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An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Unsupervised Learning Trojan

by

Arturo Geigel

This work presents a proof of concept of an Unsupervised Learning Trojan.
The Unsupervised Learning Trojan presents new challenges over previous work
on the Neural network Trojan, since the attacker does not control most of the
environment. The current work will presented an analysis of how the attack can
be successful by proposing new assumptions under which the attack can become
a viable one. A general analysis of how the compromise can be theoretically sup-
ported is presented, providing enough background for practical implementation
development. The analysis was carried out using 3 selected algorithms that can
cover a wide variety of circumstances of unsupervised learning. A selection of 4
encoding schemes on 4 datasets were chosen to represent actual scenarios under
which the Trojan compromise might be targeted. A detailed procedure is pre-
sented to demonstrate the attack’s viability under assumed circumstances. Two
tests of hypothesis concerning the experimental setup were carried out which
yielded acceptance of the null hypothesis. Further discussion is contemplated on
various aspects of actual implementation issues and real world scenarios where
this attack might be contemplated.
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Chapter 1

Introduction

Background

Machine learning has become a mainstream tool for analysis in various industries.

Among the applications of machine learning are financial applications (Krollner et al., 2010;

McNelis, 2005), medical applications (Kononenko, 2001), and intrusion detection (Tsai et

al., 2009; Sabhnani & Serpen, 2003a), among many others. While the field is blossoming

rapidly, there are possible attacks that can target the application of such tools. During the

last few years, researchers have noticed subversion attacks to the underlying machine learning

algorithm. Such attacks are commonly known under the umbrella of adversarial knowledge

discovery (Skillicorn, 2009) or adversarial learning (Lowd & Meek, 2005). The attacks are

successful because in most cases the algorithms are designed under the assumption that the

underlying distribution is static or (very) slowly varying over time.

Most machine learning algorithms are designed to generalize the behavior of the distri-

bution given a sample of the population. The specific procedure of generalization will depend

on the underlying algorithm, and if the algorithm utilizes supervised or unsupervised learn-

ing. Once the algorithm is coded with the underlying assumptions, its data generalization

abilities are embedded into the system, and depending on its robustness, it will respond to

changes in the distribution with a better or worse performance. These assumptions can be

exploited to the benefit of an attacker that has knowledge of the underlying mechanisms of

the algorithm. The current problem is that this analysis has only recently begun to take

place in the adversarial knowledge discovery community to address this type of malicious

attacks.

This work presents a new attack on unsupervised algorithms based on the Neural

network Trojan (NnT) proposed by Geigel (2013). The new attack poses some new challenges

to the attacker, since some of the control leveraged in the NnT’s supervised learning cannot

be harnessed in an unsupervised scenario.
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This chapter first presents the problem statement which provides information on why

such attacks must be studied and analyzed to provide better security in machine learning

algorithms. The presentation follows with the dissertation goal that delineates the objective

of building a proof of concept of such attack and to document its procedure. The dissertation

goal is followed by the research questions which this work will investigate while pursuing the

study of the Unsupervised Learning Trojan (ULT). The section that follows elaborates on

the significance of the Unsupervised Learning Trojan and why its study should be pursued.

The barriers and issues will be presented to document the challenges on carrying out such

compromise. The challenges provide enough information to elaborate the approach used to

analyze the Unsupervised Learning Trojan and how to carry out the proof of concept of

such an compromise.. Finally, the proposal finishes with the reference section.

Problem Statement

This section introduces the main problem of study, which is the Unsupervised Learning

Trojan density problem and its sub-problem of cluster identification. Before details of the

problem are given, some background is provided on how the problem arises by discussing

the areas of spam and intrusion detection, which are active areas of adversarial machine

learning research. Within this area, a closer look is given to the problem of unsupervised

learning which is just beginning to be studied.

With this background, the problem of adversarial learning in unsupervised scenarios

is generalized to encompass a field that is greater than just intrusion detection, but also

encompasses all applications containing unsupervised learning algorithms by implementing

the ULT. It is within this field of reference that the Unsupervised Learning Trojan density

problem and its sub-problem of the cluster identification are framed in the discussion that

follows.

