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A. EXECUTIVE SUMMARY 
 
 A comprehensive literature review and modeling effort have been conducted in order to 
determine which vital rates are most important to determining the growth and sustainability of 
marine mammal populations.  Also addressed are the impacts of life-history, ecological, and 
genetic variation on vital rates and population sustainability and how much each vital parameter 
can change before a change in population trend would be expected.  Additionally, the influence 
of ecological energetics and foraging strategies on vital rates and their limits of sustainable 
change are examined, and the nature of how an increase in sound in the marine environment 
might influence marine mammal behavior, and thus life functions, vital rates and population 
sustainability is explored. 
 An analysis of the elasticity and sensitivity of marine mammal population models 
suggests that:  
 

1) Most whale populations appear to be most sensitive to changes in adult female 
survival and least sensitive to calf survival.  
 
2) Most whale populations appear to be secondarily sensitive to changes in 
juvenile survival and growth. 
 
3)  Most whale populations, with the exception of North Atlantic right whales 
(Eubalaena glacialis), appear to be insensitive to changes in fecundity at any age. 
 
4)  Adult female whales may be sensitive to changes in foraging success that limit 
their ability to acquire sufficient body stores of energy to sustain gestation, 
parturition, and lactation. 
 
5)  These results are similar to those arising from studies of non-mammalian 
marine predators as well as terrestrial vertebrates with similar life history 
characteristics. 

 
 A risk assessment of the potential impacts of ocean noise on marine mammal 
populations based on modeling marine mammal populations suggests that: 
 
 1)  Any increase in anthropogenic noise in the marine environment that reduces 
 adult female survival, for whatever reason, is to be avoided, 
 

2)  It may be impossible to detect the impact of a change in a population vital rate 
on population growth because such a change may be less than the confidence 
interval around the estimates of the rate of growth of most marine mammal 
populations. 
 
3)  Sensitivity and elasticity analyses of marine mammal population models 
predict linear changes in marine mammal population growth rates caused by 
linear changes in vital rates, and do not indicate thresholds within which vital 
rates can change without altering population growth rates. 
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 Future research efforts should focus on the following: 
 

1) The relationship between noise in the marine environment and adult female and 
juvenile survival.   
 
2)  To increase the precision and decrease the uncertainty of marine mammal population 
and vital rate estimates. 
 
3)  Improving the concept of potential biological removal (PBR) to reflect cumulative 
mortality impacts and to incorporate the effects of noise. 
 
4)  Increasing knowledge of marine mammal activity budgets seasonally and in different 
parts of their habitats. 
 
5)  To more fully elucidate the roles of marine mammals in their ecosystems, and their 
importance as sentinels of ecosystem health.   
 
6)  To exhaustively utilize existing data and models because of the cost and difficulty of 
gathering more data. 

 
B. INTRODUCTION 

 
1. Purpose 

 
In 2005 the National Academy of Sciences U.S.A. proposed a model for the “Population 

Consequences of Acoustic Disturbances (PCAD)” (NRC 2005).  PCAD (Figure 1) is a heuristic 
model showing how sound could affect marine mammal behavior that could in turn affect 
important life functions such as feeding and breeding if they are severe enough.  The PCAD 
model defines several levels of potential effects ranging from behavioral effects, effects at a life 
function level (e.g. feeding, breeding, migrating), a vital rate level (e.g. adult survival, 
reproduction), and the population level effect.  Between each of these levels are transfer 
functions, most of which are non-existent or poorly defined (NRC 2005).  At present there are 
few transfer functions available between behavioral effects and effects at the life function level 
and between the life function level and the vital rate level, which would promote application and 
testing of the model. Obviously improved transfer functions, either quantitative or qualitative, 
would serve to improve the predictive capabilities of the model (NRC 2005).  Because the E&P 
industry produces sounds in the marine environment during its activities, a key component in 
managing the risks of exposure of marine mammals to these sounds is to understand the 
biological effects of sound, especially at the levels of life functions and vital rates.  This critical 
review of the literature summarizes current knowledge on the level of change in vital rates (e.g. 
adult survival, stage specific reproduction) that will lead to changes in population size(s) for 
marine mammals.  This review paper summarizes, synthesizes, and expands upon the current 
data and models of population dynamics for marine mammals. 
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Figure 1.  The Population Consequences of Acoustic Disturbances  
(PCAD) model (NRC 2005). 

 
2. Objectives 
 
1.  To conduct a thorough review of the scientific literature on the subject of marine mammal 
population dynamics (broadly defined) in order to identify and summarize as many data sets as 
possible.  This includes information on cetaceans (mysticetes, odontocetes), pinnipeds, and the 
Florida manatee (Trichechus manatus latirostris). 
 
2.   To synthesize and summarize the results of population modeling with respect to the relative 
importance of different vital rates in determining population trends and stability.   It will focus 
on marine mammals, but draw information from studies of reptiles, terrestrial mammals, birds, 
and other organisms with similar life history characteristics.  This also entails a review of the 
development of the field of population modeling.  The goal is to determine which vital rates are 
most important to determining the growth and sustainability of marine mammal populations. 
 
3.    To evaluate the impact of life-history, ecological, and genetic variation on vital rates and 
population sustainability.  The focus is on those marine mammal species for which there are 
good long-term demographic and behavioral data, e.g. North Atlantic right whales, humpback 
whales (Megaptera novaeangliae) and sperm whales (Physeter macrocephalus) (NRC 2005). 
 
4.  To determine how much each vital parameter can change before a change in population trend 
would be expected, including a discussion of elasticity and sensitivity of marine mammal 
population models. 
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5.  To recommend how population modeling defines the limits of sustainable change in vital 
rates without affecting population sustainability including discussion of population viability 
analysis (PVA) as applied to marine mammals. 
 
6.  To examine the influence of ecological energetics and foraging strategies on vital rates and 
their limits of sustainable change, and explore how an increase in sound in the marine 
environment might influence marine mammal behavior, and thus life functions, vital rates, and 
population sustainability. 
 
7.  To compare and contrast the biological significance of current and past United States marine 
mammal management objectives (e.g. Minimum Sustainable Population Level (MSPL) and 
Potential Biological Removal (PBR)). 
 
8.  To refine the conceptual PCAD model to assess impacts of acoustic disturbance on marine 
mammal populations by sensitivity analysis to focus, stimulate, and direct research on the high 
priority transfer functions (NRC 2005). 
 
3. Scope 
 

A clearer understanding of the impact of sound on marine mammal populations is needed 
(NRC 2005).  This work contributes by focusing attention on the probable proximate impacts of 
sound in the marine environment on marine mammal population sustainability and growth.  
These impacts are integrated through a suite of hierarchical variables with currently poorly or 
undefined transfer functions between the variables.  This effort is focused on determining the 
current state of knowledge of these transfer functions, primarily the relationship(s) between life 
functions such as feeding, breeding, migration, etc., and vital population rates such as survival 
and fecundity.  This  review summarizes and critiques the current knowledge of these important 
transfer factions, and identifies future research efforts that should focus on high-priority studies 
of the most important of these transfer functions. 

 
C. TYPES OF POPULATION MODELS 
 
1.  H0 vs. Model Selection/GLMs/GAMs 
 

Science is a process for learning about nature in which competing ideas about how the 
world works are evaluated against observations.  These ideas are usually expressed first as verbal 
hypotheses, and then as mathematical equations, or models (Johnston and Omland 2004).  
Models depict biological processes in simplified and general ways in order to provide insight 
into factors that are responsible for observed patterns.  Two basic approaches have been used to 
draw biological inferences.  The traditional way is to generate a null hypothesis, often with little 
biological meaning, and ask whether or not the hypothesis can be rejected in light of observed 
data.  Rejection typically occurs when a test statistic generated from the data falls beyond an 
arbitrary probability threshold (i.e. P < 0.05), which is then interpreted as support for a 
biologically meaningful alternate hypothesis.  Thus, the hypothesis of interest (i.e. the “alternate” 
hypothesis) is accepted only in the sense that the null hypothesis is rejected (Johnson and 
Omland 2004). 
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Model selection has emerged as a preferred alternative to null hypothesis testing because 
it provides a mechanism to draw inferences from a set of multiple competing hypotheses 
(Johnson and Omland 2004).  Model selection is well established as a basic tool in ecology.  An 
introduction to the types of models discussed below can be found in the Appendix.  In particular, 
model selection is a prerequisite for most capture-mark-recapture (CMR) and distance sampling 
studies.  CMR analyses are commonly used to estimate population abundance and survival 
probabilities.  Often the first stage of such an analysis examines the goodness-of-fit of the most 
heavily parameterized (global) model to the data.  Such goodness-of-fit can be assessed using 
conventional statistical tests (e.g. Ȥ2 tests) or a parametric bootstrap procedure (a statistical 
technique in which new data are generated from stochastic simulations of the fitted model).  If 
the global model provides a reasonable fit, the analysis proceeds by fitting each of the simpler 
models to the observed data using maximum likelihood (a method of fitting a model to data by 
maximizing an explicit likelihood function) or the method of least squares (fitting the model to 
data by minimizing the squared differences between observed and predicted values) (Johnson 
and Omland 2004).   

Two other criteria commonly used in ecology to evaluate the goodness-of-fit of different 
models are the Akaike Information Criterion (AIC) and the Schwarz Criterion (SC), also known 
as the Beyesian Information Criterion (BIC).  The AIC has two components, the negative log 
likelihood, which measures the lack of model fit to the observed data, and a bias correction 
factor, which increases as the number of model parameters increases.  The SC is superficially 
similar to AIC in that it includes the negative log likelihood, which measures the lack of fit, but it 
also includes a penalty term that varies as a function of both sample size and the number of 
model parameters (Johnson and Omland 2004). 

An important component of managing marine mammal populations is the monitoring of 
trends in abundance (Garner et al. 1999).  This usually involves estimating abundance (or an 
index of abundance) at specified time intervals and inferring trends from these measures via 
least-squares regression methods (Forney 2000).  Measuring abundance can be difficult and 
imprecise, and trend analyses are frequently plagued by low statistical power.  Uncertainty in 
abundance and trends arise from sampling variability, which can be minimized through proper 
survey design, and from environmental variability, which is often more difficult to take into 
account.  Information on spatial and temporal variation in marine mammal abundance is essential 
to determine both whether management actions are necessary, and the effectiveness of any 
actions that are taken (Garner et al. 1999, Evans and Hammond 2004).  
 What is the best way to estimate abundance or the trend in abundance?  One of the 
easiest, and historically most utilized methods, is to use catch-per-unit-effort (CPUE) as an index 
to the status of the population.  As long as CPUE increases, the population is probably stable or 
growing.  Once CPUE begins to decline, this indicates that the population has stopped growing, 
or has begun to decline.  This method, however, provides no reliable estimates of the population 
size.  By plotting cumulative catch over time against CPUE, and extrapolating back to zero, an 
estimate of population size can be obtained. 
 Mortality coefficient methods also use CPUE information, as well as the age and sex 
composition of the catch.  Logarithmic regression of the catches of animals of a particular age 
over two successive years provides an estimate of the number of this age class in the population 
in a particular area.  Repetition of the estimate for all age classes can yield an average pooled 
estimate of the population size, which can be repeated over a number of seasons to derive better 
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estimates.  Similar models that provide better estimates have been developed, primarily for fish 
populations, and these have had limited application to marine mammal populations. 
 CMR (Lincoln-Petersen index) methods are well known and have been frequently used to 
estimate the populations of both terrestrial and marine species.  Early applications of this 
approach used various methods to physically tag animals, while later methods have employed 
photographic identification as the “mark”, with resightings serving as the “recapture”.  In this 
method, the ratio of marked to unmarked animals in the sample is proportional to the ratio of all 
marked animals to the population size.  This method is dependent on several important 
assumptions (see below) that are often violated, such as that there should be no addition or loss 
to the population, either through birth, death, or migration, between the sampling periods.  
However, if multiple recapture/resightings are made, the effects of  violating this assumption can 
be minimized. 
 The most widely used technique, however, is the visual survey.  In this method, observers 
make transects over the area of interest, either in vessels or aircraft, and record the number of 
individuals seen of each species.  The width of the survey band can be estimated, and thus an 
estimate of the density of the species can be obtained.  Over time these methods have become 
quite robust (Garner et al. 1999, Buckland et al. 2001), and have incorporated corrections for the 
number of animals present but not counted (missed), the likelihood of a marine mammal being at 
the surface and missed, as well as the likelihood of an marine mammal being below the surface 
(during a dive), and even sea state.  Obviously, the second and third of these create the need for 
knowledge of the behavior of the animals being studied.  All of these corrections attempt to 
decrease the coefficient of variation (CV) of the estimate (Garner et al. 1999). 

Perhaps the most recently attempted method for population estimation is the acoustic 
survey.  In this method, hydrophones are used to monitor the sounds marine mammals emit, and 
these data are then used to estimate the number of animals.  Clearly this method requires the 
most knowledge of the behavior and physiology of the species being investigated, and is most 
likely to be successful in studies of the great whales, whose sounds are audible over long 
distances.  These methods also have limited application in noisy environments such as shipping 
lanes, bays, inlets, and harbors. 

When a time series of abundance estimates is analyzed, the usual null hypothesis is that 
there is no trend.  Statistical analyses can be used to determine whether this hypothesis can be 
falsified, and if so it can be concluded that the population is changing.  Typically, the chosen 
probability value for accepting a type I error (i.e. accepting the trend when it did not really exist) 
is P = 0.05, but even when the results of such an analysis are not significant it remains possible 
that a real trend exists (Type II error).  Given that sampling variation is often high in marine 
mammal surveys, the use of statistical power analysis has become common in order to reduce 
Type II error (Thomson et al. 2000).  Emphasis on reducing Type II error has led to the adoption 
of the precautionary principle in marine mammal population management decision making.  
Thompson et al. (2000) used the computer program VORTEX (see below) to explore the relative 
consequences of adopting either traditional or precautionary approaches to managing bottlenose 
dolphins (Tursiops truncatus) in the Moray Firth, Scotland.  They found that the probability of 
extinction of this population was markedly higher if management action was delayed until a 
population decline had been confirmed, i.e. the traditional approach (Thompson et al. 2000). 

To reduce the impacts of stochastic environmental variability on abundance estimates and 
trend analyses, surveys of cetacean abundance should ideally be based on species-specific design 
criteria that optimize sampling within all habitats relevant to each species throughout its entire 
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range.  In practice, however, economic and logistical constraints often force abundance surveys 
to be designed broadly for many species within a limited geographical region (Forney 2000).  
Two types of models have been used to describe species sighting rates as a function of 
environmental variables.  The first are Generalized Linear Models (GLMs).  In GLMs, the 
response variable (y) is modeled as the sum of least-squares linear relationships with a series of 
predictive variables (x1, x2, …xn).  These may be transformed to produce nonlinear effects 
according to some specified parametric function plus a constant.  Generalized Additive Models 
(GAMs) represent a generalization of GLMs in that they share many of the same statistical 
properties, but do not constrain the relationships between y and x to be linear or of any particular 
functional form (e.g. polynomial).  In addition, GAMs can use smoothing algorithms, such as 
cubic splines, to fit nonparametric functions to the relationship between y and the x variables 
(Forney 2000).  The advantage of GAMs is that they do not require assumptions about the nature 
of the relationship between predictor and response variables, and can include a variety of 
nonlinear relationships corresponding to the patterns actually present in the data (Forney 2000). 

