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Clustering gene expression data such that the diameters of the clusters formed are no 
greater than a specified threshold prompted the development of the Quality Threshold 
Clustering (QTC) algorithm. It iteratively forms clusters of non-increasing size until all 
points are clustered; the largest cluster is always selected first. The QTC algorithm 
applies in many other domains that require a similar quality guarantee based on cluster 
diameter. The worst-case complexity of the original QTC algorithm is 𝑂(𝑛!). Since 
practical applications often involve large datasets, researchers called for more efficient 
versions of the QTC algorithm.  
 
This dissertation aimed to develop and evaluate efficient variations of the QTC algorithm 
that guarantee a maximum cluster diameter while producing partitions that are similar to 
those produced by the original QTC algorithm. The QTC algorithm is expensive because 
it considers forming clusters around every item in the dataset. This dissertation addressed 
this issue by developing methods for selecting a small subset of promising items around 
which to form clusters. A second factor that adversely affects the efficiency of the QTC 
algorithm is the computational cost of updating cluster diameters as new items are added 
to clusters. This dissertation proposed and evaluated alternate methods to meet the cluster 
diameter constraint while not having to repeatedly update the cluster diameters. 
 
The variations of the QTC algorithm developed in this dissertation were evaluated on 
benchmark datasets using two measures: execution time and quality of solutions 
produced. Execution times were compared to the time taken to execute the most efficient 
published implementation of the QTC algorithm.  Since the partitions produced by the 
proposed variations are not guaranteed to be identical to those produced by the original 
algorithm, the Jaccard measure of partition similarity was used to measure the quality of 
the solutions. 
 
The findings of this research were threefold. First, the Stochastic QTC alone wasn’t 
computationally helpful since in order to produce partitions that were acceptably similar 
to those found by the deterministic QTCs, the algorithm had to be seeded with a large 
number of centers (𝑛𝑡𝑟𝑦 ≈ 𝑛). Second, the preprocessed data methods are desirable 
since they reduce the complexity of the search for candidate cluster points. Third, radius 
based methods are promising since they produce partitions that are acceptably similar to 
those found by the deterministic QTCs in significantly less time.  
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Chapter 1 

 
Introduction 

 
 
 

Background 
 

Heyer, Kruglyak, and Yooseph (1999) developed the Quality Threshold Clustering 

(QTC) algorithm for gene clustering.  The authors needed to find an analysis procedure 

that extracts useful clusters from newly available gene expression data.  The QTC 

algorithm locates the largest clusters of open reading frames (ORFs), which are the parts 

of a gene that encode a protein, and satisfies a quality guarantee. 

The inputs of the QTC algorithm are a set of points 𝐺 in multidimensional space and a 

threshold value that represents the maximum diameter 𝑑 of the clusters.  Heyer et al. 

(1999) developed the following pseudo code to explain the QTC algorithm; Figure 1 is an 

excerpt from their paper. 

1    Procedure 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡(𝐺,𝑑) 
2    if (|𝐺| ≤ 1) then output 𝐺, else do /* Base case */ 
3       for each 𝑖 ∈ 𝐺  
4         set 𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸; set 𝐴! = {𝑖} /* 𝐴!is the cluster started by 𝑖 */ 
5         while ((𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸) and (𝐴!   ≠ 𝐺))  
6            find 𝑗 ∈ (𝐺 − 𝐴!) such that diameter (𝐴! ∪ 𝑗 ) is minimum 
7            if (diameter (𝐴! ∪ 𝑗 ) > 𝑑) 
8                then set 𝑓𝑙𝑎𝑔   = 𝐹𝐴𝐿𝑆𝐸 
9                else set 𝐴! = 𝐴! ∪ 𝑗  /* Add 𝑗 to cluster 𝐴! */ 
10   identify set 𝐶 ∈ {𝐴!,𝐴!,⋯ ,𝐴|!|} with maximum cardinality 
11   output 𝐶 
12   call 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡(𝐺 − 𝐶,𝑑) 
 
Figure 1 – Pseudocode for the QTC algorithm  

 
 Given  𝑛 points and a maximum allowable cluster diameter 𝑑, it iteratively forms 

clusters of similar maximum size until all points are clustered. Heyer et al. (1999) 
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suggested that a “termination criterion” could be added to stop the algorithm when the 

largest remaining cluster has less than a predefined number of data points (p. 1111). 

Visually inspecting the clusters at various thresholds preceded their choice of the 

threshold value.  They concluded that the QTC algorithm, as compared to other clustering 

methods such as k-means, was better suited for their analysis of the data for two reasons.  

     First, Olson, Epstein, Sackett, and Yergey (2011) stated that varying the threshold of 

the QTC algorithm might change the size and number of clusters, but each cluster will 

have no unrelated patterns forced into it.  This is known as the quality guarantee. 

     Second, algorithms that use a predetermined number of clusters, such as k-means, 

suffer from the following two conditions: a small number of clusters will cause unrelated 

patterns to be grouped together, and a large number of clusters will cause similar patterns 

to be split into separate groups (Heyer et al., 1999). 

The QTC algorithm and its variations have been applied to various domains: The QTC 

algorithm was used by Yuan et al. (2008) in their placement algorithm for wireless sensor 

networks. Yaakob, Lim, and Jain (2009) used the QTC algorithm for pattern 

classification problems in the medical domain. Schafer and Fey (2008) created a new 

framework in grid computing using the QTC algorithm. Pukáncsik et al. (2010) applied 

the QTC algorithm to find the biggest cluster in their DNA research. The Stochastic QT-

Clust algorithm, as developed by Scharl, Striedner, Pötschacher, Leisch, and Bayer 

(2009), is an adaptation of Heyer et al.’s (1999) original QT algorithm. The Stochastic 

QTC algorithm, which completes clustering in a fraction of the time of Heyer et al.’s 

algorithm, has been used to cluster microarray data sets. Finally, Danalis, McCurdy, and 

Vetter (2012) reduced the overall complexity of the original QTC algorithm from a 
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𝑂 𝑛!  to a 𝑂 𝑛!  function. They accomplished this reduction by preprocessing the data 

prior to clustering so that the algorithm is not required to search all items during the 

cluster formation phase and by reducing the number of diameter calculations.  

Problem Statement 

     The QTC algorithm yields clusters that satisfy a quality guarantee. Quality is 

quantified by the maximum acceptable cluster diameter. K-means and the other clustering 

methods do not provide this guarantee (Heyer et al., 1999). Danalis et al. (2012) analyzed 

the QTC algorithm and they concluded its overall complexity as 𝑂(𝑛! ∗ 𝐹!) where 𝐹! is 

the complexity of the diameter function. The complexity of Heyer’s diameter function is 

𝑂 𝑛!  and that makes the overall complexity 𝑂 𝑛! . 

     Clustering problems often involve partitioning a large number of data points. For 

example, the QTC algorithm partitioned over 4,000 points into clusters in Heyer et al.’s 

(1999) research.  Dan and Mocian (2009) applied the QTC algorithm to cluster 

documents within the context of web and text mining.  They clustered similar news 

documents over a 24-hour period that amounted to between “100,000 and 200,000 news 

items” (p. 559).  Due to these large data sets, researchers called for more efficient 

versions of the QTC algorithm (Dan & Mocian, 2009; Heyer et al., 1999).   

Dissertation Goal 

     The goal of this dissertation was to develop modified versions of the QTC algorithm 

that are computationally more efficient than the original QTC algorithm. These modified 

versions identify clusters that are similar, if not identical, to those produced by the 

original QTC algorithm.  
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     Specifically, this dissertation investigated methods for carefully selecting a small 

subset of 𝑘 points around which to build each cluster (𝑘 ≪ 𝐺 ), instead of constructing 

clusters for each point as in step 3 of Figure 1.  The investigation includes a method of 

choosing these points and the evaluation includes experiments with various values of 𝑘. 

     This dissertation also investigated alternate methods to form the clusters instead of 

using the computationally expensive search to identify 𝑗, where  𝑗 represents the candidate 

point that is evaluated for inclusion into the cluster that minimizes cluster diameter, as in 

step 6 of Figure 1.  The investigation included two methods of forming clusters. 

     The measurable criterion of success was a modified QTC algorithm, which executed 

in significantly less time than the original QTC algorithm and aimed to produce similar 

partitions while using the same threshold diameter. The clusters produced are identical or 

very similar to the QTC algorithm’s clusters. The partitions’ similarity was evaluated 

using the “Jaccard Similarity on Entity Pairs” (Duan, Fokoue, Srinivas, & Byrne 2011). 

The Jaccard Similarity was well suited for this application because it was able to “capture 

the effect of big clusters” (p. 6). Big clusters are a definite possibility when using the 

QTC algorithm. The specified maximum cluster diameter threshold constraint was 

maintained. Finally, the proposed methods were evaluated using benchmark datasets 

found in the literature. 

