characiaceae Schroederia sp. 

Oocystaceae Ankistrodesmus sp. 

Ankistrodesmus convolutus 250000 
CbIoreIla sp. 12000000 

Tetrasporales Coccomyxaceae Coccomyxa sp. 16000000 
NannocbIoris sp. 

Pennales Fragilariaceae Fragilaria sp. 

Synedra sp. 

Naviculaceae Navicula sp. 30000 
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AppendixB 
Data from Two Year Stndy- Zooplankton 

May 5,1994 

Rinker North 

#IL 

Cyclopoida Cyclopidae Cyclops sp. 12 

Calanoida Diaptomidae Diaptomus sp. 12 

Harpacticoida Harpacticidae Bryocampus sp. 4 

August 20, 1994 

Rinker North 

#IL 

Cyclopoida Cyclopidae Cyclops sp. 7.6 

Calanoida Diaptomidae Diaptomus sp. 8.2 

Harpacticoida Harpacticidae Bryocampus sp. 3.5 

naupJii of uncertain identity 12.5 

Cypridopsidae Cypridopsis sp. 0.1 

Dapbniidae Daphnia sp. 1.2 

Onychopoda Polyphenidae Polyphemus sp. 0.3 

December 8, 1994 

Rinker North 

#IL 

Testacea Arcellidae Arcella denata 

wlgaris 0.13 

Ploima Lacanidae Monostyla sp. 0.13 

Brachionidae Keratella sp. 0.13 

Dapbniidae Daphnia sp. 2 

Onychopoda Polyphenidae Polyphemus sp. 0.25 

Cyclopoida Cyclopidae Cyclops sp. 10.78 

Calanoida Diaptomidae Diaptomus sp. 9.26 

Harpacticoida Harpacticidae Bryocampus sp. 0.13 

nanpJii ofuncertain identity 6 

Cypridopsidae Cypridopsis sp. 0.13 
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AppendixB 
Data from Two Year Study- Zooplankton, continued. 

March 8,1995 

Rinker North 
#fL 

Dinoflagellida Ceratidae Ceratium hirnndinella 2.26 

Testacea Arcellidae Arcella denata 

Arcella vulgaris 0.16 

Ploima Lacanidae Monostyla sp. 

Keratella sp. 0.11 

Onychopoda Polyphenidae Polyphemus sp. 

Bosminidae Bosmina sp. 0.16 

Cyclopoida Cyclopidae Cyclops sp. 3 
Macrocyclops sp. 0.22 

Calanoida Diaptmnidae Diaptmuus sp. 6.3 

nauplii of uncertain identity 4.7 

Cypridopsidae Cypridopsis sp. 0.27 

May 11,1995 
Rinker South 

#fL 

Dinoflagellida Ceratidae Ceratium hirnndinella 9.4 

Testacea Arcellidae Arcella denata 

Arcella vulgaris 0.5 

Ploima Lacanidae Monostyla sp. 

Brachionidae Platyias sp. 

Brachionus sp. 004 

Daphniidae Daphnia sp. 

Sididae Diaphanosmna sp. 0.44 

Bosminidae Bosmina sp. 0.44 

Onychopoda Polyphenidae Polyphemus sp. 

Cyclopoida Cyclopidae Cyclops sp. 3.3 
Macrocyclops sp. 

Ca1anoida Diaptmuidae Diaptomus sp. 2.25 

nauplii ofuncertain identity 2.44 
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AppendixB 
Data from Two Year Study- Zooplankton, continued. 

September 14, 1995 

Tarmac 
#IL 

Dinoflagellida Ceratidae Ceratium hinmdinella 0.31 
P10ima Lacanidae Monostyla sp. 

Bracbionidae P1atyias sp. 

Bracbionus sp. 0.31 
Keratella sp. 0.2 

Daphniidae Dapbnia sp. 

Bosminidae Bosmina sp. 0.31 

Cyc1opoida Cyclopidae Cyclops sp. 1.25 
Macrocyclops sp. 

