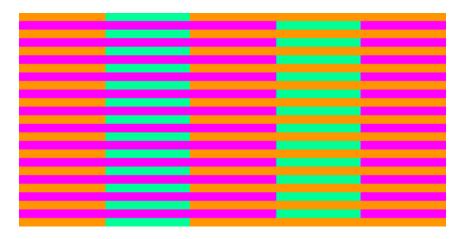
Flexible Gating of Contextual Influences in Natural Vision

Odelia Schwartz University of Miami Oct 2015

• Perceptual illusions: "no man is an island.."

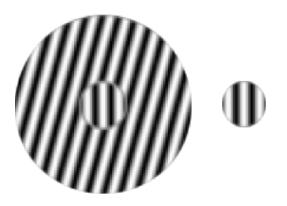


Review paper on context: Schwartz, Hsu, Dayan, Nature Reviews Neuroscience 2007

• Perceptual illusions: "no man is an island.."

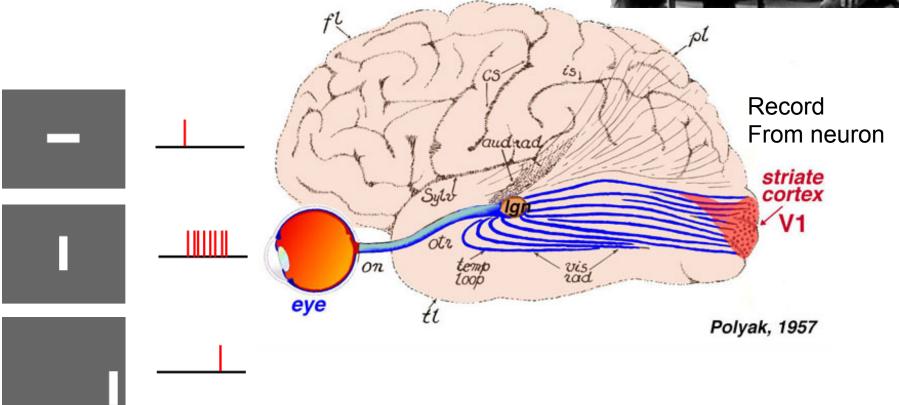
Review paper on context: Schwartz, Hsu, Dayan, Nature Reviews Neuroscience 2007

Perceptual illusions



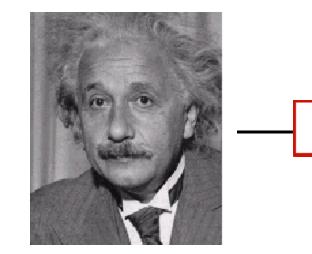
What about neurons?

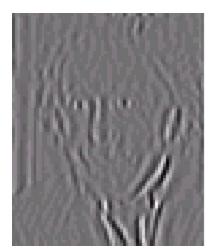
Cortical neural processing



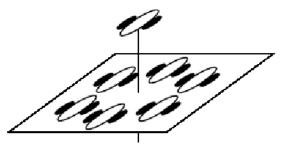
What about neurons?

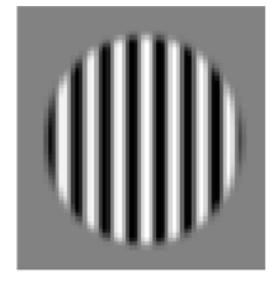
• Computer science / Engineering: visual receptive field or filter





Cortical visual neurons (V1)





??

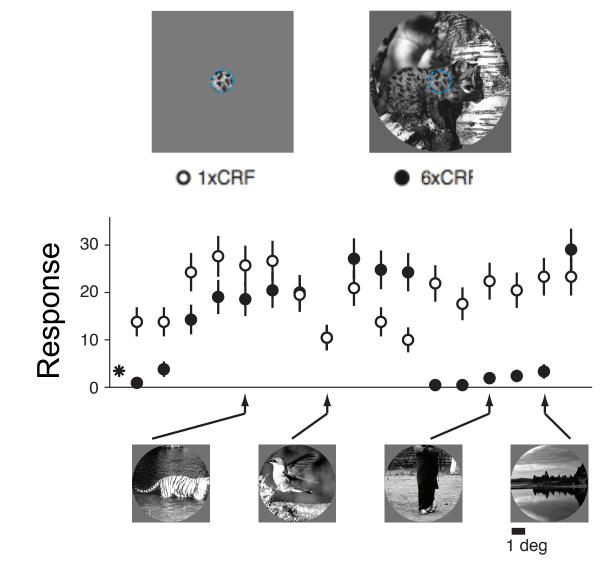
Motivation

- Spatial context plays critical role in object *grouping* and recognition, and in *segmentation*. It is key to everyday behavior; deficits have been implicated in neurological and developmental disorders and aging
- Range of existing experimental data on spatial context (neural; perceptual). Lacking principled explanation
- Poor understanding for how we (and our cortical neurons) process complex, natural images

Outline

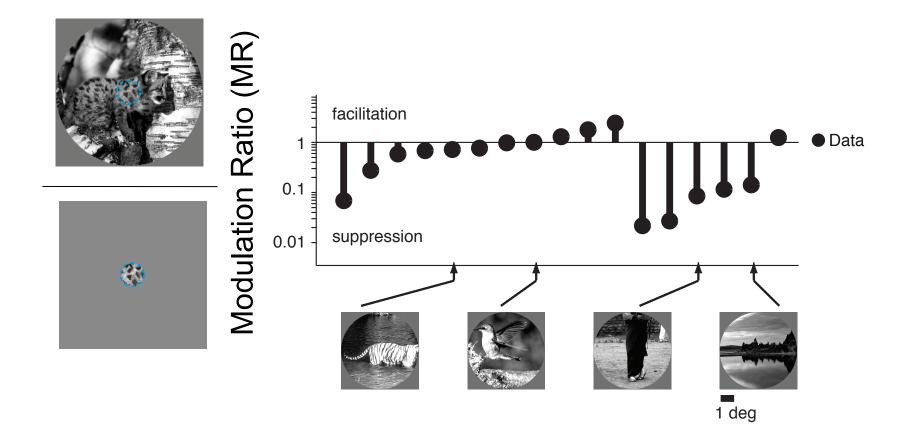
- Experimental data on cortical responses to natural images
- Computational neural model that captures contextual regularities in natural images
- Interplay of modeling with biological neural and psychology data (focus on natural images data)

