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SECTION 1
INTRODUCTION

The response of a large, shallow, semi-enclosed basin to direct wind
forcing and boundary forcing through an opening is the subject of this study.
The basin treated is the Bight of Abaco, a body of water bounded by Grand
Bahama Island and the Abaco Islands, and situated on Little Bahama Bank in
the Bahama Islands. The Bight is approximately 90 km long by 50 km wide, with
depths ranging from 2 to 8 meters (see Figures 1-1 and 3-3). The entrance to
the Bight extends for approximately 60 km and opens onto the 600 meter deep
Northwest Providence Channel. The large dimensions of the Bight, together
with the relatively shallow depths, suggest that both rotation and friction

will play important roles in determining the dynamics of the basin.

Atmospheric forcing of the basin is considered to be primarily due to
the surface wind stress in the interior and to the elevation boundary at the
opening. The wind stress is deduced by averaging wind speed records from three
Tocations within the Bight, and the boundary elevations are inferred from a.
single pressure record taken in the vicinity of the opening. The boundary
forcing, co(t), includes the effects of both waves incident from the ocean and

waves reflected from the interior of the Bight.

The traditional approach to a problem of this nature is the time stepping
solution of the shallow water wave equations (Hansen, 1956; Leendertse, 1967;

Platzman, 1958). Generally, the forcing is prescribed as a time series and the
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elevations are predicted at selected grid points on a discretized lattice.

A variation of the time stepping method, called the "influence" method
(Welander, 1961), generates a response function to an impulse type of forcing.
Once the "impulse response" function is obtained, the response to a particular

forcing, f(t), can be obtained by convolving the response function with f(t).

Generally, the semi-enclosed basin is treated (as it is in this work)
as an isolated system. The influence of surrounding bodies of water is
usually expressed as a boundary condition along the open boundary. Miles (1971)
and Garrett (1977), however, treated the coupled system of a basin connected
to a semi-infinite ocean through an opening. A normal mode description was used

to express the fields interior to the basin.

There are several works which attempt to model the bottom friction.
Pekeris and Accad (1969) use a forced frictional tide model to solve the M2
tidal response of the deep ocean. A linear friction term is employed in order
that only a single frequency, o, the M2 forcing frequency, need be considered.
Also, Lauwerier (1960) treated the free motions of the North Sea using linear
bottom friction. A Kelvin wave - Poincare wave approximation was used assuming
the North Sea to be channel-like, extending to infinity in two directions.
Platzman and Rao (1965) analyzed the free oscillations of Lake Erie applying
corrections for rotation énd linear friction separately. Several time stepping

models have introduced friction via a quadratic bottom drag law (Welander, 1960).

None of the existing models of atmospherically forced basins include the
effect of tidal coupling through the non-linear bottom drag term. The present

model attempts to include this coupling through the coefficient in the linearized
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bottom drag term. This drag coefficient is composed of a space independent
term and a term which represents the sum of the r.m.s. tidal velocities. The
latter term is necessarily space dependent and is a product of the tidal model

developed by Snyder, et al. (1979).

Two methods of solution are used here: a linear time stepping method
and a Green's function/normal mode approach. Forcing is assumed to be homo-
2 = = ; > e 3 - e
geneous, that is co(x,t)-;o(t), TX(X,t) Tx(t), and ry(x,t) Ty(t), where L,
represents the elevation at the opening and T and Ty are the two components

of the surface wind stress.

The time stepping method used is the "influence" method. A response
function is obtained for each of the three forcing functions. The response
functions are then convoluted with the measured forcings, Tx(t), Ty(t), and
co(t), to produce the predicted response. The predicted responses due to wind
alone are then compared with the measured elevations less the influence of the
opening by performing a least squares fit. The resulting best-fit coefficients
provide a measure of the surface drag coefficients at the respective station

Tocations.

A Green's function formalism is developed which allows the inclusion of
friction in the normal mode description. The Green's function is synthesized
from the normal modes of the Bight. Normal modes to N=12 are calculated using
the inverse iteration method. The admittance functions for impulse type forcings
are derived using a Green's theorem, and the results are compared with the

transform of the impulse response functions obtained by time stepping. Since
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time stepped solutions aren't subject to truncation errors, this comparison
provides a measure of the truncation errors which can be expected from a

normal mode expansion technique.

The text is organized as follows. Section 2 describes the partitioning
of the tidal and meteorological variables and the derivation of the equations
governing the atmospheric response. Section 3 contains the Green's function
formalism for both the friction-free and frictional cases and the derivation
of the Green's theorem. Section 4 describes the numerical solution for the
normal modes and the special problem of interpreting and obtaining the zero
frequency modes. Section 5 describes the three time stepped response functions,
= KTx’ and Kry' Section 6 presents the predicted response and the comparison
with observed data. Section 7 presents a comparison between the admittance

function as obtained from the Green's theorem and as obtained by transforming

the response function. Section 8 presents a discussion and some conclusions.




SECTION 2

THE EQUATIONS

This study is a continuation of work begun by Snyder, et al. (1979)
to investigate the self-interaction and cross-interaction of tides and wind
set-up in the Bight of Abaco. The shallow water wave equations are used to
model the motions. Friction is introduced via a non-linear bottom drag. The
basin is driven through a southwest opening (see Figure 1-1) by motions in the
Northwest Providence Channel, and driven directly by the wind blowing over the

surface of the Bight. The governing equations are taken to be:

U -» - >
%%—+ U-v0 + fRxl + gve
i) 1o gt U s
PR T s - Fap RUUDU (2-1)
3z x 0 4
at +V (h*’ﬁ)U § el (2 2)

-5
U is the vertically averaged velocity, ¢ is the free surface elevation above

the mean, h is the depth, p is the atmospheric pressure, T is the surface wind
stress, and R(]ﬁ|) is a speed dependent friction coefficient. We assume that
h>>z, that Vp effects are small compared to the surface wind stress, and that

-

U-vU is negligible.

The elevation and velocity are partitioned:

z ty t oyt gp (2-3)

—>-_—>-->+ 2
and e R (2-4)

2-1




where H refers to "tidal" part, M refers to the "meteorological” part, and
R refers to a residual. Equations for Ty and GH are obtained by applying the

filtering operator,

T o (t-1")
(s § o (et = :
T2 n R )

where the mn's are the principal tidal constituents plus overtides. After

Snyder, et al. (1979), the velocities and elevations are represented:

=~
U =

H

N =
~1

¥
s o

where i(mnt.+¢n)
3o
Let << >> define an ensemble average over an ensemble of realizations of the
elevation and velocity fields where we allow the meteorological and tidal

forcing to be the same for all realizations, but allow the phases of the tidal

forcing to be displaced randomly from one realization to the next. Then,

5 -
g st g > and UM = << U >
Bl 2= % £8 Ly ¥ = 0

=2 L o i
<< UH b el I UR e =0

The residual field becomes the difference between a particular realization

and the ensemble average.
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Applying the << >> operator to Eq. (2-1) in order to obtain the equations

governing the setup motion, it is necessary to evaluate

AL S
<< R(|UJJU > = <<(RO4-R1|U[)U>>

Now,
= —>—>1/2 2 - ->+-Ij [J>++ ﬁ
> e = Wb AN 'y
- - - > - > 1/2
+ ZUM- UR +-Z H -UR + ZUM -UR) . (2-5)
> >
Assume: Uyl >> Uyl
> -
and Uyl >> [Upl
g -> = -> > 1/
giving Ul = (U,-U,)"
o 1
= 1 i U HH 2-6
A 8A% p%q pHQH p q) (2-6)
p#-q
where s andr b T (2:7)
= H H 2 = moH e = et
(Snyder, et al., 1979)
Thus,
> > - +++ -
<< (RO - RllU|)U e ST (RO + R1|Ul) (UH UM-FUR) >>
= (R0 - Rl)\)UM
1 = - o
i : g ; qur pUH qUH rUHHp}ﬂ1Hr g (2-8)
p#-q
1 R it 1t o 1 +qu=0
where £ = P q

oy 0 otherwise
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Finally, applying << >> to Eq.'s (2-1) and (2-2) gives

{2-9)

— 4+ genl="0 | (2-10)

The subscript, M, will henceforth be dropped.