Unwanted commercial messages (UCM) and malware and can be considered tools in

furthering the underground economy. The use of UCM or spam makes a significant part
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of the Internet messages, and also to the underground economy in the form of scams and

compromises (Stone-Gross et al., 2011). By the same token, malware in general is used in

the underground economy as a tool to obtain stolen credentials (Holz et al., 2009). UCM

and malware can be said to share two common characteristics: the first is that they are

motivated by economic trends, and the second is that the techniques to target the intended

recipient are changing as countermeasures evolve.

The rise of computer malware has been, to a large extent, an evolutionary process

that started in the 1980s, and there is information that it has evolved from minor activities

of nuisance to profit oriented attacks (Hughes & DeLone, 2007; Moore et al., 2009; Simion,

2010). This profit based driven activity has also been seen in UCM (Plice et al., 2008). To

make these activities profitable, they have to overcome the hurdles of filtering mechanisms

that dampen the effects of target acquisition. In the case of the UCM, the target is the

potential buyer; and in the case of a computer compromise, the target may be a machine or

the assets stored in the machine.

Countermeasures to filter the UCM and the malware threat have evolved in response

to the changing nature of the tactics of the attackers and spammers. These, in turn, have

made the attacks more sophisticated. Some of this sophistication developed in the form

of cryptography in viruses (Young & Yung, 1996; Abidin et al., 2012). Other fairly recent

methods have been more targeted attacks in the form of advanced persistent threats (APT)

(Jeun et al., 2012). The degree of sophistication of malware in general has led to the

development of more evolved intrusion detection techniques such as those using machine

learning techniques. These, in turn, have also led to malware developers and researchers to

explore the strengths and weaknesses of these systems. Research involving vulnerabilities

in machine learning has been brought to light recently in the literature (Barreno et al.,

2008, 2010). Some specific examples of the possible impact of this analysis are shown in the

successful evasion of machine learning algorithms such as SpamBayes (Nelson et al., 2008,

2009). Under this scenario, the objective is to subvert the training of a spam filter. The

authors classify the attacks on spam filters into two categories: causative availability attacks
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and causative integrity attacks. Under causative availability, the objective is to classify ham

(benign) messages as spam. This means that benign messages will fall as undesired messages.

A contemplated scenario of this attack may be a spammer that wants to force a user to look

for his good emails in the spam category, forcing the user to look at the spam message

folder, and therefore achieving his goal. A second scenario under this attack is a malicious

contractor who would focus the spam to deny access to other competitors by sending spam

messages with words and labels used by his competitors. In contrast, under causative

integrity attacks, the objective is to create pseudospam where spam message content can

be taken from news articles or other trustworthy source; however, they also contain spam

tokens so as to shift the training to accept some carefully crafted messages.

Machine learning subversion has been mostly directed towards intrusion detection and

spam, where misdirection to bypass a filtering mechanism is the goal. The analysis of such

attacks, especially unsupervised learning algorithms, is of a nontrivial nature. A general

analysis of unsupervised machine learning subversion was started in the work of Nelson &

Joseph (2006). In this work, the objective was to carry out an attack by poisoning the data

input to the unsupervised learning classifier. The attack’s focus is to move the centroid

progressively until the radius of the hypersphere that characterizes the benign data falls

within the boundary of the attack. This allows the attack to pass as benign data. Under the

scenario proposed by Nelson & Joseph, the attacker would require an exponential number

of attack points to carry out an effective attack on the algorithm. In other words, it requires

exponential effort to displace the center of mass as it grows with the input data.

The analysis of the attack was extended in Kloft & Laskov (2012), in which the

assumption of infinite horizon window where the algorithm attacked memorizes all the data

seen so far is relaxed towards more realistic online algorithms that might be subjected to

attacks. Their analysis focuses on online algorithms that discard data points, and it was

found that recalculating the center of mass maintaining n data points needs only linear

amount of injected points. This analysis also held for the random out selection of data

points where a data point is selected at random and is removed. However, for the nearest
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out strategy, the nearest neighbor of the new data point is removed, the complexity depends

on the Voronoi cell sizes which are that sets of points which lie closer together than any other

set of points created by the data. The analysis carried out by Kloft & Laskov highlights that

real scenarios attacks on unsupervised learning are feasible to carry out under reasonable

realistic assumptions.

