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Cell suppression is a common method for disclosure avoidance used to protect sensitive 

information in two-dimensional tables where row and column totals are published along 

with non-sensitive data. In tables with only positive cell values, cell suppression has been 

demonstrated to be non-deterministic NP-hard. Therefore, finding more efficient methods 

for producing low-cost solutions is an area of active research. 

 

Genetic algorithms (GA) have shown to be effective in finding good solutions to the cell 

suppression problem. However, these methods have the shortcoming that they tend to 

produce a large proportion of infeasible solutions. The primary goal of this research was 

to develop a GA that produced low-cost solutions with fewer infeasible solutions created 

at each generation than previous methods without introducing excessive CPU runtime 

costs. 

 

This research involved developing a GA that produces low-cost solutions with fewer 

infeasible solutions produced at each generation; and implementing selection and 

replacement operations that maintained genetic diversity during the evolution process. 

The GA’s performance was tested using tables containing 10,000 and 100,000 cells. The 

primary criterion for the evaluation of effectiveness of the GA was total cost of the 

complementary suppressions and the CPU runtime. 

 

Experimental results indicate that the GA-based method developed in this dissertation 

produced better quality solutions than those produced by extant heuristics. Because 

existing heuristics are very effective, this GA-based method was able to surpass them 

only modestly. 

Existing evolutionary methods have also been used to improve upon the quality of 

solutions produced by heuristics. Experimental results show that the GA-based method 

developed in this dissertation is computationally more efficient than GA-based methods 

proposed in the literature. This is attributed to the fact that the specialized genetic 

operators designed in this study produce fewer infeasible solutions. 

The results of these experiments suggest the need for continued research into non-

probabilistic methods to seed the initial populations, selection and replacement strategies 

that factor in genetic diversity on the level of the circuits protecting sensitive cells; 

solution-preserving crossover and mutation operators; and the use of cost benefit ratios to 

determine program termination.  



 

 
 

Acknowledgements 
 

I would like to thank my dissertation committee for their time, comments and support. I 

would especially like to thank Dr. Mukherjee for agreeing to be my advisor, his timely 

advice, and his limitless patience and understanding. Additionally, I would also like to 

thank Dr. Mitropoulos and Dr. Laszlo for serving on the committee and taking the time to 

review my work and provide their insight. 

 

I would like to thank my wife Cathy for her understanding and patience during this 

process. Her commitment to research and teaching reminds me why I started down this 

road to begin with. Lastly, I would like to thank my parents for instilling in me the desire 

to continue learning and challenging myself.



 

v 

Table of Contents 

Abstract ............................................................................................................................. iii 

List of Tables ................................................................................................................... vii 

List of Figures ................................................................................................................. viii 

1. Introduction ..................................................................................................................10 
Introduction ....................................................................................................................10 

Problem Statement .........................................................................................................12 
Dissertation Goals ..........................................................................................................13 
Relevance and Significance ...........................................................................................14 

Barriers and Issues .........................................................................................................15 
Elements, Hypothesis, and Research Questions ............................................................16 
Limitations and Delimitations ........................................................................................16 
Definition of Terms ........................................................................................................17 

Summary ........................................................................................................................19 

2. Review of Literature ....................................................................................................20 
Introduction ....................................................................................................................20 
Network Flow Approaches.............................................................................................21 

Heuristics Approaches....................................................................................................24 
Genetic Algorithm ..........................................................................................................26 

Selection and Replacement Strategies............................................................................28 
Portfolio of Selection and Replace Policies ...................................................................29 

Evaluation.......................................................................................................................31 
Summary of Research ....................................................................................................32 
Research Contributions ..................................................................................................34 

3. Methodology .................................................................................................................35 
Introduction ....................................................................................................................35 

Genetic Algorithm ..........................................................................................................36 
Chromosomal Representation ........................................................................................37 
Solution Checking Functions .........................................................................................37 
Initial Population Generation .........................................................................................38 

Crossover ........................................................................................................................40 
Mutation .........................................................................................................................42 

Selection and Replacement ............................................................................................43 
Termination ....................................................................................................................46 
Evaluation of the Results................................................................................................46 
Format of Results ...........................................................................................................48 
Resources .......................................................................................................................48 

Preliminary Testing ........................................................................................................48 
Preliminary Tests Conclusions .......................................................................................53 

4. Results ...........................................................................................................................54 
Introduction ....................................................................................................................54 
Discussion of Test Results for Tables with 10,000 Cells ...............................................55 
Test Results for Tables with 10,000 Cells and 0.5% Sensitive Cells ............................55 



 

vi 
 

Test Results for Tables with 10,000 Cells and 1% Sensitive Cells................................57 
Test Results for Tables with 10,000 Cells and 3% Sensitive Cells................................60 
Discussion of Test Results for Tables with 100,000 Cells .............................................62 
Test Results for Tables with 100,000 Cells and 0.25% Sensitive Cells ........................62 

Test Results for Tables with 100,000 Cells and 0.5% Sensitive Cells ..........................65 
Test Results for Tables with 100,000 Cells and 1% Sensitive Cells..............................67 
Test Results for Tables with 100,000 Cells and 3% Sensitive Cells..............................70 
Summary ........................................................................................................................72 

5. Conclusions, Implications, Recommendations and Summary .................................74 
Conclusions ....................................................................................................................74 

Implications ....................................................................................................................78 

Recommendations ..........................................................................................................82 
Summary ........................................................................................................................83 
About Appendix .............................................................................................................88 

Appendix A: Sample Output...........................................................................................89 

Reference List ...................................................................................................................90 

 

  



 

vii 
 

List of Tables 
 

Table 1: DataSets .............................................................................................................. 47 

Table 2: Preliminary Testing of Selection / Replacement Strategies for with 10,000 Cells 

with 0.5% Sensitive Cells ................................................................................................. 49 

Table 3: Preliminary Testing of Selection / Replacement Strategies for 10,000 Cells with 

1% Sensitive Cells ............................................................................................................ 51 

Table 4: Preliminary Testing of Selection / Replacement Strategies for 10,000 Cells with 

3% Sensitive Cells ............................................................................................................ 52 

Table 5: Comparison of Average Solution Costs with 10,000 Cells with 0.5% Sensitive 

Cells .................................................................................................................................. 55 

Table 6: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells with 

0.5% Sensitive Cells ......................................................................................................... 56 

Table 7: Comparison of Average Solution Costs with 10,000 Cells with 1% Sensitive 

Cells .................................................................................................................................. 58 

Table 8: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells with 

1% Sensitive Cells ............................................................................................................ 59 

Table 9: Comparison of Average Solution Costs with 10,000 Cells with 3% Sensitive 

Cells .................................................................................................................................. 60 

Table 10: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells with 

3% Sensitive Cells ............................................................................................................ 61 

Table 11: Comparison of Average Solution Costs with 100,000 Cells with 0.25% 

Sensitive Cells ................................................................................................................... 63 

Table 12: Comparison of Average CPU Times with 100,000 Cells with 0.25% Sensitive 

Cells .................................................................................................................................. 64 

Table 13: Comparison of Average Solution Costs with 100,000 Cells with 0.5% Sensitive 

Cells .................................................................................................................................. 65 

Table 14: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 0.5% 

Sensitive Cells ................................................................................................................... 66 

Table 15: Comparison of Average Solution Costs with 100,000 Cells with 1% Sensitive 

Cells .................................................................................................................................. 68 

Table 16: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 1% 

Sensitive Cells ................................................................................................................... 69 

Table 17: Comparison of Average Solution Costs with 100,000 Cells with 3% Sensitive 

Cells .................................................................................................................................. 70 

Table 18: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 3% 

Sensitive Cells ................................................................................................................... 71 

Table 19: Comparison of Improvement Ratios in Tables of 10,000 Cells ....................... 73 

Table 20: Comparison of Improvement Ratios in Tables of 100,000 Cells ..................... 73 

  



 

viii 
 

List of Figures 
 

Figure 1: Genetic Algorithm Overview ............................................................................ 36 

Figure 2: Shortest Path Heuristic for creating Rectangle of Suppressed Cells ................. 38 

Figure 3: Procedure to Generate Chromosomes ............................................................... 39 

Figure 4: Procedure crossoverCircuits .............................................................................. 41 

Figure 5: Procedure mutateOffspring ............................................................................... 43 

Figure 6: Selection and Replacement Process .................................................................. 44 

Figure 7: Comparison of Average Costs per Strategy for each Dataset with 10,000 Cells 

with 0.5% Sensitive Cells ................................................................................................. 50 

Figure 8: Comparison of Average Costs per Strategy for each Dataset with 10,000 Cells 

with 1% Sensitive Cells .................................................................................................... 51 

Figure 9: Comparison of Average Costs per Strategy for each Dataset with 10,000 Cells 

with 3% Sensitive Cells .................................................................................................... 52 

Figure 10: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 0.5% 

Sensitive Cells ................................................................................................................... 56 

Figure 11: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 0.5% Sensitive Cells ........................................................................................ 57 

Figure 12: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 1% 

Sensitive Cells ................................................................................................................... 58 

Figure 13: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 1% Sensitive Cells ........................................................................................... 59 

Figure 14: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 3% 

Sensitive Cells ................................................................................................................... 61 

Figure 15: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 3% Sensitive Cells ........................................................................................... 62 

Figure 16: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

0.25% Sensitive Cells ....................................................................................................... 63 

Figure 17: Comparison of Average CPU Times (Y-Axis in seconds) with 100,000 Cells 

with 0.25% Sensitive Cells ............................................................................................... 64 

Figure 18: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

0.5% Sensitive Cells ......................................................................................................... 66 

Figure 19: Comparison of Average CPU Times (Y-Axis in seconds), Using a Single 

Dataset, with 100,000 Cells with 0.5% Sensitive Cells .................................................... 67 

Figure 20: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 1% 

Sensitive Cells ................................................................................................................... 68 

Figure 21: Comparison of Average CPU Times (Y-Axis in seconds), Using a Single 

Dataset, with 100,000 Cells with 1% Sensitive Cells ....................................................... 69 

Figure 22: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 3% 

Sensitive Cells ................................................................................................................... 71 



 

ix 
 

Figure 23: Comparison of Average CPU Times (Y-Axis in seconds) with 100,000 Cells 

with 3% Sensitive Cells .................................................................................................... 72 

Figure 24: Comparison of Improvement Ratios (Y-Axis) at 100,000 Cells at Different 

Sensitive Cell Percentages (X-Axis) ................................................................................. 87 

Figure 25: Sample HeurGene Summary Output ............................................................... 89 

Figure 26: Sample HeurGene Summary Data Output ...................................................... 89 

 

 



  10 

 
 

Chapter 1 
 

Introduction 
 

 

Introduction 

 Cell suppression can be defined as a method of Statistical Disclosure Control in 

which the data in a two-dimensional statistical table considered sensitive are blocked 

from publication by suppressing their value. Cell suppression is typically accomplished 

by setting the value of the sensitive cell to null to conceal its information before the table 

is released (Fischetti & Salazar, 1998). However, suppressing the sensitive cells alone is 

not sufficient as their values can be derived from the remaining values due to marginal 

row and column totals present in the table. It is therefore necessary to suppress additional 

non-sensitive cells, called complementary suppressions, to guarantee that the values of 

the sensitive cells cannot be calculated within a predetermined disclosure interval. The 

goal is to minimize the information lost by suppressing non-sensitive cells while 

protecting all sensitive cells (de Carvalho, Dellaert, & de Sanches Osorio, 1994; Fischetti 

& Salazar, 1998). 

 The two-dimensional table needing protection can be represented as A = [aij], 

where A is defined as a (m + 1)  (n + 1) matrix of real numbers aij. The values in the m 

rows and n columns of the table are known as internal cells, while the values in the (m + 

1) row are the column subtotals 𝑎𝑚+1,𝑗 = ∑ 𝑎𝑖𝑗
𝑚
𝑖=1 , 𝑗 = 1, … , 𝑛, and values in the (n + 1) 

column are the row subtotals 𝑎𝑖,𝑛+1 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1, … , 𝑚. The value at 𝑎𝑚+1,𝑛+1 is the 

grand total 𝑎𝑚+1,𝑛+1 = ∑ ∑ 𝑎𝑛
𝑗=1 𝑖𝑗

𝑚
𝑖=1  (Almeida, Schütz, & Carvalho, 2006; Kelly, 
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Golden, & Assad, 1992). A cell in a table is denoted by (i, j) where i is the row location 

and j is the column location in table T such that T = {(i, j) | 1  i  m, 1  j  n} (de 

Carvalho et al., 1994). A primary suppression is a sensitive cell suppressed from 

publication. The set of primary suppressions (i, j)  S1 is a subset S1  T. S1 is protected 

by lower and upper bounds lij and uij respectively, with a protection interval defined as Pij 

= [aij - lij, aij + uij] (Fischetti & Salazar, 1998; Almeida & Carvalho, 2005). The set of 

complementary suppressions is denoted by S2 = {(i, j)  A} (de Carvalho et al., 1994). 

The upper level protection for each cell in S1 is defined as uij, with uij  0. The 

lower level protection for each cell in S1, is denoted by lij, where lij > 0. A confidential 

cell is right-protected if the smallest range an intruder is able to compute for aij contains 

aij + uij. The cell is left-protected if the computable range for aij contains aij - lij. A 

sensitive cell is considered protected if it is both left and right protected according to a 

range defined by the cell’s protection interval. 

A table is considered safe if each sensitive cell in S1 is both right and left 

protected. S2 is considered feasible if all cells in S1 get protected when the values S1  S2 

are omitted from the table or set to null. Each cell in S1 is assigned a weight of zero and 

each cell in S2 is given a non-negative weight wij = |aij| reflecting the loss of information 

due to suppression of non-sensitive cells. The cost of the complementary suppressions 

can be expressed as:∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝑆2
 (Almeida et al., 2006). The Cell Suppression Problem 

(CSP) can now be defined as:  

Given a set S1 of sensitive cells, with protection interval P, the CSP searches for 

the lowest cost set S2, that minimizes information loss, where all cells in S1 are 

considered safe (Kelly et al., 1992).  

 

Kelly et al. (1992) demonstrated that the CSP is NP-hard, giving rise to the 
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development of a number of heuristic solutions that provide for a low-cost set S2. A 

general table containing both postitive and negative entries yields a CSP that corresponds 

to an undirected bipartite network G = (V, E) where V = R  C is the set of nodes formed 

by the union of set R of m + 1 nodes, which represent the table’s rows, and the set C of n 

+1 nodes representing the table’s columns. E is a set of edges representing a table’s cell 

(i, j)  E corresponding to a subset of the set T, each with weight wij. Given set S1 of 

primary suppressions and set S2 of complementary suppressions, 𝐺𝑆1∪𝑆2
= (𝑉, 𝐸𝑆1∪𝑆2

) 

represents the subgraphs of suppressed cells. A general table A with S1, S2  T is safe in 

the corresponding subgraph 𝐺𝑆1∪𝑆2
if every suppressed cell belongs to a circuit (de 

Carvalho et al., 1994). With respect to positive tables, the solution of the CSP is 

additionally dependent on the cell values in A and the protection interval Pij on sensitive 

cells.  