§ |
2-4 P |
l |




SECTION 3
THE GREEN'S FORMALISM

A Green's operator and a Green's theorem are derived for the case of a
frictional basin on a rotating constant f plane. The formalism developed by
Platzman (1972) for the solution of the primitive tidal equations is merged
with the theory of non-self-adjoint operators and adjoint eigenfunctions as
explained by Morse and Feshbach (1953) to provide an expression for the forced

response in terms of the eigenmodes and adjoint eigenmodes of the basin.

THE FRICTIONLESS CASE

Following the convention established by Platzman (1972), we define the
differential operator, L , by rewriting the friction-free versions of Eq.'s

(2-9) and (2-10) as,

Wity = X (3-1)
where
g = (f) R X = (?gph) !
and
T = £k x gv (3-2)
)

If a-= (ﬁé‘) and b = (ﬁb) , then the dot product between a and b, defined
ta &
on the vector space spanned by the eigenvectors of &, is given by
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<a,b> = IS ds (g ‘Za* g, * h Ua* . ub) (3-3)

or, rewritten in matrix form,

.[-

<a,b> = [ dSa'Wb (3-4)
S
where 5
W = (h 0 i (3-5)
g )

The symbol, *, is used to indicate that the matrix adjoint is to be taken.
L, is self-adjoint, that is, a vector, 3, exists such that:
-
<a,Lb>-<La,b> = Ivh PAS (3-6)
S
S represents the surface area of the basin, vh is the horizontal gradient,

= -+ -+
. and P = gh(uac;b + ubca).

If Yy satisfies the equation, i_wn =W then Y, is an eigenvector
of £ with eigenvalue, W - The set of all such eigenvectors form a complete

set of basis vectors such that any continuous function, ¢(x), can be expressed:

n=co

o(x) = [ Ay (x) . (3-7)

n=-co

The self-adjointness of £ assures the orthogonality of the set, {wn}.

Let the Green's function, G(x,x',w), be defined by the equation,

> >

(&, = w) Gl m) = Wisleox') (3-8)

We next show that the Green's function, G(x,x',w), has the following form:
v, (K)y, (x*)

W =
n

Gx,x',w) = ¥ (3-9)
n

32 A




Since wn(;) is a column vector and wnT(x') is a row vector, G represents a
matrix operator. Since G is a matrix, we can reduce the left side to a scalar
by left and right multiplying the left side of Eq. (3-9) by wj and ) > respec-
tively. A similar operation is performed on the right side. The left side

becomes:
<wj’ (K" UJ) G,¢k>
: e ek
-<wj5 rzlwn(x) ‘pn (X ),¢k>

. g g e Pl ;
=[5 Jg dsds' v (x) W Ewn(X)wn (x"W(x")w,
- g e oW (3-10)
The right side becomes:
<P W (X)X -X")5Hy >

= fg Jo dsdst vt COUGS(K - RN (x U(x Dy (X*)

Jo I, dsdst v GOWGDS(K - X w (x)

G 3 E - e =
IS dS ¥ (W)Y (x') = 8y (3-11)

Since the results of the contractions, (3-10) and (3-11), are identical for

all j,k, it follows that (3-8) satisfies (3-9).
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A GREEN'S THEOREM FOR X,

Green's theorem generally applies to the inhomogeneous equation,
W = o(x) , (3-12)

where, in particular, L=V?. Green's theorem is used extensively in the solu-
tion of electromagnetic field problems (Jackson, 1962). Morse and Feshbach
(1953) describe a "generalized Green's theorem" for an arbitrary differential

operator, .. The Green's theorem for & is derived as follows.
Assuming sinusoidal forcing, Eq. (3-1) can be written,
(L -w)p = ix . (3-13)
. Rewriting Eq. (3-9),

=9

(L -w)6 = W's(x-x')

Left dot multiply Eq. (3-13) by G and right multiply Eq. (3-9) by ¥(x'), and
subtract Eq. (3-13) from Eq. (3-9): (The dot product between a matrix and a

vector gives a vector and is defined as follows:
T, 0O s .% dSE]+WC) s (3-14)

where [ | represents the matrix and O represents the vector.) !

i R

SHTS(X-X'), B(X') > = ~i<G,x + <(L -w)6,0> 4

‘<Ga(°t""w)w> . ': ‘
Therefore,

<
>+
1

-i<G,x >+ < (L -w)G,P> 3 |
- <G, (L -w)> . (3-15) |
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Now, <G,(X -~wy>

(-1) fs dS(hfﬁxﬁ~T§n+gvcn, 7. ha’n)w (2‘)

and <( -w)G,yp>

Consequently,

: A -> -+
i fé ghn -(unc-bugn)dB (3-16)

where n is an outward pointing unit vector normal to the boundary. B represents
" the boundary of the basin and S, the interior. By comparing Eq. (3-16) with
Eq. (3-6), it can be seen that there exists a bilinear concomitant, E, for the

operator, &£ - w, such that
o > -
P = gy c+ug ) . (3-17)

Along the closed sections of the boundary, both n -ﬁn and 0 .U are zero
so that the only contribution to Eq. (3-16) is from the opening. Here b is

zero so that Eq. (3-16) becomes

v (X) i
<G, (L -~w)p>-<(L -w)G,u> = E“’n‘“’ i 'fB dBn. Uz . (3-18)
Al : wn(;{*) > o
S0, 1 <G;x> = E T i J.S un(x ) « t/p dS (3-19)
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Therefore, the Green's theorem becomes,

5 ¥, (X)
n

v(x) = }
n

{f, a8 ghn-lc - I dsi - T/} . (3-20)

L) e )

THE FRICTIONAL, NON-SELF-ADJOINT CASE

In the frictional case, Eq.'s (2-9) and (2-10) are still of the form

(3-1), but the operator, £, is now

fkx - R gv
L = 1‘( ) {3-21)
v+ (h 0
R0+R1A %
where R' = i T Since there does not exist a P such that £ satisfies

Eq. (3-6), X s not self-adjoint.

~

->
However, an adjoint operator, X , and a corresponding P can always be

found such that
<a,(L -w)b> - <(£ -w)a,b> = J ¢ v.p (3-22)

for any vectors, a and b.

~

Define G: (L -all » W -1 (3-23)
where,
¥ " fkx + R qv
i 1'( ) (3-24)
ve(h 0

-3
Following a development similar to that used to derive Eq. (3-17), P is found
to be

R = ~ >
P = gh(iz+ Cnu) , (3-25)

3-6

o

=

% |
i
|
E |
I,
3
i
3
j




and Green's theorem takes the form,

o = -i<B,x>+ <G,Lu>-<LGY>

Hence, ii is the adjoint operator to & and wn, the adjoint eigenvector.
Since & is no longer self-adjoint, the solutions, wn’ to the eigenvalue

equation for & are no longer orthogonal, i.e.,
<Lpn’wrn> 7 5nm

However, the two sets, {wn} and {&n} are bi-orthogonal, that is,

<y ,@ > = & . The Green's function takes on the form,
n’'m nm

s e 1 e
o=y v (x)v ' (x')
G(X,x'sw) = 1 —ﬂ'a—f%;~"
n n

Morse and Feshbach (1953)

G will be needed to derive the new Green's theorem. Assume that G = G*,

that is,
% sagis ¥
e B, (X, (%)
A S s s e
n n

and verify that Eq. (2-26) is satisfied. Since

(L (X) -w0) G (X,x',w) = Whe(x -x")
and & 1) ) & (LR 0) = WIs(x-X')
then & X)) -0)6 = (LK')-w)
or Ewn(i)mn*(i') - E&H(I-)w*(i)

(3-26)

(3-27)

(3-28)

(3-29)




Expansion of the above sums shows the equality to be true since the off

diagonal terms in both sums are zero according to Eq.'s (3-9) and (3-23).