Spatial context and natural scenes



Data: Adam Kohn lab (Coen-Cagli, Kohn, Schwartz, 2015; in press)

Spatial context and natural scenes

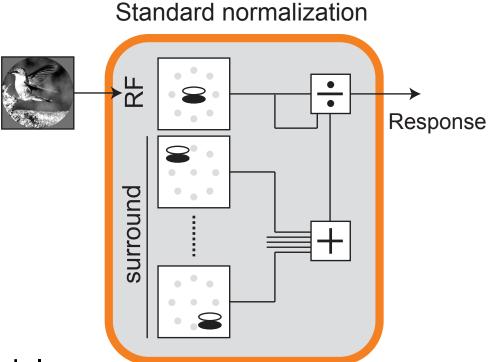


Data: Adam Kohn lab (Coen-Cagli, Kohn, Schwartz, 2015; in press)

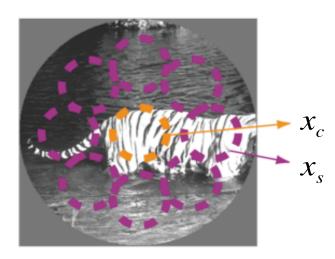
Spatial context and natural scenes

Can we capture data with canonical divisive normalization? (descriptive model)

Divisive normalization



- Descriptive model
- Canonical computation (Carandini, Heeger, Nature Reviews Neuro, 2012)
- Has been applied to visual cortex, as well as other systems and modalities, multimodal processing, value encoding, etc

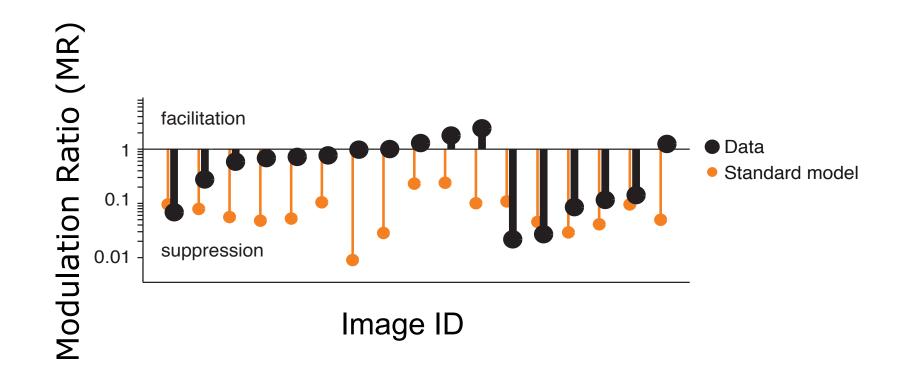


Canonical divisive normalization:

$$R_c \prec \frac{x_c}{\sqrt{x_c^2 + x_s^2}}$$

V1 Data: Kohn lab

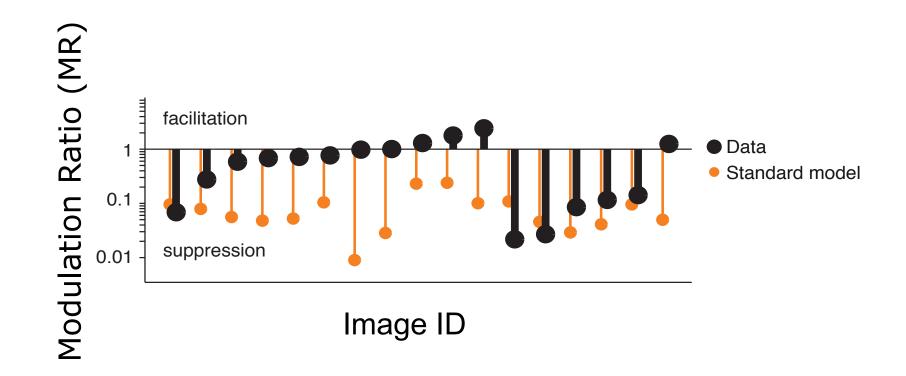
Cortical responses to natural images



- We fit the standard normalization model to neural data
- Poor prediction quality

Data: Adam Kohn lab Coen-Cagli, Kohn, Schwartz, 2015 (in press)

Cortical responses to natural images



• Can we explain as strategy to encode natural images optimally based on expected contextual regularities?