The goal of the CSP can be expressed as finding a lowest cost set for S2 where all 

cells in S1 are protected. Genetic algorithms (GA) have been shown to be useful in 

finding low-cost solutions, but have the tendency to produce large numbers of infeasible 

solutions during the evolutionary process (Ditrich, 2010). This is due to the random 

nature of the GA’s crossover operation, which combines selected pairs of existing 

solutions and the mutation operation, which disturbs existing solutions (Almeida et al., 

2006). The application of a function to direct the crossover and mutation operations 

would allow existing circuits of suppression not involved in the operation to be 

preserved. 

Problem Statement 

Almeida et al., (2006) developed a hybrid heuristic and GA approach to the CSP 
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that demonstrated the feasibility of the approach, but were hampered by the random 

nature of the GA’s mutation and crossover operators, which tend to produce infeasible 

solutions requiring repair or replacement at each generation. Ditrich (2010) improved 

upon this process and developed repair and replacement operations to help compensate 

for infeasible solutions, but at high computational cost. Therefore, the development of 

genetic operators that are able to produce feasible solutions requiring little or no repair or 

replacement at each generation is an area that warrants further investigation.  

This research developed and evaluated new crossover and mutation operations for 

a GA in order to reduce the need for repair and replacement of infeasible solutions and 

improve the quality of the final solution. Additionally, a portfolio selection of 

chromosomal selection and replacement strategies was examined in order to provide 

good genetic diversity at each generation and mitigate premature convergence of the GA. 

The algorithm presented in the research will be referred to as HeurGene for Heuristic-

Genetic algorithm. 

Dissertation Goals 

The primary goal of the proposed research was to develop an improved GA for 

the CSP that generated low-cost solutions without introducing excessive additional CPU 

overhead. To achieve this objective, the following primary goals needed to be realized: 

1. the development of crossover and mutation operators that improved upon existing 

methods, and  

2. the development of selection and replacement strategies that provided sufficient 

chromosomal diversity at each generation to avoid premature convergence. 

In support of the primary goals, the following secondary goal needed to be 
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realized: 

3. the development of a chromosomal representation to facilitate objective 1. 

 

The GA was evaluated using techniques similar to those used by Almeida et al. 

(2006) and Ditrich (2010). The primary goals were realized when the following 

requirements were met: 

1. the production of fewer infeasible solutions at each generation than previous methods,  

 

2. the production of  lower-cost solutions than previous methods, and 

 

3. the accomplishment of goals 1 and 2 without introducing significantly increased 

runtime costs. 

 

Relevance and Significance 

Balancing the requirement of privacy and the need to release data in two-way 

tables for legitimate analysis often requires that sensitive data be suppressed. 

Unfortunately, in tables that contain totals in marginal rows and columns, it is possible to 

estimate the values of the suppressed data using linear programming. Disclosure has been 

compromised when the sensitive cell’s estimated maximum or minimum values fall 

inside a given range as determined by the entity releasing the tables for analysis. This 

requires that additional data be suppressed to prevent the calculation of the sensitive data 

(Salazar-González, 2008; de Carvalho et al., 1994). In response, organizations such as the 

U.S. Department of Commerce have set requirements for unauthorized disclosures of 

sensitive data (Lu & Li, 2008). International organizations such as the United Nations 

Economic Commission for Europe and Eurostat have hosted special sessions to address 

the issue and agencies such as European Union and US National Science Foundation 

have supported research projects in the area (Salazar-González, 2008). 

The use of cell suppression for statistical disclosure of sensitive data is one of the 
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most commonly used methods (Almeida & Carvalho, 2005;  Fischetti & Salazar, 1998). 

It has been shown that GAs can quickly produce low-cost solutions to the CSP (Kratica, 

Čangalović, & Kovačević-Vijčić, 2009; Ditrich, 2010). Unless carefully designed, the 

application of GAs to the CSP is problematic in that existing cycles of suppressions are 

often lost during the mutation and crossover operations, requiring repair or replacement 

of offspring (Krasnogor & Smith, 2005). As a result, these operators are of particular 

interest to researchers working with GAs as applied to the CSP. 

This research exploited the specific attributes of the CSP in order to improve upon 

crossover and mutation operators used in previous research. These operators made use of 

existing circuits of suppressions to direct their processes. A chromosomal representation 

and supporting external data structures were developed to facilitate the process. A 

secondary goal of the research was an exploration of selection and replacement strategies 

to improve upon genetic diversity. The outcome of this research was a more effective 

method for securing sensitive data while maintaining a high ratio of solution 

improvement over CPU time. 

Barriers and Issues 

Given the use of a solution-preserving crossover operation, along with a heuristic 

to direct the crossover and mutation operations, it was expected that the GA would 

quickly converge on a good quality solution with fewer infeasible solutions produced at 

each generation. However, this assumption was wrong for two reasons. First, the use of a 

heuristic on the crossover operations disturbed the random nature of the process, which 

limited the GA’s ability to fully explore the solution space and resulted in the GA 

prematurely converging regardless of the selection and replacement policies. This was 
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because the heuristic forced the chromosomal representation into a fixed number of 

configurations in which diversity was limited, causing localized convergence. Second, 

removing the randomness from the mutation process necessarily required that the 

chromosomal sequences needed for a near optimal solution already be present in the 

current population. This is a result of the inability to randomly create novel sequences 

through the mutation process.  

Elements, Hypothesis, and Research Questions 

 The research presented in this report hypothesized that a heuristically-directed 

genetic algorithm could be developed that would find good solutions without the need for 

repair or replacement of infeasible solutions at each generation. Specific questions that 

this research answered included: 

1. Can crossover and mutation operations be designed that produce few or no infeasible 

solutions?  

2. Will this method provide for improvement in the cost of the solutions? 

3. Will a portfolio of deterministic and probabilistic selection and replacement rules 

maintain sufficient genetic diversity to avoid premature convergence?  

4. Does the computational overhead associated with the genetic algorithm negate its 

benefits? 

Limitations and Delimitations 

 The Microsoft Visual C++ compiler, in order to handle datasets larger than 

100,000 values, needed to be set to LARGEADDRESSAWARE, which had a significant 

negative impact on run time and memory usage. 

 Synthetic datasets tend to have cell values and sensitive cell locations evenly 
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distributed. Real world datasets may have data clustered around certain values and 

locations within the table. This may negatively skew the runtimes as clustering may alter 

the operational characteristics of the heuristics for crossover and mutation. 

 When the percentage of sensitive cells present in a table becomes large, it 

becomes more probable that the suppression of sensitive data alone will provide 

sufficient protection for a large number of the sensitive cells. This has the effect of 

skewing results as the overall cost for protecting a small number of sensitive suppressions 

is necessarily low. However, it has the opposite effect on CPU time owing to the 

heuristic’s attempt to locate a suitable circuit of protection for crossover.   

Definition of Terms 

 The following is a listing of definitions for key terms used in this research report. 

 

Term Definition 

Cell Suppression Setting the value of the cell to null to conceal its 

information. 

Chromosomal 

Representation 

Set of structures containing data about the encoding of 

cells. It also serves to represent the individual parents and 

offspring. 

Cell Suppression Problem 

(CSP) 

Method of protecting sensitive information from disclosure 

in statistical tables that minimizes information loss without 

altering the values of non-sensitive cells through the use of 

complementary suppressions.  

Circuit of Protection 

 

Complementary 

Suppressions 

A set of suppressions forming a closed circuit protecting a 

sensitive cell. 

Suppressed, non-sensitive cells that guarantee that the 

values of the sensitive cells cannot be calculated within a 

predetermined disclosure interval. 

Cost The sum of the values of the complementary suppressions. 

Crossover The method by which two individuals in the parent 

population exchange the genetic information present in 

their chromosomal representation. 

Feasible Solution A set of complementary suppressions that protects 

sensitive cells such that they are considered safe. 

Genetic Algorithm (GA) A heuristic search algorithm based on the biological 

process of reproduction. 

Hypercube A fast heuristic to find sets of complementary suppressions 
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to protect confidential data. In two-dimensional tables, for 

each confidential cell, a set of three cells forming the 

corners of a rectangle is required. 

Left Protection When the lower bound for a sensitive cell is less than its 

lower protection level. 

Linear Programming A mathematical model for the optimization of an outcome 

based on a set of constraints. 

Lower Bound The smallest value that can be calculated for a suppressed 

sensitive cell. 

Lower Protection Level The value subtracted from a sensitive cell’s value to 

establish the largest acceptable lower bound that can be 

calculated from the non-suppressed cells. 

Mating Pair Two individuals from the parent population selected for 

crossover and mutation operations. 

Marginal Cell A cell containing the sum total for a row, column or the 

grand total for the table. 

Mutation The method by which changes are made to the 

chromosomal representation of a single individual. 

Offspring The product of two parents that have undergone crossover 

and mutation. 

Oversuppression A suboptimal pattern of complementary suppressions used 

to protect sensitive cells. 

Parent Population The current population exclusive of offspring. 

Population Set of all individuals being acted upon by the genetic 

algorithm. 

Primary Suppression A sensitive cell whose value has been set to null to protect 

it from disclosure. 

Protection Interval The range of values lying in the interval defined by the 

lower and upper protection levels. 

Replacement The process of selecting offspring to succeed members of 

the parent population. 

Right Protection When the upper bound for a sensitive cell is greater than 

its upper protection level. 

Selection The process of choosing individuals from the parent 

population for crossover and mutation. 

Sensitive Cell Cells singled out as containing information that is 

inappropriate or too revealing for publication. 

Sliding Protection The distance between the upper and lower protection 

levels. 

Statistical Disclosure 

Control 

The process by which an entity provides protection to 

sensitive cells in statistical table. 

Sub-Network A sub-table consisting of a primary suppression and 

complementary suppressions forming a cycle that protects 

the primary suppression from disclosure. 

Upper Bound The largest value that can be calculated for a suppressed 

sensitive cell. 
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Upper Protection Level The value added from a sensitive cell’s value to establish 

the smallest acceptable upper bound that can be calculated 

from the non-suppressed cells. 

 

Summary 

Complementary cell suppression is a proven method for statistical disclosure 

control that maximizes the quality of released statistical tables. Genetic algorithms have 

proven to provide good quality solutions but are hampered by crossover and mutation 

operations that generate infeasible solutions, requiring repair or replacement. This 

research was premised on the theory that crossover and mutation operations could be 

developed that preserved feasible solutions between generations. This was achieved in 

part by heuristic algorithms that act on the crossover and mutation operations to direct the 

evolutionary process, along with a list of suppressions that allowed those suppressions 

shared between different circuits of protection to be factored into the operations. In 

addition, a portfolio of selection and replacement rules was developed to help maintain 

genetic diversity to avoid premature convergence at local optima. 
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Chapter 2 
 

Review of Literature 

 

Introduction 

 Cell suppression is a common method of statistical disclosure control used to 

protect sensitive information in a statistical table where non-sensitive data is released 

along with row and column totals (Fischetti & Salazar, 1998). Various other techniques 

have been applied to the CSP, including those based on network flow and various 

heuristic approaches. The different approaches typically offer a tradeoff between the 

quality of the solution and speed of execution. As problem sets become increasingly large 

the issue of finding a quality solution with minimal computational overhead becomes 

more acute. First developed by John Holland and based on processes of natural evolution, 

genetic algorithms have proven to be useful for quickly finding good but suboptimal 

solutions to large instances of optimization problems (Goldberg, 1989). 

Genetic algorithms are typified by an initial parent population composed of 

chromosomal representations of a solution space and ranked by a fitness function, which 

allows for selection of most fit pairs for mating. Offspring are created through a process 

of crossover and mutation with the more fit individuals replacing the less fit members of 

the parent population according to the fitness function (Russell & Norvig, 2010). The 

process is repeated until a stopping condition is met. The evolutionary process takes 

advantage of the fitter individuals produced by the genetic operators and increases their 

relative frequency in the population such that they are more likely to reproduce, 

producing fitter offspring (Smith, 2007). 
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 The initial parent population may be created randomly or by any method that 

provides good genetic diversity. The chromosomal representation reflects the solution 

space being explored with the most typical representation consisting of a binary array 

with one element for each value under evaluation. A fitness function is used to rank the 

population in order to insure that positive genetic characteristics are passed to future 

generations. Crossover is used to mate selected members of the parent population, 

producing offspring with potentially superior chromosomal makeups. The mutation 

operation ensures genetic diversity in the parent population to help prevent premature 

convergence at a suboptimal solution. A stopping condition terminates the process, 

usually when a specified number of generations have passed. 

Network Flow Approaches 

 Network flow approaches, such as those described in Cox (1980) and Carvalho et 

al. (1994), were some of the earliest solutions to the CSP. The need for them arose out of 

the requirement to keep sensitive information from being estimated to within a value that 

is too close to the actual value as determined by the entity releasing the data. Cox 

suggests using algorithms that find a minimal set of suppressions based on cost. He 

discusses a number of methods for measuring the cost of suppression: (1) the evaluation 

of the sensitivity of the published aggregations not expressible as a function of other 

published aggregations, (2) the total value of suppressed cells, (3) the number of 

respondents in the suppression pattern, and (4) the total number of suppressed cells. Cox 

goes on to suggest that the total number of suppressed cells provides the best measure for 

cost and provides the greatest degree of process control for minimizing oversuppression.  

Kelly et al. (1992) differentiate themselves from Cox by suggesting that the CSP 
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should be optimized as the sum of the suppressed cells rather than the count. They also 

point out that optimization based on the number of suppressions does not take into 

account cells with large values that may represent important data. They propose that a 

solution with a low sum can provide more usable data. They also introduce the concept of 

a sliding protection interval as a possible method to further reduce oversuppression. In a 

sliding protection interval, the width of the protection interval is what needs to be 

considered and not the upper and lower bounds protecting a sensitive cell. Their overall 

method examines one sensitive cell at a time to determine which complementary 

suppressions will be required. In order to compensate for oversuppression, Kelly et al.’s 

(1992) method additionally involves removing one complementary cell at a time and 

retesting the solution for feasibility. This process is repeated for each of the 

complementary suppressions. Smith, Clark, & Staggemeier (2009) note that ordering of 

the cells in Kelly et al.’s (1992) method has an effect on the cost of the suppressions and 

suggest using a GA to optimally order the cells prior to adding complementary 

suppressions.  

Cox (1995), building on the work of Kelly et al. (1992) and de Carvalho et al. 