Research Questions 

     To address the problem statement and achieve the dissertation goal, the following 

research questions were used to guide the study: 

Research question 1: What are some efficient and effective methods for selecting a 

small subset of 𝑘 points around which to build the clusters? 
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Research question 2: What are some efficient and effective methods for identifying 

cluster neighborhoods? 

Relevance and Significance 

     The QTC algorithm was developed with a quality guarantee for clustering genes. It 

has recently been applied to the organization of uracil-DNA-degrading factors (Pukáncsik 

et al., 2010) and for fixture detection in homes (Srinivasan, Stankovic, & Whitehouse, 

2013).   

     The QTC algorithm and/or modified versions of it have been used in the following 

areas: image categorization (Ferecatu & Geman, 2009), gene expression (Jiang, Pei, & 

Zhang, 2005), market power potential (Lesieutre, Rogers, Overbye, & Borden, 2010), 

object identification (Nieto, 2010), mining documents for the Web (Dan & Mocian, 

2009), and grid application componentization (Schafer & Fey, 2008). 

     The QTC algorithm does a computationally expensive search and is computationally 

much more demanding than k-means and other clustering algorithms (Dan & Mocian, 

2009; Danalis, McCurdy, & Vetter, 2012). This renders the QTC algorithm impractical 

for use with large data sets. Since many applications today require clustering a large 

number of points with quality threshold guarantees, researchers called for more efficient 

versions of the QTC algorithm (Dan & Mocian, 2009; Heyer et al., 1999). 

     Preprocessing by partitioning the data points will result in a more efficient version of 

the QTC algorithm (Scharl & Leisch, 2006; Danalis et al., 2012).  Further, the results can 

be generalized to other forms of clustering algorithms. Preprocessing by partitioning can 

be used to locate candidate clusters for various clustering algorithms.  Application of 
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these methods can be used to improve the efficiency of other computationally expensive 

applications (Arthur & Vassilvitskii, 2007) 

 

Barriers and Issues 

     The first barrier was to find a method that could decrease the expense of building 

clusters around every point. The QTC algorithm in step 3 of Figure 1 uses each point to 

create a cluster and then only uses the cluster with greatest cardinality. A modified 

process that uses a subset of points, instead of every point, reduced the total time of the 

algorithm. 

     The second barrier was to locate an efficient technique that could find points to 

include in the clusters. In step 6 of Figure 1 of the QTC algorithm every other point is 

checked to see if its inclusion into the cluster will cause the smallest increase in the 

diameter of the cluster. The modification of this method to only search a subset of the 

remaining points lowered the complexity of the algorithm. 

     One issue was to program the modified QTC algorithms to be efficient. Due to the 

𝑂 𝑛!  complexity of the QTC algorithm, inefficient code could have rendered the 

method impractical for use with large data sets. 

     Another issue was to select or generate the proper data sets to evaluate all the 

algorithms with data similar to what was used in the body of knowledge. Researchers are 

applying the QTC algorithm to data sets that range in cardinality from 5000 to 200,000 

data points. Finding the proper cardinality for the test data sets provided good data to 

evaluate the pros and cons of the modified QTC algorithms. 
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Summary 

     The QTC algorithm uses a quality guarantee to find clusters that only include similar 

points; this is a criterion that some applications require. The quality guarantee is the 

maximum diameter of the clusters and it is the only input parameter needed besides the 

set of points. The algorithm has been identified as having an expensive search process by 

various researchers.  

     A more efficient QTC algorithm is needed by new applications that have a greater 

number of data points. Efficiency can be increased by selecting a small subsets of points 

to build the clusters around. Additionally, forming the clusters with a search that is not 

computationally expensive can increase efficiency. 
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Chapter 2 

Review of the Literature 

 

     The literature review was broken into five sections. The sections are QTC Algorithms 

and its Variations, Applications of QTC, Computational Efficiency of QTC, Partition 

Similarity Measures, and Methods of Improving the QTC Algorithm. 

QTC Algorithms and its Variations 

     The QTC clustering algorithm and its variants have been applied in several studies. 

Heyer et al. (1999) developed the original QTC algorithm for gene clustering. It is 

capable of locating the largest clusters of ORFs for genes.  Their contribution was to 

create an algorithm that finds clusters without the information of how many clusters to 

locate. The algorithm requires a value for the diameter of the clusters as a termination 

criterion.  The algorithm’s quality guarantee ensures that each cluster will not have 

unrelated patterns forced into it.  

     Scharl et al. (2009) applied the Stochastic QT-Clust to microarray data sets and 

presented their results with neighborhood graphs.  The Stochastic QT-Clust algorithm is 

an adaptation of Heyer et al.’s (1999) original QTC algorithm.  In this adaptation, a 

parameter is added, the number 𝑛𝑡𝑟𝑦, which limits the number of clusters that are 

evaluated prior to selecting the largest cluster.  Instead of forming clusters around all 𝑛 

data points, the clusters are formed starting from 𝑛𝑡𝑟𝑦 randomly selected data points 

(with 𝑛𝑡𝑟𝑦 ≪ 𝑛). A low value for 𝑛𝑡𝑟𝑦 will result in faster execution of the algorithm. 

However, an 𝑛𝑡𝑟𝑦 equal to the number of genes being evaluated will result in the same 

execution time as that of the original QTC algorithm. 
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     Scharl and Leisch (2006) compared Heyer et al.’s (1999) QTC algorithm to k-means 

and the Stochastic QT-Clust, which adds the 𝑛𝑡𝑟𝑦 parameter.  A yeast data set with 3722 

genes was used for clustering. The 𝑛𝑡𝑟𝑦 parameter varied from 1 to 3300. They stated 

that outliers would not be part of any cluster, whereas k-means includes all genes, even 

outliers, in the clusters.  They concluded that Stochastic QT-Clust is best when there is 

interest in small sums of within cluster distances. They stated that the original QTC 

algorithm is preferable if “stability and reproducibility” are important (p. 2).   

     Scharl and Leisch (2010) compared their Stochastic QT-Clust clustering algorithm to 

the k-means algorithm with both raw data and functional data of time course gene 

expression data; the functional data used curves fit to each observation to account for 

time dependency. The simulation study was performed by adding various types of noise 

to evaluate the performance of the algorithms. The results showed that QT-Clust 

outperformed k-means on both functional and raw data for low noise levels. However, k-

means outperformed QT-Clust for medium and high noise levels. 

     Choudhury, Sarmah, and Sarma (2012) created a modified QTC algorithm to use in 

gene expression analysis. Instead of the jack-knife correlation coefficient that Heyer et al. 

(1999) used, they applied a modified version of Pearson’s correlation coefficient. The 

original QTC algorithm was modified by adding a dynamically calculated minimum 

correlation value and creating the overall correlation factor (OCF). Their modified 

algorithm only needs one input parameter, minimum cluster size, and is able to calculate 

the other parameter dynamically. The OCF is used as a tie breaker when multiple clusters 

have the same number of genes and to detect high density clusters that exist inside of low 

density clusters. 
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     Yaakob and Jain (2012) & (2009) combined QTC and the Fuzzy ARTMAP (FAM) 

architecture to analyze shape to classify insects. They modified the QTC algorithm by 

dynamically determining another parameter during the learning phase and set it according 

to characteristics in the data. The minimum cluster size was removed, which allowed for 

clusters of only one pattern. Finally, they used Euclidean distance as the similarity 

measure. 

Applications of QTC 

     Olson et al. (2011) applied QTC to mass spectrometry data.  QTC was chosen for its 

quality guarantee and because it does not require the number of clusters a priori.  The 

algorithm yielded precision nodes that were proportionate to the instrument’s mass 

measurement precision.  Their application “uses replicate spectra and forms clusters of 

peaks within those spectra” (p. 970). The quality threshold was the mass measurement 

precision. It was previously validated for linear TOF (time of flight) measurements. 

     Pawlik, Alibert, Baulande, Vaigot, and Tronik-Le Roux (2011) used QTC to identify 

transcription factors that regulate early radiation response.  A high correlation coefficient 

(0.8), of time-ordered gene expression profiles, for the quality threshold was used to 

arrive at high-quality clusters that had a reduced number of false negative predictions.  

They clustered 45,101 probe sets that corresponded to ~34,000 genes. The QTC 

algorithm was selected for its production of high quality clusters, that all possible clusters 

are considered, and the number of clusters was not needed prior to evaluation. 

     Geremek et al. (2011) applied the QTC algorithm to identify groups of genes that 

resulted in RNA expression patterns, which were highly correlated during the study of 

biopsies.  The authors used 13,811 probes for clustering and identified 12 clusters with at 
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least 100 genes.  They selected a cluster diameter of < 0.3 for the Jackknife correlation 

coefficients of the genes. 

     Danielson and Lill (2010) used QTC to group the solutions of protein loop regions. 

They used only 5,000 loop combinations in order to limit the computational time. The 

root-mean-square deviation value between solutions of each loop was their quality 

threshold, the maximum diameter was two angstroms. 

