

Nova Southeastern University NSUWorks

HCNSO Student Theses and Dissertations

HCNSO Student Work

1-1-2007

Comparison of Fish Assemblages between Mitigation Boulder Reef and Neighboring Natural Hardbottom in Broward County, Florida, USA

Jessica A. Freeman Nova Southeastern University

Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the <u>Marine Biology Commons</u>, and the <u>Oceanography and Atmospheric Sciences and</u> <u>Meteorology Commons</u>

Share Feedback About This Item

NSUWorks Citation

Jessica A. Freeman. 2007. Comparison of Fish Assemblages between Mitigation Boulder Reef and Neighboring Natural Hardbottom in Broward County, Florida, USA. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (266) https://nsuworks.nova.edu/occ_stuetd/266.

This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER

Comparison of Fish Assemblages between Mitigation Boulder Reef and Neighboring Natural Hardbottom in Broward County, Florida, USA

By

Jessica A. Freeman

Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with specialty in:

Marine Biology

Nova Southeastern University 2007

Master of Science

Marine Biology

Thesis of

JESSICA A. FREEMAN

Approved Thesis Committee

Major Professor: _____

Richard E. Spieler, Ph.D. Nova Southeastern University Oceanographic Center

Committee Member: _

Paul T. Arena, Ph.D. Nova Southeastern University Farquhar College of Arts and Sciences

Committee Member: _____

Robin L. Sherman, Ph.D. Nova Southeastern University Farquhar College of Arts and Sciences

I. Abstract

A beach renourishment project was initiated in May 2005 and completed in February 2006 to restore 11.1 km of shoreline in Broward County, Florida, USA. For mitigation of predicted nearshore hardbottom burial, a boulder reef totaling 3.6 ha was deployed in 2003. To examine the replacement value of the mitigation relative to fishes, this study compared fish assemblages on boulder reef to those on adjacent natural hardbottom. Twenty-five natural hardbottom sites and twenty-five boulder reef sites were surveyed six times between March 2005 and August 2007. Two non-destructive visual census methods, a transect count (30 m long x 2 m wide x 1 m high) and a 20 minute rover diver count (approximately 30 m x 30 m), were conducted at each site to assess abundance and species richness. On transect counts, 7,117 fishes of 96 species were counted on natural hardbottom, while 11,769 fishes of 119 species were counted on boulder reef. Across both survey types, a total of 271 species was recorded. Significant differences among reef fish assemblages were found in both abundance and species richness (p<0.05, ANOVA). In addition, a plot of Bray-Curtis similarity indices indicated differences in fish assemblage structure between natural hardbottom and boulder reef within all individual years. Natural hardbottom exhibited higher densities of newly settled (<2 cm TL) *Haemulon* spp., while boulder reef showed higher densities of early juvenile (2-5 cm TL) Haemulon spp. Boulder reef also had a higher abundance of fishes greater than 5 cm and piscivorous fishes in general. While boulder reef may provide a suitable habitat for many fishes, it does not mimic natural hardbottom-associated fish assemblages, nor does it provide a similar nursery habitat for juvenile fishes.

II. Acknowledgements

This thesis would not have been possible without the help and support of many people. I would like to thank my committee members Drs. Richard Spieler, Paul Arena, and Robin Sherman for all their valuable help, comments, and suggestions throughout this process. I especially thank Richard for giving me a job in the ichthyology lab. I've been lucky enough to go on many great research trips through this job, and have gained great experience and true appreciation working with fish while traveling to Akumal, Puerto Morelos, St. Croix, and Veracruz.

I would also like to thank the fish lab for all of their hard work collecting data for this project. There were many early mornings, long days, and even weekends spent out on the water to make sure that the surveys were completed on time. Many people over the years have helped with these fish counts: Paul Arena, Bethany Basten, David Bryan, Lance Jordan, Kirk Kilfoyle, Danielle Morley, Pat Quinn, and Richard Spieler. Special thanks goes out to Pat for getting this project going and doing a lot of the leg work to make sure everything ran smoothly.

Finally, I would like to thank my family and friends for always supporting me through this degree. Even when I told my parents I was going to move 1,000 miles away from home, they showed me love and support to follow my dreams. It has been a wonderful three years here at the OC and I will leave here with many great memories and friends.

III. Table of Contents

I.	Abstract	i
II.	Acknowledgements	. ii
III.	Table of Contents	iii
IV.	List of Figures	. v
V.	List of Tables	ix
1.0 I	ntroduction	. 1
	1.1 Background	. 1
	1.2 Natural Reef	. 3
	1.3 Artificial Reef	. 7
	1.4 Statement of Purpose	. 7
	1	
2.0 N	Aaterials and Methods	. 8
	2.1 Background	. 9
	2.2 Transect Counts	. 9
	2.3 Rover Diver Counts	12
	2.4 Statistics	13
3.0 H	Results	14
	3.1 By Year and Across All Years	14
	3.1.1 June 2004	14
	3.1.2 August 2004	18
	3.1.3 March 2005	20
	3.1.4 August 2005	24
	3.1.5 August 2006	27
	3.1.6 August 2007	31
	3.1.7 Across All Surveys	37
	3.2 Temporal Variation	41
	3.2.1 Seasonal Variation	41
	3.2.2 Yearly Colonization	41
	3.3 Predator Effects	49
	3.3.1 Size Classes	49
	3.3.2 Predators and Juveniles	55
	3 3 3 Juvenile Fishes	58
		50
4.0 I	Discussion	60
5.0 (Conclusion	68
6.0 I	Literature Cited	70

Appendix A	Fish species recorded on all transects by total count (T) and the number	
	of occurrences seen (O) on both the natural hardbottom (N) and the	
	mitigation boulders (B)	75
Appendix B	Fish species recorded on rover diver counts for all years with the	
	number of occurrences seen on both the natural hardbottom (N) and	
	the mitigation boulders (B)	84
Appendix C	GPS coordinates of natural hardbottom and mitigation boulder	
	transects	95
Appendix D	Fishes present on all transect surveys (both natural hardbottom	
	and mitigation boulder combined) classified according to trophic level.	
	BC=benthic carnivore, C=cleaner, H=herbivore, O=omnivore,	
	Pi=piscivore, and Pl=planktivore	98

IV. List of Figures

Figure 1.	Monitored beach restoration/nourishment projects in Florida. The Broward
	County Beach Renourishment Project (Segment III) beaches are located
D ' 0	in the Hollywood/Hallandale area. From Wang <i>et al.</i> , 2005
Figure 2.	View of the Broward County coastline (a). The red square in (a) is
	enlarged in (c), showing the LIDAR bathymetry in greater detail. The black
	line through (c) shows the location of the bathymetric profile illustrated in
	(b). Modified from Gilliam, 2007
Figure 3.	Laser Airborne Depth Sounding (LADS) image showing the 25 artificial
	reef transects (blue) and the 25 natural reef transects (yellow) surveyed 10
Figure 4.	Layout of transect and rover diver counts at a typical site
Figure 5.	Mean abundance of fishes (June 2004) on the natural hardbottom (N)
	versus the mitigation boulders (B) without and with rugosity
	standardization. The asterisk indicates a significant difference (p<0.05:
	ANOVA; SNK) in abundance between bars of the same color
Figure 6.	Mean species richness of fishes (June 2004) on the natural hardbottom (N)
	versus the mitigation boulders (B) without and with rugosity
	standardization. The asterisks indicate significant differences (p<0.05:
	ANOVA; SNK) in species richness between bars of the same color 15
Figure 7.	MDS plot (June 2004) of Bray-Curtis similarity indices for the natural
	hardbottom (N) and the mitigation boulders (B) not standardized for
F' 0	rugosity
Figure 8.	MDS plot (June 2004) of Bray-Curtis similarity indices for the natural
F' 0	hardbottom (N) and the mitigation boulders (B) standardized for rugosity \dots 17
Figure 9.	Mean abundance of fishes (August 2004) on the natural hardbottom (N)
	versus the mitigation boulders (B) without and with rugosity
Eigung 10	Standardization
Figure 10.	(N) versus the mitigation haulders (R) without and with magnitude
	(N) versus the initigation bounders (B) without and with rugosity standardization. The estavisks indicate significant differences $(n < 0.05)$
	ANOVA: SNK) in spacing richness between bers of the same color 10
Figure 11	MDS plot (August 2004) of Bray Curtis similarity indices for the natural
Figure 11.	hardbottom (N) and the mitigation boulders (B) not standardized for
	rugosity 21
Figure 12	MDS plot (August 2004) of Bray Curtis similarity indices for the natural
riguit 12.	hardbottom (N) and the mitigation boulders (B) standardized for rugosity 21
Figure 13	Mean abundance of fishes (March 2005) on the natural hardbottom (N)
I iguie 15.	versus the mitigation boulders (B) without and with rugosity
	standardization 22
Figure 14	Mean species richness of fishes (March 2005) on the natural hardbottom
1 16010 14.	(N) versus the mitigation boulders (B) without and with rugosity
	standardization. The asterisks indicate significant differences ($n < 0.05$)
	ANOVA: SNK) in species richness between bars of the same color
	The other shows between burs of the sume color

Figure 15.	MDS plot (March 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity	25
Figure 16.	MDS plot (March 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity 2	25
Figure 17.	Mean abundance of fishes (August 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in abundance between bars of the same color	26
Figure 18.	Mean species richness of fishes (August 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in species richness between bars of the same color	26
Figure 19.	MDS plot (August 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity	28
Figure 20.	MDS plot (August 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity 2	28
Figure 21.	Mean abundance of fishes (August 2006) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in abundance between bars of the same color	29
Figure 22.	Mean species richness of fishes (August 2006) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color	30
Figure 23.	MDS plot (August 2006) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity. The oval indicates a second cluster within the natural hardbottom	32
Figure 24.	MDS plot (August 2006) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity. The oval indicates a second cluster within the natural hardbottom	32
Figure 25.	Mean abundance of fishes (August 2007) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization	33
Figure 26.	Mean species richness of fishes (August 2007) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in species richness between bars of the same color	33
Figure 27.	Mean abundance of fishes (August 2007) minus grunts <5 cm TL on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in abundance between bars of the same color	34

Figure 28.	MDS plot (August 2007) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for
	rugosity. The circle indicates a second cluster within the natural
	hardbottom
Figure 29.	MDS plot (August 2007) of Bray-Curtis similarity indices for the natural
0	hardbottom (N) and the mitigation boulders (B) standardized for rugosity.
	The circle indicates a second cluster within the natural hardbottom
Figure 30.	Mean abundance of fishes (across all surveys) on the natural hardbottom
U	(N) versus the mitigation boulders (B) without and with rugosity
	standardization. The asterisks indicate significant differences (p<0.05:
	ANOVA; SNK) in abundance between bars of the same color
Figure 31.	Mean species richness of fishes (across all surveys) on the natural
•	hardbottom (N) versus the mitigation boulders (B) without and with
	rugosity standardization. The asterisks indicate significant differences
	(p<0.05: ANOVA; SNK) in species richness between bars of the same
	color
Figure 32.	MDS plot (across all surveys) of Bray-Curtis similarity indices for the
	natural hardbottom (N) and the mitigation boulders (B) not standardized
	for rugosity
Figure 33.	MDS plot (across all surveys) of Bray-Curtis similarity indices for the
	natural hardbottom (N) and the mitigation boulders (B) standardized for
	rugosity
Figure 34.	Abundance of fishes on natural hardbottom (a) and mitigation boulder (b)
	transects across all surveys by trophic level. BC=benthic carnivore,
	C=cleaner, H=herbivore, O=omnivore, Pi=piscivore, and Pl=planktivore 42
Figure 35.	MDS plot of abundance values by month on natural hardbottom transects 43
Figure 36.	MDS plot of abundance values by month on mitigation boulder transects 43
Figure 37.	MDS plot of natural hardbottom transects by year, August only
Figure 38 .	MDS plot of mitigation boulder transects by year, August only
Figure 39.	Percentage of juvenile fishes present on mitigation boulder transects by
Eiguna 40	Year
Figure 40.	mitigation houlder (P) transacts across all surveys. Newmon Kouls
	initigation bounder (D) transects across an surveys. New main-Keuis grouping letters that are the same are not significantly different $(p > 0.05) = 50$
Figure 41	Mean abundance of fishes 2-5 cm TL on natural hardbottom (N) and
I iguit +1.	mitigation boulder (B) transects across all surveys Newman-Keuls
	grouping letters that are the same are not significantly different $(n>0.05)$ 50
Figure 42	Mean abundance of fishes ≤ 5 cm TL on natural hardbottom (N) and
1 iguie +2.	mitigation boulder (B) transects across all surveys Newman-Keuls
	grouping letters that are the same are not significantly different $(p>0.05)$ 51
Figure 43.	Mean abundance of fishes 5-10 cm TL on natural hardbottom (N) and
i iguio isi	mitigation boulder (B) transects across all surveys. Newman-Keuls
	grouping letters that are the same are not significantly different $(p>0.05)$
Figure 44.	Mean abundance of fishes 10-20 cm TL on natural hardbottom (N) and
	mitigation boulder (B) transects across all surveys. Newman-Keuls
	grouping letters that are the same are not significantly different (p>0.05) 53

Figure 45.	Mean abundance of fishes 20-30 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls	
	grouping letters that are the same are not significantly different (p>0.05)	54
Figure 46.	Mean abundance of fishes 30-50 cm TL on natural hardbottom (N) and	
	mitigation boulder (B) transects across all surveys	54
Figure 47.	Mean abundance of fishes >50 cm TL on natural hardbottom (N) and	
	mitigation boulder (B) transects across all surveys	55
Figure 48.	Abundance of adult and juvenile fishes on natural hardbottom (N) and	
	mitigation boulder (B) transects across all surveys	59
Figure 49.	Abundance of juveniles <2 cm in length during August 2007 on natural	
•	hardbottom (N) and mitigation boulder (B) transects	59
Figure 50.	Abundance of juveniles 2-5 cm in length during August 2007 on natural	
-	hardbottom (N) and mitigation boulder (B) transects	60
Figure 50.	hardbottom (N) and mitigation boulder (B) transects Abundance of juveniles 2-5 cm in length during August 2007 on natural hardbottom (N) and mitigation boulder (B) transects	59 60

V. List of Tables

Table 1.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for June 2004 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 76.57%	16
Table 2.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for August 2004 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 69.38%	. 20
Table 3.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for March 2005 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 85.68%	. 23
Table 4.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for August 2005 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 76.67%	. 27
Table 5.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for August 2006 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 78.46%	. 31
Table 6.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species for August 2007 between the natural hardbottom (N) and the	
	mitigation boulders (B). The average dissimilarity was 77.03%	. 35
Table 7.	SIMPER analysis of dissimilarity showing the percent contribution of	
	each species across all surveys between the natural hardbottom (N) and	
	the mitigation boulders (B). The average dissimilarity was 77.02%	. 38
Table 8.	SIMPER analysis of dissimilarity showing species contributing the top	
	fifty percent to the dissimilarity between August 2004, 2005, 2006, and	
	2007 on the natural hardbottom (N)	. 45
Table 9.	SIMPER analysis of dissimilarity showing species contributing the top	
	forty percent to the dissimilarity between August 2004, 2005, 2006, and	
	2007 on the mitigation boulders (B).	. 47
Table 10.	Abundance of predators on August 2007natural hardbottom transects by	
	size class, common name, and scientific name	. 56
Table 11.	Abundance of predators on August 2007 mitigation boulder transects by	
	size class, common name, and scientific name	. 56
Table 12.	Total number of occurrences of predators noted on natural hardbottom	
	rover diver surveys during August 2007	. 57
Table 13.	Total number of occurrences of predators noted on mitigation boulder	
	rover diver surveys during August 2007	. 58

1.0 Introduction

1.1 Background

Beaches are the leading tourist destination in the United States, with seventy-five percent of those with summer travel plans including a visit to a beach (Houston, 2002). Beach tourism contributes \$39.2 billion to Florida's state economy (Murley et al., 2005), and reef-related activities, such as fishing, diving, and snorkeling, also provide large amounts of revenue to the state. Between June 2000 and May 2001, visitors to southeast Florida spent over \$1.8 billion on these reef-related activities. This helped create over 35,000 full-time and part-time jobs in Broward County during the same time period (Johns et al., 2003). To ensure continued benefits of this tourism, Florida spends an average of \$20-40 million a year maintaining its beaches (Finkl, 1996), while larger amounts are spent on beach renourishment projects. Beach renourishment is the process of adding sand to a location where the natural shoreline has eroded. Although renourishment is expensive, the economic return is high. For example, between 1980 and 1982, a 16.9 km section of Miami Beach was renourished with dredged sand at a cost of \$80 million (Pilkey et al., 1984; Silberman and Klock, 1988). Renourishment, in turn, was correlated with an increase in attendance from eight million visitors in 1978 to 21 million visitors in 1983 (Frohling, 1985). Beach erosion, therefore, is a prime concern to both the Nation's beach tourism industry and local economies.

Beaches are constantly eroding due to poorly designed coastal defense structures (i.e. seawalls, jetties, groin fields), as well as by hurricanes and other natural processes which constantly change the shoreline (Silberman and Klock, 1988). Currently, there are more than 50 active beach renourishment projects being monitored in the state of Florida dating back to 1989, with about 25% of those renourished beaches occurring in Palm Beach, Broward, and Miami-Dade counties (Finkl *et al.*, 1988; Wang *et al.*, 2005) (Figure 1). The decision regarding when to undergo this expensive process is determined

Figure 1. Monitored beach restoration/nourishment projects in Florida. The Broward County Beach Renourishment Project (Segment III) beaches are located in the Hollywood/Hallandale area. From Wang *et al.*, 2005.

by weighing the pros and cons of beach renourishment. Positive aspects of beach renourishment include an increase in recreation and storm protection (Finkl *et al.*, 1988; Silberman and Klock, 1988); enhanced property values; increased sales, income, and employment (Murley *et al.*, 2005); as well as flood control and habitat for endangered species (Finkl, 1996).