(1994), proposes using a mathematical network utilizing alternating cycles of arcs 

between rows and columns in the graph to form circuits. Circuits with only suppressed 

cells are considered safe from disclosure. Fischetti and Salazar (1999) further refine the 

process by defining properties for an optimal solution. One of the most basic is that any 

optimal solution will have no row or column with just one suppressed entry. Other 

properties include the bridge, comb, and cover inequalities. The bridge inequality 

provides that optimal solutions are bridgeless, where a network with a node of degree one 
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is not present in the solution. Likewise, comb inequalities will not be present in an 

optimal solution. Solutions that violate the knapsack constraint of cover inequalities are 

also precluded from being optimal.  

De Carvalho, Dellaert, and Osorio’s (1994) method utilizes sliding protection and 

minimizes the sum of suppressions as an objective function as proposed by Kelly et al. 

(1992), but differ in that they suggest the final solution should never include marginal 

totals. They use a network flow approach based on the theory that rows and columns of a 

two dimensional table can be modeled into a bipartite graph where the edges form a 

circuit protecting each primary suppression. However, the process of forming circuits 

often leads to oversuppression, requiring additional processing to reduce solution cost. 

De Carvalho et al. (1994) use Dijkstra’s shortest path (SP) algorithm to reduce the cost by 

finding the shortest distance between two nodes and removing high cost edges. However, 

the runtime cost was high for medium to large graphs. 

 Another method of reducing computational cost is to reduce the size of the 

solution search space. Cox (1980) describes a combinatorial procedure for finding 

optimal solutions to the CSP by searching for intersecting rows and columns of the 

primary suppressions for candidates for complementary suppressions. Cox notes that 

these intersections represent the best locations for complementary suppressions due to 

their lower-cost, which results from being shared by two or more cycles protecting a 

primary suppression. Complementary suppressions located at other cells represent poor 

candidates and will be less likely to lead to an optimal solution. Once a partial solution is 

found, it may be used to identify other candidates for complementary suppression (Cox, 

1995). 
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Heuristics Approaches 

 To reduce runtime costs, shortest path (SP) and Castro heuristics are commonly 

applied to the CSP. With the SP method, the confidential cells are protected one at a time 

without regard for order. A sequence of minimal cost paths for the sensitive cell’s right 

and left-protection levels is built and the nonconfidential cells added to the solution. This 

process is repeated for all the sensitive cells with the cost of the solution equal to the sum 

of the values of the nonconfidential cells suppressed. Since the bounds are calculated 

only when all primary suppressions are protected, complementary suppressions added 

early in the process are not reevaluated in light of complementary suppressions made 

later in the process, leading to higher cost solutions (Kelly et al., 1992; Almeida et al., 

2006).  

In an effort to further reduce solution cost, Castro’s method uses the SP 

algorithm, but recalculates the bounds between suppressions. The reevaluation process 

allows additional suppressions to be avoided based on their effect on the upper and lower 

bounds. In a method similar to Castro’s, Kelly et al., (1992) use their SP heuristic to 

generate an initial solution. Once the initial cycles of suppressions is established by the 

SP heuristic, a cleanup phase iterates through each of the complementary suppressions, 

determining whether the table remains secure if a complementary suppression is 

removed. 

A parallel bound and path heuristic was designed by Almeida et al. (2006) in 

order to quickly seed their GA with a diversified set of feasible solutions. Their approach 

uses a two phase scheme that delivers two solutions. The first phase generates a set of 

complementary suppressions based on the suppression needs in the rows and then on the 
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suppression needs in the columns. This two-step approach allows the suppressions added 

in the second step to take into account the complementary suppressions added in the first. 

Finally, a cleanup phase attempts to reduce oversuppression by removing complementary 

suppressions in rows or columns without confidential cells. Phase two applies a SP 

heuristic to the solutions from phase one to verify their feasibility and add any needed 

additional suppressions. 

The Hypercube method, designed for k-dimensional general tables, developed at 

Landesamt für Datenverarbeitung und Statistik in Nordrhein-Westfalen, Germany, 

involves dividing the table into a set of sub-tables. The sub-tables are then protected in an 

iterative procedure that starts from the highest level. For each sensitive cell in the current 

sub-table, all possible cubes with suppressed cells at each of the corners are formed with 

the sensitive cell at one of the corners. A lower bound is then calculated for the width of 

the sensitive cell’s suppression interval for each cube. If the calculated bound is 

sufficiently large, the cube is considered a feasible solution. The cube with the minimum 

information loss due to suppression is selected. Once all sub-tables have been protected, 

the process is repeated with the complementary cells belonging to more than one sub-

table treated like sensitive cells. Since the hypercube method ensures that each 

suppressed cell must be part of a cycle protecting the sensitive cell, it has been shown to 

provide better solutions than other methods. Although this method provides a satisfactory 

protection pattern, it does necessarily provide the only possible pattern as it fails to 

reevaluate existing patterns as new patterns are added to the solution set. For this reason, 

the hypercube tends toward oversuppression as it fails to find patterns with the minimal 

overall amount of information loss (Giessing & Repsilber, 2002). 
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Genetic Algorithm 

GA-based approaches have proven to provide low-cost suboptimal solutions with 

relatively low computational cost compared to SP based approaches. Almeida et al. 

(2006) were the first to apply a GA, called GenSup, to the CSP. They use two heuristic 

functions, shortest path and parallel bound and path, for the initial population. Their GA 

uses a crossover method involving the mating of an elite (25%) population with less fit 

individuals (75%) using a 1-point crossover. Each mating pair produces four new 

members during the process. This method uses a random position within the chromosome 

as a crossover point, which results in damage to existing sub-networks for cell protection. 

This requires the offspring undergo a repair process, which adds additional 

complementary cells as necessary to produce a feasible solution. A mutation operator is 

used that considers one cell at a time in the best parent and offspring and checks the 

resulting set with a SP heuristic that introduces added runtime costs. Chromosomes with 

the same cost value are disallowed to help maintain genetic diversity. The two most fit 

offspring then replace the two least from the parent population. This process repeats for a 

fixed number of total generations or until a fixed number of generations passes without 

improvement. Their method provides lower-cost solutions than the SP method and proves 

the validity of GAs application to the CSP. 

Improvements to Almeida et al. (2006) GA were made by Smith et al. (2009) by 

utilizing tournament selection with Davis’ permutation-specific recombination to help 

preserve information present in the parents. Ditrich (2010) also improved upon past 

solutions by implementing a single point crossover operator that uses the primary 

suppression set associated with other suppressed cells in the crossover to avoid treating 
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each cell independently, thereby preserving feasible solutions. Additionally, Ditrich 

(2010) implemented a mutation scheme that reduces solution cost by identifying 

oversuppressions and targeting them for mutation. This method has a large effect on the 

cost of solutions, especially in cases where fewer than four cells were required to provide 

protection. 

Almeida et al. (2006) utilize a repair routine that is triggered when a possible 

solution is checked with a SP heuristic and returns other than a zero cost. GenSup, like 

SP and hypercube methods, does not consider sets of cells. GenSup’s mutation operator 

could remove a cell from the solution with regard to its participation across multiple 

cycles protecting a sensitive cell. After each mutation, the SP heuristic checks the 

solution and rejects infeasible solutions. This results in a large computational cost as 

possible solutions are repaired or rejected after being checked and rechecked with the SP 

heuristic. 

Ditrich’s (2010) Genetic Algorithm - Protection Network (GAPN) method builds 

on Almeida et al. (2006) with several differences. The crossover operation randomly 

selects a primary suppression and attempts to identify the complementary suppressions in 

a simple rectangle that forms the protection network. More complex protection networks 

such as those found in higher quality solutions are not identified due to the 

interdependency of the cells. The cells identified during the process are placed in sets 

based on the primary cell they protected. If a set contains at least one complementary 

suppression, it is available for crossover. After crossover, the child solutions are validated 

and infeasible solutions rejected. The mutation operation is then performed on the best 

offspring. The mutation operator searches the child’s chromosomal representation for 
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complementary suppressions that could be removed and still maintain a feasible solution. 

Population size is constant with the parent and child populations combined and lowest 

quality solutions removed. 

Selection and Replacement Strategies 

GAs can employ a variety of selection and replacement strategies in an effort to 

balance selective pressure with genetic diversity. Often GAs employ deterministic 

selection strategies that consist of elitist selection, where only the fittest members of the 

population are selected for mating, complemented by an elitist replacement strategy 

where the least fit members of the current population are replaced by more fit offspring  

(Mashohor, Evans, & Arslan, 2005; Smith, 2007).  

Selection and replacement strategies can be closely coupled as with Modified 

Random Tournament Selection and Replacement. Here, selection and replacement are 

combined into a single strategy where n individuals from the current population are 

selected at random for both mating and replacement. The offspring then compete with 

these individuals for replacement based on fitness ranking (Smith et al., 2009; Razali & 

Geraghty, 2011). This method has been shown to maintain good diversity, but at the cost 

of increased convergence time (Razali & Geraghty, 2011).  

Other selection and replacement strategies are independent from each other. The 

Fitness Proportional Roulette Wheel selection strategy involves individuals being 

selected for mating with a probability proportional to their fitness. The probability of any 

one individual being selected for mating is defined as 𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

 where fi is the fitness 

values of individual i and pi is the probability of individual i being selected. The 

advantage of this method is that all individuals in the current population have a chance of 
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being selected (Razali & Geraghty, 2011). 

Similar to the Fitness Proportional Roulette Wheel strategy, Rank-Based Roulette 

Wheel Selection uses an individual’s rank in the population rather than its fitness. Rank is 

defined as 𝑝𝑖 =
𝑟𝑖

∑ 𝑟𝑗
𝑛
𝑗=1

, where ri is the rank of individual i in the current generation and pi 

is the probability of individual i being selected. The advantage of this method is that it 

tends to avoid premature convergence and eliminates the need to scale fitness values, but 

it can be computationally expensive owing to the need to resort the parent population at 

each generation (Razali & Geraghty, 2011). 

The Elitist replacement strategy requires that the least fit individuals in a 

population be replaced by more fit offspring (Smith, 2007). This strategy provides for a 

high level of selective pressure, resulting in an increased level of convergence (Lozano, 

Herrera, & Cano, 2005; Vavak & Fogarty, 1996).  

The Replace Random strategy functions by randomly replacing a member of the 

current population at each generation. This method typically produces poor results due to 

the variance it introduces into the population (De Jong & Sarma, 1993).  

The Kill Tournament strategy involves selecting members from the current 

population at random to compete with the offspring for a place in the next generation. 

Replacement is based on fitness with the number of parents selected for the tournament 

being subject to variability. This allows for a range of selective pressure. This strategy 

has the advantage of not requiring resorting of the population after replacement (Smith, 

2007). 

Portfolio of Selection and Replace Policies 

One of the problems that arise when applying GAs to complex problems is that of 
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premature convergence to local optima. This can often be related to loss of genetic 

diversity in the evolving population. However, too much diversity can hurt the runtime 

performance of the GA (Galan & Mengshoel, 2010). The use of portfolios with GAs 

applied to the traveling salesperson problem has demonstrated that improved 

performance is possible as compared to methods that use a single approach (Fukunaga, 

2000). 

 Developed in the discipline of economics, portfolio theory attempts to answer the 

question of how financial assets should be allocated in order to maximize expected 

returns and minimize risks. Huberman, Lukose and Hog (1997) were the first to suggest 

the use of what they call “computational portfolios” to solve hard computational 

problems. They demonstrate that an algorithmic portfolio can outperform the individual 

algorithms used in the portfolio (Fukunaga, 2000). 

 GAs often use deterministic crowding to identify the fittest members of the 

population for selection and replacement. Probabilistic crowding uses a probabilistic 

formula, which also uses fitness for selection and replacement. Deterministic crowding is 

an elitist replacement strategy that has a tendency toward premature convergence. 

Probabilistic crowding allows for exploration of the solution space for less fit individuals 

in order to improve genetic diversity. When both strategies are used, a balance must be 

achieved to provide the selective pressure needed for the GA to function efficiently 

(Galan & Mengshoel, 2010). While it may not be possible to develop a set of parameters 

to balance deterministic and probabilistic approaches for a general case, it should be 

possible to develop a set of parameters that can be tuned for a specific application of the 

GA (Fukunaga, 2000). 
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Mengshoel and Goldberg (2008) developed a portfolio of replacement rules where 

the rules are chosen based on an associated probability. The portfolioℝ is represented by 

a set n of 2-tuples: ℝ = {(𝑝1, 𝑅1), … , (𝑝𝑛, 𝑅𝑛)} where pi is the probability associated with 

a given rule Ri being selected. In order to overcome the possibility of weak selection 

pressure related to using only a portfolio of probabilistic rules and too strong selection 

pressure associated with purely deterministic rules, deterministic (RD) and probabilistic 

(RP) approaches are combined into a portfolio ℝ = {(𝑝𝐷, 𝑅𝐷), (𝑝𝑃, 𝑅𝑃)} where p is the 

probability of selecting either a deterministic or probabilistic approach. In this context, 

 𝑝𝐷 and  𝑝𝑃 can be used to control the GA’s performance (Mengshoel & Goldberg, 2008).  

Using the sample means and covariance for the different strategies taken from successive 

executions of the GA, an object function can be used to tune the probabilities that drive 

the portfolio (Ewald, Schulz, & Uhrmacher, 2010). 

Evaluation 

Almeida et al. (2006) performed testing on two datasets: (1) Class I, which had 

tables with dimensions up to 100 x 100 and internal cells having random integer values in 

the range of [0, 499] with values in the range [1, 4] being confidential and (2) Class II, 

which had dimensions up to 300 x 300 with internal cell values ranging from [0, 1000] in 

value. Upper and lower protection levels were generated following the rules used in 

Fischetti & Salazar (1999).  

Ditrich (2010) chose to use datasets containing 1000, 5000 and 10,000internal 

cells. As with Almeida et al. (2006), the values for internal cells were randomly assigned 

between 0 and 1000. Upper and lower protection levels were set equal to 15% of a given 

confidential cell’s value rounded up to the nearest integer (Ditrich, 2010).  
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Assessment of the quality of the solutions produced by Almeida et al. (2006) was 

made using the following formula 𝑔𝑎𝑝 =  
𝑈𝐵 −𝐿𝐵

𝐿𝐵
 100, where LB is a lower bound 

value as computed by a heuristic solution and UB is the upper bound based on a 

GENSUP solution. The gap value represents the percentage difference between the two 

solutions. Their research on the 10,000 cells case had runtimes of two minutes or less and 

bridged over 70% of the optimality gap of the constructive heuristic solutions. However, 

GENSUP did not solve to proven optimality in 45 of 550 cases. For tables with greater 

than 20,000 cells, the percent of the optimality gap bridged increased to 85% (Almeida et 

al., 2006). 