Ca1anoida Diaptomidae Diaptomus sp. 0.25 
naupJii ofuncertain identity 0.675 

Cypridopsidae Cypridopsis sp. 0.2 

December 8, 1995 

Tarmac 
#IL 

Dinoflagellida Ceratidae Ceratiwn birun<linella 1.5 

Ploima Lacanidae Monostyla sp. 
Bracbionidae Platyias sp. 

Bracbionus sp. 

Keratella sp. 0.6 

Daphniidae Dapbnia sp. 

Sididae Diaphanosoma sp. 0.06 
Macrotbricidae Macrotbris sp. 
Bosminidae Bosmina sp. 13.75 

Onychopoda Polyphenidae Polyphemus sp. 2 

Cyclopoida Cyclopidae Cyclops sp. 5.44 
Macrocyclops sp. 

Ca1anoida Diaptomidae Diaptomus sp. 2.94 
naupJii of uncertain identity 5 

Cypridopsidae Cypridopsis sp. 0.06 
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AppendixB 
Data from Two Year Study- Macroinvertebrates. 

March 18, 1994 

class fiunily genus species 

Rinker North 
#s 

Turbellaria 
P1anariidae Euplanaria sp. 3 

Hirudinea 
Hirudinidae sp. 3 

Crustacea 
Palaemonidae Palaemonetes paludosus 9 

Ganuuaridae Gammarus sp. 2 

Arachnoidea 
Lycosidae Pirafa sp. 2 

Dictynidae Dictyna sp. I 

Insect. 
Belostomatidae Belestoma lutarium I 

Ochteridae Ochterus americanus I 

Dytiscidae Uvarus lucustris 2 

Nauooridae Pelocorus sp. 2 

Gyrinidae Dineutus sp. I 

Gerridae Gettis sp. I 

Metrobates hesparius I 

Coenagrionidae Enallagma sp. I 

Chironomidae Chironomus sp. I 

Gastropoda 
Planorbidae Helisoma sp. 3 

Helisoma trivolvis 4 

Physidae Physa sp. 39 

Pleuroceratidae Pleurocera sp. 4 

TotaJ# 81 

# Species 19 

ShanmID-Weaver Diversity Index 3 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

April 20, 1994 

class family genus species 
Rinker North 

#s 

Crustacea 
Palaemonidae Palaemonetes paludosus 12 

Gammaridae Gammarus sp. 5 

Arachnoidea 
Lycosidae Pirata sp. I 

Lycosa sp. 2 

F ilistatidae Fi1istata sp. 

Insecta 
Belostomatidae Belestoma lutariwn 

Dytiscidae Uvarus lucustris 

Naucoridae Pelocorus sp. 3 

Gerridae Gerris sp. 
Metrobates hesparius I 

Coenagrionidae Enallagma sp. 5 

Chironomidae Chironomus sp. 2 

Libellulidae Celithemis eponiua I 

Gastropoda 
j>Ianorbidae Helisoma sp. I 

Helisoma trivolvis 2 I, 

Physidae Physa sp. 49 

Pleuroceratidae Pleurocera sp. 2 

Total # 89 

# Species 16 

Shannon-Weaver Diversity Index 2.5 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

May 24, 1994 

class family genus species 
Rinker North 

#s 

Crustacea 

Palaemonidae Palaemonetes paludosus 22 
Astacidae Procambarus sp. I 

Gammaridae Gammarus sp. 1 

Arachnoidea 

Lycosa sp. 1 

FiIistatidae FiIistata sp. 1 

Insecta 
Dytiscidae Uvarus lucustris 

Laccophilus sp. 1 

Gerridae Gerris sp. 

Metrobates hesparius 

Trepobates sp. 2 

Mesoveliidae Mesovelia sp. 1 

Corduliidae Epitheca stella 1 

Coenagrionidae EnalIagma sp. 3 

Tabanidae Chrysops sp. 1 

Cbironornidae Cbironomus sp. 1 

Gastropoda 
Helisoma trivolvis 3 

Physidae Physa sp. 57 

Pleuroceratidae Pleurocera sp. 3 
Total # 99 

# Species 15 

Shannon-Weaver Diversity Index 2.16 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

JlD1e 15, 1994 

class fiunily genus species 

Rinker North 

#s 

Crustacea 

Palaemonidae Palaemonetes paludosus 16 

Astacidae Procambarus sp. 1 

Arachnoidea 

Filistatidae Filistata sp. 

