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The use of data mining methods in corporate decision making has been increasing in the 

past decades. Its popularity can be attributed to better utilizing data mining algorithms, 

increased performance in computers, and results which can be measured and applied for 

decision making. The effective use of data mining methods to analyze various types of 

data has shown great advantages in various application domains. While some data sets 

need little preparation to be mined, whereas others, in particular high-dimensional data 

sets, need to be preprocessed in order to be mined due to the complexity and inefficiency 

in mining high dimensional data processing.  Feature selection or attribute selection is 

one of the techniques used for dimensionality reduction. Previous research has shown 

that data mining results can be improved in terms of accuracy and efficacy by selecting 

the attributes with most significance. This study analyzes vehicle service and sales data 

from multiple car dealerships.  The purpose of this study is to find a model that better 

classifies existing customers as new car buyers based on their vehicle service histories. 

Six different feature selection methods such as; Information Gain, Correlation Based 

Feature Selection, Relief-F, Wrapper, and Hybrid methods, were used to reduce the 

number of attributes in the data sets are compared. The data sets with the attributes 

selected were run through three popular classification algorithms, Decision Trees, k-

Nearest Neighbor, and Support Vector Machines, and the results compared and analyzed. 

This study concludes with a comparative analysis of feature selection methods and their 

effects on different classification algorithms within the domain. As a base of comparison, 

the same procedures were run on a standard data set from the financial institution 

domain. 
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Chapter 1 

 

Introduction 

 

 

Background 

     Businesses are constantly looking for more methodologies to keep them competitive 

in today’s marketplace. The low cost of disk space and ease of data capture (i.e., 

barcodes, Radio Frequency Identification - RFID tags, and credit card swipes) have led 

for the storage of enormous amounts of data. The data comes from various systems in the 

enterprise such as, Point of Sale (POS) systems, web sites, Customer Relationship 

Management (CRM) software, and more. In past decades this type of information has 

been stored in data-warehouses and mostly used to produce trending and historical 

reports using tools such as Online Analytical Processing (OLAP) and Structured Query 

Language (SQL) (Watson & Wixom, 2009). 

     Today, as computing power increases and becomes more affordable, a new trend 

playing an important role is to mine the data for unknown patterns and to extract data that 

is previously unknown that may be useful to improve the decision making process 

(Fayyad, Piatetsky-Shapiro, & Smyth, 1996).  

Chen, Han, and Yu (1996) state: Data mining, which is also referred to as 

knowledge discovery in databases, means a process of nontrivial 

extraction of implicit, previously unknown and potentially useful 

information (such as knowledge rules, constraints, regularities) from 

databases. (p.866) with a goal of making it ultimately understandable. 
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     This discovery of knowledge has been used by financial institutions, to detect fraud 

and Index prices (Major & Riedinger, 1992); in medical research, such as heart disease 

prediction (Palaniappan & Awang, 2008); and in marketing, to create tools such as 

market-basket analysis (Agrawal, Mannila, Srikant, Toivonen & Verkamo, 1996). 

Data mining, which is mistakenly used as a synonym to Knowledge Discovery in 

Database  (KDD), is just one of the steps in the knowledge discovery process (Fayyad, 

1996).  In general, data mining methods can be classified as two categories: supervised 

and unsupervised learning methods (Han, Kamber, & Pei, 2011). In supervised learning, 

the algorithm uses a training data set to learn model parameters. Classification 

algorithms, such as Decision Trees (Breiman, Friedman, Stone, & Olshen, 1984), Support 

Vector Machine (SVM) (Vapnik, 1995), and Nearest Neighbor (Cover & Hart, 1967) are 

all members of this group. Unsupervised learning, on the other hand, uses the data itself 

to build the model. Clustering algorithms are the best known of this group. A third type, 

semi-supervised, has also been introduced as a hybrid option. Matching the data set being 

studied with the appropriate data mining algorithm is one of the key factors for a 

successful outcome.  

     As more information is collected from different sources, the likelihood of needing to 

work with high dimensional data sources increases. High dimensional tables or those 

containing more than 10
2
 to 10

3
 attributes are starting to be the norm (Fayyad, 1996). 

Some disciplines such as genomic technology have sources that contain thousands if not 

tens of thousands of attributes (Dougherty, Hua, & Sima, 2009).  
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     Dealing with high dimensional databases has been a key research area in statistics, 

pattern recognition, and machine learning (Blum & Langley, 1997). Researchers are just 

now applying the same interest to commercial data sets. 

 

Statement of Problem and Goal 

     While disciplines such as bioinformatics and pattern recognition have been using data 

mining for years, more research needs to be done on high dimensional business data. The 

primary goal of this study is to use a real-world example, records from auto dealerships 

service departments, for this research. The main objective is to identify potential buyers 

of new vehicles based on the service history of their current vehicles. While most of the 

data in other domains come from a single source, the data used in this research came 

from many different systems. The data to be used in this study was collected from service 

records of approximately 200 automobile dealerships. This kind of data was combined 

with customer specific data retrieved from the Customer Relationship Management 

(CRM) systems of these same dealerships. The end result is a highly dimensional data set 

that contains thousands of records. There are several problems when data mining in any 

of high dimensional data sets.  

1. As the number of features (dimensions) increases, the computational cost of 

running the induction task grows exponentially (Kuo & Sloan, 2005). This curse 

of dimensionality, as reported by Powell (2007) and Guyon & Elisseeff (2003), 

affects supervised as well as unsupervised learning algorithms. 

2. The attributes within the data set may also be irrelevant to the task being studied, 

thus affecting the reliability of the outcomes.  
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3. There may be correlation between attributes in the data set that may affect the 

performance of the classification.  

     Feature selection or attribute selection is a technique used to reduce the number of 

attributes in a high dimensional data set. By reducing the number of variables in the data 

set the data mining algorithm’s accuracy, efficiency, and scalability can be improved 

(Guyon & Elisseeff, 2003). The two main approaches to feature selection are the filtering 

and wrapper methods. In the filtering method the attributes are selected independently to 

the data mining algorithms used. Attributes deemed irrelevantly will be filtered out (John, 

Kohavi, & Pfleger, 1994). The wrapper method selects attributes by using the data 

mining algorithm selected as a function in the evaluation process (John, Kohavi, & 

Pfleger, 1994). 

      One of the successful factors in data mining projects depends on selecting the right 

algorithm for the question on hand. One of the more popular data mining functions is 

classification (Wu, et al., 2008). For this study we have opted to use several classification 

algorithms, as our goal is to classify our data into two labels, referred to as binary 

classification. There are different types of classification algorithms available. For the 

purposes of this study we have chosen C4.5, a Decision Tree algorithm, K-Nearest 

Neighbor (K-NN), and Support Vector Machine (SVM) algorithms.  

 

The goal in this research is made up of five related sub-goals as follows:  

 

1) Compare and contrast different feature selection methods against the mentioned 

high dimensional data set and a reference data set. Both filter and wrapper 

methods were applied to these data sets, and their results are compared and 
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analyzed. The classification accuracy achieved by each method is compared 

against the better feature selection method found. 

2) Repeat the above procedure by using different classification methods, including 

C4.5, a Decision Tree algorithm, K-Nearest Neighbor (K-NN), and Support 

Vector Machine (SVM) algorithms. 

3) Compare the accuracy of the classification algorithms by using the best attributes 

selected for each algorithm. All methods were tested and validated on a binary 

classification task. 

4) Use different thresholds in the classification systems and compare the effects on 

accuracy. K values in K-NN, number of nodes in Decision Trees, and Cost of 

Error (C) and Gamma settings (𝛾)  in the SVM algorithm. 

5) Determine which classification algorithm and feature selection combination 

produces the better results in order to determine new potential car buyers. 

 

The classification algorithms, Decision Tree, K-Nearest Neighbor, and Support Vector 

Machine, are selected from the top 10 most commonly used algorithms (Wu, et al., 

2008). 

 

 

Relevance and Significance 

     The application of data mining for decision making is relatively new in some real 

world environments. The purpose of this research was to run a comparative analysis on a 

real world data set not only on the feature selection methods but on different 

classification algorithms as well. In addition, different performance measures were 
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compared to illustrate the difference in using the previously mentioned methods and 

algorithms. 

Barriers and Issues 

     As in many other data mining exercises we were confronted with several obstacles. 

The automotive data set consists of thousands of attributes and hundreds of thousands of 

records. Preliminary queries ran against our data tables showed that approximately 20% 

of the records contained null values on critical features. The quality of the data in our 

data set must be improved by cleaning the noise and dealing with null values. The 

original data set is also composed of disparate sources. This heterogeneity was dealt in 

the prepossessing stage of our study. Another challenge presented in this study is the 

highly unbalanced dataset. This imbalance, 90% in one class vs. 10% in the other, is a 

result of having the majority of records in a class other than the one of interest. The data 

set size restriction imposed on us by the software used in this research is limited by the 

amount of memory available in the system. We have tried to lift this restriction by 

populating the test computer with 32GB of random access memory. In addition, the data 

set was reduced initially by random selection due to its size (thousands of records). 

Finally, over-fitting the data to a particular model is another obstacle that needed to be 

addressed. This was accomplished by implementing feature selection methods, 

reasonable values for k when using the K-NN algorithm, and post pruning our decision 

trees. 

      Due to time constraints and the number of different permutations possible in our 

study, we restricted ourselves to comparing 6 feature selection methods (3 filter, 2 

wrapper, and 1 hybrid) on 3 of the most popular classifier algorithms, Decision Trees 
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(C4.5), Support Vector Machines (SVM), and K-Nearest Neighbor (K-NN).  The 

following are the definition of terms used in this dissertation: 

Definition of Terms 

AUC – Area under the receiver-operating-characteristic curve 

C45 - Decision Tree Algorithm  

CRISP-DM - Cross-Industry Standard Process-Data Mining 

CRM – Customer Relationship Management 

F-Measure – Metric used for classification accuracy 

KDD – Knowledge Discovery in Database 

K-NN - K Nearest Neighbor  

ROC – Receiver Operating Characteristic 

SVM - Support Vector Machine 

WEKA – Waikato Environment for Knowledge Analysis 

Curse of Dimensionality – A term used to describe the difficulty and increase in cost of 

computing as the number of features increases. 

 

Organization of the Remainder of the Dissertation Report 

     Chapter 2 includes a review of literature related to the use of feature selection to 

increase the effectiveness of data mining models. Different methods were compared and 

contrasted as to their strengths and weaknesses. In addition, the data mining algorithms, 

classification in particular, are reviewed, discussed and compared. Current, and past 

research were also evaluated. It concludes with an analysis of  the selected feature 

selection methods and classification algorithms selected for this research. 
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     Chapter 3 proposes the methodology to be used in this research. The CRISP-DM 

process for knowledge discovery is discussed. Steps in the process such as preparation 

and cleaning of the source data will be described in detail. The pre-processing stage and 

transformation stage which includes feature selection are also detailed. The feature 

selection methods proposed are discussed and metrics used for comparison are explained. 

The classification algorithms selected for this study are detailed along with the tests used 

to analyze their effectiveness. 

     Chapter 4 presents and describes the results of the study. It begins with the results of 

applying the feature selection methods in our data sets. Once the feature sets have been 

reduced, a new data set is saved for each method to be used in the classification phase. 

Our selected classification algorithms are applied to each data set and the results are 

compared using different performance measures.  

     Chapter 5 reviews our research questions, discusses our conclusions of the research 

based on the results, and provides suggestions for future research. 

     The data schema, data dictionaries, parameters used in our workbench software, and 

all the classification results are presented in the Appendices.   



9 

 

 

 

Chapter 2 

 

Review of Literature 

 

 

 

     In today’s competitive market, companies must make critical decisions that will affect 

their future. These decisions are based on current and historical data the enterprise has 

collected using Customer Relationship Management (CRM), Enterprise Resource 

Management (ERP), websites, and legacy applications. As the dimensionality and size of 

the data warehouses grows exponentially, domain experts must use tools to help them 

analyze and make decisions in a timely manner.  

Knowledge Discovery in Data (KDD)       

     The field of Knowledge Discovery in Databases (KDD) has grown in the past several 

decades as more industries find a need to find valuable information in their databases. 

The KDD process (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) is broken down into five 

phases (Figure 1);  

1. Selection – The first stage consists of collecting data from existing sources to be 

used in the discovery process. The data may come from single or multiple 

sources. This may be the most important stage since the data mining algorithms 

will learn and discover from this data. 

 

2. Preprocessing - The main goal of this stage is to make the data more reliable. 

Methods used to account for missing data are analyzed and implemented. Dealing 

with noisy data or outliers is also part of this stage. 
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3. Transformation – Now that we have reliable data we can make it more efficient. 

The uses of feature selection methods to reduce dimensionality and feature 

extraction to combine features into new ones are implemented at this point. 

Discretization of numerical attributes and sampling of data are also common tasks 

performed in this stage. 

4. Data Mining – Before the data is mined, an appropriate data mining task such as 

classification, clustering, or regression needs to be chosen. Next, one or several 

algorithms specific to the task, such as decision trees for classification, must be 

properly configured and used in the discovery of knowledge. This process is 

repeated until satisfying results are obtained. 

 

5. Evaluation – The last step is the interpretation of results in respect to pre-defined 

goals. A determination is made if the appropriate data mining model was chosen. 

All steps of the process are reviewed and analyzed in terms of the final results.   

     This study concentrates in two critical areas of the KDD process; transformation by 

reducing the feature set and the data mining process. 
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Feature Selection 

     As the dimensionality of data increases so does the likelihood of having attributes 

which are irrelevant, redundant, and noisy (Chang, Verhaegen, & Duflou, 2014).  A 

common method of reducing the dimensionality of the data to be analyzed is to reduce 

the number of features or variables to a more manageable number while not reducing the 

effectiveness of the study. 

     Feature selection or variable selection consists of reducing the available features to a 

set that is optimal or sub-optimal and capable of producing results which are equal or 

better to that of the original set. Reducing the feature set scales down the dimensionality 

of the data which in turn reduces the training time of the induction algorithm selected and 

computational cost, improves the accuracy of the final result, and makes the data mining 

results easier to understand and more applicable (Guyon & Elisseeff, 2003; Kohavi & 

John, 1997). While reducing the feature set may improve the performance of most 

classification algorithms, especially for K-NN algorithm, it may also lower the accuracy 

of decision trees (Li, Zhang, & Ogihara, 2004). Since decision trees have the capability of 

reducing the original feature set in the tree building process, beginning the process with 

fewer features may affect final performance.  

     Dash and Liu (1997) broke down the feature selection process into four steps; 

generation, evaluation, stopping criterion, and validation (Figure 2). 
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Figure 2.     Feature Selection Process (Liu & Yu, 2005) 

 

1. The first step, generation, involves searching the space of features for the subset 

that is most likely to predict the class best. Since the total number of possible 

subsets is 2
n
, where n is the number of features, using all attributes becomes costly 

as the dimensionality of the data increases. In order to minimize cost search, 

algorithms have been developed that scan through the attributes in search of an 

optimal subset. Two common methods of traversing the space are Sequential 

Forward Selection and Backward Elimination. The Sequential Forward Selection 

begins with an empty set and adds attributes one at a time. Backward Elimination, 

on the other hand, begins with the entire set of attributes and starts eliminating 

until a stopping criterion has been met. Other variations such as a random method 

may be used which adds or deletes variables in its search for an optimal set 

(Devijer & Kittler, 1982). Other algorithms, such as; the Beam Search (BS) and 
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Smart Beam Search (SBS) algorithms select the best k features (beam-width), then 

proceed to add and test additional features to each of the selected k features until a 

stopping criterion is met (Ladha & Deepa, 2011).  In their studies, Hall and Smith 

(1998) determined that backward and forward elimination search methods, 

although elementary, were proved to be as effective as more sophisticated ones 

such as Best First and Beam search algorithms (Rich & Knight, 1991). 

2. The second step in the process uses a predetermined evaluation function that 

measures the goodness of the subset (Liu & Yu, 2005). This measurement is then 

used to determine the ranking of the evaluated sets, which in turn are used in the 

selection process. Among these functions are Information Gain, Correlation 

Analysis, Gini Index, and in the case of wrapper methods the induction algorithm 

itself. 

3. The third step in the process is the stopping criterion. There are many ways in 

which the feature search may stop. The process may be stopped if the new feature 

set does not improve the classification accuracy. Other options are running a 

predetermined number of iterations, reaching a previously defined number of 

features, or selecting the top n features with the highest ranking. 

4. The final step is the validation of the results against the induction algorithm 

selected. While not exactly being a part of the actual selection process, the authors 

include it as it will always follow the selection process (Liu & Yu, 2005). 

    Feature selection methods fall into three groups, Filter, Wrapper, and Hybrid. We will 

discuss each in the following sections. 
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Filter 

     The filter method of feature selection reduces the number of features using properties 

of the data itself independently to what learning algorithm is eventually used (John, 

Kohavi, and Pfleger, 1994). One advantage of applying a filter algorithm to a feature set 

is that the number of features used in the final induction algorithm will be reduced. 

Therefore not only the performance of classification algorithms will be improved, but 

also amount of the computer processing time will be reduced. Unlike wrapper methods, 

filter methods do not incorporate the final learning algorithm in their process. This 

independency has been reported as another benefit of using filter methods (Ladha & 

Deepa, 2011).  Another benefit is that the same features may be used in different learning 

algorithms for comparative analysis. Hall and Smith (1998) reported that some filter 

algorithms such as Correlation-based Feature Selection (CFS) might produce results 

similar to or better than wrapper models on several domains. Yu and Liu (2003) also 

proposed a new correlation based feature selection method. In their study they showed 

the efficiency and effectiveness of such methods when dealing with highly dimensional 

data sets. However, Saeys et al. (2007) noted that filter based selection methods have the 

disadvantage of not interacting with the classifier algorithm eventually used. Another 

disadvantage reported was that most filter methods are univariate in nature, meaning that 

they don’t take into consideration the values of other attributes. Their study was 

conducted on a highly dimensional bioinformatics data set (Saeys et al., 2007).  

     Hall and Holmes (2003) benchmarked the filtered based feature selection and one 

wrapper based method against 15 test data sets in their experiments. Their conclusion was 
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that filter based methods varied depending on the data set, but generally they were faster 

and improved the effectiveness of the classifying algorithms.  

     This study evaluated three different filter algorithms: two multivariate algorithms 

Relief-F and Correlation Based Feature Selection (CFS), and, information gain a 

univariate algorithm. Each method is described in the following paragraphs. 

     The principal behind the Relief-F algorithm (Kononenko, 1994) is to select features at 

random and then, based on nearest neighbors, give more weight to features that 

discriminate more between classes. These features are in turn ranked based on their 

relevance. In their empirical study, Wang and Makedon (2004) concluded that the Relief-

F algorithm produced similar results to that of other filter algorithms, such as Information 

Gain and Gain Ratio, when the Relief-F algorithm is used in their particular domain, gene 

expression data.  

     Correlation-based Feature Selection (CFS) algorithms looks for features that are 

highly correlated with the class which has no or minimal correlation with each other 

(Hall, 2000).  

     Our last feature selection algorithm is information gain (IG). IG is a method that ranks 

features based on a relevancy score which is based on each individual attribute. The fact 

that the correlation between attributes is ignored makes it a univariate method. 

     Comparative studies between CFS and Gain Ratio methods have been performed in 

the past on different data domains. Karegowda, Manjunath, and Jayaram (2010) found 

that using the CFS method produced better results than Gain Ratio but at a substantial 

cost on computer time. 
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Wrapper 

     Unlike the filter method, wrapper algorithms use a preselected induction algorithm as 

part of the feature selection process. As features are added or subtracted the final results 

are ranked as to effectiveness of the selection. Since the induction algorithm itself is used 

in the evaluation phase of the selection process wrapper methods tend to score better 

results than filter methods. Kohavi and John (1997) compared the wrappers for feature 

subset selection against filter methods. They concluded that relevancy of attributes 

contribute greatly to the performance of the learning algorithms when the algorithm is 

taken into consideration. However, there are some limitations to these methods. The 

computational cost of running the evaluation is far greater than that of filter methods and 

increases as the number of attributes increases. Another disadvantage of the wrapper 

method is the likelihood of over-fitting the data.  

     There are also other wrapper methods. Instead of using single method wrapper such as 

sequential forward selection, Gheyas and Smith (2010) proposed a new method, 

simulated annealing generic algorithm (SAGA), which incorporates existing wrapper 

methods into a single solution. The research showed that combining methods reduced the 

weaknesses that were inherent to each individually.  

     Maldonado and Weber (2009) proposed a wrapper method based on the Support 

Vector Machine (SVM) classification. Their study concluded that using such method 

would avoid over fitting the data due to its capability of splitting the data. It also allowed 

the use of different Kernel functions to provide better results. One drawback noted was 

that their proposed algorithm used the backward elimination feature which was 

computationally expensive when working with highly dimensional data sets. 
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Hybrid/Two Stage Design 

     A hybrid method that incorporates the above methods has also been proposed (Kudo 

& Sklansky, 1998; Bermejo, de la Ossa, Gamez, & Puerta, 2012). This method uses a 

filter method in the first pass to remove irrelative features and then a classifier specific 

wrapper method to further reduce the feature set. By reducing the feature set from n 

features to a lower number k, the computation space in terms of the number of features is 

reduced from 2𝑛 to 2𝑘. This hybrid filter-wrapper method would retain the benefits of the 

wrapper model while decreasing the computational costs that would be required by using 

a wrapper method alone. 

 

Data Mining 

     The data mining phase of the KDD process is where the discovery of patterns in the 

data occurs. This discovery is performed by machine learning algorithms. This study will 

concentrate on the classification family of learning algorithms. 

Classification Algorithms 

     One leg of this research is in classification algorithms. The goal of classification 

algorithms is to learn how to assign class labels to the unseen data based on models built 

from training data. When only two class labels exist, the classification is said to be 

binary. When more than two class labels exist, the problem becomes a multiclass 

classification. This study was focused on binary classification problems and in the 

comparison of different feature selection methods and their impact on three commonly 

studied classifier algorithms, K Nearest Neighbor, Decision Tree, and Support Vector 

Machine (SVM). 
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K-Nearest Neighbor K-NN 

     K-Nearest Neighbor (K-NN) classification is one of the simplest methods available for 

classifying objects (Cover & Hart, 1967). The algorithm assigns a class to the object 

based on its surrounding neighbor’s class using a pre-determined distance function 

(Figure 3). 

