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Abstract 
 
A discrete-time survival model (the complementary log-log model) is used to model parity 
progression from woman’s own birth to first marriage, from first marriage to first birth, from 
first birth to second birth, and so on, with one model for each parity transition. Predictor 
variables in each model include woman’s age and duration in parity as well as socioeconomic 
variables. The models are applied to birth history data. Collectively the models yield estimates of 
marriage and birth probabilities by age, parity, and duration in parity, denoted Pait, by 
socioeconomic characteristics. The probabilities Pait are multivariate in the sense that they can be 
tabulated by categories or values of one socioeconomic variable while holding other 
socioeconomic variables constant. The probabilities Pait allow construction of a multidimensional 
life table that follows women by age, parity, and duration in parity one year at a time from age 
10 to age 50. Because the probabilities Pait are multivariate, the multidimensional life table is 
also multivariate, as are all measures derived from it. The derived measures considered here 
include both period and cohort estimates of parity progression ratios (PPRs), age-specific fertility 
rates (ASFRs), mean and median ages at first marriage, mean and median closed birth intervals, 
mean and median ages at childbearing (both overall and by child’s birth order), total fertility rate 
(TFR), and total marital fertility rate (TMFR). The methodology is tested on data from the 2003 
Demographic and Health Survey of the Philippines.  
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Building on earlier papers (Retherford et al. 2010a, 2010b), this working paper further develops 
methodology for multivariate analysis of the total fertility rate (TFR) and related measures, based 
on birth history data from a single survey. In the earlier paper, the related measures included 
parity progression ratios (PPRs), mean and median ages at first marriage, mean and median 
closed birth intervals by child’s birth order, and the total marital fertility rate (TMFR). In the 
present paper, the related measures additionally include age-specific fertility rates (ASFRs) and 
mean and median ages at childbearing by child’s birth order and for all birth orders combined. 
For ease of exposition, these related measures are referred to collectively as “components of the 
TFR.” The estimates of PPRs, ASFRs, TFR, and TMFR are measures of the quantum of 
marriage and fertility, and the estimates of mean and median ages at first marriage, mean and 
median closed birth intervals, and mean and median ages at childbearing are measures of the 
tempo or timing of marriage and fertility. The improved methodology is tested and illustrated by 
applying it to data from the 2003 Philippines Demographic and Health Survey (DHS). 
 
Overview of methodology 
 
In both the earlier and improved versions of the methodology, a discrete-time survival model — 
the complementary log-log (CLL) model1 — is used to model parity progression from a 
woman’s own birth to her first marriage (B-M), from first marriage to first birth (M-1), from first 
birth to second birth (1-2), and so on, with a separate model for each parity transition. In this 
context, a woman’s parity is defined in the usual way, as the number of children that she has ever 
borne, except that parity 0 is subdivided into two parity states: never-married with no children 
and ever-married with no children. If so desired, the B-M and M-1 transitions can be replaced by 
a single 0-1 transition, but this is not done in this paper.  
 
Earlier methodology.  
 
In the earlier version of the methodology, the basic predictor variable in the CLL model for each 
parity transition is duration in parity. The set of predictor variables can also include additional 
socioeconomic characteristics of interest. (The term “socioeconomic” is used broadly here to 
include not only conventional socioeconomic characteristics, such as urban/rural residence and 
education, but also health-related and environment-related characteristics.) 
 
 Each CLL model for a particular parity transition yields an estimate of the discrete-time 
hazard function Pit, where i denotes starting parity and t denotes years of duration in parity. In 
this context “discrete” means one-year duration intervals. The multivariate hazard function for 
the particular parity transition yields a multivariate life table from which a PPR and mean and 
median failure times for that parity transition are calculated. In the case of the B-M transition, a 

                                                           
1 The complementary log-log (CLL) link function is preferred over the more commonly used logit link function, 
because eb is a relative risk in the former case and an odds ratio in the latter case, and because a relative risk is easier 
to interpret than an odds ratio. As a practical matter, however, parity progression probabilities by single years of 
duration in parity are small, implying that duration-specific odds ratios closely approximate duration-specific 
relative risks, so that model-predicted values of TFR and its components are very close to the same, regardless of 
which link function is used (Retherford et al. 2010a, 2010b). 
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“failure” is a first marriage, so that mean and median failure times are mean and median ages at 
first marriage. In the case of higher-order transitions, a “failure” is a next birth, so that mean and 
median failure times are mean and median closed birth intervals by child’s birth order. A PPR or 
mean or median failure time is multivariate in the sense that it can be tabulated by categories of 
one socioeconomic predictor variable while holding constant the other socioeconomic predictor 
variables that are included in the model.2  
 
 The multivariate PPRs for the various parity transitions are combined into a multivariate 
TFR (births per woman over her reproductive lifetime) by means of the formula  
 
 TFR = pB pM + pB pM p1 + pB pM p1 p2 + ...  
 
  + pB pM p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14                                             (1) 
                       

 
where pB denotes the PPR for the B-M transition, pM denotes the PPR for the M-1 transition, p1 
denotes the PPR for the 1-2 transition, and so on. In the case of our Philippines illustrative 
example, births of order 16 or higher are ignored, so that the 14-15 transition is the last transition 
that is considered. Each PPR is calculated as the unconditional probability of failure between the 
start and end of the corresponding multivariate life table for the specified parity transition. A 
multivariate total marital fertility rate (TMFR) is obtained by setting pB equal to 1 in the above 
equation for TFR. TMFR is actually a total ever-marital fertility rate, but for simplicity we refer 
to it here simply as a total marital fertility rate. Because age is not included in the set of predictor 
variables in the underlying CLL models, the earlier methodology does not yield estimates of 
ASFRs and mean and median ages at childbearing.  
 
 Henceforth we shall refer to this earlier version of the methodology as the “Pit method”. 
The Pit method is a multivariate generalization of Feeney's PPR-based method, which is not 
multivariate, for estimating the TFR and related measures from birth histories (Feeney 1987). 
For a more detailed explanation of the Pit method, see Retherford et al. (2010a, 2010b). 
 
Improved methodology.  
 
Essential features of the improved methodology, which includes age as well as duration in parity 
and socioeconomic variables in the set of predictor variables, are the following: In the CLL 
model for any particular parity transition, basic predictor variables are woman’s age at starting 
parity, denoted by A, and woman’s duration in parity, again denoted by t. Additional predictor 
variables are socioeconomic characteristics of interest, as in the Pit method. Again there is a 
separate model for each parity transition. Collectively, the models for the various parity 
transitions yield model-predicted estimates of probabilities of failure (first marriage or next birth) 
by age, parity, and duration in parity, and by socioeconomic characteristics. The basic failure 
probabilities estimated from the CLL models are denoted PAit. The probabilities PAit are then 
transformed (actually re-labeled, as will be explained later) into the probabilities Pait, where a is 
woman’s age at duration t. The Pait are conditional probabilities of failure between t and t+1 and 
                                                           
2 In the case of a continuous socioeconomic variable, one tabulates by selected values of that variable instead of 
categories. 
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simultaneously between a and a+1; i.e., they are conditional on “survival” to age a, parity i, and 
duration t. 
 
 The probabilities Pait for a particular set of values of the socioeconomic variables allow 
calculation of a multidimensional life table for that set of values of the socioeconomic variables. 
This multidimensional life table, which spans all parity transitions, replaces the separate life 
tables for the various parity transitions in the Pit method. The three dimensions of the 
multidimensional life table are age, parity, and duration in parity. “Failures” in the 
multidimensional life table are no longer restricted to a particular type of failure but instead 
include all types, including first marriages, first births, second births, and so on. Starting at age 
10 (an appropriate age for the Philippines, since a considerable number of first marriages and 
births occur below age 15), women are survived through this life table one year at a time by age, 
parity, and duration in parity until they reach age 50. From the multidimensional life table one 
can calculate not only a TFR but also all of the various components of the TFR mentioned above. 
All measures calculated from the multidimensional life table are consistent with each other. This 
means, for example, that TFR always has the same value, whether calculated from 
multidimensional life table ASFRs, from multidimensional life table PPRs, or more simply as 
total multidimensional life table births per woman. Because the Pait are multivariate, the 
multidimensional life table is itself multivariate, as are all of the measures derived from it. 
Henceforth we shall refer to this elaborated version of the methodology as the “Pait method”. 
 
Common features of the Pit and Pait methods 
 
As in the usual calculation of the TFR as the sum of directly observed ASFRs, mortality of 
women is ignored when calculating model-predicted values of the TFR and its components using 
either the Pit method or the Pait method.  
 
