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ABSTRACT 

The Occurrence of PCBs and Chlorinated Pesticide Contaminants in 

Bottlenose Dolphins (Tursiops truncatus) in a Resident Community: 

Comparison with Age, Gender and Birth Order 

Kathleen M. Kiss 

Tissue samples from twenty bottlenose dolphins from a stable, residential community of 

coastal dolphins in the western Gulf of Mexico were analyzed for toxic PCB congeners and 

chlorinated pesticides. The tissues analyzed (blubber and melon) were from known individuals 

in a long-term (27+ y) study that stranded and were recovered for necropsy. Substantial 

demographic data were available on these individuals and utilized in the analysis of maternal 

transfer of organochlorines to young. 

The male dolphins in this study were shown to accumulate organochlorine contaminants 

with age. In female dolphins the organochlorine levels were found to decline with age. These 

results are in agreement with previous studies, with gestational and lactational transfer accounting 

for the decline seen in the females. A lengthening in interreproductive interval by increasing 

organochlorine levels after approximately age 30 y is noted in the females. 

For the first time, this study quantified the organochlorine levels of the first calf of a 

female, testing the hypothesis that the first-born of a female receives a substantially greater 

organochlorine load than subsequent calves. The first-born calf (age 5.3 mo) had the highest 

blubber EPCB, total DDT, HCB, and total pesticide levels of all animals in this study. The 
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organochlorine levels in this calf were 2-5 fold higher than in a similarly aged, fourth-born calf. 

All animals in this study had appreciable EPCBlevels (range 0.07 - 26.9 ug/g wet 

weight; 2.6 - 203.2 uglg lipid weight), and EDDT (range 0.06 - 10.3 wet weight; 0.9 - 88.1 

ug/g lipid weight). These values are in a moderate range compared to other studies, but not far 

below levels at which western Gulf of Mexico bottlenose dolphins evidenced mortality events in 

1990 and 1992. Further monitoring of this population is warranted. 
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1.0 INTRODUCTION 

. Contamination by chlorinated hydrocarbons has been implicated in the mass 

mortality of marine mammals in recent years. This study was undertaken to determine 

the levels of toxic PCBs and organochlorine pesticides in a resident community of 

bottlenose dolphins (Tursiops tluncatus) in Sarasota Bay, Florida, in the eastern Gulf of 

Mexico. The dolphins in this study have been the subject of research since 1970, and 

substantial demographic information was available on these individuals. Tissue samples 

from stranded resident dolphins were analyzed to initiate a database on the organochlorine 

levels, and to determine if I) male dolphins showed an increase in organochlorine levels 

with age, 2) post-reproductive females showed a loss of organochlorines due to 

gestational and lactational transfer to their young, and 3) any relationship between the 

order of birth of a calf (a first-born versus a later-born), and organochlorine loading 

could be established. 

In the past 50 years the manufacture and use of synthetic chemicals has increased 

dramatically. While contributing greatly to human comfort and welfare, many of these 

chemicals have been demonstrated to have severe and irrevocable toxic implications for 

the global ecosystem. In particular, attention is focused on synthetic chlorinated 

hydrocarbons such as polychlorinated biphenyls (PCBs), DDTs (dichloro­

diphenyltrichloroethane and its metabolites), hexachlorocyclohexane isomers (HCHs), 

polychlorinated dibenzofurans and polychlorinated dibenzo-p-dioxins (PCDFs and 

PCDDs), and related compounds due to their persistence and worldwide occurrence in 
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all compartments of the environment (Risebrough et al., 1968; Hutzinger et aI., 1983; 

Tanabe et aI., 1983, 1994; Loganatban and Kannan, 1991). 

Technical grade PCBs consist of mixtures of 209 possible chemical congeners with 

1 to IO chlorine atoms attached to a biphenyl group (Mullin et al., 1984). Produced 

primarily as Aroclor® in the United States by the Monsanto Corporation until their ban 

in 1979, various mixtures were used extensively in industry as dielectric fluids in sealed 

capacitors and transformers, as solvent extenders, flame retardants, heat transfer fluids, 

paint and pesticide additives, plastics, waxes, carbonless "NCR" copy paper, adhesives, 

and dedusting agents (Erickson, 1986; Safe, 1990). The physical properties that lend 

such versatility to PCBs - resistance to acids and bases, lipophilicity, compatibility with 

organic materials, and thermal stability - also contribute to the persistence and high 

bioaccumulative potential of these compounds, as well as their biomagnification in the 

food chain (Mullin et al., 1984; Tanabe, 1988). 

Organochlorine pesticides such as DDT and its metabolites, dieldrin, mirex, 

heptachlor, hexachlorocyclohexane (HCH) and its isomers, and chlordane and its 

metabolites exhibit similar properties to the PCBs in pbysical and thermal stability, 

persistence in the environment, worldwide distribution, and demonstration of toxicity. 

This class of chemicals was introduced into the environment in large quantities beginning 

in the 194Os, and some are still in wide-spread use. Although many of these pesticides 

have been restricted or banned in developed countries, some are still manufactured and 

used throughout the world, including in the United States of America, Europe, Japan and 

Canada (Iwata et ai., 1993). 
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The primary mode of environmental transport of chlorinated compounds is via 

the atmosphere, with the open ocean acting as a reservoir and final sink for the major 

portion of these compounds (Atlas et al., 1986). Although found in low (parts-per­

trillion) concentrations in open ocean water, these organochlorines are highly lipophilic, 

and have been found to be extremely bioaccumulative in the food chain, resulting in high 

accumulations in top trophic level marine predators (Tanabe and Tatsukawa, 1986). 

In recent years, and in response to declines in marine mammal populations and 

mass strandings of marine mammals in diverse parts of the world, researchers have been 

investigating both the level of chlorinated hydrocarbon accumulation in marine mammals 

as well as the toxicological ramifications of this exposure. High organochlorine loading 

has now been found in marine mammals from even the most remote areas of the globe, 

the Arctic and Antarctic, as well as all inhabited regions (Tanabe et al., 1983; Bacon et 

al., 1992; Norstrom and Muir, 1994). Tanabe and Tatsukawa (1991) and Kuehl et al. 

(1991) have found some of the highest organochlorine concentrations ever recorded in any 

animal in nature in the tissues of striped dolphins (Stenella coeruleoalba) and bottlenose 

dolphins (Tursiops truncatus). Physiologically, the most toxic of the chlorinated 

hydrocarbons elicit weight loss, thymic atrophy, hepatic damage, teratogenicity, 

reproductive toxicity, and immunotoxicity in test animals, with some of these and other 

symptoms seen in wild populations and in humans exposed accidentally (Safe, 1984; 

Reggiani and Bruppacher, 1985; Martineau et al., 1994; Norstrom and Muir, 1994). 

The implication that organochlorine loading in marine mammals has been a major 

factor, if not the proximal cause, of recent large scale marine mammal mortalities is now 
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postulated by many researchers in this field (Kuehl et at., 1991; Kannan et at., 1993; 

Aguilar and Borrell, 1994a; Tanabe et at., 1994). Specifically, they point to the 

immunosuppressive action of these chemicals, rendering the mammals at high risk when 

exposed to otherwise defeatable infectious agents. Support for this hypothesis is provided 

by Lahvis et at., (1995) in their demonstration of decreased immune function relative to 

organochlorine concentration in bottlenose dolphins. 

Three factors appear significant in the accumulation of organochlorine compounds 

by marine mammals. The first is that the extent of accumulation of chlorinated 

compounds is dependent to some degree on ambient pollution levels in the animal's 

habitat and subsequent accumulation in the food chain. The second factor is that marine 

mammals possess an inefficient metabolic enzyme system for degrading or depurating 

chlorinated hydrocarbons. This is particularly true in cetaceans and allows for high 

accumulations of organochlorines in whales and dolphins (Tanabe et at., 1994). The 

third factor is concerned with mode of reproduction. Female marine mammals are now 

known to transfer up to 98 % of their organochlorine burden to their offspring through 

gestation and lactation (Aguilar, 1987; Cockcroft et at., 1989; Borrell et at., 1995), not 

only burdening newborn offspring, but guaranteeing persistence in the species through 

successive transgenerational loading. 

Contamination of marine mammals by chlorinated compounds has been studied 

extensively since the early 1970s. In that time, many theories and some conclusions 

have been offered concerning the accumulation of compounds, mode of toxicity, 

reproductive transfer, and relationship to mass strandings and large scale mortality events. 



The majority of these studies have been undertaken with stranded animals that were found 

dead, animals collected as "by-catch· in fishing operations, and animals collected and 

sacrificed solely for research purposes. In each of these cases, little is known about the 

animals other than age and sex. A female's reproductive history may only be assumed 

by age and knowledge of her species' reproductive habits if comprehensive examination 

of the uterus, and of the ovaries for corpora lutea and albicantia are not conducted. A 

beached calf usually renders no information as to his parentage or his birth order. In 

most cases, little is known about precisely what waters the animal inhabited, and for what 

length of time. 

1.1 Statement of Purpose 

This study was conducted in order to integrate substantive demographic data with 

chlorinated hydrocarbon analysis. Under the direction of Dr. Randall S. Wells, the 

Dolphin Biology Research Institute (DBRl) has been studying the resident bottlenose 

dolphin community in Sarasota Bay, Florida (27
0 

25' N, 80· 40' W), as the focus of a 

long-term study initiated in 1970 (see Wells et al., 1987; Wells, 1991). This stable 

dolphin community consists of approximately 100 individuals with low « 3 %) 

immigration and emigration, yet substantial opportunity for interaction with neighboring 

dolphin communities (Wells, 1991). Demographic data on these dolphins as well as on 

dolphins in adjacent communities have been obtained both by regular observational 

reconnaissance and by an occasional capture and release sampling program where blood 
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and other biologic samples are obtained to determine general health and body condition 

status as well as reproductive status, genetic relationships (Wells, 1991), and immune 

function (Lahvis et 01., 1993; Lahvis et 01., 1995; Erickson et 01., 1995). 

Tissue samples from animals stranded and recovered by the Mote Marine 

Laboratory Marine Mammal Stranding Program, (part of the Southeast U.S. Marine 

Mammal Stranding Network), were collected during necropsy and stored for future 

analysis. Twenty of these animals were identified as DBRl research dolphins, and their 

blubber (n = 20) and melon tissues (n = 17) were analyzed for toxic PCB congeners and 

chlorinated pesticides in an effort to evaluate this community as well as determine 

patterns of accumulation in relation to gender, age, and birth order of these animals. 

Specifically, the objectives of this study were to ascertain 1) if male dolphins in this 

community showed significant accumulation of organochlorines with age, 2) if post­

parturient females evidenced lower organochlorine levels than pre-parturient females, and 

3) if any relationship between the order of the calf's birth in terms of his mother's 

reproductive history and chlorinated hydrocarbon levels could be established. 

1.2 Prior Research I Review of Literature 

Chlorinated biphenyls were first developed by Schmidt and Shultz in 1881, and 

have been widely used since the 1930s (Erickson, 1986). Worldwide, PCBs have been 

marketed as Clophen~ in West Germany, Fencl~ and Apirolio~ in Italy, Kanechl~ 

and Santotherm~ in Japan, Pyralene~ and PhenochlorGl' in France, Sovol~ in Russia, and 
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Delo~ in Czechoslovakia (Cairnes et al., 1986; Eisler, 1986). In addition to Aroclo~, 

PCBs have been marketed in the United States as Chloretol<», Oyknol<l>, Inerteem<», 

Noflarnol<l> and Pryanol<l> (Eisler, 1986, Borlakoglu and Haegele, 1991). Although now 

banned in Japan and Europe as well as the United States, PCBs are still manufactured and 

used heavily, primarily in developing nations and the Mediterranean basin (Tanabe, 1988; 

Oachs et aI., 1997; Marsili et aI., 1997). Coincident with the manufacturing ban, 

provisions were made for the continued, though restricted use of PCBs in older, • sealed' 

containers such as transformers and fluorescent light ballasts. Consequently, despite the 

manufacturing ban, it is estimated that approximately 70 % of the world's production of 

PCBs are still in use today in electrical equipment or deposited in landfills (Bacon et al. , 

1992; Tanabe, 1988), portending a potential increase in overall contamination in the 

future as these chemicals make their way into the environment from their present 

deployments, probably reaching its peak in the 1990's (Tanabe, 1988). 

Confirmation of the fact that PCB contamination has not decreased despite bans 

by industrialized countries corne from studies from diverse sectors of the scientific 

community. In one elegant study of the historical PCB residue record from the Agassiz 

Ice Cap in Canada, Gregor and his associates found that while mean PCB deposition 

peaked in 1967-1968 and then reached a minimum in 1980-1981, the deposition increased 

to nearly the maximum level again in 1989-1990, and remained at fairly high levels as 

of the study's conclusion in 1993. This group suggests that there has not been a major 

change in PCB availability in the northern hemisphere over the past thirty years due in 

part to the volatilization of PCBs from soils and to continued use in Eurasian countries 
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(Gregor et al., 1995). 

Although banned or restricted for the most part, persistent organochlorine 

pesticides find continued use as well, in one formulation or another, in almost every 

country on earth including the United States and other developed countries (Iwata et al. , 

1993; Voldner and Li, 1995). In some of the developing and third-world countries this 

use is extensive, such as the heavy DDT and HCH usage in India and China, and DDT 

use in southeast Asia, Central and South America, and Africa (Gregor, 1991; Iwata et 

al., 1993). The trend, then, seems to be towards a ·southward shift· in chlorinated 

hydrocarbon use. Tanabe et al. in 1983 reported much higher organochlorine levels in 

the northern than in the southern hemisphere, and this concentrated in the mid-latitudes 

in both the Atlantic and Pacific oceans, indicating the heavy industrial use by the 

developed nations such as the United States, Europe and Japan. Presently, increasing use 

by developing nations in the last decade has shifted the oceanic distribution of 

organochlorines. Southern bemisphere and tropical northern hemisphere oceans are 

currently evidencing higher levels of both DDT and HCH (Tanabe et al., 1994). Smaller 

geographical variations are seen for PCBs and chlordane, with approximately uniform 

distributions in both hemispheres, but suggest to Tanabe and his colleagues an expansion 

of their point sources to the tropical developing nations as well. 

Transport of chlorinated hydrocarbons is primarily through the atmosphere, where 

they are in vapor phase (predominantly), and in association with particulate matter. Once 

airborne, these stable, semi-volatile chemicals are capable of being transported thousands 

of kilometers and can revolatilize from continental sinks (Atlas et al., 1986). This 
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transport is driven by both atmospheric conditions and by the physical and chemical 

characteristics of the compound, in particular its subcooled vapor pressure which is of 

importance to the global distillation effect, also known as the cold-condenser effect (Van 

den Brink, 1997). It is thought that these compounds evaporate at warmer places of the 

globe, travel through the atmosphere and condense at colder places, perhaps helping to 

explain the relatively high levels of chlorinated compounds found in all environmental 

compartments of the Arctic, and in the Antarctic (Muir er al., 1988; Van den Brink, 

1997). Ultimately, the open ocean and coastal waters act as a reservoir and final sink 

for the major portion of organochlorine compounds, accounting for 62 % of the total 

PCB load in the environment. Table 1 illustrates the estimated PCB loading in terrestrial 

and open ocean environments. Incorporation into coastal and terrestrial sediments 

accounts for another 35 %, which is expected to be transported eventually to the oceans 

(Tatsukawa and Tanabe, 1990). Atmospheric deposition can occur through wet 

deposition (rain, snow), dry particle deposition, and via vapor exchange across the air­

water interface (Gregor, 1991; Erickson, 1986). 

Other sources of organochlorine contamination to the oceans include direct 

industrial discharge, such as the production and subsequent release of dioxins in the paper 

and pulp mill bleaching process, run-off from dump sites, river transport (Erickson, 

1986), incineration disposal methods (Connell and Miller, 1984), and as a result of 

rupturing of sealed shells which contain generators or other machinery containing PCBs 

(Tanabe, 1988). Municipal waste incinerators produce dioxins including the extremely 

toxic 2,3,7 ,8-tetrachloro-p-dibenzodioxin and other semi-volatile organics such as 
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hexachlorobenzene (HCB) as the result of "incomplete combustion" (Compaan, 1988). 

In the international North Sea incineration area, incinerator ships at sea combusted 

organochlorine wastes from 1979 until 1991, with totals of over 100,000 toones 

incinerated per year. Combustion residues including hydrochloric acid gases were 

released unfiltered into the atmosphere, and are likely to at least partially account for the 

residues of PCBs, pentachlorobenzene, octachlorostyrene, several HCH isomers, HCB 

and DDTs found in marine organisms in the vicinity of this incineration area (Dethlefsen 

et al., 1996). 

The pathway from the atmosphere to the food chain is not a lengthy one. 

Organochlorines are retained in the ocean in particulate (macroparticle), colloidal 

(nonsettling microparticle) and dissolved forms (Iwata et al., 1993). Due to their 

physicochemical properties as evidenced by their large octanoUwater partition coefficients 

and lipophilicity, they tend to partition onto lipidic suspended solids, such as plankton 

(Formica et al., 1988; Tatsukawa and Tanabe, 1990). This allows for the direct uptake 

of organochlorines into lower order consumers, where they preferentially bind to fatty 

tissues, fat depots, or free lipids (Gagnon et al., 1990). In this manner, and dependent 

on an organism's ability to metabolically degrade or depurate these xenobiotics, they 

progressively accumulate and can biomagnify up the food chain. In a study of the 

bioaccumulative process, Tatsukawa and Tanabe (1990) demonstrated the amplification 

of PCBs, DDTs and HCHs in a successive food chain. From ambient seawater up to 

striped dolphin, they found bioconcentration factors of 10' for zooplankton, 10' for 

myctophid fish (Diaphus suborbitalis) and squid (Todarodes pacijicus), and 10' for 
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Table 2. Concentrations and Bioaccumulation Factors of PCBs, l;DDT, and l;HCH in 
Organisms from the Western North Pacific. Tatsukawa and Tanabe, 1990. 

PCBs l:DDT 
Concentration· 

Surface seawater (ng lIIer-') 0.04-0.59 (0.28) 0.006-0.48 (0.14) 
Zooplankton (ng g-') (mainly copepods) 1.8 1.7 
Myctophld (ng g-') (Dlaphus suborbltalls) 48 43 
Squid (ng g-') (Todarodes paclficus) 35-95 (68) . 16-28 (22) 
Striped dolphin (ng g-') (S/enella coeruleoalba) 2800-41 00 (3700) 4200-6000 (5200) 

Bloconcentratlon factor 
Zooplankton 6.4 x 10' 1.2 x 10' 
Myctophld 1.7 x 10· 3.1 X 10' 
Squid 2.4 x 10. 1.6 X 10' 
Striped dolphin 1.3 x 107 3.7 X 107 

12 

l:HCH 

0.52-8.2 (2.1) 
0.26 
2.2 

0.93-1.5 (1.1) 
48-89 (n) 

1.2 X 10' 
1.0 x 10' 
5,2 x 10' 
3.7 x 10' 



striped dolphin (see Table 2). In a similar study on PCBs, a bioconcentration factor of 

nearly 10' was found from Lake Ontario water up the food chain to herring gulls (Larus 

argentarus) (Erickson, 1986). The result of the long-range atmospheric transport, 

physical stability, and bioaccumulative propensity of chlorinated compounds is seen in 

the present occurrence of these compounds in every compartment of the marine and 

terrestrial environment investigated (Atlas et aJ., 1986; Tanabe and Tatsukawa, 1986). 

Since first discovered to be widely dispersed, PCBs have been measured in air, ice, 

seawater, and marine mammals in the Antarctic (Tanabe et al., 1983; Iwata et al., 1993), 

in air, snow, ice, water, birds, fish, marine flora, and marine mammals in the Arctic 

(Muir et al., I 988a; Gregor, 1991; Norstrom and Muir, 1994). Persistent 

organochlorines are found in every sea (Tatsukawa and Tanabe, 1986), and in virtually 

every terrestrial and marine organism studied (Connell and Miller, 1984; Atlas et aJ., 

1986; Erickson, 1986; Muir et al .• 1988b; Zook and Rappe, 1994). (Man, of course, 

is not immune - all United States residents have measurable PCBs in their adipose tissue 

(Erickson, 1984». 