 

 

Figure 3.   K-Nearest Neighbor with k = 3 

 

     The number of neighbors selected, k, is a positive odd integer, usually small, to avoid 

potential ties. If the value of k is 1, then the object is classified in the same class as its 

closest neighbor. One of the advantages of this method is that no complex training is 

required, an approach known as “lazy learner” or instance based learner. Kordos, 

Blachnick, & Strzempa (2010) showed that a properly configured K-NN may be as 

highly effective, if not more, than other classification algorithms.  
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     The results of the K-NN algorithm depend on what values are used in its computation. 

The value, k, is the number of neighbors that will decide the class of the element in 

question. To avoid potential over-fitting of the data, researches have commonly used 

small numbers. In their studies, Cover and Hart (1967), proved that good predictions 

could be attained by using a value of k = 1. However, Kordos et al. (2010) reported that 

researchers should not confine themselves to small k values but test values in the ranges 

of 10 to 20 as well. Their research showed that while using a value in a higher range may 

take more computation time, but it may produce better results. Hamerly and Speegle 

(2010) proposed an algorithm that would cycle through different k values in order to 

minimize computational time while finding an optimum k value for the data set.  

The second factor that may affect the outcome is how the distance between the elements 

is calculated. By default most researchers’ use the Euclidean distance, but other 

calculations such as Chebyshev and Manhattan distance have also been implemented 

(Cunningham & Delany, 2007). Finally, in order to improve the results even more, 

weighting the distance calculation based on feature ranking has been studied as well 

(Hassan, Hossain, Bailey, & Ramamohanarao, 2008; Han, Karypis, & Kumar et al., 

2001). 

The advantage of using K-NN over other classification algorithms is that it is intuitive 

and easy to setup. However, there are several disadvantages when using the K-NN 

algorithm. 

1. The distance function must be carefully selected and fine-tuned to achieve better 

accuracy. Since the distance equation is computed for all features selected, 
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features with higher scale values would dominate. In order to account for this, 

normalization of the attributes is performed before the distance is measured.  

2. Data with irrelevant or correlated features must be cleaned beforehand as to not 

skew the results of the process (Bhatia & Vendana, 2010).  

3. Computation cost is greater than other algorithms, since the process is computed 

in memory the amount of memory required is high. As high speed computer and 

memory become more affordable, this final disadvantage is becoming less 

concerned. 

 

Decision Trees 

     Decision Trees is one of the most commonly used methods in classification (Ngai, 

Xiu, & Chau, 2009). Like all classification algorithms, the methods objective is to 

classify a target variable based on existing attribute values. In the case of decision trees, 

the process is broken down into individual tests (if-then) which begin at the root node and 

traverse the tree, depending on the result of the test in that particular node. The tree 

begins at the root node. From the root node the tree branches or forks out to internal 

nodes. The decision to split is made by impurity measures (Quinlan, 1986). Two 

commonly used measures in tree construction are Information Gain and Gini Index 

(Chen, Wang, & Zhang, 2011). These nodes in turn will continue to split until a final 

node or leaf node is grown. The leaf node determines the final classification of the 

variable being tested. Since each node tests a specific attribute in the data set, the model 

is very easy to understand. Tests at each node can be done on discrete as well as 

continuous data types. By default the tree will try to cover all possible outcomes in its 
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structure. The disadvantages of this method are that the tree will over-fit the data into its 

solution. The complexity of the tree will make the domain expert hard to follow the flow 

of decision making in the tree.  

There are several ways to prevent over-fitting:  

1. The processing of nodes can be stopped when all records belong to the same 

class.  

2. Stop processing nodes when a predetermined threshold has been met or when all 

records have similar attribute values.  

3. If expanding current node does not improve the information gain, then a leaf node 

can be introduced.  

4. Other methods, such as post pruning (Witten et al., 2011), may be employed. In 

this case the tree is fully grown and then pruned for unnecessary branches. In their 

studies, Tsang et al. (2011), reported that pruning the decision trees improved the 

final results of the classification significantly. 

     There are several benefits to use decision trees. The algorithms are fast at classifying 

records, and easy to understand. They can handle both continuous and discrete attributes. 

The important attributes are easily identified by the decision maker. However, there are 

some disadvantages as well. Variations in data may produce different looking trees 

(Rokach & Maimon, 2005; Otero, Freitas, & Johnson, 2012), which are not good at 

predicting continuous attributes, because irrelevant attributes and noisy data may affect 

the tree structure (Anyanwu & Shiva, 2009). In addition, if the data set has missing 

attribute values, then the results of which the impurity measures computed will be 

affected. To circumvent this problem different methods have been introduced, such as 
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mean substitution and case substitution (Brown & Kros, 2003) which deal with missing 

values in data sets. Using this method, missing values are replaced with the mean of  the 

given attribute and the substitutions are treated as valid observations. 

When the ID3 (Iterative Dichotomiser 3) decision tree inducer was first introduced by 

Quinlan (1986), it did not support continuous attributes. Only categorical values were 

supported. Later, Quinlan(1993) introduced C4.5 which handled continuous attributes. 

The obstacle was overcome by discretizing the continuous data in order to perform 

testing at each node. Other inducers such as CART (Classification and regression trees) 

(Breiman et al., 1984) and SLIQ (Supervised Learning in Ques) (Metha et al. , 1996) 

have been introduced as well. 

     Decision tree classification has been studied in the medical sciences (Anunciacao et al. 

2010; Ge and Wong 2008; Chen et al. 2011), text classification (Irani et al. 2010), and 

spam detection (Bechetti et al. 2009). 

 
 

SVM 

     Support Vector Machines (SVM) (Vapnik, 1995) has shown great promise in binary 

classification (Yang & Liu, 1999). The goal of the SVM algorithm is to map the training 

data into a multi-dimensional feature space and then find a hyper-plane in said space that 

maximizes the distances between the two categories (Figure 4a-b).  
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Figure 4a.   Linear Support Vector Machine 

 

 

Figure 4b.   Radial Support Vector Machine 
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     Since the classifications may not be clearly separable by a linear plane non-linear 

kernels functions have been used (Figure 4b). Boser et al. (1992) reported that using non-

linear functions proved to achieve higher performance and use less computing resources.  

     In addition, since features with different scale may affect the results of the SVM 

algorithm, normalization of the numeric data is performed. In addition, normalizing the 

data brings the numerical data within the same scale as categorical data, that is, to a (0, 1) 

scale.  

Performance Measures 

     In order to determine the effectiveness of the classification algorithm used, a 

measurement is needed. Commonly used measurements include classification accuracy, 

F-Measure, precision, recall, Receiver Operating Characteristic (ROC) curves and Area 

Under the Curve (AUC) (Fawcett, 2006). These measurements can be calculated by the 

classification results commonly tabulated in a matrix format called a Confusion Matrix.  

Confusion Matrix 

     In a classic binary classification problem, the classifier labels the items as either 

positive or negative. A confusion matrix summarizes the outcome of the algorithm in a 

matrix format (Chawla, 2005). In our binary example, the confusion matrix would have 

four outcomes: 

True positives (TP) are positive items correctly classified as positive. 

True negatives (TN) are negative items correctly identified as negatives. 

False positives (FP) are negative items classified as positive.  

False negatives (FN) are positives items classified as negative.  

Table 1 illustrates a sample confusion matrix. 
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Table 1.   Confusion Matrix 

Confusion Matrix Classified As: 

Negative Positive 

Actual 

Class 

Negative TN FP 

Positive FN TP 

 

The following performance measures use the values of the confusion matrix in their 

calculation. 

Classification Accuracy 

     The simplest performance measure is accuracy.  The overall effectiveness of the 

algorithm is calculated by dividing the correct labeling against all classifications. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

The accuracy determined may not be an adequate performance measure when the number 

of negative cases is much greater than the number of positive cases (Kubat et al., 1998). 

F-Measure 

     F-Measure (Lewis and Gale, 1994) is one of the popular metrics used as a 

performance measure. The measure itself is computed using two other performance 

measures, precision and recall. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision is the number of positive examples classified over all the examples classified. 

Recall, also called the True Positive Rate (TPR), is the ratio of the number of positive 
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examples classified over all the positive examples. Based on these definitions F-measure 

is defined as follows: 

𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

     In essence, the F-Measure is the harmonic mean of the recall and precision measures. 

 

   Using the confusion matrix and the performance measures mentioned above, Bramer 

(2007) noted four extreme cases a confusion matrix may detail: 

   1) A Perfect Classifier - A classifier that classifies all instances correctly. All 

positives are classified as positive and all negatives are classified as negative.  

   2) The Worst Classifier – A classifier that does not predict any positives or 

negatives correctly. 

   3) An Ultra-Liberal Classifier – A classifier that predicts all instances as positive. 

   4) An Ultra-Conservative Classifier – A classifier that predicts all instances as 

negative. 

Tables 2a-2d show the confusion matrix for these cases along with the classification 

measures related to each matrix. 
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Table 2a.   Confusion Matrix for a Perfect Classifier 

Perfect Classifier 

Total Instances 

 Predicted 

Positive Negative 

Actual Positive P 0 P 

Negative 0 N N 

TP Rate (Recall) = P / P = 1 

FP Rate = 0 / N = 0 

Precision = P / P = 1 

F Measure = 2 × 1 / (1 + 1) = 1 

Accuracy = (P + N) / (P + N) = 1 

 

 

Table 2b.   Confusion Matrix for Worst Classifier 

Worst Classifier 

Total Instances 

 Predicted 

Positive Negative 

Actual Positive 0 P P 

Negative N 0 N 

TP Rate (Recall) = 0 / P = 0 

FP Rate = N / N = 1 

Precision = 0 / P = 0 

F Measure =  Not Applicable (Precision + Recall = 0) 

Accuracy = 0 / (P + N) = 0 

 

 

Table 2c.   Confusion Matrix for an Ultra-Liberal Classifier 

Ultra-Liberal Classifier 

Total Instances 

 Predicted 

Positive Negative 

Actual Positive P 0 P 

Negative N 0 N 

TP Rate (Recall) = P / P = 1 

FP Rate = N / N = 0 

Precision = P / P + N = 1 

F Measure = 2 × P / (2 × P + N) 

Accuracy = P / (P + N) , the proportion of negative instances in the test set 
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Table 2d.   Confusion Matrix for an Ultra-Conservative Classifier 

Ultra-Conservative Classifier 

Total Instances 

 Predicted 

Positive Negative 

Actual Positive 0 P P 

Negative 0 N N 

TP Rate (Recall) = 0 / P = 1 

FP Rate = 0 / N = 0 

Precision = Not Applicable (TP + FP = 0) 

F Measure = Not Applicable 

Accuracy = N / (P + N), the proportion of negative instances in the test set 

 

Sensitivity and Specificity 

     The performance of a binary classifier may sometimes be quantified by its accuracy as 

described above, i.e. the portion of misclassified classes in the entire set. However, there 

may be times when the types of misclassifications may be crucial in the classification 

assignment (Powers, 2011). In these cases, the values for sensitivity and specificity are 

used in determining the performance of the classifier. Sensitivity or Recall or True 

Positive Rate (TPR) is the ratio of true positive predictions over the number of positive 

instances in the entire data set. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The specificity or True Negative Rate (TNR) is the ratio of true negative predictions 

over the number of negative instances in the entire data set. 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

These values can be further analyzed using a Receiver Operating Characteristic 

Curve (ROC) where the sensitivity is plotted against 1- specificity (Fawcett, 2006). 

ROC is described further in the next section. 
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Receiver Operating Characteristic (ROC) 

     Receiver Operating Characteristic (ROC) analysis has received increasing attention in 

the recent data mining and machine learning literatures (Fawcett, 2006; Chawla, 2005).  

The graph is a plot of the false positive rate (FPR) in the X-axis and the true positive rate 

(TPR) in the Y-axis. 

TPR = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
       FPR = 

𝐹𝑃

𝐹𝑃+𝑇𝑁
 

     The plotted curve shows the effectiveness of the classifier being tested in ranking 

positive instances relative to negative instances. The point (0, 1) denotes the perfect 

classifier, in which the true positive rate is 1, and the false positive rate is 0. Likewise, 

point (1, 1) represents a classifier that predicts all cases as positive and point (0, 0) 

represents a classifier which predicts all cases to be negative. Figure 5 shows an example 

of an ROC curve for a non-parametric classifier. This classifier produces a single ROC 

point.   

 

 

Figure 5.   Receiver Operating Characteristic Curve Points 



31 

 

 

 

     One way of comparing the performance of these classifiers is to measure the Euclidian 

distance d between the ROC point and the ideal (0, 1).  The closer the distance is, the 

better the classifier performance is. We define d as: 

 

𝑑 = √(1 − 𝑇𝑃)2 +  𝐹𝑃2 

 

     There are some types of classifiers, or implementations of non-parametric classifiers, 

that allow the user to adjust a parameter that increases the TP rate or decreases the FP 

rate. Under these conditions, the classifier produces a unique (FP, TP) pair for each 

parameter setting, which can then be plotted as a scatter plot with a fitted curve as shown 

in Figure 6.  

 

Figure 6.   Receiver Operating Characteristic Curves 

 

     The main advantage of the ROC graph is that changes in class distribution will not 

affect the final result. The reason for this is that ROC is based on the 𝑇𝑃 rate and the 𝐹𝑃 

rate, which is a columnar ratio of the confusion matrix (Bramer, 2007; Fawcett, 2006).  
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Area Under Curve (AUC) 

     While the ROC curve is a good visual aid in recognizing the performance of a given 

algorithm, a numeric value is sometimes needed for comparative purposes. The simplest 

way of calculating a value for the ROC is to measure the Area Under the ROC Curve 

(AUC) (Bradley, 1997; Zweig & Campbell, 1993). Since the ROC is plotted inside a unit 

square, the AUC’s value will always be between 0 and 1 (Figure 7). 

 

 

Figure 7.   Area Under Receiver Operating Characteristic Curve (AUC) 

 

Graphing an ROC of random guesses will produce a straight line from 0, 0 to 1, 1 and an 

AUC of 0.5. Based on this, any good classifier should always have an AUC value greater 

than 0.5. 

     Based on their empirical studies, which compared the binary classification results of 

Decision Trees, Naive Bayes, and SVM across 13 distinct data sets, Huang and Ling 

(2005) concluded that researchers should use AUC evaluation as a performance measure 
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instead of accuracy when comparing learning algorithms applied to real-world data sets. 

This recommendation was based on their studies showing that AUC is a statistically 

consistent and more discriminating performance measure than accuracy. They also 

showed that by using the AUC evaluation to measure profits, a real-world concern, could 

be easier optimized. 
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Chapter 3 

Methodology 

 
Introduction 

     This study is a comparative analysis of feature selection methods on classification 

systems in a real domain setting. As with any data mining exercise, before the data are 

mined, several key steps need to be performed (Fayyad et al., 1996). These steps, referred 

to as the preprocessing stage, will account for dealing with missing values, balancing 

data, discretizing or normalizing attributes depending on which algorithm is used, and 

finally minimizing the dimensionality of the data set by reducing the number of features 

with different feature selection methods. 

Data Mining Process 

   The data mining framework followed in this study was the Cross-Industry Standard 

Process for Data Mining (CRISP-DM), a non-proprietary hierarchical process model 

designed by practitioners from different domains (Shearer, 2000). The CRISP-DM 

framework breaks down the data mining process into six phases:   

1) Understanding the business process and determining the ultimate data mining goals 

2) Identifying, collecting, and understanding key data sources 

3) Preparing data for data mining 

4) Selecting which modeling technique to use 

5) Evaluating and comparing results of different models against the initial goals 

6) Deploying Model 



35 

 

 

 

One distinctive feature of this framework is that it is more an iterative process than a 

straight flow design. Practitioners are encouraged to improve results by iterating through 

the data preparation process and model selection and use. 

This researched used this framework and provided a structured way to conduct the 

experiments used in this comparative study. Therefore, it improved the validity and 

reliability of the final results. 

Figure 8 shows the flow used in this research. 
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Figure 8.   Framework Used in this Research 
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 Data 

     We used two data sets for this analysis. The first data set to be analyzed was a vehicle 

service and sales data set that contains information about vehicle services performed and 

vehicle sales at over 200 auto dealerships. This data set contained thousands of records 

and thousands of attributes. The goal of this study was to determine the best performing 

feature selection method and classification algorithm combination that would help 

automotive dealerships determine if a particular vehicle owner would purchase a new 

vehicle based on service histories. The second data set was selected from the University 

of California, Irvine (UCI) Machine Learning Repository (Lichman, 2013) to compare 

results of our testing against other domains. 

Data Acquisition 

     The data in the vehicle service and sales data set comes from the dealerships’ Dealer 

Management System (DMS) (Appendix A). Data was captured from both the service and 

sales departments. During a service visit, the vehicle’s owner information, vehicle 

identification number (VIN), and service detail are recorded in the system. Similarly, on 

the sales side, customer’s information and vehicle information are saved into the system 

after every sale. At the end of each day all transactional data is transferred to a data 

warehouse server running Postgres SQL. The data is then extracted, transformed, and 

loaded into SQL Server using a SQL Server Integration Services (SSIS) ETL process 

(Figure 9).  
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The data set used in this study was extracted from the following 4 tables: 

1. Customer 

2. VehicleSales 

3. ServiceSalesClosed 

4. ServiceSalesDetail 

 

     A class label field was added to denote the purchase of a vehicle, new or used, after 

service was performed. The extraction process will join the data in these relational tables 

to produce a flat file in a format that the WEKA (Waikato Environment for Knowledge 

Analysis) (Witten et al., 2011) workbench recognizes. Refer to Appendixes A and B for 

complete list of attributes and data types. 
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Data Pre-Processing 

     Before running any classification algorithms on the data, the data must first be cleaned 

and transformed in what is called a pre-processing stage. During this pre-processing 

stage, several processes take place, including evaluating missing values, eliminating 

noisy data such as outliers, normalizing, and balancing unbalanced data.  

Missing Values 

     Real world data generally contains missing values. One way of dealing with missing 

values is to omit the entire record which contains the missing value, a method called Case 

Deletion. However, Shmueli, Patel, and Bruce (2011) noted that if a data set with 30 

variables misses 5% of the values (spread randomly throughout attributes and records), 

one would have to omit approximately 80% of the records from the data set. Instead of 

removing the records with missing values, different data imputation algorithms have been 

studied and compared. Among these methods are Median Imputation, K-NN Imputation, 

and Mean Imputation (Acuna & Rodriguez, 2004). Median Imputation, as its name 

implies, replaces the missing values in the record with the median value of that attribute 

taken across the data set. The K-NN method uses the K-NN model to insert values into 

the data set. Records with missing values are grouped with other records with similar 

characteristics which in turn provide a value for the missing attribute. Finally, the Mean 

Imputation method replaces the missing value with the mean or mode, depending on the 

attribute type, based on the other values in the data set. Farhangar, Kurgan, and Dy 

(2008) argued that mean imputation was less effective than newer methods, such as those 

based on Naives-Bayes methods, only when the missing data percentage in the data set 

surpassed 40%. They also concluded, like others (Acuna & Rodriguez, 2004), that any 
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imputation method was better than none. In addition, they reported that different 

imputation methods affected the accuracy classification algorithms differently. 

     In this study, we used the mean imputation method to populate our missing values. 

This decision was based on the percentage of missing values in our data set (< 20%) and 

its overall effectiveness in improving the accuracy of classification algorithms. The 

pseudo code for replacing the missing values is shown in Algorithm 1: 

Algorithm 1 Mean Imputation Method 

 

Let D = {A1, A2, A3,… An} 

where D is the data set with missing values, Ai  is the i
th

 attribute 

column of D with missing value(s), and n is the number of attributes 

 For each missing attribute in  𝐴𝑖 { 

  

If numeric, impute the mean value of the attribute in 

class 

    

If nominal (i.e. good, fair, bad), impute the mode value 

of the attribute in class  

 } 

 

 

Imbalanced Data 

     The problem of imbalanced data classification is seen when the number of elements in 

one class is much smaller than the number of elements in the other class (Gu, Cai, Zhu & 

Huang, 2008). If they are left untouched, most machine learning algorithms would 

predict the most common class in these problems (Drummond & Holte, 2005). Simple 

queries on our data set had shown us that the data set was imbalanced in respect to the 
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class label which we were working on. The majority of our records used in this research, 

90%, fall into the “Did not buy vehicle” class as opposed to the “Bought a vehicle” class. 

Processing the data without changes may result in over fitting or under performance of 

our classifying algorithms. If the data set is small, we could rely on algorithms to 

synthetically create records to better balance the data. These algorithms, such as 

Synthetic Minority Oversampling Technique (SMOTE) filter (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002), do just that. Since our main data set consisted of thousands of 

records we implemented a random undersampling (RUS) to balance our data. RUS 

removes records randomly until a specified balance (50:50 ratio in our case) is achieved. 

For instance, if a data set consists of 100,000 records in which 10% belong to the positive 

class that would leave 90,000 records belonging to the negative class. Undersampling this 

data set to achieve a 50:50 class ratio would remove 80,000 records and leave us 10,000 

records in the positive class and 10,000 records in the negative class. While this method 

has been argued to remove important data from the classification analysis in small data 

sets (Seiffert, Khoshgoftaar, Van Hulse, & Napolitano, 2010) it is effective in larger ones 

(Lopez, Fernandez, Garcia, Palade, & Herrera, 2013). The pseudo code for RUS is shown 

in Algorithm 2: 
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Algorithm 2 Random Undersampling Method 

 

1: Determine minimum/majority class ratio desired (i.e. 50:50 ratio) 

2: Calculate number of tuples N in majority class that need to be 

removed 

3: Select random tuples in majority class using a structured query 

language statement such as: SELECT TOP N FROM 

tblDealerData ORDER BY NEWID() 

4: Save new data set 

 

This sampling occurred before applying the classifier algorithms in WEKA. 