 
2.  Exponential/Logistical 
 
 When no conditions exist to prevent continued growth of a population, it will grow 
exponentially.  Exponential growth (or geometric growth) occurs when the growth rate of a 
population is proportional to the current size of the population.  Such growth follows a simple-
exponential curve also known as the Malthusian growth model. The relationship between the size 
of the dependent variable and its rate of growth is a direct proportion.  Exponential growth 
occurs in populations in the absence of predators or resource restrictions (Kingsland 1995). 
 Some populations of marine mammals have exhibited exponential growth in the past, 
especially those that were recovering from previous severe overexploitation.  Examples include 
the Antarctic fur seal (Arctocephalus gazella) (Payne 1977); grey seals (Halichoerus grypus) 
(Bowen et al. 2003); northern elephant seals (Mirounga angustirostris) (Cooper and Stewart 
1983); and gray whales (Eschrichtius robustus) (Witing 2003).  Sea otter (Enhydra lutris) 
populations in the Aleutian Islands increased exponentially after re-introduction in the 1970s 
(Estes 1990). 
 Of course, most natural populations can only grow in this way for a very short period of 
time before one factor or another, such as food, habitat, breeding space, etc., becomes limiting.  
Alternatively, diseases and predation may begin to limit population growth.  Taken together, 
these factors create a situation where the density of the animals begins to limit population 
growth, or growth becomes density dependent.  In this situation, the population will reach a 
plateau around which it oscillates, known as K, or the carrying capacity.  This is the level at 
where the population is in equilibrium with the average level of resources that promote 
population growth and mortality, which inhibit population growth.  Most populations never 
approach the carrying capacity but instead remain at lower levels because of the regulating 
effects of both abiotic and biotic factors.  It is also the case that populations do not typically 
remain at a steady state continually but instead tend to fluctuate or oscillate around some 
characteristic density (Kingsland 1995). 
 The exact mechanism by which density dependence is achieved is unclear.  A study of an 
insular population of white-tailed deer (Odocoileus virginianus) introduced to Anticosti Island, 
Quebec, in 1896 (Simard et al. 2008) found long-term changes in the plant community as the 
population increased leading to a decline in food quality and deer body weight (e.g. the deer on 
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the island are now ~50% smaller than animals from the source population on the mainland).  
Interestingly, this reduction in size is partly a phenotypic effect, because animals increase in size 
when fed well.  Although some reproductive parameters changed, such as a delay in the age of 
sexual maturity, overall reproductive rates remained similar, thus maintaining deer density and 
causing further habitat degradation.  Simard et al. (2008) conclude that reproduction, although 
declining under the nutritional stress at high population density, particularly through delayed 
maturity, does not change sufficiently to regulate the population, implying that females 
maintained reproduction at the expense of growth, and that an increase in mortality from other 
factors must be responsible for the negative feedbacks reducing population growth rate.  
However, in a meta-analysis, density was found to affect fecundity in over half of the large 
terrestrial herbivores and marine mammals examined (Silby and Hone 2002). 
 The equation that describes such density-dependent growth is known as the logistic 
growth curve, which is S-shaped, or sigmoidal.  Plotting the slope of the logistic equation versus 
the population size, yields a parabolic curve.  The maximum value achieved by this curve (r), 
corresponding to the maximum slope of the logistic growth curve, is known as the maximal 
sustainable yield (MSY).  This point occurs at the inflection point of the logistic growth curve.  
In other words, the population is increasing at the fastest rate possible at some level about half-
way below the carrying capacity. Thus, managing populations at this level maximizes the 
number of animals that can be harvested.  Managing populations above this level reduces the 
number of animals that can be harvested by increasing the loss of animals to other factors such as 
predation and disease.  
 In the case of the Antarctic fur seal, there is evidence that after a period of rapid 
exponential growth (see above) some populations have now stopped growing and are fluctuating 
around a stable level (Guinet et al. 1994).  There are other populations and species for which 
there is evidence of past exponential growth that has now reached a plateau, in some cases 
significantly below either the most recent population maximum(e.g. Antarctic fur seals (Hucke-
Gaete et al. 2004), or below a calculated pre-exploitation population maximum (e.g. Weddell 
seals (Leptonychotes weddellii) (Testa and Siniff 1987 and humpback whales (Alava and Felix 
2006).  In the case of gray whales, populations seem to have followed logistic growth since 
protection in the early 20th century, and may now have stabilized at a level above estimated pre-
harvest population size (Moore et al. 2001).  There are also examples of populations that are now 
apparently stabilizing around their carrying capacity without evidence of past exponential 
population growth (e.g. southern elephant seals (Mirounga leonina) (Hindell 1991) and harbor 
seals (Phoca vitulina; Jeffries et al. 2003). 
 Neubert and Caswell (2000) compared the effects of density dependence on population 
dynamics of different kinds of life cycles, and developed several generalizations about the effects 
of life history and density dependence on population dynamics.  First, iteroparous (seasonally or 
annually reproducing organisms) life histories are more likely to be stable than semelparous 
(one-time reproducers) life histories.  Marine mammals are generally iteroparous.  Second, an 
increase in juvenile survival tends to be stabilizing.  A lack of juvenile survival has been 
hypothesized to be the cause of the decline of Steller sea lion populations in western Alaska 
(York 1994).  Third, density-dependent adult survival cannot control population growth when 
reproductive output is high.  Fourth, density-dependent reproduction is more likely to cause 
chaotic dynamics than density dependence of other vital rates.  These last two generalizations are 
probably more important in r-selected species (see below) rather than in marine mammals.   
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3.  Multinomial 
 
 Multinomial models refer to situations in which there can be multiple causes for a single 
event and allow the estimation of the independent contribution of each of those causes.  
Multinomial models can be used to estimate populations from the results of capture-mark-
recapture methods (Sandland and Cormack 1984). 
 
4.  Lotka-Volterra 
 
 The Lotka–Volterra model, also known as the predator-prey equations, is a pair of first 
order, non-linear differential equations frequently used to describe the dynamics of biological 
systems in which two species interact, one a predator and one its prey. The model was proposed 
independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926 (Kingsland 1995).  The prey 
are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to 
predation.  The rate of predation upon the prey is assumed to be proportional to the rate at which 
the predators and the prey meet, thus the change in the prey's numbers is given by its own growth 
minus the rate at which it is preyed upon.  The predator population is equal to its own 
exponential growth minus natural death.  In the model system, the predators thrive when prey are 
plentiful but as the predators reduce the prey population, the predators outstrip their food supply 
and decline. When the predator population is low the prey population increases again. Thus, both 
populations undergo dynamic cycles of growth and decline (Kingsland 1995). 
 
5.  Leslie Matrix 
 
 One of the most popular and effective tools in targeting ways to improve population 
growth are matrix population models (van Groenendael et al. 1988, Caswell 1996a, 2001).  As 
originally formulated these models were based on an age-structured population with an annual 
time step (Lewis 1943, Leslie 1945).  Lefkovitch (1965) demonstrated that the matrix approach 
would work just as well with stage- or size-based models. Although such models can be used in 
many ways, e.g. incorporating harvesting (Doubleday 1975), pertinent applications include the 
calculation of population growth rate and age- or stage-specific sensitivities or elasticities to 
indicate factors that most affect population growth and stability (Mills et al. 1999).  The intrinsic 
rate of natural increase (r in the logistic growth equation) is equal to the natural logarithm of the 
dominant eigenvalue of a population projection matrix (Caswell 2001).  The sensitivity of the 
rate of population increase to a demographic parameter is defined as the incremental change in 
population growth due to an incremental change in the parameter (Link and Doherty 2002, 
Caswell 2001).  The sensitivity is also proportional to the product of the reproductive value of a 
given stage and the abundance of the next stage in the stable age distribution (Caswell 1978, 
1996a).  Another interpretation is that the population growth rate is most sensitive to life history 
parameters describing the production of high reproductive value individuals by members of 
abundant age classes (Caswell 1978). 
 One of the more exciting aspects of matrix projection models is the possibility of linking 
sensitivities with quantitative genetic theory (van Groenendael et al. 1988).  This elevates such 
models from being largely descriptive or forecasting tools into the more speculative realm of 
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evolutionary theory.  This link was most clearly stated by Lande (1982) in his version of the 
secondary theory of natural selection that described the rate of change in the phenotypic mean of 
a set of traits as being dependent upon a vector of selection gradients on the traits.  This vector is 
precisely the eigenvalue sensitivities described above.  Those sensitivities, which can be 
calculated directly from the population projection matrix, give the direction and intensity of 
selection on the life history characteristics of the organism (van Groenendael et al. 1988). 
 Another way to analyze population projection matrices involves the use of elasticities. 
The elasticity of a matrix parameter is the log proportional change in the population growth rate 
following a log proportional change in that parameter (Link and Doherty 2002, Caswell 2001, 
van Tienderen 2000, Benton and Grant 1999).  Elasticity analysis has become a major avenue for 
the analysis of population projection matrices, and was the subject of a special series of articles 
in the journal Ecology in 2000 (Heppell et al. 2000a).  Elasticities are given by the right 
eigenvector of the population projection matrix, and the stage-specific reproductive value (see 
below) is given by the left eigenvector of the population projection matrix (Caswell 2001, 
Heppell et al. 1996).  The elasticity values sum to one (1.0) and thus can be used to compare the 
relative impact of stage-specific survival, growth, and fecundity on population growth (de Kroon 
et al. 2000).  However, elasticities are a measure of how much the population growth rate 
changes with an infinitesimal change in a matrix element.  Extrapolating from small to large 
changes assumes that the relationship between population growth rate and the matrix element is 
linear, which is unlikely for mathematical and biological reasons (Benton and Grant 1999). 
 Fisher (1930) developed the concept of reproductive value in order to evaluate the 
relative contributions of individuals of different ages to population growth, and conversely to 
evaluate the relative importance of fitness events at different ages.  Leslie (1945) developed the 
calculation of this quantity via operations on the population projection matrix.  Goodman (1982) 
showed that reproductive value is the fundamental quantity that is maximized in every 
optimization of a life history.  Reproductive value combines the two essential life history 
parameters fecundity and survivorship into a single value that takes into account an individual’s 
proportionate contribution to the future population (Goodman 1982). 
 An elasticity pattern is composed of the relative contributions of matrix entries to 
population growth that are grouped in biologically meaningful ways for comparative analysis 
(van Tienderen 2000).  For example, in marine mammal populations it is often desirable to 
compare the relative contributions of fertility, juvenile survival, and adult survival (Heppell et al. 
2000b).  Both fertility and juvenile survival elasticities are strongly correlated with age at 
maturation, mean fertility, generation time and life expectancy.  However, sensitivities and 
elasticities of matrix elements do not take covariation in these life cycle components into 
account.  A method to calculate “integrated” sensitivities and elasticities in order to measure the 
net effect of a matrix element was presented by van Tienderen (1995).  Populations, such as 
marine mammals, with high mean adult survival rates have low fertility elasticities and higher 
adult survival elasticities, with juvenile survival elasticity dependent upon the proportion of life 
spent as a juvenile (Heppell et al. 2000b). 

Unfortunately, the precise mathematical definitions of sensitivities and elasticities are in 
sharp contrast to the ways these quantities are often used and interpreted in applied ecology 
(Mills et al. 1999).  Because elasticities are partial derivatives, they predict the effect on 
population growth rate of infinitesimally small and linear changes.  They inherently assume the 
existence of a stable age distribution implying that their calculation depends on long term, and 
asymptotic, population dynamics (Koons et al. 2006).  Sensitivities and elasticities are also 
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usually calculated from a single population projection matrix constructed from average, or even 
“best guess” vital rates.  The demographic rate in the mean matrix with the highest elasticity is 
then recommended for highest management or research priority.  Similarly, specific changes in 
population growth rate, or extinction probability, are inferred from each rate’s sensitivity or 
elasticity (Mills et al. 1999).  In a simulation meta-analysis of population data from three species, 
including the killer whale (Orcinus orca), Mills et al. (1999) found that variation in vital rates 
can change the values of elasticities expected from mean matrices, and in the worst case could 
alter the qualitative ranking of elasticities.  They conclude that elasticities from a mean, or “best 
guess” matrix are not enough to predict how population growth rate will change as vital rates 
change.  They suggest that elasticities derived from “simple” matrices in which the CVs for all 
vital rates are roughly equal will be better indicators of growth rate changes than elasticities from 
“complex” matrices in which the CVs for vital rates are different. 

Another problem arises when attempting to construct small matrices describing a 
population with wide age or stage classes.  This usually decreases the relative importance of 
moving to the next stage (growth) versus remaining a stage (stasis) because with wider stages an 
individual is more likely to stay in one stage longer (Benton and Grant 1999).  Easterling et al. 
(2000) have shown how this problem can be avoided by replacing the population projection 
matrix with an integrated projection model that allows the calculation of the matrix elements 
without partitioning the life history into discrete classes.   

Constructing population projection matrices often requires estimating many parameters 
with few data, and consequently large sampling variability in the estimated transition rates can 
increase the uncertainty of the estimated matrix, and quantities derived from it, such as the 
sensitivities, elasticities and reproductive value.  Gross et al. (2006) proposed a strategy to avoid 
over parameterized matrix models that involves fitting models to the vital rates that determine 
matrix elements, evaluating the models and matrix elements via the AIC, and averaging 
competing models.  Gross et al. (2006) conclude that multimodel averaging has the most benefit 
when population projection matrices are used for more detailed demographic analysis than just 
estimating population growth rate.  Thomas et al. (2005) present a unified framework for 
modeling wildlife population dynamics that provides an ideal vehicle for model selection and 
model averaging. 

Caswell (2000) makes a distinction between prospective and retrospective demographic 
perturbation analysis.  The prospective analysis examines the functional dependence of 
population growth rate on a particular vital rate parameter in a purely mathematical way.  
Elasticity analysis is a type of prospective analysis (Benton and Grant 1999).  Prospective 
analyses tell nothing about how the vital rates have changed in the past, are varying now, or 
might vary in the future, and knowledge of how the rates actually vary contributes nothing to 
prospective analysis (Caswell 2000). 

In contrast, retrospective analyses, e.g. life table response experiments, examine the 
stochastic or random relationships between population growth rate and a vital rate parameter 
(Caswell 1989, 1996a, 1996b, 2000).  They express the variation in population growth rate as a 
function of variation in vital rates.  Such retrospective analyses often focus on the impact of the 
variation of the vital rate parameter on the variation of the population growth rate (Link and 
Doherty 2002).  This is important because management actions are typically directed towards 
changes in population growth and not changes in the variability in population growth, and thus 
retrospective functional analyses are inappropriate (Caswell 2000, Link and Doherty 2002).  
Retrospective analyses cannot identify potential management targets because they compare the 
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contribution of past changes in vital rates (Caswell 2000).  Sæther and Bakke (2000) and 
Wisdom et al. (2000) compared the results of prospective and retrospective analyses.  They rely 
on different kinds of data, the former on a single population projection matrix and the latter on a 
set of matrices from which the variance in population growth rate can be calculated (Caswell 
2000). 

Haridas and Tuljapurkar (2007) decompose short-term elasticity into the sum of the effect 
of a perturbation of vital rates on population structure and the effect of the original vital rates 
themselves on the difference between the original and the perturbed population.  In a population 
with a stable age distribution, short-term elasticity is primarily determined by the stable age 
distribution and reproductive value while in a non-stable population, the short-term elasticity 
depends also on the projection of internal structure on the stable age distribution, also known as 
population momentum (Keyfitz 1971).  Population momentum occurs when population size 
changes rapidly after a perturbation and deviates from asymptotic growth.  Crowder et al. (1994) 
detected such a pattern when examining the potential benefit of turtle-excluding devices on 
shrimp trawls to loggerhead turtle (Caretta caretta) populations.   

Many management actions can potentially affect vital rates enough to disrupt the age 
structure and cause population fluctuations as the age structure returns to a stable age distribution 
(Koons et al. 2006).  These fluctuations are also known as transient dynamics and result in a 
population size very different from that predicted by asymptotic projections.  Such population 
momentum can occur in wildlife populations when management actions or large environmental 
perturbations cause any vital rate to change by an amount large enough to alter the age structure 
(Koons et al. 2006).  In a simulation study, Koons et al. (2006) found that asymptotic elasticity 
values did not accurately predict the proportional change in population growth rate following a 
proportional change in a vital rate.  They concluded that predictions made from asymptotic 
elasticities are not robust to the inherent assumptions of a stable age distribution.  They also 
showed that population momentum varies with life history, such that late-maturing long-lived 
birds and mammals are more reactive to direct changes in age structure, and depends upon the 
specific vital rate that is changed and the proportional change that is made to the vital rate.  
Koons et al. (2006) go on to suggest that population momentum could push populations far past 
an environmental carrying capacity or even to extinction, depending upon the direction of the 
momentum, and thus should be considered in PVA. 
 
6.  Individual Based Models 
 
 Individual-based models (IBMs) allow the explicit inclusion of individual variation in 
greater detail than do classical differential-equation or difference-equation models.  In principle, 
IBMs simulate populations or systems of populations as being composed of discrete agents that 
represent individuals or groups of similar individual organisms with sets of traits that vary 
among the agents.  IBMs attempt to capture the variation among the individuals that is relevant 
to the question being addressed (DeAngelis and Mooij 2005).  Individual variation may include 
such factors as distribution in space and time, life cycle details, phenotype and behavior, 
experience and learning, and genetics and evolution.  IBMs have promise in the question at hand 
because they can be used to model marine mammal movement in response to ocean noise, with 
resultant impacts on foraging, bioenergetics and population dynamic.  IBMs have also been 
applied in population viability analysis (see below) for a large variety of taxa (DeAngelis and 
Mooij 2005). 
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7.  Stochastic/Bayesian Models 
 

Applied Bayesian methods are becoming popular for the assessment of marine mammal 
populations (Wade 1999, 2000).  Bayesian inference provides an alternate way to analyze data 
that remedies many of the problems inherent in standard hypothesis testing and, more 
importantly, allows for the incorporation of uncertainty (Wade 2000).  Bayesian methods 
represent a different school of statistical inference and a different statistical philosophy from the 
standard, or “frequentist”, statistics most scientists were taught.  Bayesian methods calculate the 
probability of the value of a parameter given the observed data.  In contrast, frequentist analyses 
calculate the probability of observing data given a specific value for a parameter, such as a null 
hypothesis.  In simplest terms, the data are what is known, and Bayesian analysis focuses on 
what the data tell about the parameter (Wade 2000).  In addition to incorporating uncertainty, 
Bayesian methods facilitate the inclusion of additional information in the form of prior 
probability distributions.  The prior distributions can be developed from previous studies of the 
same population, studies of different populations of the same species, studies of similar species, 
or a meta-analysis (Hoyle and Maunder 2004).  The posterior probability of an event is the 
probability that is assigned after the relevant evidence is taken into account.  The posterior 
probability distribution can be calculated with Bayes' theorem (Wade 2000). 