However, there are also negative aspects of beach renourishment. Sand must be brought in from a borrow site and carefully placed onto the recipient beach. This process has the potential to negatively impact natural ecosystems at both sites. Nearshore habitat can become completely buried when additional sand is added, and increased sedimentation may occur as fill material is redistributed by natural processes to a more stable profile (National Research Council, 1995). A 1995 beach restoration project in Jupiter, FL, buried nearshore hardbottom habitat, reducing the number of fish species from 54 to 8 (Lindeman and Snyder, 1999). Broward County has been involved in shoreline protection, beach restoration, and beach sand management since the early 1960's to help combat the state of chronic erosion (USACOE and FDEP, 2005). Previous renourishment was conducted in John U. Lloyd State Park in 1976 and again in 1989, as well as in the Hollywood/Hallandale area in 1979 and 1991 (Murley et al., 2003). The current Broward County Beach Renourishment Project (Segment III) began during 2005 to restore 11.1 km of shoreline. This project aimed to restore beaches from the south jetty of Port Everglades and John U. Lloyd State Park through the Hollywood/Hallandale area. State agencies require that adverse effects of surface water activity be mitigated (Florida Statute 373.414(1)(b)). The success of one form of mitigation, boulder reef, is the focus of this study.

1.2 Natural Reef

The Florida reef tract is the northern boundary of existing hard and soft coral communities that extend from the Dry Tortugas northward through Palm Beach County, a distance of over 400 km (Goldberg, 1973; Marszalek *et al.*, 1977; Vare, 1991). The presence of this high-latitude tropical reef system is due in large part to the Florida Current. The Florida Current, a subsystem of the Gulf Stream, brings tropical water, as well as plankton and new recruits, to the reef and maintains significantly warmer water

than resident shelf water masses during the winter (Jaap, 1984). In southeast Florida from Miami-Dade through Palm Beach County, there are three parallel terraces, each separated by a sand channel, that make up the reef tract (Goldberg, 1973; Moyer *et al.*, 2003; Banks *et al.*, 2007; Walker *et al.*, in press) (Figure 2). This relic reef flourished during the

Figure 2. View of the Broward County coastline (a). The red square in (a) is enlarged in (c), showing the LIDAR bathymetry in greater detail. The black line through (c) shows the location of the bathymetric profile illustrated in (b). Modified from Gilliam, 2007.

Holocene Transgression, but no active reef-framework accumulation has occurred for the last 7,000 years (Lighty *et al.*, 1978). Further dating of the three separate terraces has shown that a true reef backstepping has occurred, as the outer terrace ceased accreting approximately 8,000 cal BP (calibrated ¹⁴C age before present), the middle terrace approximately 3,700 cal BP, and the inner terrace approximately 6,000 cal BP (Banks *et al.*, 2007). These three terraces, hereafter referred to as reefs, can be described as follows. At a water depth of approximately 16-18 m, the outer (third) reef forms (Goldberg, 1973;

Banks et al., 2007). This reef is a relict acroporid-framework reef (Lighty, 1977; Lighty et al., 1978; Toscano and Macintyre, 2003) with ledges 3-4 m in height (Goldberg, 1973). The outer reef can further be divided into four separate habitats: aggregated patch reef, spur and groove, linear reef, and deep colonized pavement (Walker *et al.*, in press). The middle (second) reef is in approximately 15 m of water 800 m offshore (Banks et al., 2007), with gorgonians and flat coral colonies forming vertical relief of 2-3 m (Goldberg, 1973). The inner (first) reef forms a well developed back reef approximately 100 m offshore (Goldberg, 1973). It is located in approximately 8 m of water and consists of an Acropora palmata framework (Banks et al., 2007). Further inshore is an area of colonized pavement that contains variable sand cover and rubble in many areas (Moyer et al., 2003; Walker et al., in press). This area, the nearshore habitat, is the focus of this study. It is composed primarily of beachrock and is well scoured by wave action, which often causes the area to be exposed to suspended sediments (Goldberg, 1973). Moyer et al. (2003) reexamined the nearshore habitat of Broward County, FL, using an acoustic sampling technique. They found the inner reef ridge complex to be dominated by encrusting zoanthids such as Palythoa caribaeorum, alcyonacean (soft) corals, and macroalgae (comprising 13%, 12%, and 16% total cover, respectively). This follows a trend for Caribbean reefs in general, showing that macroalgae has become the dominant benthic cover (Aronson and Precht, 2001). Nearshore reef consists of many small holes and crevices, which are valuable habitat for cryptic species and juvenile fishes (Vare, 1991). This area is also commonly used as a nursery ground for certain species of juvenile and small fishes (Lindeman and Snyder, 1999; Baron et al., 2004), providing protective niches, cavities, and food items (Kobluk, 1988). Many of these fishes undergo

ontogenetic shifts in habitat, and are able to move offshore to the second and/or third reefs as their ecological needs change (Werner and Gilliam, 1984; Lindeman *et al.*, 2000).

Previous studies of nearshore fishes in southeast Florida have been carried out in Broward County, Miami-Dade County, and Palm Beach County. Baron et al. (2004) characterized nearshore fish assemblages in Broward County and found that newly settled and early juveniles composed >84% of the nearshore fish community. Of these, >90% were haemulids (grunts). Haemulids are found in significantly higher abundance on nearshore reef as compared to outer reef (Jordan et al., 2004; Ferro et al., 2005), further denoting the importance of nearshore habitat. In Palm Beach County, a total of 118 fish species were observed on nearshore reefs (Vare, 1991). The three most abundant fishes were Abudefduf saxatilis (sergeant major), Diplodus holbrookii (spottail pinfish), and Stegastes variabilis (cocoa damselfish). The most frequently occurring family was again Haemulidae. Lindeman and Snyder (1999) also surveyed fish assemblages in Palm Beach County. They noted that early life stages (newly settled, early juvenile, and juvenile) represented >80% of individuals surveyed at three nearshore sites. The most abundant species were Haemulon parra (sailors choice), Diplodus argenteus (silver porgy), and Stegastes variabilis. Thanner et al. (2006) characterized fish assemblages at natural reef sites on the middle and outer reefs in Miami-Dade County. They used this data to compare assemblage structures on nearby prefabricated modules of limerock boulder artificial reefs. After five years of study, they found that fish assemblages on those particular natural and artificial reefs did not converge in similarity.

1.3 Artificial Reef

An artificial reef can be described as "a submerged structure placed on the seabed deliberately, to mimic some characteristics of natural reefs" (Jensen, 1997). The purpose of creating the artificial reef in Broward County was to mitigate for unavoidable damage that would be caused to natural hardbottom during the beach renourishment process. Using a mitigation ratio of 1.2:1, an artificial reef made of limestone boulders was created to mitigate for 3.1 ha of natural hardbottom predicted to be impacted by sand burial (Blankenship et al., 2003). Limestone boulders were chosen as suitable substrate due to their resemblance of natural reef substrate, as well as their stability in a turbulent nearshore environment (Blankenship et al., 2003). Sixty-six thousand tons of limestone boulders, averaging approximately 1.5 m in diameter, were obtained from a quarry in Freeport, Grand Bahama Island. The boulders were placed on sandy bottom in 4.5 m of water, adjacent to natural hardbottom where negative effects were anticipated. Using differential global positioning system (DGPS) for exact positioning, a single layer of boulders was deployed between June 2003 and September 2003. Upon completion of the project 8,000 limestone boulders totaling 3.6 ha were placed in three locations: Dania Beach, Hollywood Beach, and Hallandale Beach (Blankenship et al., 2003).

1.4 Statement of Purpose

The purpose of this study was to compare fish assemblages between natural nearshore hardbottom and artificial boulder reef in Broward County, Florida. The renourishment project has caused certain areas of nearshore habitat to become partially or completely buried throughout Broward County. In theory, the artificial boulder reef would mitigate for the buried environment by providing similar conditions and habitat as natural reef to which fish can recruit. By performing multiple fish inventories through time, I was able to monitor the effectiveness of an artificial boulder reef, relative to fishes, by comparing their assemblages to neighboring natural hardbottom. Fish assemblages have been shown to change on artificial reefs up to ten years after deployment (Relini *et al.*, 2002). Thus, an effective comparison requires multiple years of data acquisition. Data collected from natural hardbottom can also be compared to previous and future fish studies in Broward County to monitor changes in the fish community over time.

The objectives of this study were to examine the following questions: 1) Are there differences in species richness (the number of species) between the mitigation reef and the natural hardbottom? 2) Are there species-specific differences between the mitigation reef and the natural hardbottom? 3) Are there differences in fish abundance (the total number of fishes, all species combined) between the mitigation reef and the natural hardbottom? 4) Are there differences in fish assemblage structure (a measure of abundances of individual species) between the mitigation reef and the natural hardbottom? 5) Is the mitigation reef the correct size to replace the proposed covered natural hardbottom?

2.0 Materials and Methods

The experimental design consisted of examining fishes on 25 natural reef sites and 25 artificial reef sites using two non-destructive visual survey methods. All counts were completed within a specified month (March, June, or August) and were conducted when

visibility was greater than 5 m. Fish surveyors consisted of trained ichthyologists from Nova Southeastern University.

2.1 Background

Fish counts on natural nearshore hardbottom in Broward County, FL, were previously completed during June through August 2001. A total of 100 point-counts, 200 transect counts, and 98 rover diver counts were completed for approximately 30 km of shoreline. There was a transect count and either a point count or rover diver count completed for every 152 m of shoreline (Baron *et al.*, 2004). Twenty-five of the previously used 2001 study sites were used in this study as the natural hardbottom sites. Twenty-five new permanent sites were established on the mitigation boulder reef. Counts were completed during June 2004, August 2004, March 2005, August 2005, August 2006, and August 2007. Fishes were surveyed on both mitigation boulders and natural hardbottom. Twenty-five transect counts and 25 rover diver counts were completed on the natural hardbottom each census period (Figure 3). DGPS was used to maintain site consistency from year to year (Appendix C).

2.2 Transect Counts

For transect counts, a 30 m tape was stretched from a specific DGPS site, heading west to east. The start and end points were established by Coastal Planning & Engineering (CPE). The SCUBA diver swam above the transect, recording all fish within 1 m to either side and 1 m above the line (Figure 4). Fish species, abundance, and total length (TL) (by size class: <2, 2-5, 5-10, 10-20, 20-30, 30-50 and >50 cm) were recorded.

Figure 3. Laser Airborne Depth Sounding (LADS) image showing the 25 artificial reef transects (blue) and the 25 natural reef transects (yellow) surveyed.

Figure 3 (cont'd). Laser Airborne Depth Sounding (LADS) image showing the 25 artificial reef transects (blue) and the 25 natural reef transects (yellow) surveyed.

Figure 4. Layout of transect and rover diver counts at a typical site.

The diver carried a 1 m "T"- bar, with size classes marked off, to aid in estimating both transect width and total length (TL) of fishes. Areas covering greater than 3 m of continuous sand were also noted. Transect counts took approximately 10 minutes to complete, but were not time delimited. Upon completion of the fish count, a tape measure was contoured closely to the substrate, giving an approximate measure of rugosity (tape distance/30 m).

2.3 Rover Diver Counts

Rover diver counts consisted of a diver recording all fish species encountered during a 20 minute interval, giving an estimation of total species richness. The boundary of the survey area included the line used in the transect count as a southern boundary, a 30 m line stretched from the eastern end of the transect line due north, and the western edge of the natural hardbottom (Figure 4). This essentially created a 30 m square in which the rover count was performed. The rover diver was encouraged to look wherever he or she pleased to encounter the maximum number of species.

2.4 Statistics

Fish counts on nearshore natural hardbottom and mitigation boulder reef were conducted in June 2004, August 2004, March 2005, August 2005, August 2006, and August 2007. Data from all fish counts were entered into separate MS Excel files. For transect data, total fish abundance (of each size class and all size classes combined) and total fish per count were subjected to statistical analysis (Statistica, StatSoft Inc., Tulsa, OK, USA). Standardization for rugosity was accomplished by dividing the 30 m transect abundance and species richness data by the rugosity index (rugosity/30). Data were tested for normality and equal variances to determine whether transformations were needed. Abundance data exhibited a heteroscedastic, non-normal distribution, and was $\log_{10}(x+1)$ transformed to meet assumptions of the analysis of variance (ANOVA). Species richness data demonstrated a normal distribution and were analyzed without transformation. For analysis among individual years, a one-way parametric ANOVA was performed. For analysis comparing data across years, a two-way parametric ANOVA was performed between year and reef (natural vs. boulder). A p-value of <0.05 was accepted as a significant difference. A post hoc Student-Newman-Keuls (SNK) test was used to determine the differences among means if significant differences were found within an ANOVA.

Multivariate statistical analyses were performed using the Plymouth Routines in Multivariate Ecological Research statistical package (Primer, v6). Bray-Curtis similarity indices were used to construct non-metric multi-dimensional scaling (MDS) plots from fourth-root transformed abundance data. Analysis of similarity (ANOSIM) tests and similarity percentage (SIMPER) analysis of dissimilarity were used to test for individual species differences among sites (Clarke and Warwick, 2001).

Fishes were also compared according to trophic level on natural hardbottom and mitigation boulder transect data across all years. The following categories were used to classify fishes: BC=benthic carnivore, C=cleaner, H=herbivore, O=omnivore, Pi=piscivore, and Pl=planktivore (Randall, 1967; Froese and Pauly, 2007).

3.0 Results

3.1 By Year and Across All Years

3.1.1 June 2004

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 1,166 fishes of 45 species. Juvenile and small cryptic species (\leq 5 cm TL) accounted for 70.3% of total fish abundance. Mean abundance \pm standard error of the mean (SEM) was 46.6 \pm 12.1 (Figure 5) and mean number of species (richness) was 8.76 \pm 0.8 (Figure 6). Juvenile haemulids accounted for 45.5% of total fish abundance. On the boulder reef a total of 1,809 fishes comprising 64 species were recorded. Juvenile and small cryptic species (\leq 5 cm TL) accounted for 41.8% of total fish abundance. Mean abundance \pm SEM was 72.4 \pm 12.6 (Figure 5) and mean species richness was 17.4 \pm 0.8

Figure 5. Mean abundance of fishes (June 2004) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in abundance between bars of the same color.

June 2004 Species Richness

Figure 6. Mean species richness of fishes (June 2004) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

(Figure 6). Juvenile haemulids accounted for 16.9% of total fish abundance. Both mean abundance and mean species richness showed significant differences between natural reef and mitigation boulders (p<0.005, p<0.0002; respectively).

If rugosity is taken into account, mean fish abundance is no longer significantly different (Mean \pm SEM: 48.7 \pm 8.0 versus 44.3 \pm 11.5, p>0.05) (Figure 5), while mean species richness remains greater on the 30 m transects on the boulder reef compared to the natural hardbottom (Mean \pm SEM: 11.9 \pm 0.5 versus 8.3 \pm 0.8, p<0.0004) (Figure 6), while). SIMPER analysis of dissimilarity indicated the two assemblages had an average 77% dissimilarity (Table 1). Juvenile *Haemulon* spp. contributed most to the total

Table 1. SIMPER analysis of dissimilarity showing the percent contribution of each species for June 2004 between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 76.57%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.75	1.34	7.26	7.26
Anisotremus virginicus	0.23	1.52	5.69	12.95
Thalassoma bifasciatum	0.32	1.40	5.36	18.31
Haemulon aurolineatum	0.31	1.28	5.17	23.48
Halichoeres bivittatus	1.85	1.27	4.44	27.92
Acanthurus bahianus	0.13	1.13	4.39	32.31
Abudefduf saxatilis	0.24	1.10	4.31	36.62
Haemulon plumierii	0.00	1.02	4.30	40.92
Lutjanus synagris	0.30	0.94	3.47	44.39
Archosargus rhomboidalis	0.00	0.81	3.37	47.77
Carangoides ruber	0.06	0.84	3.30	51.07

dissimilarity (7%). An MDS plot of Bray-Curtis similarity indices showed a clear distinction between natural hardbottom and mitigation boulder assemblages (Figure 7). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 8).

Figure 7. MDS plot (June 2004) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity.

Figure 8. MDS plot (June 2004) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity.

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 76 species from 36 families. Mitigation boulders yielded 98 species from 38 families.

3.1.2 August 2004

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 1,409 fishes of 48 species. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 59.0% of total fish abundance. Mean abundance \pm SEM was 56.4 \pm 5.6 (Figure 9) and mean number of species (richness) was 10.7 \pm 0.5 (Figure 10). Juvenile haemulids accounted for 13.9% of total fish abundance. On the boulder reef a total of 1,973 fishes comprising 56 species were recorded. Juveniles and small cryptic

August 2004 Abundance

Figure 9. Mean abundance of fishes (August 2004) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization.

Figure 10. Mean species richness of fishes (August 2004) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

species ($\leq 5 \text{ cm TL}$) accounted for 31.0% of total fish abundance. Mean abundance \pm SEM was 78.9 \pm 8.4 (Figure 9) and mean species richness was 18.5 \pm 0.9 (Figure 10). Juvenile haemulids accounted for 5.6% of total fish abundance. Mean species richness was greater on the mitigation boulders compared to the natural reefs (p<0.0001), while mean abundance showed no significant difference between the two locations (p>0.05).

If rugosity is taken into account, mean fish abundance remains not significantly different (Mean \pm SEM: 53.6 \pm 5.4 versus 53.7 \pm 5.2, p>0.05) (Figure 9), while mean species richness remains significantly greater on the 30 m transects on the boulder reef compared to the natural hardbottom (Mean \pm SEM: 12.7 \pm 0.6 versus 10.2 \pm 0.5, p<0.002) (Figure 10). SIMPER analysis of dissimilarity indicated the two assemblages had an average 69% dissimilarity (Table 2). *Haemulon aurolineatum* (tomtate) and

Table 2. SIMPER analysis of dissimilarity showing the percent contribution of each species for August 2004 between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 69.38%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon aurolineatum	0.92	2.39	7.59	7.59
Carangoides ruber	0.00	1.83	6.78	14.37
Haemulon spp.	1.04	0.86	5.00	19.37
Thalassoma bifasciatum	0.14	1.38	4.98	24.35
Lutjanus synagris	1.47	0.69	4.44	28.79
Acanthurus bahianus	0.10	1.24	4.35	33.14
Diplectrum formosum	1.07	0.25	3.68	36.82
Anisotremus virginicus	0.10	0.98	3.56	40.38
Haemulon flavolineatum	0.32	0.85	3.32	43.71
Haemulon plumierii	0.33	0.97	3.26	46.97
Sparisoma radians	0.91	0.74	3.17	50.14

Carangoides ruber (bar jack) contributed 7.6% and 6.8%, respectively, to the dissimilarity. An MDS plot of Bray-Curtis similarity indices showed a clear distinction between natural hardbottom and mitigation boulder assemblages (Figure 11). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 12).