     Gu and Wang (2010) compared the QTC algorithm to k-means and random walks 

using tropical oceanic data. They used 1,200 samples that represented monthly averages 

for 100 years. The cross correlation of temperature and salinity was their data set.  A list 

of thresholds, {𝑑!,𝑑!,𝑑!,⋯ ,𝑑!}, were used with the QTC algorithm. 

     Croce, Giannone, Annesi, and Basili (2010) applied the QTC to latent semantic 

analysis (LSA).  They used a set of LSA vectors that represent the frame elements of the 

semantic heads with 134,697 predicates and 271,560 arguments. Their quality threshold 

was set to 0.1, 0.5, and 0.85. 

     Dan and Mocian (2009) applied the QTC algorithm to document clustering within the 

context of web and text mining.  Their system clusters between 100,000 and 200,000 

news items every day. Their optimized algorithm only calculates the quality threshold, 

cosine similarity between documents, once as they are stored in a cache. Part of their 

algorithm has been modified to be incremental. They stated that, if they increase the 

number of sources their implementation might reach its limits. 

     Saito et al. (2009) used pairwise comparison as the first phase, QTC as the second 

phase, and k-means as the final phase to identify the clusters of gene expression patterns.  

During their time course evaluation of 5157 genes, they extracted 623 with a pairwise 
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comparison and then applied the QTC algorithm to identify 37 expression patterns, which 

k-means combined into eight clusters. 

     Hara, Ohnishi, and Horinouchi (2009) used QTC to predict the genes that were 

probable A-factor-inducible. They analyzed 477 genes that were expressed differently 

after the addition of A-factor. Those genes were grouped by QTC analysis according to 

expression patterns. From the resultant 15 groups, cluster 1 included the genes whose 

expression had increased, and cluster 2 was composed of the genes whose expression had 

decreased. 

     Coppe et al. (2009) used QTC to identify sets of co-expressed genes in myeloid cells.  

QTC of 2796 genes with a cluster diameter of 0.25 and at least 15 genes per cluster 

resulted in 44 gene clusters with a total of 2455 genes. They selected QTC for its ability 

to set the threshold for cluster quality and the number of genes per cluster.  They 

performed the QTC with the MultiExperiment Viewer (MeV) software. 

     Bergholz et al. (2007) used QTC to cluster E. coli genes as Heyer et al. (1999) did 

using the same algorithm.  The QTC algorithm placed 2,468 of the 2,552 ORFs into 12 

groups.  QTC was performed by the MeV v. 3.1 software at The J. Craig Venter Institute 

in La Jolla, California. 

     Minami, Maniratanachote, Katoh, Nakajima, and Yokoi (2006) applied the QTC 

algorithm to estimate the major gene expressions profiles based on ThioAcetamide (TA) 

dosage. Clustering was performed on a data set of 7978 genes with quality thresholds 

ranging from 0.82 to 0.92 for the correlation coefficients. They used the GeneSpring 

QTC algorithm and concluded that it is a “sensitive marker” that predicts potential 

hepatotoxicity (p. 64). 
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     Minami et al. (2005) used the GeneSpring QTC algorithm to estimate the majority of 

the gene expressions profiles. They identified 17 potential toxicity markers by using 

QTC. A data set of 14,474 genes and quality threshold of 0.68 for the correlation 

coefficient. They concluded that the approaches of serum biochemical markers and two 

distinctive QTC evaluations yielded the same results. 

     Toledo-Rodriguez, Goodman, Illic, Wu, and Markram (2005) used the QTC algorithm 

to investigate gene expressions related to neocortical neurons. QTC was used as an 

unsupervised algorithm that was followed up with the supervised application of artificial 

neural network regression to predict the anatomical types present in the neurons. The 

authors experimented with various diameter thresholds and concluded that a diameter of 

0.5 produced 7 clusters and provided “robust results” when they evaluated 268 neurons 

(p. 404). 

     Tanaka et al. (2011) applied the QTC algorithm to extract the clusters of upregulated 

(maltose-utilizing (LS) yeast) and downregulated (high-sucrose-tolerant (HS) yeast) 

genes under high-sucrose conditions with concentrations from 0 to 50%. Minimum 

cluster size was 100 and minimum correlation was 0.6. The first cluster included 225 

upregulated genes and the second cluster had 124 downregulated genes, of a total of 1523 

genes. 

     Sidorov, Hicks, Marshall, Sanei, and Chambers (2006) used QTC with their multi- 

camera 3D tracking system. They used four digital cameras connected to four computers. 

The 2D face positions are sent to a server that is running the QTC algorithm. The 

algorithm is applied to the “barycenters of all pairs of rays” originating from the cameras. 
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The output is the estimated 3D face coordinates and is relayed back to the 2D trackers for 

error correction. 

     Ferecatu and Geman (2009) applied the QTC algorithm to categorizing images in 

clusters based on similarities. This application of QTC is different than the other 

applications; instead of using a distance measure, they used individuals to match images 

based on similar features. 

     Jiang, Pei, and Zhang (2005) compared various algorithms to the Adaptive quality-

based clustering (ADAPT) with gene expression data. The algorithms that they compared 

were: k-means, SOM, Cluster Affinity Search Technique (CAST), Cluster Identification 

via Connectivity Kernels (CLICK), Self Organizing Tree Algorithm (SOTA), Gene 

Pattern eXplorer (GPX), and ADAPT. When the results showed their method was not as 

efficient as some other clustering algorithms, they stated that biologists value the 

effectiveness over efficiency of the mining process. 

     Lesieutre, Rogers, Overbye, and Borden (2010) applied both the QTC and k-means 

algorithms to find the groups of generators that are “likely to be able to exercise market 

power”. They used two steps to find the group of generators; first the generators were 

clustered, then the results were refined by evaluating the price perturbations. For the QTC 

algorithm they used Euclidean distance for the threshold and an optional maximum 

cluster size. 

     Nieto (2010) applied the QTC algorithm to determine the number of parts that are 

included in an object. The threshold considered the distance of the perceptual similarity 

between regions in an image. He also used a minimum of three items per cluster. 
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     Pukáncsik et al. (2010) implemented the QTC algorithm in their DNA research. Their 

research looked for the biggest cluster with a minimal size of 25 and maximal root-mean-

square deviation of 5Α


. The QTC algorithm was used to cluster approximately 100,000 

preliminary models. 

     Schafer and Fey (2008) used the original QTC algorithm as the first phase of their 

method. The second phase also used the QTC algorithm but added a diameter multiplier, 

which enlarged the maximum diameter by the multiplier. This second phase eliminated 

the possibility of having nodes that are not connected to other nodes; their method 

guaranteed a “complete hierarchy in every case” (p. 180). 

     Yuan et al. (2008) applied the QTC algorithm to their divide-and-conquer placement 

algorithm and demonstrated that clustering improved the placement of wireless sensors. 

They first used the QTC algorithm to cluster surveillance spots into groups by proximity. 

Then the constrained simulated annealing solver was used for each cluster to determine 

the location of the sensors. The number of surveillance spots was 225 regular spots and 

200 random spots. The diameter used in the QTC algorithm was the impact region of the 

sensor. 

     Bednarik and Kovacs (2011) applied the Quality Threshold (QT) parameter, the 

threshold value for the maximum diameter 𝑑 of the clusters, to the Hierarchical 

Agglomerative Clustering (HAC) algorithm. The authors performed an investigation to 

identify the clustering methods with an optimal level of similarity between the elements 

of the clusters. They stated that only the BIRCH (balanced iterative reducing and 

clustering using hierarchies) and the QTC algorithms used the radius of the clusters. 
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     The authors stated that the “BIRCH algorithm defines a weak threshold on the 

volume” of clusters (p. 258). Whereas, the QTC algorithm’s constraint is much stronger 

and was selected to be added to two special extensions of the HAC clustering method. 

They concluded that the best-first method was superior and based on the cost function the 

method should only be used with middle-sized problems.  

     Dutta & Overbye (2011) used the QTC algorithm to design a more efficient wind farm 

collector system cable layout than the conventional radial system cable layout. They 

applied the QTC over three levels to determine the most efficient layout possible. Then 

they combined the QTC method with the radial method for a hybrid version. Finally, they 

designed the conventional radial layout and compared the costs, power generated, and the 

reliability of the three versions. 

     The QTC version had the lowest cost, generated the most power, and was the most 

reliable of the three versions. They selected the QTC algorithm due to the quality 

guarantee which clusters similar objects together and did not require the number of 

clusters to be know beforehand. 

     Ha-Thuc, Nguyen, and Srinivasan (2008) used the quality threshold parameter of the 

QTC algorithm in their QT summarization algorithm. Their algorithm iterates through the 

k-means algorithm several times, at each iteration they use QTC to remove similar items. 

This is a novel approach that combines the QTC and k-means in order to remove the 

requirement of knowing the number of clusters a priori. 