Pholcus sp. 2 

lusecta 

Dytiscidae Uvarus lucustris 

Laccophilus sp. 6 

Gerridae Gettis sp. 

Metrobates hesparius 

Trepobates sp. 11 

Coenagrionidae Enallagma sp. 2 

Chironomidae Chironomus sp. 4 

Stratiomyidae Odontomyia sp. 

Gastropoda 

Planorbidae Helisoma sp. 2 

Pbysidae Physa sp. 38 

Pleuroceratidae Pleurocera sp. 1 

Total # 84 

# Species 11 

Shannon-Weaver Diversity Index 2.45 



AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

July 27, 1994 

class fiunily genus species Rinker North 
#s 

Hirudinea Rhynchobdellida Helobdella sp. 3 

Crustacea Palaemonidae Palaemonetes paludosus 11 

Gammaridae Gammarus sp. I 

Arachnoidea Lycosidae Pirata sp. 2 

Insecta Belostomatidae Belostoma lutariwn 

Gerridae Gerris sp. 3 

Corduliidae Epi1heca stella 2 

Coenagriouidae EnaUagma sp. I 

Gastropoda Plauorbidae Helisoma sp. I 

Gyraulus sp. I 
Physidae Pbysella sp. 33 

Ampullariidae Pomacea paludosa 2 

Total # 60 

# Species 11 

Shannon-Weaver Diversity Index 2.24 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

August 25, 1994 

class family genus species Rinker North 

#. 

Oligochaeta Naididae Paranais sp. 4 

Crustacea Palaemonidae Palaemonetes paludosus 41 

Gammaridae Gammarus sp. 3 

Arachnoidea Lycosidae Pirata sp. 

Filistatidae Fi1istata sp. 2 

Insecta Belostomatidae Belostoma sp. 2 

Nancoridae Pelocorus sp. 5 

Gerridae Gerris sp. 5 

Libellulidae Celithemis eponina 

Sympetrmn sp. I 

Cordn1iidae Epitheca stella 1 

Coenagrionidae EnaUagma sp. 3 

Isehnura sp. 5 

Oligoneuriidae Isonyehia sp. 

Gastropoda Planorbidae Helisoma sp. I 

Gyraulus sp. 2 

Physidae Physella sp. 34 

Pleuroceratidae Pleurocera sp. I 

Total # 112 

# Species 17 

Shannon· Weaver Diversity Index 2.78 



AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

September 22,1994 

class family genus species Rinker North 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 7 

Gammaridae Gammarus sp. 4 

Arachnoidea Lycosidae Pirata sp. 

Attidae Sitticus sp. I 

Filistatidae Filistata sp. 

Pholcus sp. 

Pisauridae Dolomedes sp. 4 

Insecta Belostomatidae Belostoma sp. 2 

Dytiscidae Uvarus sp. 

Laccopbilus sp. 

Hydroporus sp. 2 

Naucoridae Pelocoris sp. 14 

Gerridae Gerris sp. 

Metrobates hesparius 

Limnoporus sp. 

Gaslropoda Plrurorbidae Helisoma sp. 

Gyraulus sp. 2 

Physidae Physella sp. 35 

Lymnaeidae Lymnaea sp. 7 

Total # 80 
# Species 12 

Shannon-Weaver Diversity lodex 2.64 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

October 19, 1994 

class fumily genus species Rinker North 

#s 

Crustacea Palaemonidae PaIaemonetes paIudosus 6 

Gammaridae Gammarus sp. 13 

Arachnoidea Lycosidae Pirata sp. 

Tetragnatbidae T etragnatha sp. 3 

Filistatidae Filistata sp. 

Pboleus sp. 1 

Insecta Belostomatidae Belostoma sp. 9 

Dytiscidae Uvarus sp. 

Hydroporus sp. 5 

Naucoridae Pelocoris sp. 22 
Gerridae Gerris sp. 2 

Metrobates hesparius 10 

Mesoveliidae Mesovelia sp. 3 

Chironomidae Chironomus sp. I 

Coenagrionidae Enal1agma sp. I 

Gastropoda Planorbidae Helisoma sp. 