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 81 species from 35 families. Mitigation boulders yielded 97 species from 36 families.

3.1.3 March 2005

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 538 fishes of 38 species. Juvenile and small cryptic species (\leq 5 cm TL) accounted for 79.0% of total fish abundance. Mean abundance \pm SEM was 21.5 \pm 6.4 (Figure 13) and mean number of species (richness) was 5.2 \pm 0.6 (Figure 14). Juvenile haemulids accounted for 52.6% of total fish abundance. On the boulder reef a

Figure 11. MDS plot (August 2004) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity.

Figure 12. MDS plot (August 2004) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity.

March 2005 Abundance

Figure 13. Mean abundance of fishes (March 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization.

March 2005 Species Richness

Figure 14. Mean species richness of fishes (March 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

total of 486 fishes comprising 57 species were recorded. Juvenile and small cryptic species (\leq 5 cm TL) accounted for 24.3% of total fish abundance. Mean abundance \pm SEM was 19.4 \pm 2.1 (Figure 13) and mean species richness was 10.9 \pm 0.9 (Figure 14). Juvenile haemulids accounted for 0.0% of total fish abundance. Mean abundance was not significantly different on the two reefs (p>0.05), while mean species richness was greater on the mitigation boulders compared to the natural reef (p<0.0002).

If rugosity is taken into account, mean fish abundance remains not significantly different (Mean \pm SEM: 13.1 \pm 1.3 versus 20.5 \pm 6.1, p>0.05), and mean species richness remains significantly greater on the 30 m transects on the boulder reef compared to the natural hardbottom (Mean \pm SEM: 7.4 \pm 0.5 versus 5.0 \pm 0.6, p<0.004) (Figure 14).

SIMPER analysis of dissimilarity indicated the two assemblages had an average

86% dissimilarity (Table 3). Anisotremus virginicus (porkfish), Acanthurus bahianus

Table 3. SIMPER analysis of dissimilarity showing the percent contribution of each species for March 2005 between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 85.68%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Anisotremus virginicus	0.11	0.84	6.58	6.58
Acanthurus bahianus	0.12	0.79	6.46	13.04
Halichoeres bivittatus	0.89	0.67	6.18	19.22
Haemulon spp.	0.74	0.00	4.68	23.9
Haemulon plumierii	0.06	0.60	4.31	28.21
Acanthurus chirurgus	0.52	0.32	4.22	32.43
Emblemaria pandionis	0.48	0.15	4.15	36.58
Haemulon aurolineatum	0.11	0.45	3.77	40.35
Parablennius marmoreus	0.28	0.37	3.75	44.10
Lutjanus synagris	0.00	0.53	3.74	47.84
Stegastes variabilis	0.23	0.44	3.55	51.39

(ocean surgeonfish), and *Halichoeres bivittatus* (slippery dick) each contributed about 6% to the dissimilarity. An MDS plot of Bray-Curtis similarity indices showed a clear

distinction between natural hardbottom and mitigation boulder assemblages (Figure 15). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 16).

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 68 species from 32 families. Mitigation boulders yielded 86 species from 33 families.

3.1.4 August 2005

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 917 fishes of 49 species. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 83.2% of total fish abundance. Mean abundance \pm SEM was 36.6 \pm 7.0 (Figure 17) and mean number of species (richness) was 9.4 \pm 0.8 (Figure 18). Juvenile haemulids accounted for 39.0% of total fish abundance. On the boulder reef a total of 1,677 fishes comprising 65 species were recorded. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 49.9% of total fish abundance. Mean abundance \pm SEM was 67.1 \pm 11.6 (Figure 17) and mean species richness was 15.0 \pm 0.8 (Figure 18). Juvenile haemulids accounted for 38.6% of total fish abundance. Both mean abundance and mean species richness were significantly greater on the mitigation boulders compared to the natural reefs (p<0.03, p<0.0002; respectively).

If rugosity is taken into account, both mean abundance and mean species richness are no longer significantly different on the 30 m natural hardbottom transects compared to the boulder reef (Mean \pm SEM: 35.2 \pm 6.7 versus 46.6 \pm 8.3, p>0.05; 9.1 \pm 0.8 versus 10.3 + 0.6, p>0.05; respectively) (Figures 17 and 18). SIMPER analysis of dissimilarity

Figure 15. MDS plot (March 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity.

Figure 16. MDS plot (March 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity.

August 2005 Abundance

Figure 17. Mean abundance of fishes (August 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in abundance between bars of the same color.

August 2005 Species Richness

Figure 18. Mean species richness of fishes (August 2005) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

indicated the two assemblages had an average 77% dissimilarity (Table 4). Juvenile *Haemulon* spp. contributed 9% to the dissimilarity, while *Haemulon aurolineatum* (tomtate) contributed 6%. An MDS plot of Bray-Curtis similarity indices showed a clear distinction between natural hardbottom and mitigation boulder assemblages (Figure 19). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 20).

Table 4. SIMPER analysis of dissimilarity showing the percent contribution of each species for August 2005 between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 76.67%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.61	1.79	8.95	8.95
Haemulon aurolineatum	0.03	1.24	5.80	14.75
Lutjanus synagris	1.54	0.67	5.39	20.14
Anisotremus virginicus	0.00	1.11	5.37	25.51
Haemulon plumierii	0.23	1.02	4.25	29.75
Halichoeres bivittatus	1.10	1.24	4.24	34.00
Acanthurus chirurgus	0.33	0.84	3.96	37.95
Acanthurus bahianus	0.40	0.79	3.74	41.70
Thalassoma bifasciatum	0.13	0.84	3.67	45.37
Haemulon flavolineatum	0.10	0.76	3.5	48.87
Stegastes variabilis	0.48	0.62	3.05	51.92

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 75 species from 31 families. Mitigation boulders yielded 92 species from 37 families.

3.1.5 August 2006

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 713 fishes of 45 species. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 80.8% of total fish abundance. Mean abundance <u>+</u> SEM was 36.9

Figure 19. MDS plot (August 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity.

Figure 20. MDS plot (August 2005) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity.

 \pm 9.2 (Figure 21) and mean number of species (richness) was 8.2 \pm 1.1 (Figure 22). Juvenile haemulids accounted for 20.6% of total fish abundance. On the boulder reef a total of 1,510 fishes comprising 63 species were recorded. Juvenile and small cryptic species (\leq 5 cm TL) accounted for 60.5% of total fish abundance. Mean abundance \pm SEM was 60.4 \pm 6.17 (Figure 21) and mean species richness was 16.6 \pm 0.8 (Figure 22). Juvenile haemulids accounted for 21.0% of total fish abundance. Both mean abundance and mean species richness were significantly greater on the mitigation boulders compared to the natural reefs (p<0.05, p<0.0002; respectively).

If rugosity is taken into account, both mean abundance and mean species richness remains significantly greater on the 30 m mitigation boulder transects compared to the

August 2006 Abundance

Figure 21. Mean abundance of fishes (August 2006) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in abundance between bars of the same color.

August 2006 Species Richness

Figure 22. Mean species richness of fishes (August 2006) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

natural hardbottom transects (Mean \pm SEM: 43.5 \pm 4.4 versus 35.8 \pm 9.0, p<0.006; 11.9 \pm 0.5 versus 7.9 \pm 1.0, p<0.002; respectively) (Figures 21 & 22).

SIMPER analysis of dissimilarity indicated the two assemblages had an average 78% dissimilarity (Table 5). Fishes from family Haemulidae contributed the first 20% to the dissimilarity (*Haemulon flavolineatum*, 7.0%; *Haemulon* spp., 6.4%; *Anisotremus virginicus*, 6.4%). An MDS plot of Bray-Curtis similarity indices showed a clear distinction between the natural hardbottom and mitigation boulder assemblages. It also showed a second cluster within the natural hardbottom assemblage, noting specific sites that had been partially to mostly buried by sand (Figure 23). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 24).

Table 5. SIMPER analysis of dissimilarity showing the percent contribution	of each
species for August 2006 between the natural hardbottom (N) and the mitigation	boulders
(B). The average dissimilarity was 78.46%.	

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon flavolineatum	0.07	1.51	6.98	6.98
Haemulon spp.	0.75	1.24	6.43	13.41
Anisotremus virginicus	0.08	1.43	6.38	19.79
Halichoeres bivittatus	1.17	1.67	5.60	25.39
Thalassoma bifasciatum	0.10	1.18	5.10	30.50
Abudefduf saxatilis	0.24	0.85	4.14	34.64
Haemulon plumierii	0.39	0.90	4.01	38.65
Stegastes variabilis	0.60	0.98	3.96	42.60
Lutjanus synagris	1.01	0.84	3.83	46.44
Stegastes leucostictus	0.48	0.84	3.80	50.24
Haemulon aurolineatum	0.31	0.67	3.65	53.88

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 80 species from 32 families. Mitigation boulders yielded 114 species from 39 families.

3.1.6 August 2007

Twenty-five transect counts were conducted on natural hardbottom and 25 transect counts were conducted on mitigation boulders. Natural hardbottom transect counts yielded a total of 2,374 fishes of 60 species. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 89.3% of total fish abundance. Mean abundance \pm SEM was 95.0 \pm 24.2 (Figure 25) and mean number of species (richness) was 11.8 \pm 1.3 (Figure 26). Juvenile haemulids accounted for 55.2% of total fish abundance. On boulder reef a total of 4,314 fishes comprising 68 species were recorded. Juvenile and small cryptic species (≤ 5 cm TL) accounted for 70.8% of total fish abundance. Mean abundance \pm SEM was 172.6 \pm 115.2 (Figure 25) and mean species richness was 16.9 \pm 0.7 (Figure 26). Juvenile

Figure 23. MDS plot (August 2006) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity. The oval indicates a second cluster within the natural hardbottom.

August 2006 - Standardized

Figure 24. MDS plot (August 2006) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity. The oval indicates a second cluster within the natural hardbottom.

Figure 25. Mean abundance of fishes (August 2007) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization.

August 2007 Species Richness

Figure 26. Mean species richness of fishes (August 2007) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

haemulids accounted for 48.6% of total fish abundance. Mean abundance was not significantly different (p>0.05), while mean species richness was significantly greater on the mitigation boulders compared to the natural reef (p<0.002). Due to high abundances and high variation of juvenile haemulids during this survey, a second analysis was performed after removing haemulids <5 cm TL. Abundance values became significantly different (42.6 \pm 5.6 on the natural reef vs. 88.7 \pm 35.5 on the boulder reef; p<0.03), while standardizing the data for rugosity showed no significant difference among abundance values (p>0.05) (Figure 27).

August 2007 Abundance Minus Grunts <5 cm TL

Figure 27. Mean abundance of fishes (August 2007) minus grunts <5 cm TL on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisk indicates a significant difference (p<0.05: ANOVA; SNK) in abundance between bars of the same color.

If rugosity is taken into account, mean species richness is no longer significantly different on the 30 m transects at the boulder reef compared to the natural hardbottom

 $(12.3 \pm 0.6 \text{ versus } 11.5 \pm 1.2, \text{ p>0.05}; \text{ respectively})$ (Figure 26). Mean abundance remains not significantly different at the mitigation boulders compared to the natural hardbottom (122.4 \pm 79.8 versus 92.6 \pm 23.7, p>0.05; respectively) (Figure 25).

SIMPER analysis of dissimilarity indicated the two assemblages had an average 77% dissimilarity (Table 6). Juvenile *Haemulon* spp. and *Thalassoma bifasciatum* (bluehead wrasse) each contributed about 7% to the dissimilarity. MDS plot of Bray-Curtis similarity indices showed a clear distinction between boulder and hardbottom assemblages. A second cluster is also seen on the natural hardbottom, indicating sites that had been partially to mostly covered by sand (Figure 28). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 29).

Table 6. SIMPER analysis of dissimilarity showing the percent contribution of each species for August 2007 between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 77.03%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon spp.	2.23	0.81	7.26	7.26
Thalassoma bifasciatum	0.49	2.03	6.72	13.97
Halichoeres bivittatus	2.19	1.41	4.97	18.94
Haemulon flavolineatum	0.28	1.42	4.87	23.81
Acanthurus bahianus	0.36	1.18	4.41	28.22
Anisotremus virginicus	0.14	1.03	3.76	31.98
Gerres cinereus	0.03	0.88	3.51	35.49
Acanthurus chirurgus	0.44	0.92	3.34	38.83
Haemulon aurolineatum	0.25	0.89	3.10	41.94
Lutjanus synagris	0.72	0.47	2.98	44.92
Acanthurus coeruleus	0.08	0.75	2.91	47.83
Malacoctenus macropus	0.91	0.06	2.83	50.66

Twenty-five rover diver counts were conducted on natural hardbottom and 25 rover diver counts were conducted on mitigation boulders. Natural hardbottom yielded 100 species from 37 families. Mitigation boulders yielded 104 species from 38 families.

Figure 28. MDS plot (August 2007) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity. The circle indicates a second cluster within the natural hardbottom.

Figure 29. MDS plot (August 2007) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity. The circle indicates a second cluster within the natural hardbottom.

3.1.7 Across All Surveys

A total of 150 transect counts and 150 rover diver counts were conducted on nearshore natural hardbottom, and 150 transect counts and 150 rover diver counts were conducted on mitigation boulders. A total of 7,117 fishes were counted on natural transects (77.8% juveniles), and 11,769 fishes were counted on boulder transects (53.5% juveniles). On natural hardbottom mean abundance \pm SEM was 47.4 \pm 5.3 (Figure 30) and mean number of species (richness) was 8.9 \pm 4.8 (Figure 31). Juvenile haemulids accounted for 39.7% of total fish abundance. On boulder reef mean abundance \pm SEM was 78.5 \pm 19.5 (Figure 30) and mean species richness was 15.9 \pm 4.8 (Figure 31). Juvenile haemulids accounted for 30.0% of total fish abundance. Both mean abundance and mean species richness were significantly greater on the mitigation boulders compared to the natural reef (p<0.00001, p<0.00001; respectively).

Abundance Across All Surveys

Figure 30. Mean abundance of fishes (across all surveys) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in abundance between bars of the same color.

Species Richness Across All Surveys

Figure 31. Mean species richness of fishes (across all surveys) on the natural hardbottom (N) versus the mitigation boulders (B) without and with rugosity standardization. The asterisks indicate significant differences (p<0.05: ANOVA; SNK) in species richness between bars of the same color.

If rugosity is taken into account, both mean abundance and mean species richness remain significantly different on the 30 m transects at the boulder reef compared to the natural hardbottom (Mean \pm SEM: 54.6 \pm 13.5 versus 45.7 \pm 5.1, p>0.02; 11.1 \pm 3.2 versus 8.6 \pm 4.6, p>0.00001; respectively) (Figures 30 & 31).

SIMPER analysis of dissimilarity indicated the two assemblages had an average 77% dissimilarity (Table 7). Juvenile *Haemulon* spp. contributed over 6% to the dissimilarity, while *Anisotremus virginicus* (porkfish) contributed over 5%. An MDS plot of Bray-Curtis similarity indices showed a clear distinction between boulder and hardbottom assemblages. (Figure 32). Re-running the MDS plot analysis to take rugosity into effect produced similar results (Figure 33).

Table 7. SIMPER analysis of dissimilarity showing the percent contribution of each species across all surveys between the natural hardbottom (N) and the mitigation boulders (B). The average dissimilarity was 77.02%.

Species	Group N Av.Abund	Group B Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.35	1.01	6.61	6.61
Anisotremus virginicus	0.13	1.15	5.28	11.89
Halichoeres bivittatus	1.59	1.37	4.80	16.69
Haemulon aurolineatum	0.32	1.15	4.79	21.48
Thalassoma bifasciatum	0.22	1.20	4.75	26.23
Acanthurus bahianus	0.19	1.00	4.55	30.78
Lutjanus synagris	0.84	0.69	3.98	34.76
Haemulon plumierii	0.23	0.86	3.78	38.54
Haemulon flavolineatum	0.13	0.83	3.51	42.05
Stegastes variabilis	0.68	0.75	3.17	45.23
Abudefduf saxatilis	0.30	0.60	3.11	48.33
Acanthurus chirurgus	0.37	0.60	3.06	51.39

Figure 32. MDS plot (across all surveys) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) not standardized for rugosity.

Figure 33. MDS plot (across all surveys) of Bray-Curtis similarity indices for the natural hardbottom (N) and the mitigation boulders (B) standardized for rugosity.

A total of 200 species were counted overall on rover diver surveys, 152 on the natural reef and 143 on the boulder reef. Additionally, 139 species were counted overall on transect surveys, 96 on the natural reef and 119 on the boulder reef. Grouped together, 271 different species were seen on all surveys.

Trophic assemblages were assigned to each species on both natural hardbottom and mitigation boulder transects (Appendix D). Natural hardbottom transects contained equal numbers of planktivores (primarily juvenile *Haemulon* spp.) and benthic carnivores (40%). Mitigation boulder transects had a higher percentage of benthic carnivores (47%) and contained only 31% planktivores. Herbivores (7% and 8%, respectively) and omnivores (11% and 9%, respectively) were present in similar abundances on natural hardbottom and mitigation boulder transects, while piscivores were present in larger numbers on boulder reef compared to natural hardbottom (5% vs. 2%, p>0.05; respectively) (Figure 34).

3.2 Temporal Variation

3.2.1 Seasonal Variation

Abundance values on natural hardbottom and boulder transects were analyzed across all years and compared by month. Multivariate examination of assemblage structure (MDS plot of Bray-Curtis similarity indices) showed a difference between March natural hardbottom transects, which form a distinct cluster, when compared to June and August natural hardbottom transects. June and August transects show some overlapping, but are not distinct (Figure 35). A similar picture emerges when comparing mitigation boulder transects by month. March transects again form a distinct cluster when compared to June and August mitigation boulder transects. There also appears to be more overlapping between June and August clusters when compared to the natural hardbottom MDS plot (Figure 36).