 In both the Pit method and the Pait method, the CLL model for a particular parity 
transition is applied not to the original “person sample” but instead to an “expanded sample” of 
person-year observations created from the original person observations (Allison 1982; 1995). A 
separate expanded data set is created for each parity transition. For each woman in the original 
sample who at some time in the past made it to the parity transition’s starting parity, a person-
year observation is created for each single-year value of duration in parity t up to the year of 
failure or censoring. A person-year observation is created for the year in which failure occurred 
(if a failure did occur), but person-year observations are not created for censored years.  
 
 Cases where both first marriage and first birth occur in the same year, cases where two 
births from two different pregnancies occur in the same year, and cases where multiple births 
from the same pregnancy occur during the year are included in the expanded data sets. This is 
possible because each parity transition is modeled separately, so that two or more successive 
parity transitions (i.e., two or more successive failures) for a particular woman can occur in the 
same year of age (but not in the same year of duration in parity t, which reverts back to zero 
immediately after the first in a set of multiple events because of the increase in the woman’s 
parity). In the case of multiple births from the same pregnancy, births are assumed to occur 
sequentially, and birth orders are randomly assigned. This way of constructing the expanded data 
sets guarantees that the estimates of Pit or Pait calculated from the expanded data sets incorporate 



 7  

all events that occurred, even when more than one event occurred in the same year of age. As 
will be explained in more detail later, an assumption underlying this way of modeling multiple 
events in a one-year age interval is that all events, whether first marriages or births, occur at the 
start of the interval.  
 
 The expanded person-year data set for a particular parity transition makes it easy to 
include time-varying socioeconomic predictor variables in the CLL model for that transition. For 
example, if a person moves from rural to urban, some of the person-year observations created for 
that person are coded as rural and some are coded as urban (which can be done if the migration 
data are sufficiently detailed). The CLL model can also handle time-varying effects of predictor 
variables, by interacting predictor variables with time or some function of time (e.g., a quadratic 
function of t and t2). 
 
 In both the Pit method and the Pait method, multivariate estimates of TFR and its 
components can be derived not only from cohort data but also from period data. Because the 
CLL model handles left-censoring as well as right-censoring, one simply bases period estimates 
of TFR and its components on expanded data sets that treat person-year observations before and 
after the period of interest as censored. Otherwise the methodology is the same for period data 
(pertaining to synthetic cohorts) and cohort data (pertaining to real cohorts). The only difference 
is how the expanded person-year data set is constructed. In our illustrative application to 
Philippines DHS data, “period” is defined as the 5-year period before survey, and “cohort” is 
defined as the earlier lifetime experience of women age 45-49 at time of survey.  
 
 Both the Pit method and the Pait method allow calculation of model-predicted estimates of 
TFR and its components by categories of one socioeconomic predictor variable while controlling 
for (i.e., holding constant) the other socioeconomic predictor variables included in the underlying 
CLL models. Thus, regardless of the complexity of the underlying models, results of the 
estimation can be presented in simple bivariate tables or graphs, the essential meaning of which 
is readily understood by non-statisticians. This is a useful feature of the methodology, especially 
when trying to communicate results to policymakers. 
 
 In both the Pit method and the Pait method, if socioeconomic variables are omitted from 
the CLL model equation for each parity transition, the model-predicted estimates of TFR and its 
components pertain to the total population and are then comparable to TFR and its components 
calculated directly from birth histories using conventional methods. In the case of cohort data, 
the three sets of estimates should agree closely. The agreement will not be perfect, however, 
because the Pit and Pait methods impose functional forms on the data (in the underlying parity-
specific CLL models) that only approximate reality. In the case of period data, one again expects 
estimates of TFR and its components derived by the Pit method to agree closely with estimates 
derived by conventional birth history methods. By contrast, we expect period estimates derived 
by the Pait method to differ from estimates derived by conventional birth history methods. The 
reason for difference is that, in any one-year age interval, the distribution of women by parity 
and duration in parity will usually differ between the synthetic multidimensional life table 
population and the observed population. 
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 The end products of both the Pit method and the Pait method are model-predicted values 
of TFR and its components. Coefficients of predictor variables in the underlying CLL models are 
estimated but are of less interest, because the coefficients are both numerous and complex, 
involving many interactions and other non-linearities that make them difficult to interpret. TFR 
and its components are, moreover, usually the quantities in which the analyst or policymaker is 
most interested. Of course, model-predicted values of TFR and its components are only a useful 
supplement to, not a substitution for, an analysis of coefficients. This paper, however, does not 
include an analysis of coefficients, estimates of which are not shown.  
 
 Standard errors of the model-predicted estimates of TFR and its components can be 
calculated by the jackknife method, following the approach used in DHS surveys. This was done 
and significance tests were conducted in the earlier papers using the Pit method (Retherford et al. 
2010a, 2010b). Application of the jackknife method, which is a brute-force method, was found to 
be very computer-intensive, however, requiring weeks of two fast desktop computers operating 
around the clock. Application of the jackknife method promises to be even more computer-
intensive in the case of the Pait method. It is not applied in this paper. 
 
The Pait method in more detail 
 
In our illustrative application to 2003 Philippines DHS data, the calendar month of survey, being 
an incomplete month for most women, is omitted from the person-year data sets, in conformity 
with usual DHS practice. The 5-year period before survey then includes the 60 previous calendar 
months. The person-year data sets for cohorts also omit the incomplete calendar month of survey. 
Thus, for each respondent, “time of survey” refers to the end of the first complete calendar 
month before interview. 
 
 The illustrative application includes two socioeconomic predictor variables: urban/rural 
residence (specified by a dummy variable U) and woman’s education (specified by dummy 
variables EM and EH, representing medium and high education with low education as the 
reference category), as assessed at time of survey. These socioeconomic variables are treated as 
time-invariant over a woman’s birth history, due to lack of information about their values in each 
earlier year before the survey. 
 
 In the overview in the previous section, duration in parity was denoted by t. In the 
underlying CLL models, however, duration in parity is actually specified in two different ways 
within the same model. One specification is the counter variable t (t = 1, 2, ...), as in the previous 
section. In the models, t is treated as a continuous variable. The second specification is a set of 
dummy variables representing single years of duration in parity. In order to achieve a better fit to 
the data, the dummy variable specification is used for the basic duration-in-parity variable. The 
continuous specification t is used when duration in parity is interacted with other predictor 
variables in order to model time-varying effects of predictor variables. 
 
 Although ages at first marriage and births in the birth histories in the 2003 Philippines 
DHS (as in all DHS surveys) are specified by both year and month, we aggregate months into 
years, yielding person-year data sets instead of person-month data sets. This is done because 
monthly data sometimes result in empty cells in the dummy-variable specification of duration in 
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parity (e.g., there are no births in the month following a previous birth), in which case the 
maximum likelihood estimation procedure for fitting a discrete-time survival model does not 
converge to a solution (Allison 1995). 
 
 The basic form of the CLL model is the same for each single-parity transition, except that, 
in the case of transition from woman’s own birth to first marriage (B-M), duration t ranges from 
1 to 30 (corresponding to ages 10 to 39, since the B-M multivariate life table starts at age 10), 
whereas in the case of higher-order transitions, t ranges from 1 to 10. The ranges start with one 
instead of zero, for reasons having to do with the way that the CLL models are estimated. After 
the models are fitted and the failure probabilities Pait are estimated, the range 1-30 is translated to 
0-29, and the range 1-10 is translated to 0-9, in conformity with usual life table notation, as 
explained in more detail below. First marriages after age 40 and next births after 10 years of 
duration in parity are rare and are ignored. 
 
 In our illustrative application to the 2003 Philippines DHS, the general form of the CLL 
model for the B-M transition is 
 
 P = 1!exp{!exp[b0 + b1T1 + b2T2 + ... + b29T29 + U(e0 + e1 t + e2 t2) + EM(f0 + f1t + f2 t2) 
 
   + EH(g0 + g1t + g2 t2) + mUEM + nUEH]} (2) 
 
where P is the predicted probability of a first marriage (also called the discrete hazard of first 
marriage) in a one-year duration interval; T1, ..., T29 are 29 dummy variables representing the 
first 29 of 30 duration intervals (the 30th interval being the reference category); t is a counter 
variable (equal to 1, 2, ..., 30) that also denotes duration interval; b0 is an intercept term 
(implying that P = 1!exp[!exp(b0)] for the 30th duration interval when t is set to 30 and T1, ..., 
T29, U, EM, and EH are all set to zero), and b1, ..., b29, e0, e1, e2, f0, f1, f2, g0, g1, g2, m, and n are 
coefficients to be fitted, along with the intercept b0, to the data. Starting age A does not appear in 
this equation, because starting age is constant at age 10 rather than variable in the sample, so that 
starting age is incorporated in the intercept b0. This equation for the B-M transition is the same as 
in the earlier Pit version of the methodology (Retherford et al. 2010a, 2010b), except that the 
interaction terms UEM and UEH have been added to the set of predictor variables in order to 
allow a more flexible fit to the data. (The CLL models in this paper, whether in the Pit method or 
the Pait method, now include all two-way interactions among the predictor variables.) 
 
