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SECTION 1
INTRODUCTION

The response of a large, shallow, semi-enclosed basin to direct wind
forcing and boundary forcing through an opening is the subject of this study.
The basin treated is the Bight of Abaco, a body of water bounded by Grand
Bahama Island and the Abaco Islands, and situated on Little Bahama Bank in
the Bahama Islands. The Bight is approximately 90 km long by 50 km wide, with
depths ranging from 2 to 8 meters (see Figures 1-1 and 3-3). The entrance to
the Bight extends for approximately 60 km and opens onto the 600 meter deep
Northwest Providence Channel. The large dimensions of the Bight, together
with the relatively shallow depths, suggest that both rotation and friction
will play important roles in determining the dynamics of the basin.

Atmospheric forcing of the basin is considered to be primarily due to
the surface wind stress in the interior and to the elevation boundary at the
opening. The wind stress is deduced by averaging wind speed records from three
locations within the Bight, and the boundary elevations are inferred from a.
single pressure record taken in the vicinity of the opening. The boundary
forcing, ~o(t), includes the effects of both waves incident from the ocean and
waves reflected from the interior of the Bight.

The traditional approach to a problem of this nature is the time stepping
solution of the shallow water wave equations (Hansen, 1956; Leendertse, 1967;
Platzman, 1958). Generally, the forcing is prescribed as a time series and the
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elevations are predicted at selected grid points on a discretized lattice.
A variation of the time stepping method, called the "influence" method
(Helander, 1961),generates a response function to an impulse type of forcing.
Once the "impulse response" function is obtained, the response to a particular
forcing, f(t), can be obtained by convolving the response function with f(t).

Generally, the semi-enclosed basin is treated (as it is in this work)
as an isolated system. The influence of surrounding bodies of water is
usually expressed as a boundary condition along the open boundary. Miles (1971)
and Garrett (1977), however, treated the coupled system of a basin connected
to a semi-infinite ocean through an opening. A normal mode description was used
to express the fields interior to the basin.

There are several works which attempt to model the bottom friction.
Pekeris and Accad (1969) use a forced frictional tide model to solve the M2
tidal response of the deep ocean. A linear friction term is employed in order
that only a single frequency, cr,the M2 forcing frequency, need be considered.
Also, Lauwerier (1960) treated the free motions of the North Sea using linear
bottom friction. A Kelvin wave - Poincare wave approximation was used assuminq
the North Sea to be channel-like, extending to infinity in two directions.
Platzman and Rao (1965) analyzed the free oscillations of Lake Erie applying
corrections for rotation and linear friction separately. Several time stepping
models have introduced friction via a quadratic bottom drag law (Welander, 1960).

None of the existing models of atmospherically forced basins include the
effect of tidal coupling through the non-linear bottom drag term. The present
model attempts to include this coupling through the coefficient in the linearized

1-3



bottom drag term. This drag coefficient is composed of a space independent
term and a term which represents the sum of the r.m.s. tidal velocities. The
latter term is necessarily space dependent and is a product of the tidal model
developed by Snyder, et al., (1979).

Two methods of solution are used here: a linear time stepping method
and a Green's function/normal mode approach. Forcing is assumed to be homo-
geneous, that is I;(x, t ) = I;(t); T (x, t ) = T (t); and T (x,t ) = T (t), where I;o 0 x x y y 0

represents the elevation at the opening and TX and Ty are the two components
of the surface wind stress.

The time stepping method used is the "influence" method. A response
function is obtained for each of the three forcing functions. The response
functions are then convoluted with the measured forcings, TX(t), Ty(t), and
I;o(t),to produce the predicted response. The predicted responses due to wind
alone are then compared with the measured elevations less the influence of the
opening by performing a least squares-fit. The resulting best-fit coefficients
provide a measure of the surface drag coefficients at the respective station
locations.

A Green's function formalism is developed which allows the inclusion of
friction in the normal mode description. The Green's function is synthesized
from the normal modes of the Bight. Normal modes to N = 12 are calculated using
the inverse iteration method. The admittance functions for impulse type forcings
are derived using a Green's theorem, and the results are compared with the
transform of the impulse response functions obtained by time stepping. Since

1-4



time stepped solutions aren't subject to truncation errors, this comparison
provides a measure of the truncation errors which can be expected from a
normal mode expansion technique.

The text is organized as follows. Section 2 describes the partitioning
of the tidal and meteorological variables and the derivation of the equations
governing the atmospheric response. Section 3 contains the Green's function
formalism for both the friction-free and frictional cases and the derivation
of the Green's theorem. Section 4 describes the numerical solution for the
normal modes and the special problem of interpreting and obtaining the zero
frequency modes. Section 5 describes the three time stepped response functions,

K~O'
with

K , andTX
observed

Section 6 presents the predicted response and the comparison
Section 7 presents a comparison between the admittance

KTy
data.

function as obtained from the Green's theorem and as obtained by transforming
the response function. Section 8 presents a discussion and some conclusions.
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SECTION 2

THE EQUATIONS

This study is a continuation of work begun by Snyder, et aZ. (1979)

to investigate the self-interaction and cross-interaction of tides and wind
set-up in the Bight of Abaco. The shallow water wave equations are used to
model the motions. Friction is introduced via a non-linear bottom drag. The
basin is driven through a southwest opening (see Figure 1-1) by motions in the
Northwest Providence Channel, and driven directly by the wind blowing over the
surface of the Bight. The governing equations are taken to be:

-..au -.. -.. A -..at + U • VU + fkxU + 9V1;

n 1 1 -..-..
= _Y£.+_.!. _ -R(IUI)Up h r z; P h+1; (2-1)

R+ V· (h+z;)U = 0at (2-2)
-..
U is the vertically averaged velocity, 1;is the free surface elevation above
the mean, h is the depth, p is the atmospheric pressure, T is the surface wind

-..stress, and R(IUI) is a speed dependent friction coefficient. We assume that
h» 1;,that vp effects are small compared to the surface wind stress, and that
-.. -..U· VU is negligible.

The elevation and velocity are partitioned:

and (2-4)

(2-3)
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where H refers to "tidal" part, M refers to the "meteorological" part, and
R refers to a residual. +Equations for sH and UH are obtained by applying the
filtering operator,

Lim
T +00 L t

n

T
J
-T

where the wn's are the principal tidal constituents plus overtides. After
Snyder, et al. (1979), the velocities and elevations are represented:

+ 1 L
+UH = nUH Hn2 n

= 1 L nSH HnsH "2 n
where i(w t+cjl )

H = e n nn

Let« »define an ensemble average over an ensemble of realizations of the
elevation and velocity fields where we allow the meteorological and tidal
forcing to be the same for all realizations, but allow the ·phases of the tidal
forcing to be displaced randomly from one realization to the next. Then,

SM = «s» and + +
UM = «U»

« sH» = «sR» = 0
+ +« UH» = «UR» = 0

The residual field becomes the difference between a particular realization
and the ensemble average.
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Applying the« »operator to Eq. (2-1) in order to obtain the equations
governing the setup motion, it is necessary to evaluate

~ ~ ~ 7«R(IUI)U» ; «(RO+R1IUI)U»
Now,

+Assume: IUHI
+and !UH!
+giving IU I

+!U I
+ + If + + + + + +

; (U • U) 2 ; (UH • UH +U·U+U·UM M R R
+ + -+ -+ -)0- -+ 112.