Gyraulus sp. 1 

Menetus sp. 3 

Pbysidae Physella sp. 43 

Physella integra 8 

Total # 131 

# Species 16 

Shaonon-Weaver Diversity Index 3.15 
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AppendixB 
Data from Two Year Stndy- Macroinvertebrates, continued. 

November 22,1994 

class filmily genus species Rinker North 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 16 

Gammaridae Gammarus sp. 1 

Arachnoidea Lycosidae Pirata sp. 

Tetragnathidae Tetragnatha sp. 6 

Filistatidae Filistata sp. 

Pholcus sp. 4 

Pisauridae Dolomedes sp. 1 

Insecta Belostomatidae Belostoma sp. 2 

HydrophiJidae Tropisternus sp. 

Helobata sp. 1 

Naucoridae Pelocoris sp. 7 
Gerridae Gerris sp. 

Metrobates hesparius 

Limooporus .p. 8 

Veliidae Microvelia sp. 1 

Chirouomidae Chironomus sp. I 

Coenagrionidae Enallagma sp. I 

Ischnura posita I 

Caenidae Caenis sp. I 

Gastropoda Phmorbidae Helisoma sp. 

Menetus sp. I 

Physidae Physella sp. 28 

Physella integra 2 

Ampullariidae Marisa rotula 

Pomacea paludosa 1 

Total # 83 

# Species 18 

Shannon-Weaver Diversity Index 3.12 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

December 28, 1994 

class fiunily genus species Rinker North 

#s 

Crustacea Palaemonidae PaJaemonetes paludosus 27 

Gammaridae Gammarus sp. 8 

Arachnoidea Lycosidae Pirata sp. 

Tetragna1hidae Tetragnatha sp. 5 

FiIistatidae FiIistata sp. 

Pbolcus sp. 3 

Pisauridae Dolomedes sp. 

Insecta Belostomatidae Belostoma sp. 

Naucoridae Pelocoris sp. 2 

Gyrinidae Gyrinus sp. I 

Mesoveliidae Mesovelia sp. I 

Libellulidae Celithemis eponina I 

Perithemis tenera I 

Libellula auripennis I 

Coenagrionidae Enallagma sp. I 

Baetidae Calhbaetis sp. 

Gastropoda Planorbidae Helisoma sp. 

Pbysidae Physella sp. 46 

Total # 95 

# Species 14 

Shannon-Weaver Diversity Index 2.34 

85 



AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

January 20, 1995 

class family genus species Rinker South 

#s 

Hirudinea Rhyuchobdellida Helobdella sp. 
Erpobdellidae Erpobdella sp. I 

Oligochaeta Naididae Parauais sp. 

Styloria sp. 3 

Crustacea Palaemonidae Palaemouetes paludosus 39 
Gauuuaridae Gauuuarus sp. 23 

Arachuoidea Lycosidae Pirata sp. 

Tetraguathidae Tetraguatha sp. 13 

Insecta Belostomatidae Belostoma sp. 2 
Noteridae Hydrocanthus sp. 4 
Hydrome1ridae Hydrometra martini 1 
Gerridae Gerris sp. 6 

Trepobates sp. 1 
Cbirouomidae Chironomus sp. 1 
Coenagriouidae Enal1agma sp. 

Ischuura posit. 2 
Caenidae Caenis sp. 1 

Gastropoda Planorbidae Helisoma sp. 

Physidae Physella sp. 10 
Physella integra 22 

Total # 129 
# Species 15 

Shanuon-Weaver Diversity Iudex 2.97 



AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

February 23,1995 

class family genus species Tarmac 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 57 

Astacidae Procamborus sp. e 
Gammaridae Gammarus sp. 3 

Arachnoidea Lycosidae Pirata sp. 

Tetragnathidae Tetragoafba sp. 2 
F ilistatidae Filistata sp. 

Pholcus sp. 3 
Pisauridae Dolomedes sp. 2 

Insecta Belostomatidae Belostoma sp. 