3.2.2 Yearly Colonization

Fish assemblage structures for August 2004-2007 data were compared. To observe yearly change on the natural reef, fish assemblages on August natural hardbottom transects were compared on a year-to-year basis. An MDS plot of Bray-Curtis similarity indices showed no distinct differences between sites across all years (Figure 37). SIMPER analysis showed low levels of similarities between the replicates themselves (Aug. 04 - 43%, Aug. 05 - 34%, Aug. 06 - 21%, and Aug. 07 - 29%), so further analysis was done using analysis of similarities (ANOSIM). Between August 2004 and August 2005, SIMPER analysis showed 66.8% dissimilarity (Table 8). Juvenile

Abundance of Fishes on Natural Hardbottom Transects Across All Surveys by Trophic Level

Figure 34. Abundance of fishes on natural hardbottom (a) and mitigation boulder (b) transects across all surveys by trophic level. BC=benthic carnivore, C=cleaner, H=herbivore, O=omnivore, Pi=piscivore, and Pl=planktivore.

Abundance of Fishes on Mitigation Boulder Transects Across All Surveys by Trophic Level

Figure 35. MDS plot of abundance values by month on natural hardbottom transects.

MDS Plot of Abundance Values by Month Mitigation Boulder Transects

Figure 36. MDS plot of abundance values by month on mitigation boulder transects.

MDS Plot of Natural Hardbottom Transects

Figure 37. MDS plot of natural hardbottom transects by year, August only.

Haemulon spp., *Halichoeres bivittatus* (slippery dick), and *Lutjanus synagris* (lane snapper) contributed almost 25% to the total dissimilarity (9.5%, 8.5%, and 6.0%, respectively). ANOSIM analysis showed an R-value of 0.253 between these two years, indicating that these two assemblages were barely distinguishable from one another. SIMPER analysis showed 76.0% dissimilarity on the natural hardbottom between August 2005 and August 2006 (Table 8). Again, ANOSIM showed a very low R-value (0.159), meaning that the assemblages between these two years were barely distinguishable or separable from one another. Three groups or species each contributed about 10% to the dissimilarity: Juvenile *Haemulon* spp. (10.9%); *Lutjanus synagris* (9.1%); and *Halichoeres bivittatus* (8.3%). From August 2006 to August 2007, natural hardbottom assemblages remained similar to one another (ANOSIM R=0.148), with SIMPER

Table 8. SIMPER analysis of dissimilarity showing species contributing the top fifty percent to the dissimilarity between August 2004, 2005, 2006, and 2007 on the natural hardbottom (N).

Groups Aug 04 N & Aug 05 N		Average dis	similarity = 6	6.76%
	Group Aug 04 N	Group Aug 05 N		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.04	1.61	9.48	9.48
Halichoeres bivittatus	2.31	1.10	8.51	17.99
Lutjanus synagris	1.47	1.54	6.02	24.01
Stegastes variabilis	1.20	0.48	5.97	29.98
Diplectrum formosum	1.07	0.56	5.41	35.39
Haemulon aurolineatum	0.92	0.03	5.19	40.57
Sparisoma radians	0.91	0.52	4.98	45.55
Stegastes leucostictus	0.71	0.28	3.82	49.37
Groups Aug 05 N & Aug 06 N		Average dis	similarity = 7	6.01%
	Group Aug 05 N	Group Aug 06 N		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.61	0.75	10.90	10.90
Lutjanus synagris	1.54	1.01	9.13	20.03
Halichoeres bivittatus	1.10	1.17	8.33	28.36
Diplectrum formosum	0.56	0.15	4.71	33.07
Ocyurus chrysurus	0.68	0.10	4.64	37.71
Stegastes variabilis	0.48	0.60	4.53	42.23
Sparisoma radians	0.52	0.25	4.07	46.30
Stegastes leucostictus	0.28	0.48	3.68	49.98
Groups Aug 06 N & Aug 07 N		Average dis	similarity = 7	8.92%
	Group	Group		
	Aug 06 N	Aug 07 N		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon spp.	0.75	2.23	10.31	10.31
Halichoeres bivittatus	1.17	2.19	9.55	19.86
Lutjanus synagris	1.01	0.72	7.17	27.02
Malacoctenus macropus	0.25	0.91	4.28	31.30
Coryphopterus glaucofraenum	0.40	0.76	4.11	35.40
Sparisoma radians	0.25	0.68	4.01	39.41
Stegastes variabilis	0.60	0.60	3.77	43.18
Stegastes leucostictus	0.48	0.55	3.71	46.90
Abudefduf saxatilis	0.24	0.43	2.86	49.75

analysis showing 78.9% dissimilarity (Table 8). Juvenile *Haemulon* spp. contributed most to the dissimilarity (10.3%).

To observe yearly colonization on the boulders, fish assemblages on August boulder transects were compared on a year-to-year basis. Multivariate examination of assemblage structure (MDS plot of Bray-Curtis similarity indices) showed a slight distinction of August 2004 transects. However, no additional distinctions could be made across other years (Figure 38). SIMPER analysis showed low levels of similarities

MDS Plot of Mitigation Boulder Transects August Only

Figure 38. MDS plot of mitigation boulder transects by year, August only.

between the replicates themselves (Aug. 04 - 51%, Aug. 05 - 40%, Aug. 06 - 44%, and Aug. 07 - 41%), so further analysis was done using analysis of similarities (ANOSIM). Between August 2004 and August 2005, SIMPER analysis showed 60.7% dissimilarity (Table 9). *Haemulon aurolineatum* (tomtate), *Haemulon* spp. (juvenile grunts), and

Table 9. SIMPER analysis of dissimilarity showing species contributing the top forty percent to the dissimilarity between August 2004, 2005, 2006, and 2007 on the mitigation boulders (B).

Groups Aug 04 B & Aug 05 B		Average dis	similarity = 6	0.72%
	Group	Group		
	Aug 04 B	Aug 05 B		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon aurolineatum	2.39	1.24	7.35	7.35
Haemulon spp.	0.86	1.79	7.27	14.62
Carangoides ruber	1.83	0.15	7.00	21.62
Acanthurus bahianus	1.24	0.79	3.84	25.46
Thalassoma bifasciatum	1.38	0.84	3.83	29.29
Haemulon flavolineatum	0.85	0.76	3.67	32.97
Halichoeres bivittatus	1.94	1.24	3.67	36.64
Acanthurus chirurgus	0.51	0.84	3.40	40.04
Groups Aug 05 B & Aug 06 B		Average dissimilarity = 61.50%		1.50%
	Group	Group		
	Aug 05 B	Aug 06 B		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.79	1.24	8.27	8.27
Haemulon aurolineatum	1.24	0.67	5.83	14.10
Haemulon flavolineatum	0.76	1.51	5.18	19.28
Thalassoma bifasciatum	0.84	1.18	4.08	23.36
Halichoeres bivittatus	1.24	1.67	4.00	27.36
Acanthurus bahianus	0.79	0.85	3.88	31.24
Abudefduf saxatilis	0.23	0.85	3.72	34.96
Acanthurus chirurgus	0.84	0.34	3.61	38.57
Stegastes variabilis	0.62	0.98	3.26	41.83
Groups Aug 06 B & Aug 07 B		Average dis	similarity = 6	0.70%
	Group Aug 06 B	Group Aug 07 B		
Species	Av.Abund	Av.Abund	Contrib%	Cum.%
Haemulon spp.	1.24	0.81	6.00	6.00
Haemulon flavolineatum	1.51	1.42	4.75	10.75
I halassoma bifasciatum	1.18	2.03	4.50	15.25
Haemulon aurolineatum	0.67	0.89	4.40	19.65
Acanthurus bahianus	0.85	1.18	4.20	23.85
Halichoeres bivittatus	1.67	1.41	4.00	27.85
Gerres cinereus	0.29	0.88	3.72	31.58
Haemulon plumierii	0.90	0.62	3.53	35.11
Abudetdut saxatilis	0.85	0.42	3.52	38.63
Acanthurus chirurgus	0.34	0.92	3.37	42.00

Carangoides ruber (bar jack) contributed over 20% to the total dissimilarity (7.3%, 7.2%, and 7.0%, respectively). ANOSIM analysis showed an R-value of 0.317 between these two years. This value indicates that the two assemblages overlapped yet were still different from one another. In August 2005 a pulse of *Haemulon* spp. occurred, which comprised almost 40% of the total fish population seen on the boulder reef. SIMPER analysis showed 61.5% dissimilarity on boulders between August 2005 and 2006 (Table 9). Interestingly, ANOSIM analysis showed an R-value of 0.184, meaning that assemblages between these two years were barely distinguishable or separable from each other. Fishes from family Haemulidae contributed almost 20% to the dissimilarity between these two years: *Haemulon* spp. (8.2%), *Haemulon aurolineatum* (5.8%), and *Haemulon flavolineatum* (5.1%). From August 2006 to August 2007, boulder assemblages remained similar to one another (ANOSIM R=0.187), with SIMPER analysis showing 60.7% dissimilarity (Table 9). Juvenile *Haemulon* spp. contributed most to the dissimilarity (6.0%).

Further analysis was done to compare the increase in juvenile fishes on the boulder reef. The abundance of juvenile fishes on the boulder reef transects were shown to increase across all years: August 2004 - 611 juvenile fishes, August 2005 - 836 juvenile fishes, August 2006 - 914 juvenile fishes, and August 2007: 3055 juvenile fishes. When the abundance of juvenile fishes is looked at as a percentage of total abundance seen on boulder reef transects, an almost linear regression across all years is seen (R^2 =0.975) (Figure 39). This may be due to an increase in benthic cover as time passes.

Figure 39. Percentage of juvenile fishes present on mitigation boulder transects by year.

3.3 Predator Effects

3.3.1 By Size Class

The mean abundance of all fishes among years was calculated by size class. The August 2007 fish census on the natural hardbottom had the greatest mean abundance of fishes <2 cm in length, but was not significantly different from August 2005 or August 2006 natural hardbottom data or August 2006 mitigation boulder data (ANOVA, p>0.05) (Figure 40). The mean abundance of fishes <2 cm in length did significantly differ between August 2007 natural hardbottom and mitigation boulder transects (ANOVA, p<0.02). Across all surveys, there was no significant difference in mean abundance of fishes <2 cm on mitigation boulder transects.

The greatest mean abundance of fishes 2-5 cm in length among years was found on August 2007 mitigation boulder transects (Figure 41); however, there was no

Mean Abundance of Fishes <2 cm TL

Figure 40. Mean abundance of fishes <2 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls grouping letters that are the same are not significantly different (p>0.05).

Mean Abundance of Fishes 2-5 cm TL

Figure 41. Mean abundance of fishes 2-5 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls grouping letters that are the same are not significantly different (p>0.05).

significant difference between boulder and natural transects of the same year. For mitigation boulder transects, there were no significant differences across all surveys for fishes 2-5 cm in length except during the March 2005 census (ANOVA, p<0.03). For natural hardbottom transects, August 2007 differed significantly from August 2006 (ANOVA, p<0.05) and March 2005 (ANOVA, p<0.00004).

For all fishes ≤ 5 cm in length (both Juvenile and small cryptic species alike) the mean abundance was significantly different between March 2005 boulder transects and all other years (ANOVA, p<0.005) (Figure 42). August 2006 natural hardbottom transects were significantly different than August 2007 natural transects (ANOVA, p<0.05).

Figure 42. Mean abundance of fishes ≤ 5 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls grouping letters that are the same are not significantly different (p>0.05).

The greatest variation among size classes across all years occurred when observing the mean abundance of fishes 5-10 cm in length. The greatest mean abundance of fishes 5-10 cm in length occurred on the August 2004 mitigation boulder transects (Mean abundance ± 1 SEM = 40.6 ± 5.3), which was significantly different from all other counts (ANOVA, p<0.04) (Figure 43). The mean abundance of fishes 5-10 cm in length was greater on all mitigation boulder transects when compared to their respective natural transects by year.

Mean Abundance of Fishes 5-10 cm TL

Figure 43. Mean abundance of fishes 5-10 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls grouping letters that are the same are not significantly different (p>0.05).

The mean abundance of fishes 10-20 cm in length showed a clear distinction between mitigation boulder transects and natural hardbottom transects (Figure 44). The mean abundance \pm SEM across all surveys was 12.2 ± 0.9 for boulder transects and 1.6 ± 1000

0.3 for natural transects. Only one survey, August 2004, differed significantly across all years on natural hardbottom transects, while only two surveys, March 2005 and August 2006, differed significantly across all years on mitigation boulder transects (p<0.05).

Mean Abundance of Fishes 10-20 cm TL

The mean abundance of fishes 20-30 cm in length showed no significant difference across all surveys for natural hardbottom transects (ANOVA, p>0.05) (Figure 45). On mitigation boulder transects, the August 2006 survey had the lowest mean abundance (0.52 ± 0.2) and was found to be more similar to natural hardbottom transects. Low abundances were found for fishes 30-50 cm in length and for fishes >50 cm in length. The mean abundance of fishes 30-50 cm in length \pm SEM was 0.07 \pm 0.03 on natural hardbottom transects and 0.15 \pm 0.04 on mitigation boulder transects (Figure 46). No fishes were counted in this size class during August 2004. For the >50 cm size class,

Mean Abundance of Fishes 20-30 cm TL

Figure 45. Mean abundance of fishes 20-30 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys. Newman-Keuls grouping letters that are the same are not significantly different (p>0.05).

Mean Abundance for Fishes 30-50 cm TL

Figure 46. Mean abundance of fishes 30-50 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys.

the mean abundance of fishes was found to be 0.05 ± 0.03 on natural hardbottom transects, and 0.11 ± 0.03 on mitigation boulder transects (Figure 47). No significant differences were found between years for both of these size classes (p>0.05).

Mean Abundance of Fishes >50 cm TL

Figure 47. Mean abundance of fishes >50 cm TL on natural hardbottom (N) and mitigation boulder (B) transects across all surveys.

3.3.2 Predators and Juveniles

The presence of predators (piscivorous fishes: Randall, 1967; Froese and Pauly, 2007) on August 2007 transect and rover diver surveys was noted. A total of 129 predators were seen on natural hardbottom transects (Table 10), while 108 predators were counted on mitigation boulders transects (Table 11). Eighty-nine percent of predators seen on boulder transects were 10 cm or greater in length (96 total), whereas only 30% of predators seen on natural hardbottom transects were 10 cm or greater in length (39 total).

Size Class	Common Name	Scientific Name	Abundance
30-50 cm	Mutton snapper	Lutjanus analis	2
20-30 cm	Blue runner	Caranx crysos	26
	Gray triggerfish	Balistes capriscus	1
	Inshore lizardfish	Synodus foetens	1
10-20 cm	Gray snapper	Lutjanus griseus	3
	Bar jack	Carangoides ruber	2
	Gray triggerfish	Balistes capriscus	2
	Spotted scorpionfish	Scorpaena plumieri	1
5-10 cm	Yellowtail snapper	Ocyurus chrysurus	9
	Lane snapper	Lutjanus synagris	6
	Sand perch	Diplectrum formosum	5
	Red grouper	Epinephelus morio	1
2-5 cm	Lane snapper	Lutjanus synagris	48
	Yellowtail snapper	Ocyurus chrysurus	13
	Sand perch	Diplectrum formosum	5
	Twospot cardinalfish	Apogon pseudomaculatus	1
	Lantern bass	Serranus baldwini	1
	Harlequin bass	Serranus tigrinus	1

Table 10. Abundance of predators on August 2007 natural hardbottom transects by size class, common name, and scientific name.

Table 11. Abundance of predators on August 2007 mitigation boulder transects by size class, common name, and scientific name.

Size Class	Common Name	Scientific Name	Abundance
>50 cm	Green moray	Gymnothorax funebris	1
	Great barracuda	Sphyraena barracuda	2
20-30 cm	Gray triggerfish	Balistes capriscus	1
	Bar jack	Carangoides ruber	1
	Gray snapper	Lutjanus griseus	1
	Lane snapper	Lutjanus synagris	1
	Scamp	Mycteroperca phenax	1
	Spanish mackerel	Scomberomoros maculatus	1
10-20 cm	Gray triggerfish	Balistes capriscus	6
	Yellow jack	Carangoides bartholomaei	3
	Bar jack	Carangoides ruber	52
	Graysby	Cephalopholis cruentata	1
	Gray snapper	Lutjanus griseus	4
	Lane snapper	Lutjanus synagris	11
	Yellow goatfish	Mulloidichthys martinicus	2
	Scamp	Mycteroperca phenax	1
	Yellowtail snapper	Ocyurus chrysurus	7
5-10 cm	Bar jack	Carangoides ruber	2
	Lane snapper	Lutjanus synagris	3
	Yellowtail snapper	Ocyurus chrysurus	1
2-5 cm	Bar jack	Carangoides ruber	2
	Lane snapper	Lutjanus synagris	3
	Yellowtail snapper	Ocyurus chrysurus	1

On rover diver counts, the total number of occurrences of predators was noted based on a maximum occurrence of 25 (one for each site). A total of 91 occurrences of predators were noted on August 2007 natural hardbottom rover diver surveys (Table 12), while 120 occurrences of predators were noted on mitigation boulder rover diver surveys (Table 13).

Common Name	Scientific Name	Occurrence
Lane snapper	Lutjanus synagris	23
Gray snapper	Lutjanus griseus	20
Gray triggerfish	Balistes capriscus	15
Bar jack	Carangoides ruber	14
Yellowtail snapper	Ocyurus chrysurus	9
Mahogany snapper	Lutjanus mahogoni	6
Common snook	Centropomus undecimalis	5
Scamp	Mycteroperca phenax	5
Flamefish	Apogon maculatus	4
Sand diver	Synodus intermedius	4
Great barracuda	Sphyraena barracuda	3
Twospot cardinalfish	Apogon pseudomaculatus	2
Tarpon	Megalops atlanticus	2
Spotted scorpionfish	Scorpaena plumieri	2
Yellow jack	Carangoides bartholomaei	1
Sand perch	Diplectrum formosum	1
Nurse shark	Ginglymostoma cirratum	1
Mutton snapper	Lutjanus analis	1
Greater soapfish	Rypticus saponaceous	1
Greater amberjack	Seriola dumerili	1

Table 12. Total number of occurrences of predators noted on natural hardbottom rover diver surveys during August 2007.