 The model in equation (2) is fitted by maximum likelihood. In the model that the 
computer sees and fits, the term U(e0+e1t+e2t2) appears as e0U+e1Z1+e2Z2, where, following 
procedures recommended by Allison (1995), Z1 and Z2 are defined as Z1=Ut and Z2=Ut2. 
Similarly, the terms EM(f0+f1t+f2t2) and EH(g0+g1t+g2t2) appear as f0EM+f1Z3+f2Z4) and 
g0EH+g1Z5+g2Z6), and the sum mUEM+nUEH appears as mZ7+nZ8. The model then appears to 
the computer as a discrete-time proportional hazards model, which is fitted in the usual way. (In 
effect, the variables Z1, ..., Z8 trick the model into handling non-proportionality, which appears 
here in the form of time-varying effects of predictor variables.) 
 
 As just noted, effects of socioeconomic predictor variables in equation (2) are specified 
as time-varying. For example, the effect of a one-unit increase in U (from 0 to 1) — i.e., the 
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effect of urban relative to rural — is to multiply the underlying continuous-time hazard of a first 
marriage for a rural person with specified values of EM and EH (indicating the person’s 
education) by exp(e0+e1t+e2t2+mEM+nEH), which is the relative risk. A time-varying 
specification of the effect of U on the probability of first marriage is necessary because the effect 
of urban residence, relative to rural residence, is to lower the probability of first marriage at 
younger ages and increase it at older ages, inasmuch as urban marriages tend to be postponed to 
later ages, relative to rural marriages. Thus the effect of urban residence on the risk of first 
marriage is not constant over duration in parity; i.e., the effect is not proportional. Similarly, the 
effect of education is modeled as time-varying, because the effect of more education is also to 
lower the probability of first marriage at younger ages and raise it at older ages. At higher-order 
parity transitions, for similar reasons as well as other reasons (Retherford et al. 2010a, 2010b), 
the effects of U, EM, and EH on the probability of next birth are also modeled as time-varying, 
again with a quadratic specification of duration in parity, as discussed shortly.  
 
 In the case of the B-M transition, values of Pt for particular values of U, EM, and EH are 
calculated from the fitted model in equation (2) as follows: P1 is calculated by setting T1 = 1, T2 
= T3 = ... = T29 = 0, and t = 1 on the right side of the equation. P2 is calculated by setting T1 = 0, 
T2 = 1, T3 = T4 = ... = T29 = 0, and t = 2 on the right side of the equation. And so on, up to and 
including P29. In the case of the last duration-in-parity interval, which is the reference category 
for the dummy variables representing duration in parity, P30 is calculated by setting T1 = T2 = ... 
= T29 = 0, and t = 30 on the right side of the equation.  
 
 For single-parity transitions higher than birth to first marriage (B-M), the underlying 
model is 
 
 P = 1!exp{!exp[b0 + b1T1 + b2T2 + ... + b9T9 + A(c0 + c1 t + c2 t2) + A2(d0 + d1 t + d2 t2)  
 
         + U(e0 + e1 t + e2 t2) + EM(f0 + f1t + f2 t2) + EH(g0 + g1t + g2 t2) + U(h1A + h2 A2)  
 
         + EM(j1A + j2A2) + EH(k1A + k2A2) + mUEM + nUEH]} (3) 
 
 Age at starting parity is now included in the model, because age at starting parity is now 
variable instead of fixed at 10. An A2 term is included as well as an A term in the set of predictor 
variables, because the rise and fall of fecundability as age increases suggest that the effect of 
starting age on parity progression will be non-linear, and that a quadratic specification of starting 
age may adequately capture this non-linearity. The effects of both A and A2 are specified as time-
varying (i.e, t-varying) because the effects of duration in parity on parity progression change as 
starting age increases, due not only to biological influences (changing fecundability) but also to 
behavioral influences. An example of a behavioral influence is that couples are more likely to 
settle into a life style with few or no children the longer they delay marriage and childbearing. 
Our methodology and data do not allow separate measurement of biological and behavioral 
influences, however.  
 
 Values of PAit for higher-order transitions are calculated from equation (3) in a manner 
similar to that used to calculate PAit for the B-M transition from equation (2). The main 
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differences are that, in equation (3), the range of t is 10 years instead of 30 years, and A is 
variable instead of fixed at 10.  
 
 Equations (2) and (3) generate values of PAit for specified values of the socioeconomic 
variables. After these probabilities are generated, then, in order to simplify the multidimensional 
life table equations that come later, parities B, M, 1, 2, ..., 15 are re-labeled 0 to 16, without any 
change in the numerical values of the probabilities themselves. The variables A and t are also re-
labeled by replacing A with a = (A−10)+(t−1) = A+t−11, and by replacing t with t−1. Duration in 
parity t then starts at 0 instead of 1 (consistent with conventional demographic notation), and age 
in the multidimensional life table starts at 0 instead of 10. As an example of the re-labeling of A 
and t (assuming that parity has already been relabeled), the probability PAit = P27,4,3 is re-labeled 
as Pait = P19,4,2.  (The formula a = A+t-11 also works for the B-M transition, with A fixed at 10.) 
 
 Because of smaller numbers of women and births at higher parities, the estimation 
algorithm for the CLL model in equation (3) does not always converge to a solution at higher 
parity transitions. Non-convergence occurs when one or more of the four cells in the 2x2 cross-
classification of the dichotomous dependent variable FAILURE against any of the dichotomous 
predictor variables is empty (Allison, 1995). (Note that, at the level of a person-year observation, 
the response variable is not a probability of failure, which is unobservable, but is instead the 
dummy variable FAILURE (1 if failure occurred during the year, 0 otherwise).) In such cases the 
problem of non-convergence can sometimes be circumvented by using a quadratic specification 
of basic life table time; i.e., by replacing the dummy variables T1, T2, ..., T29 with t and t2. The 
computer program automatically tries to do this when non-convergence first occurs. Equation (3) 
then becomes 
 
 P = 1!exp{!exp[b0 + b1t + b2t2 + A(c0 + c1 t + c2 t2) + A2(d0 + d1 t + d2 t2)  
 
         + U(e0 + e1 t + e2 t2) + EM(f0 + f1t + f2 t2) + EH(g0 + g1t + g2 t2) + U(h1A + h2 A2)  
 
         + EM(j1A + j2A2) + EH(k1A + k2A2) + mUEM + nUEH]} (4) 
 
 
 The earlier model specification in equation (3) is preferred over the model specification 
in equation (4), because the dummy variable specification of basic life table time allows a more 
flexible fit. The variables t and t2 are always used instead of dummy variables in the interaction 
terms in both model specifications, however, in order to avoid convergence problems and to keep 
the model from becoming unduly complicated. 
 
 Eventually, as parity increases, even equation (4) may not converge, necessitating the use 
of an open-parity interval. Suppose, for example, that this interval is 9+, so that the last transition 
is 9+ to 10+ (from ninth or higher-order birth to next birth). For this open-ended transition the 
computer program first tries the model 
 
 P = 1!exp{!exp[b0 + b1T1 + b2T2 + ... + b9T9 + A(c0 + c1 t + c2 t2) + A2(d0 + d1 t + d2 t2)  
 
         + U(e0 + e1 t + e2 t2) +EM(f0 + f1t + f2 t2) + EH(g0 + g1t + g2 t2) + U(h1A + h2 A2)  
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         +EM(j1A + j2A2) + EH(k1A + k2A2) + mUEM + nUEH + r1 I + r2 I2]} (5) 
 
where, for each person-year observation of parity 9 or higher within the 9+ open parity interval, I 
denotes the woman’s parity at the start of that year (before any birth that may have occurred 
within that person-year observation), and A denotes starting age (i.e., age at attainment of parity 
9, 10, 11, 12, 13, or 14, depending on the particular parity at the start of the person-year 
observation). Parity transitions beyond 14-15 are ignored. If, because of convergence problems, 
this equation cannot be estimated, the computer program automatically replaces the dummy 
variables T1, ..., T9 with t and t2 in equation (5) and tries to fit that model. If this does not work, 
one must back up and try the same model for the 8+ to 9+ transition. Assuming that the model 
can be fitted to the 9+ to 10+ transition, the fitted model equation then generates values of Pait 
for each starting parity between 9 and 14 by single years of age and duration in parity.  
 
 The reason why equation (5) is not used for all parity intervals is that the effects of many 
socioeconomic variables vary substantially by parity transition. For example, in the Philippines 
the level of a woman’s education makes almost no difference in her probability of progression 
from parity 1 to parity 2, but makes a great deal of difference in her probability of progression 
from parity 3 to parity 4. If a single model were to be used for all parity transitions, it would be 
imperative to interact parity with the other predictor variables, so that a large number of three-
way interactions would have to be added to the set of predictor variables. The model would then 
become unduly complicated and prone to convergence problems. We therefore use equation (5) 
only when absolutely necessary, namely to model behavior in the open parity interval where 
three-way interactions are probably not very important. Moreover, there are very few births in 
the open parity interval, so errors in model specification pertaining to that interval tend not to 
have much impact on the model-predicted fertility measures. 
 