+ 2Ut~• UR + 2UH • UR + 2UM • UR) (2-5)

+» IUMI
+» !URI

+ + '/
- (U • U ) 2H H

A(l 1 I pUH qUH Hp Hq)- + 81.2 p,q
pi'-q

->- ->- '/ 1where A - (U • U ) 2 ; 2" I nUH UH H -n Hn
(Snyder, et al. , 1979 )

(2-6)

(2-7)

Thus,
+ + + ->- ->- ->-

« (RO + R1!UI)U » ; « (RO + R1IU!) (UH+UM+UR) »
+

- (RO + R1A)UM
1 + + ->-

+ 81. I £ pUH qUH rUH Hp Hq Hr (2-8)
p,q,r pqr
pi'-q

(: if w + w + w ; 0
where ;

p q r
£pqr otherwise
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Finally, applying« »to Eq. 's (2-1) and (2-2) gives

(2-9)

aSM ->-
-+VohUM=O.at (2-10)

The subscript, M, will henceforth be dropped.

2-4



SECTION 3
THE GREEN'S FORMALISM

A Green's operator and a Green's theorem are derived for the case of a

response in terms of the eigenmodes and adjoint eigenmodes of the basin.

frictional basin on a rotating constant f plane. The formalism developed by
Platzman (1972) for the solution of the primitive tidal equations is merged
with the theory of non-self-adjoint operators and adjoint eigenfunctions as
explained by Morse and Feshbach (1953) to provide an expression for the forced

THE FRICTIONLESS CASE

Following the convention established by Platzman (1972), we define the
differential operator, l:" by rewriting the friction-free versions of Eq. 's
(2-9) and (2-10) as,

and

~ - "t1J; = Xat '

-s- -+
1jJ = (~) X = C~Ph)

A

t. = i f k x g;rc7• (h

(3-1)

where

(3-2)

If a and then the dot product between a and b, defined

on the vector space spanned by the eigenvectors of ~, is given by
3-1



(:z, - w) G(x,x' ,w) = \,-1 O(~ -~') (3-8)

< a,b > = (3-3)

or, rewritten in matrix form,

< a,b > = J dS a\Jb
S

where ~W = (5 ~)
(3-4)

(3-5)

The symbol, t, is used to indicate that the matrix adjoint is to be taken.

<a,t.b>-<J.,a,b> = JVhS

~
P dS (3-6)

~~ is self-adjoint, that is, a vector, P, exists such that:

S represents the surface area of the basin, Vh is the horizontal gradient,

If Wn satisfies the equation, :tWn = wnWn, then Wn is an eigenvector
of ~ with eigenvalue, wn' The set of all such eigenvectors form a complete
set of basis vectors such that any continuous function, ~(x), can be expressed:

= (3-7)

The self-adjointness of ~ assures the orthogonality of the set, {Wn}.

Let the Green's func t ion , G(x,x' ,w), be defined by the equation,

We next show that the Green's function, G(x,x',w), has the following form:

G(x,x',w) = (3-9)
w - w

n

3-2



Since ~n(;) is a column vector and ~nt(x') is a row vector, G represents a
matrix operator. Since G is a matrix, we can reduce the left side to a scalar
by left and right multiplying the left side of Eq. (3-9) by ~j and ~k' respec-
tively. A similar operation is performed on the right side. The left side
becomes:

= I 8" 8 k = 8J"kn In n (3-10)

The right side becomes:

(3-11 )

Since the results of the contractions, (3-10) and (3-11), are identical for
all j,k, it follows that (3-8) satisfies (3-9).
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+
Llj! = p(x) (3-12)

A GREEN'S THEOREM FOR ~

Green's theorem generally applies to the inhomogeneous equation,

where, in particular, L = '1;2. Green's theorem is used extensively in the solu-
tion of electromagnetic field problems (Jackson, 1962). Morse and Feshbach
(1953) describe a "generalized Green's theorem" for an arbitrary differential
operator, :t. The Green's theorem for ~ is derived as follows.

Assuming sinusoidal forcing, Eq. (3-1) can be written,

(.t-w)lj!=iX (3-13)

Rewriting Eq. (3-9),

Left dot multiply Eq. (3-13) by G and right multiply Eq. (3-9) by 1jJ(x'),and
subtract Eq. (3-13) from Eq. (3-9); (The dot product between a matrix and a
vector gives a vector and is defined as follows:

(3-14)

where [] represents the matrix and () represents the vector.)
-1 -* -+ -+ ¥

< Vi 8(x - x'), lj!(x') > = -i<G,X> + «"" - w)G,lj! >

-<G,(J:.-w)lj!> .

Therefore,
+

lj!(x) = -i<G,x>+«:l:, -w)G,lj!>

- <G,(L -w)lj!> . (3-15)

3-4



Now, <G,(~ - w)1)i >
1)inCit)

= ~ wn - w (-i) Js dS(hfkXU -un + gll~n'11· hun)W (D

and < (i.,- w)G,1/J>
1)inex) ~ -7 -7 -7 -7

= L (- i) J dS (hfkxu • u + ghll~ • u + gil• hu ~ )w -w S n n n nn n

Consequently,
<G,(i., -w)1)i> - «:L -w)G,1)i>

1)inCit) ~ -7 -7
= L if qhn > (u ~+Ui; )dB (3-16)n wn - w B n n

where n is an outward pointing unit vector normal to the boundary. B represents
the boundary of the basin and S, the interior. By comparing Eq. (3-16) with

-7Eq. (3-6), it can be seen that there exists a bilinear concomitant, P, for the
operator, ): - w, such that

(3-17)

Along the closed sections of the boundary, both n . U and n . u are zero
n

so that the only contribution to Eq. (3-16) is from the opening. Here ~n is
zero so that Eq. (3-16) becomes

<G,(t -w)1)i> - «;{. -w)G,1)i> =
1)iex)

J dB n • -7L wn _ w i un~n n B

1)inex) i J -e- -+ -+L w - w U (x') • ,/p dS
n n S n (3-19)

(3-18)

Also, i <G,X> =

3-5



Therefore, the Green's theorem becomes,

1j!n(X)
= L w - w

n n
{f dB g h ;:; • U 1; - J dS U • -r/ o ] .

B n S n
(3-20)

THE FRICTIONAL, NON-SELF-ADJOINTCASE

In the frictional case, Eq.'s (2-9) and (2-10) are still of the form

(3-1), but the operator, J:" is now
A

s: = i (fkX - R'

V'(h
(3-21 )

RO + R1A ->-
where R' = h Since there does not exist a P such that '1.., satisfies

Eq. (3-6), 'tv is not self-adjoint.

- ->-However, an adjoint operator, :t.-, 'and a corresponding P can always be

found such that

< a, (L - w)b > «i -w)a,b>
->-

= J dS V' P
S

(3-22)

for any vectors, a and b.

Define G: (3-23)

where,

(3-24)

->-
Following a development similar to that used to derive Eq. (3-17), P is found

to be

(3-25)
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and Green's theorem takes the form,
(3-26)

Hence, ~ is the adjoint operator to ~ and ~ , the adjoint eigenvector.n

Since ~ is no longer self-adjoint, the solutions, ~ , to the eigenvaluen

equation for:;t.,are no longer orthogonal, i.e.,

snm
(3-27)

However, the two sets, {~n} and {~n} are bi-orthogonal, that is,
<~ ~ > = 0 The Green's function takes on the form,

n' m nm

G(x,it' ,w)
(3-28)

Morse and Feshbach (1953)

G will be needed to derive the new Green's theorem. Assume that G = Gt,

that is,
(3-29)- -+ -+G(x,x',w)

and verify that Eq. (2-26) is satisfied. Since

..... -+ ...... -++ -10( -+')
and (;;r.. (x') _w) G (x,x' ,w) = W x - x

(t. (x) -w)G - -+ -

then = (d:, (x') - w )G

L ~ (x)~t ex' ) L
- -+ r .»

or = ~n(x' )~n (x)n nn n

3-7



Expansion of the above sums shows the equality to be true since the off
diagona 1 terms in both sums are zero accord ing to Eq.'s (3-9) and (3-23).