     Tang, Zhang, Cheema, and Ressom (2010) applied the QTC algorithm to cluster peaks 

from the peak list that they created previously. They selected the peak candidates with 

higher intensity than the mean from the LC-MALDI-TOF (Liquid Chromatography-
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Matrix-Assisted Laser Desorption/Ionization-Time Of Flight) run based on m/z (mass-to-

charge ratio), RT (retention time), and intensity. Their method was useful when aligning 

the LC-MALDI-TOF runs from separate groups of samples. 

     DNA Nano array analysis is another research arena where the QTC has been applied. 

Waoo, Kashyap, and Jaiswal (2010) incorporated the QTC algorithm into their proposed 

Dynamically Growing Hierarchical Self Organizing Map (DGHSOM) to identify co-

expressed genes. They presented 3 results at 50, 100, and 200 iterations of applying 

DGHSOM. The clusters increased from 9 to 19 as the iterations were increased. They 

concluded that when they increased the number of iterations of DGHSOM, their cancer 

diseases diagnosis results were better. 

     The discovery of electrical and water fixtures in a home is another application that 

used the QTC algorithm. The system called FixtureFinder developed by Srinivasan, 

Stankovic, and Whitehouse (2013) incorporates the data streams from infrared activity, 

ambient light levels, smart power, and water meters for the detection phase. The QTC 

algorithm was used to recognize patterns of multimodal pairs in the data stream. They 

deployed 25 to 40 sensors into 4 homes for 7 to 10 days of data collection. The results 

confirmed that the FixtureFinder system is able to identify 90% of the fixtures in a home 

in less than 10 days. 

Computational Efficiency of QTC 

 Danalis et al. (2012) analyzed the QTC algorithm for its worst-case complexity. The 

overall complexity is composed of three parts, the ‘for each’ loop, the while loop, and the 

find operation. The find operation in line 6 of Figure 1 executes 𝑂 𝑛  times and calls the 

diameter function, its complexity is 𝑂(𝑛 ∗ 𝐹!) where 𝐹! is the complexity of the 
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diameter function used. The while loop, in line 5, executes until no more elements can be 

added to the cluster. It can have either a complexity of 𝑂(𝑛 ∗ 𝐹!)  for a data set with 

𝑂 𝑛  clusters of 𝑂(1) elements or 𝑂(𝑛! ∗ 𝐹!) for a data set with 𝑂 1  clusters of 𝑂(𝑛) 

elements.  The ‘for each’ loop which starts on line 3 executes 𝑂(𝑛) times. They 

concluded its overall complexity as 𝑂(𝑛! ∗ 𝐹!) for both extreme data sets. 

     They also recommend preprocessing the data prior to starting the QTC algorithm to 

reduce the complexity further. By creating a matrix of pair of elements which are within 

the threshold value of 𝑑, they can reduce the complexity to 𝑂(𝑛! ∗ 𝐹!). The complexity 

of the diameter function can also be reduced to 𝑂(1) by using memory to store the largest 

distance of each element to the cluster and the last element added. Using memory to store 

the preprocessed matrix and the distances reduces the QTC algorithm’s overall 

complexity to 𝑂(𝑛!). The methodology section presents details of an adaptation of their 

method. 

Partition Similarity Measure 

     Duan, Fokoue, Srinivas, and Byrne (2011) presented their “Measure I: Jaccard 

Similarity of Entity Pairs” as a method to quantify similarity of clusters which “captures 

the effect of big clusters in a partition” (p. 6). Their method generates all pairs of entities 

for each cluster in partitions 𝑃! and 𝑃!. The result is the creation of the corresponding sets 

of entity pairs labeled 𝑃′! and 𝑃′!. For example the partition 𝑃! = 𝑎, 𝑏 , 𝑐,𝑑, 𝑒  

becomes 𝑃′! = { 𝑎, 𝑏 , 𝑐,𝑑 , 𝑐, 𝑒 , 𝑑, 𝑒 } and partition 𝑃! = 𝑎, 𝑏, 𝑐 , 𝑑, 𝑒  becomes 

𝑃′! = { 𝑎, 𝑏 , 𝑎, 𝑐 , 𝑏, 𝑐 , 𝑑, 𝑒 }.  The similarity of the sets 𝑃′! and 𝑃′! is calculated 

with the standard Jaccard similarity where each entity pair is considered a basic element 
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of a set. The similarity of the partitions is computed using the formula 𝑃𝑆𝑖𝑚! 𝑃!,𝑃! =

|!!!∩!!!|
|!!!∪!!!|

. The similarity value’s range is [0,1].  

Methods of Improving the QTC Algorithm 

     The following research guided the development of the methods used to create the 

modified QTC versions in this dissertation: 

     Danalis, McCurdy, and Vetter (2012) analyzed the QTC algorithm and presented its 

worst-case complexity as 𝑂(𝑛! ∗ 𝐹!) where 𝐹!is the complexity of the diameter function. 

When the complexity of the diameter function is 𝑂 𝑛!  that makes the overall 

complexity 𝑂 𝑛! . They recommend preprocessing the data prior to starting the QTC 

algorithm to reduce its complexity. By creating a matrix of pair of elements which are 

within the threshold value of 𝑑, they can reduce the complexity to 𝑂(𝑛! ∗ 𝐹!). After 

inserting the diameter function the overall complexity is reduced to 𝑂 𝑛! . Some of the 

proposed modified QTC versions preprocessed the data by creating a matrix of the points. 

     Leisch (2006) compared the use of diameter and radius when evaluating clustering 

algorithms. He stated that the global minima of the two “will usually not be exactly the 

same” (p. 528). The research presented in the article demonstrates that the distance 

function used greatly affects the efficiency of the algorithm. He proposes that researchers 

should experiment with various standard distance measures to evaluate how they 

influence the algorithms. The introduction of the radius reduces the complexity to 

𝑂(𝑛! ∗ 𝐹!) where 𝐹! is the complexity of the radius function.  Some of the proposed 

modified QTC versions used the radius of the cluster instead of the computationally 

expensive diameter function. 
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Chapter 3 

 
Methodology 

 

Overview 

     The goal of developing a modified QTC algorithm that is computationally more 

efficient than the QTC algorithm and identifies clusters that are similar, if not identical, to 

those produced by the original QTC algorithm was accomplished by implementing the 

original QTC algorithm, the Stochastic QTC algorithm, an adaptation of the Danalis QTC 

algorithm, and the various modified QTC versions using Visual C# as described in the 

Experimental Design section. These modified QTC versions were created using the 

strategies described in the sections ‘Methods for Selecting a Subset of Points’ and 

‘Methods for Identifying Cluster Neighborhoods’. All QTC versions were tested using 

the datasets described in the Benchmark Datasets section. The comparison of partition 

similarity for all QTC versions was measured with the method described in the Measure 

of Partition Similarity section. The efficiency of all QTC versions was measured with the 

method described in the Measure of Computational Efficiency section. Finally, the results 

were analyzed and presented as described in the Data Analysis section. 

Experimental Design 

     Visual C# was used to create Heyer et al.’s (1999) algorithm, the Stochastic QTC 

algorithm, an adaptation of the Danalis et al.’s (2012) algorithm, and the proposed 

modified QTC algorithms for comparative evaluation. The Heyer algorithm was used to 

compare all the other algorithms with respect to cluster similarity, since the resulting 

clusters are always constant. The adaptation of the Danalis QTC algorithm was the 
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efficiency control. This allowed for the determination of the effectiveness of the proposed 

modified QTC algorithms. 

Coding of the QTC Methods 

     Each of the following QTC methods were coded with the convention XYZ; where  

X = ‘D’ if deterministic and ‘S’ if stochastic,  

Y = ‘d’ if diameter based and ‘r’ if radius based, and  

Z = ‘P’ if the data was preprocessed and ‘N’ if not. 

Method for Selecting a Subset of Points  

     An alternate method for selecting initial cluster centers that avoid the exhaustive 

search of the original QTC algorithm led to faster execution times for the proposed 

modified QTC algorithms. The Stochastic QTC algorithm uses the parameter 𝑛𝑡𝑟𝑦 to 

limit the initial cluster search, Scharl et al. (2009). Instead of trying each point in during 

the cluster search, they only evaluate a random set of 𝑛𝑡𝑟𝑦 points. This lessened the 

impact of the exhaustive search that the Heyer QTC algorithm used. 

