
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2015

An Enhanced MapReduce Workload Allocation
Tool for Spot Market Resources
John Stephen Hudzina
Nova Southeastern University, jshudzina@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
John Stephen Hudzina. 2015. An Enhanced MapReduce Workload Allocation Tool for Spot Market Resources. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (34)
http://nsuworks.nova.edu/gscis_etd/34.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

An Enhanced MapReduce Workload Allocation Tool
for Spot Market Resources

by

John Stephen Hudzina

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Science

Graduate School of Computer and Information Sciences
Nova Southeastern University

 2015

We hereby certify that this dissertation, submitted by John Hudzina, conforms to acceptable
standards and is fully adequate in scope and quality to fulfill the dissertation requirements
for the degree of Doctor of Philosophy.

___ ________________
Gregory E. Simco, Ph.D. Date
Chairperson of Dissertation Committee

___ ________________
Sumitra Mukherjee, Ph.D. Date
Dissertation Committee Member

___ ________________
Francisco J. Mitropoulos, Ph.D. Date
Dissertation Committee Member

Approved:

___ ________________
Eric S. Ackerman, Ph.D. Date
Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences
Nova Southeastern University

2015

!

! iii!

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

An Enhanced MapReduce Workload Allocation Tool

for Spot Market Resources

by
John Stephen Hudzina

2015

When a cloud user allocates a cluster to execute a map-reduce workload, the user
must determine the number and type of virtual machine instances to minimize the
workload’s financial cost. The cloud user may rent on-demand instances at a fixed price
or spot instances at a variable price to execute the workload. Although the cloud user
may bid on spot virtual machine instances at a reduced rate, the spot market auction may
delay the workload’s start or terminate the spot instances before the workload completes.
The cloud user requires a forecast for the workload’s financial cost and completion time
to analyze the trade-offs between on-demand and spot instances.

While existing estimation tools predict map-reduce workloads’ completion times

and costs, these tools do not provide spot instance estimates because a spot market
auction determines the instance’s start time and duration. The ephemeral spot instances
impact execution time estimates because the spot market auction forces the map-reduce
workloads to use different storage strategies to persist data after the spot instances
terminate. The spot market also reduces the existing tools’ completion time and cost
estimate accuracy because the tool must factor in spot instance wait times and early
terminations.

This dissertation updated an existing tool to forecast map-reduce workload’s

monetary cost and completion time based on spot market historical traces. The enhanced
estimation tool includes three new enhancements over existing tools. First, the estimation
tool models the impact to the execution from new storage strategies. Second, the
enhanced tool calculates additional execution time from early spot instance termination.
Finally, the enhance tool predicts the workloads wait time and early termination
probabilities from historic traces. Based on two historical Amazon EC2 spot market
traces, the enhancements reduce the average completion time prediction error by 96%
and the average monetary cost prediction error by 99% over existing tools.

!

! iv!

Acknowledgements

I would like to thank my wife Toni for her care, encouragement, and infinite
patience during the dissertation process. Without here love and support, I would not have
been able to complete this task. She has helped me remember the important things in life.
I would also like to dedicate the dissertation to my mother-in-law, Bern, who passed
away while attending the Doctoral classes.

Thank you, Dr. Simco for serving as my dissertation advisor and for the time

spent reviewing the many drafts. The copious amount of feedback has been most helpful
and encouraging. I would also like to thank Dr. Mukherjee and Dr. Mitropoulos for
serving on the committee.

Finally, I would like to thank several friends and colleagues for the support during

the classwork and the dissertation. Thank you, Dr. Chris Powell for setting me on this
path. Thanks for the support, advice, and friendship Jeremy Ulstad, David Sayer, Dr.
Ray Halper, and Dr. Ron Krawitz.

!

! v!

Table of Contents

Table&of&Contents&v!
List&of&Tables&vii!
Introduction&1!

Background&1!
Problem&Statement&6!

Virtual!Machine!Type!7!
Number!of!Virtual!Machines!8!
Pricing!Model!10!
Storage!Strategy!15!
MapBReduce!Performance!&!Cost!Estimation!Tools!17!
MapBReduce!Performance!&!Cost!Estimation!Tools!Limitations!27!

Dissertation&Goal&30!
Relevance&and&Significance&31!
Barriers&and&Issue&35!
Assumptions,&Limitations,&and&Delimitations&36!
Definition&of&Terms&37!
Summary&38!

Review&of&Literature&40!
Virtual&Machine&Type&&&Number&40!

The!Elastisizer!44!
Elastisizer!B!Relative!Fitness!Model!47!
Elastisizer!B!White!Box!Model!50!
Elastisizer!–!Task!Simulator!53!

Spot&Instances&54!
Initial!bid!success!probability!56!
Expected!Lifetime!57!
Early!Termination!Costs!59!

Storage&Approach&62!
Spot!Instance!Accelerators!62!
Amazon!S3!66!

Summary&69!

Methodology&70!
Storage&Strategy&Updates&72!

Accelerator!Virtual!Profile!73!
Enhanced!Relative!Fitness!Models!74!

Storage&Strategy&Evaluation&76!
Methodology!Overview!76!
Amazon!S3!Evaluation!79!
Accelerator!Node!Evaluation!83!

Task&Simulator&Failure&Updates&88!
Task&Simulator&Evaluation&91!

Methodology!91!
Task!Failure!Simulation!94!

Spot&Instance&Forecast&96!

!

! vi!

Forecast!Tool!Evaluation!99!
Summary&106!

Results&109!
Storage&Strategy&Data&Analysis&112!

Amazon!S3!Virtual!Profile!Enhancements!113!
Amazon!S3!FixedBSize!Relative!Fitness!Model!113!
Amazon!S3!VariableBSize!Relative!Fitness!Model!118!
Accelerator!Virtual!Profile!Enhancements!123!
Accelerator!FixedBRatio!Relative!Fitness!Model!124!
Accelerator!VariableBRatio!Relative!Fitness!Model!129!

Failure&Aware&Task&Simulator&Data&Analysis&138!
C1.Medium!Failure!Simulations!140!
M1.large!Failure!Simulations!145!

Forecast&Tool&Data&Analysis&148!
C1!Medium!Trace!Data!Analysis!149!
C1!Medium!Trace!B!50%!Accelerator!Ratio!Data!Analysis!152!
C1!Medium!Trace!–!Ratio!Selection!Data!Analysis!159!
M1!Large!Trace!Data!Analysis!162!
M1!Large!Trace!B!50%!Accelerator!Ratio!Data!Analysis!164!
M1!Large!Trace!–!Ratio!Selection!Data!Analysis!171!

Findings&173!

Conclusions&177!
Implications&178!
Recommendations&180!
Summary&181!

Additional&Early&Termination&Results&187!
Additional&MRWATS&Results&191!
References&199!

!

! vii!

List of Tables
Tables
1. EC2 Instance Types and Cost 3
2. Comparison of VM types for a 6-node map-reduce job 7
3. Example Workload Costs with Local Minima 9
4. Map Reduce Phases 20
5. Cost Fields in a Job Profile 20
6. Dataflow Fields in a Job Profile 21
7. Cost Statistics from Primitive Operation 22
8. Dataflow statistics 22
9. Relative Fitness Training Set for I/O Read Cost from HDFS per Byte 49
10. White Box Model Map Parameters 52
11. White Box Model Reduce Parameters 53
12. Evaluation Workloads 77
13. Amazon S3 Evaluation Relative Fitness Models 81
14. Amazon S3 Accuracy Evaluation (Single Benchmark Run) 81
15. Amazon S3 Small Scale Accuracy Evaluation (Single Benchmark Run) 82
16. Amazon S3 Large Scale Evaluation Relative Fitness Models 83
17. Amazon S3 Large Scale Accuracy Evaluation (Enhanced Relative Fitness) 83
18. Accelerator Relative Fitness Models 84
19. Accelerated HDFS Accuracy Evaluation (Single Benchmark Run) 85
20. Accelerated HDFS Accuracy Evaluation (Single Benchmark Run) 86
21. Enhanced Relative Fitness Models 87
22. 30-Node Accelerated HDFS Accuracy Evaluation (Enhanced Relative Fitness) 87
23. Failure Simulations 94
24. Failure Timing Measures 94
25. Bid price experiments 103
26. Fixed-Size Amazon S3 Model’s Prediction Error 115
27. C1.Medium Fixed-Size Amazon S3 Model’s Accuracy 117
28. M1.Large Fixed-Size Amazon S3 Model’s Accuracy 118
29. C1.Medium Variable-Size Amazon S3 Model’s Accuracy 121
30. M1.Large Variable-Size Amazon S3 Model’s Accuracy 122
31. Fixed-Ratio Model’s Prediction Error with 50% Accelerators 125
32. C1.Medium Fixed-Ratio Model’s Prediction Error with 50% Accelerators 127
33. M1.Large Fixed-Ratio Model’s Prediction Error with 50% Accelerators 129
34. C1.Medium Variable-Ratio Model’s Prediction Error 132
35. Accelerated File System M1.Large Accuracy for Various Accelerator Ratios 136
36. Average Execution Time Prediction Error by Accelerator Ratio 140
37. Early Termination Accuracy by Wave for C1.Medium with 67% Accelerators 141
38. Early Termination by Wave for m1.large with 67% Accelerators 147
39. Completion Time and Financial Cost Error by Accelerator Ratio 152
40. Completion Time Error for C1.Medium with 50% Accelerators by Bid Price 155
41. Monetary Cost Error for C1.Medium with 50% Accelerators by Bid Price 157
42. M1.Large Completion Time and Cost Error by Workload & Ratio 164

!

! viii!

43. Completion Time Error for M1.Large with 50% Accelerators by Bid Price 166
44. Monetary Cost Error for M1.Large with 50% Accelerators by Bid Price 170&

List of Figures
Figures
1. Execution versus Completion Time 10
2. Data Locality Impact 16
3. Elastisizer's Workload Simulation 25
4. Map Reduce Task Flow 42
5. Relative Fitness Model 48
6. Relative Fitness Model Creation 49
7. Ascending Clock Auction 55
8. Intermediate Data Loss 61
9. Enhanced Fitness Model Training Set 75
10. Enhanced Training Set Algorithm 76
11. Virtual Profile Comparison Procedure 78
12. Task Simulator Failure Updates 89
13. Task Simulator Failure Handling 90
14. Task Simulator Comparison Procedure for Terminated Workloads 93
15. C1.Medium US-East-1C Market Price History 101
16. M1.Large US-East-1A Market Price History 102
17. Forecast Tool Evaluation Procedure 103
18. Workload Submission Monte Carlo Simulation 104
19. Actual, VAR model predicted (MRWATS) and HDFS model predicted (Elastisizer)

execution time versus accelerator ratio on a c1.medium cluster. 134
20. Actual, VAR model predicted (MRWATS) and HDFS model predicted (Elastisizer)

execution times versus accelerator ratio on an m1.large cluster. 137
21. Execution time predictions for the enhanced task simulator using single and dual

virtual profiles. 144
22. Predicted and actual completion times versus bid price for the c1.medium trace with

50% accelerators. 154
23. Actual (simulated) average, predicted average, and on-demand costs versus bid price

for the c1.medium trace with 50% accelerators. 159
24. MRWATS predicted average costs by accelerator ratio versus the bid price for

c1.medium trace compared to the on-demand cost. 162
25. Predicted and actual (simulated) completion times versus bid price for the m1.large

trace with 50% accelerators. 168
26. Actual (simulated) average, predicted average, and on-demand costs versus bid price

for the m1.large trace with 50% accelerators. 171
27. MRWATS predicted average cost by accelerator ratio versus the bid price for the

m1.large trace compared to the on-demand cost. 173!

!

! 1!

Chapter 1

Introduction

Background

When a cloud user executes a map-reduce workload, the cloud user first specifies

a virtualized cluster to meet completion time and budget constraints (Herodotou, Dong, &

Babu, 2011). The cloud user must estimate resource requirements and financial costs for

the workload because the completion time and monetary cost varies based on the virtual

cluster specification. As a result, the cloud user evaluates alternative virtual cluster

configurations to minimize the monetary cost of the map-reduce workload (Herodotou et

al., 2011). Short term resources, like spot virtual machine instances, provide one option

for reducing monetary cost of the virtual cluster to the cloud user. This work examined

the impact of short-term resource provisioning on the estimation of resource requirements

and financial costs of map-reduce workloads.

While workload estimation tools predict the monetary costs and completion time

for on-demand instances, the estimation tools can't predict monetary costs and

completion time for spot instances because a spot market auction dictates the workload’s

instance’s start time and duration (Chohan et al., 2010). The spot market auction reduces

the current estimation tools’ prediction accuracy because the tools don’t forecast the spot

instance's availability to process the workload’s data. However, this dissertation’s

improved estimation tool allowed cloud users to analyze the tradeoffs between the on-

demand and spot instances because an updated tool forecasted each alternative’s

completion time and monetary costs based on the spot instance’s availability.

!

! 2!

This section introduces map-reduce workloads and spot instance virtual machines

to establish context on provisioning map-reduce clusters. First, an overview of map-

reduce framework provides background information for later discussions on map-reduce

performance. Next, this section examines the resource allocation for map-reduce

analytics to highlight the need for providing monetary cost estimation tools and

techniques. Next, on-demand and spot instances will be introduced to describe the

potential monetary cost impact on the cloud user. Finally, the potential uses of spot

instance with map-reduce workloads will be discussed.

Before this paper discusses spot-instance’s impact on map-reduce workloads, an

overview of map-reduce is required. Map-reduce enables cloud users to perform

processing over data stored as key-value pairs in a distributed file system, like the Google

File System (GFS) (Dean & Ghemawat, 2008) or the Hadoop Distributed File System

(HDFS) (Apache Software Foundation, 2012). Map-reduce processes data expressed as

key-value pairs in two stages map and reduce. First, the map stage splits input data into

map tasks to be distributed to map workers that are co-located with the distributed file

system. When each map task processes the input data, the map task outputs intermediate

data to a local file system to be collected and used in the reduce phase. Then, the reduce

stage partitions and transfers the intermediate data to a series of reduce tasks. The reduce

tasks are distributed to reduce workers that write the output data back to the distributed

file system. Both map-reduce and file system processes reside on the same virtual

machines in the cloud environment.

The cloud user performs a four step process to execute map-reduce analytics in a

cloud environment (Herodotou & Babu, 2011). Step 1, the user must specify the number

!

! 3!

and type of virtual machines to use for the cluster. Table 1 shows the features and costs

of various types of virtual machines from Amazon EC2 (Amazon Web Services LLC,

2011; Chohan et al., 2010). As part of step 1, the user has a choice of pricing options for

the given instance type between on-demand, spot, or a combination of the two. Step 2,

the user then must upload or use data resident in a file system hosted on the cloud

environment. The user chooses the file system to perform the map-reduce processing

against. The options for file systems include an external file system, like Amazon S3, or

hosted locally, HDFS, on a virtual cluster provisioned in step 1 (Chohan et al., 2010).

Step 3, the user selects a program or workload to run. Step 4, the user supplies a

configuration and submits the job for execution.

Table 1: EC2 Instance Types and Cost

Type CPU
(EC2
Units)

Memory
(GB)

Storage
(GB)

I/O
Performance

On
Demand
Cost
($/hour)

Ave.
Spot
Cost
($/Hour)

m1.small 1 1.7 160 Moderate 0.085 0.0399
m1.large 4 7.5 850 High 0.34 0.1673
m1.xlarge 8 15 1,690 High 0.68 0.3197
c1.medium 5 1.7 350 Moderate 0.17 0.0798
c1.xlarge 20 7 1,690 High 0.68 0.3233

The map-reduce execution process differs from a traditional environment because

the responsibility to specify cluster resources has shifted from a system administrator to a

cloud user. In a traditional non-cloud environment, an expert system administrator

specifies the map-reduce cluster based on resource and monetary requirements of a set of

map-reduce workloads for multiple users. The system administrator uses multi-workload

traces with node allocation and CPU utilization metrics to determine how well a

production cluster is utilized (Kavulya, Tan, Gandhi, & Narasimhan, 2010). In contrast,

!

! 4!

a cloud user specifies the map-reduce cluster because virtualized map-reduce clusters are

provisioned on-demand for a specific workload. For example, Amazon Elastic

MapReduce installs and provisions a map-reduce cluster only for the duration of a single

map-reduce workload using virtual machines (Herodotou et al., 2011). As part of the

cluster specification that occurs in steps 1 and 2, the cloud user decides on the virtual

machine type, number of virtual machines, pricing model, and file system.

When the cluster specification moves to the cloud user, the cloud user must also

manage the virtual clusters monetary costs. The cloud user must estimate the monetary

costs for the specified cluster because virtual resources specified are charged by a usage

rate. The pricing for resources include VM usage rates in CPU hours and data transfer

rates GB/month (Wieder, Bhatotia, Post, & Rodrigues, 2010).

Thus, the cloud user must estimate the resource usage of the workload to estimate the

financial impact.

Although the cloud user specifies the virtual machine type, number of virtual

machines, and file system, this dissertation focused on the pricing model’s impact on

map-reduce workloads financial costs. Cloud providers offer different pricing models to

the cloud user, on-demand and spot, because the cloud provider attempts to reduce

financial costs by improving server utilization. On-demand instances improve server

utilization because on-demand instances enable virtual machine statistical multiplexing.

On-demand instances are a form of statistical multiplexing because some cloud users will

have monthly or seasonal demand peaks and minimal to no usage the remainder of the

year (Armbrust et al., 2010). When a cloud user allocates on-demand virtual machines to

a workload, the cloud user pays for the on-demand virtual machines only during use.

!

! 5!

Spot instances improve average server utilization because discounted prices

incentivize the use of resources during non-peak hours (Liu, 2011). The spot instance

virtual machine types contain the same amount of resources as the on-demand virtual

machine types. However, cloud users benefit from spot instances because the cloud

provider discounts up to 29% of the on-demand price when demand is low (Chohan et al.,

2010). When demand is high, spot instance helps shift demand on server resources

because the cloud provider terminate the spot instances during peak loads by the cloud

provider.

The cloud provide allocates spot instances with an auction (Chohan et al., 2010).

Before the auction starts, the user bids a maximum price per hour for a spot instance.

The user will only be allocated the virtual machine instance if the bid is at or above the

market price. The market price varies based on demand and overall server utilization,

however, the provider may set a reserve or minimum price for low demand. If the user

bid drops below the market price, the spot instance is terminated early. If provider

terminates the instance early, the user does not pay for the partial hour.

Not all workloads can use spot instances because some workloads, like web

applications, must service real-time user requests (Liu, 2011). Spot instances are not

appropriate for servicing real-time requests because the spot instance allocation maybe

delayed longer then the required response time by the auction process. The spot instance

allocation occurs during an auction on a fixed interval (Stokely, Winget, Keyes, Grimes,

& Yolken, 2009). The auction can delay spot instance allocation because the spot

instance allocation might need to wait several intervals for a successful bid.

!

! 6!

Previous studies (Chohan et al., 2010; Liu, 2011) have examined map-reduce

workloads with spot instances because the cloud user can schedule the map-reduce

workload at non-peak hours when prices are low. Map-reduce workloads can be

scheduled at non-peak hours because the map-reduce workload has slack in the expected

completion time (Herodotou et al., 2011). In essence, the cloud user expects to wait

overnight for the workload to complete. The slack in completion time means the map-

reduce workload can wait the several auction intervals required for a successful bid.

In summary, spot instances provide a means to reduce monetary cost associated

with executing a map-reduce workload on a cloud environment. However, the cloud user

must estimate the map-reduce workload’s financial impact of using spot instance prior to

allocating them in a cluster. Cloud users require a means of estimating resource

requirements and financial costs of map-reduce workloads.

Problem Statement

As noted in the background, the cloud user allocates virtual cluster resources for a

map-reduce workload to meet processing time and budget constraints (Herodotou et al.,

2011). The cloud user may decide to use spot instances in the virtual cluster as a

potential means to reduce costs. However, when the cloud user chooses a spot instance

based cluster, the cloud user must compare the spot instance cluster against other cluster

alternatives to determine the financial savings (Herodotou et al., 2011). Cloud users are

unable to compare cluster alternatives because the users cannot estimate the workload’s

execution time and monetary cost for each alternative (Wieder et al., 2010).

Although this paper focuses on spot instances, the virtual cluster specification

impacts the map-reduce workload’s execution time and monetary cost. The cloud user

!

! 7!

specifies a virtual cluster with the following four decisions: virtual machine type, number

of virtual machines, pricing model, and storage options. The problem statement

examines each decision to analyze the decision’s impact on the map-reduce workload’s

performance, financial cost, and predictability.

Virtual Machine Type

Cloud users need to evaluate different virtual machine types. Cloud

environments contain different virtual machine types because cloud providers attempt to

improve server utilization by statistical multiplexing of different workloads. For

example, Amazon EC2 currently supplies 36 different instance types for different web

application, high-performance computing, and image processing workloads (Amazon

Web Services Inc, 2014). Cloud providers must provide a variety of virtual machine

instance types to enable a diverse set of workloads with different demand peaks for

statistical multiplexing. Based on a simulation of a production data center 159K VM

traces, provisioning complimentary workloads with different demand peaks reduces the

number of physical servers by 45% in a data center (Meng et al., 2010).

Table 2: Comparison of VM types for a 6-node map-reduce job

Type CPU
Units

I/O
Performance

M/R
slots

Memory pre
slot (MB)

Cost
($/hour)

Run Time
(min)

Total
Cost ($)

m1.small 1 Moderate 3 300 0.085 1,000 8.50
m1.large 4 High 5 1024 0.34 200 6.80

The virtual machine type impacts the map-reduce workload’s execution time and

monetary cost because of differences in memory, CPU units, and I/O throughput between

virtual machine types. When the instance type changed from m1.small to m1.large for a 6

node map-reduce job, the execution time decreased by five times (Herodotou et al.,

!

! 8!

2011). The change in execution time was a result of increase in computational

resources. As seen in Table 2, the m1.large instance type increased the computational

resources (memory, CPU units, and I/O throughput) available to the job over the

m1.small instance type. The instance type also impacts the workload’s total monetary

cost because the instance type can improve the workload’s execution time. Although the

m1.large instance cost four times the hourly price, the m1.large instance reduce the total

workload cost by 20% (Herodotou et al., 2011). The cost reduction occurred because the

m1.large instance reduced the total number of CPU hours charged to the cloud user by 5

times.

The virtual machine type impacts the cloud user’s ability to estimate execution

time and monetary cost because the virtual machine type changes the map-reduce task’s

compute rate. The workload execution time depends on the time to complete individual

map and reduce tasks or the compute rate (Lee, Chun, & Katz, 2011). Virtual machine

types have different compute rate depending on the resources available and the workload

resource utilization. For instance, a Graphics Processor Unit (GPU) capable map-reduce

job speeds up the compute rate by 2x using GPU enabled virtual machine types versus

standard virtual machine types (Lee et al., 2011).

Number of Virtual Machines

The cloud user must decide on the number of virtual machines to allocate for the

map-reduce workload. Cloud environments allow workloads to scale the number of

virtual machines because cloud user’s resource requirements fluctuates based on demand

(Armbrust et al., 2010). Production traces demonstrate the fluctuation. Although a non-

virtualized production cluster allocated ~40% of 400 nodes on average, the cluster only

!

! 9!

peaked beyond 80% only for 5 days in a one-year period (Kavulya et al., 2010).

Additionally, the trace contains several days of 0% node allocation. In contrast, a

virtualized map-reduce cluster is able to take cluster virtual machines offline and allocate

the physical resources to other types of workloads when not in use.

The number of virtual machines impacts the map-reduce workload’s execution

time and monetary cost because map-reduce executes tasks in parallel. The execution

time is impacted by the number of virtual machines because map-reduce sub-divides the

input data into tasks (n) to be distributed to workers over slots (k) on each virtual

machine instance (Dean & Ghemawat, 2008). If !! ≥ !, then the workload can reduce

the execution time by allocating more slots. Herodotou et al. (2011) demonstrated a 4x

execution time improvement for 6 different map-reduce workloads when number of

m1.large instances increase from 5 to 30 nodes.

As with virtual machine types, the workload’s monetary cost depends on the

workload’s relative execution time because parallel workloads contain cost associative

properties (Armbrust et al., 2010). Reduced execution time offsets the monetary cost for

more instances because the monetary costs are computed from the total machine hours.

For instance, Herodotou et al. (2011) found adding 3 times the nodes to a 10-node

m1.xlarge cluster speeded up 2 times at a 50% increase in monetary cost.

Table 3: Example Workload Costs with Local Minima

Number of VMs 6 8 10
Cost ($) 2.90 3.80 2.20

The number of virtual machines impacts the cloud user’s ability to estimate

execution time and monetary cost because the workload’s cluster size contains local

!

! 10!

maxima and minima effects. When a cloud user increments the number of virtual

machines for a map reduce workload to reduce cost, the cloud user might experience

local cost minima and decide to stop. Table 3 shows an example of local minima in

monetary cost for a workload on an m1.xlarge instance (Herodotou et al., 2011). The

cloud user might stop testing the workload after 8 nodes because the cloud user found the

local minima at 6 nodes.

Pricing Model

After the cloud user selects the virtual machine type, the cloud user then decides

on the virtual machine’s pricing model. Cloud environments offer spot pricing as an

alternative to on-demand pricing because the cloud provider is attempting to shift demand

to improve server utilization. Spot instance’s hourly price are based on a market price

and data center utilization (Orna Agmon Ben-Yehuda, Ben-Yehuda, Schuster, & Tsafrir,

2011). The spot instance virtual machine types have the same resource specifications as

the on-demand virtual machine types. However, spot instances may cost 29% of the on-

demand instances’ hourly price (Chohan et al., 2010). Spot instance helps shift demand

on server resources because the spot instance allocation can be terminated during peak

loads.

Figure 1. Execution versus Completion Time

!

! 11!

Before the problem statement discusses the spot instance’s execution time and

monetary cost impact, a distinction must be made between completion time and

execution time, in respect to monetary cost. Figure 1 shows the difference between

completion and execution time. When a cloud user bids on spot instances, a user is able

to wait for the cluster to be allocated because the workload contains slack in the

completion time (Herodotou et al., 2011). However, the cloud user pays for the instances

once the auction allocates the cluster and the workload starts executing. Although the

cloud user has slack in the completion time, the cloud user seeks to minimize execution

time because the total execution time impacts on monetary costs (Chohan et al., 2010).

Spot instances impact the map-reduce workload’s execution time because spot

instances provide temporary resources that might terminate before completing the

workload. When spot instances are able to complete, additional spot instances reduces

the workload’s execution time. For a word-count map-reduce workload, adding five

spot instances to an existing five instance HDFS cluster improved the execution time by a

factor of 2 (Chohan et al., 2010). Similar to increasing the number of on-demand

instances, the workload execution time was halved because the number of processing

nodes doubled. However, spot instances may terminate before the workload completes.

 When spot instances terminate prior to the workload’s completion, the additional

spot instances increases the execution time. The word-count workload’s execution time

increased 27% compared to a cluster without the additional five spot instances because an

auction terminated the spot instance prior to the workload’s completion (Chohan et al.,

2010). Early termination increases execution time because the map-reduce scheduler

requires time to detect the terminated spot instance and reschedule spot instance’s tasks

!

! 12!

on new nodes. The detection time is caused by a status heartbeat timeout, ! (Chohan et

al., 2010). Additionally, the map-reduce scheduler restarts completed tasks from the

spot instances on the remaining cluster nodes because the completed tasks’ intermediate

data is lost from the spot instance’s local file system (Wang, Butt, Pandey, & Gupta,

2009). Equation 1 shows the failure cost in additional execution time, where s is the

total number of instances, f is the number of failed instances, and M is the total time to

complete the map phases (Chohan et al., 2010).

!"#$%&'!!"#$ = !! + (!"!)/(! − !)
(1)

Spot instances reduce the map-reduce workload’s monetary cost because spot

instances reduce the workload’s execution time at a reduced rate compared to on-demand

instances. The extra spot instances improved the word-count workload execution time by

2x because the additional five spot instances off-loaded tasks from the on-demand

instances (Chohan et al., 2010). The extra spot instances provides extra processing at a

reduced rate because the spot instances bid price reduced the rate charged for half of the

word count’s instances, Equation 2. When the cloud user bid the spot instance $0.040 per

hour, the word-count workload added five spot instances bid for $0.20 compared to

$0.475 for five additional on-demand instances at $0.950 per hour (Chohan et al., 2010).

!"!#$%"&! = !"#$%"&'#!" !×!!"#$!"×!"#$ + ! !"#$%"&'#!" !×!!"#$!"×!"#$ (2)

Conversely, spot instances can also increase monetary costs because the

intermediate data’s recovery increases billed time and rate. The cloud user pays for the

map-reduce virtual cluster while the workload is executing. If spot instances terminate

!

! 13!

early, the extended execution time, Equation 1, increases the total monetary cost. When

a spot instance failure causes a 27% slow-down, the workload’s price increases by 27%

compare to a workload without spot instances because the remaining on-demand

instances are being billed for the extra time to recover from the failure (Chohan et al.,

2010). When the spot instance terminate before an hour, the price increase correlates to

the extra time billed to the core on-demand nodes because the cloud provider charges

spot instances in hour increments (Chohan et al., 2010).

The spot instances impact the cloud user’s ability to estimate map-reduce

workload’s execution time and monetary cost because spot instances are subject to early

termination causing monetary cost for individual jobs to vary. The spot market’s

auction varies the market price to remove instances because the spot market contains high

demand or inexpensive instances allocated too long (Orna Agmon Ben-Yehuda et al.,

2011). In either case, spot instances are intended to be only active for a short amount of

time. Based on historical pricing data, the probability a spot instance remains active

decreases over time. When the initial market price is $0.035 and the bid price $0.041,

then the spot instance has an 85% chance of being active after an hour declining to a 40%

chance after 6 hours (Chohan et al., 2010).

The cloud user needs to estimate a bid price to avoid early termination and at the

same time minimize cost because the early termination probability depends on the bid to

market price ratio (Chohan et al., 2010). When the initial market price is $0.035 and

the bid price $0.036, then the spot instance has a 59% chance of being active after an

hour. Compared to an 85% chance of being active after an hour, when the bid price is

raised to $0.041 (Chohan et al., 2010).

!

! 14!

Some cloud users tolerate the variability in the map-reduce workload’s monetary

costs because the cloud user is concerned with the average financial impact of multiple

jobs. The cloud user needs to estimate a bid price to reduce the average monetary cost

for multiple jobs. If the bid price is too high, then the workload completes without failure

but the cloud user’s average monetary costs increase. When the initial market price is

$0.035 and the bid price $0.045, then the workload will complete without failure but the

discount is not as great compare to the $0.085 on-demand price (Chohan et al., 2010). If

the bid price is too aggressive or too near the reserve, then the number of failures

increases and the cloud user’s average monetary costs increase. When the initial

market price is at the reserve, $0.035, and the bid price $0.036, then the majority of jobs

longer then an hour will have spot instance failures increasing the average monetary cost

(Chohan et al., 2010).

 Low bids increase the workload’s failure probability because frequent auctions

may increase the market price before the workload completes. Although an auction may

allocate the workload’s instances near the provider’s reserved price, new auctions occur

every few minutes to allow new bidders a chance to allocate instances (Chohan et al.,

2010). When the new bidder’s demand increases beyond the available number of

instances, new auctions increase the market price to preempt existing instances (Stokely

et al., 2009). The preemptive auction increases the chances a low bid instance terminates

before the workload completes because new bidders can preempt existing instances with

a higher bid.

!

! 15!

Storage Strategy

The cloud user decides on the storage strategy because spot instances require

separate storage for the map-reduce workload’s output. The temporary spot instances

cannot participate in the map-reduce cluster underlying distributed file system because

the instance loses any persistent data after de-allocation (Chohan et al., 2010). When

the map-reduce cluster contains spot instances, two possible remote storage strategies

prevent data loss: HDFS hosted on on-demand nodes or Amazon S3. Each remote

storage strategy impacts the map-reduce workload’s execution time.

When the cluster uses HDFS with spot instances, the execution time is impacted

by reduced data locality compared to a pure on-demand cluster (Chohan et al., 2010).

Spot instances reduce data locality because the spot instance accesses persistent data from

a remote instance in the map-reduce cluster versus a local disk (Dean & Ghemawat,

2008). The locality percentage impacts the map-reduce workload’s execution time

because reduced locality increases time to read data from HDFS (Zaharia et al., 2010). In

essence, the time to read a byte of persistent data increases with decreased locality

because non-local map tasks must wait for data requests to be processed by remote data

nodes which could be servicing several requests, Figure 2 (Wang et al., 2009).

Specifically, map-reduce workloads with 5% locality increases execution time by as

much as a factor of 5 (Zaharia et al., 2010).

!

! 16!

Figure 2. Data Locality Impact

When the cluster uses Amazon S3, the storage strategy impacts execution time

because Amazon S3 stores data remotely. Amazon S3 stores files independently of the

virtual machines instances in the map-reduce cluster. Although persistent data is

accessible on Amazon S3 after the virtual machines are terminated, Amazon S3’s file

system throughput (bytes/sec) is not a great as HDFS’s throughput. Past HDFS and S3

studies demonstrate the difference in throughput between the two file systems. When a

map-reduce job reads from HDFS, the retrieval time accounted for less then 1% of the

total map processing time (Herodotou & Babu, 2011). When a map-reduce job reads

from Amazon S3, then the retrieval time accounted for 60% of the total map processing

time (Bicer, Chiu, & Agrawal, 2011). Amazon S3 impacts the retrieval time because the

distributed file system’s throughput (DfsReadCost in bytes/second) determines the map-

reduce workload’s read phase time, Equation 3 (Herodotou, 2012).

!"#$%ℎ!"#$%&# = !"#$!"#$%!×!!"#$%&'()#* + !"#$%&$'(!×!!"#"$%&'()*#)%+, (3)

The storage strategy impacts the cloud user’s ability to estimate map-reduce

workload’s execution time and monetary cost because the workload interacts with each

storage strategy differently (Wieder et al., 2010). When the cloud user evaluates spot

Data local
request

data from
data node

wait for
reply

read data
from local

disk

data
request

Start Read

Continue with
map

no

yes

!

! 17!

instance based workloads, each storage strategy requires independent execution time and

monetary cost estimates. The storage strategy impacts execution time and costs because

the storage strategy may reduce the task’s time to read and write data (Herodotou, 2011).

In summary, a cloud user specifies a cluster comprising a set of virtual resources

to execute a map-reduce workload. The cloud user must decide on factors, such as, the

virtual machine type, number of instances, pricing model, and data storage approach to

specify the virtual cluster. These decision factors exist to help the cloud provider

improve server utilization by multi-tenancy, elasticity, and spot markets. However, each

factor also impacts the map-reduce workloads completion time, execution time, and

financial costs. The cloud user requires a means to estimate the impacts on completion

time, execution time, and financial costs to specify a virtual cluster that reduces monetary

cost.

Map-Reduce Performance & Cost Estimation Tools

The last section discussed four decision factors for virtual map-reduce cluster

allocation: the virtual machine type, number of instances, pricing model, and data storage

approach. This section focuses on prior research related to two decision factors, the

virtual machine type and number of instances, to better understand the deficiencies with

current map-reduce cluster allocation solutions.

Prior research (Herodotou et al., 2011) examined a tool, the Elastisizer, that

evaluates virtual cluster alternatives for a cloud user’s map-reduce workload. Each

virtual cluster alternative contains different virtual machine types and number of

instances. The Elastisizer predicts each alternative’s performance and financial impact

!

! 18!

because the tool uses a job profile to model and simulate the workload (Herodotou et al.,

2011).

Before this section examines the Elastisizer’s profile, Verma, Cherkasova, &

Campbell (2011) provides a simple model to estimate a map-reduce workload’s

execution time. The simple model assumes the map-reduce workload executes a set of

tasks in two independent sequential stages (map and reduce). The map-reduce scheduler

greedily assigns n tasks to k processing slots for each stage. If ! and ! are the stage’s

mean and maximum task processing time, then each stage’s execution time ranges from

!!×!!/! to ! − 1 × !
! + ! (Verma et al., 2011).

The simple model provides a starting point to understand the Elastisizer’s job

profile approach because the simple model decomposes the map-reduce workload into

tasks to determine the impact of virtual machine type and number of instances on

execution time. The virtual machine type governs the mean and maximum task

processing time because the virtual machine type dictates the computational resources

(memory, CPU units, and I/O throughput) available to the task (Lee et al., 2011). The

virtual machine type and number of instances determine the number of task processing

slots per stage, Table 1 (Herodotou, 2012).

Although the tasks’ processing time changes with new virtual machine types, the

Elastisizer characterizes the workload’s task with a baseline profile. The baseline profile

serves as a starting point because the profile captures the workload’s characteristics for a

given virtual machine type. To capture the workload’s characteristics, the profile

decomposes the tasks to determine the task’s execution and data dependencies

(Herodotou, 2012).

!

! 19!

The profile characterizes the task’s execution because the profile decomposes the

task into processing phases. The phases model the functions or operations performed by

the map-reduce tasks, Table 4 (Herodotou, 2012). For instance, the map task’s read

phase reads the map task’s input data from the distributed file system (Herodotou, 2012).

The profile then quantifies the task’s execution by capturing each phase’s execution time

as cost fields, Table 5 (Herodotou & Babu, 2011).

Although the simple model assumes the map and reduce stages are independent,

the reduce tasks receive intermediate data from the map tasks (Verma et al., 2011). To

capture the task’s data dependencies, the profile quantifies the data processed by the

task’s phases in dataflow fields, Table 6 (Herodotou et al., 2011). The dataflow fields

also characterize each stage’s size because the dataflow fields capture the total number of

map & reduce tasks (Herodotou & Babu, 2011).

Although the initial profile characterizes the task’s execution and data, the profile

further decomposes the tasks to account for potential changes in virtual machine type

and/or input data sizes. The profile characterizes each task’s cost statistics (Table 7) and

dataflow statistics (Table 8) (Herodotou, 2012). The cost and dataflow statistics fields

decompose the individual tasks by capturing the primitive operations’ execution times

and phase data distribution ratios. The cost and dataflow statistics remain constant for a

given virtual machine type because the statistic fields are insensitive to the amount of

data being processed per task (Herodotou, 2012). However, the cost and dataflow fields

depend on the statistics fields because the task’s execution time and data depends on the

primitive operations’ timing and sequence (Herodotou, 2012).

!

! 20!

Table 4: Map Reduce Phases

Task Type Phase Description
Map Setup Instantiates the map task
Map Read Reads the input from the distributed file system as a block of

data
Map Map Processes the data as an input record
Map Collect Partitions the map output and writes the map output to

memory
Map Spill Writes the map output from memory to local disk when the

buffer is full
Map Merge Merges the spill files
Map Clean up Cleans up the map task
Reduce Setup Instantiates the reduce task
Reduce Shuffle Reads the intermediate data from the map tasks to the reduce
Reduce Merge Merges the intermediate data to minimize space in memory or

the local file system
Reduce Reduce Processes the intermediate data
Reduce Write Writes the reduce output to the distributed file system
Reduce Clean up Cleans up the reduce task

Table 5: Cost Fields in a Job Profile

Cost Field Description
cSetupPhaseTime Time (ns) to setup a task
cCleanupPhaseTime Time (ns) to clean up a task
cReadPhaseTime Time (ns) to preform the read phase in a map task
cMapPhaseTime Time (ns) to preform the map phase in a map task
cCollectPhaseTime Time (ns) to preform the collect phase in a map task
cSpillPhaseTime Time (ns) to preform the spill phase in a map task
cMergePhaseTime Time (ns) to preform the merge phase in a map or reduce task

cShufflePhaseTime Time (ns) to preform the shuffle phase in a reduce task
cReducePhaseTime Time (ns) to preform the reduce phase in a reduce task
cWritePhaseTime Time (ns) to preform the write phase in a reduce task

!