In Battista et al. (in press), the authors identified an additional type of attack using

obfuscation. As opposed to poisoning the data stream, obfuscation aims to hide attack sam-

ples into an already existing cluster by manipulating feature values. The attack’s objective

is to insert the malicious data into the cluster while avoiding significant alterations on the

clusters.

Another type of attack against machine learning is in the form of Trojan payloads

encoded in the data. The first Trojan of this type is the Neural network Trojan (NnT)

presented by Geigel (2013). The work showed that by also contemplating a compromise on

the algorithm implementation, it is possible to hide a payload in the encoded data stream fed

to a learning neural network. The principal challenge in this type of exploit is the learning

and generalization capabilities that are inherent in a supervised learning algorithm. To avoid

detection, the generalization, memorization and sequential execution of the payload of the

Trojan properties of the algorithm must be present, to achieve the desired exploit. Another

challenge is to select the appropriate encoding that favors both the benign data, as well

as the payload selection. In the NnT the payload selection hinged on a minimal payload

that did have the least amount of recurring strings, such that the memorization could be

successfully implemented while still retaining most of the generalization properties for the

intended data set.

The broader question of whether the analysis of the NnT can be utilized in other

machine learning techniques remains an open question, and the implications for it can be

substantial. One specific area where this could be important is in the financial sector, where

machine learning is contributing substantially in the form of high frequency trading using

unsupervised learning algorithms such as Self Organizing Feature Maps (SOFM) (Resta,
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2009; Blazejewski & Coggins, 2004) and K-means (Ai et al., 2010; Ye et al., 2011).

In trying to address whether unsupervised learning can be compromised to carry a

Trojan payload, several challenges must be addressed. These challenges on the part of

the adversary are very different in nature than those present in poisoning and obfuscation

attacks against unsupervised learning algorithms. The unsupervised learning Trojan has to

deal with discrimination of the Trojan payload against the benign data. This means that in

order to trigger the attack, the clustering algorithm must segregate an actual attack from the

rest of the data. This specific problem of the attack will be referred to as the Unsupervised

Learning Trojan density problem. A sub-problem of the Trojan density problem is that of the

cluster identification as a malicious cluster within those clusters identified by the algorithm.

Both problems presents particular implementation differences depending on whether the

number of clusters is fixed or dynamically determined. Another challenge of the exploit

deals with the interpretation of the cluster points and the encoding/decoding of the payload

within the cluster elements. This falls outside of the machine learning attack and deals with

how the data points are encoded in a feasible encoding/decoding sequence for execution.

Dissertation Goal

The goal of the dissertation was to present the arguments and a proof of concept that

a Trojan can be inserted in unsupervised learning algorithms. Its aim was to expand the

analysis of the learning vulnerabilities found in the NnT to a scenario in which unsupervised

learning is compromised. The analysis of the Unsupervised Learning Trojan differs substan-

tially from the NnT, and it presented new challenges for a successful compromise. The work

tested the ULT on several unsupervised learning algorithms to show different techniques

and assumptions the attacker must make to carry out the attack. The attack can be carried

out by compromising the programming and afterwards inserting malicious elements into the

data stream to be processed by the algorithm.

The proposed work for the ULT consisted of analyzing the steps necessary to carry
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out the compromise. The analysis concentrated on a general framework where the attacker

methodologically tested the algorithm before launching the actual exploit. This methodol-

ogy resembles the experimental setup of training and testing supervised learning algorithms.

This exercise helped to determine the effectiveness of the attack on three specific unsuper-

vised learning algorithms, but at the same time give enough information to generalize the

compromise to other unsupervised algorithms. By analyzing the methodology carried out

by an attacker, security professionals can analyze the behavior of the exploit, and therefore

allow for the possibility of finding successful defenses to such attacks.

Research Questions

Throughout the research carried out in this dissertation, several questions were con-

templated that were part of the analysis of the ULT.

• Can the Trojan attack be carried out successfully on the proposed algorithms?

• Could the compromised algorithms present symptoms of compromise without analyzing the

code?

• What are the strategies for attack hiding?

• Do the algorithms require many modifications to carry out the attack?