Data: Adam Kohn lab Coen-Cagli, Kohn, Schwartz, 2015 (in press)

Outline

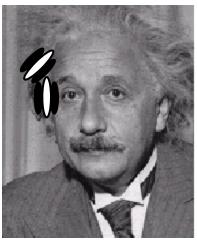
- Experimental data on cortical responses to natural images (standard descriptive model can't explain)
- Computational neural model that captures contextual regularities in natural images
- A Interplay of modeling with biological neural and psychology data (focus on natural images data)

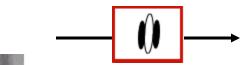
Two overarching computational principles

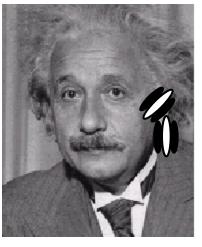
 Sensory processing as inference of properties of the input (can be formalized via probabilistic Bayesian inference)

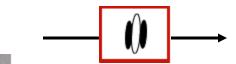
 Sensory systems aim to form an *efficient code* by reducing redundancies of the input (Barlow; also Attneave); influenced by information theory in the 1950s

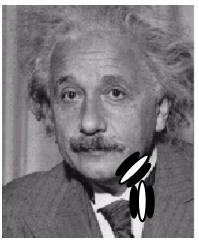


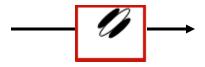


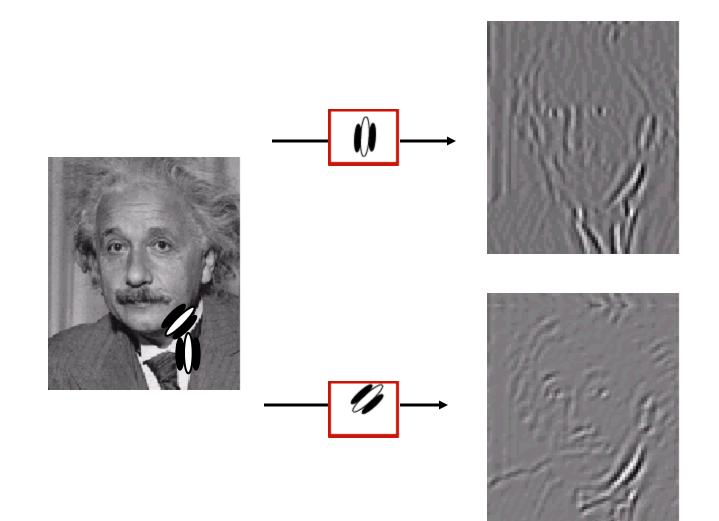


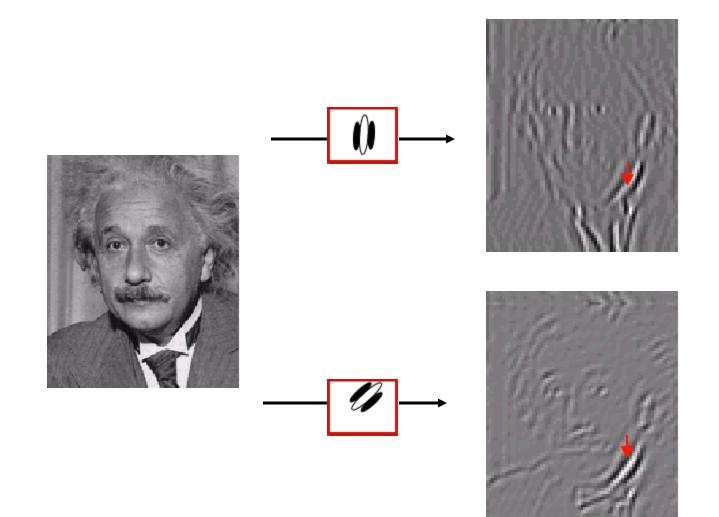


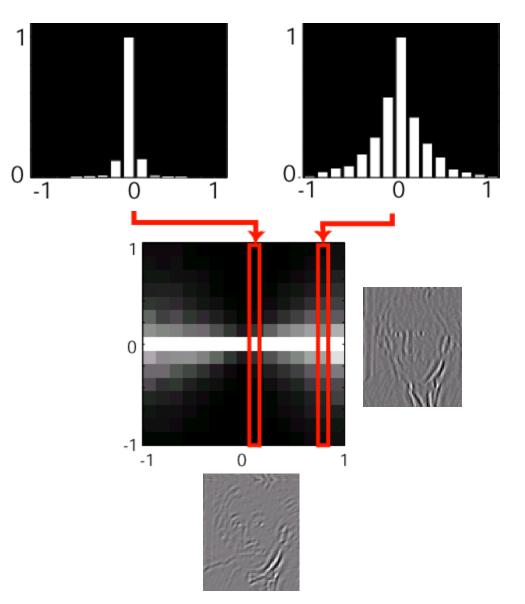






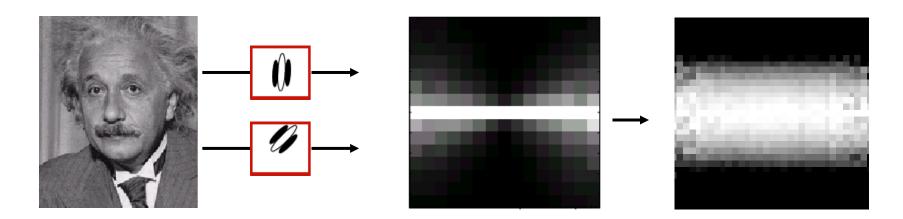






Schwartz, Simoncelli, Nature Neuroscience 2001

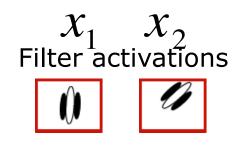
Generative model framework

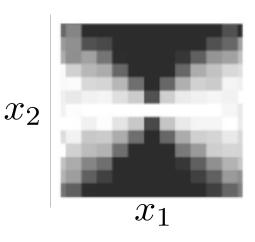


• Hypothesize that cortical neurons aim to reduce statistical dependencies (so as to highlight what is salient)