! 21!

Table 6: Dataflow Fields in a Job Profile

Dataflow Field Description
dNumMappers Number of map tasks in the job
dNumReducers Number of reduce tasks in the job
dMapInRecs Map input records
dMapOutRecs Map output records
dMapInBytes Map input bytes
dNumSpills Number of spills
dSpillBufferRecs Number of records in spill buffer
dSpillBufferSize Total size in bytes of records in spill buffer
dSpillFileRecs Number of records in spill file
dSpillFileSize Size in bytes of spill
dNumRecSpilled Total records spilled
dNumMergePasses Number of merge passes
dShuffleSize Total shuffle size in bytes
dReduceInGroups Number of reduce input groups
dReduceInRecs Number of reduce input record
dReduceInBytes Number of reduce input bytes
dReduceOutRecs Number of reduce output records
dReduceOutBytes Number of reduce output bytes
dCombineInRecs Number of combine input records
dCombineOutRecs Number of combine output records
dLocalBytesRead Bytes read from local file system
dLocalBytesWritten Bytes written to local file system
dDfsBytesRead Bytes read from distributed file system
dDfsBytesWritten Bytes written to distributed file system

!

! 22!

Table 7: Cost Statistics from Primitive Operation

Profile Field Cost
Type

Description (time in ns)

csDfsReadCost I/O Time to read from HDFS (or Amazon S3) per
byte

csDfsWriteCost I/O Time to write to HDFS (or Amazon S3) per byte
csLocalIOReadCost I/O Time to read from local disk per byte
csLocalIOWriteCost I/O Time to write to local disk per byte
csNetworkCost Network Time to transfer per byte
csMapCPUCost CPU Time to execute mapper per record
csReduceCPUCost CPU Time to execute reducer per record
csCombineCPUCost CPU Time to execute combiner per record
csPartitionCPUCost CPU Time to partition per record
csSerdeCPUCost CPU Time to serialize/deserialize per record
csSortCPUCost CPU Time to sort per record
csMergeCPUCost CPU Time to merge per record
csInUncomprCPUCost CPU Time uncompressing input per byte
csIntermUncomCPUCost CPU Time uncompressing map output per byte
csIntermComCPUCost CPU Time compressing map output per byte
csOutComprCPUCost CPU Time compressing job output per byte
csSetupCPUCost CPU Time setting up task
csCleanupCPUCost CPU Time cleaning up task

Table 8: Dataflow statistics

Profile field Description
dsInputPairWidth Average number of bytes of input key-value pairs
dsRecsPerRedGroup Average number of records per reducers group
dsMapSizeSel Map selectivity (ratio of input to output) in bytes
dsMapRecSel Map selectivity (ratio of input to output) in number of records
dsReduceSizeSel Reducer selectivity (ratio of input to output) in bytes
dsReduceRecSel Reducer selectivity (ratio of input to output) in number of

records
dsCombineSizeSel Combiner selectivity (ratio of input to output) in bytes
dsCombineRecsSel Combiner selectivity (ratio of input to output) in number of

records
dsInputCompressRatio Map input compression ratio
dsOutCompressRatio Map output compression ratio
dsStartupMem Startup memory per task in bytes
dsSetupMem Setup memory per task in bytes
dsMemPerMapRec Memory per map’s record in bytes
dsMemPerRedRec Memory per reducer’s record in bytes
dsCleanupMem Cleanup memory per task in bytes

!

! 23!

Based on the initial job profile, the Elastisizer generates a virtual profile to

characterize a new target cluster. The Elastisizer can predict the workload’s execution

time on the target cluster because the virtual profile adapts the workload’s characteristics

to the target cluster’s resources. When the target cluster changes the virtual machine

type, the new virtual machine type impacts the primitive operation’s execution time. As

a result, the task’s execution time changes because the task executes a sequence of

primitive operations. The virtual profile models the VM type change because the virtual

profile contains the execution time for both the primitive operations (i.e. cost statistics)

and the tasks (i.e. costs) (Herodotou, 2012).

The virtual profile also enables cost based optimization by adjusting the

workload’s configuration to fit the new target cluster (Herodotou & Babu, 2011). When

the target cluster includes additional virtual machines, the cloud user may adjust the

workload’s data distribution to improve the workload’s execution time (Herodotou,

2012). In essence, the cloud user reduces the map task split size because a smaller split

size increases the number of map tasks and reduces the data size processed by each map

task. The reduced task data size improves the execution time for individual tasks

because each task performs fewer operations. The virtual profile models the split size

adjustment because the virtual profile models data proportions (i.e. dataflow statistics)

and the number of operations (i.e. the dataflow fields) (Herodotou, 2012).

The Elastisizer combines three different models, Figure 3, to generate the virtual

profile for the new virtual cluster that includes: relative fitness model, white box model,

and task simulator. The relative fitness model generates the virtual profile’s new cost

statistics based on the virtual machine type. The white box model generates the virtual

!

! 24!

profile’s cost and dataflow fields based on the statistics and configuration. The task

simulator predicts the execution time and data flow for the entire job based on the virtual

profile’s cost and dataflow fields.

The relative fitness model estimates the virtual profile’s cost statistics fields for a

new virtual machine type. As noted, the cost statistics measure the primitive operation’s

average response time. A new virtual machine type changes the primitive operation’s

response time because the new virtual machine provides different resources in terms of

CPU and I/O throughput (Seltzer, Krinsky, Smith, & Zhang, 1999). The relative fitness

model predicts response time changes because the relative fitness model compares the

response times to similar workloads migrating to the new virtual machine type

(Herodotou, 2012). Although the relative fitness model predicts primitive operations’

average response time caused by a new virtual machine type, the virtual profile requires a

white box model and task simulation to estimate the workload’s total execution time.

!

! 25!

Figure 3. Elastisizer's Workload Simulation

The white box model estimates the virtual profile’s cost and dataflow fields. The

white box model estimates cost fields calculating the number of operations, operation

type, and time per operation for each map-reduce phase based on the cost statistics and

job configuration (Herodotou, 2012). Additionally, the white box model quantifies each

phase’s dataflow by applying the data statistic’s ratios to the input sizes from each

successive phase (Herodotou, 2012). Although the white box model produces the cost

and dataflow field for the individual tasks, the cloud user requires overall execution time

to compare alternative clusters.

The task simulator estimates the workload’s total execution time by simulating

the virtual profile’s tasks. The task simulator schedules simulated tasks created from the

virtual profile’s cost and dataflow on a simulated cluster (Herodotou, 2012).

Additionally, the simulator tracks the map-reduce task dependencies to predict the

Data Flow
Statistics
(ratios)

Cost Statistics
(ns/byte &
ns/record)

Data Flow
Statistics
(ratios)

Cost Statistics
(ns/byte &
ns/record)

Relative
Fitness Model

White Box
Model

Data Flow
(bytes &
records)

Task Phase
Costs (ns)

Training Data
for both

Cluster A & B

Regression
Tree

Baseline Profile (Stats)
from Cluster A

Virtual Profile (Stats)
for Cluster B

Task Simulator

Execution
Time (secs)

Configuration Input Data
(bytes)

Virtual Profile (Absolute)
for Cluster B

Data Flow
(bytes &
records)

Task Phase
Costs (ns)

!

! 26!

execution order. Based on the simulated schedule, the simulator computes the total

execution time (Herodotou, 2012).

The virtual profile’s simulation estimates the relative changes between virtual

clusters because the simulation’s virtual profile captures the relative changes in the

primitive operations. However, the simulator over-estimates the absolute execution time

by 20.1% on average because the initial job profile contains instrumentation overhead

(Herodotou et al., 2011). When the job profiler records the cost statistics from Table 4,

the profiler requires extra CPU cycles to measure each operation. The extra CPU cycles

skew the initial job profile’s measurements because the extra time to record the cost

statistics is added to the CPU oriented cost statistic fields. The initial job profile distorts

the simulation because the relative fitness model’s input contains the extra overhead from

the initial profile. However, the profiler overhead causes a uniform prediction error

between virtual clusters per job because the simulations all use the same initial profile

(Herodotou et al., 2011).

Although the simulator skews absolute execution times, the Elastisizer enables the

cloud user to compare alternative cluster configurations for a given workload. Based on

the simulator results, the cloud user compares relative workload execution times for each

cluster alternative with different virtual machine types and number of instances

(Herodotou et al., 2011). The cloud user can also evaluate the workload’s monetary costs

versus the relative execution time speed-up to select the alternative that provides the best

processing time given a budget constraint (Herodotou et al., 2011).

!

! 27!

Map-Reduce Performance & Cost Estimation Tools Limitations

The Elastisizer guides the cloud user to allocate the virtual machine type and

number of instances for a particular map-reduce workload. However, the Elastisizer

does not address the following issues related to the workload’s pricing model or storage

strategy: determining the spot instance’s bid price and storage strategy’s impact on the

workload’s cost.

As previously discussed, the user’s bid price impacts the likelihood the workload

will complete without the spot instance terminating (Chohan et al., 2010). In essence,

spot instance auctions preempt existing users because the new users outbid the existing

users. When the auction terminates the spot instance before the workload completes, the

failure increases the workload’s execution time because the map-reduce framework

reschedules tasks to recreate the failed spot instances’ missing intermediate data (Chohan

et al., 2010).

The Elastisizer does not suggest a bid price for the cloud user because the

Elastisizer’s simulator lacks the fidelity to estimate the preempted instances impact on the

workload’s average execution time. Granted, the Elastisizer’s simulator estimates the

workload’s execution time without spot instance failures (Herodotou et al., 2011).

However, the Elastisizer’s simulator cannot estimate failure costs because the failure’s

cost impact depends on when the failure occurs. A workload’s execution time depends

on when the spot instance failure occurs because the failure’s time determines the amount

of intermediate data to be reprocessed (Wang et al., 2009). The spot instances contain

intermediate data produced by several waves of tasks. When the auction terminates a

spot instance, the map-reduce scheduler reassigns the spot instance’s tasks on the on-

!

! 28!

demand instances to recreate the intermediate data (Wang et al., 2009). The Elastisizer’s

simulator must mimic the map-reduce scheduler’s behavior to account for the extra task

processing time.

Additionally, the Elastisizer’s simulator does not calculate the preempted

instances’ impact on the workload’s monetary costs. The workload’s monetary cost

depends on the number of hours the instances are used. If a spot instance fails after an

hour of processing, then the user pays for the spot instance’s processing time even though

the other instances re-executed the spot instance’s tasks (Chohan et al., 2010). The

Elastisizer’s simulator must account for each instance’s duration to calculate the total

costs.

The Elastisizer cannot evaluate different storage strategies because the new

storage strategies reduce the virtual machine type’s cost statistics accuracy. The

Elastisizer assumes the cost statistics remain constant for a given virtual machine type

because each virtual machine type contains the same CPU and I/O resources. However,

the storage strategy changes the workload’s I/O throughput. For instance, a local disk

workload provides increased I/O throughput compared to a external file system workload

due to network bandwidth constraints (Ghemawat, Gobioff, & Leung, 2003).

If the workload accesses an alternative storage system, then the new storage

system changes the virtual machine’s I/O cost statistics. When comparing Amazon S3

and HDFS performance studies (Bicer et al., 2011; Herodotou et al., 2011) with the same

virtual machine type, the storage approach change impacts the cost statistic, “time to read

from file system per byte”, by 60% relative to the total task processing time. Amazon

!

! 29!

S3 increased the map task’s read time because the I/O resources dedicated to each virtual

machine changed from local disks to an external file system (Bicer et al., 2011).

Additionally, the spot instance storage strategies reduce the cost statistics’

accuracy because the workload’s locality differs for both Amazon S3 and core HDFS

storage strategies. The workload’s locality measures the ratio of local versus remote data

requests. When the workload uses Amazon S3, all data request are non-local because the

workload’s map task accesses an external file system. As a result, Amazon S3

workloads require a new virtual profile for each VM type because the workload’s cost

statistics differs from a workload using the same VM type with local disk (Herodotou et

al., 2011).

Although the workload’s locality remains constant with the Amazon S3 file

system, the individual map task’s locality varies with a HDFS workload because the map-

reduce framework schedules some map tasks to remote instances. The map-reduce

framework attempts to schedule map tasks to instances that contain the task’s input data.

If the instance local to the task’s data is not available, the map-reduce framework

schedules the task to the next closest available instance (Zaharia et al., 2010). As a

result, the virtual profile uses averages in the cost and cost statistics fields to account for

a local and non-local map task mixture (Herodotou, 2012).

When the workload contains tasks assigned to both core HDFS nodes and spot

instances, the spot instance to core node ratio varies the workload’s cost statistics. The

virtual profile assumes the cost statistics remains constant as instances are added because

the average task locality remains constant across the instances (Herodotou, 2012).

Specifically, the average map read time remains constant because the average map read

!

! 30!

time includes costs from the same local and non-local map task mixture. However, the

average locality depends on the spot instance to core node ratio because all tasks assigned

to spot instances access data from non-local instances (Chohan et al., 2010).

In summary, the map-reduce cost estimation tool has not addressed two decision

factors the cloud user must make when allocating a virtual cluster: the pricing model and

storage approach. The cloud user cannot compare pricing models because the

Elastisizer inaccurately simulates the spot market’s impact on execution time and

monetary costs. The cloud user cannot compare storage approaches because the

Elastisizer inaccurately models each new storage approach’s impact on the workload’s

virtual profile.

Dissertation Goal

The goal of this research was to improve map-reduce workloads’ completion time

and monetary cost prediction accuracy by enhancing previous cost estimation tools to

handle spot instances. The enhanced cost estimation tool improved prediction accuracy

because the tool forecasted the workload’s completion time and monetary cost based on

spot instance availability and storage strategy.

The enhanced tool’s evaluation compared the enhanced and existing tool’s

prediction error for the workload’s mean completion time and monetary cost. While

past studies evaluated on-demand workloads, this work evaluated each of the following

scenarios: spot instance workloads without failures, workloads with spot instance failures

at fixed times, and workloads with spot instance failures based on a spot market trace. If

the enhanced tool reduced each scenario’s prediction error, then the enhanced tool

successfully improved the map-reduce workload’s prediction accuracy for spot instances.

!

! 31!

Although the spot instance scenarios evaluated the prediction accuracy based on

the spot instance’s availability, this work also evaluated the prediction accuracy based on

the storage strategy. The non-failure spot instance scenario also evaluated the prediction

error for various cluster sizes and spot instance ratios to measure the enhanced tool’s

accuracy improvements. If the enhanced tool reduced the non-failure scenario’s

prediction error, then the enhanced tool successfully improved the map-reduce

workload’s prediction accuracy for the spot instance’s storage strategy.

Relevance and Significance

As discussed in the problem statement, cloud users are unable to compare cluster

alternatives with spot instances because cloud users cannot estimate the map-reduce

workload’s execution time and monetary cost for each alternative. In addition, inaccurate

workload estimates impact the cloud provider. This section qualifies accurate workload

estimates’ relevance and significance on both the cloud user and provider within the

context of spot markets. Additionally, this section elaborates on enhanced workload

estimation tools that enable cloud users to allocate spot instances.

When cloud users lack accurate workload execution time and monetary cost

estimates, the inaccurate estimates affect both cloud users and cloud providers.

Inaccurate estimates affect cloud users’ budgets because cloud users cannot allocate the

most financially cost effective virtual cluster to execute their workloads. When a cloud

user selects the wrong instance type for a 6-node map-reduce job, the wrong choice

increases monetary costs over 50% and execution time by 1000% (Herodotou et al.,

2011).

!

! 32!

Furthermore, inaccurate estimates complicate the cloud user’s spot instance cost-

benefit analysis because cloud users cannot compare each alternative’s monetary cost.

For instance, the cloud user saves only 4.8% on a workload’s costs using 8 m1.xlarge

spot instances compared to 6 c1.xlarge on-demand instances (Herodotou et al., 2011).

When spot instances provide minimal monetary cost savings, the cloud user might avoid

using spot instances because the cost savings may not warrant the cloud user’s effort to

migrate the workload (Stokely et al., 2009).

As previously noted, cloud providers benefit from spot markets because spot

markets improve average server utilization by shifting demand to non-peak hours (Liu,

2011). In essence, cloud users wait to allocate at low demand periods by bidding a low

price. In addition to spot instances, cloud providers offer on-demand and reserve pricing

for virtual machines (Wieder et al., 2010). Although spot instances reduce the virtual

machine’s price per hour, cloud users may select on-demand instances instead.

A purely on-demand market reduces the cloud providers average server utilization

compared to the spot market because the cloud provider must rely solely on multi-tenant

on-demand instances to improve server utilization. On-demand instances passively

improve server utilization because each tenant’s individual demand patterns are

statistically multiplexed (Armbrust et al., 2010). Multi-tenant map-reduce environments

provide a 20% to 40% resource utilization rate (Kavulya et al., 2010) compared to single

tenant data centers with server utilization between 5% and 20% (Armbrust et al., 2010).

Although multi-tenancy improves server utilization, the cloud provider must equip the

data center for peak demand because the cloud provider services all on-demand requests

at the time requested.

!

! 33!

Inaccurate estimates reduce the spot market’s benefit to the provider because

cloud users avoid the spot market in favor of the on-demand market without a clear

financial incentive. Cloud providers have experienced low spot market demand based on

market price history. For example, Amazon EC2 simulated spot market demand until

September 2011 because cloud users did not allocate spot instances enough to change the

market price on a regular basis (Orna Agmon Ben-Yehuda et al., 2011). After September

2011, spot market demand remains low because the reserve price availability exceeds

90% (Orna Agmon Ben-Yehuda, Ben-Yehuda, Schuster, & Tsafrir, 2013).

Accurate map-reduce estimates benefit both the cloud user and provider because

the estimates guide cloud users to provision their workload. If a cloud user accurately

predicts the workload’s execution time and monetary costs from alternative cluster

configurations, then the user will select the most cost effective set of virtual machines

(Herodotou et al., 2011). Specifically, accurate estimates allow cloud users to analyze

the tradeoffs between workloads with spot and on-demand instances because cloud users

are able to quantify each alternative’s actual monetary costs (Chohan et al., 2010).

Additionally, accurate workload estimates benefit the cloud provider because

accurate estimates incent cloud users to improve resource utilization. Cloud users require

the accurate estimates to determine the value of delayed workloads (Chen et al., 2011).

The cloud provider benefits from cloud user bidding on spot instances because spot

instances are never over-provisioned. Instead, the cloud user waits until the spot

instance becomes available at the bid price (Stokely et al., 2009). Delayed requests

improve average sever utilization because the spot instance auction delays workloads that

would otherwise execute during peak loads.

!

! 34!

Accurate workload estimates benefit private cloud providers because private

cloud providers prioritize workloads with auctions. Private cloud providers use auctions

to prioritize the workloads because the user’s bid price expresses the job’s value or

relative importance to the user (Chun & Culler, 2002). Additionally, the auctions

prioritize the workload’s immediacy because the user’s bid price decreases after each

unsuccessful bid. The bid price approaches 0, as the expected completion time

approaches the user’s required slack time (Chun & Culler, 2002). The auction requires

workload estimates to determine when the workload expects to be completed given the

allocation delay.

As previously noted, the research goal improves the map-reduce workload’s

monetary cost prediction accuracy by enhancing previous cost estimation tools to include

spot instances. The cost estimation tool addresses the cloud user’s allocation problem

because the estimation tool predicts monetary costs and execution time for alternative

cluster configurations, which includes spot instances. Accurate cost and time estimates

enable the cloud user to select the optimal configuration to meet budget and deadline

goals (Herodotou, 2012).

The cost estimation tool aids users to allocate spot instances because the estimate

includes impacts from bid price (Chohan et al., 2010) and changes in storage strategies

(Wieder, Bhatotia, Post, & Rodrigues, 2012). When the cloud user determines the bid

price, the cost estimation tool predicts the workload’s average monetary cost at the given

bid price. When the cloud user determines the most appropriate storage option, the cost

estimation tool predicts the monetary costs and execution time for each option. Both

!

! 35!

spot instance estimates benefit the cloud user because the cost estimation tool provides a

complete picture of the costs associated with spot instances.

In summary, cloud users cannot decide when to allocate spot instances because

cloud users lack accurate monetary cost and execution time estimates for map-reduce

workloads that include spot instances. Inaccurate workload estimates burden both cloud

users and cloud providers because cloud users cannot discern the cost of allocating

workloads with spot instances. Conversely, accurate workload estimates benefit both the

cloud user and cloud provider. The cloud user purchases the most cost effective

resources with minimal effort. The cloud provider will improve average server

utilization because cloud users are able to shift processing to low demand periods. The

research goal addressed the cloud user’s allocation problems because the enhanced

estimation tool predicts monetary costs for both spot instance and on-demand

alternatives.

Barriers and Issue

The previous estimation tools can't compare cluster alternatives with spot

instances because the spot market auction impacts the workload’s completion time and

monetary costs. Although past estimation tools assumed the provider allocates the

instances immediately, the auction may delay the instances’ start and or terminate the

instances early. When a workload allocates spot instances, the auction does not

guarantee the workload's completion time because the spot market auction may delay the

start of the workload (Stokely et al., 2009). Furthermore, the auction does not guarantee

the workload's monetary cost because the terminated spot instances increases the

workload’s on-demand instances processing time at a higher priced (Chohan et al., 2010).

!

! 36!

Although spot markets don't guarantee an instance’s availability, a spot-market

aware tool must forecast the workload's completion time and monetary costs. If a cost

estimation tool accurately forecasted the spot instance’s duration, then the tool would

also accurately estimated the completion time and monetary costs (Chohan et al., 2010).

While the enhanced tool needed to forecast the instances duration, the tool also needed to

account for the spot instance’s fault tolerance strategy (Schwarzkopf, Murry, & Hand,

2012). The spot instance’s tasks access a remote file system to preserve data after the

instance terminates. The enhanced tool needed to estimate the remote tasks’ costs

because the remote tasks increased disk and network costs from the concurrent requests

(Mesnier, Wachs, Sambasivan, Zheng, & Ganger, 2007).

The solution needed to improve the completion time and monetary cost forecast

accuracy. The cost estimation tool needed to improve the completion time forecast

accuracy because the tool needed to estimate the wait time to allocate the spot instance

and execution time given spot instance failures. Additionally, the cost estimation tool

needed to improve the completion time forecast accuracy because the tool needed

estimate the slowdown associated with using a fault tolerant file system (Schwarzkopf et

al., 2012). The forecast tool needed to improve the monetary cost accuracy because the

tool need to forecast the impact of spot instance termination on the monetary costs

(Chohan et al., 2010).

Assumptions, Limitations, and Delimitations

This dissertation assumed spot-market traces accurately represented the

workload’s lifecycle during an actual spot market. Chohan et al. (2010) and Wieder et

al. (2012) assumed spot market traces provide enough information to determine the

!

! 37!

workload’s wait and spot instance termination times. When the spot instances

terminated early, both studies assumed a simulator or tool could derive the failure’s

impact on the workload’s execution time (Chohan et al., 2010; Wieder et al., 2012).

Wang et al. (2009) assumed a simulator could determine the workload’s execution time

given node failures.

This dissertation delimited the workloads, spot market traces, and virtual machine

types used to evaluate the prediction tools. While the prediction tool’s accuracy depends

on the specific workload, spot market conditions, and virtual machine type, the results

may indicate the tool’s performance in other conditions. The previous studies have

applied similar delimitations to scope the workloads, spot market traces, and virtual

machine types to a tractable level (Chohan et al., 2010; Herodotou, 2012; Wieder et al.,

2012).

Definition of Terms

Baseline Profile – A measurement of a workload’s average processing time and data
flow. The baseline profile is composed of the workload’s task phase costs, cost statistics,
dataflow, and dataflow statistics.

Completion Time - The time between the job’s submission and completion.

Cost Statistics – A decomposition of the task’s phase costs into primitive operations.

Dataflow – Quantifies the amount of data processed by the map-reduce tasks and phases.

Dataflow Statistics - Quantifies the data ratios between the map-reduce tasks and phases.

Execution Time – The time between the job’s allocation and completion.

Intermediate Data – Temporary data transferred from the workload’s map tasks to the
reduce tasks.

Map Task – A task, which reads a partitioned input data and writes out intermediate data
to be consumed by reduce tasks.

!

! 38!

Map-Reduce – A workload that processes data expressed as key-value pairs in two
stages: map and reduce.

On-Demand Instance – A virtual machine instance allocated at a fix price when needed
by a workload.

Reduce Task – A task, which reads partitioned intermediate data from the map tasks and
writes out data to a persistent file system.

Relative Fitness Model – A model that predicts performance changes when a workload is
moved from one virtual machine type to another.

Selectivity – A ratio that measures a process’ input bytes to the output bytes.

Spot Market – A market where the virtual machine instance’s current (or market) price
depends on the available supply.

Spot Market Auction – A process where the spot instance’s market price is assign by
cloud users bids on a number of virtual machine instances.

Spot Instance – A virtual machine instance allocated by a spot market auction.

Spot Instance Accelerator – A map-reduce virtual machine instance that only contains
map-reduce processes. In essence, the virtual machine instance contains no underlying
distributed file system processed.

Task Phase Costs – The processing time for each phase or part in a task.

Virtualized Cluster – A map-reduce cluster that is composed of virtual machine instances.

Virtual Profile - A model of a workload’s average processing time and data flow on a
different virtual machine instance type.

Wait Time - The time between the job’s submission and allocation.

Summary

When a cloud user executes a map-reduce workload, the user must specify the

virtualized resources to execute the workload within a desired budget and or timeframe.

To execute a map-reduce workload, the cloud user must decide upon the virtual machine

type, number of virtual machines, pricing model, and storage options. The average user

requires estimation tools to help evaluate the options because the virtualized cluster’s

!

! 39!

allocation requires specific expertise to estimate the workload’s completion time and

monetary costs (Herodotou & Babu, 2011).

The cloud user may consider the spot market pricing model as a means to reduce

the workload’s monetary cost. Spot instances can reduce a workload’s monetary cost

because the spot instances are allocated by a preemptive auction (Chohan et al., 2010).

When the cloud user bids on spot instances during low demand periods, the auction offers

the spot instances at a fraction of the on-demand price. However, the cloud user requires

an estimate for the workload’s completion time and monetary cost because the auction

determines the instances start time and duration (Chohan et al., 2010).

Although the estimation tools predict on-demand virtual instance’s completion

time and costs, the on-demand estimates are unsuitable for spot market based workloads

because the spot market auction determines the virtualized instances’ availability to

process data. The spot market may extend the workload’s completion time because the

spot market auction may delay the workload’s start (Stokely et al., 2009). The spot

market may also increase the workload’s execution time and, by extension, monetary cost

because the auction may terminate the spot instances before the workload completes

(Chohan et al., 2010).

The goal of this research was to improve map-reduce workloads’ completion time

and monetary cost prediction accuracy by enhancing previous cost estimation tools to

handle spot instances. This dissertation provided an approach that improved prediction

accuracy because the enhanced tool forecasts the workload’s completion time and

monetary cost based on the spot instance’s availability and storage strategy.

!

! 40!

Chapter 2

Review of Literature

In cloud environments, cloud users allocate virtualized clusters to execute map-

reduce workloads. As noted in the problem statement, cloud providers present cloud

users several options to compose the optimal virtual cluster to meet the workload’s target

monetary cost and processing time requirements. In order for the cloud user to compare

the potential virtual clusters, the cloud user requires monetary cost and execution time

estimates that includes each of the following options: virtual machine type, number of

virtual machines, pricing model, and storage options.

The literature review examines each option to determine each option’s execution

and financial impact on the workload. Furthermore, this section examines the tools and

techniques that predict workload execution time and cost to determine each options

impact on the prediction accuracy.

Virtual Machine Type & Number

Both the type and number of virtual machines govern the map reduce workload’s

execution time because both parameters dictate the amount of resources applied to

workload’s tasks. The virtual machine type dictates the memory, CPU units, and I/O

throughput per task (Herodotou et al., 2011). The number of tasks depends on both the

type and number of virtual machines because both parameters govern the number of

parallel tasks executed by the cluster. The virtual machine type governs the number of

available processing task slots per virtual machine instance (Herodotou et al., 2011). The

!

! 41!

number of virtual machines determines the total number processing slots in the cluster

(Herodotou et al., 2011).

If the task processing time is known, the virtual machine type and number

provides the cloud user sufficient information to estimate the execution time. If the cloud

user assumes the map and reduce phases to be independent, then makespan estimates

each phases task’s completion time because map-reduce workloads greedily assigns tasks

to the available slots (Verma et al., 2011). Let ! and ! be the mean and maximum task

processing time. Let k equal the total number of slots, which is the product of the

number of virtual machines and the number of slots per node (see Table 1). When a map

reduce phase requires n task, the total processing time ranges from !!×!!/! to

! − 1 × !
! + ! (Verma et al., 2011).

!

! 42!

Figure 4. Map Reduce Task Flow

However, the reduce phase depends on the map phase because the map tasks

transfer intermediate data to the reduce tasks. The data transfer occurs during the reduce

task’s shuffle phase because the reduce task sorts the intermediate data in iterative steps.

As seen in Figure 4, the shuffle phase transfers intermediate data as each map task

completes. When all map tasks complete and the reduce task sorts all the intermediate

data, then the reduce task processes the intermediate data in the correct order.

Given the reduce phase dependency, the cloud user still could apply makespan to

estimate the execution time because the reduce tasks can be decomposed to account for

the overlap in execution time (Verma et al., 2011). Let !!!!""#$ be the non-overlapping

shuffle time where intermediate data is transferred from the map tasks to the reduce tasks.

DFS

Read Map Collect

Spill Merge

Local
Disk

map task (on a vm)

reduce task (on a vm)

buffer full? more
blocks?

block

map task
complete?

Shuffle more map
tasks?Merge

Reduce

Write

DFSLocal
Disk

yes

no

yes

yes
yes

no

no

no

buffer or
fs full?

yes

network transfer

!

! 43!

If T!!" and T!"#$%" are the execution times for the map and reduce phases, then the

workload’s total execution time, T, is Equation 4.

T = !T!"# + !!!!!""#$ + !T!"#$%" (4)

Although makespan estimates the workload’s total execution time, the theorem is

insufficient for cloud users to estimate workload execution time on new virtual machine

types. Makespan requires the cloud user to estimate the average and maximum task

execution time for each different virtual machine type. The average and maximum task

duration changes for each virtual machine type because the task’s available resources

(CPU, disk I/O, network I/O) change (Herodotou, 2012). When a workload uses

Graphics Processor Unit (GPU) virtual machines, the GPU enabled virtual machine types

may decrease the map task execution time up to 2x (Lee et al., 2011). However, the

cloud user must execute the tasks on a target virtual machine type to quantify the VM

type’s impact on task duration because the GPU speed up is workload specific (Lee et al.,

2011).

The cloud user can’t estimate average and maximum task duration because the

map-reduce workload’s characteristics change with each virtual machine type. The

virtual machine type impacts both the sequence of operations and each operations

execution time (Seltzer et al., 1999). Figure 4 illustrates how the spill and merge phase’s

frequency depends on the memory size available to the virtual machine type (Herodotou,

2012). Furthermore, spill frequency affects the sort operations execution time. The

map’s spill phase performs both CPU and I/O operations because the spill phase sorts

output records and writes the records to local disk. When the spill’s memory buffer

increases to improve the I/O operations execution time, the buffer size change increases

!

! 44!

CPU operation time because the sort operation has more records to sort (Herodotou &

Babu, 2011). In conclusion, the cloud user can’t simply scale the tasks execution time

because the virtual machine type changes the operations performed by the workload.

The Elastisizer

Prior research proposes a tool, the Elastisizer, to address the workload

characteristics change issue (Herodotou et al., 2011). The tool quantifies the workload’s

characteristics via a job profile to capture the dependencies between the workload’s

operations. Based on the job profile, the tool models the workload’s changes in a virtual

profile. The virtual profile characterizes the tasks in a potential alternative cluster

(Herodotou et al., 2011).

To create the initial profile, Elastisizer model decomposes the map-reduce tasks

into phases because each phase’s timing and data processed depends on the previous

phases (Herodotou, 2012). Table 4 enumerates the map-reduce tasks’ phases. Figure 4

illustrates the dependency between each phase. The reduce shuffle and merge phases

demonstrate the data dependencies between phases. The shuffle phase times depends on

the map tasks because the shuffle phase cannot retrieve data for the map tasks until each

map task completes (Wang et al., 2009). Additionally, the merge phase time depends on

the data flow from the map tasks because the merge’s frequency is governed by the

amount of data processed by the shuffle phase (Wang et al., 2009).

The Elastisizer’s profile models the individual map and reduce tasks because the

profile characterizes each task’s execution and data. The profile characterizes the task’s

execution by capturing each phase’s execution time as cost fields, Table 5 (Herodotou &

Babu, 2011). The cost fields characterize the task’s execution because the cost fields

!

! 45!

decompose the task’s execution time into phases. Additionally, the profile characterizes

the task’s data because the profile quantifies the data processed by the task’s phases in

dataflow fields, Table 6 (Herodotou et al., 2011). The dataflow fields also characterizes

the job’s data dependencies because the dataflow fields captures the number of map &

reduce tasks (Herodotou & Babu, 2011).

Although the profile’s cost and dataflow fields characterize the map and reduce

task’s phases, configuration tweaks invalidate the workload’s characterization. The

workload’s configuration governs the amount of data and type of operations performed

by the tasks. For instance, the split size configuration governs the amount of data a map

task processes. A split size increase invalidates the cost fields because the larger task

data size increases the map task’s execution time (Herodotou, 2012). A larger split size

also invalidates the dataflow fields because the scheduler divides the input data among

fewer tasks (Herodotou, 2012).

However, the profile adjusts to configuration changes because the profile

estimates costs with normalized cost and dataflow statistics fields. The cost statistics

normalize the profile’s costs because the cost statistics further decomposes the phases to

operations, Table 7. Each phase performs a set of primitive operations to process the

input data. Although the workload’s configuration controls the number of operations

per phase, the configuration does not impact the discrete operation’s execution time

(Herodotou & Babu, 2011). The cost statistics normalizes the task’s execution time

because the cost statistics measures the operation’s execution time per byte or record

(Herodotou, 2012).

!

! 46!

The dataflow statistics normalizes the profile’s dataflow because the dataflow

statistics further decomposes the data distribution, Table 8. The workload’s

configuration impacts the amount of data per task or phase. Although each phase’s data

size depends upon the preceding phases, the data distribution ratio remains constant

between phases for a given workload (Herodotou & Babu, 2011). The dataflow statistics

decomposes the data distribution between phases because the statistics captures input to

output ratios for each operation, phase, and task (Herodotou, 2012).

Although the cost and dataflow statistics remain constant for various

configurations, the cost statistics change with a new virtual machine type (Herodotou,

2012). The cost statistics represent primitive operation execution times. The primitive

operations consume the virtual machine’s available CPU, I/O, and network resources

(Seltzer et al., 1999). When the workload executes against a new virtual machine type,

the virtual machine’s resources impact the primitive operation’s execution times. For

instance, a GPU virtual machine reduces map execution time for a cryptographic

workload because additional processors reduce the CPU time to perform hash operations

(Lee et al., 2011).

In summation, the workload’s profile applies to only one cluster because the

workload’s cost statistics, cost, and dataflow fields are impacted by changes to the virtual

machine type, configuration, and input data. Although the profile cannot directly

characterize the workload on a different cluster, the profile provides enough information

to model a virtual profile (Herodotou, 2012). The virtual profile captures the changes to

the baseline profile when the workload executes with a new virtual machine type,

configuration, and or input data (Herodotou, 2012).

!

! 47!

The Elastisizer combines three different models to generate the virtual profile for

the new cluster (see Figure 3): relative fitness model, white box model, and a task

simulator. The relative fitness model predicts the execution time for the task’s primitive

operations because the model estimates the changes to the virtual profile’s cost statistics

caused by the new virtual machine type. The white box model predicts the individual

task’s execution time and data flow for individual tasks because the model calculates the

new costs and dataflow fields based on the configuration, cost statistics and dataflow

statistics. The task simulator predicts the execution time and data flow for the entire job

based on the cost and dataflow fields. The next three subsections describe the details

behind each model.

Elastisizer - Relative Fitness Model

The relative fitness model predicts the changes to the workload’s cost statistics

cause by a new virtual machine type, Figure 5. When the workload executes against a

different virtual machine type, the new virtual machine type provides different resources,

in terms of CPU units, memory size, and disk throughput (as seen in Table 1). The new

resources change the cost statistics’ response times because the primitive operations

consume a different percentage of the virtual machine’s resources (Seltzer et al., 1999).

If the cloud provider quantifies the virtual machine’s resource sizes and

throughputs, then response times could be estimated by a vector-based methodology

(Seltzer et al., 1999). The vector-based methodology estimates primitive operation’s

response times by calculating the dot product between the available resources and the

operation’s demands for the resources. However, the cloud user cannot estimate the cost

!

! 48!

statistics based on the available resources because the cloud provider obfuscates the exact

resource details, like disk I/O throughput, from the cloud user (Herodotou et al., 2011).

Figure 5. Relative Fitness Model

Instead, the relative fitness model estimates the new response times by comparing

the target workload to benchmarking workloads because benchmarks capture workload

characteristics exhibited in a variety of map-reduce jobs for a given VM type. For

instance, the benchmarks might include I/O intensive, I/O light, CPU intensive, and CPU

light jobs (Herodotou et al., 2011). Each workload type exercises different cost statistics

because the primitive operation types and frequencies depend on the workload. For

example, a CPU intensive job might be caused by highly selective map tasks. Highly

selective map tasks produce few output records relative to the input records read by the

map task. As a result, the highly selective map tasks performs fewer spill and write

operations then an I/O intensive job (Herodotou, 2012).

The relative fitness model learns the workload characteristics that correspond to

the cost statistics’ scaling factors or relative fitness by executing a regression tree

machine-learning algorithm (Herodotou, 2012). The model generates the regression

tree’s training set, Table 9, from the source (A) and target (B) VM type benchmark

results. The source VM type’s cost statistics represent the predictor variables in the

training set because the source’s VM type characterizes the baseline profile. The relative

fitness, !"!→!, represents the predicted variable in the training set because !"!→!

Generate profile
for job on

baseline cluster (A)

A to B's
relative fitness

model

Cost statistics
for job on

target cluster (B)

!

! 49!

quantifies the percentage the cost statistic changes on the target virtual machine type

(Herodotou, 2012)

Figure 6. Relative Fitness Model Creation

Table 9: Relative Fitness Training Set for I/O Read Cost from HDFS per Byte

FieldA AvgA !"#$!!"#$!!"#$!!"!→!

Read Local I/O cost / byte 17 .51
Map CPU cost / key 6 .51
Sort CPU cost / key 8 .51

… … …

The regression tree predicts the relative fitness because the training set models the

relationship between the baseline and virtual profile’s cost statistics. If the benchmarks

cover all the possible workload characteristics, then the baseline profile should match

some of the benchmarks’ cost statistics from the source VM type. The regression tree

compares the baseline profile’s cost statistics against the benchmarks’ predictor variables

to determine which combination of benchmarks best fits the workload’s characteristics

(Mesnier et al., 2007). The regression tree then can predict the virtual profile’s cost

statistics because each predictor variable corresponds to the relative fitness of a virtual

profile’s cost statistic (Herodotou, 2012).