Following a development similar to that used in the derivation of
Eq. (3-15), a Green's theorem involving:t...,:t., and G is obtained:

(3-30)

Substituting Eq.'s (3-29), (3-24), and (3-21) into Eq. (3-30) yields
Eq. (3-31):

(3-31}
-+-dB gh fi • u !;- J dS u . ~/p} .

n S n

Eq. (3-31) allows the specification of the elevation on the boundary, B, or
-+-T over the surface, S, having once obtained the normal modes (eigenfunctions)
of ~ and ~. The forcing in this case acts through the adjoint eigenfunctions
rather than through the eigenfunctions of~. Hence, the degree to which a
Particular normal mode, ,1,'l'n'

~(~,w), depends on how well
is excited by forcing functions, !;o(x,w)and

"match" the iP 's spatially.nthe forcing functions

In practice, the summation in Eq. (3-31) must extend over some finite
number of terms, N. The convergence properties of the sum will depend on both
the frequency dependent term, l/(wn-w), and the surface and line integrals
enclosed in the brackets, {}. It will 'be shown that the energetic frequencies
in the atmospheric forcing lie in periods longer than 12 hours. Hence, W »wn

(as will be shown in the following section, the lowest mode has a period of
, 1
l.e., -- - -wn-w wn

a and b are the basin dimensions.
about 6 hours) for energetically important w's,

n2 m2 Vrectangular basin, wn - ( az + b2 ) 2 where
For a
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For a linear basin, then, 1 cr 1, a non-convergent sequence.w -w nn

The introduction of a second dimension does not improve the convergent
characteristics of 1_. The surface and 1ine integrals in Eq. (3-31) repre-w -wnsent coupling coefficients between the forcing and the normal modes. For
forcing that is weakly dependent on spatial variables (as in the case of the
Bight), only the low order modes will contribute significantly. For large n,

+ -e-n. un oscillates rapidly across the opening, and un oscillates rapidly over
the interior, resulting in relatively small contributions from the two integrals.
Hence, the nature of the forcing will ensure the convergence of the sum at
large n.

For the special case of homogeneous forcing, Eq. (3-31) takes the
following form:

00 +
{ gh sO(w) J dB n • un1jJ (x .o) L

n- I w - wn

+ T (w)
JdSu (x')- y JdSVn(~')n p

(3-32)

The coupling of the various forcings depends, in the homogeneous case,
on integral properties of the normal modes.
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(~ - t» ) 1jJ = 0n n
(4-1)

SECTION 4
NORMAL MODES FOR THE BIGHT OF ABACO

NUMERICAL METHOD

The Green's theorem (Eq. (3-32)) requires the specification of the
1jJn's,i.e., the normal modes, which are, in turn, solutions to the homogeneous
problem:

Homogeneous boundary conditions are:
A -+~n = 0 along the open ing, and n • un = 0

along the closed portions of the boundary. The eigenvalue equation (4-1) is
solved using a technique called inverse iteration. The method was used by
Steen (1972) to solve for the eigenvectors of a closed rectangular basin of

is solved for a", where a' and w' are initial guesses for 1jJnand wn' respectively.
Then, (4-3)

variable depth and Coriolis parameter without friction. The method is, herein,
adapted to handle variable geometry and a linear, spatially dependent, friction
coefficient.

INVERSE ITERATION (FOR THE FRICTIONLESS CASE)

Following Steen, the equation

(t. -w')a" =a' (4-2)
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w" = <al1~·all> ::;;
<all .a">

<all a'>, + I

<all ,a"> W
(4-5)

An improved estimate for w is obtained by left dot multiplying
Eq, (4-2) by a", giving,

< a II ,~ a II > _ W I <a II , a II > ::;; < a 11 , a I > (4-4)

so that an improved estimate, w", can be defined:

Since w" approaches the Rayleigh ratio as a" approaches ~n' and the Rayleigh
ratio is stationary near wn' successive corrections to w' will approach zero.

DISCRETIZATION

Equation (3-1) can be written explicitly as

-+ ~ -+iwu + fkxu + gvs = 0 (4-6)

-+iws + V • hu = 0 (4-7)

Before discretizing, the equations are first scaled by multiplying Eq. (3-6) by
h/~s where ~s is the mesh size to be used. The following substitutions are
then made:

-+ -+u = hu/~s (4-8)

h = gh/~s2 (4-9)

Equations (3-6) and (3-7) become:
. + A =+ _
lWU + kxfu + hVs = 0 (4- 10)

• -+
lWs + V • U = 0 (4- 11 )
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The dot product becomes:

*<a,a' > = L ~. ~.
ill

.:« _I _ -...::Ie_'
+ u· u· / h + v. v. / h

1 1 1 1 (4-12)

where i is the lattice point index. The overbar will, hereafter, be dropped.

The basin is discretized using a Richardson lattice. Figure 4-1 below
shows a simple basin utilizing this type of lattice.

~l ~5

~lO~8

Figure 4-1.

Boundary conditions in the x and y directions are u = 0 and v = 0, respectively.
Since the Coriolis term must be evaluated at each velocity point, and the
appropriate velocity component is not available at each velocity point, the
velocity is space-averaged over the four nearest neighbors:

1 4o vi = 4qi L (qi + qk) vk/2 (4-13)
k=l

where

qi = f / hi
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The discretized operator, (t, - wI), and the vector, a', for the lattice
shown in Figure 4-1 is shown below.

-ro 0 0 0 0 0 "
-ih -00 ih 0 0 .~ + ) 0 ",,-lfQ/l q2

00 -i -00 0 -i 0 "
I
-;~q/q6) -i~q +q) I0 0 -i h -00 ih ".• r

0 0 0 -i -00 I 0 -i I c t
l:,.-wI '" - - a I '"

III

0 ;~(q +q ) +q+q) 0 I 0 I -i i~q6+q~) 0
c:

, . • • -00 '. C
0 0 0 i~q +q ) I 0 -00 I 0 .!J.< + ) -; " ~. , 'fQ,Q9

- - - - - -
~

I 0 I -00 0 '. ~

0
n

l-i~Q9+q6) ·;~q9+q7) I 1
-i -00 ".

0 0 -1 -00 'm
I
The matrix is in block, tridiagonal form. Due to the non-rectangular shape of

the boundaries in Figure 4-1, each of the blocks on the diagonal is of different
dimensions. For large basins, such irregularities in the characteristics of the

matrix would make the programming difficult. In order to simpl ify the program-

~l

vN+3 VN+M

ming, a rectangular basin is treated, and this basin is partitioned into several
interior basins whose geometry is allowed to have any order of complexity .. The
rectangular lattice and associated operator matrix appear below:
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N represents the number of ~-u elements in each odd-numbered row of lattice
points. M represents the number of v elements in each even numbered row of

Interior boundaries are introduced by striking the relevant u point or
v point depending on whether the boundary is to be east-west or north-south.
An exterior open boundary (B.C. ~ = 0) can be obtained by striking out the
relevant ~ point. In this way the discretized version of the Bight of Abaca

lattice points.

r-----"T---,
I I N I
I I,
I N x N I X I

I I M \
, I I~-----4---1------,
I I I I
I MxN ,MxM, I
L ~--~------~--,

I I I I
I I I,
I I N x N I I
I I I I
I I I 1L__~ ~--4------,

I 'I I
I I~1x MI I~-----~--~------~

o
o

shown in Figure 4-2 is built up.