 The creation of the expanded data set for the open parity interval requires further 
explanation. In the case of a 9+ to 10+ interval, the approach is to create separate expanded data 
sets for transitions 9-10, 10-11, ..., 14-15. The handful of births of order 16 and higher are 
ignored. The separate expanded data sets are then pooled to form the expanded data set for the 
transition 9+ to 10+. A woman can contribute person-year observations to more than one of the 
individual data sets that are pooled. For example, if the open parity interval is 9+, a woman who 
was parity 11 at time of survey contributes person-year observations to the expanded data sets 
for transitions 9-10, 10-11, and 11-12. 
 
 The next step is to construct the multidimensional life table from the failure probabilities 
Pait. Because the multidimensional life table is easier to understand if the radix is a number 
greater than one, we set the radix to 1,000. The choice of radix is arbitrary, however, and has no 
effect on the final results.3 Because births of order 16 and higher are ignored, the parity 
dimension of the multidimensional life table is truncated at parity 15 (the last parity transition 
being 14-15).  
 
 In the underlying CLL models for parity transitions, duration in parity t ranges from 0 to 
29 years for the B-M transition and from 0 to 9 years for higher-order transitions, but in the 
                                                           
3 The computer programs set the radix to 1. 
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multidimensional life table, duration in parity can extend to higher numbers of years. In the case 
of the B-M transition, for example, duration in parity can be as high as 40 years (the difference 
between ages 10 and 50). This is handled by setting Pa,0,t = Pt,0,t = Pa,0,a = 0 when t >29 or, 
equivalently, a>29. In the case of higher-order transitions, it is handled by setting Pait = 0 when i 
> 0 and t  > 9.  
 
 In sum, the ranges of a, i, and t in the multidimensional life table are as follows: Age a 
ranges from 0 to 39 (prior to re-labeling, ages 10 to 49). Parity i ranges from 0 to 16 (prior to re-
labeling, B, M, 1, 2, ...,15). Duration in parity t ranges from 0 to 39 in the B-M transition (but 
from 1 to 30 in the underlying CLL model for the B-M transition), and from 0 to 39 in higher-
order transitions (but from 1 to 10 in the underlying CLL model for each higher-order transition). 
 
 Failures in the multidimensional life table are denoted as fait, and the number of women 
by age, parity, and duration in parity at any point in the life table is denoted as Sait. Persons 
reaching parity 16 (previously parity 15) before age 40 (previously age 50) in the 
multidimensional life table are assumed to remain at parity 16 until they reach age 40 at the end 
of the life table; i.e., it is assumed that Pait = 0 for i >15.  
 
 Multidimensional life table calculation formulae for the 0-1 transition (previously the B-
M transition) are then 
 
 S0,0,0 = 1,000 (6) 
 
 Sa,0,t = Sa,0,a = Sa-1,0,a-1(1-Pa-1,0,a-1)     for a > 0 (7) 
 
 fa,0,t = fa,0,a = Sa,0,a Pa,0,a (8) 
 
where Sa,0,t denotes the number of women age a who have not yet had a first marriage by 
duration t (which equals age a in the case of the B-M transition),  and fa,0,t denotes the number of 
first marriages between durations t and t+1 (equivalently, between ages a and a+1). 
 
 For higher-order parity transitions (re-labeled transitions 1-2, 2-3, and so on), basic 
formulae are: 
       
 Sa,i,0 = 3(Sa,i-1,t Pa,i-1,t)   for i > 0 and summation over t (9) 
 
 Sait = Sa-1,i,t-1(1-Pa-1,i,t-1)    for a > 0 and t > 0 (10) 
 
 fait = Sait Pait (11) 
 
where fait now denotes the number of (i+1)th births to women of parity i between ages a to a+1 
and durations t and t+1. Note that Sa,i,0 can also be written as Σfa,i-1,t for i>0 and summation over t. 
 
 Equations (9) - (11) make the simplifying assumption, mentioned earlier, that all failures 
occur at the start of a one-year age or duration interval. The equations then allow that more than 
one event (failure) can occur at the same age a in the multidimensional life table, inasmuch as, in 
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equation (9), a woman can advance from parity i-1to parity i with no change in age. This is 
consistent with the way that the probabilities Pait are estimated from the CLL models for the 
various parity transitions, which, as mentioned earlier, makes it possible for a woman to 
experience multiple events in a one-year age interval (but not in a one-year duration interval, 
since t immediately changes to zero after a failure.)  
 
 A property of the multidimensional life table is that if, at any given age a, one sums Sait 
over i and t, the sum exceeds the initial number of 1,000 women at the start of the 
multidimensional life table. This seemingly illogical result occurs because, as is evident from 
equation (9), each time a woman age a experiences an event, she is duplicated; i.e., she is 
counted again at the start of the age interval a to a+1. For example, application of equation (9) at 
the start of the 0-1 transition (previously the birth-to-first-marriage transition) yields 
 
 S0,1,0 = S0,0,0 P0,0,0 = f0,0,0 (12) 
 
implying that Sa for a = 0 , calculated by summing S0,i,t over i and t, will be greater than the radix 
of 1,000, because all women who had a first marriage at age 0 (previously age 10) get counted 
twice at age 0. Women who both got married and had a first birth at age 0 get counted three 
times. The phenomenon of women getting counted more than once occurs not only at age 0 but 
also at every higher age, because every time there is a failure at age a, the woman who 
experienced the failure is, in effect, duplicated at age a. This does not mean that there is anything 
wrong with the multidimensional life table formulae. It just means that summing Sait over i and t 
does not yield the total number of women at age a. The total number of women at age a is 
always 1,000, because no one dies in the multidimensional life table.  
 
 Once Sait and fait are calculated from the Pait using the calculation formulae in equations 
(6) - (11), TFR is calculated as 
 
 TFR = (3 fait)/1,000  (13) 
 
where the summation is over a, i (except i = 0, which is omitted because failures are first 
marriages instead of next births), and t.  
 
 If the summation in equation (13) is over a and t only, what remains is a sum of parity-
specific terms, which can also be written as a sum of birth-order-specific terms (parity being a 
characteristic of the woman and birth order being a characteristic of the newly born child): 
 
 TFR = (B1 + B2 + ... + B15)/1,000 (14) 
 
where B1 pertains to first births, B2 pertains to second births, and so on.  
 
 The total number of first marriages in the multidimensional life table is calculated as 
 
 B0 = 3fa,0,t = 3 fa,0,a      (15) 
 
where the summation is over a.  
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 PPRs are then calculated as 
 
 pB = B0/1,000 (16) 
 
 pM = B1/B0 (17) 
 
 pi = Bi+1/Bi  ,      i = 1, 2, ..., 14 (18) 
 
where pB is the PPR for woman’s own birth to her first marriage, pM is the PPR for first marriage 
to first birth, p1 is the PPR from first to second birth, and so on. (In the case of the left sides of 
equations (16) - (18), we revert to our original notation for parity.)  
 
 The total marital fertility rate is calculated as 
 
 TMFR = TFR/pB     (19) 
 
where it is assumed that all births occur subsequent to a formal first marriage or informal first 
union. (If this assumption is problematic, one collapses the B-M and M-1 transitions into a single 
0-1 transition to start with.) 
 
 Failure rates by age, parity (i.e., re-numbered  parity), and duration in parity, denoted as 
Fait, are obtained by dividing fait by 1,000. ASFRs for single-year age groups, Fa, are calculated 
by summing the Fait over i (excluding parity 0, in which case Fa,0,t denotes an age-specific first 
marriage rate) and t. If desired, ASFRs for 5-year age groups can be obtained by summing the 
single-year Fa within a five-year age group and dividing the sum by five. 
 
 As mentioned earlier, the multidimensional life table is internally consistent, regarding 
estimates of TFR and its components. For example, when ASFRs and PPRs are derived from the 
multidimensional life table, TFR calculated from ASFRs (TFRasfr) and TFR calculated from 
PPRs (TFRppr) have the same value. 
 
 Once one has values of fit (obtained by aggregating fait over a), one computes mean and 
median ages at first marriage using values of fit = f0,t. The formula is 
 
 Mean age at first marriage = 3[(f0,t/B0)(t)] + 10 (20) 
 
where the summation is over t. (Recall that in the case of transition to first marriage, age 10 is 
translated to a = 0, so that t =a.) In effect, equation (20) is a weighted average of untranslated 
ages between 10 and 39, where the weights are the proportion of first marriages at each age.  
 