Evaluation of the performance requires assessment of the cost of the solution 

versus computational resources used. The cost can be based on the sum of the values of 

the complementary suppression or, as Cox (1980) suggested, by counting the number of 

complementary suppressions. The computational resources have two components: (1) is 

the computational time to reach a solution and (2) the memory required by the algorithm. 

Because data can be time-sensitive, an algorithm that takes too long to reach a solution 

runs the risk of protecting a table that has diminished value. If the memory requirements 

are excessive, a publishing entity may be required to make expenditures in hardware or 

choose to not use an otherwise useful method. 

Summary of Research 

 Statistical disclosure limitation continues to be an area of active research in order 

to prevent personal data from accidental disclosure. Suppressions of sensitive data 

combined with complementary cell suppression represent one of the best methods to 

protect information while maintaining the quality of the data published. As technology 



  33 

 
 

allows the quantity of data available for analysis to grow, the need to release larger 

statistical tables for publication drives the search for new methods to quickly and 

efficiently provide protection. 

 Early methods for finding a minimal set of suppressions use network-flow 

approaches to evaluate the conditions under which a sensitive cell is considered 

protected. These methods define the constraints necessary for a sensitive cell to be 

protected along with measurements of the cost and quality of cell suppression. These 

methods typically examine one sensitive cell at a time and build a system of sub-

networks to protect each of the cells. However, these methods often produce low quality 

solutions due to oversuppression. The need to minimize oversuppression leads to the 

computationally costly post processing of solutions. Shortest path algorithms have been 

used to find low-cost solutions, but come with a high runtime costs, especially for large 

graphs. 

  The application of genetic algorithms improves upon existing methods by 

providing lower-cost solutions with relatively low computational cost. However, the 

nature of a GA’s crossover and mutation operations tends to disturb existing solutions, 

requiring that offspring undergo repair or replacement, increasing runtime costs. Methods 

such as GenSup lack the ability to operate on sets of cells, which prevents locating lower-

cost solutions. GAPN utilizes a crossover operation that examines sets of cells selecting a 

best candidate for crossover. The mutation operation tests and removes complementary 

suppressions and searches for lower-cost solutions in the current population. However, 

after both crossover and mutation, the solutions have to be checked for feasibility and 

rejected or repaired if infeasible. This is due to the complexity of the sub-network of cells 
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produced as a function of the GA’s evolutionary process. 

Research Contributions 

 This research attempted to provide an improved method for statistical disclosure 

control using cell suppression by improving on past methods and introducing new 

elements to allow GAs to work more efficiently. Building on GenSup and GAPN, this 

research improved upon past implementations by developing a heuristically controlled 

multi-region crossover that preserved feasible solutions during its operation. 

Additionally, a mutation operation was developed to remove redundant suppressions 

created by the crossover operation and combine the resultant circuits of protection to 

form larger more complex circuits. A portfolio of selection and replacement policies was 

developed to improve population diversity and selective pressure. The completion of this 

research demonstrated the feasibility of these approaches and may contribute to future 

research in the field. 
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Chapter 3  
 

Methodology 

 

Introduction 

This chapter describes the approach to designing the GA and evaluating its 

performance. The goals of this research were to (1) develop procedures that use heuristics 

to improve the probability of lower-cost solutions resulting from crossover and mutation, 

(2) develop feasible solutions preserving crossover and mutation operations, and (3) 

explore the use of a portfolio of selection and replacement policies to mitigate premature 

convergence. 

Given a table T, set S1 of sensitive cells, and set S2 of complementary 

suppressions, the following definitions apply: 

𝑆 = 𝑆1 ∪ 𝑆2, 

𝑛𝑖+(𝑆) : Number of suppressed cells in row 𝑖, 
𝑛+𝑗(𝑆) : Number of suppressed cells in column 𝑗, 

𝑎𝑖+(𝑆) : Sum of the values of suppressed cells in row 𝑗,  

𝑎+𝑗(𝑆) : Sum of the values of suppressed cells in column 𝑗, 

𝑎𝑟𝑐
𝑚𝑎𝑥(𝑆) : Maximum value that a sensitive cell (𝑟, 𝑐) can assume, 

𝑎𝑟𝑐
𝑚𝑖𝑛(𝑆) : Minimum value that a sensitive cell (𝑟, 𝑐) can assume 

 

For a sensitive cell (r, c) in a table with a set of suppressions S, 𝑎𝑟𝑐
𝑚𝑎𝑥(𝑆) and 

𝑎𝑟𝑐
𝑚𝑖𝑛(𝑆) can be defined as follows: 

𝑎𝑟𝑐
𝑚𝑎𝑥(𝑆) = max 𝑥𝑟𝑐 such that: 

∑ 𝑥𝑖𝑗𝑗|(𝑖,𝑗)∈𝑆 = 𝑎𝑖+(𝑆) for 𝑖 = 1,2, … , 𝑚, and 

∑ 𝑥𝑖𝑗𝑖|(𝑖,𝑗)∈𝑆 = 𝑎+𝑗(𝑆) for 𝑗 = 1,2, … , 𝑛 

and: 

𝑎𝑟𝑐
𝑚𝑖𝑛(𝑆) = min 𝑥𝑟𝑐 such that: 

∑ 𝑥𝑖𝑗𝑗|(𝑖,𝑗)∈𝑆 = 𝑎𝑖+(𝑆) for 𝑖 = 1,2, … , 𝑚, and 

∑ 𝑥𝑖𝑗𝑖|(𝑖,𝑗)∈𝑆 = 𝑎+𝑗(𝑆) for 𝑗 = 1,2, … , 𝑛 
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A sensitive cell (𝑟, 𝑐) is unsafe with respect to a set of suppressions 𝑆 if any of the 

following four conditions hold true, and is deemed safe otherwise: 

1) 𝑛𝑟+(𝑆) = 1, 

2) 𝑛+𝑐(𝑆) = 1, 

3) 𝑎𝑟𝑐
𝑚𝑎𝑥(𝑆) < (𝑎𝑟𝑐 + 𝑢𝑟𝑐), 

4) 𝑎𝑟𝑐
𝑚𝑖𝑛(𝑆) > (𝑎𝑟𝑐 − 𝑙𝑟𝑐). 

Table 𝑇 is considered safe with respect to a set of suppressions 𝑆 if every sensitive cell 

(𝑟, 𝑐) ∈ 𝑆1 is safe with respect to S. Each sensitive cell (r, c), is protected by a protection 

circuit C(r, c) composed of a set of suppressed cells forming a circuit that renders (r, c) 

safe. 

Genetic Algorithm 

This research involved the development of a GA that uses solution-preserving 

crossover and mutation operations, a heuristic to modify the behavior of the crossover 

operation and a portfolio of selection and replacement rules to balance selective pressure 

with genetic diversity. Software used in this research was written in Microsoft C++. 

Development and testing was carried out using a cyclic, iterative and incremental 

development model until the research was completed. Additional detail is provided in the 

sections that follow. Figure 1 shows an overview of the genetic algorithm. 

Load Statistical Table and Initialize GA Parameters 

Create initialPopulation of size n as currentGeneration 

while Not Termination Condition 

 set nextGeneration to null 

 for i = 1 to n/2 

  Select a pair of parent chromosomes from current generation 

  Apply crossover to pairs of parents to generate a pair of offspring 

  Apply mutation to each offspring and add to nextGeneration 

 Replace currentGeneration with nextGeneration 

 

Figure 1: Genetic Algorithm Overview 
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The initial population consisted of ten individuals created as described in the 

section on Initial Population Generation. Once created, the initial population was 

assigned to the current generation. Each generation was created by first selecting parents 

from the current population according to the current selection rule. See the section on 

Selection and Replacement for more information on the parental selection process. A 

crossover operation was applied to the parents to create two offspring. Each of the 

offspring then underwent mutation and was assigned to the next generation. See the 

sections on Crossover and Mutation for details of those operations. Members of the next 

generation replaced members of the current population according to the replacement 

rules. See the section on Selection and Replacement for more information. Program 

termination took place after 1,000 total generations or 100 generations had passed 

without an improvement in solution cost. See the section on Program Termination for 

more information. 

Chromosomal Representation 

The chromosomal representation was composed of the set of complementary 

suppressions 𝑆2 that represents a feasible solution to a cell suppression problem (i.e, table 

𝑇 is safe with respect to 𝑆 = 𝑆1 ∪ 𝑆2). To ensure the chromosomal representation 

provided a safe solution with respect to T, two checking functions, isSafe and isSafeTable 

were developed.  

Solution Checking Functions 

The function isSafe(𝑟, 𝑐, 𝑇, 𝑆1, 𝑆2) determined whether a single primary 

suppression (r, c) was safe with respect to S. The function used the suppressed cells 

present in C(r, c) to calculate the maximum and minimum values that cell could assume 



  38 

 
 

and compare them to the cell’s upper and lower protection limits. If either maximum or 

minimum calculated values for cell violated the requirements for protecting the sensitive 

cell, the function returned false; otherwise, it returned true. 

A second function isSafeTable was developed to check the entire table T to 

determine whether it was safe by using the function isSafe. isSafeTable iterated through 

each of cells in 𝑆1 and called the function isSafe to determine whether they were 

protected. If isSafe returned false during any iteration, isSafeTable returned false.  

Initial Population Generation 

A population is a collection of chromosomes. The initial population of parent 

chromosomes was created using a hypercube-based method on a two-dimensional table 

that forms a circuit of suppressions in the form of a rectangle (Giessing & Repsilber, 

2002). The hypercube method was implemented in the procedure generateRectangle.  

The function generateRectangle (𝑠𝑖, 𝑇, 𝑆1, 𝑆2, 𝑙𝑝𝑟, 𝑢𝑝𝑟) was based on a shortest 

path (SP) heuristic, which finds a protection pattern of three cells (r, j) - (i, j) - (i, c) that 

form a rectangle protecting a sensitive cell (r, c) (Castro, 2012). Figure 2 outlines the 

main steps of the function. 

generateRectangle(𝑠𝑖, 𝑇, 𝑆1, 𝑆2, 𝑙𝑝𝑟, 𝑢𝑝𝑟) 

 𝑐𝑆 = ∅   // suppressions protecting 𝑠𝑖 

 𝑆 = ∅   // rectangle protecting 𝑠𝑖 

 upl = 𝑤𝑖 + 𝑤𝑖 × 𝑢𝑝𝑟 // sensitive cell’s upper protection requirement 

 lpl = 𝑤𝑖 − 𝑤𝑖 × 𝑙𝑝𝑟 // sensitive cell’s lower protection requirement 

 for *𝑝𝑙 ∈ {𝑢𝑝𝑙, 𝑙𝑝𝑙} do // for protection levels 

  Find SP for *𝑝𝑙 
  If not SP found 

   Find lowest cost path and assign to SP 

  𝑐𝑆 = {𝑐𝑒𝑙𝑙𝑠 𝑓𝑜𝑟𝑚𝑖𝑛𝑔 SP 𝑜𝑟 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡 𝑝𝑎𝑡ℎ} 

  𝑆 = 𝑆 ∪ 𝑐𝑆 

 Return 𝑆 

 

Figure 2: Shortest Path Heuristic for creating Rectangle of Suppressed Cells 
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The function started by searching the sensitive cell’s rows and columns for suppressions 

to cover the cell’s upper protection limit. The function then searched for suppressions to 

cover the sensitive cell’s lower protection level. It used the function getCost to return a 

cell’s cost depending upon its inclusion in either 𝑆1or 𝑆2. If sufficient cover was not 

found given the constraint of a circuit with four cells, the function found the lowest cost 

circuit forming a rectangle and returned it in 𝑆2.  

Due to the cube’s cardinality constraint, this method had a tendency to over-

suppress. Additionally, the cube method could not guarantee that a feasible set of 

suppressions would be found (Almeida et al., 2006). 

The function getCost(𝑐𝑒𝑙𝑙, 𝑇, 𝑆1, 𝑆2) found the cost of the cell under consideration 

by checking for the condition 𝑐𝑒𝑙𝑙 ∈ 𝑆1 ∪ 𝑆2. If the cell was present in 𝑆1 or 𝑆2, a cost of 

zero was returned. Otherwise, getCost returned a cost equal to the cell’s weight in T. 

The function removeRedundant(𝑇, 𝑆1, 𝑆2) searched 𝑆2 for complementary 

suppressions in rows and columns where 𝑛𝑟+(𝑆) > 2 and 𝑛+𝑐(𝑆) > 2. The 

complementary suppression located at the row or column was removed from 𝑆2 and the 

sensitive cells present in the circuits that included the removed cell were tested using 

isSafe. If isSafe returned true for each affected sensitive cell, the modification to 𝑆2 was 

accepted. If isSafe returned false, 𝑆2 was restored to its original state.  

The process used to create the initial population is outlined in Figure 3. 

 𝑆2 = ∅ 

𝐿 = [𝑐1, 𝑐2, … , 𝑐|𝑆1|]  // random shuffled list of sensitive cells in 𝑆1 

For 𝑘 = 1,2, … , |𝑆1| // iteratively protect sensitive cells 

While not isSafe(𝐿[𝑘], 𝑇, 𝑆1, 𝑆2) 

 𝑆2 = 𝑆2 ∪ generateRectangle(𝐿[𝑘], 𝑇, 𝑆1, 𝑆2, 𝐿𝑃𝑅, 𝑈𝑃𝑅) 

 removeRedundant(𝑇, 𝑆1, 𝑆2) // remove redundant suppressions. 

 

Figure 3: Procedure to Generate Chromosomes 
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Chromosomes were created by first randomly ordering the sensitive cells in 𝑆1. 

This had the effect of changing the order of the existing complementary suppressions in 

S2 used to form new circuits of protection for the cells in S1, which in turn ensured the 

overall genetic makeup of each individual was unique. Next, each of the sensitive cells 

was tested for protection from existing suppressions using the function isSafe. If a 

sensitive cell proved to be unsafe, the function generateRectangle was called to add 

rectangles (circuits of protection) as needed until isSafe returned true. After each 

execution of generateRectangle, the additional complementary suppressions were added 

to 𝑆2.  

After all of the sensitive cells were protected, the resulting set of complementary 

suppressions 𝑆2 was be processed by the procedure removeRedundant, which 

systematically checked for complementary suppressions in 𝑆2 that could be removed 

while leaving table T safe. After the initial parent population was created, the GA entered 

a bounded loop where the chromosomes underwent successive generations of crossover 

and mutation operations in an attempt to create offspring that provided lower-cost 

solutions. 

Crossover 

The goal of the crossover function was to increase the quality of solutions by 

exploiting genetic diversity in the current population through the exchange of 

complementary suppressions between selected circuits of protection in the offspring. This 

research explored the effect of using a heuristic to select the circuit of protection to be 

crossed over in order to improve the probability of producing a lower solution cost at 

each generation. The entire set of complementary suppressions protecting a sensitive cell 
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was swapped between parents, ensuring feasible solutions in the offspring. A list of 

complementary suppressions protecting each sensitive cell in 𝑆1 was maintained to allow 

for a crossover operation that checked the participation of complementary suppressions 

across multiple circuits of protection. Complementary suppressions used to protect 

sensitive cells not involved in crossover were preserved in 𝑆2. The complementary 

suppressions list was set to a maximum of 32 cells per circuit to allow for complex 

circuits greater than four cells while minimizing memory and computational overhead. 