Each iteration consists of solving Eq. (4-3) and then Eq. (4-5) using
as input the value of a" obtained from Eq. (4-3).

The introduction of linear friction requires the calculation of ~ as
well as ~ and a rework of the Rayleigh ratio's role in the inverse iteration
scheme. The discretized ~ operator contains the friction term on the diagonal

THE FRICTIONAL CASE

at all velocity points.
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The Rayleigh ratio as defined by Eq. (4-5) is no longer stationary,
so that a new Rayleigh ratio must be introduced. The new ratio is defined
such that it is stationary with respect to variations in ~ and ~ (see proof
of stationarity in Appendix A):

w = (4-14)

The correction to the approximate eigenvalue of ~ becomes:

<all,al>
<all .a">

so that = < all ,d I >

<all .a" >
+ w' (4-15)w"

For the frictional case, we solve Eq. (4-3) twice -- the first time
using the guess, ai = ~,wi = w, and the second time using the guess,
aZ = ~, Wz = w* (wZ = w*, because the eigenvalue of ~ is the complex conjugate
of the corresponding eigenvalue of~. See Appendix B).

The resulting a1 and a2 (improved estimates of ~n and ~n) are then
substituted into Eq. (4-15) for the values of a" and a", respectively. w" is,
then, the improved estimate of wn' The process is then repeated.

From Eq. (2-9), R takes on the form, R = R +o
h(x) and

R1A(X). RO = .00086 and
A(X) contours are plottedR1 = .0033, and A is a function of position.

in Figures 4-3 and 4-4, respectively. A is large near the opening, reflecting
the large tidal currents there.
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THE NORMAL MODES

Since the Green's function (Eq. (3-28)) is built up of the normal modes
of the basin, we must enumerate these modes. A somewhat arbitrary number of
modes, twelve, is chosen to attempt to describe the forced response. The
choice is governed primarily by the cost of computing. Justification on
theoretical grounds will await the intercomparison between time stepping results
and the normal mode representation. An additional six zero frequency modes which
appear when Rand f are introduced, are included.

Each mode must be ordered according to eigenfrequency in order to be
sure that the first N modes have been included in the description. In order to
maintain such an ordering, a simple problem whose solutions are known analytically
is used as a starting point, and each mode is tracked as various features such
as depth and boundary geometry are changed. This technique was used by Rao (1966)

to observe the effects of introducing rotation on an enclosed basin.

The starting point in this instance is an open rectangular basin of
constant depth, no rotation, and no friction.

Y

y=bf-----,
I
I
I
I
I
I
I
I
I

x-a x
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This problem has the well-known solution,

sm,n(x,y) = I A . (2m+1) 'ITX cos rmy/b (4-16)si n 2mn am,n
'IT,I gh [e~:l y + ~~f> m = 0,1,2 ( 4-17)w =m,n n = 0,1,2

The geometry is then complicated by introducing a small lip at the
northwest end of the opening. 1nverse iteration is used to solve for the new
normal modes and frequencies using Eq. 's (4-16) and (4-17) to obtain initial
guesses. The northwest section of the opening is gradually closed in steps
until about two thirds of the original opening remains open. The solid bounda-
ries are then moved in two steps to a geometrical shape that approximates the
boundaries of the Bight of Abaco. An"island is introduced near the opening
during the second geometry change. Next, the bottom topography is changed to
agree with actual depths. Rotation is introduced and, finally, friction is
included. The progression of changes is displayed in Figure 4-5. The lines
represent the elevation nodes. The evolution of the eigenfrequencies is plotted
in Figure 4-6. The eigenfrequencies are listed in Table 1.

RESONANT 9's

The strong influence of friction in the shallow Bight is evidenced by
the overdamping of the Helmholtz mode. With the friction coefficient so large,
the resonant spikes broaden and overlap each other along the frequency axis.
The amplitudes of the three lowest under-damped modes are plotted against
frequency in Figure 4-7. The parameter, B, is a normalizing constant used to
adjust the peak power for each mode to the same level. The resonances are
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EIGENVALUES

MODE 51R 511 PERIOD

(Rad/Sec) (Sec-I) (Hours)

(0,0) Upper , 0.0 1.510 x10-4 ----

(0,0) Lower 0.0 1. 464 x10-4 ----

(0,1 ) 2.325 x10-4 1.647x10-4 7.48

(0,2) 4.403 x10-4 1.513 x10-4 3.96

(1,0) 5.963 x10-4 1.096 x1o-4 2.93

(1 , 1) 5.944 x1o-4 2.543 x1o-4 2.94

(0,3) 7.462 xIo-4 1.265 x1o-4 2.34

(1 ,2) 7.603 x1o-4 2.011 x1o-4 2.30

(1 ,3) 8.671 x1o-4 1. 137 x1o-4 2.01

(0,4) 9.327 x1o-4 1 .372 x1o-4 1.87

(0,5) 10.139 x1o-4 1.169 x1o-4 1.72

(1 ,4) 10.335 x1o-4 1.168 x1o-4 1.69

TABLE I
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quite broad and would be difficult to detect in a measured spectrum where
statistical uncertainties provide a background noise that would hide such a
slowly undulating frequency structure. The resonant Q's for each mode are
listed in Table II.

THE CASE OF ZERO FREQUENCY
In order to understand the zero frequency modes, a few analytically

tractable problems will be treated.

Semi-enclosed, Constant Depth, Non-rotating Basin with Friction

y

x=L x

The Helmholtz mode in this case is one-dimensional with dependence only
in the x direction. The differential equation for ~ becomes:

(4-18)

If ~ = z(x)eiwt

(4-19)= o

where K· = (w· - iwR') / gh (4-20)
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NORML 1'100E RESONArlT Q 's

t,100E "R (RAO/SEC) Q

(0,1 ) 2.3250 X 10-4 0.93

(0,2) 4.4031 X 10-4 1.45

(1 ,0) 5.9633 X 10-4 2.70

(1 , 1) 5.9436 X 10-4 1. 36

(0,3) 7.4616 X 10-4 2.78

(1 ,2) 7.6026 X 10-4 2.03

(1 ,3) 8.6706 X 10-4 3.72

(0,4) 9.4952 X 10-4 4.04

(0,5) 10.1346 X 10-4 4.05

(1 ,4) 10.3471 X 10-4 4.14

4-16
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Boundary conditions require that:

K = (2n + 1) 1T / 2L n = 0,1,2, ... (4-21)

In particular, (4-22)K = 1T / 2L

for the Helmholtz mode.

Eliminating K from Eq. 's (4-20) and (4-22) we get,

W2 + iwR' - 1T2 gh / 4L2 = 0 (4-23)

so that if W = wR + iwI,

W2 = 1T2 gh / 4L2 - R'2 / 4R (4-24)

and WI = R '/ 2 (4-25)

Defining Ri:= 1T I gh / L , then for R' < Ri:, wR is real and describes
a circle as a function of R'. wI has a linear dependence on R'. There are
two solutions, IwRI + iWI and -lwRI + iwI. For R> Ri:,wR is imaginary and,
therefore, W is pure imaginary. Two roots result:

W = i ( R'/2 ± I R'2 / 4 - 1T2 gh / 4L2 )

The imaginary part of w is plotted as a function of R' in Figure 4-8.

Semi-enclosed, Constant Depth, Rotating Basin with Friction

A numerical solution for the Helmholtz mode is obtained in the case of
the semi-enclosed basin on a rotating f plane. Results are shown in Figure 4-9.
It can be seen that the introduction of rotation produces a third solution,
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w = iR'. The other solutions shown in Figure 4-9 resemble the solutions for
the non-rotating basin of Figure 4-8.