Stochastic QTC (SdN) Algorithm  

     The Stochastic QTC (SdN) algorithm is an adaptation of Heyer’s QTC (DdN) 

algorithm that adds the parameter 𝑛𝑡𝑟𝑦, Scharl et al. (2009). They use this parameter to 

limit the exhaustive search for the initial cluster points. Figure 2 is the pseudocode for the 

Stochastic QTC (SdN) algorithm. The difference between the Heyer QTC (DdN) 

algorithm and the Stochastic QTC (SdN) algorithm is the addition of line 2.1 and the 

modification of line 3 in Figure 2. 
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1    Procedure 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐(𝐺,𝑑,𝑛𝑡𝑟𝑦) 
2    if (|𝐺| ≤ 1) then output 𝐺, else do /* Base case */ 
2.1  𝑆 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝐺,min( 𝐺 ,𝑛𝑡𝑟𝑦)) 
3       for each 𝑖 ∈ 𝑆  
4         set 𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸; set 𝐴! = {𝑖} /* 𝐴!is the cluster started by 𝑖 */ 
5         while ((𝑓𝑙𝑎𝑔) and (𝐴!   ≠ 𝐺))  
6            find 𝑗 ∈ (𝐺 − 𝐴!) such that diameter (𝐴! ∪ 𝑗 ) is minimum 
7            if (diameter (𝐴! ∪ 𝑗 ) > 𝑑) 
8                then set 𝑓𝑙𝑎𝑔   = 𝐹𝐴𝐿𝑆𝐸 
9                else set 𝐴! = 𝐴! ∪ 𝑗  /* Add 𝑗 to cluster 𝐴! */ 
10   identify set 𝐶 ∈ {𝐴!,𝐴!,⋯ ,𝐴|!|} with maximum cardinality 
11   output 𝐶 
12   call 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐(𝐺 − 𝐶,𝑑,𝑛𝑡𝑟𝑦) 
 

      Figure 2 – Pseudocode for the Stochastic QTC (SdN) algorithm  

• 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝐺,𝑚): Returns 𝑚 random points of 𝐺. 
 
 

Modified QTC 1 (DrN)  

     This algorithm used the Heyer QTC (DdN) algorithm but instead of diameter of the 

cluster, it used the radius from a central point. The radius was calculated as 𝑟 = 𝑑/2. 

These modifications are in lines 6 and 7 of Figure 3. 

1    Procedure 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑟𝑎𝑑𝑖𝑢𝑠(𝐺,𝑑) 
2    if (|𝐺| ≤ 1) then output 𝐺, else do /* Base case */ 
3       for each 𝑖 ∈ 𝐺  
4         set 𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸; set 𝐴! = {𝑖} /* 𝐴!is the cluster started by 𝑖 */ 
5         while ((𝑓𝑙𝑎𝑔) and (𝐴!   ≠ 𝐺))  
6            for each 𝑗 ∈ (𝐺 − 𝐴!) 
7            if (distance (𝑖, 𝑗) > 𝑑/2) 
8                then set 𝑓𝑙𝑎𝑔   = 𝐹𝐴𝐿𝑆𝐸 
9                else set 𝐴! = 𝐴! ∪ 𝑗  /* Add 𝑗 to cluster 𝐴! */ 
10   identify set 𝐶 ∈ {𝐴!,𝐴!,⋯ ,𝐴|!|} with maximum cardinality 
11   output 𝐶 
12   call 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑟𝑎𝑑𝑖𝑢𝑠(𝐺 − 𝐶,𝑑) 
 
Figure 3 – Pseudocode for the QTC 1 (DrN) algorithm  
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Modified QTC 2 (SrN) 

      This algorithm modified the Stochastic QTC (SdN) algorithm to use radius instead of 

diameter. These modifications are in lines 6 and 7 of Figure 4. 

1    Procedure 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐_𝑅𝑎𝑑𝑖𝑢𝑠(𝐺,𝑑,𝑛𝑡𝑟𝑦) 
2    if (|𝐺| ≤ 1) then output 𝐺, else do /* Base case */ 
2.1  𝑆 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝐺,𝑛𝑡𝑟𝑦) 
3       for each 𝑖 ∈ 𝑆  
4         set 𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸; set 𝐴! = {𝑖} /* 𝐴!is the cluster started by 𝑖 */ 
5         while ((𝑓𝑙𝑎𝑔) and (𝐴!   ≠ 𝐺))  
6            find 𝑗 ∈ (𝐺 − 𝐴!) such that distance (𝑖, 𝑗) is minimum 
7            if (distance (𝑖, 𝑗) > 𝑑/2) 
8                then set 𝑓𝑙𝑎𝑔   = 𝐹𝐴𝐿𝑆𝐸 
9                else set 𝐴! = 𝐴! ∪ 𝑗  /* Add 𝑗 to cluster 𝐴! */ 
10   identify set 𝐶 ∈ {𝐴!,𝐴!,⋯ ,𝐴|!|} with maximum cardinality 
11   output 𝐶 
12   call 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡_𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐_𝑅𝑎𝑑𝑖𝑢𝑠(𝐺 − 𝐶,𝑑,𝑛𝑡𝑟𝑦) 
 
Figure 4 – Pseudocode for the QTC 2 (SrN) algorithm 
 
 

Methods for Identifying Cluster Neighborhoods  

     Identifying neighborhoods by using the selected center points and a small set of 

carefully selected points as done by Danalis et al. (2012), reduced the amount of 

calculations performed to form clusters. Only points near to the center point were 

considered. They used a procedure to select the subset of points for cluster formation that 

were within distance 𝑑 of the initial cluster point, Figures 6 and 7 are the pseudocodes of 

their method. Priority queues 𝑀! and 𝑀! were used to store the points that were within 

distance (𝑑) of the points indexed by 𝑖 and 𝑗 respectively, and stored in non-decreasing 

order of distances. 
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Procedure 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎(𝐺,𝑑)     /* 𝐺 is a set of points, 𝑑 is the diameter */ 
     𝑛 = |𝐺| 
     𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑀!)     /* 𝑀! is initialized */ 
     𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑀!)      
     for 𝑖 = 1 to 𝑛 − 1  
          for 𝑗 = 𝑖 + 1 to  𝑛 
               𝑑!" = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(  𝐺! ,𝐺!)  
               if  𝑑!" ≤ 𝑑  
                    𝑖𝑛𝑠𝑒𝑟𝑡 𝑀! , (𝑗,𝑑!")   /* store 𝑗 and the distance, 𝑑!" , to 𝑖 in non- 
                                                          decreasing order of distances */ 
                    𝑖𝑛𝑠𝑒𝑟𝑡 𝑀! , (𝑖,𝑑!")  

 
Figure 5 – Pseudocode for the Preprocess Data procedure 
 
 

Danalis QTC (DdP) Algorithm  

The Danalis QTC (DdP) adaptation uses the preprocess data procedure. Its application 

reduced the 𝑂 𝑛!  complexity of the Heyer’s QTC algorithm to 𝑂 𝑛! . The Danalis 

QTC (DdP) adaptation and three of modified QTC versions incorporate the preprocess 

data procedure. The modifications made for the Danalis QTC (DdP) adaptation are in 

lines 1.1 and 6 in Figure 8. 

1 Procedure 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡(𝐺,𝑑) 
1.1 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐷𝑎𝑡𝑎(𝐺,𝑑) 
2    if (|𝐺| ≤ 1) then output 𝐺, else do /* Base case */ 
3       for each 𝑖 ∈ 𝐺  
4         set 𝑓𝑙𝑎𝑔   = 𝑇𝑅𝑈𝐸; set 𝐴! = {𝑖} /* 𝐴!is the cluster started by 𝑖 */ 
5         while ((𝑓𝑙𝑎𝑔) and (𝐴!   ≠ 𝐺))  
6            find 𝑗  ?𝑀! −   𝐴! such that diameter (𝐴!   ?    𝑗 ) is minimum 
7            if (diameter (𝐴!   ? 𝑗 ) > 𝑑) 
8                then set 𝑓𝑙𝑎𝑔   = 𝐹𝐴𝐿𝑆𝐸 
9                else set 𝐴! = 𝐴! ∪ 𝑗  /* Add 𝑗 to cluster 𝐴! */ 
10   identify set 𝐶 ∈ {𝐴!,𝐴!,⋯ ,𝐴|!|} with maximum cardinality 
11   output 𝐶 
12   call 𝑄𝑇_𝐶𝑙𝑢𝑠𝑡(𝐺 − 𝐶,𝑑) 
 
Figure 6 – Pseudocode for an adaptation of the Danalis QTC (DdP) algorithm  
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QTC Algorithms 

Deterministic Methods 
No Method Stochastic Uses Radius Preprocesses Data 
1 Heyer QTC (DdN) No No No 
2 Danalis QTC (DdP) No No Yes 
3 QTC 1 (DrN) No Yes No 
4 QTC 4 (DrP) No Yes Yes 
Stochastic Methods 
5 Stochastic QTC (SdN) Yes No No 
6 QTC 3 (SdP) Yes No Yes 
7 QTC 2 (SrN) Yes Yes No 
8 QTC 5 (SrP) Yes Yes Yes 

 

Table 1 – Comparison of All QTC Algorithms by Methods 

     Stochastic in column 3 of Table 1 implies that the clusters are built around a subset of 

points that are randomly chosen. The size of the subset of points can be varied using the 

𝑛𝑡𝑟𝑦 parameter, Scharl et al. (2009). A smaller 𝑛𝑡𝑟𝑦 parameter will provide a more 

efficient algorithm, but will cause less similarity of clusters to the Heyer QTC (DdN) 

algorithm. Various increasing 𝑛𝑡𝑟𝑦 parameters were tried to find when the Jaccard 

Similarity value was at least 0.9 for the dataset and algorithm combinations that were 

tested. 

