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Intruders attempt to penetrate commercial systems daily and cause considerable financial 

losses for individuals and organizations. Intrusion detection systems monitor network 

events to detect computer security threats. An extensive amount of network data is 

devoted to detecting malicious activities. 

 

Storing, processing, and analyzing the massive volume of data is costly and indicate the 

need to find efficient methods to perform network data reduction that does not require the 

data to be first captured and stored. A better approach allows the extraction of useful 

variables from data streams in real time and in a single pass. The removal of irrelevant 

attributes reduces the data to be fed to the intrusion detection system (IDS) and shortens 

the analysis time while improving the classification accuracy. This dissertation introduces 

an online, real time, data processing method for knowledge extraction. 

This incremental feature extraction is based on two approaches. First, Chunk Incremental 

Principal Component Analysis (CIPCA) detects intrusion in data streams. Then, two 

novel incremental feature extraction methods, Incremental Structured Sparse PCA 

(ISSPCA) and Incremental Generalized Power Method Sparse PCA (IGSPCA), find 

malicious elements. Metrics helped compare the performance of all methods. 

 

The IGSPCA was found to perform as well as or better than CIPCA overall in term of 

dimensionality reduction, classification accuracy, and learning time. ISSPCA yielded 

better results for higher chunk values and greater accumulation ratio thresholds. CIPCA 

and IGSPCA reduced the IDS dataset to 10 principal components as opposed to 14 

eigenvectors for ISSPCA. ISSPCA is more expensive in terms of learning time in 

comparison to the other techniques. 

 

This dissertation presents new methods that perform feature extraction from continuous 

data streams to find the small number of features necessary to express the most data 

variance. Data subsets derived from a few important variables render their interpretation 

easier.  

 



  Jean-Pierre Nziga 

 

 

 

Another goal of this dissertation was to propose incremental sparse PCA algorithms 

capable to process data with concept drift and concept shift. Experiments using 

WaveForm and WaveFormNoise datasets confirmed this ability. Similar to CIPCA, the 

ISSPCA and IGSPCA updated eigen-axes as a function of the accumulation ratio value, 

forming informative eigenspace with few eigenvectors. 
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Chapter 1 

Introduction 

Operational information systems such as web traffic, face recognition programs, 

sensor measurements, and surveillance continuously generate large amounts of data to be 

mined for pattern discovery. Applications such as network intrusion detection systems 

(IDS) generate continuous streams of data to be analyzed in real time (Akhtar, 2011). 

Extracting useful knowledge from data streams is a difficult task. Existing approaches 

store the whole data off-line before analysis in a batch mode (Hebrail, 2008).   

Batch processing of static datasets impacts the processing speed and requires 

large memory capacity, resulting in the necessity to develop methods to extract 

meaningful features from continuous data streams in real time (Chandrika & Kumar, 

2011). An efficient algorithm should extract the optimal fraction of data elements 

sufficient to improve the analysis performance and obtain insights from systems under 

consideration. Existing data patterns need to be updated as new streams arrive.  

Incremental principal component analysis (PCA) approaches have been proposed 

with the expectation to achieve the dimensionality reduction of data streams. PCA 

reduces dimensionality by projecting the dataset onto principal subsets to find 

components that display the maximum data variance (Nziga, 2011; Nziga & Cannady, 

2012). Leading principal components are linear combinations of all the original variables, 

rendering their interpretation difficult. A successful dimensionality reduction technique 

that finds principal components with maximum variance of the dataset while combining 
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few variables improves the interpretability and analysis of the data. In intrusion detection, 

it would be greatly beneficial to retrieve and analyze just the subset of variables to detect 

network unauthorized accesses. This result can be obtained with a method based on 

sparse PCA.  

Sparse PCA produces modified principal components with sparse loadings (Zou, 

Hastie, & Tibshirani, 2006); each component is modeled as a linear combination of the 

subset’s original attributes. However, the sparse PCA algorithms proposed so far process 

only static datasets. In order to reduce the dimensionality of continuous data streams, this 

dissertation describes incremental sparse PCA techniques. This dissertation presents the 

experimental results of using the sparse PCA methods on several datasets and comparing 

them to the output of the chunk incremental PCA algorithm.  

 

Problem Statement and Goal 

Mining of non-stopping data streams is computationally challenging. Existing 

feature selection and attributes extraction approaches perform poorly in locating relevant 

features from data streams that grow without a limit at a rate of several million or billion 

records per day (Domingos & Hulten, 2000). Traditional feature selection algorithms are 

designed and tuned for applications, requiring that the data be stored prior to processing 

off-line. Increasing numbers of applications, such as network intrusion detection systems, 

telecommunications, real-time surveillance, sensor networks, stock market tracking 

systems, road traffic analysis, and weather forecasting systems generate continuous 

streams of data to be processed online and in real time for knowledge extraction. The 
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goal of this research was to implement improved methods that perform feature extraction 

from these continuous data streams.  

 

Relevance and Significance 

The tremendous increase in the amount of data produced in operational 

information systems such as web traffic, face recognition programs, sensor 

measurements, surveillance, and so on renders their mining for finding useful and 

unknown patterns difficult using the old paradigm of storing data before analysis 

(Hebrail, 2008). Furthermore, a plethora of feature extraction approaches proposed in the 

literature are inefficient solutions for continuous streams of data because of their reliance 

on static datasets or pre-available sets of data in a batch mode (Aboalsamh, Mathkour, 

Assassa, & Mursi, 2009; Dagher, 2010; Ohta & Ozawa, 2009; Ozawa, Pang, & Kasabov, 

2008; Ozawa, Takeuchi, & Abe, 2010). Therefore, data streams cannot be mined for 

knowledge using algorithms developed for static datasets. Continuous data streams are 

captured in real time and fed to systems for online analysis. It is important to develop 

methods capable of extracting relevant features from continuous data streams in real 

time. Achieving this goal will address the limitations of existing feature selection 

approaches (offline processing of static dataset in a batch mode, poor processing speed, 

high memory requirement, and poor performance with large amount of data). 

Contrary to previous studies of dimensionality reduction, which process static 

datasets in a batch and offline mode, this research focused on processing large and 

continuous numbers of data streams generated by applications such as network intrusion 

detection systems and consisting of millions or billions of records per day to extract the 
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embedded knowledge and take appropriate action in a timely manner (Chandrika & 

Kumar, 2011). Dimensionality reduction is the process of reducing the number of random 

variables under consideration (Roweis & Saul, 2000). The process can be divided into 

feature selection and feature extraction. Feature selection techniques find a subset of the 

original variables or attributes. Feature extraction approaches, on the other hand, 

transform high-dimensional space data to a space of fewer dimensions. Challenges of 

mining data streams include minimizing resources requirements while providing 

acceptable results. The purpose of this research was to introduce a method that finds the 

minimum amount of relevant data from continuous data streams, resulting in a successful 

knowledge extraction and behavioral interpretations of applications under consideration. 

This algorithm will dynamically extract the optimal fraction of data elements sufficient to 

improve the analysis performance and obtain insights from the systems under analysis. 

This research began by leveraging some incremental feature extraction 

approaches previously proposed for facial recognition applications (Aboalsamh et al., 

2009; Ding, Tian, & Xu, 2009; Ozawa et al., 2008; Tokumoto & Ozawa, 2011; Yan & 

Liu, 2012). Facial recognition systems aim to automatically identify a person using facial 

features from large database of images. The approach in this research is capable of 

extracting features from continuous computer network data streams. Performance metrics 

of this approach, such as accuracy, speed, and memory use, were compared to those of 

well-known features extraction algorithms, using a real-world application such as 

network data for intrusion detection.  

This study’s feature extraction methods should be efficient and capable of 

detecting changing concepts in data distribution due to the highly dynamic nature of data 
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streams (Chandrika & Kumar, 2011; Kholghi & Keyvanpour, 2011). Sliding window and 

forgetting factor approaches are considered to account for changes in data streams if 

necessary. Sliding window technique limits the amount of data streams being fed to the 

learner. It is a deterministic approach that prevents stale data from influencing the data 

analysis. Sliding window is popularly considered when handling evolving data (Bifet & 

Gavaldà, 2006, 2007; Datar, Gionis, Indyk, & Motwani, 2002; Guha & Koudas, 2002; 

Ikonomovska, Gorgevik, & Loskovska, 2007); forgetting factor moderates the balance 

between old and new observations (Levy & Lindenbaum, 2000). This is achieved by 

multiplying the previous singular values at each update by a scalar factor f ∊ [0, 1]. 

 

Barriers and Issues 

The majority of dimensionality reduction approaches proposed in the literature are 

designed to statically process a previously collected dataset (Chandrika & Kumar, 2011; 

Kholghi & Keyvanpour, 2011). However, an increasing number of applications such as 

network intrusion detection systems, stock market, sensor networks, telecommunication 

systems, and web applications generate continuous streams of data to be processed and 

analyzed in real time in order to react accordingly. Researchers, increasingly interested in 

online data extraction techniques and algorithms, have recently proposed incremental 

dimensionality reduction to improve facial recognition systems by analyzing the data 

stream instead of static datasets (Aboalsamh et al., 2009; Ding et al., 2009; Ozawa et al., 

2008; Tokumoto & Ozawa, 2011; Yan & Liu, 2012). A facial recognition system is a 

computer application that aims to identify a person from a digital image automatically. 

Recognition is achieved by comparing facial features extracted from an image using 
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algorithms to a facial database. The majority of facial recognition systems use one of the 

following algorithms for features extraction: PCA, LDA, hidden Markov model, or the 

multi-linear subspace learning. Similarly, intrusion detection systems extract relevant 

features from computer network data stream as a pre-processing step to pattern matching 

phase to keep intruders out.  

 Feature extraction algorithms designed for data streams that have yielded great 

results in other fields of research, such as chunk incremental principal component 

analysis, were implemented for the purpose of this research. Another issue considered in 

this research was the fact that one-pass incremental learning presents two important 

problems, as noted by Ozawa et al. (2008). First, the data stream is continuous; hence, it 

is impossible to keep part of training data to be utilized for learning. Moreover, the 

distribution of data is unknown, making it difficult to extract essential features only from 

initial training samples. 

 

Definitions of Terms 

 

Term Definition 

Dimensionality reduction     Process of reducing the number of random variables under 

consideration 

Facial recognition system    Computer application that identifies a person from digital 

image,  comparing facial features extracted from an image 

using algorithms to a facial database 

Feature extraction    Transform high-dimensional space data to a space of fewer  

    dimensions 

Feature selection   Find a subset of the original variables or attributes 

Forgetting factor   Moderate the balance between old and new observations  

Sliding window technique   Limit the amount of data streams being fed to the learner 
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List of Acronyms 

Acronym Definition 

ACO-SA  Ant Colony Optimization and Simulated Annealing  

ACOMI Ant-Colony Optimization and Mutual Information 

BCD    Block Coordinate Descent 

CCIPCA   Candid Covariance-free IPCA  

CIPCA  Chunk Incremental Principal Component 

DM  Diffusion Maps  

DSPCA   Semi-definite programming Sparse Principal Component Analysis 

FastMVU    Fast Maximum Variance Unfolding  

GDA    Generalized Discriminant Analysis  

GPSPCA Generalized Power Method Sparse Principal Component Analysis 

HLLE   Hessian Local Linear Embedding  

IDS   Intrusion Detection Systems 

IGSPCA Incremental Generalized Power Method Sparse Principal Component 

Analysis 

IKPCA  Incremental Kernel Principal Component Analysis  

ILDA   Incremental Linear Discriminant Analysis  

IPCA    Incremental Principal Component Analysis  

IRFLD  Incremental Recursive Fisher Linear Discriminant  

ISPCA  Incremental Sparse Principal Component Analysis 

ISSPCA Incremental Structured Sparse Principal Component Analysis 

KPC    Kernel Principal Components  

KPCA   Kernel Principal Component Analysis 

LDA   Linear Discriminant Analysis  

LE    Laplacian Eigenmaps  

LLE    Local Linear Embedding  

LTSA  Local Tangent Space Analysis  

MCA    Minor Components Analysis  

MDS   Multi-Dimensional Scaling  

MI   Mutual Information  

mRMR  minimum-Redundancy Maximum-Relevancy  

PCA   Principal Component Analysis 

PSO-MI   Particle Swarm Optimization method and Mutual Information 

RFLD   Recursive Fisher Linear Discriminant  

SEA  Streaming Ensemble Algorithm 

SFA    Slow Feature Analysis  

SNE    Stochastic Neighbor Embedding  

SPCA  Sparse Principal Component Analysis 

SPE   Stochastic Proximity Embedding  
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SSPCA   Structured Sparse Principal Component Analysis 

SVD    Singular Value Decomposition  

SVM-RFE   Support Vector Recursive Feature Elimination  

T-IKPCA   Takeuchi Incremental Kernel Principal Component Analysis  

 

Summary 

Operational information systems generate continuous large amount of data to 

mine for knowledge discovery. Irrelevant and redundant attributes slow down the 

learning process and consume more computing resources. Dimensionality reduction 

contributes to reduce the number of random variables under consideration (Roweis & 

Saul, 2000).  

PCA analyzes the interdependency between attributes to map the data to a lower 

dimensional space (because the size of attributes are lower than in the original dataset), 

such that the variance of the data in the low-dimensional representation is maximized. 

Unfortunately, PCA lacks sparseness of the principal vectors. Sparse principal component 

analysis (SPCA) addresses these limitations by modifying principal components with 

sparse loadings. SPCA methods adjust the PCA approaches by injecting sparseness into 

the loading vectors, similar to regularization methods, which inject sparseness to the 

parameter estimates in the regression setting. 

This dissertation presents an incremental SPCA approach to extract features from 

data streams in real time. The goal was to find the minimum fraction of the original data 

that provides the maximum insight about the application under consideration. Metrics 

used in this dissertation have been representative and useful as benchmarks for 

comparison in well-known research studies. 
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Chapter 2 

Review of the Literature 

The high volume of data generated by today’s applications makes training and 

testing using classification methods difficult. Irrelevant and redundant attributes slow 

down the learning process, confuse learning algorithms, and consume more resources 

while increasing the classifier’s risk of over-fitting (Yu & Lui, 2003). Kohavi and John 

(1997) demonstrated that redundant and irrelevant features negatively impact the 

prediction accuracy of machine learning algorithms. The research community continues 

to develop data mining and machine learning algorithms for data pre-processing, 

classification, clustering, association rules, and virtualization. Feature selection 

techniques are extensively used for pattern recognition in data preprocessing, data 

mining, and machine learning to remove redundant and irrelevant features from high 

dimensional datasets in order to select a subset of relevant features to build robust 

learning models (Fukunaga, 1990). Feature extraction is another dimensionality reduction 

approach that transforms high-dimensional space data to a space of fewer dimensions. 

The purpose of the dimensionality reduction goal is to reduce the number of random 

variables under consideration (Roweis & Saul, 2000).  

 

Feature Selection 

According to Lui and Yu (2005), the large majority of feature selection 

algorithms can be classified under four categories: wrapper, filter, hybrid, and embedded. 
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Wrapper-based feature selection methods validate the goodness of a subset of features 

using a learning algorithm, as opposed to the filter-based feature selection algorithms that 

use metrics to assess the usefulness of any single feature (Guyon & Elisseeff, 2003). The 

process ends when an optimal set of algorithms is generated. Wrapper selection methods 

search for possible features through the dataset using search algorithms with the subset 

being constantly evaluated. By using a learning algorithm for features selection, wrapper 

methods are more accurate than filter methods. The main drawbacks of wrapper-based 

algorithms are their requirement for vast computational resources, in addition to their 

operation risk of over fitting the learning algorithm (Kohavi & John, 1997; Kohavi & 

Sommerfield, 1995). 