Relevance and Significance

The attacks on machine learning algorithms through Trojans were first proposed in

Geigel (2013), and present a novel attack surface that has not been previously explored. The

capacity for encoding the attack on data streams of information for the learning algorithm

presents new challenges in analysis and detection. As covered in the NnT, the probability

of substantial polymorphism is a reality with Trojan embedding on a machine learning al-

gorithm. What differentiates this type of Trojan from previous work is that the nature of
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success and hiding depends on the statistical properties of the data and the algorithm, as

opposed to just programming vulnerabilities. The current work aims at extending the scope

of the analysis to unsupervised learning, and to highlight the unattended dangers of Trojans

on these types of algorithms. The impact on these types of compromises extend to any

application that uses the algorithms and may include applications in the security, finance,

health care fields, and unmanned vehicles, among other fields. By exposing these vulner-

abilities, proper steps can be taken to protect the algorithms and prevent the detrimental

effects of such attacks.

Studying these types of Trojans in machine learning algorithms and disseminating this

information to the security community can have a positive effect in securing these types of

algorithms from such attacks (Nizovtsev & Thursby, 2007; Arora et al., 2010). The proposed

work will present a detailed analysis of the attack mechanisms used in carrying out this type

of compromise and the methodology used during these attacks, such that future work can

concentrate on detection and avoidance before actual threats emerge. The presentation of

the ULT will expand on the work of Geigel (2013), which only dealt with a specific type of

neural network. By contrast, the present work will generalize Trojan attacks in unsupervised

machine learning. The generalization to unsupervised learning is a step further towards a

future analysis: that in principle all machine learning algorithms could be susceptible to

Trojan attacks.

Barriers and Issues

The challenge with ULT implementations is that there is no training set as in the NnT.

This makes the attack concept more difficult to carry out since the attacker does not control

the distributions used for the learning. Nonetheless, the attacker is assumed to have access

to partial capture of the data stream that will be passed to the unsupervised learning. To

demonstrate the attacks viability, it must be shown that the attacker can select the payload

of the Trojan in a manner that maximizes the probability of success in carrying the attack.
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The execution of such probability maximization is non trivial and the proposed work will

focus on the techniques that an attacker would have to develop in order to carry out the

compromise.

Assumptions, Limitations, and Delimitations

One of the challenges evident in the field of study of compromises is that it is difficult

to frame what an adversary will carry out within the scope of a compromise. The nature

of compromises imposes few restrictions on the field of study by its very nature and several

strong assumptions must be made to delimit the scope. This scope delimitation, in turn,

might not necessarily reflect the actual decisions and scenarios which the attacker may

choose. A very strong underlying assumption made in this study is that the attacker will

be limited to attacking the learning algorithm directly, that is having access to the source

code. Under real world scenarios the adversary will use any technique deemed effective in

achieving its objective which may be very simple or complex in nature. Notwithstanding,

the delimitation of this study to techniques used to compromise just the field of unsupervised

learning must be assumed to delimit the scope of this study to an achievable one.

Another delimitation is that the attack optimization will be done based on abstract

grounds and will not take into account domain knowledge. While such knowledge would

certainly help both the attacker and the system designer, it would take away any gener-

alization that can be made from this study. The compromise can also be realized by an

attacker that can insert the code into the algorithm through access to the source code or

into executable files via code caves (Gawkowski & Smulko, 2010), however this stage of the

attack will be assumed and not be explored here due to the amount of possible scenarios

to explore that fall outside adversarial machine learning field. The study will focus on the

actual implementation of the data insertion and algorithm interpretation of the exploit.

Within the scope of unsupervised learning algorithms, the breadth of this study must also

be further demarcated to be manageable, but at the same time provide enough information
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on the possibility that the vulnerability is general enough to cover the field. This study will

be delimited in scope in: the algorithms chosen, the type of compromise on each algorithm,

the data selection, and the payload executed on each of the algorithms chosen.

The algorithms’ selection has been delimited to the following: K-means algorithm,

Kohonen Neural Network, and Adaptive Resonance. While the field provides an exten-

sive number of algorithms such as: spectral clustering, hierarchical clustering, and mixture

models (Webb, 2011), the chosen algorithms reflect some of the general behaviors of the

unsupervised learning field.