     The QTC 1 (DrN) algorithm simply replaced distance with radius. The QTC 2 (SrN) 

algorithm combined the Stochastic QTC method with the radius method.  The QTC 3 

(SdP) combined the Stochastic QTC method with the Danalis preprocess data method, 

Danalis et al. (2012). The QTC 4 (DrP) combined the Radius method with the preprocess 

data method. The QTC 5 (SrP) combined the Stochastic QTC with the Radius and the 

Preprocess data methods.      
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Benchmark Datasets  

     The following datasets were used for experimental evaluation of the algorithms. The 

sizes of these datasets range over most of the applications in which QTC has been used.  

     The TSP-LIB-1060 dataset has a cardinality of 1,060 two-dimensional points. The 

dataset is at the low end of the spectrum and it provided a benchmark for the baseline of 

the original QTC algorithm. It was labeled as Dataset 1. Various diameter/radius values 

were tested to provide the best Jaccard similarity values. The best similarity value results 

were obtained with a diameter of 2k and radius of 1k. 

     The SIM dataset’s cardinality, 10,000 three-dimensional points, is slightly greater than 

most of the datasets that have been used by the researchers that use the QTC algorithm. 

The SIM dataset was provided and used by Laszlo & Mukherjee (2006). It was labeled as 

Dataset 2. Various diameter/radius values were tested to provide the best Jaccard 

similarity values. The best similarity value results were obtained with a diameter of 0.1 

and radius of 0.05. 

Measure of Partition Similarity 

     The resulting data clusters were evaluated using the Jaccard similarity measure. The 

“Jaccard Similarity on Entity Pairs,” as presented by Duan et al. (2011), quantifies the 

similarity of clusters when comparing two partitions. Their method generates all pairs of 

entities in 𝑃! and 𝑃!. The corresponding sets of entity pairs are 𝑃′! and 𝑃′!. The 

similarity of the sets 𝑃′! and 𝑃′! is calculated with the standard Jaccard similarity, where 

each entity pair is considered a basic element of a set. The similarity of the partitions is 

computed using the formula 𝑃𝑆𝑖𝑚! 𝑃!,𝑃! = |!!!∩!!!|
|!!!∪!!!|

. The similarity value’s range is 

[0,1]. 
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Measure of Computational Efficiency 

     The computational efficiency was presented as a ratio of the time of execution 

between the Danalis QTC adaptation (DdP) and all the other QTC algorithm versions for 

each dataset and diameter combination. All execution times will be recorded on the same 

computer and will be an average of five runs. 

Data Analysis 

     The analysis of the results was presented in a table similar to Table 2 to show the 

differences between all of the QTC algorithm versions with respect to cluster diameters, 

𝑛𝑡𝑟𝑦 values, and the data set cardinality, Scharl et al. (2009). The fields of the table are 

the name of the QTC algorithm version, 𝑛𝑡𝑟𝑦 value, mean execution time, efficiency 

ratio when compared to the Danalis QTC adaptation (DdP), and Jaccard similarity value 

when compared to the Heyer QTC algorithm (DdN). The data analysis was evaluated to 

determine if the research questions were answered and the algorithms were ranked to 

identify the most efficient. 

 

QTC Algorithm 
 

𝑛𝑡𝑟𝑦 Mean 
Execution 
Time 

Efficiency 
Ratio 

Jaccard 
Similarity 
Value 

Heyer QTC (DdN)    1 
Danalis QTC (DdP)   1  
QTC 1 (DrN)     
QTC 4 (DrP)     
Stochastic QTC (SdN)     
QTC 3 (SdP)     
QTC 2 (SrN)     
QTC 5 (SrP)     
 

Table 2 – Analysis of the Comparison Results of All QTC Algorithms Tested by Dataset 
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Resources 

     The following resources were needed to complete the dissertation: 

• Computer hardware: MacBook Pro, iMac. 

• Computer software: R language (R for Mac OS X), flexclust package in R, C#, 

Sleipnir Library, Pycluster Library, NumPy package, C Clustering Library, 

Microsoft Word, Microsoft Excel, Microsoft Visual Studios, EndNote, Safari. 

• Networks: NSU Library, GSCIS, DTS. 



29 
 

  
 

 
 

Chapter 4 
 

Results 
 
 
 

      This chapter includes three sections that describe the Data Analysis, Findings, and 

Summary of Results. The data analysis section presents the how the data was collected 

and how it was analyzed. The findings section explains what was discovered during 

analyzing the data. The summary of results section lists the results that were derived from 

the data. 

Data Analysis 
 
     The results in Tables 3 and 4 represent the data collected from all of the experiments 

performed. Each algorithm was tested using two datasets and five subsets of Dataset 2. 

Dataset 1 had 1,060 data points and Dataset 2 had 10,000 data points. Five subsets were 

also created from Dataset 2 to evaluate the complexity of the algorithms. The subsets 

ranged from 1,000 to 5,000 data points in increments of 1,000. 

     Ten cluster diameters were evaluated to identify the best threshold value for the 

datasets used. Ten values of 𝑛𝑡𝑟𝑦 were evaluated with all the algorithms that included the 

Stochastic method, to find the Jaccard Similarity values of at least 0.9. Then each 

algorithm was run with the diameter and 𝑛𝑡𝑟𝑦 values identified above, five times to 

calculate an average running time in seconds. These results are in the third column of 

Tables 3 and 4. 

     The Efficiency Ratio, in column four, is a ratio of the running time of the algorithm 

under consideration over the running time of the Danalis QTC adaptation (DdP). The 
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Danalis QTC adaptation (DdP) was the most efficient of the three published algorithms 

and was used as the control. 

     Each algorithm-dataset-diameter experiment also produced a file that listed which data 

points were clustered together. These files were then compared with the files that the 

Heyer algorithm (DdN) produced using the Jaccard Similarity of Entity Pairs method. 

The results are the Jaccard Similarity Values in the fifth column of both tables.  

     The Efficiency Ratio results were analyzed to identify which algorithms were more 

efficient than the Danalis QTC adaptation (DdP). The highlighted results are those that 

are less than one and represent a result that is more efficient than the control. 

     The Jaccard Similarity Value results were also analyzed to identify which algorithms 

produced clusters that were the most similar to those produced by the Heyer algorithm 

(DdN). Values that are the closest to the value of one are the most similar to the control. 

The Danalis QTC adaptation (DdP), a deterministic method, produced clusters that were 

identical to the Heyer algorithm (DdN). 

     The variations in execution time of those algorithms that incorporate the non-

deterministic Stochastic method were analyzed in Tables 5 and 6. The tables have 

columns for the algorithm name, mean, maximum, minimum, and standard deviation for 

the five run times.  

     The analysis of the five subsets of Dataset 2 allowed for an empirical measurement of 

the complexity of all the QTC algorithms evaluated. The trendlines shown in Charts 3 

thru 9 demonstrates how a linear increase to the cardinality of the data points affects each 

of the algorithms. Each Chart plots that data points in thousands on the x-axis with the 

number of seconds on the y-axis. The trendlines were calculated using Microsoft Excel 
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and it provided the equations that were used to extrapolate the run times, which exceeded 

12 hours with Dataset 2. 

Dataset 1 – 1060 points 
QTC Algorithm 

𝑛𝑡𝑟𝑦 Mean 
Execution 
Time-sec. 

Efficiency 
Ratio 

Jaccard 
Similarity 
Value 

Heyer QTC (DdN) na 363 4.84 1 
Danalis QTC (DdP) na 75 1 1 
QTC 1 (DrN) na 1 0.013 0.93 
QTC 4 (DrP) na 0.4 0.005 0.93 
Stochastic QTC (SdN) 850 327 4.36 0.94 
QTC 3 (SdP) 850 65 0.87 0.95 
QTC 2 (SrN) 850 0.1 0.001 0.9 
QTC 5 (SrP) 850 0.1 0.001 0.93 
 
Table 3 – Analysis of the Results of All QTC Algorithms Tested for Dataset 1 
 
     The results of Dataset 1 in Table 3 demonstrated that both the Stochastic and Danalis 

methods improved on the Heyer QTC algorithm, but Danalis QTC adaptation (DdP) was 

the best at reducing the time to run the QTC. When combining the Stochastic and Danalis 

methods with the radius method, it was found that the Stochastic method complemented 

and enhanced the radius method the most and lowered the Efficiency Ratio of QTC 1 

(DrN) vs. QTC 2 (SrN). The Danalis method also complemented the radius method, and 

increased its efficiency but resulted in a less improved Efficiency Ratio of QTC 1 (DrN) 

vs. QTC 4 (DrP). When the Danalis method was combined with the Stochastic method, 

QTC 3 (SdP) and QTC 5’s (SrP) Efficiency Ratios both improved. 