Filter-based feature selection algorithms use metrics to classify each feature. Low 

ranking features are eliminated (Ahmad, Norwawi, Deris, & Othman, 2008). The intrinsic 

characteristic of the data is considered in evaluating the fitness of the feature subset. 

Filter-based feature selection techniques do not use a learning algorithm and require 

fewer computer resources. However, the resulting subset of features may not be good 

matches for classification algorithms (Zhu, Ong, & Dash, 2007). 

Hybrid-feature selection methods assess the validity of subsets from the original dataset 

using an independent measure in conjunction with a learning algorithm (Das, 2001; Lui 

& Yu, 2005). There are many examples of this method in the literature. C.-K. Zhang and 

Hu (2005) proposed a hybrid-feature selection based on ant-colony optimization and 

mutual information (ACOMI) for forecasters at the Australian Bureau of Meteorology. 

Ant-colony optimization is used to find colonies between data points. The results were 
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better than either of the individual ant-colony optimization or mutual information 

approaches. 

Khushaba, Al-Ani, and Al-Jumaily (2007) proposed a feature-selection algorithm 

based on a mixture of particle swarm optimization method and mutual information (PSO-

MI). PSO-MI showed an improved accuracy on a dataset of transient myoelectric signal, 

compared to particle swarm optimization or mutual information used separately. Y. 

Zhang, Ding, and Li (2007) presented a two-stage selection algorithm by combining 

ReliefF and minimum-Redundancy Maximum-Relevancy (mRMR) for gene expression 

data. The authors performed experiments comparing the mRMR-ReliefF selection 

algorithm with ReliefF, mRMR, and other feature selection methods using two 

classifiers: Support Vector Machine (SVM) and Naive Bayes. The authors used seven 

different datasets. According to the authors, experiments showed improved results using 

mRMR-ReliefF algorithm for gene selection compared to that of mRMR or ReliefF used 

separately.  

Firouzi, Niknam, and Nayeripour (2008) proposed a hybrid evolutionary 

algorithm based on the combination of ant colony optimization and simulated annealing 

(ACO-SA). The researchers chose cluster center with the help of ACO and SA in order to 

achieve global optima. Ant colony optimization is used to find colonies between data 

points. Simulated annealing is a good local search algorithm for finding the best global 

position using the cumulative probability. Michelakos, Papageorgiou, and 

Vasilakopoulos (2010a) proposed a hybrid algorithm combining the cAnt-Miner2 and the 

mRMR feature selection algorithms. cAnt-Miner2 algorithm (Michelakos, Papageorgiou, 

& Vasilakopoulos, 2010b) is an extended approach of coping with continuous attributes 
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introduced by the cAnt-Miner algorithm. cAnt-Miner algorithm (Otero, Freitas, & 

Jonhson, 2008) is an extension of Ant-Miner (Parpinelli, Lopes, & Freitas, 2002).  

Ant-Miner copes with continuous attributes and therefore incorporates an 

entropy-based discretization method during the rule construction process. cAnt-Miner 

creates discrete intervals for continuous attributes on the fly and does not require a 

discretization method for preprocessing. Experimental results of the combination of 

cAnt-Miner2 and mRMR using public medical data sets yielded improved results 

compared to that of cAnt-Miner2 only. The proposed combination was better in terms of 

accuracy, simplicity, and computational cost compared to the original cAnt-Miner2 

algorithm.  

Mundra and Rajapakse (2010) proposed the support vector recursive feature 

elimination (SVM-RFE) for gene selection incorporating an mRMR filter. According to 

the authors, the approach improved the identification of cancer tissue from benign tissues 

on several benchmark datasets because it accounted for the redundancy among the genes 

compared to mRMR or SVM-RFE separately. Hossain, Pickering, and Jia (2011) 

proposed an approach for hyper-spectral data dimensionality reduction based on a 

measure of mutual information (MI) and principal components analysis (PCA) called MI-

PCA, using a mutual information measure to find principal components, which are 

spatially most similar to all the target classes. The authors conducted experiments using 

hyper-spectral data with 191 bands covering the Washington, DC, area; results showed 

that two features selected from 191 using MI-PCA provided 98% and 93% classification 

accuracy for training and test data respectively, with a support vector machines classifier. 

Feature Extraction 
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Other researchers considered feature extraction over feature selection for 

dimensionality reduction purposes (Agrafiotis, 2003; Donoho & Grimes, 2005; 

Duraiswami & Raykar, 2005; Hoffmann, 2007; Huber, Ramoser, Mayer, Penz, & Rubik, 

2005; K. I. Kim, Jung, & Kim, 2002; Shawe-Taylor & Christianini, 2004; Zou et al., 

2006). Feature extraction converts the data in the high-dimensional space to a lower 

dimensional space. Van der Maaten, Postma, and van den Herik (2009) compared several 

of these dimensionality reduction techniques in a technical report as described below. 

 

Linear Dimensionality Reduction Techniques 

Principal Component Analysis 

Principal component analysis (PCA) is a linear method that reduces data 

dimensionality by performing a covariance analysis between factors as described by 

Hotelling (1933) and Pearson (1901) in their seminal works. PCA analyzes the 

interdependency between pairs of attributes to identify significant ones and performs a 

linear mapping of the data to a lower dimensional space (size of attributes lower than in 

the original dataset) such that the variance of the data in the low-dimensional 

representation is maximized. PCA constructs the data correlation matrix and computes 

eigenvectors matrixes. Eigenvectors that correspond to largest principal components are 

used to reconstruct a large fraction of the variance of the original data.  

The goal of PCA is to find the matrix/vector Y such that: 

Y = w X       (1) 

Where: Y = m-dimensional projected vector  

 X = the original d-dimensional data vector 
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w = an m-by-m matrix where columns are the eigenvectors of X T X 

The m projection vectors maximizing the variance of Y are derived from the 

eigenvectors e1, e2, e3… em of the data set’s covariance matrix E associated with the 

largest m eigenvalues. 

The data covariance matrix is the following: 

E =                      
 

   
             (2) 

The eigenvectors and eigenvalues are obtained by solving the following equations: 

(E - λiI)ei = 0, I = 1, …,d               (3) 

 

PCA has shown great performance in various applications such as face recognition (Turk 

& Pentland, 1991), coin classification (Huber et al., 2005), and seismic series analysis 

(Posadas et al., 1993). PCA shows some limitations if the data has a very high dimension. 

For example, the computation of the eigenvectors might not be possible because the size 

of the covariance is proportional to the dimensionality of the data point. Therefore, 

performing PCA can be costly. An N dimensional matrix requires N
3
 matrix inversion 

operations. Also, N
2
 operations are required to store covariance matrix (Hotelling, 1933; 

Pearson, 1901).  

PCA has shown great performance in various applications, including network intrusion 

detection (Nziga, 2011; Nziga & Cannady, 2012). However, the algorithms developed in 

these publications require that the data be stored and processed in a batch mode. 
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Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a supervised technique that maximizes the 

linear reliability between data of different classes (Fisher, 1936). LDA finds linear 

mapping, maximizing the linear class separability in the reduced dimensionality of the 

data. Similar to PCA, LDA looks for linear combinations of variables that best represent 

the data. LDA models the difference between the classes of data. PCA does not take into 

account any difference in class. LDA’s performance is optimal when dealing with 

continuous variables (variables with numeric values). LDA projections of continuous 

variables preserve complex structure in data for classification. LDA has shown improved 

classification results of large datasets in various applications such as speech recognition 

(Haeb-Umbach & Ney, 1992), document classification (Torkkola, 2001), and 

mammography (Chan et al., 1995).  

 

Global Nonlinear Dimensionality Reduction Techniques 

Global nonlinear dimensionality reduction techniques construct nonlinear 

transformation between a high dimensional dataset and its low dimensional 

representation while preserving global properties of the data. 

Multidimensional Scaling  

Multidimensional scaling (MDS) is a set of nonlinear techniques mapping the 

high dimensional dataset to a low dimensional representation and keeping the pairwise 

distances between data points whenever possible (Cox & Cox, 1994; Kruskal, 1964). 

MDS includes many different specific types that can be classified based on whether the 

similarities data are qualitative (called nonmetric MDS) or quantitative (metric MDS). 
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MDS is very popular for visualization of data (Tagaris et al., 1998) and in molecular 

modeling (Venkatarajan & Braun, 2004). 

Stochastic Proximity Embedding  

Stochastic proximity embedding (SPE) is a repetitive algorithm that employs an 

efficient rule, in comparison to MDS, to update the current estimate of the low 

dimensionality of the data (Agrafiotis, 2003). SPE minimizes the MDS raw stress 

function and is able to retain only distances in a neighborhood graph. SPE attempts to 

generate Euclidean coordinates for a set of data points to comply with a prescribed set of 

geometric constraints. The method begins with an initial configuration and iteratively 

refines it by repeatedly selecting pairs of objects at random and adjusting their 

coordinates so that their distances on the map match more closely their respective 

proximities. The adjustments are controlled by a learning rate parameter. 

Isomap  

Isomap attempts to resolve MDS limitations by incorporating the geodesic 

distances on a weighted graph. The generalization of the notion of a straight line to 

curved spaces is called geodesic. A geodesic is a locally length-minimizing curve. 

Isomap attempts to estimate the intrinsic geometry of a data manifold (dataset composed 

of many features and diverse elements) based on a rough estimate of each data point’s 

neighbors (Tenenbaum, 1998). Isomap defines the geodesic distance to be the sum of 

edge weights along the shortest path between two nodes. The connectivity of each data 

point in the neighborhood graph is defined as its nearest k Euclidean neighbor in the 

high-dimensional space.  
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Fast Maximum Variance Unfolding  

Fast maximum variance unfolding (FastMVU) defines a neighborhood graph on 

the data and retains pairwise distances in the resulting graph by minimizing the Euclidian 

distances between the data points. FastMVU begins with the construction of a 

neighborhood graph, connecting each data point to its given number of nearest neighbors. 

FastMVU attempts to maximize the sum of the squared Euclidian distances between 

datapoints (Weinberger, Sha, Zhu, & Saul, 2007). 

Kernel PCA  

Kernel PCA (KPCA) is an extension of PCA using kernel functions (Schoelkopf, 

Smola, & Mueller, 1998). KPCA computes the principal eigenvectors of the kernel 

matrix while the linear PCA computes those of the covariance matrix. KPCA constructs 

nonlinear mappings using the application of PCA in kernel space. The eigenvectors of the 

covariance matrix are scaled versions of the eigenvectors of the kernel matrix, and 

mappings performed by KPCA are closely related to the choice of the kernel function 

(Shawe-Taylor & Christianini, 2004). KPCA has shown encouraging results on face 

recognition (K. I. Kim et al., 2002), speech recognition (Lima et al., 2004), and novelty 

detection (Hoffmann, 2007). 

Generalized Discriminant Analysis  

Generalized discriminant analysis (GDA) or kernel LDA is the implementation of 

the LDA using kernel function (Baudat & Anouar, 2000). GDA maximizes the Fisher 

criterion using the kernel function in the high dimensional space. GDA deals with 

nonlinear discriminant analysis using kernel function operator to provide a mapping of 

the input vectors into high-dimensional feature space. Linear properties make it easy to 
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extend and generalize the classical linear discriminant analysis (LDA) to nonlinear 

discriminant analysis. The formulation is expressed as an eigenvalue problem resolution.  

Diffusion Maps  

The diffusion maps (DM) framework originated from the field of dynamic 

systems (Lafon & Lee, 2006; Nadler, Lafon, Coifman, & Kevrekidis, 2006). DM is based 

on the definition of a Markov random walk on the graph of the data. The nonlinear 

method DM focuses on discovering the underlying manifold of the data, leveraging the 

relationship between heat diffusion and random walk Markov chain. DM gives a global 

description of the data set by integrating local similarities at different scales.  

Stochastic Neighbor Embedding  

Stochastic neighbor embedding (SNE) is a repetitive technique that aims to retain 

the pairwise distances between the data points in the low-dimensional representation of 

the data (Hinton & Roweis, 2002). In SNE, similarities of nearby points account more for 

the cost function, leading to a low-dimensional data representation that keeps mainly 

local properties of the manifold. According to the authors, SNE allows ambiguous 

objects, such as document count vector for the “word” bank, to have versions close to the 

images of both “river” and “finance” without forcing the images of outdoor concepts to 

be located close to those of corporate concepts. 

Sparse Principal Component Analysis  

PCA decomposition is a linear combination of the input coordinates where 

principal vectors form a low-dimensional subspace that corresponds to the direction of 

maximal variance in the data. PCA minimizes information loss and provides the closest 

linear subspace to the data (Zou et al., 2006). However, PCA lacks sparseness of the 
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principal vectors, and linear combination may mix positive and negative weights, which 

might partly cancel each other. Sparse principal component analysis (SPCA) addresses 

these issues by modifying principal components with sparse loadings. SPCA methods 

adjust the PCA approaches by injecting sparseness to the loading vectors; this process is 

similar to regularization methods, which inject sparseness to the parameter estimates in 

the regression setting. Several approaches and algorithms performing SPCA have 

recently been proposed for batch processing of static dataset. Grbovic, Dance, and 

Vucetic (2012) proposed a methodology for adding two general types of feature grouping 

constraints into the original SPCA optimization procedure. D’Aspremont, El Ghaoui, 

Jordan, and Lanckriet (2007) proposed a direct formulation for SPCA using semidefinite 

programming (DSPCA). Jenatton, Obozinski, and Bach (2010) proposed a SPCA 

wherein the sparse patterns of all dictionary elements were structured and constrained to 

belong to a pre-specified set of shapes. Hein and Buhler (2010) proposed a nonlinear 

inverse power method for SPCA. Journee, Nesterov, Richtarik, and Sepulchre (2010) 

proposed a generalized power method for sparse principal component analysis.  

 

Local Nonlinear Dimensionality Reduction Techniques 

Local nonlinear dimensionality reduction techniques preserve properties of small 

neighborhoods around data points, therefore retaining the global layout of the data 

manifold for classification. 

Local Linear Embedding  

Local linear embedding (LLE) constructs a graph representation (Roweis & Saul, 

2000). LLE attempts to preserve only local properties of the data by reducing sensitivity 
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to short-circuiting in comparison with isomap and allowing for successful embedding of 

nonconvex manifolds. LLE writes the data points as a linear combination of their nearest 

neighbors and attempts to retain the reconstruction weights in the linear combinations. 

LLE has been applied with satisfaction in super-resolution, the problem of generating a 

high-resolution image from one or more low-resolution images (Chang, Yeung, & Xiong, 

2004) and sound source localization (Duraiswami & Raykar, 2005). 

Laplacian Eigenmaps  

Laplacian eigenmaps (LE) use spectral techniques to perform dimensionality 

reduction, relying on the assumption that the data lies in a low dimensional manifold of a 

high dimensional space. Laplacian eigenmaps preserve local properties of the manifold in 

finding a reduced dimensionality of data representation (Belkin & Niyogi, 2002). Local 

properties are functions of the pairwise distances between near neighbors. Laplacian 

eigenmaps build a graph from the data set’s neighborhood information, with each data 

point serving as a node on the graph. The connectivity between nodes is governed by the 

proximity of neighboring points. Laplacian eigenmaps generate reduced dimensionality 

of a dataset by minimizing the distances between a data point and its k nearest neighbors 

in a weighted manner. The minimization of a cost function is based on the graph, 

ensuring that points close to each other on the manifold are mapped close to each other in 

the low dimensional space, thus preserving local distances. Applications of Laplacian 

eigenmaps on solid theoretical ground have shown some success, with graph Laplacian 

matrix converging to the Laplace–Beltrami operator as the number of points goes to 

infinity. 
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Hessian Local Linear Embedding  

Hessian local linear embedding (HLLE) is a flavor of LLE, which minimizes the 

curviness of the large dataset into a low-dimensional space with the reduced dataset 

locally isometric (Donoho & Grimes, 2005). Based on sparse matrix techniques, HLLE 

yields results of a much higher quality than LLE. However, HLLE has a very costly 

computational complexity and therefore is not well suited for heavily-sampled manifolds. 