Nancoridae Pelocoris sp. 1 

Gerridae Gerris sp. 1 
Mesoveliidae Mesovelia sp. 2 
Chironomidae Chironomus sp. , 
Aeshnidae Anax junius 1 
Coeoagrionidae Enallagma sp. 2 

Oligoneuriidae Isonychia sp. 1 
Leptoceridae Nectopsyche sp. 1 

Gastropoda Pllmorbidae Helisoma sp. 2 
Physidae Physella sp. 2 

Physella integra 1 
Pleuroceratidae Pleurocera sp. 1 

Goniobasis sp. 1 

Total # 90 
# Species 19 

Shannon-Weaver Diversity Index 2.39 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

March 16, 1995 

class fanilly genus species Tarmac 

#s 

Oligocbaeta Naididae Paranais sp. 

Stylaria sp. 1 

Crustacea Palaemonidae Palaemonetes paludosus 89 
Astacidae Procambarus sp. 4 
Gammaridae Gammarus sp. 26 

Arachnoidea Lycosidae Pirata sp. 

Telragnathidae Te1ragnatba sp. 2 
Filistatidae Filistata sp. 

Pholcus sp. 3 
Pisauridae Dolomedes sp. 1 

Insecta Belostomatidae Belostoma sp. 

Naucoridae Pelocoris sp. 1 

Chironomidae Chironomus sp. 2 

Gastropoda Planorbidae Helisoma sp. 11 
Physidae Physella sp. 15 
Hydrobiidae Littoridinops sp. 2 
Pleuroceratidae Pleurocera sp. 1 

Total # 158 
# Species 13 

Sbanoon-Weaver Diversity Index 2.15 



AppendixB 
Data from Two Year Stndy- Macroinvertebrates, continued. 

April 25. 1995 

class family genus species Tarmac 

#s 

Hirudinea Rhynchobdellida Helobdella sp. 

Placobdella sp. 4 

Oligochaeta Naididae Paranais sp. 2 

Crustacea Palaemonidae Palaemonetes paludosus 3 

Astacidae ProcambarUs sp. 3 

Ganunaridae Ganunarus sp. 14 

Arachooidea Lycosidae Pirata sp. 

Tetragua1hidae Tettagnatha sp. 2 

Insecta Belostomatidae Belostoma sp. 

Naucoridae Pelocoris sp. 1 

Gyrinidae Gyriuus sp. 3 

Dineutus sp. 30 

Gerridae Gerris sp. 1 

Gasttopoda Planorbidae Helisorna sp. 

Gyraulus sp. 3 

Physidae Physella sp. 24 

Pleuroceratidae Pleurocera sp. 3 

Goniobasis sp. 3 
Total # 96 
# Species 14 

Shannon-Weaver Diversity Index 2.93 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

May22,1995 

class family genus species Florida Rock 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 80 
Astacidae Procambarus sp. 1 
Gammaridae Gammarus sp. 7 

Insecta Belostomatidae Belostoma sp. 

Hydrophilidae Tropistemus sp. 4 
Naucoridae Pelocoris sp. 2 
Libellulidae Celithemis eponina 1 
Corduliidae Epitheca stella 1 

princeps 1 

Coenagrionidae Enallagma sp. 

Amphiagrion sp. 6 
Caenidae Caenis sp. 1 
Leptoceridae Nectopsyche sp. 

Oecetis sp. 2 

Gastropoda P1anorbidae Helisoma sp. 

Menetos sp. 37 
Vorticifex sp. I 

Physidae Physella sp. 12 
Physella integra 2 

Hydrobiidae Littoridioops sp. 5 
Ampullariidae Marlsa rotula 

Pomacea paludosa 2 
Total # 164 
# Species 16 

Shannon-Weaver Diversity Index 2.45 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

Jooe 14, 1995 

class family genus species Florida Roek 

#s 

Crustacea Pa1aemonidae Palaemonetes paludosus 54 
Astacidae Procambarus .p. 1 
Gammaridae Gammarus sp. 6 

Insects Belostomatidae Belostorna sp. 

Naucoridae Peloeoris sp. 1 
Gyrinidae Gyrinus sp. 1 

Coenagrionidae Enal1agma sp. 