Following a development similar to that used in the derivation of

Eq. (3-15), a Green's theorem involving & , &, and G is obtained:
p(E) = —i<Bao+ <@ -0)6ip> - <6 (X - . (3-30)

Substituting Eq.'s (3-29), (3-24), and (3-21) into Eq. (3-30) yields
Eq. (3-31):

v(Kow) = ) L {f, dBhA-Tz - [ d i -T/o} . (3-31)

Eq. (3-31) allows the specification of the elevation on the boundary, B, or

T over the surface, S, having once obtained the normal modes (eigenfunctions)
of £ and L. The forcing in this case acts through the adjoint eigenfunctions
rather than through the eigenfunctions of & . Hence, the degree to which a
particular normal mode, wn, is excited by forcing functions, co(;}w) and

5>, >

t(x,w), depends on how well the forcing functions "match" the ﬁn's spatially.

In practice, the summation in Eq. (3-31) must extend over some finite
number of terms, N. The convergence properties of the sum will depend on both
the frequency dependent term, 1/(wn-m),and the surface and line integrals
enclosed in the brackets,_{ }. It will be shown that the energetic frequencies
in the atmospheric forcing lie in periods longer than 12 hours. Hence, w, >

(as will be shown in the following section, the lowest mode has a period of
1 ~ 1

about 6 hours) for energetically important w's, i.e., e ey For a
n n
5 2 1
rectangular basin, i ( gy-+ %y )/2 where a and b are the basin dimensions.
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o %-, a non-convergent sequence.

For a linear basin, then, ——
n

The introduction of a second dimension does not improve the convergent
characteristics of 5155 . The surface and line integrals in Eq. (3-31) repre-
sent coupling coeffigients between the forcing and the normal modes. For
forcing that is weakly dependent on spatial variables (as in the case of the
Bight), only the low order modes will contribute significantly. For large n,
ne En oscillates rapidly across the opening, and En oscillates rapidly over
the interior, resulting in relatively small contributions from the two integrals.
Hence, the nature of the forcing will ensure the convergence of the sum at

large n.

For the special case of homogeneous forcing, Eq. (3-31) takes the

- following form:

@y (X) <
vixw) = § =51 {ghgplw) [dBA-u
n=1 n
(w) s T, (w) &
- Txpw R —Y;— [dsv (x') . (3-32)

The coupling of the various forcings depends, in the homogeneous case,

on integral properties of the normal modes.
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SECTION 4
NORMAL MODES FOR THE BIGHT OF ABACO

NUMERICAL METHOD

The Green's theorem (Eq. (3-32)) requires the specification of the
wn's, i.e., the normal modes, which are, in turn, solutions to the homogeneous

problem:

(& -wn) Pty e (4-1)

>

Homogeneous boundary conditions are: Cn = 0 along the opening, and ne un=()
along the closed portions of the boundary. The eigenvalue equation (4-1) is
solved using a technique called inverse iteration. The method was used by
Steen (1972) to solve for the eigenvectors of a closed rectangular basin of
variable depth and Coriolis parameter without friction. The method is, herein,
adapted to handle variable geometry and a linear, spatially dependent, friction

coefficient.

INVERSE ITERATION (FOR THE FRICTIONLESS CASE)

Following Steen, the equation
(& -w)a" =a’ (4-2)

is solved for a", where a' and w' are initial guesses for wn and W respectively.

Then,
il S e (4-3)
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An improved estimate for w is obtained by left dot multiplying
Eq. (4-2) by a", giving,
<a",i.a"> 2 ml<all’all> - <al|’al> . (4_4)
so that an improved estimate, w", can be defined:

" <a" g, a"> <a’.a'> ,
= = : i e
[J..'l <all,al|> <a|l,all> U') s (4 5)

Since w" approaches the Rayleigh ratio as a" approaches wn’ and the Rayleigh

ratio is stationary near W s successive corrections to w' will approach zero.

DISCRETIZATION

Equation (3-1) can be written explicitly as

jwu + fkxU + gvz

1]
o

(4-6)

iw§+V-ha

1]
o

(4-7)

Before discretizing, the equations are first scaled by multiplying Eq. (3-6) by
h/As where As is the mesh size to be used. The following substitutions are

then made:

=¥|

hu/As (4-8)

F« gpfiss (4-9)
Equations (3-6) and (3-7) become:

iwd + ’I;xf:ﬁ— + hvg

1}
o

(4-10)

1}
o

jwr +Veu (4-11)
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The dot product becomes:

* i ESE, = A T e
<a@'> = for, vl IREV Y /R , (4-12)
1

where i is the lattice point index. The overbar will, hereafter, be dropped.

The basin is discretized using a Richardson lattice. Figure 4-1 below

shows a simple basin utilizing this type of lattice.

“ . °3 Ug °5
V6 7
K Ug *10

Figure 4-1.

Boundary conditions in the x and y directions are u = 0 and v = 0, respectively.
Since the Coriolis term must be evaluated at each velocity point, and the
appropriate velocity component is not available at each velocity point, thé
velocity is space-averaged over the four nearest neighbors:

4

1
L1 vy T b, Ot iR (4-13)

where

9 =T
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The discretized operator, (£ -wl), and the vector, a', for the lattice

shown in Figure 4-1 is shown below.

[ i 0 0 0 l 0 0 I I &
-ih I ih 0 0 l -ila,ta,) 0 | u,
0 = -0 i 0 = 0 O g
. e s
0 0 -ih -w ih -1?{q4+q°) -1?(q‘+q7) u,
0 0 0 -i ~w ! 0 -1 l g,
x_— wl = o e T S r— aerrsd S S =i Sp—— prmmp; yo— - Sp— SR
:h -h .h
0 W{q;qﬁ) i 1?(q‘+q6) 0 I - 0 | -1 1?(qa+qv) 0 v,
0 0 0 iMora) 1 | o0 % 0 iMarq) - v
f q4 qr l b B 7
_ ' i 0 | -0 i 0 g
.h .h .
O I -idara) -iFaga) | ~1 -0 i Ug
0 i 0 -i - te
@ | | J S

The matrix is in block, tridiagonal form. Due to the non-rectangular shape of
the boundaries in Figure 4-1, each of the blocks on the diagonal is of different
dimensions. For large basins, such irregularities in the characteristics of the
matrix would make the programming difficult. In order to simplify the program-
ming, a rectangular basin is treated, and this basin is partitioned into several
interior basins whose geometry is allowed to have any order of complexity. - The

rectangular lattice and associated operator matrix appear below:

By oY B Sy e e oN

e e YN4M
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- e
i ! =
i NN 5 % )
I i
. P
e R S M =
L OMxN Mx M, !
bodl S R S P e =
| | | |
| | | 1
I Eor NN 1
I | | |
I I | |
E S e i b s e -
| |
. 1M x M) :
. e RS L P

N represents the number of z-u elements in each odd-numbered row of lattice
points. M represents the number of v elements in each even numbered row of

lattice points.