Local Tangent Space Analysis  

Local tangent space analysis (LTSA) describes local properties of the high-

dimensional data using the local tangent space of each data point (Z. Zhang & Zha, 

2002). LTSA assumes that there exists a linear mapping from a high-dimensional data 

point to its local tangent space if local linearity of the manifold is assumed. According to 

the authors, LTSA also assumes there exists a linear mapping from the corresponding 

low-dimensional data point to the same local tangent space. LTSA aligns linear mappings 

such that they construct the local tangent space of the manifold from the low-dimensional 

representation, simultaneously searching for the coordinates of the low-dimensional data 

representations and the linear mappings of the low-dimensional data points to the local 

tangent space of the high-dimensional data.  

 

Incremental Dimensionality Reduction Approaches  

The aforementioned dimensionality reduction techniques have displayed 

acceptable performance in extracting knowledge in various applications including data 

summarization and web data searching. These dimensionality reduction techniques were 

designed to perform on a stationary dataset and in off-line mode. Batch computation 
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algorithms display limitations when dealing with large sets of data. These data mining 

algorithms were not designed for real-time data reductions. Increasing real world 

applications requires that the training set be dynamic, have an evolving nature, and be 

able to process continuous learning of new training data as they are added to the original 

set. A considerable number of applications generate a massive amount of continuous data 

streams, which must to be processed in real-time or stored online for interpretation, and 

then appropriate actions must be taken. Several incremental methods for the computation 

of reduced datasets have been proposed to address limitations of batch feature extraction 

approaches (Aboalsamh et al., 2009; Ding et al., 2009; Ozawa et al., 2008; Tokumoto & 

Ozawa, 2011; Yan & Liu, 2012). Incremental learning, also known as online learning, 

processes incoming streams sequentially while allowing the trained classifier to generate 

accuracy similar to that obtained with batch processing of the whole dataset. Incremental 

learning reads blocks of data at a time. Batch processing requires analyzing the complete 

dataset at once. 

Incremental Principal Component Analysis  

This method of analysis assumes that N training samples a
(i)

 are provided to a 

system initially: a
(i)

 ∊ R
n
 (i = 1, …, N).  

Applying PCA to the training samples produces the following eigenspace model: 

Ω = (ā, Uk, Ʌk, N)                                              (4) 

Where: ā is a mean vector of a
(i)

 (i=1, …, N),  

Uk is an n x k matrix with column vector corresponding to eigenvectors,  

Ʌk = diag{λ1, λ2, …., λk} is a k x k matrix with non-zero eigenvalues as 

diagonal elements. The value k determined as a function of certain criterion such 
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as accumulation ratio, represents the number of eigen-axes spanning the 

eigenspace. The system computes Ω, keeps the information and throws away the 

entire training sample (Ozawa, Pang, & Kasabov, 2010). 

Incremental Principal Component Analysis (IPCA) now assumes that the (N + 

1)
th

 training sample is provided as follows:  

a
(N + 1)

 = y ∊ R
n
                                                            (5) 

This addition of the new sample creates changes in the mean vector and the 

covariance matrix, requiring the eigenspace model Ω to be updated. The new eigenspace 

model Ωˊ can be defined as follows:  

Ωˊ = (āˊ, Uˊkˊ, Ʌˊkˊ, N+1)                                    (6) 

The eigenspace dimensions kˊ is k or k+1 depending on whether or not y includes 

certain energy in the complementary eigenspace. The eigen-axes are rotated to adapt to 

the variation in the data distribution in three steps: mean vector update, eigenspace 

augmentation, and rotation of eigen-axes. 

Mean vector update. This step is explained by the following equation: 

 āˊ = 
 

   
 ( ā + y) ∊ R

n
            (7) 

Eigenspace augmentation. Two criteria help decide whether the dimensional 

augmentation is needed or not. One of them is the norm of a residue vector defined 

below: 

h = (y – ā) -   
 

 g                                                   (8) 

Where: g =   
 

 (y – ā)  

  T represents the transposition of vectors and matrixes.  
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This criterion was adopted by the original IPCA proposed by Hall, Marshall, and Martin 

(1998). The other criterion is the accumulation ratio whose definition and incremental 

calculation are defined below, 

A (Uk) = 
    
   

    
   

 = 
         

         
     –          

     –      

          
           –           –     

   (9) 

where λi is the i
th

 largest eigenvalues, n represents the dimensionality of the input space 

and k the dimensionality of the current eigenspace. This criterion was used in the 

modified IPCA proposed by Ozawa, Pang, and Kasabov (2004). 

The conditions on the eigenspace augmentation are represented respectively by: 

[Residue Vector Norm]    ĥ =  
 

     
           

           

   (10) 

[Accumulation Ratio]    ĥ =  
 

     
              

           

             (11) 

 

Eigenspace rotation. If either Residue Vector Norm or Accumulation Ratio above 

is satisfied, the dimension of the eigenspace increases from k to k+1. A new eigen-axis ĥ 

is added to the eigenvector matrix Uk. If neither of those conditions is met, the 

dimensionality does not change. The eigen-axes are then rotated to adapt to the new data 

distribution. If the rotation is given by a rotation matrix R, the eigenspace update is 

represented by the following: 

 If there is a new eigen-axis to be added, Uˊk+1 = [Uˊk, ĥ]R. 

 Otherwise, Uˊk = UkR. 
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Weng, Zhang, and Hwang (2003) proposed an incremental principal component 

analysis (IPCA) algorithm called candid covariance-free IPCA (CCIPCA) which 

computes the principal components of a sequence of samples incrementally without 

estimating the covariance matrix (or covariance-free). The method keeps the scale of 

observations and computes the mean of observations incrementally. However, the highest 

possible efficiency is not guaranteed in case of unknown sample distribution. While the 

method is designed for real-time applications, it does not allow iterations. 

Zhao, Yuen, and Kwok (2006) pointed to the lack of guarantee on the 

approximation error as a major limitation of existing IPCA methods. They then proposed 

a new IPCA method based on the idea of singular value decomposition (SVD) updating 

algorithm called SVDU-IPCA for face-recognition. SVDU-IPCA approximation error is 

bounded. SVDU-IPCA algorithm can be easily extended to a kernel version. The authors 

claimed that experimental results show that the difference of the average recognition 

accuracy between the proposed incremental method and the batch-mode method is less 

than 1%. 

Ross, Lim, Lin, and Yang (2008) attempted to address the limitations of existing 

algorithms that tracked objects well in controlled environments but failed in the presence 

of significant variation of the object's appearance or surrounding illumination. The 

authors proposed a tracking method that incrementally learns a low-dimensional subspace 

representation and adapts online to changes in the appearance of the target. The model is 

based on incremental algorithms for principal component analysis and includes two 

features: a method for correctly updating the sample mean and a forgetting factor to 

ensure less modeling power is expended on fitting older observations. These two features 
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improved the overall tracking performance. According to the authors, experiments 

demonstrated the effectiveness of the tracking algorithm in indoor and outdoor 

environments where the target objects underwent large changes in pose, scale, and 

illumination. 

Ozawa et al. (2008) presented a pattern classification system in which feature 

extraction and classifier learning were simultaneously carried both online and in one pass 

where training samples were presented only once. The authors extended incremental 

principal component analysis in combination with classifier models. Training samples 

must be learned one by one due to the limitation of IPCA. To overcome this problem, 

chunk IPCA was proposed, in which a chunk of training samples is processed at a time. 

The authors conducted experiments using several large-scale data sets to demonstrate the 

scalability of chunk IPCA under one-pass incremental learning environments. Results 

suggested that chunk IPCA can reduce the training time more effectively than IPCA, 

unless the number of input attributes is too large. 

Aboalsamh et al. (2009) proposed various incremental PCA training and 

relearning strategies applicable to the candid covariance-free incremental principal 

component algorithm. The authors studied the effect of the number of increments and 

sizes of the eigen-vectors on the correct rate of face recognition. The results suggested 

that batch PCA is inferior to methods IPCA1 through 4 (Aboalsamh et al., 2009) and that 

all IPCAs are practically equivalent with IPCA3, yielding slightly better results than the 

other IPCAs. 

Ding et al. (2009) proposed an adaptive approach for online extraction of the 

kernel principal components (KPC). First, a kernel covariance matrix is correctly updated 



27 

 

to adapt to the changing characteristics of data. Second, KPC are recursively formulated 

to overcome the batch nature of standard KPCA, deriving the formulation from the 

recursive eigen-decomposition of kernel covariance matrix and indicating the KPC 

variation caused by the new data. The method alleviates the sub-optimality of the KPCA 

method for non-stationary data, in addition to maintaining a constant update speed and 

memory usage as the data size increases. According to the authors, experiments showed 

improvements in both computational speed and approximation accuracy. 

Dagher (2010) introduced a recursive algorithm of calculating the discriminant 

features of the PCA-LDA procedure. The algorithm computed the principal components 

of a sequence of vectors incrementally without estimating the covariance matrix 

(meaning covariance-free) while computing the linear discriminant directions along 

which the classes are well separated. The procedure merges two algorithms based on 

principal component analysis (PCA) and linear discriminant analysis (LDA) running 

sequentially. Experiments were applied to face recognition problems, and results showed 

a high average success rate of the proposed algorithm compared to PCA, LDA, and PCA-

LDA algorithms in batch mode. 

Tokumoto and Ozawa (2011) proposed an incremental learning algorithm of 

kernel principal component analysis (IKPCA) for online feature extraction in pattern 

recognition problems by extending the incremental KPCA or T-IKPCA proposed by 

Takeuchi, Ozawa, and Abe (2007). T-IKPCA is able to learn new data incrementally 

without keeping past training data. T-IKPCA learns data chunk individually in order to 

update the eigen-feature space. T-IKPCA performs the eigenvalue decomposition for 

every data in the chunk. The authors extended T-IKPCA such that an eigen-feature space 
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learning is conducted by performing the eigenvalue decomposition only once for a chunk 

of given data. For each new chunk of training data, IKPCA first selects linearly 

independent data based on the cumulative proportion. Then, the eigenspace augmentation 

is conducted by calculating the coefficients for the selected linearly independent data, and 

the eigen-feature space is rotated based on the rotation matrix that can be obtained by 

solving a kernel eigenvalue problem. Experiments showed that IKPCA can learn an 

eigen-feature space very fast without sacrificing the recognition accuracy.  

Kompella, Luciw, and Schmidhuber (2011) proposed an incremental version of 

slow feature analysis (SFA) called IncSFA by combining incremental principal 

components analysis and minor components analysis (MCA). According to the authors, 

IncSFA, along with non-stationary environments, is amenable to episodic training, is not 

corrupted by outliers, and is covariance-free, unlike standard batch-based SFA. These 

properties make IncSFA a useful unsupervised preprocessor for autonomous learning 

agents and robots. In IncSFA, the CCIPCA and MCA updates take the form of Hebbian 

and anti-Hebbian updating, extending the biological plausibility of SFA. In both single 

node and deep network versions, IncSFA learns to encode its input streams (such as high-

dimensional video) by informative slow features representing meaningful abstract 

environmental properties. It can handle cases where batch SFA fails. Hierarchical 

IncSFA derives the driving forces from a complex and continuous input video stream in a 

completely online and unsupervised manner. 

Yan and Liu (2012) proposed an approach to retrieve an image in a data stream 

using principle component analysis by subdividing image into several blocks and 
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extracting image principle features. According to the authors, the proposed approach 

efficiently retrieved an image and met the needs of wide bandwidth network traffic.  

Incremental Linear Discriminant Analysis  

According to Fukunaga (1990), there exist equivalent variants of Fisher’s 

criterion to generate the projection matrix U and maximize class separability of the 

dataset: 

arg    
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where 

 SB =                              
         (13) 

is the between-class scatter matrix,  

SW =                  
                      

  
                       (14) 

is the within-class scatter matrix, and  

ST =                              = SB + SW                          (15) 

is the total scatter matrix, C is the total number of classes, ni the sample number of class i, 

mi the mean of class i, and   the global mean. The ST matrix is used to better keep 

discriminatory data during the update (T.-K. Kim, Stenger, Kittler, & Cipolla, 2011). 

Pang, Ozawa, and Kasabov (2005) presented a method for deriving an updated 

discriminant eigenspace for classification when a burst of data containing new classes is 

being added to an initial discriminant eigenspace in the form of random chunks. The 

authors proposed an incremental linear discriminant analysis (ILDA) in two forms: a 

sequential ILDA and a chunk ILDA. Experiments compared the proposed ILDA against 

the traditional batch LDA in terms of discriminability, execution time, and memory use 
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with additional consideration of increasing volume of data. According to the authors, the 

results showed that the proposed ILDA can effectively evolve a discriminant eigenspace 

over a fast and large data stream and extract features with superior discriminability in 

classification when compared with other methods.  

Ghassabeh and Moghaddam (2007) introduced new adaptive learning algorithms 

to extract linear discriminant analysis features from multidimensional data in order to 

reduce the data dimension space. New adaptive algorithms for the computation of the 

square root of the inverse covariance matrix Σ
− 1/2

 were introduced. These algorithms 

preceded an adaptive principal component analysis algorithm in order to construct an 

adaptive multivariate multi-class LDA algorithm. The adaptive nature of the new optimal 

feature extraction method makes it appropriate for online pattern recognition 

applications. According to the authors, experimental results using synthetic, real multi-

class, and multi-dimensional sequence of data demonstrated the effectiveness of the new 

adaptive feature extraction algorithm.  

Ohta and Ozawa (2009) proposed an online feature extraction method called 

incremental recursive Fisher linear discriminant (IRFLD) based on recursive Fisher linear 

discriminant (RFLD), a batch learning algorithm proposed by Xiang, Fan, and Lee 

(2006). The number of discriminant vectors is limited to the number of classes minus 

one, due to the rank of the between-class scatter matrix in the conventional linear 

discriminant analysis (LDA). RFLD and the proposed IRFLD eliminate this limitation. In 

the proposed IRFLD, effective discriminant vectors are recursively searched for the 

complementary space of a conventional ILDA subspace. The authors also proposed a 

convergence criterion for the recursive computations defined by using the class 
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separability of discriminant features projected on the complementary subspace. 

According to the authors, experiments results showed that the recognition accuracies of 

IRFLD outperform ILDA in terms of recognition accuracy. However, the advantage of 

IRFLD against ILDA depends on datasets.  

T. K. Kim et al. (2011) proposed an incremental learning solution for LDA and its 

applications to object recognition problems, applying the sufficient spanning set 

approximation in three steps: updates for the total scatter matrix, the between-class 

scatter matrix, and the projected data matrix. The proposed online solution closely agreed 

with the batch solution in term of accuracy while significantly reducing the 

computational complexity, even when the number of classes as well as the set size is 

large. Moreover, the incremental LDA method is useful for semi-supervised online 

learning. Label propagation is done by integrating the incremental LDA into an 

expectation maximization framework.  

Ozawa et al. (2010) stated that PCA and LDA transform inputs into linear features 

that are not always effective for classification purposes. The authors suggested for future 

research the extension of the incremental learning approach based on kernel PCA 

(Takeuchi et al., 2007) and kernel LDA (Cai, He, & Han, 2007). Another PCA limitation 

is the fact that it finds a small number of important factors while involving all original 

variables (Jenatton et al., 2010).  
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Chapter 3  

Methodology 

As Figure 1 shows, intrusion detection systems monitor network events for 

analysis to find computer security threats such as malware, spyware, and access 

violations.  