The Circular Basin

An analytical solution exists for the case of a constant depth,
circular, fully enclosed basin on a rotating f plane (Lamb, 1932). With
slight modification, the same treatment yields a solution for a basin in-
fluenced by linear bottom friction (see Appendix C). The resulting differen-
tial equation is of the form,

(4-26)
where

= w2(2w+ R') - iwR'(iw+ R') _ iw2f2
gh(iw+R') ( 4-27)

wand K are the complex frequency and the complex wave number, respectively.

Consider the basin to be fully open rather than fully closed __ that is,
rather than a vertical wall enclosing the basin, let a very large discontinuity
in bottom depth exist along the periphery. The resulting boundary condition
to be satisfied is:

1;r=a o (4-28)=

Solutions to Eq. (4-26) are of the form,

= A J (Kr) e inep
n n

Eq. (4-28) requires that In(Ka) = 0, or,

(4-29)
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Z is the mth zero of the Bessel function. The zero frequency case ism,n
investigated by setting w = ia and searching for possible solutions for a.
Upon substituting for w, Eq. (4-27) becomes:

=
_a2 (R' -a) + aR' (R' - a) + af2

gh(R' -a) (4-30)

Eq. (4-30) is solved for a as a function of R' for fixed K by using a
Newton-Raphson method. Results for two values of K are shown in Figure 4-10.
Region I represents the underdamped condition where there exists two oscilla-
tory and one purely damped solution. The purely damped solution is charac-
terized by the equation, a = R'. Region II represents the overdamped
condition where the oscillatory modes become overdamped, resulting in three
purely damped solutions. For still larger R', in Region III only one purely
damped solution exists and two oscillatory modes reappear. The results for
the fully open circular basin of constant depth would imply that the two upper
branches in Figure 4-9 (semi-enclosed, constant depth basin) join for some value
of R' in agreement with Figure 4-10.

Two facts of importance emerge from this analysis. First, the introduc-
tion of friction produces an infinity of additional modes of zero frequency,
and second, a, for the new modes is approximately equal to R'.

Lauwerier (1960) used a Kelvin wave model in an infinitely long channel
of constant depth to show that the linear, shallow water wave equations which
include both rotation and friction will yield three solutions -- two complex
solutions which are complex conjugates, and a third, imaginary solution, for
each modal index. He showed that if either rotation or friction were elimina-
ted, the imaginary solution would disappear.
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The Bight of Abaco Model

The zero frequency solutions of the Bight of Abaco model are investi-
gated for varying values of ~, defined by the relation,

R(x) = (4-31)

where a < e < 1

According to the results described above, the imaginary part of the Helmholtz
mode would be expected to form two separate branches as ~ increases past the
critically damped value. That this, in fact, occurs for the actual Bight is II

'I>
17
ii
1

demonstrated in Figures 4-11 and 4-12. Figure 4-12 is an expanded view of
the plot of Figure 4-11 in the vicinity of ~ = 1. The curve in Figure 4-12
resembles that in Figure 4-9 for the rectangular basin. The Helmholtz mode is
very slightly overdamped, the value of ~ at the critical point being approxi-
mately .99. At least one w = iR' solution appears for the actual Bight model.
Since R' is a function of x, the question arises as to the significance of wI
for the quasi-geostrophic mode. For the Bight, wI = .00018, a value which
might be obtained, for a constant depth, space-independent A, if A = .1 and
h = 6.6 meters.

If we write the transformed momentum equation,
-+ A-+ -+iwu + fk x u + gv~ + R'u = a (4-32)

we can see that if there is an approximate balance,

w = iR' (4-33)
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and if W - O(f)

so also, there must be an approximate balance,

A +fk x u = gv~ (4-34)

That the balance described by Eq. 's (4-33) and (4-34) holds is demonstrated
in Figures 4-13 and 4-14. Figure 4-13 displays the velocity vector field for
this quasi-geostrophic mode. Since wR ; 0, the field maintains its directional
properties, but the magnitudes decay in time. Three gyres are evident -- a
large cyclonic gyre and two smaller, anti-cyclonic gyres. Figure 4-14, a
contour plot of elevations, indicates that, associated with the anti-cyclone,
there is a low pressure center and, associated with the two anti-cyclones are
two "highs."

Additional Zero Frequency Modes

Since the simplified, circular basin model, treated analytically above,
possessed an infinity of quasi-geostrophic modes -- one for each oscillatory
mode -- we can expect to observe a large number of such modes in the Bight
model. If, however, these frequencies are closely grouped about a single R',
as they are in the case of the circular basin, then discriminating between the
various modes and enumerating and identifying these modes could be quite
difficult.

Several zero frequency modes having unexpected properties make their
appearance in the Bight model. Figure 4-15 depicts four such modes, together
with a quasi-geostrophic mode. E is as defined by Eq. (4-31). These modes
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are characterized by a quasi-geostrophic-like behavior for small E. At
larger E, however, wI appears to be insensitive to the value of the friction.

Although the behavior of the zero frequency solutions observed in the
Bight as a function of R' cannot be totally explained, several features show
similarities to the zero frequency modes of the open, circular basin of
constant depth. First, there are a multiplicity of solutions, suggesting
that there exists a separate solution for each oscillatory mode. Second, in
regions where R' is small, the zero frequency eigenvalue is a linear function
of R', suggestive of the quasi-geostrophic mode. Since a systematic compila-
tion of these solutions cannot be made, the only alternative is to include
all observed zero frequency solutions in the normal mode sum. Some solutions
are, therefore, unavoidably omitted. This is done in Section 7 where the
Green's function results are compared with the time stepping solutions.

The amplitudes and phases for the Helmholtz and oscillatory modes
obtained using the inverse iteration method are displayed in Figures 4-16
through 4-27. The adjoint elevation distributions closely resemble the
original elevations. A marked difference occurs in the direction of rotation
of the wave fronts, however. Adjoint waves propagate in the opposite direction
from the original eigenfunctions.
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SECTION 5

THE IMPULSE RESPONSE FUNCTION
AND THE TIME STEPPING APPROACH

A continuous, linear functional, f(X,t), can be defined which depends
linearly and continuously on a function g(x',T) such that there exists a
unique kernal, X(l,X';t,T), and

•....

f(x,t) = J dTdx' K(x,x' it,T)g(x',T)
(Courant and Hilbert, 1962)

(5-1)

f(x,t) = J dT dX' K(x,x' it - T)g(x' ,T) (5-2)

If this functional dependence is time invariant, K(x,x' it,T) '= K(x,x' ;t-T),
and Eq. (5-1) can be rewritten,

Eq. (5-2) will be used below to obtain the response of a basin to a forcing,
g(x',T).

and (5-3)

The Bight of Abaco is forced, primarily, by surface winds and a
surface boundary condition along the open boundary. These forcing functions,
~O(x,t) and r(x,t), are,assumed to be homogeneousi that is,

Homogeneity of r is justified on the grounds that the only energetically
important frequencies occur at periods of 24 hours or greater. It is shown

5-1



in Section 6 that on 24 hour time scales the coherence of atmospheric
signals is essentially one over the extent of the Bight. The homogeneity

.,.of ~O(x,t) is on less solid ground. Homogeneity along the boundary implies
that either the external ocean wave arrives along the sill in constant phase,
or that the synoptic scale of the atmospheric disturbance is large enough
and gradual enough that the Northwest Providence Channel free surface rises
and falls with constant phase everyvihere. Since the energetically important
changes in the wind direction and speed in February are due to frontal passages,
the above conditions of large synoptic scales may well be justified. In the
absence of evidence to the contrary, I will assume that sea surface forcing
from outside is homogeneous.