Bayesian analysis differs from classical statistical analysis of a single experiment in 
several profound ways (Anderson 1998).  First, as discussed above, Bayesian analysis requires 
prior probability estimates that are quantitative statements of confidence based on previous 
experience, which have no place in classical analysis.  Second, Bayesian analysis can assign 
intermediate degrees of confidence or probability to hypotheses, unlike the all-or-nothing 
inferences inherent in hypothesis testing.  Third, Bayesian analysis can be applied to either a 
discrete hypothesis or to a continuum of hypotheses.  Finally, Bayesian data need not come from 
a completed experimental design, although the observations must be structured so that the 
analyst can estimate the probability of observing the data under each hypothesis tested 
(Anderson 1998).  Anderson (1998) suggests that the slow acceptance of Bayesian statistics is an 
example of cultural evolution among applied ecologists and that this interpretation suggests two 
possible barriers to the understanding and use of Bayesian statistics.  The first is that the way the 
process and results of Bayesian analysis are reported and prior probabilities estimated are highly 
variable, and second that decimal probabilities are difficult for many to understand and interpret 
intuitively.  She suggests that these difficulties can be overcome by establishing carefully 
considered standards for methodology and conventions for presentation of results (Anderson 
1998). 
 
8. Population Viability Analysis 
 
 Population viability analysis (PVA) is the use of quantitative methods to predict the 
likely future status of a population of concern (Boyce 1992, Morris et al. 2002).  For critically 
endangered species PVA may be superfluous because the data needed to do PVA may be lacking 
and because immediate population protection/rehabilitation actions must take priority (Morris et 
al. 2002).  However, for species not at the very brink of extinction, PVA can serve three useful 
functions: 1) PVA can indicate how urgently recovery efforts need to be initiated for a specific 
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population by yielding a probability of extinction by a specified future time; 2) PVA can be the 
focal point for synthesizing monitoring data into an assessment of recovery success; and 3) PVA 
can identify particular life stages or demographic processes that should be the primary 
management targets (Morris et al. 2002).  PVA can be facilitated by use of the program 
VORTEX (Lacy 1993).  Population viability analysis can be used in conjunction with 
demographically and spatially structured models (Reed et al. 2002), and with matrix population 
models (Akaçakaya 2000).   However, Ludwig (1999) concluded that PVA under short time 
scales or poor fits to model data lead to wide confidence intervals for the probability of 
extinction, and that in many cases there are substantial errors in the estimation of abundance, 
further increasing the confidence interval to the point that estimates of the probability of 
extinction become meaningless. 
 Meissinger and Westphal (1998) reviewed the structure, data requirements, and outputs 
of analytical, deterministic single-population, stochastic single-population, metapopulation, and 
spatially explicit models, and suggested that predictions from quantitative models for endangered 
species are unreliable due to the poor quality of demographic data used in most applications, 
difficulties in estimating variance in demographic rates, and lack of information on dispersal.  
They posit that unreliable estimates arise because stochastic models are difficult to validate, 
environmental trends and periodic fluctuations are seldom considered, the form of density 
dependence is frequently unknown but greatly affects model outcomes, and alternative model 
structures can result in different predicted effects of management regimes.  Meissinger and 
Westphal (1998) recommend that PVA evaluate relative rather than absolute rates of extinction, 
emphasize short time periods for making projections, start with simple models that the data can 
support, use models cautiously to diagnose causes of decline and examine potential routes to 
recovery, evaluate cumulative end points and alternate reference points rather than extinction 
rates, examine all feasible scenarios, and mix genetic and demographic currencies sparingly. 
 Fieberg and Ellner (2001) used stochastic simulation studies to compare different 
analytical methods used in PVA and found that model conclusions are likely to be robust to the 
choice of parameter distribution used to model vital rate fluctuations over time, but that 
conclusions can be highly sensitive to within-year correlations between vital rates.  They go on 
to suggest the use of analytical methods that include a sensitivity analysis with respect to 
correlated parameters and that the precision of PVA estimates can be improved by the use of 
matrix models that incorporate environmental covariates (Fieberg and Ellner 2001). 
   
D.  DATA COLLECTION METHODOLOGIES 
 
1. Line-Transect 
 

Information on spatial and temporal variation in marine mammal abundance must be 
interpreted in the light of other information on population structure and growth, such as direct 
mortality due to such factors as harvesting and entanglement, and indirect impacts that may 
cause mortality such as pollution and noise.  Three types of information are of value to meet 
management objectives: 1) information on trends in abundance, useful for both identifying 
populations for which there is a concern, and for determining the success of management 
actions; 2) information on absolute abundance, in order to identify populations for which 
management actions are required; and 3) information on geographical and temporal distribution 
to focus conservation actions in relation to human activities (Evans and Hammond 2004). 
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 A variety of approaches has been used to monitor spatial and temporal patterns in marine 
mammal abundance (Garner et al. 1999).  The presence of animals may be recorded visually or 
indirectly by acoustics.  The use of fixed stations allows for sustained monitoring at relatively 
low cost, but coverage is limited to the immediate vicinity of the station.  For more extensive 
coverage, mobile platforms are necessary.  Platforms of opportunity such as ferries, whale-
watching boats, etc., are often used to survey areas at low cost.  Line-transect surveys using 
dedicated platforms allow coverage of large areas from which abundance estimates can be made, 
either using indices or absolute measures derived from density estimation [e.g. program 
DISTANCE (Buckland et al. 2001)].  Gómez de Segura et al. (2007) used spatial distance 
sampling methods applying GAMs to estimate the density of striped dolphins (Stenella 
coeruleoalba) in the western Mediterranean Sea. 
 
2. Capture-Mark-Recapture 
 
 For some marine mammal species, CMR methods can be applied using photographic 
identification of recognizable individuals.  This requires a number of assumptions (see below).  
These methods require at least two sampling occasions, and if multiple sampling occasions are 
used, either open or closed population models can be used [e.g. program MARK (White and 
Burnham. 1999)]. 
 CMR models typically take three forms: 1) closed-population models (the simplest case); 
2) Cormack-Jolly-Seber (CJS) models that follow marked animals over time in order to estimate 
survival but not recruitment; and 3) Jolly-Seber (JS) models, fully open-population models that 
estimate both recruitment and survival (Schwartz 2001, Lebreton 2006).  All CMR methods 
depend upon a series of assumptions: 1) every animal in the population, marked or unmarked, 
has the same probability of capture, 2) every animal in the population, marked or unmarked, has 
the same probability of surviving until the next capture, 3) every newly-encountered animal in 
the population has the same probability of having been marked, 4) marked animals do not lose 
their marks, and all marks are recorded upon capture, and 5) all samples are instantaneous, i.e. 
sampling time is negligible (Siniff et al. 1977)  Langtimm et al. (1998) conducted a CJS mark-
recapture analysis of Florida manatee survival using natural and boat-inflicted scars as marks.  
Photo-documented resightings provided recaptures.  Annual survivorship varied from 0.96 (95% 
CI = 0.951-0.975) on the west coast of Florida to 0.91 (95% CI = 0.887-0.926) on the east coast 
of Florida.  These values were significantly different (P < 0.0001), presumably due to greater 
anthropogenic impacts (e.g. boat strikes and canal locks) on manatees on the east coast of Florida 
(Langtimm et al. 1998). 
 Measuring population change is a particular challenge for mobile animals such as marine 
mammals.  Changes in distribution can have a large impact on abundance estimates unless very 
large areas are covered.  Power analysis is a useful method to evaluate the ability of the data to 
detect a trend, and spatial modeling using GLMs and GAMs is being used to provide a better 
understanding of the biotic and hydrographic factors that influence cetacean distribution (Evans 
and Hammond 2004).  The joint development of matrix models and CMR methods has led to a 
comprehensive and powerful methodology for vertebrate population dynamic studies that have 
both benefitted from and been the source of much of this methodological development (Lebreton 
2006). 
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3.  Stranding/Necropsy/Bycatch 
 
 The collection of incidental sightings and stranding information allows for the 
construction of a species occurrence list for a given location, and can provide a rough measure of 
population status and seasonal variation in abundance (Evans and Hammond 2004).  Zeh et al. 
(1986) presented a multinomial model approach to estimating the size of the western Arctic stock 
of the bowhead whale (Eubalaena mysticetus) using the removal method as the whales pass by 
two different census camps located near Point Barrow, AK.  They derived maximum likelihood 
estimates of the population and confidence intervals on these estimates under a model that 
allowed for no or partial total counts during any given observation (Zeh et al. 1986). 
 
E.  SPECIES SPECIFIC MODELING EFFORTS 
 
1.  Odontocetes 
 
 Whitehead (2002) estimated the current global population size of the sperm whale, and 
the historical trajectory of the sperm whale population.  His meta-analysis included data from 
nine ship or aerial transect surveys, and used three methods to extrapolate the results of these 
estimates to the global scale.  He found the nine surveys yielded an estimate of 105,670 (CV = 
0.13) sperm whales.  
 Caswell, et al. (1998) developed a Monte Carlo (random) approach to evaluate 
uncertainty in population size, incidental mortality, and population growth rate for harbor 
porpoises (Phocoena phocoena) in the Gulf of Maine and the Bay of Fundy using model life 
tables derived from other mammals with similar life histories.  By randomly sampling a variety 
of model life tables and the distributions of fertility and age at first reproduction, they produced 
an estimate of the population growth rate (1.10) and its probability distribution. They then 
estimated that the probability that the rate of incidental mortality exceeds the potential biological 
removal (see below) is between 0.46 and 0.94.  They state that their analysis resembles a 
Bayesian analysis (see above) and conclude that incidental mortality rates are a threat to harbor 
porpoise populations (Caswell et al. 1998). 
 Brault and Caswell (1993) developed a matrix model of killer whale pod-specific 
demography, and found that the population growth rate was most sensitive to adult and juvenile 
survival, followed by fertility.  Thus, they predict that population growth rate for this species will 
be greatly influenced by even small changes in survival.  They also found that most of the 
variation in pod-specific population growth rate is due to variance in adult reproductive output, 
but that this variation is not greater than expected from variation in individual life histories 
within the population.  They conclude that there is no evidence for an effect of social structure on 
pod-specific population growth rate (Brault and Caswell 1993). 
 Beland et al. (1988) constructed a stage-based matrix model of the population of beluga 
whales (Delphinapterus leucas) in the St. Lawrence River, Quebec.  Their results suggest that 
the population is declining, and that present knowledge of age-specific vital rates does not 
warrant annual exploitation rates above 2% (Beland et al. 1988).  However, this model may have 
been based on incorrect assumptions about the ages and longevities of the beluga whales 
included in their study.  A study of bomb radiocarbon dating of beluga whale teeth growth layer 
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groups (GLGs) found that beluga GLGs form annually, and not semiannually, and thus suggest 
that beluga whales can live for up to 60 years (Stewart et al. 2006).  Stewart et al. (2006:1840) 
conclude that “Our understanding of many facets of beluga whale population dynamics is altered 
by finding that this species lives twice as long as previously thought.”  
 
2.  Mysticetes 
 
 There may be similar problems with older (pre-1998) models of mysticete population 
dynamics, because of the recoveries of traditional whale-hunting tools and bomb lance fragments 
from harvested bowhead whales suggests that they have life-spans in excess of 100 years of age 
in some cases (George et al. 1999, George and Bockstoce 2008).  George et al. (1999) estimated 
the ages of bowhead whales based on intrinsic changes in the D and L enantiomeric isomeric 
forms of aspartic acid in the eye lens nucleus for 42 animals. They found that females appear to 
grow faster than males, age at sexual maturity (age at length 12-13 m for males and 13-13.5 m 
for females) occurs at around 25 years of age, growth slows markedly for both sexes at roughly 
40-50 years of age, and four individuals (all males) exceed 100 years of age (George et al. 1999).  

Zeh et al. (2002) computed the survival probability of bowhead whales from 
photographic identification data collected from 1981-1998.   They started with a CJS model 
implemented in the program MARK to identify a model with a single survival and time-varying 
capture probabilities most appropriate for their data.  They then implemented a Bayesian Markov 
Chain Monte Carlo (MCMC) model to produce a posterior distribution for annual survival.  A 
corresponding reduced-parameter JS model was also fit via MCMC because it was more 
appropriate than the CJS model that ignored much of the information about capture probabilities 
provided in the data.  Zeh et al. (2002) found that the mean bowhead survival from the JS model 
was 0.984, and that 95% of the Bayesian posterior probabilities were between 0.948 and 1.000.  
This high estimated survival rate is consistent with other data on the life history of the bowhead 
whale, a species that lies at the K-selected end of the r/K selection continuum. 
 Caswell et al. (1999) developed 10 models of North Atlantic right whale population 
dynamics based on CMR studies, and selected several models to examine based on AIC criteria.  
They found that crude survival declined from about 0.99 in 1980 to about 0.94 in 1994, and that 
the population growth rate declined from about 1.053 in 1980 to about 0.976 in 1994.  Under 
these conditions, the population is doomed to extinction, with an upper bound on the estimated 
time to extinction being 191 years (Caswell et al. 1999).  They calculated elasticities for survival 
probability and the probability of a female producing a female calf, and found that the elasticity 
for the probability of survival was 17-27 times greater than the elasticity for the probability of 
producing a female calf, suggesting that proportional increases in survival will have larger 
impacts on population growth and stability than increases in the probability of producing a 
female calf (Caswell et al. 1999) 
 Fujiwara and Caswell (2002) developed a method to estimate the transition probabilities 
of matrix population models from CMR data using a MCMC formulation of the life cycle to 
express likelihood functions in matrix forms, simplifying the numerical calculations.  They 
introduced a method to incorporate capture histories with uncertain stage or sex determination, 
introduced a function that allows multinomial transition probabilities to be written as functions 
of covariates, showed how to convert transition probabilities estimated by CMR into a matrix 
population model and finally they applied these methods to the North Atlantic right whale.  They 
estimated the long-term population growth rate at 1.01 (95% CI: 1.00-1.02), representing a 1% 



 20

annual population growth rate for the period 1980-1997, and concluded that the population 
growth rate has declined from 1.03 to 0.98 over this time interval (Fujiwara and Caswell 2002). 
 Barlow and Clapham (1997) used maximum likelihood methods to estimate fecundity, 
the age of first reproduction, and survival in humpback whales using photographic identification 
and modified JS CMR methodologies.  The youngest age of first reproduction was 5 years, the 
estimated mean birth interval was 2.38 years, the estimated non-calf survival was 0.969, and the 
estimated calf survival was 0.875.  The population growth rate was estimated at 6.3% per year, 
with a standard error of 0.012 as estimated by a MCMC method (Barlow and Clapham 1997).  
Rosenbaum et al. (2002) found differences in fecundity amongst females in different maternal 
lineages (“matrilines”) of humpback whales,  These results suggest that the genetic structure of a 
marine mammal population may also influence reproductive success, in addition to such factors 
as environmental variation and stochastic changes in vital rates.  This further suggests that 
unique evolutionary histories and independent evolutionary trajectories may lie below the 
systematic level defined as a species, implying that stocks or subpopulations are the fundamental 
unit for protecting endangered species and for establishing critical habitats and evaluating the 
recovery of previously exploited species (Baker et al.  2000). 
 Breiwick et al. (1984) constructed population projection matrices to model the western 
Arctic bowhead whale population for two time periods, 1848-1970 and 1970-2000.  Estimates of 
the number of animals killed and struck and lost, as well as assumed mortality rate for whales 
struck and lost, were used to solve for the 1848 population size assuming the 1970 level was 
4000 animals.  The 1970 level (4000) was then projected forward to the year 2000 with constant 
kill regimes of 0, 20, and 40 animals per year.  Their results suggested that the 1848 population 
size ranged from about 14,800 to just below 21,000 animals, that the population reached a 
minimum of between 1500-4000 animals around 1910, that the population has remained stable or 
has increased (depending upon a calculated recruitment rate) since that time and increases in kill 
regime reduced estimates of 2000 population size (Breiwick et al. 1984).  They also found an 
apparent incompatibility between the observed proportion of immature whales in the population 
and the proportions predicted by their model perhaps because of a tendency for reproductive 
animals to segregate from the other animals in the population and thus not be detected by census 
efforts (Breiwick et al. 1984). 
 