Interior boundaries are introduced by striking the relevant u point or
v point depending on whether the boundary is to be east-west or north-south.
An exterior open boundary (B.C. z=0) can be obtained by striking out the
relevant ¢ point. In this way the discretized version of the Bight of Abaco

shown in Figure 4-2 is built up.

Each iteration consists of solving Eq. (4-3) and then Eq. (4-5) using

as input the value of a" obtained from Eq. (4-3).

THE FRICTIONAL CASE

The introduction of Tinear friction requires the calculation of ) as
well as ¢ and a rework of the Rayleigh ratio's role in the inverse iteration
scheme. The discretized &£, operator contains the friction term on the diagonal
at all velocity points.
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The Rayleigh ratio as defined by Eq. (4-5) is no longer stationary,
so that a new Rayleigh ratio must be introduced. The new ratio is defined
such that it is stationary with respect to variations in ¥ and @ (see proof
of stationarity in Appendix A):

<, Lv>
<P, >

The correction to the approximate eigenvalue of £ becomes:

so that w' = == W (4-15)

For the frictional case, we solve Eq. (4-3) twice — the first time

1
aé = ¥, wé = w* (m2 = w*, because the eigenvalue of'JE is the complex conjugate

using the guess, ai =y, w; = w, and the second time using the guess,

of the corresponding eigenvalue of £,. See Appendix B).

The resulting a; and a§ (improved estimates of wn and ﬁn) are then

substituted into Eq. (4-15) for the values of a" and a", respectively. " is,

then, the improved estimate of w The process is then repeated.

0t th( R0= .00086 and

R1= .0033, and X is a function of position. h(x) and A(x) contours are plotted

From Eq. (2-9), R takes on the form, R = R

in Figures 4-3 and 4-4, respectively. X is large near the opening, reflecting

the large tidal currents there.
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THE NORMAL MODES

Since the Green's function (Eq. (3-28)) is built up of the normal modes
of the basin, we must enumerate these modes. A somewhat arbitrary number of
modes, twelve, is chosen to attempt to describe the forced response. The
choice is governed primarily by the cost of computing. Justification on
theoretical grounds will await the intercomparison between time stepping results
and the normal mode representation. An additional six zero frequency modes which

appear when R and f are introduced, are included.

Each mode must be ordered according to eigenfrequency in order to be
sure that the first N modes have been included in the description. In order to
maintain such an ordering, a simple problem whose solutions are known analytically
is used as a starting point, and each mode is tracked as various features such
as depth and boundary geometry are changed. This technique was used by Rao (1966)

to observe the effects of introducing rotation on an enclosed basin.

The starting point in this instance is an open rectangular basin of

constant depth, no rotation, and no friction.

1
I
I
I
1
1
I
1
L




This problem has the well-known solution,

- in 2mt1)  mx 2
gm’n(x,y) mzn Amn sin ~=5 5 cos nmy/b (4-16)
= e oamt1\2 . n2 12 m=0,1,2
i % e ™ ¥ gh [( 2a ) ¢ Ef] n=0,1.2 (4-17)

The geometry is then complicated by introducing a small 1ip at the
northwest end of the opening. Inverse iteration is used to solve for the new
normal modes and frequencies using Eq.'s (4-16) and (4-17) to obtain initial
guesses. The northwest section of the opening is gradually closed in steps
until about two thirds of the original opening remains open. The solid bounda-
ries are then moved in two steps to a geometrical shape that approximates the
boundaries of the Bight of Abaco. An island is introduced near the opening
during the second geometry change. Next, the bottom topography is changed to
agree with actual depths. Rotation is introduced and, finally, friction is
included. The progression of changes is displayed in Figure 4-5. The lines
represent the elevation nodes. The evolution of the eigenfrequencies is plotted

in Figure 4-6. The eigenfrequencies are listed in Table I.

RESONANT Q's

The strong influence of friction in the shallow Bight is evidenced by
the overdamping of the Helmholtz mode. With the friction coefficient so large,
the resonant spikes broaden and overlap each other along the frequency axis.
The amplitudes of the three lowest under-damped modes are plotted against
frequency in Figure 4-7. The parameter, B, is a normalizing constant used to

adjust the peak power for each mode to the same level. The resonances are
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EIGENVALUES

MODE o ay PERIOD
(Rad/Sec) (Sec'1) (Hours)
(0,0) Upper 0.0 1.510 x10”* s
(0,0) Lower 0.0 1.464 x10'4 e
(0,1) 2.325 x107% 1.647 x107% 7.48
(0,2) 4.403 x107% 1.513 x107* 3.96
(1,0) 5.963 x10™* 1.096 x107% 2.93
(1,1) 5.944 x107% 2.543 x107% 2.94
(0,3) 7.462 X107 1.265 x10™% 2.34
(1,2) 7.603 x1073 2.011 x10”* 2.30
(1,3) 8.671 x10™ 1.137 x10”% 2.01
(0,4) 9.327 x10”% 1.372 x107* .87
(0,5) 10.139 x10”% 1.169 x10”* 1.72
(1,4) 10.335 x10™* 1.168 x10”* 1.69

TABLE I

=AY REAUL s
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quite broad and would be difficult to detect in a measured spectrum where
statistical uncertainties provide a background noise that would hide such a
slowly undulating frequency structure. The resonant Q's for each mode are

listed in Table II.

THE CASE OF ZERO FREQUENCY

In order to understand the zero frequency modes, a few analytically

tractable problems will be treated.

Semi-enclosed, Constant Depth, Non-rotating Basin with Friction

The Helmholtz mode in this case is one-dimensional with dependence only

in the x direction. The differential equation for ¢ becomes:

{:tt + Rlct = gh Z.:xx . (4-]8)
1§ : s Z(x)eiwt ,
2 = -
o o S ) (4-19)
where K2 = fwt - faR') J gh . (4-20)

4-15

B A LR et




II e
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e
S

[IORMAL MODE RESONANT Q's

':!‘ﬁl }
2, (RAD/SEC) Q |
-4 1
2.3250 X 10 0.93 “
4.4031 X 1074 1.45 i
3 7
5.9633 X 10 2.70 ga
5.9436 X 107" 1.36 £
all n
7.8616 X 107" 2.78 i
7.6026 X 107 2.03 ﬁ -
8.6706 X 1072 3.72
9.4952 X 1074 4,04
10.1346 X 10°% 4.05
10.3471 X 10°% 4.14
TABLE 11
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Boundary conditions require that:

K

(2n+1) w/2L o N B S

In particular, K /2L
for the Helmholtz mode.

Eliminating K from Eq.'s (4-20) and (4-22) we get,

o T julto~ wroh AL =D,
so that if w = wp + 1mI,
wZR = w2 gh/412 -R'2/4

1

and Wy RMI2

(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

Defining Rb Endgh/L . thew for R" < R wp is real and describes

C 3

a circle as a function of R'. wy has a linear dependence on R'. There are

two solutions, |wR| +

therefore, w is pure imaginary. Two roots result:

wo= F{RIZ % AL ~nigh Wt )

The imaginary part of w is plotted as a function of R' in Figure 4-8.

Semi-enclosed, Constant Depth, Rotating Basin with Friction

and -|mR| + imI. For R>>R&, Wp is imaginary and,

A numerical solution for the Helmholtz mode is obtained in the case of

the semi-enclosed basin on a rotating f plane. Results are shown in Figure 4-9.

It can be seen that the introduction of rotation produces a third solution,
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w = iR'. The other solutions shown in Figure 4-9 resemble the solutions for

the non-rotating basin of Figure 4-8.