Studies of the levels of organochlorine loading in marine mammals have been 

continuing since the late 1960s. Marine mammals have been found to accumulate 

organochlorines so efficiently that they now are used as biomonitors to indicate the 

presence and geographical variation of PCBs and chlorinated pesticides (Tanabe et al., 

1983; Tanabe and Tatsukawa, 1986; Muir, 1990). Measurable and perhaps toxicologically 

significant levels of chlorinated hydrocarbon contaminants have been found, for instance, 

in white-beaked dolphins (Lagenorhynchus albirostris), narwhal (Monodon monoceros), 
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ringed seals (Phoca hispida) , harp seals (Phoca groenlandica) , northern fur seals 

(Callorhinus ursinus), walrus (Odobenus rosmarus) and polar bears (Ursus maritimus) 

from the Canadian Arctic and Newfoundland (Ronald et ai., 1984; Muir et 01., 1988a 

and b; Bacon et 01., 1992; Norstrom and Muir, 1994), beluga whales (Delphinapterus 

leucas) from the St. Lawrence seaway (Masse etal., 1986; Martineau et 01., 1994), long­

finned pilot whales (Globicephala melaena) from the NE Atlantic (Borrell et 01., 1995), 

California sea lions (Zalophus califomianus) (Bacon et 01., 1992), hatbour seals (Phoca 

vitu/ina) in the Wadden Sea and the United Kingdom (Reijnders, 1986; Hall et 01., 

1992), bottlenose dolphins from the South African east coast, United States east coast and 

west Wales (Cockcroft et 01., 1989; Kuehl et 01., 1991; Law et 01., 1995), striped 

dolphins in the Mediterranean (Aguilar and Borrell, 1994a), DaIl's porpoises 

(Phocoenoides dalli), Pacific white-sided dolphins (Lagenorhyncus obliquidens), striped 

dolphins, finless porpoises (Neophocoena phocoenoides), Baird's beaked whales 

(Berardius bairdii), melon-headed whales (Peponocephala electra), largha seals (Phoca 

largo), ribbon seals (Phoca !asciata) and northern fur seals from the north and west 

Pacific (Tanabe et 01., 1983, 1994; Kannan et 01., 1989), bottlenose and common 

dolphins (Delphinus del phis) from the California coast (Muir et 01., 1988) and killer 

whales (Orcinus orca) and bottlenose dolphins from Australia (Kemper et al., 1994). 

Several reasons exist for the high accumulative tendency in marine mammals. 

These animals tend to be comparatively long-lived, and therefore have the opportunity 

for significant accumulation. A large proportion of their bodies is lipidic, with blubber 

comprising about 43 % of the body mass in right whales, 40% in harbour porpoises, 18 % 
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in spinner (Stene/La Iongirostris) and common dolphins (Aguilar and Borrell, 1994a), 15-

20% in fin whales (Balaenoptera physalus) (Lockyer, 1976), and 20-30% in bottlenose 

dolphins (Law et al., 1995). Approximately 70% of total blubber weight is made up of 

neutral lipids, and as organochlorines are highly apolar, they dissolve in neutral lipids 

(Aguilar, 1987). The crux of the accumulation problem, however, lies in that marine 

mammals are quite inefficient when it comes to metabolizing xenobiotics. 

In animals exposed to chlorinated hydrocarbons, the metabolic response is 

dominated by the induction of hepatic and extrahepatic drug metabolizing enzymes (Safe 

et al. , 1985; De Voogt et al., 1990; Tanabe et aI., 1994). Lipophilic xenobiotics are 

eliminated in the liver by cytochrome P-450 mediated mixed-function oxidase (MFO) 

systems, which convert the xenobiotics to more water-soluble metabolites. Two types of 

inductive properties are characteristic of the MFO activities of xenobiotics: the 

phenobarbitol (PB) and the 3-methylcholanthrene (MC) type inducers. Marine mammals, 

notably cetaceans, have a low activity of 3-methylcholanthrene-type enzymes, and lack 

phenobarbitol-type enzymes necessary for depurating PCBs and chlorinated pesticides into 

excretable metabolites. Figure I from Tanabe et al., (1988) compares the PB- and MC­

type enzyme activities in higher animals, and illustrates the differences between 

terrestria1 and marine animals in metabolic functioning. Pinnipeds fare a little better, 

demonstrating some limited PB-type activity as well as low MC-type activity, but remain, 

along with cetaceans, in a vulnerable position in regards to both the toxicity and the 

accumulative nature of these xenobiotics in comparison with terrestrial mammals (KaMan 

et aI., 1989). 
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Figure 1, PB (phenobarb~ol)- and Me (methylcholanthrene)-type enzyme activities in 
higher animals estimated by Metabolic Index of 2.2' ,5.5' - and 2.3' .4.4'-tetrachlorobiphenyl 
isomers. Tanabe et al .. 1988. 

The toxicity of the chlorinated hydrocarbons, especially of TCDD and 

structurally-related PCB congeners, lies in the induction of the cytochrome P-450lAI and 

A2 hemoproteins and their associated microsomal monooxygenases, which include aryl 

hydrocarbon hydroxylase (AHH) and 7-ethoxyresorufm O-deethylase (BROD); and the 

binding of the cytosolic aryJhydrocarbon (Ab) receptor (Safe et al., 1985; De Voogt et 

al., 1990; Safe, 1990). This activity elicits a host of biochemical responses including, 

in brief, the modulation of steroid-metabolizing enzymes, aldehyde dehydrogenase 

induction, decreased estrogen and progesterone receptor binding, modulation of thyroid 

honnone levels and function, and decreased glucocorticoid receptor binding (Safe, 1990). 
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Translated to common toxic responses, this elicits body mass loss, thymic atrophy, gross 

impairment of immune responses, hepatotoxicity and porphyria, endocrine dysfunction, 

chloracne and related dermal lesions, carcinogenesis, teratogenicity, and reproductive 

toxicity (Safe, 1990). Tryphonas (1994) emphasized the mounting evidence that the 

immune system is one of the most sensitive targets for the toxic effects of PCBs. The 

affected parameters include bone marrow cellularity and hematologic changes, thymic and 

splenic atrophy which correlates with humoral or cell-mediated immunosuppression, 

reduced resistance to microbial infection, and compromised immune surveillance 

mechanisms against cancer. The enzyme systems in question are also known to modify 

some of the contaminants into toxic intermediates that can further disturb the critical 

balance of endobiotics like steroid hormones (Tanabe et al., 1994), in some cases 

producing metabolites that are more toxic than the parent compound (Erickson, 1986, 

Norstrom and Muir, 1994). 

Accidental poisoning incidents have illustrated the toxicity of the PCBs and the 

dioxins to humans. In the ·Yusho· incident in Japan in 1968, and the ·Yu-chen" in 

Taiwan in 1979, cooking oil contaminated with PCBs, PCDFs and polychlorinated 

quaterphenyls affected the health of over 4,000 people. In adults, this resulted in severe 

chloracne, hyperkeratinosis, and abnormalities in hepatic and nervous system function 

(Seegal, 1996; Tilson and Kodavanti, 1997). In the children exposed in utero, multiple 

developmental abnormalities included low birth weight, motor dysfunction, behavioral 

and neurological dysfunctions, and lowered intelligence scores (Miller, 1985; Seegal, 

1996). Also noted were skull deformities in the form of unusual calcification, wide 
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separation of the sagittal suture, and large and open fontenelles, thought to be a result of 

disturbance in calcium metabolism (Miller, 1985). 

Research on humans with "ambient" levels of exposure to xenobiotics has 

demonstrated that humans are being impacted by the loads we currently carry. In adults 

this includes reduced testosterone levels, increased incidence of diabetes through altered 

glucose tolerance (DeVito et al., 1995), neurochemical changes such as decreased brain 

neurotransmitter levels including dopamine, acetylcholine and y -amniobutyric acid 

(Seegal, 19%; Tilson and Kodavanti, 1997), and increased risk for non-Hodgkin' s 

lymphoma (Hardell et al., 1996£1) and leukemia (Hardell et al., 1996b). Developmental 

exposure affects neurological development and impairs cognitive function (Tilson and 

Kodavanti, 1997). Colborn et al. (1993) estimated from current breast milk 

concentrations nationwide that at least 5 % of the babies born in the United States were 

exposed to quantities of PCBs sufficient to cause neurological effects. 

The estrogenic effects of chlorinated compounds are receiving a lot of current 

attention as evidence of their ability to disrupt endocrine functioning builds. Table 3 

from Colborn, et al., (1993) lists wide-spread chemicals reported to have reproductive 

and endocrine effects. These compounds bind to and interfere with the cellular receptor 

proteins that mediate the effects of endogenous steroid hormones, and can act as either 

hormone agonists or antagonists (Colborn et al. , 1993; Goldberg, 1995). The major 

effects seen in endocrine disruption appear to be developmental in nature, occurring 

during gestation and organogenesis when the development of many tissues is regulated 

by the endogenous steroid hormones of the mother. 
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TABLE 3 

Chemicals with widespread distribution in the environment reported to have 
reproductive and endocrine-disrupting effects. From Colborn e/ aI., 1993. 

Herbicjdes 

2,4-0 
2,4,5-T 
Alachlor 
Amitrole 
Azatrine 
Metnbuzin 
Nitroten 
Trilluralin 

Nematocides 

Aldicarb 
DBCP 

Bjocides 

Fyngicides 
Benomyl 
Hexachkwobenzene 
Mancozeb 
Maneb 
Metlram-complex 
T ributyftin 
Zineb 
Ziram 

Insecticides 

(}-HCH 
Carbaryl 
Chlordane 
Dicofol 
Dieldrin 
DDT and metabolites 
EndosuWan 
Heptachlor + H-epoxide 
Lindane (y-HCH) 
Methomyl 
Methoxychlor 
Mirex 
Oxychlordane 
Parathion 
Synthetic pyrethroids 
Toxaphene 
T ransnonachlor 

Industrial Chemicals 

Cadmium 
Dioxin (2,3,7,8-TCDD) 
Lead 
Mercury 
PBBs 
PCBs 
Pentachlorophenol (PC?): 
Penta- to nonylphenols 
Phthalates 
Styrenes 

The specific endocrine activity exerted by these compounds can vary widely even 

within the same family of compounds. One of the earliest compounds to be associated 

with endocrine disruption, DDT, has several modes of action. One of its forms, o,p'-

DDT, has been shown to be an estrogen agonist, while the persistent metabolite p, p' -

DDE is a powerful androgen antagonist and is now implicated in the increased incidence 

of developmental male reproductive system abnormalities in both wildlife and in humans 

(Colborn et al. , 1993; Kelce et aI., 1995). A number of the chlorinated chemicals can 

act as estrogen mimics, and this action is implicated in the etiology of human male 

prostate hyperplasia, prostate cancer, reduced sperm counts and motility, endometriosis 

in women, reduced fertility, and cancers of all estrogen-responsive tissues in women 

(Colborn et al., 1993; Cummings and Metcalf, 1995). Chlorinated compounds have been 
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associated with abnormal thyroid function in fish and in birds; decreasing fertility in 

birds, fish and mammals; decreased hatching success in birds, fish and turtles; 

demasculinization and feminization of male fish, and defeminization and masculinization 

of female fish, gastropods and birds; precocious sexual maturation in male salmon; 

greatly reduced birth rate and penis size in alligators; and delayed male puberty (Colborn 

et al., 1993; Kelce et al., 1995). 

Endocrine disruption as evidenced by reproductive dysfunction, along with 

immunological incompetence are the two main types of xenobiotic impact seen in marine 

mammals (Reijnders, 1994). These mechanisms are widely thought to be responsible for 

the large scale mortalities of dolphins, reductions in population size, and epizootics that 

have occurred in marine mammal populations in the past decade. Chlorinated 

hydrocarbons, PCBs in particular, have been implicated in premature births seen in 

California sea lions (DeLong et al., 1973), reduced testosterone levels in Dall' s porpoises 

in the NW Pacific (Subramanian et al., 1987), reproductive failure in harbour seals in 

the Wadden Sea, with a concomitant population reduction from 3,000 individuals to less 

than 500 in two decades (Reijnders, 1986), and a strong decline in the population of 

harbour porpoises (Phocoena phocoena) in the coastal North Sea (Duinker et al., 1989). 

In the heavily polluted St. Lawrence Estuary, the population of beluga whales has 

declined from an estimated 5000 to about 450 individuals. PCB and DDT metabolite 

concentrations are high in these animals (Masse et al., 1986), and the incidence of a very 

high cancer rate in these belugas has been reported, along with a suite of other 

pathological disorders. Cancers are exceedingly rare in free-ranging odontocete 
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populations; however, the estimated crude annual incidence of cancer in this beluga 

population is higher than that for man (Martineau et al., 1994). 

Reijnders (1994) reports that certain immunological and reproductive disorders in 

marine mammals can be linked to tissue concentrations of certain chlorobiphenyls and 

their metabolites, including lowered immunocompetence (impaired T-cell and natural 

killer (NK) activity) in harbour seals, uterine stenosis and occlusions in Baltic Sea ringed 

seals (Pusa hispida) and grey seals (Halichoerus grypus), adrenocortical hyperplasia, 

renal glomerulopathy, and lesions in the intestine, kidneys and adrenal glands. The 

incidence of primary lesions in the endocrine system and suspected disturbances in the 

developmental processes were reported in 70-90% of the Baltic ringed and grey seals 

investigated by Zakharov and Yablokov (1990), together with skull-bone lesions 

(osteoporosis), skull lesions (exotosis) in Baltic harbour seals, and skull lesions in harbour 

seals from the German Wadden Sea. These authors, in comparing pre-1940 skulls (pre­

pollution era), and post-1960 skulls (most significant pollution era), attribute the high 

degree of developmental instability directly to contaminant levels, principally DDT and 

PCBs. 

The data from recent large scale mortalities of marine mammals is supportive of 

some degree of immunoincompetence in marine mammal populations. From June 1987 

to May 1988, 742 Atlantic bottlenose dolphins washed ashore along the Atlantic coast of 

the United States. As probably only a fraction of the total dead carcasses washed onto 

land, it is estimated that over 8,500 deaths occurred, or roughly 60% of the migratory 

mid-Atlantic dolphin population (Scott et al., 1988). A possible proximate cause of death 
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for these dolphins had been suggested as brevetoxin, a neurotoxin produced by the 

Florida red tide phytoplankton Gynuwdinium breve (Geraci, 1989). However, an EPA 

study of the stranded animals found very high concentrations of organochlorines which 

are believed to have been, if not the primary cause of the deaths through immunotoxicity, 

then an additional stressor (Geraci, 1989; Kuehl et al., 1991). Indications that the 

dolphins had seriously compromised immune systems came early in the strandings when 

the dolphins were diagnosed with "dolphin pox", a breakdown and sloughing of the skin 

allowing infection of vibrio bacteria that the immune system mysteriously was not able 

to handle (Segars, 1987). Later testing showed that about 50% of the dolphins analyzed 

had morbillivirus antigens in their tissues (Duignan et al., 1996). The EPA study also 

found that these dolphins were significantly contaminated with numerous other 

compounds including polybrominated biphenyls and diphenyJ ethers, never previously 

detected in stranded marine mammals in the United States, as well as yet unidentified 

polybrominated and polychlorinated compounds (Kuehl et aI., 1991). 

The actual stranding count in the large scale mortality of 344 bottlenose dolphins 

washed ashore in the Gulf of Mexico in 1990 was considered low, as reporting and 

salvage efforts vary considerably along the Gulf coastline (Hansen, 1992). No proximate 

cause has been determined for this incident, however, Duignan et al. (1996) have 

reported that this event was attributable at least in part to morbillivirus. Chlorinated 

pesticide and PCB analysis revealed high concentrations similar to those found in the 

1987-88 Atlantic coast mortality event (Salata et aI., 1995). 

During 1988 approximately 20,000 harbour seals in the North Sea died from an 
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epizootic caused by a previously unrecognized member of the morbilJivirus family, 

phocine distemper virus (Hall et aI., 1992; de Swart et ai., 1996). Chlorinated 

hydrocarbon analyses found significantly higher levels of all organochlorine contaminants 

in the stranded seals than in healthy seals from the same region sampled after the 

epizootic had run its course. It was concluded that while not the proximal cause of the 

large scale mortality, immunosuppression had contributed to the scale of the mortality. 

It was noted as well that these high levels were found in the blubber despite the poor 

nutritive state and subsequent mobilization of the blubber (and presumably a portion of 

the organochlorine load) by the affected animals (Hall et aI., 1992). This epizootic also 

reached the Swedish west coast and the Baltic Sea, causing the mortality of approximately 

60% of the harbour seals there (Olsson et ai., 1994). 

In the Mediterranean Sea during 1990 and 1991, an epizootic affected the striped 

dolphin population causing the deaths of the 700 dolphins who washed ashore in Spain, 

France and Northern Italy. The actual mortality is thought to be significantly higher, as 

no stranding information was forthcoming from northern Africa, also affected, and the 

fact that this species is an offshore dolphin, reaching its highest densities far from the 

coast. A secondary event occurred in 1991-1992, affecting southern Italy, Sicily, Greece, 

and Turkey, again producing substantial mortality. The proximal cause of death in both 

events was the (then) newly identified dolphin morbillivirus. A number of unusual 

pathological and physiological conditions were seen in conjunction with this epizootic 

including many individuals with hepatic lesions and ectoparasite loading. The PCB 

concentrations found in these dolphins were extremely high, and among the highest ever 
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found in wild mammals, leading researchers to conclude that these pollutants played a 

role in immune suppression (Kannan et al., 1993; Guitart et al., 1996). Aguilar and 

Borrell (1994a) found that concentrations of PCBs obtained from healthy individuals 

before and after the epizootic were significantly lower than those stranded during the 

epizootic, strongly suggestive that mortality due to morbillivirus affected mainly those 

individuals with higher PCB loads. These results were confirmed by Marsili et al., 

(1997), who found significantly higher levels of all xenobiotic compounds in tissues from 

striped dolphins that stranded in 1990 and 1991 than in the tissues from animals stranded 

prior to 1990. Since this epizootic, morbillivirus has increasingly been seen in large scale 

mortalities of both seals and dolphins, as well as in individual animals stranded, including 

both coasts of Florida and the Gulf of Mexico. 

The process and mechanisms of the uptake and accumulation of chlorinated 

compounds by marine mammals is now known to vary not only between orders and 

species of animals, but between genders and age groups within the same species. In 

cetaceans as in pinnipeds, it has been established that the concentration of organochlorines 

increases with age in males while in females it increases until the time of sexual maturity 

(Martineau et al., 1987; Tanabe, 1988; Muir et al., 1990; Aguilar and Borrell, 1994a; 

Vedder, 1996). The transfer of organochlorines during gestation and lactation results in 

either stable or declining trends in concentration with age in females until senescence or 

death (Aguilar, 1987; Tanabe, 1988; Cockroft et al., 1989; Borrell et al., 1995). 

Whether or not females have a significant post-reproductive stage in their life history 

appears species-specific. This has been reported, along with a concomitant rise in post-
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reproductive organochlorine concentration in Dall's porpoises and in short-finned pilot 

whales (GlobicephaJa macrorhyncus), but has not as yet been reported for other species, 

and is not believed to be the case for bottlenose dolphin, although interreproductive 

interval may increase in older females (Cockroft et ai., 1989; R.S. Wells, pers. comm.). 

Parturient female dolphins generally show decreased levels of organochlorines relative to 

non-parturient (immature) females. The significance, however, of the translocation of 

contaminants for parturient females will logically be proportional to the number 

parturitions and subsequent weanings, and may therefore be highly variable even between 

females of the same age (Aguilar, 1988). An infertile female may continue to accumulate 

organochlorines in the same manner as males, as seen in reproductively impaired Baltic 

grey seals (Olsson et al., 1994). 