 Similarly,  
 
 Mean closed birth interval for the M-1 transition =  3[(f1,t/B1)(t)] (21) 
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where the summation is over t. Formulae for mean closed intervals for higher-order transitions 
have a form similar to that of equation (21). 
 
 Once one has the single-year ASFRs Fa, one calculates a mean age at childbearing over 
all birth orders of children as  
 
 Mean age at childbearing = 3[(Fa/TFR)(a)] + 10 (22) 
 
where the summation is over single years of age a. The formula for mean age at childbearing by 
child’s birth order (which is i+1 if the mother’s parity at the start of a one-year interval is i and 
i>0) is the same as equation (20), except that Fai (obtained by summing the Fait over t) and 
TFRi+1 (total number of births of order i+1 to women of parity i in the multidimensional life 
table replace Fa and TFR.4 
 
 The formula for median age at first marriage, based on values of fit = f0,t ,  is 
 
 Median age at first marriage = t, such that (3 f0,t)/B0 = 0.5  (23) 
 
where the summation ranges from 0 to t. The formulae for median closed birth intervals and 
median ages at childbearing, both overall and by child’s birth order, are similar. Note that these 
medians are true medians. Because of truncation problems, medians in DHS survey reports are 
defined differently, as the age or duration by which half of the initial cohort experiences failure. 
 
 It might seem that the formula for mean age at marriage in equation (20) should be 
Σ[(f0,t/B0)(t+0.5))]+10 instead of Σ[(f0,t/B0)(t)]+10, and similarly for the formulae for mean 
closed birth intervals and mean age at childbearing in equations (21) and (22), since we are 
dealing with discrete one-year time intervals. It turns out, however, that t should be used instead 
of t+0.5, consistent with the assumption in equations (6) - (11) that all failures occur at the 
beginning of a one-year age or duration interval. This can be seen as follows: 
 
 Suppose that age at first marriage for a particular woman is calculated as the date of her 
first marriage minus the date of her own birth. This calculation can be done in at least two 
different ways using DHS data. The first way (which at first blush is the better of the two ways) 
is to calculate age at first marriage as the difference between century-month of first marriage and 
century-month of woman’s own birth, divided by 12, without any truncation of the result to an 
integer value. This calculation is done for each woman and the results averaged. 
 
 The second way, which is what we actually do in this paper (we do it this way in order to 
achieve internal consistency in the way that century-month codes (CMC) are converted into 
years in the overall set of calculations), is first to convert century-month dates of a woman’s own 
birth and her first marriage into calendar-year dates of woman’s own birth and first marriage. 
This involves, for each date separately, a division by 12 and truncation to an integer number, 
such as calendar year 1960. (The conversion formula is Year = int(( CMC–1)/12 )+1900.) One 

                                                           
4 Note that one cannot calculate a mean closed birth interval as the difference between two mean ages at 
childbearing by child’s birth order. The reason is that not all the women who had an ith birth had an (i+1)th birth. The 
same point applies to median closed birth intervals and median ages at childbearing. 
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then calculates a woman’s age at first marriage as the difference between the calendar year of her 
first marriage and the calendar year of her own birth. For a particular woman, this difference may 
be off by one year in either direction, because of variation in the number of truncated months 
when calculating calendar year of the woman’s own birth and calendar year of her first marriage. 
For example, if the woman was born 1 January 1960 and got married 31 December 1980, we 
compute her age at first marriage as 20 years (because all we know is the calendar years 1960 
and 1980), but the true value is 21 years. If, by contrast, she was born 31 December 1960 and got 
married 1 January 1980, we still compute her age at first marriage as 20 years, but this time the 
true value is 19 years. Because a true value of 19 appears to be just as likely as a true value of 21, 
our best estimate is 20.0 years, not 20.5 years. When one computes mean age at first marriage 
over all women, these kinds of errors in the estimate of mean age at first marriage (sometimes 
too high and sometimes too low), which occur more or less randomly, mostly cancel out. The 
end result, which we have verified using Philippines DHS data, is that mean age at first marriage 
is very close to the same, regardless of which of the two ways of calculating mean age at first 
marriage is used. The same argument applies to the calculation of mean age at childbearing (both 
overall and by birth order). 
 
Method for calculating unadjusted and adjusted estimates of TFR and its components 
 
Earlier it was mentioned that the methodology allows tabulation of TFR or one of its components 
by categories of one socioeconomic predictor variable while controlling for (i.e., holding 
constant) other predictor variables. The estimates tabulated in this way are referred to here as 
“adjusted estimates”. Adjusted estimates of TFR or one of its components are calculated using 
the logic of what is sometimes referred to as multiple classification analysis (MCA) (Andrews, 
Morgan, and Sonquist 1969; Retherford and Choe 1993). In MCA, “unadjusted” means “without 
controls”, and “adjusted” means “with controls”.  
 
 For a particular parity transition such as the B-M transition, unadjusted values of Pait by, 
for example, urban/rural residence are calculated from a CLL model that includes U as the sole 
socioeconomic predictor variable. Thus, in the case of equation (2), one drops the terms 
containing EM and EH. Values of Pait for urban are then calculated by setting U = 1 in the fitted 
equation, and values of Pait for rural are calculated by setting U = 0 in the fitted equation. 
 
 Adjusted values of Pait by urban/rural residence for the B-M transition are calculated 
from equation (2) with all of the predictor variables U, EM, and EH included. Education, 
represented by EM and EH, is viewed as the control variable. To obtain adjusted values of Pait for 
urban, one sets U = 1 and EM and EH equal to their duration-in-parity-specific (i.e., t-specific) 
mean values in the expanded data set to which the CLL model for parity transition i to i+1 is 
fitted.5 To obtain adjusted values of Pait for rural, one sets U = 0 and EM and EH equal to the same 
t-specific mean values used to calculate the adjusted Pait for urban. In this way EM and EH are 
held constant when U is varied from 0 to 1. Each parity transition has its own set of t-specific 
                                                           
5 Duration-specific means of EM and EH are used instead of age-duration-specific means, because, for any given 
parity transition, some combinations of a, t, and education (EM or EH) may be empty (no person-year observations), 
so that mean values of EM and EH cannot be calculated. Duration-specific means are also used in the Pit method. 
Alternatively, one can hold EM and EH constant at their observed values for each individual person-year observation, 
but this approach does not work for a multivariate analysis of trends in the TFR and its components, in which the 
expanded samples of person-year observations are pooled over two or more surveys (Retherford et al. 2010a, 2010b). 
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mean values of EM and EH derived from the person-year data set for that parity transition. A t-
specific mean value of EM or EH is calculated by averaging the values of EM or EH over all 
person-year observations that have the specified value of t. Duration-specific means are used 
instead of overall means, because duration-specific means often vary systematically over 
duration in parity. This is especially true in period data in countries like the Philippines, where 
older women tend to have lower levels of education (as well as higher fertility) than younger 
women.  
 
 Unadjusted and adjusted multidimensional life tables by urban/rural residence are then 
calculated from the unadjusted and adjusted values of Pait by urban/rural residence. Unadjusted 
and adjusted values of TFR and its components by urban/rural residence are then calculated from 
the unadjusted and adjusted multidimensional life tables by urban/rural residence. 
 
 As is clear from the above discussion, the multidimensional life table part of the analysis 
treats age, parity, and duration in parity differently from residence and education. Age, parity, 
and duration in parity are multidimensional life table variables pertaining to the three basic 
dimensions of the multidimensional life table. Residence and education are socioeconomic 
variables, which are not treated as basic dimensions of the multidimensional life table. In effect, 
the multidimensional life table approach treats the multidimensional life table as the response 
variable and the socioeconomic variables as the predictor variables. A multidimensional life 
table is estimated for each category of one socioeconomic variable while holding constant the 
other socioeconomic variable (or more than one other socioeconomic variable in a more 
elaborate analysis). When calculating unadjusted and adjusted values of TFR from a 
multidimensional life table, the basic multidimensional life table variables (age, parity, and 
duration in parity) are never held constant. 
 
Illustrative application to 2003 Philippines Demographic and Health Survey data 
 
By way of illustration, the methodology is applied to 2003 Philippines DHS data. Regarding 
marriage, the Philippines DHS treats informal unions, of which there are many, the same way as 
formalized unions. Both are treated as marriages. Despite this coding, there are still some births 
reported by ever-married women as having occurred before first marriage (i.e., before first 
formalized marriage or first non-formalized union), and there are also some births reported by 
never-married women, from whom birth histories were also collected. We refer to these births 
simply as premarital births. We do not exclude any premarital births or any women who had a 
premarital birth. Instead, we treat all such women as newly married at the time of their first birth, 
by coding or re-coding date of first marriage back to the date of first premarital birth. This 
coding and re-coding introduce small biases in the estimates of mean and median age at first 
marriage and related measures that are discussed in the earlier papers (Retherford et al. 2010a, 
2010b). 
 