The abundances of juvenile fishes (≤ 5 cm) versus adult fishes (>5 cm) were compared on natural hardbottom and boulder reefs across all surveys (Figure 48). All years showed a higher abundance of juvenile fishes on natural transects as compared to boulder transects. With the exception of August 2006 and August 2007, all mitigation boulder transects contained more adult fishes than juvenile fishes. If juvenile haemulids are removed from the data, more adults are seen on August 2007 mitigation boulder

Common Name	Scientific Name	Occurrence
Lane snapper	Lutjanus synagris	16
Yellowtail snapper	Ocyurus chrysurus	16
Sand perch	Diplectrum formosum	13
Gray triggerfish	Balistes capriscus	7
Bar jack	Carangoides ruber	5
Mutton snapper	Lutjanus analis	4
Tarpon	Megalops atlanticus	4
Scamp	Mycteroperca phenax	4
Flamefish	Apogon maculatus	3
Blue runner	Caranx crysos	3
Twospot cardinalfish	Apogon pseudomaculatus	2
Yellow jack	Carangoides bartholomaei	2
Spotted scorpionfish	Scorpaena plumieri	2
Red hind	Epinephelus guttatus	1
Red grouper	Epinephelus morio	1
Nurse shark	Ginglymostoma cirratum	1
Goldentail moray	Gymnothorax miliaris	1
Purplemouth moray	Gymnothorax vicinus	1
Gray snapper	Lutjanus griseus	1
Greater soapfish	Rypticus saponaceous	1
Lantern bass	Serranus baldwini	1
Great barracuda	Sphyraena barracuda	1
Lizardfish species	Synodus sp.	1

Table 13. Total number of occurrences of predators noted on mitigation boulder rover diver surveys during August 2007.

transects, while August 2006 mitigation boulder transects contain equal numbers of juveniles and adults.

3.3.3 Juvenile Fishes

The total abundance of fishes on August 2007 transects was calculated for the following families: Haemulidae, Pomacentridae, Labridae, Gobiidae, Lutjanidae, Scaridae, and Acanthuridae. Total abundances were noted for the <2 cm size class and the 2-5 cm size class on both the natural hardbottom and the mitigation boulder transects. Haemulids contributed to the greatest abundance of juvenile fishes for both size classes. Newly settled individuals (those <2 cm in length) were found in the greatest abundance on natural hardbottom transects (Figure 49), with 1,007 of those individuals coming from

Abundance of Adult and Juvenile Fishes

Figure 48. Abundance of adult and juvenile fishes on natural hardbottom (N) and mitigation boulder (B) transects across all surveys.

August 2007 Juveniles <2 cm TL

Figure 49. Abundance of juveniles <2 cm in length during August 2007 on natural hardbottom (N) and mitigation boulder (B) transects.

family Haemulidae. Only 43 newly settled haemulids were found on mitigation boulder transects. For fishes 2-5 cm in length, a shift appears to occur. Mitigation boulder transects contained the most fish in this size class, with 2,635 individual haemulids being counted on these transects (Figure 50).

August 2007 Juveniles 2-5 cm TL

Figure 50. Abundance of juveniles 2-5 cm in length during August 2007 on natural hardbottom (N) and mitigation boulder (B) transects.

4.0 Discussion

The nearshore hardbottom and mitigation boulder habitats are different. The high species richness (271) recorded in this study indicates a high diversity of fishes present in the nearshore environment of Broward County, Florida. Results of my study are similar to previous surveys of nearshore fish assemblages conducted in Broward County. In this
study, 78% of fishes counted on natural transects were juveniles (\leq 5 cm). Baron *et al.* (2004) found that >88% of fishes on their transect surveys were made up of juvenile fishes. However, transect surveys in this study had a lower percentage of juvenile haemulids. Only 51% of juvenile fishes were haemulids, compared to >90% found previously (Baron *et al.*, 2004). If boulder transects are factored in, the total number of juvenile fishes seen decreases to 63%, with similar percentage contribution from family Haemulidae (53%). Baron *et al.* (2004) recorded fishes in the months of June through August, and thus some of the differences between studies may be due to temporal variation.

Of total fishes surveyed, more than 62% were counted on boulder reef transects. Alternatively, a higher number of species were counted on natural transects (152) versus boulder transects (143). The intricacies of each of these environments help to create assemblage structures which are unique to their respective areas. The natural hardbottom transects are made up of low-relief pavement (Walker *et al.*, in press) and contain many crevices and refuge spaces, leading to the presence of large numbers of juvenile and small cryptic fishes. The boulders, on the other hand, contain large overhangs and interstices that are able to provide additional refuge space for larger fishes. Forty-six percent of the fishes on the boulders were >5 cm TL, compared to 22% on the natural hardbottom.

The statistical comparison of fish assemblages on natural hardbottom versus mitigation boulder reef indicated substantial differences across years. All sampling intervals showed clear differences in species number and composition, as well as differences in mean abundance. Mean species richness was greater on the boulder reef for both transect and rover diver counts. The March 2005 survey remained significantly different compared to most other surveys in both abundance and species richness. This survey stood out due to low abundances and low species diversity on transect counts. No juvenile haemulids were counted on boulder transects during March 2005. In other surveys, haemulids formed a large component of fishes seen on both natural and boulder transects. Previous surveys of juvenile haemulids have shown that they are present in lower numbers during the winter months (McFarland *et al.*, 1985; Jordan *et al.*, 2004).

All years showed a clear distinction between natural hardbottom and mitigation boulders on MDS plots, both with and without rugosity standardization factored in. Boulders showed a more compact clustering across years, which is indicative of a more homogenous environment. Boulders offer similar refuge space and surface area throughout all transects, allowing fish assemblages to remain similar. In contrast, natural hardbottom provides a more heterogeneous and dynamic environment (Goldsmith, 1991). Fish assemblages on natural transects may change along with the ever-changing microhabitats.

One aspect that can greatly alter and affect the nearshore environment is beach renourishment activities. Beach renourishment took place in Broward County, Florida, between May 2005 and February 2006. Fish surveys that took place after the beach renourishment activities appear to show both temporary and possibly long term detrimental side effects. In August 2006 and 2007 there were seven and three sites, respectively, which contained less than five fish per transect count on the natural hardbottom (versus the preceding means of about 45 fish per transect). During the August 2006 survey there were seven transects that were noted to have been heavily impacted by sand, containing between zero and four fish per transect: C098a (1), N104a (4), N105b (2), N106a (0), N126b (0), P101a (2), and P113a (3) (Appendix C). The reduced abundance on August 2006 transects may be due to beach renourishment. Sand that was placed on the beaches from May 2005 to February 2006 had already begun to erode back into the ocean, especially due to the active hurricane season that south Florida experienced during 2005. Hurricane Wilma crossed over Broward County on October 24th, 2005, bringing with it sustained winds over 99 mph. In turn, the newly renourished beaches of Broward County experienced minor beach and dune erosion (FDEP, 2006). This contributed to the nearshore hardbottom habitat experiencing a larger than normal influx of sand. The August 2007 survey showed that there was some recovery of the nearshore environment, as only three sites contained low abundances of fish: C098a (0), N106a (1), and P113a (0) (Appendix C). The re-exposure of these buried sites demonstrates the dynamic nature of the nearshore habitat and sand movement, as well as how some areas were able to quickly rebound from a dramatic burial event.

The question remains as to whether or not boulder reef is suitable mitigation for natural nearshore hardbottom. The boulders were observed to attract a greater abundance of fishes than the natural habitat. However, after four years these assemblages retained an almost 77% dissimilarity to the natural hardbottom. This high dissimilarity is especially applicable to juvenile haemulid species. Juvenile haemulids were found in greater abundance on the natural reef contributing 6.6% to the overall dissimilarity between natural hardbottom and mitigation boulder reef. *Haemulon aurolineatum* (>5 cm TL), *Thalassoma bifasciatum*, and *Anisotremus virginicus* were all found in higher abundances on the boulders (contributing 5.3%, 5.1%, and 4.8% to the dissimilarity, respectively).

Additionally, certain fish species found on the boulders were either present in extremely low abundances or absent altogether on the natural reef, i.e. *Carangoides ruber*, *Gerres cinereus*, *Acanthurus coeruleus*, *Archosargus rhomboidalis*, and *Lutjanus griseus*. Of these, two are piscivores and important predators of juvenile fish: *C. ruber* and *L. griseus* (Randall, 1967; Froese and Pauly, 2007). Their higher abundances on the mitigation boulders may help identify why there are lower numbers of newly settled individuals on these reefs.

The nearshore habitat is an especially important environment for many species of juvenile fishes. Juvenile haemulids have been extensively studied in Broward County, Florida (Jordan et al., 2004). They exhibit both a pelagic larval stage and demersal juvenile and adult stage, and are highly abundant during the summer months (McFarland et al., 1985; Jordan et al., 2004). It is the transitional phase between their pelagic and demersal life stages, the settlement phase, in which the greatest difference in abundance is demonstrated when comparing natural hardbottom and mitigation boulder transects. Juvenile fishes may use the nearshore environment as a nursery ground for recruitment and development. Newly settled individuals feed on plankton, and can usually be found together in large schools. This was observed on both natural hardbottom and mitigation boulders, where groups of 100's or more were often counted on a single transect. These individuals are more susceptible to predation largely due to three factors: 1) they swim more slowly; 2) they have lower visual acuity; and 3) they may be in the appropriate prey size range for many predators (Shulman and Ogden, 1987). The natural hardbottom provides adequate area for newly settled individuals, which is evidenced by the large numbers of haemulids <2 cm in length on the natural transects. The abundance of predators was found to be relatively low on the nearshore transects. However, the boulder reef is home to many predators of larger size. Even though new recruits were observed on the boulders, they were found in lower abundances. Not surprisingly, environments that contain fewer predators have higher abundances of juveniles (Beets, 1997; Beukers, 1997; Webster, 2002). The boulders do, however, provide a suitable habitat for early juveniles (2-5 cm TL). Once fish grow larger in size, they develop traits which make them less susceptible to predation: they become faster swimmers, more agile, and too large to be preyed upon by some predators (Shulman, 1985). Once they develop these traits, their dietary needs change and a habitat shift is often noted. They may begin an ontogenetic shift towards an environment more suitable to their physical and dietary needs. Once this shift occurs, the boulders seem to provide a more suitable habitat for haemulids 2-5 cm in length and their abundance becomes more noticeable on the boulder reef.

The colonization of the boulders between 2004 and 2007 was observed. August transects only were used to avoid seasonal variation. In August 2004, the MDS plot indicated a very tight clustering around the boulder transects. This is due to the fact that the boulders were recently placed in the water (between June 2003 and September 2003) and the fish assemblages on each transect highly resembled one another. As time passed, assemblages on the transects began to differ more within years and from one another when compared to previous years' data. August 2004 to August 2005 comparisons show markedly different assemblage structures from one another (60% dissimilarity). In August 2004, the boulders had been in the water for only one year (a relatively short soak time). The species which contributed the most to the dissimilarity during the first two

years were *Haemulon aurolineatum*, juvenile *Haemulon* spp., and *Carangoides ruber*, each of which contributed over 7% to the dissimilarity. C. ruber decreased between years, while *Haemulon* spp. increased. The increase in juvenile *Haemulon* spp. may be a direct result of the decrease of the predator C. ruber. Between August 2005 and August 2006, the dissimilarity increased slightly, up to 61.5%. Juvenile *Haemulon* spp. contributed over 8% to the dissimilarity, but there was a decrease in abundance between years (648 vs. 317, respectively). No known predator species showed a remarkable increase, so the decrease in abundance may have possibly been due to a lower recruitment event of haemulids between years. Between August 2006 and August 2007, boulder assemblages remained dissimilar to one another (60.7%). Juvenile Haemulon spp. showed a marked increase (from 317 to 2,097) between these two years (likely due to stochastic recruitment events). In sum, these changes indicate that the assemblages on the boulders are continuing to fluctuate over time. They will most likely continue along this pattern for a number of years, as fish species have been shown to change on artificial reefs for up to ten years after initial deployment (Relini et al., 2002). It is also possible that the assemblages will remain in flux well into the future, or never reach a fixed assemblage at all.

The question also remains as to what determines where juvenile fish settlement takes place. Assuming equal recruit availability, two major factors, competition and predation, have been linked to reduced settlement rates of fishes in a particular area (Shulman *et al.*, 1983). Thus, settlement patterns of fishes have been shown to be affected by the organisms which are already settled in an area, including predators (Shulman, 1985). The nearshore hardbottom habitat provided an area of refuge for newly settled

individuals and juveniles alike. In contrast, the boulder habitat primarily provided an area for larger sized fishes. Adult and sub-adult residents may interfere with settlement by exhibiting aggressive behavior towards new fishes, by exploiting available resources, and by actively preying on new recruits (Shulman et al., 1983). Therefore, priority effects (where established individuals impact fish arriving later) are seen as local assemblages help control future fish assemblages (Almany, 2003). Density dependence, predation, and competition also affect the population of fishes that can recruit to a particular area on a reef (Chase et al., 2002; Hixon and Webster, 2002; Webster, 2002). It is difficult to determine if density dependent mortality (the increased rate of prey mortality associated with higher predator numbers) is the actual cause of death for new recruits because it can be confounded with the effects of refuge availability. If little refuge space is available for small fish, then predation effects will be higher and there will be a higher correlation of density dependence (Hixon and Webster, 2002; Hixon and Jones, 2005). The fishes observed in this study may have exhibited such density dependence due to less sizeappropriate refuge on boulder reef. The differences between the fish assemblages is also noted when looking at the trophic levels of fish associated with these habitats. In general, the boulders contained more predators than the natural environment. The increase of predators on the boulders may impact the nearshore natural population, and more research is needed to determine the overall effects of the boulders on neighboring assemblages.

5.0 Conclusion

As to the questions stated in the purpose of the study (Section 1.4): 1) There is a difference in species richness between the mitigation boulder reef and the natural hardbottom it replaces. On transect counts, 96 species were seen on the natural hardbottom compared to 119 species on the mitigation boulder reef. 2) There was a difference in specific species between the mitigation boulder reef and the natural hardbottom it replaces. The two assemblages had a combined 77% dissimilarity. 3) There was a difference in fish abundance between the mitigation boulder reef and the natural hardbottom it replaces. The boulders made up greater than 62% of the total abundance of fishes seen. 4) There was a difference in fish assemblage structure between the mitigation boulder reef and the natural hardbottom it replaces. Some species were present at one site and completely absent from the other. 5) In terms of simple abundance the mitigation boulder reef was larger than replacement required. The footprint, or areal coverage, of the mitigation boulder reef produced almost two times the abundance of fishes compared to the natural hardbottom.

With substantial differences in assemblages noted, the need for value judgment becomes apparent in evaluating the boulder reef as an effective mitigation tool. Mitigation does not always fully replace or compensate for exact ecological loss. However, what values are acceptable for resource managers? What is acceptable in terms of change? These questions, along with others, must be asked to determine what can be deemed a successful form of mitigation. Further research is required to determine the overall effectiveness of the mitigation boulders, as well as to determine the impact of burial of the nearshore natural hardbottom environment. The mitigation reef was approximately 3.6 ha in size, which mitigated for the 3.1 ha of natural hardbottom predicted to be impacted. The nearshore fish surveys have shown that more area was impacted than originally planned due to the erosion of sand after the renourishment project, and, as transect counts were only completed every 152 m of shoreline, it is possible additional nearshore environment not noted in this study was impacted.

The mitigation reef provides a habitat that is suitable for fish colonization. However, this habitat differs dramatically in size and appearance, creating an environment that is not similar to that of the natural hardbottom. Different habitat characteristics produce different assemblages (Arena *et al.*, 2007). Due to the dynamic nature of sand and the unknowns associated with beach renourishment in general, mitigation reefs should not be relied upon to replace natural habitat loss. If mitigation is continually used to make up for destroying the natural environment, those habitats that serve as an essential nursery ground for juvenile fishes may be lost. By continuing these fish surveys over time, a larger and more reliable picture may emerge as to the effectiveness of the artificial reef, as well as to the final fish assemblages that may inhabit the reef. However, at a minimum, other methods and technology should be simultaneously pursued to find alternative approaches to hardbottom mitigation.

6.0 Literature Cited

- Almany, G.R. 2003. Priority effects in coral reef fish communities. *Ecology* 84(7), 1920-1935.
- Arena, P.T., L.K.B. Jordan, and R.E. Spieler. 2007. Fish assemblages on sunken vessels and natural reefs in southeast Florida, USA. *Hydrobiologia* 580: 157-171.
- Aronson, R.B. and W.F. Precht. 2001. Evolutionary paleoecology of Caribbean coral reefs, in *Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change*. W.D. Allmon and D.J. Bottjer, eds. Columbia University Press, New York: 171-233.
- Banks, K.W., B.M. Riegl, E.A. Shinn, W.E. Piller, and R.E. Dodge. 2007. Geomorphology of the southeast Florida continental reef tract (Miami-Dade, Broward, and Palm Beach Counties, USA). *Coral Reefs* 26: 617-633.
- Baron, R.M., L.K.B. Jordan, and R.E. Spieler. 2004. Characterization of the marine fish assemblage associated with the nearshore hardbottom of Broward County, Florida, USA. *Estuarine, Coastal and Shelf Science* 60: 431-443.
- Beets, J. 1997. Effects of a predatory fish on the recruitment and abundance of Caribbean coral reef fishes. *Marine Ecology Progress Series* 148: 11-21.
- Beukers, J.S. and G.P. Jones. 1997. Habitat complexity modifies the impact of piscivores on a coral reef fish population. *Oecologia* 114: 50-59.
- Blankenship, T.K., R.H. Sasso, S. Higgins, and K. Banks. 2003. Artificial reef construction: an engineered approach. Coastal Systems Publication. 12p.
- Chase, J.M., P.A. Abrams, J.P. Grover, S. Diehl, P. Chesson, R.D. Holt, S.A. Richards, R.M. Nisbet, and T.J. Case. 2002. The interaction between predation and competition: a review and synthesis. *Ecology Letters* 5: 302-315.
- Clarke, K.R. and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth, UK, 172p.
- Ferro, F., L.K.B. Jordan, and R.E. Spieler. 2005. The marine fishes of Broward County, Florida: final report of 1998-2002 survey results. NOAA Technical Memorandum NMFS-SEFSC-532. 73p.
- Finkl, C.W. 1996. What might happen to America's shorelines if artificial beach replenishment is curtailed: a prognosis for southeastern Florida and other sandy regions along regressive coasts. *Journal of Coastal Research* 12(1): iii-ix.