The estimates of gestational and lactational transfer of organochlorines from the 

mother to the calf range between 72% and 98% of the mother's burden (Aguilar, 1987; 

Tanabe, 1988). For bottlenose dolphins, it is estimated that about 80% of the maternal 

body load is transferred by the end of the flTst complete reproductive cycle (Cockroft et 

al., 1989). Gestational transfer is not as important as lactational transfer in this process. 

Estimates with striped dolphins indicate that 4 % to 9 % of their organochlorine load is 

transferred during gestation, the remainder (60% to 90%) during lactation (Aguilar, 

1988). The lipid content of cetacean milk is considered to as high as 30% in most 

species (Tanabe, 1988), contributing to this high transfer rate which is rarely seen in 

terrestrial mammals. 

The first-born calf of a female has been estimated to receive a four-fold higher 
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initial burden of organochlorines than subsequent calves (Fukushima and Kawai, reported 

in Cockroft et oJ., 1989). This implies that any potential toxicological effect from the 

gestational and lactational transfer would be expected to occur, or occur more severely, 

in the first born calf of a female rather than in subsequent calves. The magnitude of this 

loading, especially in a first-born calf, may be sufficient to cause significant impairment 

considering that much of it comes in the late pre-natal and early post-natal stages when 

important physiological development is occurring as well as the development of the 

immune system (Aguilar and Borrell, 19940). It is possible that this is being 

demonstrated within the Sarasota Bay dolphin community as only one first born calf is 

known to have survived beyond (mother-calt) separation in the past 15 years (R.S. Wells, 

pers. comm.). 

Some variation in the transfer of compounds during gestation and lactation is 

apparent in the forms and amounts of compounds readily transferred. During pregnancy 

and lactation, the most easily transferred organochlorines are HCH and HCB 

(hexachlorobenzene), followed by DDTs and then PCBs. Generally, the higher the 

lipophilia, the lower the transfer rate. In the case of PCBs, the transfer seems to be 

inversely proportional to the number of chlorine atoms substituted on the biphenyl ring 

(Aguilar, 1988). High molecular weight chemicals, and the more highly chlorinated, 

more lipid-soluble PCB congeners appear to pass less readily through the placental 

membranes, and are transferred less efficiently from blubber to the circulatory system and 

from there to milk. Marine mammals tend to be enriched with the more highly 

chlorinated of the PCBs, suggesting that reproductive transfer of PCBs may be lower 
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than, for example, that of DDT (Aguilar and Borrell, 1994a). 

Another potential source of variation in the concentration of chlorinated 

compounds in cetaceans are the nutritional parameters, specifically, the possible 

mobilization of fat reserves during periods of low food availability, migration, or a 

lengthy illness. As fat reserves are mobilized, two processes are possible: either the 

contaminants leave the blubber in a parallel fashion to the lipids to which they were 

bound, or the contaminants do not leave, remaining in and concentrating further as the 

lipids are mobilized. Aguilar (1985) suggests that a combination of these two processes 

is most probable, with the concentration of contaminants in the blubber rising while some 

loss is experienced from this compartment to others in the mammal. Some evidence 

exists, however, supporting the theory of the mobilization of contaminants along with 

the associated lipids. Comparisons of organochlorine levels in both healthy and non­

healthy harbour porpoises, bears out the contaminant mobilization theory, apparently 

being the more important of the two mechanisms, at least in harbor porpoises (Kuiken 

et al., 1994). This is supported by nutritional and metabolic studies with a marked 

increase in the metabolism and excretion of lipophilic chemicals during experimental and 

seasonal starvation in animals due to the reduction in the mass of fat tissue (Dorea et at. , 

1997). 

The selection of the compartment, or tissue, for analysis can have a great bearing 

on the resulting concentrations found. In studies of organochlorine concentrations in 

marine mammals, the compartment most widely studied is the blubber, for several 

reasons. Ease of collection, from stranded animals as well as from live animals through 
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dart biopsy, and suitability for long-tenn storage are certainly important factors (Aguilar 

and Borrell, 1994b). More important, though, is the composition of the tissue. The lipid 

content in marine mammal blubber is relatively high, accounting for approximately 70% 

of wet blubber weight in bottlenose dolphins (Aguilar, 1987), and is complexed with 

connective tissue. The accumulation and bioconcentration of chlorinated compounds, 

however, correlates not only with the lipid content, but also with the lipid composition 

of the tissue. Neutral and more non-polar compounds such as PCBs and DOTs have 

been shown to selectively accumulate more in triglycerides and non-esterified fatty acids 

(NEFA) than in the more polar lipids such as phospholipids and cholesterol (Kawai et 01. , 

1988). In blubber and in the melon, triglycerldes comprise almost 100% of the tissue 

lipid, whereas other compartments such as the brain and blood are comprised of 90% and 

80% phospholipids, respectively (Kawai et 01., 1988). Compartments such as the latter 

are more likely to retain the more polar compounds such as ()C -HeH and the lower 

chlorinated of the PCBs (Aguilar and Borrell, 1994b). Indeed, several researchers have 

been unable to correlate blood concentrations with blubber or adipose tissue 

concentrations (Ronald et aI., 1984; Archibeque-Engle et 01., 1997). The liver, on the 

other hand, while being comprised primarily of phospholipids and NEFA (approximately 

50% and 40% of lipids, respectively), is the main center for degradation of xenobiotics, 

and has the highest concentration of enzymes involved in metabolism, and of the 

metabolized forms of the organochlorines, of any of the tissues (Kawai et al., 1988; 

Aguilar and Borrell, 1994b). As has been discussed, blubber concentrations depend to 

a certain degree on the nutritional state of the animal. The melon, on the other hand, 
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appears to be conserved by the animal, and is not readily mobilized, even in times of 

starvation. This tissue is thought to be of quite some importance to the animal, aiding 

in sound transmission, concentration and directionality (Aguilar, 1985), perhaps 

explaining the conservation of this tissue. As a tissue with little mobilization and very 

high triglyceride composition, melon tissue, if available for analysis, is an ideal tissue for 

an accurate comprehension of the organochlorine environment within the animal. 

Throughout the 1970s and early 1980s, the principal method of analysis for PCBs 

in environmental samples involved comparison of the sample to a commercial PCB 

formulation, for instance, one of the Aroclo~ formulations in the United States, or a 

blend of Aroclors* (Eganhouse and Gossett, 1991). Each PCB congener, however, has 

slightly different physical and chemical properties. Due to dispersal through the 

environment, weathering, biological uptake and preferential metabolism, the composition 

of the environmental samples differed significantly from the compositions of the 

commercial mixtures, and led to serious under- or overestimation of the concentrations 

(Duinker et al., 1988a; Jones, 1988). The development of high resolution gas 

chromatography in combination with electron capture detection (GC-ECD) techniques 

enabled the distinction and quantification of the individual congeners in PCBs (Mullin et 

al., 1984; Duinker et al. , 1988a). 

The toxic nature of PCB mixtures is associated primarily with certain specific 

congeners and their individual molecular configurations (Safe et al., 1985). Of the 209 

possible isomers and congeners in PCBs, 20 can attain a planar, or coplanar configuration 

due to a lack of onho substitution in the biphenyl rings (Safe, 1984; Tanabe et aI. , 
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1987; Zook and Rappe, 1994). (Fig. 2). The non-onho configuration allows for free 

rotation around the central phenyl-phenyl bond and the planar configuration (De Voogt 

et at., 1990). Non-onho PCBs which are substituted in both para positions and at least 

two meta positions are approximate isostereomers of the highly toxic 2,3,7,8-

tetrachlorodibenzo-p-dioxin (T.CDD), the most toxic synthetic compound ever tested in 

a laboratory (Eisler, 1986; Safe, 1990). These are the most biochemically active as well 

as the most toxic of the PCB congeners (De Voogt et al., 1990). The toxicity of these 

congeners lie in their induction of the drug-metabolizing enzyme systems, the cytochrome 

P-450 system, their induction of AHH/EROD, and their binding affinity to the cytosolic 

Ah receptor (Safe, 1984). The introduction of one onho-substituent in the biphenyl ring 

(mono-onho coplanar) results in decreased coplanarity between the two rings due to steric 

interactions, but although this diminishes the binding affinities and decreases 

AHH/EROD, it does not eliminate them. Two onho-substituents (di-onho coplanars) 

introduce more sterlc interaction, but some of these congeners are potent inducers as well 

(Safe et al. , 1985; De Voogt et at., 1990). 

As a result of the large expenditure of time and monetary resources necessary to 

analyze all congeners in environmental samples, many researchers and some national and 

international agencies (e. g. the International Council for the Exploration of the Sea 

(ICES), and World Health Organization (WHO» now advocate the selection of a set of 

congeners for analysis (Tanabe el at. , 1987; Duinker et at., 19880 and b, 1989; Jones, 

1988). Depending upon the environmental compartment to be analyzed, criteria for the 

selection may include the distribution of congeners between various matrices, contribution 
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to environmental samples, volatility, persistence in one compartment, or toxicity, among 

others. Ec~logically, it has been suggested that toxicity may be the more significant 

criteria in environmental samples and has been advocated as the criterion to be adopted 

in the future (Duinker et al., 1988b). Recently, the WHO-European Center for 

Environment and Health and the International Programme on Chemical Safety selected 

14 of the toxic coplanars as a subset in establishing internationally agreed upon toxic 

equivalency factors for PCBs (Hiihnerfuss et al., 1995). This recommendation has been 

followed in the present study. The congener set examined is composed of the toxic non­

ortha, mono-ortho, and di-ortha inducers (#19 congeners), and 1 congener (IUPAC #153) 

included for its prevalence in all environmental compartments. The toxic coplanars 

studied are as follows in IUPAC #'s: non-ortha: /tn, #81, #126, and #169; mono-ortha: 

#105, #114, #118, #123, #156, #157, #167, #189; di-ortho inducers: #101, #128, 

#138, #158, #166, #170, #180. This congener set is the same as adopted by WHO, with 

the addition of one mono-ortha congener, #189, and three di-ortha congeners, #128, 

#158, and #166. Congener #189 is an AHH inducer, and the three di-orthos have 

demonstrated mixed-induction activity (De Voogt et al., 1990). 

The manner of the reporting, or expressing, of organochlorine concentrations is 

still being debated in the literature. The use of fresh weight, or "wet weight" basis, dry 

weight, or a lipid weight basis have all been criticized on many occasions as these all 

have both advantages and disadvantages (Aguilar, 1987; Guitart et al., 1996). Most 

commonly, the concentrations of chlorinated hydrocarbons in animal tissue have been 

reported in terms of the concentration in the fresh weight of the piece of tissue analyzed 
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(wet weight basis). Aguilar (1985) considers this method of expression to be inadequate 

in the analysis of marine mammal tissues for establishing comparisons between different 

organs in the same individual, different individuals in a population, or different species, 

and advocates the reporting be done on lipid basis - pollutant level/unit/weight of lipids. 

The rationale for this approach is that the most widely sampled tissue in marine 

mammals, the blubber, is neither homogeneous nor constant, and subject to physiological 

and environmental factors exist that can affect the lipid composition, and so the 

organochlorine content in this tissue. This lack of homogeneity in the tissue is, however, 

more marked in the larger cetaceans, while smaller cetaceans such as dolphins show much 

greater homogeneity (Granby and Kinze, 1991; Davis, 1993). When expressing 

concentrations on the basis of lipid weight, the great magnitude in difference between the 

concentrations in blubber and in other tissues disappears, and in fact come close to a 

proportion of 1: 1, useful if comparisons are to be made between many tissues of an 

animal (Aguilar, 1985). Another cause for criticism, however, is the fact that quantity 

of lipid extracted is dependent upon the type of solvent(s) used, which moreover can vary 

from study to study (Guitart et at., 1996). Recognizing the validity of Aguilar's 

argument while bearing in mind the advantage of comparison with studies that have 

expressed concentration as wet weight, the concentrations in this study have been reported 

on both a wet weight and a lipid weight basis. 
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2.0 METHODS AND MATERIALS 

2.1 Sample Acquisition and Storage 

The samples used in this study were collected during necropsies performed on 

dolphins that stranded and were recovered by the Mote Marine Laboratory Marine 

Mammal Stranding Program in conjunction with the Southeast U.S. Marine Mammal 

Stranding Network. The blubber and melon tissues sampled for organic analysis were 

stored frozen in aluminum foil at -20· C until thawing prior to weighing and extraction. 

Tissue samples of blubber from 20 dolphins and melon samples from 17 of these dolphins 

were selected for analysis based on their identification as locally resident dolphins of 

known histories, as provided by. the Dolphin Biology Research Institute (DBRI). A 

stranding code of 1, 2 or 3 was required to ensure reliable samples (l = Live animals, 

2=Carcass in good condition-fresh/edible, 3=Fair-decomposed but organs basically 

intact, 4 = Poor-advanced decomposition, 5 = Mummified or skeletal remains) (Geraci and 

Lounsbury, 1993). Table 4 (pg.43) contains descriptions of the dolphins analyzed in this 

study, along with stranding codes and necropsy findings. 

2.2 Extraction Procedures 

Approximately 1 g of tissue was cut from the centers of the thawed samples with 

a pre-cleaned and solvent-rinsed stainless steel scalpel, and weighed. When possible, 

blubber samples included the entire blubber layer from skin to muscle to avoid possible 

bias in blubber composition (Aguilar and Borrell, 1991). The exact sample weight was 
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recorded, and the sample placed in a solvent-rinsed 250 ml beaker. A recovery 

surrogate, DBOB (4,4'- dibromooctafluorobiphenyl) was added to each sample as an 

internal standard, along with matrix spikes in 10% of the samples. Approximately 25 g 

of solvent-cleaned anhydrous sodium sulfate was added to remove water and facilitate 

grinding. Dichloromethane was then added (approximately 100 m1), and the sample 

macerated for 3 min using a Tekmar Tissuemise" (Tekmar Co., Cincinnati, OH) with 

a stainless steel probe. The extract was filtered via vacuum filtration into a solvent rinsed 

500 mI flask:. The sample residue was macerated 2 more times with an addition of 

dichloromethane each time, and the solvent extract again collected into the receiving 

flask. The extract volume was concentrated on a Buchl Rotovapo" (Brinkman 

Instruments Inc. , Westbury, NY), transferred with several dichloromethane rinses to a 

glass vial, and concentrated again to a 5 mI volume by gentle nitrogen stream 

evaporation. 

2.3 Lipid Weight Determination 

Gravimetric analysis was used to determine the lipid weight of each sample. 

A 1 mI aliquot of the sample extract was applied to a tared, solvent-rinsed 70 mm 

aluminum weigh pan on a Mettler® AE 163 analytical balance (Mettler Instrument Corp. , 

Hightstown, NJ). The dichloromethane was allowed to evaporate and the weight of the 

lipids recorded (Sherblom and Eganhouse, 1991). Every tenth sample was analyzed in 

triplicate to assess the analytical precision. The percent lipid weight was calculated using 

the original volume of the extract, the sample wet weight, and the measured lipid weight. 
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2.4 Clean-up of Lipids - Gel Permeation Chromatography 

Gel permeation chromatography was used to effect the separation of lipids from 

organochlorines through size-exclusion (Shan, et al., 1994; Salata, et al., 1995). An 

HPLC was modified to work in a low-pressure mode to deliver solvent through a column 

packed with Bio-Beads<» S-X3 (BioRad Laboratories, Hercules, CA), neutral, porous 

styrene divinylbenzene copolymer beads that are crosslinked to facilitate separations of 

low molecular weight organic polymers and other hydrophobic substances. The Bio­

Beads<» S-X3 were saturated in 50:50 dichloromethane:hexane overnight to swell the 

beads. Before the column was packed, the slurry was sonicated for approximately 20 min 

to degas the solvent. The slurry was packed under low pressure into a 10 x 500 mm 

Omni<» glass chromatographic column. The solvent was graduated to 75:25 

dichloromethane:hexane, and then to 100% dichloromethane. 

The 1 ml sample was diluted with 1 ml of dichloromethane and added to the 

column via a 2.5 ml sample loop. The solvent (100% dichloromethane) was passed 

through the column at 0.75 ml/min. An ISCO<» V' Absorbance Detector (ISCO Inc. , 

Lincoln, NE) was used to ascertain the elution time of the lipids and the organochlorines. 

The organochlorine fraction was collected in a solvent-rinsed 25 ml pear-shaped flask. 

This fraction was then concentrated on a Biichl Rotovapor<» at < 38 C to remove most of 

the dichloromethane, and transferred to a glass vial. This was evaporated to dryness 

under a gentle nitrogen stream and brought up in hexane to a final volume of I ml. 
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2.5 Separation of Compounds - Silica Gel Fractionation 

A glass chromatography column, 6 mm x 400 mm, was fitted with a hexane­

rinsed glass wool plug. Five g of silica (Merck@ silica gel, Aldrich Chemical Co., 

Milwaukee, WI, prepared as in "Solvents and Reagents") was weighed in an aluminum 

weigh boat and poured into the dry column while gently tapping the column. One 

centimeter of cleaned anhydrous sodium sulfate was added to the top of the column. The 

column was prewetted with 20 ml of hexane, and this eluent was discarded. The sample 

was then added to the column with a pipet, eluted with 40 ml of hexane, and collected 

as fraction 1. This fraction generally contained the PCBs, HCB, heptachlor, aldrin, 

DOE, and some DDT. The next fraction was eluted with 40 ml of 25:75 

dichloromethane:hexane, and optimally contained the HCH compounds, heptachlor 

epoxide, chlordane, some DOE, DDT and DOD. Fraction 3 was eluted with 40 ml of 

40:60 dichloromethane:hexane, and contained some endrin, dieldrin, and endrin aldehyde, 

as well as endosulfan sulfate. The above methodology followed Metcalfe, 1994. 

Fractions 1, 2 and 3 were individually concentrated on a RotovapGl and brought up in 

I ml of hexane to which the quantitation standard had been added. PCB #207 was 

chosen as the quantitation standard for this study as it is a "theoretical" PCB congener, 

not found in commercial mixtures or in the environment, and because it was found not 

to co-elute with other compounds in these samples. The fractions were then ready for 

analysis by injection into the gas chromatograph interfaced with an electron capture 

detector. 
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2.6 Apparatus and Materials 

2.6.1 Glassware: Glassware was cleaned by hot water wash with Micro" cleaning 

solution (International Products COIl'., Trenton, NJ), and then rinsed with tap water 

followed by deionized water. Glassware was then sequentially rinsed with wash acetone, 

followed by the solvent( s) used in the specific procedure. 

2.6.2 Solvents and Reagents: All solvents used in this study were Burdick and 

Jackson" High Pnrity grade (AlliedSignal Specialty Chemicals, Muskegon, MI), certified 

for use in pesticide analysis. Silica gel (Merck" 70-230 mesh, grade 7754), and sodium 

sulfate (Mallinckrodt" AR anhydrous, Mallinckrodt Inc., Paris, KY) underwent cleaning 

before use in these procedures. Each were washed sequentially, sonicated, and decanted 

with methanol for 10 min, dichloromethane for 5 min, dichloromethane for 10 min, 

hexane for 5 min, and hexane for 10 min, then placed on top of the drying oven for 2-3 

d loosely covered with foil, and stirred each day until the solvent had evaporated. The 

silica was then placed in an oven at 130· C for 24 h before use. The sodium sulfate was 

placed in the muffle furnace at 250· C for a minimum of 6 h. Both materials were then 

placed in the drying oven for storage. Before use, the silica and the sodium sulfate were 

placed in a desiccator to cool. 

2.6.3 Standards: All individual analyte standards were purchased from Accustandard 

Inc., (New Haven, CT), ULTRA Scientific (Kingstown, RI), and Supelco Inc. 