The Circular Basin

An analytical solution exists for the case of a constant depth,
circular, fully enclosed basin on a rotating f plane (Lamb, 1932). With
slight modification, the same treatment yields a solution for a basin in-
fluenced by linear bottom friction (see Appendix C). The resulting differen-

tial equation is of the form,

VZC = ch = 0 : (4'26)

where

g L0 2t R )~ iwR' (jw+R') - iw?f?

w and K are the complex frequency and the complex wave number, respectively.
Consider the basin to be fully open rather than fully closed -- that is,
rather than a vertical wall enclosing the basin, let a very large discontinuity

in bottom depth exist along the periphery. The resulting boundary condition

to be satisfied is:
z il (4-28)

Solutions to Eq. (4-26) are of the form,

% ing
g, An Jn(Kr)e

Eq. (4-28) requires that Jn(Ka) = 0, or,

= e
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Zm : is the mth zero of the Bessel function. The zero frequency case is

investigated by setting w = ia and searching for possible solutions for a.

Upon substituting for w, Eq. (4-27) becomes:

-a?(R' -a) + aR'(R' -a) +af?
gh(R" -a)

K> = (4-30)

Eq. (4-30) is solved for o as a function of R' for fixed K by using a
Newton-Raphson method. Results for two values of K are shown in Figure 4-10.
Region I represents the underdamped condition where there exists two oscilla-
tory and one purely damped solution. The purely damped solution is charac-
terized by the equation, o = R'. Region II represents the overdamped
condition where the oscillatory modes become overdamped, resulting in three
purely damped solutions. For still larger R', in Region III only one purely
damped solution exists and two oscillatory modes reappear. The results for
the fully open circular basin of constant depth would imply that the two upper
branches in Figure 4-9 (semi-enclosed, constant depth basin) join for some value

of R' in agreement with Figure 4-10.

Two facts of importance emerge from this analysis. First, the introduc-
tion of friction produces an infinity of additional modes of zero frequency,

and second, o, for the new modes is approximately equal to R'.

Lauwerier (1960) Qsed a Kelvin wave model in an infinitely long channel
of constant depth to show that the linear, shallow water wave equations which
include both rotation and friction will yield three solutions -- two complex
solutions which are complex conjugates, and a third, imaginary solution, for
each modal index. He showed that if either rotation or friction were elimina-
ted, the imaginary solution would disappear.

4-20
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DAMPING FACTOR, o, VERSUS DRAG COEFFICIENT FOR ZERO FREQUENCY MODES

OPEN CIRCULAR BASIN
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The Bight of Abaco Model

The zero frequency solutions of the Bight of Abaco model are investi-

gated for varying values of €, defined by the relation, .f'f
R(x) = e(R, + R{A(X) ) (4-31)

where 0 < ¢ <1

el =
According to the results described above, the imaginary part of the Helmholtz !??ij
mode would be expected to form two separate branches as e increases past the %;’L:
critically damped value. That this, in fact, occurs for the actual Bight is _5?\
demonstrated in Figures 4-11 and 4-12. Figure 4-12 is an expanded view of ;21 :

the plot of Figure 4-11 in the vicinity of € = 1. The curve in Figure 4-12

resembles that in Figure 4-9 for the rectangular basin. The Helmholtz mode is f
very slightly overdamped, the value of ¢ at the critical point being approxi-

mately .99. At least one u = iR' solution appears for the actual Bight model.

Since R' is a function of x, the question arises as to the significance of Wy
for the quasi-geostrophic mode. For the Bight, wp = .00018, a value which

might be obtained, for a constant depth, space-independent A, if A = .1 and

h = 6.6 meters.

If we write the transformed momentum equation,
fwll + fk x U+ gz + R'G = 0 (4-32)

we can see that if there is an approximate balance,

o gRY (4-33)
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and if @ % O(f)"

so also, there must be an approximate balance,
fk x U 2 gvz . (4-34)

That the balance described by Eq.'s (4-33) and (4-34) holds is demonstrated

in Figures 4-13 and 4-14. Figure 4-13 displays the velocity vector field for
this quasi-geostrophic mode. Since wp = 0, the field maintains its directional
properties, but the magnitudes decay in time. Three gyres are evident -- a
large cyclonic gyre and two smaller, anti-cyclonic gyres. Figure 4-14, a
contour plot of elevations, indicates that, associated with the anti-cyclone,
there is a low pressure center and, associated with the two anti-cyclones are

two "highs."

Additional Zero Frequency Modes

Since the simplified, circular basin model, treated analytically above,
possessed an infinity of quasi-geostrophic modes -- one for each oscillatory
mode -- we can expect to observe a large number of such modes in the Bight
model. If, however, these frequencies are closely grouped about a single R',
as they are in the case of the circular basin, then discriminating between the
various modes and enumerating and identifying these modes could be quite

difficult.

Several zero frequency modes having unexpected properties make their
appearance in the Bight model. Figure 4-15 depicts four such modes, together

with a quasi-geostrophic mode. e is as defined by Eq. (4-31). These modes
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are characterized by a quasi-geostrophic-like behavior for small e. At

larger e, however, wy appears to be insensitive to the value of the friction.

Although the behavior of the zero frequency solutions observed in the
Bight as a function of R' cannot be totally explained, several features show
similarities to the zero frequency modes of the open, circular basin of
constant depth. First, there are a multiplicity of solutions, suggesting
that there exists a separate solution for each oscillatory mode. Second, in
regions where R' is small, the zero frequency eigenvalue is a linear function

of R', suggestive of the quasi-geostrophic mode. Since a systematic compila-

S vSEHl 1 1SN

tion of these solutions cannot be made, the only alternative is to include

all observed zero frequency solutions in the normal mode sum. Some solutions t

are, therefore, unavoidably omitted. This is done in Section 7 where the

Green's function results are compared with the time stepping solutions.

The amplitudes and phases for the Helmholtz and oscillatory modes
obtained using the inverse iteration method are displayed in Figures 4-16
through 4-27. The adjoint elevation distributions closely resemble the
original elevations. A marked difference occurs in the direction of rotation

of the wave fronts, however. Adjoint waves propagate in the opposite direction

from the original eigenfunctions.
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SECTION 5

THE IMPULSE RESPONSE FUNCTION

AND THE TIME STEPPING APPROACH

A continuous, linear functional, f(?,t), can be defined which depends

Tinearly and continuously on a function g(X', T) such that there exists a A
unique kernal, K(X,X';t,T), and o
J

3

f(X,t) = [ dTdxX' K(X,x';t,T)g(x',T) . (5-1) 7

]

}

(Courant and Hilbert, 1962)

If this functional dependence is time invariant, K(X,x';t,T) = K(?,;';t—T),

and Eq. (5-1) can be rewritten,

-5

f{X,t) = [ dTdx’K(X,x';t-T)g(xX',T) . (5-2)

Eq. (5-2) will be used below to obtain the response of a basin to a forcing,

g(x',T).

The Bight of Abaco is forced, primarily, by surface winds and a
surface boundary condition along the open boundary. These forcing functions,

go(f,t) and ?(?,t), are _assumed to be homogeneous; that is,
T(X,t) = T(t) and golXst) = g,lt) . (5-3)

Homogeneity of T is justified on the grounds that the only energetically

important frequencies occur at periods of 24 hours or greater. It is shown

5-1




in Section 6 that on 24 hour time scales the coherence of atmospheric

signals is essentially one over the extent of the Bight. The homogeneity

of QO(;,t) is on less solid ground. Homogeneity along the boundary implies
that either the external ocean wave arrives along the sill in constant phase,
or that the synoptic scale of the atmospheric disturbance is large enough

and gradual enough that the Northwest Providence Channel free surface rises
and falls with constant phase everywhere. Since the energetically important %
changes in the wind direction and speed in February are due to frontal passages,
the above conditions of large synoptic scales may well be justified. In the il
absence of evidence to the contrary, I will assume that sea surface forcing

from outside is homogeneous.

go(;,t) also contains contributions from waves reflected from within ;
the Bight. The amplitudes of such waves are likely to be small since there
exists a shallow sill along the opening, and most of the wave energy impinging
on the open boundary from within will be reflected due to the large depth
discontinuity. Some energy will not, however, and this contribution is not

expected to be homogeneous.