~o(x,t) also contains contributions from waves reflected from within
the Bight. The amplitudes of such waves are likely to be small since there
exists a shallow sill along the opening, and most of the wave energy impinging
on the open boundary from within will be reflected due to the large depth
discontinuity. Some energy will not, however, and this contribution is not
expected to be homogeneous.

.,. .If we assume that the response, ~(x,t), of the Blght is linearly
.,.

related to the assumed homogeneous forcjng functions, ~O(t) and T(t), Eq.
(5- 2) becomes:

=

+ J dT K.,.(x;t-T):f"(T)
T

(5-4)
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The problem of solving for s(x,t) becomes a problem of determining the
kerna1s , K and K-+.sO T

We partition s(x,t),

dx,t) = s (x,t ) + s->-(x,t)sO T

where
s (x,t ) = f dT K Cx;t-T)so(T)sO sO

and -+
s-+Cx.t) = f dT K-+(x;t-T)~(T)

T T

(5-5)

(5-6)

(5-7)

-+The kerna1 s , K and K:;'",are the responses to impulse fore ing in So and TSo •
as can be seen by substituting so(t) = ott) and ~(t) = ott):

(5-8)f dT K Cx;t-T)dT)sO
==

f dT K-+Cx;t-T)o(T)
T

K->-(x;t )
T

(5-9)= =

Hence, the kernals are commonly known as impulse response functions and
could be obtained by calculating s (x,t) and s-+(x,t) using a time steppingsO T

scheme.

However, step functions can be defined with more precision, numerically,
than can delta functions since the discretized delta function must be a square
pulse approximation. The response to a step function is merely the integral
of the impulse response function as is shown below.

5-3
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be a unit step function so that,

<X> <X>

<;fCt,t ) f dT K C~;t-T)f(T) f += = dT K (x;t-T)
-<X> 0

Substitute the change of variable, T' = t-T.

(5-11 )

(5-10)I 01Let f(t) =
t < 0

t > 0

-<X>

~
(5-12) •"""

r
I

(5-13)

Then,
t

= f dT'KC~;T')

Taking the time derivative of both sides,

i.e., K(x;t), the impulse response function, can be obtained by taking the
time derivative of the step response function. Lim <;f(x,t) describes the

t+<x>

i'lt< 12' i'ls/ /9h (5-14)

response of the surface at zero frequency.

The velocity field components of the step response function (the
response function is in fact a vector, (u~(:,t)) are stored along with

<;(x,t)
the elevations during the time stepping since the velocity fields form an
important feature of the zero frequency response.

sf(t) is obtained using a time stepping method common to most storm
surge calculations (Sielecki, 1968). A time step of one minute is used.
The Friedrich-Lewy-Courant stability criterion,

requires that i'lt< 680 seconds. The criterion is easily satisfied.
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The lattice used is the Richardson lattice described in Section 4
and Figure 4-1. A double Richardson lattice (Welander, 1961) was tried
originally, but the Coriolis coupling between the two lattices was too weak
to dampen the "2,.,x"oscillations. Artificial damping via an extra diffusion
equation was imposed, but the damping required to reduce the numerical
oscillations severely dampens the seiche signals as well. Although the
double Richardson lattice offers higher spatial resolution, mesh instabilities
render it ineffective in this case.

The response to s6(t) is shown as a time series of 3-D surfaces in
Figure 5-1. The elevation time series at four mesh points is shown in
Figure 5-3. The locations of the mesh points are shown in Figure 5-2.
s6(t) = 1 meter for t->-=. The elevations at each of the observation points
approach 1 meter elevation as expected. The lee of the island appears to be
a source of strong oscillations. A wave appears to enter the upper Bight
traveling in a northeasterly direction. This is verified by the zero phase
difference observed between the "+" and "x" signals in Figure 5-3.

Responses to T~ and T~ are shown in Figures 5-4 and 5-5, respectively.
The associated surface contours appear in Figures 5-6 and 5-7, respectively.
The surface responds more strongly at lower frequencies to the Tr and Tr

x y
transients since the forcing is not localized as is the s6(t) forcing. Of
special interest is the equilibrium velocity field produced by Tr and Tr as

x y
shown in Figures 5-8 and 5-9. In both cases, a large gyre appears in the
north end of the Bight as a result of the \1XT / h term in the vorticity equation.
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Since ~ is ~ independent, vorticity is due entirely to the bottom depth
gradients present at the northern end. Imasato and Oonishi (1975) demonstrate
the occurrence of wind-induced gyres in Lake Biwa, and show that significant
advective effects arise in the vicinity of these gyres. Since this model is
linear, advective effects have been neglected. The spin-up time for the
gyres appears to be of the order of 6 hours.

K ,K+, and K+ are shown in Figures 5-10, 5-11 and 5-12 for the1;0 TX Ty
10 tide gauge stations. l~hour period oscillations dominate the KI; response

aat stations near the opening. The amplitude of the initial l-hour disturb-
ance dampens toward the north end as the energy input at the opening
dissipates. K+ andTX
the lower frequencies

K+ are characterized by a concentration of energy inTy
of period 2 hours or greater. Since the normal modes

calculated in Section 4 have a low frequency cut-off at 1-2/3 hours, they
would be expected to give a better representation of the response of the
Bight to the wind stress than to elevation forcing through the opening. The
signals have the desired properties of kernals in that they are square-
integrable. Since the series length of the kernals is about 8 hours, they
will act as 8-hour filters when convoluted with the forcing series.
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SECTION 6

PREDICTED RESPONSES VS. MEASURED RESPONSES

WIND FORCING

The spectrum of the wind speed is essentially red. Figure 6-1 shows
the power spectrum for wind speed at Station 3. The energy at the frequency
of the lowest underdamped mode is 27 dB from the peak at zero frequency. With
so much of the atmospheric energy concentrated at the lower frequencies, well
separated from the natural frequencies of the basin, the Bight can be
expected to respond quasi-statically to the surface wind stress. The assump-
tion of homogeneity applied to the wind stress is justified for frequencies
of 1 cycle/day and below according to the coherence plots shown in Figure 6-2.
According to Figure 6-1, most of the energy is concentrated in these low
frequencies.

PREDICTED RESPONSE

are convoluted with the surface windK-.., and K-..
T
X

Ty
the opening in

The kerna1s, K1;,
o

stress and elevations at accordance with Eq. (5-4) to obtain
predicted elevations at 10 instrument locations in the Bight. The wind
stress is prescribed as a function of time only, and is obtained as an
average of the wind stresses recorded at three meteorological stations:
11, 12, and 18. The wind stress is obtained from the wind speed records
by employing the quadratic drag law:

6-1
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-.- -.- -.-
T = yp I I v I v (6-1)

where p' is the air density taken to be 1.122 x 1O-3gm/cm3 (T = 250C.), and
y is the surface drag coefficient, taken to be 2.6 x 10-3 (Ekman, 1928).

Results of the convolutions are shown in Figures 6-3 through 6-12.
The three responses are added together and compared with the measured pres-
sure at the station minus the atmospheric pressure. Response to elevations
at the opening represents a large part of the total signal. In order to isolate
the prediction of elevations due to wind stress alone, T and T ,response pre-. x y

dictions were summed and compared with the measured elevations minus the
predicted elevation due to the opening. A least squares fit of the predicted
wind response to the measured wind response is performed for each of the 10
stations. Free parameters a, S, and yare determined which minimize the
variance of the difference:

(6-2)8 = A - (aB + st + y)
where A is the measured surface elevation minus the predicted response from
the opening, and B is the predicted elevation due to wind alone. S is a
linear trend coefficient included to account for long term drift in the
pressure gauge, and y is a constant term included to account for the dif-
ference between the true mean sea level and the mean of the finite record.
a is the correction factor to the assumed surface drag coefficient. Results
are tabulated in Table III. Figures 6-13 through 6-22 display the time
series for A, B, and 8 for each of the 10 stations.
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FIGURES 6-3 TO 6-12

Measured and predicted elevations at 10 stations.