 In what follows, the cohort analysis of the 2003 Philippines DHS is based on the previous 
experience of women age 45-49 at time of survey, and the period analysis, pertaining to the five-
year period before survey, is based on women age 10-49 at time of survey. Predictor variables, as 
already mentioned, are residence (urban, rural) and education (low, medium, high). The 
distribution of these two groups of women by residence and education is shown in Table 1. 
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Table 1. Percentaged distribution of sample women by residence and education

               Women age 45-49                Women age 10-49
Predictor Unweighted Weighted Unweighted Weighted
Residence

Urban 53 56 52 56
Rural 47 44 48 44

Education
Low 45 44 37 35
Medium 31 31 40 41
High 24 25 24 24

Total N (women) 1,343 1,343 17,519 17,519

Notes: Women age 45-49 are the basis for the cohort analysis. Women age 10-49 are the 
basis for the period analysis. "Low" education means less than secondary, "medium" 
means some or completed secondary, and "high" means more than secondary. 
Percentages do not include missing cases; only four women have missing information, 
pertaining to education. This table and all subsequent tables and figures are based on the 
2003 Philippines Demographic and Health Survey. All subsequent tables and figures 
incorporate weights.

 
 Expanded samples of person-year observations for the cohort analysis and the period 
analysis, shown in Table 2, are created from the two groups of women in Table 1. The sample 
sizes in Table 2 indicate number of person-year observations in the data sets to which CLL 
models are fitted. Two separate data sets, one for the cohort analysis and one for the period 
analysis, are created for each of 16 parity transitions (B-M, M-1, 1-2, …, 14-15), for a total of 32 
data sets. When fitting CLL models for open parity intervals, some of these person-year data sets 
are combined, as explained earlier. Further details of how the expanded sample is constructed are 
found in Retherford et al. (2010a). 
 
 To test the methodology, Table 3 compares selected fertility measures derived by three 
different methods: (1) the birth history method (not multivariate), (2) the Pit method, and (3) the 
Pait method. 

 
 The fertility measures in the “birth history method” column of the Table 3 are calculated 
in the following way: In the case of cohort estimates of these measures in the upper half of the 
table, PPRs are calculated directly from the marriage and birth histories as the fraction of women 
at each parity who ultimately continue onward to the next parity. (Note that mortality does not 
enter the calculation, because of the retrospective nature of the data.) These PPRs are then used 
to calculate TMFR and TFR using equation (1) with single-parity transitions all the way to 14-15 
(no open-parity interval). Each birth to each woman in the cohort has an age of mother at 
childbirth attached to it, calculated in this case as the difference between century-month of 
childbirth minus century-month of mother’s own birth, divided by 12. Mean and median ages at 
childbirth (mean Ac and median Ac) are calculated directly from these ages at childbirth. When 
calculating these cohort measures directly from the birth histories, first marriages and births 
occurring in the incomplete calendar month of survey are ignored, as are first marriages after age 
40 and next births at 10 or more years of duration in parity, in order improve comparability with 
results derived by the Pit and Pait methods. 
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Table 2. Expanded sample sizes

Parity
transition Cohort analysis

B-M 18,307 30,418
M-1 3,392 5,209
 1-2 4,907 8,589
 2-3 5,423 7,995
 3-4 5,261 6,524
 4-5 4,524 4,922
 5-6 3,288 3,376
 6-7 2,422 2,353
 7-8 1,713 1,692
 8-9 1,101 1,058
 9-10 671 636
 10-11 442 471
 11-12 257 250
 12-13 116 96
 13-14 54 37
 14-15 42 27

 Period analysis

Notes: Expanded sample sizes are numbers of person-year observations. 
Each cell in the table corresponds to a separate data set, for which the 
sample size (number of person-year observations) is shown. There are 32 
data sets. For each data set, weighted and unweighted sample sizes are the 
same. B-M denotes the transition from a woman's own birth to first marriage, 
and M-1 denotes the transition from first marriage to first birth. In the period 
analysis, periods are the five-year period before the survey. In the cohort 
analysis, cohorts are defined as women age 45-49 at the time of the survey. 

 
 In the case of the period estimates in the lower half of the table, the birth history 
estimates of TMFR and TFR are derived by Feeney's (1987) PPR-based method. Fertility 
estimates derived by Feeney’s method, which is not multivariate, conform more closely to the 
data than do corresponding estimates derived by the Pit method, inasmuch as Feeney’s method 
does not impose a mathematical functional form on the data. (The Pit method imposes a double-
exponential functional form.) As already explained earlier, the Pit method is a multivariate 
version of Feeney's method. Results from the two methods are comparable when socioeconomic 
variables are omitted from the CLL models that underlie the Pit method. The period estimates of 
mean Ac and median Ac in the lower half of the table are calculated from estimates of single-year 
ASFRs derived by the conventional birth history method.6 When applying Feeney’s method and 

                                                           
6 The procedure for calculating mean Ac and median Ac is first to multiply each ASFR derived by the conventional 
birth history method by 100,000, so that there is a greatly inflated number of births in each single-year age group of 
women. (A number larger than 100,000 could be used, but 100,000 is sufficient in this case.) This inflated number 
of births is considerably larger than the actual number of births in the age group. The inflated births in each single-
year age group are then spread out evenly over the age group, so that no two births are assigned the same age of 
mother at childbirth. The births from all the age groups between 10 and 49 are then ordered from low to high age of 
mother at childbirth. It is then a simple matter to calculate mean Ac and median Ac. A similar approach is used for 
calculating mean and median ages at childbirth by child’s birth order derived from ASFRs by child’s birth order. A 
similar approach is also used for calculating median age at first marriage and median closed birth intervals by the Pit 



 21  

the conventional birth history method, first marriages and births occurring in the incomplete 
calendar month of survey are once again ignored, as are first marriages after age 40 and next 
births at 10 or more years of duration in parity, in order improve comparability with results 
derived by the Pit and Pait methods. 
 

Birth
Fertility history P it P ait P it P ait

measure method method method method method

               COHORT ESTIMATES
TMFR 4.70 4.59 4.63 4.39 4.38
TFR 4.50 4.38 4.41 4.16 4.15
Mean A c 28.6 na 28.4 na 28.7
Median A c 28.5 na 28.3 na 28.6

                 PERIOD ESTIMATES
TMFR 3.69 3.65 3.38 3.51 3.16
TFR 3.48 3.45 3.18 3.28 2.94
Mean A c 27.9 na 28.0 na 28.3
Median A c 27.7 na 27.9 na 28.2

Underlying CLL models omit
residence and education

Underlying CLL models include
residence and education set to

their interval-specific mean values

Notes: A c denotes age at childbearing. Mean and median A c  refer to all births regardless of 
birth order. In the upper half of the table, pertaining to cohort estimates, the birth history 
estimates of TMFR and TFR are derived from PPRs calculated directly from first marriages 
and births by birth order. The birth history estimates of mean and median A c  are calculated 
directly from the ages of mother at childbirth associated with the births that occurred to 
women in the cohort. In the lower half of the table, pertaining to period estimates, the birth 
history estimates of TMFR and TFR are derived by Feeney's PPR-based method. The period 
TFR estimated by the conventionial birth history method, which is not shown in the table, is 
3.57. The period estimates of mean and median A c  are calculated from ASFRs estimated by 
the conventional birth history method. 

Table 3. Comparison of selected fertility measures derived by the birth history, P it , and P ait 

methods 

 
 
 The cohort estimates with residence and educated omitted from the underlying CLL 
models in the first three columns of the upper half of Table 3 provide the best test of the 
methodology. As already discussed above, birth history estimates of the fertility measures are 
easily calculated directly from the birth histories of women belonging to the cohort, and these 
birth history estimates provide a baseline for comparison with estimates derived by the Pit and 
Pait methods. We do not expect perfect agreement among estimates derived from the birth history, 
Pit, and Pait methods, because, as already mentioned, the CLL models that underlie the Pit and 
Pait methods impose functional forms on the data that are imperfect approximations of reality.  
                                                                                                                                                                                           
method, and for median age at first marriage, median closed birth intervals, and median ages at childbearing  by the 
Pait method. 
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 When the underlying CLL models omit residence and education, however, those 
functional forms are quite flexible. In the case of the M-1 and higher-order transitions, the form 
of the  CLL models underlying the Pit method is 
 

P = 1!exp{!exp[b0 + b1T1 + b2T2 + ... + b9T9]}                                                                    (24) 
 
and the form of the CLL models underlying the Pait method is 
   

   P = 1!exp{!exp[b0 + b1T1 + b2T2 + ... + b9T9 + A(c0 + c1 t + c2 t2) + A2(d0 + d1 t + d2 t2)]}  
(25) 

 
 Equation (24) is very flexible, inasmuch as the only predictor variables are a set of 
dummy variables indicating duration in parity. Equation (25) is also very flexible, because it 
includes not only the dummy variables representing duration in parity but also starting age and 
all two-way interactions between the variables representing starting age and duration in parity. 
 