     Chart 10 shows the scatterplot of Dataset 1 with the first cluster and the diameter 

threshold identified with a red circle. The scatterplot demonstrates the dispersion of data 

points and it can be clearly seen that there are no circular clusters.  

 



32 
 

  
 

 
 

Dataset 2 – 10k points 
QTC Algorithm 

𝑛𝑡𝑟𝑦 Mean 
Execution 
Time-sec. 

Efficiency 
Ratio 

Jaccard 
Similarity 
Value 

Heyer QTC (DdN) na 1,692,545 19.2 1 
Danalis QTC (DdP) na 88,296 1 0.94 
QTC 1 (DrN) na 122 0.001 0.94 
QTC 4 (DrP) na 304 0.003 0.94 
Stochastic QTC (SdN) 8500 1,656,558 18.8 0.98 
QTC 3 (SdP) 8500 81,192 0.92 0.94 
QTC 2 (SrN) 8500 122 0.001 0.98 
QTC 5 (SrP) 8500 325 0.004 0.94 

 
Table 4 – Analysis of the Results of All QTC Algorithms Tested for Dataset 2 
 
     The results of Dataset 2 in Table 4 demonstrated similar results to those found in 

Table 3 with one interesting difference. The higher cardinality of Dataset 2 identified that 

when the Danalis preprocess data method is combined with the Radius method the result 

is less efficient than the Radius method alone. It was also noted that the Stochastic 

method did not improve the Radius method when there was a higher cardinality of data 

points. 

     Chart 11 shows the scatterplot of Dataset 2 with the first cluster identified with blue 

marks. The scatterplot demonstrates the dispersion of data points and it can be clearly 

seen that it has circular clusters. The QTC algorithm was designed to identify circular 

clusters, so it works well with datasets like Dataset 2. 

     The Mean Execution Times in italics indicate that the values were extrapolated from 

the equations found on Charts 5 thru 9. These execution times were longer than 12 hours 

and could not be run repeatedly like the other times noted in Table 4. 
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Dataset 1 – 1060 points 
QTC Algorithm 

Mean 
(seconds) 

Maximum 
(seconds) 

Minimum 
(seconds) 

Standard 
Deviation 

Stochastic QTC (SdN) 327.4 334 320 5.3 
QTC 2 (SrN) 0.1 0.11 0.09 0.01 
QTC 3 (SdP) 65 66 63 1.4 
QTC 5 (SrP) 0.1 0.13 0.08 0.02 
 
Table 5 – Analysis of the Run Time Results of All Non-Deterministic QTC Algorithms 
Tested for Dataset 1 
 

Dataset 2 – 10k points 
QTC Algorithm 

Mean Maximum Minimum Standard 
Deviation 

Stochastic QTC (SdN) 1,656,558 1,656,680 1,656,400 102 
QTC 2 (SrN) 122 130 118 4.7 
QTC 3 (SdP) 81,192 81,229 81,098 54 
QTC 5 (SrP) 325 331 320 5.0 
 
Table 6 – Analysis of the Run Time Results of All Non-Deterministic QTC Algorithms 
Tested for Dataset 2 
 
 
Findings 
 
Computational Efficiency 
 
     The highlighted results in the Efficiency Ratio column in Tables 3 and 4 were used to 

identify the most efficient QTC algorithm. All of the modified QTC algorithms resulted 

in running times that were more efficient than the Danalis QTC (DdP) algorithm for both 

datasets. QTC 2 (SrN) had the best overall running times and was the most efficient 

algorithm. The other efficient algorithm was QTC 1 (DrN). 

     All of the QTC algorithms were placed in Charts 1 and 2 and ranked from the longest 

running time to the shortest for Dataset 2. Starting with the Heyer algorithm on the left 

side of the chart and decreasing running time going to the right. The run times were 

shown in log!"(seconds) to better focus on the differences of all the algorithms. The 

QTC algorithms were ranked in the following order based on the results; Heyer (DdN), 
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Stochastic (SdN), Danalis (DdP), QTC 3 (SdP), QTC 4 (DrP), QTC 5 (DrP), QTC 1 

(DrN), and QTC 2 (SrN). 

     The QTC algorithms running times were also graphed with increasing cardinality to 

evaluate the empirical complexity in Charts 3 thru 9. Chart 3 shows that the Heyer QTC 

(DdN) Algorithm’s empirical complexity was 𝑂 𝑛!  where the theoretical asymptotic 

analysis is 𝑂 𝑛! . This indicates that the complexity of the diameter function used, 𝐹! 

from the equation 𝑂(𝑛! ∗ 𝐹!), was not as complex as Danalis’ worst case complexity 

analysis. 

     Chart 4 demonstrates that the Danalis QTC (DdP) Algorithm’s empirical complexity 

was also 𝑂 𝑛! , but it did improve efficiency by a factor of two over the Heyer QTC 

(DdN) Algorithm. Chart 5 reveals that the Stochastic QTC (SdN) Algorithm’s empirical 

complexity was only slightly better than the Heyer QTC (DdN) Algorithm. This was 

primarily due to the high percentage of search points that was required to maintain an 

acceptable cluster similarity. 

     Chart 6 establishes that the QTC 1 (DrN) and QTC 2 (SrN) Algorithms’ empirical 

complexity were the best at 𝑂 𝑛! . This was attributed to the less complex radius method 

that does not have to repetitively calculate the diameters as in the Heyer QTC (DdN) 

Algorithm. Chart 7 shows that the QTC 3 (SdP) Algorithm’s empirical complexity was 

on par with the Danalis QTC (DdP) Algorithm’s complexity with only a slight 

improvement.  

     Chart 8 demonstrates that the QTC 4 (DrP) Algorithm’s empirical complexity was 

almost 𝑂 𝑛! , this was due to the inclusion of the Danalis preprocessing data method 

which was affected by the large cardinality datasets. Chart 9 reveals that the QTC 5 (SrP) 
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Algorithm’s empirical complexity was similar to QTC 4 (DrP) Algorithm’s complexity, 

but it was slightly less efficient with the addition of the Stochastic method. 

     Summary of the findings: 

     Stochastic QTC alone isn’t computationally helpful since in order to produce 

partitions that are acceptably similar to those found by deterministic QTC, the algorithm 

has to be seeded with a large number of centers (𝑛𝑡𝑟𝑦 ≈ 𝑛). 

     Preprocessing data before the QTC algorithm runs is desirable when possible, for it 

lessens that exhaustive search for the cluster neighborhood points. However, the 

computer resources must be high so that a bottleneck does not happen. 

     Radius based methods are promising since they produce partitions that are acceptably 

similar to those found by deterministic QTC in significantly less time. 

  

 
Summary of Results 
 
     The experiments and results conclusively answered both research questions that 

guided this research. The first question asked, “What are some efficient and effective 

methods for selecting a small subset of 𝑘 points around which to build clusters?”  

     The answer is the Stochastic QTC method selected smaller sets of 𝑘 points to build 

clusters around. This made the algorithm slightly more efficient than Heyer’s QTC 

algorithm. The Stochastic method was also used in QTC 2 (SrN), QTC 3 (SdP), and QTC 

5 (SrP).  

     The second question was, “What are some efficient and effective methods for 

identifying cluster neighborhoods?” The answer is both the Danalis QTC adaptation 

(DdP) and the use of radius instead of diameter made for efficient cluster formation. QTC 
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3 (SdP), QTC 4 (DrP), QTC 5 (SrP), and the Danalis QTC adaptation (DdP) showed 

better efficiency when compared to the Heyer algorithm with Datasets 1 and 2.  

     The use of radius was another method that efficiently identified cluster 

neighborhoods. The QTC 1 (DrN), QTC 2 (SrN), QTC 4 (DrP), and QTC 5 (SrP) all 

resulted in better efficiency than the Heyer (DdN), Danalis QTC adaptation (DdP), and 

the Stochastic QTC (SdN) algorithms. 

     The combination of the Stochastic method and radius, QTC 2 (SrN), resulted in the 

most efficient algorithm. QTC 2 (SrN) combines the Stochastic method and radius; this 

combination was the most efficient of all the algorithms tested. This efficiency can also 

be seen in the equation of Chart 6 where it empirically demonstrates that its complexity is 

much less than the other algorithms. 
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Chapter 5 

 
Conclusions, Implications, Recommendations, and Summary 

 
 
 

Conclusions 
 
     The data collected from the experiments provided results that were analyzed to 

identify the most efficient algorithms, which were the Stochastic combined with the 

radius method and the radius method alone. The combination of both of these methods 

yielded the most efficient proposed algorithm, the QTC 2 (SrN). Chart 1 and 2 

demonstrate this clearly where the QTC 2 algorithm is at the far right side. This 

conclusively shows that the Stochastic method is more efficient than the Heyer method 

and the radius method is also more efficient than the Danalis preprocessing data method. 