Data Normalization 

     Some algorithms, such as Support Vector Machines and K-NN, may require that the 

data be normalized to increase the efficacy as well as efficiency of the algorithm. The 

normalization will prevent any variation in distance measures where the data may not 

been normalized. A prime example is that data values from different attributes are on a 

completely different scale, i.e. age and income. Normalizing the attribute will place all 

attribute within a similar range, usually [0, 1].  

In this study we use a feature scaling normalization method to transform the values, 

using the following formula: 

𝛿 =
𝑑 −  𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
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where δ is our normalized value, 𝑑 is our original value, 𝑑max is maximum value in 

range, and 𝑑min is minimum value in range. 

Data Discretization 

   Discretization is the process of converting continuous variables into nominal ones. 

Studies have shown that discretization makes learning algorithms more accurate and 

faster (Dougherty, Kohavi, & Sahami, 1995). The process can be done manually or by 

predefining thresholds on which to divide the data. Some learning algorithms may require 

data to be discretized. An example is the C4.5 decision tree. This tree algorithm does not 

support multi-way splits on numeric attributes. One way to simulate this is to discretize 

the attribute into buckets which can in turn be used by the tree. 

Feature Selection 

     Part of this study was to compare the performance of classifiers based on the features 

selected. By omitting attributes that do not contribute to the efficacy as well as efficiency 

of the algorithm, we reduced the dimensionality of our data set and improved the 

processing performance. Tests were conducted on the following feature selection 

categories: 

Filters:  Attributes were ranked and chosen independently to classifier algorithm to be 

used. 

Wrappers: Attributes were selected taking the classification algorithm into account. 

Hybrid:  Attributes were first selected using a filter method then a wrapper method. 
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Filters 

    The three filter methods we used in our study were: 

1. Information Gain 

2. Correlation-based Feature Selection (CFS) 

3. Relief-F 

 

These feature selection methods were chosen based on their differing approach in 

identifying key features. 

 

 

Information Gain 

 

     The information gain filter (Quinlan, 1987) measures the attribute’s information gain 

with respect to the class. We began calculating our information gain by calculating the 

entropy for our class. Entropy was defined as follows (Shannon, 1948): 

𝐼𝑛𝑓𝑜(𝐷)  =  − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑚

𝑖=1

 

Where 𝐷 is our data sample, 𝑝𝑖 is the proportion of 𝐷 in respect to class 𝐶𝑖 and can be 

estimated as 
|𝐶𝑖,𝐷|

|𝐷|
, and 𝑚 is the number of possible outcomes. The extreme entropy values 

for 𝐼𝑛𝑓𝑜(𝐷)𝑚𝑎𝑥 are 1 (totally random) and the minimum is 0 (perfectly classified). 

𝐼𝑛𝑓𝑜(𝐷) is the information needed to classify a tuple in D, also known as the entropy of 

D.  

     The next step in calculating the information gain is to calculate the expected 

information required to classify a tuple from D based on the partitioning of attribute A.  
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The expression is described as follows: 

𝐼𝑛𝑓𝑜𝐴(𝐷) =  ∑(|𝐷𝑗|/|𝐷|) × 𝐼𝑛𝑓𝑜(𝐷𝑗)

𝑣

𝑗=1

 

where 𝐷𝑗  is the subset of D containing distinct value of A, and v is the number of distinct 

values in A. 

The information gain measurement can now be calculated as the difference between the 

prior entropy of classes and posterior entropy (Kononenko,1994): 

𝐺𝑎𝑖𝑛(𝐴) =  𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜𝐴(𝐷) 

Example 

     Using the data set in Table 3, let’s determine the information gain of the Windy 

attribute. First we determine the entropy of the set S. Our response variable (Play) has 9 

responses in the Yes class and 5 responses in the No class. We insert these values into our 

Entropy formula: 

Entropy(S) = - (9/14) log
2 

(9/14) - (5/14) log
2
 (5/14) = 0.940 

     Next, we calculate the entropy of the different values in the Windy attribute (Yes and 

No). By analyzing our data, we see that we have 8 entries where Windy = No and 6 

entries where Windy = Yes. There are 8 entries where Windy = No, 6 of the entries fall in 

the Play = Yes class and 2 in the Play=No class. Where Windy=No, we have 3 entries in 

the Play=Yes class and 3 entries in the Play=No class. Using this information we 

calculate the entropy of these values: 
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Entropy(Snot_windy) = - (6/8) log
2
 (6/8) - (2/8) log

2
 (2/8) = .811 

Entropy(Swindy) = - (3/6) log
2
 (3/6) - (3/6) log

2
 (3/6) = 1.0 

Finally, we calculate the Information Gain: 

Gain(S, Windy) = Entropy(S) – (8/14) × Entropy(Snot_windy)-(6/14) × Entropy(Swindy) 

Gain(S, Windy) = 0.940 – (8/14) × 0.811 – (6/14) × 1.0 = 0.048 

     Once the information gain has been calculated for all attributes and sorted, the 

attributes which obtain an information gain over a predetermined threshold will be added 

to the feature selection subset.  

Table 3.   Quinlan (1986) Golf Data Set 

Day Outlook Temperature Humidity Windy Play 

1 Sunny 85 85 No No 

2 Sunny 80 90 Yes No 

3 Overcast 83 78 No Yes 

4 Rain 70 96 No Yes 

5 Rain 68 80 No Yes 

6 Rain 65 70 Yes No 

7 Overcast 64 65 Yes Yes 

8 Sunny 72 95 No No 

9 Sunny 69 70 No Yes 

10 Rain 75 80 No Yes 

11 Sunny 75 70 Yes Yes 

12 Overcast 72 90 Yes Yes 

13 Overcast 81 75 No Yes 

14 Rain 71 80 Yes No 
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Correlation-based Feature Selection (CFS) 

     The main drawback of using the information gain filter described above is that it tests 

each feature individually thus any correlation between features may be ignored. CFS, in 

turn, looks for features that are highly correlated with the specific classes yet have 

minimum inter-correlation between the features themselves. We can define CFS as 

follows: 

𝑟𝑧𝑐 =  
𝑘𝑟𝑧𝑖

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑖𝑖

 

where 𝑟𝑧𝑐 is the correlation between the summed features, the class variable, k is the 

number of features, 𝑟𝑧𝑖 is the average of the correlations between the features and the 

class variable, and 𝑟𝑖𝑖 is the average inter-correlation between features (Hall, 2000). The 

inter-correlation here is defined as the ability of a feature to predict another feature. Thus 

redundant features would be highly correlated. 

Relief-F 

     The last filter method used was the Relief-F method (Kira & Rendell, 1992). This 

method evaluates the worth of the attribute being tested by randomly sampling instances 

and detecting the nearest class. The feature’s weight is updated by how well it 

differentiates between classes. Features which have a weight that exceed the predefine 

threshold will be selected. The formula for updating the weight is as follows: 

𝑊𝑋 =  𝑊𝑋 −  
𝑑𝑖𝑓𝑓(𝑋, 𝑅, 𝐻)2

𝑚
+  

𝑑𝑖𝑓𝑓(𝑋, 𝑅, 𝑀)2

𝑚
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where 𝑊𝑋 is the weight for attribute X, R is a randomly sampled instance, H is the 

nearest hit, M is the nearest miss, and m is the number of randomly sampled instances. 

 

     Based on these parameters, we calculate the difference between two instances for a 

given feature using the diff function. Running the ReliefF algorithm against a dataset 

would produce an output of attributes ranked by weight as shown in Table 4. A weight 

threshold may be used to cut off the number of attributes returned. 

Table 4.   Top 10 Attributes Ranked by Relief-F Using the UCI Bank Data Set 

Rank Weight Description 

1 0.05200416 Outcome = Success 

2 0.05059858 Duration 

3 0.04711666 Outcome = Unknown 

4 0.02138873 Day of week 

5 0.0204481 Housing 

6 0.01680847 Month = Aug 

7 0.01274343 Outcome = Failure 

8 0.01219512 Month = May 

9 0.01158064 Month = Apr 

10 0.01020042 Month = Nov 

 

Wrappers 

     Wrapper methods use the classifying algorithm as part of the selection process. The 

method uses cross validation to estimate the accuracy of the classifying algorithm for a 

given set of attributes. For our comparative analysis, we ran the wrapper method using 

Classification Accuracy (ACC) and Area Under Curve (AUC) as performance evaluation 

measures. Since the wrapper method employs the end classification on its decision, 

performance is expected to be better. However, since the classification algorithm must be 

executed for each feature subsets, the cost of computation is high (Gheyas &  Smith, 

2010). WEKA’s “Wrapper” subset evaluator is an implementation of Kohavi’s (1997) 
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evaluator. This implementation performs a 5-fold cross validation on the training data in 

evaluating the given subset with respect to the classification algorithm selected. In order 

to minimize bias, this cross validation is run on the internal loop of each training fold in 

the outer cross-validation. Once the feature set is selected it is run on the outer loop of the 

cross-validation.  

Hybrid 

     For our hybrid test, we used the features selected by our best performing filter method, 

and ran them through our wrapper method. We analyzed the performance as well as 

computational costs.   

     The performance of each extracted feature set; classification accuracy, AUC, F-

Measure, TP rate, and FP rate was compared in a matrix as shown in Table 5. 
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     In addition, a confusion matrix displaying the results of each classification algorithm 

was presented for each of the feature selection methods that produced the highest 

accuracy results. 

Classification Algorithms 

     The features selected by our different techniques (filter, wrapper, and hybrid) were 

tested on three different classification algorithms, K-NN, Decision Tree, and SVM. The 

classification algorithms were chosen based on their accuracy and different approaches in 

the learning processes. 

k-Nearest Neighbor Classifier (K-NN) 

     The first classification algorithm we ran our data through is the k-Nearest Neighbor 

classifier (K-NN).  K-NN is one of the easiest and most well-known supervised learning 

algorithms (Li & Lu, 2009). The algorithm classifies an unknown instance and predicts 

its class as same as the majority of its k nearest neighbors (Figure 10). The basic 

algorithm for K-NN is shown in Algorithm 3. 
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Figure 10.   K-NN Visualization with k = 3 

 

Algorithm 3 K-NN Classification 

 

input: D = {(𝑥1, 𝑐1), . . . , (𝑥𝑛,, 𝑐𝑛)} 

 

1: begin 

2:   𝑦 = (𝑦1, . . . , 𝑦𝑝)  new instance to be classified 

3:   compute 𝑑(𝑥𝑖, 𝑦) for each (𝑥𝑖, 𝑐𝑖) 

4:   sort 𝑑(𝑥𝑖, 𝑦)from lowest to highest, i= (1, … , 𝑛) 

5:   select the k points nearest to y: 𝐷𝑥
𝑘 

6:   assign to y the most frequent class in 𝐷𝑥
𝑘 

7: end 

 

where D is our data set, k is number of neighbors, p number of features, 

𝑑(𝑥𝑖, 𝑦) is the Euclidean distance, and n is the number of values 
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     Our implementation of K-NN is a variant of the original K-NN. The K-NN algorithm 

we used added a weight value to the distance measured to the neighbors. This algorithm, 

proposed by Dudani (1976), showed higher accuracy results in comparison to the existing 

K-NN approach. Our proposed procedure to our K-NN implementation were as follows: 

1. Selecting a k value 

2. Determining a distance measure to use 

3. Normalizing data 

4. Assigning a weight formula 

     The k value selected will affect the classification’s performance greatly (Wu et al, 

2008).  During training, we proposed to use a 10-fold cross validation methodology with 

a range of k values from 1 to 20. This methodology ran the K-NN algorithm for each 

value in the range. Once processed, we selected the k value with the best accuracy for our 

testing phase. 

     Our next step was to implement a distance formula to be used when measuring the 

distance between our unknown instance and those of its neighbors. We have decided to 

use the Euclidean formula for this purpose. The formula is defined as follows: 

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑘 − 𝑦𝑘)2

𝑛

𝑘=1

 

where testing vector 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑛 and training vector 𝑦 = 𝑦1, 𝑦2, … 𝑦𝑛 in  ℝ2 vector 

space. 
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Example 

     A website has collected data from its customer base to determine which type of 

membership an individual would most likely buy. For the sake of simplicity, we have 

limited the number of attributes in this example to two: Customers Age (Age), and 

Annual Salary (Salary). A real world implementation would most likely have tens if not 

hundreds of variables. The data used in this example is shown in Table 6.  

Table 6.   Web Data Set 

Age Salary ($) Membership 

25 40,000 Standard 

35 60,000 Standard 

45 80,000 Standard 

20 20,000 Standard 

35 120,000 Standard 

52 18,000 Standard 

23 95,000 Premium 

40 62,000 Premium 

60 100,000 Premium 

48 220,000 Premium 

33 150,000 Premium 

 

For example, a new customer, age 48, and a salary of $148,000, applies for membership. 

A decision on what membership status to grant will be made based on a K-NN 

classification algorithm with k = 3. The first step is to calculate the distances from 

existing observations to the unclassified one. Once all distances are calculated, we select 

3 closest observations (k = 3) and classify our unknown observation based on these 

(Table 7). 
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Table 7.   Web Data Set with Distance Calculated 

Age Salary ($) Membership Distance 

25 40,000 Standard 102000 

35 60,000 Standard 82000 

45 80,000 Standard 62000 

20 20,000 Standard 122000 

35 120,000 Standard 22000 

52 18,000 Standard 124000 

23 95,000 Premium 47000 

40 62,000 Premium 80000 

60 100,000 Premium 42000 

48 220,000 Premium 78000 

33 150,000 Premium 8000 

 The process generates 3 closest neighbors (k = 3) denoted in bold. 

     Of the 3 closest neighbors, we have 2 observations with Membership = Premium and 

1 observation with Membership = Standard. Based on majority votes we would classify 

our unknown observation as a Membership = Premium and offer it accordingly. 

     If large attributes are left untouched, they will affect the distance calculation more 

than those in smaller scales. In the example above, we see that salary amounts would 

have a greater impact on the distance calculation than that of client’s age. In order to 

prevent this, all attributes need to be normalized before implementing the classifier 

(Table 8). 
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Table 8.   Data after Normalization (bold denotes closest distances) 

Age Salary Membership Distance 

.0125 .11 Standard 0.765 

.375 .21 Standard 0.520 

.625 .31 Standard 0.316 

0 .01 Standard 0.925 

0.375 0.50 Standard 0.343 

0.8 0.00 Standard 0.622 

0.075 0.38 Premium 0.667 

0.5 0.22 Premium 0.444 

1 0.41 Premium 0.365 

0.7 1.00 Premium 0.386 

0.325 0.65 Premium 0.377 

 

     Using this new information we see that the client would be offered a Standard 

membership instead of the Premium offered before this change. 

     When the data set is imbalanced, the majority voting may produce invalid results. The 

probabilities of having members of the majority class closer to an unknown instance are 

greater, thus they dominate the prediction of the new value. In order to prevent this, we 

can apply a weight formula to the equation. Dudani (1976) showed that applying a weight 

to the K-NN algorithm significantly improved the results. We used an inverse weight 

formula. That is, the neighbors were weighted by the inverse of their distance when 

voting. The formula is defined as follows: 

𝑤𝑗 =
1

𝑑𝑗
,      𝑑𝑗  ≠ 0. 

where 𝑤𝑗 is weight assigned to j
th

 nearest neighbor and 𝑑𝑗 denotes the distance from 

neighbor to unclassified sample. 
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As the distance 𝑑𝑗 approximates 0 the weight value 𝑤𝑗 increases. This will give the 

neighbors that are closer to our unknown instance a stronger weight when computing 

distance (Table 9). 

Table 9.   Data Set with Weighted Distance 

Age Salary Membership Distance Weighted Distance 

.0125 .11 Standard 0.850 0.972 

.375 .21 Standard 0.515 0.715 

.625 .31 Standard 0.309 0.550 

0 .01 Standard 0.922 0.959 

0.375 0.50 Standard 0.343 0.586 

0.8 0.00 Standard 0.618 0.784 

0.075 0.38 Premium 0.665 0.815 

0.5 0.22 Premium 0.438 0.658 

1 0.41 Premium 0.361 0.597 

0.7 1.00 Premium 0.390 0.628 

0.325 0.65 Premium 0.377 0.614 

 

     Table 9 shows that after using a weighted distance, 2 out of the 3 closest observations 

belong to the Standard membership class. Therefore, the Standard membership would be 

offered to the new client. 

     As part of our comparative analysis we ran our data set against the K-NN algorithm, 

before and after the pre-processes. We compare the original data with that after K-NN 

processes with the weighted distance. 

Decision Tree 

     Decision trees have become a popular choice in classification due to the features of 

understanding and visualization. Users with no technical background can look at a 

decision tree’s output and easily follow the flow of decisions. The most commonly used 

decision trees today are the Iterative Dichotomiser 3 (ID3), C4.5, and C5.0 (Quinlan, 
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1993); Classification and Regression Trees (CART) (Breiman, Friedman, Olshen, & 

Stone, 1984), and Chi-Square Automatic Interaction Detector (CHAID) decision tree 

(Kass, 1980). 

For the purposes of this study we used WEKA’s J48 implementation of the C4.5 (release 

8) algorithm. The C4.5 algorithm makes several key improvements on the ID3 algorithm. 

Among these are: 

1. Ability to handle missing values 

2. Accept discrete and continuous data. Continuous data is discretized prior to use. 

3. Post pruning 

These will be discussed in more detail in the following. 

The general algorithm for building decision trees is (Xiaoliang, Jian, Hongcan, & 

Shangzhuo, 2009):  

1. Check for base cases; 

2. For each attribute A, find the normalized information gain from splitting on A; 

3. Let a_best be the attribute with the highest normalized information gain; 

4. Create a decision node that splits on a_best; 

5. Recur on the sub lists obtained by splitting on a_best, and add those nodes as 

children of the node. 
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Our proposed procedure for building and using our decision tree are as follows: 

1. Preprocess data 

2. Select split criteria 

3. Determine minimum number of splits 

4. Prune the tree 

Preprocess data 

 

     In order to improve our classification accuracy we must first analyze the raw data. 

Factors, such as missing data and numerical attributes, must be addressed. The C4.5 

algorithm handles attributes with missing values by not incorporating them into the 

information gain calculation. In our study, missing values were handled in the main pre-

processing stage, as described earlier. In addition to missing values, numerical data must 

be discretized for better results. If numerical data is not discretized, the tree will perform 

a binary split on the attribute. 

For example, we could discrete the Temperature and Humidity attributes as follows: 

If temperature < 70 degrees then  

  Temperature is cold 

If temperature is between 70 and 80 degrees then 

  Temperature is mild 

If temperature > 80 degrees then 

  Temperature is hot 

 

Likewise, for Humidity 

 

If humidity < 80 then 

  Humidity is normal 

If humidity >= 80 then 

  Humidity is high 

 

 

Table 10 shows the data after discretization.  
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Table 10.   Data after Discretization 

Day Outlook Temperature Humidity Windy Play 

1 Sunny Hot High No No 

2 Sunny Hot High Yes No 

3 Overcast Hot High No Yes 

4 Rain Mild High No Yes 

5 Rain Cold Normal No Yes 

6 Rain Cold Normal Yes No 

7 Overcast Cold Normal Yes Yes 

8 Sunny Mild High No No 

9 Sunny Cold Normal No Yes 

10 Rain Mild Normal No Yes 

11 Sunny Mild Normal Yes Yes 

12 Overcast Mild High Yes Yes 

13 Overcast Hot Normal No Yes 

14 Rain Mild High Yes No 

 

 

Split Criteria 

    Like other inductive decision tree algorithms, in order to build a classification tree 

model, the C4.5 tree begins at the root node. At this point, the algorithm chooses the 

attribute that best splits the data into different classes. The split is determined by the 

attribute which has the highest normalized information gain. 

     For example, to begin building our decision tree, we must first determine its root node. 

In order to do that, we must first calculate the information gain of all attributes. We do 

this by first finding the entropy of the attribute then calculating the information gain, as 

we explained earlier. 

After processing, we determined the following: 

 

Gain(S, Windy) = 0.048 

Gain(S, Temperature) = 0.029 

Gain(S, Outlook) = 0.246 

Gain(S, Humidity) = 0.151 
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     Checking the results, we decided to make the Outlook as the root node because the 

attribute has the largest information gain. The next step is to branch out from our root 

node. Since Outlook has three possible outcomes (overcast, sunny, and rain), we will  

first create three branches off the Outlook node. Next, we determine which attribute is 

tested at each of the branches. Once again, we calculate the information gain for the 

remaining attributes, and continue growing the trees until we run out of attributes, or the 

data is classified perfectly. Figure 11 shows the final decision tree. 

Splits 

    The minimum number of instances a split may have is a user defined parameter in 

C4.5. For our study, the number of minimum instances per node was set to 2. 

 

 
 

 

Figure 11.   Final Decision Tree 
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Pruning 

     Fully grown decision trees might contain many unnecessary nodes and cause over-

fitting. The process of cleaning up a tree and making it more efficient is called pruning. 

Pruning may be done while the decision tree is being built or after it has been fully 

grown. Pruning a tree while it’s being built is called pre-pruning. The logic here is that 

only those attributes that make the most effective decisions at the time are included in the 

tree. The main drawback in this method is that no correlation among features is 

considered. The C4.5 algorithm uses a post-pruning method called subtree raising. The 

idea here is to replace a parent node with the child node if the error rate of validation does 

not decrease (Figure 12). We do this by comparing the estimated error rate of the subtree 

with that of its replacement. 
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Figure 12.   Subtree Raising - Subtree D is Replaced by a Single Node 
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We estimated the error rate using the following formula (Frank, 2000): 

𝑒 =  

(𝑓 +  
𝑧2

2𝑁 + 𝑧 × √𝑓
𝑁 −  

𝑓2

𝑁 +  
𝑧2

4𝑁2)

(1 +
𝑧2

𝑁 )
 

where: 

𝑓 is the error on the training data 

𝑁 is the number of instances covered by the leaf node 

𝑧 is the z-score based on the confidence interval desired 

 

Example 

Let’s assume the D node in our un-pruned tree in Figure 11 has three children (1, 2, and 

3). The class breakdown for each child is: 

  Child 1 – 2 Play, 4 Don’t Play 

  Child 2 – 1 Play, 1 Don’t Play 

  Child 3 – 2 Play, 4 Don’t Play 

Using a confidence level of 75% (z = 0.69) we can calculate the error rates at D and each 

of the child nodes as follows: 

 Node D: 𝑓 = 5/14, error rate = 0.46 (5 plays over 14 instances) 

 Child 1: 𝑓 = 2/6, error rate = 0.47 (2 plays over 6 instances) 

 Child 2: 𝑓 = 1/2, error rate = 0.72 (1 play over 2 instances) 

 Child 3: 𝑓 = 2/6, error rate = 0.47 (2 plays over 6 instances) 
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Combining the error rates of the children (using a ratio of 6:2:6) gives us 

(6/14×0.472/14×0.72×6/14×0.47) = 0.51 

Since the error rate of the parent D is less than the children’s rate we do not gain by 

having the children and we prune back to D. 