Elevations are scaled from -30cm to +30 em. Wind
velocities are scaled from -30 m/sec to +30 m/sec.
Vertical lines are drawn at 2-day intervals.
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LEAST SQUARES FIT PARAMETERS FOR PREOICTEO RESPONSE

STATION c 8 y PROP. Vf1.R.
(CM./DAY) (CM. )

1 .625 -.336·-)( 10-2 1.450 .168

4 .621 -.251 X 10-2 1.0~5 .170

5 .603 -.941 X 10-3 .410 .362

6 .599 .655 X 10-4 -.017 .261

7 .572 .910 X 10-3 -.377 .431

9 .540 -.121 X 10-2 .529 .360

10 .534 -.101 X 10-2 .440 .539

14 .301 -.253 X 10-2 1.030 • f,03

17 .975 -.105 X 10-2 .445 .565

19 1.003 -.866 X 10-2 .349 .262

TABLE III
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6-17

FIGURES 6-13 TO 6-22

Measured elevation minus predicted elevation
due to entrance forcing; predicted elevation
due to wind alone; and difference between
measured elevation due to wind and best fit
of predicted elevation due to wind.

Elevations are scaled from -36cm to +36cm.
Vertical lines are drawn at 2-day intervals.
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The plots of 6 show that most of the variance in B is caused by
the semi-diurnal tidal contributions to the residuals which were not suc-
cessfully removed by the harmonic analysis. Otherwise, the 6 time series
seem to be free of significant low frequency variations.

For the northernmost 7 stations, a is closely scattered about 0.6.
However, for the three southernmost stations, a comes closer to 1., in
agreement with the choice of surface drag coefficient. The lower values of
a at the north end indicates either (1) that the surface drag coefficient may
be a function of depth (depths are shallower near the south end than the north);
(2) the barotropic assumption does not model well in the deeper water, result-
ing in a reduction in the apparent surface wind stress; or (3) the closed
boundary approximation at the north end is not altogether valid in that some
outside fluid enters and leaves the Bight through openings in the northern
boundary. This yielding of the boundaries would result in a lower apparent
wind stress. A fourth possibility is that waves entering the Bight from the
Northwest Providence Channel through the opening provide a "corrugated" surface
through which the surface winds may transfer momentum more effectively. Waters
in the north end are sheltered from external influences. Still another ex-
planation is that, since the boundaries are not vertical walls but, in fact,
are sloping boundaries, .the actual boundaries change appreciably if the
surface elevations change sufficiently. Accordingly, it should be noted that,
in Figure 6-13, the over-predictions occur during strong winds and periods of
large displacement in elevation.



SECTION 7

COMPARISON OF METHODS

In the present section the normal mode technique is compared with
the time stepping method at the admittance function level. Three admittance
functions are defined: H~ (x,w),

oof the impulse response functions,
H (x ,w) ,'x
K~ (x.t),
o

and H, (x,w),
-+ YK (x,t), and'x

the transforms

-+Partition ~(x,t), so that,

z, (x,t) + ~ (x,t) + ~ (x,t)
"0 'x 'y

where the three terms on the right are the responses to the three types of

=
(7 -1 )

forcing. Expressions for these three terms were derived in Section 5 (see
Eq.'s (5-8) and (5-9)).

Taking the transforms of Eq. 's (5-8) and (5-9) and using the defini-
tions of the admittance functions above, we get:

~~ (t,w) = 2rrH (x,w)~O(w)
0 ~O

-. (x,w) = 2rrH (x,wh (w)x 'x x

-+ 2rrH (x,wh (w)~ (x,w) ='y 'y y

(7-2)

(7-3)

(7-4)
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On substituting Eq. 's (7-2), (7-3), and (7-4) in Eq. (7-1) and
comparing with the Green's theorem, Eq. (3-32), we can relate the admit-
tance function to the normal modes. (For purposes of the comparison, the
admittance function, when calculated from normal modes, will be superscripted

with a "G".)

HG Is
00 snCit)

(t,w) = L J dx' hu
So 211 W - w nn=-oo n B

G -+ Ia
00 snmH (x,w) = L f d2x' U

TX 211 n=-oo wn - w S n

HG (t,w) Ia
00 sn(t)
L f d2x' -= V

Ty 211 wn - w nn=-co S

(7-5)

(7-6)

(7-7)

H (t,w) is shown in Figure 7-1 for 10 stations. The spectrum for
So

the northernmost stations cuts off at about 20 cycles/day (1.2 hrs.), whereas
.the frequency cutoff for the central stations is at 36 to 40 cycles/day (36
minutes). 40 cycles is close to the upper limit in frequency which can be
supported by the lattice. HG (t,w) is plotted in Figure 7-2 for 10 stations.

So
As expected, due to the incomplete collection of zero frequency modes, dis-
agreement is largest at near-zero frequencies and, due to truncation errors,
at frequencies above 14 cycles/day. There appears to be a tapering off of
the amplitudes of the higher frequencies for the more remote observation
stations. Figures 7-3 and 7-4 provide a comparison between H (t,w) andTX

and Figures 7-5 and 7-6 compare H (t,w) with HG (t,w). Since theT T
-+ Y Y -+for H (x,w) and H (x,w) is lower than for H (x,w),

T
X

Ty So
the normal modes in Figures 7-4 and 7-6 do a fairly good job of duplicating

G -+H (x,w),TX
high frequency cutoff

Figures 7-3 and 7-5.
7-2
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SECTION 8

DISCUSSION AND CONCLUSIONS

The surface elevations in the Bight of Abaco are predicted at 10
tide gauge locations, using a time stepping procedure, and the predictions
are compared with data. Figures 6-13 to 6-22 show good agreement with the
'measured data. Tidal fluctuations present in the residuals are responsible
for a large part of the variance. The sea surface drag coefficient obtained
agrees well with Ekman's value of 2.6 x 10-3 for the shallow regions in the
south end. However, values drop to near half that value near the center
and are about .6 of the Ekman value near the north end. The figures for the
drag coefficient do not correlate well with the local depths, and so it is
felt that the low values in the north end may result from fluid moving
through the small passages which border that end of the Bight.

Normal modes were calculated for the basin and a Green's theorem for
prediction was derived using the adjoint operator,~. The Green's function
was obtained using the two bi-orthogonal sets of eigenfunctions of the
operators J: and~. The admittance function, H(t,w), was obtained using
the Green's theorem to calculate the response to spatially integrated delta
functions in time. Integration was carried out along the open boundary to
obtain Hs (t,w) and over the interior to obtain HT(t,w).

o
Agreement between H(~,w) as obtained from the normal modes and the

admittance function as derived from time stepping results, were good at the
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low frequency end of the spectrum for all stations. However, due to the
high frequency content of the admittance functions at stations near the
opening, the Green's functions did poorly at frequencies above the trunca-
tion frequency of about 17 cycles/day. As Figure 7-1 shows, the high frequency
tail appearing at stations 9, 10, and 14, close by the opening, disappears at
the more remote stations, 1, 4, and 5.