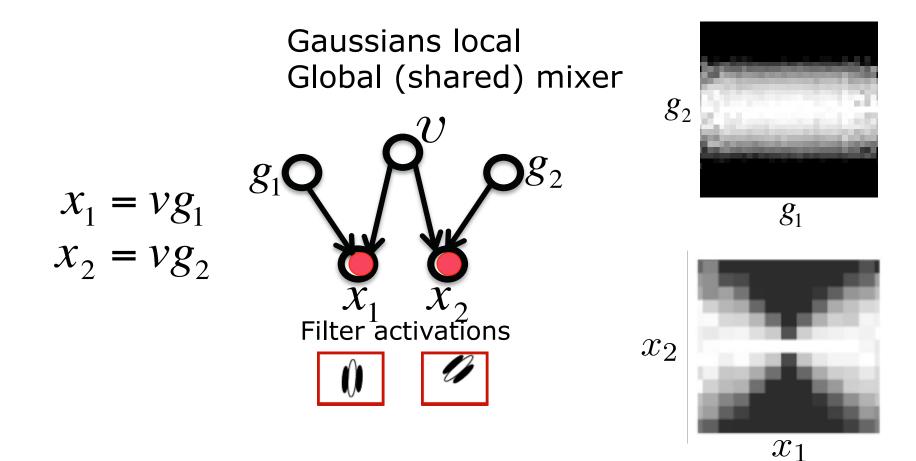
Schwartz, Simoncelli 2001 (for salience: Zhaoping Li, 2002)

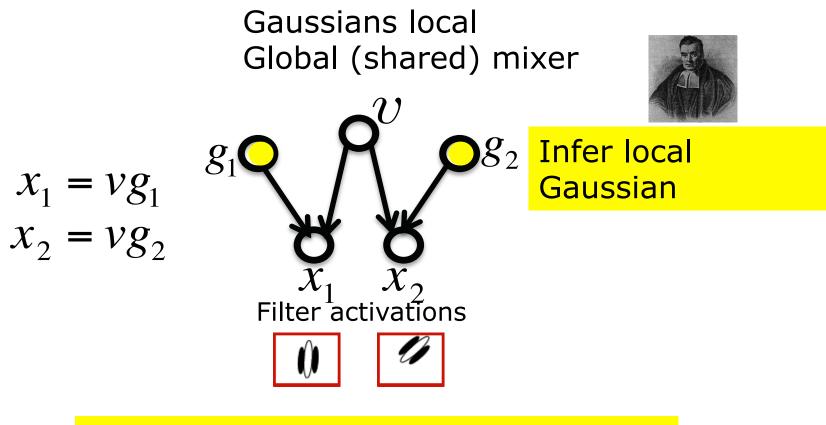
- Formally, we build a generative model of the dependencies and invert the model (Bayesian inference) richer representation! Andrews, Mallows, 1974; Wainwright, Simoncelli, 2000; Schwartz, Sejnowski, Dayan 2006
- Generating the dependencies is a multiplicative process and to undo the dependencies we divide



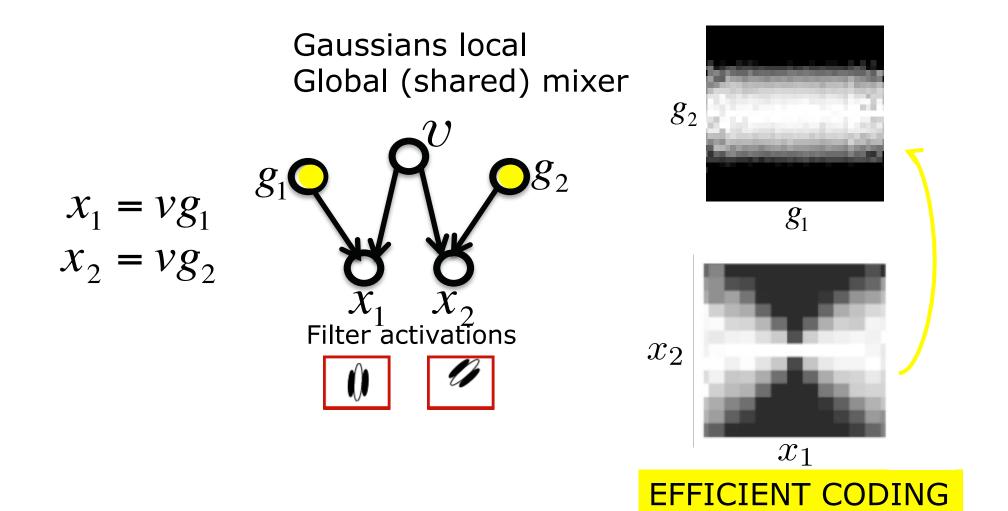


Andrews & Mallows, 1974; Wainwright & Simoncelli, 2000

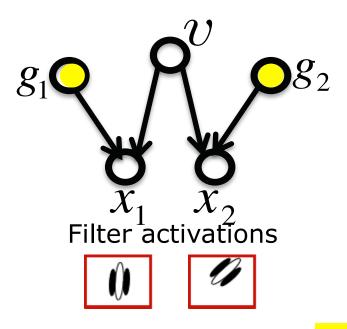




 $E(g_1 | x_1, x_2) =$ Model neuron activity



Gaussians local Global (shared) mixer



Computed via Bayes rule

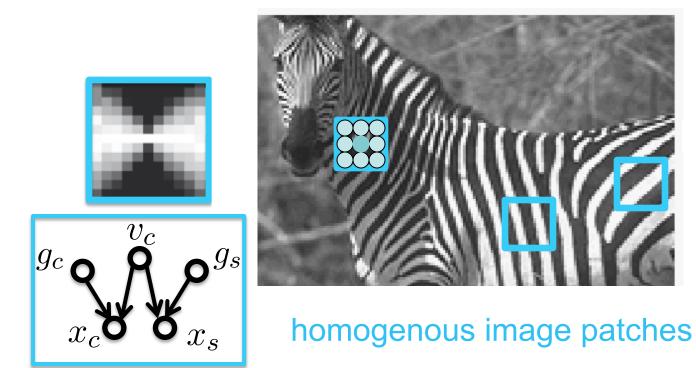
$$E(g_1 | x_1, x_2) \prec \frac{x_1}{\sqrt{l}}$$