     This study will use a confidence factor ranging from 0.1 to 1.0 incremented by 0.2. A 

lower confidence factor will equate to a larger error estimate at each node, thus it 

increases the chances that the node will be pruned. 

 

Support Vector Machines (SVM)  

     Support Vector Machines (SVM) or Support Vector Classification (SVC) that, is 

sometimes referred to, is one of the most popular and successful classification algorithms 

(Carrizosa, Martin-Barragan, & Morales, 2010). Given a training set of instance labeled 

pairs (𝑥𝑖 , 𝑦𝑖) where 𝑥𝑖 ∈ 𝑅𝑛 (the data space) and 𝑦𝑖  ∈  {−1, 1}, where the 𝑦𝑖 is either 1 

or -1, indicating the class (positive or negative) that the point 𝑥𝑖 belongs to. SVMs 

(Boser, Guyon, & Vapnik, 1992; Vapnik, 1995) work by finding a hyper-plane that 

maximizes the distance between the classes (𝑦𝑖) being investigated (Figure 13). 
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Figure 13.   Support Vector Machine for a Binary Class 

The most commonly used SVM models incorporate a kernel function into the equation in 

order to account for training data that cannot be linearly separated.   

Our proposed procedures for applying the SVM classification are as follows: 

1. Preprocess the Data 

2. Select SVM model 

3. Select a kernel function 

4. Tune the parameters 

5. Test the model for deployment 
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Preprocess the Data 

     Before we import our data into our SVM classifier, we must first pre-process the data. 

SVMs like K-NN classification algorithms cannot handle text attributes. The first step 

would convert all text and nominal attributes to contain a value, either 0 or 1. For 

example, if we have an attribute Vehicle_Color with values red, blue, or green, then 

conversion process would create a new attribute called Veh_ColorRed, Veh_ColorBlue, 

and Veh_ColorGreen with values of 1 if it is true or 0 if it is false. In addition, all 

numerical values must be normalized to a range of [0, 1] to prevent attributes with larger 

numbers from dominating the process over those with smaller values. 

Select SVM Model 

     Based on previous research (Bennett & Campbell, 2000; Brekke & Solberg, 2008) we 

have decided to use the C-Support Vector Classification (C-SVC) algorithm (Cortes & 

Vapnik, 1995) in this study.  

The main objective of the C-SVC algorithm is to solve the following optimization 

problem: 

 min  
1

2
𝜔𝑇𝜔 + 𝐶 ∑ 𝜉,     where C > 0 

 subject to  𝑦𝑖(𝜔𝑇Φ(𝑥𝑖) + ℎ)  ≥ 1 −  𝜉𝑖,     where 𝜉 > 0 

where 𝑥𝑖 is our training vector, Φ(𝑥𝑖) maps 𝑥𝑖 into a higher dimensional space,  C is the 

cost parameter, 𝜔 the vector variable, and 𝜉 > 0 the slack variable. 
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Select a kernel function 

    Several different kernel functions have been proposed and studied in the past (Hsu, 

Chang, & Lin, 2011; Herbrich, 2001; Lin & Lin, 2003). Among the most popular 

functions are: 

1. Linear 𝐾(𝑥𝑖, 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗 

2. Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝑓𝑜𝑟 𝛾 > 0 

3. Sigmoid 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

4. Radial Basis function.  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

), for γ > 0 

where  γ is the gamma parameter, d is degree, and 𝑟 is the kernel projection 

     The kernel function selected to be used in this study is the Radial Basis function 

(RBF), or Gaussian kernel which, is sometimes referred to. This decision is based on 

previous studies by Keerthi and Lin (2003) which showed that given a certain cost of 

error (C) and gamma (𝛾) values RBF could replicate the results of a linear function. 

Similarly, Lin and Lin (2003) showed that RBF behaved the same as sigmoid function 

when (𝐶, 𝛾) were in a certain range. 

Tune the parameters 

   One of the advantages of the SVM class type algorithms is that there are only a few 

parameters that the algorithm needs to optimize. The SVM model we have chosen, C-

SVC, has two parameters which we can work with; the cost of error (C) and the gamma 

(𝛾) value.  

     The cost of error determines how many observations we will use in determining our 

margin. A larger value of C uses those observations closest to the separating line (Figure 
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14a), while a small value of C uses many observations in calculating the margin (Figure 

14b). The gamma (𝛾) value determines the curvature of our separation line and possible 

isolation of distinct groups in our SVM model as applied to our data set. 

 

 

 

Figure 14a.   SVM Optimized by Grid Search of Parameters 
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Figure 14b.   Grid Search with a Decrease in C Value 

     Instead of optimizing each parameter individually through cross validation, a grid 

search was used. The grid search method allows us to set a range of values for cost of 

error (C) and gamma (𝛾) and find the best value combination through a 10-fold cross 

validation. To further improve the results, we refined the grid using values in a range of 

our first results. For example, if our initial range for C was from 1 to 30 and the 

optimized result was 9, we could rerun our grid search with C values from 8.5 to 9.5 in 

increments of 0.1. Our optimization can be based on the results of Accuracy or Mean 

Absolute Error (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002). 

Test 

     The final step in our process is to run our SVM algorithm by using the optimized 

parameters against our test data set. Different set of features were used in our analysis 

and compared to the other classification algorithms being studied in this research. 
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Cross Validation 

     All our classification methods were tested by using an n-fold cross validation. This 

test splits the data set into n equal subsamples. One subsample is kept for validating the 

data, while the remaining n – 1 subsamples are used for training. This process is repeated 

until all subsamples have been used as validation. For example, applying a 5-fold cross 

validation on a data set with 100 entries the data set would be split into 5 equal folds. In 

the first round, the first fold of data (20 entries) is kept for testing and the other 4 (80 

entries) are used for training. In the next round, the second fold is reserved for testing and 

the remaining 80 entries are used for training. This process continues until all n folds are 

used. The final results are averaged across to produce a single result. Figure 15 illustrates 

a 5-fold cross validation. In our experiments we performed the cross validation with n = 

10.  
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Figure 15.   5-Fold Cross-Validation 
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Performance Evaluation 

     In our analyses, we evaluated effects of feature selection on classification 

performance. Classifiers accuracy (ACC), F-Measure, Receiver Operating Characteristic 

(ROC) graphs, and Area Under Curve (AUC), were used as our performance measures. 

Performance evaluators were compared against each other in terms of classification 

results. 

Confusion Matrix 

     A confusion matrix (Chawla, 2005) is a table that contains information about actual 

and predicted classifications for any given classification algorithm. For example, a 

confusion matrix for a classification model used on a data set of 100 entries is shown in 

Table 11. We can easily see that the algorithm classified 59 positive entries correctly, and 

12 negative entries correctly. However, it misclassified 2 positive entries as negative, and 

27 negative entries as positive.  

Table 11.   Confusion Matrix for a Binary Classification Model 

 Predicted 

Positive Negative 

Actual Positive 59 2 

Negative 27 12 

 

The performance of the algorithm is calculated based on these numbers, as described in 

the following sections. 
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Accuracy 

     Accuracy represents the percentage of correctly classified results.  It can be easily 

calculated as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Example 

Using the confusion matrix data in table 8 we can calculate accuracy as follows: 

Accuracy = (59+12) / (59+27+12+2) 

    Accuracy = .71 

The higher the accuracy rate is, the better our classification model is performing. 

 

Sensitivity and Specificity 

     In addition to the accuracy, we calculated the sensitivity (True Positive Rate) and 

specificity (True Negative Rate) of each classifier using data from the confusion matrix. 

We calculated as follows: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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F-Measures 

     The F-Measure is the harmonic mean of precision and recall. Precision is the number 

of positive examples classified over all the examples classified. Recall is the number of 

positive examples classified over all the positive examples. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Based on these definitions F-measure is defined as follows: 

 

𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

 

Example 

Again, using the confusion matrix in Table 8, we have the results as follows: 

Precision = 59 / (59 + 27) = .686 and Recall = 59 / (59 + 2) = .967 

F-Measure = 2 × .686 × .967 / (.686 + .967) = .803 

 

The confusion matrices for the classifiers being tested in this report were set up and 

computed using WEKA’s KnowledgeFlow environment. The following steps were 

followed for each data set in the experiment: 
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1. Arffloader - Loads the  data set 

2. ClassAssigner - Select class attribute 

3. CrossValidationFoldMaker - Run data through cross-validation 

4. Send training data and test data to our classifiers 

5. ClassifierPerformanceEvaluator - Evaluate classifier performance 

6. TextViewer - Display results 

Figure 16 shows the flow of data in WEKA’s KnowledgeFlow. 
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Receiver Operating Characteristic (ROC) 

     ROC curves encapsulate all the information provided by the confusion matrix in a 

visual format. The plot represents the classifiers ability for correctly identified positive 

labels and incorrectly identified negative labels. The major advantage of using the ROC 

curve over the previously mentioned measures is that the ROC curves provides 

performance values over all possible thresholds. The results of our classifier performance 

are plotted against different feature selection methods and across different classification 

algorithms. To better compare the ROC curves produced by our algorithms we charted 

them simultaneously using WEKA’s workflow manager (Figure 17). We began to 

process our dataset by using the following steps: 

1. ArffLoader – Loads the data set 

2. ClassAssigner - Select class attribute 

3. ClasValuePicker - Select which class label (Positive or Negative) to plot 

4. CrossValidationFoldMaker – Split training set and test set into folds using cross-

validation 

5. Select classifiers (IBk – KNN, libSVM – SVM, J48 – C 4.5 Decision Tree 

6. Send training data and test data from cross validation to our classifiers 

7. ClassifierPerformanceEvaluator - Evaluate classifier performance 

8. ModelPerformanceChart - Plot ROC curves 
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To produce multiple ROC points using the SVM classifier, the parameter probability 

estimates was set to true. The resulting graph is shown in Figure 18. 

     An alternative to use WEKA’s plotting utility (the last step) is to export the ROC 

points from WEKA, import the points into Excel, and plot them. This method was 

used due to Excel’s better graphing capabilities. 
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Area Under Curve (AUC) 

     Another way of calculating performance is by measuring the area under the ROC 

curve (AUC). This method allows us to easily compare different ROCs in our analysis 

(Figure 19). We used the Mann Whitney U statistic (Mendenhall, Beaver, & Beaver, 

1996) to calculate the area: 

𝑈1 = 𝑅1 −  
𝑛1(𝑛1 + 1)

2
 

𝐴𝑈𝐶1 =
𝑈1

𝑛1𝑛2
 

where  𝑛1 is the sample size for sample 1, 𝑛2 is the sample size for sample 2, and 𝑅1 is 

the sum of the ranks in the sample 

 Once again, performances of all classifiers were tabulated for ease of comparison.  
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Figure 19.   Area Under Curve 

Apparatus 

     All testing was done on a Personal Computer (PC) with a dual Intel Xeon processor 

and 32 GB of memory. The software used for the evaluation was WEKA (Waikato 

Environment for Knowledge Analysis) (Witten et al., 2011), an open source machine 

learning workbench. WEKA has an extensive collection of pre-processing methods and 

machine learning algorithms implemented in Java as classes with an optional graphical 

user interface. WEKA Version 3.7.7 was used in this study. Microsoft’s SQL Server 

2008 R2 and SQL Server Integration Services was also used in the data transformation 

process. 
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Data Sets  

Bank Data 

   The first data set used in our experiments was obtained from the UCI repository (Frank 

& Assuncion, 2010). The data set consists of 10578 records in which none of them is 

blank. The data set was captured from a direct marketing campaign conducted by a 

Portuguese banking institution (Moro, Cortez, & Rita, 2011). The main purpose of the 

campaign was to identify if clients would or would not subscribe to a new bank term 

deposit.  The data variables (Table 12) fall into three different groups: 

1. Demographic Data (age, job, marital, education) 

 

2. Financial Information (default, balance, housing, loan) 

 

3. Previous Contact Information (contact, day, month, duration, campaign, pdays, 

previous, poutcome) 

 

     The classification goal using this particular data set is to predict if the client will 

subscribe to a term deposit (variable y) based on the provided information. 
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Table 12. Bank  Data Set Attributes 

Variable Name Type 

age Numeric 

job Categorical 

marital Categorical 

education Categorical 

default Binary 

balance Numeric 

housing Binary 

loan Binary 

contact Categorical 

day Numeric 

month Categorical 

duration Numeric 

campaign Numeric 

pdays Numeric 

previous Numeric 

poutcome Categorical 

y – Class Label Binary 

 

Service Data 

     The second data set consists of 15417 records on which the vehicle service performed 

at an automotive dealership. The 15417 records consist of vehicle information (age, 

mileage, etc.) as well as what service was performed. The provider of the data has asked 

us to obfuscate the variable names in order to maintain the confidentiality of the 

customers and types of services at dealership. There is no clear description of what the 

variable measured except mileage and age. The main goal of the classification was to 

identify service customers who purchased vehicles within a year after service was 

performed based on service history. 

     This particular data set presented us two problems, high dimensionality and data 

imbalance. The first step taken to reduce the dimensionality of this data set was to select 
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the top 200 services performed out of thousands available. The second step was to 

remove records where attributes contained less than 5% data. Further reduction was 

attained by implementing the feature selection methods in this study. The data was then 

balanced using a sub-sample method. 

Feature Selection 

     For our comparison analysis, we reduced our pre-processed data sets for each domain 

by applying 3 filter feature selection methods; Information Gain, CFS, and Relief-F, and 

a wrapper method in each classification method. In the case of the Service data set we 

used the Relief-F method to reduce the original data set to 40 attributes, and applied the 

wrapper methods to the resulting data set. This method is known as the hybrid method. 

     After the end of the feature selection process, we obtained 7 data sets to be compared 

and tested for each classification algorithm in each domain: 

 Domain_ALL – Data set with all attributes 

 DomainName_IG – Data set chosen using the Information Gain method 

 Domain_Name_RLF – Data set containing attributes selected by the Relief-F 

method 

 DomainName_CFS – Data set containing attributes selected by the CFS method 

 DomainName_J48_WRP – Data set composed of attributes selected by the 

wrapper method using the J48 classification algorithm 

 DomainName_K-NN_WRP - Data set composed of attributes selected by the 

wrapper method using the K-NN classification algorithm 

 DomainName_SVM_WRP - Data set composed of attributes selected by the 

wrapper method using the SVM classification algorithm 

 

Summary 

 

     The main objective of this study was to find out how different feature selection 

methodologies (e.g. Filters, Wrappers, and Hybrid) affect the performance of different 
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classification algorithms on a vehicle service data set in the real world. The classification 

algorithms to be compared were Decision Tree, k Nearest Neighbor (K-NN), and Support 

Vector Machines (SVM). 

    All tests were conducted by using the WEKA workbench and the parameter settings 

described in Appendix C. 
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Chapter 4 

Results 

 
 
 
Introduction 

     This chapter details the results of our experiment across two domains, in which the 

data sets have been selected by using different feature selection methods. The first section 

will describe and compare in details the results of the different feature selection methods 

tested on each data set. The second section will cover the different classification 

algorithms being compared in this study. The different options available within each 

method will be described as well as the performance measures utilized.  

Bank Data Set 

Information Gain 

     The first feature selection applied to our data was information gain which calculates 

the entropy of features in each class. The result of this analysis is a listing of features 

ranked by their importance. Table 13 shows the features and their information gain scores 

ranked in descending order of importance. 
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Table 13.   Top 15 Attributes Ranked by Information Gain by Using the UCI Bank Data 

Set 

Rank Information Gain Attr. No. Description 

1 0.238109 41 duration 

2 0.077362 43 pdays 

3 0.074453 48 poutcome=success 

4 0.053002 25 contact=unknown 

5 0.045529 44 previous 

6 0.045483 45 poutcome=unknown 

7 0.037748 26 contact=cellular 

8 0.03614 1 age 

9 0.033403 23 housing 

10 0.023489 28 day 

11 0.021891 29 month=may 

12 0.019476 42 campaign 

13 0.018605 22 balance 

14 0.015177 33 month=oct 

15 0.01471 40 month=sep 

 

     Any information gain value above zero shows some type of significance. However, in 

our experiments, we have limited our results to the top 15 ranked features. The results 

indicate that attribute “duration” has an information gain of 0.238, almost 3 times greater 

than the next attributes ranked, “pdays” and “poutcome=success”. 

Relief-F 

     Table 14 shows the results of running the Relief-F feature selection method on the 

Bank’s data set. Once again the features are ranked in descending order based on the 

metric used. Using the Relief-F method we see that “poutcome=success” ranks the 

highest with a value of 0.052 while “duration”, which once ranked first using information 

gain, drops to the second. The significance of the fourth attribute “day” drops more than 

50% from that of the top three attributes. 
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Table 14.   Top 15 Attributes Ranked by Relief-F by Using the UCI Bank Data Set 

Rank  Attr. No. Description 

1 0.05200416 48 poutcome=success 

2 0.05059858 41 duration 

3 0.04711666 45 poutcome=unknown 

4 0.02138873 28 day 

5 0.0204481 23 housing 

6 0.01680847 32 month=aug 

7 0.01274343 46 poutcome=failure 

8 0.01219512 29 month=may 

9 0.01158064 39 month=apr 

10 0.01020042 34 month=nov 

11 0.00986954 30 month=jun 

12 0.00925506 24 loan 

13 0.00899981 33 month=oct 

14 0.00897145 38 month=mar 

15 0.00890528 40 month=sep 

 

Correlation-based Feature Selection (CFS) 

     The last filter type feature selection technique used on our Bank data set was 

Correlation Feature Selection (CFS). This method searches through all combination of 

the features in the data set and concludes with a subset that includes features which have 

good predicting capabilities, and yet take redundancy and correlation between the 

features into account. In our experiment, the number of variables was reduced to 9. The 

search method used in our testing was “Greedy Stepwise (forwards)” which starts the 

search with no attributes as it searches forward. The merit of our final subset was 0.161 

from a possible value range from 0 to 1.0 with values closer to 0 being better. Table 15 

lists the attributes selected by this method. 
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Table 15.   Attributes Selected by CFS by Using the UCI Bank Data Set 

Attribute 

duration 

balance 

loan 

contact=unknown 

day 

month=oct 

month=mar 

age 

poutcome=success 

 

By observing the table we can see that attributes “duration”, “day”, “month=oct”, and 

“poutcome=success” also had high rankings in both feature selection methods, 

Information Gain and Relief-F. The rest of the attributes selected by this method were 

also ranked by the previous two methods. 

Wrapper 

     The final feature selection method we applied to the data set was the wrapper method. 

In this method, we applied feature reduction to the data set by using the classifier as part 

of the selection process. Table 16 shows the results which were generated by applying 

this feature selection method to each of our three classification methods in this 

experiment. 
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Table 16.   Results after Applying the Wrapper Selection by Using the UCI Bank Data 

Set 

1-K-NN Decision Tree 

 
SVM 

 

duration duration duration 

contact=unknown contact=unknown contact=unknown 

 poutcome=success poutcome=success poutcome=success 

age Age housing 

day Day month=jan 

pdays Pdays month=mar 

month=jun Balance campaign 

month=jul Housing  

month=aug job=unknown  

month=nov marital=divorced  

month=dec month=may  

month=jan month=jun  

month=feb month=jul  

month=apr month=aug  

previous month=oct  

month=may month=feb  

 month=mar  

 month=apr  

 month=sep  

 education=primary  

 Campaign  

   

      

     We can see that attributes “duration”, “poutcome=success”, “contact=unknown”, and 

“age” continue to show significance in the classification process. 

     In the following section, we will run our three classification algorithms on the data 

sets built by our different feature selection methods. We will then compare their 

performance using different evaluation metrics. 
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Results 

 

Decision Tree 

     We tested the decision tree classifier by using WEKA’s J48 algorithm with all the 

features in our original data set as well as those selected by the Information Gain, Relief-

F, CFS, and wrapper methods. The first run was done by using the default settings in 

WEKA, which include a minimum of two instances per leaf and a confidence factor of 

0.25 (Table 17). 

Table 17.   Performance of the Decision Tree Classifier across the UCI Bank Data Set in 

Terms of Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics 

Data Set Accuracy AUC F-Measure TP Rate TN Rate 

J48ALL 0.847 0.862 0.847 0.821 0.873 

J48IG 0.833 0.866 0.833 0.803 0.863 

J48RLF 0.858 0.901 0.858 0.834 0.882 

J48CFS 0.821 0.882 0.821 0.802 0.840 

J48WRP 0.862 0.899 0.862 0.839 0.886 

 

J48ALL – Using all features 

J48IG – Features selected by using the information gain method 

J48RLF – Features selected by using the Relief-F method 

J48CFS – Features selected by using correlation based feature method 

J48WRP – Features selected by using the wrapper method 

 

 

     We can see that reducing the feature set on our data set improved the accuracy and F-

Measure scores over that of using all the attributes in 2 out of 4 data sets. However, the 

AUC rate increased in all cases where the data set was reduced. By implementing the 

wrapper method we were able to increase the accuracy and F-Measure from 84.7% to 

86.2% and the AUC from 86.2% to 89.9%. With a 10-fold cross validation accuracy of 

86.2% the wrapper method produced the highest accuracy, F-Measure, sensitivity and 

specificity scores amongst our tests. The data set that produced the highest AUC was that 
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one selected using the Relief-F method which produced an AUC of 90.1%. The 

performance measures were graphed for easier visualization (Figure 20). 