(Bellefonte, PA). 
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2.7 Instrumental Analysis 

Organochlorine analyses were performed using a Varian@6000 gas chromatograph 

(Varian Associates, Inc., Walnut Creek, CA) equipped with 6lNi electron capture detector 

and a 30 meter, 0.25 mm i.d., 0.25 /lm (film thickness) J&W DB5@ fused silica capillary 

column (J&W Scientific, Fulsom, CA) . The inlet was operated in a splitless mode with 

a purge delay of 0.75 min. 1.0 /ll of sample was injected via syringe. Helium was used 

as the carrier gas. The injector temperature was set at 275° C and the detector 

temperature at 325 ° C. The GC oven temperature program used was: initial temperature 

50°C for 1 min, 12° C/min to 175°C with a hold of 0.5 min, then 1.4°C/min to 226°C, 

and lOoC/min to 285°C with a 6 min hold, with a total run time of 60.23 min. 

2.7.1 Data acquisition and integration: Data acquisition, integration and 

quantification were performed using P.E. Nelson Model 2600 Multiple Instrument 

Chromatographic Software Rev. 5.2.0 operating on an IBM compatible PC. 

2.7.2 Compound quantification of PCBs and Chlorinated Pesticides: PCB 

congeners and pesticide compounds were identified and quantified using external 

congener standard mixtures. A full analyte list appears on page 42. Relative response 

factors were determined from serial analyses of each of 4 calibration standard 

concentrations to compensate for the nonlinear response of the electron-capture detector. 

Recoveries of the compounds were determined by comparison to the quantitation 

standard (PCB #207). A Varian@ Saturn II capillary gas chromatograph coupled with 
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ion trap mass spectrophotometer (GC-MS) was used to confIrm identifIcation of 

congeners. Limits of detection (LOD) were as listed: O'(XlI p.g1g for PCB congeners 

101,118,114,126,105,138,128,156,180,169,170, and pesticides ex-HCH, lindane, 

d-HCH, aldrin, y-chlordane, ex-chlordane, dieldrin, endrin, endosulfan II, endosulfan 

sulfate, o,p-DDE, and o,p-DDT. LOD of 0.002 p.g/g for PCB congeners 28, 52, 81, 

77, 123, 158, 166, 167, 157, 189, and pesticides b-HCH, heptachlor, heptachlor 

epoxide, endosulfan I, endrin aldehyde, p,p-DDE, and p,p-DDD. LOD of 0.004 p.g/g 

for PCB congener 153, and pesticides HCB, o,p-DDD, and p,p-DDT. 

2.7.3 Quality Assurance/Quality Control: A method blank, a sample triplicate, a 

reference standard and a matrix spike were each run for a minimum of 10% of samples. 

An instrument blank was run on the GC-ECD a minimum of once a day, and generally 

after every third run to verify non-contamination of the column. A minimum of 10% of 

samples were confIrmed by gas chromatograph-mass spectrophotometer (GC-MS). 

Qualitative results obtained by ECD were in agreement with those obtained by MS 

detection. Data for sample sets were considered acceptable if the recovery of the internal 

standard (recovery surrogate) was within 50-115%, and the coefficient of variation of the 

concentration of each analyte in the triplicated samples was less than 30%. Mean 

standard deviations in the triplicates were less than 10% (range 0.05-9.31 %). 

2.7.4 Data Analysis: All data analyses were performed with an mM~ compatible 

personal computer. The programs utilized for data management were Excel~ v. 4.0 and 

40 



Paradoxill v. 5.0. Statistics were performed using SigmaStat* v. 1.0 and graphing using 

SigmaPlot* v.I. 02. The data were not adjusted for recoveries. All statistical tests were 

performed at the 95 % confidence interval. Data were tested initially for normality and 

equal variance. When these tests were passed, Student's t-Test was used to test for 

differences between two groups, one-way ANOV A was used to test the differences 

between three or more groups, and linear regression was used to determine the 

significance of values of dependent variables to independent variables. Correlational 

analysis utilizing the Pearson Product Moment Test was conducted to test the strength of 

association between the values of two variables. As parametric tests are not reliable when 

used on non-normal populations, in the few cases where the data did not pass either the 

test for normality or equal variance, the Mann-Whitney Rank: Sum Test was used to test 

for differences between two groups, the Kruskal-Wallis ANOVA on Ranks was used to 

test the differences between three or more groups. Correlational analysis was tested non­

parametrically by the Spearman Rank Order test. Data analyses were performed using 

both wet weight and lipid weight values. The statistical results presented are based on 

the wet weight values. 
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2.8 ANALYTES 

PCB Congeners: IUPAC numbers 

Non-onho (planar): # 77 
81 

126 
169 

Mono-onho: 28 
105 
114 
118 
123 
156 
157 
167 
189 

Di-onho: 52 
101 
128 
138 
153 
158 
166 
170 
180 

... 

... 

... ... 

... ... 

... 

3,3' ,4,4' - tetrachlorobiphenyl 
3,4,4',5 - tetrachlorobiphenyl 
3,3' ,4,4',5 - pentachlorobiphenyl 
3,3' ,4,4' ,5,5' - hexachlorobiphenyl 

2,4,4' - trichlorobiphenyl 
2,3,3' ,4,4' - pentachloi"obiphenyl 
2,3,4,4',5 - pentachlorobiphenyl 
2,3' ,4,4',5 - pentachlorobiphenyl 
2' ,3,4,4',5 - pentachlorobiphenyl 
2,3,3' ,4,4',5 - hexachlorobiphenyl 
2,3,3' ,4,4' ,5' - hexachlorobiphenyl 
2,3' ,4,4' ,5,5' - hexachlorobiphenyl 
2,3,3' ,4,4' ,5,5' - heptachlorobiphenyl 

2,2' ,5,5' - tetrachlorobiphenyl 
2,2' ,4,5,5' - pentachlorobiphenyl 
2,2' ,3,3' ,4,4' - hexachlorobiphenyl 
2,2' ,3,4,4' ,5' - hexachlorobiphenyl 
2,2' ,4,4' ,5,5' - hexachlorobiphenyl 
2,3,3' ,4,4',6 - hexachlorobiphenyl 
2,3,4,4' ,5,6 - hexachlorobiphenyl 
2,2' ,3,3' ,4,4',5 - heptachlorobiphenyl 
2,2' ,3,4,4' ,5,5' - heptachlorobiphenyl 

... = The subset of 7 congeners used for study by the ICES 
(International Council for the Exploration of the Seas) 

Organochlorine Pesticides: 

Aldrin 
Dieldrin 
Endosulfan I, II and -sulfate 
Chlordane and metabolites 

Endrin 

heptachlor 
heptachlor epoxide 
alpha-chlordane 
gamma-chlordane 

Endrin aldehyde 
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DDT compounds 
2,4' & 4,4' DDE 
2,4' & 4,4' DDD 
2,4' & 4,4' DDT 

Hexachlorobenzene (HCB) 
Hexachlorocyclohexanes (HCH): 

alpha HCH 
beta HCH 
gamma HCH (lindane) 
delta HCH 



Tabla 4. Descriptions of Sarasota Bay Dolphins Used for Analysis: S8X, Ag8, Stranding Code and Necropsy Findings 

MML# DBRI# Sex Age Strand. Cause of death/comments 
Code 

9309 C07-2 F 3 wk sc 2/3 2nd calf, no diagnosis, stomach empty 
9224 C65-1 F 5.3mo sc 2 Discharge L. mammary; net entanglement possible 
9417 C75-4 F 6mo . Sc 2/3 Monofilament entanglement, shark bite, ematiated, respiratory failure, cardiac arrythmia 
9314 C33-3 F 1.25 sc 2 Monofilament entanglement, septicemic shock. stomach empty 
9118 FB21 F 3 sc 3 Small hemorrhages in ventral blubber - net entanglement suspected 
9221 FB103 F 4 sc 2 Emaciated, lung abcesses + bronchopneum. Brain; evid. of toxic metabolic disorders 
9225 FB37 F 9.5 sc 2 Paralysis secondary to stingray barb 
9115 FB31 F 11 sc 2 Stabbed in lung, heart, pregnant with yearling calf at side, lactating I 

9212 FB67 F 24 sc 3 Died during parturition - breech-type birth, ruptured uterus. Anthracosis found. 
9108 FB45 F 35 sc 3 Severe fatty liver, chronic mastitis, kidney involvement., ematlated, Hg toxicity suspected -9514 FB41 F 36 sc 2 Monofilament strangulation 
9625 FB57 F 44 sc 2 Shark foraged/anthracosis. Had 6 week old calf at side J 
9401 FB19 F 50 sc 2 Old age / septic shock suspected, anthracosis found 

9308 C17-3 M 3 mo. sc 2 Pneumonia, was nursing 
9621 C71-7 M 3 .5 mo sc 1/2 Enlarged liver, ematiated, + milk in intestine, 2nd stomach ulcerated 
9104 FB22 M 4 sc 2 Net entanglement suspected, rope marks found 
9215 FB50 M 4 sc 2 No acute diagnosis / Stress due to stranding secondary to sinus parasites + disorientation 
9226 FB52 M 9 sc 3 No acute diagnosis on necropsy 
9012 FB74 M 39 sc 3 Ruptured aorta 
9509 FB9S"G" M 42 sc 2 Old age assumed. No acute necropsy diagnosis 

"Young animals" for analysis of birth order Include calves less than 2 years old and are designated by a DBRI # of C* *- * . 
The last digit indicates the birth order. 

I I 
~ 

"Dependent calves" for analysis of post-weaning decline in DC levels includes all calves less than 5 years old. 

I 
- . ~ -~ -~- . I 
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3.0 RESULTS 

Seven male dolphins were included in this study and range in age from 3 months 

to 42 years old. The thirteen female dolphins in this study range in age from 3 weeks 

to 50 years old. Tables 5 and 6 at the end of this section summarize the data into major 

organochlorine groups in wet weight and lipid-normalized weight values, respectively, 

along with mean values and standard deviations. Raw data are presented in appendices 

A-D, again in wet weight and lipid-normalized weight concentrations. 

3.1 Data from Male Dolphins: 

A comparison of organochlorine content in male dolphin blubber as a function of 

age is given in Figure 3. These results show a significant correlation with PCB content 

with age (linear regression analysis p<O.04; r=0.75, n=7), and total DDTs (EDDT) 

(p=0.05; r=0.75). Total chlorinated pesticides (EPests) also appeared to increase with 

age, however the difference was not significant at the 95% confidence level (p=0.18; 

r=0.57). The concentrations of the major organochlorine groups in melon samples 

(n=6) also exhibited an increase with age, with a significant increase seen in EPCB 

(p < 0.04; r= 0.83). Although the mean value increased with age, the increases in melon 

EDDT and EPests were not statistically significant. Figure 4 illustrates the levels of 

melon organochlorines with age in the male dolphins. Individual PCB congeners and 

pesticides that either increased or decreased significantly with age are as follows: 
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Blubber increases: 

Melon increases: 

Melon decreases: 

PCBs: #126 (p<0.02; r=0.89) 
#IOS (p<O.OS; r=0.76) 
#138 (p<0.05; r=0.76) 
#IS8 (p<0.05; r=0.75) 
#153 (p<0.002; r=0.93) 

#166 (p<0.OO2; r=0.94) 
#128 (p<O.OOS; r=0.91) 
#157 (p<O.OOI; r=0.96) 
#189 (p<0.04; r=0.79) 

Pesticides: endrin (p<0.02; r=0.83) 
endrin aldehyde (p<0.02; r=0.84) 

PCBs: #IS3 (p<0.02; r=0.87) #170 (p<0.02; r=0.89) 
#167 (p<0.01; r=O.92) #189 (p<O.OS; r=0.82) 

PCBs: #101 (p<0.02; r=0.89) 

In male blubber samples, the congeners that significantly increased with age are 

as shown above. No significant decreases with age in PCB congener or pesticide 

concentration were found in male blubber. The melon PCB congeners that showed either 

an increase or decrease with age are shown above. No significant increase or decrease 

with age in any of the pesticides was evident in the melon. Tests to determine any 

relationship between the blubber levels and the melon levels in male dolphins of the 

major organochlorine groups were run using the Pearson Product Moment Correlation. 

No significant correlations were found between the blubber and the melon in 

concentrations of the EPCB, the EDDT or the EPests. 

3.2 Data from Female Dolphins: 

Female dolphins showed a significant decrease with age in one major 

organochlorine group, the concentration of EDDTs in melon (n= 11) (p=0.02; r=0.68), 
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utilizing linear regression. Although not statistically significant, declines in all 

organochlorine groups with age are noted and are illustrated in Figure 5 (organochlorine 

content in female blubber as a function of age ), and Figure 6 (organochlorine content 

in female melon as a function of age) . Specific PCB congener and pesticide 

concentrations that either increased or decreased significantly with age are as follows: 

Blubber decreases: Pesticides: endosulfan I (p<0.05; r=0.56) 

Melon decreases: PCBs: #126 (p<0.02; r=0.70) 

#138 (p=0.04; r=0.62) 

#157 (p<0.01; r=0.76) 

#170 (p<0.05; r=O.60) 
#189 (p<0.04; r=O.64) 

Pesticides: y-chlordane (p < 0.05; r=O.60) 

o,p -DDE (p<0.02; r=0.70) 

p,p -DDE (p=0.01; r=0.73) 

endrin (p=0.04; r=0.62) 

endosulfan sulfate (p<0.04; r=0.63) 

There was one pesticide that showed significant decrease with age in the blubber 

of the female dolphins, as shown above. No PCB congeners were found to Significantly 

decrease with age in the blubber of the female dolphins. In the melon samples, the PCB 

congeners and the pesticides that showed significant decreases with age are as shown 

above. There were no PCB congeners or pesticides found to increase significantly with 

age in either the blubber or the melon. Tests to determine any relationship between the 

blubber levels and the melon levels in female dolphins of the major organochlorine 

groups were run using the Pearson Product Moment Correlation. No significant 

correlations were found between the blubber and the melon in concentrations of the 
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EPCB, the EDDT or the EPests. 

To test for significant differences between the levels of organochlorines in pre­

parturient and post-parturient females, Student's t-Test (S-T) was applied. When the 

assumption of equal variance was not met, the Mann-Whitney Rank Sum Test (M-W) was 

used. The reproductive state of all females was known definitively from DBRI records. 

Significant differences in all organochlorine groups were found between the pre- and post­

parturient females, in both the blubber and the melon. For the blubber analyses, the 

number of individuals was: pre-parturient n =6 and post-parturient n = 7. Blubber EPCB 

differences by M-W were significant at p=0.02, medians 9593.7 ng/g pre-parturient, and 

2969.7 ng/g post-parturient. Blubber EDDT differences by S-T were significant at 

p<0.05, means 4432.5 ng/g pre-parturient and 1666.4 ng/g post-parturient. Blubber 

EPests differences by S-T were significant at p=O.04, means 9415.6 ng/g pre-parturient 

and 3316.8 ng/g post-parturient. For the melon analysis pre-parturient n=5 and post­

parturient n=6. Melon EPCB differences were significant by M-W at p<0.05, medians 

15325.1 nglg pre-parturient and 6933.9 ng/g post-parturient. Melon EDDT differences 

by M-W were significant at p=O.OO4, medians 7770.9 ng/g pre-parturient and 3526.8 

ng/g post-parturient. Melon EPests differences were significant by M-W at p<O.OO9, 

medians 16878.5 ng/g pre-parturient and 5275.4 ng/g post-parturient. 

3.3 Data by Age and Sex Class 

The two age classes of "immature" and "mature" animals were determined through 

the DBRI demographic database. For females, the immature age class was from 3 weeks 
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- 4 years old (n=6), and the mature age class from 9.5 years - 50 years old (n=7). For 

males, the immature age class was from 3 months - 9 years old (n=5) and mature age 

class 39 - 42 years old (n=2). 

Significant differences in organochlorine levels between age classes and between 

different genders in the same age classes were tested for by Student's t-Test (S-T). If the 

assumptions of normality or equal variance were not met, the Mann-Whitney Rank Sum 

Test (M-W) was employed. No significant differences in blubber organochlorine levels 

were found between immature (n=11) and mature (n=9) animals. In analyses of the 

melon data, significant differences were found between immature (n=10) and mature 

animals (n=7) in melon EDDT by SoT, (p<0.01), means 6588.7 ng/g immature and 

3495.2 og/g mature. A significant difference was also found by SoT in melon EPests at 

p<0.02, means 13940.9 ng/g immature and 5998.7 og/g mature. The result for melon 

EPCB by S-T was not a significant one at p=0.07. 

In the immature age class, 00 significant differeoces were found between males 

and females in either the blubber or the melon organochlorine groups. In the mature age 

class, significant differences were found in all blubber organochlorine groups between 

females (n=7) and males (n=2). For blubber EPCBs by SoT, p=0.OO2, means were 

3406.0 ng/g for females and 14947.0 ng/g for males. Blubber EDDT was significant 

by SoT at p=O.OO2, means 1666.4 ng/g for females and 6518.5 ng/g for males. The 

blubber EPests were significant by SoT at p<O.OO4, means 3316.8 ng/g for females and 

13434.9 ng/g for males. Melon organochlorines in the mature age class could oot be 

tested statistically as male 0 = 1. 
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3.4 Data by Birth Order 

No significant relationship was found by linear regression between birth order and 

either blubber or melon organochlorine levels. 
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Table &: Data Summariee of pca. and Chlorinated Pesticides In Sa, •• ot. Bay Dolphin. 
Concentration •• re in nala IppbJ on. wet wt. b •• I. 

'i.iMl# OBRI, S .. Age LpWl% BPCBe BOOT. BHCB BHCH. 8 TPeeta LpWl% MPCB. MOOT. MHCB MHCH. MTPeeto 

9309 C07-2 F 3 wk 64.65 6249 2057 219 121 5302 
9224 C65-1 F 5.3 m 75.95 23171 9243 954 318 19034 83.55 21088 9894 1378 494 19083 
9417 C75-4 F 6m 65.00 6112 2500 445 264 5690 84.10 6286 4307 646 383 8513 
9314 C33-3 F 1-1.6 75.00 16288 5108 273 149 10352 87.40 12893 5795 108 78 9558 
9118 FB21 F 3 65.50 13939 6321 705 247 14127 74.60 15326 7771 611 414 15879 
9221 FB103 F 4 1.55 3149 1366 45 19 1989 82.55 26888 10250 1952 569 28900 
9225 FB37 F 9 .6 55.95 4356 1475 14 35 2439 86.55 7323 3992 43 59 6055 
9116 FB31 F 11 41.60 1071 371 43 6 634 89.55 10694 4025 20 45 5801 
9212 FB67 F 24 75.40 2634 1128 102 96 2447 70.25 2615 1481 109 78 2497 
9108 FB45 F 35 42.70 3430 2174 204 114 4521 
9514 FB41 F 36 53.25 9408 3554 169 40 8276 89.85 11604 4203 140 57 9039 
9625 FB57 F 44 0.75 74 55 38 8 131 82.65 6546 3062 234 130 4749 
9401 FB19 F 50 53.20 2970 2907 114 111 4771 76.00 3146 1413 76 107 2380 

MeBn 51.65 6903 .93 2943.08 255 .77 117.54 6131.67 82.46 11291.30 5108 .38 474.27 221.27 10313.91 
St. Dev. 25.16 6736.34 2592.08 285.24 102.83 5543.18 6.34 7502.57 3029.48 833 .42 199.77 8161.05 
%St Dev 48.70 97 .67 88.07 111 .52 87.49 90.40 7.69 66.45 59.30 133.56 90.28 79 .03 

9308 C17-3 M 3m 78.70 6555 3207 864 305 7328 83.50 10564 3874 776 328 7413 
9621 C71-7 M 3.6 m 64.25 10489 4356 941 369 13239 84.80 10706 4803 1111 604 10713 
9104 FB22 M 4 57.60 8292 3659 602 214 7749 86.80 15128 8642 908 331 18249 
9216 FB50 M 4 69.40 10081 4998 162 76 7802 79.20 10739 4873 345 152 8261 

9226 FB52 M 9 46.15 12403 5913 273 108 11002 81.20 17742 5679 378 272 11840 
9012 FB74 M 39 49.65 17332 7604 264 94 16116 
9509 FB98"G" M 42 62.20 12562 5533 178 37 10765 79.15 20624 6291 150 68 11470 

Mean 61.14 11458.77 5186.55 458.37 181.25 11014.78 81.30 14403.89 6990.27 611.14 309.57 12117.8e 
St. Dev. 11.23 3373.43 1428.37 289.75 120.01 3279 .51 4.10 3938 .28 1709.09 342.22 175.10 4077.17 
%St Dev 18.37 29 .44 27.64 83.21 56.21 29.77 5.04 27.34 28.53 56.00 56.56 33.65 

I 
B = blubber values; M - melon values 
PCBe _ &um of 22 congeners (88e enalyte list) 

DDT. = total o,p-DDT, p,p-DDT, o,p-DDE, p,p-DDE, o,p-DDD and p,p-DDD 
HCH. = Bum of .-HCH, b-HCH, d-HCH and lindane Ig-HCH) 
TPesta ,.,. sum of all pesticide analytes (s6e analyte liet) I I 
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Table 6: Data Summarte. of PCBs .nd Chlorinated Peeticidea In Sar •• ota Bay DoIp .... 
Concentrations .re in nalg Ippb, on a lipid wt. beel. 