     All of the methods and combinations improved on Heyer’s QTC (DdN) algorithm and 

are useful when certain criteria are needed for the results. When efficiency is most 

important then the Stochastic/radius combination of QTC 2 (SrN) will yield the lowest 

running time. When consistency of the resulting clusters is required the QTC 1 (DrN) 

algorithm will be the best choice, because it does not use the random selection of points 

that the Stochastic method incorporates and its clusters will be the same from run to run. 

     All of the methods and combinations also exhibited no appreciable difference with 

respect to cluster similarity when compared to the clusters of the Heyer algorithm. The 

Jaccard Similarity Values were consistent across all algorithms, which means there is no 

reason to select one method over another solely based on cluster similarity.      
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Implications 
 
     This research proves that there are more efficient versions of the QTC algorithm that 

can be used on large datasets, which is exactly what researchers are asking for. The 

results that were generated quantify the extent that each algorithm will impact the 

efficiency on both dataset cardinalities. Researchers can now use these new methods to 

improve the QTC algorithms they create for the myriad of applications. 

 
Recommendations 
 
     Future research should study the Danalis preprocessing data method further with large 

datasets, but they should use a computer that has enough memory that will not cause a 

bottleneck and adversely affect the efficiency. The Danalis method did improve the 

efficiency of the lower cardinality dataset and with the proper environment for the higher 

cardinality datasets; it may well be a contender for an efficient algorithm especially if it is 

combined with the radius method. The Danalis article also presented a method to reduce 

the complexity of the diameter function by using additional memory; this method may 

also prove to provide for an increase in efficiency. The radius method reduces the 

complexity of the algorithm and it can be easily combined with the Danalis preprocessing 

data method to increase its efficiency.  

 
Summary 
 
     Clustering gene expression data such that the diameters of clusters formed are no 

greater than a specified threshold was what prompted the creation of the original QTC 

algorithm. Heyer et al. accomplished this goal in 1999, however the algorithm had a 

complexity of 𝑂 𝑛!   and would only be practical for datasets with small cardinality. As 
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the datasets increase in cardinality the running time of the algorithm becomes prohibitive. 

This problem prompted many researchers to develop modified QTC algorithms that have 

less complexity and can work with the larger cardinality datasets. 

     The goal of this dissertation was to develop modified versions of the QTC algorithm 

that are computationally more efficient than Heyer’s algorithm, yet find clusters that were 

similar if not identical to those of the Heyer algorithm. Five modified versions of the 

QTC algorithm were developed to evaluate the efficiency of several methods that 

promised to improve the efficiency of the algorithm. Those methods are the Danalis 

preprocessed data, Stochastic 𝑛𝑡𝑟𝑦 parameter, and the use of radius instead of diameter to 

find the clusters in the QTC algorithm. 

     The Danalis preprocessed data method aims to reduce the complexity of the QTC 

algorithm by finding all of the points that are within the diameter distance of every point 

and storing that information in a matrix. The matrix is used in the algorithm to reduce the 

extensive search for candidate points for the cluster formation. The preprocessed data 

method may be more effective than the other methods, if there is sufficient computer 

memory to allow the method to preform properly. 

     The Stochastic 𝑛𝑡𝑟𝑦 parameter method reduces the complexity of the QTC algorithm 

by only evaluating a subset of points during the search for the largest cluster. The 𝑛𝑡𝑟𝑦 

parameter can be varied to allow for different size subsets for the search, Scharl et al. 

(2009). This research used an 𝑛𝑡𝑟𝑦 parameter that was 85% of the cardinality of Datasets 

1 and 2. At that percentage the increase in efficiency was marginal when compared with 

the Danalis preprocessed data method. Finding methods for judiciously selecting a 

smaller set of points while maintaining cluster similarity is an area of future research. 
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     The radius method uses the radius instead of the diameter when finding points that can 

be used when creating the clusters. This method reduces the complexity by removing the 

inefficient calculations to determine if a point increases the cluster diameter by the least 

amount. The radius method uses all points that are found to be less than or equal to the 

distance of the radius and does not reevaluate those that are further from the center point. 

     It was expected that the radius method might affect the similarity of the clusters due to 

the use of a center point and not calculating the diameter. When there are only a few 

points the requirement of using a center point could cause more clusters of smaller size, 

instead of less clusters of larger size when using the diameter. The results did not exhibit 

a difference in cluster similarity when the radius method was used, therefore the 

perceived effect was minimal and was not significant. 

     Eight algorithms were programmed to evaluate the QTC algorithms that were 

developed to address the inefficiency issue that Heyer’s original QTC algorithm 

exhibited. The Heyer QTC (DdN), Danalis QTC adaptation (DdP), and Stochastic QTC 

(SdN) algorithms were coded to document their efficiency and use their results as 

controls for this research. Additionally, five other modified QTC algorithms were created 

to evaluate the interaction of the methods listed earlier. 

     The QTC 1 (DrN) algorithm replaced the diameter with the radius; this reduces the 

complexity of the algorithm by removing the inefficient calculations to determine if a 

point increases that diameter by the least amount. The radius was calculated as 𝑟 = 𝑑/2. 

This algorithm fell on the right half of Charts 1 and 2, which was the side with the most 

efficient algorithms. 
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     The QTC 2 (SrN) algorithm combined the Stochastic method and the radius method to 

evaluate the efficiency of their combination. This proved to be the best of all the modified 

QTC algorithms; this was the case with both datasets showing better efficiency in Charts 

1 and 2. These two methods complemented each other and did not deter from the other 

method’s strengths. 

     The QTC 3 (SdP) algorithm combined the Stochastic method with the Danalis 

preprocess data method. The combination of these methods produced an efficient 

algorithm for the lower cardinality dataset, but suffered on the dataset with the higher 

cardinality. It was also observed that the addition of the preprocess data method caused 

the Stochastic method to become less efficient. 

     The QTC 4 (DrP) algorithm combined the radius method with the Danalis preprocess 

data method. The combination of these two methods improved on the efficiency of the 

Heyer algorithm and fell in the middle of the pack in Chart 1. It was also observed that 

the addition of the Danalis preprocess data method caused the radius method to become 

less efficient. 

     The QTC 5 (SrP) algorithm combined the Stochastic method with the radius method 

and the Danalis preprocess data method. This algorithm combined three methods to 

produce the third most efficient algorithm when used with the larger cardinality dataset. 

Even tough it placed well in Chart 1; it is evident that the inclusion of the Danalis 

preprocess data method caused the other two methods to suffer less efficiency. This can 

be seen when QTC 5 (SrP) is compared with QTC 2 (SrN). 

     Both research questions were answered conclusively. The first research question 

sought efficient and effective methods to select a small subset of 𝑘 points around which 
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to build the clusters. The Stochastic method was efficient and effective at selecting a 

smaller subset of 𝑘 points. It was found that to achieve acceptable cluster similarity 

values, the percentage of points in the subset had to be 85%. The Stochastic method 

ended up being part of the most efficient modified QTC algorithm when combined with 

the radius method. 

     The second research question sought efficient and effective methods for identifying 

cluster neighborhoods. The Danalis preprocess data and the radius methods both were 

efficient and effective at identifying cluster neighborhoods. Even though the Danalis 

preprocess data method improved on the efficiency of the Heyer algorithm it was 

negatively affected by the dataset with higher cardinality. The radius was the most 

efficient and it resulted in being part of the two most efficient modified QTC algorithms 

along with the Stochastic method. 

     The goal of this dissertation was achieved by developing five modified versions of the 

QTC algorithm that were computationally more efficient that the original QTC algorithm. 

These modified versions also identified clusters that were similar if not identical to those 

produced by the original QTC algorithm. These results can be verified in Tables 3 and 4 

and in Charts 1 and 2. 

     Researchers that wanted to use the QTC algorithm yet shied away form it due to its 

inefficiency can now use any of the modified QTC algorithms included in this research to 

improve on the performance of Heyer’s QTC algorithm. Future research should strive to 

evaluate the Danalis preprocess data method with sufficient computer resources to 

determine if it can improve on these results.   
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Appendices 

 

 

Chart 1 – Running Times in log!"(seconds) by Algorithms for Dataset 1 

 

 

Chart 2 – Running Times in log!"(seconds) by Algorithms for Dataset 2 
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Chart 3 – Heyer QTC (DdN) Algorithm’s Trendline  
 

 
 

Chart 4 – Danalis QTC (DdP) Algorithm’s Trendline  
 

 
 

Chart 5 – Stochastic QTC (SdN) Algorithm’s Trendline  
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Chart 6 – QTC 1 (DrN) and QTC 2 (SrN) Algorithms’ Trendline 
 

 
 

Chart 7 – QTC 3 (SdP) Algorithm’s Trendline 
 

 
 

Chart 8 – QTC 4 (DrP) Algorithm’s Trendline 
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Chart 9 – QTC 5 (SrP) Algorithm’s Trendline 
 

 
Chart 10 – Scatterplot of Dataset 1 with Cluster 1 Identified 
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Chart 11 – Scatterplot of Dataset 2 with Cluster 1 Identified 
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