 

 

Figure 20.   Performance of J48 Classifier across Different Feature Sets by Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

   Our experiments showed that by using the wrapper feature selection method, the 

confusion matrix for the J48 classification produced the highest accuracy rate. The result 

is shown in Table 18. The performance measures are shown in Table 19. 
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Table 18.   Confusion Matrix for Decision Tree Algorithm Using J48 Wrapper Data Set 

No Yes <- Classified As 

4437(TP)  852(FN) no 

605(FP) 4684(TN) yes 

 

Table 19.   Performance Measures for Decision Tree Algorithm Using J48 Wrapper Data 

Set 

Accuracy 0.862 

Precision* 0.863 

Recall* 0.862 

F-Measure* 0.862 

TP Rate 0.886 

TN Rate 0.839 

* Weighted average 

     Using the values in the confusion matrix we can calculate our accuracy by summing 

the correct predictions (4437+4684) and dividing it by our total number of observations 

(4437+852+605+4684) which gives us an accuracy of .862. The precision rate for our 1
st
 

class can be calculated by dividing our true positives (4437) by the sum of all 

observations predicted as positive (4437+605) 5042, which results in a precision rate of 

88.0%. Our recall can be calculated by dividing our true positives 4437 by the sum of 

true positives and false negatives (4437+852) 5289, which yields a recall of 83.9% for 

our first class. Once we have the recall and precision, we can calculate the F-measure by 

using the following formula: 
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𝑓-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  

By substituting the values in the above formula we get an F-measure of 0.866. 

From here on we will use the values calculated by the WEKA framework for our 

measurements. 

     Next, the J48 classifier was run using the wrapper data set while the confidence 

interval parameter varies from 0.1 to 0.5 in increments of 0.1.  Lowering the confidence 

factor decreases the amount of post-pruning performed by the algorithm. The results are 

reflected in Table 20.  

Table 20.   Performance of the J48 Classifier across the UCI Bank Data Set in Terms of 

Accuracy AUC, TP Rate, and FP Rate Evaluation Statistics for Different Confidence 

Factors 

Confidence Factor Accuracy AUC No. of Leaves TP Rate TN Rate 

0.1 0.864 0.905 120 0.895 0.834 

0.2 0.863 0.901 162 0.877 0.840 

0.3 0.862 0.899 229 0.883 0.841 

0.4 0.860 0.895 265 0.877 0.842 

0.5 0.857 0.891 352 0.869 0.846 

 

The effects of our post pruning process on the decision tree are shown on Figure 21. 
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Figure 21.   Decision Tree Pruning. Lower Confidence Factor Indicates Higher Pruning 

     The best result was found by using the features selected by the wrapper method along 

with a confidence factor of 0.1. This combination produced an accuracy of 86.4%. 

However, an AUC rate of 90.5% was attained when using the wrapper attributes and a 

confidence interval of 0.1 as shown in Table 21. The highest True Positive rate (83.7 %) 

was achieved using attributes selected by the Relief method. 

Table 21.   Performance of the Decision Tree Classifier across the UCI Bank Data Set in 

Terms of Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics Using 

a Parameter Search 

Data Set Accuracy AUC F-Measure TP Rate TN Rate 

PS_J48_IG 0.839 0.883 0.839 0.815 0.862 

PS_J48RLF 0.86 0.904 0.859 0.837 0.882 

PS_J48CFS 0.822 0.882 0.822 0.803 0.840 

PS_J48WRP 0.864 0.905 0.864 0.835 0.894 
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     The confusion matrix for the decision tree algorithm by using the wrapper data set is 

shown in Table 22 and the performance measures achieved in Table 23. 

Table 22.   Confusion Matrix for Decision Tree with Optimized Parameter Wrapper Data 

Set  

No Yes <- Classified As 

4414(TP)  875(FN) no 

560(FP) 4729(TN) yes 

 

Table 23.   Performance Measures for Decision Tree with Optimized Parameter Wrapper 

Data Set  

 

Accuracy 0.864 

Precision 0.866 

Recall 0.864 

F-Measure 0.864 

TP Rate 0.894 

TN Rate 0.835 

 

K-Nearest Neighbor Classifier (K-NN) 

     For the K-NN algorithm we performed our tests using a k value of 1, 5, and 10, as well 

as with a parameter search with k values ranging from 1 to 10 by increments of 1. Results 

are shown in Table 24. 
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Table 24.   Performance of the K-NN Classifier across the UCI Bank Data Set in Terms 

of Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics 

Data Set Accuracy AUC F-Measure TP Rate TN Rate 

1NNALL 0.735 0.801 0.735 0.787 0.684 

1NNIG 0.776 0.775 0.776 0.792 0.759 

1NNRLF 0.807 0.809 0.807 0.810 0.804 

1NNCFS 0.761 0.758 0.761 0.767 0.755 

1NNWRP 0.796 0.794 0.796 0.806 0.787 

5NNALL 0.735 0.801 0.735 0.787 0.684 

5NNIG 0.809 0.87 0.809 0.835 0.782 

5NNRLF 0.842 0.898 0.842 0.839 0.845 

5NNCFS 0.809 0.867 0.809 0.808 0.810 

5NNWRP 0.849 0.905 0.849 0.832 0.866 

10NNALL 0.734 0.812 0.730 0.852 0.615 

10NNIG 0.798 0.879 0.797 0.867 0.729 

10NNRLF 0.842 0.898 0.842 0.839 0.845 

10NNCFS 0.811 0.884 0.811 0.840 0.782 

10NNWRP 0.830 0.900 0.830 0.859 0.801 

PS_NNALL 0.74 0.810 0.730 0.851 0.610 

PS_NNIG 0.806 0.875 0.806 0.836 0.77 

PS_NNRLF 0.841 0.901 0.841 0.838 0.845 

PS_NNCFS 0.815 0.882 0.815 0.815 0.815 

PS_NNWRP 0.835 0.889 0.835 0.830 0.841 

 

     After running the tests we saw that using the feature selection wrapper method and a k 

value of 5 resulted in an accuracy and F-Measure of 84.9% and an AUC of 90.5%. This 

set also produced the highest F-Measure and True Negative Rate (TNR). The worst 

performer was using all the attributes with 1 nearest neighbors. The results of the tests are 

shown in Figure 22. 
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Figure 22.   Performance of K-NN Classifier across Different Feature Sets by Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

The confusion matrix for the best performer is shown in Table 25 and performance 

measures on Table 26.  

Table 25.   Confusion Matrix for Nearest Neighbor Using k = 5 

No Yes <- Classified As 

4399 (TP) 890(FN) no 

711 (FP) 4578 (TN) yes 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
N

N
A

L
L

1
N

N
IG

1
N

N
R

L
F

1
N

N
C

F
S

1
N

N
W

R
P

5
N

N
A

L
L

5
N

N
IG

5
N

N
R

L
F

5
N

N
C

F
S

5
N

N
W

R
P

1
0
N

N
A

L
L

1
0
N

N
IG

1
0
N

N
R

L
F

1
0
N

N
C

F
S

1
0
N

N
W

R
P

P
S

_
N

N
A

L
L

P
S

_
N

N
IG

P
S

_
N

N
R

L
F

P
S

_
N

N
C

F
S

P
S

_
N

N
W

R
P

P
er

fo
rm

an
ce

 

Classification/Feature Subset 

Accuracy

AUC

F-Meas

TPR

TNR



102 

 

 

 

 

Table 26.   Performance Measures for Nearest Neighbor Using k = 5 

Accuracy 0.849 

Precision 0.849 

Recall 0.849 

F-Measure 0.849 

TP Rate 0.866 

TN Rate 0.832 

      

     We produced an accuracy rate of 84.9% by using the parameter search with k values 

ranging from 1 to 10, and AUC rate of 90.5% by using attributes selected by Relief-F 

method of a k value of 5. 

Support Vector Machine (SVM) classification results 

     The last classification algorithm to be tested was the Support Vector Machine (SVM) 

using the Lib-SVM algorithm (Chang & Lin, 2011). Once again, we ran the algorithm on 

each data set. First, we used the default parameters in WEKA. Secondly, we used a grid 

search to optimize the cost of error (C) and gamma parameters. Results of the tests are 

shown in Table 27. 
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Table 27.   Performance of the Lib-SVM Classifier across the UCI Bank Data Set in 

Terms of Accuracy, AUC, F-Measure, True Positive Rate, and True Negative Rate 

Evaluation Statistics 

Data Set Accuracy AUC F-Measure TP Rate TN Rate 

LibSVMALL 0.785 0.785 0.784 0.860 0.71 

LibSVMIG 0.814 0.814 0.813 0.872 0.756 

LibSVMRLF 0.819 0.819 0.819 0.863 0.775 

LibSVMCFS 0.785 0.785 0.783 0.890 0.680 

LibSVMWRP 0.818 0.818 0.818 0.854 0.782 

GS_LibSVMIG 0.814 0.814 0.813 0.872 0.756 

GS_LibSVMRLF 0.844 0.844 0.844 0.815 0.872 

GS_LibSVMCFS 0.841 0.841 0.841 0.836 0.847 

GS_LibSVMWRP 0.838 0.838 0.838 0.845 0.831 

 

     The best accuracy of 84.4% was obtained when the grid search parameter, cost of 

error (C), was set to 4 and gamma (𝛾) set to 1. Efficiency of the classifier was determined 

by comparing the predicted and expected class labels of the data set using 10 fold cross 

validation. True Positives (TP), True Negatives (TN), False Positives (FP) and False 

Negatives (FN) values were 4311, 4613, 676, and 978 respectively. They produced a 

sensitivity rate of 0.815 and specificity rate of 0.872, and an Accuracy rate of 0.844. 

Interestingly, the AUC and F-Measure measures on this particular run were identical to 

the accuracy of 0.844. Figure 23 illustrates the final results. 
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Figure 23.   Performance of SVM Classifier across Different Feature Sets by Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

     Analyzing the best accuracy for each classifier we concluded in Table 28 that the J48 

decision tree model produced a 10-fold cross validation accuracy of 89.3%, followed by 

the Support Vector Machine with a 10-fold cross validation accuracy of 85.0%, and K-

NN with a 10-fold cross validation accuracy of 84.9%. In the next section we will use 

WEKA’s experimenter to determine if the decision tree classifier is significantly better 

than the K-NN and support vector machine classifiers in this domain. 
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Table 28.   Average Overall Classification Accuracy on Bank Data Set Based on 

Individual Runs 

 K-NN Decision Tree SVM 

IG 0.810 0.840 0.818 

CFS 0.815 0.822 0.815 

RLF 0.842 0.860 0.850 

WRP 0.849 0.893 0.838 

 

Experimenter to compare 

     Table 29 shows the results of the WEKA experimenter with the three classifiers 

selected. The experiment was run by using multiple data sets across all classifiers. By 

using the same seeding we can evaluate the performance of each classifier on common 

grounds. The percentage of good results for each of the 3 classifiers is shown in the 

dataset rows. For example, by using the CFS data set, the result of J48/Decision Tree is 

82.03%, K-NN is 80.91%, and Lib-SVM is 80.86%. Each algorithm was compared 

against the base algorithm, Decision Tree, in this case. If the performance of the classifier 

being tested was statistically higher than the base classifier, then it was tagged with a (v).  

If the annotation is a (*) the classifiers, the  result was worse than the base classifier. No 

tags signified if the classifier performed neither worse or better than the base classifier. 

All our tests were performed by using a corrected two-tailed t-test (Nadeau and Bengio, 

2000) with a significance level of 0.05  

     Our best classification performance with accuracy as a measure was achieved by using 

the Decision Tree algorithm and the J48 Wrapper data set with an 86.33% accuracy rate. 

The worse performing classifier was SVM with the CFS data set, which achieved an 

80.86% accuracy rate. All our tests indicate that K-NN and SVM performed statistically 

worse across all data sets. 
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Table 29.   Accuracy Results with Optimized Parameters by Using Experimenter 

Dataset Decision Tree K-NN SVM 

CFS  82.03 80.91 * 80.86 * 

IG 83.41 80.89 * 82.49 * 

RLF 85.62 84.23 * 83.52 * 

SVM Wrapper 83.21 81.14 * 82.15 * 

J48 Wrapper 86.33 83.14 * 83.89 * 

K-NN Wrapper 84.84 83.52 * 83.00 * 

 (v/ /*) (0/0/6) (0/0/6) 

 

     The last row in Table 29 shows how many times the classifier was better, same, or 

worse (x, y, z) than the base classifier.  

     The final numbers are based on 1800 results. A 10 fold cross validation was run 10 

times across all 3 classifiers using 6 data sets.  

   The same test was run again but the performance measure parameter was changed to 

AUC. The results of this run are shown in Table 30. 

Table 30.   AUC Results Using Optimized Parameters by Using Experimenter 

Dataset Decision Tree K-NN SVM 

CFS  0.88 0.87 * 0.81 * 

IG 0.89 0.87 * 0.82 * 

RLF 0.91 0.90 * 0.84 * 

SVM Wrapper 0.89 0.87 * 0.82 * 

J48 Wrapper 0.91 0.89 * 0.84 * 

K-NN Wrapper 0.90 0.89 * 0.83 * 

 (v/ /*) (0/0/6) (0/0/6) 

 

Once again we saw that the decision tree classifier produced the highest AUC score in the 

Relief-F and wrapper data sets. The resulting AUC curves generated are shown in Figure 

24. 
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Figure 24.  ROC Curve for Bank Data Set 

The final measure to be tested was the F-Measure. The Decision Tree with attributes 

selected by the wrapper method produced the highest score of 0.84 as shown in Table 31 

and graphed in Figure 25. 

Table 31.   F-Measures Results for Bank Data Set Using Optimized Parameters by Using 

Experimenter 

Dataset Decision Tree K-NN SVM 

CFS  0.83 0.73 * 0.82 * 

IG 0.83 0.72 * 0.82 * 

RLF 0.82 0.82 0.82 * 

SVM Wrapper 0.83 0.83 0.83 * 

J48 Wrapper 0.84 0.84 * 0.84 * 

K-NN Wrapper 0.83 0.83 0.83 * 

 (v/ /*) (0/3/3) (0/0/6) 
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Figure 25.   Classification Performance on Bank Data across Data Sets 

 

Comparison and Analysis 

     The results indicated that the accuracy performance of the three classifiers was greatly 

improved after applying feature reduction to our data set. This was especially true in the 

case of the K-NN classifiers. In the case of the decision tree classifier, we saw that 

reducing the feature set did not always perform better than by using all the features. This 

is because the decision tree algorithm itself performs some type of data reduction in the 

building process. The high percentage in sensitivity and specificity on all results were 

also encouraging of good classification. 
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Service Data Set 

Information Gain 

     The top 20 ranked variables with the Information Gain feature selection method are 

shown on Table 32. Please note that most of the variable names in the data set have been 

obfuscated in order to protect the privacy of the original data owner.  

Table 32.   Attributes Ranked Using Information Gain Method across the Service Data 

Set 

 

Score Attribute No. Attribute 

0.0759965874 20 39CTZ22 

0.0712005663 21 76CTZ01 

0.0592927439 22 76CTZ 

0.0388523704 2 Mileage 

0.0380071942 46 76CTZDLRTRANS 

0.0302880702 57 76CTZETCH 

0.0263680886 62 39CVZ21 

0.0256478072 72 76CVZ02 

0.0244553597 58 39CTZ21 

0.0237713931 69 76CTZ02 

0.0237075594 1 Age 

0.0201856411 4 46CTZ 

0.0178737538 67 38CTZ1 

0.0175826467 65 39CVZ22 

0.0169490617 66 76CVZ01 

0.0160997116 71 76CVZ 

0.01604993 88 01CTZ01 

0.0157341061 28 25CTZ 

0.0153268992 97 01CVZ 

0.0146639142 99 76CVZETCH 

 

     By using the information gain we reduced the original 200 attributes down to 20. We 

saw that attributes “39TZ22”, “76CTZ01”, and “76CTZ” scored more than twice than the 

rest of the features. 
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Relief-F 

     The results of running the Relief-F feature reduction method on the Service data set 

are shown in Table 33. Once again we have kept the top 20 ranked attributes in this data 

set. 

Table 33.   Attributes Ranked by the Relief-F Method across the Service Data Set 

Rank Attribute No. Attribute name 

0.0265616 20 39CTZ22 

0.0243757 46 76CTZDLRTRANS 

0.0230849 21 76CTZ01 

0.0192515 62 39CVZ21 

0.0186158 72 76CVZ02 

0.0182072 22 76CTZ 

0.0169359 57 76CTZETCH 

0.0158007 4 46CTZ 

0.0146073 58 39CTZ21 

0.0132646 69 76CTZ02 

0.0110398 97 01CVZ 

0.0105792 88 01CTZ01 

0.0102614 19 25 

0.0099565 65 39CVZ22 

0.009269 7 39 

0.0092236 66 76CVZ01 

0.0083025 67 38CTZ1 

0.0082701 71 76CVZ 

0.007589 124 01CVZ01 

0.0059934 87 39CVZ 

 

     We can see that some of the attributes ranked “39TZ22”, “76CTZDLRTRANS”, and 

“76CTZ01” were also highly ranked by the Information Gain method. However we see 

that attributes “Mileage” and “Age” were not. 

Correlation-based Feature Selection (CFS) 

     The last filter type feature selection method applied to the Service data set was CFS 

(Table 34).  
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Table 34.   Attributes Selected by CFS Method by Using the Service Data Set 

Attribute Name 

Mileage 

39 

39CTZ22 

76CTZ01 

76CTZ 

76CTZDLRTRANS 

76CTZETCH 

39CTZ21 

39CVZ21 

39CVZ22 

38CTZ1 

76CTZ02 

76CVZ02 

76CVZETCH 

 

     Our data set was reduced from 200 attributes to 14 using this method. Once again, we 

saw that most attributes selected with the CFS method when using the Information Gain 

and Relief-F methods. 

Wrapper 

     Table 35 shows the attributes selected when the wrapper type feature selection method 

was used on the Service data set. The wrapper method was run 3 times, one time for each 

classification algorithm used in this study, K-NN with k = 1, Decision Tree / J48, and 

Support Vector Machine classification algorithms. 
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Table 35.   Features Selected by Wrapper Selection by Using Service Data Set 

1-K-NN Decision Tree 

 
SVM 

 

39CTZ22 

Mileage 

76CTZDLRTRANS 

76CTZ01 

Age 

39CVZ21 

76CVZ02 

76CTZETCH 

39CTZ21 

76CTZ02 

39 

76CVZ01 

76CVZ 

46CVZ 

39CVZ 

39CTZ 

PDI 

39CTZ22 

Mileage     

76CTZDLRTRANS 

39CVZ21 

76CVZ02 

76CTZETCH 

39CTZ21 

76CTZ02 

39 

76CVZ01 

25 

39CVZ22 

29 

38CTZ1 

46CVZ 

76CVZETCH 

76CTZ1 

39CVZ 

38CVZ1 

76CVZDLRTRANS 

39CTZ 

76CVZ1 

PDI 

39CTZ22 

Mileage 

76CTZ01 

39CVZ21 

76CVZ02 

76CTZETCH 

39CTZ21 

76CTZ02 

01CTZ01 

39 

76CVZ01 

25 

76CVZ 

10 

46CVZ 

76CVZETCH 

39CVZ 

39CTZ 

PDI 

 

Results 

Decision Tree 

     Table 36 shows the results of running the decision tree algorithm against our Service 

data sets. 
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Table  36.   Performance of the Decision Tree Classifier across the Service Data Set in 

Terms of Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics 

Data set Accuracy AUC F-Measure TP Rate TN Rate 

J48ALL 0.798 0.778 0.787 0.966 0.575 

J48IG 0.778 0.750 0.765 .954 0.546 

J48RLF 0.763 0.723 0.743 .977 0.480 

J48CFS 0.779 0.749 0.765 0.964 0.534 

J48WRP 0.797 0.778 0.797 0.964 0.577 

PS_J48IG 0.782 0.759 0.769 0.963 0.542 

PS_J48RLF 0.762 0.723 0.743 0.976 0.480 

PS_J48CFS 0.779 0.749 0.765 0.963 0.534 

PS_J48WRP 0.797 0.778 0.787 0.965 0.576 

 

     Based on the results in Table 36 we concluded that the decision tree algorithm had the 

worst performance of 76.2%, with the Relief-F feature reduction method. The best 

accuracy (79.8 %) and the best AUC (77.8%) were achieved by using no feature 

reduction at all. A parameter search determined that a confidence factor of 0.1 would 

achieve the highest accuracy of 79.7 % slightly less than by using no attribute selection. 

The classifier performed equally when information gain, CFS, and Relief-F feature 

selection methods were used. The most important observation in this group of tests is the 

below average values of the True Negative Rate. The highest, 57.6 percentage, was 

achieved using the wrapper method. Figure 26 shows the performance across the 

different data sets used in this experiment.  
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Fig. 26.   Performance of J48 Classifier across Different Feature Sets by Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

 

     The confusion matrix produced by the best classification is shown in Table 37 and 

performance measures in Table 38. 