The use of the data sets from the UCI machine Learning Repository (Asuncion &

Newman, n.d.) provide a recognized source of data that has been submitted for peer review

and at the same time available for test reproduction purposes. The selection of specific

data sets was based on possible scenarios on which the adversary might deploy the actual

compromise. The objective is to provide a simulation that will closely resemble that of an

actual compromise on a real world system. The data sets were constrained in quantity in

an attempt to maximize the effort to show as many compromises on specific data sets, as

opposed to just one compromise on many data sets.

Selection of payloads was done to provide a executable payload which might be harder

to conceal than other types of attacks such as ASCII payloads or simple operating system

commands. The selection of payloads varied in size and specific targets to demonstrate

versatility of the compromise.

Definition of Terms

The following provides a list of specific terms used throughout this work.

Calibration phase - A step in the attacker’s design of the compromise that tests

the assumptions of the attack before the actual compromise takes place.

Cluster Identification Sub Problem - The identification of malicious clusters

within a group of clusters provided to a algorithm.
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Compromising Hull - A collection of malicious points that make up the external

“hull” or outline of points that enclose the malicious cluster center.

Degree of similarity (DS) - A measure used to determine the degree of overlap

between the clusters, by measuring how many points of a data set were included in a cluster,

other than the expected one.

Degree of Cluster Distance (DCD) - The ratio between cluster distances and the

spread of the data belonging to each cluster.

Density Estimation - An estimate of an underlying probability density based on a

sample of empirical data obtained from the underlying distribution.

Embedding Problem - The problem of inserting a malicious data set within a

normal training set, with the objective of achieving a compromise.

Extrinsic Property - A cluster property derived from the comparison of one cluster

to other clusters.

Hypersphere - An abstract representation of the generalization of a sphere on higher

dimensional space.

Imbalanced Data Set - A data set that contains a majority of samples belonging

to a specific category or distribution interval and therefore skews the representation of the

underlying distribution of data or category labels.

Intrinsic Property - A comparison of the cluster’s member elements amongst them-

selves to derive a common property that describes the cluster.

Mixture of Densities - The probability density of more than one unrelated data

set. Specifically, it refers to the combined probability density of one or more benign data

sets with that of a malicious data set.

Poisoning - The process of inserting malicious data points into a data set with the

objective of misleading the algorithm evaluating the data.

Polymorphism - The capacity of a malware to change or mutate its appearance to

avoid detection, while at the same time preserving the capacity to compromise a host and

carry out the compromise.



12

Unified Distance Matrix (U-Matrix) - is a representation of the Kohonen network

that is measured using the average distance between a node’s four immediate neighbors.

Summary

The field of adversarial machine learning is becoming an increasingly important topic

in machine learning, and will become more important as more applications in security, as

well additional critical applications outside the field of security adopt machine learning

techniques. Machine learning has recently been expanded to include an area of research

that deals with machine learning under adversarial attack. Under these scenarios, most

machine learning algorithms fail, since they assume a static underlying distribution and

cannot handle an active adversary that manipulates the data. A closely related adversarial

attack is that of inserting malware leveraging machine learning characteristics such as the

Neural network Trojan and the Unsupervised Learning Trojan.

The unsupervised learning Trojan is a malware compromise designed to take advantage

of an application that uses unsupervised learning algorithms. The attack’s complexity is

higher than that of the neural network Trojan in that the attacker does not have a controlled

environment through a training set on which to supply predetermined data to the algorithm.

Instead, the attacker must estimate the effects of the data on the attack’s effectiveness, and

based on the testing scenarios, he can estimate the probability of success.
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Chapter 2

Review of the Literature

Introduction

Until recently, most of the work on the security of machine learning focused on us-

ing the learning algorithm to learn patterns to detect malicious activity. These type of

intrusion detection systems are based on anomaly detection (Verwoerd & Hunt, 2002) and

misuse detection (Sabhnani & Serpen, 2003b). The research into compromises as part of

the machine learning field have been generated as part of a new field known as adversarial

machine learning or adversarial discovery (Skillicorn, 2009). These methods of subverting

machine learning algorithms are closely related to other methodologies, such as Trojans,

whose objective is the subversion of the machine by masquerading itself as an innocent ap-

plication. Such hiding methods are also employed in cryptovirology, where the executable

code is partly hidden by encryption or it uses encryption to hijack data. All these recent

trends lead to a new field of study of machine learning for security, but also to a field in

sophisticated malware techniques that need to be studied if there is to be protection from

them.