The results of the crossover operation were passed out through the 

parameters 𝑆2𝑝1 and 𝑆2𝑝2. A high-level overview of the crossover process follows in 

Figure 4: 

crossoverCircuits(𝑇, 𝑆1, 𝑆2𝑝1, 𝑆2𝑝2) 

𝑡𝐶1 ← ∅ // temporary location for circuit being crossed from 𝑆2𝑝1 

𝑡𝐶2 ← ∅ // temporary location for circuit being crossed from 𝑆2𝑝2 

𝑡𝐶𝑠1 ← ∅ // shared complementary suppressions being crossed from 𝑆2𝑝1 

𝑡𝐶𝑠2 ← ∅ // shared complementary suppressions being crossed from 𝑆2𝑝2 

// random search for overprotected sensitive cells 

𝐿 = [𝑐1, 𝑐2, … , 𝑐|𝑆1|]  // random shuffled list of sensitive cells in 𝑆1 

For 𝑘 = 1,2, … , |𝐿| // iteratively search for lower-cost offspring 

If lower-cost offspring found break // exit for loop 

If not found return false 

// if  true, perform crossover using circuits returned in 𝑡𝐶1, 𝑡𝐶2 and 

complementary suppressions returned in 𝑡𝐶𝑠1, 𝑡𝐶𝑠2. 

𝑆2𝑝1 = (𝑆2𝑝1 − (𝑡𝐶1 − 𝑡𝐶𝑠1)) ∪ 𝑡𝐶2  

𝑆2𝑝2 = (𝑆2𝑝2 − (𝑡𝐶2 − 𝑡𝐶𝑠2)) ∪ 𝑡𝐶1 

return true 

 

Figure 4: Procedure crossoverCircuits 

A sensitive cell in 𝑆1[𝑘], where k is a randomly selected index between zero 

and | 𝑆1|, was selected and its protection circuit crossed between the selected parents. A 

heuristic was applied that worked on the level of the circuits, requiring that the crossover 



  42 

 
 

operation produce a lower-cost offspring than the lowest-cost parent based on 𝑓(𝑛) =

𝑔(𝑛) + ℎ(𝑛), such that ℎ(𝑛) < 𝐶(𝑛) where (1) 𝑔(𝑛) is cost of the circuit being crossed; 

(2) ℎ(𝑛) is the estimated lowest-cost solution which provides cover for all sensitive cells 

not including the sensitive cells being crossed; and (3) 𝐶(𝑛) is the current solution cost 

not including the circuit being crossed. If either of the offspring’s solution cost made the 

function true, the crossover was accepted. Otherwise, the crossover was rejected and a 

new sensitive circuit was selected for crossover and testing. This cycle was repeated until 

a lower-cost offspring was generated or 100 attempts passed without success. If the 

crossover was successful, the offspring were passed to the next phase, mutation. 

Protection circuits of the same cost were assumed to be identical and therefore rejected. 

When the operation failed, two new parents were selected for mating and the sequence 

was repeated. This process continued until a protection circuit was selected or a 

predetermined stopping condition was reached. 

Complementary suppressions shared with other protection circuits in 𝑆1 ∪

𝑆2𝑝∗ were returned in 𝑡𝐶𝑠∗ and not removed from 𝑆2𝑝∗ to safeguard the feasibility of the 

remaining protection circuits in 𝑆1 ∪ 𝑆2𝑝∗. The feasibility of the offspring’s solution was 

ensured by crossing over all complementary suppressions used by the circuits protecting 

the selected sensitive cell 𝑆1[𝑘]. 

Mutation 

The purpose of the mutation operation in this research was to improve solution 

cost by removing unneeded complementary suppressions. A sensitive cell was selected at 

random and the complementary suppressions protecting it checked for redundancy.  Once 

a redundant complementary suppression was found, it was removed from 𝑆2𝑝∗ and all 
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affected circuits protecting 𝑆1 were merged. Finally, the new chromosomal representation 

 𝑆1 ∪ 𝑆2 was tested for feasibility. A high level overview of the mutate process follows in 

Figure 5: 

mutateOffspring(𝑘, 𝑆1 ∪ 𝑆2𝑝∗) 

while redundant suppression not found 

check 𝑆2𝑝∗ for redundant complementary suppression 

if redundant suppression found 

𝑆2𝑝∗ = 𝑆2𝑝∗ − 𝑡𝐶1 // remove complementary suppression 

 if isOffspringTableSafeByCell(𝑘, 𝑆1 ∪ 𝑆2𝑝∗) 

JoinOffspringCircuits(k, 𝑆1, 𝑆2𝑝∗) 

 else 

𝑆2𝑝∗ = 𝑆2𝑝∗ + 𝑡𝐶1 // restore complementary suppression 

 

Figure 5: Procedure mutateOffspring 

To ensure the feasibility of the solution, all protection circuits affected by the removal of 

a complementary suppression were tested using the function isSafe. 

Selection and Replacement 

A problem with GA’s is their tendency to converge around a local optimum. This 

is the result of the selection and replacement operations that choose most fit members of 

the population for mating and replace less fit members of the population with their 

offspring. Through successive generations, the offspring of most fit members will tend to 

cluster around the genetic patterns of the parents, preventing a solution at the global 

optima. This problem may be mitigated through selection and replacement operations that 

help provide for genetic diversity between generations (Smith et al., 2009; Razali & 

Geraghty, 2011). Selection is the process whereby individuals from the current 

population are chosen for mating, which determines the search space available for the 

GA’s crossover and mutation operations. Therefore, the strategy used contributes to the 

genetic diversity present at each generation and can be instrumental in determining the 
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rate of convergence of the GA (Razali & Geraghty,  2011). The replacement strategy 

determines which individuals in the current population will be replaced by the offspring 

at each generation. The goal of replacement is to increase the frequency of most fit 

genetic sequences present at each generation, allowing for convergence at or near an 

optimal sequence (Smith, 2007; Mengshoel & Goldberg, 2008). 

A purely deterministic approach made up of elitist selection and replacement risks 

giving too strong a convergence at inferior local optima by forcing successive generations 

into the genetic patterns of the most fit members of the current population while 

eliminating genetic diversity present in the least fit members (Smith et al., 2009; Razali & 

Geraghty, 2011). It is possible this problem may be mitigated by introducing probabilistic 

strategies into the selection and replacement process. 

This research evaluated different permutations of Roulette Wheel and 

Tournament Selection along with Similar and Kill Tournament replacement strategies in 

order to determine whether genetic diversity could be increased and premature 

convergence reduced as compared to elitist selection and replacement. Figure 6 gives a 

high level representation of the process: 

Select deterministic or probabilistic selection and replacement for testing 

if (deterministic) 

Employ elitist selection and replacement 

 else // probabilistic strategies 

  Select one of: // Selection strategies 

   Tournament selection 

Roulette Wheel Selection 

  Select one of: // Replacement strategies 

   Similar 

   Kill Tournament 

 

Figure 6: Selection and Replacement Process 

Elitist selection and replacement provides for a high level of selection pressure, 
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resulting in rapid convergence at the expense of genetic diversity (Lozano, Herrera, & 

Cano, 2005; Vavak & Fogarty, 1996). To counter this tendency, this research explored 

selection strategies that mated more fit individuals with less fit individuals, in concert 

with replacement strategies that maintained less fit individuals in the current population 

in order to moderate selective pressure and maintain genetic diversity. 

Tournament and Roulette Wheel selection strategies were tested to determine 

whether they were capable of increasing the search space, allowing for genetic 

recombination that provided for lower solution cost. Tournament selection functioned by 

choosing several members from the populations at random to form a set from which the 

most fit members were selected for mating. This method had been shown to help 

maintain good diversity, but at the cost of increased convergence time (Smith et al., 2009; 

Razali & Geraghty, 2011). The Roulette Wheel selection strategy involved individuals 

being selected for mating with a probability proportional to their fitness. The probability 

of any one individual being selected for mating is defined as 𝑝
𝑖=

𝑓𝑖
∑ 𝑓𝑗

𝑛
𝑗=1

 where fi is the 

fitness values of individual i and pi is the probability of individual i being selected. The 

advantage of this method is that all individuals in the current population have a chance of 

being selected (Razali & Geraghty, 2011). 

Kill Tournament and Similar replacement strategies were tested to determine 

whether genetic diversity could be sufficiently maintained to allow promising regions of 

the search space found in less fit individuals that would otherwise be lost to more fit 

offspring to be explored. The Kill Tournament replacement strategy involved selecting 

members from the current population at random to compete with the offspring for a place 

in the current generation. Replacement was based on fitness with the number of parents 
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selected for the tournament being subject to variability. This allowed for a range of 

selective pressure. This strategy has the advantage of not requiring the resorting of the 

population after replacement (Smith, 2007). The Similar replacement strategy functioned 

by randomly selecting several members from the current population and replacing those 

that were most similar to the offspring. Most similar was defined by the chromosomal 

makeup (Gupta & Ghafir, 2012). This strategy has the advantage of maintaining genetic 

diversity by ensuring genetically dissimilar individuals are present in the current 

population. The disadvantage is that less fit offspring have the possibility of replacing 

more fit individuals in the current generation. 

Both Tournament and Roulette Wheel selection strategies were paired with Kill 

Tournament and Similar replacement strategies to determine if a selection/replacement 

strategy pairing could be found that consistently provided for lower-cost solutions 

compared to Elitist selection and replacement. 

Termination 

Termination took place when 1,000 generations passed or 100 generations took 

place without an improvement in the solution cost. The number of generations used to 

determine program termination was based on solution cost and execution time. 

Experiments that exceeded one hour for a single dataset were terminated due to excessive 

run time. 

Evaluation of the Results 

Solutions returned from Shortest Path, GenSup, HyperCube and HeurGene 

algorithms were compared. Comparisons were made for both solution cost and execution 

time. The goal of this research was to achieve lower-or equal-cost solutions at lower 



  47 

 
 

computational expense as compared to previous methods.  

The data used consisted of seven synthetic sets of two-way tables (see table 1 for 

a summary), with cell counts of 10,000, and 100,000 each with an internal value 

distribution of pseudo randomly-selected real numbers between 0 and 1,000. Each of the 

three sets had a randomly-selected subset of sensitive cells consisting of 0.5%, 1%, and 

3% of the total internal cells (Ditrich, 2010). Additionally, there was one set labeled with 

an RC that contained sensitive cells equal to the number of rows or columns in the set. 

Ten different instances of each of the datasets were tested to minimize the possibility that 

the results were specific to a particular instance of a dataset. The upper and lower 

protection levels were set to ±10% of the sensitive cell’s value for all datasets. 

DataSet Name Rows  Cols Sensitive Cells Marginal Cells 

1 10000Cells0.5 100  100 50 201 

2 10000Cells1 100  100 100 201 

3 10000Cells3 100  100 300 201 

4 100000Cells0.5 400  250 500 1,101 

5 100000Cells1 400  250 1,000 1,101 

6 100000Cells3 400  250 3,000 1,101 

7 100000CellsRC 400  250 250 1,101 

 

Table 1: DataSets 

Performance of the algorithm was measured as a function of the amount of CPU 

time required for program completion and the cost of the solutions as determined by 

averaging repeated runs of the GA. The performance of the HeurGene algorithm 

presented in this research was evaluated against HyperCube, Shortest Path and Almedia’s 

GenSup Genetic Algorithm methods. 

The evaluation investigated the merits of using:  

1. a heuristic to select circuits in a chromosomal representation for crossover, 

 

2. a feasible solution-preserving crossover, 
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3. a deterministic selection of locations in a chromosomal representation for mutation, 

 

4. a portfolio of selection and replacement techniques to avoid premature convergence, 

 

Format of Results 

 The results of the research are presented in the form of graphs in order to allow 

for a high-level graphical illustration of the results and textual tables that present more 

detailed information. In addition, written summaries of results accompany the graphs and 

tables, providing additional information and analysis. 

Resources 

This research utilized the resources as noted below: 

 Computer, Dell Precision T5400 housing two quad core 2.5 GHz Xeon processors 

and 16 GB RAM running under Windows 7 

 Microsoft C++ Compiler and Visual Studio 2010 

 

Preliminary Testing 

 Preliminary tests were conducted with four variations of Fitness Proportional 

Roulette-Wheel and Random Tournament selection strategies paired with Kill 

Tournament and Similar replacement strategies. Additional tests were conducted using 

Elite selection and replacement and a probabilistic algorithm that used a pseudorandom 

number generator to select between each of the selection and replacement strategies. 

These tests were conducted to determine if any permutation of selection and replacement 

strategies provided for lower-cost solutions.  

The tests were conducted on ten datasets. Each variation of strategies was run ten 

times for each dataset for a total of 100 executions each on tables of 10,000 cells with 
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0.5%, 1% and 3% sensitive cells. These datasets were selected due to the relatively low 

processing time required for a 10,000 cell table. The results of the tests are summarized 

in Tables 2, 3 and 4. 

  Fitness 

Proportional 

Roulette-

Wheel / Kill 

Tournament 

Fitness 

Proportion

al Roulette-

Wheel / 

Similar 

Random 

Tournament / 

Kill 

Tournament 

Random 

Tournament 

/ Similar 

Elite / 

Elite 

Proba-

bilistic 

Average 5760 5744 5674 5710 5711 5623 

Median 5766 5709 5638 5757 5647 5640 

Min 5193 5135 5224 5263 5229 5157 

Max 6230 6393 6397 6112 6260 6155 

Standard 

Deviation 
309.64 382.08 385.80 295.25 363.02 355.09 

 

Table 2: Preliminary Testing of Selection / Replacement Strategies for with 10,000 

Cells with 0.5% Sensitive Cells 
 

The tests conducted at the 0.5% level demonstrated that a Probabilistic strategy 

provided a slightly better average cost than other strategies while the Random 

Tournament / Kill Tournament strategy provided a better median cost. Summary results 

for the different strategies are presented in Table 2. A plot showing the average solution 

cost for each dataset is presented in Figure 7. On the figure, (1) FPRWS KTR stands for 

Fitness Proportional Roulette-Wheel selection paired with  Kill Tournament selection; (2) 

FPRWS SR stands for Fitness Proportional Roulette-Wheel selection paired with  Similar 

replacement; (3) Prob stands for Probabilistic selection and replacement where a random 

number generator selects the pairing of strategies; (4) RTS KTR stands for Random 

Tournament selection paired with Kill Tournament replacement; (5) RTS SR stands for 

Random Tournament selection paired with Similar replacement; (6) and Elite stands for 

Elite selection and replacement. 
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Figure 7: Comparison of Average Costs per Strategy for each Dataset with 10,000 

Cells with 0.5% Sensitive Cells 

 The plot of the different strategies demonstrates that no one method produced 

significantly better quality solutions than any other. Overall, the Probabilistic algorithm 

produced the lowest average solution cost and also the lowest cost for four of the datasets 

and the highest cost for one. This suggested that the probabilistic method would make a 

satisfactory candidate for the purposes of this research. 