 

Internet

Router

Firewall

Attacker

IDS

Switch

PC

Server

Server

Server

Figure 1. A network system with an IDS. 

 

  



33 

 

Overview of Research Methodology 

Increasing numbers of applications generate large streams of data to be processed 

online and in real time for knowledge extraction. Processing such a large volume of data 

produced by a plurality of operational information systems renders their monitoring 

difficult using the old paradigm of storing data before analysis (Hebrail, 2008). Mining of 

continuous data streams of information to gather relevant attributes is computationally 

challenging (Domingos & Hulten, 2000). Noise and irrelevant attributes worsen the 

prediction accuracy.  

This research aimed to find a method that dynamically extracts an optimal subset 

of data elements sufficient to obtain insights from massive data streams and take 

appropriate actions. This study proposed approaches, which when applied to the 

continuous network data streams efficiently, reduce the data dimensionality without 

negatively impacting its classification accuracy. 

Principal component analysis is a popular dimensionality reduction technique 

used in a large variety of research domains. Nziga (2011) implemented PCA to 

considerably reduce the network dataset for intrusion detection. Nziga and Cannady 

(2012) combined PCA and mutual information to extract important features from the 

network dataset. This dissertation extends the original research presented by Nziga and 

Cannady, introducing a variation in the method of processing the data. Instead of storing 

the data off-line to be processed in a batch mode, this research aimed to process the data 

online and in real time for knowledge extraction. 

This research was subdivided into five phases. First, a previously proposed incremental 

features extraction algorithm for facial recognition applications was implemented to 
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process intrusion detection data streams. Using dimensionality reduction techniques on 

intrusion detection systems improves their performance. Then, two sparse principal 

component analysis techniques were presented. The next two phases introduced new 

incremental features extraction algorithms. Finally, we evaluated the concept drift impact 

using the newly proposed techniques.  

Phase 1. Chunk Incremental Principal Component: Application to Network  

Data Streams 

 

Incremental PCA-based methods have recently been proposed that allow adding 

new data and updating of PCA representation for face recognition (Pang et al., 2008; Yan 

& Liu, 2012). 

 

Continuous 

data 

streams

Processing data in chunks for 

Data reduction

Classification 

prediction

Update: 

Class labels, 

Prototypes,

Eigenspace

 

Figure 2. Chunk incremental PCA approach. 
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Figure 2 shows Chunk IPCA that was implemented to evaluate network data streams. 

Chunk IPCA can overcome the problem with IPCA, processing a chunk of training 

samples at a time.  

 A set of initial training samples D0 is provided prior to the start of the 

incremental learning. 

 An initial eigenspace model is obtained by applying PCA to D0. 

 The smallest dimensionality k of the eigenspace is determined, with an 

accumulation ratio larger than θ. 

 The eigenspace model and L training samples become input to begin Chunk 

IPCA. 

o Eigen-axis selection to obtain augmented eigen-axes 

o Eigenspace rotation to obtain to obtain eigen-problem 

o Obtain the updated eigenvector matrix 

o Update the mean vector 

o Update the eigenspace model 

The following metrics were gathered for evaluation: 

 The impact of the initial data size on the classification accuracy, starting with 

5% of the training dataset. Then increasing by 5% until no behavioral change 

was noticeable. 

 The impact of the chunk size on the classification accuracy, staring with 100 

samples of the training set. The chunk size increased by 100 at a time, until no 

output change was noticeable. 
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 The impact of the accumulation ratio factor θ, a positive value between [0, 1] 

on the classification accuracy, 

 The CPU usage 

 The processing time 

The full chunk IPCA algorithm as proposed by Ozawa et al. (2008) follows. 

Input: 

 Chunk IPCA algorithm 

 Initial training set D0 = {(x
(i)

, z
(i)

) | i = 1, … N}. 

 The number P of prototypes, 

 The number M of search points for threshold and search range [θ1,θM] 

Initialization: 

1) Call Training of initial Eigenspace to obtain the threshold θ and the initial 

eigenspace model Ω = (ā, Uk, Ʌk, N) of D0. 

2) P’   min (P, N) 

3) Select P’ training sample randomly from D0 as reference vectors and put them 

into a set γ 

loop // Prediction and Learning 

Input: A new chunk of training samples 

D = {(y
(i)

, z
(i)

)|i = 1, … L}. 

if P’ <  P then 

Select min (P - P’, L) training samples randomly from D 

put them into γ 

end if 
Call Update of Classifier to update the prototype γ’ 

Call Classification to predict the class labels z(y
(i)

) of queries y
(i)

 (i = 1, … ,L) in D 

Apply chunk IPCA to Y = {y
(1)

 , …, y
(L)

 } 

1) Call Selection of Eigenaxes to obtain a matrix Hl of the l augmented eigenaxes 

2) Solve an intermediate eigenproblem to obtain a rotation matrix R and an 

eigenvalue matrix Ʌ’k+l 

3) Update the mean vector āˊand the eigenvector matrix Uˊk+l 

Update the eigenspace model as follows: 

Ω = (ā, Uk, Ʌk, N)   Ωˊ = (āˊ, Uˊk+l, Ʌˊk+l, N+L)                       

Output: Prediction z(y
(i)

) (i = 1, … ,L)         

end loop         

 

Algorithm 1. Chunk IPCA: Learning and Classification 
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Chunk IPCA (CIPCA) reduces the dimensionality of the input data stream. The 

data in the next chunk is used to construct the feature space. The above one-pass 

incremental algorithm can be better explained by the following learning algorithm steps 

(Ozawa et al., 2004): 

Step 0: 

(1) A small percentage of training samples D0 = {(x
(i)

, z
(i)

)|i = 1, … N}.are used to 

construct the initial eigenspace Ω = (ā, Uk, Ʌk, N). 

(2) From the covariance matrix of the initial training samples, compute the 

eigenvector matrix U and the eigenvalue matrix Ʌ. 

(3) The feature vectors ā is obtained by projecting all the initial training samples 

into the eigenspace. 

(4) A classification algorithm is applied to feature vectors ā to generate the 

prototypes γ. In the CIPCA, the authors used k-Nearest Neighbors algorithm. 

Step 1: CIPCA is applied to new chuck of L training samples, then update the current 

eigenspace Ω = (ā, Uk, Ʌk, N), D = {(y
(i)

, z
(i)

)|i = 1, … L}  

(1) Call Update of Classifier to update the prototype γ’. 

(2) Call Classification to predict the class labels z(y
(i)

) of queries y
(i)

 (i = 1, … ,L) 

in D. 

(3) Call Selection of Eigenaxes to obtain a matrix Hl of the l augmented 

eigenaxes. The accumulation ratio is updated and should be less than the 

given threshold value θ. The accumulation ratio specifies the amount of signal 

energy that should be retained to construct the feature spaces efficiently. 
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(4) Solve an intermediate eigenproblem to obtain a rotation matrix R and an 

eigenvalue matrix Ʌ. 

Step 2: Update the mean vector āˊand the eigenvector matrix Uˊk+l 

 

Step 3: Update the eigenspace model as follows:  

Ω = (ā, Uk, Ʌk, N)   Ωˊ = (āˊ, Uˊk+l, Ʌˊk+l, N+L)                       

Step 4: Output: Prediction z(y
(i)

) (i = 1, … ,L)    

Step 5: Go back to Step 1. 

 

PCA generally produces dense directions that are too complex to explain the 

dataset (He, Monteiro, & Park, 2011). PCA performs linear combinations of attributes to 

find the subset that increases variance in the dataset. However, the reduced data subset 

resulting from PCA is based on all original variables. The linear combination renders the 

resulting subset difficult to interpret and, for example, in IDS, impossible to identify a set 

of specific relevant attributes that need to be fed to intrusion detection systems. The 

interpretation of principal components is possible when they are composed from only a 

fraction of the original variables. Sparse principal component analysis (SPCA) achieves a 

reasonable trade-off between the conflicting goals of explaining all variables and using 

near orthogonal vectors constructed from as few features as possible (Grbovic et al., 

2012). SPCA improves the relevance and interpretability of the component. SPCA also 

reveals the underlying structure of the dataset better than PCA (Grbovic et al., 2012). 

SPCA can be effectively stored in addition to simplifying the interpretation of the 

inherent structure and information associated with the dataset (He et al., 2011). 

Moreover, SPCA can be computed faster than PCA under certain conditions (Y. Zhang & 

El Ghaoui, 2011).   
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The novel methods in this research consisted of developing improved incremental 

feature extraction approaches called ISSPCA (incremental structure sparse principal 

component analysis) and IGSPCA (incremental global power for sparse principal 

component analysis), leveraging the structured sparse principal component analysis 

technique (Jenatton et al., 2010) and the generalized power method for sparse principal 

component analysis approach (Journee et al., 2010) respectively. 

 

Phase 2. Sparse Principal Component Analysis 

2-a. Structured Sparse Principal Component Analysis 

 Jenatton et al. (2010) proposed structured sparse PCA (SSPCA) to demonstrate 

the variance of the data by factors that are sparse and meet some constraints useful to 

model the data under consideration. Sparsity patterns of dictionary elements are 

constrained to a pre-specified set of shapes, encoding higher order by factors that are 

sparse while taking into account some data structural model constraints. Applied to face 

recognition database, SSPCA selects sparse convex areas corresponding to a more natural 

segment of faces (e.g., mouth, eyes). According to the authors, their approach led to a 

more interpretable decomposition of the data. The full SSPCA procedure is outlined 

below (Jenatton et al., 2010). 

 Input: Dictionary size r, data matrix X. 

 Initialization: Initialization of U, V (possibly random). 

  While (stopping criteria not reached) 

   Update (Ƞ
G

) G ∊  Closed-form solution. 

   Update U by BCD: 

   for t = 1 to Tu, for k = 1to r: 

                
       

 

  
     –             

   Update V by BCD: 

   for t = 1 to Tv, for k = 1to r: 
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 –              
   ). 

 

  Output: Decomposition U, V 

Algorithm 2. Structured Sparse Principal Component Analysis 

Structured sparse principal component analysis will be applied on network datasets in a 

batch mode to gather some benchmark metrics. 

 

2-b. Generalized Power Method for Sparse Principal Component Analysis 

Journee et al. (2010) proposed generalized power method for sparse PCA 

(GPSPCA) to extract sparse dominant principal components of dataset. The authors 

optimized their proposal by maximizing the convex function. According to the authors, 

their approach, which they tested on a set of random and gene expression, outperformed 

other algorithms, extracting richest and interpretable components. The authors proposed 

four formulations of the sparse PCA problem, namely: Single-unit sparse PCA via l1-

Penalty, Single-unit sparse PCA via Cardinality Penalty, Block sparse PCA via l1-

Penalty, and Block sparse PCA via Cardinality Penalty. 

The formulation that worked best for the experiments in this research was the 

Single-unit sparse PCA via l1-Penalty. The full GPSPCA procedure based on this 

formulation follows (Journee et al., 2010). 
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Input: Data matrix A ∊ R
pxn   

Sparsity-controlling parameter γ ≥ 0 

Initial iterate x ∊ S
p  

Output: A locally optimal sparsity pattern  P 

 begin  

  repeat 

 x        
     γ  

 

   
 + sign (  

   ) ai 

    x   
 

     
 

                        until a stopping criterion is satisfied 

    

                        Construct vector P ∊ {0,1}
n
 such that  

              
     γ

              
   

             end 

Algorithm 3. Generalized power method for Sparse Principal Component Analysis 

 

Phase 3. Incremental Structured Sparse Principal Component Analysis (ISSPCA) 

As stated earlier, PCA reduces the dimensionality of a dataset using a vector 

space transformation. PCA performs linear combinations of variables to find the lower 

number of principal components that maximize variance in the data. While PCA 

successfully finds maximum variance components that are composed of all initial 

variables, it renders their interpretation difficult. 

Sparse PCA, on the other hand, finds sparse vectors that are used as weights 

during linear combinations. Sparse PCA finds principal components as linear 

combinations of sparse vectors. The advantage of sparse PCA is interpretability as it 

extracts components with few non-zero coefficients. For example, in facial recognition, 

sparse PCA aims to extract local components (i.e., parts of the face). 

SSPCA, as proposed by Jenatton et al. (2010), uses batch processing. Because the 

focus of this research was to extract features from data streams, an incremental approach 
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of SSPCA, called ISSPCA, was implemented. An extensive evaluation was performed 

using network data streams as well as other datasets. 

Incremental Sparse Principal Component Analysis  

Similar to the CIPCA proposed by Ozawa et al. (2008), the incremental sparse 

PCA assumes that N training samples a
(i)

 are provided to a system initially; a
(i)

 ∊ R
n
 

(i=1, …, N).  

A Sparse PCA method was then applied to the training samples to generate an 

eigenspace model: 

Ω = (ā, Uk, Ʌk, N)                                              (4) 

Where: ā is a mean vector of a
(i)

 (i=1, …, N),  

Uk is an n x k matrix with column vector corresponding to sparse 

eigenvectors,  

Ʌk = diag{λ1, λ2, …., λk} is a k x k matrix with non-zero eigenvalues as 

diagonal elements. The value k, the number of eigen-axes spanning the 

eigenspace was determined as a function of accumulation ratio criterion. The 

system computed Ω, kept the information and threw away the entire training 

sample (Ozawa et al., 2010). 

Then the (N + 1)
th

 training sample was provided to the Incremental Sparse 

Principal Component Analysis (ISPCA): 

a
(N + 1)

 = y ∊ R
n
                                                            (5) 

The new eigenspace model Ωˊ was defined as follows:  

Ωˊ = (āˊ, Uˊkˊ, Ʌˊkˊ, N+1)                                         (6) 
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The eigenspace dimensions kˊ is k or k+1 depending on whether or not y includes 

certain energy in the complementary eigenspace. The eigen-axes were rotated to adapt to 

the variation in the data distribution in three steps: mean vector update, eigenspace 

augmentation, and rotation of eigen-axes. (Equations 7, 8, 9, 10 and 11) 

 

The full chunk ISSPCA algorithm based on the chunk IPCA proposed by Ozawa et al. 

(2008) follows: 

Input: 

 Chunk ISSPCA algorithm 

 Initial training set D0 = {(x
(i)

, z
(i)

)|i = 1, … N}. 

 The number P of prototypes, 

 The number M of search points for threshold and search range [θ1,θM] 

Initialization: 

1) Call Training of initial Eigenspace to obtain the threshold θ and the initial 

eigenspace model Ω = (ā, Uk, Ʌk, N) of D0, using SSPCA 

2) P’   min (P, N) 

3) Select P’ training sample randomly from D0 as reference vectors and put them 

into a set γ 

loop // Prediction and Learning 

Input: A new chunk of training samples 

D = {(y
(i)

, z
(i)

)|i = 1, … L}. 

if P’ <  P then 

Select min (P - P’, L) training samples randomly from D 

put them into γ 

end if 
Call Update of Classifier to update the prototype γ’ 

Call Classification to predict the class labels z(y
(i)

) of queries y
(i)

 (i = 1, … ,L) in D 

Apply chunk ISSPCA to Y = { y
(1)

 , …, y
(L)

 } 

4) Call Selection of Eigenaxes to obtain a matrix Hl of the l augmented eigenaxes 

5) Solve an intermediate eigenproblem to obtain a rotation matrix R and an 

eigenvalue matrix Ʌ’k+l 

6) Update the mean vector āˊand the eigenvector matrix Uˊk+l 

Update the eigenspace model as follows: 

Ω = (ā, Uk, Ʌk, N)   Ωˊ = (āˊ, Uˊk+l, Ʌˊk+l, N+L)                       

Output: Prediction z(y
(i)

) (i = 1, … ,L)         

end loop         

 

Algorithm 4. Chunk ISSPCA: Learning and Classification 
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Two flavors of Incremental Structured Sparse Principal Component Analysis were 

evaluated in this research: ISSPCA-L1 and ISSPCA-Lq. ISSPCA-L1 is a convex model 

based on the standard L1 norm regularization. This is also called exact regularization. 