Since the amplitude of the signals present at the remote stations
appears to be low pass filtered, it may be hypothesized that any localized
disturbance in a shallow basin has its high frequencies attenuated as it
moves away from the source region. In order to test this hypothesis, consider
an infinite sea excited by an impulse at a point in space, i.e., let the
forcing be of the form, 8(t)8(r), in a polar coordinate system. The solution
in the frequency domain is the Green's function to the two dimensional wave
equation:

r;(r,w) = (8-1 )

Here k is a function of wand R', the friction coefficient (see Eq. C-6).
All of the w dependence of ( resides in the argument of H;l). On a spectral
plot of ((r,w), changing the observation point, r, has the effect of rescaling
the frequency axis. Hence, if ( experiences a cutoff at w = w for r = 01'- c

then at r= 02 the cutoff frequency, wc' will take on a different value. In
particular, if for a branch of the function, k = k(R' ,w), k is a monotonic
increasing function of w, the effect of increasing r is to lower the cutoff
frequency, wc. Hence, it is not unreasonable that as one moves away from
the source of an impulsive excitation the energy becomes concentrated at
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exist an infinity of normal modes at zero frequency one mode for each

lower frequencies. Since k(w), as expressed by Eq. (e-6), is a complex
function of wand is not a simple monotonic function, which direction the
scaling of w takes cannot be determined immediately. Furthermore, the real
problem does not involve a constant depth, infinite ocean, but a semi-enclosed
basin of variable depth. The basic result that the observed spectrum is a
function of the observation point will still hold for the Bight geometry,
however. Hence, it is reasonable that stations 1, 4, and 5 in the Bight
observe an attenuation of the higher frequencies in relation to observations
at stations g, 10, and 14. That this will be true, in general, for any
remote station in any semi-enclosed basin cannot be determined without more
extensive analysis.

A disagreement in H(x,w) exists for all stations at zero frequency.
Theoretically, as shown for the case of a circular basin in Section 4, there

±w pair of non-zero frequency modes. Since only 5 of these modes were found,n

and there exist 10 such modes corresponding to the 10 underdamped modes at
non-zero frequency, we have an incomplete picture of the response at w= O.

Studies, described in Section 4, of the dependence of the damping factor,
Wi' on R, the drag coefficient, demonstrated some similarities with the zero
frequency modes of the constant depth, circular basin, but failed to lead to
any systematic method for cataloging these modes. Therefore, further work
is necessary if the normal mode method is to be effective for solving the
rotating, frictional basin.

8-3
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An overall goal of this study and that of Snyder et al., (1979) was
to determine if a combined model of the tides and the wind set-up in an
enclosed basin could be formulated to explain the observed elevations.
In particular, this study was intended to test the linearization of the
bottom drag term through use of the time-independent tidal coupling factor,
A (x) .

The predicted elevations, using the meteorological model described
in Section 2, agreed well with observed elevations. Both responses appeared
to be quasi-static. It remains a moot question whether this agreement was a
result of the particular tidal coupling model used or whether any model,
especially one with no tidal coupling at all, would have performed just as
well. Since all of the tidal influence is felt through the friction
coefficient, A(x), varying this parameter would test the sensitivity of the
model to tidal influence.

As was observed in Section 5, the steady state solution, or quasi-
static response, involves a system of gyres and steady currents. Hence,
friction must be important at zero frequency to provide an energy sink for
the surface wind stress. Hence, in the quasi-static limit, the model for
wind set-up should be sensitive to the parameterization of the tides.
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APPENDIX A

STATIONARITY OF THE RAYLEIGH RATIO FOR
NON-SELF-ADJOINT OPERATORS

-Let l., be a non-self-adjoint operator, and let 'J., be its adjoint.
Then,

(A-5)

and (A-2)

(\jinand ~ are bi-orthogonal, normalized eigenvectors of 'J., and 'J., °)n

Let <l>n = \jin+ lOX (A-3)

and - (A-4)<l>n = \jin+ 1011

where X and 11 are arbitrary functions satisfying the same boundary conditions
as \jinand \jin° We want to show that the ratio,

< ~ ,l.\ji >n n
< if! ,\ji>n n

= wn
(A-5)

is stationary with respect to variations in ~n and/or \jin° That is,

We have, w*;j; + 10 '1.,11
n n

A-l



Thus,

<<I> ,J:.<I>> = w* + E{<x,i~ > + <ljJ ,:t.n>} + E2<x,in>. (A-7)n n n n n

Similarly,

(A-B)

It is known, a priori, that the terms, quadratic in E, will not survive
the derivative operation, and they will now be dropped.

w* + d <x,i~ > + <ljJ ,in>}n n n
1 + d<ljJ ,n>+<x,~ -ln n

(A-g)

Using the relation,

<ljJ ,:tn>-< J:.ljJ .n > = 0n n

(n satisfies boundary conditions, adjoint to those satisfied by ~ .)
n

< x' i~> + <ljJ ,J:. n > = < x. i.~ > + <J:.ljJ , n >n n n n

= w* {< X ~ > + <ljJ , n >}n , n n (A-lO )

Eq. (A-g) becomes:

, {I + d < x;~ > + < ljJ , n >)}
c w* n n
dE n {l+d<ljJ ,n> + <X,~ >)}

n n

dW~
= = 0dE:

(A-ll)

A-2



APPENDIX B

EIGENVALUES OF THE ADJOINT OPERATOR

If (B-1 )

and (B-2)

how is w related to a ?n

Right dot multiply Eq. (B-1) by IjIn' left dot multiply Eq. (B-2) by

IjIn' and subtract Eq. (B-2) from Eq. (B-1).

But -< J..1jI,¢> - <1jI,1.1jI> = 0

from the definition of~. IjI satisfies boundary conditions adjoint to

those satisfied by 1jI.

Therefore, * - -a < 1jI,1jI> = w < 1jI,1jI>n

*w = anor

Hence, the eigenvalues of i are complex conjugates of the eigenvalues of :t.

B-1



iwu fv + uR = -gr; x

iwv + fu + vR = -s 1;y

Ux + v = iW1;
y - -h-

Then, iwux fv + u R = -g 1;xxx x
and, iwvy + fu + v R = -g 1;yyy y

Adding and substituting from Eq. (C-3) ,

1;w2 + f (u - v )h - iwR1; = -gh 1/2 1;Y x

Derive the vorticity equation:

iwu fv + u R = -g 1;XYY Y Y
iwv + fu + v R = -g 1;xyx x x

C-l

(C-1)

APPENDIX C

CIRCULAR BASIN OF CONSTANT DEPTH WITH FRICTION

...__-,r = a

The equations of motion in rectangular coordinates for oscillatory
motion are:

(C-2)

(C-3)

(C-4)



Subtracting and substituting from Eqo (C-3),

f(Uy - \)

SUbstitute Eqo (C-5) into Eqo (C-4)
(C-5)

1/2r;, + K2r;, = a (C-6)
where K2 = w2 (iw + R) - iwR(iw + R) _ iwf2

gh(iw+R)

Eq. 's (C-1) and (C-2) can be written in cylindrical coordinates:

iwV - fVe + RVr r
__ ar;,

-g -ar (C-7)

= - £ ~
r ae (C-8)

Find the boundary condition on r;, for a sol id boundary at r = a. El iminating
Vfr from (C-7) and (C-8):

Si nce V r = a @ r = a,

(iw + R) ~~
(C-9)

Since r;, = A J (Kr) e i ne e i wt
n (C-1 0)

is a solution to Eqo (C-6), the boundary condition becomes:

iw + R inf In (Ka)= - Ka J~(Ka)

iR nf In (Ka)
(C-11 )

or
w = - Ka J '( Ka)n

C-2
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