MML' DBRt# Se, Ag. LpWt% B PCIIe BOOT. BHCB B HCH. BTPoe .. LpWt% MPCBe MOOT. MHCB MHCH. MTP_ 

9309 C07-2 F 3 wk 64.65 8118 3181 339 187 8201 
9224 C65-1 F 5.3 m 76.95 30112 12012 1240 413 24735 83.55 25240 11842 1650 591 22840 
9417 C75-4 F 6m 65.00 5582 3847 685 407 8754 84.10 7473 5121 650 455 10122 
9314 C33-3 F 1-1.5 75 .00 20384 6811 364 199 13803 87.40 14523 6630 123 89 10936 
9118 FB21 F 3 65 .50 21281 9650 1076 377 21567 74.60 20543 10417 818 555 22625 
9221 FB103 F 4 1.55 203186 88139 2932 1201 128325 82.55 32572 12417 2366 689 35009 
9225 FB37 F 9 .6 65.95 7785 2837 26 63 4359 86.55 8481 4612 49 80 6996 
9115 FB31 F 11 41 .60 2575 892 104 13 1525 89.55 11942 4495 22 51 6478 
9212 FB67 F 24 75.40 3360 1496 135 127 3245 70.25 3722 2108 155 111 3555 
9108 FB45 F 35 42.70 7949 5092 479 267 10589 
9514 FB41 F 38 63.25 17688 3118 318 78 11983 89.85 12914 4677 156 75 10060 
9625 FB57 F 44 0.75 9838 7321 5089 1091 17410 82.65 7919 3704 283 157 5746 
9401 FB19 F 50 53.20 5582 5465 214 208 8967 76.00 4139 1860 99 140 3131 

Mean 51.65 26416.77 11512.23 1000.00 356.08 20266.38 82.46 13586.18 6171.18 579.09 272.09 12499.82 
St.Oev. 25.16 53748.27 23243 .96 1452.37 373.93 33179.21 6.34 9115 .97 3730.48 766.47 245.72 10050.41 
%St Oev 48.70 203 .46 201 .91 145.24 105.01 163.72 7.69 67 .10 60.45 132.36 90 .31 80.40 

9308 C17-3 M 3m 78.70 8330 4075 844 388 9312 83.50 12851 4639 928 393 8878 
9621 C71 -7 M 3.5m 64.25 16328 6780 1464 574 20608 84.60 12665 5677 1313 714 12664 
9104 FB22 M 4 57.60 14396 6353 872 371 11513 88.80 17428 9958 1048 381 21024 
9215 FB50 M 4 69.40 14527 7202 220 109 11242 79.20 13599 6153 438 192 10430 
9226 FB52 M 9 46.15 26876 12814 692 235 23840 81.20 21860 6994 477 335 14581 
9012 FB74 M 39 49.65 34908 15144 511 189 29570 
9509 FB98"G" M 42 62.20 20196 8895 283 59 17291 79.15 26057 7948 189 84 14492 

Meen 60.96 19365.43 8751.86 683 .71 275 .00 17624.86 82.41 17373.33 6894.50 731.50 349.83 13878.17 
St.Oev. 12.29 8923.58 3900.83 425 .02 180.09 7600.14 3.09 5654.43 1876.80 429.43 215.06 4244.04 
%St Oev 20.16 46.08 44.67 62.16 65.49 42.55 3.76 31 .97 27 .22 58.71 61.47 31.03 

I I 
B - blubber values; M - melon values 
PCBs := sum of 22 congener. (see anelyte list) 
DDT. - 10101 o,p-DDT, p,p-DDT, o,p-DDE, p,p-DDE, o,p-DDD ond p,p·DDD 
HCH. : 8um 01 o-HCH, b-HCH, d-HCH and lindono (g-HCH) I I 
TPests =: sum of all pesticide enalytes (see analyte list) 
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4.0 DISCUSSION 

The concentrations of the chlorinated pesticides and those of the PCBs within 

individual dolphins in this study showed consistent patterns, with the sum of the PCB 

congeners studied (EPCB) being 2-3 times higher than total DDTs (EDDT) and 

approximately equivalent to or slightly higher than the sum of all chlorinated pesticides 

studied (EPests). The differences in concentrations in the animals are gender and age 

related. Due to the relatively few dolphins available at this time from the Sarasota Bay 

community, and consequently small sample sizes involved in the analyses, the results 

from this study are best viewed as trends rather than incontrovertible conclusions. 

Data analyses were performed using both wet weight and lipid weight values. 

Concentrations normalized for lipid weight may have the advantage of compensating for 

inhomogeneity in blubber composition, and for some correction of differences in nutritive 

state. In very extreme cases, such as severely low lipid content, this normalization may 

result in overestimation of the analyte concentration in the tissue, producing anomalously 

high values. This appeared to be the case in this study with one animal, and was verified 

by comparison with the values derived from the melon concentrations of the animal in 

question. As inhomogeneity of blubber composition is not found in small cetaceans, and 

has not been found in bottlenose dolphin, compensation for this was not required. The 

question of nutritive state has yet to be resolved, but Kannan et ai. , (1993) offer results 

of their research with striped dolphins, stating that they found no prominent variation in 

the PCB and DDT concentrations between well and poorly nourished animals. The 

54 



statistical results presented are based on the wet weight values. 

The male dolphins in this study showed a significant increase with age in both the 

blubber and the melon EPCB concentrations, and in the blubber EDDT. Male dolphins, 

without benefit of any means by which to transfer or off-load chlorinated compounds, are 

expected to show this accumulation with age. The results from this study indicate that 

this process is occurring in these dolphins. A larger sample size might illustrate this 

more clearly in the future. 

The female dolphins as a group show a great deal more variability than the males 

in body condition, lipid content of the blubber, and contaminant levels. The female 

dolphins showed a 49% relative standard deviation (RSD) in their blubber lipid weight, 

compared to 18 % in the males. This variation is seen again in the RSDs of the blubber 

organochlorine concentrations, with females ranging from 88-112% while male RSDs 

ranged from 28-66%. The melon showed much less variability in lipid weight, as 

expected, with a 7.7% RSD in the females and 5% RSD in the males. The blubber lipid 

weight is a good indicator of the animal's general condition and nutritive state, therefore 

this variability appears to reflect the rigors of the female dolphins' circumstance in 

reproduction and subsequent lactation. 

The organochlorine concentrations in these females show a decrease with age, 

although this decrease was only significant in one organochlorine group, the melon 

EDDT. Post-parturient females showed significantly lower levels of organochlorines 

than pre-parturient females in all organochlorine groups in both the blubber and the 

melon. These results agree with previous studies (Aguilar, 1987; Borrell et aI., 1985; 
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Cockroft et al., 1989; Vedder, 1996), and indicate that the females in Sarasota Bay are 

off-loading a portion of their organochlorine loads to their young, and this appears to 

continue throughout their years of parturition. Little is currently known about senescence 

in female cetaceans, and bottlenose dolphins have not been shown to go through a 

significant post-reproductive period. For descriptive purposes, a second-degree 

regression was run on the female organochlorine data, and suggested an increase of 

organochlorine levels in the latter part of the female age group, after age 30-35 (Figure 

7). This apparent rise in the chlorinated hydrocarbon concentrations of older females 

supports the reported increase in interreproductive interval as noted by Cockroft et al., 

(1989), and in the Sarasota Bay dolphins, R.S. Wells, (pers. comm.). Interestingly, the 

rise suggested by the melon data lags behind the rise in blubber concentrations by at least 

5 years, and the rise is not as large in the melon. This may be expected in a denser, 

more static organ which is not readily mobilized and may take longer for the xenobiotics 

to partition into and out of it. In the females' HCH levels, again by second degree 

regression, the rise in levels in older females appears to begin earlier in both blubber and 

melon. That the HCHs appear to accumulate to even a greater degree in the melon is 

supportive of Aguilar's data (1985), which show that the melon, although composed 

totally of triglycerides and non-esterified fatty acids (NEFA) like the blubber, 

nevertheless has physicochemical properties that favor the attachment of compounds of 

greater polarity. 

In comparing the data from the males with the data from the females by Student's 

t-test, no statistically significant difference was found in either the blubber or the melon 
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concentrations of the major organochlorine groups. When the data are separated into 

two major age classes of mature dolphins and immature dolphins, the results are 

somewhat different. Looking at the immature age group, no significant difference is 

found between young males and young females in either the blubber or the melon 

organochlorines, suggesting similar maternal loading and subsequent food sources. 

Mature males and females, on the other hand, show significant differences using 

Student's t-test in the blubber in all organochlorine groups. This reflects the basic trends 

for males to increase their contaminant loading with age, while in females, metabolism 

and excretion, and offioading to young exceeds their dietary uptake (Figures 8 and 9). 

It is apparent that the young dolphins in this study were subject to high amounts 

of gestational and lactational contaminant loading. It is generally assumed that the older 

males in a population will have the highest amounts of organochlorines. The first and 

third highest blubber PCB levels recorded in this study, however, are seen in a 5.3 month 

old (23.2 "gIg, wet wt.) and a 15 month old (15.3 "gIg, wet wt.) . A 39 year old male 

had the second highest, with 17.3 "gig (wet wt.). In the melon, the first and second 

highest PCB concentrations were in young dolphins, with the highest concentration in a 

4-year old (26.9 "gIg wet wt.), and the second highest in the aforementioned 5.3 month 

old (21.1 "gIg wet wt.). 

An interesting trend is seen when examining the organochlorine concentrations of 

immature dolphins 0 - 4 years old (the age group prior to mother/calfseparation). In this 

group, blubber organochlorines appear to decrease at approximately 2 years old, which 

is at about the time of weaning. This is illustrated again by second-degree regression in 
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Figure 10. This post-weaning decrease in blubber organochlorines, though not mentioned 

in the literature, makes a good deal of intuitive sense. As a calf begins feeding on 

"solid" food and decreasing intake of the mother's lipid-rich milk, metabolism and 

excretion may well begin to exceed organochlorine intake, especially if the calf is 

beginning to mobilize some of its own lipid stores through the energetic demands 

involved with increased time away from mother in play and in foraging. Even more 

interesting is the fact that this same decrease is not seen in the melon organochlorines. 

This is consistent with the concept of the melon as a more static tissue which is not 

readily mobilized. 

It bas been speculated that birth order could have a great bearing on the xenobiotic 

loading of calves, with the fIrSt-born calf of a female receiving a much higher burden 

than subsequent calves (Cockroft et al. , 1989). In this study, birth order was 

conclusively known for 6 animals, all calves, aged 3 weeks - 15 months. (Melons were 

only available for 5 of these animals). Although not statistically significant, when birth 

order is graphically plotted against organochlorine levels, a trend may be seen in 

organochlorines appearing to decrease with increasing birth order (Figure 11). While of 

interest, this requires caution as a larger number of animals within a closer age 

association is necessary to draw any conclusion from this analysis. 

The fIrSt-born calf in this study, however, had 2-5 times the contaminant levels 

of any of the other birth orders, validating to some degree Fukushima and Kawai's 

estimation of the first-born receiving up to a 4-fold higher organochlorine burden than 

the subsequent calves of a female (see Cockroft et al., 1989). In fact, this animal, at 5.3 

60 

• • 
I 



25000 ---,-- - - --- --- --- ----, 

20000 

'" 0. 15000 
c: 
. !: 
c: 
o 

~ 
~ 
g 10000 
t) 

5000 

o I, 

• 

• 
• • 

o 

Blubber PCBs 

'. • 

• 
• 

• 

1 2 3 4 

Age in years 

5 

Figure 10: Second Degree Regression of PCB Concentrations in Blubber 
as a Function of Age in Young (0-4 year old) Dolphins 

61 

22000 -,---------------~ 

20000 

18000 

16000 

~ 
c: 
.!: 14000 
c: 
o 

~ 
ffi 12000 
o 
c: 
o 
t) 

10000 

8000 

6000 

• 5.3 mo. Melon PCBs 

15 mD . • 

3 mo . • 3.5 fTlO • • 

• 6ma. 

4000 --Ilf--"T--.,-----.--,--,----,-~-___j 

o 1 2 3 4 5 6 7 8 

Birth Order 

Figure 11: Concentrations of PCBs in Melon as a Function of Birth Order 
Order of Young (3 month - 15 month) Dolphins 



months old, had the highest blubber EPCB, EDDT, HCB, and EPests of all animals in 

this study, and the second highest melon EPCB, EDDT, and EPests. Compared to the 

next closest calf in age, a fourth-born 6 month old female, the first-born had 5 times the 

blubber EPCB, 4 times the blubber EDDT, and between 2 - 3.5 times all of the other 

major organochlorine groups. Whether these concentrations are toxic or even harmful 

is not fully known as yet. Cockroft et aI., (1989), however, warn that the initial high 

dose and rapid, heavy transfer of these chlorinated (and immunosuppressive) compounds 

to dolphin neonates may constitute a greater risk than the actual concentrations suggest. 

Aguilar and Borrell (1994) agree, and state that the most critical period in the 

trans1ocation process will be right around birth, as the flow rate of the umbilical 

circulation is greater, allowing more chemicals to cross the placenta. As well, they state 

that neutral lipids in foetal tissues tend to increase near term, facilitating the retention of 

organic compounds. This late prenatal and early postnatal exposure to chemicals is of 

pronounced significance as the development of the immune system is particularly 

susceptible to chemical interruption and damage at this time (Aguilar and Borrell, 1994a; 

Cogliano et al., 1996; Miller, 1985). 

A population of dolphins or other small cetaceans, therefore, could be impacted 

by this mechanism even in light of contaminant levels that are not comparatively high. 

This could also help to explain the extremely high mortality of first-born calves in the 

Sarasota Bay community. Another first-born calf was recovered by the Stranding 

Program and the DBRI in 1988, and although tissue samples were not available for 

analysis, the s1rull has been archived. Ruth DeLynn, an adjunct researcher at MML 
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studying early skull development in dolphins, found the skull from this two and a half 

month old to be microcephalic - abnormally small, with severe elongation and distortion, 

and premature fusion. This is reminiscent of the findings in the Baltic which correlated 

skull exotosis, skull bone lesions and other skull abnormalities in several seal species with 

high PCB and DDT levels (Olsson et al., 1994; Reijnders, 1994). In time MML and 

the DBRl may be able add to their database on first-born calves, and substantiate this 

phenomenon. 

The contaminant levels at which a population may be at risk for adverse health 

effects were postulated in 1984 by Wagemann and Muir, and remain the guidelines 

currently accepted by researchers. For cetaceans, the contaminant levels in blubber for 

PCBs and for EDDT are suggested as 50-200 p.g/g wet weight (Wagemann and Muir, 

1984). The EPCB levels found in the Sarasota community ranged from 0.07 p.g/g to 

23.2 p.g/g wet weight in the blubber, and 2.62 p.g/g to 26.9 p.g/g in the melon. The 

EDDT ranged from 0.06 p.g/g to 9.2 p.g/g in blubber, and 1.48 p.g/g to 10.3 p.g/g in the 

melon. These concentrations, while below the suggested level of toxicological concern, 

should not be discounted. Subramanian et al. (1987) found testosterone levels 

significantly reduced in male Dall's porpoises with an increase in DDE and PCB levels 

at 11.0 p.g/g and 9.02 p.g/g (wet weight), respectively. Serious effects in beluga whales 

from the St. Lawrence River are proposed at the population's mean PCB levels of 76 

p.g/g in males and 37 JLg/g in females (Muir et al., 1990; Norstrom and Muir, 1994). 

A comparison of organochlorine levels between the Sarasota Bay community and 

other bottlenose dolphins and small cetaceans is presented in Table 7. The numbers in 
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Table 7: Comparison of Organochlorine Levels in Sarasota Bay Dolphins with Other Small Cetaceans 

Mortality 
Species Location Event Yr Sex PCBs DOTs HCHs HCB References 
Wet Weight In uglg (ppml 

Botden088 Oolphin E. Gulf of Mexico M 11.6 6 .2 0.18 0.48 Pr .. ant etudy 
(Turtliops tnJnuru.J F 6.3 2.7 0.11 0.22 

Gulf of Mexico 1990 M&F 31 20 Varanssi at el., 19928 

S,E. Indien Ocean M 20 14 Cockerofl et aI., 1989 
F 9 5.9 

Mediterranean 1992 M 562 187.6 Corsolini at el., 1995 
F 230 54 

Striped Dolphin W. Mediterranean 1990 M 430 150 Kannen et aI •• 1993 
(StBnelle coeruleoslbs) F 94 22 

Harbor Porpoise N. Atlantic M&F 14.8 7.3 0.49 0.52 Becker at aI., 1997 
(PhocoenB phocoens) 

Black Sea M 16 70 10 0.4 Tanabe at el.. 1997 
F 12 50 7.2 0 .4 

White-beaked Dolphin Newfoundland M 0.034 0.043 0.0008 0.001 Muir at el., 1988 
(L8genorhynchu8 slbirostris) F 0 .022 0.028 0.0008 0.0009 

Pilot Whale Newfoundland M 0.009 0.012 0.0002 0.0003 Muir at al.. 1988 
(Giobictlphe/e me/sene) F 0.003 0.006 0.00008 0.0001 

N. Atlantic M&F 7.9 7.7 0.04 0.2 Becker at al., 1997 
Lipid Weight in "gig (ppml 

Bottlenose Dolphin E. Gulf of Mexico M 19.6 8.9 0.29 0.73 Pr •• ent study 
(Tu,..iops frufJClltu.) F 26.8 11.7 0.36 0.99 

W. Gulf of Mexico M&F 36. 1 15 .3 0.1 0.51 Salata.t 01 .• 1995 

U.S. Atlantic Coast 1987/88 M 138.4 38.6 0.042 Kuehl at aI., 1991 
F 62.4 7 .5 0.035 

Common Dolphin W. North Atlantic M 36.5 14.4 0.015 Kuehl et al. . 1991 
(D~(phinus de/phis) 

Striped Dolphin W. Mediterranean 1990 M 1300 480 Kannan et al. . 1993 
(5t6ne1/8 coeru/eos/blJ) F 290 69 



this table are mean concentrations, and reflect various methods of reporting PCBs, 

necessitating caution in making direct comparisons. In some cases, the analyses were 

conducted in response to a large scale mortality event, either an epizootic or a mass 

stranding, and in these cases the date of the event is given. Animals involved in large 

scale mortality events exhibit quite high chlorinated hydrocarbon levels. In comparison 

with these values, the Sarasota community has a lower organochlorine load, and a higher 

load than whales from more pristine waters (i.e. Newfoundland). The values for the 

Sarasota Bay community are probably representative of northern hemisphere coastal 

marine mammals. 

An accurate assessment of risk to the health of individuals or populations from 

xenobiotics should take into account not only the concentrations of these contaminants, 

but also the effects of the metabolites and reactive intermediaries of the compounds. 

Some chlordane, DDT and PCB compounds are metabolized to non-degradable 

compounds that are more toxic and persistent than the parent compounds, yet little 

research has been done on this factor. The toxicity of one hydroxylated PCB, (2' ,4' ,6'­

trichlor0-4-biphenylol), is greater not only than its precursor, but also more toxic than 

other PCBs tested (Norstrom and Muir, 1994; Matta et al., 1997). The methylsulphone 

(MeS02) metabolites of PCBs and DDE are of particular concern as there are hundreds 

of possible congeners, and have been found to have a similar persistence to unmetabolized 

PCBs. Further, MeS02 - DDE bas been found to be a potent adrenocortical toxin, and 

DDE yields a fairly high percentage of MeS02 metabolites (Norstrom and Muir, 1994). 