- Finkl Jr., C.F., J. Walker, and I. Watson. 1988. Shoreline erosion: management case history from southeast Florida. *Ocean & Shoreline Management* 11: 129-143.
- Florida Department of Environmental Protection Division of Water Resource Management Bureau of Beaches and Coastal Systems (FDEP). 2006. Hurricane Wilma: Post-storm Beach Conditions and Coastal Impact Report. 98p.
- Froese, R. and D. Pauly. Editors. 2007. Fish Base. World Wide Web electronic publication. <u>www.fishbase.org</u>, version (09/2007).
- Frohling, N.N. 1986. The new beach in Dade County: its impact on the community. *Florida Shore & Beach Preservation Association Annual Meeting*. 114-121.
- Gilliam, D.S. 2006. Southeast Florida coral reef evaluation and monitoring project. 2006 Year 4 final report. Prepared for Florida Fish and Wildlife Conservation Commission, Fish & Wildlife Research Institute, and Florida Department of Environmental Protection. 32p.
- Goldberg, W.M. 1973. The ecology of the coral-octocoral communities off the southeast Florida coast: geomorphology, species composition, and zonation. *Bulletin of Marine Science* 23: 465-488.
- Goldsmith, F.B. 1991. Monitoring for conservation and ecology. Chapman and Hall, New York.
- Hixon, M.A. and G.P. Jones. 2005. Competition, predation, and density-dependent mortality in demersal marine fishes. *Ecology* 86(11): 2847-2859.
- Hixon, M.A. and M.S. Webster. 2002. Density dependence in reef fish populations, in *Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem*. P.F. Sale, ed. Academic Press, California: 303-325.
- Houston, J.R. 2002. The economic value of beaches A 2002 update. *Shore and Beach* 70(1): 9-12.
- Jaap, W.C. 1984. The ecology of the south Florida coral reefs: a community profile. U.S. Fish and Wildlife Service, FWS/OBS-82/08. 138p.
- Jensen, A.C. (Ed.) 1997. European Artificial Reef Research. *Proceedings of the 1st EARRN Conference*, March 1996. Southampton Oceanography Center, Southampton, Italy. 449p.
- Johns, G.M., V.R. Leeworthy, F.W. Bell, and M.A. Bonn. 2003. Socioeconomic study of reefs in southeast Florida, October 19, 2001 as revised April 18, 2003. Silver Spring MD: Special Projects NOS. 255p.

- Jordan, L.K.B, D.S. Gilliam, R.L. Sherman, P.T. Arena, F.M. Harttung, R. Baron, and R.E. Spieler. 2004. Spatial and temporal recruitment patterns of juvenile grunts (*Haemulon* spp.) in south Florida. *Proceedings of the* 55th Annual Gulf and Caribbean Fisheries Institute Meeting, Xel-Ha, Mexico. 322-336.
- Kobluk, D.R. 1988. Cryptic faunas in reefs: ecology and geologic importance. *Palaios* 3: 379-390.
- Lighty, R.G. 1977. Relict shelf-edge Holocene coral reef: southeast coast of Florida. *Proceedings of the 3rd International Coral Reef Symposium*, 215-221.
- Lighty, R.G., I.G. MacIntyre, and R. Stuckenrath. 1978. Submerged early Holocene barrier reef south-east Florida shelf. *Nature* 276: 59-60.
- Lindeman, K.C., R. Pugliese, G.T. Waugh, and J.S. Ault. 2000. Developmental patterns within a multispecies reef fishery: management applications for essential fish habitats and protected areas. *Bulletin of Marine Science* 66(3): 929-956.
- Lindeman, K.C. and D.B. Snyder. 1999. Nearshore hardbottom fishes of southeast Florida and effects of habitat burial caused by dredging. *Fishery Bulletin* 97(3): 508-525.
- Marszalek, D.S., G. Babashoff, Jr., M.R. Noel, and D.R. Worley. 1977. Reef distribution in south Florida. *Proceedings of the 3rd International Coral Reef Symposium*, 223-230.
- McFarland, W.N., E.B. Brothers, J.C. Ogden, M.J. Shulman, E.L. Bermingham, and N.M. Kotchian-Prentiss. 1985. Recruitment patterns in young french grunts, *Haemulon flavolineatum* (family Haemulidae), at St. Croix, Virgin Islands. *Fishery Bulletin* 83(3): 413-426.
- Moyer, R.P., B. Riegl, K. Banks, and R.E. Dodge. 2003. Spatial patterns and ecology of benthic communities on a high latitude south Florida (Broward County, USA) reef system. *Coral Reefs* 22: 447-464.
- Murley, J.F., L. Alpert, M.J. Matthews, C. Bryk, B. Woods., and A. Grooms. 2003. Economics of Florida's beaches: the impact of beach restoration. Final project report. Prepared for: Florida Department of Environmental Protection Bureau of Beaches and Wetland Resources. 141p.
- Murley, J., L. Alpert, and W.B. Stronge. 2005. Tourism in paradise: the economic impact of Florida beaches. *Proceedings of the 14th Biennial Coastal Zone Conference*, July 2005. New Orleans, Louisiana. 6p.
- National Research Council. 1995. Beach Renourishment and Protection. National Academy Press, Washington, DC. 334p.

- Pilkey Jr., O.H., D.C. Sharma, H.R. Wanless, L.J. Doyle, O.H. Pilkey, Sr., W.J. Neal, and B.L. Gruver. 1984. Living with the east Florida shore. Duke University Press. Durham, North Carolina. 274p.
- Randall, J.E. 1967. Food habits of reef fishes of the West Indies. *Studies in Tropical Oceanography* 5: 655-847.
- Relini, G., M. Relini, G. Torchia, and G. Palandri. 2002. Ten years of censuses of fish fauna on the Loano artificial reef. *ICES Journal of Marine Science* 59: S132-S137.
- Shulman, M.J. 1985. Recruitment of coral reef fishes: effects of distribution of predators and shelter. *Ecology* 66(3): 1056-1066.
- Shulman, M.J. and J.C. Ogden. 1987. What controls tropical reef fish populations: recruitment or benthic mortality? An example in the Caribbean reef fish *Haemulon flavolineatum*. *Marine Ecology Progress Series* 39: 233-242.
- Shulman, M.J., J.C. Ogden, J.P. Ebersole, W.N. McFarland, S.L. Miller, and N.G. Wolf. 1983. Priority effects in the recruitment of juvenile coral reef fishes. *Ecology* 64(6): 1508-1513.
- Silberman, J. and M. Klock. 1988. The recreation benefits of beach renourishment. *Ocean & Shoreline Management* 11: 73-90.
- Thanner, S.E., T.L. McIntosh, and S.M. Blair. 2006. Development of benthic and fish assemblages on artificial reef materials compared to adjacent natural reef assemblages in Miami-Dade County, Florida. *Bulletin of Marine Science* 78(1): 57-70.
- Toscano, M.A. and I.G. Macintyre. 2003. Corrected western Atlantic sealevel curve for the last 11,000 years based on calibrated ¹⁴C dates from *Acropora palmata* framework and intertidal mangrove peat. *Coral Reefs* 22: 257-270.
- United States Army Corps of Engineers and Florida Department of Environmental Protection. 2005. Mitigation plan for Broward County beach erosion control project Broward County, Florida. 19p.
- Vare, C.N. 1991. A survey, analysis, and evaluation of the nearshore reefs situated off Palm Beach County, Florida. Masters thesis. Florida Atlantic University, Boca Raton, FL. 165p.
- Walker, B.K., B. Riegl, and R.E. Dodge. In press. Mapping coral reef habitats in southeast Florida using a combined technique approach. *Journal of Coastal Research*.

- Wang, S.R., M.E. Leadon, and T.L. Walton. 2005. Florida beach renourishment projects monitoring database. *Proceedings of the 2005 National Conference on Beach Preservation Technology*. Destin, Florida, USA, 2-4 February 2005. 16p.
- Webster, M.S. 2002. Role of predators in the early post-settlement demography of coralreef fishes. *Oecologia* 131: 52-60.
- Werner, E.E. and J.F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structure populations. *Annual Review of Ecology and Systematics* 15: 393-425.

Appendix A

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Nurse sharks	Ginglymostomatidae												
Nurse shark	Ginglymostoma cirratum									1 /1			
Stingrays	Dasyatidae												
Southern stingray	Dasyatis americana		1 /1						2 /1				
Round rays	Urolophidae												
Yellow stingray	Urobatis jamaicensis	3 /3		2 /2		1 /1		1 /1	1 /1	1 /1		2 /2	
Tarpons	Megalopidae												
Tarpon	Megalops atlanticus		2 /2					4 /1	2 /1				
Moray eels	Muraenidae												
Green moray	Gymnothorax funebris									1 /1			1 /1
Spotted moray	Gymnothorax moringa	1 /1											
Purplemouth moray	Gymnothorax vicinus	2 /2											
Lizardfishes	Synodontidae												
Inshore lizardfish	Synodus foetens						1 /1					1 /1	
Lizardfish species	Synodus sp.												1 /1
Sand diver	Synodus intermedius						2 /2						
Squirrelfishes	Holocentridae												
Squirrelfish	Holocentrus adscensionis						2 /2		1 /1				
Scorpionfishes	Scorpaenidae												
Barbfish	Scorpaena brasiliensis						1 /1						
Spotted scorpionfish	Scorpaena plumieri			2 /2		1 /1		2 /2	1 /1			1 /1	
Snooks	Centropomidae												
Common snook	Centropomus undecimalis						5 /2						
Sea basses	Serranidae												

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Graysby	Cephalopholis cruentata												1 /1
Sand perch	Diplectrum formosum	29 /12		61 /22	11/7	4 /4		33 /11		6 /5	2 /1	10 /4	
Red grouper	Epinephelus morio		1 /1						1 /1		1 /1	1 /1	
Butter hamlet	Hypoplectrus unicolor										1 /1		
Scamp	Mycteroperca phenax						1 /1		1 /1				2 /1
Greater soapfish	Rypticus saponaceus												1 /1
Lantern bass	Serranus baldwini	2 /2										1 /1	
Belted sandfish	Serranus subligarius		1 /1										
Harlequin bass	Serranus tigrinus											1 /1	
Jawfishes	Opistognathidae												
Dusky jawfish	Opistognathus whitehursti							1 /1		27 /10	3 /2	2 /2	
Cardinalfishes	Apogonidae												
Flamefish	Apogon maculatus	1 /1		1 /1									
Twospot cardinalfish	Apogon pseudomaculatus	3 /2			1 /1							1 /1	
Jacks	Carangidae												
Yellow jack	Carangoides bartholomaei		5 /3	1 /1	6 /2				3 /2				3 /1
Bar jack	Carangoides ruber	2 /2	178 /12		293 /23				8 /3		15 /5	2 /1	65 /8
Blue runner	Caranx crysos			59 /3	30 /1	7 /1	1 /1					26 /2	
Crevalle jack	Caranx hippos								1 /1				
Lookdown	Selene vomer	1 /1											
Greater amberjack	Seriola dumerili				3 /2				3/ 2				
Snappers	Lutjanidae												
Mutton snapper	Lutjanus analis		3 /2									2 /2	
Schoolmaster	Lutjanus apodus										1 /1		

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		N	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T /O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Blackfin snapper	Lutjanus buccanella		1 /1										
Gray snapper	Lutjanus griseus	2 /1	13 /7	3 /2	18 /11		1 /1	1 /1	28 /10		9 /3	3 /1	8 /6
Mahogany snapper	Lutjanus mahogoni		1 /1								1 /1		
Lane snapper	Lutjanus synagris	16 /7	61 /20	150 /22	37 /15		27 /12	127 /23	39 /15	71 /18	41 /20	65 /11	22 /12
Yellowtail snapper	Ocyurus chrysurus	11 /7	2 /1	12 /6	6 /6		2 /1	39 /16	5 /5	4 /3	4 /4	22 /13	9 /4
Mojarras	Gerreidae												
Slender mojarra	Eucinostomus jonesii		5 /2		5 /1	3 /1	5 /1		15 /1			3 /1	3 /1
Mottled mojarra	Eucinostomus lefroyi			1 /1									
Yellowfin mojarra	Gerres cinereus		31 /12		50 /17		11/7		7 /5		14/7	1 /1	75 /15
Grunts	Haemulidae												
Black margate	Anisotremus surinamensis		8 /6		4 /4		4 /4		7 /7		3 /3		4 /4
Porkfish	Anisotremus virginicus	12 /5	113 /24	6 /2	49 /22	6 /2	41 /21	12 /2	68 /22	3 /3	93 /23	9 /3	57 /23
White margate	Haemulon album		5 /1						1 /1				
Tomtate	Haemulon aurolineatum	36 /4	169 /19	160 /8	469 /23	6 /2	29 /8	1 /1	242 /16	55 /3	96 /8	17 /4	843 /12
Caesar grunt	Haemulon carbonarium		1 /1		1 /1								
Smallmouth grunt	Haemulon chrysargyreum			1 /1			2 /2						9 /1
French grunt	Haemulon flavolineatum		8 /5	36 /5	71 /14	1 /1	12 /7	6 /2	61 /16	5 /1	158 /23	32 /4	181 /20
Spanish grunt	Haemulon macrostomum		30 /1		1 /1						2 /2		2 /2
Sailor's choice	Haemulon parra		23 /8	30 /1	6 /6		6 /4	1 /1	11 /9	6 /1	4 /4		3 /2
White grunt	Haemulon plumierii	7 /3	60 /22	17 /7	49 /22	2 /2	29 /15	12 /6	53 /22	19 /9	55 /18	15 /4	41 /12
Bluestriped grunt	Haemulon sciurus	5 /3	47 /16	8 /7	14 /11	2 /2	20 /10	6 /4	8 /5	1 /1	9 /4	4 /3	9 /7
Juvenile grunts	Haemulon spp.	530 /17	359 /12	201 /9	119 /9	293 /5		364 /17	659 /13	147 /8	317 /11	1314 /17	2097 /7
Striped grunt	Haemulon striatum									13 /1			1 /1
Pigfish	Orthopristis chrysoptera		3 /2				6 /1						

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
_		Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	N	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Porgies	Sparidae												
Sea bream	Archosargus rhomboidalis		40 /18		31 /15	1 /1	16 /9		9 /8		4 /3		2 /1
Grass porgy	Calamus arctifrons		1 /1										
Saucereye porgy	Calamus calamus										3 /1		
Porgy species	Calamus spp.							1 /1					
Silver porgy	Diplodus argenteus	1 /1	31 /16		1 /1		1 /1				5 /3		
Spottail pinfish	Diplodus holbrookii								4 /2				
Pinfish	Lagodon rhomboides		2 /1				3 /3		2 /2		1 /1		2 /1
Drums	Sciaenidae												
Reef croaker	Odontoscion dentex				10 /1		1 /1				5 /3		
Highhat	Pareques acuminatus	42 /13	2 /1	5 /3	5 /3	8 /4		11 /9	1 /1	4 /3	1 /1	14 /7	7 /3
Goatfishes	Mullidae												
Yellow goatfish	Mulloidichthys martinicus				3 /2								5 /3
Spotted goatfish	Pseudupeneus maculatus	10 /6	4 /4		2 /2	5 /3			2 /2			2 /1	
Sea chubs	Kyphosidae												
Bermuda sea chub	Kyphosus sectator	1 /1		5 /1			2 /2		10 /4		3 /3	2 /1	4 /1
Butterflyfishes	Chaetodontidae												
Spotfin butterflyfish	Chaetodon ocellatus		1 /1		1 /1			1 /1					
Reef butterflyfish	Chaetodon sedentarius			1 /1	1 /1	1 /1							
Angelfishes	Pomacanthidae												
Blue angelfish	Holacanthus bermudensis		1 /1				2 /2	1 /1	1 /1				2 /2
Queen angelfish	Holacanthus ciliaris	1 /1	2 /1		1 /1		2 /2		5 /4		3 /3	1 /1	8 /7
Rock beauty	Holacanthus tricolor											2 /2	1 /1
Gray angelfish	Pomacanthus arcuatus	2 /2	1 /1		8 /6		4 /4		8 /6	1 /1	7 /5		6 /5

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
French angelfish	Pomacanthus paru	1 /1		3 /3	4 /4	1 /1	1 /1	2 /2	7 /4			4 /4	4 /4
Damselfishes	Pomacentridae												
Sergeant major	Abudefduf saxatilis	28 /3	97 /17	34 /9	50 /12	17 /3	19 /8	21 /7	14 /5	63 /3	60 /15	33 /8	25 /8
Blue chromis	Chromis cyanea				1 /1								
Yellowtail damselfish	Microspathodon chrysurus												5 /4
Dusky damselfish	Stegastes adustus	5 /3	26 /17	6 /2	21 /13	5 /5	9 /6	4 /3	20 /11	7 /6	20 /14	22 /9	27 /17
Longfin damselfish	Stegastes diencaeus						1 /1	5 /2		1 /1		4 /1	
Beaugregory	Stegastes leucostictus	20 /10	9 /6	40 /15	14 /9	3 /2	16 /10	11 /9	19 /15	30 /10	44 /19	28 /14	12 /9
Bicolor damselfish	Stegastes partitus			1 /1				1 /1			2 /2	10 /5	5 /4
Threespot damselfish	Stegastes planifrons		1 /1						1 /1		5 /4		2 /2
Damselfish species	Stegastes sp.							1 /1					
Cocoa damselfish	Stegastes variabilis	56 /20	36 /17	71 /22	55 /19	10 /6	21 /10	26 /11	28 /16	31 /13	56 /20	31 /13	34 /17
Wrasses	Labridae												
Spanish hogfish	Bodianus rufus				1 /1						3 /3		
Slippery dick	Halichoeres bivittatus	199 /23	88 /21	276 /25	170 /25	53 /17	32 /16	83 /18	75 /22	99 /16	144 /22	304 /22	116 /20
Clown wrasse	Halichoeres maculipinna	2 /2	3 /2	1 /1	2 /1	3 /2		1 /1	3 /3	11/7	4 /4	23 /7	34 /9
Blackear wrasse	Halichoeres poeyi				1 /1		1 /1	1 /1		1 /1		28 /8	28 /4
Puddingwife	Halichoeres radiatus		4 /2				1 /1		2 /2		1 /1		1 /1
Hogfish	Lachnolaimus maximus		1 /1						1 /1		4 /3		3 /1
Bluehead	Thalassoma bifasciatum	32 /5	120 /22	8 /3	92 /24	7 /3	17 /8	7 /3	52 /16	7 /2	80 /19	43 /7	212 /25
Rosy razorfish	Xyrichtys martinicensis			1 /1						2 /2		1 /1	
Green razorfish	Xyrichtys splendens	11/5		6 /4		2 /2		1 /1		3 /3			
Razorfish species	Xyrichtys spp.									2 /1			
Parrotfishes	Scaridae												