ISSPCA-Lq is a non-convex model with Lq quasi-norm regularization q in (0,1). In this 

experiment, q = 0.5; the following metrics were gathered for ISSPCA-L1 and ISSPCA-

Lq evaluation: 

 The impact of the initial data size on the classification accuracy. Starting with 

5% of the training set, increased the initial data size by 5% until no change 

was noticeable. 

 The impact of the chunk size on the classification accuracy. Starting with 100 

samples, increased the chunk size by 100 until no change was perceivable in 

the output. 

 The impact of the accumulation ratio factor θ, a positive value between [0, 1] 

on the classification accuracy. 

 Minimum subset of original attributes. PCA finds principal components that 

cannot be interpreted (Nziga & Cannady, 2012). Sparse PCA finds principal 

components as linear combinations of sparse vectors, extracting variables with 

few non-zero coefficients. This study identified the first few attributes 

sufficient to represent the dataset. 

 The CPU usage. 

 The processing time. 
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Phase 4. Incremental Generalized Power Method Sparse Principal Component 

Analysis (IGSPCA) 

 

The generalized power method sparse PCA proposed by Journee et al. (2010) 

employs batch processing. According to the authors, the algorithm displays great 

convergence properties and outperforms existing batch techniques in quality of the 

reduced dataset and the computation time. This research implemented an incremental 

approach of GPSPCA, called IGSPCA with the goal to extract features from data 

streams. Network data streams performed an extensive evaluation. 

Similar to the CIPCA proposed by Ozawa et al. (2008), the incremental sparse 

PCA assumed that N training samples a
(i)

 are provided to a system initially: a
(i)

 ∊ R
n
 

(i=1, …, N).  

A Sparse PCA method was then applied to the training samples to generate an 

eigenspace model: 

Ω = (ā, Uk, Ʌk, N)                                              (4) 

Where: ā is a mean vector of a
(i)

 (i=1, …, N),  

Uk is an n x k matrix with column vector corresponding to sparse 

eigenvectors,  

Ʌk = diag{λ1, λ2, …., λk} is a k x k matrix with non-zero eigenvalues as 

diagonal elements. The value k, the number of eigen-axes spanning the 

eigenspace was determined as a function of accumulation ratio criterion. The 

system computed Ω, kept the information, and threw away the entire training 

sample (Ozawa et al., 2010). 
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Then the (N + 1)
th

 training sample was provided to the Incremental Sparse 

Principal Component Analysis (ISPCA): 

a
(N + 1)

 = y ∊ R
n
                                                            (5) 

The new eigenspace model Ωˊ was defined as follows:  

Ωˊ = (āˊ, Uˊkˊ, Ʌˊkˊ, N+1)                                    (6) 

The eigenspace dimensions kˊ was k or k+1 depending on whether or not y 

included certain energy in the complementary eigenspace. The eigen-axes were rotated to 

adapt to the variation in the data distribution in three steps: mean vector update, 

eigenspace augmentation, and rotation of eigen-axes (Equations 7, 8, 9, 10 and 11). 

 

The full chunk IGSPCA algorithm based on the chunk IPCA proposed by Ozawa et al. 

(2008) follows: 

Input: 

 Chunk IGSPCA algorithm 

 Initial training set D0 = {(x
(i)

, z
(i)

)|i = 1, … N}. 

 The number P of prototypes, 

 The number M of search points for threshold and search range [θ1,θM] 

Initialization: 

1) Call Training of initial Eigenspace to obtain the threshold θ and the initial 

eigenspace model Ω = (ā, Uk, Ʌk, N) of D0, using GPSPCA 

2) P’   min (P, N) 

3) Select P’ training sample randomly from D0 as reference vectors and put them 

into a set γ 

loop // Prediction and Learning 

Input: A new chunk of training samples 

D = {(y
(i)

, z
(i)

)|i = 1, … L}. 

if P’ <  P then 

Select min (P - P’, L) training samples randomly from D 

put them into γ 

end if 
Call Update of Classifier to update the prototype γ’ 

Call Classification to predict the class labels z(y
(i)

) of queries y
(i)

 (i = 1, … ,L) in D 

Apply chunk IGSPCA to Y = { y
(1)

 , …, y
(L)

 } 
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4) Call Selection of Eigenaxes to obtain a matrix Hl of the l augmented eigenaxes 

5) Solve an intermediate eigenproblem to obtain a rotation matrix R and an 

eigenvalue matrix Ʌ’k+l 

6) Update the mean vector āˊand the eigenvector matrix Uˊk+l 

Update the eigenspace model as follows: 

Ω = (ā, Uk, Ʌk, N)   Ωˊ = (āˊ, Uˊk+l, Ʌˊk+l, N+L)                       

Output: Prediction z(y
(i)

) (i = 1, … ,L)         

end loop         

Algorithm 5. Chunk IGSPCA: Learning and Classification 

 

The following metrics were gathered for IGSPCA evaluation: 

 The impact of the initial data size on the classification accuracy. Starting with 

5% of the training set, increased the initial data size by 5% until no change 

was noticeable. 

 The impact of the chunk size on the classification accuracy. Starting with 100 

samples, increased the chunk size by 100 until no change was perceivable in 

the output. 

 The impact of the accumulation ratio factor θ, a positive value between [0, 1] 

on the classification accuracy. 

 Minimum subset of original attributes. PCA found principal components that 

cannot be interpreted (Nziga & Cannady, 2012). Sparse PCA found principal 

components as linear combinations of sparse vectors, extracting variables with 

few non-zero coefficients. This study identified the first few attributes 

sufficient to represent the dataset. 

 The CPU usage. 

 The processing time. 
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Similar to Chunk IPCA, the Incremental Sparse PCA algorithms presented in this 

dissertation reduced the dimensionality of the input data stream, using the data in the next 

chunk to construct the feature space. The implemented one-pass incremental sparse 

algorithms are better explained by the following learning steps: 

 

Step 0: 

(1) A small percentage of training samples D0 = {(x
(i)

, z
(i)

)|i = 1, … N}.Were used 

to construct the initial eigenspace Ω = (ā, Uk, Ʌk, N). 

(2) From the covariance matrix of the initial training samples, computed the 

eigenvector matrix U and the eigenvalue matrix Ʌ. This computation used one 

of the Sparse PCA algorithms presented above. This framework can be 

expanded to use other sparse PCA algorithms in the future for comparative 

studies and improvements. 

(3) The feature vectors ā was obtained by projecting all the initial training 

samples into the eigenspace. 

(4) A classification algorithm was applied to feature vectors ā to generate the 

prototypes γ. While in the CIPCA, the authors (Ozawa et al., 2010) used k-

Nearest Neighbors algorithm; in this dissertation, the researcher used the 

decision tree classification. This framework can be expanded to use other 

classifiers (SVM, BayesNet, NaiveBayes, etc …) for comparative studies and 

improvements in the future. 

Step 1:  Incremental Sparse PCA is applied to new chuck of L training samples, then 

update the current eigenspace Ω = (ā, Uk, Ʌk, N), D = {(y
(i)

, z
(i)

)|i = 1, … L}.  



49 

 

1. Call Update of Classifier to update the prototype γ’. 

2. Call Classification to predict the class labels z(y
(i)

) of queries y
(i)

 (i = 1, … ,L) 

in D. 

3. Call Selection of Eigenaxes to obtain a matrix Hl of the l augmented 

eigenaxes. The accumulation ratio is updated and should be less than the 

given threshold value θ. The accumulation ratio specifies the amount of signal 

energy that should be retained to construct the feature spaces efficiently. 

4. Solve an intermediate eigenproblem to obtain a rotation matrix R and an 

eigenvalue matrix Ʌ. 

Step 2: Update the mean vector āˊand the eigenvector matrix Uˊk+l 

 

Step 3: Update the eigenspace model as follows:  

Ω = (ā, Uk, Ʌk, N)   Ωˊ = (āˊ, Uˊk+l, Ʌˊk+l, N+L)                       

Step 4: Output: Prediction z(y
(i)

) (i = 1, … ,L)    

 

Step 5:  Go back to Step 1. 

 

Another major difference between CIPCA and the new IGSPCA is in the computation of 

the eigenvalue matrix. In CIPCA, the eigenvalue matrix was computed using the Matlab 

function eig(A)that returns a vector of the eigenvalues of matrix A. In IGSPCA, the 

eigenvalue matrix was computed using the Matlab function eigs(A,k) and that returns 

the k largest magnitude eigenvalues. 
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Phase 5. Incremental Sparse Principal Component Analysis: Impact of Concept 

Drift and Concept Shift 

 

Concept drift and concept shift are respectively gradual and quick changes in 

continuous streams of data. Both concept drift and concept shift cause variables in data 

streams to change with the potential to degrade the predictability accuracy in the long 

run. It is important to validate the effectiveness of ISSPCA and IGSPCA, the newly 

implemented incremental feature extraction approaches, to handle concept drift and 

concept shift.  

The following two datasets were generated with gradual concept drift: WaveForm 

and WaveFormNoise. The WaveForm dataset is constituted of three classes of waves, 21 

attributes, and 5,000 instances. The WaveFormNoise dataset is constituted of three 

classes of waves 40 attributes, and 5,000 instances.  

Concept shift can be simulated on a dataset by randomly selecting some attributes 

and changing their values in a consistent manner (Morshedlou & Barforoush, 2009). The 

researcher generated a new dataset with concept shift by shuffling the values of the first 

and the last attributes of the WafeFormNoise dataset, for all instances while keeping the 

class label intact. The researcher then randomly split the new dataset into two samples; 

1,000 records formed the testing sample, and 4,000 records formed the training subset. 

The following metrics were gathered for ISSPCA and IGSPCA evaluation: 

 The impact of the initial data size on the classification accuracy. Starting with 

5% of the training set, increased the initial data size by 5% until no change 

was noticeable. 
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 The impact of the chunk size on the classification accuracy. Starting with 100 

samples, increased the chunk size by 100 until no change was perceivable in 

the output. 

 The impact of the accumulation ratio factor θ, a positive value between [0, 1] 

on the classification accuracy. 

 The CPU usage. 

 The processing time. 

The performance of ISSPCA and IGSPCA was compared to that of chunk IPCA 

(Ozawa et al., 2008). Experimental results demonstrated improvements using the new 

approaches with respect to dimensionality reduction, processing speed, resource 

requirements, and classification rate. Test results such as classification accuracy, 

processing time, memory requirements were thoroughly analyzed to show the best 

performing streaming-based feature extraction technique that helps keep intruders out of 

the network.  

 

Data Sets 

Experiments described in the previous section were conducted on a continuous 

data streams generated from the network data set kddcup.data_10_percent_corrected 

(DARPA KDD Cup '99 data set), a widely used data set for network intrusion detection 

systems. It is of size ~75 MB and composed of 494,021 connection records or vectors, 41 

features or attributes, and one class label. It represents a 10% subset of the full KDD 

dataset. The KDD Cup '99 data set was built based on the data recorded in the 

DARPA’99 Intrusion Detection System evaluation program (Lippmann, Haines, Fried, 
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Korba, & Das, 2000). The full data is almost one gigabyte of uncompressed data and 

contains about 5 million connection vectors of 41 attributes each. Each record is labeled 

as either normal or as an attack with a specific attack type. There are in total four main 

attack categories: DoS (Denial of Service), R2L (unauthorized access from a remote 

machine), U2R (unauthorized access to local super-user with root privileges), and 

probing (surveillance, port scanning). 

In addition to the KDD Cup '99 data set, the Poker Hand dataset was considered 

for a complete evaluation of the proposed incremental feature extraction approach. The 

Poker-Hand dataset has 1,000,000 records of 11 attributes each. Ten of the attributes are 

predictive and one class attribute describes the PokerHand. Each instance corresponds to 

five playing cards drawn from a desk of 52 cards.  

The following two datasets, which are publicly available, were also used to assess 

how the proposed approaches handled concept drift. 

1. Waveform. The WaveForm dataset is constituted of three classes of waves 

and 21 attributes. Attributes are continuous values between 0 and 6. There are 

5,000 instances. The generator is used to acquire instances with gradual 

concept drift (Breiman, Friedman, Olshen, & Stone, 1984). The artificial 

Waveform dataset was used by Gama, Rocha, and Medas (2003). 

2. WaveFormNoise. The WaveFormNoise dataset is constituted of 3 classes of 

waves and 40 attributes (Breiman et al., 1984). Attributes are continuous 

values between 0 and 6. The later 19 attributes are all noise attributes with 

mean = 0 and variance = 1. There are 5,000 instances. 
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A new dataset was simulated by shuffling the values of the first and the last 

attributes of the WafeFormNoise dataset to assess how the proposed approaches handled 

concept shift. 

Experimental Setup 

The performance of ISSPCA and IGSPCA was compared to that of chunk IPCA 

(Ozawa et al., 2008). The chunk IPCA method updated the eigenspace model with a 

chunk of training samples in a single operation. For each network dataset, the chunk size 

started at 100 (L = 100). This value increased by 100 to evaluate the chunk size impact on 

the feature extraction algorithm and the classification accuracy. Datasets were randomly 

divided into two subsets: training samples and test samples.  

An initial eigenspace was constructed by applying a percentage p (i.e. p = 5%) of 

the training samples to the conventional PCA. The remaining 100 – p (i.e., 95%) of 

training samples were sequentially provided to the incremental approach under 

consideration. The impact of the initial eigenspace was evaluated by increasing the rate of 

the initial dataset by five until classification accuracy showed no change. For each 

experiment, learning time was recorded using a Matlab function cputime. 

 

Measures 

The following measures were collected for each incremental feature extraction 

approach under consideration in this research study: computational cost/time, the size of 

extracted features, and the impact of the data chunk on classification accuracy results 

with continuous network intrusion data streams. The impact of the data streams speed 

was evaluated as well (data moving at constant versus variable speeds). The goal of the 
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sparse PCA feature extraction techniques was to improve benchmark measurements 

obtained using the chunk IPCA (Ozawa et al., 2008). In addition, the impact of concept 

drift and concept shift was evaluated for both algorithms. For each set of results gathered 

in tables, graphs were generated as well. 

 

Resources 

 The resources necessary to conduct this research included the following: 

1. Dimensionality reduction algorithms (Incremental PCA, Sparse PCA). 

2. Various datasets (See data sets section above for details). 

3. Matlab: a high-level language and interactive environment for numerical 

computation, programming, and visualization. 

4. Java Software Development Environment. 

5. Weka Libraries (classification libraries). 

6. HP Laptop running Windows 7, Intel Duo CPU 2 GHz, T6400, 4 GB RAM. 
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Chapter 4  

Results, Data Analysis, and Summary 

Introduction 

 This dissertation introduces two new incremental sparse PCA methods to extract 

features from large data streams. PCA reduces the dimensionality of large datasets by 

finding linear combinations of all variables corresponding to maximal data variance. 

Sparse PCA finds sets of sparse vectors that are used as weights in performing linear 

combinations with maximal data variance. Sparse PCA retrieves the small number of 

features capable of capturing the most of the variance. For example, Sparse PCA in gene 

expression helps find principal components consisting only of very important genes, 

rending their interpretation easier.  