Synergistic effects between toxic xenobiotics have been widely noted as well. 
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Borlakoglu and Haegele (1991) report on one study of the toxic effects of two individual 

PCB congeners that did not cause toxicity alone, but acted synergistically to produce 

chromosomal damage to lymphocytes when used in combination. Relatively non-toxic 

mixed-inducing PCBs have been shown to have a modulating action on the dioxin TCDD, 

enhancing its toxicity by lO-fold (McKinney et al., 1985). Beyond the myriad of 

possible and troubling synergistic effects, some of the PCBs that were thought to be non­

toxic are now proving to have serious detrimental effects, as in the ortho-substituted, non­

dioxin-like PCBs that have now been shown to mediate the neurotoxicity of the PCBs 

(Maier et al., 1994; Kodavanti et al., 1996; Seegal, 1996). And, numerous non­

organohalogenated compounds may be acting along with, or even synergistically with 

chlorinated compounds to suppress immune systems and cause reproductive dysfunction. 

Such is thought to be tbe case with the tributyltin compounds (TBTs) used widely as 

anti-fouling agents in marine paints. The TBTs are known immunosuppressors, exert 

acute toxic effects, and have been found in marine mammals in high concentrations in 

mass mortality events (Kannan et aI., 1997). The occurrence of these compounds, which 

are relatively biodegradable, in top-level predators has been suggested as the result of a 

reduced capacity of drug-metabolizing enzyme systems due to the co-occurrence of PCBs 

and DDTs (Iwata et al., 1994). 

A great number of synthetic compounds and by-products of industrial process have 

been demonstrated to have toxic effects on living organisms, and must be acknowledged 

when assessing a very small subset of compounds for toxic implications on a population. 

The bottlenose dolphins in the Tampa Bay to Charlotte Harbor corridor, which includes 
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Sarasota Bay, have evidenced other forms of anthropogenic effects. Routine necropsies 

of stranded dolphins have revealed a high incidence of anthracosis, better known as 

brown lung disease in humans, as well as liver abnormalities from high mercury levels 

(Rawson et al., 1991, Rawson et al., 1995). The Sarasota Bay population of bottlenose 

dolphin have concentrations of contaminants in their tissues that have been correlated with 

decreased lymphocyte response in this community (Lahvis et al., 1995). While not 

apparently exerting acute affects, (with the possible exception of the first-born calves) 

these contaminants are nearing levels that may have caused chronic long-term effects in 

other small cetaceans, and could possibly exert immunosuppressive effects if an infectious 

agent is introduced into this community. 

Immunological studies of the dolphins in this community reveal previous exposure 

to morbillivirus, though this exposure appears in the older animals and not in the younger 

animals. The discreteness of this population generally lessens opportunity for contact 

with more offshore species such as pilot whales, false killer whales (Pseudorca 

crassidens) , and Fraser's dolphins (Lagenodelphis hosel) , which associate with and 

sometimes strand with offshore bottlenose dolphins, facilitating viral transmission 

(Duignan et al., 1996). The immune systems of the Sarasota community, therefore, do 

not appear to have been challenged in more recent years. The levels of the subset of 

organochlorines analyzed in this study, although in the "moderate" range, remain of 

concern and should continue to be monitored along with the other health evaluations 

routinely conducted on this population. 
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5.0 SUMMARY AND CONCLUSIONS 

Analyses of xenobiotic compounds in marine mammals have been conducted since 

the discovery of their occurrence in this compartment of the environment in the late 

1960s. As top trophic predators with high lipid mass and inefficient xenobiotic 

metabolizing systems, marine mammals are unique in their capacity to accumulate 

contaminants, most notably the halogenated compounds. Many of these polychlorinated 

and brominated substances are known to exert toxic effects on individuals and on 

populations. These effects include endocrine system disruption, neurotoxicity , 

reproductive failure and immunoincompetence, and have been implicated in the 

mortalities of marine mammals since the 1970s. 

The majority of the studies conducted on small cetaceans have been without the 

benefit of demographic or reproductive history data on the individuals tested. This 

investigation is the first to be conducted on known individuals in a community that has 

been the subject of study for more than 27 years. As a result, this study has been able 

to demonstrate what has previously only been hypothesized concerning maternal transfer 

of chlorinated hydrocarbons to their young. 

Tissue samples (blubber and melon) of seven male bottlenose dolphins and thirteen 

female bottlenose dolphins were analyzed for toxic PCB congeners, DDT and its 

metabolites, and a suite of other chlorinated pesticides. In agreement with many previous 

studies, the male dolphins were found to increase their organochlorine levels with age. 

The female dolphins were found to decrease their organochlorine levels through 
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gestational and/or lactational transfer to their calves. Although not statistically 

significant, these data are consistent with the fact that female bottlenose dolphin 

demonstrate a lengthening of interreproductive interval in their later lives as seen by an 

increase in organochlorine levels after the age of approximately 30 yes. 

The dependent calves (ages 0-4 yrs., previous to mother/calf separation) were 

found to have their highest levels of organochlorine loading initially, and until 

approximately 2 yes., when the levels begin to show a decrease. Weaning in bottlenose 

dolphin calves occurs at around the age of two yes., and is suggested as the reason for 

the decrease in the blubber organochlorine levels, as the calf terminates its lipid-rich food 

source. This decrease is not, however, seen in the melon tissue, supporting the premise 

of this as a tissue that is conserved and not utilized for energetic requirements. The first­

born calf in this study had 2-5 times the levels of the organochlorines analyzed as the 

closest calf in age to it, which was a fourth-born calf. This is the first study to 

demonstrate this conclusively. These data also suggest that there may be a gradient in 

organochlorine loading with birth order, with the first calf receiving the largest loading, 

and a seventh-born the least initial loading, but many more similarly-aged calves are 

required to determine this conclusively. 

The chlorinated hydrocarbon levels in the Sarasota Bay community of dolphins 

appears to be a moderate level of loading as compared to other small cetaceans. This 

level is not as high as is evidenced in animals involved in large scale mortality events, 

yet is higher than levels of organochlorines from animals in more pristine areas, and is 

ominously close to levels seen in recent mortality events in the western Gulf of Mexico. 
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While this community does not appear to be impaired by their current organochlorine 

loads, the extremely high mortality of first-born calves, and the skull deformities of the 

1988 first-born calf may be an indication of impact f;. /I xenobiotics. To state that this 

community is unequivocally healthy and without effects from xenobiotics would be 

premature and incautious at this time. Further monitoring of this population is warranted. 
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Blubber Data In nglg Wet Wt. 

Animal D /I 9012 9104 9108 9115 9118 9212 9215 

Lipid Wt% 49.65 57.6 42.7 41.6 65.5 75.4 . 69.4 
PCBs: 
pcb-28 19.91 104.01 194.31 30.06 91 .46 89.35 48.45 
pcb-52 917.82 1332.55 500.24 50.37 1778.43 156.41 593.78 
pcb-81 686.42 456.96 236.91 37.80 870.57 106.22 516.74 
pcb-lOt 272.91 282 .98 344.84 51.58 577 .40 207.66 324.77 
pcb·77 143.55 20.57 50.63 1.45 16.61 31.72 76.62 
pcb·l23 432.71 46.79 35.45 nd 132.66 40.16 551.26 
pcb-118 287.03 630.07 168.55 20.75 909.83 49.84 683.19 
pcb-114 3367.23 1402.28 480.00 131.98 2200.36 475.97 1322.31 
pcb-126 4073.43 1235.53 519.99 155.22 2342.03 547.08 1938.46 
pcb-I 05 256.43 188.97 67.36 0.21 329.21 45 .12 262.90 
pcb-138 2184.29 1098.50 328.75 151.82 1755.05 278.92 1370.61 
pcb-158 267 110.19 31.84 17.51 297.87 12.72 196.69 
pcb-153 393.27 34.09 24.03 nd 102.61 49 .24 214.76 
pcb-1S6 40.44 5 .68 3.17 0.82 21.83 3 .43 16.24 
pcb-128 513.26 201.01 36.38 8 .98 465.58 46.15 208.17 
pcb-167 104.27 104.67 2 .00 75.76 131.51 25 .87 99.70 
pcb-156 36.86 90.82 18.77 8.72 178.53 25.90 98.73 
pcb-157 106.04 33.47 8 .88 2.99 57.10 6.15 37.15 
pcb-180 2132.94 515.26 254.88 196.27 1194.33 261.06 818.90 
pcb-169 85.82 300.58 0.81 44.11 4.80 nd 3.89 
pcb-170 981.41 188.24 84.44 84.77 454.72 71.13 681.23 
pcb-189 28.83 9.06 2.12 nd 26.49 3.54 16.94 

Sum PCBs 17331.87 8292.28 3429.85 1071.17 13938.99 2533.65 10081.49 
Pesticides: 
a-bhc 26.62 69.67 39.05 2.58 61.06 38.07 18.68 
hcb 253.66 502.45 204.40 43.09 705.06 101 .87 152.40 
b-bhc 19.61 29.86 10.35 2.97 37.00 8.54 8.96 
lind 47.53 109.55 63.55 nd 145.90 45.88 48.29 
d-bhc nd 4.58 0.85 nd 2.86 3 .55 0.00 
hept 38.83 45.54 38.95 nd 62.82 23.50 22.71 
aldr 20.99 27 .73 11.18 nd 19.69 16.60 16.95 
hepte 873.3 498.72 191.35 11.14 686.86 66.95 218.00 
y-<:hlor 66.47 50.03 22.92 71 .87 87.14 27 .68 37.05 
op dde 776.55 328.11 171.90 14.18 666.60 78.74 291.06 
endo I 146.81 16.92 9.71 nd 29.27 5.06 5.70 
8-<:hlor 701.18 647 .94 266.78 49.07 1626.67 160.71 697.88 
dield 3465.91 1121 .19 1036.56 9.82 2821 .75 594.13 851.84 
pp dde 3680.55 1889.97 1546.81 290.45 2864.80 615.97 2175.50 
op ddd 532.94 115.49 84.77 4.03 207.89 26.08 135.79 
end, 719.7 374.17 96.27 30.37 361.23 63.68 63.52 
endo II 925.24 370.67 255.82 33.38 684.47 104.16 448.47 
ppddd 1310.1 765.67 281.22 37.44 1266.61 148.16 378.91 
op ddt 898.31 396.12 3.77 1.66 520.74 200.07 1883.23 
endr aid 568.6 28.03 3 .54 nd 57.38 7.14 49.69 
endo ss 736.35 192.73 95.89 8.64 416.40 61 .19 163.93 
ppddt 305.77 164.10 85.82 23.1 8 794.36 60.09 133.73 

T/DDTs 7504.21 3669.45 2174.28 370.94 6321.01 1128.10 4998.21 
TI Cyclos 4775.20 1661.12 1147.56 40.58 3260.05 681 .55 982.00 
TI HCHs 93.76 213.66 113.80 5.56 246.83 96.04 75.93 
TI Chlo,s 1679.78 1242.32 519.99 132.08 2463.60 268.83 975.64 
TI Endos 1808.40 680.32 361.42 42.02 1130.13 170.41 618.10 
TI Pests 16115.01 7749.33 4521.44 634.25 14126.59 2446.79 7802.28 
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Blubber Data in nglg Wet Wt. 

Animal 11)' 9221 9224 9225 9226 9308 9309 9314 

Lipid Wt% 1.55 76.95 55.95 46.15 78.7 64.65 75 
PCBs: 
pcb-28 7 .70 30.74 49.69 90.72 147 .99 381 .89 88.91 
pcb-52 356.07 3985.10 106.83 1781 .67 852.73 593.83 1182.41 
pcb-81 57.23 1903.67 36.52 351.14 308.24 280.28 882.75 
pcb-l 01 118.88 1259.70 97.21 470.76 534.69 380.29 772.31 
pcb-77 21.16 51 .80 5 .49 30.38 35.88 63.82 243.90 
pcb-123 59.58 216.49 89.15 490.52 18.51 195.08 526.13 
pcb-118 70.36 721.79 62.36 373.86 389.16 236.76 946.43 
pcb-114 508.63 2686.72 389.68 1857.65 1614.66 480.01 2245.94 
pcb-126 505.06 4060.84 2040.82 1350.16 669.27 1503.04 2290.84 
pcb-l 05 79.78 478.82 48.41 136.19 146.55 71 .83 263.01 
pcb-138 468.35 3248.30 352.65 2423.79 805.26 595.87 2196.25 
pcb-158 46.23 487.63 35.88 203.80 52.13 44.69 161.33 
pcb-153 12.84 339.06 nd 204.74 18.26 30.42 374.35 
pcb-166 3.22 36.94 8 .13 12.99 2 .37 5 .14 18.24 
pcb-128 99.80 700.80 60.37 268.71 112.56 103.53 324.63 
pcb-167 42.96 177 .53 82.04 191 .07 86.88 22 .50 173.72 
pcb-156 25.20 253.95 29.13 65.11 50.67 10.31 146.77 
pcb-157 7 .77 83.86 13.34 44.93 23.52 7.37 69 .86 
pcb-180 518.47 1809.58 486.86 1461.93 438.59 179.35 1780.70 
pcb-169 nd 8 .06 19.80 nd 1 .28 nd nd 
pcb-170 133.84 586.80 337.00 574.82 240.31 82.48 557.32 
pcb-189 6.25 43 .29 14.56 17.99 5.89 nd 42.06 

Sum PCBs 3149.39 23171 .36 4355.90 12402.91 6555.40 5248.51 15287.67 
Pesticides: 
a-bile 5.82 68.23 10.92 26.70 87 .80 41.90 26.33 
heb 45 .46 954.39 14.23 273.37 664.00 218.89 272.91 
b-bhc 4 .56 73.76 2 .04 16.05 20.69 10.37 17.68 
lind 6.77 184.16 19.10 61.68 193.72 64 .91 105.16 
d-bhc 1.46 1.89 3 .12 4.03 3 .07 3 .96 0 .00 
hept 1.62 199.10 19.26 91 .80 93.44 26.25 23.88 
aid, 5.44 84.28 7.50 21 .34 34.87 20.48 30.80 
hepte 52.29 906.60 25.90 405.88 342.91 160.35 401 .32 
y-ehlor 11.23 98.42 31.68 54.80 113.04 20.61 158.44 
op dde 120.88 862.32 58.50 359.69 336.60 16 .93 1141.09 
endo I 0 .57 45.19 1.51 15.63 23.60 13.66 36.99 
a-ehlo, 109.71 993.66 104.71 501.55 1028.44 315.23 1265.20 
dield 104.45 3660.86 681.15 2178.15 900.14 2004.46 1717.24 
ppdde 945.75 4939.87 939.35 4221.01 1509.26 1236.37 2426.74 
op ddd 23.46 332.02 27.27 114.61 87 .69 87.68 263.64 
end, 85.74 757.61 39.71 487.31 194.93 120.16 444.94 
endo" 121.15 923.82 58.18 393.21 242.98 121 .17 358.36 
pp ddd 180.34 2626.17 131.97 884.30 598.68 247 .76 1059.19 
op ddt 1.55 70.71 196.74 26.83 482.16 464.23 34.74 
endr aid 22 .41 412 .93 12.66 77.53 24.16 55.08 155.55 
endo ss 44.22 535.93 31 .81 479.74 153.21 48.06 229.44 
ppddt 94.16 41 1.87 121 .37 307.04 192.94 4 .76 182.51 

TI DOTs 1366.16 9242.95 1475.20 5913.48 3207.32 2066.74 5107.92 
TI Cyelos 218.03 4815.68 641.02 2764.34 1154.09 2200.18 2348.53 
TI HCHs 18.62 318.05 35.17 108.46 305.28 121 .14 . 149.17 
TI Chlors 174.84 2197.68 181.55 1054.05 1577.83 522.33 1848.84 
TI Endos 165.94 1504.94 91.51 888.58 419.78 182.89 624.79 
TI Pests 1989.04 19033.59 2438.68 11002.29 7328.30 5302.17 10352.15 
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Blubber Data in nglg Wet Wt. 

AnimallD # 9401 9417 9509 9514 9621 9625 

Upid Wt% 53.2 65 62.2 53.25 64.25 0.75 
PCBs: 
pcb·28 122.75 253.43 53.97 71.86 261.66 3.73 
pcb-52 138.24 665.42 957.91 822.38 1990.64 13.06 
pcb-81 134.71 212.20 573.09 328.76 713.44 2.23 
pcb-I 01 261.48 583.44 259.83 376.65 861.85 1.66 
pcb-77 14.70 111.14 127.17 80.41 182.43 nd 
pcb·123 21.24 40.77 490.14 80.33 238.88 0.76 
pcb-118 248.34 244.56 340.35 373.51 701.50 nd 
pcb·114 681.99 722.85 1580.28 1364.18 1318.86 10.05 
pcb·126 388.95 772.46 2377.78 1684.07 1712.58 19.72 
pcb-I 05 28.45 111.18 400.85 217.08 198.21 nd 
pcb·138 504.13 554.78 2325.96 1453.02 814.55 5.23 
pcb-158 13.13 38.18 209.96 119.54 83.60 nd 
pcb-153 9.02 47.01 479.20 141.87 nd nd 
pcb-166 2.48 10.13 61.99 13.51 14.44 nd 
pcb·128 29.28 79.70 370.46 311.82 199.70 nd 
pcb-167 23.77 40.06 63.90 118.98 72.58 nd 
pcb·156 19.69 47.57 23.35 63.51 63.05 nd 
pcb·157 7.13 15.62 83.49 25.93 30.71 nd 
pcb·180 258.11 444.86 1072.37 1461.97 738.56 6.92 
pcb·169 13.11 nd 45.47 11.85 nd 10.07 
pcb-170 45.10 113.04 645.70 273.36 281.65 0.35 
pcb-189 3.87 4.06 18.83 13.49 10.26 nd 

Sum PCBs 2969.66 5112.49 12562.06 9408.09 10489.14 73.77 
Pesticides: 
a-bhe 35.37 66.14 4.66 6.41 94.25 2.78 
heb 114.03 445.26 176.23 169.45 940.60 38.17 
b-bhc 4.16 8.71 5.36 4.99 31.81 2.12 
lind 65.25 188.43 26.93 28.03 241.12 nd 
d-bhc 5.96 1.04 nd 0.81 1.43 3.28 
hept 18.21 1.56 nd 3.41 12.22 nd 
aldr 10.13 21.96 24.82 8.48 59.84 1.41 
hepte 107.51 180.69 229.41 170.92 594.78 nd 
y-ehlor 40.54 83.14 67.60 33.47 114.77 7.56 
op dde 196.58 615.31 587.71 501.71 660.11 1.43 
endo I nd 10.13 16.48 nd 8.08 nd 
a-ehlor 305.16 416.27 725.58 520.68 1264.98 3.43 
dield 867.93 1338.12 2399.73 3044.89 4061.48 10.58 
pp dde 1099.24 1119.12 3501.73 6.00 2254.56 46.45 
op ddd 46.39 106.71 214.57 124.12 214.05 nd 
endr 64.10 57.26 571.29 72.72 260.14 nd 
endo II 140.31 257.24 419.65 323.52 948.83 6.33 
pp ddd 328.72 490.50 773.67 713.4B 964.83 1.92 
op ddt 1172.67 nd 274.58 30.97 42.45 nd 
endr aid nd 23.95 221.87 180.26 34.20 nd 
endo ss 84.53 89.66 332.39 153.71 215.05 nd 
ppddt 63.70 168.77 180.56 282.73 219.92 5.10 

TI DOTs 2907.30 2500.42 5532.82 3553.90 4355.92 54.91 
TI Cyelos 942.16 1441.29 3217.72 3306.35 4415.66 11.98 
TI HCHs 110.74 264.32 36.94 40.23 368.61 8.18 
TI Chlors 471.43 681.65 1022.59 728.48 1986.75 11.00 
TI Endos 224.85 357.03 768.52 477.24 1171.96 6.33 
TI Pests 4770.50 5689.97 10754.81 8275.66 13239.50 130.58 
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Melon Data In nglg Wet Wt. 