$$l = \sqrt{x_1^2 + x_2^2}$$

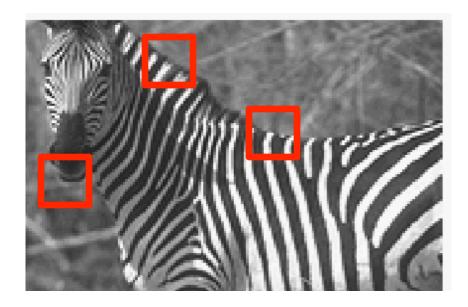
DIVISIVE NORMALIZATION

Divisive Normalization Canonical Model

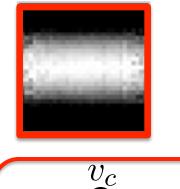
Divisive normalization *descriptive* models have been applied in many neural systems. Here we provide a *principled explanation*. We will next show that it also leads to a richer model based on image statistics and makes predictions



Center and surround dependent

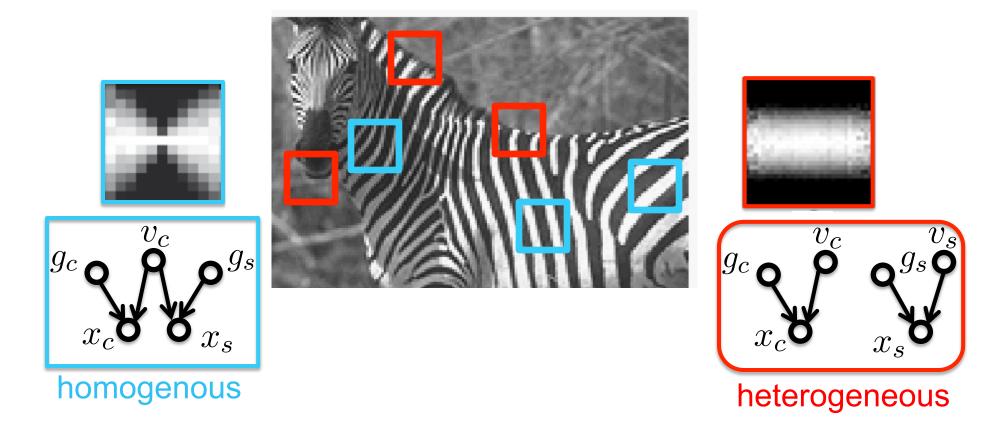


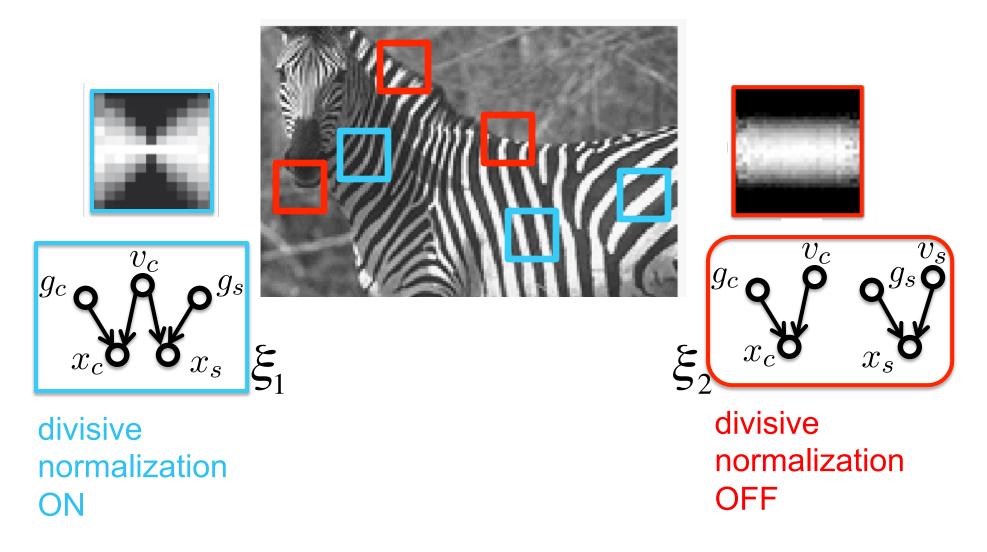
non-homogenous image patches



 g_c

 x_c x_s Center and surround independent





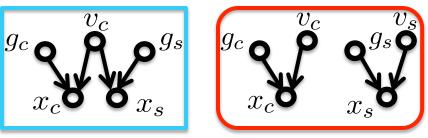
 $E[g_{c} | x_{c}, x_{s}] = p(\xi_{1} | x_{c}, x_{s}) E[g_{c} | x_{c}, x_{s}, \xi_{1}] + p(\xi_{2} | x_{c}, x_{s}) E[g_{c} | x_{c}, \xi_{2}]$

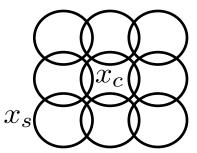
Non-homogeneity of images

 $E[g_{c} | x_{c}, x_{s}] = p(\xi_{1} | x_{c}, x_{s})E[g_{c} | x_{c}, x_{s}, \xi_{1}] + p(\xi_{2} | x_{c}, x_{s})E[g_{c} | x_{c}, \xi_{2}]$ $p(\xi_{1} | x) \prec p(\xi_{1})p(x | \xi_{1}) = p(\xi_{1})\int dv_{c}p(v_{c})p(x | v_{c}, \xi_{1});$ $p(\xi_{2} | x) \prec p(\xi_{2})p(x | \xi_{2}) = p(\xi_{2})\int dv_{c}p(v_{c})p(x_{c} | v_{c}, \xi_{2})\int dv_{s}p(v_{s})p(x_{s} | v_{c}, \xi_{2})$