Although the Elastisizer generates the training set only once, the relative fitness

model’s accuracy depends on the training set’s completeness because the relative fitness

Instance type A's
cost statistics

Instance type B's
cost statistics

M5 regression tree
learning algorithm

Profile training jobs
on each

cluster (A & B)
A to B's

relative fitness
model

Model's Training Set
CS !, RF A->B

!

! 50!

model predicts the cost statistic changes based on the similarity to the benchmarks. Prior

research demonstrates the prediction accuracy impact caused by an incomplete training

set (Herodotou, 2012). An experiment analyzed the prediction error on training sets

with and without CPU intensive workloads. When the training set excluded CPU intense

workload and the model was applied to a CPU intensive workload, the relative prediction

error was 40% greater then the training set that included the CPU intensive characteristics

(Herodotou, 2012).

In summary, the relative fitness model predicts the virtual profiles cost statistics

because the model quantifies the cost statistics changes for similar workloads. The

Elastisizer captures the changes in cost statistics between two VM types for a variety of

benchmark workloads. Then a machine-learning algorithm creates a regression tree to

match the baseline profile against the benchmark to predict the new virtual profile’s cost

statistics. However, the new virtual profile is not yet complete because the virtual

profile’s new dataflow and cost are yet to be determined.

Elastisizer - White Box Model

As discussed, the virtual profile models each individual map-reduce task’s

execution time and dataflow on a new virtual cluster. Although the virtual machine type

impacts the task’s execution time, the workload’s configuration also influences the task’s

execution time and dataflow, also known as the application trace. The workload’s

configuration dictates the type and frequency of operations performed by the map-reduce

tasks (Herodotou, 2012). For example, the map task decompresses the input data only if

the workload configures the input data to be compressed. When the workload reads

compressed input records, the number of decompress operations depend on the

!

! 51!

configuration’s split size. The split size dictates the number of input records to be

decompressed because the split size controls the amount of data the task reads

(Herodotou, 2012).

Although the configuration impacts the workload’s trace, Herodotou & Babu

(2011) modeled the trace’s changes by using a white box model to predict the operations

performed by a task. The white box model decomposes the map-reduce tasks into

operations for each phase, Table 10 and Table 11. The white box model predicts the

dataflow (amount of data) and costs (amount of time) for the individual tasks because the

model uses the cost statistics, data flow statistics, and configuration to calculate each

phase’s time, type, and frequency of operations (Herodotou, 2012).

The white box model calculates the operation’s execution time by using the cost

statistics. The white box model requires the cost statistics predicted by the relative

fitness model because the virtual profile’s cost statistics estimated the primitive operation

time changes caused by a new virtual machine type (Herodotou, 2012). Although the

cost statistics quantify the operation’s timing, the cost statistics do not predict primitive

operation’s type or frequency (Seltzer et al., 1999).

The white box model calculates each phase’s operation types by decomposing the

tasks into operations (Herodotou, 2012). The white box model decomposes the map-

reduce tasks into a series of phases, Table 5. Each phase performs a number of primitive

operations as it processes the input data. Each phase’s operation types are controlled by

the map-reduce job’s configuration. For instance, the map’s read phase only executes

input decompression when the configuration’s input compression field is set to true

(Herodotou, 2012).

!

! 52!

The white box model calculates the primitive operations’ frequency by modeling

the dataflow between phases. The white box model requires the phase’s dataflow to

calculate the phase’s execution time because the dataflow quantifies the amount of work

performed by each operation (Herodotou, 2012). For instance, the map phase time

depends on the map operation’s CPU time and number of input records: see the map

phase row in Table 10. The cost statistics quantify the map operations’ CPU time in

nanoseconds per record, Table 7. The white box model calculates the total map phase

time using the number of map input records from the virtual profile’s dataflow field

(Herodotou, 2012):

!"#$%ℎ!"#$%&# = !"#$%&'()*!×!!"#$%&'(&)"*.

Table 10: White Box Model Map Parameters

Phase Cost Statistics Dataflow Statistics Configuration Dataflow (Output) Costs (Output)
Read csDfsReadCost

csInUncompress
dsInputCompressRatio
dsInputPairWidth

pSplitSize
pIsInCompressd

dMapInBytes
dMapInRecs

cReadPhaseTime

Map csDfsWriteCost
csMapCPUCost
csOutComprCPUCost*

dsMapSizeSel*
dsOutCompressCPUCost*

pNumReducers
pIsOutCompress

dMapOutBytes*
dMapOutRecs*

cMapPhaseTime
cWritePhaseTime

Collect &
Spill

csLocalReadIOCost
csLocalWriteIOCost
csPartionalCPUCost
csSerdeCPUCost
csSortCPUCost
csCombineCost
csIntermComprCPUCost

dsMapSizeSel
dsMapPairsSel
dsCombineSizeSel
dsCombinePairsSel
dsIntermCompressRatio

pNumReducers
pSortMB
pSortRecPerc
pSpillPrec
pIsIntermCompress

dSpillBufferRecs
dSpillBufferSize
dNumSpills
dSpillFileSize
dSpillFileRecs

cCollectPhaseTime
cSpillPhaseTime

Merge csLocalReadIOCost
csLocalWriteIOCost
csMergeCPUCost
csCombineCost
csIntermComprCPUCost
csIntermUncomprCPUCost

dsMapSizeSel
dsMapPairsSel
dsCombineSizeSel
dsCombinePairsSel
dsIntermCompressRatio

pSortFactor
pUseCombine
pNumSpillsForCombine
pIsIntermCompress

dNumRecsSpilled
tIntermDataSize
tIntermDataRecs

cMergePhaseTime

!

! 53!

Table 11: White Box Model Reduce Parameters

Phase Cost Statistics Dataflow Statistics Configuration Dataflow (Output) Costs (Output)
Shuffle csLocalReadIOCost

csLocalWriteIOCost
csNetworkCost
csMergeCPUCost
csCominbineCPUCost
csIntermComprCPUCost
csIntermUncomprCPUCost

dsIntermCompressRatio
dsCombineSizeSel
dsCombinePairsSel

pNumberReducers
pNumMappers
pTaskMem
pShuffleMergePrec
pInMemMergeThr
pSortFactor
pIsIntermCompress

dShuffleSize cShufflePhaseTime

Merge csLocalReadIOCost
csLocalWriteIOCost
csMergeCPUCost
csIntermComprCPUCost
csIntermUncomprCPUCost

dsIntermCompressRatio

pReducerInBufPrec
pTaskMem
pSortFactor
pIsIntermCompress

 cMergePhaseTime

Reduce csLocalReadIOCost
csIntermUncomprCPUCost
csReduceCost

dsIntermCompressRatio
dsReduceSizeSel
dsReducePairsSel

pIsIntermCompress dReduceInByte
dReduceInRecs

cReducePhaseTime

Write csDfsWriteCost
csOutComprCPUCost

dsOutCompressRatio pIsOutCompress dReduceOutBytes
dReduceOutRecs

cWritePhaseTime

Elastisizer – Task Simulator

Although the virtual profile characterizes the individual task’s dataflow and

execution time, the virtual profile does not predict the workload’s overall execution time.

The Elastisizer simulates the workload’s tasks because the map-reduce framework

schedules the individual tasks across several virtual machine instances. The workloads

total execution time depends on the percentage of tasks executed in parallel or the

number of task waves (Verma et al., 2011).

When the white box model completes the virtual profile, the task simulator

creates a schedule based on the virtual profile’s data flow and execution time to calculate

the job’s overall execution time. The task simulator performs a discrete event simulation

to determine the virtual task’s timing and order (Herodotou, 2012). The simulator

emulates the map-reduce framework’s scheduler to assign tasks to the available slots,

Table 1, in a FIFO fashion (Herodotou, 2012). The virtual profile’s cost fields, Table 5,

quantify the execution time for each simulated task.

!

! 54!

The task simulator tracks the map-reduce phases’ data dependencies. As

previously noted, the reduce shuffle occurs before the map phase completes. Before the

map phase completes, the scheduled reduce tasks start to transfer and shuffle the

intermediate data from the completed map tasks (Wang et al., 2009). In other words,

the initial shuffle’s completion time overlaps with the map tasks execution time. The

discrete event simulation must estimate the initial shuffle’s overlapping time to calculate

the overall execution time (Wang et al., 2009).

In summary, cloud users can compare workloads on virtualized map-reduce

clusters with different virtual machine types and numbers because the Elastisizer predicts

the impact on execution time caused by new resources. To model the workload with a

new VM type and or number of instances, the Elastisizer creates a profile that

characterizes the map-reduce task’s execution time and dataflow on a baseline cluster.

The Elastisizer then models a virtual profile to predict the changes to the task’s execution

time and dataflow caused by the target cluster. Finally, the Elastisizer simulates the

workload using the virtual profile to calculate the overall execution time.

Spot Instances

In addition to the virtual machine type and number, the cloud user also decides on

the pricing model. The cloud user’s pricing options include on-demand and spot

instances. Although both options provide the exact same resources for a given virtual

machine type (Table 1), the spot instance option impacts both the workload’s execution

time and monetary costs.

Spot instances affect the workload’s execution time and monetary costs because

the spot instances are allocated by a preemptive auction. Preemptive auctions allocate a

!

! 55!

finite number of resources and allow new bidders to preempt existing bidders. These

auctions preempt users because the number of successful bids, N, cannot exceed the

available number of virtual machines (Orna Agmon Ben-Yehuda et al., 2011). When an

existing user’s bid is higher then the (N + 1)th bid, the auction terminates the user’s

existing instances.

Given: U users, V virtual machines, !! allocated VMs, starting price p’, increment price
function !: !,! , and bid selection function ! !
Set ! = 0,! 0 = !!′
Loop
 Collect winning bids: !! ! = !! ! ! !∀!
 Calculate excess demand: ! ! = ! !!!(!)! − !
 if ! ! ≤ 0 then
 Break
 Else
 Update prices: ! ! + 1 = !! ! + !!(! ! ,! !)
 ! = ! + 1
 end if
end loop
Figure 7. Ascending Clock Auction

Spot instances impact the workload’s monetary cost because supply and demand

regulates the spot instance price. For instance, the spot instance price could be regulated

by an ascending clock auction algorithm, Figure 7 (Stokely et al., 2009). The algorithm

starts with an initial reserve price for the spot instances, p’. The auction collects the

virtual machine allocation’s winning bids. If the number of winning bids exceed the

available virtual machines, then the price is incremented using an increment function,

!(! ! ,! !). The process repeats until the number of allocated virtual machines is less

then the number of available virtual machines (Stokely et al., 2009).

If the cloud user is willing to wait to start the workload, preemptive auctions

provide access to instances at reduced prices when demand is low. However, the cloud

user cannot predict when a price will be available (Orna Agmon Ben-Yehuda et al., 2011)

!

! 56!

or the duration the price lasts (Chohan et al., 2010). Previous work has focused on three

models to quantify the impact of preemptive auctions on the workload’s monetary costs

and execution time: initial bid success probability, expected lifetime, and execution time

impacts from early termination.

Initial bid success probability

The cloud user may be able to wait for a successful bid because the cloud user’s

expected completion time contains slack time prior to the workload’s start (Herodotou et

al., 2011). However, the cloud user needs to know the bid’s acceptance chances because

the cloud user’s slack time is constrained. In other words, the cloud user can only delay

the workload’s start for a finite amount of time in order to complete the workload on

time.

To estimate the bid’s acceptance probability, Agmon Ben-Yehuda et al. (2011)

quantified the bid’s availability based on a spot market’s price history or trace. The

cloud user’s bid price must be equal or greater then the market price for a spot instance to

be active. The bid’s availability, Equation 5, is the fraction of time in the market price

history when a spot instance is active (Orna Agmon Ben-Yehuda et al., 2011). When

the bid’s availability is low, the cloud user waits longer on average for the desired bid

price to be accepted.

! !"#$%#&%' !"#$%&! = ! !"#$!"#$%&|!"#!"#$!"#$%

(5)

Although the availability estimates the bid acceptance probability, the current

market price also provides the cloud user a starting point for the bid. Given a current

market price and desired slack time, the cloud user can also examine the price duration’s

!

! 57!

cumulative distribution function (CDF) to determine the bid price (Orna Agmon Ben-

Yehuda et al., 2011). The CDF measures the length of time between price changes

based on the market price history. The price duration CDF aids the cloud user setting a

bid price because the CDF indicates the time expected before the next price change. If

the cloud user’s maximum start time is 60 minutes and the current market price lasts on

average 120 minutes before the next change, then the cloud user should set the bid at the

current market price to allocate the instance in time (Orna Agmon Ben-Yehuda et al.,

2011).

Although the availability probability and price duration CDF help the cloud user

select a bid price, neither method estimates the spot instances’ early termination

probability. Both approaches focus on the bid’s initial acceptance by an auction.

However, the bid’s acceptance does not guarantee the auction will not raise the market

price before the workload completes because multiple auctions occur after the initial

auction allocates the spot instance (Chohan et al., 2010).

Expected Lifetime

As discussed, preemptive auctions may terminate spot instances before a

workload’s processing completes because the cloud user can be outbid while the instance

is active. Cloud users require an estimate on the spot instance’s lifetime because the

instance expected lifetime helps the user select a bid price (Chohan et al., 2010). If the

instance’s expected lifetime is greater than the job’s expected execution time, then the

workload probably will complete before the spot instance terminates. Otherwise, the

workload requires additional processing time and monetary cost because the spot instance

likely will terminate before the workload completes.

!

! 58!

Cloud providers limit the cloud user’s ability to estimate the expected lifetime

because the bids cannot be observed and the exact auction algorithm is unknown. In

Amazon EC2, a cloud user is unable to observe the bidding history of the competitor

(Chohan et al., 2010). Additionally, Amazon does not publish the auction algorithm

(Orna Agmon Ben-Yehuda et al., 2011). Instead, Amazon EC2 provides a price history

for each instance type, which provides the market price over the last 30 days.

Although the cloud user cannot directly observe the auction, statistical methods

exist to model the expected lifetime from a market price history because the market price

history provides a means to observe the auction’s output. The price history provides

market price transitions based on the auction results (Chohan et al., 2010). Chohan et al.

(2010) created a price transition probability matrix, Mi,j, from the market price transition

history. The matrix, Mi,j, models the likelihood the market price changes from a starting

price, i, to a finish price, j, during a fixed time interval. The matrix uses a one-hour time

interval because cloud users are billed by the hour (Chohan et al., 2010).

Although Mi,j models price transition probabilities in one-hour intervals, Chohan

et al. (2010) used the price transition matrix to model the price transition over several

hours. Let B represent the set of prices or states resulting in the cloud user being out bid.

Let i equal the current market price and b equal the cloud users desired bid price. If the

model predicts over a one-hour interval, then the probability the spot instance remains

active is the sum of state transition probabilities not in set B (Chohan et al., 2010).

Equation 6 provides the probability the market price remains at or below the bid price

over n hours because Equation 6 calculates the price transitions over several steps.

!

! 59!

! !, !,! = ! !!"!(!, !,! − 1)
!∉!

 (6)

While Equation 6 calculates the probability for n hours, the cloud user requires an

estimate for the mean spot instance duration for a bid. If the workload’s duration is less

than the mean spot instance duration, the workload completes without interruption greater

then 50% of the time. Chohan et. al (2010) calculated the mean spot instance duration or

expected lifetime based on the market price history length, !, in hours, Equation 7.

!"#$!!"#$%"&$ = ! !!!(!, !,!)
!

!!!
 (7)

Although expected lifetime provides insight to the cloud user’s bid strategy, the

cloud user also requires execution time and cost estimates to determine a bid price. The

cloud user requires execution time estimates because the cloud user must compare the

expected lifetime against the workloads execution time (Herodotou et al., 2011).

Furthermore, the cloud user must estimate the early termination failure cost because the

expected lifetime only provides the average spot instance duration (Chohan et al., 2010).

While cloud users can select bids for their workloads to complete before the expected

lifetime, some workload runs will contend with spot instance failures (Chohan et al.,

2010).

Early Termination Costs

Terminated spot instances increase the workload’s execution time because the

workload requires rework of tasks from the failed instances. The rework not only

includes partially completed tasks but also completed map tasks. The map tasks store the

!

! 60!

intermediate data on the local file system prior to being transported to the reduce tasks

(Wang et al., 2009). When an instance fails, the failed node’s scheduled tasks require re-

execution because the reduce tasks lose intermediate data created by the map tasks

(Wang et al., 2009).

Chohan, et al. (2010) approximates the early termination execution costs by

estimating the time to detect the failure, !, and the proportion of map tasks requiring

rework. Equation 8 shows the failure cost in additional execution time, where s is the

total number of instances, f is the number of failed instances, and M is the total time to

complete the map phases (Chohan et al., 2010).

!"#$%&'!!"#$ = !! + (!"!)/(! − !)

(8)

However, the failure cost approximation only focuses on the impact for the failed

map tasks because the impact on the reducers depends on the number of reduce waves

(Chohan et al., 2010). Terminated spot instances impact the reduce phase’s execution

time because the surviving reduce tasks need to reshuffle the lost intermediate data from

the failed map tasks (Wang et al., 2009). As seen in Figure 4, the reduce tasks transfer

the intermediate data as the map tasks complete. When a node fails with completed map

tasks, all the intermediate data must be recreated because reduce tasks in subsequent

waves may not have transferred the intermediate data yet, Figure 8. However, the initial

reduce tasks may not require the intermediate data because the initial reduce tasks

transferred the intermediate data prior to the node failure (Chohan et al., 2010).

!

! 61!

Figure 8. Intermediate Data Loss

While terminated spot instances impact the cloud user’s completion deadline, the

terminated spot instance increase the workloads monetary costs. Cloud users pay for

spot instances in hour increments. When a spot instance terminates after an hour, the

cloud user pays for the spot instances processing time and the additional execution time

to recreate the lost work (Chohan et al., 2010). Therefore, the cloud user must assess the

early termination execution time as well as the monetary costs before selecting a bid

price.

In summary, the following statistical methods quantified the impact of preemptive

auctions on a map-reduce workload’s monetary costs and execution time: initial bid

success probability (Orna Agmon Ben-Yehuda et al., 2011), expected lifetime, and

execution time impacts from early termination (Chohan et al., 2010). The statistical

methods aid cloud users because statistical methods predict the bid price’s availability,

spot instance duration for a given bid, and the workload’s preemption costs. However,

each statistical method requires the workload execution time estimate to determine the

bid’s impact on the workload’s execution time and monetary cost (Herodotou et al.,

2011).

map task map task

map task map task

 map task map task

... ...

reduce task

reduce task

reduce task

reduce task

time (seconds)

X Missing intermediate data

Instance terminated
after the initial waves

shuffle
slots X X

Reduce wave 1 Reduce wave 2

!

! 62!

Storage Approach

If the cloud user decides to use spot instances, then the provider presents the

cloud user with an additional choice. The cloud user must select an alternative storage

option because spot instances cannot host the map-reduce framework’s corresponding

distributed file system. Spot instances are unsuitable for hosting the distributed file

system because the spot instance may terminate before providing access to the workloads

results (Chohan et al., 2010). For instance, Amazon EC2 changed spot instance prices

every 1.25 hours on average during a period from July 2010 to Feb 2011 (Orna Agmon

Ben-Yehuda et al., 2011). If a workload executes in 1 hour, then the cloud user may

only have 15 minutes or less to review the workloads results.

To avoid loss of the workload’s results, prior research proposed the following

storage alternatives for spot instances: Spot Instance Accelerators and Amazon S3.

Spot Instance Accelerators

Spot instance accelerators provide a method to process data with spot instances

and persist the results after the instance terminates (Chohan et al., 2010). With the spot

instance accelerator approach, the map-reduce cluster contains a combination of on-

demand and spot instance virtual machines. The on-demand virtual machines are core

nodes. The core nodes persist the workload’s results because the core nodes host both the

distributed file system processes and map-reduce tasks like a traditional map-reduce

cluster node. The spot instance virtual machines are accelerator nodes. The accelerator

nodes enable the spot instances to process data because the accelerator nodes host map-

reduce tasks by providing additional map-reduce task slots.

!

! 63!

The accelerator nodes impact the cloud user’s ability to estimate the map-reduce

execution time because the accelerator nodes increase the workload’s average number of

remote data requests. Although accelerators increase the number of task processing slots,

the accelerators isolate the map tasks from the distributed file system (Chohan et al.,

2010). When the map-reduce scheduler divides the input data to be processed, the

scheduler assigns a map task to a corresponding data block stored in the distributed file

system. The scheduler attempts to place the map task on the same file system node that

contains the task’s data block (Dean & Ghemawat, 2008). However, the accelerator’s

map tasks access their data blocks remotely because the accelerator node does not store

the corresponding input data blocks (Chohan et al., 2010).

When the map-reduce scheduler assigns a map task to a remote node, the map

task’s read throughput decreases because the remote read requests increase network and

disk contention. Although the map-reduce nodes provide network bandwidth greater

then 1 Gb/sec, remote tasks contend with other remote tasks to access a given data node

(Dean & Ghemawat, 2008). When the number of remote tasks increases, the task’s

effective bandwidth decreases because the remote tasks share the data node’s network

and disk bandwidth (Dean & Ghemawat, 2008).

The map phase’s read throughput depends on the workload’s average data

locality. Data locality expresses the distance between a map task and the task’s file

system block. The map’s read throughput depends on the locality type: data local,

virtual machine local, rack local, or rack remote. Each locality type quantifies the

distance the map read request travels and potential resource contention.

!

! 64!

Data local task requests travel the shortest distance because the map task reads

data from the same node. Node locality reduces network contention because the map

task’s data is read directly from the local disk. The map task’s data request does not

cause network interference (Zaharia et al., 2010). However, data local tasks create local

disk contention because the local tasks share disk bandwidth (Zaharia, Konwinski,

Joseph, Katz, & Stoica, 2008).

Virtual machine local requests travel the next shortest distance because the map

tasks reads data from the same physical machine but different virtual machine instances

(Li, Subhraveti, Butt, Khasymski, & Sarkar, 2012). Virtual machine local tasks connect

to a remote data node via a virtualized network connection instead of using the physical

network. Virtual machine local tasks reduce the physical network contention caused by

the task because the data requests are channeled over a virtual network. However, co-

located virtual machines compete for disk bandwidth. Although the impact varies

depending on the virtual machine type, small instance types experience up to a 60%

reduction in disk throughput (Zaharia et al., 2008).

Rack local requests travel one network hop because the map tasks access remote

data nodes that are located on the same physical rack (Wang et al., 2009). Rack local

tasks may cause localized network congestion and contention on remote data nodes

because the remote data node on the same switch must service several remote data

requests. The workload’s execution time increased by 40% with rack local tasks because

data request latency caused the map task’s read phase to increase 5 times (Wang et al.,

2009).

!

! 65!

Rack remote requests travel the furthest because the map tasks access data across

several network switches (Wang et al., 2009). Rack remote requests cause network

congestion between the network switches because the map phase’s data requests are

concentrated on the connections between the racks. In the remote rack case, execution

time increased by 284% with a double rack topology because latent data requests caused

the map tasks’ read phase to increase 175 times (Wang et al., 2009).

Although the individual task data locality impacts the map phase read throughput,

map-reduce workloads contains a mixture of locality types. The map-reduce scheduler

attempts to place the map tasks on the nearest tasks slot to the file system block.

However, the map-reduce scheduler assigns tasks in a FIFO order and does not wait for a

local slot to become available (Zaharia et al., 2010). When the workload’s input data

concentrates on a few data nodes or several jobs request data from the same node

concurrently, the map-reduce workload contains a mixture of data local, rack local, and

rack remote tasks (Zaharia et al., 2010).

When prediction tools estimate the workload’s execution time, the tools must

account for the mixture of locality types. To account for the mixture of local and remote

map tasks, the Elastisizer measures the average map read time in the workload’s profile.

The average map read time characterizes the impact from workload’s locality because the

profiler measures the throughput for the distributed file system, which contains both local

and remote reads (Herodotou, 2012). However, the profile does not include an explicit

locality measurement because the cloud provider obfuscates the physical network

topology (Herodotou, 2012). Therefore the profile does not quantify the percentage of

data local, virtual machine local, rack local, and rack remote tasks.

!

! 66!

Although the Elastisizer quantifies data locality impacts on the map execution

time, the average read time measurement is flawed because the accelerator nodes change

the workload’s locality. Although the Elastisizer assumes all cost statistics fields

remain constant for a given virtual machine type, the workload’s average data locality

impacts the distributed file system’s average read time per byte (csDFSReadCost). The

csDFSReadCost measures the average read time for both the data local and rack local

tasks. When a map task executes on a rack local node, the task’s read phase increases 5x

compared with a node local task from a sort workload (Wang et al., 2009). When the

cloud user adds accelerator nodes to a workload’s configuration, the data to rack local

task mixture changes because the map tasks assigned to the accelerator are not data local

tasks (Chohan et al., 2010).

Given that accelerator nodes impact the map-reduce workload’s locality and data

locality impacts the workload’s execution time, cloud users require an estimate of the

impact on overall execution time caused by additional accelerator nodes. If additional

accelerator nodes fail to proportionally speed up the execution time, then the cloud user

receives diminishing marginal utility from the additional accelerators (Chohan et al.,

2010).

Amazon S3

Amazon S3 provides another approach to access the workloads results after spot

instances terminate (Chohan et al., 2010). Amazon S3 provides access to the map-

reduce results after spot instances are terminated because Amazon S3 stores data on an

external file system independent from the virtual machine instances. The cloud user

!

! 67!

accesses the workload’s results via an HTTP interface after the job completes (Wieder et

al., 2012).

Map-reduce workloads process the Amazon S3 data because S3 organizes the

data in a block-oriented fashion, similar to HDFS. Amazon S3 stores the workload’s

input data using key-value pairs. The key is the filename and bucket or location of the

file and the value is the content of the data (Bicer et al., 2011). Although standard file

system clients interact with the file system via a HTTPS REST interface, map-reduce

tasks access Amazon S3 as a block storage file system, similar to HDFS. Each map task

accesses a block using HTTPS requests to the block. As with typical HTTP connections,

multiple threads retrieve the blocks content in parallel chunks (Bicer et al., 2011).

Although Amazon S3 provides a similar block oriented access pattern, Amazon

S3 increases the map-reduce workload’s network overhead compared to HDFS. When a

map-reduce workload uses HDFS, the map tasks are scheduled on the same node as the

data being processed. When a map-reduce workload uses Amazon S3, map tasks must

access data remotely. The remote access increases network overhead because the

workload’s tasks share network bandwidth to the remote storage system (Dean &

Ghemawat, 2008).

Although Amazon obfuscates S3 proprietary details, past studies compared S3’s

throughput to HDFS’s remote throughput. When a large EC2 instance uploads a 64 MB

file, HDFS throughput was 20 MB/s compared to S3’s 16 MB/s (Wieder et al., 2012).

The test used m1.large instances because the large instance has greater bandwidth

available to Amazon S3 compared to other instances, see Table 1 (Wieder et al., 2012).

!

! 68!

Amazon S3 increases the map-reduce workload’s network overhead compared to

HDFS because Amazon S3’s reads include additional HTTP and SSL overhead per data

block request (Bresnahan, Keahey, LaBissoniere, & Freeman, 2011). The overhead’s

throughput impact depends on the requested data block’s size. An S3 clone provided

read throughput ranging from 10 MB/s for 2MB blocks to 310 MB/s for 512 MB blocks

(Bresnahan et al., 2011). In a separate experiment, Amazon S3 provided a read

throughput average 1MB/s for 1MB blocks and 17 MB/s for 100 MB blocks (Palankar,

Iamnitchi, Ripeanu, & Garfinkel, 2008).

Although Amazon S3 impacts the workload’s overhead, cloud users might

consider Amazon S3 as an alternative to reduce monetary costs. Cost reductions are

possible because Amazon S3 enables a cloud user to schedule the workload during non-

peak hours when spot instance prices are low (Wieder et al., 2010). In essence, Amazon

S3 enables the cloud user to analyze the workload’s results after the workload completes

and the virtual machine instances are terminated. However, the cloud user requires

execution time and monetary cost estimates to evaluate Amazon S3 as an alternative

(Wieder et al., 2010).

When the Elastisizer compares Amazon S3 workloads, the model requires new

costs statistics for Amazon S3 backed virtual machines because the external file system

changes the I/O resources available to the virtual machines (Herodotou et al., 2011).

Although Amazon S3 reduces the distributed file system throughput, the external file

system supplements the virtual machines’ local I/O resources. As seen in Figure 4, the

map-reduce tasks write to both the distributed file system and local disk. With HDFS

based workloads, the local disks service requests for both intermediate data and HDFS

!

! 69!

file system blocks (Wang et al., 2009). When the workload uses Amazon S3, the local

disks only processes intermediate data requests because Amazon S3 persists the

distributed file system’s data (Wieder et al., 2012).

Summary

The cloud user decides on the virtual machine type, number of virtual machines,

pricing model, and storage to configure the workload’s virtualized cluster. Each option

impacts the workload’s execution time and monetary costs. The literature review

examined each option’s impact on the workload. In addition, existing tools and

techniques were examined to quantify each option’s impact for a given workload.

Although map-reduce cost estimation tools exist to evaluate the workload’s execution

time and monetary costs for a user, the past tools have not addressed two options: the

pricing model and storage approach.

!

! 70!

Chapter 3

Methodology
This dissertation achieved the dissertation goal by enhancing previous cost

estimation tools to include virtualized map-reduce clusters using spot instances. The

methodology includes the following enhancements: storage strategy specific virtual

profiles, a failure-aware task simulator, and spot market forecasts. These enhancements

improved the completion time and monetary cost prediction accuracy for map-reduce

workloads using spot instances.

The approach first enhanced the estimation tool to include storage strategy

specific virtual profiles. The enhanced tool requires specific virtual profiles because the

storage strategy creates different cost statistics for both the on-demand and spot instance

tasks (Lee et al., 2011). To account for the differences between on-demand and spot

instance tasks, the tool will create new virtual profiles, which include spot instance nodes.

Additionally, the spot instance tasks impact the cost statistics because the remote

tasks can reduce the workload’s aggregate file system throughput. When a workload

exceeds 72 nodes or 50% accelerator nodes, the workload generates enough remote data

calls to cause file system congestion (Wang et al., 2009; Zaharia et al., 2010; Zaharia et

al., 2008). To account for file system congestion, the virtual profile updates also model

the cluster size and accelerator ratio’s impact on the cost statistics.

When the storage strategy’s profile enhancements were completed, the

dissertation evaluated the enhanced tool’s prediction accuracy over a series of workloads.

The test workloads allocated various cluster sizes and spot instance ratios to measure the

enhanced virtual profiles’ prediction error as the workload adds spot instances. For each

!

! 71!

workload, the evaluation compared the original and enhanced tool’s execution time

prediction error to determine the accuracy improvements.

Although the profile updates improved the execution time estimate’s accuracy in

the absence of failures, the tool required task simulator updates to estimate the execution

time with spot instance failures. When a node fails during the workload’s execution, the

workload requires extra processing time because the map-reduce framework must

reschedule the workload’s tasks to recreate the failed nodes’ intermediate data (Wang et

al., 2009). The updated task simulator calculated the extra processing time required

given a specific failure time.

When the task simulator updates were completed, the dissertation evaluated the

updated simulator’s prediction error during spot instance failures. The evaluation tested

spot instance failures during different times within a workload. For each failure time,

the enhanced tool predicted the workload’s execution time. The evaluation compared

the simulator’s predicted execution time against the workload’s actual time to determine

the prediction error. If the updated simulator reduced the prediction error compare to the

original tool’s estimates, then the enhanced tool successfully improved the prediction

accuracy for terminated spot instance workloads.

When the tool completed the virtual profile and task simulator updates, the

approach enhanced the tool to forecast the completion time and monetary costs based on

the spot market history. The enhanced tool requires a forecast because a spot market

auction controls the spot instances’ availability to the workload (Stokely et al., 2009).

The forecast contained the expected completion time and cost based on spot instance

availability for a given bid price.

!

! 72!

Once the forecast enhancements were completed, the dissertation evaluated the

forecast’s accuracy by comparing two traces from the same spot market. The first trace

provides the input to compute the predicted values; and the second trace computes the

actual values via simulation. The evaluation compared the predicted and actual values to

measure the forecast’s prediction error. If the forecast reduced the prediction error

compared to the original tool’s on-demand estimates, then the enhanced tool successfully

improved the map-reduce workload’s prediction accuracy for spot instances.

Storage Strategy Updates

The enhanced tool updated the virtual profile to handle both Amazon S3 and

accelerator storage strategies. While the enhancements include a separate virtual profile

for each storage strategy, the virtual profile enhancements also include relative fitness

updates to model file system contention. Once the enhancements were complete, this

study evaluated each enhancement to determine the prediction accuracy improvements

over the original tool.

The methodological approach first updated the cost estimation tool to address the

storage strategy because the workload’s storage affects the virtual profile’s cost fields.

The updated estimation tool must predict the virtual profile’s cost fields to determine the

spot instance failure costs because the cost fields quantify the time to re-execute a failed

task (Chohan et al., 2010). As previously noted, the Elastisizer’s virtual profile models

the individual map-reduce task’s execution time and dataflow on a new virtual cluster.

When the Elastisizer evaluates the workload on a new virtual machine type, a relative

fitness model captures the changes to the workload’s primitive operation response times

as the virtual profile’s cost statistics (Herodotou, 2012). A white-box model then

!

! 73!

converts the cost statistics to phase costs (i.e. execution times) based on the workload’s

dataflow (Herodotou, 2012).

Although the spot instances contain the same local resources as the on-demand

instances, the storage approach created new spot instance specific relative fitness models.

Both the spot instance storage strategies require new relative fitness models because the

storage strategy impacts characteristics like the distributed file system read time

(Herodotou & Babu, 2011). When the virtual profile models the Amazon S3 storage

strategy, the Amazon S3 approach created one new relative fitness model per virtual

machine type because the workload only allocates one node type per cluster.

Accelerator Virtual Profile

While the Amazon S3 workload allocates one virtual machine type per cluster, the

accelerated workload allocates two different node types: core and accelerator nodes.

The accelerated cluster requires an updated virtual profile because the underlying

distributed file system contains fewer resources relative to the non-accelerate cluster.

When Lee et al. (2011) benchmarked a cluster with 5 core and 4 accelerator nodes, the

accelerator nodes increased execution time by 5% compared to a 9-core node cluster.

The accelerated cluster increased the execution time because the accelerated nodes

increased the map task’s file system read costs compared to the pure core workload.

Although this study considered separate virtual profiles for the core and

accelerator nodes, the task simulator used a single virtual profile for both node types

because the each type used the same virtual resources. When this study executed

TeraSort on an accelerated cluster with a 1:1 core to accelerator ratio, the average task

completion time for accelerated and core tasks only varied by 4%. If the cluster

!

! 74!

workload generates HDFS contention, then the contention impacts both node types

similarly because tasks on both node types wait for HDFS requests to be serviced form

the core nodes (Wang et al., 2009).

Enhanced Relative Fitness Models

While the updated virtual profile quantifies the accelerated file system read and

write costs, remote accelerator tasks increase file system contention. As seen in Figure 4,

the map-reduce tasks generate network traffic during the map read, reduce shuffle, and

reduce write operations. When the workload contains remote tasks, the remote

operations cause congestion because the aggregated data transfers exceed the cluster’s

available bandwidth (Wang et al., 2009; Zaharia et al., 2008).

The remote tasks increase the workload’s execution time because the tasks create

both network and disk contention. Remote tasks increases execution time between 70%

and 284% for 72+ node clusters because the tasks generate enough remote data calls to

cause network congestion (Wang et al., 2009). However, remote tasks also impact

execution time on smaller clusters because the remote tasks can cause disk contention.

Remote task create disk contention because HDFS data nodes service both local and

remote task requests (Wang et al., 2009). When the data node services five times the

tasks, disk throughput reduces by 44% due to disk contention (Zaharia et al., 2008).

The virtual profile update modified the relative fitness model to predict virtual

profile’s cost statistics given the file system load. The relative fitness model includes the

cluster size and spot instance percentage as predictor variables because the new features

quantify the underlying file system’s load created by the remote tasks, Figure 9.

!

! 75!

When the relative fitness model covers utilization features, the utilization features

improve the relative fitness models accuracy. Network utilization features improved a

file system model’s relative prediction error from 100% to 40% because the model’s

training set captured network utilization impact on the file system’s available bandwidth

(Mesnier et al., 2007).

Figure 9. Enhanced Fitness Model Training Set

To capture the utilization features, the enhanced tool extended Herodotou’s

(2012) training set algorithm because the algorithm captures the cluster resource to

relative fitness relationships. The training set algorithm generates the fitness model’s

training set from the source (A) and target (B) clusters’ benchmark profiles. The original

algorithm predicts the cost statistic changes between the source and target virtual

machine types given the workload cost statistics on the source cluster. While the

original algorithm only captures the source’s cost statistics as predictor variables, the

enhanced algorithm will add the spot instance percentage as a predictor variable, Figure

10.

Instance type A's
cost statistics

Instance type B's
cost statistics, cluster size,

& accelerator ratio

M5 regression tree
learning algorithm

Profile training jobs
on each

cluster (A & B)
A to B's

relative fitness
model

Model's Training Set
CS !, RF A->B
Size B, RF A-> B
Ratio B, RF A->B

!

! 76!

Algorithm for Enhanced Training Set
Input: ProfA = Profile A, ProfB = Profile B, ProfB.spot = Cluster B’s Percentage of Spot
Instances
Output: RFA->B Training Set
For each cost statistic, i, in table x
 For each cost statistic, j, in table x
 If ! ≠ ! then
 WCA,i = cost statistic i from ProfA
 PA,j = cost statistic j from ProfA
 PB,j = cost statistic j from ProfB
 Write WCA,i ProfB.spot => PB,j/ PA,j to training set for RFA->B,j
 End if
 End for
End For
Figure 10. Enhanced Training Set Algorithm

Storage Strategy Evaluation

Methodology Overview

The storage approach evaluated the virtual profile enhancements for both the

Amazon S3 and Accelerator storage strategies. For each virtual profile enhancement, this

study compared the enhanced and original tool’s prediction accuracy. Both tools

predicted the execution time against a representative set of workloads, Table 12. The

evaluation calculated both tools’ prediction error compared to the average actual

execution. If the enhanced tool reduced the prediction error compared to the original tool

for the given storage strategy, then the enhancement successfully met the dissertation

goal.

Both storage strategy evaluations executed workloads in Table 12 because the

workloads cover typical map-reduce workload characteristics. The grep (Dean &

Ghemawat, 2008) workload represents an I/O intensive workloads because the workload

avoids sorting data by running map-only jobs. The sort, join, TF-IDF and word count

!

! 77!

workloads contain a mixture of I/O and CPU tasks because the workloads index and/or

sort data (Wang et al., 2009). The pi-estimator and co-occurrence contain mostly CPU-

bound tasks because the workloads contain CPU intensive map tasks or sort intensive

operations (Chohan et al., 2010; Herodotou, 2012).

While the workloads covered different characteristics, the evaluation required a

sufficiently sized dataset for the target cluster. The workload’s data sizes enable

experiments up to 30 nodes because the data sets are large enough to occupy all the

available map slots for the target systems (Herodotou, 2012). When the experiments

evaluated disk and network utilization, the dataset size was tripled to fully occupy the

map slots in a 90-node target system.