AnlmallD , 9012 9104 9108 9115 9118 9212 9215 

Upid Wt% 86.80 89.56 74.6 70.25 79.2 
PCBs: 
pcb-28 186.77 36.81 65.63 110.80 54.22 
pcb-52 2272.10 92.70 2758.83 195.92 723.30 
pcb-81 1099.23 41 .12 1256.90 90.34 263.24 
pcb·l0l 1132.93 138.05 1060.26 231.00 719.21 
pcb-77 170.75 51.74 65.64 148.41 nd 
pcb-123 331.57 201.02 34.77 45.66 978.44 
pcb-118 1068.06 174.18 588.85 94.23 393.75 
pcb-114 1913.28 987.14 2710.21 448.07 1572.39 
pcb-126 2077.49 3382.11 2662.70 351.56 1928.26 
pcb-I 05 332.41 55.50 192.54 30.90 276.27 
pcb-138 1709.22 2266.16 1716.14 389.29 1480.03 
pcb-158 182.38 92.58 194.96 24.89 104.44 
pcb-153 189.16 107.71 7.23 39.95 nd 
pcb-166 27.23 131.62 32.04 3.16 6.81 
pcb-128 447.32 217.75 302.94 34.27 382.67 
pcb-167 194.66 93.58 201.42 105.13 125.38 
pcb-156 183.49 58.63 91.91 29.99 122.18 
pcb-157 64.00 30.04 46.08 8.36 25.47 
pcb-180 1197.62 1794.74 969.67 163.93 1095.61 
pcb-169 nd 2.96 1.53 nd nd 
pcb-170 328.77 714.51 352.64 65.85 470.39 
pcb-189 19.41 23.26 12.15 3.22 16.67 

Sum PCBs 15127.87 10693.92 15325.05 2614.94 10738.71 
Pesticides: ; 

a-bhc 93.18 13.67 94.62 18.16 33.04 
heb 908.16 19.99 610.54 109.10 345.42 
b-bhe 68.87 3.69 86.38 7.46 45.46 
lind 168.17 21 .17 231.88 50.09 73.30 
d-bhc 0.36 6 .86 0.89 2.03 nd 
hept 64.99 nd 82.32 27.73 24.77 
aldr 46.42 13.11 42.20 6.10 20.81 
hepte 611.00 31.40 719.85 105.18 330.13 
y-ehlor 117.89 44.34 146.47 1 I .50 59.68 
op dde 1468.71 190.47 1334.98 60.89 660.90 
endo I 12.82 nd 70.66 1.66 68.78 
a-ehlor 1771.06 386.89 2325.31 141.98 885.10 
dield 3089.08 641.48 2472.67 316.82 133.89 
pp dde 4007.91 3381.29 3747.85 896.14 1923.64 
op ddd 420.68 42.59 315.09 30.34 162.58 
endr 353.56 123.09 392.18 102.46 332.61 
endo II 1738.39 297.93 921.54 81.37 808.72 
pp ddd 1386.94 175.32 1487.63 126.49 496.29 
op ddt 880.29 20.91 73.85 320.22 1286.93 
endr aId 130.47 29.71 147.08 11.81 58.60 
endo 5S 433.15 143.09 763.Q1 22.43 167.06 
ppddt 477.09 214.48 811 .51 47.10 342.98 

TI DOTs 8641.60 4025.06 7770.92 1481.17 4873.33 
TI Cyelos 3619.52 807.39 3054.13 437.19 545.90 
TI HCHs 330.58 45.38 413.76 77.74 151.79 
TI Chlors 2564.95 462.63 3273.96 286.39 1299.68 
TI Endos 2184.35 441.03 1755.21 105.46 1044.57 
TI Pests 18249. 16 5801.48 16878.51 2497.06 8260.68 
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Melon Data In nglg Wet Wt. 

Animal 10 , 9221 9224 9225 9226 9308 9309 9314 

Upid Wt% 82.55 83.55 86.55 81.2 83.5 87 .4 
PCBs: 
pcb-28 182.02 119.39 80.46 140.22 150.41 68.65 
pcb-52 4758.98 4517.58 229.55 2786.81 1363.44 1234.19 
pcb-81 2118.00 686.57 87.40 1068.60 405.42 594.35 
pcb-I 01 1267.22 639.39 215.31 904.18 892.32 195.97 
pcb-17 129.26 98.83 56.31 85.28 102.73 41.06 
pcb-123 330.96 413.02 31.89 147.63 650.03 89.71 
pcb-118 1506.16 497.16 194.61 630.41 596.31 538.93 
pcb-114 3541.05 2154.13 1039.06 2810.19 1823.28 1451.92 
pcb-126 3252.43 4588.51 2425.89 3236.39 2131.44 2573.31 
pcb-I 05 1115.02 641 .86 155.51 219.28 226.97 326.80 
pcb-138 3611.73 3190.13 1017.60 1883.14 1217.16 1914.25 
pcb-158 417.70 364.21 113.29 486.03 102.42 130.62 
pcb-153 74.12 17.52 nd 114.80 42.26 159.41 
pcb-166 82.62 26.12 8.65 44.36 8.55 46 .71 
pcb-128 1139.14 745.92 194.07 486.60 116.39 324.12 
pcb-167 241.20 187.57 116.92 195.11 91.18 123.09 
pcb-156 199.14 173.82 85.51 100.81 56.77 81.25 
pcb-157 70.09 56.13 40.42 63.42 12.95 62.48 
pcb-180 2086.91 1162.22 175.73 1941.13 396.11 1632.92 
pcb-169 nd 7.26 0.41 nd 3.91 65.85 
pcb-110 604.82 704.37 433.60 307.44 168.34 358.86 
pcb-189 32.11 29.36 15.30 29.05 4 .63 18.17 

Sum PC8s 26887.88 21087 .67 7322.66 17142.14 10563.69 12693.22 . 
Pesticides: 
a-bhc 94.64 82.85 27.12 40.61 93.87 5.98 
hcb 1952.31 1378.29 42.64 387.13 774.73 107.77 
b-bhc 164.28 134.21 5.43 111.56 33.74 22.72 
lind 307.14 213.09 36.74 112.08 198.33 48.82 
d-bhc 2.28 3.48 nd 1.54 2.43 nd 
hept 202.31 249.64 11.33 18.45 nd 23.81 
aldr 48.53 103.67 10.21 16.94 28.40 34.12 
hept e 1208.97 645.22 44 .58 807.57 260.62 367.92 
y-ehlor 226.Q1 214.69 62.38 105.35 76.76 92 .48 
op dde 1624.78 2188.95 409.55 456.83 813.68 583.03 
endo I 88.66 104.60 5.17 56.31 32.65 31.01 
a-ehlor 2120.93 1342.15 523.37 1057.67 391.94 908.22 
dield 7890.91 16.77 316.66 884.57 549.28 909.41 . 
pp dde 3404.48 3775.08 2821.02 2181.80 1758.92 3842.33 
op ddd 478.19 623 .25 . 10.23 350.19 118.17 82.80' 
endr 119.64 896.01 316.59 708.06 423.41 386.01 
endo II 2519.69 2175.28 335.95 801.48 375.86 366.05 
pp ddd 2661.47 1991.29 454.94 1565.05 862.71 841.44 
op ddt 736.90 533.67 nd 39.33 115.92 205.42 
endr aid 213.58 695.30 60.28 407.33 69 .68 94.65 
endo ss 829.58 813.82 264.30 518.38 227.72 364.41 
pp ddt 1338.12 881.45 230.23 479.93 204.10 239.94 

TI DOTs 10249.94 9893.69 3991 .97 , 5679.12 3813.52 5194.98 
TI Cyclos 8932.66 1711.16 103.14 2016.89 1010.16 1424.24 
TI HCHs 568.94 493.64 69.29 211.19 328.31 17.52 
TI Chlors 3158.28 2451 .70 641.66 2049.05 729.31 1392.43 
TI Endos 3431.93 3153.10 605.42 1376.17 636.23 161.47 
TI Pests 28900.01 19082.18 6054.12 11840.16 1412.92 9558.40 
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110 , 

Upid Wt% 
,PCBs: 

,pcb-l0l 
pc )-11 

pc)-123 
pc)-118 
pcb-114 
pcb-126 
pcb-l05 
pcb-138 

pcb-153 
pcb-166 
pcb-128 
pcb-167 
pcb-156 
pcb-157 
pcb-180 

Ipcb-169 
Ipcb-170 
IPCb-1B9 

Sum PC8s 

a-bhc 
hcb 
b-bhc 
Hnd 
Id-bhc 
lhept 
laldr 
lhept e 

lop dje 

iendo I 

Idield 
ipp dde 
opddd 
endr 
endo II 
ppddd 
op ddt 
endr aid 
endo ss 
pp ddt 

TI DOTs 
TI Cyclos 
T/HCHs 
TI Chlors 
TI Endos 
TI Pests 

Melon Data In nglg Wet Wt. 

9401 9417 9509 9514 9621 9625 

76 84.1 79.15 89.85 84.6 ii,,,,, 
110.41 321.14 41.55 

1011.03 
97.56 

168.92 
1 ;4 

;4 
14 

305.70 
201.12 

'4 ?? 

'1 .05 
3.09 

120.81 
98.62 

504.12 
12.94 

2.43 
155.42 
149.31 

45.90 
0.00 

3145.57 

29.79 
75.54 

3.23 
73.53 
nd 
nd 

1.43 
1: .05 

. 22 
7.28 

33.31 
183.27 
175.25 

"n 
13.16 
40.79 
47 .84 

21: .93 

5.10 
J.97 

1413.27 

101> ~~ 

13.54 
'6.25 

,1 

781.48 
365.16 489.15 

261 .84 
95.9 255.02 

1 312.22 
318.97 

1 16n.54 
883.51 3228.74 

56.68 145.14 

3: I.l 
41,., 

5.38 
107.66 

36.48 
38.84 
17 .12 

391.8 
1.03 

129.94 
5.28 

78 

77.85 

45. 

7.2' 
46.8; 
24.26 

1117.81 
16.9: 

1837.1 
116.3 
183.0 

941 .03 
nd 
47. 

237. 
294.! 

1331.63 

!3:1.85 
151 .10 
50.99 

324.17 
99.12 
49.63 

1530.78 

716.62 
36.29 

6.40 
149.50 

15.02 

nd 
9.36 

17.78 
289.71 

44.58 
453.10 

42.98 
501.20 

2458.72 
3047.79 

111.55 
640.74 
~R" 4' 

1666.18 

133.76 

6290.72 

">R: an 66.36 
...... R" 

1280.61 1036.11 
8512.76 11470.14 

90 

92.57 
867 .80 
554.87 
801 .24 

73.41 
16 ;.5 

273 
106! . 78 

230.79 
,...,., ?? 

12 .71 
10 • . 17 

3 .. 77 

736.78 
112. 14 

22. ;4 
961.:'6 

10.84 

312.95 7 92 
2356.74 44i.99 

151.52 
nd 

Ti'i.02 
l' 
1786.37 

216.38 

,tv'I .. ? 

11.53 

85.68 
62.89 
18.08 

421.69 
51.46 

213.00 
6.74 

551.32 
18.64 

11 

33.27 
..no 

41 
21 
16.69 
56.51 
37.79 
nd 

9 .47 

1127.38 
106.95 

-S .19 

11603.57 10705.96 

9 .71 

11.6j 
4: .4~ 

1.3! 
17.72 
12.95 

1811.9( 

3! 
1. , ., 

2470.12 
TI2. 16 

805.87 

19.47 
74. 

67 .19 
109! .71 
1 : 

142.95 
1110.78 

73.95 

2.46 
90.34 
55.92 

507.21 
147.76 
637.42 

617.40 
?nQ? .... 

195.35 
!47.04 

947.06 
1538.31 

32.49 
?tv'I "n 

1120.87 
603.78 

1 : 
l:,in 

10713.46 

32.40 
?'>'> 

!2. 
'5,' 

nd 
18.86 
13.88 

321 . ,2 
26 . 
14.1 

2. 

171 .34 
l"QQ '> 

nd 
46.76 
79.79 

3061.68 
328.10 

1'0 "" 
803.4£ 
192.7( 
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Blubber Data In nglg Lipid Wt. 

AnlmallD /I 9012 9104 9108 9115 9118 9212 9215 

Ullid Wt% 49.65 57.6 42.7 41.6 65.5 75.4 69.4 
PCBs: 
pcb-28 40.10 180.58 455.06 72.26 139.63 118.50 69.81 
pcb-52 1848.58 2313.45 1171.53 121.09 2715.16 207.44 855.59 
pcb-81 1382.52 793.33 554.82 90.86 1329.12 140.87 744.58 
pcb-101 549.67 491 .29 807.59 123.98 881.53 275.41 467.96 
pcb-77 289.12 36.71 118.58 3.49 26.36 42.07 110.41 
pcb-123 871.52 81.24 83.03 nd 202.54 53.26 794.32 
pcb-118 578.11 920.27 394.73 49.87 1389.06 66.11 984.43 
pcb-114 6781.93 2434.51 1124.12 317.27 3359.33 631.26 1905.34 . 
pcb-126 8204.29 2145.01 1217.78 373.12 3575.63 726.57 2793.16 
pcb-l05 516.48 328.07 157.76 0.50 502.61 59.84 378.82 
pcb-138 4399.38 1907.12 769.91 364.94 2679.47 369.92 1974.95 
pcb-158 537.76 191.31 74.56 42.08 454.76 16.87 283.42 
pcb-153 792.08 59.18 56.29 nd 156.86 65.31 309.45 
pcb-166 81.45 9.86 7.43 1.97 33.32 4.55 23.40 
pcb-128 1033.76 348.97 85.20 21.58 710.82 61.21 299.95 
pcb-167 210.01 181.73 4.68 182.12 200.78 34.30 143.66 
pcb-156 74.24 157.68 43.95 20.96 272.56 34.36 142.26 
pcb-157 213.68 58.10 20.81 7.19 87.17 8.16 53.53 
pcb-180 4295.96 894.56 596.90 471.81 1823.40 346.23 1179.98 
pcb-169 172.85 521.83 1.90 106.04 7.32 0.00 5.61 
pcb-170 1976.66 326.80 197.76 203.79 694.23 94.34 981.60 
pcb-189 58.07 15.73 4.96 nd 40.45 4.70 24.41 

Sum PCBs 34908.10 14396.32 7949.34 2574.93 21280.90 3360.28 14526.64 
Pesticides: 
a-bhc 53.62 120.96 91.44 6.21 93.23 50.50 26.92 
hcb 510.90 872.32 478.68 103.58 1076.43 135.10 219.60 
b-bhc 39.50 51.84 24.24 7.14 56.50 11.32 12.91 
lind 95.73 190.19 148.82 nd 222 .75 60.B5 69.58 
d-bhc nd 7.96 2.00 nd 4.37 4.71 nd 
hept 78.21 79.24 91 .21 nd 95.91 31.17 32.72 
ald. 42 .28 48 .15 26.19 0.92 30.07 22.02 24.42 
hepte 1758.91 865.83 448.12 26.78 1048.65 88.79 314.11 
y-chlor 133.88 86.85 53.67 172.75 133.04 36.71 53.39 
opdde 1564.05 669.63 402.57 34.10 1017.71 104.43 419.39 
endo I 295.69 29.37 22.74 nd 44.68 6.71 8.21 
a-chlor 4.00 1124.89 624.77 117.96 2483.47 199.88 1005.59 
dield 6980.68 6.00 2427.53 23.61 4308.02 787.97 1227.43 
ppdde 7412.99 3281.19 3622.50 698.20 4373.75 816.94 3134.72 
opddd 1073.39 200.51 198.53 9.70 317 .39 33.27 195.67 
end. 1449.55 649.60 225.46 73.00 551 .49 84.45 91.53 
endo II 1863.62 643.52 599.10 80.23 1044.99 138.14 646.20 
pp ddd 2638.67 1329.28 658.59 90.00 1933.76 196.50 545.97 
op ddt 1809.28 687.71 8.82 3.98 795.03 265.34 2713.58 
endr aid 1145.22 48.66 8.30 nd 87 .60 9.47 71.61 
endo ss 4 .03 334.60 224.58 20.77 635 .72 81.16 236.21 
ppddt 615.85 284.90 200.97 55.71 1212.76 79.69 192.69 

TI DOTs 15114.24 6353.219 5091.984 891.6901 9650.393 1496.155 7202.025 
TI Cyclos 9617.72 752.41 2687.49 97.54 4977 .18 903.91 1414.98 
TI HCHs 188.84 370.94 266.50 13.36 376.84 127.38 109.42 
TI Chlors 1975.00 2156.81 1217.77 317.49 3761 .07 356.54 1405.82 
TI Endos 2163.24 1007.50 846.42 101.00 1725.39 226.00 890.63 
TI Pests 29569.94 11513.19 10588.85 1524.65 21567 .31 3245.09 11242.48 
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Blubber Data in nglg Upid Wt. 

'-""'~""~.I~ ID~~9221 9224 9225 9226 9308 93099314 
'Upid Wt% ~3=:;7;:;;6.95~=~ 55, .. 395 =:::::;: 46 .. ;;'15~=7~8 .. 7'l==:;::::64 .. 6~5==7::=1-5 
PCBs: 

Ipcb-2 497.01 ~ .95 88.82 196.57 188.04 ~Qll 7n lfi1:54 
Ipcb-5 22972. 11 " M . " 91 1 "7 
Ipcb-8 ~771jO. 391.64 117 
I pcb-I 01 1 74 1 679 .44 102~. 

IPCb-77 1 6: 9.81 65.1 45.5l 18.72 
IPCb-123 281 .34 159.33 1 23.52 301.75 6.00 
Ipcb-l1 41;~Q '~93.58 1261.91 
[pcb-n 32815.0 34'~1 il .dn?~ '4 24 il.67 7".li4 'QQ"''' 
IPCb-121 5 3647.5: 'Q'" 
I pcb-I 05 5147.0 R6.5 295.11 1. 0 
IPCb-138 30216.06 4 525191 " 11.69 
IPCb-158 2982.75 633.70 64.12 441.60 66 .24 69.13 
IPCb-l ,3 828.18 0 .00 ...", .. "4 23 .20 47.05 
Ipcb-l :6 207.81 41 14.53 28.15 01 7 .96 
Ipcb-18 91' 107.90 14: 0: 160.15 
Ipcb-167 2771 .80 23( 1 414.03 I" 40 34.81 
Ipcb-156 l' 52.06 141 .07 64.38 15.95 
Ipcb-157 501 .5' 23.84 97.36 29.89 11.4< 
[pcb-180 .... ...", 23'il 870.17 3167.7956 277~4: 
IPCb-169 0.0' o. -6.00 0.0< 
IPCb-170 7'i2 .! 1245.55 127.59 
IPCb-189 56.26 26.02 38.97 7 .48 0.00 

Sum PCBs 203186.26 30112.23 ]7RI;.... 26875.22 8118.34 

a-bhc 
hcb 
b-bhc 
lind 
d-bhc 
hept 
aldr 
hepte 

375.20 
18 

437.01 
94. 19 

104.77 
351 .26 

95.85 , .. ' 
19.51 57.85 
25.43 592.36 

3.64 34.77 
34.13 133.66 

5.58 8.74 
34.43 198.92 

111.56 
843.71 

26 .29 
241; .15 

.91 
111 •. 73 

64.81 

16.04 
100.40 

6.13 

13.40 46.25 31 .68 
46 .29 879.49 435.71 248.02 

215.10 
499~14 

2432 

231 .62 
195.69 
92.91 

2374.27 
0.00 

56.08 

"" 
35.1.1 

23.57 
1M>"'" 

nd 
3 1.84 
41.06 

3373.36 
724.2! 