 The cohort estimates show that, when residence and education are omitted from the 
underlying CLL models, the birth history, Pit, and Pait methods yield close to the same estimates 
of TMFR and TFR. Relative to the birth history estimates, the Pit method yields estimates that 
are 0.11 birth too low for TMFR and 0.12 birth too low for TFR. The Pait method, which does 
slightly better, yields estimates that are 0.07 birth too low for TMFR and 0.09 birth too low for 
TFR. The Pait method yields estimates of mean Ac and median Ac that are 0.2 year too low, 
relative to estimates calculated by the birth history method. 
 
 Figures 1-4 supplement the above cohort estimates with additional detail, based on the 
same underlying CLL models applied to the same data. Figure 1 shows that the Pait-derived 
estimates of PPRs agree much more closely with corresponding birth history estimates than do 
the Pit-derived estimates, especially at the higher parities where numbers of births are small. 
Apparently the double-exponential specification in equation (24), which generates the Pit values 
from which a PPR is calculated, does not fit the data very well at the higher parity transitions. 
But when terms in A and A2 are added to the set of predictor variables in equation (25), which 
generates the Pait values, the fit is much better. Figure 2 shows that the Pait-derived estimates of 
ASFRs agree closely with the birth-history estimates. Consistent with Figure 1, Figure 3 shows 
that the Pait-derived estimates of mean closed birth intervals also agree much more closely with 
the birth history estimates than do the Pit-derived estimates, especially at the higher parity 
transitions. Figure 4 shows that the Pait-derived estimates of mean age at first marriage and mean 
ages at childbirth by child’s birth order agree closely with corresponding estimates derived by 
the birth history method. 
 
 We return now to the first three columns of the lower half of Table 3, pertaining to period 
estimates, again based on CLL models that omit residence and education from the set of 
predictor variables. In this part of Table 3, the birth history estimates of TMFR and TFR are 
derived by Feeney’s PPR-based method. The birth history estimates of mean and median ages at 
childbearing, however, are calculated from ASFRs derived by the conventional birth history 
method. The Pit-derived estimates of TMFR and TFR in the second column agree very closely  
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Note: The open-ended parity transition for the P it  and P ait  methods is 13+ - 
14+.

Figure 1. Comparison of parity progression ratios (PPRs) derived by the birth history, P it , 
and P ait  methods: Cohort analysis in which the CLL models that underlie the P it  and P ait 

methods omit residence and education
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Figure 2. Comparison of age-specific fertility rates (ASFRs) derived by the birth history and 
P ait  methods: Cohort analysis in which the CLL models that underlie the P ait  method omit 
residence and education
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Figure 3. Comparison of mean closed birth intervals by child's birth order (CBI) derived by the 
birth history, P it , and P ait  methods: Cohort analysis in which the CLL models that underlie the 
P it  and P ait  methods omit residence and education

 

20

25

30

35

40

45

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

First Marriage/Birth Order

M
ea

n 
A

ge
 (y

ea
rs

)

Birth History Pait

Figure 4. Comparison of mean age at first marriage and mean ages at childbirth by child's birth 
order, derived by the birth history and P ait  methods: Cohort analysis in which the CLL models that 
underlie the P ait  method omit residence and education
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with corresponding estimates in the first column derived by the birth history method. By contrast, 
the Pait-derived estimates of TMFR and TFR are considerably lower than either the 
corresponding Pit-derived estimates or the birth history-derived estimates. The Pait-derived 
estimates of TMFR and TFR are lower than the birth history-derived estimates by 0.31 birth and 
0.30 birth respectively. The main reason for these differences appears to be that, at any given age, 
the distribution of women by parity and duration in parity differs between the multidimensional 
life table population and the observed population. This part of the table also shows that, unlike 
the Pait-derived estimates of TMFR and TFR, the Pait-derived estimates of mean and median ages 
at childbearing (births of all orders) agree closely with birth history-derived estimates.7 
 
 Figures 5-8 supplement the above period estimates with additional detail, based on the 
same underlying CLL models applied to the same data. Figure 5 shows that the Pit-derived 
estimates of PPRs agree closely with corresponding birth history estimates derived by Feeney’s 
method, even at the higher parities. By contrast, the Pait-derived estimates of PPRs are much 
lower than those derived by the Pit method or by Feeney’s method, especially at the higher 
parities where fertility decline has been concentrated. (In this graph the Pait-derived estimates of 
PPRs vary relatively smoothly from transition 11-12 onward because it was necessary to use an 
open parity interval 11+ to 12+, for which the underlying CLL model employed the variables I 
and I2.) Figure 6 shows that the Pait-derived estimates of ASFRs are lower than conventional 
birth history estimates of ASFRs, except at age 25-29. (It is not clear why 25-29 is an exception.) 
Figure 7 shows that the Pit-derived, Pait-derived, and birth history estimates of mean closed birth 
intervals by child’s birth order are close to one another at the lower parities but not so close at 
the higher parities where numbers of births are smaller. Figure 8 shows that the Pait-derived 
estimates of mean age at first marriage and mean ages at childbirth by child’s birth order are 
slightly higher than corresponding estimates calculated from age-specific first marriage rates and 
age-order specific birth rates derived by the conventional birth history method.8 The graph shows 
almost no difference in mean age at first marriage. In the case of the Pait-derived estimates of 
mean age at childbirth by child’s birth order, however, the Pait-derived estimates are almost 
always higher than the birth history estimates. This is not surprising, inasmuch as a lower TFR 
(as seen earlier in Table 3) is usually associated with delayed births.  
 
 The above findings suggest that, when residence and education are omitted from the 
underlying CLL models, the relatively low Pait-derived estimate of the period TMFR (3.38, as 
shown in Table 3) may be more accurate than either the birth history estimate of the period 
TMFR derived by Feeney’s method (3.69) or the Pit-derived estimate of the period TMFR (3.65). 
Likewise, the Pait-derived estimate of the period TFR (3.18) may be more accurate than the 
conventional birth history estimate of the period TFR calculated from ASFRs (3.57), the estimate 
of the period TFR derived by Feeney’s PPR-based method (3.48), or the Pit-derived estimate of 
the period TFR (3.44). The reason is that the Pait-derived period estimates of TMFR and TFR are 
based on birth probabilities specific for age, parity, and duration in parity that are not affected by 
temporary distortions in population composition by parity and duration in parity at any given age 
in the observed population. By contrast, the estimates derived by the conventional birth history 
method and the Pit method are affected by these temporary distortions, which stem mainly from 
fertility variation in the past. 
                                                           
7 See footnote 6. 
8 See footnote 6. 
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Figure 6. Comparison of age-specific fertility rates (ASFRs) derived by the birth history and P ait 

methods: Period analysis in which the CLL models that underlie the P ait  method omit residence 
and education
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Figure 5. Comparison of parity progression ratios (PPR) derived by the birth history method 
(Feeney's method), the P it  method, and the P ait  method: Period analysis in which the CLL 
models that underlie the P it  and P ait  methods omit residence and education 
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Figure 7. Comparison of mean closed birth intervals by child's birth order (CBI) derived by the 
birth history method (Feeney's method), the P it  method, and the P ait  method: Period analysis in 
which the CLL models that underlie the P it  and P ait  methods omit residence and education
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Figure 8. Comparison of mean age at first marriage  and mean ages at childbearing by child's birth 
order, derived by the conventional birth history method and the P ait  method: Period analysis in 
which the CLL models that underlie the P ait  method omit residence and education
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 The last two columns of Table 3 show that, when the underlying CLL models include 
residence and education (as shown in equations (2) and (3) above) and these two variables are set 
to their interval-specific mean values, both the cohort and the period estimates of fertility 
measures derived by the Pit and Pait methods usually agree less closely with estimates derived 
directly from the birth histories than they did when residence and education were not included in 
the CLL models. This is not surprising, given the non-linear nature of the CLL models and the 
multidimensional life table measures that are derived from the CLL models.9 
 
 The cohort estimates in the upper half of the table are of particular interest, again because 
they provide a better test of how well the CLL models that underlie the Pait method fit the data. 
The Pait-derived cohort estimates of TMFR and TFR in the last two columns, relative to the birth 
history estimates of these measures in the first column, are too low by 0.32 birth and 0.35 birth, 
respectively, compared with 0.07 birth and 0.09 birth too low when residence and education are 
omitted from the underlying CLL models. The Pit-derived estimates of TMFR and TFR in the 
last two columns, compared with the birth history estimates of these measures in the first column, 
show a similar pattern. On the other hand, the values of mean Ac and median Ac in the last 
column differ little from the values of mean Ac and median Ac in the first column, indicating that 
mean Ac and median Ac vary little by residence and education. The period estimates in the lower 
half of the table show a rather similar pattern, the major difference being that the Pait-derived 
estimates of TMFR and TFR are considerably lower than the Pit-derived estimates of the TMFR 
and TFR. 
 