Table 12: Evaluation Workloads

Workload Data Set Properties Study
Pi Estimator >60KB of control data CPU bound workload (Chohan et al., 2010)
Grep 60GB synthetic I/O bound, map only (Dean & Ghemawat,

2008), (Wang et al.,
2009)

Join 60GB data from the TPC-H
Benchmark

CPU and I/O Mixture (Herodotou, 2012),
(Zaharia et al., 2010)

TF-IDF 60GB of documents from
Wikipedia

CPU and I/O Mixture (Verma et al., 2011),
(Herodotou, 2012)

TeraSort 60GB synthetic workload CPU and I/O Mixture (Dean & Ghemawat,
2008), (Zaharia et al.,
2008), (Wang, Butt,
Monti, & Gupta, 2011),
(Herodotou, 2012)

Word Count 60GB from Wikipedia CPU and I/O Mixture (Verma et al., 2011),
(Herodotou, 2012)

Word Co-occurrence 10GB from Wikipedia CPU bound workload (Herodotou, 2012)

Although each experiment evaluated specific virtual profile enhancements, all

experiments extended Herodotou et al. (2011) methodology for measuring the virtual

profile’s prediction accuracy. Each experiment computed the prediction error for a given

workload, source cluster resources, and target cluster resources because the virtual profile

!

! 78!

predicts the workload’s relative changes between a source and target cluster pair

(Herodotou, 2012). Figure 11 enumerates the general procedure for the prediction

accuracy comparison on a given cluster pair.

The procedure evaluated two different virtual profiles because the evaluation must

demonstrate the enhancement’s prediction accuracy improvement over the existing tool.

Each experiment created a control and enhanced virtual profile. The original tool created

the control virtual profile to quantify the baseline prediction error. The enhanced tool

created the enhanced virtual profile to quantify the individual enhancement’s prediction

error.

Procedure for comparing task simulator
Input: W workloads, Cs source cluster resources, Ct target cluster resources
Output: Econtrol control profile prediction error, Eenhance enhance profile prediction error
Generate relative fitness models: RFcontrol, RFenhanced
For each (job in W)
 Create baseline profile on Cs: Pbaseline
 Predict execution time with RFcontrol on Ct: !!"#$%"& = !!(!!"#$%&'$,!"!"#$%"&)
 Predict execution time with RFenhanced on Ct: !!"!!"#$% = !!(!!"#$%&'$,!"!"!!"#$%)
 Capture job mean execution time on Ct: Tactual

 Calculate the control profile prediction error: !!"#$%"& = ! !!"#$%"&!!!!"#$!%!!"#$!%
!

 Calculate the enhanced profile prediction error: !!"!!"#$% = ! !!"!!"#$%!!!!"#$!%!!"#$!%
!

End for
Figure 11. Virtual Profile Comparison Procedure

To calculate each profile’s prediction error, the procedure executes the workload

on EC2 virtual machines to determine the workload’s actual execution time. While

Herodotou (2012) executed the workloads on EC2 virtual machines, the Amazon EC2

experiments can experience execution time variance because the experiments are not

performed in isolation (Schwarzkopf et al., 2012). The variance indicates contention

caused by other multi-tenant workloads executed on the same cloud environment (Schad,

Dittrich, & Quiané-Ruiz, 2010). When the procedure executed the workloads on EC2

!

! 79!

nodes, the experiment conducted three trials to quantify the workloads’ mean execution

time.

Before each experiment evaluates the control and enhanced virtual profile, each

virtual profile requires a corresponding relative fitness model. The original and enhanced

tools generated relative fitness models by executing benchmark workloads on the source

and target cluster resources. Each tool captures each benchmark’s cost statistics to

generate a training set to create the relative fitness model.

The benchmark workloads contain jobs that create tasks’ different CPU, network,

and disk characteristics. Although the benchmarks follows the Herodotou (2012)

methodology to cover the test workloads’ prediction space, the benchmarks executed the

same tasks across the entire job to generate a necessary aggregate amount of file system

contention. If each task requested different amounts of data, then the job’s file system

contention could not be quantified.

Amazon S3 Evaluation

Based on the general evaluation procedure, this study evaluated the Amazon S3

virtual profile’s prediction accuracy to determine the enhanced profile’s achievement of

the dissertation goal. This dissertation created both HDFS and S3 virtual profiles to

compare the original and enhanced tools’ prediction accuracy. This dissertation

evaluated cluster sizes ranging from 10 to 90 nodes because the workload may

experience file system congestion at larger cluster sizes. If the S3 virtual profile reduced

the average prediction error over the HDFS virtual profile on the different cluster

configurations, then the virtual profile updates are successful.

!

! 80!

The first experiment evaluated the Amazon S3 virtual profile updates on a 10-

node cluster to determine the prediction accuracy improvements over the original virtual

profile. The 10-node experiment provides a comparison point to Herodotou’s (2012)

experiments because the small fixed cluster size reduces the file system congestion’s

impact on the execution time (Zaharia et al., 2008). The 10-node experiment will follow

the procedure in Figure 11 to calculate the control and enhanced virtual profiles’

prediction error.

While the 10-node experiment required a fixed cluster size, the experiment

evaluated several virtual machine types, Table 14. For each target virtual machine type,

the experiment generated a relative fitness model, Table 13, because the tool predicts

relative execution time changes between virtual machines. One relative fitness model

covered a virtual machine type pair because the model determines the cost statistics’

changes between a source and target virtual machine type (Herodotou, 2012). The

experiment created the workload’s baseline profile on the source type because the relative

fitness model predicts the workload’s changes on the target virtual machine (Herodotou,

2012). The experiment created the baseline profile on a 10-node m1.large cluster using

HDFS on-demand nodes.

!

! 81!

Table 13: Amazon S3 Evaluation Relative Fitness Models

RF Model Source Type Target Type File System
1 m1.large m1.large HDFS
2 m1.large c1.medium HDFS
3 m1.large m1.large Amazon S3
4 m1.large c1.medium Amazon S3

The 10-node experiment created HDFS and Amazon S3 relative fitness models

because the experiment followed the virtual profile comparison procedure, Figure 11.

The HDFS and S3 RF models served as the control and enhanced fitness models,

respectively. Once the experiment created the relative fitness model, the Amazon S3

experiment predicted each workload’s execution time in Table 12 against the target

cluster configurations in Table 14. The experiment also executed each workload against

the target cluster configurations to determine the control and enhance models prediction

error.

Table 14: Amazon S3 Accuracy Evaluation (Single Benchmark Run)

Experiment HDFS RF
Model

S3 RF
Model

VM Type Number
of Nodes

File
System

10 m1.large S3 single 1 3 m1.large 10 S3
10 c1.medium S3 single 2 4 c1.medium 10 S3

Although the 10-node experiment evaluated the relative fitness model’s execution

time accuracy, the S3 evaluation needed to evaluate the 10-node fitness model’s

scalability. The scale experiment reproduced Herodotou’s (2012) scale experiment to

determine the single 10-node benchmark’s accuracy up to a 30 node target cluster. While

the scale experiment evaluated a larger target cluster size, the scale experiment continued

to follow the virtual profile comparison procedure, Figure 11. For each workload, the

tool’s simulator estimated the execution time for 10, 20, and 30 instances. The

!

! 82!

experiment compared the simulation results with the actual execution time to evaluate the

simulation’s accuracy as nodes are added to the workload.

Although the 10-node experiment evaluated two different virtual machine types,

the scale experiments focused on file system throughput. The scale experiments

evaluated two different instance types because the instance types contain different

network bandwidth to Amazon S3 (Bicer et al., 2011). The experiments allocated target

clusters with the c1.medium and m1.large instance types because the instances provide

medium and high I/O throughput respectively.

Table 15: Amazon S3 Small Scale Accuracy Evaluation (Single Benchmark Run)

Experiment HDFS RF
Model

S3 RF
Model

VM Type Number
of Nodes

File
System

30 m1.large S3 single 1 3 m1.large 10,20,30 S3
30 c1.medium S3 single 2 4 c1.medium 10,20,30 S3

Once the 30-node experiment completed, the S3 evaluation extended the test

cluster size to determine the enhanced fitness model’s accuracy up to 90 nodes. The

enhanced fitness model experiment evaluated cluster sizes up to 90 nodes because past

map-reduce experiments demonstrated reduced network throughput after 72 nodes for

non-local maps (Wang et al., 2009). This large-scale experiment tested the enhanced

fitness model’s accuracy improvements because the experiment compared the 10-node

relative fitness models to a fitness model created with multiple cluster sizes, Table 16.

The enhanced fitness models conducted benchmark runs at 30, 60, and 90 nodes because

the enhanced model included the cluster size in the training set.

!

! 83!

Table 16: Amazon S3 Large Scale Evaluation Relative Fitness Models

RF Model Source Type Target Type Configurations
5 m1.large m1.large 30 S3 nodes

60 S3 nodes
90 S3 nodes

6 m1.large c1.medium 30 S3 nodes
60 S3 nodes
90 S3 nodes

As with the prior experiments, the large-scale experiment followed the procedure

in Figure 11 to determine the control and enhance model’s prediction accuracy. While

the test workloads remained the same as the 10-node experiment, the large-scale

experiment tripled the workloads’ dataset size to enable sufficient coverage of the

available map-reduce slots. For each workload, the control and enhanced fitness models

estimated the execution time for configurations in Table 17. To determine the actual

execution time, the experiment then executed the workload against the corresponding

target configuration. When the experiment completed the workload’s run, the experiment

compared the simulation results with the actual execution time to evaluate the

simulation’s accuracy as nodes are added to the workload.

Table 17: Amazon S3 Large Scale Accuracy Evaluation (Enhanced Relative Fitness)

Experiment HDFS RF
Model

S3 RF
Model

VM Type Number
of Nodes

File
System

90 m1.large S3 enhanced 1 5 m1.large 30,60,90 S3
90 c1.medium S3 enhanced 2 6 c1.medium 30,60,90 S3

Accelerator Node Evaluation

While the Amazon S3 experiments evaluated the Amazon S3 enhancements’

prediction accuracy, this study focused primarily on the accelerator enhancements’

prediction accuracy. The dissertation evaluated the prediction accuracy improvement

over the original tool for the accelerator’s virtual profile, task simulator, and relative

!

! 84!

fitness model enhancements. The initial experiments evaluated the enhanced virtual

profile and task simulator prediction accuracy at small scale. The evaluation then

conducted accelerator ratio experiments to test the enhanced relative fitness model’s

prediction accuracy with file system contention.

The first experiment evaluated the accelerator virtual profile updates at small

scale to determine the prediction accuracy improvements over the original virtual profile.

Like the Amazon S3 experiment, the 10-node experiment provided a comparison point to

Herodotou’s (2012) experiments because the small fixed cluster size limited the file

system congestion’s impact on the execution time (Zaharia et al., 2008). The 10-node

experiment followed the procedure in Figure 11 to calculate the control and enhance

virtual profiles’ prediction error.

Table 18: Accelerator Relative Fitness Models

RF Model(s) Source Type Target Type Configuration
1 m1.large m1.large 10 HDFS
2 m1.large c1.medium 10 HDFS
7 m1.large m1.large 5 HDFS, 5 accelerator
8 m1.large c1.medium 5 HDFS, 5 accelerator

While the 10-node experiment required a fixed cluster size, the experiment

evaluated accelerated clusters with two different virtual machine types, Table 19. For

each target virtual machine type, the experiment generated a relative fitness model, Table

18, because the tool predicts relative execution time changes between virtualized

resources. Although the core and accelerator nodes reside on the same virtual machine

type, the experiment created a new relative fitness model because the updated virtual

profile captured the cost statistics for the reduced number of data nodes. As with the

!

! 85!

Amazon S3 experiments, the 10-node experiment created the baseline profile on a 10-

node m1.large cluster using HDFS on-demand nodes.

Table 19: Accelerated HDFS Accuracy Evaluation (Single Benchmark Run)

Experiment HDFS RF
Model

Acc. RF
Model

Configuration(s)

10-node m1.large 1 7 5 core, 5 accelerator
10-node c1.medium 2 8 5 core, 5 accelerator

The 10-node experiment created HDFS and accelerator relative fitness models

because the experiment followed the virtual profile comparison procedure Figure 11.

The HDFS and accelerator RF models served as the control and enhanced fitness models,

respectively. Once the experiment created the relative fitness model, the accelerator

experiment predicted each workload’s execution time in Table 12 against the accelerated

cluster configurations in Table 19. The experiment also executed each workload against

the target cluster’s configuration to determine the control and enhanced models’

prediction error.

Similar to the Amazon S3 evaluation, the remaining experiments evaluated the

various target cluster configurations. The next experiment reproduced Herodotou’s

(2012) scale experiment to determine the accelerated virtual profile’s accuracy as the

target clusters scales up to 30 nodes. The scale experiments executed each workload in

Table 12 against the accelerated configurations in Table 20 to determine the accelerated

virtual profiles accuracy as nodes are added. The scale experiment followed the

procedure in Figure 11 to calculate each target cluster’s control and enhanced profile’s

prediction error.

The scale experiment examined the c1.medium and the m1.large instance types

because each instance type provides different I/O throughput to the core data nodes.

!

! 86!

When the cluster contains accelerator nodes, the map tasks’ processing time depends on

the core node’s I/O throughput because the map tasks read input from the shared core

nodes. The c1.medium instance provides relatively poor file system throughput because

c1.medium type allocates 5 virtual CPU units and provides “medium” I/O performance

(Herodotou, 2012). In contrast, the m1.large instance provides relatively better file

system throughput per CPU unit because the m1.large instance allocates 4 virtual CPU

units and provides “high” I/O performance.

Table 20: Accelerated HDFS Accuracy Evaluation (Single Benchmark Run)

Experiment HDFS RF
Model

Accl. RF
Model

Configuration(s)

30-node m1.large 1 7 5 core, 5 accelerator
10 core, 10 accelerator
15 core, 15 accelerator

30-node c1.medium 2 8 5 core, 5 accelerator
10 core, 10 accelerator
15 core, 15 accelerator

Although the scale experiment provided a comparison point to Herodotou et al.

(2011) results, the scale experiment did not evaluate accelerator ratio’s impact on the

tools’ prediction accuracy. While additional nodes can impact prediction accuracy, the

accelerator ratio also impacts prediction accuracy because the accelerator tasks can

reduce file system throughput. Accelerated tasks reduce file system throughput because

the non-local tasks can cause disk and or network contention (Wang et al., 2009; Zaharia

et al., 2010).

The accelerator ratio experiment examined the accelerator ratio’s impact on the

control and enhanced profile’s prediction accuracy. The accelerator ratio experiment

generated the relative fitness models in Table 21 to cover the various ratios. The selected

ratios extend Chohan et al. (2010) spot instance study to cover a core to accelerator ratio

!

! 87!

greater then 1 to 1. Once the relative fitness models are generated, the accelerator ratio

experiment executed each workload in Table 12 against the accelerated configurations in

Table 22. The ratio experiment followed the procedure in Figure 11 to calculate each

ratio’s control and enhanced profile’s prediction error.

Table 21: Enhanced Relative Fitness Models

RF Model Source Type Target Type Benchmark Runs
1 m1.large m1.large 10 HDFS
2 m1.large c1.medium 10 HDFS
9 m1.large c1.large 20 core, 10 accelerators

15 core, 15 accelerators
10 core, 20 accelerators
5 core, 25 accelerators

10 m1.large c1.medium 20 core, 10 accelerators
15 core, 15 accelerators
10 core, 20 accelerators
5 core, 25 accelerators

While map-reduce locality studies focused on cluster sizes ranging from 72 to 100

nodes (Wang et al., 2009; Zaharia et al., 2010), the variable ratio experiments were

conducted with 30 nodes because the small cluster produced data node or disk contention.

Wang et al. (2009) experiments required 72 nodes because the study focused on network

congestion cause by the rack configuration. The 30-node experiments were sufficiently

sized to validate data node contention because the data node must service remote requests

for multiple tasks (Zaharia et al., 2008).

Table 22: 30-Node Accelerated HDFS Accuracy Evaluation (Enhanced Relative Fitness)

Experiment HDFS RF
Model

Accl. RF
Model

Configuration(s)

30-node m1.large 1 9 20 core, 10 accelerators
15 core, 15 accelerator
10 core, 20 accelerator
5 core, 25 accelerator

30-node c1.medium

2 10 20 core, 10 accelerators
15 core, 15 accelerator
10 core, 20 accelerator
5 core, 25 accelerator

!

! 88!

Task Simulator Failure Updates

Although the virtual profile updates addressed issues related to the storage

strategy, the task simulator required updates to address spot market early termination.

The Elastisizer’s task simulator assigns tasks to map-reduce slots based on the time the

slot is ready (Herodotou, 2012). When the spot market terminates an instance early, the

task scheduler can’t assign tasks to the spot instance’s slots. Additionally, the task

simulator reschedules the completed map tasks because the reduce tasks can’t retrieve the

spot instance’s intermediate data (Wang et al., 2009).

To simulate intermediate data loss, this dissertation updated the task simulator to

failover spot instance slots, Figure 12. While the original task simulator does not check

for failed slots, the updated task simulator checks for failures because the actual task

scheduler doesn’t assign new tasks to the failed slots (Wang et al., 2009). If the

accelerator instance fails before the new slot’s ready time, then the simulator will not add

the slot back to the slot queue. The updated simulator also tracks the tasks assigned to

accelerator slots because the simulator needs to reassign the failed slots’ tasks.

!

! 89!

Figure 12. Task Simulator Failure Updates

When the simulator assigns all the initial tasks, the updated simulator reassigns

the failed tasks, Figure 12. The updated simulator mimics the actual task scheduler’s

error handling, Figure 13. Before the simulator reschedules the failed instances’ tasks,

the simulator removes accelerator slots in the slot queue because the actual scheduler

doesn’t reassign tasks to failed slots. The simulator also updates the slot ready times to a

heartbeat after the failure time because the real task scheduler doesn’t detect the node

failures immediately (Chohan et al., 2010).

Start map
or reduce

phase

pop next slot
ready

compute task's
processing time
with base profile

set slot's ready
time

no

Remaining
tasks?

pop next
available taskTask Queue

Ordered Slot
Queue

Stop phase
simulation

yes

no

Accelerated
Task Set

has node
failed?

push to
slot

queue
yes

no is accel &&
fail time >= ready time

failed
nodes?

yes failure
handling

no

past
fail time?

compute task's
processing time
with ratio profile

no

yes

is slot
accelerator?

save task
attempt

yes

!

! 90!

Once the updated task simulator prepares the slots’ ready times, the simulator

reassigns the failed spot instances’ tasks. If the failed slot is a map slot, then the

simulator reschedules all tasks assigned to the slot because the slot lost the map task’s

intermediate data (Wang et al., 2009). If the failed slot is a reduce slot, then the simulator

only reschedules incomplete tasks because the reduce tasks don’t store intermediate data

(Wang et al., 2009).

Figure 13. Task Simulator Failure Handling

When the spot market terminates instances during the reduce phase, the failure

also impacts the core node’s reduce tasks. If a node fails during the reduce phase, then

the map-reduce scheduler must reschedule the spot instance map tasks because the failed

node’s intermediate data is lost (Wang et al., 2009). If an active reduce task has not

completed the shuffle, then the reduce task must wait for the rescheduled map tasks’ to

access the missing intermediate data (Wang et al., 2009).

Start failure
handling

Remove all
accelerator

slots from slot
queue

Is reduce
simimulator?

Task Queue

Ordered Slot
Queue

Add all
accelerator tasks

back to task
queue

Add incomplete
tasks

back to task
queue

reduce task set

Accelerator
assigned map

task set

End failure
handling

yes

no

Update all ready times to
max(fail time + heartbeat, ready time)

map phase
failure

handling
update reduce

slots ready times

!

! 91!

The updated task simulator reschedules incomplete reduce tasks. The task

simulator calculates the non-overlapping shuffle start time by tracking the time the last

map task completes (Herodotou, 2012). When a failure occurs during the reduce phase,

the updated task simulator resets the last map complete time for reduce tasks that have

not completed the shuffle prior to the failure.

While the task simulator handles failed tasks, the task simulator must also adjust

to different cluster resources because the accelerator ratio changes when the failure

occurs. The task simulator uses two virtual profiles to account for the clusters

configuration before and after the failure. Before the auction terminates the accelerator

node, the simulator calculates the task completion time with the accelerated virtual

profile. Once the auction terminates the accelerator node, the simulator calculates the

remaining tasks completion time with the base HDFS profile.

In summary, the updated task simulator mimics the actual task scheduler’s failure

handling. The updated task simulator removes the accelerator slots from the slot queue

when a failure is detected. When the workload completes the initial tasks, the simulator

reschedules the failed tasks. If the workload fails during the map phase, then the

simulator reschedules the failed node’s map tasks. If the workload fails during the reduce

phase, the task simulator reschedules the incomplete reduce tasks and the failed node’s

map tasks.

Task Simulator Evaluation

Methodology

While the accelerator profile experiments focus on the updated virtual profile’s

prediction accuracy, the task simulator experiments evaluates the enhanced tool’s

!

! 92!

prediction accuracy during terminated workloads. The simulator experiments calculate

the enhanced and original tools’ prediction error given different failure times. If the

enhanced tool predicts the execution time with a smaller average prediction error, then

the updated task simulator satisfies the dissertation goal.

To calculate each task simulator’s prediction accuracy, the simulator experiments

followed the terminated workload procedure, Figure 14. While the simulator experiment

followed the same process as the virtual profile experiment, Figure 11, the simulator

experiments evaluated the prediction accuracy for a given failure time, tfail. The

experiment evaluated failures during four different times within the workload, Table 23.

Each time corresponded to a different map-reduce wave because each wave exhibits

different map-reduce phase data dependencies (Wang et al., 2009).

!

! 93!

Procedure for comparing task simulators
Input: W workloads, Cs source cluster resources, Ct target cluster resources, Scontrol
control simulator, Senhanced enhance simulator, tfail failure time
Output: Econtrol control profile prediction error, Eenhanced enhance profile prediction error
Generate relative fitness models: RFcontrol, RFenhanced
For each (job in W)
 Create baseline profile: Pbaseline
 Predict execution time with Scontrol with on Ct: !!"#$%"& = !!(!!"#$%&'$,!"!"#$%"&)
 Predict execution time with Senhanced on Ct: !!"!!"#$% = !!(!!"#$%&'$,!"!"!!"#$% , !!"#$)
 Capture job execution time on Ct with failure at tfail: Tactual

 Calculate the control simulator prediction error: !!"#$%"& = ! !!"#$%"&!!!!"#$!%!!"#$!%
!

 Calculate the enhanced simulator prediction error: !!"!!"#$% = ! !!"!!"#$%!!!!"#$!%!!"#$!%
!

End for
Figure 14. Task Simulator Comparison Procedure for Terminated Workloads

The simulator experiments calculated the enhanced and original tools’ prediction

error for each failure time in Table 23. The HDFS and enhanced RF models served as the

control and enhanced fitness models, respectively. Once the experiment created the

relative fitness model, the simulator experiment predicted each workload’s execution

time in Table 12 against the target cluster configurations in Table 23. The experiment

also executed each workload with a simulated failure to determine the control and

enhance simulators prediction error.

While the simulator experiment evaluated spot instance failures during the

workload, the simulator experiment examined the accelerator ratio’s impact on prediction

accuracy. The simulator experiments covered the same accelerator configuration as the

non-failure accelerator ratio experiments, Table 22. The accelerator experiment

configurations created different failure costs because each accelerator ratio corresponded

to a different number of failed tasks (Chohan et al., 2010). In essence, the failure costs

are proportional to the number of failed accelerator nodes.

!

! 94!

Table 23: Failure Simulations

 Relative Fitness Model
Experiment HDFS Accelerated Configuration(s) Failure time
m1.large 1 9 20 core, 10 accelerators

15 core, 15 accelerators
10 core, 20 accelerators

1st map wave
2nd map wave
1st reduce wave*
2nd reduce wave**

c1.medium 2 10 20 core, 10 accelerators
15 core, 15 accelerators
10 core, 20 accelerators

1st map wave
2nd map wave
1st reduce wave*
2nd reduce wave**

Note: Some workloads do not include reduce phases. * excludes grep, ** excludes grep and pi

Task Failure Simulation

While the simulator experiments configured a target cluster with different

accelerator ratios, the simulator experiments also required the accelerators to fail at given

times. When the experiment conducted the actual runs, the experiment simulated the spot

instance termination by programmatically killing the task tracker daemon on the

accelerator nodes. The killed task tracker simulated a node failure because the map-

reduce scheduler lost contact with the node (Wang et al., 2009).

Table 24: Failure Timing Measures

Measure Description
!!"# Average map task completion time
!!"#$%" Average reduce task completion time excluding the shuffle phase
!!"##$% Average shuffle time excluding the first shuffle wave
sjob Start of the job
emaps End of last map task

For each workload, the experiment conducted non-failure runs to calculate the

task trackers’ kill time. The non-failure runs provided the mean task and phase times in

Table 24. Although the task completion times vary, the mean task times indicated each

map reduce wave’s approximate time (Verma et al., 2011). If the experiment killed the

!

! 95!

daemons in the wave’s center, then the kill times, then Equation 9 and Equation 10

represent tmap and treduce.

!!"# = (!!"# − 1)×!!!"# + !!!"# 2+ !!!"#

(9)

!!"#$%" = !!"# − 1 ×!!!"# + !
!!"#
2 + !!!" − 1 ×!!!!""#$ + !!!"# (10)

Once the experiment estimated failure run kill times, the experiment caused the

task trackers to fail. Before the experiment submitted the test workload, the experiment

started the kill daemons on the accelerator nodes. If the experiment targets the failure

during the map wave, the kill daemons watch the map-reduce log directory to determine

the jobs start. When a new job is added to the log directory, the kill daemon starts a timer

to kill the task tracker processes at the given kill time.

While the map kill daemons determined the job’s start from the log directory, the

reduce kill daemons required the last map’s completion time to start the timer. The kill

daemon monitored the map-reduce job tracker. Once the last map task completed, the

kill daemon started a timer to kill the task tracker.

When the failure job completed, the experiment validated the daemons killed the

task tracker during the appropriate wave. If the task tracker died at the appropriate time,

then several task attempts should have failed. When the task tracker fails during a given

map wave, the number of failures should be !!""#$!×!!!"# where kaccel is the number of

accelerator slots (Chohan et al., 2010). When the task tracker fails during a given reduce

wave, then the previous waves reduce tasks should have completed without failure.

Although the workload completes some reduce tasks prior to the failure, the kill daemons

!

! 96!

should cause all accelerator map tasks and one reduce wave’s tasks to fail (Wang et al.,

2009).

Spot Instance Forecast

Once the simulator updates are completed, the dissertation created a spot instance

forecast tool. Although the Elastisizer only predicted the workload’s execution time, the

enhanced tool predicted the spot instance workload’s average completion time and

average monetary costs. The enhanced tool created the forecast with a spot market

history trace to determine the spot market’s impact on the workload’s completion time

and monetary costs.

While cloud providers allocate on-demand instances immediately, cloud users

wait for a spot market auction to allocate the spot instances. Unlike on-demand

workloads, the spot instance workload’s completion time includes the auction wait time

and the workload’s execution time (Herodotou, 2012). Once the auction allocates the

workload, the auction may increase the workload’s execution time because the auction

may terminate the spot instances before the workload completes (Chohan et al., 2010).

When a cloud user allocates a series of spot instance workloads, the workload’s expected

completion time includes the expected wait time and the expected execution time,

Equation 11.

![!"#$] = ![!"#$]+ !![!"!#] (11)

While the execution time depends on the workload, the forecast tool predicts spot

instance availability based on the bid price and the spot market history (Orna Agmon

Ben-Yehuda et al., 2011). For a given bid price, b, the forecast tool will compute the

average wait time. The forecast tool divides the price history into N intervals based on

!

! 97!

transitions where the market price rises or falls below the bid price. If timet equals the

trace’s total duration and timei equals an intervals duration, then the probability a job is

submitted during a given interval, p(submittedi), equals timei/timet. Based on the

submission probability, the tool calculates expected wait time at the bid price, b, using

Equation 12 and Equation 13.

![!"#$] = ! !!(!"#$%&&'(!)!× !!"#$! 2 !×!Ϝ(!)
!

!!!

(12)

! ! = ! 0!!"!!"#$%! ≤ !
1!!"!!"#$%! > ! (13)

Once the forecast tool calculates the average wait time, the forecast tool must

predict the workload’s expected execution time because the spot market may terminate

the spot instance’s before the workload completes. The forecast tool computes the

probability the spot instance terminates before the workload completes. For a given bid

price, p(terminates|b) is the probability the spot instance terminates during a time

interval. The forecast tool divides the price history into time intervals. If the bid price

equals b and the interval’s initial market price is less then b, then the auction allocates the

spot instance at the interval’s start (Chohan et al., 2010). If the interval’s market price

rises above the bid price before the interval’s completion, then the auction terminates the

spot instance. The interval’s termination probability is Equation 14.

! !"#$%&'!"(! = ! !"#$%&'()!!"#$%&'!"(
!"#$%&'()!!"#!$%%&!!""#$!%&'!

(14)

The forecast tool also calculates the probability the spot instances remain active

for the workload’s duration. Let τ time intervals equal the workload’s non-preemptive

execution time. If the market price is independent of the bid price and p(active|b) = 1 –

!

! 98!

p(terminates|b), then the probability the workload completes after τ time intervals

without termination is Equation 15 (Chohan et al., 2010).

! !"#$%&'&(|! = !! !"#$%& ! !

(15)

Once the forecast tool calculates spot instance termination probabilities, the

updated tool predicts the workload’s expected execution time, Equation 16. Given x on-

demand and y spot-instance nodes, the tool predicts the workload’s non-preemptive

execution time, time(x,y). When the auction terminates spot instances at time interval n,

the tool also predicts the workload’s execution time, time(n,x,y). Given the set of

possible execution times, the workload’s expected execution time is the weighted average

of execution times.

! !"!#

= !! !"#$! !×!!"#$!,! + ! ! !"#$%& ! !!!!×!! !"#$! !×!!"#$!, !,!!
!!!

! !"#$! + ! ! !"#$%& ! !!!!×!! !"#$! !!
!!!

(16)

While the enhanced tool forecasts the workload completion time, cloud users

require workload monetary cost estimates. When the cloud user allocates a map-reduce

cluster with spot instance accelerators, the cloud user pays for the time the on-demand

and spot instances are active. If the spot instance fails, the cloud user pays for the extra

processing time to re-create the intermediate data (Chohan et al., 2010). Let x equal the

number of on-demand nodes and y equal the number of spot instance nodes. If the

auction terminates the spot instance at time n, then the workload’s charged time equals

the on-demand node’s total processing time plus the time the spot instances are active,

Equation 17.

!

! 99!

!"#$!, !,! = !!"#$!, !,! !×!!!×!!"#$!"#$% + ! ! !×!!!×!!""#$!"#$%

(17)

If the workload completes without early termination, then the cloud user pays for

both instance types over the workload’s duration, τ, Equation 18.

!"#$!" = !!!×!!!×!!"#$!"#$% + !!!×!!!×!!""#$!"#$%

(18)

Based on Equation 17 and Equation 18, the forecast tool can computes the

expected cost for the workload at bid price b. The expected cost is a weighted average of

the workload’s costs with and without failures, Equation 19.

! !"#$

= ! !"#$! ×!"#$!" + ! !"#$%& ! !!!×! !"#$! ×!"#$!, !,!!
!!!

! !"#$! + ! !"#$%& ! !!!×! !"#$!!
!!!

(19)

In summary, the forecast tool updates include the expected completion time and

expected cost. The workload’s forecast enables the cloud user to select the configuration

with the best average cost or completion time. Additionally, the cloud user can select the

cluster based on multiple objectives (Herodotou, 2012). For instance, the cloud user can

indicate their delay tolerance by specifying a desired expected completion time (Chun &

Culler, 2002). Although the user wants to minimize the workload’s average cost with

spot instances, the cloud user may constrain the spot instance and bid price selection

based on minimizing the completion time.

Forecast Tool Evaluation

When this study completed the forecast tool update, the forecast experiments

evaluated the enhanced tool’s prediction accuracy for completion time and monetary cost.

!

! 100!

The forecast experiment calculated the enhanced and original tool’s prediction error

given a spot market trace. If the enhanced tool predicted the completion time and

monetary costs with a smaller average prediction error, then the updated task simulator

satisfied the dissertation goal.

The evaluation followed Chohan et al. (2010) trace-based methodology to assess

prediction accuracy. The trace-based methodology compares two traces from the same

spot market to determine the prediction algorithm’s accuracy. The first trace provides the

input to compute the predicted values. The second trace provides the market prices to

apply the workload against. The evaluation assesses the prediction accuracy by

comparing the predicted values with the actual values (Chohan et al., 2010).

 Although the split trace assesses prediction accuracy, the spot market mechanics

must remain constant for the trace method to be valid (Orna Agmon Ben-Yehuda et al.,

2011). Cloud providers can change spot market mechanics by refining the auction

algorithm (Orna Agmon Ben-Yehuda et al., 2013). Therefore, the evaluation selected

traces with distinguishable market epochs where the same pricing patterns are observed

over the entire trace (Orna Agmon Ben-Yehuda et al., 2013). Wieder et al. (2012) study

combined historical and synthetic traces to validate the approach works given different

market conditions.

This study considered two recent market history traces to predict and validate the

tool’s forecasts. Although the traces covered roughly the same time period, each trace

represents different demand patterns exhibited in the Agmon Ben-Yehuda et al. (2011)

and Wieder et al. (2012) studies. The first trace represented, Figure 15, frequent price

transitions near the reserve price found in the Agmon Ben-Yehuda et al. (2011) studies.

!

! 101!

The first trace captured market conditions for the c1.medium us-east-1c spot market from

January 26, 2014 to February 16, 2014. The c1.medium trace creates frequent failures at

low bids because the low bids are constantly outbid once allocated (Chohan et al., 2010).

Figure 15. C1.Medium US-East-1C Market Price History

The second trace, Figure 16, provided similar behaviors to Wieder et al. (2012)

synthetic trace because the trace exhibited regular demand patterns. The second trace

captured market conditions for the m1.large us-east-1a spot market from January 05,

2014 to January 26, 2014. Although the m1.large trace is an actual trace, the m1.large

trace displays regular low activity periods during the weekends and holidays. The

m1.large trace should be easier to predict the spot instance’s availability because the

demand pattern is less bursty than the c1.medium trace.

!

! 102!

Figure 16. M1.Large US-East-1A Market Price History

While both traces display some similar characteristics to past studies, both traces

contain a key difference to the (Chohan et al., 2010), Agmon Ben-Yehuda et al. (2011),

and Wieder et al. (2012) studies. The current traces are different because both traces

contain market prices up to 10 times greater than the on-demand price. The previous

studies assumed the market price was capped at the demand price. Contrary to (Chohan

et al., 2010) assumptions, the cloud user can’t assume a bid at the on-demand price will

guarantee a spot instance.

The experiment evaluated the forecast tool’s completion time and financial cost

prediction accuracy. The forecast tool experiments followed the procedure in Figure 17

to apply the trace. For each spot market trace, the experiment calculated each tool’s

prediction errors. The control tool predicted the workload’s completion time and cost

without the trace because the Elastisizer didn’t factor in spot market conditions

(Herodotou, 2012). The enhanced tool forecasted the workload’s completion time and

cost using the forecast trace. Once each tool predicts the workload’s completion time and

!

! 103!

costs, the experiment simulated the actual completion time and monetary costs with the

actual trace to determine each tool’s prediction error.

Forecast Evaluation Procedure
Input: R Trace Replays, B bid prices, W workloads, Ct target cluster resources, Scontrol
control tool, Senhanced enhanced tool
Output: Econtrol control tool’s prediction errors, Eenhanced enhanced tool’s prediction errors
For each (r in R)
 Let rforecast = the forecast trace, ractual = the actual trace
 For each (job in W)
 For each(b in B)
 Predict the ave. cost and ave. completion time (CT) with Scontrol on Ct
 Forecast the ave. cost, ave. CT, and max CT with Senhanced(b,rforecast) on Ct
 Simulate the actual ave. cost, ave. CT, and max CT at b with ractual
 Calculate Econtrol for ave. cost, ave. CT, and max CT
 Calculate Eenhanced for ave. cost, ave. CT, and max CT
 End for
 End for
End For
Figure 17. Forecast Tool Evaluation Procedure

Similar to prior experiments, the forecast experiment evaluated different target

cluster configurations because each configuration provided different failure probabilities,

wait times, and failure costs (Chohan et al., 2010). The forecast experiment evaluated

c1.medium and m1.large instance types because the forecast experiment reused the

virtual profiles from the accelerator experiments, Table 21. The original and enhanced

tools predicted the average completion time, maximum completion time, and average

cost for each configuration in Table 25 using the first part of each trace.

Table 25: Bid price experiments

 Relative Fitness Model
Experiment HDFS Accelerated Data Size Configuration(s)
m1.large forecast 1 9 1.2 TB 20 core, 10 accelerators

15 core, 15 accelerators
10 core, 20 accelerators

c1.medium forecast 2 10 1.2 TB 20 core, 10 accelerators
15 core, 15 accelerators
10 core, 20 accelerators

!

! 104!

To validate the forecast’s accuracy for a given bid, the forecast replayed the

second trace to calculate the workload’s wait time and termination. Liu (2011) executed

market price trace replays to determine the spot instance’s allocation and termination

points. While Liu’s (2011) study selected a submission time for his evaluation, the

forecast experiment selected random times to submit the workload in a trace replay,

Figure 18. Given the bid price and the random submit time, the second trace provided

the spot instances’ wait time, w, and the termination point, n.

Workload Submission Monte Carlo Simulation
Input: r actual trace, b bid price, time(x,y) non-preemptive execution time
Output: costs = trail costs, times = trial completion times
For n from 0 to m trials
 cost = costnp; exec = time(x,y)
 tsubmit = Random time between r.start and r.end
 w = 0; tstart = tsubmit;
 if b < r.marketPrice(tsubmit)
 w = time to the next price transition where !! ≥ !.!"#$%&'#()%(!)
 end if
 tstart = tsubmit + w
 if b < r.minMarketPrice(tstart, tstart + exec)
 n = time to the fatal price transition
 cost = cost(n,x,y); exec = time(n,x,y)
 end if
 costs.add(cost); times.add(w + exec)
End for
Figure 18. Workload Submission Monte Carlo Simulation

Although the trace replay provided the workload run’s wait time and termination

points, the experiment calculated the run’s completion time and monetary cost. The

experiment calculated the run’s completion time using Equation 20 where !"#$(!, !,!)

equals the simulated execution time. The experiment also calculated the run’s monetary

cost using Equation 17.

!"#$ = ! + !!"#$(!, !,!) (20)

!

! 105!

When the experiment completed the individual workload runs, the experiment

calculated the workload’s average completion time, maximum completion time, and

average cost from the trace replays. The evaluation then compared the forecast estimates

with the trace replay results to compute the forecast’s average and maximum completion

time prediction error, Equation 21.

!""#"!"#$ = !
!"#$!"#$ − !!"#$!"#

!"#$!"#
 (21)

The evaluation also calculated the monetary cost prediction error using the

simulated cost from the spot instance trace, Equation 22.

!""#"!"#$ = !
!"#$!"#$ − !!"#$!"#

!"#$!"#
 (22)

While the prediction error measures the forecast tool’s accuracy, the evaluation

must compare the enhanced tools’ forecast against the existing tool’s predictions to

determine the forecast’s accuracy improvements. The evaluation reused the HDFS

control predicted execution times from the accelerator experiments, Table 22, for the bid

price experiment. The experiment then computed the control tool’s predicted monetary

cost with the non-preemptive cost equation, Equation 18, because the original tool’s cost

predictions assume no spot instance failures (Herodotou, 2012). The evaluation

computed the original tool’s prediction error based on the simulated results, Equation 21

and Equation 22.

!

! 106!