The tests conducted at the 1% level demonstrated Random Tournament selection 

strategy paired with Kill Tournament replacement strategy provided a slightly better 

average cost than other strategies while the Probabilistic approach provided the lowest 

average median cost. Summary results for the different strategies are presented in Table 

3. 
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 Fitness 

Proportional 

Roulette-

Wheel / Kill 

Tournament 

Fitness 

Proportional 

Roulette-

Wheel / 

Similar 

Random 

Tournament 

/ Kill 

Tournament 

Random 

Tournament 

/ Similar 

Elite / 

Elite 

Proba-

bilistic 

Average 6847 6942 6731 6856 6830 6778 

Median 6716 6799 6695 6797 6747 6693 

Min 5964 6118 5746 6026 5885 5857 

Max 7952 7832 7819 7908 8017 7951 

Standard 

Deviation 
615.94 619.80 534.20 631.75 635.70 625.45 

 

Table 3: Preliminary Testing of Selection / Replacement Strategies for 10,000 Cells 

with 1% Sensitive Cells 

Figure 8 shows the Random Tournament / Kill Tournament strategy produced the 

lowest cost on three of the datasets, while the Probabilistic algorithm generated the 

lowest cost on four. As with the table at 0.5% sensitive cells, this suggests the 

Probabilistic strategy has the potential for producing lower-cost solutions for these tables 

as compared to the other solutions. 

 
 

Figure 8: Comparison of Average Costs per Strategy for each Dataset with 10,000 

Cells with 1% Sensitive Cells 
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selection strategy paired with the Kill Tournament replacement strategy provided a 

slightly better average cost than other strategies while the Random Tournament/Similar 

strategy yielded the lowest average median cost. Summary results for the different 

strategies are presented in Table 4. 

 Fitness 

Proportional 

Roulette-

Wheel / Kill 

Tournament 

Fitness 

Proportional 

Roulette-

Wheel / 

Similar 

Random 

Tournament 

/ Kill 

Tournament 

Random 

Tournament 

/ Similar 

Elite / 

Elite 

Proba-

bilistic 

Average 2877 2882 2816 2833 2874 2818 

Median 2971 2917 2809 2739 2921 2845 

Min 2137 2200 2164 2171 2236 2173 

Max 3537 3519 3514 3520 3430 3309 

Standard 

Deviation 
382.03 346.1 353.24 339.27 324.15 362.12 

 

Table 4: Preliminary Testing of Selection / Replacement Strategies for 10,000 Cells 

with 3% Sensitive Cells 

An examination of Figure 9 suggests that at the 3% level of sensitive cells, none of the 

strategies produced lower-cost solutions than any other. 

 
 

Figure 9: Comparison of Average Costs per Strategy for each Dataset with 10,000 

Cells with 3% Sensitive Cells 
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Preliminary Tests Conclusions 
 

 The results of the preliminary testing were inconclusive, with no one strategy 

demonstrating a significant advantage of another. Even though the preliminary tests did 

not indicate that any one strategy provided for significantly lower solution costs at 0.5% 

and 1% sensitive cells, the Probabilistic strategy produced a greater number of lower-cost 

solutions than the other strategies. For these reasons, the Probabilistic strategy was 

selected for inclusion in this research.  
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Chapter 4 
 

Results 

 

Introduction 

 

Shortest Path and HyperCube heuristic methods as well as GenSup and HeurGene 

GAs were tested with table sizes of 10,000 and 100,000 cells with 0.5%, 1% and 3% 

sensitive cells. Additionally, datasets of 100,000 cells with 0.25% sensitive cells were 

included to provide tables with sensitive cells equal to the minimum number of rows or 

columns in the table. Each method was executed ten times against each of the datasets. A 

Unicode file was output at the termination of execution for each method for each dataset, 

giving a run time summary with costs and execution times. See Appendix A for an 

example of the data file output format. 

 The data from the experiments are summarized in the following tables and 

figures. The Shortest Path heuristic results were significantly inferior to the HyperCube 

heuristics, both in terms of solution quality and computational costs, and therefore not 

included in the results that follow. Results for solution and computational costs are 

presented in separate tables, which provide the average, median, highest, and lowest 

values produced along with the standard deviation. The best average and median values 

among the different methods are highlighted in boldface italics. The results tables allow 

for a tabular visual comparison of the summary data for each dataset. 

 The accompanying figures give a graphical representation of the aggregated data 

for each dataset. Results presented include solution costs and execution times. Gaps in 
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the graphs indicate that a solution was not found for a dataset for a given strategy. The 

results represent the average of ten executions for each method on ten datasets for each of 

the specified tables. 

Discussion of Test Results for Tables with 10,000 Cells 

 The purpose of the datasets with 10,000 cells was to test the HeurGene’s 

effectiveness on small tables and establish a baseline for comparison with tables with 

larger tables of 100,000 cells. The comparisons were made on the bases of solutions costs 

and CPU time. CPU time is presented in seconds. The CPU times for GenSup and 

HeurGene were measured exclusive of the time required to create the initial population 

using the HyperCube Method. 

Test Results for Tables with 10,000 Cells and 0.5% Sensitive Cells 

Table 5 shows that the HeurGene algorithm produced the lowest average overall 

solutions cost as compared to the other strategies. The GenSup algorithm demonstrated a 

~10% improvement over the HyperCube solution cost while the HeurGene algorithm 

yielded ~11% improvement. Additionally, the HeurGene strategy produced the lowest 

median cost along with the smallest variance.  

 HyperCube GenSup HeurGene 

Average 5768 5530 5445 

Median 5601 5421 5351 

Highest 6371 7110 6013 

Lowest 5297 4021 5131 

Standard 

Deviation 
324 973 315 

 

Table 5: Comparison of Average Solution Costs with 10,000 Cells with 0.5% 

Sensitive Cells 

 Figure 10 gives a comparison of the average solution cost for each dataset. The 

graph shows that while the HeurGene did not create the lowest cost solution it 
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consistently produced average costs less than the average cost of the HyperCube 

algorithm. 

  

Figure 10: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 

0.5% Sensitive Cells 

A comparison of the run times presented in Table 6 shows that on average the 

HeurGene strategy was capable of producing solutions requiring CPU time an order of 

magnitude less than GenSup. CPU times for the Hypercube method averaged 0.0468 

seconds with a median time of 0.0468 seconds and a standard deviation of 0.0002. 

 GenSup HeurGene 

Average 220.2564 11.1194 

Median 214.6291 10.9510 

Highest 322.5163 13.6190 

Lowest 154.477 8.8610 

Standard 

Deviation 
44.7983 1.5367 

 

Table 6: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells 

with 0.5% Sensitive Cells 

Figure 11 gives a detailed summary of the runtimes for each of the datasets. The 

graph shows that HeurGene’s CPU execution times were consistently low across each of 
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datasets. These results suggest that the feasible solution-preserving genetic operators 

allowed HeurGene to quickly converge on local optima. GenSup required longer 

execution times and showed a larger variance.  

 

Figure 11: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 0.5% Sensitive Cells 

These results suggest that with tables of 10,000 cells and 0.5% sensitive cells, 

HeurGene is capable of producing higher quality solutions than the other algorithms, 

while requiring a fraction of the processing time as compared to GenSup. 

Test Results for Tables with 10,000 Cells and 1% Sensitive Cells 

 

Table 7 shows that the GenSup algorithm produced the lowest average overall 

solutions cost as compared to the other strategies. The GenSup algorithm demonstrated 

an ~21% improvement over the hypercube solution cost while the HeurGene algorithm 

yielded an ~11% improvement. GenSup also produced the smallest standard deviation 

and lowest median values.  
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 HyperCube GenSup HeurGene 

Average 6885 5441 6066 

Median 6782 5429 6099 

Highest 7867 6366 6971 

Lowest 6030 4885 5268 

Standard 

Deviation 
636 406 493 

 

Table 7: Comparison of Average Solution Costs with 10,000 Cells with 1% Sensitive 

Cells 

Figure 12 gives a comparison of the solution costs for the different methods. The 

graph demonstrates that both GenSup’s and HeurGene’s ability to improve the 

HyperCube’s average solution cost and that on a dataset-by-dataset comparison, GenSup 

was able to consistently produce lower-costs than HeurGene. 

 

Figure 12: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 

1% Sensitive Cells 

A comparison of the run times presented in Table 8 shows that on average the 

HeurGene strategy was capable of producing solutions requiring about 5% the CPU time 

as compared to GenSup. CPU times for the HyperCube method averaged 0.0936 seconds 
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with a median time of 0.0936 seconds and a standard deviation of 0.0001. 

 GenSup HeurGene 

Average 472.2239 20.1943 

Median 474.4680 18.2830 

Highest 480.7680 30.8880 

Lowest 455.7240 15.9120 

Standard 

Deviation 
6.9158 4.5564 

 

Table 8: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells 

with 1% Sensitive Cells 
 

Figure 13 gives a detailed summary of the CPU runtimes for each of the datasets. 

The graph shows how HeurGene’s CPU execution times were consistently low across 

each of datasets as compared to GenSup. These results indicate that HeurGene converged 

more quickly on local optima than did GenSup. 

 

Figure 13: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 1% Sensitive Cells 

These results suggest that with tables of 10,000 cells and 1% sensitive cells, 

HeurGene is capable of producing a high quality solution within ~10% of GenSup, while 

requiring only ~5% the CPU time. 
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Test Results for Tables with 10,000 Cells and 3% Sensitive Cells 

 

Table 9 shows that the GenSup algorithm produced the lowest average and 

median solutions cost as compared to the other strategies along with the lowest variance. 

The GenSup algorithm demonstrated a ~23% improvement over the hypercube solution 

cost, while the HeurGene algorithm yielded a ~13% improvement. GenSup produced the 

smallest average standard deviation across the ten datasets. 

 HyperCube GenSup HeurGene 

Average 2922 2304 2603 

Median 2997 2253 2670 

Highest 3484 2746 3020 

Lowest 2253 1816 2009 

Standard 

Deviation 
343 287 305 

 

Table 9: Comparison of Average Solution Costs with 10,000 Cells with 3% Sensitive 

Cells 

Figure 14 gives a dataset-by-dataset comparison of the solution costs for the each 

method. The graph shows that both GenSup and HeurGene were, on average, able to 

improve the HyperCube’s average solution cost, and that, in a dataset-by-dataset 

comparison, GenSup was able to consistently produce lower-cost solutions than 

HeurGene. 
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Figure 14: Comparison of Average Solution Costs (Y-Axis) with 10,000 Cells with 

3% Sensitive Cells 

A comparison of the run times presented in Table 10 shows that on average the 

HeurGene strategy was capable of producing solutions requiring ~8% the CPU time 

compared to GenSup. CPU times for the HyperCube method averaged 0.3106 seconds 

with a median time of 0.3113 seconds and a standard deviation of 0.0019. 

 GenSup HeurGene 

Average 811.2831 64.5615 

Median 824.3360 66.7520 

Highest 952.6630 71.4950 

Lowest 671.2850 56.5190 

Standard 

Deviation 
86.4002 4.7155 

 

Table 10: Comparison of Average CPU Run Times (in seconds) with 10,000 Cells 

with 3% Sensitive Cells 

Figure 15 gives a summary of the runtimes for each of the datasets. The graph 

shows that HeurGene’s CPU execution times were consistently low across each of 

datasets. GenSup gave the highest CPU times and largest standard deviation. This was 

likely due to the number of generations that the GAs produced before their termination 
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conditions were satisfied.  

 

Figure 15: Comparison of Average CPU Run Times (Y-Axis in seconds) with 10,000 

Cells with 3% Sensitive Cells 

These results indicated that with tables of 10,000 cells and 1% sensitive cells, 

HeurGene is capable of producing a high-quality solution, within ~11% of GenSup, while 

requiring only ~8% the CPU time. 

Discussion of Test Results for Tables with 100,000 Cells 

 

Datasets with 100,000 cells were designed to test HeurGene’s scalability. Owing 

to excessive run time requirements, the GenSup algorithm was run only once on tables 

with 0.5% and 1% sensitive cells. The remaining algorithms were run ten times against 

the datasets as previously noted. 

Test Results for Tables with 100,000 Cells and 0.25% Sensitive Cells 

 

Table 11 shows that the HeurGene algorithm produced the lowest average overall 

solution cost as compared to the other strategies. The GenSup algorithm demonstrated an 
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algorithm yielded a ~9.7% improvement.  

 HyperCube GenSup HeurGene 

Average 17810 17777 17230 

Median 17538 17394 17053 

Highest 19296 19638 19147 

Lowest 16619 16717 16158 

Standard 

Deviation 
792 1035 892 

 

Table 11: Comparison of Average Solution Costs with 100,000 Cells with 0.25% 

Sensitive Cells 

Figure 16 gives a comparison of the solution costs for different methods. The 

graph shows that GenSup failed to find solutions for datasets 5 and 10. This is the result 

of the HyperCube algorithm failing to find solutions for GenSup’s the initial population. 

GenSup’s increased costs over HyperCube for datasets 2 and 8 are likely due to the fact 

that HyperCube algorithm produced higher cost initial populations for the GAs. The 

graph suggests that HeurGene is consistently capable of improving on the HyperCube’s 

solution costs. 

  

Figure 16: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

0.25% Sensitive Cells 
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A comparison of the run times presented in Table 12 shows that on average the 

HeurGene strategy was capable of producing solutions requiring ~5% the CPU time as 

compared to GenSup. CPU times for the HyperCube method averaged 2.85554 seconds 

with a median time of 2.85785 seconds and a standard deviation of 0.0217. 

 GenSup HeurGene 

Average 12024.0222 511.1365 

Median 12056.5141 511.4625 

Highest 12321.6464 563.7090 

Lowest 11691.6279 463.5860 

Standard 

Deviation 
199.8669 27.1727 

 

Table 12: Comparison of Average CPU Times with 100,000 Cells with 0.25% 

Sensitive Cells 

Figure 17 gives a detailed summary of the runtimes for each of the datasets. The 

graph shows that HeurGene’s CPU execution times were consistently low across each of 

datasets. 

   
 

Figure 17: Comparison of Average CPU Times (Y-Axis in seconds) with 100,000 

Cells with 0.25% Sensitive Cells 
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HeurGene is capable of producing a high-quality solution that represents a ~9.7% 

improvement over the HyperCube. Additionally, HeurGene’s CPU times were 5% those 

of GenSup.  