Table 37.   Decision Tree Confusion Matrix  

Did Not Buy Bought <- Classified As 

8483 (TP) 298(FN) Did Not Buy 

2820(FP) 3816(TN) Bought 
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Table 38.   Decision Tree Performance Measures  

Accuracy 0.798 

Precision 0.827 

Recall 0.966 

F-Measure 0.787 

TP Rate 0.966 

TN Rate 0.576 

 

K-NN 

     The results of running the K-NN classifier on our data sets are shown in Table 39. A 

10-fold average accuracy of 79.5%, F-Measure of 78.3%, and an AUC of 79.6%, the 

highest in our experiment, was obtained when running the classifier with the wrapper 

data set and a parameter search which selected the optimal performance at k = 9. We also 

noted that using the CFS feature selection method performed worse than using no 

reduction only when k was equal to 1. Otherwise, we saw that all feature reduction sets 

performed better than the data set which was not reduced.  
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Table 39.   Performance of the K-NN Classifier across the Service Data Set in Terms of 

Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics 

Data set Accuracy AUC F-Measure TP Rate TN Rate 

1NNALL 0.702 0.696 0.701 0.759 0.628 

1NNIG 0.683 0.674 0.683 0.722 0.631 

1NNRLF 0.763 0.740 0.742 0.979 0.476 

1NNCFS 0.693 0.689 0.692 0.741 0.629 

1NNWRP 0.795 0.796 0.783 0.970 0.564 

5NNALL 0.749 0.775 0.741 0.874 0.583 

5NNIG 0.741 0.757 0.735 0.857 0.587 

5NNRLF 0.761 0.740 0.741 0.978 0.475 

5NNCFS 0.744 0.760 0.738 0.858 0.592 

5NNWRP 0.791 0.795 0.778 0.970 0.553 

10NNALL 0.762 0.786 0.749 0.933 0.535 

10NNIG 0.771 0.764 0.759 0.940 0.548 

10NNRLF 0.759 0.740 0.738 0.976 0.472 

10NNCFS 0.772 0.768 0.761 0.936 0.556 

10NNWRP 0.787 0.794 0.773 0.971 0.543 

PS_NNALL 0.762 0.785 0.749 0.933 0.535 

PS_NNIG 0.771 0.764 0.759 0.940 0.548 

PS_NNRLF 0.762 0.740 0.742 0.979 0.476 

PS_NNCFS 0.772 0.768 0.761 0.936 0.556 

PS_NNWRP 0.795 0.796 0.783 0.970 0.564 
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Figure 27.   Performance of  K-NN Classifier across Different Feature Sets by Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

 

 The confusion matrix for the best performing K-NN classifier is shown in Table 40 and 

performance measures in Table 41. 

Table 40.   Confusion Matrix for Nearest Neighbor using k = 1 and Wrapper Data Set 

Did Not Buy Bought <- Classified As 

8515 (TP) 266(FN) Did Not Buy 

2893(FP) 3743 (TN) Bought 
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Table 41.   Performance Measures for Nearest Neighbor using k = 1 and Wrapper Data 

Set 

Accuracy 0.795 

Precision 0.827 

Recall 0.970 

F-Measure 0.783 

TP Rate 0.970 

FP Rate 0.564 

 

A note of observation is that the classifier/subset combination with the highest accuracy 

did not have the highest specificity (TN Rate) of all tests. The highest specificity of 63.1 

% was achieved when using attributes selected by the information gain method and k = 1. 

Lib-SVM 

     Our last classifier to be tested was the Support Vector Machine. The algorithm was 

first run with the default cost of error value of 1.0 and default gamma value of 0.  

Table 42.   Performance of the LIB-SVM Classifier across the Service Data Set in Terms 

of Accuracy, AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics with Default 

Parameters 

Data set Accuracy AUC F-Measure TP Rate TN Rate 

LibSVMALL 0.766 0.733 0.748 0.973 0.493 

LibSVMIG 0.764 0.730 0.745 0.972 0.489 

LibSVMRLF 0.763 0.729 0.743 0.977 0.480 

LibSVMCFS 0.761 0.727 0.742 0.974 0.480 

LibSVMWRP 0.793 0.765 0.781 0.964 0.567 

 

     As we can see in Table 42, running the Support Vector Machine classifier on the data 

set selected by the wrapper method produced the best average accuracy performance 
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(79.3%), best AUC (76.5%), and best F-Measure (78.1%). Data sets built with the Relief-

F, information gain, and CFS methods performed worse than on the original data set with 

all attributes across all measures. 

     The same tests were then repeated using a grid search to obtain optimum values for 

cost of error and gamma. These results are shown in Table 43. 

Table 43.   Performance of the Lib-SVM Classifier across the Service Data Set in Terms 

of Accuracy AUC, F-Measure, TP Rate, and TN Rate Evaluation Statistics Grid Search 

Parameters 

Data set Accuracy AUC F-Measure TP Rate TN Rate 

GS_LibSVMALL 0.762 0.726 0.745 0.971 0.490 

GS_LibSVMIG 0.764 0.730 0.743 0.972 0.489 

GS_LibSVMRLF 0.763 0.729 0.743 0.977 0.480 

GS_LibSVMCFS 0.759 0.724 0.739 0.976 0.473 

GS_LibSVMWRP 0.798 0.771 0.787 0.965 0.576 

 

     The results showed, once again, that using the attributes selected by the wrapper 

method produced the best results. By using the grid search, which obtained a cost of error 

value of 1 and gamma of 1, we were able to increase the accuracy performance of the 

Support Vector Machine from 79.3% to 79.8%, the AUC from 76.5% to 77.1%, and the 

F-Measure from 78.1% to 78.7%. Using these parameters the information gain and 

Relief-F data sets performed better than with no reduction at all when using the accuracy 

and AUC measures. On the other hand, if measured using the F-Measure, information 

gain, Relief-F, and CFS produced lesser results than not using any feature reduction at all 

on the data set.  The performance measure of each data set is graphed on Figure 28.  
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Figure 28.   Performance of  SVM Classifier across Different Feature Sets Using the 

Service Data Set in Terms of Accuracy, AUC, F-Measure, TPR, and TNR Evaluation 

Statistics 

 

     By comparing the results of our individual tests (Table 44), it showed that using the 

SVM algorithm with the wrapper data set produced the highest accuracy of 79.8%. The 

worse performer was K-NN using the information gain data set which resulted in an 

accuracy rate of 77.1%. In the next section we will run the classification algorithms on 

these data sets using WEKA’s experimenter module. 

Table 44.   Average Overall Classification Accuracy on Service Data Set across All 

Classifiers and Feature Selection Methods through Individual Testing 

 K-NN Decision Tree SVM 

IG 0.771 0.782 0.764 

CFS 0.772 0.779 0.761 

RLF 0.762 0.763 0.763 

WRP 0.795 0.797 0.798 
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Experimenter 

Table 45.   Average Overall Classification Accuracy by Using the Service Data Set 

across All Classifiers and Feature Selection Methods Using Optimized Parameters  

Dataset Decision Tree K-NN SVM 

CFS  74.94(1.01) 71.43(1.08) * 72.74(0.95) * 

IG 77.79(0.86) 74.14(1.04) * 76.42(0.82) * 

RLF 76.22(0.83) 76.13(0.82)  76.32(0.84) v 

SVM Wrapper 77.94(0.80) 77.67(0.84) * 77.95(0.79) 

J48 Wrapper 79.77(0.82) 79.03(0.80) * 79.74(0.82) 

K-NN Wrapper 77.50(0.82) 77.03(0.83) * 77.48(0.80) 

 (v/ /*) (0/1/5) (1/3/2) 

 

     The schemes used in the experiment are shown in Table 45. The classification 

algorithms compared are shown in the columns and the data sets used are shown in the 

rows. The percentage correct for each of the 3 schemes is shown in each dataset row: 

74.94% for Decision Tree, 71.43% for K-NN, and 72.74% for SVM using the CFS data 

set. Once again, the annotation “v” or “*” indicates that a specific result is statistically 

better (v) or worse (*) than the baseline scheme at the significance level of 0.05 (user 

defined). In the first result set, we saw that the K-NN and SVM algorithms performed 

statistically worse than the Decision Tree algorithm.  The Decision Tree classification 

only performed worse than SVM when using the data set created by the RLF feature 

selection method. When running the SVM, J48, and K-NN wrapper data sets Decision 

Trees and SVM obtained statistically similar results. Our highest accuracy rate of 79.77% 

was obtained when running the Decision Tree scheme with the attributes selected by its 

own method. Using SVM on the same data set produced an accuracy of 79.74% which 

was not statistically different. 
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     Table 46 shows the results of the experimenter using the same data sets but measuring 

performance using the AUC measure. Here, K-NN produced the best result with a 

performance of 80%. 

Table 46.   Average Overall AUC by Using Service Data Set across All Classifiers and 

Feature Selection Methods Using Optimized Parameters  

Dataset Decision Tree K-NN SVM 

CFS  0.75(0.01) 0.76(0.01) v  0.73(0.01) * 

IG 0.76(0.01) 0.76(0.01) 0.73(0.01) * 

RLF 0.73(0.01) 0.75(0.01) v 0.73(0.01) 

SVM Wrapper 0.76(0.01) 0.78(0.01) v 0.75(0.01) * 

J48 Wrapper 0.78(0.01) 0.80(0.01) v 0.77(0.01) * 

K-NN Wrapper 0.75(0.01) 0.78(0.01) v 0.74(0.01) * 

 (v/ /*) (5/1/0) (0/1/5) 

 

The ROC curves for each classification are compared in the Figure 29. 

 

Figure 29.   Service Data ROC Curves 
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     Finally, the F-Measure was used to measure the performance of the classification 

algorithms across the data sets. The decision tree algorithm performed better than all 

others using the RLF and J48 wrapper data sets, with a performance of 91%, which was 

followed by K-NN with 90% and SVM with 84% (Table 47). 

 

Table 47.   F-Measures Results for Service Data Set with Optimized Parameters Using 

Experimenter 

Dataset Decision Tree K-NN SVM 

CFS  0.88 0.87 * 0.81 * 

IG 0.89 0.87 * 0.82 * 

RLF 0.91 0.90 * 0.84 * 

SVM Wrapper 0.89 0.87 * 0.82 * 

J48 Wrapper 0.91 0.89 * 0.84 * 

K-NN Wrapper 0.90 0.89 * 0.83 * 

 (v/ /*) (0/0/6) (0/0/6) 

 

 

 

Figure 30.   Service Data Set Classification Performance Measures across Data Sets 
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     Running the classification tests using different feature subsets in our target domain 

showed that while the average performance may be acceptable the True Negative Rates 

are lower than expected (Figure 30).  

Summary 

     This chapter focused on presenting and comparing different feature selection methods 

and the predictive accuracy as applied to the three different classification algorithms 

when we applied them on two distinct domains. In addition, different performance 

measures used to evaluate the classification algorithms were presented.  

     The first domain, marketing data from a bank, was obtained from the UCI repository. 

The main goal was to identify clients who would likely buy long term deposits based on 

previous contact and history.  

     The second domain consisted of automotive service history. Here our goal was to 

identify car owners who would be more likely to buy a new vehicle based on the service 

histories of their current vehicles. 
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Chapter 5 

Conclusions, Recommendations, and Summary 

 
 
Introduction 

     As competition grows among companies, the value of client retention becomes 

increasingly important. With computers’ speed increasing and the cost of disk space 

decreasing, the amount of customer data being retained increases. One effective way of 

analyzing this data is through data mining. In this report, we concentrated on the 

automotive industry domain, more specifically information captured by the service 

departments. Our goal was to determine potential car buyers based on service history of 

their current vehicle by using 3 different types of classification algorithms. 

The goal in this research was made up of five related sub-goals as follows:  

 

1) Compared and contrasted different feature selection methods against the 

mentioned high dimensional data sets and a reference data set. Both filter and 

wrapper methods were applied to these data sets and their results were compared 

and analyzed. The classification accuracy achieved by each method was 

compared against the better feature selection method found. 

2) Repeated the above procedure using different classification methods, including 

C4.5, a Decision Tree algorithm, K-Nearest Neighbor (K-NN), and Support 

Vector Machine (SVM) algorithms. 
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3) Compared the accuracy of the classification algorithms using the best attributes 

selected from each algorithm. All methods were tested and validated on a binary 

classification, bought or not bought, task. 

4) Used different thresholds in the classification systems and compare the effects on 

accuracy. K values in K-NN, pruning in Decision Trees, and Cost of Error and 

Gamma settings in the SVM algorithm. 

5) Determine which classification algorithm and feature selection combination 

produced the better results in order to determine new potential car buyers. 

Conclusions 

     Applying feature selection methods to our data sets produced mixed results. In the 

case of the bank reference data set applying the information gain, Correlation Feature 

Selection (CFS) and Relief-F filter methods increased our accuracy results as opposed to 

using all attributes only when using the K-NN classification algorithm. The True Positive 

Rates and True Negative Rates were in line with the rest of the performance measures. 

On the other hand, our target domain only saw an increase in accuracy after using the 

attributes selected by the Relief-F method. The accuracy increased from 70.2 % to 76.3% 

by using 1NN classification. Information Gain and CFS methods showed degradation in 

performance. Our target domain showed a bias to the positive class as shown by the 

lower True Negative Rate values versus the higher True Positive Rates. This may be 

attributed to the imbalance of the data set. 

     Using the wrapper method of feature selection increased the classification accuracy of 

the Decision Tree and Nearest Neighbor, for example, when k = 5, in the reference 

domain. In all other tests, attributes selected by the Relief-F method performed better 
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than all other feature selection methods. In the target domain, using wrapper data sets 

increased the accuracy rate of the Nearest Neighbor and SVM algorithms but 

underperformed by 0.1% when compared to the Decision Tree using all attributes. The 

second best performing feature selection method was CFS, and then it was followed by 

Relief-F. 

     Fine tuning of the parameters of our classification systems improved our accuracy and 

AUC rates most of the time. An increase in accuracy from 83.9% to 86.4% was seen in 

our reference data when the confidence factor parameter of the decision tree algorithm 

was decreased. No increase was seen on our target domain. Optimizing the Cost and 

Gamma parameters of the SVM classification algorithms produced better results in both 

domains.  

     Results of our 38 runs using different feature sets and classification algorithms 

indicated that the SVM classification algorithm produced the highest accuracy of 79.8% 

in our target domain. This SVM accuracy was obtained when optimizing the cost of error 

and gamma parameters to 1.0 and 1.0 respectively in the wrapper selection method. 

Using the decision tree algorithm resulted in the same accuracy rate when using all 

attributes. However, when using AUC as a performance measure nearest neighbor with k 

= 1 performed better than the other algorithms with an AUC of 79.6% but produced a 

lower recall of 79.5% than that of our best performer using the accuracy measure. 

     Results on our target domain showed that there is no statistical difference between  

using the Decision Tree algorithm with all attributes and SVM with the wrapper subset. 
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Since the computing cost of using all attributes was fairly high using the SVM model 

with the wrapper data set is recommended. 

Implications 

     From the conclusions just discussed, several implications were provided in the 

following observations and suggestions. Results of this study indicate and confirm that 

there is no specific classification algorithm that would work effectively across all 

domains. In addition, multiple factors, such as pre-processing and feature selection, may 

affect the results of any classification algorithm. It is hoped that this study advances the 

understanding that these factors may have in the selection of a data mining methodology.            

This study probably invites more research in the area as identified in the 

Recommendations section as well 

Recommendations 

     Based on the data in this study and the conclusions drawn, the following topics for 

additional research are recommended: 

 1. On our target domain we noticed that the scoring of our attributes was low by 

using Information Gain and Relief feature selection methods. While the attributes did 

contribute to the classification, there was no significant attribute that stood out. To 

overcome this, we recommend using a feature extraction method such as Principal 

Component Analysis (PCA). PCA uses existing attributes to create new ones that may 

have a better association with the output class. 

 2. This study was concentrated on the three most popular classification 

algorithms; Decision Trees, Nearest Neighbor, and Support Vector Machines. Ensemble 
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methods which use multiple algorithms to obtain better predictive performance may be 

used.  In addition, other types of classification algorithms, such as Neural Networks, 

which have been successfully used in other domains (Lam et al., 2014), may be also be 

applied to the data sets and compared against the base classification systems.  

 3. Finally, alternative feature selection methods to those tested may be 

implemented to improve the predictive accuracy of the tested algorithms. For example, 

K-means and hierarchal clustering (Guyon & Elisseeff, 2003) of features may also be 

studied. 

Summary 

     This paper is focused on the comparison of 4 different feature selection methods 

across 3 classification algorithms on data sets pertaining to our 2 domains, Bank 

Marketing and Vehicle Service data. The main tasks were followed the three main phases 

of the CRISP-DM process: 

 Data Preparation 

 Modeling 

 Evaluation 

      

     The first step was to prepare the data for use in our modeling stage. In the Bank 

domain, no missing values had to be accounted for, but attributes which were discretized 

had to be transformed since the K-NN and SVM classification algorithms do not handle 

discretized data. These attributes were transformed to separate attributes with values 

denoting their original state. One drawback to this process is that it increases the number 

of attributes in the working data set. In this case however, the increase was not 
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significant. Another step in the preprocessing stage was to normalize the values in the 

data. Again, the K-NN and SVM classification algorithms use distance measures in their 

calculations. It may affect the final accuracy rate with numeric values in different scales. 

This was rectified in both data sets by normalizing the numeric values to a value between 

0 and 1.  

     The next step in the data preparation stage was to apply the three filter selection 

methods; Information Gain, Correlation Feature Selection (CFS), and Relief-F, to our 

data sets. The wrapper and hybrid methods were also applied. This process resulted in the 

following data sets for each domain: 

 Domain_ALL – Data set with all attributes 

 DomainName_IG – Data set chosen using the Information Gain method 

 Domain_Name_RLF – Data set containing attributes selected by the Relief-F 

method 

 DomainName_CFS – Data set containing attributes selected by the CFS method 

 DomainName_J48_WRP – Data set composed of attributes selected by the 

wrapper method using the J48 classification algorithm 

 DomainName_K-NN_WRP - Data set composed of attributes selected by the 

wrapper method using the K-NN classification algorithm 

 DomainName_SVM_WRP - Data set composed of attributes selected by the 

wrapper method using the SVM classification algorithm 

 

     All feature selection methods indicated that the “duration” attribute was the most 

significant in the Bank data set. In addition, “poutcome=success”, “contact=unknown”, 

and “age” were also ranked as significant. Running the feature selection on the Service 

data set resulted in the following common attributes being selected “39CTZ22”, 

76CTZ01”, “39CVZ21”, and “76CTZDLRTRANS”. Other attributes were selected as 

well depending on the feature selection method applied. It should be noted that our 

highest ranking attribute, ”duration”, in the Bank data set had an Information Gain score 
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of .32 yet in the Service data set the highest ranking attribute, “39CTZ22”, only scored 

.075. 

      During the modeling stage, we ran our classification algorithms on each data set 

based on attributes selected by each feature selection method. Initial runs were performed 

with the default parameters for the classification function in WEKA (Appendix C). After 

the initial runs were performed, the classification models were executed again but with 

optimized parameters as selected by the Parameter Search and Grid Search modelers in 

WEKA.  

    The best accuracy performance in the Bank domain was achieved by the Decision Tree 

algorithm with features selected by the wrapper method and a confidence factor of 0.1. 

The precision accuracy obtained was 86.4%. This same classification/feature selection 

combination also produced the highest AUC of 90.4%. Running the K Nearest Neighbor 

with k = 5 and wrapper attributes also produced an AUC score of 90.4%, but accuracy 

was only 84.9%. 

     Using the SVM classification with the SVM wrapper data set produced the highest 

accuracy, 79.8%, in our Service domain.  This same accuracy was also achieved by the 

Decision Tree algorithm using all attributes. The best performing classification using 

AUC as a measuring tool was Nearest Neighbor with k = 1 and the NN wrapper data set. 

An AUC of 79.6% was achieved in this case. 
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Appendix A 

Data Schema 
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Appendix B 

 

Data Dictionaries 

Note. Attribute names have been changed to protect proprietary content. 