Summary

When a cloud user executes a map-reduce workload, the user must specify the

virtualized resources to execute the workload within a desired budget and or timeframe.

To execute a map-reduce workload, the cloud user must decide upon the virtual machine

type, number of virtual machines, pricing model, and storage options. The average user

requires estimation tools to help evaluate the options because the virtualized cluster’s

allocation requires specific expertise to estimate the workload’s completion time and

monetary costs (Herodotou & Babu, 2011).

The cloud user may consider the spot market pricing model as a means to reduce

the workload’s monetary cost. Spot instances can reduce a workload’s monetary cost

because a preemptive auction allocates the spot instances (Chohan et al., 2010). When

the cloud user bids on spot instances during low demand periods, the auction offers the

spot instances at a fraction of the on-demand price. However, the cloud user requires an

estimate for the workload’s completion time and monetary cost because the auction

determines the instances start time and duration (Chohan et al., 2010).

Although existing estimation tools predict on-demand virtual instance’s

completion time and costs, the on-demand estimates are unsuitable for spot market based

workloads because the spot market auction determines the virtualized instances’

availability to process data. The spot market may extend the workload’s completion time

because the spot market auction may delay the workload’s start (Stokely et al., 2009).

The spot market may also increase the workload’s execution time and, by extension,

monetary cost because the auction may terminate the spot instances before the workload

completes (Chohan et al., 2010).

!

! 107!

This study created an enhanced cost estimation tool to forecast the spot market

map-reduce workloads’ completion time and monetary cost. The enhanced tool

improves the prediction accuracy over current tools because the enhanced tool estimates

the unreliable spot instances’ impact on the workload. The estimates include the

workload’s increased execution time caused by external storage and early spot instance

termination. Given the spot market’s history and cloud user’s bid price, the enhanced

tool forecasts the workload’s average completion time and monetary cost based on the

spot instance’s availability.

When this study completed the external storage and termination enhancements,

the study compared the original and enhanced tool’s prediction accuracy. The study

followed Herodotou’s (2012) methodology to determine each tool’s prediction error.

Given a target workload and cluster configuration, each tool predicts the workload’s

execution time. The evaluation then executed the workload on the target cluster to

determine the workload’s actual execution time. Based on the actual and predicted

execution times, the evaluation calculated each tool’s prediction error. If the enhanced

tool reduced the prediction error over the original tool, then the enhanced tool

successfully improved the workload’s prediction accuracy.

While Herodotou’s (2012) methodology evaluated execution time, this

dissertation also evaluated the enhanced tool’s completion time and monetary cost

forecast accuracy. This dissertation followed Chohan et al. (2010) trace-based

methodology to determine the forecast tool’s prediction accuracy. The evaluation split

the spot market price history into forecast and actual traces. The forecast trace provided

the market price history to predict the workload’s completion time and monetary costs.

!

! 108!

The evaluation then executed a Monte Carlo simulation over the actual trace to calculate

the workload’s average completion time and monetary costs.

When the evaluation completed Monte Carlo simulation, the evaluation compared

the original and enhanced tools’ prediction accuracy based on the simulation’s results.

For each workload, the evaluation computed each tool’s prediction error. If the enhanced

tool reduced the prediction error over the original tool, then the enhanced tool

successfully improved the workload’s prediction accuracy.

!

! 109!

Chapter 4

Results
Cloud users require a new means to evaluate map-reduce workloads on spot

instances because the existing tools don’t predict completion time and monetary costs

accurately. As noted in the problem statement, past tools do not address two decision

factors when a cloud user allocates a virtual cluster: the storage strategy and the pricing

model. Cloud users cannot compare storage strategies because past tools, like the

Elastisizer, inaccurately models each new storage approach’s impact on the workload’s

virtual profile. Cloud users cannot compare pricing models because the Elastisizer

inaccurately simulates the spot market’s impact on completion time and monetary costs.

This dissertation created an enhanced cost estimation tool, MapReduce Workload

Allocation Tool for Spot instances (MRWATS) to address the storage strategy and price

model decision factors. MRWATS improves upon the Elastisizer because the new tool

models spot instance storage strategies and price changes. Specifically, MRWATS

includes three enhancements to improve completion time and monetary cost prediction

accuracy over the Elastisizer: storage strategy specific virtual profiles, a failure-aware

task simulator, and spot market forecasts.

This chapter will first analyze MRWATS’ storage strategy enhancements.

MRWATS models each storage strategy (Amazon S3 and Accelerated HDFS) with a

storage specific relative fitness model to improve execution time prediction accuracy

over the Elastisizer. The new models contain two improvements over the Elastisizer:

enhanced training benchmarks and contention predictor variables. The new training

benchmarks improve prediction accuracy because the benchmarks characterize each

specific file system. The additional predictor variables improve prediction accuracy

!

! 110!

because the new features model the workload’s file system contention. The new features

include cluster size and spot instance ratio to quantify file system contention.

The storage strategy data analysis will demonstrate that each storage strategy

enhancement reduces the average prediction error over the Elastisizer. While the

Amazon S3 and Accelerated HDFS storage strategies will be evaluated independently,

both storage strategies follow the same structure. The data analysis section will first

demonstrate the improvement from the storage specific training benchmarks by

comparing a fixed size/ratio model to the Elastisizer’s relative fitness models. Next, the

data analysis section will demonstrate the new predictor variables’ improvement by

comparing variable size/ratio models to the Elastisizer’s relative fitness models. If the

enhanced models reduce the average execution prediction error compared to the

Elastisizer’s model, then the individual enhancement met the dissertation goal.

The results chapter will next analyze the failure-aware task simulator

enhancements. While MRWATS’s enhanced profiles improved the workload’s non-

failure prediction accuracy, MRWATS also improved upon the Elastisizer by enhancing

the task scheduler to handle terminated spot instances. When the spot market terminates

the instances early, the enhanced task simulator estimates the time to recover missing

intermediate data from the terminated spot instances. In contrast, the Elastisizer under-

predicts the terminated workload’s execution time because it does not account for the

recovery time.

The failure-aware task simulator data analysis will demonstrate that the task

simulator enhancements reduce the prediction error compared to the Elastisizer. To

validate the enhance task simulator improvements; the evaluation terminates workloads

!

! 111!

during four different map-reduce waves. For each termination point, the enhanced

(MRWATS) and original (Elastisizer) task schedulers predict the workloads’ execution

times. The data analysis then compares the prediction error for both task schedulers. If

the enhanced task scheduler reduces the average execution prediction error compared to

the Elastisizer’s task scheduler, then the task scheduler enhancements met the dissertation

goal.

The result section will finally analyze MRWATS’s forecast tool enhancements.

Although the enhanced task simulator improves a terminated workload’s prediction

accuracy, the cloud user requires completion time and cost estimates without foresight

into the exact termination time. MRWATS further improves upon the Elastisizer

because MRWATS estimates the average completion time and monetary cost based on

the spot market price history. While the Elastisizer simply assumes completion times

remain constant and costs increase linearly with the bid price, MRWATS factors in wait

times, early terminations, and past market prices into the completion time and cost

estimates.

The forecast tool data analysis will demonstrate MRWATS’s market-based

enhancements improve upon the Elastisizer using two actual price histories to cover

different spot market behaviors. For each price history, the evaluation split the history

into training and test traces. The training trace provided MRWATS a history to predict

the test workloads’ average completion time and monetary costs. After both tools

generated the predictions, the test trace provided a history to calculate the test workloads’

actual average completion time and monetary costs. The trace analysis then compared

the predicted and actual values for each workload to quantify MRWATS’s prediction

!

! 112!

accuracy improvements over the Elastisizer. The analysis then breaks down the test

results into low and high bid regions to highlight each specific MRWATS enhancement.

While the results will demonstrate accuracy improvements for each enhancement,

the enhancements have a cumulative effect on MRWATS’s prediction accuracy. Each

enhancement provides an additional improvement over the last. The findings section

will summarize each enhancement’s improvements over the Elastisizer.

Storage Strategy Data Analysis

The storage strategy was the first enhancement evaluated because the other

enhancements depend on accurate spot instance storage models. The Elastisizer

primarily assumed the distributed file system scaled as compute nodes are added to the

clusters because the new compute nodes contained additional file system resources

(Herodotou, 2012). While a map-reduce cluster scales with new on-demand nodes, the

spot instances won’t scale the same as on-demand nodes because the spot instances don’t

contain additional file system resources to avoid data loss (Chohan et al., 2010).

 MRWATS improved upon the Elastisizer for spot instance workloads because

MRWATS created enhanced relative fitness models for both the Amazon S3 and HDFS

accelerated file systems. The new relative fitness models served two purposes: to capture

file system specific cost statistics and to quantify file system contention impacts on the

cost statistics. The new models capture more accurate cost statistics by running file

system specific training benchmarks. The models also quantify file system contention by

measuring the workload’s cluster size and spot instance ratio impacts on the I/O cost

statistics.

!

! 113!

Although the evaluation analyzed each file system separately, each evaluation

followed the same general approach. The evaluation first compared MRWATS’s and the

Elastisizer’s models built from benchmarks with a fixed cluster size and accelerator ratio

to determine the accuracy improvements from storage specific benchmarks. MRWATS

should at least provide the same average prediction error as the Elastisizer with the fixed

models. The evaluation then compared MRWATS and the Elastisizer with different

cluster configurations to determine the accuracy improvements from contention adaptive

benchmarks. To meet the dissertation goal, MRWATS should reduce the average

prediction error compared to the Elastisizer given the different cluster configurations.

Amazon S3 Virtual Profile Enhancements

MRWATS created two different enhancements to improve the Amazon S3

workloads’ execution time prediction accuracy over the Elastisizer’s original HDFS

model. The first enhancement simply created the relative fitness models from Amazon

S3 specific benchmarks because Amazon S3 contains different IO characteristics than

HDFS (Bicer et al., 2011). The second enhancement added the cluster size as a predictor

variable to the relative fitness model because remote tasks increase disk and network

contention at large clusters sizes (Wang et al., 2009; Zaharia et al., 2008).

Amazon S3 Fixed-Size Relative Fitness Model

The first enhancement offers an improvement over the Elastisizer’s original

HDFS model because the Amazon S3 specific model characterizes the Amazon S3 file

system on a fixed-size cluster. The fixed-size Amazon S3 model reduces workload

prediction error because MRWATS builds the relative fitness model from training

benchmarks against the actual file system resources. The S3 benchmarks primarily

!

! 114!

improve Amazon S3 bound workloads because the new benchmarks provide more

accurate read and write cost statistics.

To validate the fixed-size Amazon S3 model’s accuracy improvements over the

HDFS model, the data analysis compares the simple Amazon S3 and HDFS models’

accuracy against Amazon S3 workloads. The fixed-size analysis will demonstrate the

accuracy improvements on clusters between 10 and 30 nodes. The analysis will compare

relative fitness models generated from benchmarks on a 10-node virtual cluster, Table 13.

The analysis will then scale up the comparisons to 30 nodes to demonstrate the fixed-size

models scalability, Table 15.

The fixed-size S3 model demonstrated an improvement over the Elastisizer’s

HDFS model at 10-nodes because the new relative fitness model captured Amazon S3

specific I/O characteristics. While the fixed-size model reduced the average prediction

error by 22.62% (from 19.54 to 15.12 percent error) across all workloads, the fixed size

model perform better with I/O bound workloads, Table 26. For instance, the fixed model

reduced grep’s prediction error by 36.97% because grep spends a majority of its

processing time on Amazon S3 reads.

Although the S3 relative fitness model improved the prediction accuracy for most

workloads, the Amazon S3 model performed worst for the word co-occurrence workload

at small-scale, Table 26. The Amazon S3 model over-predicted the co-occurrence’s

execution time because the workload spends the majority of the execution time on sort

operations. In essence, the external file system does not impact the co-occurrence

workload’s performance because the workload is CPU bound.

!

! 115!

The fixed-size model also offered an improvement over the Elastisizer because

the new model captures the instance type impact on file system utilization. The m1.large

S3 model reduced the prediction error by 31.4% compared to the c1.medium model’s

7.35% reduction. The m1.large model performed relatively better than the c1.medium

model because the m1.large workloads generated a larger load on Amazon S3. The

m1.large instances executed more map tasks per node. Where as the c1.medium cluster

allocated only 20 map slots, the m1.large cluster allocated 30 map slots.

Table 26: Fixed-Size Amazon S3 Model’s Prediction Error

 Execution Time (sec.) % Prediction Error
Experiment S3 Actual HDFS Pred. S3 Fixed Pred. HDFS Model S3 Fixed Model
S3 c1.medium small
 Co-Occurrence 1057.61 1275.67 1396.28 20.62 32.02
 Grep 193.48 121.58 139.93 37.16 27.68
 Pi Est. 486.09 459.51 529.72 5.47 8.98
 TDF-IDF 2718.73 2223.11 2369.60 18.23 12.84
 TPCH Q12 401.62 447.10 429.09 11.33 6.84
 TPCH Q14 357.30 351.90 362.43 1.51 1.43
 TeraSort 1888.77 1576.65 1577.02 16.53 16.51
 Word Count 2183.66 1970.10 2097.76 9.78 3.93
S3 m1.large small
 Co-Occurrence 1216.29 1241.53 1298.92 2.07 6.79
 Grep 215.40 101.63 156.72 52.82 27.24
 Pi Est. 597.40 709.81 703.67 18.82 17.79
 TF-IDF 2853.93 2306.95 2589.76 19.17 9.26
 TPCH Q12 384.87 327.19 336.98 14.99 12.44
 TPCH Q14 339.36 231.03 243.61 31.92 28.21
 TeraSort 1577.09 962.44 1205.18 38.97 23.58
 Word Count 2444.27 2122.42 2289.16 13.17 6.35
 Average Error 19.54 15.12
Note. The Amazon S3 model (MRWATS) was generated with 10-node training benchmarks against an Amazon S3 file
system. The HDFS model (Elastisizer) was generated with 10-node training benchmarks against HDFS.

While the 10-node cluster analysis demonstrated the fixed-size model improved

prediction accuracy with a light-load, the fixed-size model still offers an improvement

over the HDFS model for slightly larger cluster sizes. If the additional nodes don’t start

to saturate Amazon S3’s resources, then the fixed-size model should generate relatively

more accurate cost statistics than the Elastisizer’s HDFS model. The fixed-size model

improves upon the Elastisizer’s HDFS model because the fixed-sized model benchmarks

Amazon S3’s file system resources.

!

! 116!

To validate the fixed-size model scales up to 30 nodes, the evaluation conducted

20 and 30-node experiments. The 20 and 30-node experiments compared the same

virtual profiles created for the 10-node experiment on slightly larger clusters. If the

fixed-size S3 model scales similarly to the HDFS models, then the fixed-size S3 model

should still reduce the prediction error compared to the Elastisizer’s HDFS model. The

experiments tested the fixed-size models scalability for both the c1.medium and m1.large

instance types.

For the c1.medium clusters, the fixed-size model demonstrated improved

prediction accuracy compared to the Elastisizer’s HDFS model because the fixed-size

model captures the load created by the additional map tasks against Amazon S3. The

c1.medium fixed-size model reduced the average prediction error by 9.58% (from 14.51

to 13.12 percent error) across the 10, 20, and 30 node clusters, Table 27. Although the

cluster’s size increased to 20 and 30-nodes, the fixed-size model remained more accurate

than the Elastisizer’s HDFS model. The fixed-size model reduced the average prediction

error by 14.34% and 7.34% compared to the HDFS model, for the 20 and 30 node

clusters respectively.

!

! 117!

Table 27: C1.Medium Fixed-Size Amazon S3 Model’s Accuracy

Node Count
Execution Time (Sec.)

% Prediction Error

S3 Actual HDFS Pred. S3 Fixed Pred.

HDFS Model S3 Fixed Model
Co-Occurrence

10 1057.61 1275.67 1396.28

20.62 32.02

20 621.34 646.45 706.41

4.04 13.69
30 388.03 482.89 530.07

24.45 36.60

Grep

10 193.48 121.58 139.93

37.16 27.68
20 98.66 66.79 75.97

32.30 23.00

30 76.08 48.53 54.64

36.21 28.17
Pi Estimate

10 486.09 459.51 529.72

5.47 8.98

20 292.19 281.22 323.32

3.75 10.65
30 206.87 192.08 220.12

7.15 6.40

TeraSort

10 1888.77 1576.65 1577.02

16.53 16.51
20 932.21 825.19 844.14

11.48 9.45

30 623.85 515.44 539.89

17.38 13.46
TF-IDF

10 2718.73 2223.11 2369.60

18.23 12.84

20 1380.39 1173.24 1247.65

15.01 9.62
30 990.78 783.64 833.15

20.91 15.91

TPCH Q12

10 401.62 447.10 429.09

11.33 6.84
20 229.77 246.32 236.80

7.21 3.06

30 174.52 167.20 160.88

4.19 7.81
TPCH Q14

10 357.30 351.90 362.43

1.51 1.43

20 229.83 214.51 220.73

6.67 3.96
30 176.15 145.81 149.88

17.23 14.91

Word Count

10 2183.66 1970.10 2097.76

9.78 3.93
20 1093.55 991.86 1055.68

9.30 3.46

30 739.18 661.99 705.37

10.44 4.57
 Average Error 14.51 13.12

Note. The Amazon S3 model (MRWATS) was generated with 10-node training benchmarks against an Amazon S3 file
system. The HDFS model (Elastisizer) was generated with 10-node training benchmarks against HDFS.

Similar to the 10-node results, the fixed-size S3 model improvements also

depended on the instance type. The m1.large model performed better than the

c1.medium model because the m1.large workloads generated a larger load on Amazon

S3. The m1.large workloads create more concurrent file system requests than the

c1.medium workloads because the m1.large instances allocate 3 map slots per node

versus the c1.medium node’s 2 map slots.

For the m1.large clusters, the fixed-size model demonstrated improved prediction

accuracy compared to the Elastisizer’s HDFS model because the fixed-size model

!

! 118!

captures the load created by the additional map tasks against S3. The m1.large fixed-

size model reduced the average prediction error by 29% (from 25.9 to 18.39 percent

error) across the 10, 20, and 30 node clusters, Table 28. The m1.large fixed-size model

remained more accurate than the Elastisizer’s HDFS model as the cluster sizes increase.

The fixed-size model reduced the average prediction error by 28.35% and 27.48%

compared to the HDFS model, for the 20 and 30 node clusters respectively.

Table 28: M1.Large Fixed-Size Amazon S3 Model’s Accuracy

 Execution Time (Sec.) % Prediction Error
Node Count S3 Actual HDFS Pred. S3 Fixed Pred.

HDFS Model S3 Fixed Model

Co-Occurrence
 10 1216.29 1241.53 1298.92

2.07 6.79

20 652.83 629.84 658.61

3.52 0.88
30 485.36 422.24 441.45

13.00 9.05

Grep
 10 215.40 101.63 156.72

52.82 27.24

20 169.35 56.82 84.36

66.45 50.19
30 102.19 45.61 66.27

55.37 35.15

Pi Est.
 10 597.40 709.81 703.67

18.82 17.79

20 360.65 361.81 358.82

0.32 0.51
30 282.02 361.81 358.82

28.29 27.23

TeraSort
 10 1577.09 962.44 1205.18

38.97 23.58

20 738.17 506.67 644.78

31.36 12.65
30 748.16 339.08 432.40

54.68 42.21

TF-IDF
 10 2853.93 2306.95 2589.76

19.17 9.26

20 1553.72 1195.07 1334.78

23.08 14.09
30 1058.22 872.74 978.37

17.53 7.55

TPCH Q12
 10 384.87 327.19 336.98

14.99 12.44

20 226.17 185.29 190.42 18.08 15.81
30 162.9 149.72 155.77

8.09 4.38

TPCH Q14
 10 339.36 231.03 243.61

31.92 28.21

20 189.49 138.83 146.61 26.73 22.63
30 154.07 100.56 106.48

34.73 30.89

Word Count
 10 2444.27 2122.42 2289.16

13.17 6.35

20 1635.09 1068.53 1151.92

34.65 29.55
30 868.96 749.91 808.25

13.70 6.99

Average Error

25.90 18.39

Note. The Amazon S3 model (MRWATS) was generated with 10-node training benchmarks against an Amazon S3 file
system. The HDFS model (Elastisizer) was generated with 10-node training benchmarks against HDFS.

Amazon S3 Variable-Size Relative Fitness Model

While the fixed-size model enhancements improved Amazon S3 based-

workloads’ prediction accuracy below 30-nodes, the fixed-size model does not quantify

!

! 119!

the file system utilization’s impact on the workloads execution. File system utilization

impacts workload execution times at cluster sizes above 72 nodes because the remote

task cause both network and disk contention (Wang et al., 2009). Although the fixed-

size model captures the Amazon S3 cost statistics at 10-nodes, the model requires

benchmarks at larger sizes to model potential network and disk contention caused by a

given workload.

The second enhancement improves upon the Elastisizer’s original HDFS model

because the variable cluster-size model captures file contention on clusters above 30

nodes. The variable-size model quantifies file system contention because the model adds

the cluster size as a training feature, Figure 10. If the workload’s operations take longer

at larger cluster sizes, then the cluster-size feature should capture the change in the

relevant cost statistics.

To validate the variable-size model improves upon the Elastisizer, large-scale

experiments compared the variable-size and HDFS relative fitness model’s prediction

accuracy up to 90 nodes. While the experiments create the Elastisizer’s HDFS model

from a 10-node benchmark, the variable-size models were generated from benchmarks on

multiple clusters, Table 16. The experiments assessed the prediction accuracy at 30, 60,

and 90 nodes because the larger size clusters tended to generate more file system

contention (Wang et al., 2009).

The variable-size model demonstrated an improvement over the Elastisizer’s

HDFS model with cluster sizes between 30 and 90 nodes. The variable-size model

reduced the average prediction error by 34.56% across all workloads and instance types.

The variable-size model improved the prediction accuracy over the Elastisizer because

!

! 120!

the cluster-size dependent model was build from a more representative training set. For

a deeper analysis, the large-scale results are broken down by instance type: c1.medium

and m1.large.

For the c1.medium instance type, the variable size model improved the prediction

accuracy compared to the Elastisizer’s HDFS model because the training set covers the

prediction space better above 30 nodes. Table 29 displays the prediction error by

workload and node count for the c1.medium instance type. If the variable-size model

produced a smaller prediction error than the Elastisizer’s HDFS model, then MRWATS

successfully improved the prediction accuracy for workload’s using Amazon S3 on the

c1.medium instance type.

Although the variable-size model did not reduce the prediction error on every

c1.medium workload tested, the variable-size model improved the prediction accuracy

compared to the Elastisizer for the majority of the workloads. The variable-size model

reduced the prediction error in 19 out of 24 test configurations and the average prediction

error for 6 out of 8 workloads, Table 29. The variable-size model reduced the

c1.medium average prediction error by 35.39% (from 25.23% to 16.30% error) across all

workloads, Table 29.

!

! 121!

Table 29: C1.Medium Variable-Size Amazon S3 Model’s Accuracy

 Execution Time (Sec.) % Prediction Error
Node Count Actual HDFS Pred. S3 VS Pred. HDFS Model S3 VS Model
Co-Occurrence

 30 1052.01 1419.78 1487.94

34.96 41.44
60 581.13 719.37 766.34

23.79 31.87

90 416.54 518.07 546.41

24.38 31.18
Grep

 30 199.65 121.66 148.52

39.07 25.61
60 123.09 66.83 79.85

45.71 35.13

90 110.75 48.55 56.96

56.16 48.57
Pi Estimate

 30 520.93 395.98 545.45

23.99 4.71
60 307.02 243.32 322.16

20.75 4.93

90 218.35 166.99 212.28

23.52 2.78
TeraSort

 30 1850.60 1640.22 1732.91

11.37 6.36
60 1130.83 859.45 980.60

24.00 13.28

90 843.91 538.73 647.77

36.16 23.24
TF-IDF

 30 1372.09 1228.25 1287.39

10.48 6.17
60 766.40 679.27 702.57

11.37 8.33

90 573.84 460.40 467.29

19.77 18.57
TPCH Q12

 30 518.22 359.04 535.20

30.72 3.28
60 245.30 226.79 324.91

7.54 32.45

90 193.00 149.59 207.23

22.49 7.38
TPCH Q14

 30 386.80 258.08 379.05

33.28 2.00
60 261.92 158.04 229.57

39.66 12.35

90 202.36 108.02 154.67

46.62 23.57
Word Count

 30 1046.67 1006.10 1091.98

3.88 4.33
60 565.88 509.94 552.49

9.88 2.37

90 383.61 360.48 388.93

6.03 1.39

Average Error

25.23 16.30

Note. The Amazon S3 variable size (VS) model (MRWATS) was generated with 30, 60, and 90-node training
benchmarks against an Amazon S3 file system. The HDFS model (Elastisizer) was generated with 10-node training
benchmarks against HDFS.

While the c1.medium analysis demonstrated one instance type’s improvement, the

analysis also covered the m1.large instance type because the m1.large instances allocate

additional map slots. Table 30 displays the prediction error by workload and node count

for the m1.large instance type. If the variable-size S3 model produced a smaller

prediction error than the Elastisizer’s HDFS model, then MRWATS successfully

improved the prediction accuracy for workload’s using Amazon S3 on the m1.large

instance type.

!

! 122!

The m1.large instance type results shows similar improvements to prediction

accuracy compared to the c1.medium instance type. The variable-size model improved

the prediction accuracy compare to the Elastisizer for the majority of the m1.large

workloads. The variable-size S3 model reduce the prediction error in 20 out of 24 test

configurations and the average prediction error for 6 out of 8 workloads. In aggregate,

the variable-size S3 model reduced the m1.large average prediction error over the HDFS

model by 33.88% across all workloads.

Table 30: M1.Large Variable-Size Amazon S3 Model’s Accuracy

 Execution Time (Sec.) % Prediction Error
Node Count Actual HDFS Pred. S3 VS Pred. HDFS Model S3 VS Model
Co-Occurrence

 30 1329.18 1412.14 1425.41 6.24 7.24
60 690.04 715.26 967.48 3.65 40.20
90 631.37 458.33 509.99 27.41 19.22

Grep

 30 254.98 101.15 113.61 60.33 55.44

60 201.93 56.58 80.68 71.98 60.05
90 91.55 45.43 63.51 50.37 30.63

Pi Est.

 30 671.54 710.32 750.82 5.78 11.81

60 388.16 362.32 389.70 6.66 0.40
90 299.71 362.32 389.71 20.89 30.03

TeraSort

 30 1477.92 957.66 1224.91 35.20 17.12

60 863.46 504.19 733.09 41.61 15.10
90 677.21 337.17 479.95 50.21 29.13

TF-IDF

 30 1503.88 1199.13 1237.64 20.26 17.70

60 879.51 701.39 763.30 20.25 13.21
90 563.42 445.91 470.05 20.86 16.57

TPCH Q12

 30 563.25 299.69 680.57 46.79 20.83

60 309.34 170.49 327.65 44.88 5.92
90 233.03 137.45 255.31 41.02 9.56

TPCH Q14

 30 455.11 349.31 505.07 23.25 10.98

60 263.48 204.95 251.56 22.22 4.52
90 219.65 142.99 174.14 34.90 20.72

Word Count

 30 1246.01 1060.12 1097.83 14.92 11.89

60 668.71 594.80 651.64 11.05 2.55
90 589.43 367.87 446.52 37.59 24.24

Average Error 29.93 19.79

Note. The Amazon S3 variable size (VS) model (MRWATS) was generated with 30, 60, and 90-node training benchmarks
against an Amazon S3 file system. The HDFS model (Elastisizer) was generated with 10-node training benchmarks
against HDFS.

In summary, MRWATS includes two enhancements to the Elastisizer’s relative

fitness models that improve Amazon S3 workloads’ prediction accuracy: Amazon S3

!

! 123!

fixed-size and variable-size relative fitness models. The first enhancement improves

upon the Elastisizer’s relative fitness models because the fixed-size model explicitly

captures the Amazon S3 file system cost statistics via Amazon S3 specific benchmarks.

Although the fixed-size model primarily improves the I/O bound workloads’ prediction

accuracy, the fixed-size model reduced the average prediction error by 28.23% across

multiple workloads executed on two instance types.

The second enhancement improves upon the Elastisizer’s relative fitness models

because it models Amazon S3 file system contention as the cluster size increases. The

new variable-size model generates the workload’s virtual profile based on training

benchmarks across multiple cluster sizes. While the Elastisizer assumes the file system

cost statistics remain constant as the cluster size increases, the variable-size model

predicts the workload’s contention as more nodes concurrently access the Amazon S3 file

system.

The variable-size model improved upon the Elastisizer’s fixed-size model because

workload contention increased the I/O bound workloads’ execution time. The variable-

size model reduced the average prediction error by 34.56% across multiple workloads

executed on clusters up to 90 nodes. For heavily I/O bound workloads, the variable-size

model reduced the prediction error compared to the Elastisizer’s HDFS model by as

much as 76%.

Accelerator Virtual Profile Enhancements

Like the Amazon S3 storage strategy, MRWATS created two different

enhancements to the Elastisizer’s original relative fitness model. The first enhancement

simply created a fix-ratio relative fitness model built from an accelerated cluster because

!

! 124!

an accelerated cluster allocates different resources to the distributed file system than a

traditional HDFS cluster (Chohan et al., 2010). The second enhancement added the

accelerator ratio as a predictor variable to the relative fitness model because remote tasks

increase disk and network contention (Wang et al., 2009; Zaharia et al., 2008).

Accelerator Fixed-Ratio Relative Fitness Model

The first enhancement improves upon the Elastisizer because the fix-ratio model

quantifies the cost statistics for an accelerated file system. MRWATS builds the fixed-

ratio model from training benchmarks against the actual file system resources. Unlike

the Elastisizer’s HDFS model, the fix-ratio model captures the cost statistics for a cluster

allocated with both core and accelerator nodes.

To validate that the fix-ratio model improved prediction accuracy over the

Elastisizer, the fix-ratio experiments evaluated both models against clusters with 50%

accelerators. Both the fixed-ratio and HDFS models are built with benchmarks run on a

single cluster, Table 18. This analysis section will demonstrate the fixed-model

improvements over the Elastisizer’s HDFS model on small-scale, Table 19, and large-

scale, Table 20, clusters.

The fixed-ratio model demonstrated improvements over the Elastisizer on a 10-

node cluster because the fixed-ratio model better captured the accelerated clusters I/O

characteristics. The fixed-ratio accelerated model reduced the average prediction error

11% compared to the HDFS model, Table 31. Although the original model performed

similarly for CPU bound workloads, the fixed-ratio model performed better for I/O bound

workloads, like TeraSort and Grep. For instance, the accelerated model reduced grep’s

prediction error by almost 50% on the c1.medium instance type. The accelerated model

!

! 125!

performed better for the I/O bound workloads because the accelerators generated some

HDFS file contention compared to an un-accelerated cluster.

Table 31: Fixed-Ratio Model’s Prediction Error with 50% Accelerators

Workload
Execution Time (sec.) % Prediction Error

Actual HDFS Pred. Fixed Pred. HDFS Model Fixed Model
C1 Medium
 Co-Occurrence 1033.58 1275.67 1403.82 23.42 35.82
 Grep 266.34 121.58 193.3 54.35 27.43
 Pi Est. 490.55 459.51 560.43 6.33 14.24
 TF-IDF 2318.76 2223.11 2260.69 4.13 2.50
 TPCH Q12 547.1 447.1 576.86 18.28 5.44
 TPCH Q14 413.38 351.9 342.82 14.87 17.07
 TeraSort 1688.82 1576.65 1583.05 6.64 6.26
 Word Count 1976.66 1970.1 2004.65 0.33 1.42
M1 Large
 Co-Occurrence 1227.93 1241.53 1356.98 1.11 10.51
 Grep 223.85 101.15 149.96 54.81 33.01
 Pi Est. 598.57 709.81 751.19 18.59 25.5
 TF-IDF 2665.1 2306.95 2402.44 13.44 9.86
 TPCH Q12 496.65 689.9 720.74 38.91 45.12
 TPCH Q14 466.24 389.29 402.79 16.5 13.61
 TeraSort 1045.74 964.82 1060.53 7.74 1.41
 Word Count 2321.87 2122.42 2184.76 8.59 5.91
 Average Error 18.00 15.94
Note. The fixed accelerator ratio model (MRWATS) was generated with training benchmarks against a cluster
with 5 core-nodes and 5 accelerator-nodes. The HDFS model (Elastisizer) was generated with training
benchmarks against a 10-node non-accelerated cluster.

The fixed-ratio model also improves upon the Elastisizer’s HDFS model at larger

scales because the ratio captures the relative amount of contention the accelerator nodes

generate. Unlike the Amazon S3 model, the map-reduce cluster allocates additional file

system resources with additional core nodes. If the accelerator ratio remains constant,

then a larger cluster should generate relatively the same contention on each core file

system node. When the map-reduce cluster size increases with the same accelerator ratio,

the fixed-ratio model should scale well because more core nodes are added to handle the

increased file system load.

To validate the new model scaled well, this section will compare the fixed-ratio

and original HDFS models to determine the execution time prediction accuracy up to 30

nodes. The analysis evaluated larger cluster sizes to determine if sized factored into file

system contention. Like the 10-node experiment, the large-scale experiment evaluated

!

! 126!

the execution time prediction accuracy for the workloads in Table 12. For each

workload, the evaluation captured the predicted and actual execution times to calculate

the prediction error. If the fixed-ratio model produced a smaller average prediction error

than the Elastisizer’s original HDFS model, then MRWATS accomplished the

dissertation goal.

The fixed-ratio model demonstrated improvements over the Elastisizer for cluster

sizes up to 30-nodes because the ratio provided a scalable file system contention

indicator. The fixed-ratio model reduced the average prediction error for both the

c1.medium (Table 32) and m1.large (Table 33) instance types up to 30 nodes. Across

both instance types, the fixed-ratio accelerator model reduced the average prediction error

by 11.54% compared to the HDFS model because the fixed-ratio model reduced the

prediction error for I/O bound workloads. For instance, the fixed-ratio model reduced the

grep workload’s error by 28.95% compared to the Elastisizer. To better analyze the

prediction improvements the c1.medium and m1.large instance types will be analyzed

separately.

For the c1.medium clusters up to 30 nodes, the fixed-ratio model demonstrated

improved prediction accuracy compared to the Elastisizer’s base HDFS model. The

fixed-ratio model reduced the average prediction error by 11.18% across all cluster sizes,

Table 32. Although the fixed-ratio model performed similarly at 10 nodes, the model

improved relative to the HDFS model as nodes were added. The c1.medium fixed-ratio

model reduced the average error over the HDFS model by 14.59% and 12.41%, for 20

and 30 nodes respectively.

!

! 127!

Like the small-scale results, the fixed-ratio model reduced the average prediction

error because the fixed-ratio model quantified the remote file system cost statistics better

than the Elastisizer’s HDFS model. I/O bound workloads generate file system contention

with 50% accelerators because the core data nodes must respond to local and remote file

system request simultaneously (Wang et al., 2009). The fix-ratio benchmarks capture

file system contention because the benchmarks’ remote tasks generate the same

contention. The c1.medium results demonstrate that the benchmarks modeled the file

system contention because the fixed-ratio model reduced the prediction error for the I/O

bound workloads (Grep, TeraSort, TF-IDF, TPC-H Q12) by 38.75%.

Table 32: C1.Medium Fixed-Ratio Model’s Prediction Error with 50% Accelerators

Nodes
Execution Time (Sec.) % Prediction Error

Acc. Actual HDFS Pred. Fixed Pred. HDFS Model Fixed Model
Co-Occurrence

10 1033.58 1275.67 1403.82 23.42 35.82
20 544.18 646.45 711.5 18.79 30.75
30 405.34 482.89 533.16 19.13 31.53

Grep
10 266.34 121.58 193.3 54.35 27.43
20 166.27 66.79 102.65 59.83 38.27
30 108.79 48.53 72.43 55.39 33.42

Pi Est.
10 490.55 459.51 560.43 6.33 14.24
20 306.62 281.22 341.77 8.28 11.46
30 199.45 192.08 232.44 3.7 16.54

TeraSort
10 1688.82 1576.65 1583.05 6.64 6.26
20 885.28 825.19 827.39 6.79 6.54
30 690.66 515.44 519.78 25.37 24.74

TF-IDF
10 2318.76 2223.11 2260.69 4.13 2.50
20 1182.48 1173.24 1191.53 0.78 0.77
30 850.56 783.64 795.76 7.87 6.44

TPCH Q12
10 496.03 447.1 576.86 9.86 16.29
20 345.65 246.32 314.9 28.74 8.9
30 215.99 167.2 213.01 22.59 1.38

TPCH Q14
10 413.38 351.9 342.82 14.87 17.07
20 319.05 214.51 209.08 32.77 34.47
30 185.45 145.81 142.21 21.38 23.31

Word Count
10 1976.66 1970.1 2004.65 0.33 1.42
20 972.55 991.86 1009.13 1.99 3.76
30 692.92 661.99 674.27 4.46 2.69

 Average Error 18.24 16.20
Note. The fixed accelerator ratio model (MRWATS) was generated with training benchmarks against a cluster with 5 core-
nodes and 5 accelerator-nodes. The HDFS model (Elastisizer) was generated with training benchmarks against a 10-
node non-accelerated cluster.

!

! 128!

The fixed-ratio model also scaled well for the m1.large instance types up to 30

nodes. The fixed-ratio model reduced the average prediction error compared to the

Elastisizer’s HDFS model by 13.10% (from 18.24 to 16.20 percent error) across all

m1.large cluster sizes, Table 33. The m1.large fixed-ratio model scaled consistently as

the number of nodes and tasks increased. The fixed-ratio model reduced the prediction

error by 9.24%, 18.59%, and 11.61% for the 10, 20, and 30 node clusters respectively.

Again, the fixed-ratio model reduced the average prediction error because the

fixed-ratio model quantified the remote file system cost statistics better than the pure

HDFS model on the m1.large instance type. The fix-ratio benchmarks capture file

system contention because the benchmarks’ remote tasks generate the same type of

contention. For example, word count actually became I/O bound with the accelerator

nodes. Although the HDFS model should have over-predicted the word-count

workload’s execution time (Herodotou et al., 2011), the HDFS model actually under-

predicted by ~9% because the workload shifted to an I/O bound workload. The fixed-

model actually captured the accelerator’s impact on execution time because the fixed-

model reduced the prediction error by 29% compared to the Elastisizer.

!

! 129!

Table 33: M1.Large Fixed-Ratio Model’s Prediction Error with 50% Accelerators

Execution Time (Sec.) % Prediction Error

Nodes Acc. Actual HDFS Pred. Fixed Pred. HDFS Model Fixed Model
Co-Occurrence

10 1227.93 1241.53 1356.98 1.11 10.51
20 736.49 629.84 689.05 14.48 6.44
30 516.58 422.24 461.53 18.26 10.66

Grep
10 223.85 101.15 149.96 54.81 33.01
20 265.89 56.58 80.98 78.72 69.54
30 206.28 45.43 63.74 77.98 69.10

Pi Est.
10 598.57 709.81 751.19 18.59 25.50
20 378.21 361.81 382.54 4.34 1.14
30 269.10 361.81 382.54 34.45 42.15

TeraSort
10 1045.74 964.82 1060.53 7.74 1.41
20 637.27 507.86 558.54 20.31 12.35
30 522.98 339.97 371.37 34.99 28.99

TF-IDF
10 2665.10 2306.95 2402.44 13.44 9.86
20 1404.78 1195.07 1243.08 14.93 11.51
30 956.44 872.74 908.32 8.75 5.03

TPCH Q12
10 496.65 689.90 720.74 38.91 45.12
20 315.65 387.89 404.66 22.89 28.20
30 366.71 308.55 322.35 15.86 12.10

TPCH Q14
10 466.24 389.29 402.79 16.50 13.61
20 251.37 231.39 239.22 7.95 4.84
30 245.95 162.64 167.86 33.88 31.75

Word Count
10 2321.87 2122.42 2184.76 8.59 5.91
20 1183.84 1068.53 1099.72 9.74 7.11
30 820.86 749.91 771.60 8.64 6.00

 Average Error 23.58 20.49
Note. The fixed accelerator ratio model (MRWATS) was generated with training benchmarks against a cluster
with 5 core-nodes and 5 accelerator-nodes. The HDFS model (Elastisizer) was generated with training
benchmarks against a 10-node non-accelerated cluster.