First, Chunk Incremental PCA algorithm (Pang et al., 2008; Yan & Liu, 2012) 

was implemented and evaluated as a baseline for the approaches proposed in this 

dissertation. Two new incremental methods based on recent Sparse PCA techniques were 

then proposed in this research. The new features extraction techniques are called 

Incremental Structured Sparse PCA (ISSPCA) and Incremental Global Power for Sparse 

PCA (IGSPCA), based on the structured PCA (Jenatton et al., 2010) and generalized 

power method for sparse PCA (Journee et al., 2010) respectively. Two flavors of the 

ISSPCA were evaluated, namely ISSPCA-L1 and ISSPCA-Lq. ISSPCA-L1 is a convex 

model based on the standard L1 normalization, whereas ISSPCA-Lq is non-convex with 

Lq quasi-norm regularization q=0.5. 
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Four datasets (Table 1) were used to evaluate the performance of the proposed 

incremental feature extraction algorithms as well as CIPCA. 

Table 1. Datasets Used to Evaluate Algorithms 
Datasets Training data size Testing data size Classes Attributes 

DARPA KDD Cup 395,218 98,804 23 41 

Poker-Hand 25,000 20,000 10 10 

WaveForm 4,000 1,000 3 21 

WaveFormNoise 4,000 1,000 3 40 

 

For each algorithm and each dataset, the following metrics were collected:  

 The impact of the chunk size on the quality of the extracted data subset and its 

classification accuracy. 

 The CPU time: This is the amount of time (in seconds) actually used for 

executing program instructions. CPU time includes neither the Input and 

Output time nor other idle durations. 

 The dimensionality of the reduced dataset. 

 The smallest amount of features capable of capturing the most variance. 

The following sections provided a comparison of the results obtained in this 

research study followed by detailed interpretations. All four datasets used for this 

research study were divided into training and testing samples. Each was split randomly as 

follows: 20% for training and 80% for testing. 

 

Intrusion Detection Dataset 

DARPA KDD Cup '99 is a widely used data set for network intrusion detection 

systems. It has 494,021 connection records or vectors, 41 features or attributes, and one 
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class label. The KDD Cup '99 data set was built by recording data in the DARPA’99 

Intrusion Detection System evaluation program (Lippmann et al., 2000). 

Impact of Data Chunk Size 

Chunk IPCA or CIPCA: Similar to Ozawa et al. (2008), an initial eigenspace was 

generated based on the value 0.1% of initial data subset from the training samples. Then, 

the remaining training sample was fed to the algorithm in sequence for learning. To 

evaluate the influence of chunk size on the feature extraction and the classification 

accuracy, the experiment started with 100 samples (L = 100), then increased the chunk 

size by 100 until the number reached 1,400. The experiment is considered a one-pass 

because training samples were evaluated once and there was no overlap between chunks 

of training data. Five trials were executed and the average performance data points were 

recorded. 

Table 2 and Figure 3 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. We can 

observe that for both CIPCA and IGSPCA, the dimension of the extracted dataset is not 

affected by the chunk size. In addition, we realized that the dimensionality of the reduced 

dataset is the same for both CIPCA and IGSPCA. Conversely, the dimensionality of the 

reduced dataset using ISSPCA-L1 and ISSPCA-Lq bested that of the other two 

algorithms when chunk size was greater than 1,100. 
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Table 2. Intrusion Detection Dataset: Impact of Chunk Size on Dimensionality, θ = 0.9 

Chunk Size 

Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 17.8 17.6 23 23 

200 17.6 17.6 26 22.5 

300 17.6 17.8 21 19.5 

400 17.6 17.6 28.5 21.5 

500 17.6 17.8 19.6 19 

600 
17.6 17.6 19.6 17.6 

700 17.6 17.6 23 17.25 

800 17.6 17.6 19 18.75 

900 17.6 17.8 19.75 18.4 

1,000 17.6 18 17 18.4 

1,100 17.6 17.6 16.4 15.8 

1,200 17.6 17.8 15.2 16.2 

1,300 17.6 17.6 16.2 16.4 

1,400 17.6 17.6 15.6 15.4 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis.  
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Figure 3. Intrusion detection dataset: Impact of chunk size on dimensionality, θ = 0.9. 

 

Table 3 and Figure 4 show the classification accuracy of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. 
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Table 3. Intrusion Detection Dataset: Impact of Chunk Size on Classification Accuracy, θ 

= 0.9 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 98.67 96.10 99.2 99.46 

200 98.68 93.98 99.29 99.17 

300 98.69 99.42 99.20 99.12 

400 98.69 99.39 99.17 99.13 

500 98.62 99.49 99.16 99.28 

600 98.71 99.46 99.16 99.24 

700 98.69 98.63 99.31 99.24 

800 98.63 99.38 99.34 99.14 

900 98.65 99.46 99.37 99.21 

1,000 98.79 99.51 99.17 98.95 

1,100 98.72 99.36 99.27 99.28 

1,200 98.76 90.85 99.20 99.31 

1,300 98.66 98.49 99.08 99.25 

1,400 98.69 99.14 99.26 99.35 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis.  

 

For θ = 0.90, the classification accuracy of ISSPCA-L1 and ISSPCA-Lq is greater than 

that of CIPCA. The classification accuracy of IGSPCA is greater than that of CIPCA for 

chunk sizes of [300… 600] and [800… 1100]. For L = 200 and L = 1 and L=200, CIPCA 

yielded a better classification accuracy than IGSPCA. 
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Figure 4. Intrusion detection dataset: Impact of chunk size on classification accuracy, θ = 

0.9. 

 

Table 4 and Figure 5 respectively show the learning time to generate the reduced datasets 

at the completion of the learning for various values of training sample chunk sizes. 

 

Table 4. Intrusion Detection Dataset: Impact of Chunk Size on Learning Time, θ = 0.9 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 22.59 40.54 1,293.0 1,208.9 

200 27.07 38.44 729.88 621.69 

300 22.9 27.7 422.0 358.0 

400 21.72 25.93 444.6 278.1 

500 21.09 23.83 267.7 169.9 
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Table 4. Intrusion Detection Dataset: Impact of Chunk Size on Learning Time, θ = 0.9 

(continued) 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

600 22.90 23.86 160.1 188.0 

700 24.19 29.12 200.8 141.6 

800 26.28 22.34 119.8 115.1 

900 28.67 28.18 124.8 115.3 

1,000 32.5 35.1 92.65 99.94 

1,100 34.2 37.1 82.3 75.1 

1,200 36.14 38.65 65.62 79.69 

1,300 44.2 37.1 67.1 71.3 

1,400 44.0 41.0 63.7 58.1 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis.  

 

 

Figure 5. Intrusion detection dataset: Impact of chunk size on learning time, θ = 0.9. 
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The learning time required for either ISSPCA-L1 or ISSPCA-Lq is extremely high, 

especially for lower chunk size values. The condition improves for higher chunk size 

values. On the other hand, the learning time required by CIPCA and IGSPCA are mostly 

identical all along. PCA reduces matrices dimensionality by finding principal 

eigenvectors with the largest eigenvalues. 

In CIPCA, as the new data chunk arrives, the dimensionality of the newly reduced 

data matrix or eigenspace is a function of the accumulation ratio threshold. Selecting a 

least optimum threshold θ would cause the eigenaxes to augment frequently. In order to 

evaluate the impact of the impact of the accumulation ratio factor θ on the reduced 

dataset as well as its classification accuracy, experiments used various positive values 

between [0, 1] with each of the following algorithms: CIPCA, IGSPCA, ISSPCA-L1 and 

ISSPCA-Lq. 

 

Table 5. Intrusion Detection Dataset: Impact of Accumulation Ratio on Dimensionality, 

L = 500 
Accumulation 

Ration 

Threshold 

Algorithm (Reduced dimension)  

  CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

0.1 17.6 36.2 4.3 3.3 

0.2 17.6 41.0 6.6 2.67 

0.3 17.6 24.8 6.3 6.0 

0.4 4.6 14.2 8.7 8.3 

0.5 5.6 7.4 9.3 9.3 

0.6 7.4 9.4 14.3 9.3 

0.7 10.4 9.4 13.67 11.0 

0.8 13.6 12.4 19.0 16.0 

0.9 17.6 17.8 19.67 19.0 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis.  
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For data streams with a chunk size of L = 500, the dimensionality of the reduced 

dataset is minimal for ISSPCA-L1 and ISSPCA-Lq when θ is in [0, 0.5]. 

On the other hand, CIPCA and IGSPCA obtained their smaller dimensionality for θ in 

[0.4, 0.5] and θ in [0.5, 0.7], respectively. Note that the original network intrusion 

detection dataset has 41 attributes. The results from this experiment are available in Table 

5 and Figure 6. 

 

 

Figure 6. Intrusion detection dataset: Impact of accumulation ratio on dimensionality, L = 

500. 

 

Next, the experiments featured evaluation of classification accuracy impact on the 
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Table 6. Intrusion Detection Dataset: Impact of Accumulation Ratio on Classification 

Accuracy, L = 500 
Accumulation 

Ration 

Threshold 

Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

0.1 98.69 97.85 96.16 98.31 

0.2 98.668 97.1 81.23 98.95 

0.3 98.766 99.82 98.92 79.31 

0.4 98.81 99.15 98.99 99.2 

0.5 98.67 99.06 99.32 99.25 

0.6 99.03 98.85 99.13 99.06 

0.7 99.19 99.11 99.13 99.19 

0.8 99.25 99.47 99.37 99.3 

0.9 98.63 99.5 99.16 99.29 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis.  

 

Table 6 and Figure 7 show little variation among CIPCA, IGSPCA, ISSPCA-L1, and 

ISSPCA-Lq for θ between [0.4, 0.9]. IGSPCA achieved the maximum classification 

accuracy rate of 99.82% for θ = 0.3. 

 



66 

 

 

Figure 7. Intrusion detection dataset: Impact of accumulation ratio on classification 

accuracy, L = 500. 

 

Table 7. Intrusion Detection Dataset: Impact of Accumulation Ratio on Learning Time, L 

= 500 
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0.7 19.59 26.55 132.15 107.23 

0.8 20.13 25.14 235.24 170.08 

0.9 23.87 30.46 244.15 195.58 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 8. Intrusion detection dataset: Impact of accumulation ratio on learning time, L = 

500. 
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size reached 1,400. Similar to all experiments conducted in this dissertation, five trials 

were executed and the average performance data points were recorded. 

 

Table 8. Intrusion Detection Dataset: Impact of Chunk Size on Dimensionality, θ = 0.7 

Chunk Size 
Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 10.4 9.8 15 13 

200 10.4 10.2 15 14 

300 10.4 10.6 15 13.5 

400 10.4 9.8 14.5 11 

500 10.4 9.4 13.33 11 

600 10.4 9.4 15 11.67 

700 10.4 9.8 15 12 

800 10.6 9.6 15.5 13.25 

900 10.4 10.2 13.8 14.8 

1,000 10.4 9.4 16.4 11.2 

1,100 10.6 10 15 10.2 

1,200 10.4 10.4 13.6 12.4 

1,300 10.6 9.6 13.6 12.4 

1,400 10.6 9.8 13.6 13 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

Table 2 and Figure 3 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes with an 

accumulation ratio criteria θ = 0.9. Table 8 and Figure 9 also provide the dimensionality 

of the reduced datasets at the completion of the learning for various values of training 

sample chunk sizes, but with a different value of accumulation ratio threshold θ = 0.7.  
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A comparison of Figure 3 and Figure 10 shows a lower dimensionality of the 

resulting dataset for all four algorithms (CIPCA, IGSPCA, ISSPCA-L1, and ISSPCA-Lq) 

for θ = 0.7. Also, the dimension of the extracted dataset is not affected by the chunk size 

as it was for θ = 0.9. Therefore, for both CIPCA and IGSPCA, the dimension of the 

extracted dataset is around 10. This is a much better value in comparison with reduced 

dataset of about 18 dimensions with θ = 0.9. Further, the dimensionality of the reduced 

dataset using ISSPCA-L1 fluctuates between 14 and 15 for θ = 0.7, a much better result 

compared to up to 28 obtained for θ = 0.9. Also, the dimensionality of the reduced dataset 

using ISSPCA-Lq varies between 11 and 15 for θ = 0.7. This figure is lower than the 

score of up to 23 while using an accumulation ratio θ = 0.9 (Figure 3). 

 

 

Figure 9. Intrusion detection dataset: Impact of chunk size on dimensionality, θ = 0.7 
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Table 3 and Figure 4 show the classification accuracy of the reduced datasets at 

the completion of the learning for various values of training sample chunk sizes, using an 

accumulation ratio factor θ = 0.9. Table 9 and Figure 10 show the classification accuracy 

of the reduced datasets at the completion of the learning for various values of training 

sample chunk sizes, using an accumulation ratio factor θ = 0.7. For θ = 0.7, the 

classification accuracy rates for all four algorithms (CIPCA, IGSPCA, ISSPCA-L1, and 

ISSPCA-Lq) are greater than those obtained for θ = 0.9. In fact, they are all in the 99% 

range, with the exception of ISSPCA-Lq for L=800. ISSPCA-Lq has the greatest 

classification accuracy rate of 99.39% for L=1100. 

 

Table 9. Intrusion Detection Dataset: Impact of Chunk Size on Classification Accuracy, θ 

= 0.7 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 99.09 99.27 99.37 99.25 

200 99.09 99.08 99.12 99.28 

300 99.08 99.17 99.17 99.24 

400 99.2 99.11 99.24 99.19 

500 99.19 99.11 99.13 99.19 

600 99.09 99.18 99.18 99.22 

700 99.13 99.05 99.18 99.12 

800 99.27 99.17 99.26 98.89 

900 99.08 99.24 99.16 99.15 

1,000 99.11 99.1 99.1 99.15 

1,100 99.11 99.06 99.16 99.39 

1,200 99.08 99.16 99.08 99.16 

1,300 99.19 99.19 99.13 99.21 

1,400 99.11 99.22 99.19 99.14 
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Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 10. Intrusion detection dataset: Impact of chunk size on classification accuracy, θ 

= 0.7 

 

Table 4 and Figure 5 show the learning time for various values of training sample chunk 

sizes, using an accumulation ratio factor θ = 0.9. Table 9 and Figure 10 show the learning 

time for various values of training sample chunk sizes, using an accumulation ratio factor 

θ = 0.7. For θ = 0.7, the CPU time required to complete the learning using each of the 

four algorithms (CIPCA, IGSPCA, ISSPCA-L1, and ISSPCA-Lq) are lower than that 

obtained for θ = 0.9. Therefore, both CIPCA and IGSPCA are faster algorithms than 

ISSPCA-L1 and ISSPCA-Lq. 
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Table 10. Intrusion Detection Dataset: Impact of Chunk Size on Learning Time, θ = 0.7 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

100 9.17 35.31 419.29 296.53 

200 23.3 50.18 369.49 384.59 

300 19.79 41.91 262.92 226.6 

400 18.55 37.43 148.21 154.74 

500 17.46 22.16 114.29 105.02 

600 18.92 24.83 114.18 98.78 

700 19.46 26.58 104.15 89.29 

800 22.04 29.71 117.76 83.11 

900 23.41 30.58 113.67 101.43 

1,000 26.73 27.11 122.63 81.15 

1,100 31.12 29.74 103.48 75.09 

1,200 32.89 34.1 76.12 92.0 

1,300 37.27 32.59 77.49 66.09 

1,400 40.97 37.49 80.53 74.15 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 11. Intrusion detection dataset: Impact of chunk size on learning time, θ = 0.7. 