Table Name: Customer 

 Column_name Type Computed Length Prec Scale Nullable 

1 CustAttribute1 int No 4 10 0 no 

2 CustAttribute2 varchar No 40             no 

3 CustAttribute3 varchar No 10             yes 

4 CustAttribute4 varchar No 17             no 

5 CustAttribute5 varchar No 45             yes 

6 CustAttribute6 varchar No 1             yes 

7 CustAttribute7 datetime2 No 8 27 7 yes 

8 CustAttribute8 datetime2 No 8 27 7 yes 

9 CustAttribute9 varchar No 15             yes 

10 CustAttribute10 varchar No 7             yes 

11 CustAttribute11 varchar No 10             yes 

12 CustAttribute12 varchar No 35             yes 

13 CustAttribute13 varchar No 255             yes 

14 CustAttribute14 datetime2 No 8 27 7 yes 

15 CustAttribute15 varchar No 10             yes 

16 CustAttribute16 varchar No 1             yes 

17 CustAttribute17 varchar No 1             yes 

18 CustAttribute18 varchar No 1             yes 

19 CustAttribute19 varchar No 1             yes 

20 CustAttribute20 varchar No 1             yes 

21 CustAttribute21 varchar No 1             yes 

22 CustAttribute22 varchar No 1             yes 

23 CustAttribute23 varchar No 1             yes 

24 CustAttribute24 numeric No 9 19 4 yes 

25 CustAttribute25 numeric No 9 19 4 yes 

26 CustAttribute26 varchar No 17             yes 

27 CustAttribute27 varchar No 2             yes 

28 CustAttribute28 datetime2 No 8 27 7 yes 

29 CustAttribute29 varchar No 4             yes 

30 CustAttribute30 datetime2 No 8 27 7 yes 

31 CustAttribute31 varchar No 20             yes 

32 CustAttribute32 varchar No 50             yes 

33 CustAttribute33 varchar No 50             yes 
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 Column_name Type Computed Length Prec Scale Nullable 

34 CustAttribute34 varchar No 50             yes 

35 CustAttribute35 varchar No 10             yes 

36 CustAttribute36 varchar No 10             yes 

37 CustAttribute37 varchar No 10             yes 

38 CustAttribute38 varchar No 32             yes 

39 CustAttribute39 varchar No 25             yes 

40 CustAttribute40 varchar No 10             yes 

41 CustAttribute41 varchar No 37             yes 

42 CustAttribute42 varchar No 10             yes 

43 CustAttribute43 varchar No 12             yes 

44 CustAttribute44 varchar No 1             yes 

45 CustAttribute45 varchar No 2             yes 

46 CustAttribute46 varchar No 40             yes 

47 CustAttribute47 numeric No 9 19 4 yes 

48 CustAttribute48 datetime2 No 8 27 7 yes 

49 CustAttribute49 numeric No 9 19 4 yes 

50 CustAttribute50 datetime2 No 8 27 7 yes 

51 CustAttribute51 datetime2 No 8 27 7 yes 

52 CustAttribute52 varchar No 25             yes 

53 CustAttribute53 varchar No 45             yes 

54 CustAttribute54 varchar No 45             yes 

55 CustAttribute55 varchar No 1             yes 

56 CustAttribute56 varchar No 30             yes 

57 CustAttribute57 numeric No 9 19 4 yes 

58 CustAttribute58 numeric No 9 19 4 yes 

59 CustAttribute59 numeric No 9 19 4 yes 

60 CustAttribute60 numeric No 9 19 4 yes 

61 CustAttribute61 varchar No 10             yes 

62 CustAttribute62 varchar No 10             yes 

63 CustAttribute63 varchar No 2             yes 

64 CustAttribute64 varchar No 10             yes 

65 CustAttribute65 varchar No 1             yes 

66 CustAttribute66 varchar No 10             yes 

67 CustAttribute67 varchar No 255             yes 

68 CustAttribute68 datetime2 No 8 27 7 yes 

69 CustAttribute69 varchar No 10             yes 

70 CustAttribute70 varchar No 4             yes 

71 CustAttribute71 varchar No 40             yes 

72 CustAttribute72 varchar No 40             yes 

73 CustAttribute73 datetime2 No 8 27 7 yes 
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 Column_name Type Computed Length Prec Scale Nullable 

74 CustAttribute74 varchar No 20             yes 

75 CustAttribute75 varchar No 10             yes 

76 CustAttribute76 varchar No 2             yes 

77 CustAttribute77 varchar No 40             yes 

78 CustAttribute78 varchar No 11             yes 

79 CustAttribute79 varchar No 3             yes 

80 CustAttribute80 varchar No 4             yes 

81 CustAttribute81 varchar No 2             yes 

82 CustAttribute82 varchar No 10             yes 

83 CustAttribute83 varchar No 30             yes 

84 CustAttribute84 varchar No 30             yes 

85 CustAttribute85 numeric No 9 19 4 yes 

86 CustAttribute86 numeric No 9 19 4 yes 

87 CustAttribute87 numeric No 9 19 4 yes 

88 CustAttribute88 varchar No 10             yes 

89 CustAttribute89 numeric No 9 19 4 yes 

90 CustAttribute90 varchar No 10             yes 

91 CustAttribute91 datetime2 No 8 27 7 yes 

92 CustAttribute92 varchar No 1024             yes 

93 CustAttribute93 varchar No 1024             yes 
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Table Name: VehicleSales 

 Column_name Type Length Prec Scale Nullable 

1 VSAttribute1 int 4 10 0 no 

2 VSAttribute2 varchar 40             no 

3 VSAttribute3 varchar 17             no 

4 VSAttribute4 datetime2 8 27 7 yes 

5 VSAttribute5 numeric 9 19 0 yes 

6 VSAttribute6 numeric 9 19 4 yes 

7 VSAttribute7 numeric 9 19 4 yes 

8 VSAttribute8 varchar 17             yes 

9 VSAttribute9 numeric 9 19 4 yes 

10 VSAttribute10 varchar 17             yes 

11 VSAttribute11 numeric 9 19 4 yes 

12 VSAttribute12 numeric 9 19 4 yes 

13 VSAttribute13 numeric 9 19 4 yes 

14 VSAttribute14 varchar 17             yes 

15 VSAttribute15 numeric 9 15 4 yes 

16 VSAttribute16 numeric 9 15 4 yes 

17 VSAttribute17 numeric 9 15 5 yes 

18 VSAttribute18 varchar 20             yes 

19 VSAttribute19 numeric 9 19 4 yes 

20 VSAttribute20 numeric 9 19 4 yes 

21 VSAttribute21 numeric 9 19 4 yes 

22 VSAttribute22 varchar 17             yes 

23 VSAttribute23 numeric 9 19 4 yes 

24 VSAttribute24 varchar 50             yes 

25 VSAttribute25 varchar 20             yes 

26 VSAttribute26 numeric 9 19 4 yes 

27 VSAttribute27 numeric 9 19 4 yes 

28 VSAttribute28 numeric 9 19 4 yes 

29 VSAttribute29 datetime2 8 27 7 yes 

30 VSAttribute30 varchar 40             yes 

31 VSAttribute31 datetime2 8 27 7 yes 

32 VSAttribute32 varchar 40             yes 

33 VSAttribute33 datetime2 8 27 7 yes 

34 VSAttribute34 numeric 9 19 4 yes 

35 VSAttribute35 varchar 17             yes 

36 VSAttribute36 varchar 15             yes 

37 VSAttribute37 datetime2 8 27 7 yes 

38 VSAttribute38 varchar 15             yes 

39 VSAttribute39 datetime2 8 27 7 yes 
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 Column_name Type Length Prec Scale Nullable 

40 VSAttribute40 varchar 15             yes 

41 VSAttribute41 datetime2 8 27 7 yes 

42 VSAttribute42 varchar 15             yes 

43 VSAttribute43 datetime2 8 27 7 yes 

44 VSAttribute44 varchar 10             yes 

45 VSAttribute45 varchar 13             yes 

46 VSAttribute46 varchar 10             yes 

47 VSAttribute47 varchar 15             yes 

48 VSAttribute48 numeric 9 19 4 yes 

49 VSAttribute49 varchar 17             yes 

50 VSAttribute50 varchar 17             yes 

51 VSAttribute51 numeric 9 19 4 yes 

52 VSAttribute52 varchar 10             yes 

53 VSAttribute53 datetime2 8 27 7 yes 

54 VSAttribute54 varchar 1             yes 

55 VSAttribute55 numeric 9 19 4 yes 

56 VSAttribute56 numeric 9 19 4 yes 

57 VSAttribute57 numeric 9 19 4 yes 

58 VSAttribute58 numeric 9 19 4 yes 

59 VSAttribute59 numeric 9 19 4 yes 

60 VSAttribute60 numeric 9 19 4 yes 

61 VSAttribute61 numeric 9 19 4 yes 

62 VSAttribute62 numeric 9 19 4 yes 

63 VSAttribute63 datetime2 8 27 7 yes 

64 VSAttribute64 numeric 9 19 4 yes 

65 VSAttribute65 varchar 8             yes 

66 VSAttribute66 varchar 10             yes 

67 VSAttribute67 varchar 30             yes 

68 VSAttribute68 numeric 9 19 4 yes 

69 VSAttribute69 numeric 9 19 4 yes 

70 VSAttribute70 varchar 25             yes 

71 VSAttribute71 varchar 10             yes 

72 VSAttribute72 varchar 30             yes 

73 VSAttribute73 numeric 9 19 4 yes 

74 VSAttribute74 numeric 9 19 0 yes 

75 VSAttribute75 varchar 10             yes 

76 VSAttribute76 datetime2 8 27 7 yes 

77 VSAttribute77 datetime2 8 27 7 yes 

78 VSAttribute78 datetime2 8 27 7 yes 

79 VSAttribute79 numeric 9 19 4 yes 
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 Column_name Type Length Prec Scale Nullable 

80 VSAttribute80 numeric 9 19 4 yes 

81 VSAttribute81 numeric 9 19 4 yes 

82 VSAttribute82 numeric 9 19 0 yes 

83 VSAttribute83 numeric 9 19 0 yes 

84 VSAttribute84 numeric 9 19 0 yes 

85 VSAttribute85 varchar 17             yes 

86 VSAttribute86 datetime2 8 27 7 yes 

87 VSAttribute87 varchar 17             yes 

88 VSAttribute88 varchar 17             yes 

89 VSAttribute89 varchar 17             yes 

90 VSAttribute90 varchar 17             yes 

91 VSAttribute91 numeric 9 15 4 yes 

92 VSAttribute92 numeric 9 15 4 yes 

93 VSAttribute93 numeric 9 15 5 yes 

94 VSAttribute94 varchar 17             yes 

95 VSAttribute95 numeric 9 19 4 yes 

96 VSAttribute96 int 4 10 0 yes 

97 VSAttribute97 numeric 9 19 4 yes 

98 VSAttribute98 numeric 9 19 4 yes 

99 VSAttribute99 varchar 10             yes 

100 VSAttribute100 varchar 10             yes 

101 VSAttribute101 numeric 9 19 4 yes 

102 VSAttribute102 numeric 9 19 4 yes 

103 VSAttribute103 varchar 17             yes 

104 VSAttribute104 int 4 10 0 yes 

105 VSAttribute105 numeric 9 19 4 yes 

106 VSAttribute106 varchar 10             yes 

107 VSAttribute107 varchar 10             yes 

108 VSAttribute108 numeric 9 19 4 yes 

109 VSAttribute109 numeric 9 19 4 yes 

110 VSAttribute110 varchar 17             yes 

111 VSAttribute111 int 4 10 0 yes 

112 VSAttribute112 varchar 17             yes 

113 VSAttribute113 int 4 10 0 yes 

114 VSAttribute114 datetime2 8 27 7 yes 

115 VSAttribute115 varchar 1024             yes 

116 VSAttribute116 numeric 9 19 4 yes 
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Table: ServiceSalesClosed 

 Column_name Type Length Prec Scale Nullable 

1 SSDAttribute1 int 4 10 0 no 

2 SSDAttribute2 varchar 40             no 

3 SSDAttribute3 varchar 17             yes 

4 SSDAttribute4 numeric 9 12 2 yes 

5 SSDAttribute5 numeric 9 12 2 yes 

6 SSDAttribute6 numeric 9 12 2 yes 

7 SSDAttribute7 numeric 9 12 2 yes 

8 SSDAttribute8 datetime2 8 27 7 yes 

9 SSDAttribute9 varchar 1             yes 

10 SSDAttribute10 varchar 8             yes 

11 SSDAttribute11 varchar 20             yes 

12 SSDAttribute12 datetime2 8 27 7 yes 

13 SSDAttribute13 varchar 1             yes 

14 SSDAttribute14 varchar 17             yes 

15 SSDAttribute15 int 4 10 0 yes 

16 SSDAttribute16 int 4 10 0 yes 

17 SSDAttribute17 int 4 10 0 yes 

18 SSDAttribute18 numeric 9 19 4 yes 

19 SSDAttribute19 numeric 9 19 4 yes 

20 SSDAttribute20 numeric 9 19 4 yes 

21 SSDAttribute21 numeric 9 19 4 yes 

22 SSDAttribute22 numeric 9 19 4 yes 

23 SSDAttribute23 numeric 9 19 4 yes 

24 SSDAttribute24 numeric 9 19 4 yes 

25 SSDAttribute25 numeric 9 19 4 yes 

26 SSDAttribute26 numeric 9 19 0 yes 

27 SSDAttribute27 numeric 9 19 4 yes 

28 SSDAttribute28 numeric 9 19 4 yes 

29 SSDAttribute29 numeric 9 19 4 yes 

30 SSDAttribute30 numeric 9 19 4 yes 

31 SSDAttribute31 numeric 9 19 4 yes 

32 SSDAttribute32 numeric 9 19 4 yes 

33 SSDAttribute33 numeric 9 19 4 yes 

34 SSDAttribute34 numeric 9 19 4 yes 

35 SSDAttribute35 datetime2 8 27 7 yes 

36 SSDAttribute36 varchar 20             yes 

37 SSDAttribute37 numeric 9 19 4 yes 

38 SSDAttribute38 numeric 9 19 4 yes 

39 SSDAttribute39 numeric 9 19 4 yes 
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 Column_name Type Length Prec Scale Nullable 

40 SSDAttribute40 numeric 9 19 4 yes 

41 SSDAttribute41 numeric 9 19 4 yes 

42 SSDAttribute42 numeric 9 19 4 yes 

43 SSDAttribute43 numeric 9 19 4 yes 

44 SSDAttribute44 numeric 9 19 4 yes 

45 SSDAttribute45 varchar 12             yes 

46 SSDAttribute46 varchar 17             yes 

47 SSDAttribute47 numeric 9 12 2 yes 

48 SSDAttribute48 numeric 9 12 2 yes 

49 SSDAttribute49 numeric 9 12 2 yes 

50 SSDAttribute50 numeric 9 12 2 yes 

51 SSDAttribute51 numeric 9 19 4 yes 

52 SSDAttribute52 numeric 9 19 4 yes 

53 SSDAttribute53 numeric 9 19 4 yes 

54 SSDAttribute54 numeric 9 19 4 yes 

55 SSDAttribute55 numeric 9 19 4 yes 

56 SSDAttribute56 numeric 9 19 4 yes 

57 SSDAttribute57 numeric 9 12 2 yes 

58 SSDAttribute58 numeric 9 12 2 yes 

59 SSDAttribute59 numeric 9 12 2 yes 

60 SSDAttribute60 numeric 9 12 2 yes 

61 SSDAttribute61 varchar 17             yes 

62 SSDAttribute62 datetime2 8 27 7 yes 

63 SSDAttribute63 datetime2 8 27 7 yes 

64 SSDAttribute64 datetime2 8 27 7 yes 
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Table: ServiceSalesDetailsClosed 

 Column_name Type Computed Length Prec Scale Nullable 

1 SSDCAttribute1 int No 4 10 0 no 

2 SSDCAttribute2 varchar No 40             no 

3 SSDCAttribute3 varchar No 17             yes 

4 SSDCAttribute4 numeric No 9 14 2 yes 

5 SSDCAttribute5 varchar No 17             yes 

6 SSDCAttribute6 varchar No 55             yes 

7 SSDCAttribute7 varchar No 1             yes 

8 SSDCAttribute8 varchar No 20             yes 

9 SSDCAttribute9 varchar No 17             yes 

10 SSDCAttribute10 varchar No 17             yes 

11 SSDCAttribute11 varchar No 20             yes 

12 SSDCAttribute12 varchar No 30             yes 

13 SSDCAttribute13 int No 4 10 0 yes 

14 SSDCAttribute14 varchar No 21             yes 

15 SSDCAttribute15 numeric No 13 24 4 yes 

16 SSDCAttribute16 numeric No 13 24 4 yes 

17 SSDCAttribute17 varchar No 5             yes 

18 SSDCAttribute18 varchar No 3             yes 

19 SSDCAttribute19 numeric No 13 24 4 yes 

20 SSDCAttribute20 numeric No 13 24 4 yes 

21 SSDCAttribute21 varchar No 20             yes 

22 SSDCAttribute22 varchar No 70             yes 

23 SSDCAttribute23 numeric No 13 24 4 yes 

24 SSDCAttribute24 numeric No 13 24 4 yes 

25 SSDCAttribute25 varchar No 12             yes 

26 SSDCAttribute26 varchar No 250             yes 

27 SSDCAttribute27 numeric No 9 14 2 yes 

28 SSDCAttribute28 numeric No 9 14 2 yes 

29 SSDCAttribute29 varchar No 17             yes 

30 SSDCAttribute30 datetime2 No 8 27 7 yes 

31 SSDCAttribute31 varchar No 1024             yes 

32 SSDCAttribute32 varchar No 1024             yes 

33 SSDCAttribute33 varchar No 1024             yes 

34 SSDCAttribute34 varchar No 12             no 
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Bank ARFF File 

@relation 'bank-fullxl-

weka.filters.supervised.attribute.NominalToBinary-

weka.filters.supervised.attribute.Discretize-R1-

weka.filters.supervised.attribute.Discretize-R22,28,41,42,43' 

 

@attribute age {'\'(-inf-25.5]\'','\'(25.5-29.5]\'','\'(29.5-

60.5]\'','\'(60.5-inf)\''} 

@attribute job=management numeric 

@attribute job=technician numeric 

@attribute job=entrepreneur numeric 

@attribute job=blue-collar numeric 

@attribute job=unknown numeric 

@attribute job=retired numeric 

@attribute job=admin. numeric 

@attribute job=services numeric 

@attribute job=self-employed numeric 

@attribute job=unemployed numeric 

@attribute job=housemaid numeric 

@attribute job=student numeric 

@attribute marital=married numeric 

@attribute marital=single numeric 

@attribute marital=divorced numeric 

@attribute education=tertiary numeric 

@attribute education=secondary numeric 

@attribute education=unknown numeric 

@attribute education=primary numeric 

@attribute default numeric 

@attribute balance {'\'(-inf--46.5]\'','\'(-46.5-

105.5]\'','\'(105.5-1578.5]\'','\'(1578.5-inf)\''} 

@attribute housing numeric 

@attribute loan numeric 

@attribute contact=unknown numeric 

@attribute contact=cellular numeric 

@attribute contact=telephone numeric 

@attribute day {'\'(-inf-1.5]\'','\'(1.5-4.5]\'','\'(4.5-

9.5]\'','\'(9.5-10.5]\'','\'(10.5-16.5]\'','\'(16.5-

21.5]\'','\'(21.5-25.5]\'','\'(25.5-27.5]\'','\'(27.5-

29.5]\'','\'(29.5-30.5]\'','\'(30.5-inf)\''} 

@attribute month=may numeric 

@attribute month=jun numeric 

@attribute month=jul numeric 

@attribute month=aug numeric 

@attribute month=oct numeric 

@attribute month=nov numeric 

@attribute month=dec numeric 

@attribute month=jan numeric 

@attribute month=feb numeric 

@attribute month=mar numeric 

@attribute month=apr numeric 
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@attribute month=sep numeric 

@attribute duration {'\'(-inf-77.5]\'','\'(77.5-

130.5]\'','\'(130.5-206.5]\'','\'(206.5-259.5]\'','\'(259.5-

410.5]\'','\'(410.5-521.5]\'','\'(521.5-647.5]\'','\'(647.5-

827.5]\'','\'(827.5-inf)\''} 

@attribute campaign {'\'(-inf-1.5]\'','\'(1.5-3.5]\'','\'(3.5-

11.5]\'','\'(11.5-inf)\''} 

@attribute pdays {'\'(-inf-8.5]\'','\'(8.5-86.5]\'','\'(86.5-

99.5]\'','\'(99.5-107.5]\'','\'(107.5-177.5]\'','\'(177.5-

184.5]\'','\'(184.5-203.5]\'','\'(203.5-316.5]\'','\'(316.5-

373.5]\'','\'(373.5-inf)\''} 

@attribute previous numeric 

@attribute poutcome=unknown numeric 

@attribute poutcome=failure numeric 

@attribute poutcome=other numeric 

@attribute poutcome=success numeric 

@attribute y {no,yes} 
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Service ARFF File 

 

@relation ServicewMileage-

weka.filters.unsupervised.attribute.Remove-R1-2-

weka.filters.unsupervised.attribute.Normalize-S1.0-T0.0 

 

@attribute Age numeric 

@attribute Mileage numeric 

@attribute 46 {0,1} 

@attribute 46CTZ {0,1} 

@attribute 46CVZ {0,1} 

@attribute 11 {0,1} 

@attribute 39 {0,1} 

@attribute 29 {0,1} 

@attribute SPO {0,1} 

@attribute 03CTZ {0,1} 

@attribute 22CTZ {0,1} 

@attribute RT {0,1} 

@attribute 11CTZ {0,1} 

@attribute 29CTZ {0,1} 

@attribute 46CTZROTATE {0,1} 

@attribute 22 {0,1} 

@attribute PDI {0,1} 

@attribute 10 {0,1} 

@attribute 25 {0,1} 

@attribute 39CTZ22 {0,1} 

@attribute 76CTZ01 {0,1} 

@attribute 76CTZ {0,1} 

@attribute 22CVZ {0,1} 

@attribute 30CTZ {0,1} 

@attribute 03CVZ {0,1} 

@attribute 02CTZ {0,1} 

@attribute 11CVZ {0,1} 

@attribute 25CTZ {0,1} 

@attribute 20 {0,1} 

@attribute 06CTZ {0,1} 

@attribute 20CTZ {0,1} 

@attribute 46CVZROTATE {0,1} 

@attribute 9999 {0,1} 

@attribute 29CTZ1 {0,1} 

@attribute 10CTZ {0,1} 

@attribute 02CTZ029LOF {0,1} 

@attribute 03CTZ1 {0,1} 

@attribute NCK {0,1} 

@attribute 22CTZ1 {0,1} 

@attribute 29CVZ {0,1} 

@attribute 76 {0,1} 

@attribute NVP {0,1} 

@attribute 30CTZ1 {0,1} 
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@attribute 02CVZ {0,1} 

@attribute 02CTZFUELFILTER {0,1} 

@attribute 76CTZDLRTRANS {0,1} 

@attribute 16CTZ {0,1} 

@attribute 11CTZ1 {0,1} 

@attribute 5 {0,1} 

@attribute 25CTZ1 {0,1} 

@attribute 16 {0,1} 

@attribute 10CVZ {0,1} 

@attribute 02CVZ029LOF {0,1} 

@attribute RB {0,1} 

@attribute 06CVZ {0,1} 

@attribute 11CTZWRNLTON {0,1} 

@attribute 76CTZETCH {0,1} 

@attribute 39CTZ21 {0,1} 

@attribute 30 {0,1} 

@attribute 01CTZ5 {0,1} 

@attribute 29CTZ2 {0,1} 

@attribute 39CVZ21 {0,1} 

@attribute E7700 {0,1} 

@attribute 02CTZROTTIRES {0,1} 

@attribute 39CVZ22 {0,1} 

@attribute 76CVZ01 {0,1} 

@attribute 38CTZ1 {0,1} 

@attribute 02CTZGTSTRB {0,1} 

@attribute 76CTZ02 {0,1} 

@attribute 22CTZ2 {0,1} 

@attribute 76CVZ {0,1} 

@attribute 76CVZ02 {0,1} 

@attribute 03CTZ2 {0,1} 

@attribute 22CVZ1 {0,1} 

@attribute 20CVZ {0,1} 

@attribute 40 {0,1} 

@attribute 05CTZALIGN2 {0,1} 

@attribute 39CTZ {0,1} 

@attribute 30CVZ {0,1} 

@attribute 1 {0,1} 

@attribute 11CVZ1 {0,1} 

@attribute 02CTZAIRFILTER {0,1} 

@attribute 02CTZ00003K {0,1} 

@attribute 03CVZ1 {0,1} 

@attribute 20CTZ1 {0,1} 

@attribute SPCL {0,1} 

@attribute 39CVZ {0,1} 

@attribute 01CTZ01 {0,1} 

@attribute 29CVZ1 {0,1} 

@attribute 10CTZCOOLLK {0,1} 

@attribute MTF12 {0,1} 

@attribute 6 {0,1} 

@attribute 11CVZWRNLTON {0,1} 

@attribute 10CTZ1 {0,1} 

@attribute 02CTZ01 {0,1} 
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@attribute UCI {0,1} 