Accelerator Variable-Ratio Relative Fitness Model

While the first enhancement focused on execution time estimates for fixed

accelerator ratio clusters, cloud users need to evaluate workloads against different cluster

configurations to find the lowest monetary cost solution. MRWATS further improves

upon the Elastisizer because MRWATS enhanced the Elastisizer’s relative fitness models

to predict a workload’s execution time given different accelerator ratios. The second

enhancement added the accelerator ratio as a predictor variable to the relative fitness

!

! 130!

model because remote tasks increase disk and network contention (Wang et al., 2009;

Zaharia et al., 2008).

The second enhancement improves upon the Elastisizer because the variable-ratio

relative fitness model adapts its predictions as accelerator nodes are added to an existing

cluster. Where as the Elastisizer assumes a workload’s execution remains constant

regardless of the accelerator ratio. The variable-ratio model captures the cost statistics

for a cluster allocated with different accelerator ratios because MRWATS builds the

model from training benchmarks against different accelerator ratios. The variable-size

enhancement enables the cloud user to compare the different accelerator ratios to find the

configuration with the lowest monetary cost and or execution time.

To validate the variable-ratio model improved the prediction accuracy over the

Elastisizer, the variable-ratio experiments evaluated the variable-ratio and HDFS models

against clusters allocated with different accelerator ratios. While the HDFS benchmarks

were built from an un-accelerated cluster, the variable-ratio relative fitness models were

built with benchmarks run on clusters with different accelerator ratios, Table 21. Once

the models were built, the variable-ratio experiment evaluated the test workloads in Table

12 against 30-node clusters allocated with different accelerator ratios, Table 22. The

experiments evaluated the prediction accuracy for both the c1.medium and m1.large

instance types.

The variable-ratio model improved the prediction accuracy over the Elastisizer on

the c1.medium instance type because the variable-ratio benchmarks captured

representative workload cost statistics at different accelerator ratios. While CPU bound

workloads’ execution time remained constant as the accelerator ratio changes, some I/O

!

! 131!

bound workloads’ execution time increased over three times. For example, grep’s

execution time increased from 128 to 422 seconds when the accelerator ratio changed

from 33% to 83%, Table 34. The variable-ratio relative-fitness model distinguishes

between the CPU and I/O bound workloads based on the workload’s baseline cost

statistics. If the training benchmarks correctly model the workloads I/O characteristics,

then the variable-ratio model not only should improve the average execution time

prediction accuracy but also determine which workload’s execution time will degrade

with the higher accelerator ratios (Mesnier et al., 2007).

The variable-ratio model correctly captured the c1.medium workload’s I/O

characteristics because the variable-ratio model reduced the average prediction error and

predicted the workloads accelerator ratio degradation better than the Elastisizer. The

variable-ratio model reduced the average prediction error compared to the Elastisizer’s

HDFS model, Table 34. The variable-ratio model’s average prediction error was 16.26%

compared to the HDFS model’s 29.39% prediction error.

The accelerated model captured each ratio’s file system contention because the

accelerated model further improved upon the HDFS model as the accelerator ratio

increased. When the cluster allocated only 10 accelerators, the variable-ratio model

reduced the prediction error by 18.54% over the HDFS model. When the cluster

allocated 25 accelerators, the variable-ratio model reduced the prediction error by 57.95%

over the HDFS model.

!

! 132!

Table 34: C1.Medium Variable-Ratio Model’s Prediction Error

 Execution Time (Sec.) % Prediction Error
Ratio Acc. Actual HDFS Pred. VAR Pred. HDFS Model VAR Model
Co-Occurrence
 0.33 407.59 482.89 525.36 18.48 28.89
 0.5 405.34 482.89 527.01 19.13 30.01
 0.67 409.97 482.89 539.35 17.79 31.56
 0.83 346.46 482.89 540.99 39.38 56.15
Grep
 0.33 128.17 48.53 66.78 62.14 47.9
 0.5 108.79 48.53 72.15 55.39 33.68
 0.67 213.54 48.53 132.27 77.27 38.06
 0.83 422.45 48.53 371.67 88.51 12.02
Pi Est.
 0.33 205.94 192.08 221.85 6.73 7.72
 0.5 199.45 192.08 221.85 3.7 11.23
 0.67 205.36 192.08 217.84 6.47 6.08
 0.83 201.02 192.08 217.84 4.45 8.37
TeraSort
 0.33 674.72 515.44 588.76 23.61 12.74
 0.5 690.66 515.44 639.01 25.37 7.48
 0.67 837.06 515.44 717.49 38.42 14.29
 0.83 1505.23 515.44 1229.81 65.76 18.3
TF-IDF
 0.33 849.25 783.64 794.97 7.73 6.39
 0.5 850.56 783.64 796.61 7.87 6.34
 0.67 956.66 783.64 815.3 18.09 14.78
 0.83 1209.87 783.64 930.26 35.23 23.11
TPCH Q12
 0.33 175.7 167.2 185.96 4.84 5.84
 0.5 215.99 167.2 202.24 22.59 6.37
 0.67 290.76 167.2 259.09 42.49 10.89
 0.83 541.98 167.2 402.72 69.15 25.69
TPCH Q14
 0.33 179.23 145.81 164.91 18.65 7.99
 0.5 185.45 145.81 168.96 21.38 8.89
 0.67 265.16 145.81 227.56 45.01 14.18
 0.83 537.47 145.81 472.03 72.87 12.18
Word Count
 0.33 692.85 661.99 679.15 4.45 1.98
 0.5 692.92 661.99 678.16 4.46 2.13
 0.67 705.63 661.99 677.17 6.18 4.03
 0.83 711.47 661.99 676.32 6.95 4.94
 Average 29.39 16.26
Note. The variable accelerator ratio model (MRWATS) was generated with training benchmarks against four 30-node
clusters with 33%, 50%, 67%, and 83% accelerator ratios. The HDFS model (Elastisizer) was generated with training
benchmarks against a 30-node non-accelerated cluster.

The variable-ratio model offers an additional improvement over the Elastisizer’s

original relative-fitness models because the variable-ratio model captures the workload’s

relative cost statistic changes between accelerator ratios. While the execution time

prediction error measures each model’s accuracy, the cloud user also requires the

accelerator ratio’s relative impact for a given workload. The relative changes might be

more valuable than absolute accuracy because the relative changes indicate the

!

! 133!

workload’s appropriateness for acceleration (Chohan et al., 2010). If a workload’s

execution time triples as the accelerator ratio increases, then the workload is not a good

candidate for acceleration because the accelerated workload will cost the user more

money to execute than an un-accelerated workload.

The variable-ratio model predicts workload degradation better than the Elastisizer

because the variable-ratio benchmarks capture the workloads’ change in I/O and CPU

characteristics. If the I/O bound workloads degrades as the accelerator ratio increases,

then the variable-ratio benchmarks represent the change in the cost statistics. As a result,

the variable-ratio model predicted the workload degradation better than the HDFS model

for the c1.medium virtual machine type, Figure 19. While the HDFS model assumes all

workloads remain constant, the variable-ratio model accurately predicted execution time

degradation in five out of six HDFS bound workloads.

The variable-ratio model also predicted execution time remains relatively constant

in both CPU bound workloads. Although the variable-ratio model over-predicted the Co-

Occurrence workload’s execution time compared to the HDFS model, the variable-ratio

model did at least predict the workload would remain relatively flat at a only 2%

execution time degradation, Figure 19. The slight degradation indicates the workload

will be monetarily cost effective at high accelerator ratios on the c1.medium instance

!

! 134!

type.

Figure 19: Actual, VAR model predicted (MRWATS) and HDFS model predicted
(Elastisizer) execution time versus accelerator ratio on a c1.medium cluster.

Like the c1.medium variable-ratio model, the m1.large variable-ratio model

improved the prediction accuracy over the Elastisizer because the variable-ratio

benchmarks model representative workload cost statistics at different accelerator ratios.

The accelerator ratio does impact some workloads’ I/O cost statistics. Although the

m1.large’s workloads don’t degrade as much as the c1.medium workloads with additional

accelerators, TeraSort’s actual execution time increased over two times, from 472 to 1057

seconds, with 20 additional accelerators, Table 35. If the training benchmarks correctly

model the workloads I/O characteristics, then the variable-ratio model not only should

improve average execution time prediction accuracy but also determine which

!

! 135!

workload’s execution time will degrade with the higher accelerator ratios (Mesnier et al.,

2007).

The variable-ratio model also correctly captured the m1.large’s workload’s I/O

characteristics because the variable-ratio model reduced the average prediction error

compared to the Elastisizer. Although the workloads perform differently on the m1.large

instances, the variable-ratio model reduced the average prediction error by 24.18% (from

30.89 to 23.49 percent error) compared to the HDFS model, Table 35.

The m1.large variable-ratio model captured each ratio’s file system contention

because it performed better compared to the HDFS as the accelerator ratio increased,

Figure 20. When the m1.large cluster allocated 10 accelerators, the accelerated model

reduced the average prediction error by 12.98% over the HDFS model. When the

m1.large cluster allocated 25 accelerators, the accelerated model reduced the average

prediction error by 35.27% over the HDFS model.

!

! 136!

Table 35: Accelerated File System M1.Large Accuracy for Various Accelerator Ratios

Ratio
Execution Time (Sec.) % Prediction Error

Actual HDFS Model VAR Model HDFS Model VAR Model
Co-Occurrence
 0.33 475.87 422.24 411.82 11.27 13.46
 0.5 516.58 422.24 417.83 18.26 19.12
 0.67 466.81 422.24 423.84 9.55 9.2
 0.83 464.34 422.24 427.19 9.07 8
Grep
 0.33 168.7 45.43 78.68 73.07 53.36
 0.5 206.28 45.43 95.69 77.98 53.61
 0.67 322.3 45.43 112.69 85.9 65.04
 0.83 281.18 45.43 129.69 83.84 53.87
Pi Est.
 0.33 283.43 361.81 367.6 27.65 29.7
 0.5 269.1 361.81 367.63 34.45 36.61
 0.67 278.4 361.81 367.66 29.96 32.06
 0.83 289.01 361.81 367.66 25.19 27.21
TeraSort
 0.33 471.46 339.97 379.28 27.89 19.55
 0.5 522.98 339.97 402.89 34.99 22.96
 0.67 756.6 339.97 426.49 55.07 43.63
 0.83 1057.24 339.97 609.83 67.84 42.32
TF-IDF
 0.33 1015.67 872.74 899.21 14.07 11.47
 0.5 956.44 872.74 913.85 8.75 4.45
 0.67 1018.53 872.74 929.47 14.31 8.74
 0.83 1247.82 872.74 1080.2 30.06 13.43
TPCH Q12
 0.33 241.53 308.55 281.4 27.75 16.51
 0.5 366.71 308.55 316.1 15.86 13.8
 0.67 352.04 308.55 350.79 12.35 0.35
 0.83 464.71 308.55 385.45 33.6 17.05
TPCH Q14
 0.33 220.73 162.64 139.16 26.32 36.96
 0.5 245.95 162.64 162.53 33.88 33.92
 0.67 227.42 162.64 185.9 28.49 18.26
 0.83 286.46 162.64 207.22 43.23 27.66
Word Count
 0.33 812.77 749.91 775.25 7.73 4.62
 0.5 820.86 749.91 773.76 8.64 5.74
 0.67 816.81 749.91 772.29 8.19 5.45
 0.83 799.25 749.91 771.13 6.17 3.52
 Average 30.98 23.49
Note. The variable accelerator ratio (VAR) model (MRWATS) was generated with training benchmarks against
four 30-node clusters with 33%, 50%, 67%, and 83% accelerator ratios. The HDFS model (Elastisizer) was
generated with training benchmarks against a 30-node non-accelerated cluster.

The m1.large variable-ratio model improves on Elastisizer’s HDFS model

because the variable-ratio model captures the workload’s relative cost statistic changes

between accelerator ratios. While absolute execution time prediction accuracy improves

the cloud user’s ability to predict workload monetary costs, the cloud users require the

accelerator’s relative impact on execution time for a given instance type. The relative

!

! 137!

execution time changes allow the cloud user to select the accelerator configuration with

the lowest monetary cost and or execution time. For instance, an HDFS bound workload

might make better sense on the m1.large instance type than the c1.medium because the

workload can provision relatively more accelerators.

While the m1.large workloads did not degrade as much as the c1.medium

workloads, the variable-ratio model predicted the accelerator ratio’s execution time

impact better than the HDFS model for the m1.large virtual machine type, Table 20.

While the HDFS model assumes all workloads remain constant, the variable-ratio model

predicted execution time increases in five out of five HDFS bound workloads. The

variable-ratio model also correctly predicted 2/3 of the CPU bound workload’s execution

time would not degrade.

Figure 20. Actual, VAR model predicted (MRWATS) and HDFS model predicted
(Elastisizer) execution times versus accelerator ratio on an m1.large cluster.

!

! 138!

In summary, MRWATS includes two enhancements to the Elastisizer’s relative

fitness models that improve accelerated workloads’ prediction accuracy. The first

enhancement improves upon the Elastisizer’s relative fitness model because the

enhancement modeled the accelerated file system cost statistics for a fixed accelerator

ratio. Although the model mainly improved the I/O bound workloads’ prediction

accuracy, the fixed-ratio model reduced the average prediction error by 11% for a

mixture of CPU and I/O bound workloads across two instance types.

The second enhancement improves upon the Elastisizer’s relative fitness model

because the enhancement models the file system contention as the accelerator ratio

changes. While the Elastisizer’s model assumes all workloads have the same execution

time regardless of the accelerator ratio, MRWATS’s variable-ratio model predicts the

workload’s performance degradation as the accelerator ratio increases. The variable-

ratio model improved both the execution time prediction accuracy and workload

classification accuracy over the Elastisizer’s static relative fitness model. The variable-

ratio model improved the execution time prediction accuracy because it reduced the

average prediction error by 34% over the Elastisizer’s model. The variable-ratio also

classified workload degradation better than the Elastisizer because the variable-ratio

model’s false positive rate was only 12% compared to the HDFS model’s 68% false

positive rate.

Failure Aware Task Simulator Data Analysis

While the relative fitness model enhancements addressed issues related to the

storage strategy, the Elastisizer does not model the execution time impacts from early

spot instance termination. When the spot market auction terminates spot instances, the

!

! 139!

map reduce scheduler can’t allocate tasks to the spot instances’ slots. Furthermore, the

map reduce scheduler must reschedule the tasks from the accelerated slots because the

early termination creates missing intermediate data (Chohan et al., 2010).

MRWATS improves upon the Elastisizer during spot instance early termination

because MRWATS enhanced the task scheduler and virtual profiles to handle failures.

The enhanced task simulator mimics the actual task scheduler’s failure handling. Once

the scheduler detects the failure, the enhanced tasks simulator removes the failed slot

from the available slot queue. The simulator then reschedules the tasks with missing

intermediate data.

While the task simulator handles failed tasks, MRWATS has to adjust to different

cluster resources because the accelerator ratio changes when the failure occurs. The

task simulator uses two virtual profiles to account for the clusters configuration before

and after the failure. Before the spot market auction terminates the accelerator node, the

simulator calculates the task completion time with the accelerated virtual profile. Once

the auction terminates the accelerator node, the simulator calculates the remaining tasks

completion time with the base HDFS profile.

To validate that the enhanced scheduler improved the prediction accuracy over

the Elastisizer, the evaluation executed several failure experiments, Table 23. The

experiments compared MRWATS’s and the Elastisizer’s prediction error given early

termination in the first map wave, second map wave, first reduce wave, and second

reduce wave. If MRWATS predicted the execution time with a smaller prediction error

than the Elastisizer, then the enhanced scheduler successfully meets the dissertation goal.

!

! 140!

MRWATS scheduler reduced the prediction error when failures occurred because

the scheduler correctly estimated the rework from failed tasks. When the spot market

terminated the workload early, the updated scheduler reduced the execution time

prediction error by 76.12% (from 53.68 to 12.82 percent error) compared to the

Elastisizer, Table 36. While MRWATS reduce the prediction errors across all the

accelerator configurations, the original scheduler performed worst at the 67% accelerator

ratio with a 66% error because the high accelerator ratio contained the most failed tasks.

In contrast, MRWATS reduce the prediction error to ~12% at the high accelerator ratio.

To explain the improvement, this section will analyze both the c1.medium and m1.large

instances in detail.

Table 36: Average Execution Time Prediction Error by Accelerator Ratio

Accelerator Ratio
Average ET % Error

Elastisizer MRWATS
C1 Medium

 33% 41.86 11.84
 50% 51.47 12.36
 67% 65.84 13.95
M1 Large

 33% 40.86 13.87
 50% 55.36 15.42
 67% 66.72 9.98
All Tests 53.68 12.82

C1.Medium Failure Simulations

When the experiment evaluated the c1.medium cluster with 67% accelerators,

MRWATS scheduler improved the prediction accuracy over the Elastisizer because the

enhanced scheduler simulated the rework from the failed task, Table 37. This cluster

configuration demonstrated a larger improvement compared to the other cluster

configurations because the cluster lost 67% of the worker nodes during the tests. As a

result the Elastisizer (TS) under-predicted the workload execution time by ~66% because

!

! 141!

the scheduler did not account for the failures. Conversely, MRWATS scheduler (ETS)

reduced the prediction error to ~14% because the enhanced scheduler estimated the

rework from the failed tasks.

Table 37: Early Termination Accuracy by Wave for C1.Medium with 67% Accelerators

 Failed Maps Failed Reduces Execution Time (Seconds) ET % Error
Terminated Wave Act. Pred. Act. Pred. Actual TS ETS TS ETS
Co-Occurrence

 Map 1 40 40

0 0

1004.01 482.89 1292.16

51.90 28.70
 Map 2 80 80

40 40

996.37 482.89 1307.33

51.53 31.21

 Reduce 1 111 105

40 40

1130.38 482.89 1521.06

57.28 34.56
 Reduce 2 107 105

46 23

1129.18 482.89 1511.32

57.24 33.84

Grep

 Map 1 40 40

0 0

204.68 48.53 126.15

76.29 38.37
 Map 2 45 40

0 0

210.45 48.53 117.26

76.94 44.28

Pi Est.

 Map 1 40 40

0 0

512.31 192.08 474.38

62.51 7.40
 Map 2 68 63

1 1

594.78 192.08 559.94

67.71 5.86

 Reduce 1 71 65

1 1

663.43 192.08 638.94

71.05 3.69
TeraSort

 Map 1 49 40

3 0

1537.46 515.44 1595.01

66.47 3.74

 Map 2 88 80

40 40

1504.48 515.44 1636.89

65.74 8.80
 Reduce 1 172 160

42 40

1611.36 515.44 1797.62

68.01 11.56

 Reduce 2 172 160

40 23

1603.56 515.44 1442.43

67.86 10.05
TF-IDF Job1

 Map 1 40 40

0 0

1713.75 563.17 1670.62

67.14 2.52

 Map 2 80 80

40 40

1724.73 563.17 1671.87

67.35 3.07
 Reduce 1 411 400

40 40

1803.87 563.17 1736.26

68.78 3.75

 Reduce 2 404 400

48 23

1789.63 563.17 1728.41

68.53 3.42
Word Count

 Map 1 40 40

0 0

1925.44 661.99 1971.73

65.62 2.40

 Map 2 80 80

40 40

1919.98 661.99 1973.18

65.52 2.77
 Reduce 1 409 400

41 40

2205.82 661.99 2035.70

69.99 7.71

 Reduce 2 403 400

25 23

2142.80 661.99 2030.72

69.11 5.23
 Average Error 65.84 13.95
Note. MRWATS’ Enhanced Task Scheduler (ETS) used virtual profiles generated from the variable ratio-model and the
Elastisizer’s 10-node model. The Elastisizer’s Task Scheduler (TS) used only the virtual profiles from the Elastisizer’s 10-node
model.

MRWATS outperformed the Elastisizer because the enhanced task scheduler

estimated the failed tasks corresponding to the map-reduce wave the failure occur.

Table 37‘s failed tasks compare the enhanced task scheduler’s predicted failures to the

actual failures. The Elastisizer failed tasks are not shown because the Elastisizer doesn’t

predict failures. In essence, the Elastisizer always produced a 100% prediction error on

the number of failed tasks, regardless of the map-reduce wave.

While the Elastisizer does not predict failed tasks, the enhanced task scheduler

predicted the map waves’ task failures within 3.8% on average. When the task tracker

!

! 142!

failed during a given map wave, the number of failures are approximately !!""#$!×!!!"#

where kaccel is the number of accelerator slots (Chohan et al., 2010). When the

c1.medium workload contained 20 accelerators (or 40 accelerator map slots), the first

map wave test contained about 40-failed map tasks. If the workload failed during the

second wave, then the second map wave test contained about 80 failed map tasks, except

for grep. The grep workload created approximately kaccel or 40 failures because the grep

workload contained only map tasks and did not lose intermediate data.

The enhanced task scheduler also added reducer wave failure predictions. The

enhanced task scheduler predicts the reducer wave’s task failures with an average 6.7%

prediction error, Table 37. Again, the prediction error represents an improvement

because the Elastisizer does not predict the number of failed tasks for a given reduce

wave. The failed tasks extend the workloads execution time because the accelerated

tasks need to be rescheduled to supply the intermediate data to the reducers.

For the reduce wave failures, the experiments contain both map and reduce

failures. If the spot market terminates the accelerator during a reduce wave, the

terminated accelerators causes all accelerated map tasks and one reduce wave’s tasks,

kaccel, to fail (Wang et al., 2009). When the c1.medium workload contained 20

accelerators (or 40 accelerator reduce slots), the first reduce wave tests contained about

40 failed reduce tasks and approximately 67% failed map tasks. The only exception was

the Pi Estimator workload because the Pi Estimator only contained one reduce task.

While the enhanced task scheduler accurately predicted the reduce failure counts

in most experiments, the enhance simulator under-predicted the reduce failure counts in

the second reduce wave. For instance, TeraSort contained 40 failed reduces versus 23

!

! 143!

failed reduces, Table 37. The simulator under-predicted the second wave failures

because the workloads do not contain enough tasks to entirely fill the second wave’s

accelerator slots. The simulator implementation biased task assignment to the core slots

for the partial wave.

Although the enhanced task scheduler underestimated the reduce failure counts in

the second wave, MRWATS still improved the execution time prediction accuracy over

the Elastisizer because the enhanced task scheduler at least estimated the second waves

recovery time. MRWATS reduced the second wave execution time prediction error by

73% over the Elastisizer because the enhanced task simulator found at least one failure in

the second wave. The enhanced task simulator only requires one reduce task failure to

produce an approximate recovery time estimate because the execution time for one

reduce wave equals the longest task in the given wave (Verma et al., 2011). More

importantly, one reduce task failure forces the enhanced task scheduler to reprocess the

accelerator’s map tasks to recreate the missing intermediate data.

While the enhanced task simulator predicted the post failure tasks to reschedule,

the task execution times don’t remain constant. When the spot instances terminate early,

the spot instances no longer contend for file system resources. For the 67% accelerator

clusters, the spot instance failure reverts the cluster configuration to a 10-node on-

demand cluster. Therefore, the remaining tasks should execute at the same compute-rate

as the 10-node on-demand cluster.

The enhanced task scheduler improved it’s own workload recovery prediction by

using two virtual profiles for the tasks. Before the spot market terminates the spot

instances, the enhanced task scheduler estimates the task cost with an accelerated virtual

!

! 144!

profile because the spot instance accelerators generate file system contention. After the

spot market terminates the spot instances, the enhanced task scheduler estimates the task

cost with an un-accelerated virtual profile because the spot instance tasks no longer

generate file system contention.

The dual virtual profile approach improved the prediction accuracy for I/O bound

workloads like TeraSort, Figure 21. With a single virtual profile (ETS 1VP), the

enhanced task schedule over-predicted the execution time because the failed task

completed at a much faster rate than predicted. The recovery attempts completed in

64.483 seconds on average verses the accelerated virtual profiles predicted time, 81.229

seconds. When the enhanced task scheduler used two virtual profiles (ETS 2VP), the

dual profile improve the enhanced task scheduler’s own prediction accuracy by 73% on

average because the enhanced task scheduler better predicted the recovery rate for the

failed task. The predicted recovery attempt time matched the actual recovery attempt

time of 64.483 seconds.

Figure 21. Execution time predictions for the enhanced task simulator using single and
dual virtual profiles.

!

! 145!

M1.large Failure Simulations

The enhanced task scheduler also improved the execution time prediction

accuracy on the m1.large instance type because the enhanced task scheduler estimates the

failed tasks’ recovery time based on the cluster resources. The enhanced task scheduler

mimics the actual task scheduler’s failure handling. Once the scheduler detects the

failure, the enhanced task simulator removes the failed slots from the available slot

queue. The simulator then rescheduled the tasks missing intermediate data with the

appropriate m1.large virtual profile.

When the experiments evaluated the m1.large cluster with 67% accelerators,

MRWATS’s scheduler improved the prediction accuracy over the Elastisizer because the

enhanced scheduler simulated the rework from the failed task, Table 38. As with the

c1.medium cluster, the 67% accelerator configuration demonstrated a larger improvement

compared to the other cluster configurations because the cluster lost 67% of the worker

nodes during the tests. As a result the Elastisizer (TS) under-predicted the workload

execution time by 66.72% because the scheduler did not account for the failures.

Conversely, MRWATS’s scheduler (ETS) reduced the prediction error to 9.98% because

the enhanced scheduler estimated the rework from the failed tasks.

MRWATS improved upon the Elastisizer because the enhanced task scheduler

estimated the failed tasks corresponding to the map-reduce wave the failure occurred.

Table 38 compares the enhanced task scheduler’s predicted failed tasks to the actual

workload failed tasks. As with the c1.medium instance type, the Elastisizer failed tasks

are not shown because the Elastisizer doesn’t predict failures. When a failure occurs, the

!

! 146!

Elastisizer always produced a 100% prediction error on the number of failed tasks,

regardless of the map-reduce wave.

While the Elastisizer does not predict failed tasks, the enhanced task scheduler

predicted the map waves’ task failures within 5.8% on average. The m1.large instances

generate more failed tasks than the c1.medium instances because the m1.large instance

type contains three map slots versus the c1.medium’s two slots. When the m1.large

workload contained 20 accelerators (or 60 accelerator map slots), the first map wave test

contained about 60-failed map tasks. If the workload failed during the second wave, then

the second map wave test contained up to 120 failed map tasks. In contrast, the

Elastisizer under-predicts the failed tasks because it doesn’t handle failures.

MRWATS also accurately predicted the recovery time for reduce failures because

the enhanced task scheduler predicted the number of task failures with a 4.7% prediction

error, Table 38. Like the c1.medium configuration, the m1.large cluster contains 40

accelerated reduce slots. When the accelerators terminate on a reduce wave, the

termination caused about 40 reduce tasks and 67% map tasks to fail. Although the

enhanced scheduler under-predicted the second wave reduce task failures, MRWATS still

reduced the execution time prediction error by 86.64% compared to the Elastisizer

because the enhance task scheduler estimated the recovery time for one reduce wave and

the depended map tasks.

!

! 147!

Table 38: Early Termination by Wave for m1.large with 67% Accelerators

 Failed Maps Failed Reduces Execution Time (Seconds) ET % Error
Terminated Wave Act. Pred. Act. Pred. Actual TS ETS TS ETS
Co-Occurrence

 Map 1 60 60

0 0

1275.73 422.24 1242.46

66.90 2.61
 Map 2 108 107

40 40

1290.25 422.24 1240.04

67.27 3.89

 Reduce 1 105 107

40 40

1362.25 422.24 1295.93

69.00 4.87
 Reduce 2 108 110

54 23

1402.36 422.24 1280.16

69.89 8.71

Grep
 Map 1 60 60

0 0

197.67 45.43 123.57

77.02 37.49

 Map 2 67 41

0 0

221.70 45.43 171.29

79.51 22.74
Pi Est.

 Map 1 60 60

0 0

648.97 361.81 712.74

44.25 9.83
 Map 2 67 68

0 1

708.05 361.81 799.52

48.90 12.92

 Reduce 1 69 66

1 1

800.29 361.81 958.52

54.79 19.77
TeraSort

 Map 1 67 60

0 0

1031.50 339.97 993.47

67.04 3.69
 Map 2 147 120

40 40

999.00 339.97 1008.73

65.97 0.97

 Reduce 1 157 161

40 40

1107.00 339.97 1113.02

69.29 0.54
 Reduce 2 160 163

42 23

1194.91 339.97 932.15

71.55 21.99

TF-IDF Job1
 Map 1 60 60

0 0

1965.97 631.00 1787.58

67.90 9.07

 Map 2 120 120

40 40

1963.94 631.00 1792.89

67.87 8.71
 Reduce 1 403 403

40 40

2069.65 631.00 1962.63

69.51 5.17

 Reduce 2 405 403

40 23

2093.23 631.00 1955.32

69.86 6.59
Word Count

 Map 1 60 60

0 0

2352.76 749.91 2125.76

68.13 9.65
 Map 2 120 120

40 40

2341.91 749.91 2129.05

67.98 9.09

 Reduce 1 404 403

40 40

2445.23 749.91 2307.34

69.33 5.64
 Reduce 2 403 403

42 23

2438.28 749.91 2300.53

69.24 5.65

 Average Error 66.72 9.98
Note. MRWATS’ Enhanced Task Scheduler (ETS) used virtual profiles generated from the variable ratio-model and the
Elastisizer’s 10-node model. The Elastisizer’s Task Scheduler (TS) used only the virtual profiles from the Elastisizer’s 10-
node model.

In summary, MRWATS performs better than the Elastisizer during early

termination because MRWATS enhanced the task scheduler and virtual profile to handle

failures. Once the scheduler detects the failure, the enhanced tasks simulator removes the

failed slots from the available slot queue. The simulator then rescheduled the failed tasks

with the appropriate virtual profile to match the new cluster resources. The

enhancements allow MRWATS to predict the early termination recovery time, where as

the Elastisizer has no such mechanism.

The enhanced task scheduler reduced the early termination prediction error by

76.12% on average over the Elastisizer’s scheduler because the updated scheduler

accurately determined the increased execution time due to the failures. For the 67%

!

! 148!

accelerator ratio, the enhanced scheduler estimated the failed tasks with 5.1% and 5.8%

average prediction error for the c1.medium and m1.large instance types, respectively.

While MRWATS accounted for the failed tasks, the Elastisizer did not account for the

failed tasks. As a result, the Elastisizer consistently under-predicted the execution time

by 50 to 80 percent.

Forecast Tool Data Analysis

While the early termination scheduler determines a given failure’s impact on

execution time, it does not fully predict the spot market’s impact on the workload’s

completion time and or financial costs. The spot market auction might cause a workload

to wait because the bid price might be below the market price (Chohan et al., 2010). The

cloud user also doesn’t know the exact time an auction will terminate the spot instances

because the market price is partly based on demand (Orna Agmon Ben-Yehuda et al.,

2013).

This study created a forecast tool, MRWATS, to determine the completion time

and monetary cost for spot market workloads. MRWATS improves upon the Elastisizer

because MRWATS estimates the completion time and monetary costs based on a spot

market trace. Unlike the Elastisizer’s execution time predictions, completion time

predictions include spot auction wait and recovery time estimates. MRWATS also

improves the monetary cost estimates because the forecast tool incorporates the average

market price and potential recovery costs.

To validate the MRWATS enhancements, this section assessed MRWATS’ and

the Elastisizer’s prediction accuracy against two different actual market traces:

c1.medium (Figure 15) and m1.large (Figure 16). Each trace represents different

!

! 149!

historical market conditions for the tool to predict the workloads’ completion time and

monetary costs. MRWATS improved upon the Elastisizer’s predictions for both traces

because each trace contains market conditions, which the Elastisizer does not account for.

The c1.medium trace contains frequent early terminations at low bids. The m1.large

trace contains regular demand patterns where some workloads need to wait.

For each price history, the experiments split the price history into training and test

traces to compare MRWATS against the Elastisizer. MRWATS predicted the

completion time and monetary cost based on the training trace. The Elastisizer predicted

the completion time based on the workload’s virtual profile. The Elastisizer computed

the monetary cost by naively assuming the bid price equaled the market price. The

experiment then computed the actual workload average completion time and monetary

cost via a Monte Carlo simulation using the test trace.

When the experiment completed the Monte Carlo simulation, the experiment

compared MRWATS and the Elastisizer based on the simulation results. For each

workload, the evaluation computed both tools’ prediction error. If MRWATS reduced

the prediction error over the Elastisizer, then the MRWATS’ forecast enhancements met

the dissertation goal.

C1 Medium Trace Data Analysis

MRWATS improves upon the Elastisizer for market conditions like the

c1.medium trace because MRWATS estimates the completion time and monetary cost

based on the market history. Where as the Elastisizer assumes the execution time

remains constant and costs increase linearly with bid price changes, MRWATS factors in

wait times, early terminations, and past market prices into the completion time and cost

!

! 150!

predictions. Furthermore, MRWATS also improves upon the Elastisizer because the new

tool adapts the prediction based upon the spot instance accelerator ratio.

For the c1.medium trace, MRWATS outperformed the Elastisizer for both

average completion time and costs across all accelerator ratios, Table 39. MRWATS

improved the average completion time prediction accuracy because it includes the

average wait and recovery time in the prediction. MRWATS also improved the

completion time prediction accuracy by using accelerator specific virtual profiles. In

combination, the completion time improvements reduced the average completion time

prediction error by 91.5% (from 31.12 to 2.62 % error) compared to the Elastisizer, Table

39. MRWATS improved the average monetary cost prediction accuracy because

MRWATS includes recovery costs and the average market price in the prediction. Both

cost adjustments reduced the average cost prediction error by 99.1% (from 347.40 to 3.00

% error), Table 39.

MRWATS created better completion time predictions than the Elastisizer for the

c1.medium trace because MRWATS estimates the wait times and early termination costs.

The c1.medium trace’s market prices ranged from $0.018 to $2.50. Workloads bid at

$0.018 were more likely to wait and terminated early. For workloads allocated at the

minimum bid, the Elastisizer misestimated the average completion time with as much as

a 99% error for the bids at $0.018. Comparatively, MRWATS misestimated the average

completion time with only a 3.1% error for bids at $0.018.

MRWATS also created better completion time predictions than the Elastisizer for

the c1.medium trace because MRWATS predicted the completion time with accelerator

specific virtual profiles. As a result, MRWATS reduced the completion time prediction

!

! 151!

error over the Elastisizer as the accelerator ratio increased. The Elastisizer approach

performed worst for the 67% ratio because the original HDFS relative fitness model does

not factor in the performance degradation for I/O bound workloads. The Elastisizer

model’s error ranged from 37% to 73% for the I/O bound workloads (TeraSort, TPC-H,

and grep). In comparison, MRWATS’s error ranged from 1% to 6% for the same

workloads because the accelerated model accounts for HDFS contention.

While MRWATS’s completion time accuracy performed well compared to the

Elastisizer, MRWATS also improved the monetary cost prediction accuracy because

MRWATS factors in the average market price into the prediction. The Elastisizer’s

average error ranged from 177% to 710% because it’s cost model naïvely assumed the

bid and market price were equal. While the market price did peak at $2.50, the average

market price for the test trace was only $0.1236. In comparison, MRWATS perform

much better than the Elastisizer’s naïve cost model with an average error between 0.83%

and 7.56%.

!

! 152!

Table 39: Completion Time and Financial Cost Error by Accelerator Ratio

Ratio
Ave. Completion Time % Error

Ave. Cost % Error

Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.33 18.74 1.63 246.35 2.02
 0.50 20.86 2.69 396.64 3.39
 0.67 25.69 4.61 555.11 5.27
Grep
 0.33 51.58 2.04 159.87 0.74
 0.50 55.30 1.84 237.17 1.29
 0.67 75.22 1.39 148.68 1.50
Pi Est.
 0.33 29.53 0.88 222.37 0.82
 0.50 30.34 0.78 360.61 1.44
 0.67 30.81 1.10 529.92 2.40
TF-IDF Job1
 0.33 12.89 2.17 266.90 2.54
 0.50 15.39 3.80 427.06 4.35
 0.67 19.53 6.51 610.88 6.75
TPCH Q12
 0.33 27.51 0.79 232.92 0.99
 0.50 33.67 0.77 337.55 1.43
 0.67 47.96 1.15 362.88 2.13
TPCH Q14
 0.33 30.44 1.06 232.92 1.15
 0.50 33.64 0.82 356.41 1.98
 0.67 50.84 0.73 349.14 1.91
TeraSort
 0.33 21.97 2.06 228.95 2.40
 0.50 29.57 3.59 337.62 4.13
 0.67 38.87 6.46 430.40 6.54
Word Count
 0.33 12.37 2.73 266.58 3.12
 0.50 14.95 4.88 427.59 5.33
 0.67 19.25 8.39 613.08 8.28
Average 31.12 2.62 347.40 3.00

C1 Medium Trace - 50% Accelerator Ratio Data Analysis

Although the overall results demonstrated that MRWATS improved the

completion time and cost prediction accuracy, the 50% accelerator results further explain

the differences between MRWATS and the Elastisizer. MRWATS improved both

completion time and cost predictions because it estimated the spot market impacts on

both measures. When the simulation tested the 50% accelerator ratio configuration,

MRWATS reduced the completion time prediction error by 91.8% and the cost prediction

!

! 153!

error by 99.19% over the Elastisizer’s predictions. Appendix B details similar results for

the 33% and 67% accelerator ratios.

To better explain the spot market impact on completion time and cost, this section

analyzes the completion time and cost prediction accuracy for low and high bids.

MRWATS improves upon the Elastisizer at low bids because MRWATS predicts the

average wait and recovery time when the workload is most likely to encounter both.

MRWATS also improves upon the Elastisizer at high bids because MRWATS factors the

average market price into the prediction.

At low bids, MRWATS outperformed the Elastisizer’s completion time prediction

because MRWATS factored in wait times and early terminations. For instance, the

c1.medium trace contains frequent spot instance terminations at bid prices near the

minimum bid. When the user bids the minimum bid, $0.018, the Elastisizer is off by an

order of magnitude, Table 40. The Elastisizer underestimates the completion by a large

measure because most low bid jobs require an extra 15 to 16 hours of spot market

overhead with the c1.medium trace, Figure 22. MRWATS performed much better at the

minimum bid with a 2.4% maximum error because MRWATS includes the wait and

recovery times.

!

! 154!

Figure 22: Predicted and actual completion times versus bid price for the c1.medium
trace with 50% accelerators.

While the Elastisizer performed best with large bids, the low bid completion times

are more relevant to the user because the optimal bid prices are below $0.58. Figure 22

shows the completion time verses bid price. Compared to the Elastisizer, MRWATS

performed better at bid prices under $0.58 because the low bids contains greater wait

times and failures. While the user waits for the auction to allocate instances at low bids,

the low bids also provide the lowest average workload costs.