Jun 2004 Mar 2005 Aug 2005 Aug 2006 Aug 2007 Aug 2004 Ν Ν Ν В Ν Ν В В В Ν В В T/O T/O T/O T/O T/O **Common Name Scientific Name** T/O T/O T/O T/O T/O T/O T/O Midnight parrotfish Scarus coelestinus **1**/1 Rainbow parrotfish Scarus guacamaia **2**/2 **1**/1 Striped parrotfish Scarus iseri **9**/2 **9**/5 **2**/1 **2**/1 **16**/6 **9**/1 **15**/4 Princess parrotfish **1**/1 Scarus taeniopterus 6/2 **1**/1 **Redband parrotfish** Sparisoma aurofrenatum **6**/5 **14**/4 5/4 6/2 **16**/11 **18**/8 19/7 **8**/5 **38**/17 8/7 5/4 **58**/16 **1**/1 **24**/14 **3**/2 11/7 **54**/11 **16**/10 Bucktooth parrotfish Sparisoma radians Redfin parrotfish Sparisoma rubripinne **1**/1 **4**/4 **2**/2 **5**/3 **2**/2 **1**/1 3/1 Stoplight parrotfish Sparisoma viride **1**/1 **6**/5 **1**/1 **1**/1 **4**/4 **26**/16 **1**/1 17/9 Threefin blennies **Tripterygiidae** Enneanectes boehlkei 1/1 **1**/1 Roughhead triplefin Labrisomids Labrisomidae Rosy blenny **10**/7 **2**/2 14/9 14/8 **7**/7 **10**/7 **13**/8 **1**/1 13/6 **1**/1 **56**/17 **2**/2 Malacoctenus macropus Saddled blenny **1**/1 **2**/2 **2**/2 Malacoctenus triangulatus Banded blenny Paraclinus fasciatus **1**/1 **Tube blennies** Chaenopsidae **3**/3 6/3 **5**/3 **2**/2 **2**/2 **3**/2 **6**/4 Roughhead blenny Acanthemblemaria aspera Sailfin blenny Emblemaria pandionis 11/6 **19**/8 **13**/5 **25**/11 **6**/5 **5**/3 11/8 **3**/1 Combtooth blennies Blenniidae Seaweed blenny Parablennius marmoreus **3**/3 **10**/6 7/5 14/8 11/9 **17**/10 **13**/8 **3**/3 7/6 10/7 **19**/12 **5**/3 Dragonets Callionymidae Callionymus bairdi Lancer dragonet **2**/1 Gobies Gobiidae Coryphopterus dicrus Colon goby **2**/2 **1**/1 **51**/9 **22**/12 **1**/1 **4**/3 **9**/5 **2**/2 **22**/9 **23**/13 Bridled goby Coryphopterus glaucofraenum **46**/16 **12**/7

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		N	В	N	В	Ν	В	N	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Masked goby	Coryphopterus personatus										1 /1		6 /1
Dash goby	Ctenogobius saepepallens			2 /2		2 /1		2 /1					
Tiger goby	Elacatinus macrodon							1 /1	1 /1		1 /1		2 /2
Neon goby	Elacatinus oceanops					2 /2	2 /1		2 /2	2 /1	1 /1		1 /1
Goldspot goby	Gnatholepis thompsoni											2 /2	
Rockcut goby	Gobiosoma grosvenori		1 /1										
Seminole goby	Microgobius carri	2 /1						3 /1	2 /1				
Dartfishes	Ptereleotridae												
Blue goby	Ptereleotris calliura			5 /4				1 /1	1 /1			1 /1	
Spadefishes	Ephippidae												
Atlantic spadefish	Chaetodipterus faber								2 /1		1 /1		
Surgeonfishes	Acanthuridae												
Ocean surgeon	Acanthurus bahianus	6 /3	77 /20	4 /3	81 /22	5 /3	38 /19	22 /8	50 /15	2 /2	54 /14	29 /7	95 /18
Doctorfish	Acanthurus chirurgus	39 /13	32 /16	10 /5	25 /12	27 /12	16 /7	14 /9	51 /16	2 /2	15 /10	31 /9	59 /17
Blue tang	Acanthurus coeruleus	1 /1	6 /4	1 /1	10 /9		5 /4		17 /11		17 /10	4 /2	37 /18
Barracudas	Sphyraenidae												
Great barracuda	Sphyraena barracuda		1 /1										2 /2
Mackerels	Scombridae												
Spanish mackerel	Scomberomoros maculatus												1 /1
Cero	Scomberomorus regalis				1 /1								
Lefteye flounders	Bothidae												
Peacock flounder	Bothus lunatus	1 /1						1 /1		1 /1			
Triggerfishes	Balistidae												

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
		Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Common Name	Scientific Name	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O	T/O
Gray triggerfish	Balistes capriscus	5 /4	35 /19	6 /3	21 /12	5 /4	9/7	10 /5	19 /10	6 /4	15 /8	3 /3	7 /5
Filefishes	Monacanthidae												
Scrawled filefish	Aluterus scriptus						1 /1						
Slender filefish	Monacanthus tuckeri											1 /1	
Planehead filefish	Stephanolepis hispidus			1 /1		2 /2	1 /1						
Boxfishes	Ostraciidae												
Honeycomb cowfish	Acanthostracion polygonius						1 /1						
Scrawled cowfish	Acanthostracion quadricornis		1 /1			1 /1			1 /1		1 /1		3 /3
Spotted trunkfish	Lactophrys bicaudalis											1 /1	
Smooth trunkfish	Lactophrys triqueter		2 /2		1 /1	1 /1	2 /1			1 /1	3 /2		3 /2
Puffers	Tetraodontidae												
Sharpnose puffer	Canthigaster rostrata	1 /1	1 /1				11 /10	1 /1	10 /7	1 /1	6 /5	4 /3	17 /11
Bandtail puffer	Sphoeroides spengleri					1 /1	1 /1	2 /2		1 /1		1 /1	
Porcupinefishes	Diodontidae												
Balloonfish	Diodon holocanthus	3 /3		1 /1				3 /3	3 /2	1 /1	6 /4		2 /1
Porcupinefish	Diodon hystrix		1 /1							1 /1			
	Total Abundance	1166	1809	1409	1973	538	486	917	1677	713	1510	2374	4314
	Total Species	45	64	48	56	38	57	49	65	45	63	60	68

Appendix B

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Nurse sharks	Ginglymostomatidae												
Nurse shark	Ginglymostoma cirratum	1	1		2		1		1		2	1	1
Numbfishes	Narcinidae												
Lesser electric ray	Narcine brasiliensis											2	
Guitarfishes	Rhinobatidae												
Atlantic guitarfish	Rhinobatus lentiginosus					1							
Stingrays	Dasyatidae												
Southern stingray	Dasyatis americana				2		1		1				3
Eagle rays	Myliobatidae												
Spotted eagle ray	Aetobatus narinari			1									
Round rays	Urolophidae												
Yellow stingray	Urobatis jamaicensis	5	1	4	1	2	1	4	5	4	2	5	
Tarpons	Megalopidae												
Tarpon	Megalops atlanticus	1	5	1	3		2	1	3	1	2	4	2
Moray eels	Muraenidae												
Green moray	Gymnothorax funebris									1			
Goldentail moray	Gymnothorax miliaris	1										1	
Spotted moray	Gymnothorax moringa					1							
Moray species	<i>Gymnothorax</i> sp.			1									
Purplemouth moray	Gymnothorax vicinus	1		1		5		1		2		1	-
Snake eels	Ophichthidae												
Goldspotted eel	Myrichthys ocellatus								1		1		
Lizardfishes	Synodontidae												
Inshore lizardfish	Synodus foetens				1				2		1		
Sand diver	Synodus intermedius		3		3		1		5	1	1		4
Lizardfish species	Synodus sp.											1	

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Squirrelfishes	Holocentridae												
Squirrelfish	Holocentrus adscensionis	1	1		1				1		2		3
Blackbar soldierfish	Myripristis jacobus	1		1									
Trumpetfishes	Aulostomidae												
Trumpetfish	Aulostomus maculatus								1				
Scorpionfishes	Scorpaenidae												
Barbfish	Scorpaena brasiliensis							1					
Plumed scorpionfish	Scorpaena grandicornis				1								
Spotted scorpionfish	Scorpaena plumieri	2	1	3	1	1	5		2	1	5	2	2
Scorpionfish species	<i>Scorpaena</i> sp.		1										
Snooks	Centropomidae												
Common snook	Centropomus undecimalis		4		1		7		9		4		5
Sea basses	Serranidae												
Coney	Cephalopholis fulva			1									
Sand perch	Diplectrum formosum	8	4	21	9	7	1	9		11	4	13	1
Rock hind	Epinephelus adscensionis										1		1
Red hind	Epinephelus guttatus											1	
Red grouper	Epinephelus morio		1	2	1	1	1		3	1		1	
Butter hamlet	Hypoplectrus unicolor				1				1		2		1
Black grouper	Mycteroperca bonaci						1						
Gag	Mycteroperca microlepis						2		2		3		
Scamp	Mycteroperca phenax				1				3		3	4	5
Greater soapfish	Rypticus saponaceus									1	2	1	1
Lantern bass	Serranus baldwini	1						1				1	
Tattler bass	Serranus phoebe						1						
Belted sandfish	Serranus subligarius		1										

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Harlequin bass	Serranus tigrinus			2									
Jawfishes	Opistognathidae												
Banded jawfish	Opistognathus macrognathus									1			
Dusky jawfish	Opistognathus whitehursti	2		10				3		11	2	3	
Bigeyes	Priacanthidae												
Glasseye	Heteropriacanthus cruentatus		1										
Cardinalfishes	Apogonidae												
Barred cardinalfish	Apogon binotatus									1			
Flamefish	Apogon maculatus	2	8	4	7	2	2	1	4	1	3	3	4
Twospot cardinalfish	Apogon pseudomaculatus	6	1		2		1	1		1	2	2	2
Cardinalfish species	Apogonidae sp.												1
Belted cardinalfish	Apogon townsendi		2										
Conchfish	Astrapogon stellatus				1								
Remoras	Echeneidae												
Sharksucker	Echeneis naucrates										1		1
Jacks	Carangidae												
Yellow jack	Carangoides bartholomaei		5		7	2	3		1	1	8	2	1
Bar jack	Carangoides ruber	3	16	4	23		5	3	7	1	12	5	14
Blue runner	Caranx crysos		6	8	6	2	1	1	9	1	5	3	
Crevalle jack	Caranx hippos		4		1		1	1	3		3		
Mackerel scad	Decapterus macarellus												1
Round scad	Decapterus punctatus				3		1						1
Leatherjack	Oligoplites saurus							1					
Greater amberjack	Seriola dumerili								1	1			1
Almaco jack	Seriola rivoliana								2		1		
Snappers	Lutjanidae												

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Mutton snapper	Lutjanus analis	1	2	1		3		1	1	3	1	4	1
Schoolmaster	Lutjanus apodus		1		1				1		2		
Blackfin snapper	Lutjanus buccanella							1			1		
Gray snapper	Lutjanus griseus	1	22	1	22		18	1	18		19	1	20
Mahogany snapper	Lutjanus mahogoni		1										6
Lane snapper	Lutjanus synagris	7	25	24	23	3	21	24	25	24	24	16	23
Yellowtail snapper	Ocyurus chrysurus	12	6	17	11		9	22	13	10	10	16	9
Vermilion snapper	Rhomboplites aurorubens										3		
Tripletails	Lobotidae												
Tripletail	Lobotes surinamensis									1			
Mojarras	Gerreidae												
Slender mojarra	Eucinostomus jonesii		5	1	5		6		8	1	4	2	12
Mottled mojarra	Eucinostomus lefroyi	1	3			1	2						
Flagfin mojarra	Eucinostomus melanopterus											1	
Mojarra species	Gerreidae spp.			2				2				4	
Yellowfin mojarra	Gerres cinereus		22	4	23	1	17	3	18	2	21	3	24
Grunts	Haemulidae												
Black margate	Anisotremus surinamensis	1	13		10		19		16		16		13
Porkfish	Anisotremus virginicus	14	23	9	23	6	23	12	25	2	25	12	23
White margate	Haemulon album		1						4				
Tomtate	Haemulon aurolineatum	13	24		24	4	18	8	20	12	20	17	18
Caesar grunt	Haemulon carbonarium	1			4				2		1		
Smallmouth grunt	Haemulon chrysargyreum				1							1	1
French grunt	Haemulon flavolineatum	3	14	23	23	1	18	2	19	4	23	14	24
Spanish grunt	Haemulon macrostomum		2		1		2		4		9	1	3
Cottonwick	Haemulon melanurum	1		2							1		

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Sailor's choice	Haemulon parra	4	21	7	20		16	3	16	4	21	5	18
White grunt	Haemulon plumierii	14	25	20	24	9	24	15	25	8	24	16	23
Bluestriped grunt	Haemulon sciurus	7	21	13	22	9	19	14	22	6	13	14	23
Juvenile grunts	Haemulon spp.	24	15	7	11	13	1	18	10	6	6	12	8
Striped grunt	Haemulon striatum		1										
Pigfish	Orthopristis chrysoptera		1		7		5		2				2
Bonnetmouths	Inermiidae												
Boga	Inermia vittata												1
Porgies	Sparidae												
Sea bream	Archosargus rhomboidalis		24		18		23		15		16	1	15
Sheepshead seabream	Archosargus probatocephalus						5						
Saucereye porgy	Calamus calamus		1		3	4	2	1			1		2
Sheepshead porgy	Calamus penna	1				1	1					1	1
Littlehead porgy	Calamus proridens					2							
Porgy species	Calamus spp.	1		2				1			1		
Silver porgy	Diplodus argenteus	2	24	1	19	2	19		23		13	1	12
Spottail pinfish	Diplodus holbrookii										13	1	16
Pinfish	Lagodon rhomboides		8		3		2				7		
Drums	Sciaenidae												
Reef croaker	Odontoscion dentex		6				1		2		2		1
Highhat	Pareques acuminatus	23	15	17	15	16	4	21	8	11	12	13	5
Goatfishes	Mullidae												
Yellow goatfish	Mulloidichthys martinicus		2		11				2		1		5
Spotted goatfish	Pseudupeneus maculatus	16	13	7	5	8	2	1	4		1	4	5
Sweepers	Pempheridae												
Glassy sweeper	Pempheris schomburgkii	1	3			1							

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Sea chubs	Kyphosidae												
Bermuda sea chub	Kyphosus sectator	1	6		4		2		13		15	1	12
Butterflyfishes	Chaetodontidae												
Foureye butterflyfish	Chaetodon capistratus										1	2	
Spotfin butterflyfish	Chaetodon ocellatus		4		2	2	1	4		1	2	3	
Reef butterflyfish	Chaetodon sedentarius	3	1		2	1		1	2	1	2	2	1
Banded butterflyfish	Chaetodon striatus	2	1	1								1	
Angelfishes	Pomacanthidae												
Blue angelfish	Holacanthus bermudensis		6		1	1	1		5		5	1	5
Queen angelfish	Holacanthus ciliaris		2	1	2		5	2	5	1	6	7	14
Rock beauty	Holacanthus tricolor											2	
Townsend angelfish	Holacanthus sp.										1		
Gray angelfish	Pomacanthus arcuatus	2	3	5	12		9	5	13	4	15	9	16
French angelfish	Pomacanthus paru	4	5	3	8	1	8	4	11	2	16	6	14
Damselfishes	Pomacentridae												
Sergeant major	Abudefduf saxatilis	14	20	12	24	11	17	13	14	10	20	14	14
Brown chromis	Chromis multilineata												1
Yellowtail damselfish	Microspathodon chrysurus										1		1
Dusky damselfish	Stegastes adustus	7	18	5	16	8	15	8	12	9	20	14	19
Longfin damselfish	Stegastes diencaeus					1	1	3		1	7	1	
Beaugregory	Stegastes leucostictus	11	16	20	16	3	14	17	11	16	23	19	19
Bicolor damselfish	Stegastes partitus	2		4	3				1	3	4	7	9
Threespot damselfish	Stegastes planifrons	24	1	1	9				1		8		2
Cocoa damselfish	Stegastes variabilis		16	23	25	9	21	15	19	18	24	19	23
Wrasses	Labridae												
Spanish hogfish	Bodianus rufus								1		6		5

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Dwarf wrasse	Doratonotus megalepis							1					
Slippery dick	Halichoeres bivittatus	25	23	24	24	25	23	23	21	21	23	23	21
Clown wrasse	Halichoeres maculipinna	10	7	3	1	4	2	5	9	9	16	6	11
Blackear wrasse	Halichoeres poeyi	5	1	2	1	1		1		4		12	7
Puddingwife	Halichoeres radiatus	1	12		4	6	3		6		5		5
Hogfish	Lachnolaimus maximus		2	2	2	1	7		7	2	11	2	4
Bluehead	Thalassoma bifasciatum	6	24	9	21	8	20	7	22	6	25	13	25
Rosy razorfish	Xyrichtys martinicensis	2		2				1		4	1		
Green razorfish	Xyrichtys splendens	4		11	1	8		7	1	11		10	
Parrotfishes	Scaridae												
Bluelip parrotfish	Cryptotomus roseus											1	1
Midnight parrotfish	Scarus coelestinus										1		
Rainbow parrotfish	Scarus guacamaia						1		2		3		8
Striped parrotfish	Scarus iseri		2	2	12		1			2	9	4	10
Princess parrotfish	Scarus taeniopterus										4	1	
Greenblotch parrotfish	Sparisoma atomarium							2	4	1	1	1	2
Redband parrotfish	Sparisoma aurofrenatum	14	12	12	11	5	9	8	16	10	10	16	12
Redtail parrotfish	Sparisoma chrysopterum	3	9		4	1	5			1	4	1	5
Bucktooth parrotfish	Sparisoma radians	5	4	24	18	1		14	2	15	10	13	16
Redfin parrotfish	Sparisoma rubripinne		5	2	16		6		4	1	5	1	9
Parrotfish species	Sparisoma spp.							2					
Stoplight parrotfish	Sparisoma viride	1	3	1	11		6	4	14	1	20	2	20
Threefin blennies	Tripterygiidae												
Lofty triplefin	Enneanectes altivelis												1
Triplefin species	Enneanectes sp.				1								
Labrisomids	Labrisomidae												