251 
109.1 

1178.04 
127.90 56.63 118.75 11.72 211:21 

op dde 
endo I 

dield 
pp dde 
opddd 
endr 
endo II 
pp ddd 
op ddt 
endr aid 
endoss 
ppddt 

TI DOTs 
TI Cyclos 
TI HCHs 
TI Chlors 
TI Endos 
TI Pests 

7798.9: 
36.6: 

7077.81 

61016.2! 
151: :.~ 

5531 .4~ 

78111.37 
111 

11 ) . 12 
'2 

12l 30 
4627.49 
6419.59 

411 .47 

12, Kl.55 
3412.82 

91.89 
i2 

881 12011 .63 
14066.77 

1201 .14 413.32 
11280.28 'Ao;o; QA 

10705.97 1955.73 
128325.03 24735.01 
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104.! 779.39 427.71 1521.4! 
2. 33.86 29.91 

187.' 1086.79 1306.7! 
1038.70 4719.72 1143.76 
1678.91 9146.28 1917 .72 

41.74 248.34 11' .~ 

70.97 I""" -247. 

1 13 
41:7.60 

3100.47 
1912.41 

10:1.99 17 .42 
235.88 1916.15 760.72 .. R .. ,.. 

351.64 58.14 612.66 718.07 
22.63 168.01 .70 8! .20 
56.86 ,,..':tQ ,,':t I! .67 74..34 

216.93 665.31 2, ,.15 ' .37 

477.81 
1412.26 

4" ':t' 
207M> 

17 12813.62 4075.375 3181.343 6810.56 
1145.70 3403.21 3131.37 

62.87 387 .90 187.37 " 
"R'> Q" ,nn.. )7 . 14 24115:1"2 

163.55 1~'" .. ,,,~~ Ii> 12.19 ""iii: 
"HlAn '7 9311 . 19 8:)1 14 13802.87 



Blubber Data In nglg Upid Wt. 

AnimallD# 9401 9417 9509 9514 9621 9625 

Upid Wt% 53.2 65 62.2 53.25 64.25 0.75 
PCBs: 
pcb-28 230.74 389.89 86.77 134.94 407.25 497.66 
pcb-52 269.85 1023.73 1540.05 1544.38 3098.28 1741.28 
pcb-81 253.21 326.46 921.36 617.39 1110.41 296.73 
pcb-I 01 491.51 897.60 417.73 707.33 1341.39 221.90 
pcb-77 27.63 170.98 204.45 151.01 283.94 nd 
pcb-123 39.93 62.72 788.01 150.85 371.79 100.91 
pcb-118 466.81 376.24 547.19 701.43 1091.82 nd 
pcb-114 1281.93 1112.08 2540.64 2561.85 2052.70 1339.97 
pcb-126 731. I I 1188.40 3822.80 3162.56 2665.50 2629.07 
pcb-I 05 53.48 171.05 644.46 407.66 308.49 nd 
pcb-138 947.61 853.51 3739.49 2728.67 1267.78 696.90 
pcb-158 24.68 58.73 337.56 224.49 130.12 nd 
pcb-153 16.96 72.33 770.42 266.41 nd nd 
pcb-166 4.67 15.59 99.66 25.37 22.47 nd 
pcb-128 55.04 122.62 595.59 585.58 310.82 nd 
pcb-167 44.68 61.63 102.73 223.43 112.96 nd 
pcb-166 37.01 73.19 37.53 I I 9.26 98.14 nd 
pcb-157 13.40 24.03 134.23 48.69 47.79 nd 
pcb-180 485.18 684.41 1724.07 2745.49 1149.51 923.15 
pcb-169 24.64 nd 73.10 22.26 nd 1342.57 
pcb-170 84.77 173.91 1038.11 513.35 438.37 46.13 
pcb-189 7.27 6.25 30.27 25.34 15.98 nd 

Sum PC8s 5582.07 7865.37 20196.23 17667.77 16325.51 9836.26 
Pesticides: 
a-bhc 66.48 101.75 7.49 12.03 146.70 371 .17 
hcb 214.34 685.02 283.32 318.22 1463.96 5089.40 
b-bhc 7.82 13.41 8.61 9.37 49.51 282.47 
lind 122.64 289.89 43.29 52.63 375.29 0.00 
d-bhc 11.21 1.60 0.00 1.52 2.22 437.20 
hept 34.23 2.40 0.00 6.41 19.03 0 .00 
aid, 19.05 33.79 39.91 15.92 93.13 187.35 
hepte 202.09 277.99 368.83 320.98 925.72 0.00 
y-chlo, 76.21 127.90 108.68 62.85 178.63 1008.66 
op dde 369.51 946.64 944.87 942.17 1027.41 191.14 
endo I 0.00 15.58 26.49 0.00 12.58 0 .00 
a-chlor 573.61 640.41 1166.53 977.81 1968.84 457.80 
dield 1631.44 2058.65 3858.09 5718.10 6321.38 1410.33 
ppdde 2066.24 1721.72 5629.79 11.27 3609.04 6193.73 
opddd 87.21 164.18 344.97 233.08 333.15 0.00 
end, 120.49 88.09 918.47 136.56 404.88 0.00 
endo II 263.74 395.76 674.68 607.56 1476.78 844.56 
pp ddd 617 .89 754.62 1243.84 1339.86 1501.68 256.00 
op ddt 2204.26 0.00 441.45 58.17 66.07 0.00 
end, aid 0 .00 36.84 356.71 338.52 53.23 0.00 
endo S8 158.90 137.93 534.39 288.67 334.72 0.00 
ppddt I 19.74 259.64 290.28 530.95 342.28 680.40 

TI DOTs 5464.842 3846.794 8895.207 3115.505 6779.638 7321.27 
TI Cyclos 1770.98 2217.37 5173.18 6209.10 6872.62 1597.68 
TI HCHs 208.16 406.65 59.39 75.55 573.71 1090.85 
TI Chlors 886.14 1048.70 1644.04 1368.04 3092.22 1466.46 
TI Endos 422.64 549.28 1235.56 896.22 1824.07 844.56 
TI Pests 8967.11 8753.81 17290.69 I I 982.65 20606.22 17410.22 
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Melon Data in nglg Lipid Wt. 

AnimallD # 9012 9104 9108 9115 9118 9212 9215 

Lipid Wt% 86.80 89.55 74.6 70.25 79.2 
PCBs: 
pcb-28 215.18 41.11 87.98 157.73 68.45 
pcb-52 2617.63 103.52 3698.16 278.90 913.25 
pcb-81 1266.39 45.92 1684.86 128.60 332.37 
pcb-l0l 1305.22 154.16 1421.27 328.82 908.10 
pcb-77 196.72 57.78 87.99 211.26 nd 
pcb-123 382.00 224.48 46.61 65.00 1235.41 
pcb-118 1230.48 194.51 789.34 134.14 497.16 
pcb-114 2204.24 1102.34 3632.99 637.82 1985.34 
pcb-126 2393.43 3776.79 3569.31 500.44 2434.68 
pcb-l05 382.96 61.98 258.10 43.99 348.82 
pcb-138 1969.15 2530.61 2300.45 554.14 1868.72 
pcb-158 210.12 103.39 261.34 35.43 131.87 
pcb-153 217.92 120.28 9.69 56.87 nd 
pcb-166 31.37 146.98 42.96 4.50 8.60 
pcb-128 515.34 243.16 406.09 48.78 483.16 
pcb-167 224.27 104.50 270.00 149.65 158.31 
pcb-156 211.40 65.48 123.20 42.69 154.27 
pcb-157 73.74 33.55 61.77 11.90 32.15 
pcb-180 1379.74 2004.17 1299.82 233.35 1383.34 
pcb-169 nd 3.30 2.05 nd nd 
pcb-170 378.77 797.89 472.70 93.74 593.92 
pcb-189 22.36 25.97 16.29 4.59 21.04 

Sum PC8s 17428.42 11941.85 20542.96 3722.34 13558.98 
Pesticides: 
a-bhc 107.35 15.26 126.83 25.85 41.71 
hcb 1046.27 22.32 818.42 155.30 436.13 
b-bhc 79.34 4.12 115.79 10.62 57.40 
lind 193.75 23.64 310.83 71.30 92.55 
d-bhc 0.41 7.66 1.19 2.89 nd 
hept 74.88 nd 110.35 39.47 31.27 
aldr 53.48 14.64 56.57 8.68 26.27 
hepte 703.92 35.06 964.95 149.73 416.83 
y-chlor 135.82 49.51 196.34 16.37 75.35 
op dde 1692.06 212.70 1789.52 86.67 834.47 
endo I 14.77 nd 94.72 2.36 86.84 
a-chlor 2040.39 432.04 3117.03 202.11 1117.55 
dield 3558.85 716.34 3314.58 450.99 169.05 
pp dde 4617.41 3775.87 5023.93 1275.64 2428.84 
op ddd 484.65 47.56 422.38 43.18 205.27 
endr 407.32 137.45 525.71 145.86 419.97 
endo II 2002.75 332.70 1235.31 115.83 1021.12 
pp ddd 1597.85 195.77 1994.14 180.05 626.63 
op ddt 1014.15 23.35 99.00 455.83 1624.91 
endr aId 150.31 33.17 197.15 16.82 73.99 
endo ss 499.02 159.79 1022.80 31.93 210.94 
pp ddt 549.64 239.51 1087.81 67.05 433.06 

TI DOTs 9955.76 4494.77 10416.78 2108.43 6153.19 
TI Cyclos 4169.96 901.61 4094.00 622.34 689.27 
TI HCHs 380.85 50.68 554.64 110.67 191.65 
TI Chlors 2955.01 516.62 4388.67 407.68 1641.01 
TI Endos 2516.54 492.49 2352.83 150.12 1318.90 
TI Pests 21024.38 6478.49 22625.35 3554.54 10430.16 
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Melon Data in nglg Lipid Wt. 

AnimallD fI 9221 9224 9225 9226 9308 9309 9314 

Upid Wt'l6 82.55 83.55 86.55 81 .2 83.5 87.4 
PCBs: 
pcb-28 220.50 142.89 92.96 172.68 180.14 78.54 
pcb-52 5764.97 5407.03 265.22 3432.04 1632.86 1412.12 
pcb-81 2565.71 821.75 100.98 1316.00 485.54 680.03 
pcb-l0l 1535.09 765.28 248.77 1114.27 1068.65 910.72 
pcb-77 156.58 118.29 63.90 105.03 123.03 46.98 
pcb-123 400.93 494.34 43.78 181.81 778.48 102.64 
pcb-118 1824.54 696.03 224.92 776.36 714.16 616.63 
pcb-114 4289.68 2578.97 1200.54 3460.82 2183.57 1661.23 
pcb-126 3939.95 5491.94 2802.87 3985.70 2552.62 2944.29 
pcb-l05 1423.41 776.42 179.67 270.05 271.82 373.91 
pcb-138 4375.20 3818.23 1175.74 2319.88 1458.39 2258.87 
pcb-158 578.68 435.92 130.90 598.56 122.66 149.45 
pcb-153 90.52 92.79 nd 215.27 50.61 182.39 
pcb-166 100.08 31.26 9.99 54.63 10.24 53.44 
pcb-128 1379.94 892.78 224.23 599.27 139.39 370.85 
pcb-167 299.45 224.49 135.09 240.36 109.20 140.83 
pcb-156 241.24 208.04 98.87 124.15 67.99 92.96 
pcb-157 84.91 67.18 46.71 78.10 15.51 71.49 
pcb-180 2528.06 1391.05 896.28 2390.55 474.45 1868.33 
pcb-169 nd 8 .69 0.54 nd 4.68 75.34 
pcb-170 732.67 843.05 600.98 378.62 201.61 410.60 
pcb-189 39.62 35.15 17.68 35.77 5.54 21.47 

Sum PCBs 32571.63 25239.58 8460.62 21849.92 12651.12 14523.13 
Pesticides: 
8-bhc 114.65 99.17 31.33 50.02 112.42 6.84 
hcb 2365.01 1649.66 49.26 476.76 927.82 123.31 
b-bhc 199.01 160.64 6.28 144.78 40.41 25.99 
lind 372.80 326.86 42.45 138.03 237.52 55.85 
d-bhc 2.76 4 .16 nd 1.89 2.91 nd 
hept 245.15 298.79 13.09 96.62 nd 27.24 
aldr 58.78 124.08 11.80 94.75 34.01 39.04 
hepte 1464.53 772.26 51.51 994.55 312.11 420.96 
y-clllor 273.79 256.95 72.08 129.74 91 .92 105.82 
op dde 1968.24 2619.93 473.19 562.60 974.47 667.08 
endo I 107.40 125.19 5.97 69.35 39.10 35.49 
a-chlor 2569.26 1606.40 604.70 1302.55 469.39 1039.15 
dield 955B.96 20.08 365.87 1089.37 657.83 1040.51 
pp dde 4124.14 4618.36 3266.34 3433.25 2106.49 4396.26 
opddd 579.28 626.27 81.15 431.27 141.63 94.74 
endr 871.77 1072.43 365.79 871.99 507.07 441.72 
endo II 3052.32 2603.57 388.16 987.04 450.13 418.82 
ppddd 3231.34 2383.36 525.63 1927.40 1033.19 962.75 
op ddt B92.67 638.75 nd 4B.44 138.83 235.04 
endr aid 331.41 832.20 69.65 501.64 83.44 108.29 
endo 55 1004.94 1046.86 305.38 638.40 272.71 416.94 
pp ddt 1620.98 1055.00 266.01 591.04 244.43 274.54 

TI DOTs 12416.64 11841 .64 4612.33 6993.99 4638.94 6630.41 
TI Cyclos 10820.91 204B.79 813.11 2557.75 1282.35 1629.57 
TI HCHs 689.21 590.83 80.06 334.72 393.26 88.69 
TI Chlors 4552.73 2934.41 741.37 2523.46 873.43 1593.17 
TI Endos 4164.67 3774.62 699.50 1694.79 761.96 871.25 
TI Pests 35009.17 22839.95 6995.63 14581.48 8877.76 10936.39 
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Melon Data In nglg lipid Wt. 

AnimallD II 9401 9417 9509 9514 9621' 9625 

lipid Wt% 76 84.1 79.16 89.85 84.6 82.65 
PCBs: 
pclt-28 145.28 381.86 52.50 103.02 369.92 91 .85 
pclt-52 270.50 929.22 1277.36 965.83 2785.74 542.03 
pcb·81 128.37 434.20 618.00 617.55 484.43 398.07 
pclt-101 222.26 574.21 330.81 891.76 1178.00 667.06 
pcb·77 20.68 114.06 322.20 81.70 179.10 22.55 
pclt-123 40.32 164.46 470.27 184.25 nd 7.17 
pcb·118 126.51 461.84 403.00 627.49 918.46 301.19 
pclt-114 770.97 1461.83 2119.44 3040.48 1949.67 1824.96 
pcb·126 402.23 1050.54 4079.27 1186.18 2111.55 1119.47 
pclt-l05 264.64 67 .39 183.38 256.86 255.77 40.25 
pcb·138 295.03 860.03 2553.30 1483.83 951.46 733.25 
pclt-158 14.54 45.99 295.46 141.02 119.1 7 60.24 
pcb·153 4 .07 55.05 462.44 121.50 52.01 31.19 
pclt-166 158.97 6.40 64.42 35.36 13.62 20.20 
pclt-128 129.76 128.00 626.73 367.22 269 .89 67.17 
pclt-167 663.31 43.37 409.57 820.02 101.28 45.72 
pclt-156 17.03 46.18 125.23 125.03 74.34 0.00 
pclt-157 3.20 20.36 62.71 25 .08 21.37 11.46 
pclt-180 204.50 465.96 1934.03 1070.62 498.45 434.44 
pcb·169 196.46 1.22 8725.27 395.77 60.83 1364.04 
pcb·170 60.39 154.51 905.39 361.75 251.78 129.40 
pclt-189 nd 6.28 45.84 12.07 7 .97 7.48 

St.m PCBs 4138.90 7472.98 26056.61 12914.38 12654.80 7919.18 
Pesticides: 
a-bhc 39.20 92.57 8.09 10.81 168.97 39.21 
hcb 99.39 649.64 188.88 156,01 1312.98 283.01 
It-bhc 4.25 53.72 18.97 15.20 87.41 26.65 
lind 96.75 300.36 56.77 48.38 454.40 90.91 
d-bhc nd 8 .65 nd 0 .39 2 .91 nd 
hept nd 54.54 11.83 19.72 106.78 22.82 
aldr 11.09 28.85 22.47 14.41 66.1 0 16.79 
hepte 173.75 248.61 366.03 210.24 599.53 389.01 
y-ehlor 89.76 173.43 56.32 95.59 174.65 31.99 
op dele 49.05 1329.21 572.46 397.61 753.45 17.17 
endo I 43.83 20.11 54.30 153.19 40.77 3.09 
a-ehlor 241 .15 313.53 633.23 893.98 1210.02 528.30 
dield 230.69 1280.20 3106.40 2235.93 729.79 207.31 
pp dde 1125.79 2184.45 3850.65 2749.94 2473.22 2056.09 
op ddd 17.31 138.34 260.86 125.61 230.91 35.99 
end. 53.67 217.68 393.62 233.38 292.01 172.88 
endo II 62.95 1220.37 809.53 896.91 1119.46 173.50 
ppddd 297 .81 1118.95 737.10 949.59 1818.34 267.70 
op ddt 281.49 nd 2105.09 21.66 38.40 1230.91 
end. aid nd 56.66 372.14 83.26 237.00 nd 
endo ss 125.14 282.12 445.22 314.86 383.97 56.58 
pp ddt 88.12 350.22 421.69 432.97 362.58 96.53 

TI DOTs 1859.57 6121.16 7947.86 4677.37 5676.89 3704.40 
TI Cyclos 295.35 1583.39 3894.63 2566.98 1324.90 396.98 
TI HCHs 140.19 455.29 83.84 74.78 713.69 156.76 

JL~!"ors 504.66 790.11 1067.41 1219.54 2090.99 972.1 2 
TI Endos 231.91 1522.60 1309.04 1364.94 1544.20 233.16 
TI Pests 3131.07 10122.19 14491.64 10059.61 12663.66 5746.42 
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To: 
Ms. Kathleen M. Kuss 
451 Avenida De Mayo 
Sarasota 
FL34242 
U.S.A. 

From: 
Dr. Shinsuke Tanabe 

EHI:\IE t'~I\'ERSITY 

COLLEGE OF AGRICULTURE 

Professor of Environmental Chemistry and Ecotoxicology 
Department of Environment Conservation 
Ehime University 
Tarumi 3-5-7, Matsuyama 790 
JAPAN 

:; TARC:-'ll. 

:-'lAT::'l'YA:-' t..\ :-~O . .1:\1'.-\:\ 

TELE!'IIO:'\E _ ___ _ 

Feb. 16, 1998 

TEL/FAX: +81-899-46-9904 E-mail: shinsuke@agr.ehime~u.ac .jp 

Dear Ms. Kathleen; 

Thank you for your letter dated 2 Feb., 1998. I am pleased to inform you that 
you may reproduce of our any figure and table for use in your thesis and defence 
presentation. Thank you for your interests to our research. 

Sincerely yours, 

-~tc4 
(S. Tanabe) 
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January 23, 1998 

Kathleen M. Kuss 
Mote Marine Laboratory 
1600 Ken Thompson Parkway 
Sarasota, FL 34236 

Dear Kathleen Kuss: 

~ 
WWF 

Thank you very much for your letter of January 19, 1998. I write to inform you that Dr. Colborn 
has given her consent for the reproduction of material you requested from her article, 
"Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife & Humans" published in 
the Environmental & Health Perspectives Journal vol. 101, no. 5,1993. 

We hope that this information will add great credibility to your research. Good Luck in your 
studies. 

Si~~ely. 

CifJj'~' l ,,, , . ~ ., ,£\' 

C. Percival- eigh 
Administrative Assistant. 

World Wildlife Fund 
1250 Twenty·Fourth St" NW Washington. DC 20037·1175 USA 

Tel, (202) 293·4800 Fa., (202) 293·9211 
Affiliated with World Wide Fundfor Nature 
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