Isehnura posita 8 

Gaslropoda Planorbidae Helisoma sp. 

Gyraulus sp. 1 
Menelus sp. a 

Physidae Physella sp. 21 
Physella integra 1 

Hydrobiidae Littoridinops sp. 19 
Total # 119 
# Species 11 

Shannon-Weaver Diversity Index 2.37 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

July 20, 1995 

class family genus species Rinker North 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 34 
Astacidae Procambarus sp. 2 
Gammaridae Gammarus sp. 1 

Araclmoidea Lyeosidae PiIata sp. 

Tetragnatbidae Tetragnatha sp. 2 

Filistatidae Filistala sp. 

Pholcus sp. 1 

Pisauridae Dolomedes sp. 4 

Insecta Belostornatidae Belostorna sp. 

Dytiscidae Uvarus sp. 
Dytiscus sp. I 

Pleidae Neoplea sp. 4 

Naucoridae Pelocoris sp. 2 
Gerridae Gerris sp. 2 

Metrobates hesparlus 2 
Trepobates sp. 16 

Veliidae MicroveJia sp. 1 

Psychodidae Psychoda sp. 1 

Coenagrionidae EnalIagma sp. 1 
Isclmura sp. 1 

HydroptiJidae Oxyethira sp. I 

Gastropoda Planorbidae HeJisorna sp. 

Gyraulus sp. 3 
Polygyra sp. 5 

Physidae Physella sp. 11 
Physella integra 8 

Pleuroceratidae Pleurocera sp. 1 
Goniobasis sp. 1 

Ampullariidae Marisa rotula 

Pomacea paludosa 1 
Total # 106 
# Species 24 

Shannon-Weaver Diversity Index 3.5 

92 



AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

August 13, 1995 

class family genus species Tarmac 

#s 

HJrudinea Rhynchobdellida Helobdella sp. 

Placobdella sp. 1 

Crustacea Palaemonidae Palaemonetes paludosus 43 
Astacidae Procambarus sp. 2 
Gammaridae Gammarus sp. 18 

Arachnoidea Lycosidae PiIata sp. 

Tetragnathidae Tetragoafua sp. 3 
Pisauridae Dolomedes sp. 2 

Insecta Belostomatidae Belostoma sp. 

Naucoridae Pelocoris sp. 5 
Gyrinidae Gyrinus sp. 1 

Gerridae Gerris sp. 2 
Trepobates sp. 3 

Coenagrionidae Enal1agma sp. 2 
Ischnura sp. 3 

Gastropoda Planorbidae Helisoma sp. 

Gyraulus sp. 4 
Physidae Physella sp. 12 

Physella integra 2 

Pleuroceratidae Pleurocera sp. 5 
Goniobasis sp. 1 

Total # 109 
# Species 17 

Shannon-Weaver Diversity Iodex 3.04 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

September 15, 1995 

class family genus species Tannac 
#s 

Crustacea Palaemonidae Palaemonetes paludosus 47 
Gammaridae Gammarus sp. 17 

Arachnoidea Lycosidae Pirata sp. 

F i1istatidae Filistata sp. 

Pholcus sp. 2 

Insecta Belostomatidae Belostoma sp. 2 
Naucoridae Pelocoris sp. 2 
Gyrinidae Gyrinus sp. 3 
Gerridae Gerris sp. 

Trepobates sp. 1 
Chironomidae Chironomus sp. 2 
Libellulidae Celithemis eponina 

Perithemis tenera 1 

Coenagrionidae Euallagrua sp. 1 
Ischnura sp. 6 

Baetidae CalIibaetis sp. 2 
unidentified Trichopt eran 1 

Gastropoda Planorbidae Helisoma sp. 

Physidae Physella sp. 41 
Physella integra 2 

Pleuroceratidae Pleurocera sp. 4 
Total # 134 
# Species 16 

Shannoo-Weaver Diversity ludex 2.66 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

October 12, 1995 

class family genus species Rinker North 
#s 

Crustacea Palaemonidae Palaemonetes paludosus 44 
Astacidae Ptocambarus sp. I 

Gammaridae Gammarus sp. 21 

Arachnoidea Lycosidae Pirata sp. 