Test Results for Tables with 100,000 Cells and 0.5% Sensitive Cells 
 

Table 13 shows that the GenSup algorithm produced the lowest average overall 

solution cost as compared to the other strategies. The GenSup algorithm demonstrated an 

average ~ 11% improvements over the HyperCube solution cost while the HeurGene 

algorithm yielded ~4% average improvement. However, it must be noted that due to 

excessive runtime requirements, the GenSup algorithm was run only once and not ten 

times against each dataset as with the other strategies.  

 HyperCube GenSup (1 Run) HeurGene 

Average 17156 15337 16469 

Median 16842 15019 16143 

Highest 18930 17539 18287 

Lowest 16276 14796 15593 

Standard 

Deviation 
854 853 910 

 

Table 13: Comparison of Average Solution Costs with 100,000 Cells with 0.5% 

Sensitive Cells 

Figure 18 gives a comparison of the solution costs for the different methods. Two 

outliers at datasets 5 and 6 were removed from the GenSup data as they were the result of 

the fact that the HyperCube algorithm created an excessively high-cost initial population. 
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Figure 18: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

0.5% Sensitive Cells 

A comparison of the run times presented in Table 14 shows that, on average, the 

HeurGene strategy was capable of producing solutions requiring ~10% of the CPU time 

as compared to GenSup. The GenSup data represents an aggregated result for a single run 

of each of the ten datasets as the execution time was in excess of six hours per dataset. 

CPU times for the HyperCube method averaged 5.84 seconds with a median time of 5.67 

seconds and a standard deviation of 0.22. 
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Highest 22452.63 2213.72 

Lowest 22452.63 2028.44 

Standard 

Deviation 
 61.55 

 

Table 14: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 

0.5% Sensitive Cells 

Figure 19 gives a summary of the average runtimes for each of the datasets. The 

graph shows that HeurGene’s CPU execution times were consistently low across each of 

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

1 2 3 4 5 6 7 8 9 10

Gensup

HyperCube

HeurGene



  67 

 
 

the datasets. 

 
 

Figure 19: Comparison of Average CPU Times (Y-Axis in seconds), Using a Single 

Dataset, with 100,000 Cells with 0.5% Sensitive Cells 

These results show that with tables of 100,000 cells and 0.5% sensitive cells, 

HeurGene is able to consistently keep CPU time lower across each of the datasets. An 

analysis of GenSup’s execution times showed that for each of the datasets, it ran for 

1,000 generations, the hardcoded limit for the number of allowable generations. As a 

result, all GenSup’s run times will likely be similar for each of the datasets. HeurGene 

ran an average of 31 generations.  
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 HyperCube GenSup (1 Run) HeurGene 

Average 9418 7868 9065 

Median 9526 7812 9097 

Highest 10118 8379 9797 

Lowest 8545 7803 8039 

Standard 

Deviation 
570 170 563 

 

Table 15: Comparison of Average Solution Costs with 100,000 Cells with 1% 

Sensitive Cells 
 

 Figure 20 gives a dataset-by-dataset comparison for each of the methods. The 

graph shows that GenSup produced the lowest average and median cost with a ~16% 

average improvement over the HyperCube algorithm, while HeurGene generated a ~4% 

average improvement.  

 

Figure 20: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

1% Sensitive Cells 
 

 Table 16 gives the CPU times for each of the algorithms tested. Note that due to 

CPU times in excess of 20 hours per dataset, the GenSup algorithm was executed only 
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seconds with a median time of 11.34 seconds and a standard deviation of 0.097. 
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 GenSup (1 Run) HeurGene 

Average 74161.45 7383.42 

Median 74161.45 7325.55 

Highest 74161.45 7788.72 

Lowest 74161.45 7207.65 

Standard 

Deviation 
 170.30 

 

Table 16: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 

1% Sensitive Cells 

The results presented in Figure 21 demonstrate that with tables of this type, 

HeurGene is able to consistently keep CPU time lower across each of the datasets. An 

analysis of GenSup’s execution times showed that for each of the datasets, it ran for 

1,000 generations, the hardcoded limit for the number of allowable generations. As a 

result, all of GenSup’s run times were likely to be similar for each of the datasets. 

HeurGene ran an average of 45 generations. 

  
 

Figure 21: Comparison of Average CPU Times (Y-Axis in seconds), Using a Single 

Dataset, with 100,000 Cells with 1% Sensitive Cells 
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low CPU time as compared to GenSup.  

Test Results for Tables with 100,000 Cells and 3% Sensitive Cells 

 Table 17 shows that GenSup gave the lowest average solution cost from ten test 

runs using ten datasets. Both GenSup and HeurGene showed only modest improvement 

over the HyperCube algorithm with very low solution costs. This indicates that tables 

required a very small number of complementary suppressions to be made safe. 

 HyperCube GenSup HeurGene 

Average 145 134 143 

Median 120 114 120 

Highest 298 298 298 

Lowest 41 41 41 

Standard 

Deviation 
78 84 78 

 

Table 17: Comparison of Average Solution Costs with 100,000 Cells with 3% 

Sensitive Cells 
 

 Figure 22 gives a dataset-by-dataset comparison for each of the methods. The plot 

shows that for datasets 1 through 7, all three strategies returned the same solution cost. 

This reflects the fact that neither GenSup nor HeurGene improved on the HyperCube’s 

solution. Dataset 8 required no additional suppressions.  
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Figure 22: Comparison of Average Solution Costs (Y-Axis) with 100,000 Cells with 

3% Sensitive Cells 

Table 18 gives the CPU times for the GenSup and HeurGene methods. Unlike all 

the previous tests, GenSup yielded a lower average and median run time as compared to 

HeurGene. CPU times for the HyperCube method averaged 34.41 seconds with a median 

time of 34.38 seconds and a standard deviation of 0.09. 

 GenSup HeurGene 

Average 3781.76 12434.86 

Median 3696.40 12601.48 

Highest 4582.76 13584.11 

Lowest 3454.93 11444.25 

Standard 

Deviation 
343.32 721.48 

 

Table 18: Comparison of Average CPU Times (in seconds) with 100,000 Cells with 

3% Sensitive Cells 

 Figure 23 gives a dataset-by-dataset comparison of each of the CPU times. It 

shows that HeurGene required three times the CPU time of GenSup. Dataset 8 required 

no additional suppressions and was therefore not included in the CPU times. 
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Figure 23: Comparison of Average CPU Times (Y-Axis in seconds) with 100,000 

Cells with 3% Sensitive Cells 

 The results showed that HeurGene required three times the CPU time of GenSup 

and 360 times that of HyperCube without delivering significant reductions in solution 
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GenSup with tables of 10,000 cells at 0.5% sensitive and 100,000 cells at 0.25% sensitive 

cells. For all other percentages of sensitive cells, GenSup produced solutions of lower 

cost. However, GenSup’s lower solution costs required ten to 20 times the CPU seconds 

to run to termination. A comparison of the solution cost over processing time was made 

using the following formula 
(𝐶ℎ − 𝐶∗)

𝑡∗
⁄ , where (1) 𝐶∗ is the solution cost for either 

GenSup or HeurGene; (2) 𝐶ℎ is the solution cost for HyperCube; (3) and 𝑡∗ is CPU run 

time for either GenSup or HeurGene. This ratio gives a relative index of the reduction in 

solution costs compared to the HyperCube in cost per CPU second. The results for the 

tables at 10,000 cells are given in table 19. 

Sensitive 

Cells 

GenSup HeurGene 

3% 0.7621 4.9420 

1% 3.0570 40.5636 

0.5% 1.0803 29.0881 

 

Table 19: Comparison of Improvement Ratios in Tables of 10,000 Cells 

 This comparison shows that HeurGene was able to provide better performance per 

CPU second than GenSup at all percentages of sensitive cells. The results for the tables at 

100,000 cells are given in table 20. 

Sensitive 

Cells 

GenSup HeurGene 

3% 0.0031 0.0002 

1% 0.0128 0.0478 

0.5% 0.0836 0.3290 

0.25% 0.0027 1.1336 

 

Table 20: Comparison of Improvement Ratios in Tables of 100,000 Cells 

The comparison shows that HeurGene outperformed GenSup at 0.25, 0.5 and 0.1 

percentages of sensitive cells.  
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Chapter 5 
 

Conclusions, Implications, Recommendations and Summary 

 

Conclusions 

 The goal of this research was to develop an improved Genetic Algorithm that 

generated low-cost solutions without introducing excessive CPU overhead. To this end, 

this research investigated the use of: 

1) a heuristically-directed crossover operation, 

 

2) a crossover and mutation operation that produced few or no infeasible solutions, 

 

3) a mutation operation that targeted specific cells for mutation, 

 

4) a portfolio of selection and replacement strategies to increase genetic diversity. 

 

Given the outcomes of this research, the following research questions can be 

addressed: 

Can crossover and mutation operations be designed that produce few or no infeasible 

solutions? 

  Yes. Both the crossover and mutation operations were designed to check for 

complementary suppressions shared between circuits of protection in order to avoid 

removing them from S2 and producing infeasible solutions. This resulted in a reduction in 

infeasible solutions from generation to generation. 

Will this method provide for improvement in the cost of the solutions? 

 Conditionally. When the percentage of sensitive cells is small, 0.25% and 0.5%, 

the HyperCube algorithm used to generate the initial population produced sufficient 

genetic diversity to allow HeurGene to produce cost improvements over the Shortest 
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Path, HyperCube and GenSup methods. However, at sensitive cells percentages at 1% 

and above there was insufficient diversity in the chromosomal makeup to keep HeurGene 

from converging before realizing a cost improvement that was the same as or better than 

GenSup. 

Does the computational overhead associated with the genetic algorithm negate its 

benefits? 

 No. HeurGene’s use of directed, solution-preserving crossover and mutation 

operations reduced CPU time as compared to GenSup. However, this reduction came at 

the cost of premature convergence, which accounted in part for the low CPU times as 

compared to GenSup. 

Will a portfolio of deterministic and probabilistic selection and replacement rules 

maintain sufficient genetic diversity to avoid premature convergence? 

Not given the current configuration. The selection and replacement strategies in 

their current implementation were found to be unable to promote sufficient genetic 

diversity to prevent premature convergence. However, the same strategies in a different 

configuration or a configuration modified to evaluate chromosomes based on other than 

solution cost might prove more effective. 

Preliminary Testing 

Preliminary tests were conducted on tables of 10,000 cells with 0.5%, 1%, and 

3% sensitive cells to determine if any one permutation of selection and replacement 

strategies offered an advantage. Evaluation was based on solution cost and included six 

permutations of selection and replacement strategies: Fitness Proportional Roulette-

Wheel/Kill Tournament, Fitness Proportional Roulette-Wheel/Similar, Random 
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Tournament/Kill Tournament, Random Tournament/Similar, Elite/Elite and Probabilistic. 

The probabilistic strategy used a random number generator to select between the other 

five strategies at each generation. 

 The outcome of the tests was inconclusive as no one strategy provided 

significantly lower-costs. As a result, the Probabilistic strategy was selected for inclusion 

in this research based on its consistently producing low-cost solutions. 

 This research focused on four strategies: Shortest Path, HyperCube, GenSup and 

HeurGene. In addition, the HyperCube algorithm was used to provide the initial 

populations for GenSup and HeurGene. The effects of each of the major components of 

HeurGene on the outcome are presented: 

Initial population 

The initial population was generated using the same HyperCube algorithm used in 

the HyperCube testing. Sensitive cells were protected using a circuit of suppressions 

forming a cube. The order in which the sensitive cells were protected was randomized for 

the purpose of creating a population of genetically distinct individuals. Since the 

HeurGene algorithm specifically selects circuits of protection for crossover and mutation 

based on their potential to produce lower-cost offspring, its ability to locate suitable 

circuits is bound by the diversity found in the current population. HeurGene was 

programmed to make 100 attempts to locate suitable circuits. When this failed, HeurGene 

selected two new parents for mating and repeated the process. As the current population 

became more homogeneous, HeurGene became progressively less capable of producing 

lower-cost offspring and terminated after 100 mating attempts without success. This 

helped contribute to HeurGene’s inability to find lower-cost solutions as compared to 
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GenSup and also contributed to HeurGene’s low CPU times.  

Selection and Replacement  

A portfolio of selection and replacement strategies was tested as part of this 

research. A random number generator was used to select the strategy. Fitness 

Proportional Roulette-Wheel and Random Tournament selections were each used ~45% 

of the time. These were paired with either Kill Tournament or Similar replacement 

strategies, each of which was selected for ~45% of the test runs. Elite selection and 

replacement was used for ~10% of the test runs. Preliminary testing found no advantage 

in any pairing of selection and replacement strategies. A side effect of the strategies was 

that it was possible for less fit offspring to replace more fit parents. This resulted in not 

only the loss of low-cost solutions, but also the loss of low-cost circuits of protection. 

Crossover 

A heuristic-based, solution-preserving, crossover operation was developed as part 

of this research. Crossover worked on the level of the circuits protecting the sensitive 

cells by crossing over entire circuits of suppressed cells. Unlike previous research, the 

circuits crossed could be non-cube, complex circuits with up to 32 cells. This was made 

possible by maintaining a list of complementary suppressions protecting each of the 

sensitive cells. The heuristic likewise worked on the level of the circuits, requiring that 

the crossover operation produce a lower-cost offspring than the lowest cost parent. 

Profiling of the crossover code showed a reduction in solution cost at each generation. 

However, this also resulted in accelerated convergence as low-cost circuits of protection 

were accumulated into the lowest cost members of the current population, resulting in 

accelerated loss of genetic diversity.  
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Mutation 

 The mutation operation has two steps: (1) to find redundant complementary 

suppressions created by the crossover routine and remove them from the set S2; and (2) to 

merge suppressions in the sensitive cell’s list of complementary suppressions, allowing 

for the crossover of complex circuits (circuits with greater than four suppressions) in 

future generations. This second goal is unique to HeurGene and allowed for reductions in 

solution cost with minimal CPU overhead by promoting convergence when the 

combining of circuits had reached saturation. Unfortunately, the use of complex circuits 

also reduced the likelihood of finding suitable circuits for crossover in successive 

generations due to an increase in the number of sensitive cells sharing complementary 

suppressions in their circuits of protection. This contributed to HeurGene reaching the 

maximum-generations-without-change-limit and terminating prematurely.  

Implications 

 Prior to this research, no GA had been developed that examined solution-

preserving, directed crossover and mutation operations that acted on circuits of 

suppressions protecting sensitive cells with greater than four suppressions. Additionally, 

this research explored a probabilistic portfolio of selection and replacement strategies to 

balance selective pressure with genetic diversity. From this research the contributions can 

be considered: 

Selection and Replacement  

 The probabilistic portfolio of selection and replacement strategies was intended to 

increase genetic diversity in an attempt to lessen selective pressure caused by genetic 

operators and mitigate premature convergence of the GA at local optima. The results of 
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preliminary testing were inconclusive, demonstrating that no pairing of probabilistic 

selection and replacement strategies performed better than elite selection and 

replacement. As a result, a probabilistic approach was adapted for this research that 

pooled elite selection and replacement with Proportional Roulette-Wheel and Random 

Tournament selection paired with either Kill Tournament or Similar replacement. 