 Table 4 shows unadjusted and adjusted estimates of TFR, TMFR, mean Ac, and median 
Ac by residence and education, derived by the Pait method. Similar tables for the other 
components of the TFR are voluminous and are not shown. Table 5, which is calculated from 
Table 4, shows the percentage of an unadjusted residence (or education) differential that is 
explained by education (or residence). Education explains much more of the residence 
differentials in TMFR and TFR than residence explains of the education differentials in TMFR 
and TFR, and this is so for both the cohort estimates and the period estimates. The picture is very 
different in the case of mean and median ages at childbearing, however. In the cohort case, the 
adjustments increase rather than decrease the unadjusted differentials, so that the percentage 
explained is negative. It is much more negative when explaining residence differentials than it is 
when explaining education differentials. In the period case, the percentage of the education 
differential that is explained by residence continues to be negative and rather small, but the 
percentage of the residence differential that is explained by education is reversed, from large and 
negative to very large and positive. 
 
Summary and conclusion 
 
This paper has further developed methodology for multivariate analysis of the total fertility rate 
and its components based on individual-level birth history data. The new, improved version of 
the methodology expands the set of components of the TFR to include age-based nuptiality and 
fertility measures as well as parity progression-based measures. The components of the TFR now 

                                                           
9  In a linear model, when one substitutes mean values of the predictor variables, one obtains a predicted value of the 
response variable that is identical to the observed mean of the response variable, but this is not generally true in non-
linear models. 
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include parity progression ratios, age-specific fertility rates, total fertility rate, and total marital 
fertility rate as measures of the quantum of fertility, and mean and median ages at first marriage, 
mean and median closed birth intervals, and mean and median ages at childbearing (both overall 
and by child’s birth order) as measures of the tempo or timing of marriage and fertility.  
 

TFR TMFR Mean A c Median A c

COHORT ESTIMATES
Residence
   Urban Unadjusted 3.83 4.03 28.2 28.1

Adjusted 3.81 4.01 28.4 28.3

   Rural† Unadjusted 5.15 5.39 28.6 28.5
Adjusted 4.63 4.91 29.0 29.0

Education
   Low† Unadjusted 5.38 5.60 28.3 28.1

Adjusted 5.27 5.49 28.3 28.1

   Medium Unadjusted 4.22 4.36 28.1 27.9
Adjusted 4.24 4.38 28.2 27.9

   High Unadjusted 2.91 3.16 29.4 29.3
Adjusted 3.03 3.29 29.4 29.4

PERIOD ESTIMATES
Residence
   Urban Unadjusted 2.74 2.99 28.1 28.0

Adjusted 2.68 2.94 28.3 28.2

   Rural† Unadjusted 3.87 3.97 27.9 27.6
Adjusted 3.42 3.55 28.2 28.0

Education
   Low† Unadjusted 4.53 4.63 27.4 26.9

Adjusted 4.27 4.38 27.3 26.8

   Medium Unadjusted 3.27 3.42 27.3 27.1
Adjusted 3.23 3.39 27.4 27.1

   High Unadjusted 2.44 2.69 29.2 29.1
Adjusted 2.48 2.73 29.2 29.1

† Reference Category.

Note: Mean A c  and median A c  denote mean and median ages at childbearing 
(regardless of child's birth order).

Table 4: Unadjusted and adjusted estimates of TFR, TMFR, mean A c ,  and median A c 

by residence and education, derived by the P ait  method

Note: Mean A c  and median A c  denote mean and median ages at childbearing 
(regardless of child's birth order).
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Fertility differential TFR TMFR Mean A c Median A c

Cohort
   Rural minus urban 38 34 -54 -58
   Low educ. minus high educ. 9 10 -9 -13

Period 
   Rural minus urban 34 38 82 63
   Low educ. minus high educ. 14 14 -4 -4

Table 5: Percentage of an unadjusted residence (or education) differential in a
fertility measure that is explained by adjustment for education (or residence)

Notes: The percentage of a residence differential in a fert ility measure that 
is explained by education is computed as
(1 - ((FRadj - FUadj)/(FRunad j -FUun adj))) x 100, where FRu nadj denotes the 
unadjusted value of the fert ility measure for rural, and FUun adj denotes the 
unadjusted value of the fert ility measure for urban. FRadj and FUadj are 
adjusted values. "Adjustment" in this case means that the dummy 
variables representing education are controlled by holding them constant 
at their interval-specif ic mean values in the underlying CLL models when 
comparing rural and urban. It does not matter whether the residence 
differential in a fert ility measure is computed as FR - FU or FU - FR. The 
result is the same either way. The unadjusted and adjusted values of FR 
and FU are from Table 4, but more exact values than shown in Table 4 are 
used in the calculation of percentage explained. The formula for the 
percentage of an education differential that is explained by residence is 
similar to the formula for the percentage of a residence differential that is 
explained by education, the difference being that "adjustment"  now means 
that the dummy variable representing residence is held constant at its 
interval-specific mean values in order to calculate the extent to which 
residence explains the education differential in the fertlity measure.

 
 The improved methodology, like the original methodology, is based on a set of discrete-
time hazard models of parity progression, with one such model for each parity transition and 
with duration in parity continuing to be the basic time dimension of each parity-specific model. 
For reasons having to do with the interpretation of effects, the hazard models have been specified 
as complementary log-log (CLL) models, although a discrete-time logit specification provides 
numerical results that are almost exactly the same. The CLL models in the improved 
methodology include age, as well as duration in parity and socioeconomic variables, in the set of 
predictor variables. Collectively, the improved models for the various parity transitions yield 
predicted parity progression probabilities that are specific not only for parity and duration in 
parity but also for age. These progression probabilities are denoted Pait, where a denotes age, i 
denotes parity, and t denotes duration in parity. The probabilities Pait are used to construct a 
three-dimensional “multidimensional life table” of nuptiality and fertility that follows women by 
age, parity, and duration in parity from age 10 to age 50. Because the probabilities Pait are 
derived from multivariate hazard models, the entire multidimensional life table is multivariate, as 
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are all measures (TFR and its components) derived from it. All measures derived from the 
multidimensional life table are consistent with one another.  
 
 For the methodology to be useful, the underlying CLL models of parity progression must 
fit the data well. Tests on birth history data for real cohorts indicate that they do fit well. The 
tests, which utilize data from the 2003 Philippines Demographic and Health Survey, show that 
model-predicted estimates of TFR and its components calculated from the multidimensional life 
table agree closely with estimates of TFR and its components calculated directly from the birth 
histories. To accomplish this good fit to the data, it has been necessary to include many non-
linear variable specifications (quadratic specifications and interactions) in the underlying CLL 
models. The interactions include all two-way interactions among the predictor variables.  
 
 Because of the complexity of the underlying CLL models, coefficients of the predictor 
variables are numerous and difficult to interpret.10 This difficulty has been the impetus for 
developing the new methodology, the goal being to transform coefficient estimates into simple 
bivariate tables and graphs that show how TFR and its components vary by categories of one 
socioeconomic variable while holding constant the other socioeconomic predictor variables 
included in the underlying CLL models. 
 
 Although the application to Philippines DHS data is intended to be illustrative, an 
important finding is that, when socioeconomic variables are dropped from the underlying CLL 
models so that age and duration in parity are the only predictors in the model for each parity 
transition, the Pait-derived estimate of the period TFR (3.18) is 0.39 birth lower than the 
conventional birth-history estimate of the period TFR calculated from ASFRs (3.57). The main 
reason for this discrepancy appears to be that the conventional birth-history estimate of an ASFR 
is affected by temporary distortions in the composition of the age group by parity and duration in 
parity in the observed population, stemming primarily from past variation in the probabilities 
Pait.11 By contrast, the structure of the multidimensional life table population by age, parity, and 
duration in parity depends only on the probabilities Pait from which the multidimensional life 
table is constructed, so there are no temporary distortions. 
 
 An implication is that, if current birth probabilities Pait remain constant in the future, the 
Pait-derived period TFR will not change in the future, but the conventional ASFR-derived period 
TFR will start out higher or lower than the Pait-derived TFR and then gradually converge to the 
Pait-derived TFR. Viewed from this perspective, the Pait-derived TFR is more accurate than the 
conventional ASFR-derived TFR.  

                                                           
10 The tables and figures presented in this paper are based on a large number of underlying CLL models that together 
contain a total of approximately 1,700 coefficients, including the constant term in each model.  
11 Past variation in mortality and migration can also contribute to these distortions. 
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