3. Pinnipeds 
 
 Matrix modeling of populations of Steller sea lions (Eumetopias jubatus) suggested that 
the vital rate most important in the decline of these populations was a 10-20% decrease in the 
survival of juveniles.  There was an insignificant change in adult survival (York 1994).  Taylor 
(1995) conducted a population viability analysis for the Steller sea lion and evaluated the effect 
of uncertainty in parameter estimation through simulation.  The simulations were used to 
evaluate bias and precision in estimates of the probability of extinction.  Extinction time 
estimates were biased because of violation of the assumption of a stable age distribution, and 
underestimated the variability in the probability of extinction in a given time, probably due to 
uncertain parameter estimation. 
 Kokko et al. (1996) addressed sustainable harvest of Baltic seals [grey and ringed (Phoca 
hispida)] using the theoretical framework of ecological risk analysis.  They developed four 
models of increasing complexity and flexibility.  They found that the simpler the population 
model, the more overconfident the results with respect to the proposed hunting policy.  They 
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conclude that the sustainable harvest of these two species of seals in the Baltic Sea is likely close 
to zero, and that hunting be restricted in the future until adequate estimates of the populations of 
both species become available (Kokko et al. 1996). 
 Lalas and Bradshaw (2003) constructed both deterministic and stochastic population 
projection matrices to predict the population growth of New Zealand sea lions (Phocarctos 
hookeri) establishing a new breeding colony at Otago, South Island, New Zealand.  Their results 
suggested that the new breeding colony derived from one immigrant female is unlikely to reach 
10 breeding females in 20 years, this duration is more likely to be 23-41 years (deterministic 
model) or 23-26 years (stochastic model), and that the likelihood of new breeding sites being 
established within 20 years is low (Lalas and Bradshaw 2003).  They conclude that the 
management goal of establishing more than five breeding locations for this species within 20 
years is unattainable given the present definition of breeding location and under present 
management practices.  They also suggest that the breeding colony at Otago is vulnerable to a 
natural mass mortality event and/or to deliberate killing by humans (Lalas and Bradshaw 2003). 
 Winship and Trites (2006) conducted a PVA for Steller sea lions in the Gulf of Alaska 
and the Aleutian Islands that combined model simulations with statistically fitted models of 
historical population dynamics, including the roles that density-dependent and density-
independent factors may have played in the past and how they might influence future population 
dynamics.   Their results suggested that the overall predicted risk of extirpation of Steller sea 
lions in western Alaska was low in the next 100 years, but that most subpopulations had high 
probabilities of going extinct within the next 100 years if trends observed during the 1990s were 
to continue (Winship and Trites 2006). 
 Pistorius et al. (2008) examined survival of adult female southern elephant seals at 
Marion Island in the southern Indian Ocean after a long period of population decline.  They 
found that adult female survival and fecundity increased and age of sexual maturity decreased 
during their 25 year study period, and that this has contributed to the stabilization of the breeding 
population at Marion Island.  They also suggest that density dependent population regulation is 
operational in their study population, most likely based on a limited food supply. 
 
4. Sirenians 
 
 Runge et al. (2004) developed a stage-structured population model for the Florida 
manatee that implicitly incorporated uncertainty in parameter estimates using the data of 
Langtimm et al. (2004) for a ten-year period.  These data were derived from a photographic 
identification CMR study.  They found differences in population growth rate among the four 
sub-populations found in Florida.  An elasticity analysis suggested that the most effective 
management action would be to increase adult survival rates, and decomposition of the 
uncertainty in growth rates indicated that this uncertainty can best be reduced by increased 
monitoring of adult survival rates (Runge et al. 2004). 
 Turvey and Risley (2005) presented a model of the extinction of the Steller sea cow 
(Hydrodamalis gigas) that utilized the VORTEX program.  They concluded that this extremely 
K-selected species was unusually vulnerable to extinction from overhunting, even using pre-
industrial technologies.  They also suggested that populations of extant species of Sirenians are 
also declining from anthropogenic factors, either from direct overharvesting or from boat 
collisions (Turvey and Risley 2005). 
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5. Carnivores 
 
 In a CMR study of polar bears (Ursus maritimus) in the Beaufort Sea, Armstrup et al. 
(2001) found that the population grew from about 500 females at the start of the study to about 
1000 females at the end of the study, a period of 30 years.  They evaluated 82 different models 
using AIC criteria; however the models with the lowest AIC criteria provided relatively large 
variances on population size estimates and fluctuations.  To make their final model selection, 
Armstrup et al. (2001) standardized their AIC values and the mean population CV for all models 
tested and plotted them on the same graph.  Their best approximating model, which was ranked 
15th on the basis of the AIC analysis, was near the intersection of these two lines (Burnham and 
Anderson 1998). 
 Laidre et al. (2006) constructed population project matrices for sea otters in southwest 
Alaska to examine the population trajectory and age structure.  Their study spanned a period of 
time during which the population of sea otters in the Aleutian archipelago declined precipitously 
from levels at or near equilibrium densities in the 1960/70s to less than 5% of the estimated 
carrying capacity by the late 1990s.  They found that the age structure of the otter population 
underwent a significant change during this time, with the later age distribution being skewed 
towards younger age classes, suggesting an almost complete relaxation of age-dependent 
mortality patterns typical of food-limited populations (Laidre et al. 2006).  They suggest that 
their results indicate an overall improvement in the health of sea otters over the period of decline, 
that limited nutritional resources were not the cause of the observed abundance, and are 
consistent with the hypothesis that the decline was caused by increased killer whale predation 
(Laidre et al. 2006). 
 Miller et al., (2002) constructed a variety of population projection matrices for wolves 
(Canis lupus) in the upper peninsula of Michigan.  A density-dependent matrix predicted that the 
maximum sustainable population of wolves in that region was 929 and that the population would 
reach that level in 2012.  Freedman, et al. (2003) used matrix population models to evaluate the 
relative importance of different vital rates on population growth for female black bears (Ursus 
americanus) on the Southeastern Coastal Plain of the United States.  Their elasticity analysis 
indicated that adult survival, and litter size of three- and four-year-old females were the most 
important determinants of population growth.  These results were supported by a regression 
analysis of population growth versus vital rates.  Taken together, their results suggest that adult 
survival should be the primary target of black bear conservation and management strategies 
(Freedman et al., 2003). 
 In contrast, a study of panda (Ailuropoda melanoleuca) population dynamics found that 
population growth was most sensitive to changes in vital rates of the early reproductive age-
classes and least sensitive to changes in vital rates of the oldest age-classes, and of intermediate 
sensitivity to changes in the vital rates of the juvenile age-classes (Carter et al. 1999).  
Additionally survival sensitivities were higher than fertility sensitivities at the beginning of the 
life cycle, and these declined with age, until the fertility sensitivities became greater at the end of 
the life cycle.  In the model of Carter et al. (1999) panda populations were well below the 
carrying capacity of their habitat and documented periodic starvations in conjunction with 
bamboo die-offs were related to the inability of pandas to move to other areas where bamboo 
was still available.  It may be that these differences between panda population dynamics and the 
dynamics of other large terrestrial vertebrates have to do with their dependence on bamboo, a 
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plant that only reproduces once in its lifetime in a synchronous pattern over large portions of the 
landscape (Carter et al. 1999). 
 
6. Reptiles 
 
 Enneson and Litzgus (2008) used long-term demographic data on the endangered spotted 
turtle (Clemmys guttata) in Canada to parameterize a stage-classified matrix model and used the 
model to assess several hypothetical management scenarios.  Elasticity analysis and population 
simulations indicated that adult survival has the largest proportional influence on population 
growth rate.  Simulation of nest protection and headstarting scenarios indicated that these are 
inefficient conservation strategies for this species, and the authors recommended that adults, and 
juveniles if possible, be targeted for conservation efforts in spotted turtles and other iteroparous 
vertebrates (Enneson and Litzgus 2008). 
 Heppell et al. (1996a) critically examined the population effects of headstarting as a 
management tool for threatened turtle populations.  They constructed deterministic matrix 
models for yellow mud turtles (Kinosternon flavescens), a non-threatened and well studied 
species, and for endangered Kemp’s ridley sea turtles (Lepidochelys kempi).  They found that 
management efforts focused exclusively on improving survival in the first year of life are 
unlikely to be effective for long-lived species such as turtles.  Their population projections 
predict that only when adult survival is returned to or maintained at high levels will headstarting 
augment population growth (Heppell et al 1996a).  Elasticity analysis of their stage-based matrix 
models indicated that annual survival rates for subadult and adult turtles are most critical to 
population growth, and that small decreases in the survival of older turtles can quickly overcome 
any potential benefits from headstarting (Heppell et al. 1996a). 
 Heppell et al. (1996b) constructed population projection matrices for loggerhead turtles 
(Caretta caretta) nesting in Queensland, Australia, and conducted a sensitivity and elasticity 
analysis.  They found that the population growth rate was much more sensitive to survival within 
a stage than to growth (i.e. moving up a stage) or to fecundity.  Peak elasticity shifted from adult 
survival within a stage in an unexploited population to pelagic juvenile survival in an exploited 
population.  Pelagic juvenile survival elasticity was high in both populations probably because 
most of the animals in both populations were in this stage.  In both populations the impact of egg 
and hatchling survival was minimal.  Heppell et al. (1996) conclude that because of life history 
constraints that include very long generation times, sea turtles are probably unable to compensate 
for mortality sources that concentrate on maturing and adult individuals. 
 Crowder et al. (1994) used a stage-based population model for loggerhead sea turtles to 
project potential population effects of the use of turtle excluder devices (TEDs) in trawl fisheries 
in the southeastern United States.  The most sensitive matrix parameters were those dealing with 
survival within a stage, rather than growth from one stage to the next or reproductive output.  
Population growth rate was most sensitive to survival in the large juvenile stage, followed by 
small juvenile survival.  Crowder et al. (1994) concluded that TEDs can be useful in increasing 
population growth rate, especially if their use was required throughout the year versus during just 
the seasonal offshore shrimping season.  Interestingly, the use of TEDs resulted in an unstable 
population growth projection, as opposed to the expected monotonic increase, due primarily to 
population momentum, a concept described on page 14 above. 
 Doak et al. (1994) used size-structured demographic models to assess the status of the 
desert tortoise (Gopherus agassizii) in the western Mojave desert of California, and evaluated the 
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effectiveness of possible management measures.  Their demographic analyses agreed with trends 
in field censuses showing a rapid population decline but their simulations yielded highly variable 
forecasts of population growth indicating the uncertainties inherent in short-term projections of 
population size.  Their sensitivity analyses suggested that the rate of population growth is most 
sensitive to the survival of large adult females and that improving the survivorship of this stage 
could reverse the population declines.  In contrast, large improvements in other vital rates did not 
reverse the population decline.  Thus, sources of adult mortality such as anthropogenic mortality 
from gunshots and off-road vehicles, as well as upper respiratory tract disease should be the 
primary focus of management strategies (Doak et al. 1994). 
 
F. SYNTHESIS 
 
1.  Relative importance of vital rates on population trends and stability 
 
 MacArthur and Wilson (1967) presented the concept of r/K selection where most species 
are placed on a continuum based on life history traits, with small, fast-growing, early-maturing 
species with high fecundity (r-selected) at one end, and large, slow-growing, late-maturing 
species with low fecundity (K-selected) species at the other.  Although somewhat simple, this 
concept has proven useful as a starting point in understanding how life history traits may act in 
predicting the responses of populations to various perturbations (Musick 1999).  For example, 
many studies have determined that K-selected species such as most marine mammals are more 
vulnerable to extinction than r-selected species.  Another way to say this is that vulnerability is 
inversely proportional to r, the intrinsic rate of natural increase of the population (Musick 1999).  
Additionally, surplus production models may be inappropriate for marine mammals, especially 
the large cetaceans, because of the long time lag in population response to harvesting. 
 Population biologists have found that many species exhibit adaptations that appear to 
maximize either K or r.  This dichotomy is not absolute, and many species lie in between these 
two extremes of the continuum, but it does appear to have some validity when applied to marine 
mammals, especially the great whales.  Animals whose populations are K-selected tend to be 
long lived and have a low intrinsic rate of population increase (r).  These populations have 
adopted a reproductive strategy that involves a high degree of parental investment, with 
correspondingly long periods of parental care.  They tend to have a low dispersal rate, and 
migrate between feeding and breeding locations in an annual cycle, which suggests that 
individuals posses the capacity for memory and learning.  Overall such populations appear to be 
poised for the long-term perspective.  Another rather simply put generalization is that individuals 
in such populations “live to eat”.  In contrast, animals whose populations are r-selected have high 
rates of population growth, with the resultant capacity to deplete local resources quickly, 
necessitating the ability to disperse and colonize new environments.  Such populations are poised 
for the short-term perspective, and have the ability to utilize resources made newly available by 
environmental change.  These species have short generation times, and usually have large litters.  
Simply put, these individuals “eat to live”. 
 Generally speaking, most marine mammal species are K-selected, and exhibit many of 
the generalizations above to varying degrees.  However, the prey of most marine mammals is r-
selected, and this dichotomy can place them in peril.  Migration and dispersal of prey due to 
localized environmental shifts can threaten marine mammal species that lack the ability to adapt 
as rapidly as their prey.  The problems of some of the great whales with recovery to pre-harvest 
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population levels, even after decades of protection, is another hint that they are generally K-
strategists, with low reproductive potentials and population growth rates.  Unfortunately, in the 
past those charged with the management of marine mammal populations have formulated their 
management plans as though they were managing an r-selected species, and not the converse.  
For example, lumping management strategies for K-selected oceanic specialists such as blue 
whales (Balaenoptera musculus) with coastal r-selected species such as the harbor porpoise, or 
allowing walrus (Odobenus rosmarus) populations to fluctuate like an r-selected species rather 
than maintaining it at a stable level, as befits a K-selected species (Fay et al. 1989). 
 It is also the case that mammals differ in reproductive and survival parameters based 
solely on their size.  For example, larger mammals have a greater age at maturity, greater 
generation time, greater life expectancy, lower reproductive value at maturity, and smaller litters 
than do smaller mammals (Millar and Zammuto 1983). 

Cole (1954) was one of the first to explore the relative importance of life-history 
variables on population growth rate.  Based on simulation studies he concluded that “…the age at 
which reproduction begins is one of the most significant characteristics of a species” (Cole 
1954:138).  Another generally accepted principle is that adult female survival is key to the well-
being of populations of long-lived vertebrates (Eberhardt 2002, Oli and Dobson 2003).  Based on 
a comparison of over 40 different species for which appropriate data were available, Eberhardt 
(2002) derived estimates of adult female survivorship.  For populations with little impact of 
human activities, yearly adult female survival appears to be at least 0.95, and may be 0.99 or 
higher in the prime age classes under undisturbed conditions (Eberhardt 2002).   When resources 
are abundant, rates of survival to reproductive age (i.e. juvenile survival) are also high and may 
approach adult rates.  As the population increases, reduction in resource abundance leads to a 
reduction in juvenile survival, accompanied by slower growth of the youngest age classes and a 
delay in the age of first reproduction.  In some cases, reduction of reproductive rates of adult 
females will also ensue.  The ultimate change in the sequence is a reduction in adult survivorship 
(Eberhardt 2002).  Because this sequence appears to occur across a wide variety of species, both 
marine and terrestrial, any deviation from this pattern should lead investigators to focus on the 
causes of the anomaly (Eberhardt 2002). 
 An analysis of the sensitivity of this paradigm suggests that population growth rate is 
least sensitive to changes in early survival, and most sensitive to changes in adult survival, with 
reproductive rate in an intermediate position (Eberhardt 2002).  When viewed in light of the “r 
and K selection” continuum it seems logical that selection might favor a process that maintains 
equilibrium numbers by making small changes in population growth rate, i.e. by modifying early 
survival (Eberhardt 2002).  Based on this paradigm, managers of marine mammal populations 
should focus their data collection efforts on determining adult female survival, and if it is below 
0.95-0.99, assess the cause and direct management efforts at increasing it.  Secondly, managers 
should attempt to determine juvenile survival, and lastly, reproductive rate (often the easiest to 
determine).  These data can then be used to determine population growth rate and compare this 
to growth rate estimated from trend data.  This will lead to insight into which of these factors is 
most important to the status of the population, especially when considered in light of past 
abundance estimates (Eberhardt 2002). 
 Gaillard and Yoccoz (2003) suggest that relative constancy in the survival of adult 
females could be the result of evolutionary canalization in the face of environmental variation, 
with adults effectively sacrificing offspring survival under adverse conditions in order to ensure 
their own future reproductive success. In contrast, juvenile survival shows wide annual 
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variability (Gaillard et al. 1998) and thus variable juvenile survival could be the factor most 
responsible for fluctuations in population abundance (Owen-Smith and Mason 2005).  Owen-
Smith and Mason (2005) also suggest generally that sensitivity analysis of changes in either 
survival or mortality rates provides better ecological interpretation than does comparing relative 
elasticities of stage-specific survival. 
 Studies of large terrestrial herbivores have supported this paradigm.  In a study of 24 
populations of 16 species of large herbivores monitored for a minimum of 5 years, the survival 
of adult females showed little among-year variation (CV = 2-15%), while in contrast an 
examination of 19 populations of 14 species found that juvenile survival showed marked 
temporal variation (CV = 12-88%; Gaillard et al. 1998).  The differential response of adult and 
juvenile survival to environmental variation was clearly evident from a comparison of the same 
populations.  In all 18 populations examined, yearly juvenile survival varied more than adult 
survival.  Juvenile survival, which determines recruitment, is highly sensitive to limiting factors, 
regardless of whether its variation is due to density-dependence or stochastic environmental 
factors.  Adult female survival is insensitive to most limiting factors (Gaillard et al. 1998, 2000).  
Gaillard et al. (1998) conclude that only long-term studies of a large sample of marked 
individuals can detect variation in the survival of large herbivores, a statement that is also true of 
most marine mammals. 