If we assume that the response, C(?,t), of the Bight is linearly
related to the assumed homogeneous forcing functions, co(t) and ¥(t), Eq.

(5-2) becomes:

il

c(X,t) = [ dTk (G-T)gg(T)

+ [ dT K%(&’;t-T)'%(T) : (5-4)

5-2




The problem of solving for ;(?,t) becomes a problem of determining the

kernals, K and K-,
) T

We partition z(X,t),

ekt min ) il t) (5-5)
CO T
where

r (Gt) = [dTK. (X;t-T)g,(T) (5-6) :
C z 0 ;
0 0 .
I
and I
. Foo ;
g%-(x,t) = [ dT K%(X;t—T)T(T) . (5-7) :

The kernals, KC and K;w are the responses to impulse forcing in Zo and 1

0
as can be seen by substituting go(t) = s(t) and T(t) = &(t):

£ (X,4) = [dFK (Kt-T)c{Epum K (X5t) (5-8)
20 %0 %0
r;ﬁ%.(;,t) = deK?(I;t-T)a(T) = K?(%’;t) : (5-9)

Hence, the kernals are commonly known as impulse response functions and
could be obtained by calculating Cg (x,t) and c?(i,t) using a time stepping
0
scheme.
However, step functions can be defined with more precision, numerically,
than can delta functions since the discretized delta function must be a square

pulse approximation. The response to a step function is merely the integral

of the impulse response function as is shown below.

5-3




0 ¥ )
Let r(t) = (5-10)
1 t>0

be a unit step function so that,

(X)) = jw dT K (X;t-T)r(T) = jm STk Dty . A5
0

-00

Substitute the change of variable, T' = t-T.

Then, f(X,t) = [ dT'KR(XT') . (5-12) :

Taking the time derivative of both sides, i

T/,>
i;(giét) = K(Est) (5-13)

: - SO K(?;t), the impulse response function, can be obtained by taking the

time derivative of the step response function. Lim cr(ﬁ,t) describes the

to>o

response of the surface at zero frequency.

The velocity field components of the step response function (the
>T >

u(x,t)
: : ‘ ' (%,t)
the elevations during the time stepping since the velocity fields form an

response function is in fact a vector, ( ) are stored along with

important feature of the zero frequency response.

gr(t) is obtained using a time stepping method common to most storm
surge calculations (Sielecki, 1968). A time step of one minute is used.

The Friedrich-Lewy-Courant stability criterion,

At < /2 as/V/gh (5-14)

requires that At <680 seconds. The criterion is easily satisfied.

5-4




The Tattice used is the Richardson lattice described in Section 4
and Figure 4-1. A double Richardson lattice (Welander, 1961) was tried
originally, but the Coriolis coupling between the two lattices was too weak
to dampen the "2Ax" oscillations. Artificial damping via an extra diffusion
equation was imposed, but the damping required to reduce the numerical
oscillations severely dampens the seiche signals as well. Although the

double Richardson lattice offers higher spatial resolution, mesh instabilities i

-

render it ineffective in this case.

I
I

The response to cg(t) is shown as a time series of 3-D surfaces in 5
Figure 5-1. The elevation time series at four mesh points is shown in il lg
Figure 5-3. The locations of the mesh points are shown in Figure 5-2.

cg(t) = 1 meter for t->«~. The elevations at each of the observation points

approach 1 meter elevation as expected. The lee of the island appearé to be

a source of strong oscillations. A wave appears to enter the upper Bight

traveling in a northeasterly direction. This is verified by the zero phase

difference observed between the "+" and "x" signals in Figure 5-3.

Responses to Ti and T; are shown in Figures 5-4 and 5-5, respectively.
The associated surface contours appear in Figures 5-6 and 5-7, respectively.
The surface responds more strongly at lower frequencies to the ri and ri
transients since the fofcing is not localized as is the cg(t) forcing. Of
special interest is the equilibrium velocity field produced by Ti and T§ as
shown in Figures 5-8 and 5-9. In both cases, a large gyre appears in the

north end of the Bight as a result of the VXt / h term in the vorticity equation.
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Since T is x independent, vorticity is due entirely to the bottom depth
gradients present at the northern end. Imasato and Oonishi (1975) demonstrate
the occurrence of wind-induced gyres in Lake Biwa, and show that significant
advective effects arise in the vicinity of these gyres. Since this model is
Tinear, advective effects have been neglected. The spin-up time for the
gyres appears to be of the order of 6 hours.

KCO, K%x, and K%& are shown in Figures 5-10, 5-11 and 5-12 for the
10 tide gauge stations. 1-hour period oscillations dominate the KCO response
at stations near the opening. The amplitude of the initial 1-hour disturb-
ance dampens toward the north end as the energy input at the opening
dissipates. K?- and K?- are characterized by a concentration of energy in
the lower frequ;;cies of);eriod 2 hours or greater. Since the normal modes
calculated in Section 4 have a low frequency cut-off at 1-2/3 hours, they
would be expected to give a better representation of the response of the
Bight to the wind stress than to elevation forcing through the opening. The
signals have the desired properties of kernals in that they are square-

integrable. Since the series length of the kernals is about 8 hours, they

will act as 8-hour filters when convoluted with the forcing series.
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SECTION 6

PREDICTED RESPONSES VS. MEASURED RESPONSES

WIND FORCING

The spectrum of the wind speed is essentially red. Figure 6-1 shows
the power spectrum for wind speed at Station 3. The energy at the frequency
of the lowest underdamped mode is 27 dB from the peak at zero frequency. With
so much of the atmospheric energy concentrated at the lower frequencies, well
separated from the natural frequencies of the basin, the Bight can be 1
expected to respond quasi-statically to the surface wind stress. The assump-
tion of homogeneity applied to the wind stress is justified for frequencies
of 1 cycle/day and below according to the coherence plots shown in Figure 6-2.
According to Figure 6-1, most of the energy is concentrated in these Tow

frequencies.

PREDICTED RESPONSE

The kernals, K K%-, and K?- are convoluted with the surface wind

—
stress and elevations gt thé(opening in accordance with Eq. (5-4) to obtain
predicted elevations at 10 instrument locations in the Bight. The wind
stress is prescribed as a function of time only, and is obtained as an
average of the wind stresses recorded at three meteorological stations:

11, 12, and 18. The wind stress is obtained from the wind speed records

by employing the quadratic drag law:

6-1
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T o= yat WiV, (6t}

where o' is the air density taken to be 1.122 x 10" *gm/cm’ (T==2500.), and

vy is the surface drag coefficient, taken to be 2.6 x 107° (Ekman, 1928).