Tetragnatbidae Tetragnatha sp. 6 

Filistatidae Filistata sp. 

Pholcus sp. 4 

Pisauridae Dolomedes sp. 2 

Insecta Belostomatidae Belostoma sp. 3 

Pleidae Neoplea sp. 3 

Naucoridae Pelocoris sp. 15 

Gerridae Gerris sp. 9 

Mesoveliidae Mesovelia sp. 3 

Chironomidae Chironomus sp. 2 

Psychodidae Psychoda sp. 1 

Coenagrlonidae EnalIagma sp. 3 

Ischnura sp. 4 

Baetidae Calhbaetis sp. 

Baetis sp. I 

Siphlonurus sp. 1 

Gastropoda Planorbidae Hellsoma sp. 
Drepanotrema sp. 1 

Pbysidae Pbysella sp. 53 

Physella integra 2 

Total # 179 

# Species 20 

Shrumon-Weaver Diversity Index 3.13 
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AppendixB 
Data from Two Year Stndy- Macroinvertebrates, continued. 

November 14, 1995 

class family genus species Rinker North 

#s 

crustacea Palaemonidae Palaemonetes paludosus 56 
Ganunaridae Ganunarus sp. 37 

Insecta Belostomatidae Belostoma sp. 

Naucoridae Pelocoris sp. 2 
Gerridae Gerris sp. 3 
Mesoveliidae Mesovelia sp. 1 

Chironomidae Chirouomus sp. 2 
Libellulidae Ce!ithernis eponina 2 

Perithemis tenera 1 
Coenagrionidae EnaI1agma sp. 2 

Iscbnura sp. 2 
Caenidae Caenis sp. 2 
Baetidae Callibaetis sp. 

Baetis sp. 2 
Oligonemiidae Isonychia sp. 1 

Gastropoda Planorbidae Helisoma sp. 

Polygyra sp. 1 

Physidae Physella sp. 31 
Physella integra 1 

Lymnaeidae Lymnaea sp. 

Pseudosuecinea colmnella 1 
Ampul1ariidae Marisa rotula 

Pomacea paludosa 1 
Total # 148 
# Species 18 

Shannon-Weaver Diversity Index 2.54 
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AppendixB 
Data from Two Year Study- Macroinvertebrates, continued. 

December 4, 1995 

class family genus species Rinker North 

#s 

Crustacea Palaemonidae Palaemonetes paludosus 46 
Gammaridae Gammarus sp. 50 

Arachnoidea Lycosidae Pirata sp. 

Tetragnathidae Tetragna1ha sp. 14 
Filistatidae Filistata sp. 

Pholcus sp. 5 
Pisauridae Dolomedes sp. 1 

Insecta Belostomatidae Belostoma sp. 5 
Hydrometridae Hydrometra martini 4 
Gerridae Gerris sp. 6 

Trepobates sp. 4 
Mesoveliidae Mesovelia sp. 3 
Chironomidae Chironomus sp. 2 
Libellulidae Celithemis eponina 2 

Pachydiplex longipeonis 1 
Coenagrionidae Enal1agma sp. 

Isclmura sp. 1 
Baetidae Callibaetis sp. 

Baetis sp. 3 

Gastropoda Planorbidae Helisoma sp. 

Physidae Physella sp. 34 

Physella integra 2 
Lynmaeidae Lynmaea sp. 

Pseudosuccinea cohnnella 4 
Total # 187 
# Species 18 

Shanuon-Weaver Diversity Index 3.05 
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AppendixB 
Data from Two Year Study- DO Profiles. 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 

DO Depth Profile 
Rinker North 12/28/94 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 

DO Depth Profile 
Rinker North 2/13/95 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 

o 

DO Depth Profile 
Florida Rock 4/12/95 

f 
~ 

~ 
J ,-

.. -;; 
~ .---
10 

, 

20 30 40 
Depth Ft. 

103 

. 