At high bids, MRWATS outperformed the Elastisizer’s completion time

prediction for I/O bound workloads because MRWATS models the workloads cost

!

! 155!

statistics with accelerator specific virtual profiles. The Elastisizer assumes the execution

time remains constant regardless of the cluster’s accelerator ratio. In contrast, MRWATS

predicts the workload degradation with additional accelerators. When the TeraSort

workload contained no failures or wait times ($2.50 bid), MRWATS reduced the

completion time prediction error from 20.93% to 0.29%.

Table 40: Completion Time Error for C1.Medium with 50% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.0180 17.13 1.05 16.93 93.90 1.17
 0.1300* 2.04 1.05 2.04 48.64 0.42
 0.3425** 1.45 1.05 1.56 27.78 7.77
 2.5000 1.15 1.05 1.15 8.82 0.09
Grep
 0.0180 15.59 0.09 15.29 99.39 1.94
 0.0185 3.72 0.09 3.48 97.46 6.41
 2.5000 0.15 0.09 0.15 38.42 0.00
Pi Est.
 0.0180 16.05 0.38 15.68 97.66 2.31
 0.0500* 1.23 0.38 1.23 69.40 0.25
 0.1300** 1.16 0.38 1.15 67.66 0.91
 2.5000 0.44 0.38 0.44 14.23 0.08
TF-IDF Job1
 0.0180 17.60 1.37 17.51 92.21 0.52
 0.1300* 2.40 1.37 2.43 42.76 1.58
 0.2000** 1.80 1.37 2.00 23.71 11.27
 2.5000 1.41 1.37 1.41 2.88 0.39
TPCH Q12
 0.0180 16.08 0.37 15.71 97.70 2.31
 0.0500** 1.25 0.37 1.25 70.30 0.36
 0.1300* 1.18 0.37 1.17 68.64 0.90
 2.5000 0.46 0.37 0.45 18.66 0.08
TPCH Q14
 0.0180 15.87 0.26 15.49 98.39 2.40
 0.0500* 1.07 0.26 1.07 76.21 0.38
 0.1300** 1.01 0.26 1.00 74.70 0.98
 2.5000 0.30 0.26 0.30 14.99 0.07
TeraSort
 0.0180 17.79 1.28 17.71 92.81 0.43
 0.1300* 2.58 1.28 2.63 50.38 2.04
 0.1715** 2.02 1.28 2.21 36.65 9.55
 2.5000 1.60 1.28 1.60 20.13 0.29
Word Count
 0.0180 18.00 1.62 18.04 91.01 0.20
 0.1300* 2.72 1.62 2.81 40.49 3.36
 0.5800** 2.09 1.62 2.34 22.53 12.16
 2.5000 1.67 1.62 1.66 2.82 0.39

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

While completion time aids in the cloud user’s decision to use spot instances, spot

instance users sacrifice completion time to reduced the workload’s average price. Spot

!

! 156!

instance users require monetary cost estimates to determine if the potential financial

savings is worth the extra completion time. MRWATS improves upon the Elastisizer’s

monetary cost estimates because MRWATS factors in early termination recovery costs

and the average market price into the monetary cost estimates. With both factors baked

into the monetary cost estimate, MRWATS reduced the Elastisizer’s average cost

prediction error by 99.1%.

MRWATS improve the monetary cost prediction accuracy at the low and high

bids for different reasons. MRWATS outperforms the Elastisizer cost accuracy for low

bids because the spot instance auction terminates spot instances more frequently at low

bids (Chohan et al., 2010). The Elastisizer under-predicts costs at low bids because it

does not factor in the extra run time for early terminated spot instances, Figure 23. When

the user bids at $0.018, the MRWATS’s average error ranged from 0.6% to 16%. For the

same bid, the Elastisizer’s average error ranged from 31% to 41%, Table 41.

MRWATS improved the prediction accuracy on high bids because it calculates

the average costs for a given bid instead of the maximum possible market price. While

an individual run might allocate the spot instance at the bid price, the auction allocates

the workload at a much lower market price on average. When the Elastisizer assumes the

bid and market price are the same, the Elastisizer over predicts the average workload cost

with a prediction error up to 907.48% at the $2.50 bid, Table 41. MRWATS outperforms

the naïve approach at the $2.50 bid with a maximum prediction error of only 1.50%.

!

! 157!

Table 41: Monetary Cost Error for C1.Medium with 50% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.0180 3.84 2.56 4.02 33.34 4.89
 0.1300* 3.26 4.31 3.25 32.27 0.29
 0.3425** 3.23 7.65 3.46 136.84 7.30
 2.5000 4.39 41.48 4.37 844.33 0.55
Grep
 0.0180 0.38 0.23 0.38 38.81 0.64
 0.0185 0.38 0.23 0.38 38.40 0.13
 2.5000 0.59 3.76 0.59 535.39 0.83
Pi Est.
 0.0180 1.41 0.92 1.28 34.84 9.50
 0.0500* 1.19 1.10 1.17 7.64 1.69
 0.1300** 1.21 1.55 1.15 28.63 4.88
 2.5000 1.70 14.91 1.67 779.94 1.48
TF-IDF Job1
 0.0180 4.90 3.35 5.29 31.52 8.12
 0.1300* 4.10 5.66 4.15 38.06 1.26
 0.2000** 4.04 7.10 4.42 75.69 9.50
 2.5000 5.41 54.40 5.36 905.83 0.86
TPCH Q12
 0.0180 1.46 0.91 1.33 38.10 9.18
 0.0500** 1.24 1.08 1.22 12.26 1.43
 0.1300* 1.25 1.53 1.19 22.18 4.67
 2.5000 1.76 14.70 1.74 734.38 1.50
TPCH Q14
 0.0180 1.00 0.62 0.84 37.41 15.63
 0.0500* 0.82 0.75 0.79 8.91 4.19
 0.1300** 0.83 1.05 0.78 26.44 6.84
 2.5000 1.16 10.12 1.14 775.78 1.06
TeraSort
 0.0180 5.32 3.13 5.72 41.16 7.69
 0.1300* 4.54 5.28 4.61 16.33 1.72
 0.1715** 4.50 6.07 4.90 34.91 8.89
 2.5000 6.13 50.75 6.09 727.50 0.71
Word Count
 0.0180 5.79 3.96 6.44 31.70 11.17
 0.1300* 4.86 6.68 5.02 37.45 3.31
 0.5800** 4.80 17.60 5.34 266.92 11.25
 2.5000 6.37 64.21 6.33 907.48 0.75

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

While MRWATS reduced the cost prediction error compared to the Elastisizer,

the cost estimate tool should indicate the optimal bid price to minimize the workload’s

monetary costs. MRWATS’s predicted optimal bid minimized the average cost better

than the Elastisizer’s optimal bid because MRWATS doesn’t assume the lowest bid

results in the lowest cost for the workload. For the c1.medium trace, low bids actually

increased the average workload monetary costs due to early termination, Figure 23.

!

! 158!

Although MRWATS did not predict the exact optimal bid for every workload,

MRWATS optimal bids minimized the workloads average costs better than the

Elastisizer’s projected optimal bids. MRWATS predicted optimal bid increased the

workloads’ cost by only 0.6% to 3% over the simulated optimal bid. Comparatively, the

Elastisizer’s predicted optimal bid increased cost by 20% to 30% because the Elastisizer

assumed the lowest possible bid ($0.018) was optimal. The Elastisizer’s bid strategy

increased the workload average costs because the c1.medium test trace contained a high

failure probability at low bids ($0.018), Figure 23.

!

! 159!

Figure 23. Actual (simulated) average, predicted average, and on-demand costs versus
bid price for the c1.medium trace with 50% accelerators.

C1 Medium Trace – Ratio Selection Data Analysis

Although a cost estimation tool should accurately predict the workload’s

completion time and monetary costs, the cost estimate tool should also select the best

cluster configuration (Herodotou et al., 2011). Where as the Elastisizer compares

different virtual machine types, MRWATS compares different accelerator ratios.

MRWATS improves upon the Elastisizer because MRWATS adapts the monetary cost

!

! 160!

predictions based on market conditions and workload characteristics. For a given spot

market history, the cloud user should be able to compare different accelerator ratio

configurations against an on-demand cluster, Figure 24.

When an estimation tool compares accelerator ratio configurations, the tool also

needs to consider the bid price because the bid price impacts the workload’s cost (Chohan

et al., 2010). MRWATS aids the cloud user to decide on both the bid price and

accelerator ratio because it factors in recovery costs and the average market price to the

average workload cost. Where as the Elastisizer assumes the lowest bids translated to

the lowest average workload costs, MRWATS indicates a cost-effective bid range based

on the price history.

MRWATS helps user select a configuration better than the Elastisizer because

MRWATS enables cloud users to select bids that avoid frequent terminations while

minimizing the average market price. For the c1.medium trace, the cloud user could beat

the on-demand workload price with bids from $0.10 to $0.50 regardless of the accelerator

ratio, Figure 24. In contrast, a cloud user would miss potential cost savings with the

Elastisizer because the Elastisizer doesn’t factor in the market price to the cost estimates.

The Elastisizer would bias towards on-demands instances for the same bid range because

the $0.50 bid is much larger than the on-demand price, $0.145.

MRWATS helps user select an accelerator configuration better than the

Elastisizer because MRWATS adapts the monetary cost predictions to the workloads

characteristics. The Elastisizer always assumes the highest accelerator ratio provides the

best monetary cost saving because the user allocates a greater percentage of nodes at a

!

! 161!

cheaper price. In contrast, MRWATS adjusts the accelerator ratio recommendation based

on the variable-ratio virtual profiles.

Once MRWATS estimates the monetary cost based on the bid, it enables the

cloud user to determine the best accelerator ratio for a given workload. The accelerator

ratio’s impact differs based on the workload’s characteristics. If the workload is CPU

bound, then the highest accelerator ratio provided the largest cost reduction because the

workload’s execution time remains constant as accelerators are added. For example, the

co-occurrence workload’s execution time does not degrade as the accelerator ratio

changes, Figure 19. The cloud user should provision a cluster with 20 accelerators for

the Co-Occurrence workload because 20 accelerators reduced the average workload cost

by 37% compared to a 15% monetary cost reduction from 10 accelerators, Figure 24.

If the workload is I/O bound, then the cloud user should avoid high accelerator

ratios because high ratios increase the workloads’ monetary cost due to extra runtime.

I/O bound workloads execute longer as the accelerator ratio increases, Figure 19. If the

workload takes longer to run, then the user must pay for the extra time. For example, the

TPC-H Q14 workload’s costs increased at the high accelerator ratio, Figure 24. The

TPC-H Q14 workload costs an average four cents more on a 67% ratio than a 50% ratio

because the workload took 30 minutes longer to execute.

MRWATS provided better ratio recommendations than the Elastisizer because

MRWATS predicts the extra runtime from additional accelerators. For the TPC-H Q14

workload, MRWATS recommended the 50% ratio because the 67% ratio’s extra runtime

increased the workloads costs, Figure 24. In contrast, the Elastisizer selected the wrong

!

! 162!

ratio, 67%, for the TPC-H workload because the Elastisizer doesn’t adjust the execution

time estimates based on the accelerator ratio.

Figure 24: MRWATS predicted average costs by accelerator ratio versus the bid price for
c1.medium trace compared to the on-demand cost.

M1 Large Trace Data Analysis

The m1.large experiments evaluated MRWATS’s prediction accuracy compared

to the Elastisizer against the m1.large spot market history trace. While the experiment

!

! 163!

changed instance types, the price history trace also exhibited different features compared

to the c1.medium evaluation. Although the c1.medium trace contained frequent price

transitions, the m1.large trace provided more periodic price transitions. The workloads

low bids did not wait as long to allocate the cluster. The m1.trace also provided fewer

opportunities for early termination.

Given the new price history trace, MRWATS still improved upon the Elastisizer

because MRWATS estimates the completion time and cost based on the market price

history. Although the m1.large trace contains shorter wait times and fewer early

terminations, both still impacted the workloads completion time and monetary costs.

Where as the Elastisizer is insensitive to the spot market impacts on the workload,

MRWATS factors in past wait times, early terminations, accelerator ratio, and market

prices into its’ completion time and cost predictions.

While the m1.large trace represented regular market patterns, MRWATS still

demonstrated an improvement over the Elastisizer. MRWATS reduced both the average

completion time and cost error compared to the Elastisizer for all workloads, Table 42.

MRWATS reduced the average completion time error by 95.6% (from 30.01 to 1.72

percent error) compared to the Elastisizer. MRWATS also reduced the average cost error

by 98.2% (from 199.01 to 3.53 percent error) compared to the Elastisizer.

!

! 164!

Table 42: M1.Large Completion Time and Cost Error by Workload & Ratio

Ratio
Ave. Completion Time % Error

Ave. Cost % Error

Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.33 24.39 0.66 162.42 2.24
 0.50 27.27 1.79 228.49 3.49
 0.67 32.57 3.65 294.83 5.00
Grep
 0.33 73.46 2.47 62.21 1.97
 0.50 77.45 2.43 70.20 2.47
 0.67 80.30 2.22 76.20 2.95
Pi Est.
 0.33 32.95 0.27 156.02 2.84
 0.50 34.45 1.44 225.18 4.63
 0.67 37.11 3.94 295.92 7.00
TF-IDF Job1
 0.33 24.17 0.56 145.72 1.37
 0.50 28.07 0.85 211.91 2.34
 0.67 34.12 1.77 280.33 3.52
TPCH Q12
 0.33 31.64 0.41 180.15 3.35
 0.50 34.70 1.79 218.61 4.48
 0.67 42.40 3.67 254.33 5.51
TPCH Q14
 0.33 41.44 1.34 207.14 3.21
 0.50 39.63 0.80 236.38 4.76
 0.67 46.50 2.14 264.07 6.62
TeraSort
 0.33 32.53 0.35 132.52 1.90
 0.50 37.92 1.67 181.77 3.46
 0.67 43.46 3.08 233.32 4.82
Word Count
 0.33 21.29 0.76 151.24 1.37
 0.50 25.76 1.09 218.93 2.20
 0.67 32.58 2.10 288.25 3.21
Average 39.01 1.72 199.01 3.53

M1 Large Trace - 50% Accelerator Ratio Data Analysis

Although the overall results demonstrated that MRWATS improved the

completion time and cost prediction accuracy, the 50% accelerator results further explain

the differences between MRWATS and the Elastisizer. MRWATS improves completion

time and cost estimates because it estimates the spot market specific impacts on both

measures. When the simulation tested the 50% accelerator ratio with the m1.large trace,

MRWATS reduced the completion time prediction error by 96.11% and the cost

prediction error by 98.25% over the Elastisizer’s predictions. Appendix B details similar

results for the 33% and 67% accelerator ratios.

!

! 165!

Like the c1.medium trace analysis, this section analyzes the completion time and

monetary cost prediction accuracy for low and high bids. MRWATS improved upon the

Elastisizer at low bids because MRWATS predicts the completion time and monetary

costs based on the wait and recovery times. At high bids, MRWATS improves upon the

Elastisizer by factoring in the accelerator ratio and average market price to the

completion time and monetary cost predictions.

At low bids, the m1.large trace impacted the workload’s completion time slightly

differently than the c1.medium trace. Much like the c1.medium trace, the m1.large’s

market prices impacted the workload’s completion time. Low bids increased the

workloads’ average completion time because the low bid workloads incurred additional

wait times and early terminations, Table 43. Although the test workloads still

experienced wait times and early terminations, the m1.large trace produced about 10x

shorter completion times for the low bids than the c1.medium trace. The m1.large

workloads completed faster at low bids because the m1.large contained larger stretches of

low demand periods compared to the c1.medium trace.

!

! 166!

Table 43: Completion Time Error for M1.Large with 50% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.0260 1.88 0.92 1.90 51.25 0.86
 0.0500** 1.84 0.92 1.81 50.20 1.82
 0.2000* 1.80 0.92 1.74 49.16 3.53
 3.3000 0.91 0.92 0.91 0.22 0.10
Grep
 0.0260* ** 0.90 0.08 0.95 91.42 5.32
 3.3000 0.19 0.08 0.19 58.99 0.00
Pi Est.
 0.0260 1.32 0.49 1.33 63.08 0.32
 0.0300** 1.32 0.49 1.32 62.95 0.01
 0.2000* 1.23 0.49 1.20 60.39 2.69
 3.3000 0.50 0.49 0.50 1.74 0.10
TF-IDF Job1
 0.0260 2.83 1.47 2.87 47.86 1.50
 0.2000* 2.68 1.47 2.66 45.06 0.90
 0.2410** 2.61 1.47 2.59 43.49 0.69
 3.3000 1.58 1.47 1.57 6.74 0.37
TPCH Q12
 0.0260 1.40 0.53 1.40 61.92 0.06
 0.0500** 1.36 0.53 1.33 60.91 2.55
 0.2000* 1.31 0.53 1.27 59.35 3.15
 3.3000 0.55 0.53 0.55 3.72 0.10
TPCH Q14
 0.0260 1.07 0.30 1.09 72.00 1.23
 0.0800* ** 0.98 0.30 0.99 69.17 1.31
 3.3000 0.30 0.30 0.30 0.48 0.09
TeraSort
 0.0260 1.99 0.85 1.98 57.44 0.52
 0.0500** 1.93 0.85 1.90 56.15 1.86
 0.2000* 1.90 0.85 1.83 55.33 3.52
 3.3000 1.02 0.85 1.02 16.86 0.09
Word Count
 0.0260 3.23 1.76 3.32 45.39 2.70
 0.2000* 3.09 1.76 3.07 42.95 0.54
 0.2400** 3.01 1.76 3.00 41.50 0.33
 3.3000 1.84 1.76 1.83 4.02 0.57

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

While the m1.large trace produced shorter completion times, MRWATS still

improved the completion time prediction accuracy compared to the Elastisizer because

MRWATS factors in wait and recovery time to the completion time estimate. The bid

price impacted each tools’ prediction accuracy, Table 43. To analyze the bid impact on

completion time, this section will analyze each tool’s completion prediction accuracy at

low and high bids.

When the workloads were submitted with low bids, the spot market still caused

some workloads to wait for allocations and or terminated the workload early, Figure 25.

!

! 167!

MRWATS improved upon the Elastisizer because MRWATS included the average wait

and recovery time in the completion time prediction. MRWATS completion time error

ranged from 0.06% to 5.32%. In contrast, the Elastisizer performed worse than

MRWATS with a 45.39% to 91.42% error because the Elastisizer’s predictions didn’t

include the wait and recovery times, Table 43.

When the simulation submitted the workload with the maximum bid ($3.30), the

workloads didn’t contain any wait times or failures. However, MRWATS still improves

upon the Elastisizer at the high bids because MRWATS predicts the completion time

based on the workload’s I/O characteristics and accelerator ratio. For instance,

MRWATS and Elastisizer predicted almost exactly the same completion time on the co-

occurrence workload because the co-occurrence workload creates very little HDFS

contention, Figure 25. In contrast, MRWATS perform better than the Elastisizer on the

I/O bound workloads because MRWATS models the file system contention. While the

Elastisizer underestimated TeraSort’s completion time by 10 minutes, MRWATS

predicted the TeraSort’s completion time almost exactly, Figure 25.

!

! 168!

Figure 25. Predicted and actual (simulated) completion times versus bid price for the
m1.large trace with 50% accelerators.

While MRWATS predicted the completion time based on the m1.large trace, the

spot instance user also requires monetary cost estimates to determine if the extra

processing time is worth the wait. MRWATS improves upon the Elastisizer monetary

cost estimates because MRWATS factors in early termination recovery costs and the

average market price into the estimates. Although the m1.large contains fewer early

terminations than the c1.medium trace, the early terminations and the average market

price still impacted the workload’s monetary costs. Both factors translated into an

average 98.16% prediction error reduction by MRWATS. To better examine MRWATS

!

! 169!

monetary cost improvements, this section will examine monetary cost at low and high

bids.

When the simulation bid at the minimum price ($0.026), MRWATS improves

upon the Elastisizer’s cost predictions because the MRWATS factors in the monetary

cost from early termination recovery. While the m1.large trace contains fewer early

terminations than the c1.medium trace, the m1.large terminations did impact the

workload costs, Figure 26. The Elastisizer under-predicted the workload’s costs between

13.24% and 58.25% because it underestimates the workload’s execution time, Table 44.

Comparatively, the MRWATS’s monetary cost error only ranged from 0.10% to 8.06%

because the execution time estimates include reprocessing time for failed tasks.

When the simulation bid at the maximum price ($3.30), MRWATS improves

upon the Elastisizer’s cost predictions because MRWATS factors in the average market

price into the cost estimates. When the spot instance auction allocates the instances,

users only pay the market price for spot instances and not the bid price (Wieder et al.,

2012). The Elastisizer performed worse than MRWATS at high bids because the naïve

approach assumes the bid price equals the market price. The Elastisizer over-predicted

the workload’s cost by 91% to 364% at the maximum bid, Table 44. MRWATS

performed much better at the same bid with the prediction error ranging from 0.10% to

3.57%.

While MRWATS reduced the cost prediction error compare to the Elastisizer, the

cost estimate tool should indicate the optimal bid price to minimize the workload’s

monetary costs. MRWATS improves upon the Elastisizer’s bid strategy because

MRWATS doesn’t assume the minimum bid results in the workload’s lowest average

!

! 170!

cost. While MRWATS did not predict the exact optimal bid for every workload,

MRWATS’s predicted optimal bid only increased cost by 3.41% on average.

Comparatively, the Elastisizer’s projected optimal bid under-estimated the costs by

24.83% on average.

Table 44: Monetary Cost Error for M1.Large with 50% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated Elastisizer MRWATS Elastisizer MRWATS
Co-Occurrence
 0.0260 4.44 3.66 4.35 17.69 2.08
 0.0500** 4.43 3.99 4.26 10.06 3.89
 0.2000* 4.54 6.05 4.23 33.14 6.97
 3.3000 10.78 48.67 10.79 351.45 0.10
Grep
 0.0260* ** 0.74 0.31 0.75 58.25 0.97
 3.3000 2.16 4.12 2.24 90.93 3.57
Pi Est.
 0.0260 2.33 1.95 2.19 16.43 6.01
 0.0300** 2.32 1.98 2.19 14.71 5.64
 0.2000* 2.38 3.22 2.16 35.34 9.39
 3.3000 5.79 25.90 5.86 347.70 1.25
TF-IDF Job1
 0.0260 7.98 5.88 7.97 26.35 0.10
 0.2000* 7.87 9.72 7.69 23.62 2.23
 0.2410** 7.82 10.63 7.74 35.93 1.08
 3.3000 18.68 78.24 18.59 318.81 0.47
TPCH Q12
 0.0260 2.62 2.12 2.47 18.92 5.78
 0.0500** 2.61 2.32 2.43 11.33 6.78
 0.2000* 2.67 3.51 2.42 31.37 9.36
 3.3000 6.46 28.26 6.52 337.76 1.03
TPCH Q14
 0.0260 1.38 1.20 1.27 13.24 8.06
 0.0800* ** 1.32 1.44 1.26 9.31 4.50
 3.3000 3.44 15.97 3.53 364.01 2.64
TeraSort
 0.0260 4.87 3.38 4.67 30.54 3.97
 0.0500** 4.79 3.69 4.61 23.07 3.87
 0.2000* 4.91 5.59 4.58 13.98 6.68
 3.3000 12.01 44.99 12.03 274.59 0.14
Word Count
 0.0260 9.49 7.04 9.63 25.84 1.50
 0.2000* 9.39 11.64 9.24 23.91 1.58
 0.2400** 9.34 12.69 9.28 35.95 0.57
 3.3000 21.70 93.62 21.57 331.39 0.60

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

While prediction accuracy enables a user to cost-effectively bid, MRWATS also

improves upon the Elastisizer by allowing users to balance price with completion time.

In essence, users will want to minimize wait time while executing the workload at a

financial savings compared to the on-demand costs. When a user bids up to $1.00,

!

! 171!

MRWATS shows the actual cost only varies about 6% for the m1.large trace, Figure 26.

Yet, MRWATS also shows a $1.00 bid reduced the average completion time by 15

minutes for most workloads, Figure 25. These subtle tradeoffs aren’t expressed with the

Elastisizer because the original tool doesn’t adjust the completion time and cost

predictions based on the spot market history.

Figure 26: Actual (simulated) average, predicted average, and on-demand costs versus
bid price for the m1.large trace with 50% accelerators.

M1 Large Trace – Ratio Selection Data Analysis

As noted with the c1.medium trace, cloud users need to compare different

accelerator ratios and a fully on-demand cluster to find the best configuration for their

!

! 172!

workload. Spot instance users look to minimize the average monetary cost given some

minimally acceptable average completion time. The best accelerator configuration

depends on both bid price and the workloads own characteristics.

Although the m1.trace terminated fewer workloads than the c1.medium trace, the

best configuration depended on the bid price. MRWATS improves upon the Elastisizer

because MRWATS allows users to compare accelerator ratios based on the bid price. If

the user bids below $1.00, then MRWATS indicated the 10:20 ratio provided the most

cost-effective accelerated configuration in most cases, Figure 27. If the user bid greater

than $1.50, then MRWATS indicated the user should have allocated all on-demand

instances because the average market price was greater than the on-demand price at high

bids, Figure 27. In comparison, the Elastisizer might unnecessarily dissuade users from

bidding higher because the Elastisizer switches to all on-demand instances with a $0.24

bid, Figure 26.

While additional accelerators reduced the financial cost for most workloads

executed against the m1.trace, the cost saving depended on the workload’s I/O

characteristics. MRWATS provides a better cost comparison then the Elastisizer

because MRWATS models the workloads I/O degradation with additional accelerators.

MRWATS shows that CPU bound workloads provided a greater cost savings then I/O

bound workloads. For instance, the co-occurrence workload reduced cost by 43%

compared to TeraSort’s 33% reduction, Figure 27. If the workload was highly HDFS

bound (i.e. grep), then the on-demand cluster provided the most cost effective

configuration because the accelerators increased the workload’s execution time, Figure

27.

!

! 173!

Once MRWATS finds the most cost effective accelerator configuration for a

virtual machine instance type, the cloud user still needs to compare virtual machine types.

When the user compares virtual machine types, MRWATS improves upon the Elastisizer

for the instance type selection because MRWATS incorporates the market price into the

decision. If the m1.large forecasts, Figure 27, are compared against the c1.medium

forecasts, Figure 24, then the c1.medium instances provided the lowest cost

configuration. The c1.medium trace allocated spot instances at a lower average market

price ($0.1236) compared to the m1.large trace ($0.2676).

Figure 27. MRWATS predicted average cost by accelerator ratio versus the bid price for
the m1.large trace compared to the on-demand cost.

Findings

Cloud users may consider spot market resources as a means to reduce the

workload’s monetary costs. Spot instances provide a means to reduce a workload’s

monetary cost because a preemptive auction allocates the instances (Chohan et al., 2010).

!

! 174!

The spot instance’s price varies based on demand. When the auction allocates the

instances during low-demand periods, the auction offers the spot instances at a reduced

price compared to the on-demand price. When the auction allocates the instances during

high-demand periods, the auction offers the spot instances at a price greater than the on-

demand price.

This dissertation created a tool, MRWATS, to determine the spot market’s impact

on a map-reduce workload. MRWATS improves upon the Elastisizer because MRWATS

enables the user to compare the workload’s average completion time and monetary costs

for different bid prices and accelerator configurations. In order to model the spot

markets’ impact on completion time and monetary costs, MRWATS created three

enhancements to improve completion time and monetary cost prediction accuracy over

the Elastisizer: storage strategy specific virtual profiles, a failure-aware task simulator,

and spot market forecasts.

MRWATS improved upon the Elastisizer because MRWATS includes storage

specific virtual profiles that model each workload’s file system contention. Specifically,

MRWATS enhanced the Elastisizer virtual profiles by generating the profiles from file

system specific relative fitness models and including additional features to model file

system contention. MRWATS enhanced the virtual profiles for two storage strategies:

Amazon S3 and spot instance accelerators.

Although both storage strategies generated file system contention differently,

MRWATS demonstrated improved prediction accuracy for both strategies. MRWATS

improved the execution time prediction accuracy for the Amazon S3 file system because

it modeled file system contention generated by concurrent tasks accessing the remote file

!

! 175!

system. While MRWATS reduced the prediction error compare to the Elastisizer at

small-scale, MRWATS’s relative accuracy improved with larger cluster sizes. When the

evaluation tested workloads at 10-nodes, MRWATS reduced the average prediction error

by 23%. When the evaluation scaled up to 90 nodes, MRWATS reduced the average

prediction error by 35%.

In a similar fashion, MRWATS improved the execution time prediction accuracy

for an HDFS accelerated cluster because it models the file system contention generated

by different accelerator ratios. MRWATS demonstrated improved prediction accuracy

relative to the Elastisizer as the accelerator ratio increased. When the cluster contained

only 33% accelerators, MRWATS reduced the prediction error compared to the

Elastisizer by 18.54% and 13.96% for the c1.medium and m1.large instance types,

respectively. When the cluster contained 83% accelerators, MRWATS further reduced

the prediction error compared to the Elastisizer by 57.95% and 35.43% for the

c1.medium and m1.large instance types, respectively.

While MRWATS aided the cloud user to estimate the storage strategy’s impact on

a workload’s execution time, the prediction tool should also provide accurate estimates

when spot market early termination occurs. MRWATS improves upon the Elastisizer

during spot instance early termination because MRWATS enhanced the task scheduler

and virtual profiler to handle failures. The enhanced scheduler demonstrated improved

prediction accuracy over the Elastisizer scheduler during different failure points in a

series of workloads. MRWATS reduced the prediction error compared to the Elastisizer

by 76.12% on average across the different failure scenarios.

!

! 176!

While MRWATS improved the early termination prediction accuracy compare to

the Elastisizer, cloud users won’t know when the spot market auction will allocate or

terminate the spot instances (Chohan et al., 2010). The cloud user requires bid-based

estimates to minimize costs by avoiding overly frequent early terminations. The

Elastisizer lacks accurate bid-based estimates because it assumes the execution time

remains constant and costs increase linearly with bid price changes. However,

MRWATS improves upon the Elastisizer because MRWATS estimates the completion

time and monetary costs based on bid and the spot market’s prior history.

Specifically, MRWATS’ forecasts improve upon the Elastisizer’s execution time

predictions because MRWATS completion time estimates include wait and recovery

times based on the spot market’s history. This dissertation demonstrated the

enhancements improved the completion time prediction accuracy by comparing both

tools’ accuracy against two different spot market traces (c1.medium & m1.large).

While both traces contain different wait times and termination frequencies, MRWATS

reduced the completion time prediction error compared to the Elastisizer by 91.58% and

95.59% for the c1.medium and m1.large traces, respectively.

MRWATS also improved upon the Elastisizer’s monetary cost estimates because

MRWATS incorporates the average market price and potential recovery costs in the

monetary estimates. This dissertation demonstrated that the enhancements improved the

cost prediction accuracy by comparing both tools against two different spot market traces

(c1.medium & m1.large). Although the two traces contained different early termination

frequencies, MRWATS reduced the monetary cost prediction error compared to the

Elastisizer by 99.14% and 98.23% for the c1.medium and m1.large traces, respectively.

!

! 177!

Chapter 5

Conclusions

This dissertation demonstrated a cost estimation tool for virtualized map-reduce

clusters using spot instances, MapReduce Workload Allocation Tool for Spot instances

(MRWATS). The tool predicts a spot instance workload’s cost and completion time.

The tool enables a spot instance user to select a virtual cluster configuration and bid price

to reduce the workload’s costs while minimizing the impacts on completion time.

This work validated the MRWATS’s prediction accuracy by comparing the

completion time and monetary cost prediction error to a non-spot instance tool, the

Elastisizer. If MRWATS reduced the prediction error compared to the Elastisizer, then

the work achieved the dissertation goal. This work achieved the dissertation goal

because MRWATS reduced the cost and completion time prediction error compared to

the Elastisizer. Specifically, MRWATS reduced the prediction error for spot instance

storage strategies, auction terminated workloads, and spot market forecasts.

MRWATS improved the execution time prediction accuracy for spot instance

storage strategies over the Elastisizer. Chapter 4 evaluated both tools’ prediction

accuracy for the Amazon S3 and accelerated storage strategies. MRWATS performed

better than the Elastisizer because MRWATS models file system contention for both

Amazon S3 and accelerated storage strategies. When MRWATS predicted large Amazon

S3 workloads, the updated model reduced the prediction error up to 35% compared to the

Elastisizer. When MRWATS predicted workloads with high accelerator ratios,

MRWATS reduced the prediction error up to 58% compared to the Elastisizer.

!

! 178!

When the spot market auction terminates the spot instances early, MRWATS also

improved upon the Elastisizer because MRWATS factors in the early termination’s

recovery time. Chapter 4 compared the prediction error between MRWATS and the

Elastisizer during several workload failure points. MRWATS reduce the prediction error

by 76.12% compared to the Elastisizer during early terminations.

Finally, MRWATS improved the completion time and financial cost prediction

accuracy compared to the Elastisizer because MRWATS incorporates the spot market

history into its predictions. While the tool’s accuracy depends on the spot market trace

(Wieder et al., 2012), MRWATS reduced the completion time and cost error compared to

the Elastisizer for two traces with different market characteristics. When the evaluation

tested a termination heavy market trace, MRWATS reduced the average completion time

prediction error by 91.58% compared to the Elastisizer. MRWATS also reduced the

average cost prediction error by 99.14%, for the same trace. When the evaluation tested a

periodic market trace, MRWATS reduced the average completion time prediction error

by 95.59% compared to the Elastisizer. MRWATS also reduce the average cost

prediction error by 98.23% for the periodic trace.

Implications

While this dissertation purpose was to improve prediction accuracy over existing

tools, this work expanded on past work’s findings on spot markets. The study uncovered

new issues because the study simulated workload execution times based on more recent

spot market traces. The new traces change some previous assumptions because the recent

traces did not behave the same way as Chohan et al. (2010) and Orna Agmon Ben-

Yehuda et al. (2013) traces.

!

! 179!

Chohan et al. (2010) suggested that map reduce user’s should avoid low bids

because the early Amazon’s spot market histories terminated low bids frequently.

However, cloud users should avoid general “rule’s of thumb” because the workload’s

cost highly depends on the spot market’s price dynamics (Wieder et al., 2012). Contrary

to Chohan et al. (2010) traces, low bids don’t necessarily cause a dramatic increase in the

workload’s total monetary costs. Although early termination impacted the workload’s

cost with low bids on the c1.medium trace, the m1.large trace only varied costs by 6%

with low bids.

Conversely, high bids don’t necessarily eliminate the potential cost savings over

on-demand instances because the workloads’ costs depend on the duration the workloads

are repeatedly executed in the cloud environment. While Chohan et al. (2010) and Orna

Agmon Ben-Yehuda et al. (2013) used price histories capped at the on-demand price, this

study’s price histories contained bids 10 times greater than the on-demand prices. The

high bids increased the average workload cost by 2 times for the m1.large virtual

machine type. While the short-term demand resulted in higher workload costs, cloud

users benefit from workload’s repeatedly executed over several months. Although the

m1.large market price average 11% more than the on-demand price over the tested three

week trace, the market price averaged 31% less than the on-demand price over a 3-month

period.

While MRWATS improves the prediction accuracy compared to past tools, the

forecast does not handle structural changes to the spot market. A spot market’s behavior

changes from auction algorithmic changes (Orna Agmon Ben-Yehuda et al., 2013) and or

provider price wars (Orna Agmon Ben-Yehuda, Ben-Yehuda, Schuster, & Tsafrir, 2014;

!

! 180!

Barr, 2014). This study evaluated MRWATS with a shortened one week prediction

window compared to the Chohan et al. (2010) study because the price history radically

changed over a 3-month period due to general Amazon price reductions (Barr, 2014).

While the shortened window improved the tool’s prediction accuracy, the shortened

window also reduced the tool’s value for long-term cost estimation.

Recommendations

Although MRWATS improved spot instance prediction accuracy compare to past

tools, the tools contain several areas where prediction accuracy could be improved.

While the evaluation assumed a uniform distribution for submission time, users may

choose to submit workloads during business hours or other diurnal patterns (Armbrust et

al., 2010). The user’s bid strategy might change given different submission profiles. If

the forecast includes the cloud user’s desire submission patterns, then the forecast

provides a more precise cost estimate than the average costs.

Although MRWATS derives the completion time and cost predictions from spot

market histories, like Chohan et al. (2010) and Orna Agmon Ben-Yehuda et al. (2013),

structural spot market changes reduce the cost estimation tool’s accuracy (Orna Agmon

Ben-Yehuda et al., 2013). MRWATS reduced the prediction window from one month

(Chohan et al., 2010) to one week because the shortened window improved the tools

accuracy. Additional commodity market research might lengthen the prediction window

for virtual machine spot markets forecast (Sharma & Srinivasan, 2007).

 Finally, further research should extend this work to other spot instance workloads

beyond MapReduce. Researchers will create new workloads that function better in cloud

and spot market environments than MapReduce workloads (Orna Agmon Ben-Yehuda et

!

! 181!

al., 2014). For instance, new frameworks, like Spark, improves the recovery time over

MapReduce from failed nodes because Spark tracks the intermediate data lineage to

avoid unnecessary re-computation (Zaharia et al., 2012). While Spark provides better

fault tolerance, cloud users still need to compare alternative spot instance cluster

configurations to find the most cost effective configuration for the Spark workload.

Summary

Users execute map-reduce workloads on cloud environments because users want

to reduce the workload’s monetary costs while meeting a deadline. Before the user

executes the workload, the user must specify virtual cluster resources to meet both the

completion time and budget objectives (Herodotou et al., 2011). Short-term resources,

like spot instances, provide a potentially cost effective option for virtual cluster resources

because the users can request the virtual machines at a reduced price (Chohan et al.,

2010). However, the user must evaluate the spot instances’ impact on the map-reduce

workloads monetary costs and completion time to compare against other virtualized

cluster alternatives.

When a cloud user allocates a spot instance virtual cluster, the user must decide

on four factors: the virtual machine type, number of instances, pricing model, and data

storage strategy. Each factor impacts the map-reduce workload’s completion time and

monetary cost.

The virtual machine type impacts the workload’s execution time and monetary

cost because the type governs the map-reduce tasks’ compute rate. Map reduce tasks

process data at different rates because the memory, CPU units, and I/O throughput

changes between virtual machine types (Lee et al., 2011). While the virtual machine

!

! 182!

impacts individual task execution times, the number of virtual machines impacts the

workload’s total execution time. Additional virtual machines can reduce execution time

without a price increase because map-reduce workloads are cost associative (Armbrust et

al., 2010). In essence, the reduced execution time offsets the per-unit cost of the extra

instances.

The pricing model impacts the workload’s completion time and monetary cost

because cloud providers incentivize users to execute their workloads during low demand

periods (Chohan et al., 2010). While the cloud provider guarantees access to on-demand

instances, on-demand instances are 29% more expensive than spot instances (Chohan et

al., 2010). Although cloud users can allocate the less expensive spot instances, the

workload might take longer to complete because the user may need to wait for the

instances to be allocated by a spot market auction. Once an auction allocates the

instances, subsequent auctions may terminate the instances pre-maturely because the

cloud provider’s demand has peaked (Orna Agmon Ben-Yehuda et al., 2013). While the

user does not pay for the terminated instances, the early termination increases the

workload’s costs because the workload requires additional time to reprocess missing

intermediate data on the more expensive on-demand instances (Chohan et al., 2010).

The storage strategy impacts the workload’s execution time and monetary cost

because the data’s location impacts the workload’s reads and writes. When a map-reduce

workload uses spot instances, the workload cannot store persistent data on the spot

instances because the spot instances are ephemeral. Users must either store data on a set

of on-demand instances (Chohan et al., 2010) or an external file system, such as Amazon

S3 (Bicer et al., 2011).