 

All experiments described so far in this dissertation used an initial data rate of 0.1 
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illustrates that both CIPCA and IGSPCA generated reduced subsets of lower 

dimensionality in comparison with ISSPCA-L1 and ISSPCA-Lq. Moreover, CIPCA and 

IGSPCA results were not influenced by the initial data rate. For increasing initial data 

rate, ISSPCA-L1 and ISSPCA-Lq generated subsets of higher dimensions. This effect 

was more pronounced for ISSPCA-Lq. 
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Table 11. Intrusion Detection Dataset: Impact of Initial Data on Dimensionality, θ = 0.7 

and L = 500 
Initial Data 

Rate 

Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

0.05 10.8 11.2 13.33 11 

0.1 10.4 9.4 13.33 11 

0.15 10.2 9.8 14.67 12 

0.2 9.4 10.4 14.33 12.67 

0.3 10 10 14.33 13.33 

0.4 10.4 9.8 19 16 

0.5 9.6 10.2 15.6 16 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 
 

Figure 12. Intrusion detection dataset: Impact of initial data on dimensionality, θ = 0.7 

and L = 500. 
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Table 12 and Figure 13 show the classification accuracy of the reduced datasets at 

the completion of the learning for various values of initial data rate with an accumulation 

ratio factor θ = 0.7 and a constant chunk size L = 500. While all four algorithms (CIPCA, 

IGSPCA, ISSPCA-L1, and ISSPCA-Lq) displayed an accuracy rate for an initial data rate 

of 0.1, the history is totally different for larger initial data size. IGSPCA, ISSPCA-L1 and 

ISSPCA-Lq were not influenced by the initial data rate. IGSPCA started to show a lower 

accuracy rate for an initial data rate of half the size of the whole training sample. CIPCA, 

on the other hand, displayed a very poor performance once the initial data rate was 15% 

or more of the training sample (Figure 13). 

 

Table 12. Intrusion Detection Dataset: Impact of Initial Data on Classification Accuracy, 

θ = 0.7 and L = 500 
Initial Data 

Rate 

Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

0.05 98.3 99.28 99.16 99.3 

0.1 99.19 99.11 99.13 99.19 

0.15 87.75 99.29 99.2 99.31 

0.2 89.32 99.31 99.02 99.09 

0.3 93.93 99.19 99.16 99.17 

0.4 82.83 99.14 99.22 99.15 

0.5 85.91 88.64 99.12 99.16 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 



76 

 

 

Figure 13. Intrusion detection dataset: Impact of initial data on classification accuracy, θ 

= 0.7 and L = 500. 

 

Table 13 and Figure 14 show the CPU time at the completion of the learning for 

various values of initial data rate with an accumulation ratio factor θ = 0.7 and a constant 

chunk size L = 500. As expected, the learning time diminished with the increase of initial 

data rate for all four algorithms (CIPCA, IGSPCA, ISSPCA-L1, and ISSPCA-Lq). 
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Table 13. Intrusion detection dataset – Impact of Initial data on learning time - θ = 0.7 – 

L = 500 
Initial Data 

Rate 

Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

0.05 24.02 23.15 130.61 102.32 

0.1 20.6 21.36 107.49 90.17 

0.15 18.48 24.89 119.99 95.26 

0.2 17.21 19.66 110.96 94.9 

0.3 15.34 16.48 101.66 82.11 

0.4 15.09 14.41 125.06 95.41 

0.5 12.06 12.34 88.95 69.56 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 14. Intrusion detection dataset: Impact of initial data on learning time, θ = 0.7 and 

L = 500. 
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Table 14 and Figure 15 show the number of original attributes contributing to the 

dimensionality reduction, at various dimensions for all four algorithms (CIPCA, 

IGSPCA, ISSPCA-L1, and ISSPCA-Lq). This test was conducted using the equivalent 

batch mode of each algorithm, which corresponded to a chunk size equal to the size of 

the whole training set. CIPCA used the regular PCA by performing linear combinations 

of all input variables. ISSPCA-L1 and ISSPCA-Lq used the majority of all input 

variables as well (Figure 15). IGSPCA, on the other hand, achieved linear combinations 

using few input attributes. This function facilitated the interpretability of the reduced 

subset by allowing a focus on specific variables for analysis.  

 

Table 14. Intrusion Detection Dataset: Input Variables Contributing in Data Reduction 
Dimension 

Reduced Subset 

Algorithm (Number of contributing attributes) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 41 18 39 39 

11 41 20 39 39 

12 41 19 39 39 

13 41 21 39 39 

14 41 24 39 39 

15 41 25 39 39 

16 41 28 39 39 

18 41 30 39 39 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 15. Intrusion detection dataset: Input variables contributing in data reduction. 

 

 

Summary of Results 
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in terms of dimensionality reduction. Both IGSPCA and CIPCA were not influenced by 

the data chunk size L. ISSPCA-L1 and ISSPCA-Lq, on the other hand, were impacted by 

the data chunk size. The fluctuation was accentuated for ISSPCA-L1. ISSPCA-L1 and 

ISSPCA-Lq achieved a better dimensionality reduction for L = 1,000 or greater (Figure 

3). With respect to classification accuracy, the accuracy rates of all four algorithms were 

within the same range (Figure 4). However, both ISSPCA-L1 and ISSPCA-Lq required 

large CPU time to learn the training dataset (Figure 5).  
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For lower accumulation ratio criteria θ < 0.40, ISSPCA-L1 and ISSPCA-Lq 

bested CIPCA and IGSPCA in terms of dimensionality reduction (Figure 6). However, 

learning times required by ISSPCA-L1 and ISSPCA-Lq were higher for accumulation 

ratio criteria θ > 0.40 (Figure 8). The discrepancy in dimensionality reduction shrank for 

θ = 0.70 (Figures 9 and 10). The variation in the rate of initial data had no impact on the 

dimensionality reduction using CIPCA and IGSPCA. It did, however, influence the 

performance of ISSPCA-L1 and ISSPCA-Lq (Figure 12). The accuracy rate of CIPCA 

was greatly influenced by the rate of initial data (Figure 13). 

While CIPCA and IGSPCA achieved a similar performance overall, IGSPCA found 

principal components composed from a small number of the original variables (Figure 

15). CIPCA found principal components as linear combinations of all original variables. 

Principal component are not easily interpretable if composed from all original variables.  

Figure 4 shows two accuracy rate outliers for IGSPCA using the intrusion detection 

dataset for L=200 and L=1200.  The repeatability of the results leads us to believe that 

the lower accuracy in these specific cases are likely due to the order of giving training 

samples using those chunk sizes on this particular dataset, resulting in the eigenspace not 

having all energy. 

 

Poker-Hand Dataset 

The Poker-Hand dataset has 1,000,000 records of 10 predictive attributes and one 

class attribute each. Each instance corresponds to five playing cards drawn from a desk of 

52 cards. The PokerHand dataset is not divided into training and testing samples. In order 
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to create those, the researcher randomly split the original dataset; 20,000 records formed 

the testing sample, and 25,000 records formed the training subset. 

 

Impact of Data Chunk Size 

For chunk IPCA or CIPCA, an initial eigenspace was generated based on the 

value of 0.1% of initial data subset from the training samples. Then, the remaining 

training sample was fed to the algorithm in sequence for learning. To evaluate the 

influence of chunk size on the feature extraction and the classification accuracy, the 

experiment started with 10 samples, and then increased the chunk size by 20 until the 

number reached 200, with an accumulation ratio factor θ = 0.3. The experiment was a 

one-pass because training samples were evaluated once and there was no overlap between 

chunks of training data. Five trials were executed, and the average performance data 

points were recorded.  

Table 15 and Figure 16 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. Table 15 

and Figure 16 illustrate that for all four algorithms (CIPCA, IGSPCA, ISSPCA-L1, and 

ISSPCA-Lq), the dimensionality of the extracted dataset was not affected by the chunk 

size. In addition, the dimensionality of the reduced dataset was the same for each 

technique.  
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Table 15. Poker Dataset: Impact of Chunk Size on Dimensionality, θ = 0.3 

Chunk Size 
Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 3 3 3 3 

30 3 3 3 3 

50 3 3 3 3 

70 3 3 3 3 

90 3 3 3 3 

110 3 3 3 3 

130 3 3 3 3 

150 3 3 3 3 

170 3 3 3 3 

190 3 3 3 3 

200 3 3 3 3 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 16. PokerHand dataset: Impact of chunk size on dimensionality, θ = 0.3. 
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Table 16 and Figure 17 show the classification accuracy of the reduced datasets 

for at the completion of the learning for various values of training sample chunk sizes. 

The classification accuracy of CIPCA was the lowest for each chunk size of the training 

sample. The classification accuracy of ISSPCA-L1 and ISSPCA-Lq was greater than that 

of CIPCA. The classification accuracy of IGSPCA was the greatest for chunk sizes of the 

training sample of 50 or more. There is a tie between ISSPCA-Lq and IGSPCA for chunk 

size = 110.  ISSPCA-Lq shows higher classification accuracy for chunk sizes of 10, 30 

and 110. 

 

 

Table 16. Poker-Hand Dataset: Impact of Chunk Size on Classification Accuracy, θ = 0.3 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 49.26 49.95 49.39 50.81 

30 49.26 49.6 49.8 50.21 

50 49.26 50.4 49.1 49.752 

70 49.26 50.1 50.26 50.14 

90 49.26 50.24 49.89 49.96 

110 49.25 50.1 49.8 50.12 

130 49.26 50.35 50.34 49.18 

150 49.25 50.49 49.63 49.86 

170 49.26 50.15 49.86 49.82 

190 49.26 50.24 50.17 49.19 

200 49.26 50.53 50.17 49.94 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 17. PokerHand dataset: Impact of chunk size on classification accuracy, θ = 0.3. 
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45 

46 

47 

48 

49 

50 

51 

52 

10 30 50 70 90 110 130 

A

c

c

u

r

a

c

y

 (

%)

 

 

Chunk Size 

Accuracy per Chunk Size, Th = 0.30  

CIPCA 

IGSPCA 

ISSPCA-L1 

ISSPCA-Lq 



85 

 

Table 17. Poker-Hand Dataset – Impact of Chunk Size on Learning Time, θ = 0.3 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 1.12 6.32 61.33 100.57 

30 0.63 2.48 20.84 33.09 

50 0.63 1.78 12.67 20.11 

70 0.57 1.4 9.27 14.21 

90 0.57 1.33 7.32 11.09 

110 0.53 2.2 10.7 14.74 

130 0.85 1.79 9.25 13.36 

150 0.87 1.79 8.14 11.67 

170 0.92 1.68 7.22 10.37 

190 0.92 1.69 6.75 9.35 

200 0.83 1.62 6.21 8.96 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 18. PokerHand dataset: Impact of chunk size on learning time, θ = 0.3. 
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Summary of Results 

 

Multiple experiments were performed on the PokerHand dataset using all four 

incremental algorithms (CIPCA, IGSPCA, ISSPCA-L1, and ISSPCA-Lq). For an 

accumulation ratio factor θ = 0.30, all four incremental algorithms performed identically 

in terms of dimensionality reduction and were not at all influenced by the data chunk size 

L (Figure 16). With respect to classification accuracy, the accuracy rates of all three 

algorithms proposed in this dissertation, namely IGSPCA, ISSPCA-L1 and ISSPCA-Lq, 

were higher than that obtained using CIPCA (Figure 17). Both ISSPCA-L1 and ISSPCA-

Lq required large CPU time to learn the training dataset (Figure 18). 

 

WaveForm Dataset 

The WaveForm dataset has 5,000 instances of 21 predictive attributes and one 

class attribute each. Attributes are continuous values between 0 and 6. The generator is 

used to acquire instances with gradual concept drift (Breiman et al., 1984). The 

WaveForm dataset is not divided into training and testing samples. In order to create 

those, the researcher randomly split the original dataset into two samples; 1,000 records 

formed the testing sample, and 4,000 records formed the training subset. 

Impact of Data Chunk Size 

For chunk IPCA (CIPCA), an initial eigenspace was generated based on the value 

of 0.1% of initial data subset from the training samples. Then, the remaining training 

sample was fed to the algorithm in sequence for learning. To evaluate the influence of 

chunk size on the feature extraction and the classification accuracy, the experiment 

started with 10 samples, then increased the chunk size by 20 until the size reached 100 
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with an accumulation ratio factor θ = 0.8. The experiment was a one-pass because 

training samples were evaluated once, and no overlap existed between chunks of training 

data. Five trials were executed and the average performance data points were recorded.  

Table 18 and Figure 19 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. Table 18 

and Figure 19 illustrate that IGSPCA achieved a better dimensionality reduction than 

CIPCA, ISSPCA-L1, and ISSPCA-Lq. The dimension of the extracted dataset was not 

much affected by the chunk size. The dimensionality of the reduced dataset for ISSPCA-

L1increased unexpectedly for L = 100.  

 

Table 18. WaveForm Dataset: Impact of Chunk Size on Dimensionality, θ = 0.8 

Chunk Size 
Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 10.8 9.4 11.4 11.6 

20 10.4 9.4 11.2 11.2 

30 10.4 9.6 12.2 11.8 

40 10.2 9.4 12.4 12.4 

50 10.2 9.6 12.4 12.6 

60 10.2 9.6 12.4 12.6 

70 10.4 9.6 12.2 12.6 

80 10.2 9.6 12.2 12.8 

90 10.4 9.6 12.2 12.8 

100 10.2 9.6 18.4 12.6 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 19. WaveForm dataset: Impact of chunk size on dimensionality, θ = 0.8. 
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Table 19. WaveForm Dataset: Impact of Chunk Size on Classification Accuracy, θ = 0.8 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 81.3 81.18 75.88 72.64 

20 81.62 80.82 75.62 72.48 

30 81.18 80.76 74.76 73.58 

40 81.2 80.78 73.94 76.4 

50 81.4 80.64 76.08 75 

60 81.9 80.48 73.76 76.96 

70 81.78 81.2 73.5 75.08 

80 81.56 80.92 71.28 75.9 

90 81.02 80.5 72.84 75.98 

100 81.6 80.38 77.96 76.76 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 20. WaveForm dataset: Impact of chunk size on classification accuracy, θ = 0.8. 
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Table 20 and Figure 21 show the learning time to generate the reduced subsets at 

the completion of the learning for various values of training sample chunk sizes. The 

learning time required for either ISSPCA-L1 or ISSPCA-Lq was the highest, especially 

for lower chunk size values. The learning time required by IGSPCA was a little greater 

than that required by CIPCA. CIPCA learning time was 0.17 ± 0.02 second for any 

training sample chunk size greater or equal 20. IGSPCA was more expensive for L = 10 

and L = 20. 

 

Table 20. WaveForm Dataset: Impact of Chunk Size on Learning Time, θ = 0.8 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 0.24 2.52 25.76 25.05 

20 0.17 1.55 13.33 13.46 

30 0.16 1.16 9.3 8.96 

40 0.16 1.0 7.02 6.88 

50 0.15 0.88 5.41 5.67 

60 0.17 0.85 4.68 5 

70 0.16 0.81 3.81 4.34 

80 0.17 0.78 3.42 3.75 

90 0.18 0.73 3.08 8.17 

100 0.19 0.72 8.17 2.88 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 21. WaveForm dataset: Impact of chunk size on learning time, θ = 0.8. 

 

Summary of Results 
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WaveFormNoise Dataset 

The WaveFormNoise dataset has 5,000 instances of 40 predictive attributes and 

one class attribute each. Attributes are continuous values between 0 and 6. The later 19 

attributes are all noise attributes with mean 0 and variance 1. The generator was used to 

acquire instances with gradual concept drift (Breiman et al., 1984). Similar to the 

WaveForm dataset, the WaveFormNoise dataset is not divided into training and testing 

samples. The researcher randomly split the original dataset into two samples; 1,000 

records formed the testing sample, and 4,000 records formed the training subset. 