50 60 



9 
8 
7 

::::16 
0>5 
E 
-4 o 
03 

2 
1 
o 

~ 

o 

AppendixB 
Data from Two Year Study- DO Profiles, continued. 
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AppendixB 
Data from Two Year Study- DO Profiles, continued. 
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AppendixB 
DO Depth Data- Sept. 1994 - Sept. 1995 

Rinker North 9/11194 

Station Depth Ft. TempoC DO 

North/Center 2 29.7 5.6 
37 29.3 5.1 
55 29 1.3 

South/Center 2 29.9 6.2 
12 29.7 6.2 
39 29.4 5.3 
55 30.4 1.8 

Rinker North 12/28/94 

North/Center 1 21.7 8.9 
25 20.9 10.7 
52 22.3 10.1 

South/Center 1 21.9 8.8 
25 21.2 9 
52 20.9 9 

Rinker North 2/13/95 

North/Center 1 18.5 9.1 
5 18.2 9.2 
10 18 9.3 
15 17.5 9.4 
17 17.3 9.5 
20 17.2 9.6 
23 16.8 9.7 
25 16.7 9.8 
28 16.6 9.9 
31 16.5 10 
35 16.4 10.1 
55 16.4 10.1 
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AppendixB 
DO Depth Data- Sept. 1994 - Sept. 1995, Continued. 

Rinker North 2/13/95 

Station DepthFt. TempoC DO 
South/Center 1 21.2 8.7 

2 19.9 9.1 
4 19.5 9.3 
6 19.3 904 
9 19.1 9.5 
13 IS.6 9.5 
14 IS.2 9.S 
16 IS. 1 9.9 
18 17.7 10.1 
19 1704 10.2 
21 17.2 10.3 
24 16.9 lOA 
30 16.S 10.5 
51 16.S 10.5 
55 16.8 lOA 

Rinker South 2/13/95 
Station 
Center 1 21.9 8.9 

2 21.5 9 
3 21.1 9.2 
5 20.2 904 
6 19.5 9.5 
8 1904 9.6 
9 19.2 9.7 
10 IS.6 9.9 
11 18.3 10.1 
12 18 10.2 
15 17.3 lOA 
17 16.9 10.5 
18 16.8 10.6 
20 16.6 10.7 
22 16.5 IO.S 
50 16.6 10.7 
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AppendixB 
DO Depth Data- Sept. 1994 - Sept. 1995, Continued. 

Tarmac 4/12/95 
Station Depth Ft. TempoC DO 
Center 1 25 8.1 

2 25 8.2 
4 25 8.3 
5 25 8.2 
16 24.7 8.4 
17 24.1 8.5 
18 23.9 8.6 
19 23.1 8.7 
20 22.5 8.9 
21 21.7 9.1 
22 21 9.2 
23 20.6 9.6 
24 19.8 9.8 
25 19.5 10 
26 19.3 10.1 
29 lS.7 10.3 
31 lS.3 10.4 
37 17.S 10.5 
38 17.7 10.9 
40 17.7 10.5 
49 17.6 10.4 
57 17.7 10.5 
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AppendixB 
DO Depth Data- Sept. 1994 - Sept. 1995, Continued. 

Florida Rock 4/12/95 
Station Depth Ft. TempoC DO 
South Center 1 25.9 8.6 

6 25.4 8.7 
8 25.2 8.8 
9 24.9 8.9 
10 24.7 9 
12 24 9.1 
13 23.8 9.3 
15 23.5 9.4 
17 23 9.5 
18 22.9 9.6 
21 22.6 9.7 
23 22.4 9.8 
30 22.1 9.9 
33 21.7 10 
35 21.4 10.1 
40 21.2 10.2 
57 21.4 10.2 

Florida Rock 7/14/95 
Station 
North/Center 1 32.4 7.7 

8 32 7.8 
13 30.7 7.9 
22 28.4 8 
24 27.4 8.1 
27 26.3 8.2 
30 24.9 7.9 
31 24.6 7.6 
32 23.8 1.7 
42 22.8 1.6 
44 22.7 1.5 
45 22.6 0.5 
46 22.6 0.4 
54 22.5 0.3 
57 22.5 0.3 
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AppendixB 
DO »qt. Da __ Sept. 1994 - epl. 1995, Continued. 
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