Schwartz, Sejnowski, Dayan, 2009; Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012

Model: Optimizing Image Ensemble





- 3x3 spatial positions, 6px separation
- 4 orientations in the center
- 4 orientations in the surround
- 2 phases (quadrature)
- model parameters (prior probability for ξ_1, ξ_2 and also linear covariance matrices) optimized to maximize the likelihood of a database of natural images using Expectation Maximization

Coen-Cagli, Dayan, Schwartz, PLoS Comp Biology 2012; Schwartz, Sejnowski, Dayan, 2006

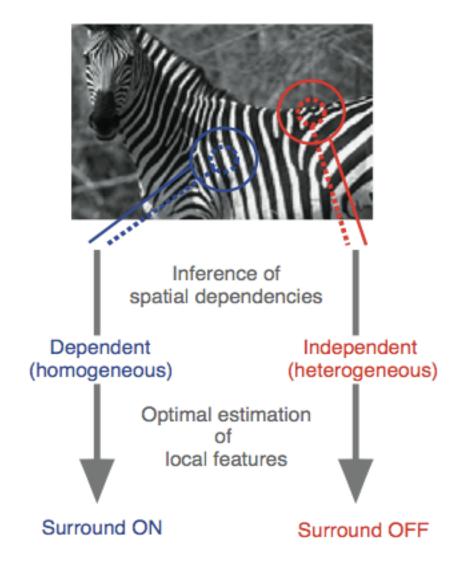
Outline

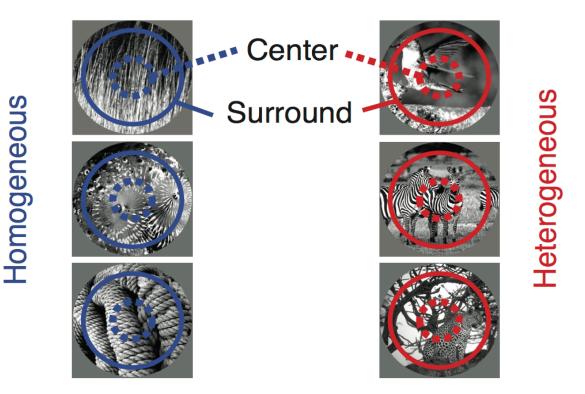
- Experimental data on cortical responses to natural images
- Computational neural model that captures contextual regularities in natural images
- Interplay of modeling with biological neural and psychology data (focus on natural images data)

Cortical predictions for natural images

- In the past, we have tested modeling with simple stimuli (e.g., Coen-Cagli, Dayan, Schwartz, 2012; Schwartz, Sejnowski, Dayan, 2009)
- Here, we make predictions for natural images (Coen-Cagli, Kohn, Schwartz, 2015, in press)

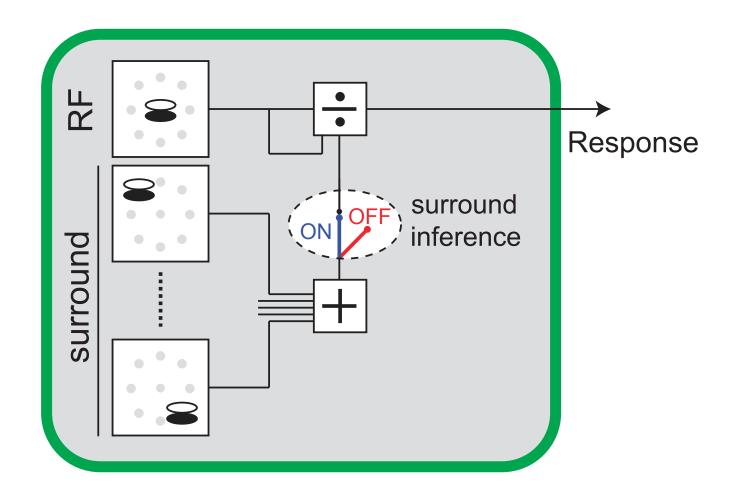
Flexible Divisive Normalization





- Homogeneous and heterogeneous determined by model!
- Expect more suppression in neurons for homogeneous
- Related to salience (eg, Zhaoping)