!

! 183!

To help cloud users decide on virtual resources, Herodotou et al. (2011) proposed

a workload cost estimation tool, the Elastisizer, that evaluates alternative clusters with

different virtual machine types and sizes. The Elastisizer profiles the workload on a

baseline cluster configuration. For the baseline profile, the Elastisizer uses a relative

fitness model to create a virtual profile for different virtual machine types (Mesnier et al.,

2007). Once the Elastisizer creates the virtual profile, the tool predicts the workload’s

execution time and cost from a white box model (Herodotou, 2012).

While the Elastisizer aids the cloud user to determine the type and number of

virtual machines, the Elastisizer does not help the user determine a bid price or storage

strategy. The cloud user can’t determine a bid price because the Elastisizer inaccurately

simulates the spot market’s impact on execution time and cost. The spot market’s

auction reduces the current estimation tools’ prediction accuracy because the tools don’t

forecast the spot instance's availability to process the workload’s data (Chohan et al.,

2010). The cloud user can’t compare storage strategies because the tool inaccurately

models the storage approach’s impact on the workload’s virtual profile. The storage

strategy reduces the current estimation tools’ prediction accuracy because the alternative

storage strategies can create file system contention from non-local tasks (Zaharia et al.,

2012).

This dissertation created a tool, MapReduce Workload Allocation Tool for Spot

instances (MRWATS), which handles spot-instance specific storage strategies, spot

market early termination, and auction wait times. The dissertation’s goal was to improve

the spot instance workload’s mean completion time and monetary cost prediction

!

! 184!

accuracy compared to existing tools. The enhanced tool should reduce the average

completion time prediction error for various cluster sizes and spot instance ratios.

MRWATS extends the Elastisizer (Herodotou et al., 2011) to incorporate spot

instance storage strategies, spot instance early termination, and spot market forecasts.

MRWATS improves the prediction accuracy for both the Amazon S3 and accelerated

storage strategies because MRWATS creates a new relative fitness model for each new

storage strategy. MRWATS also incorporated new features (size and accelerator ratio)

into the relative fitness model to predict the file system contention’s impact on the

workload.

The dissertation evaluated the storage strategy updates by comparing MRWATS

and the Elastisizer’s storage specific prediction error. The evaluation tested a variety of

I/O and CPU workloads against various storage configurations. When the workloads did

not produce file system contention, MRWATS provided comparable prediction accuracy

to the Elastisizer. When the workload produced heavy file system contention, MRWATS

reduce the average prediction error 58% compared to the Elastisizer.

MRWATS improved the prediction accuracy over the Elastisizer for terminated

spot instances because the MRWATS scheduler simulates failed tasks. If the spot market

auction terminates the spot instances at a given time, the simulator determines the number

of failed tasks and then reschedules them. The simulator also selects a new virtual profile

once the failure occurs because the terminated spot instances no longer generate file

contention.

This dissertation evaluated MRWATS’s enhanced scheduler by comparing

MRWATS and the Elastisizer’s early termination prediction error. Although the

!

! 185!

evaluation tested the same workloads as the storage strategy, the tests examined

prediction errors during failures at different map-reduce waves. The tests varied the

termination point by wave because each wave creates a different number of failed tasks.

When the workload terminates early, MRWATS reduced the average prediction error by

76% compared to the Elastisizer.

MRWATS improves the prediction accuracy for spot instance workloads

compared to the Elastisizer because MRWATS estimates the workload’s completion time

and cost based on the spot instance’s availability. MRWATS incorporates Chohan et al.

(2010) trace-based approach to determine the spot instances availability. Based on the

spot market traces, MRWATS estimates the expected wait time and early termination

probabilities for a given bid price. MRWATS then calculates the workloads’ average

completion time and cost from the wait time and early termination probabilities.

This dissertation evaluated historical spot market traces to quantify MRWATS’s

completion time and cost accuracy improvements over the Elastisizer. To evaluate each

tool against different market conditions, the evaluation analyzed two recent spot market

price histories. Each price history experiment splits the spot market price history into

forecast and actual traces. The forecast trace provided MRWATS a market price history

to predict the workload’s completion time and monetary costs. The evaluation then

executed a Monte Carlo simulation over the actual trace to calculate the workload’s

average completion time and average monetary costs.

Based on the Monte Carlo simulation results, the evaluation compared

MRWATS’s and the Elastisizer’s average spot market prediction error. While the results

varied based on workload and bid price, MRWATS reduced the average prediction error

!

! 186!

for each trace evaluated. MRWATS reduced the average completion time prediction

error up to 96% and the average cost prediction error up to 99%.

!

! 187!

Appendix A

Additional Early Termination Results
The 30 node early termination results for additional accelerator ratios and virtual

instance types.

Early Termination Accuracy by Wave for C1.Medium with 33% Accelerators

 Failed Maps Failed Reduces Completion Time (Seconds) CT % Error
Terminated Wave Act. Pred. Act. Pred. Actual HDFS ET HDFS ET
Co-Occurrence

 Map 1 20 20

0 0

622.60 482.89 662.95

22.44 6.48
 Map 2 40 40

20 20

628.31 482.89 677.02

23.14 7.75

 Reduce 1 51 49

20 20

724.65 482.89 892.84

33.36 23.21
 Reduce 2 49 49

20 8

747.64 482.89 891.61

35.41 19.26

Grep
 Map 1 20 20

0 0

162.05 48.53 88.13

70.05 45.62

 Map 2 20 20

0 0

165.72 48.53 113.13

70.72 31.73
Pi Est.

 Map 1 20 20

0 0

289.74 192.08 296.09

33.71 2.19
 Map 2 33 28

0 1

324.81 192.08 313.59

40.86 3.46

 Reduce 1 35 30

0 1

372.10 192.08 375.51

48.38 0.92
TeraSort

 Map 1 30 20

17 0

924.46 515.44 843.55

44.24 8.75
 Map 2 43 40

20 20

895.60 515.44 860.30

42.45 3.94

 Reduce 1 78 80

20 20

962.50 515.44 776.47

46.45 19.33
 Reduce 2 78 80

19 8

886.09 515.44 777.75

41.83 12.23

TF-IDF Job1
 Map 1 20 20

0 0

927.18 563.17 842.88

39.26 9.09

 Map 2 43 40

22 20

971.32 563.17 844.06

42.02 13.10
 Reduce 1 201 200

20 20

996.23 563.17 907.51

43.47 8.91

 Reduce 2 198 200

28 8

1006.91 563.17 907.54

44.07 9.87
Word Count

 Map 1 20 20

0 0

1060.39 661.99 993.49

37.57 6.31
 Map 2 40 40

20 20

1048.37 661.99 995.15

36.85 5.08

 Reduce 1 198 200

20 20

1123.48 661.99 1069.85

41.08 4.77
 Reduce 2 199 200

26 20

1134.36 661.99 1059.47

41.64 6.60

!

! 188!

Early Termination Accuracy by Wave for C1.Medium with 50% Accelerators

 Failed Maps! ! Failed Reduces! ! Completion Time (Seconds)! ! CT % Error!
Terminated Wave Act.! Pred.! ! Act.! Pred.! ! Actual! HDFS! ET! ! HDFS! ET!
Co-Occurrence ! ! ! ! ! ! ! ! ! ! ! !
 Map 1 30 30 0 0 711.50 482.89 978.10 32.13 37.47
 Map 2 30 30 0 0 704.33 482.89 978.10 31.44 38.87
 Reduce 1 79 81 30 30 856.18 482.89 1068.33 43.60 24.78
 Reduce 2 84 79 31 19 852.91 482.89 1049.66 43.38 23.07
Grep
 Map 1 30 30 0 0 150.61 48.53 90.96 67.78 39.60
 Map 2 36 30 0 0 141.71 48.53 108.13 65.76 23.70
Pi Est.
 Map 1 30 30 0 0 388.91 192.08 385.24 50.61 0.94
 Map 2 53 49 1 1 420.40 192.08 402.73 54.31 4.20
 Reduce 1 46 50 1 1 477.69 192.08 465.66 59.79 2.52
TeraSort
 Map 1 41 30 57 0 1138.00 515.44 1175.64 54.71 3.31
 Map 2 72 60 30 30 1034.64 515.44 1195.17 50.18 15.52
 Reduce 1 128 120 30 30 1165.38 515.44 1296.16 55.77 11.22
 Reduce 2 128 120 30 19 1079.64 515.44 1113.60 52.26 3.15
TF-IDF Job1
 Map 1 30 30 0 0 1144.93 563.17 1121.45 50.81 2.05
 Map 2 60 60 30 30 1168.82 563.17 1122.66 51.82 3.95
 Reduce 1 306 300 30 30 1257.09 563.17 1153.90 55.20 8.21
 Reduce 2 304 300 30 19 1248.07 563.17 1185.15 54.88 5.04
Word Count
 Map 1 30 30 0 0 1294.71 661.99 1323.27 48.87 2.21
 Map 2 60 60 30 30 1343.23 661.99 1324.82 50.72 1.37
 Reduce 1 307 300 30 30 1423.77 661.99 1337.72 53.50 6.04
 Reduce 2 306 300 38 19 1417.19 661.99 1383.96 53.29 2.35

!

! 189!

Early Termination Accuracy by Wave for M1.Large Instances with 33% Accelerators

 Failed Maps Failed Reduces Completion Time (Seconds) CT % Error
Terminated Wave Act. Pred. Act. Pred. Actual HDFS ET HDFS ET
Co-Occurrence

 Map 1 30 30

0 0

713.11 422.24 624.77

40.79 12.39
 Map 2 52 59

20 20

692.63 422.24 616.33

39.04 11.02

 Reduce 1 52 59

20 20

784.73 422.24 669.76

46.19 14.65
 Reduce 2 51 59

20 8

778.94 422.24 667.60

45.79 14.29

Grep
 Map 1 30 30

0 0

164.39 45.43 90.14

72.36 45.16

 Map 2 2 30

0 0

173.50 45.43 120.14

73.81 30.75
Pi Est.

 Map 1 30 30

0 0

394.04 361.81 364.69

8.18 7.45
 Map 2 30 37

0 1

411.66 361.81 451.51

12.11 9.68

 Reduce 1 36 35

1 1

484.54 361.81 610.51

25.33 26.00
TeraSort

 Map 1 31 30

0 0

633.78 339.97 514.07

46.36 18.89
 Map 2 79 60

20 20

594.09 339.97 506.55

42.77 14.74

 Reduce 1 74 89

20 20

642.13 339.97 535.37

47.06 16.62
 Reduce 2 77 89

7 8

570.11 339.97 515.48

40.37 9.58

TF-IDF Job1
 Map 1 30 30

0 0

1011.52 631.00 904.25

37.62 10.60

 Map 2 60 60

20 20

1007.73 631.00 909.71

37.38 9.73
 Reduce 1 198 206

20 20

1094.11 631.00 1079.13

42.33 1.37

 Reduce 2 197 206

22 8

1103.20 631.00 1078.79

42.80 2.21
Word Count

 Map 1 30 30

0 0

1188.52 749.91 1072.29

36.90 9.78
 Map 2 60 60

20 20

1180.64 749.91 1076.01

36.48 8.86

 Reduce 1 199 206

20 20

1290.72 749.91 1259.58

41.90 2.41
 Reduce 2 200 206

20 8

1293.89 749.91 1254.77

42.04 3.02

!

! 190!

Early Termination Accuracy by Wave for M1.Large Instances with 67% Accelerators

 Failed Maps Failed Reduces Completion Time (Seconds) CT % Error
Terminated Wave Act. Pred. Act. Pred. Actual HDFS ET HDFS ET
Co-Occurrence

 Map 1 45 45

0 0

854.54 422.24 835.37

50.59 2.24
 Map 2 58 79

30 30

764.80 422.24 829.94

44.79 8.52

 Reduce 1 80 80

30 30

1045.34 422.24 877.36

59.61 16.07
 Reduce 2 83 80

43 19

1043.73 422.24 879.60

59.54 15.73

Grep
 Map 1 45 45

0 0

232.52 45.43 95.62

80.46 58.88

 Map 2 44 30

0 0

290.36 45.43 160.14

84.35 44.85
Pi Est.

 Map 1 45 45

0 0

468.19 361.81 538.72

22.72 15.06
 Map 2 52 52

1 1

543.83 361.81 625.52

33.47 15.02

 Reduce 1 51 50

1 1

632.05 361.81 784.52

42.76 24.12
TeraSort

 Map 1 55 45

2 0

1055.17 339.97 753.77

67.78 28.56
 Map 2 95 120

30 30

868.68 339.97 799.99

60.86 7.91

 Reduce 1 123 120

32 30

942.69 339.97 703.26

63.94 25.40
 Reduce 2 116 120

22 30

732.98 339.97 767.70

53.62 4.74

TF-IDF Job1
 Map 1 45 45

0 0

1336.77 631.00 1258.96

52.80 5.82

 Map 2 89 90

30 30

1388.77 631.00 1264.34

54.56 8.96
 Reduce 1 297 302

30 30

1433.23 631.00 1346.97

55.97 6.02

 Reduce 2 298 302

30 19

1427.96 631.00 1342.94

55.81 5.95
Word Count

 Map 1 45 45

0 0

1596.84 749.91 1494.86

53.04 6.39
 Map 2 90 90

30 30

1638.95 749.91 1498.36

54.24 8.58

 Reduce 1 301 302

30 30

1701.27 749.91 1572.03

55.92 7.60
 Reduce 2 301 302

30 19

1693.93 749.91 1567.94

55.73 7.44

!

! 191!

Appendix B

Additional MRWATS Results
Completion Time Error for C1.Medium Instances with 33% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0180 16.83 1.05 16.58 93.79 1.44
 0.1300 1.91 1.05 1.93 45.32 0.87
 0.1705 1.40 1.05 1.46 25.51 4.07
 2.5000 1.14 1.05 1.14 8.48 0.04
Grep
 0.0180 15.57 0.09 15.27 99.39 1.91
 2.5000 0.14 0.09 0.14 32.52 0.00
Pi Est.
 0.0180 15.96 0.38 15.63 97.64 2.07
 0.0500 1.20 0.38 1.21 68.59 0.83
 0.1300 1.13 0.38 1.14 66.78 0.47
 2.5000 0.44 0.38 0.44 14.19 0.04
TF-IDF
 0.0180 17.21 1.37 17.02 92.03 1.12
 0.1300 2.23 1.37 2.26 38.51 1.28
 0.2000 1.68 1.37 1.79 18.41 6.35
 2.5000 1.41 1.37 1.41 2.63 0.19
TPCH Q12
 0.0180 15.94 0.37 15.60 97.68 2.13
 0.0500 1.18 0.37 1.18 68.54 0.51
 0.1300 1.11 0.37 1.11 66.70 0.20
 2.5000 0.42 0.37 0.42 11.18 0.04
TPCH Q14
 0.0180 15.78 0.26 15.45 98.38 2.10
 0.0490 1.04 0.26 1.04 75.40 0.53
 0.1300 0.97 0.26 0.98 73.79 0.51
 2.5000 0.29 0.26 0.29 11.22 0.04
TeraSort
 0.0180 17.26 1.28 17.07 92.59 1.11
 0.1300 2.28 1.28 2.32 44.00 1.50
 0.1705 1.78 1.28 1.86 27.94 4.94
 2.5000 1.47 1.28 1.47 13.22 0.18
Word Count
 0.0180 17.54 1.62 17.41 90.77 0.74
 0.1300 2.52 1.62 2.58 35.81 2.17
 0.3425 1.96 1.62 2.09 17.34 6.87
 2.5000 1.66 1.62 1.66 2.77 0.19

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 192!

Monetary Cost Error for C1.Medium Instances with 33% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0180 4.14 3.22 4.29 22.24 3.50
 0.1300 3.80 4.39 3.80 15.54 0.09
 0.1705 3.79 4.81 3.92 27.20 3.58
 2.5000 4.58 29.17 4.56 537.60 0.35
Grep
 0.0180 0.43 0.29 0.43 31.59 0.98
 2.5000 0.56 2.64 0.56 369.04 0.54
Pi Est.
 0.0180 1.56 1.16 1.49 25.92 4.97
 0.0500 1.42 1.28 1.42 10.26 0.64
 0.1300 1.43 1.58 1.40 10.13 2.38
 2.5000 1.77 10.49 1.75 494.25 0.95
TF-IDF Job1
 0.0180 5.28 4.22 5.54 19.94 5.09
 0.1300 4.76 5.76 4.80 21.02 0.77
 0.2000 4.72 6.72 4.98 42.25 5.36
 2.5000 5.64 38.26 5.61 578.09 0.55
TPCH Q12
 0.0180 1.52 1.14 1.41 24.69 6.92
 0.0500 1.37 1.26 1.34 7.73 1.49
 0.1300 1.37 1.56 1.33 13.23 3.16
 2.5000 1.68 10.33 1.66 515.16 0.94
TPCH Q14
 0.0180 1.04 0.79 0.95 24.19 8.08
 0.0490 0.94 0.87 0.92 7.83 2.23
 0.1300 0.95 1.07 0.91 13.20 3.71
 2.5000 1.15 7.12 1.15 516.91 0.62
TeraSort
 0.0180 5.41 3.94 5.68 27.23 4.98
 0.1300 4.93 5.37 4.98 9.09 1.05
 0.1705 4.91 5.89 5.14 19.95 4.58
 2.5000 5.91 35.69 5.87 504.36 0.54
Word Count
 0.0180 6.24 4.98 6.67 20.12 6.96
 0.1300 5.64 6.80 5.75 20.51 1.91
 0.3425 5.60 10.24 5.96 82.70 6.43
 2.5000 6.66 45.15 6.63 577.57 0.48

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 193!

Completion Time Error for C1.Medium Instances with 67% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0180 17.73 1.05 17.63 94.10 0.57
 0.1300 2.30 1.05 2.30 54.48 0.01
 0.1705 1.71 1.05 1.90 39.02 11.07
 2.5000 1.18 1.05 1.18 11.24 0.17
Grep
 0.0180 15.73 0.09 15.43 99.40 1.86
 2.5000 0.30 0.09 0.30 68.86 0.00
Pi Est.
 0.0180 16.26 0.38 15.79 97.69 2.88
 0.0500 1.29 0.38 1.27 70.85 1.25
 0.1300 1.22 0.38 1.17 69.22 3.93
 2.5000 0.43 0.38 0.43 12.64 0.17
TF-IDF
 0.0180 18.39 1.37 18.50 92.54 0.60
 0.1300 2.72 1.37 2.78 49.64 2.05
 0.2000 2.03 1.37 2.42 32.37 19.37
 2.5000 1.42 1.37 1.41 3.31 0.77
TPCH Q12
 0.0180 16.35 0.37 15.98 97.73 2.24
 0.0500 1.43 0.37 1.45 74.19 1.26
 0.1300 1.37 0.37 1.35 72.88 1.48
 2.5000 0.59 0.37 0.59 37.07 0.11
TPCH Q14
 0.0180 16.07 0.26 15.68 98.41 2.44
 0.0500 1.22 0.26 1.22 79.08 0.07
 0.1300 1.15 0.26 1.14 77.85 1.44
 2.5000 0.42 0.26 0.42 38.80 0.11
TeraSort
 0.0180 18.55 1.28 18.76 93.10 1.17
 0.1300 3.04 1.28 3.17 57.91 4.45
 0.1650 2.47 1.28 2.80 48.23 13.17
 2.5000 1.80 1.28 1.79 29.05 0.55
Word Count
 0.0180 18.93 1.62 19.29 91.45 1.91
 0.1300 3.11 1.62 3.28 48.04 5.21
 0.3425 2.38 1.62 2.89 32.12 21.22
 2.5000 1.67 1.62 1.66 3.05 0.78

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 194!

Monetary Cost Error for C1.Medium Instances with 67% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0180 3.52 1.89 3.77 46.30 7.03
 0.1300 2.75 4.23 2.74 54.02 0.42
 0.1705 2.71 5.08 2.98 87.72 10.12
 2.5000 4.31 53.79 4.27 1149.41 0.75
Grep
 0.0180 * ** 0.48 0.17 0.52 64.30 8.68
 2.5000 1.12 4.87 1.11 334.40 1.45
Pi Est.
 0.0180 1.27 0.68 1.06 46.37 16.62
 0.0500 0.95 0.92 0.91 3.08 4.02
 0.1300 0.97 1.52 0.88 56.91 9.38
 2.5000 1.59 19.34 1.56 1113.47 2.05
TF-IDF Job1
 0.0180 4.51 2.48 5.03 44.91 11.64
 0.0500 * ** 3.41 3.36 3.94 1.58 15.43
 0.0600 3.54 3.63 3.84 2.55 8.24
TPCH Q12
 0.0180 1.43 0.67 1.36 53.00 4.85
 0.0500 1.21 0.91 1.21 24.81 0.56
 0.1300 1.23 1.50 1.18 21.94 3.82
 2.5000 2.18 19.06 2.14 775.82 1.80
TPCH Q14
 0.0180 1.00 0.46 0.90 53.80 10.00
 0.0500 0.84 0.63 0.83 25.97 1.87
 0.1300 0.87 1.03 0.82 19.45 5.28
 2.5000 1.55 13.13 1.51 749.92 2.01
TeraSort
 0.0180 4.80 2.32 5.42 51.76 13.00
 0.1300 4.00 5.18 4.17 29.58 4.17
 0.1650 3.97 6.08 4.43 53.10 11.69
 2.5000 6.59 65.81 6.52 898.74 1.11
Word Count
 0.0180 5.33 2.93 6.18 45.04 16.02
 0.1300 4.07 6.55 4.28 60.99 5.15
 0.3425 3.99 13.43 4.71 236.79 18.18
 2.5000 6.08 83.26 6.02 1268.77 1.05
Co-Occurrence

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 195!

Completion Time Error for M1.Large Instances with 33% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0260 1.74 0.92 1.77 47.43 1.66
 0.0540 1.71 0.92 1.70 46.29 0.51
 0.2000 1.65 0.92 1.64 44.56 0.95
 3.3000 0.90 0.92 0.90 1.75 0.05
Grep
 0.0260 0.87 0.08 0.91 91.06 5.38
 0.0290 0.87 0.08 0.91 91.06 5.37
 3.3000 0.15 0.08 0.15 48.77 0.00
Pi Est.
 0.0260 1.27 0.49 1.29 61.51 2.02
 0.0300 1.26 0.49 1.28 61.44 1.58
 0.2000 1.17 0.49 1.17 58.35 0.14
 3.3000 0.50 0.49 0.50 1.68 0.05
TF-IDF Job1
 0.0260 2.55 1.47 2.59 42.12 1.88
 0.2000 2.42 1.47 2.43 39.18 0.46
 0.2410 2.36 1.47 2.37 37.51 0.47
 3.3000 1.58 1.47 1.58 6.65 0.18
TPCH Q12
 0.0260 1.27 0.53 1.29 58.15 1.56
 0.0800 1.19 0.53 1.19 55.36 0.18
 0.2000 1.17 0.53 1.17 54.67 0.33
 3.3000 0.49 0.53 0.49 8.83 0.06
TPCH Q14
 0.0260 1.00 0.30 1.03 69.88 3.32
 0.0800 0.91 0.30 0.93 67.03 2.48
 3.3000 0.26 0.30 0.26 17.49 0.07
TeraSort
 0.0260 1.80 0.85 1.81 52.93 0.78
 0.0600 1.71 0.85 1.71 50.31 0.15
 0.2000 1.69 0.85 1.69 49.79 0.08
 3.3000 0.97 0.85 0.97 12.55 0.04
Word Count
 0.0260 2.88 1.76 2.95 38.77 2.40
 0.2000 2.76 1.76 2.77 36.09 0.49
 0.2400 2.69 1.76 2.71 34.54 0.50
 3.3000 1.84 1.76 1.83 3.92 0.29

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 196!

Monetary Cost Error for M1.Large Instances with 33% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0260 5.10 4.64 5.02 9.14 1.62
 0.0540 5.09 4.90 4.96 3.81 2.48
 0.2000 5.16 6.23 4.94 20.69 4.36
 3.3000 9.24 34.65 9.25 274.91 0.10
Grep
 0.0260 0.77 0.39 0.76 48.71 0.41
 0.0290 0.77 0.40 0.76 48.40 0.47
 3.3000 1.52 2.93 1.56 93.72 2.78
Pi Est.
 0.0260 2.75 2.47 2.65 10.16 3.46
 0.0300 2.74 2.49 2.65 9.16 3.24
 0.2000 2.78 3.32 2.63 19.25 5.48
 3.3000 5.05 18.44 5.09 265.36 0.96
TF-IDF Job1
 0.0260 9.04 7.46 9.05 17.54 0.09
 0.2000 8.97 10.02 8.87 11.74 1.07
 0.2410 8.94 10.62 8.90 18.87 0.40
 3.3000 16.25 55.69 16.19 242.83 0.36
TPCH Q12
 0.0260 2.77 2.69 2.64 2.69 4.45
 0.0800 2.76 2.98 2.62 8.17 4.99
 0.2000 2.79 3.62 2.62 29.52 6.41
 3.3000 4.98 20.12 5.02 304.42 0.95
TPCH Q14
 0.0260 1.41 1.52 1.35 7.77 4.55
 0.0800 1.37 1.68 1.34 22.54 2.49
 3.3000 2.57 11.37 2.63 342.72 2.36
TeraSort
 0.0260 5.38 4.29 5.23 20.32 2.79
 0.0600 5.30 4.58 5.19 13.69 2.11
 0.2000 5.34 5.76 5.18 7.88 2.93
 3.3000 9.94 32.03 9.95 222.10 0.07
Word Count
 0.0260 10.68 8.92 10.78 16.45 0.96
 0.2000 10.62 11.99 10.53 12.92 0.81
 0.2400 10.58 12.69 10.56 19.97 0.21
 3.3000 18.89 66.65 18.80 252.85 0.46

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 197!

Completion Time Error for M1.Large Instances with 67% Accelerators by Bid Price

Bid
Average Completion Time (hrs.) Ave CT % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0260 2.18 0.92 2.13 58.03 2.58
 0.0500 2.09 0.92 2.01 56.08 3.74
 0.2000 2.08 0.92 1.93 55.96 7.40
 3.3000 0.93 0.92 0.93 1.32 0.20
Grep
 0.0260 0.94 0.08 0.99 91.78 5.01
 3.3000 0.23 0.08 0.23 65.82 0.00
Pi Est.
 0.0260 1.43 0.49 1.39 65.85 2.71
 0.0300 1.42 0.49 1.38 65.65 2.83
 0.2000 1.35 0.49 1.25 63.92 7.58
 3.3000 0.50 0.49 0.50 1.85 0.20
TF-IDF Job1
 0.0260 3.38 1.47 3.41 56.41 0.93
 0.2000 3.19 1.47 3.10 53.88 2.93
 0.2410 3.10 1.47 3.03 52.44 2.33
 3.3000 1.58 1.47 1.57 7.01 0.74
TPCH Q12
 0.0260 1.58 0.53 1.55 66.22 1.84
 0.0500 1.54 0.53 1.46 65.40 4.88
 0.2000 1.50 0.53 1.40 64.58 6.92
 3.3000 0.62 0.53 0.62 13.69 0.17
TPCH Q14
 0.0260 1.17 0.30 1.16 74.23 0.86
 0.0500 1.13 0.30 1.09 73.41 3.66
 0.0800 1.08 0.30 1.05 72.10 2.31
 3.3000 0.34 0.30 0.34 12.28 0.16
TeraSort
 0.0260 2.31 0.85 2.23 63.28 3.43
 0.0540 2.23 0.85 2.12 61.92 4.92
 0.2000 2.17 0.85 2.04 60.95 6.13
 3.3000 1.07 0.85 1.07 20.78 0.15
Word Count
 0.0260 3.92 1.76 4.04 55.03 3.14
 0.2000 3.75 1.76 3.67 52.95 2.01
 0.2400 3.65 1.76 3.59 51.69 1.52
 3.3000 1.84 1.76 1.82 4.38 1.14

!

! 198!

Monetary Cost Error for M1.Large Instances with 67% Accelerators by Bid Price

Bid
Average Cost ($) Ave Cost % Error

Simulated HDFS Pred. Forecast HDFS Pred. Forecast
Co-Occurrence
 0.0260 3.86 2.68 3.64 30.73 5.77
 0.0500 3.73 3.12 3.52 16.45 5.55
 0.2000 3.88 5.87 3.48 51.40 10.24
 3.3000 12.36 62.70 12.38 407.11 0.10
Grep
 0.0260 0.65 0.23 0.66 64.96 1.53
 3.3000 2.91 5.31 3.03 82.22 4.03
Pi Est.
 0.0260 1.91 1.42 1.73 25.45 9.67
 0.0300 1.89 1.46 1.72 22.73 9.10
 0.2000 1.98 3.12 1.68 58.00 14.91
 3.3000 6.52 33.36 6.62 411.38 1.48
TF-IDF Job1
 0.0260 6.91 4.30 6.89 37.72 0.33
 0.2000 6.75 9.43 6.50 39.63 3.74
 0.2410 6.69 10.64 6.56 59.13 1.87
 3.3000 21.11 100.78 21.00 377.36 0.55
TPCH Q12
 0.0260 2.31 1.55 2.15 32.64 6.96
 0.0500 2.30 1.81 2.10 21.35 8.58
 0.2000 2.38 3.41 2.09 43.08 12.16
 3.3000 8.15 36.40 8.22 346.90 0.89
TPCH Q14
 0.0260 1.23 0.88 1.11 28.31 9.82
 0.0500 1.22 1.02 1.09 16.25 10.51
 0.0800 1.21 1.20 1.09 0.22 9.45
 3.3000 4.46 20.57 4.57 361.57 2.53
TeraSort
 0.0260 4.19 2.47 3.92 40.91 6.37
 0.0540 4.09 2.95 3.82 27.93 6.59
 0.2000 4.13 5.42 3.79 31.26 8.32
 3.3000 14.24 57.95 14.26 307.01 0.12
Word Count
 0.0260 8.28 5.15 8.46 37.81 2.20
 0.2000 8.15 11.28 7.94 38.43 2.56
 0.2400 8.08 12.69 8.00 57.12 1.02
 3.3000 24.51 120.60 24.33 392.13 0.70

Note * = Forecasted optimal price bid, ** = Simulated optimal price bid

!

! 199!

References

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2011).

Deconstructing Amazon EC2 Spot Instance Pricing. IEEE International
Conference on Cloud Computing Technology and Science (pp. 304-311). IEEE.
doi: 10.1109/CloudCom.2011.48

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2013).
Deconstructing Amazon EC2 Spot Instance Pricing. ACM Trans. Econ. Comput.,
1(3), 1-20. doi: 10.1145/2509413.2509416

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. (2014). The rise of
RaaS: the resource-as-a-service cloud. Commun. ACM, 57(7), 76-84. doi:
10.1145/2627422

Amazon Web Services Inc. (2014). Amazon EC2 Instances. 11/25/2014, from
http://aws.amazon.com/ec2/instance-types/

Amazon Web Services LLC. (2011). Amazon Elastic Compute Cloud. Retrieved
10/1/2011, from http://aws.amazon.com/ec2/

Apache Software Foundation. (2012). Hadoop Distributed File System. Retrieved
4/19/2012, from http://hadoop.apache.org/hdfs/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Zaharia,
M. (2010). A view of cloud computing. Commun. ACM, 53(4), 50-58. doi:
http://doi.acm.org/10.1145/1721654.1721672

Barr, J. (2014). AWS Price Reduction. Retrieved 9/26/2014, from
http://aws.amazon.com/blogs/aws/aws-price-reduction-42-ec2-s3-rds-elasticache-
and-elastic-mapreduce/

Bicer, T., Chiu, D., & Agrawal, G. (2011). MATE-EC2: a middleware for processing
data with AWS. Proceedings of the 2011 ACM international workshop on Many
task computing on grids and supercomputers (pp. 59-68). ACM. doi:
10.1145/2132876.2132889

!

! 200!

Bresnahan, J., Keahey, K., LaBissoniere, D., & Freeman, T. (2011). Cumulus: an open
source storage cloud for science. Proceedings of the 2nd international workshop
on Scientific cloud computing (pp. 25-32). 1996115: ACM. doi:
10.1145/1996109.1996115

Chen, J., Wang, C., Zhou, B., Sun, L., Lee, Y., & Zomaya, A. (2011). Tradeoffs Between
Profit and Customer Satisfaction for Service Provisioning in the Cloud.
Proceedings of the 20th international symposium on High performance
distributed computing (pp. 229-238). ACM. doi: 10.1145/1996130.1996161

Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., & Krintz, C. (2010).
See spot run: using spot instances for mapreduce workflows. Proceedings of the
2nd USENIX conference on Hot topics in cloud computing (pp. 7-7). USENIX
Association. Retrieved from
http://www.usenix.org/events/hotcloud10/tech/full_papers/Chohan.pdf

Chun, B. N., & Culler, D. E. (2002). User-Centric Performance Analysis of Market-
Based Cluster Batch Schedulers. IEEE International Symposium on Cluster
Computing and the Grid (pp. 30-30). Retrieved from
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2002.1017109

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Commun. ACM, 51(1), 107-113. doi: 10.1145/1327452.1327492

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. Proceedings
of the nineteenth ACM Symposium on Operating Systems Principles (pp. 29-43).
New York, NY: ACM. doi: 10.1145/945445.945450

Herodotou, H. (2011). Hadoop Preformance Models (Report No. CS-2011-05). Retrieved
from the Duke University website: http://www.cs.duke.edu/starfish/files/hadoop-
models.pdf

Herodotou, H. (2012). Automatic tuning of data-intensive analytical workloads.
(Doctoral dissertation). Available from ProQuest Dissertations & Theses
database. (UMI No. 3504075)

Herodotou, H., & Babu, S. (2011). Profiling, what-if analysis, and cost-based
optimization of MapReduce programs. Proceedings of the VLDB Endowment,
4(11), 1111-1122.

!

! 201!

Herodotou, H., Dong, F., & Babu, S. (2011). No one (cluster) size fits All:Automatic
cluster sizing for data-intensive analytics. Proceedings of the 2nd ACM
Symposium on Cloud Computing (pp. 1-14). ACM. doi:
10.1145/2038916.2038934

Kavulya, S., Tan, J., Gandhi, R., & Narasimhan, P. (2010). An analysis of traces from a
production MapReduce cluster. Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (pp. 94-103).
IEEE Computer Society. doi: 10.1109/CCGRID.2010.112

Lee, G., Chun, B.-G., & Katz, R. H. (2011). Heterogeneity-aware resource allocation and
scheduling in the cloud. 3rd USENIX Workshop on Hot Topics in Cloud
Computing (p. 1). USENIX Association. Retrieved from
http://www.usenix.org/events/hotcloud11/tech/final_files/Lee.pdf

Li, M., Subhraveti, D., Butt, A. R., Khasymski, A., & Sarkar, P. (2012). CAM: a
topology aware minimum cost flow based resource manager for MapReduce
applications in the cloud. Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing (pp. 211-222). ACM. doi:
10.1145/2287076.2287110

Liu, H. (2011). Cutting MapReduce Cost with Spot Market. Proceedings of the 3rd
USENIX Workshop on Hot Topics in Cloud Computing (pp. 1-5). USENIX
Association. Retrieved from
http://www.usenix.org/event/hotcloud11/tech/final_files/Liu_Huan.pdf

Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., & Pendarakis, D. (2010). Efficient
resource provisioning in compute clouds via VM multiplexing. Proceeding of the
7th international conference on Autonomic computing (pp. 11-20). ACM. doi:
10.1145/1809049.1809052

Mesnier, M., Wachs, M., Sambasivan, R., Zheng, A., & Ganger, G. (2007). Modeling the
relative fitness of storage. Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems (pp.
37-48). ACM. doi: 10.1145/1254882.1254887

Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2008). Amazon S3 for
science grids: a viable solution? Proceedings of the 2008 international workshop
on Data-aware distributed computing (pp. 55-64). ACM. doi:
10.1145/1383519.1383526

!

! 202!

Schad, J., Dittrich, J., & Quiané-Ruiz, J.-A. (2010). Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proc. VLDB Endow., 3, 460-471.

Schwarzkopf, M., Murry, D. G., & Hand, S. (2012). The Seven Deadly Sins of Cloud
Computing Research. 4th USENIX Workshop on Hot Topics in Cloud Computing
(p. 1). USENIX Association. Retrieved from
https://http://www.usenix.org/conference/hotcloud12/seven-deadly-sins-cloud-
computing-research

Seltzer, M., Krinsky, D., Smith, K., & Zhang, X. (1999). The Case for Application-
Specific Benchmarking. Proceedings of the The Seventh Workshop on Hot Topics
in Operating Systems (pp. 102-107). IEEE Computer Society. doi:
10.1109/HOTOS.1999.798385

Sharma, V., & Srinivasan, D. (2007). Evolutionary computation and economic time
series forecasting. Evolutionary Computation, 2007 IEEE Congress on (pp. 188-
195). doi: 10.1109/CEC.2007.4424471

Stokely, M., Winget, J., Keyes, E., Grimes, C., & Yolken, B. (2009). Using a market
economy to provision compute resources across planet-wide clusters. Proceedings
for the IEEE International Parallel and Distributed Processing Symposium (pp.
1-8). IEEE. doi: 10.1109/IPDPS.2009.5160966

Verma, A., Cherkasova, L., & Campbell, R. (2011). ARIA: automatic resource inference
and allocation for mapreduce environments. Proceedings of the 8th ACM
international conference on Autonomic computing (pp. 235-244). ACM. doi:
10.1145/1998582.1998637

Wang, G., Butt, A. R., Monti, H., & Gupta, K. (2011). Towards Synthesizing Realistic
Workload Traces for Studying the Hadoop Ecosystem. International Symposium
on Modeling, Analysis, and Simulation of Computer Systems (pp. 400-408). doi:
10.1109/MASCOTS.2011.59

Wang, G., Butt, A. R., Pandey, P., & Gupta, K. (2009, 21-23 Sept. 2009). A simulation
approach to evaluating design decisions in MapReduce setups. IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (pp. 1-11). doi: 10.1109/MASCOT.2009.5366973

Wieder, A., Bhatotia, P., Post, A., & Rodrigues, R. (2010). Conductor: orchestrating the
clouds. Proceedings of the 4th International Workshop on Large Scale

!

! 203!

Distributed Systems and Middleware (pp. 44-48). ACM. doi:
10.1145/1859184.1859197

Wieder, A., Bhatotia, P., Post, A., & Rodrigues, R. (2012). Orchestrating the deployment
of computations in the cloud with conductor. Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation (pp. 27-27).
Berkeley, CA: USENIX Association. Retrieved from
https://http://www.usenix.org/conference/nsdi12/orchestrating-deployment-
computations-cloud-conductor

Zaharia, M., Borthakur, D., Sarma, J., Elmeleegy, K., Shenker, S., & Stoica, I. (2010).
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. Proceedings of the 5th European conference on Computer systems
(pp. 265-278). ACM. doi: 10.1145/1755913.1755940

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., . . . Stoica, I.
(2012). Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (pp. 2-2). USENIX Association.

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., & Stoica, I. (2008). Improving
MapReduce performance in heterogeneous environments. Proceedings of the 8th
USENIX conference on Operating systems design and implementation (pp. 29-
42). Berkeley, CA: USENIX Association.

	Nova Southeastern University
	NSUWorks
	2015

	An Enhanced MapReduce Workload Allocation Tool for Spot Market Resources
	John Stephen Hudzina
	Share Feedback About This Item
	NSUWorks Citation