Gaillard et al. (2000) suggest that differences in maternal care may fine-tune the temporal 
variation in early survival in large terrestrial herbivores.  This may also be true of many marine 
mammals, especially the large cetaceans, and if true, this may represent an important proximate 
impact of noise-altered behavior on the sustainability and growth of marine mammal 
populations. 
 
2. Sensitivity of vital rates to environmental/ocean scale effects. 
 
 El Niño Southern Oscillation (ENSO) has well described impacts on marine ecosystems 
(Gouirand and Moron 2003; Benson et al. 2002), often far from where it occurs in the eastern 
equatorial Pacific Ocean (Diaz and Markgraf 1992, 2000).  ENSO events can also have 
significant effects on marine mammals (Trillmich and Ono 1991; Ballance et al. 2006).  For 
example, Reilly and Fiedler (1994) found that interannual variation in distribution of dolphin 
habitat in the eastern tropical Pacific Ocean reflected ENSO cycles.  During an El Niño event 
there is a rise in ocean temperatures in the eastern Pacific Ocean, which decreases the supply of 
prey species for marine mammals (NMFS 1998).  During the 1992-1993 El Niño the numbers of 
stranded pinnipeds on the west coast of the United States were nearly double that of 1991 
(NMFS 1998), and during the 2004-2005 El Niño foraging trips of male California sea lions 
(Zalophus californianus) from Monterey Bay, CA, were more than twice the distance and three 
times the duration of trips during 2003-2004 (Weise et al. 2006). 
 Benson et al. (2002) examined the influence of habitat variability on cetacean 
assemblages in an area of coastal upwelling within the California Current in Monterey Bay 
during the 1997-1998 El Niño and the following La Niña in 1999.  The results indicate that the 
abundance and diversity of Odontocetes increased during the El Niño event.  The increase in 
abundance was mainly due to large schools (500-1000) of common dolphins (Delphinus 
delphis), which had been nearly absent from the vicinity before the warming began in August of 
1997.  This was also true for other warm water species such as Risso’s dolphins (Grampus 
griseus).  Similar extra-limital strandings were found during ENSO events between 1939 and 
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2002 along the coast of Oregon and Washington (Norman et al. 2004).  These strandings were 
considered “extra-limital” because the species involved usually display a preference for warmer 
temperate and tropical waters (Norman et al. 2004). 
 The appearance of additional species along with the normal temperate species of the area 
contributed to the increases in both abundance and diversity.  Benson et al. (2002) suggest that 
the influx of warm water Odontocetes resulted from movement of their prey during the El Niño.  
They noted other studies (Angel 1994; Fiedler et al. 1998; Marinovic et al. 2002) that showed 
direct correlations between the prey base and the physical oceanographic conditions.   
 
3. Elasticity and sensitivity of vital rates. 
 
 Heppell et al. (2000b) conducted a meta-analysis comparing life table elasticities of 50 
mammalian populations.  They found that, in age-stratified models, the sum of the fertility 
elasticities and the survival elasticities for each juvenile age-class are equal, and thus the age at 
maturity has a large impact on the contribution of juvenile survival to population growth rate.  
“Slow”, or K-selected, mammals having few offspring and high adult survival rates, such as 
marine mammals, have much lower fertility elasticities and high adult or juvenile survival 
elasticities (Heppel et al. 2000).  Because of the difficulty in collecting full life table data, 
Heppel et al. (2000) developed a simple age-classified model whose elasticity patterns are 
determined by age at maturity, mean adult survival, and mean population growth rate, 
demonstrating that elasticity patterns can be determined even when complete life table data are 
unavailable.  
 Gerber and Heppel (2004) constructed simple age-structured matrix population models 
for a wide range of marine species based on data or models from the literature.  They then 
conducted a perturbation analysis using the derivative of the expected change in population 
growth rate arising from small changes in mortality.   It is generally accepted that this type of 
analysis gives different answers that the more commonly applied sensitivity analysis of 
population growth rate and they wanted to see if this was the case for a variety of marine species.  
Gerber and Heppel (2004) found little qualitative difference in the results of the two methods, 
with both population growth rate elasticity and perturbation analysis identifying adult survival 
and maximum fecundity as being the most important population parameters.  They also found 
that long-lived, slow growing species with high adult survival rates (K-selected) have low 
mortality elasticities and low potential for recovery.  Some of the results of Gerber and Heppel 
(2004) were counter to previous studies comparing the elasticities of population growth to 
changes in survival rather than mortality.  They conclude that adult and juvenile survival 
elasticities will be high for long-lived species such as marine mammals, sea turtles and sea birds 
because proportional changes in adult survival generally have a large impact on population 
growth (Gerber and Heppel 2004). 
 Koons et al. (2005) calculated short-term, or transient, population growth rate and its 
sensitivity to changes in life-cycle parameters for three bird and three mammal species with 
widely varying life histories.  They found that transient population dynamics of long-lived, slow 
reproducing (i.e. K-selected) species were more variable than they were for short-lived, fast 
reproducing (i.e. r-selected) species.  Additionally, transient fertility and adult survival 
sensitivities tended to increase with the initial net reproductive rate of the population, whereas 
sub-adult survival sensitivities decreased (Koons et al. 2005). 
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Jenouvrier et al. (2005) constructed a matrix model of southern fulmar (Fulmarus 
glacialoides) population dynamics using data collected over 39 years in Terre Adélie, Antarctica.  
They found that the elasticity of population growth rate to adult survival was very high, as 
expected in these birds at the K-selected end of the r/K continuum, but that adult survival varied 
little from year to year and did not explain fluctuations in the number of breeding birds and 
chicks.  High temporal fluctuations in the proportion of breeding birds and breeding success had 
the strongest impact on population dynamics, despite their weak elasticities. 

In a study that examined population growth rate as a function of several life-history 
variables in 155 populations of birds, Stahl and Oli (2006) found a wide range in demographic 
variables, but that adult survival had the highest relative influence on population growth rate in a 
majority of the populations, in contrast to Cole’s (1954) predictions.  In general, avian 
populations that matured early and had high reproductive rates (r-selected) were characterized by 
population growth rates most sensitive to changes in reproductive parameters, while populations 
that matured late and had low reproductive rates (K-selected) were characterized by population 
growth rates most sensitive to changes in survival parameters (Stahl and Oli 2006).  In a meta-
analysis of 49 species of birds Sæther and Bakke (2000) found that the mean elasticity of the 
adult survival rate was significantly larger than the mean elasticity of the fecundity rate, and that 
the contribution of the fecundity rate to population growth increased with increasing clutch size 
and decreasing adult survival, while the greatest contribution of adult survival occurred among 
long-lived species that matured late and laid few eggs.  

Another meta-analysis of avian population dynamics found that nest success and juvenile 
survival exerted the greatest effects on population growth in species with moderate to high 
reproductive output (r-selected), whereas adult survival contributed more to population growth in 
long lived species (K-selected) (Clark and Martin 2007).  They also found that juvenile survival 
had the highest elasticity (i.e. changes in juvenile survival result in the highest proportional 
change in population growth rate, but that reproductive success (fecundity) determined the 
magnitude of population growth rate.  Clark and Martin (2007) state that juvenile survival is one 
of the least understood parameters of avian demographics, and the same could be said for marine 
mammal demographics. 

The use of sensitivity and elasticity analysis to guide conservation and management 
actions has centered on the idea that management efforts should focus on the vital rate with the 
highest elasticity value where practical because small changes in vital rates with high elasticity 
values are likely to result in relatively larger changes in population growth (Baxter et al. 2006, 
Crouse et al. 1987).  However, biological (Caswell 2000) and mathematical (Benton and Grant 
1999, de Matos 1998) constraints on parameter values can lead to trade-offs between elasticity 
values and parameter variation, with parameters having high elasticities often having narrow 
ranges of natural or management-induced variation.  Thus, although for most long-lived species 
the population growth rate is most sensitive to changes in adult survival, increasing adult 
survival to maximize population growth rate may not always be affordable or even possible, 
whereas a parameter having a low elasticity may provide a less expensive means of increasing 
the long-term population growth rate (Baxter et al. 2006). 

Heppell et al. (2000b) and Link and Doherty (2002) suggest that focusing solely on 
elasticities for insight into management actions is not wise.  They suggest that elasticities should 
be considered in conjunction with the influence of management actions on the parameters of 
interest, as well as the cost of such management actions in a decision-theoretic framework.  Link 
and Doherty (2002) present a matrix algebra based metric that incorporates the cost associated 
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with a particular action and reduces to the proportional change in population growth rate per 
dollar spent. 
 
4.  Population modeling to define limits of sustainable change in vital rates. 
 
 In an attempt to compare life history characteristics, a series of simplified population 
projection matrices were developed utilizing previously published data.  A stereotypical life 
cycle model was created and is depicted in Figure 2.  After parameterization of the population 
projection matrix, the sensitivities, elasticities, dominant eigenvalue, population growth rate, and 
cohort specific reproductive values and stage distributions were calculated (Table 1) using the 
Excel add-in PopTools, developed by Greg Hood at CSIRO in Australia 
(http://www.cse.csiro.au/poptools).   As described above in the section on matrix models, the 
sensitivity of the rate of population increase to a demographic parameter is defined as the 
incremental change in population growth due to an incremental change in the parameter (Link 
and Doherty 2002, Caswell 2001).  The sensitivity is proportional to the product of the 
reproductive value of a given stage and the abundance of the next stage in the stable age 
distribution (Caswell 1978, 1996a).  Thus, reproductive value combines the two essential life 
history parameters fecundity and survivorship into a single value that takes into account an 
individual’s proportionate contribution to the future population (Goodman 1982).  Sensitivities 
also give the direction and intensity of selection on the life history characteristics of the organism 
(van Groenendael et al. 1988).  The elasticity of a matrix parameter is the log proportional 
change in the population growth rate following a log proportional change in that parameter (Link 
and Doherty 2002, Caswell 2001, van Tienderen 2000, Benton and Grant 1999).  The elasticity 
values sum to one (1.0) and thus can be used to compare the relative impact of stage-specific 
survival, growth, and fecundity on population growth (de Kroon et al. 2000). 

The first species to be modeled was the killer whale, using data from (Brault and Caswell 
1993).  The model constructed here was identical to that of Brault and Caswell (1993) and the 
calculations were conducted as a check to verify that the results presented here were identical to 
those of Brault and Caswell (1993).  A long-lived species, killer whale females may approach 
ninety years of age, while males commonly live between fifty and sixty years.  Sexual maturity 
occurs in both sexes approximately ten to eighteen years after birth (Brault and Caswell 1993).  
As a strongly K-selected species, the interbirth interval for killer whale females is usually in the 
range of four to six years, providing calves with ample parental care and attention.  While female 
killer whales become reproductively senescent between the ages of thirty-five and forty-five, 
these animals may still provide an indirect benefit to population growth by serving as general 
caretakers for a pod’s calves. 
 Killer whale population dynamics were examined using a stage-classified model, which 
depicts killer whale population structure much more easily than does an age-based model, as 
most killer whale populations do not contain enough individuals to accurately estimate model 
parameters.  Males were excluded from the analysis, as they do not provide reproductive or 
parental benefits to population growth.  Four stage classes were included in this analysis: 
yearlings (first-year animals), juveniles (immature individuals over one year of age), mature 
females, and senescent females.  To define maturity, a female must have been viewed with a calf.  
Similarly, if a female has not been seen with a calf in over ten years, senescence is assumed to 
have begun at the start of the ten-year period (Brault and Caswell 1993). 
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Table 1.  Parameterization and results of population projection matrices. 
TRANSITION MATRIX VALUES 

TRANSITION KILLER 
WHALE 

BOTTLE-
NOSE 

DOLPHIN

SPERM 
WHALE

STELLER 
SEA 

LION 

HUMP-
BACK 

WHJALE 

RIGHT 
WHALE

1 0.975 0.870 0.980 0.782 0.875 0.920 
2 0.074 0.603 0.075 0.612 0.885 0.080 
3 0.045 0.416 0.099 0.787 0.783 0.190 
4 0.911 0.397 0.900 0.341 0.217 0.860 
5 0.953 0.585 0.901 0.243 0.015 0.800 
6 0.980 0.999 0.119 0.350 0.999 0.001 
7 0.004 0.148 0.060 0.219 0.179 0.00 
8 0.113 0.083 0.060 0.315 0.192 0.335 

DOMINANT 
EIGENVALUE 1.025 1.067 1.110 0.890 1.129 0.999 

GROWTH RATE 0.025 0.064 0.104 -0.117 0.121 -2.16E-5
RESULTS OF SENSITIVITY ANALYSIS 

1 0.044 0.072 0.097 0.222 0.118 0.031 
2 0.567 0.104 1.262 0.285 0.116 0.294 
3 0.000 0.117 0.087 0.154 0.114 0.671 
4 0.361 0.094 0.451 0.318 0.113 0.201 
5 0.579 0.131 0.455 0.270 0.102 0.637 
6 0.000 0.717 0.009 0.216 0.694 .0133 
7 0.361 0.096 0.144 0.264 0.076 0.000 
8 0.369 0.587 0.014 0.370 0.465 0.084 

RESULTS OF ELASTICITY ANALYSIS 
1 0.042 0.059 0.119 0.196 0.091 0.028 
2 0.041 0.059 0.119 0.196 0.091 0.022 
3 0.000 0.046 0.002 0.131 0.079 0.127 
4 0.336 0.035 0.316 0.122 0.022 0.173 
5 0.538 0.072 0.324 0.074 0.010 0.510 
6 0.000 0.671 2.34E-5 0.085 0.615 1.33E-7 
7 0.002 0.013 0.118 0.065 0.012 0.00 
8 0.041 0.045 0.002 0.131 0.079 0.282 

REPRODUCTIVE VALUE OF ALL LIFE STAGES 
1 27.6 20.8 16.9 26.7 19.6 19.3 
2 29.0 25.5 19.2 30.4 25.2 21.0 
3 43.4 28.3 53.6 37.3 26.0 29.1 
4 0.00 25.4 10.3 15.6 29.2 30.6 