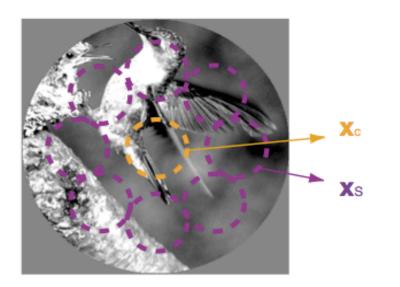
Model summary

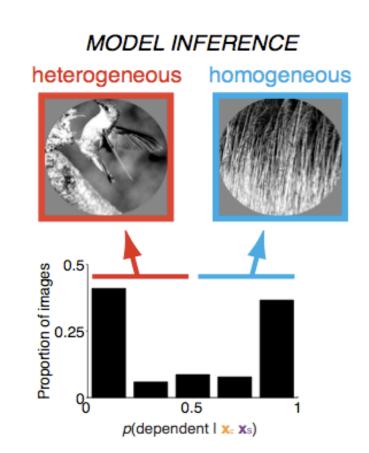


Inference determined by model

Model Predictions for Natural Scenes

EXPERIMENTAL STIMULI

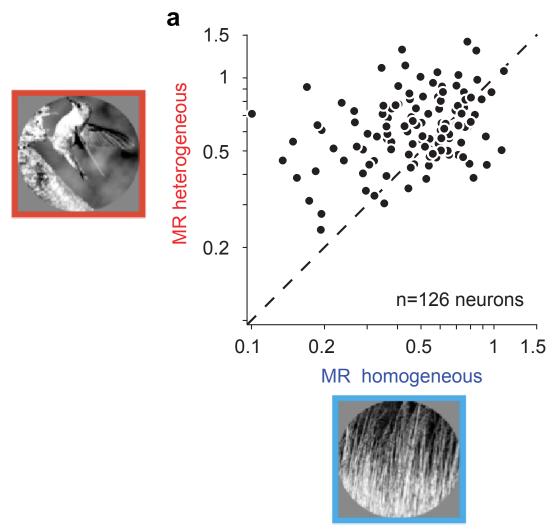




homogeneous versus heterogeneous determined by the model

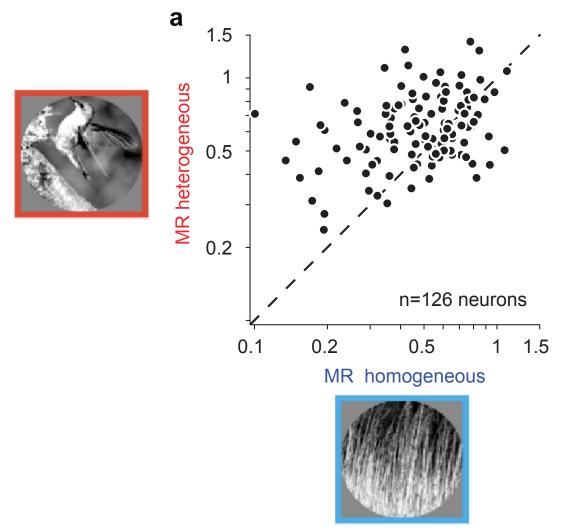
Model Predictions for Natural Scenes

Cortical V1 data:



Model Predictions for Natural Scenes

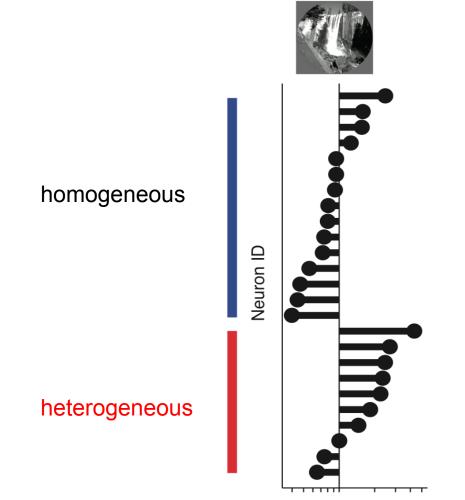
Cortical V1 data:



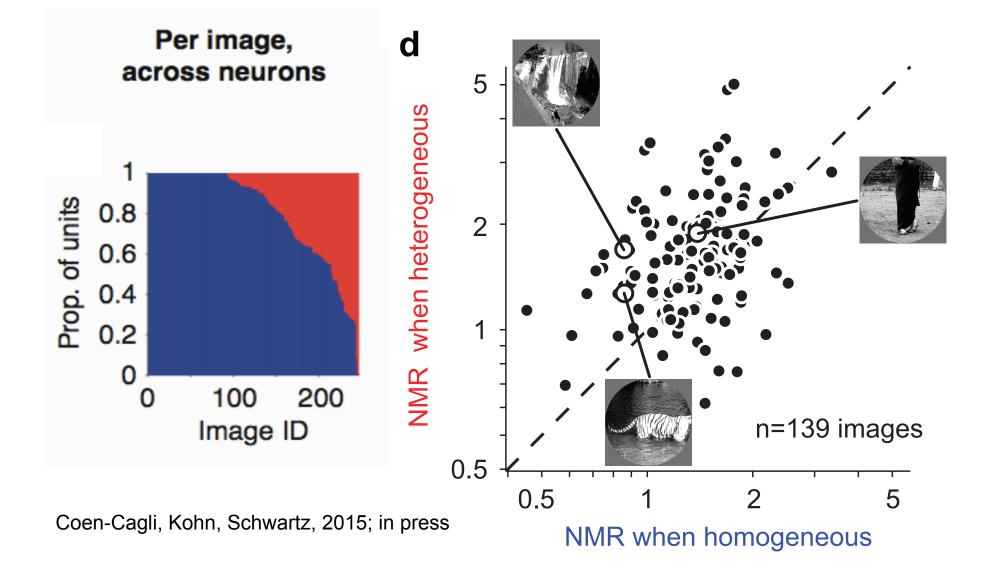
Not explained by:

- firing rate with small frames
- surround energy

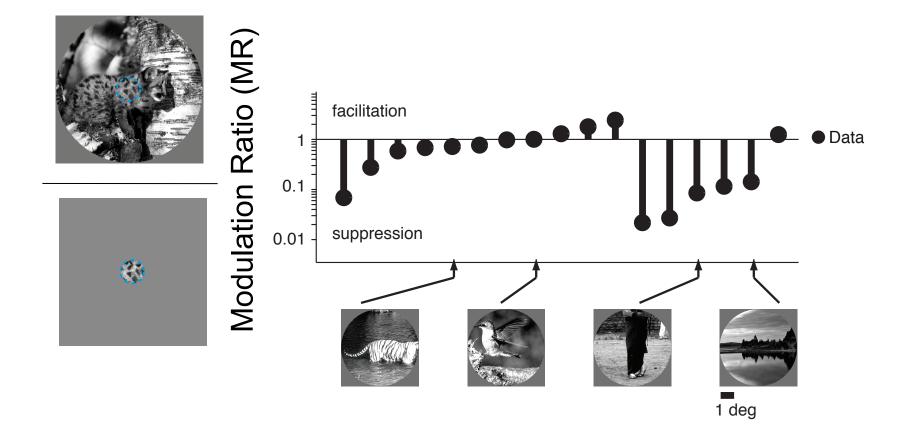
• Per image, across neurons



• Testing predictions with cortical data

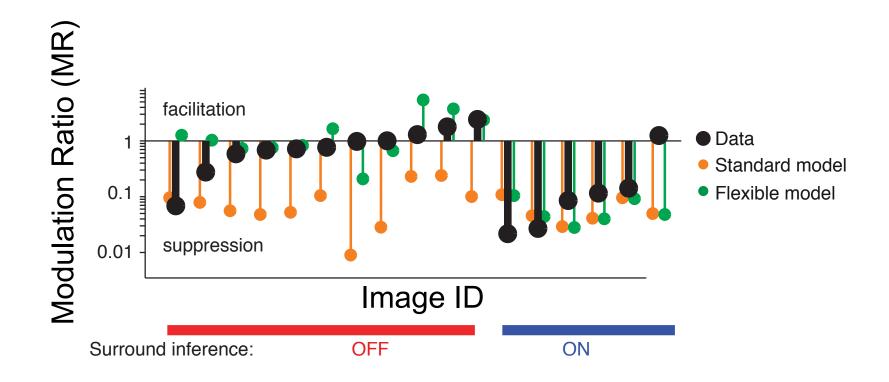


Natural scenes data



Coen-Cagli, Kohn, Schwartz, 2015, in press

Natural scenes data



• Comparing model performance for cortical data

Standard divisive normalization

$$R_{i} = \alpha \left(\frac{E_{c,\phi_{pref}}}{\varepsilon + \beta E_{c} + \gamma E_{s}} \right)^{n}$$

Flexible divisive normalization:

$$R_{i} = \alpha \left(\frac{E_{c,\phi_{pref}}}{\varepsilon + \beta E_{c} + \underline{q(c,s)} \gamma E_{s}} \right)^{n}$$

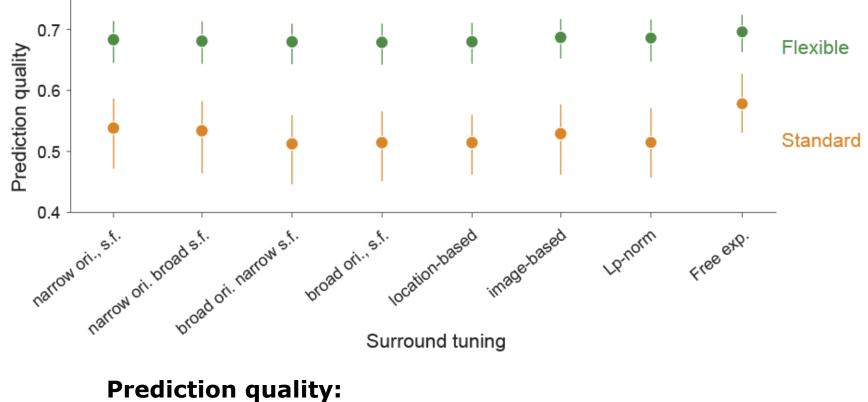
Determined by the model (not fit!)
1 if $p(\xi_{1} | c, s) \ge 0.5$
0 otherwise
(similar results if non binary)

Natural scenes data

Cross-validated prediction quality

а

• There are many standard model versions...



- 1 = "oracle" (observed mean for each image)
- 0 = "null" (mean response across all images)

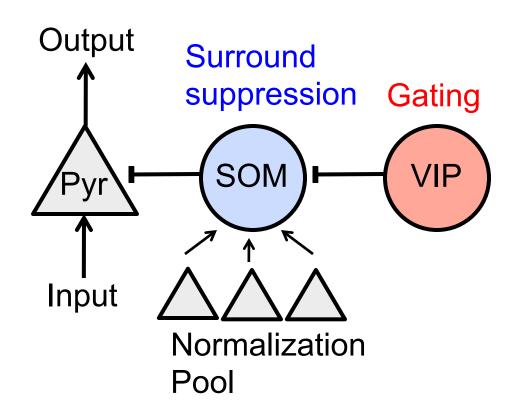
Model Mechanisms

Divisive normalization:

- Feedback inhibition
- Distal dendrite inhibition
- Depressing synapses
- Internal biochemical adjustments
- Non-Poisson spike generation

Flexible Normalization Mechanism?

- Adjusting gain by circuit or postsynaptic mechanisms?
- Distinct classes of inhibitory interneurons? (eg, Adesnik, Scanziani et al. 2012; Pfeffer, Scanziani et al. 2013; Pi, Kepecs et al. 2013; Lee, Rudy et al. 2013)



Key take-home points

- New approach to understanding cortical processing of natural images. Rather than fitting more complicated models, use insights from scene statistics
- Connects to neural computations that are ubiquitous, but enriches the "standard" model
- Our results suggest flexibility of contextual influences in natural vision, depending on whether center and surround are deemed statistically homogeneous
- Next/currently: hierarchical representations; adaptation

Acknowledgments

Albert Einstein

Ruben Coen Cagli Adam Kohn

Gatsby, UCL Peter Dayan

Salk Institute

Terry Sejnowski

Funding

NIH (Collaborative Research in Computational Neuroscience) Army Research Office Alfred P. Sloan Foundation Google