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Downy blenny	Labrisomus kalisherae	3			1							1	
Spotcheek blenny	Labrisomus nigricinctus		1										
Rosy blenny	Malacoctenus macropus	7	3	20	10	8	7	12	2	7	7	17	9
Saddled blenny	Malacoctenus triangulatus	2	1		1			2		1		5	
Tube blennies	Chaenopsidae												
Roughhead blenny	Acanthemblemaria aspera	3	7	1	5	2	2		7		1	1	8
Blenny species	Acanthemblemaria spp.		2							1			1
Sailfin blenny	Emblemaria pandionis	1	3	7	1	17	7	5	3	10		7	2
Combtooth blennies	Blenniidae												
Redlip blenny	Ophioblennius macclurei												1
Seaweed blenny	Parablennius marmoreus	7	10	12	19	14	9	15	6	9	10	14	9
Molly miller	Scartella cristata									1			
Dragonets	Callionymidae												
Lancer dragonet	Callionymus bairdi									1			
Gobies	Gobiidae												
Colon goby	Coryphopterus dicrus			1									
Pallid goby	Coryphopterus eidolon							1	1				
Bridled goby	Coryphopterus glaucofraenum		2	19	24	9	3	9	1	8	10	12	13
Masked goby	Coryphopterus personatus										1		1
Dash goby	Ctenogobius saepepallens			2				3					
Tiger goby	Elacatinus macrodon		1	1		1			2	1	7		6
Neon goby	Elacatinus oceanops	1	3	5	1	2	1	3	5	2	8	2	7
Goldspot goby	Gnatholepis thompsoni			1				2				1	
Rockcut goby	Gobiosoma grosvenori		2										
Seminole goby	Microgobius carri	1		2	1			5				2	
Banner goby	Microgobius microlepis							2					1

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Orangespotted goby	Nes longus										1		
Dartfishes	Ptereleotridae												
Blue goby	Ptereleotris calliura	3		3				1		3		7	
Hovering goby	Ptereleotris helenae							2					
Spadefishes	Ephippidae												
Atlantic spadefish	Chaetodipterus faber		1						3		4	1	3
Surgeonfishes	Acanthuridae												
Ocean surgeon	Acanthurus bahianus	20	22	17	24	19	22	16	16	8	20	15	18
Doctorfish	Acanthurus chirurgus	17	24	14	24	15	22	17	21	13	19	21	20
Blue tang	Acanthurus coeruleus	1	17	1	22	3	17	2	22	1	25	10	24
Barracudas	Sphyraenidae												
Great barracuda	Sphyraena barracuda	2	3	1	1				2		3	1	3
Guachanche barracuda	Sphyraena guachancho					1							
Mackerels	Scombridae												
Spanish mackerel	Scomberomorus maculatus			1							1		
Cero	Scomberomorus regalis		2	1	2	1		1					
Lefteye flounders	Bothidae												
Peacock flounder	Bothus lunatus					1				1		2	
Flounder species	<i>Bothus</i> spp.	1	1	1							1	2	
Large-tooth flounders	Paralichthyidae												
Gulf flounder	Paralichthys albigutta						1						
Triggerfishes	Balistidae												
Gray triggerfish	Balistes capriscus	7	24	8	22	11	17	13	16	9	13	7	15
Ocean triggerfish	Canthidermis sufflamen									1			
Filefishes	Monacanthidae												
Orange filefish	Aluterus schoepfii			1		1							

		Jun	2004	Aug	2004	Mar	2005	Aug	2005	Aug	2006	Aug	2007
Common Name	Scientific Name	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В	Ν	В
Scrawled filefish	Aluterus scriptus		1	1	4	1	2	1	1		5		2
Orangespotted filefish	Cantherhines pullus	1										1	
Fringed filefish	Monacanthus ciliatus	1											
Slender filefish	Monacanthus tuckeri									1			
Planehead filefish	Stephanolepis hispidus	1	6	1	2	7	4	1			2	2	
Boxfishes	Ostraciidae												
Honeycomb cowfish	Acanthostracion polygonius				1						1		
Scrawled cowfish	Acanthostracion quadricornis	1	10	7	9	7	14	7	8	6	9	3	15
Spotted trunkfish	Lactophrys bicaudalis				2		1				1		2
Trunkfish	Lactophrys trigonus		2				1		2		1	1	
Smooth trunkfish	Lactophrys triqueter		4	4	6	5	3	9	2	3	10	4	8
Puffers	Tetraodontidae												
Sharpnose puffer	Canthigaster rostrata	5	1	4	2	5	14	8	16	2	9	6	19
Bandtail puffer	Sphoeroides spengleri			3		1	2	9	1	2	3	2	1
Checkered puffer	Sphoeroides testudineus					1							
Porcupinefishes	Diodontidae												
Striped burrfish	Chilomycterus schoepfii							1					
Balloonfish	Diodon holocanthus	6	6	15	5	7	6	8	8	8	10	5	8
Porcupinefish	Diodon hystrix	1	1		2		4			1	1		4
	Total Species	76	98	81	97	68	86	75	92	80	114	100	104

Appendix C

Transect Label	West Latitude DD MM.SS	West Longitude DD MM.SS	East Latitude DD MM.SS	East Longitude DD MM.SS
C074a	26 07.533	80 06.065	26 07.533	80 06.047
P088a	26 05.207	80 06.460	26 05.210	80 06.442
P090a	26 04.875	80 06.531	26 04.877	80 06.513
C098a	26 03.557	80 06.583	26 03.555	80 06.565
N099a	26 03.398	80 06.593	26 03.400	80 06.575
N099b	26 03.315	80 06.621	26 03.317	80 06.603
P100a	26 03.240	80 06.600	26 03.244	80 06.583
P100b	26 03.120	80 06.618	26 03.121	80 06.601
P101a	26 03.055	80 06.640	26 03.057	80 06.623
N104a	26 02.567	80 06.656	26 02.568	80 06.639
N104b	26 02.466	80 06.674	26 02.468	80 06.656
N105b	26 02.299	80 06.689	26 02.301	80 06.672
N106a	26 02.217	80 06.707	26 02.219	80 06.689
P108a	26 01.893	80 06.722	26 01.897	80 06.704
N110a	26 01.547	80 06.744	26 01.549	80 06.726
P113a	26 01.059	80 06.787	26 01.061	80 06.769
P116a	26 00.555	80 06.797	26 00.557	80 06.778
P119a	26 00.050	80 06.815	26 00.049	80 06.798
P120a	25 59.864	80 06.851	25 59.864	80 06.833
N120b	25 59.773	80 06.851	25 59.773	80 06.833
N121b	25 59.607	80 06.870	25 59.609	80 06.851
N122a	25 59.526	80 06.882	25 59.527	80 06.874
P123a	25 59.346	80 06.900	25 59.347	80 06.882
N126b	25 58.742	80 06.927	25 58.738	80 06.909
N127a	25 58.666	80 06.956	25 58.670	80 06.940

Appendix C. GPS coordinates of natural hardbottom transects.
Transect Label	West Latitude DD MM.SS	West Longitude DD MM.SS	East Latitude DD MM.SS	East Longitude DD MM.SS
A101c	26 02.954	80 06.626	26 02.956	80 06.607
A101d	26 02.933	80 06.621	26 02.936	80 06.604
A101e	26 02.912	80 06.620	26 02.911	80 06.603
A101f	26 02.892	80 06.617	26 02.895	80 06.510
A102b	26 02.870	80 06.613	26 02.871	80 06.596
A102c	26 02.849	80 06.616	26 02.851	80 06.599
A102d	26 02.825	80 06.619	26 02.827	80 06.600
A102e	26 02.806	80 06.623	26 02.810	80 06.605
A102g	26 02.783	80 06.629	26 02.787	80 06.611
A102h	26 02.759	80 06.612	26 02.763	80 06.594
A102i	26 02.760	80 06.631	26 02.760	80 06.613
A103c	26 02.626	80 06.650	26 02.630	80 06.632
A123c	25 59.241	80 06.903	25 59.243	80 06.886
A123d	25 59.222	80 06.905	25 59.223	80 06.887
A123e	25 59.209	80 06.906	25 59.211	80 06.889
A123f	25 59.188	80 06.907	25 59.190	80 06.890
A125b	25 58.943	80 06.888	25 58.944	80 06.870
A125c	25 58.940	80 06.906	25 58.942	80 06.887
A125d	25 58.940	80 06.931	25 58.942	80 06.914
A125f	25 58.891	80 06.895	25 58.893	80 06.877
A125g	25 58.892	80 06.911	25 58.895	80 06.894
A125h	25 58.891	80 06.933	25 58.894	80 06.916
A125i	25 58.862	80 06.884	25 58.864	80 06.865
A125j	25 58.863	80 06.900	25 58.863	80 06.883
A125k	25 58.861	80 06.935	25 58.863	80 06.917

Appendix C cont'd. GPS coordinates of mitigation boulder transects.

Appendix D

Common Name Scientific Name		Trophic Level
Nurse sharks	Ginglymostomatidae	
Nurse shark	Ginglymostoma cirratum	BC
Stingrays	Dasyatidae	
Southern stingray	Dasyatis americana	BC
Round rays	Urolophidae	
Yellow stingray	Urobatis jamaicensis	BC
Tarpons	Megalopidae	
Tarpon	Megalops atlanticus	Pi
Moray eels	Muraenidae	
Green moray	Gymnothorax funebris	Pi
Spotted moray	Gymnothorax moringa	Pi
Purplemouth moray	Gymnothorax vicinus	Pi
Lizardfishes	Synodontidae	
Inshore lizardfish	Synodus foetens	Pi
Lizardfish species	Synodus intermedius	Pi
Sand diver	Synodus sp.	Pi
Squirrelfishes	Holocentridae	
Squirrelfish	Holocentrus adscensionis	BC
Scorpionfishes	Scorpaenidae	
Barbfish	Scorpaena brasiliensis	Pi
Spotted scorpionfish	Scorpaena plumieri	Pi
Snooks	Centropomidae	
Common snook	Centropomus undecimalis	BC
Sea basses	Serranidae	
Graysby	Cephalopholis cruentata	BC
Sand perch	Diplectrum formosum	BC
Red grouper	Epinephelus morio	BC
Butter hamlet	Hypoplectrus unicolor	BC
Scamp	Mycteroperca phenax	BC
Greater soapfish	Rypticus saponaceus	BC
Lantern bass	Serranus baldwini	BC
Belted sandfish	Serranus subligarius	BC
Harlequin bass	Serranus tigrinus	BC
Jawfishes	Opistognathidae	
Dusky jawfish	Opistognathus whitehursti	BC
Cardinalfishes	Apogonidae	
Flamefish	Apogon maculatus	BC
Twospot cardinalfish	Apogon pseudomaculatus	BC
Jacks	Carangidae	
Yellow jack	Carangoides bartholomaei	Pi
Bar jack	Carangoides ruber	Pi
Blue runner	Caranx crysos	Pi
Crevalle jack	Caranx hippos	Pi
Lookdown	Selene vomer	BC

Common Name	Scientific Name	Trophic Level
Greater amberjack	Seriola dumerili	Pi
Snappers	Lutjanidae	
Mutton snapper	Lutjanus analis	BC
Schoolmaster	Lutjanus apodus	BC
Blackfin snapper	Lutjanus buccanella	Pi
Gray snapper	Lutjanus griseus	BC
Mahogany snapper	Lutjanus mahogoni	BC
Lane snapper	Lutjanus synagris	BC
Yellowtail snapper	Ocyurus chrysurus	BC
Mojarras	Gerreidae	
Slender mojarra	Eucinostomus jonesii	BC
Mottled mojarra	Eucinostomus lefroyi	BC
Yellowfin mojarra	Gerres cinereus	BC
Grunts	Haemulidae	
Black margate	Anisotremus surinamensis	BC
Porkfish	Anisotremus virginicus	BC
White margate	Haemulon album	BC
Tomtate	Haemulon aurolineatum	BC
Caesar grunt	Haemulon carbonarium	BC
Smallmouth grunt	Haemulon chrysargyreum	BC
French grunt	Haemulon flavolineatum	BC
Spanish grunt	Haemulon macrostomum	BC
Sailor's choice	Haemulon parra	BC
White grunt	Haemulon plumierii	BC
Bluestriped grunt	Haemulon sciurus	BC
Juvenile grunts	Haemulon spp.	PI
Striped grunt	Haemulon striatum	PI
Pigfish	Orthopristis chrysoptera	BC
Porgies	Sparidae	
Sea bream	Archosargus rhomboidalis	0
Grass porgy	Calamus arctifrons	BC
Saucereye porgy	Calamus calamus	BC
Porgy species	Calamus spp.	BC
Silver porgy	Diplodus argenteus	0
Spottail pinfish	Diplodus holbrookii	0
Pinfish	Lagodon rhomboides	BC
Drums	Sciaenidae	
Reef croaker	Odontoscion dentex	BC
Highhat	Pareques acuminatus	BC
Goatfishes	Mullidae	
Yellow goatfish	Mulloidichthys martinicus	BC
Spotted goatfish	Pseudupeneus maculatus	BC
Sea chubs	Kyphosidae	
Bermuda sea chub	Kyphosus sectator	Н

Common Name	Scientific Name	Trophic Level
Butterflyfishes	Chaetodontidae	
Spotfin butterflyfish	Chaetodon ocellatus	BC
Reef butterflyfish	Chaetodon sedentarius	BC
Angelfishes	Pomacanthidae	
Blue angelfish	Holacanthus bermudensis	0
Queen angelfish	Holacanthus ciliaris	0
Rock beauty	Holacanthus tricolor	0
Gray angelfish	Pomacanthus arcuatus	0
French angelfish	Pomacanthus paru	0
Damselfishes	Pomacentridae	
Sergeant major	Abudefduf saxatilis	0
Blue chromis	Chromis cyanea	BC
Yellowtail damselfish	Microspathodon chrysurus	Н
Dusky damselfish	Stegastes adustus	0
Longfin damselfish	Stegastes diencaeus	0
Beaugregory	Stegastes leucostictus	0
Bicolor damselfish	Stegastes partitus	0
Threespot damselfish	Stegastes planifrons	0
Damselfish species	Stegastes sp.	0
Cocoa damselfish	Stegastes variabilis	0
Wrasses	Labridae	
Spanish hogfish	Bodianus rufus	BC
Slippery dick	Halichoeres bivittatus	BC
Clown wrasse	Halichoeres maculipinna	BC
Blackear wrasse	Halichoeres poeyi	BC
Puddingwife	Halichoeres radiatus	BC
Hogfish	Lachnolaimus maximus	BC
Bluehead	Thalassoma bifasciatum	BC
Rosy razorfish	Xyrichtys martinicensis	BC
Green razorfish	Xyrichtys splendens	BC
Razorfish species	Xyrichtys spp.	BC
Parrotfishes	Scaridae	
Midnight parrotfish	Scarus coelestinus	Н
Rainbow parrotfish	Scarus guacamaia	Н
Striped parrotfish	Scarus iseri	Н
Princess parrotfish	Scarus taeniopterus	Н
Redband parrotfish	Sparisoma aurofrenatum	Н
Bucktooth parrotfish	Sparisoma radians	Н
Redfin parrotfish	Sparisoma rubripinne	Н
Stoplight parrotfish	Sparisoma viride	Н
Threefin blennies	Tripterygiidae	
Roughhead triplefin	Enneanectes boehlkei	BC
Labrisomids	Labrisomidae	
Rosy blenny	Malacoctenus macropus	BC

Common Name	Scientific Name	Trophic Level
Saddled blenny	Malacoctenus triangulatus	BC
Banded blenny	Paraclinus fasciatus	BC
Tube blennies	Chaenopsidae	
Roughhead blenny	Acanthemblemaria aspera	BC
Sailfin blenny	Emblemaria pandionis	BC
Combtooth blennies	Blenniidae	
Seaweed blenny	Parablennius marmoreus	Н
Dragonets	Callionymidae	
Lancer dragonet	Callionymus bairdi	BC
Gobies	Gobiidae	
Colon goby	Coryphopterus dicrus	BC
Bridled goby	Coryphopterus glaucofraenum	0
Masked goby	Coryphopterus personatus	PI
Dash goby	Ctenogobius saepepallens	BC
Tiger goby	Elacatinus macrodon	BC
Neon goby	Elacatinus oceanops	С
Goldspot goby	Gnatholepis thompsoni	BC
Rockcut goby	Gobiosoma grosvenori	BC
Seminole goby	Microgobius carri	BC
Dartfishes	Ptereleotridae	
Blue goby	Ptereleotris calliura	PI
Spadefishes	Ephippidae	
Atlantic spadefish	Chaetodipterus faber	0
Surgeonfishes	Acanthuridae	
Ocean surgeon	Acanthurus bahianus	Н
Doctorfish	Acanthurus chirurgus	Н
Blue tang	Acanthurus coeruleus	Н
Barracudas	Sphyraenidae	
Great barracuda	Sphyraena barracuda	Pi
Mackerels	Scombridae	
Spanish mackerel	Scomberomoros maculatus	Pi
Cero	Scomberomorus regalis	Pi
Lefteye flounders	Bothidae	
Peacock flounder	Bothus lunatus	BC
Triggerfishes	Balistidae	
Gray triggerfish	Balistes capriscus	BC
Filefishes	Monacanthidae	
Scrawled filefish	Aluterus scriptus	0
Slender filefish	Monacanthus tuckeri	0
Planehead filefish	Stephanolepis hispidus	BC
Boxfishes	Ostraciidae	
Honeycomb cowfish	Acanthostracion polygonius	BC
Scrawled cowfish	Acanthostracion quadricornis	0
Spotted trunkfish	Lactophrys bicaudalis	0

Common Name	Scientific Name	Trophic Level
Smooth trunkfish	Lactophrys triqueter	BC
Puffers	Tetraodontidae	
Sharpnose puffer	Canthigaster rostrata	0
Bandtail puffer	Sphoeroides spengleri	0
Porcupinefishes	Diodontidae	
Balloonfish	Diodon holocanthus	BC
Porcupinefish	Diodon hystrix	BC