STABLE AGE DISTRIBUTION OF ALL LIFE STAGES 
1 3.7 7.2 13.3 17.7 12.7 3.9 
2 31.6 9.4 62.1 25.2 12.2 25.7 
3 32.3 11.7 22.4 23.8 10.6 58.7 
4 32.4 71.7 2.20 33.4 64.6 11.7 
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 The dominant eigenvalue of the killer whale population projection matrix represents the 
population growth rate, here equivalent to 1.025 (Table 1).  This value is identical to that 
calculated by Brault and Caswell (1993).  A dominant eigenvalue greater than 1 indicates that 
this population is growing.  The log of the dominant eigenvalue represents r, the intrinsic rate of 
increase for the killer whale population, 0.025 in Table 1, again identical to that calculated by 
Brault and Caswell (1993).  For the killer whale, the probability that a female remains in Stage 3 
(breeding adult) had the highest sensitivity (0.579), followed by the probability that a female 
moves from Stage 2 to Stage 3 (i.e. matures from the juvenile stage to the adult stage; 0.567) 
suggesting that these vital rates are most subject to natural selection.  The probability that a 
female remains in Stage 3 had the highest elasticity (0.538), suggesting that this vital rate 
contributes most to the rate of population growth, and that a 1% change in this vital rate would 
increase population growth by 0.54%.  The probability that an animal remains in stage 2 
(juvenile in this case) had the second highest elasticity (0.336) suggesting that a 1% change in 
this vital rate would increase population growth by 0.34%.  The right eigenvector of the 
population projection matrix illustrates the stable stage structure of the killer whale population, 
while the left eigenvector demonstrates reproductive values of the group (Table 1). 
 A model was then constructed for the bottlenose dolphin using data from Stolen and 
Barlow (2003).  Four stage classes were derived by collapsing data from their life table, with 
Stage 1 being calves, Stage 2 being juvenile females (1-9 years of age), Stage 3 being young 
breeding females (10-20 years of age), and Stage 4 being older breeding females (> 20 years of 
age).  Mortality of the younger age groups was relatively high and then decreased until around 
age 15.  Fecundity rates peaked during the second decade of life and declined with age after that. 
 The dominant eigenvalue of the bottlenose dolphin population projection matrix was 
1.067 yielding a population growth rate of 6.4% per year (Table 1), close to that of 4.6% per year 
estimated by Stolen and Barlow (2003).  For the bottlenose dolphin, the survivorship of older 
females had the highest sensitivity (0.717) and elasticity (0.671), suggesting both that this vital 
rate is most subject to natural selection in this population, and that a 1% increase in this 
parameter would result in a 6.7% increase in population growth rate.  This stage was also 
predominant in the stable age distribution (71.7%).  All stages had similar reproductive values. 
 The model used to examine the population dynamics of sperm whales was similar to that 
used for the killer whale, i.e. yearlings, juveniles, mature females, and senescent females (see 
above).  The population projection matrix was parameterized using data from Tiedemann and 
Milinkovitch (1999) and Evans and Hindell (2004).  The dominant eigenvalue of the sperm 
whale population projection matrix was 1.110 yielding a population growth rate of 10.4% per 
year (Table 1).  The probability that a juvenile female grew into an adult female had the highest 
sensitivity (1.262), with the probabilities that juvenile and adult females survive within their 
stage had the next highest sensitivities (0.451 and 0.455 respectively) suggesting that all of these 
vital rates are subject to natural selection.  However, the probabilities that juvenile and adult 
females survive within their stage had the highest elasticities (0.316 and 0.324 respectively), 
suggesting that a 1% increase in either of these vital rates would cause a 3.2% increase in 
population growth.  Adult reproductive females had the highest reproductive value (53.6), but 
juvenile females were most abundant in the stable age distribution (62.1%). 
 For the Steller sea lion, data were taken from York (1994).  A four stage model (pups, 
juveniles, young breeding females, and old breeding females was parameterized by collapsing 
her life table.  The dominant eigenvalue of the population projection matrix was 0.890, 
suggesting that the population was declining at about 11.7% per year.  This is more than double 



 33

the rate of  5% calculated by York (1994) and this difference may be due to errors caused by data 
combining in the present model. The fecundity of mature breeding females had the highest 
sensitivity (0.370), followed by juvenile survival within that stage (0.318), and then by the 
survival and fecundity of young breeding females (0.270 and 0.264 respectively) and the survival 
of mature breeding females (0.216), suggesting that many vital rates are under selection pressure 
in this population, as suggested by the fact that has declined by about 90% in the last three 
decades.  Survival and growth of pups and juveniles had the same elasticity value (0.196), which 
was greater than the elasticity of any other of the vital rates, suggesting that survival of the 
younger stage classes is important to population recovery, in that a 1%  increase in either of these 
vital rates would increase population growth by about 2%.  Juveniles and young breeding 
females had about the same reproductive value (30.4 and 37.3 respectively) and together 
contributed more than 50% to the stable age distribution (Table 1). 

The model used to examine the population dynamics of humpback whales was similar in 
structure, but not in age category, to that used for the bottlenose dolphin, i.e. Stage 1 being 
calves, Stage 2 being juvenile females (1.5-3.5 years of age), Stage 3 being young breeding 
females (4.5-9.5 years of age), and Stage 4 being older breeding females (10.5-34.5 years of 
age).  Data were taken from a life table in Barlow and Clapham (1997) and condensed as before.  
The dominant eigenvalue of the humpback population projection matrix calculated here was 1.13 
(Table 1), close to that of 1.065 calculated by Barlow and Clapham (1977).  The population 
growth rate was 12.1% per year in the current analysis, as compared to 6.3% for Barlow and 
Clapham (1977).  As above, this difference in population growth rate can likely be attributed to 
combining ages into discrete life stages (this model) as opposed to the strictly age-based model 
of Barlow and Clapham (1997).  The survival of older breeding females had the highest 
sensitivity (0.694) and elasticity (0.615), suggesting both that this vital rate is subject to the 
greatest selection pressure, and that a 1% increase in this vital rate will increase population 
growth rate by about 6.2%.  Older breeding females had the largest reproductive value (29.2), 
followed closely by young breeding females (26.0) and juvenile females (25.2), although older 
females comprised almost 2/3 of the stable age distribution (Table 1). 
 The life cycle model used to simulate the population dynamics of North Atlantic right 
whales was considerably different from the models used above.  Stage 1 was calves, Stage 2 was 
juveniles, Stage 3 was reproductively capable females, and Stage 4 was females with calves.  
This model is similar to that used by Fujiwara and Caswell (2001), except that they included 
another stage representing death.  Additionally, there were no fecundity terms in the top row of 
the population projection matrix as fecundity was represented by flows from Stages 2 and 3 to 
Stage 4.  The dominant eigenvalue of the population projection matrix was 0.999 (Table 1), 
similar to the value of 1.01 determined by Fujiwara and Caswell (2001).  The intrinsic rate of 
increase of the population was found to be -0.0000216 (Table 1), compared to 0.00995 as 
determined by Fujiwara and Caswell (2001) and within their confidence interval.  The fecundity 
and survival of mature females had the highest sensitivity values (0.671 and 0.637 respectively), 
suggesting that these vital rates are under the highest degree of natural selection, and the 
fecundity of mature females had the highest elasticity (0.282) suggesting that a 1% increase in 
this vital rate would increase population growth by about 0.3%.  These results are consistent with 
those of Fujiwara and Caswell (2001) who suggest that increased mortality of adult females can 
explain the declining population size, and that preventing the death of only two adult females per 
year could increase the population growth rate to replacement (sustainable) levels.  A recent 
increase in mortality rate has increased concern for the survival of this species in the western 
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North Atlantic and led to pleas for immediate changes in management of this species focusing on 
reducing human-caused mortality (Kraus et al. 2005).  
 To summarize these results, in four of the six species (killer whale, bottlenose dolphin, 
sperm whale, and right whale) adult female survival had the highest elasticity.  This suggests that 
this vital rate is most important in governing population growth or decline, and that this 
relationship is a linear one, such that a given increase or decrease in adult female survival will 
cause a corresponding increase or decrease in adult female survival.  Thus, any environmental or 
anthropogenic impact on this vital rate will likely have a large impact on population growth in 
these species. 
 However, another perspective is that other vital rates, such as survival of younger, non-
reproductive age classes and/or female fecundity are less important in deterring overall 
population increase and decline, and thus these vital rates are more resilient to change.  
Therefore, any increase in anthropogenic noise in the marine environment that reduces adult 
female survival, for whatever reason, is to be avoided, whereas anthropogenic noise that impacts 
other vital rates might be better tolerated by these species. 
 In the case of the sperm whale, reproductive female survival had the highest elasticity, 
and using the same logic as above one could conclude that any impact from anthropogenic noise 
on this vital rate in this species is to be avoided if possible.  In contrast, for the Steller sea lion, 
the vital rate with the highest elasticity was the survival of juvenile and young females. 
 With respect to reproductive value, the picture is somewhat different.  Adult reproductive 
females had the highest reproductive value in killer whales, sperm whales, humpback whales, 
and right whales.  It is of interests that the vital rate with the highest elasticity for sperm whales 
was juvenile female survival while the stage class with the highest reproductive value is adult 
females, but this suggests the value of conducting both analyses.  Additionally, for the bottlenose 
dolphin, there was very little difference in reproductive value between the four different life 
stages modeled here.  For the Steller sea lion, the life stage with the highest reproductive value 
was again juvenile and adult females, consistent with the elasticity analysis and consistent with 
the generally accepted cause for the severe decline in Steller sea lion populations in western 
Alaska over the past three decades, a decrease in juvenile survival (York 1994). 
 Van Groenendael et al. (1994) presented a novel way to analyze life histories, based on 
the use of elasticities as derived from the limit properties of the population projection matrix.  
This process is known as “loop analysis” and depends upon recognizing that a vital rate is a part 
of a life history pathway that form loops within the life cycle graph (Figure 2).  They 
demonstrated that one can calculate the elasticities of such loops from the elasticities derived 
from the population projection matrix in an unequivocal way, and they suggest that this 
procedure presents a meaningful decomposition of total elasticity in population projection 
matrices and provides a powerful tool to evaluate the importance of alternative life history 
options in demographic studies (van Groenendael et al. 1994).  Although originally developed as 
a comparative tool, loop analysis elucidates the contributions of alternative life history pathways 
to population growth rate (Benton and Grant 1999). 
 A loop analysis was conducted for the six species modeled above, and the results were 
consistent with the previous analysis.  In four of the six species (killer whale, bottlenose dolphin, 
humpback whale, and right whale) the small loop involving reproductive female survival had the 
highest elasticity (0.539, 0.671, 0.615, and 0.510 respectively), again suggesting that survival of 
this life stage is most important to maintaining population growth.  For the sperm whale, the loop 
including young female survival, fecundity, and calf production and maturation had the highest 
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LOOP KILLER 
WHALE

BOTTLE 
NOSE 

DOLPHIN

SPERM 
WHALE

STELLER 
SEA 

LION 

HUMP-
BACK 

WHALE

RIGHT 
WHALE 

Survival of older female 0.000 0.671 2.34E-5 0.085 0.615 1.33E-7 
Survival of younger female 0.539 0.072 0.324 0.074 0.010 0.510 
Survival of juvenile female 0.336 0.035 0.316 0.122 0.022 0.173 
Calf Æ Juvenile Æ Calf  0.003      
Calf ÆJuvenile Æ Young FemaleÆCalf 0.122 0.040 0.353 0.195 0.036 0.056 
Calf Æ Juvenile Æ Young Female Æ Old Female Æ Calf  0.182 0.007 0.524 0.317 0.113 
Females with calf Æ Mature females Æ Females with calf      0.210 
 
 

Table 2.  Loop analysis of the life cycle graphs for the six species modeled here.  For the killer whale, bottlenose dolphin, sperm 
whale, and right whale the small loop involving adult female survival had the highest elasticity, suggesting that survival of this life 

stage is most important to maintaining population growth.  For the sperm whale, the loop including young female survival, fecundity, 
and calf production /maturation had the highest elasticity suggesting the importance of young reproductive females to the maintenance 

of sperm whale populations.  Similarly, for the Steller sea lion, the loop including mature female survival, reproduction, and  pup 
growth/maturation had the highest elasticity, reinforcing the important of both juvenile survival and adult female survival.
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Elasticity (0.353) suggesting the importance of young reproductive females to the maintenance 
of sperm whale populations.  Similarly, for the Steller sea lion, the loop including mature female 
survival, reproduction, and  pup growth and maturation had the highest elasticity (0.524), 
reinforcing the important of both juvenile survival and adult female survival. 
 
5.  Importance of ecological energetics and foraging strategies. 
 
 Optimal foraging theory attempts to predict the behavior of animals while they are 
foraging based on a number of assumptions (Pyke et al. 1977, Pyke 1984): 1) an individual’s 
contribution to the next generation (i.e. its “fitness”) depends upon its foraging behavior; 2) there 
is a heritable component of foraging behavior; 3) the relationship between foraging behavior and 
fitness is known; 4) there are no genetic constraints on the evolution of foraging behavior; 5) 
there are “functional” constraints (e. g. morphology and physical properties of the animal) on the 
evolution of foraging behavior, and 6) foraging behavior evolves more rapidly than the rate at 
which environmental conditions change so that the evolution and adaptation of foraging behavior 
evolve to maximize the animal’s fitness. 
 Foraging provides energy for growth, survival, and reproduction.  Mammalian 
reproduction is energetically expensive and constraints that may limit a female’s ability to 
allocate energy to reproduction possibly have strong impacts on the evolution of foraging 
strategies and reproductive patterns (Crocker et al. 2001, Bowen et al. 2006).  Capital breeders 
are species that store energy as body reserves that are used later for reproduction (Houston et al. 
2007).  Consequently, current and future reproduction are linked through body reserves and thus 
variation in foraging efficiency and previous energy acquisition are directly measurable as body 
reserves at the onset of reproduction (Crocker et al. 2001).  In phocid seals and mysticete whales, 
the temporal and spatial separation of foraging and parturition impose energetic constraints that 
are likely to influence both the duration and magnitude of reproductive effort.  In these groups, 
females tend to be relatively large, with mothers fasting throughout the nursing period and 
relying entirely on stored capital (energy) to provision their pups (Houston et al. 2007). 
 Life history theory predicts that reproductive effort will increase with age if residual 
reproductive value  declines with age, especially in species with low mortality of breeding-age 
individuals, low rates of population growth, and indeterminate individual growth (e.g. phocid 
seals and mysticete whales) (Charlesworth 1980).  Crocker et al. (2001) found that the mass of 
mother northern elephant seals was the most important determinant of the energetic component 
of their reproductive effort.  Their analysis revealed strong impacts of maternal mass and body 
composition on energy expenditure and milk energy delivered.  The size and blubber reserves 
obtained by the female during foraging migrations determined the level of reproductive 
expenditure in the subsequent breeding episode.  In addition, older females were able to devote a 
larger proportion of their energy expenditure to milk production (Crocker et al. 2001).  Thus, 
environmental changes that reduce female foraging success may directly impact subsequent 
reproductive expenditure in these K-selected marine predators, and similar impacts on the 
reproduction of large mysticete whales that share the same reproductive strategies could be 
expected. 
 Bowen et al. (2006) conducted GAM and GLM models to test hypotheses concerning 
age-related changes in reproductive success using a long-term data set for a growing population 
of grey seals.  They found that the body mass of females giving birth for the first time increased 
with age (from 4 to 7 years), as did the mass of their weaned pups.  The proportion of females 
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giving birth varied with maternal age, increasing with age in younger females and decreasing 
later in life.  Bowen et al. (2006) interpreted their results as supporting the constraining 
hypothesis for the improvement in breeding performance with age (i.e. that as females age they 
acquire or improve skills and physiological functions that positively affect reproduction) and that 
their findings were not consistent with either the selection hypothesis (i.e. that as females age 
lower quality phenotypes are lost from the cohort resulting in improvement) or the restraint 
hypothesis (i.e. younger females forgo or reduce reproductive effort as trade-off for reduced 
mortality) as a basis for the improvement in breeding performance with age. 
 Houston et al. (2007) presented a theoretical model of mammalian female reproductive 
strategies that allowed for different rates of energetic gain depending on whether or not the 
female is caring for offspring.  Differences in energetic gain may arise because offspring may 
reduce the female’s foraging efficiency or increases her energetic demands, or because the area 
where a female may nurture offspring may have low food availability.  The model focused on 
maximizing the rate of offspring production (quantity) and the quality of the offspring produced 
(Houston et al. 2007).  They found that capital breeding is favored in species with; 1) low 
neonatal mass or long fixed terms of gestation; 2) offspring with high metabolic rates; 3) 
constrained female foraging while caring for offspring; and 4) low costs are incurred by carrying 
stored capital.  All of these assumptions apply to both phocid seals and mysticete whales. 
 In another study, multiple logistic regression analysis was used to examine the 
relationships and interactions between a suite of life history state variables (e.g. age, length, and 
mass) and the occurrence of pregnancy in pinnipeds.  In capital breeders the state variables 
explained 55% of the variation in the occurrence of pregnancy with mass being the dominant 
state variable (Boyd 2000).  This study supported the conclusion that the occurrence of 
pregnancy (fecundity) in capital breeders is highly sensitive to body reserves, and that any factor 
that impedes the ability of a capital breeding female to acquire sufficient body reserves while 
foraging will have significant impacts on her fecundity and reproductive success.  This study 
also suggests that body condition, and not age, is a factor in determining how reproductive 
investment decisions are made by capital breeding female marine mammals (Boyd 2000). 
 Croll et al. (2001) examined the impact of loud low-frequency anthropogenic noise on the 
foraging of whales in the genus Balaenoptera.  Although they found no direct impacts on whale 
foraging from such sounds, with whale encounter rates and diving behavior being more strongly 
linked to changes in prey abundance associated with oceanographic parameters, whale vocal 
behavior was significantly different when noise was present in some cases.  However, should 
noise in the marine environment influence the distribution of the prey of these species, then the 
noise could potentially influence their distribution.  In some species, vocal behavior is an 
important part of reproduction, and thus any changes in vocal behavior due to noise might impact 
reproductive behavior and thus fecundity. 
 Costa et al. (2003) found that northern elephant seals changed their diving behavior 
slightly in response to the acoustic thermometry of the ocean climate (ATOC) sound source.  The 
changes in dive parameters varied between animals (n = 29) with the only consistent change 
being a correlation between the sound pressure level on the seal and the diving descent rate.  
Costa et al. (2003) conclude that the biological significance of these subtle changes was likely 
minimal.    
 Piatt and Methven (1992) found evidence of threshold foraging behavior in baleen whales 
that must forage on high density prey aggregations to meet the metabolic demands associated 
with their large size.  Strong temporal and spatial correlations between whale and prey 
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abundance have often been observed and threshold foraging behavior is typical of higher 
vertebrates, especially those that feed on highly aggregated prey.  Threshold foraging is a 
behavioral phenomenon with important ecological consequences because the rate at which 
predator populations change in response to fluctuations in prey abundance is intimately linked to 
foraging behavior.  Predation thresholds provide stability in predator-prey systems in the absence 
of other stabilizing mechanisms (Piatt and Methven 1992) and foraging on different densities of 
shared prey also promotes the coexistence of species that share food resources, such as baleen 
whales.  Because of the fundamental importance of foraging to marine community dynamics, it 
is important to learn more about the predation behavior of marine vertebrates (Austen et al. 
2006)`, especially because anthropogenic impacts have so drastically altered the populations of a 
multitude of higher marine vertebrates (Piatt and Methven 1992). 
 In many species of marine mammals, juvenile survival is low compared to adults and 
foraging difficulties are often identified as a potential cause of increased mortality (Zeno et al. 
2008).  For air breathing marine mammals, this early period in development of foraging ability is 
particularly important where physiological limitations and large spatial scales are associated with 
diving and navigating.  