 The probabilistic approach selected for this research proved unable to mitigate the 

effects of crossover and mutation operations that increased selective pressure on the GA’s 

population. This outcome was in part due to the nature of the initial population. A 

modified HyperCube algorithm that worked to form rectangular circuits of protection on 

individual sensitive cells was used to seed the GA’s initial population. The order in which 

the sensitive cells are protected was re-sequenced for each individual in order to induce 

genetic diversity into the population. When the percentage of sensitive cells was small, 

0.5%, the cube method was capable of producing an initial population of genetically 

dissimilar individuals. However, as the percentage of sensitive cells increases to  1%, 

the cube algorithm formed fewer unique circuits between individuals. Instead, circuits 

were formed from primarily sensitive cells, requiring the addition of less complementary 

suppressions. This reduced the overall number of unique circuits and negated the effect of 

protecting the sensitive cells based on a random ordering. As a result, the genetic 

diversity from individual to individual decreased. Without an initial genetically diverse 

population, the selection and replacement strategies were unable to introduce diversity 

into the current population. 

 This research suggests that with a large percentage of sensitive cells,  1%, in 

randomly generated populations of > 10,000 cells, if the selection and replacement 
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strategies are to be effective, they need to focus on the circuits protecting the sensitive 

cells and not on the solution cost. A method to measure the genetic dissimilarity will need 

to be developed to help maintain individuals in the population based on the diversity of 

their circuits of protection in order to preserve promising genetic sequences that might 

exist in less fit individuals.  

Crossover 

 This research demonstrated that a heuristically-directed, solution-preserving 

crossover operation, acting on individual circuits of protection, is capable of quickly 

accumulating low-cost circuits protecting sensitive cells in most fit offspring through 

successive generations while minimizing infeasible solutions. By utilizing a sensitive 

cell-based list of complementary suppressions, the operator was able to crossover circuits 

of protection with greater than four suppressions, preserving the feasibility of the 

solutions in the offspring.  

A heuristic was applied to the crossover that selected circuits of protection for 

crossover based on their ability to reduce overall solution cost. This resulted in at least 

one of the offspring being of lower-cost than one of its parents at each generation. 

However, this had the disadvantage of reducing genetic diversity. This was due to there 

being fewer circuits of protection available to satisfy the heuristic function at each 

generation. This resulted in the GA quickly reaching its maximum number of 

generations-without-change limit and terminating. 

The result of this portion of the research suggests the need for selection strategies 

that focus on the circuits protecting the sensitive cells. Rather than selecting parents for 

the current population based on overall solution cost, it is advantageous to select parents 
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based on dissimilarities in the circuits of protection. This makes it more likely that the 

crossover operations will find circuits that satisfy the heuristic function, resulting in a 

successful operation. Also, further development of directed, solution-preserving 

crossover algorithms needs to be considered in order to completely eliminate the creation 

of infeasible offspring and improve solution cost at each generation. 

Mutation 

 The mutation operation developed for this research was designed to remove 

unneeded complementary suppressions introduced by the crossover operation. This 

resulted in the new configuration of complementary suppressions forming larger circuits. 

The new circuits could then be used by successive generations to further lower solution 

costs by forming even larger, more complex circuits that would provide for lower-cost 

offspring. However, the creation of complex, non-rectangular circuits introduced two 

conditions that had a negative effect on solution cost. 

 First, as the number of sensitive cells in a circuit increased, it became 

progressively less likely that the heuristic function that directed the crossover operation 

would correctly evaluate the cost of the circuit and flag it as suitable for crossover, 

resulting in more frequent failure of the crossover operations and increasing the 

likelihood of premature convergence. Second, as the circuits became large there was an 

increased probability of the crossover operation creating an infeasible solution. 

 Although the mutation operation examined in this research did not perform as 

expected, it did indicate the types of problems that can occur with circuits protecting 

sensitive cells as they become large and non-rectangular. Continued research in this area 

could result in the correction of these problems. In addition, research on a mutation 
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operation that strategically adds complementary suppressions allowing for further 

combinations of circuits of protection may allow for lower-cost solutions. 

Recommendations 

 

 The results of this research suggest multiple areas of future research. First, a 

survey of current heuristic approaches that provides initial populations specifically for 

GA’s operating on large tables needs to be conducted. The focus of the research would be 

on producing genetic diversity and not solution cost. This research is necessary to 

accommodate tables where the number of sensitive cells is large and HyperCube-like 

algorithms provide insufficient genetic diversity for the genetic operators to substantially 

improve upon the parent’s solutions.  

 Second, this research suggests the need for selection and replacement strategies 

that factor in genetic diversity on the level of the circuits protecting the sensitive cells, as 

well as the solution cost. When genetic diversity is low, the need to identify promising 

genetic sequences becomes acute. Selection and replacement strategies that act on the 

level of circuits could be more effective in mitigating selective pressure and maintaining 

genetic diversity. 

 Third, further research on solution-preserving, directed crossover operators 

working on the level of the circuits protecting sensitive cells should be conducted. 

Continued development of solution-preserving crossover operations would allow for 

more complex circuits of protection to be exchanged, further lowering solution costs 

while decreasing CPU time. 

 Fourth, further research on large tables should focus on heuristic-based solutions 

that are not dependent upon probabilistic functions. This conclusion responds to the 
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genetic operators’ inability to adequately explore the search space presented in large 

tables.  

 Fifth, comparisons using Improvement Ratios suggest the need for research into 

GAs where program termination is determined by a cost-benefit ratio rather than a fixed 

number of generations. If the goal of the GA is to improve upon the solution cost of the 

initial parent population without over-committing CPU resources, the use of a ratio 

indicating the current improvement with respect to CPU time can be an indicator of when 

a predesigned point of diminishing returns has been reached. 

Summary 

 

 Cell suppression can be defined as a method of Statistical Disclosure Control in 

which the sensitive data in a statistical table are blocked from publication by suppressing 

their value. This is accomplished by setting the value of the sensitive cell to null 

(Fischetti & Salazar, 1998). 

A cell in a table is denoted by (i, j), where i is the row location and j is the column 

location in table T, with m rows and n columns, such that T = {(i, j) | 1  i  m, 1  j  n} 

(de Carvalho et al., 1994). A primary suppression is a sensitive cell suppressed from 

publication. The set of primary suppressions (i, j)  S1 is a subset of S1  T. S1 is 

protected by lower and upper bounds lij and uij respectively, with a protection interval 

defined as Pij = [aij - lij, aij + uij] (Fischetti & Salazar, 1998; Almeida & Carvalho, 2005). 

The set of complementary suppressions is denoted by S2 = {(i, j)  A} (de Carvalho et al., 

1994). 

A table is considered safe if each sensitive cell in S1 is both right and left 

protected. S2 is considered feasible if all cells in S1 get protected when the values S1  S2 
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are omitted from the table or set to null. Each cell in S1 is assigned a weight of zero and 

each cell in S2 is given a non-negative weight wij = |aij|, reflecting the loss of information 

due to suppression of non-sensitive cells. The cost of the complementary suppressions 

can be expressed as:∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝑆2
 (Almeida et al., 2006). The goal of the CSP can be 

expressed as finding a lowest cost set for S2 where all cells in S1 are protected. 

The primary goal of the proposed research was to develop an improved GA for the 

CSP that generated low-cost solutions without introducing excessive additional CPU 

overhead. To achieve this objective, the following primary goals needed to be realized: 

1) development of crossover and mutation operators that improve upon existing 

methods, and  

2) development of selection and replacement strategies that provide sufficient 

chromosomal diversity at each generation to avoid premature convergence. 

Previous methods for finding a minimal set of suppressions use network flow 

approaches to evaluate the conditions under which a sensitive cell is considered 

protected. These methods typically examine one sensitive cell at a time and build a 

system of sub-networks to protect each of the cells. However, these methods often 

produce low-quality solutions due to oversuppression. The need to minimize 

oversuppression leads to the computationally costly post-processing of solutions. Shortest 

path algorithms have been used to find low-cost solutions, but come with a high runtime 

costs, especially for large graphs. 

Genetic algorithms are typified by an initial parent population composed of 

chromosomal representations of a solution space and ranked by a fitness function, which 

allows for selection of most fit pairs for mating. Offspring are created through a process 
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of crossover and mutation with the more fit individuals replacing the less fit members of 

the parent population according to the fitness function (Russell & Norvig, 2010). The 

process is repeated until a stopping condition is met. The evolutionary process takes 

advantage of the fitter individuals produced by the genetic operators and increases their 

relative frequency in the population such that they are more likely to reproduce, 

producing fitter offspring (Smith, 2007). 

  The application of GAs improves upon other methods by providing lower-cost 

solutions with relatively low computational cost. However, the nature of a GA’s 

crossover and mutation operations tends to disturb existing solutions, requiring that 

offspring undergo repair or replacement, increasing runtime costs. Most GAs lack the 

ability to operate on sets of cells, which prevents them from locating lower-cost 

solutions. After both crossover and mutation, the solutions have to be checked for 

feasibility and rejected or repaired if infeasible. This is due to the complexity of the sub-

network of cells produced as a function of the GA’s evolutionary process. 

The initial population of parent chromosomes was created using a hypercube 

method on a two-dimensional table that formed a circuit of suppressions in the form of a 

rectangle (Giessing & Repsilber, 2002). Once the execution of the HyperCube code was 

completed, a separate function searched 𝑆2 for redundant complementary suppressions. 

Redundant complementary suppressions were removed from 𝑆2 and the solution tested 

for feasibility. This process provided low-cost initial populations for the GAs. 

Two parents were chosen from the current population using one of the strategies 

from the portfolio of available selection strategies. The strategy used was selected at 

random and included: Elite, Proportional Roulette-Wheel and Random Tournament 
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selection. 

A sensitive cell was selected at random and its protection circuit crossed between 

the selected parents. The solution cost of the resulting offspring was then compared to the 

goal state and the offspring either accepted or rejected. This cycle was repeated until the 

offspring were accepted or 100 attempts passed without success. If the crossover was 

successful, the offspring underwent mutation. When the operation failed, two new parents 

were selected for mating and the sequence repeated. 

Next, a sensitive cell in the offspring was selected at random and the 

complementary suppressions in its circuit of protection checked for redundancy.  Once a 

redundant complementary suppression was found, it was removed from 𝑆2  and the new 

chromosomal representation 𝑆1 ∪ 𝑆2 was tested for feasibility. 

Replacement of members of the current population by the offspring was 

performed using Elite, Kill Tournament or Similar replacement strategies. The strategy 

used was selected at random unless the Elite strategy was used for selection, in which 

case the Elite replacement strategy was used. 

Evaluation of the results was based on solution cost and CPU time requirements. 

The results of the experiments demonstrated that HeurGene was able to produce average 

solutions that were slightly better than GenSup with tables of 10,000 cells at 0.5% 

sensitive and 100,000 cells at 0.25% sensitive cells. For all other percentages of sensitive 

cells, GenSup produced solutions of lower-cost. However, GenSup’s lower solution costs 

came at the expense of CPU time, with GenSup requiring ten to 20 the times the CPU 

time to run to termination as compared to HeurGene.  

To better evaluate HeurGene’s ability to produce reductions in solution cost as a 
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function of CPU time, a solution improvement ratio was developed. This was expressed 

as 
(𝐶ℎ − 𝐶∗)

𝑡𝑟∗
⁄ , where (1) 𝐶∗ is the solution cost for either GenSup or HeurGene; (2) 

𝐶ℎ is the solution cost for HyperCube; and (3) 𝑡𝑟∗ is CPU run time for either GenSup or 

HeurGene. 

The improvement ratio demonstrated that, given the termination criteria for the 

GAs of 100 generations without cost improvement or 1,000 total generations, HeurGene 

was able to efficiently produce reductions in solution cost as compared to GenSup. Figure 

24 demonstrates that HeurGene’s cost improvement ratios outperformed GenSup’s. 

 

Figure 24: Comparison of Improvement Ratios (Y-Axis) at 100,000 Cells at 

Different Sensitive Cell Percentages (X-Axis) 

 The results of this research suggest the following areas for research. First, a 

survey of heuristic approaches, to provide genetic diversity in initial populations 

specifically for GAs operating on large tables, needs to be conducted. Second, selection 

and replacement operators that factor genetic diversity on the level of the circuits 

protecting the sensitive cells need to be developed. Third, further research on solution-
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preserving, directed crossover operators working on the level of the circuits protecting 

sensitive cells should be conducted. Fourth, further research on large tables should focus 

on Heuristic base solutions that are not dependent upon probabilistic functions. Fifth, 

research needs to be conducted into GAs where program termination is determined by a 

cost benefit-ratio rather than a fixed number of generations. 

About Appendix 

 Appendix A contains sample output for the Unicode files generated for each of 

the datasets for each execution of each method. 
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Appendix A: Sample Output 

This section of the data file provides a summary of the runtimes, solution costs, 

number of generations and number of failures for each dataset. 

File: ds10000cells01_0.txt 

Run times: Fastest 10.584000, Slowest 16.504999, Average 11.841100 

Costs: Highest 8625, Lowest 7224, Average 7951 

Generations: Highest 110, Lowest 0, Average 11 

Failures: 0 

 

Figure 25: Sample HeurGene Summary Output 
 

This section of the data file was designed to allow for easy importing of data to 

MS Excel for analysis. The section consists of two parts: 1) Runtimes and 2) Costs. Both 

parts record the fastest/highest, slowest/lowest and average run time or cost for each of 

the datasets tested. 

Run times summary: 

  fastest,    slowest,   average 

      10.584000, 16.504999, 11.841100 

 9.528000, 24.878000, 14.225200 

11.491000, 17.386000, 13.268500 

11.319000, 20.450001, 14.730200 

10.811000, 18.143000, 13.565800 

10.779000, 30.888000, 14.335000 

10.109000, 16.184999, 12.839600 

10.826000, 19.624001, 13.128900 

10.593000, 18.283001, 13.165000 

11.123000, 15.912000, 12.634700  

 
Costs summary:  

highest,  lowest, average 

   8625,    7224,    7951 

   8506,    6392,    7138 

   8094,    6330,    7124 

   8212,    6971,    7516 

   7615,    6429,    6846 

   7124,    5754,    6387 

   6707,    5562,    6068 

   7176,    6099,    6540 

   6797,    5268,    5857 

   6773,    5792,    6359 

 

Figure 26: Sample HeurGene Summary Data Output 
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