Results of the convolutions are shown in Figures 6-3 through 6-12.
The three responses are added together and compared with the measured pres-
sure at the station minus the atmospheric pressure. Response to elevations
at the opening represents a large part of the total signal. In order to isolate
the prediction of elevations due to wind stress alone, %x and ?&,response pre-
dictions were summed and compared with the measured elevations minus the
predicted elevation due to the opening. A least squares fit of the predicted i
wind response to the measured wind response is performed for each of the 10
stations. Free parameters a, B, and y are determined which minimize the

variance of the difference:

§ = A-(aB+8t+yY) , (6-2)

where A is the measured surface elevation minus the predicted response from
the opening, and B is the predicted elevation due to wind alone. B is a
linear trend coefficient included to account for long term drift in the
pressure gauge, and y is a constant term included to account for the dif-
ference between the true mean sea level and the mean of the finite record.

o is the correction factor to the assumed surface drag coefficient. Results
are tabulated in Table III. Figures 6-13 through 6-22 display the time

series for A, B, and & for each of the 10 stations.
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FIGURES 6-3 TO 6-12

Measured and predicted elevations at 10 stations.
Elevations are scaled from -30cm to +30 cm. Wind

velocities are scaled from -30 m/sec to +30 m/sec.
Vertical lines are drawn at 2-day intervals.
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LEAST SQUARES FIT PARAMETERS FOR PREDICTED RESPONSE

STATION s g ¢ PROP. VAR,
(CM. /DAY) (CM.)
] 625 -. 336781072 1.450 .168
4 .621 w51 LA0E 1.0095 .170
5 603 -.941 x 1073 .410 362
6 .599 .655 X 107% -.017 261
7 572 .910 x 1073 e 431
9 .540 -.121 x 1072 .529 . 360
10 534 -.101 X 1072 440 539
14 .801 <283 K 0°% 1.080 .408
17 .975 7105 % 1072 445 .565
19 1.008 -.866 X 1072 349 .262
TABLE IIT




FIGURES 6-13 TO 6-22

Measured elevation minus predicted elevation
due to entrance forcing; predicted elevation
due to wind alone; and difference between
measured elevation due to wind and best fit
of predicted elevation due to wind.

Elevations are scaled from -36cm to +36cm.

Vertical Tlines are drawn at 2-day intervals.
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The plots of § show that most of the variance in B is caused by
the semi-diurnal tidal contributions to the residuals which were not suc-
cessfully removed by the harmonic analysis. Otherwise, the ¢ time series

seem to be free of significant low frequency variations.

For the northernmost 7 stations, o is closely scattered about 0.6.
However, for the three southernmost stations, a comes closer to 1., in
agreement with the choice of surface drag coefficient. The lower values of
o at the north end indicates either (1) that the surface drag coefficient may
be a function of depth (depths are shallower near the south end than the north);
(2) the barotropic assumption does not model well in the deeper water, result-
ing in a reduction in the apparent surface wind stress; or (3) the closed
boundary approximation at the north end is not altogether valid in that some
outside fluid enters and leaves the Bight through openings in the northern
boundary. This yielding of the boundaries would result in a lower apparent
wind stress. A fourth possibility is that waves entering the Bight from the
Northwest Providence Channel through the opening provide a "corrugated" surface
through which the surface winds may transfer momentum more effectively. Waters
in the north end are sheltered from external influences. Still another ex-
planation is that, since the boundaries are not vertical walls but, in fact,
are sloping boundaries, .the actual boundaries change appreciably if the
surface elevations change sufficiently. Accordingly, it should be noted that,
in Figure 6-13, the over-predictions occur during strong winds and periods of

large displacement in elevation.
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SECTION 7

COMPARISON OF METHODS

In the present section the normal mode technique is compared with
the time stepping method at the admittance function level. Three admittance
functions are defined: HCO(;’M)’ HTX(;,M), and HTy(i,m), the transforms
of the impulse response functions, KC (X,t), KT (X,t), and K. (;,t).

. 0 X y
Partition z(x,t), so that,

tot) = oo (Gt) + e (Le) + ¢ (Be) (7-1)
0 X y
where the three terms on the right are the responses to the three types of
forcing. Expressions for these three terms were derived in Section 5 (see

Eq.'s (5-8) and (5-9)).

Taking the transforms of Eq.'s (5-8) and (5-9) and using the defini-

tions of the admittance functions above, we get:

oy, (K0 - 2k Fulggle) (7-2)
., () = 2sH (Rw)r (w) , (7-3)
T)'( X

cTy(x,m) = ZHHTy (X,m)fy(m) (7-4)
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|
|
[

On substituting Eq.'s (7-2), (7-3), and (7-4) in Eq. (7-1) and

comparing with the Green's theorem, Eg. (3-32), we can relate the admit-

tance function to the normal modes. (For purposes of the comparison, the

admittance function, when calculated from normal modes, will be superscripted

with a "G".)
o g (X)
- = 1_9.. n I i
HCO(x,w) o nz)j-m o 0 é dx' hi_ (7-5)
e
o g (X)
wEe = 2 7 - [ e, (7-6)
TX N=—co Ll)n w g n
o g (X) -
(o) = 2 ] 2 [ &'V (7-7)
Ty ™ N=-co t.Lln w S

HC (X,w) is shown in Figure 7-1 for 10 stations. The spectrum for
0
the northernmost stations cuts off at about 20 cycles/day (1.2 hrs.), whereas

the frequency cutoff for the central stations is at 36 to 40 cycles/day (36
minutes). 40 cycles is close to the upper 1imit in frequency which can be

supported by the lattice. Hg (X,w) is plotted in Figure 7-2 for 10 stations.
0
As expected, due to the incomplete collection of zero frequency modes, dis-

agreement is largest at near-zero frequencies and, due to truncation errors,
at frequencies above 14 cycles/day. There appears to be a tapering off of
the amplitudes of the higher frequencies for the more remote observation

stations. Figures 7-3 and 7-4 provide a comparison between HT (X,w) and

HE (X,w), and Figures 7-5 and 7-6 compare HT (X,w) with HE (?,Z). Since the
high frequency cutoff for H_ (X,w) and H_ (?{m) is lower than for HCO(Q,w),

the normal modes in Figures ;-4 and 7-6 dg a fairly good job of duplicating

Figures 7-3 and 7-5.
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SECTION 8

DISCUSSION AND CONCLUSIONS

The surface elevations in the Bight of Abaco are predicted at 10
tide gauge locations, using a time stepping procedure, and the predictions
are compared with data. Figures 6-13 to 6-22 show good agreement with the
measured data. Tidal fluctuations present in the residuals are responsible
for a large part of the variance. The sea surface drag coefficient obtained
agrees well with Ekman's value of 2.6 x 107" for the shallow regions in the
south end. However, values drop to near half that value near the center
and are about .6 of the Ekman value near the north end. The figures for the
drag coefficient do not correlate well with the local depths, and so it is
felt that the Tow values in the north end may result from fluid moving

through the small passages which border that end of the Bight.

Normal modes were calculated for the basin and a Green's theorem for
prediction was derived using the adjoint operator, &£. The Green's function
was obtained using the two bi-orthogonal sets of eigenfunctions of the
operators X and Ji. The admittance function, H(X,w), was obtained using
the Green's theorem to calculate the response to spatially integrated delta
functions in time. Integration was carried out along the open boundary to

obtain HC (X,w) and over the interior to obtain HT(?,w).

0
Agreement between H(X,w) as obtained from the normal modes and the

admittance function as derived from time stepping results, were good at the
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low frequency end of the spectrum for all stations. However, due to the

high frequency content of the admittance functions at stations near the
opening, the Green's functions did poorly at frequencies above the trunca-

tion frequency of about 17 cycles/day. As Figure 7-1 shows, the high frequency
tail appearing at stations 9, 10, and 14, close by the opening, disappears at

the more remote stations, 1, 4, and 5.