 
F. Critique 
 
1. Key Assumptions and parameters in population models. 
 
 The various sensitivity analysis methods discussed and utilized above are analytical tools 
intended primarily to determine which vital rate most affects the rate of population growth, with 
the implication that management activities directed at the most sensitive or elastic parameter will 
be the most effective way to increase population growth rate (Fefferman and Reed 2006).  
However, it is prudent to avoid simple interpretations of the so-called most sensitive or most 
elastic parameter when making management decisions.  De Kroon et al. (2000) summarize some 
of the concerns, including: 1) the assumption that matrix values remain stable over time, 2) not 
all vital rates can be altered to the same extent by management, and 3) vital rates change with 
population size and growth rate.  Thus, the details of how sensitivity and elasticity and life-stage 
simulation analysis should be interpreted with respect to manipulating population growth rate are 
not readily transparent (Grant and Benton 2000, Fefferman and Reed 2006).  One potential 
source of confusion is that some analyses determine the sensitivity or elasticity of population 
growth rate to alteration of the matrix elements (as was done above) rather than to the vital rates 
themselves.  Because the top row of the population projection matrix is a composite of vital 
rates, it is not clear how they can be manipulated if one of them was to be determined to be the 
most sensitive.  One way out of this dilemma is to calculate the sensitivity of population growth 
rate to vital rates, rather than matrix elements, using partial derivatives (Mills et al. 1999). 
 Another potential limitation to current sensitivity and elasticity analyses is that by 
focusing on maximizing population growth rate the solutions are only valid for populations with 
stable age distributions.  Although the dominant eigenvalue can be determined for any 
population projection matrix, when the age distribution is not stable, it no longer represents the 
growth rate of the population (Fefferman and Reed 2006).  If the dominant eigenvalue (or r) is a 
good surrogate for fitness, and small changes in a vital rate, such as survival, cause large changes 
in population growth, we would expect natural selection to act most strongly on that particular 
trait.  Thus, we expect proportional sensitivities to measure selection pressure on particular traits 
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(van Groenendael et al. 1988, Benton and Grant 1999, Doherty et al. 2004).  Pfister (1998) found 
that the vital rates to which population growth was most sensitive were also those that were the 
least variable.  This result was supported by Gaillard et al. (1998, 2000) who suggested that vital 
rates to which population growth was less sensitive were subject to greater variability and more 
affected by density dependent factors or environmental stochasticity (see above).   
 However, these results rest upon three methodological deficiencies: 1) elasticities may 
not be appropriately scaled, especially in the case where parameters (such as survival) are 
bounded by 0 and 1 (Link and Doherty 2002). This problem arises because the means and 
variances of the vital rates are not independent and log-scaling, as in the calculation of elasticity, 
does not eliminate the dependence (Link and Doherty 2002);  2) estimates of matrix parameters, 
such as survival, often do not account for the probability of detection, leading to biased 
estimates.  Similarly age at maturation has been suggested to be an important vital rate (Heppell 
et al. 2000b), however estimates of age-specific breeding probability corrected for survival and 
detection probability are lacking; and 3) the temporal variation in vital rates and their elasticities 
is negatively correlated, i.e. the vital rates to which population growth are most sensitive are least 
variable temporally (Pfister 1998, Heppell et al. 2000b, Sæther and Bakke 2000).  Additionally, 
the distinction between biological process variation (the process of interest) and sample variation 
(due to the estimation process) is often overlooked (Doherty et al. 2004).  It is also the case that 
sensitivities and elasticities make linear approximations of the usually non-linear relationship 
between the matrix elements and population growth (Carslake et al. 2008).  To overcome this 
difficulty, Caswell (1996c) and Carslake (2008) recommend the use of use of the second 
derivatives of the elasticities to evaluate the relative importance of different vital rates to 
population growth. 
 In a study designed to overcome the limitations discussed above, Doherty et al. (2004) 
constructed population projection matrices for the red-tailed tropicbird (Phaethon rubricauda), 
and example of an extremely K-selected seabird.  They scaled their sensitivity analysis by 
variance for parameters bounded by 0 and 1, and found that population growth rate was most 
sensitive to adult survival, followed closely by prebreeding survival, and much less sensitive to 
reproductive success and age-specific breeding probabilities.  These results supported previous 
work by Pfister (1998) and Heppell et al. (2000b).  Doherty et al. (2004) found equivocal support 
for the prediction that population growth rate is most sensitive to vital rates with small temporal 
variances, and suggested that previous work supporting this prediction results from high survival 
estimates near the upper boundary of 1 and thus should not be interpreted as a consequence of 
canalization by natural selection (Gaillard and Yoccoz 2003).  Doherty et al. (2004) also did not 
find support the prediction that effects of environmental stochasticity (e.g. an ENSO event) 
would be detected in vital rates to which population growth was least sensitive (Gaillard et al. 
1998, 2000). 
 Additionally, matrix sensitivity analyses only reveal long-term solutions to increasing 
population growth rate.  It would be valuable, in contrast, to have an analytical method that 
identifies which matrix element or vital rate should be increased in order to achieve an increase 
in population growth rate in the near term.  One reason for this is because funding, social, or 
personnel constraints often limit the duration of management actions and activities.  Another 
scenario where this might be valuable is in the management of species with small populations 
that are vulnerable to demographic or environmental stochasticity (Fefferman and Reed 2006).  
An example of this is the European shag (Phalacrocorax aristotelis) whose population on the 
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Isle of May, Scotland, has demonstrated unusually high variation in size due to large-scale 
mortality events linked to winter gales (Frederiksen et al. 2008). 
 Fefferman and Reed (2006) present a new approach, vital rate sensitivity analysis, 
designed to identify the vital rate on which management activities would have the greatest 
impact on population growth rate.  Their approach is effective for both stable and non-stable age 
distributions, and allows for the differentiation of short-term and long-term population 
management activities.  Wisdom et al. (2000) developed life-stage simulation analysis, a 
simulation method useful for analyzing the potential effects of vital rates on population growth 
that employs characteristics of both prospective and retrospective forms of matrix perturbation 
analysis. 
 
2.  Relevance to Risk Assessment 
 
 The work here is relevant to risk assessments designed to protect populations of marine 
mammals.  Population modeling can obviously be used to identify life stages and vital rates that 
are more sensitive and have higher elasticity for different species.  Clearly, mitigation of 
significant risks to survival of individual animals, particularly reproductive adults, would be a 
high priority, and survival of juveniles can have high elasticities for certain species.  Specific 
recommendations to reduce risk include avoiding any increase in anthropogenic noise in the 
marine environment that reduces adult female survival, for whatever reason. 
 Population modeling may not be able to reduce risk in the near term because it may be 
impossible to detect the impact of a change in a population vital rate on population growth due to 
the uncertainties inherent in the estimates, because such a change may be less than the 
confidence interval around the estimates of the rate of growth of most marine mammal 
populations.  Additionally, sensitivity and elasticity analyses of marine mammal population 
models predict linear changes in marine mammal population growth rates caused by linear 
changes in vital rates, and thus do not indicate thresholds within which vital rates can change 
without altering population growth rates. 
  Since population modeling can help identify the most sensitive vital rates, it also lends 
itself to identify which transfer functions in the PCAD framework may be highest priority to 
develop or design mitigation measures to manage risk with a qualitative understanding.  For 
example, mitigation measures focused on the feeding of reproductive females may be more 
important than measures targeting the feeding of males.  
 
3.  Proposed research to test assumptions and parameters. 
 
 Marine mammals have many important roles in aquatic ecosystems (Bowen 1997).  They 
are the major consumers of production at most trophic levels, ranging from primary production 
all the way to top predators.  Because of their large size and abundance, they are thought to have 
a major influence on the structure of marine ecosystems.  Marine mammals rank second to fish 
in the total consumption of biomass in many systems, and some species of cetaceans may 
consume a greater quantity of prey than all human fisheries combined (Bowen 1997).  Marine 
mammals contribute to nutrient recycling by virtue of consuming biomass in one region and 
defecating in another.  Even after death, whales fall to the ocean floor and thus contribute 
nutrients to benthic communities.  Some marine mammals even modify the benthos with their 
feeding activities. 
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 Marine mammals also have top-down effects on the populations of their prey and upon 
the primary producers upon which their prey depend.  Marine mammals may also be the 
repositories of nutrients in their ecosystems by sequestering them, thus buffering short-term 
fluctuations in resource availability (Bowen 1997).  All of these processes and impacts of marine 
mammals are poorly characterized and more research is needed to elucidate these and other 
ecological roles of marine mammals.  Specifically, stable isotope studies of both cetaceans and 
their prey have the potential to address these issues (Kelly 2000, Pauly et al. 1998, Walker and 
Macko 1999). 
 With respect to the growth or decline of marine mammal populations, and the impacts of 
anthropogenic noise, this literature review and modeling effort has identified several key vital 
rates that deserve more investigation and focus.  The first, and most important, is the survival of 
adult females and the factors influencing it, such as the relation of foraging ability and efficiency 
to survival.  Second is the fecundity of adult females.  Third is juvenile survival, except for 
special cases such as the Steller sea lion, where it is likely most important.  It is imperative to 
note that most population projection models are based on females only, and males only become 
important as sources of sperm to maintain fecundity.  However, there may be times, such as with 
small, highly endangered, species and populations, where males may become limited, causing a 
reduction in fecundity. 
 Clearly more focus is needed on activities that increase the quality of population and vital 
rate estimates, increasing their precision and decreasing their uncertainty.  It is still the case that 
there is more that we do not know than there is what we know, and this lack of information limits 
both the ability to properly manage marine mammal populations and the ability to predict the 
impacts of anthropogenic activities of all types.  With respect to modeling, more attention is 
needed on life table response experiments (Caswell 1989, 1996a), which are a retrospective 
examination of the relationship between a random change in a vital rate parameter and the 
resultant population growth rate using existing life table data (Caswell 1996b, 2000). 
 Although the PBR mechanism has proven to be a successful model to account for the 
cumulative effects of lethal takes and serious injuries in commercial fisheries, it does not protect 
marine mammals from all sources of human-related mortality (NRC 2005).  PBR should be 
improved to reflect total mortality losses and other cumulative impacts on marine mammals 
more accurately, including injury and behavioral disturbances such as noise (NRC 2005).  One 
way to do this would be to incorporate weighting factors for severity of injury or significance of 
behavioral response (NRC 2005). 
 The growing appreciation that marine mammals are sentinels to ecosystem health (Moore 
2008, Moore and Huntington 2008, Bossart 2006, 2007) argue for more study of the effects of 
climate change, stochastic environmental effects, and anthropogenic impacts.  While some of 
these can have direct impacts on marine mammal mortality, they all increase the stress 
experienced by marine mammals, and there is a woeful lack of information about the impact of 
stress on marine mammals (Fair and Becker 2000).  It is likely that the most important impact of 
low level anthropogenic noise on marine mammals will be in the form of increased stress, and 
information is needed to elucidate the relationship between an increase in stress and the vital 
rates governing marine mammal population stability and growth.  Additional research is also 
needed to enhance our understanding of stress on marine mammals in order to provide a 
scientific basis for management decision-making.  Approaches to this issue include: 1) a diverse 
research and monitoring program to assess exposure to relevant anthropogenic contaminants and 
to clarify the nature and extent of their health effects; 2) diagnostic studies to discern the 
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magnitude, frequency, and distribution of exposure and effects; and 3) synoptic and strategic 
sampling and analyses of contaminants of concern, in situ biomonitoring, and laboratory and 
semi-field investigations to confirm causative agents and their affects (Fair and Becker 2000). 
 
4.  Usefulness of OSPL and PBR approaches. 
 
 In the United States, the Marine Mammal Protection Act (MMPA) of 1972 established 
goals for the management of all marine mammal populations.  The MMPA was the first law 
enacted that attempted to provide statutory protection to almost all marine mammals.  In concert 
with the Endangered Species Act (ESA) of 1973, the goals for marine mammal management in 
the U.S. included: 1) to maintain populations at an optimal sustainable population level (OSPL), 
2) to restore depleted populations to OSPL, and 3) to achieve a zero mortality rate, and 4) To 
minimize the interference of fishery activities by marine mammals. 
 By way of definitions, OSPL can be loosely related to the ecological concept of carrying 
capacity.  Simply put, this is the level of a given population that the ecosystem can support 
indefinitely.  Depleted populations are those whose levels will continue to decline indefinitely 
unless action is taken (MMPA) or those which are classified as threatened or endangered (ESA).  
One of the deficiencies of the original MMPA was that it left undefined the threshold level at 
which management would be triggered to attempt to restore the population to OSPL.  The zero 
mortality rate goal attempts to protect marine mammal populations from unnecessary harvest or 
incidental takes, and can be visualized as an anti-waste clause.   
 For a decade and a half after passage of the MMPA in 1972, the National Marine 
Fisheries Service attempted to define OSPLs for all marine mammals found in U.S. jurisdictions.  
Unfortunately, this was not an easy task, and in most cases the confidence intervals around the 
estimates were so large as to render any management plan based upon them totally speculative 
(Taylor, et. al. 2000).  In recognition of this difficulty, the 1988 reauthorization of MMPA 
established maximal sustainable yield (MSY) as the management goal, both for fisheries and for 
marine mammals.  This is based on the idea, discussed above, that if populations are managed to 
maximize r, the “surplus” production can be harvested.  As one might expect, there were 
problems with this approach almost immediately.  This problems arise from a number of 
important factors, the primary one being that the entire concept of MSY derives from a simple 
model of population growth, which often does not resemble reality.  Theoretically, the MSY 
curve approaches a symmetrical parabola (see above).  In reality, there are species with MSY 
curves skewed to one side or the other, or species with MSY curves that are flat on top, 
indicating that for a large range of population sizes there is little change in yield.  There are 
additional theoretical problems, such as the fact that MSY varies as K varies, which it does for 
most species, and if one cannot even estimate K, how can one estimate MSY?  For some of the 
great whales, managers cannot even estimate the total number of individuals of a given species.  
Another factor important here is the CPUE.  If a population is at MSY, increasing effort will not 
increase yield.  However, for populations below MSY, increasing the effort may increase yield, 
at least in the short term.  In the long term, however, this increased effort reaches a limit set by 
the scarcity of the particular species, at which time the economics of the increased effort become 
unsustainable. 
 The best known failure of population management of marine mammals was the 
commercial exploitation of large whales, which drove many species and populations to the brink 
of extinction (Ralls and Taylor 2000).  Although many of these populations are now recovering, 
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because of a moratorium on commercial whaling implemented by the International Whaling 
Commission (IWC) and passage of the MMPA in the United States, other slow-growing, 
commercially valuable species remain in danger of extinction.  The failure of traditional 
management has been due, in many cases, by the necessity of proving that a deleterious effect 
will occur, or is occurring, before a decision is made to take protective action (Thompson et al. 
2000, Ralls and Taylor 2000).    Management failed in the past not because the models driving 
management decisions did not adequately represent population dynamics, but rather because it 
was widely accepted that proof was required that populations were in a certain state, e.g. 
“depleted” under MMPA, before actions could be taken (Thompson et al. 2000).   Wade (1998) 
points out that because of the time required to detect a trend, a management scheme based on 
detecting a significant decline in abundance would not initiate any management action until a 
previously unexploited population became depleted.  He also suggests that this problem becomes 
even more acute for small populations because the precision of abundance estimates declines as 
abundance decreases and thus it is conceivable that a small declining population could become 
extinct before it could be found to be in significant decline (Wade 1998).  At the international 
level, part of the blame for the spectacular overexploitation of the great whales can be placed on 
scientists being unable to agree on the parameters used in simple models to drive management 
decisions, i.e. there was no way to treat uncertainty (Ralls and Taylor 2000). 
 The MMPA as initially enacted had the objectives of maintaining populations above their 
OSPL and as functioning elements of their ecosystems.  OSPL was defined by NMFS as a 
population with an abundance above the minimum net population level (MNPL).  MNPL was 
defined as the population size that would yield the greatest net annual increment in population 
numbers due to reproduction minus losses due to natural mortality.  MNPL follows from the 
density-dependent population growth equation (logistical growth equation), where MNPL is 
equal to one-half the carrying capacity (K).  A key point is that MNPL forms the lower boundary 
of the OSPL range (Gerrodette and DeMaster 1990).  In practice, therefore, the process of 
establishing whether a marine mammal population is “optimum” usually involved determining 
whether or not it was above its MNPL.  However, it may be possible to determine OSPL without 
an estimate of MNPL. 
 The most direct method to determining OSPL status is to estimate MNPL for the entire 
population in question and compare this number to the current estimated population size 
(Gerrodette and DeMaster 1990).  This approach depends upon the availability of reliable 
estimates of present population size, carrying capacity, and MNPL as a fraction of the carrying 
capacity.  One immediate problem is that the sizes of most marine mammal populations are not 
reliably known.  Another is that most marine mammal populations are currently not at carrying 
capacity, and in fact human activities have likely reduced the carrying capacity of many marine 
mammal species from their pre-harvest or pre-habitat alteration status.  To overcome these 
limitations, it has been recognized that it may be possible to estimate OSPL without determining 
MNPL or even the present population size.  This essence of this approach is to find a parameter 
related to population size that can indicate whether or not a population is above or below MNPL 
without actually measuring MNPL (Gerrodette and DeMaster 1990).  Such an OSPL measure 
might be based on several criteria, including behavioral attributes such as 
antagonistic/displacement behaviors and dietary shifts, individual responses such as 
physiological/pathological status, reproductive characteristics such as age of first reproduction 
and adult female reproductive rates, and population aspects such as age structure and age-
structured survival rates, that change in predicable ways with population size (Eberhardt and 
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Siniff 1977).  All of these can be considered condition indices that reveal the condition of a 
population relative to its resources (Gerrodette and DeMaster 1990). 
 Between 1972 and 1993, NMFS attempted to determine MNPL for 21 stocks, or 8% of 
all identified stocks (153).  Attempts to directly estimate MNPL were made for only two species, 
the spinner dolphin (Stenella longirostris) and the northern fur seal (Callorhinus ursinus) (Taylor 
et al. 2000).  Wade (1998) suggested that a better management scheme would use data that can 
be dependably gathered to initiate management action before populations become depleted.  He 
said that fortuitously it is easier to detect the circumstances that will lead to a decline in 
abundance than to detect the actual decline itself, and recommended that any management 
scheme be based on calculating a mortality limit (Wade 1998).  Such a mortality limit became 
the basis for the 1994 amendments to the MMPA (see below).  