@attribute 01CVZ {0,1} 

@attribute ELE {0,1} 

@attribute 76CVZETCH {0,1} 

@attribute 38CVZ1 {0,1} 

@attribute 10CVZCOOLLK {0,1} 

@attribute ROT {0,1} 

@attribute 25CVZ {0,1} 

@attribute 46CTSFFILTER1 {0,1} 

@attribute 11CTZ2 {0,1} 

@attribute 02CVZFFILTER {0,1} 

@attribute DRV {0,1} 

@attribute 16CTZ1 {0,1} 

@attribute N4180 {0,1} 

@attribute 25CTZ2 {0,1} 

@attribute 76CTZ1 {0,1} 

@attribute 02CVZAIRFILTER {0,1} 

@attribute 02CVZ00003K {0,1} 

@attribute 39CTZ26 {0,1} 

@attribute 16CVZ {0,1} 

@attribute 03CTZ4 {0,1} 

@attribute 02CTZ1 {0,1} 

@attribute 03CVZ2 {0,1} 

@attribute 22CVZ2 {0,1} 

@attribute 02CTZBELTS {0,1} 

@attribute 8 {0,1} 

@attribute 05CTZ {0,1} 

@attribute 01CTZ {0,1} 

@attribute 01CVZ01 {0,1} 

@attribute NWD {0,1} 

@attribute 76CVZDLRTRANS {0,1} 

@attribute 02CVZGTSTRB {0,1} 

@attribute 02CVZROTTIRES {0,1} 

@attribute N0110 {0,1} 

@attribute 29CVZ2 {0,1} 

@attribute TRM {0,1} 

@attribute 10CTZOILLEAK {0,1} 

@attribute ALI2 {0,1} 

@attribute 01CVZ5 {0,1} 

@attribute 30CVZ1 {0,1} 

@attribute 39CTZ1 {0,1} 

@attribute 10CVZOILLEAK {0,1} 

@attribute 02CTZROTBAL {0,1} 

@attribute 02CTBRONZE {0,1} 

@attribute 76CVZ1 {0,1} 

@attribute 46CTSSPEC {0,1} 

@attribute 38CTZ {0,1} 

@attribute 29CTZ3 {0,1} 

@attribute 10CVZ1 {0,1} 

@attribute 65CTZ1 {0,1} 

@attribute 38 {0,1} 

@attribute 02CTZMISC {0,1} 
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@attribute 60CTZ1 {0,1} 

@attribute 39CTZ28 {0,1} 

@attribute Y0124 {0,1} 

@attribute GM {0,1} 

@attribute 30CVZ4 {0,1} 

@attribute 20CVZ1 {0,1} 

@attribute 02CVZ01 {0,1} 

@attribute NPF {0,1} 

@attribute SI {0,1} 

@attribute 29CTZ4 {0,1} 

@attribute 01CTZ6 {0,1} 

@attribute SAFE {0,1} 

@attribute R0760 {0,1} 

@attribute 02CTZWIPBLADES {0,1} 

@attribute MCFT {0,1} 

@attribute 05CVZALIGN2 {0,1} 

@attribute 01CTZ1 {0,1} 

@attribute 03CTZMOUNTTIRE4 {0,1} 

@attribute 25CVZ1 {0,1} 

@attribute MCFS {0,1} 

@attribute 03CVZMOUNTTIRE4 {0,1} 

@attribute 47CTZPMA {0,1} 

@attribute 22CTZ4 {0,1} 

@attribute 39CTZ24 {0,1} 

@attribute R4490 {0,1} 

@attribute 03CVZ4 {0,1} 

@attribute V1508 {0,1} 

@attribute 02CVZBELTS {0,1} 

@attribute 47CTZ {0,1} 

@attribute V1382 {0,1} 

@attribute 03CTZ3 {0,1} 

@attribute 05CVZALIGN4 {0,1} 

@attribute 02CTZENGTU8 {0,1} 

@attribute 11CTZ4 {0,1} 

@attribute N1720 {0,1} 

@attribute 39CTZ23 {0,1} 

@attribute 02CVZROTBAL {0,1} 

@attribute D1002 {0,1} 

@attribute H0122 {0,1} 

@attribute 30CTZ2 {0,1} 

@attribute 10CTZ2 {0,1} 

@attribute SOP {0,1} 

@attribute 02CVZ1 {0,1} 

@attribute 05CTZ1 {0,1} 

@attribute MCFC {0,1} 

@attribute 02CTZATSER {0,1} 

@attribute L1020 {0,1} 

@attribute 46SYN {0,1} 

@attribute 46OWN {0,1} 

@attribute 01CTZ20 {0,1} 

@attribute L2300 {0,1} 

@attribute E0716 {0,1} 
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@attribute 39CVZ1 {0,1} 

@attribute Class {0,1} 
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Appendix C 

WEKA Functions and Parameters 

 

     The software used for the evaluation was WEKA (Waikato Environment for 

Knowledge Analysis) (Witten et al., 2004) an open source machine learning workbench. 

WEKA has an extensive collection of pre-processing methods and machine learning 

algorithms implemented in java as classes with an optional graphical user interface. 

WEKA Version 3.7.7 was used in this study. The functions and parameters used are 

detailed in this section. 

Missing Values 

WEKA’s ReplaceMissingValues preprocessing filter to account for missing values. This 

filter replaces all missing values for nominal and numeric attributes in a dataset with the 

modes and means from the training data. 

Data Normalization 

     Some algorithms, such as Support Vector Machines, may require that the data be 

normalized to increase the efficiency of the algorithm. The normalization will prevent 

any variation in distance measures that may occur had the data not been normalized. 

When needed, we will apply WEKA’s Normalize filter to normalize the data using the 

following parameters: 

Parameters for Normalize filter 

Option Description Value 

-L num  The Lnorm to be used on the normalization 2.0 

-N num The norm of the instances after normalization 1.0 
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Feature Selection 

We began our feature selection testing by using a Correlation Based Feature selection 

method. This will be accomplished by using a BestFirst (Forward) search method on a 

CfsSubsetEval attribute evaluator inWEKA. 

The second filter method to be tested was based on Information Gain. WEKA’s 

implementation, InfoGainAttributeEval, evaluates the attribute’s worth by measuring the 

information gain with respect to the class.  

InfoGain(Class,Attribute) = H(Class) – H(Class | Attribute) 

Before using this filter method we were required to discretize continuous values 

beforehand. 

The last filter method studied was the Relief-F method. The attribute evaluator used for 

this method will be ReliefAttributeEval. This method evaluates the worth of the attribute 

being tested by sampling an instance and detecting the nearest class. 

Parameters for Relief method 

Option Description Value 

-M 

num 

Number of instances to Sample All 

-D num Seed for randomly sampling instances 1.0 

-W Weight nearest neighbors by distance  

-A num Sigma value by which distant instances decrease. Use with –

W option. 

2.0 

 

InfoGainAttributeEval and Relief-F attribute evaluators use a ranking search method to 

rank the attributes. Table 4 shows a listing of the Ranker operator options. 
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Parameters for Ranker operator 

Option Description Value 

-P set Starting set of attributes to ignore None 

-T num Threshold used to discard an attribute. Determined after first 

run with no threshold.  

X 

-N num Number of attributes to select All, 30, 20 

 

Wrappers 

     Wrapper methods use the classifying algorithm as part of the selection process. For 

our experiments we will use the WrapperSubsetEval evaluator. This evaluator uses cross 

validation to estimate the accuracy of the classifying algorithm for a given set of 

attributes. 

Parameters for Wrapper method 

Option Description Value 

-B  Class name of the base learner Varies 

-F 

num 

Number of cross validations to use 5.0 

-T 

num 

Threshold used to initiate next cross validation (StdDev as 

Percentage) 

.01 

-E Performance evaluation measure to use (acc,rmse,mae,f-

meas,auc,auprc) 

Accuracy 

 

Decision Tree 

     The decision tree algorithm used in this study is implemented using WEKA’s J48 

decision tree classifier. J48 is WEKA’s implementation of the C4.5 (Quinlan, 1993) 

decision tree algorithm. We’ll test the J48 classifier with a confidence factor ranging 

from 0.1 to 1.0 incremented by 0.2. A lower confidence factor will equate to a larger 

error estimate at each node thus increasing the chances that the node will be pruned. The 
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number of minimum instances per node (minNumObj) was set at 2, and cross validation 

folds for the Testing Set (crossValidationFolds) was set at 10. All options for the J48 are 

shown below. 

Decision Tree options 

Option Description Value 

binarySplits  Whether to use binary splits on nominal attributes 

when building the trees.  

False 

confidenceFactor  The confidence factor used for pruning (smaller values 

incur more pruning).  

0.25 

debug  If set to true, classifier may output additional info to 

the console.  

False 

minNumObj  The minimum number of instances per leaf.  2 

numFolds  Determines the amount of data used for reduced-error 

pruning. One fold is used for pruning, the rest for 

growing the tree.  

3 

reducedErrorPruning  Whether reduced-error pruning is used instead of C.4.5 

pruning.  

False 

saveInstanceData  Whether to save the training data for visualization.  True 

seed  The seed used for randomizing the data when reduced-

error pruning is used.  

1 

subtreeRaising  Whether to consider the subtree raising operation 

when pruning.  

True 

unpruned  Whether pruning is performed.  T/F 

useLaplace  Whether counts at leaves are smoothed based on 

Laplace.  

False 

 

k-Nearest Neighbor (k-NN) 

     For our k-NN classification testing we will use the Instance Based k (IBk) classifier 

(Kibler, 1991) in WEKA. We will test using Euclidean distance and a K value of 1. A 

different value for K will also be used. This value was selected by the system using the 
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crossValidate parameter. If this parameter is set, the system will find the optimal K value 

between 1 and the K value entered.  

 

k-Nearest Neighbor parameter settings 

Option Description Value 

K-NN  The number of neighbors to use.  Varies 

crossValidate  Whether hold-one-out cross-validation 

will be used to select the best k value.  

True 

debug  If set to true, classifier may output 

additional info to the console.  

False 

distanceWeighting  Gets the distance weighting method used.  Eq. Wt 

meanSquared  Whether the mean squared error is used 

rather than mean absolute error when 

doing cross-validation for regression 

problems.  

False 

nearestNeighbourSearchAlgorithm  The nearest neighbor search algorithm to 

use (Default: 

weka.core.neighboursearch.LinearNNSea

rch).  

Linear 

windowSize  Gets the maximum number of instances 

allowed in the training pool. The addition 

of new instances above this value will 

result in old instances being removed. A 

value of 0 signifies no limit to the number 

of training instances.  

0 

 

Support Vector Machine (SVM)  

The Support Vector Machine classifier used in our experiments was the WEKA LibSVM 

classifier (El-Manzalawy & Honavar, 2005). This SVM classifier is more efficient that 

WEKA’s SMO and supports several SVM methods (e.g. One-Class SVM, nu-SVM, and 

epsilon-SVR). Values to be used in our tests are shown below. 
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Support Vector Machine runtime options 

Option Description Value 

SVMType  The type of SVM to use.  C-SVC 

cacheSize  The cache size in MB.  80 

coef0  The coefficient to use.  0 

cost  The cost parameter C for C-SVC, epsilon-SVR and nu-

SVR.  

1 

debug  If set to true, classifier may output additional info to the 

console.  

F 

degree  The degree of the kernel.  3 

eps  The tolerance of the termination criterion.  .001 

gamma  The gamma to use, if 0 then 1/max_index is used.  1/k 

kernelType  The type of kernel to use  Radial 

loss  The epsilon for the loss function in epsilon-SVR.  NA 

normalize  Whether to normalize the data.  0 

nu  The value of nu for nu-SVC, one-class SVM and nu-

SVR.  

NA 

probabilityEstimates  Whether to generate probability estimates instead of -

1/+1 for classification problems.  

0 

shrinking  Whether to use the shrinking heuristic.  1 

weights  The weights to use for the classes, if empty 1 is used by 

default. 

1 
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Appendix D 

Bank Data Classification Results 

 

  

Bank Data 

    

 

Test Accuracy AUC F-Meas 

   

 

        

   1 J48ALL 0.847 0.862 0.847 

   

 

no  0.821   0.843 

   

 

yes 0.873   0.851 

   2 J48IG 0.833 0.866 0.833 

 

 

 

  0.803   0.828 

   

 

  0.863   0.838 

   3 J48RLF 0.858 0.901 0.858 

   

 

  0.834   0.855 

   

 

  0.882   0.861 

   4 J48CFS 0.821 0.882 0.821 

   

 

  0.802   0.818 

   

 

  0.84   0.824 

   5 J48WRP 0.862 0.899 0.862 

   

 

  0.839   0.859 

   

 

  0.886   0.865 

   6 PS_J48IG 0.839 0.883 0.839 

 

 

 

  0.815   0.835 

   

 

  0.862   0.842 

   7 PS_J48RLF 0.86 0.904 0.859 

   

 

  0.837   0.856 

   

 

  0.882   0.863 

   8 PS_J48CFS 0.822 0.882 0.822 

   

 

  0.803   0.803 

   

 

  0.84   0.84 

   9 PS_J48WRP 0.864 0.905 0.864 

   

 

  0.835   0.86 

   

 

  0.894   0.868 

   10 1NNALL 0.735 0.801 0.735 

 

 

 

  0.787   0.748 

   

 

  0.684   0.721 

   11 1NNIG 0.776 0.775 0.776 

   

 

  0.792   0.779 

   

 

  0.759   0.772 

   12 1NNRLF 0.807 0.809 0.807 
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  0.81   0.807 

   

 

  0.804   0.806 

   13 1NNCFS 0.761 0.758 0.761 

   

 

  0.767   0.762 

   

 

  0.755   0.761 

   14 1NNWRP 0.796 0.794 0.796 

   

 

  0.806   0.798 

   

 

  0.787   0.794 

   15 5NNALL 0.735 0.801 0.735 

   

 

  0.787   0.748 

   

 

  0.684   0.721 

   16 5NNIG 0.809 0.87 0.809 

   

 

  0.835   0.835 

   

 

  0.782   0.782 

   17 5NNRLF 0.842 0.898 0.842 

   

 

  0.839   0.842 

   

 

  0.845   0.842 

   18 5NNCFS 0.809 0.867 0.809 

   

 

  0.808   0.809 

   

 

  0.81   0.809 

   19 5NNWRP 0.849 0.905 0.849 

   

 

  0.832   0.846 

   

 

  0.866   0.851 

   20 10NNALL 0.734 0.812 0.73 

   

 

  0.852   0.762 

   

 

  0.615   0.698 

   21 10NNIG 0.798 0.879 0.797 

   

 

  0.867   0.811 

   

 

  0.729   0.783 

   22 10NNRLF 0.842 0.898 0.842 

   

 

  0.839   0.842 

   

 

  0.845   0.842 

   23 10NNCFS 0.811 0.884 0.811 

   

 

  0.84   0.816 

   

 

  0.782   0.805 

   24 10NNWRP 0.83 0.9 0.83 

   

 

  0.859   0.835 

   

 

  0.801   0.825 

   25 PS_NNALL 0.74 0.81 0.73 

 

 

 

  0.851   0.762 

   

 

  0.61   0.698 
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26 PS_NNIG 0.806 0.875 0.806 

   

 

  0.836   0.812 

   

 

  0.777   0.8 

   27 PS_NNRLF 0.841 0.901 0.841 

   

 

  0.838   0.841 

   

 

  0.845   0.842 

   28 PS_NNCFS 0.815 0.882 0.815 

   

 

  0.815   0.815 

   

 

  0.815   0.815 

   29 PS_NNWRP 0.835 0.889 0.835 

   

 

  0.83   0.834 

   

 

  0.841   0.836 

   30 LibSVMALL 0.785 0.785 0.784 

   

 

  0.86   0.8 

   

 

  0.71   0.768 

   31 LibSVMIG 0.814 0.814 0.813 

   

 

  0.872   0.824 

   

 

  0.756   0.802 

   32 LibSVMRLF 0.819 0.819 0.819 

   

 

  0.863   0.827 

   

 

  0.775   0.811 

   33 LibSVMCFS 0.785 0.785 0.783 

   

 

  0.89   0.805 

   

 

  0.68   0.76 

   34 LibSVMWRP 0.818 0.818 0.818 

   

 

  0.854   0.825 

   

 

  0.782   0.812 

   35 GS_LibSVMIG 0.814 0.814 0.813 

   

 

  0.872   0.824 

   

 

  0.756   0.802 

   36 GS_LibSVMRLF 0.844 0.844 0.844 

   

 

  0.815   0.839 

   

 

  0.872   0.848 

   37 GS_LibSVMCFS 0.841 0.841 0.841 

   

 

  0.836   0.841 

   

 

  0.847   0.842 

   38 GS_LibSVMWRP 0.838 0.838 0.838 

       0.845   0.839 

       0.831   0.837 

    

 



158 

 

 

 

Service Data Set Classification Results 

 

 

 

Service Data 

    

 

Test Accuracy AUC F-Meas 

   

 

        

   1 J48ALL 0.798 0.778 0.787 

   

 

no  0.966   0.845 

   

 

yes 0.575   0.71 

   2 J48IG 0.778 0.75 0.765 

 

 

 

  0.954   0.831 

 

 

 

 

  0.546   0.679 

   3 J48RLF 0.763 0.723 0.743 

   

 

  0.977   0.977 

   

 

  0.48   0.48 

   4 J48CFS 0.779 0.749 0.765 

   

 

  0.964   0.832 

   

 

  0.534   0.375 

   5 J48WRP 0.797 0.778 0.797 

   

 

  0.964   0.844 

   

 

  0.577   0.71 

   6 PS_J48IG 0.782 0.759 0.769 

  

 

  0.963   0.834 

   

 

  0.542   0.682 

   7 PS_J48RLF 0.762 0.723 0.743 

   

 

  0.976   0.824 

   

 

  0.48   0.635 

   8 PS_J48CFS 0.779 0.749 0.765 

   

 

  0.963   0.832 

   

 

  0.534   0.675 

   9 PS_J48WRP 0.797 0.778 0.787 

   

 

  0.965   0.844 

   

 

  0.576   0.71 

   10 1NNALL 0.702 0.696 0.701 

 

 

 

  0.759   0.744 

   

 

  0.628   0.645 

   11 1NNIG 0.683 0.674 0.683 

   

 

  0.722   0.722 

   

 

  0.631   0.631 

   12 1NNRLF 0.763 0.74 0.742 

   

 

  0.979   0.824 

   

 

  0.476   0.633 
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13 1NNCFS 0.693 0.689 0.692 

   

 

  0.741   0.733 

   

 

  0.629   0.638 

   14 1NNWRP 0.795 0.796 0.783 

   

 

  0.97   0.844 

   

 

  0.564   0.703 

   15 5NNALL 0.749 0.775 0.741 

   

 

  0.874   0.798 

   

 

  0.583   0.666 

   16 5NNIG 0.741 0.757 0.735 

   

 

  0.857   0.857 

   

 

  0.587   0.587 

   17 5NNRLF 0.761 0.74 0.741 

   

 

  0.978   0.824 

   

 

  0.475   0.632 

   18 5NNCFS 0.744 0.76 0.738 

   

 

  0.858   0.792 

   

 

  0.592   0.665 

   19 5NNWRP 0.791 0.795 0.778 

   

 

  0.97   0.841 

   

 

  0.553   0.695 

   20 10NNALL 0.762 0.786 0.749 

   

 

  0.933   0.817 

   

 

  0.535   0.749 

   21 10NNIG 0.771 0.764 0.759 

   

 

  0.94   0.824 

   

 

  0.548   0.673 

   22 10NNRLF 0.759 0.74 0.738 

   

 

  0.976   0.822 

   

 

  0.472   0.628 

   23 10NNCFS 0.772 0.768 0.761 

   

 

  0.936   0.824 

   

 

  0.556   0.677 

   24 10NNWRP 0.787 0.794 0.773 

   

 

  0.971   0.839 

   

 

  0.543   0.687 

   25 PS_NNALL 0.762 0.785 0.749 

 

 

 

  0.933   0.817 

   

 

  0.535   0.659 

   26 PS_NNIG 0.771 0.764 0.759 

   

 

  0.94   0.824 
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  0.548   0.673 

   27 PS_NNRLF 0.762 0.74 0.742 

   

 

  0.979   0.824 

   

 

  0.476   0.633 

   28 PS_NNCFS 0.772 0.768 0.761 

   

 

  0.936   0.824 

   

 

  0.556   0.677 

   29 PS_NNWRP 0.795 0.796 0.783 

   

 

  0.97   0.844 

   

 

  0.564   0.703 

   30 LibSVMALL 0.766 0.733 0.748 

   

 

  0.973   0.826 

   

 

  0.493   0.645 

   31 LibSVMIG 0.764 0.73 0.745 

   

 

  0.972   0.824 

   

 

  0.489   0.641 

   32 LibSVMRLF 0.763 0.729 0.743 

   

 

  0.977   0.825 

   

 

  0.48   0.636 

   33 LibSVMCFS 0.761 0.727 0.742 

   

 

  0.974   0.823 

   

 

  0.48   0.634 

   34 LibSVMWRP 0.793 0.765 0.781 

   

 

  0.964   0.841 

   

 

  0.567   0.702 

   35 GS_LibSVMIG 0.764 0.726 0.745 

   

 

  0.972   0.824 

   

 

  0.489   0.641 

   36 GS_LibSVMRLF 0.763 0.729 0.743 

   

 

  0.977   0.825 

   

 

  0.48   0.636 

   37 GS_LibSVMCFS 0.759 0.724 0.739 

   

 

  0.976   0.822 

   

 

  0.473   0.628 

   38 GS_LibSVMWRP 0.798 0.771 0.787 

       0.965   0.845 

       0.576   0.711 
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