Since the amplitude of the signals present at the remote stations
appears to be low pass filtered, it may be hypothesized that any localized
disturbance in a shallow basin has its high frequencies attenuated as it
moves away from the source region. In order to test this hypothesis, consider
an infinite sea excited by an impulse at a point in space, i.e., let the
forcing be of the form, &6(t)&(r), in a polar coordinate system. The solution
in the frequency domain is the Green's function to the two dimensional wave

equation:

z(r.w) = hTHO(l)(kr) = (8-1)

Here k is a function of w and R', the friction coefficient (see Eq. C-6).

(1)

A1l of the w dependence of £ resides in the argument of H0

On a spectral
plot of z(r,w), changing the observation point, r, has the effect of rescaling
the frequency axis. Hence, if z experiences a cutoff at w = W, for r= D],
then at r= 02 the cutoff frequency, Wes will take on a different value. In
particular, if for a branch of the function, k = k(R',w), k is a monotonic
increasing function of w, the effect of increasing r is to lower the cutoff

frequency, W, Hence, it is not unreasonable that as one moves away from

the source of an impulsive excitation the energy becomes concentrated at
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lower frequencies. Since k(w), as expressed by Eq. (C-6), is a complex
function of w and is not a simple monotonic function, which direction the
scaling of w takes cannot be determined immediately. Furthermore, the real
problem does not involve a constant depth, infinite ocean, but a semi-enclosed
basin of variable depth. The basic result that the observed spectrum is a
function of the observation point will still hold for the Bight geometry,
however. Hence, it is reasonable that stations 1, 4, and 5 in the Bight
observe an attenuation of the higher frequencies in relation to observations
at stations 9, 10, and 14. That this will be true, in general, for any

remote station in any semi-enclosed basin cannot be determined without more

extensive analysis.

A disagreement in H(x,w) exists for all stations at zero frequency.
Theoretically, as shown for the case of a circular basin in Section 4, there
exist an infinity of normal modes at zero frequency -- one mode for each
iwn pair of non-zero frequency modes. Since only 5 of these modes were found,
and there exist 10 such modes corresponding to the 10 underdamped modes at

non-zero frequency, we have an incomplete picture of the response at w=0.

Studies, described in Section 4, of the dependence of the damping factor,
ws, ON R, the drag coefficient, demonstrated some similarities with the zero
frequency modes of the constant depth, circular basin, but failed to lead to
any systematic method for cataloging these modes. Therefore, further work
is necessary if the normal mode method is to be effective for solving the

rotating, frictional basin.
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An overall goal of this study and that of Snyder et al., (1979) was
to determine if a combined model of the tides and the wind set-up in an
enclosed basin could be formulated to explain the observed elevations.

In particular, this study was intended to test the linearization of the
bottom drag term through use of the time-independent tidal coupling factor,

A(X).

The predicted elevations, using the meteorological model described
in Section 2, agreed well with observed elevations. Both responses appeared
to be quasi-static. It remains a moot question whether this agreement was a
result of the particular tidal coupling model used or whether any model,
especially one with no tidal coupling at all, would have performed just as
well. Since all of the tidal influence is felt through the friction
coefficient, A(?), varying this parameter would test the sensitivity of the

model to tidal influence.

As was observed in Section 5, the steady state solution, or quasi-
static response, involves a system of gyres and steady currents. Hence,
friction must be important at zero frequency to provide an energy sink for
the surface wind stress. Hence, in the quasi-static 1imit, the model for

wind set-up should be sensitive to the parameterization of the tides.
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APPENDIX A

STATIONARITY OF THE RAYLEIGH RATIO FOR
NON-SELF-ADJOINT OPERATORS

Let X be a non-self-adjoint operator, and let i;be its adjoint.
Then,
w P (A-1)

n nn

&<
e
1]

~

m; b, (A-2)

&
e
I

and
n

(wn and @n are bi-orthogonal, normalized eigenvectors of L and L.)

Let o}

N (A-3)

and ¢ vyt En (A-4)

n

where x and n are arbitrary functions satisfying the same boundary conditions

as wn and @n. We want to show that the ratio,

<P, LU > :
n n 5
j;@;:a;?j- * oy (A-S)

is stationary with respect to variations in ﬁn and/or wn. That=3s,

<o Lo >
) n n &
E l ---—"'—w'—'—< (I) ,(bn S - 0 (A_6)
" €=0
We have, jién = wzﬁn + el
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Thus,
<c_bn,i$n> =l +€{<x,i$n>+<wn,in>} + e2<x, Ln> . (A-7)

Similarly,

<926 > 1+ e{<y n>+<ph x>} +e’<nx> . (A-8)

It is known, a priori, that the terms, quadratic in €, will not survive

the derivative operation, and they will now be dropped.

% - o i

o€ e o€ =

<¢n@n> 1 +€{<%fn>+<an>}
Using the relation,
<wn,iﬂ>-<{¢’nm> = O ’

(n satisfies boundary conditions, adjoint to those satisfied by @n.)

<SXs L¥p> + <Y, Ln> = <x, Ly > +<Ly 0>

= mﬁ {<X’fj}n> + <y L0 By i (A-10)

Eq. (A-9) becomes:

s A1rel<xsBy> + <yna)l agd

el ¥ | - = 0 . (A‘-i])

J€E o€

" {lre(<yan> + <xb>))




APPENDIX B

EIGENVALUES OF THE ADJOINT OPERATOR

]
o
—
(we)
]
o
—

If (£ -0 v

and (L a0 =0, (B-2)
how is w related to cn?

Right dot multiply Eq. (B-1) by @n, left dot multiply Eq. (B-2) by

Vs and subtract Eq. (B-2) from Eg. (B-1).

<J:q;n,wn> —g;<1‘bn,@n> - <1pn,f,¢n> +w<1‘un,ﬁ;n> = 0

But <XLY P> - <y, Ly> = 0

from the definition of &£. ¥ satisfies boundary conditions adjoint to

those satisfied by .

Therefore, 0;<1b,15> BOWEY,Y>
or : ) 0*
n

Hence, the eigenvalues of £ are complex conjugates of the eigenvalues of &.

B-1




CIRCULAR BASIN OF CONSTANT DEPTH WITH FRICTION

APPENDIX C

The equations of motion in rectangular coordinates for oscillatory

motion are:

iwu
iwv
Then, Tt
X
and, juv,_ +
J

Adding and substituting from
zw?+ f(u - v
( h
Derive the vorticity equatio
iwu -
Y

iy +
X

- fv + uR

+ Fli+ R

Eq' (C"3)9

)h - iwRZ
X
n:

: il o |
Yy ¥

kv R
X X

C-1

[}

l

-ghV? ¢z

Xy

-g¢c

(C-1)

(C-2)

(C-4)




Subtracting and substituting from Eq. (C-3),

-+
—_
e
1
<
—
I

e (C-5)
(el h(iw *R) =

Substitute Eq. (C-5) into Eq. (C-4)

Vc + K2z = ¢ (C-6)
2 . w?:(jw+R) - iwR(iw+R) - juf?
where K- gh(iw + R)

Eq.'s (C-1) and (C-2) can be written in cylindrical coordinates:

1 - 3—C_ -
var - ’VB + RVP g ar (C 7)
1 = - i -a_c -
vas * ”/r o RVe r 38 - (C 8)

Find the boundary condition on ¢ for a solid boundary at r=a. Eliminating

%3 from (C-7) and (C-8):

18

: 1 - 5.0 %
v T e [-otiuer) 2 K ;]

Since Vr=0 @ r=a,
Ui dbRyse oo Bt (c-9)
Since g = A\%](Kr)eine o'Wt (C-10)

is a solution to Eq. (C-6), the boundary condition becomes:

inf Jn(Ka)
oo J1TKa)
J _(Ka)
iy .
or Pk S L G EETEET' (C-11)

C-2
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