Attempts to quantify MNPL led to the conclusion that scientists can estimate three things 
fairly well: abundance, its associated precision, and mortality.  Because many species of great 
whales are recovering from overexploitation, there are also numerous estimates of population 
growth rates that are probably close to maximal.  The 1994 reauthorization of MMPA attempted 
to circumvent these problems by simplifying things and asking, “what do we know?” about a 
given species (Wade and Angliss 1997).  Best estimates of population grown rates (r) are about 
4% per year for cetaceans and about 12% per year for pinnipeds under optimum conditions.  If 
one can estimate the total number of animals, then one can estimate the annual production and 
hypothetically allocate it between viability or restoration or take.  This led to concept of potential 
biological removal (PBR).  PBR is the level of take that will allow a population to increase or 
recover from previous harvest.  PBR is estimated as the 95% confidence estimation of the 
population size (N) multiplied by an estimate of one-half of r (if known or estimated) and then 
multiplied by a status coefficient, or recovery factor, that ranges from 1.0 for a healthy, 
nondepleted population, to 0.1 for an endangered species (Taylor, et. al. 2000).  The status 
coefficient allows for the uncertainties in the estimates of the other two parameters, and is also 
known as the tuning parameter, obviously a more palatable term than “fudge factor”.  One 
benefit of this approach is that the tuning parameter can also incorporate fishery interactions in a 
semi-quantitative fashion.  Using the minimum population estimate allows for the incorporation 
of uncertainty, or poorer precision, in the estimate, and the result of incorporating estimates of 
precision into PBR is that the expected population equilibrium level increases as the CV of the 
abundance estimate increases (i.e. the precision decreases).  This is necessary to ensure meeting 
management goals based upon less precise data (Taylor et al. 2000). 
 Based on simulation studies of the equation for PBR, it was determined that the 
uncertainty of the estimates of r and N can affect the results of the calculation of PBR.  For 
example, if the coefficient of variation of the estimate (CV) is between 0.8 and 1.0, PBR is 
unpredictable, but when the CV is between 0.2 and 0.3, then 95% of the time populations will 
grow and reach equilibrium at greater than 50% of OSPL (Taylor, et. al. 2000).  Thus, the focus 
of the 1994 reauthorization was to minimize the uncertainty of the estimates of r and N, so that 
populations can be managed to achieve OSPL in 20-100 years.  Managers were directed to invest 
in activities that increase the quality of the estimates, increase their precision and decrease their 
uncertainty (Wade and Angliss 1997). 
 It is important to incorporate scientific information into the decision-making process, but 
it is also necessary to decide what risks to accept when designing such a process.  This often 
involves specifying personal or societal values, which has traditionally been the domain of 
policymakers, but many are reluctant to explicitly express their values.  Many scientists are 
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equally reluctant to express their values, but the reluctance on the part of policymakers 
sometimes provides conservation biologists the opportunity to put in place processes and criteria 
that reflect their values, e.g. decisions should be based on sound science, and it is better to err on 
the side of overprotection (risking unnecessary economic losses) rather than underprotection 
(risking the extinction of a species) (Ralls and Taylor 2000). 
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I. APPENDICES 
 

LIST OF ABBREVIATIONS 
 

AIC Akaike Information Criterion 
BIC Bayesian Information Criterion 
CJS Cormack-Jolly-Seber 
CPUE Catch Per Unit Effort 
CV Coefficient of Variation 
E&P Exploration and Production Industry 
ESA Endangered Species Act 
GAM Generalized Additive Models 
GLM Generalized Linear Models 
IBM Individual Based Models 
JIP Joint Industry Programme 
JS Jolly-Seber 
K Carrying Capacity 
MCMC Markov Chain Monte Carlo 
MMPA Marine Mammal Protection Act 
MNPL Minimum Net Population Level 
MSY Maximum Sustainable Yield 
N Population Size 
NMFS National Marine Fisheries Service 
NRC National Research Council 
OGP Association of Oil and Gas Producers 
OSPL Optimum Sustainable Population Level 
PBR Potential Biological Removal 
PCAD Population Consequences of Acoustic Disturbance 
PVA Population Viability Analysis 
r Intrinsic Rate of Population Increase 
RFP Request for Proposals 
SC Schwarz Criterion 

 
TYPES OF MODELS 

 
Bayesian Models 
 
 Bayesian models are based on methods in probability and statistics developed by 
Reverend Thomas Bayes (ca. 1702–1761).  In contrast to traditional statistical tests, Bayesian 
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methods involve determining the probability of one event based on the probability of a prior 
event.  In probability theory, Bayes' theorem (often called Bayes' law) relates the conditional and 
marginal probabilities of two events.   It is often used to compute posterior probabilities given 
observations.  Traditional, or frequentist, statistics and Bayesian interpretations disagree about 
the ways in which probabilities should be assigned in statistical and modeling applications.  
Frequentists assign probabilities to events according to their frequencies of occurrence while 
Bayesians describe probabilities in terms of beliefs and degrees of uncertainty. Bayesian 
inference is statistical inference in which evidence or observations are used to update or to newly 
infer the probability that a hypothesis may be true. 
 The “prior probability” is a marginal probability, interpreted as a description of what is 
known about a variable in the absence of some evidence.  The “posterior probability” of an event 
is the conditional probability that is assigned after the relevant evidence is taken into account.  
The posterior probability distribution of one variable given the value of another can be calculated 
with Bayes' theorem by multiplying the prior probability distribution by the likelihood function, 
and then dividing by a normalizing constant. 
 
Capture-Mark-Recapture (CMR) 
 
 Capture, mark and recapture is a method commonly used in ecology to estimate 
population size and population vital rates (e.g. survival, movement, and growth).  This method is 
used when a researcher cannot detect all individuals within a population of interest every time 
the researcher visits the study area.  Other names for this method include capture-recapture, 
mark-recapture, sight-resight, mark-release-recapture and band recovery.  The Lincoln-Petersen 
method is used to estimate population size from only two visits to the study area.  This method 
assumes that the study population is closed, i.e. the two visits to the study area are close enough 
in time so that no individuals die, are born, move into the study area (immigrate) or move out of 
the study area (emigrate) between visits.  The model also assumes that no marks fall off animals 
between visits to the field site, and that all marks are correctly recorded. 
 
Given these conditions, estimated population size is: 
 

 
 Where: 
 

 N  = Estimate of total population size  
 M = Total number of animals captured and marked on the first visit  
 C  = Total number of animals captured on the second visit  
 R  = Number of marked animals captured on the second visit.  

 
Exponential Growth 
 
 Exponential, or geometric, growth occurs when the growth rate of a population is 
proportional to the population’s current size.  Such growth follows an exponential law and the 
simple-exponential growth model is known as the Malthusian growth model.  For any 
exponentially growing population, the larger it gets, the faster it grows.  Let x be a population 
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growing exponentially with respect to time t. The rate of change dx/dt obeys the differential 
equation: 
 

 
 

  where log b = k � 0 is the rate of growth.  
 

 Formally multiply by , and integrate to obtain: 
 

 
 Carrying out the integrations: 

 
 

 
 Therefore, when a population is growing exponentially, its logarithm is growing linearly. 
 
The solution to this equation is the exponential function: 
 

 
 
 hence the name exponential growth. 
 
Generalized Additive Models (GAM) 
 
 Generalized additive models (or GAM) are a class of statistical models that blend 
properties of generalized linear models with additive models.  The model specifies a distribution 
(such as a normal distribution, or a binomial distribution) and a link function g relating the 
expected value of the distribution to the predictors, and attempts to fit functions fi(xi) to satisfy: 
 

 
 

 The functions fi(xi) may be fit using parametric or non-parametric methods, thus 
providing the potential for better fits to data than do other methods.  Hence GAMs are very 
general, but by allowing nonparametric fits, well designed GAMs allow good model fits to the 
data with relaxed assumptions about the actual relationship, perhaps at the expense of 
interpretability of results. 
 Overfitting can also be a problem with GAMs. The number of smoothing parameters can 
be specified, and this number should be reasonably small, certainly well under the degrees of 
freedom offered by the data. Cross-validation should be used to detect and/or reduce overfitting 
problems with GAMs (or other statistical methods). Other models such as GLMs may be 
preferable to GAMs unless GAMs improve predictive ability substantially for the application in 
question. 
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Generalized Linear Models (GLMs) 
 
 Generalized linear models (GLMs) are derived from a flexible generalization of ordinary 
least squares regression.  They relate the random distribution of the measured variable of the 
experiment (the distribution function) to the systematic (non-random) portion of the experiment 
(the linear predictor) through a function called the link function.  Generalized linear models were 
formulated as a way of unifying various other statistical models, including linear regression, 
logistic regression and Poisson regression, under one framework.  This allowed the development 
of a general algorithm for maximum likelihood estimation in all of these other models.    
 
Logistical Growth 
 
 The logistic population growth function or logistic curve has a sigmoid shape.  It models 
the S-curve of growth of a population.  The initial stage of growth is approximately exponential 
but as the population grows, some factor starts to limit population growth in a density dependent 
fashion, so that through time the population growth slows, and at carrying capacity, population 
growth stops.  
 Letting P represent population size (N is often used in ecology instead) and t represent 
time, this model is formalized by the differential equation: 
 

 
 

where the constant r defines the growth rate and K is the carrying capacity.  Multiplying the 
terms on the right of the equation shown above, during the early  stages of population growth the 
rate is primarily determined by the first term, rP.   The constant r is equivalent to the constant k 
in the exponential growth rate equations.   Later, as the population grows, the second term, which 
multiplied out is  rP2/K, becomes larger than the first as some members of the population start to 
compete with each other for some critical resource, such as food or living space.  The 
competition diminishes the population growth rate, until the value of P becomes equal to K, the 
carrying capacity. 
 
Lotka-Volterra Models 
 
 Lotka–Volterra models, also known as the predator-prey equations, are a pair of first 
order, non-linear, differential equations frequently used to describe the dynamics of biological 
systems in which two species interact, one a predator and one its prey. They were proposed 
independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926. 
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where 
y is the number of some predator (for example, wolves) 
x is the number of its prey (for example, rabbits) 
dy/dt and dx/dt represents the growth of the two populations against time 
t represents the time 
Į, ȕ, Ȗ and į are parameters representing the interaction of the two species 
 

 The prey are assumed to have an unlimited food supply, and to reproduce exponentially 
unless subject to predation,  This exponential growth is represented in the first equation above by 
the term Įx obtained by multiplying out the equation.  The rate of predation upon the prey is 
assumed to be proportional to the rate at which the predators and the prey meet, represented by 
ȕxy as obtained by multiplication.  If either x or y is zero then there can be no predation.  The 
first equation above can be interpreted as the change in the prey's numbers determined by its own 
growth minus the rate at which it is preyed upon.  The second equation above can be interpreted 
as the growth of the predator population minus natural death. 
 
Markov Chain Models 
 
 In mathematics, a Markov chain, named after Andrey Markov, is a stochastic process 
with the Markov property. Having the Markov property means that, given the present state, 
future states are independent of the past states.  In other words, the description of the present 
state fully captures all the information that could influence the future evolution of the process. 
Future states will be reached through a probabilistic process instead of a deterministic one.  At 
each step the system may change its state from the current state to another state, or remain in the 
same state, according to a certain probability distribution. The changes of state are called 
transitions, and the probabilities associated with various state-changes are called transition 
probabilities. 
 
Markov Chain Monte Carlo Models 
 
 Markov chain Monte Carlo (MCMC) methods (which include random walk Monte Carlo 
methods), are a class of algorithms for sampling from probability distributions based on 
constructing a Markov chain that has the desired distribution as its equilibrium distribution. The 
state of the chain after a large number of steps is then used as a sample from the desired 
distribution. The quality of the sample improves as a function of the number of steps. 
 
Matrix Models 
 
 Matrix Models are discrete and age-structured models of population growth very popular 
in population ecology.   They were invented by and named after P. H. Leslie.  The Leslie Model 
is one of the best known ways to describe the growth of populations (and their projected age 
distribution), in which a population is closed to migration and where only one sex, usually the 
female, is considered. 
 The Leslie Matrix is used in ecology to model the changes in a population of organisms 
over a period of time. In a Leslie Model, the population is divided into groups based either on 
age classes or life stages. At each time step the population is represented by a vector with an 
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element for each age class where each element indicates the number of individuals currently in 
that class.  The Leslie Matrix itself is a square matrix with the same number of rows and columns 
as the population vector has elements.  Each row or column represents an age class, and each cell 
in the matrix indicates how many individuals survive from the age class represented by the 
column of that cell to the age class represented by the row of that cell at the next time step.  At 
each time step, the population vector is multiplied by the Leslie Matrix to generate the 
population vector for the following time step. 
 To build a matrix, some information must be known from the population: 

 
nx, the number of individual (n) of each age class x  
sx, the fraction of individuals that survives from age class x to age class x+1,  
fx, fecundity, the per capita average number of female offspring reaching n1  
     born from mother of the age class x  

 

 
 

 Using matrix notation, this can be written as: 
 

 
 

 or: 
 

 
 

 Where  is the population vector at time t and  is the Leslie matrix. 
 
Multinomial Models 
 
 Although multinomial models look complicated, they are really pretty simple.  They refer 
to situations in which there can be multiple causes for a single event and allow the estimation of 
the independent contribution of each of those causes. 
 
Stochastic Models 
 
 A stochastic process is one whose behavior is non-deterministic in that the current state 
of a population does not fully determine the future state of the population.  A stochastic, or 
random, process is the counterpart to a deterministic process.  Instead of dealing with only one 
possible way the population might grow under time, for example using a system of ordinary 
differential equations, in a stochastic process there is some indeterminacy in the future growth of 
the population as described by a probability distribution. This means that even if the initial state 
of the population is known, there are many possible end states for the population, with some 
being more probable than others 
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