Impact of Data Chunk Size 

For chunk IPCA (CIPCA), an initial eigenspace was generated based on the value 

of 0.1% of initial data subset from the training samples. Then, the remaining training 

sample was fed to the algorithm in sequence for learning. To evaluate the influence of 

chunk size on the feature extraction and the classification accuracy, the experiment 

started with 10 samples, then increased the chunk size by 10 until it reached 50 with an 

accumulation ratio criteria θ = 0.4. The experiment was a one-pass because training 

samples were evaluated once, and no overlap existed between chunks of training data. 

Five trials were executed and the average performance data points were recorded. 

Table 21 and Figure 22 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. Table 21 

and Figure 22 also show a similar performance between IGSPCA and CIPCA in terms of 

dimensionality reduction in comparison with ISSPCA-L1 and ISSPCA-Lq. In addition, 

the dimension of the extracted dataset obtained by IGSPCA and CIPCA was not 
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impacted by the training chunk size, whereas ISSPCA-L1 and ISSPCA-Lq performed 

better for larger values of L.  

 

Table 21. WaveFormNoise Dataset: Impact of Chunk Size on Dimensionality, θ = 0.4 

Chunk Size 
Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 8 8 11.4 11.6 

20 8.2 8 11.6 10.6 

30 8 8 10.2 9.8 

40 8 8.2 10.8 10.2 

50 8 7.8 10 10.2 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 22. WaveFormNoise dataset: Impact of chunk size on dimensionality, θ = 0.4. 
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respectively, and did not display any significant impact with respect to the chunk size of 

the training sample. Figure 23 shows that both ISSPCA-L1 and ISSPCA-Lq had lower 

classification accuracy rates. 

 

Table 22. WaveFormNoise Dataset: Impact of Chunk Size on Classification Accuracy,  

θ = 0.4 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 81.18 80.2 59.68 64.48 

20 79.8 80.18 62.84 65.34 

30 80.42 79.88 59.6 62.2 

40 79.84 80.02 59.28 64.88 

50 79.52 80.52 63.62 63.8 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 23. WaveFormNoise dataset: Impact of chunk size on classification accuracy, θ = 

0.4. 
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Table 23 and Figure 24 show the learning time to generate the reduced subsets at 

the completion of the learning for various values of training sample chunk sizes. Similar 

to WaveForm dataset, the learning time required for either ISSPCA-L1 or ISSPCA-Lq 

was the highest, particularly for lower chunk size values. CIPCA learning time was 0.215 

± 0.055 Sec. IGSPCA learning time was 1.62 ± 0.71 Sec. IGSPCA was more expensive 

for L = 10 and L = 20. 

Table 23. WaveFormNoise Dataset: Impact of Chunk Size on Learning Time, θ = 0.4 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 0.27 2.33 22.8 24.97 

20 0.19 1.38 12.16 11.84 

30 0.16 1.11 6.86 7.46 

40 0.17 0.99 5.86 4.47 

50 0.16 0.91 4.47 4.77 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 24. WaveFormNoise dataset: Impact of chunk size on learning time, θ = 0.4. 
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Table 24 and Figure 25 show the number of WaveFormNoise original attributes 

contributing to the dimensionality reduction, at various dimensions for all four algorithms 

(CIPCA, IGSPCA, ISSPCA-L1, and ISSPCA-Lq). This experiment used the equivalent 

batch mode of each of the four algorithms. This approach corresponded to a chunk size 

equal to the size of the whole training set. CIPCA used the regular PCA by performing 

linear combinations of all input variables. Surprisingly, ISSPCA-L1 and ISSPCA-Lq 

used all WaveFormNoise input variables as well to form the reduce data subset (Figure 

25 and Table 24). IGSPCA, on the other hand, achieved linear combinations using few 

input attributes. This ability facilitated the interpretability of the reduced subset by 

allowing the algorithm to focus on specific variables for analysis.  

 

Table 24. WaveForm Noise Dataset: Input Variables Contributing in Data Reduction 
Dimension 

Reduced Subset 

Algorithm (Number of contributing attributes) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

7 40 23 40 40 

8 40 24 40 40 

10 40 26 40 40 

11 40 27 40 40 

12 40 28 40 40 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Figure 25. WaveFormNoise dataset: Input variables contributing in data reduction. 
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Incremental Sparse Principal Component Analysis: Impact of Concept Drift and 

Concept Shift 

Concept drift and concept shift cause variables in data streams to change with the 

potential to degrade the predictability accuracy in the long run. Experiments in this 

research aimed to validate the effectiveness of the proposed algorithms IGSPCA, 

ISSPCA-L1, and ISSPCA-Lq in comparison to CIPCA to handle concept drift and 

concept shift. All four algorithms used the accumulation ratio when updating the 

eigenspace to check if its dimensionality should be augmented. The dimensionality was 

increased if the new training chunk sample included new energy or important information 

in the complementary eigenspace. 

The following two datasets were generated with gradual concept drift: WaveForm 

and WaveFormNoise. The WaveForm dataset consists of three classes of waves, 21 

attributes, and 5,000 instances. The WaveFormNoise dataset is constituted of three 

classes of waves, 40 attributes and 5,000 instances. 

Table 21 and Figure 22 show a similar performance between IGSPCA and CIPCA 

in term of dimensionality reduction. In addition, the dimension of the extracted dataset 

obtained by IGSPCA and CIPCA was not impacted by the training chunk size. Regarding 

the classification accuracy, Table 22 and Figure 23 show that accuracy rates from both 

CIPCA and IGSPCA were within the same range and did not display any impact with 

respect to the chunk size of the training sample. 

The WaveFormNoise dataset has 5,000 instances with gradual concept drift 

(Breiman et al., 1984). The researcher generated a new dataset with concept shift by 

shuffling the values of the first and the last attributes of the WafeFormNoise dataset, for 

all instances and maintaining the class label intact (Morshedlou & Barforoush, 2009). 
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The researcher then randomly split the new dataset into two samples; 1,000 records 

formed the testing sample, and 4,000 records formed the training subset. 

Impact of Data Chunk Size 

For chunk IPCA (CIPCA), an initial eigenspace was generated based on the value 

of 0.1% of initial data subset from the training samples. Then, the remaining training 

sample was fed to the algorithm in sequence for learning. To evaluate the influence of 

chunk size on the feature extraction and the classification accuracy, the experiment 

started with 10 samples, then increased the chunk size by 10 until it reached 50 with an 

accumulation ratio criteria θ = 0.4. The experiment was a one-pass because training 

samples were evaluated once, and no overlap existed between chunks of training data. 

Five trials were executed and the average performance data points were recorded. 

Table 25 and Figure 26 show the dimensionality of the reduced datasets at the 

completion of the learning for various values of training sample chunk sizes. Table 25 

and Figure 26 also show a similar performance between IGSPCA and CIPCA in terms of 

dimensionality reduction in comparison with ISSPCA-L1 and ISSPCA-Lq. It is 

remarkable to notice no difference between IGSPCA and CIPCA in term of 

dimensionality reduction using either the original or the modified WafeFormNoise 

dataset (table 21 and table 25). For L in [10 … 50], using the original and the modified 

WafeFormNoise datasets, ISSPCA-L1 achieved a dimensionality reduction of 10.8 ± 0.8 

and 10.2 ± 0.9 respectively.  ISSPCA-Lq achieved a dimensionality reduction of 10.7 ± 

0.9  for the WafeFormNoise and 10.3 ± 0.9 for the modified dataset. 
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Table 25. WaveFormNoise_ConceptShift: Impact of Chunk Size on Dimensionality, θ = 

0.4 

Chunk Size 
Algorithm (Reduced dimension) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 8 8 10.4 11 

20 8.2 8 11.6 11 

30 8 8 10.4 9.8 

40 8 8.2 9.8 11.2 

50 8 7.8 10.2 9.4 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 26. WaveFormNoise_ConceptShift: Impact of chunk size on dimensionality, θ = 

0.4. 
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CIPCA and IGSPCA using the WaveFormNoise dataset are 80.35 ± 0.83 and 80.2 ± 0.32 

respectively. There is no significant impact with introducing a concept shift to the 

WaveFormNoise dataset .  

Table 26. WaveFormNoise_ConceptShift: Impact of Chunk Size on Classification 

Accuracy,  

θ = 0.4 

Chunk Size 
Algorithm (%) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 81.08 80.08 61.92 62.1 

20 79.94 80.18 62.26 60.88 

30 80.44 79.88 61.98 61.88 

40 80.06 80.14 62.46 62.74 

50 79.50 80.52 62.74 66.24 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

Figure 27. WaveFormNoise_ConceptShift: Impact of chunk size on classification 

accuracy, θ = 0.4. 
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learning time required by IGSPCA was slightly greater than that required by CIPCA. 

CIPCA learning time was 0.24 ± 0.08 sec. IGSPCA learning time was 1.64 ± 0.75 sec. 

The learning time using the original WaveFormNoise dataset was 0.215 ± 0.055 sec and 

1.62 ± 0.71 sec for CIPCA and IGSPCA respectively. 

 

Table 27. WaveFormNoise_ConceptShift: Impact of Chunk Size on Learning Time, θ = 

0.4 

Chunk Size 
Algorithm (Seconds) 

CIPCA IGSPCA ISSPCA-L1 ISSPCA-Lq 

10 0.32 2.39 22.46 26.22 

20 0.21 1.35 13.06 14.5 

30 0.16 1.12 8.27 8.14 

40 0.18 1.09 6.29 6.36 

50 0.19 0.89 5.22 4.92 

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 

 

 

Figure 28. WaveFormNoise_ConceptShift: Impact of chunk size on learning time, θ = 

0.4. 
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Summary of Results 

Multiple experiments were conducted on the WaveFormNoise_ConceptShift 

dataset using all four incremental algorithms (CIPCA, IGSPCA, ISSPCA-L1, and 

ISSPCA-Lq).  No significant differences were found using either the 

WaveFormNoise_ConceptShift dataset or the WaveFormNoise dataset. Results are 

compiled in the following table. 

Table 28. WaveFormNoise_ConceptShift: Performance Comparison 
 WaveFormNoise dataset WaveFormNoise_ConceptShift dataset 

 Dimensionality 

Reduction 

Classification 

Accuracy (%) 

Learning 

Time (Sec) 

Dimensionality 

Reduction 

Classification 

Accuracy (%) 

Learning Time (Sec) 

CIPCA  8.1 ± 0.1  80.35 ± 0.83  0.215 ± 0.055  8.1 ± 0.1  80.29 ± 0.79 0.24 ± 0.08  

IGSPCA 8 ± 0.2 80.2 ± 0.32  1.62 ± 0.71  8 ± 0.2  80.2 ± 0.32 1.64 ± 0.75  

ISSPCA-L1  10.8 ± 0.8  61.45 ± 2.17 13.63 ± 9.16  10.7 ± 0.9  61.66 ± 0.8 14.84 ± 9.62  

ISSPCA-Lq 10.7 ± 0.9  63.77 ± 1.57  14.87 ± 10.1 10.3 ± 0.9  63.56 ± 2.68  15.57 ± 10.65  

Note. CIPCA = Chunk Incremental Principal Component Analysis, IGSPCA = Incremental Global Sparse 

Principal Component Analysis, ISSPCA = Incremental Structured Sparse Principal Component Analysis. 
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Chapter 5  

Conclusion 

Operational information systems such as web traffic, face recognition, sensor 

measurements, surveillance, and network intrusion detection systems continuously 

generate large amounts of data to be analyzed in real time for pattern discovery (Akhtar, 

2011). Existing approaches store the whole data off-line before analysis in a batch mode 

(Hebrail, 2008).   

Incremental principal component analysis (PCA) approaches have been proposed 

with the expectation to achieve the dimensionality reduction of data streams. However, 

PCA finds principal components as combinations of all the original variables, rendering 

their interpretation difficult. Computing principal components with maximum variance of 

the dataset while combining few variables improves the interpretability and analysis of 

the data. Sparse PCA produces principal components with sparse loadings, modeled as a 

linear combination of the subset’s original attributes (Zou et al., 2006).  

This research was subdivided into two major stages. First, a previously proposed 

incremental features extraction algorithm CIPCA (Ozawa et al., 2008) was implemented 

to process intrusion detection data streams. This stage was followed by the proposition of 

novel incremental feature extraction methods based on two sparse principal component 

analysis techniques (Jenatton et al., 2010; Journee et al., 2010). The proposed incremental 

sparse PCA approaches extracted features from data streams in real time and found the 

minimum fraction of the original data sufficient to provide the maximum insight about 
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the application under consideration. The proposed approaches were tested using four 

datasets: DARPA KDD Cup, Poker-Hand, WaveForm, and WaveFormNoise. 

An important contribution of this dissertation is the development of methods able 

to dynamically extract optimal subset of data elements sufficient to gain insights from 

massive data streams and take appropriate actions. IGSPCA and ISSPCA were applied to 

the network data streams and efficiently reduced the data dimensionality to 8 and 10 

respectively (θ = 0.5 and L = 500), without negatively impacting the classification 

accuracies. CIPCA’s performance was in the same range. The advantage of the proposed 

IGSPCA and ISSPCA was finding principal components with maximum variance of the 

dataset by combining few variables and improving the interpretability and analysis of the 

data. CIPCA found principal components as linear combinations of all the original 

variables. Another contribution of this dissertation is the capability of IGSPCA and 

ISSPCA to incrementally process data streams with concept drift and concept shift. 

Experiments using WaveForm and WaveFormNoise datasets confirmed these properties. 

Future research should include repeating the experiments in this dissertation using 

exclusively identified sparse variables of each dataset and analyzing the results. The 

framework proposed in this dissertation can be expanded to incorporate future sparse 

PCA algorithms for comparative studies and improvements evaluation. Moreover, this 

dissertation used the decision tree classifier for one-pass incremental learning. More 

efficient classifiers (SVM, BayesNet, NaiveBayes, etc.) can be added to the framework 

for future comparative studies and experiments. 
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Summary 

  Information systems continuously generate large amounts of 

continuous streams of data to be analyzed in real time. Existing data extraction 

approaches store the whole data off-line for analysis in a batch mode (Hebrail, 2008).  

Batch processing of static datasets impacts the processing speed and requires large 

memory capacity (Chandrika & Kumar, 2011).  New algorithms are needed to extract 

optimal fraction of data elements and update data patterns need as new streams arrive. 

Incremental principal component analysis (PCA) approaches have been proposed for 

dimensionality reduction of data streams. PCA are linear combinations of all the original 

variables. Sparse PCA produces principal components with sparse loadings modeled as a 

linear combination of few original attributes. This research aimed to find a method that 

dynamically extracts subset of data elements to obtain insights from massive data 

streams. 

Building on the one-pass CIPCA algorithm (Ozawa et al., 2004), this dissertation 

presents two incremental sparse PCA approaches to reduce the dimensionality of the 

input data stream: ISSPCA (incremental structure sparse principal component analysis) 

and IGSPCA (incremental global power for sparse principal component analysis), 

leveraging the structured sparse principal component analysis technique (Jenatton et al., 

2010) and the generalized power method for sparse principal component analysis 

approach (Journee et al., 2010) respectively. CIPCA reduces the dimensionality of the 

input data stream in chunks using PCA. The data in the next chunk is used to construct 

the feature space. Sparse PCA reduces dataset via a linear combination of few original 

variables. 
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ISSPCA incrementally reduces the input data stream in chunks using structured 

sparse PCA (Jenatton et al., 2010).  IGSPCA uses generalized power method for sparse 

PCA (Journee et al., 2010) and incrementally extracts sparse dominant principal 

components.  

 Comparison of results obtained in this dissertation using CIPCA, IGSPCA and 

ISSPCA presented in this research showed that IGSPCA are mostly at par or 

outperformed CIPCA. ISSPCA performance improved with larger chunk sizes.  It was 

also observed that IGSPCA reduced data using the least number of original variables. In 

addition, the approaches presented in this dissertation were capable of handling concept 

drift and concept shift. 
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