Trojans

Arriving at a formal definition of a term in malware research is difficult, since the field

is being redefined constantly by new types of malware which have different characteristics.

The definition of Trojan is no exception. The use of the word Trojan in malware has

its origins on the Greek tale of Odysseus that had the idea of hiding Greek soldiers in a

wooden horse, in order to infiltrate Troy and win the war. An analogy of the technique

evolved by the similarity of the methods used to hide a malicious payload in computers.

Since the translation to computer systems is done by analogy, it depends on what features

particular author is focusing on to characterize the Trojan attack. This contributes to a lack
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of consensus on what constitutes a Trojan, and makes it difficult to find relevant literature

which might be classified under other topics, but might be relevant to the actual research

being conducted. Another justification for studying the categorization, lies in the high false

or failure alarm rates of current behavior analysis techniques based on Trojan detection

strategies (Chen et al., 2009). A brief survey on the different approaches the previous

literature has taken towards clarifying the definition will help in framing the discussion

further.

Whalley (1999) covers various definitions of Trojans that appear in the literature and

arrives at the conclusion that the definitions are all lacking in one way or another. The

author presents his definition as:

“A program which the user thinks or believes will do one thing (the ‘perceived purpose’), and

which may or may not do that thing, but which also does something else which is not necessary to

accomplish the perceived purpose, and of which the user would not approve (the ‘payload’).”

The definition tries to overcome the shortcomings of the previous definitions by avoid-

ing intent, purpose and malicious outcome usually mentioned in the previous definitions.

Notwithstanding, Whalley also concedes that his alternative definition also poses some draw-

backs by avoiding specificity and intent which may make other types of programs fall under

the category of Trojan.

Thimbleby et al. (1998) provide the basic components of viral infection in which the

Trojan component is included. The authors also put forth that Turing machines are inade-

quate to address the characterizations of infections. This is also recognized to some extent

by F. Cohen (2001). One of the objections of using Turing machines that specifically per-

tain to Trojans is the problem of framing what is masquerading. Masquerading is defined in

Thimbleby et al. as the notion “where a user knows the names of programs and anticipates

their likely behavior”. Another difficulty with Turing machine models is defining the notion

of “other” programs, as is the case of a Trojan payload. The authors provide an alternative

approach to Turing machine models by specifying a representation, which represents the

full state of a machine and an environment map that can be taken to be the configuration
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of the system. Finally, a meaning represents what a program does when it is executed in

the machine, and the definitions of similarity and the for most quantifier clarifies what the

usual term of ’indistinguishable’ means. This marks an important development that defines

the environment where Trojan executes and its characteristics, since without the distin-

guishable/indistinguishable property one cannot identify programs running in the model as

Trojan or non-Trojan.

The work of Thimbleby et al. was objected by Mäkinen (2001) on the grounds that

the five arguments exposed by Thimbleby et al. are not enough to substitute Turing machine

models. In a rebuttal, Thimbleby et al. (2001) explain that alternatives such as those exposed

by Mäkinen would entail intricate solutions. One of the intricate solutions would imply the

invocation of an environment, observer and the notion of ’true meaning’. Thimbleby et

al. do recognize that both solutions still need to be further explored, in order to settle the

matter.

In Zuo et al. (2006), the authors take a different approach to F. Cohen (1987, 2001)

and Thimbleby et al. (1998), and extend (Adleman, 1990; Zuo & Zhou, 2004) concept’s of

recursive functions to describe the notion of infection and imitation within this framework.

The imitation property consist of a recursive program that behaves in some computation

like the original program by defining it in terms of the existential quantifier. This allows for

variation on some computations, while behaving differently in others, and hence, this allows

for the notion of imitation which is one of the core characteristics of a Trojan.

An alternative to defining a Trojan horse is to use a general taxonomy under which,

if the software contains N characteristics then it can be considered to be infected by a

Trojan, and therefore be compromised. This approach is taken in (Karresand, 2003). In his

work, the author uses the technical description model of IT weapons (TEBIT) taxonomy.

The objective with this approach is to find a representative group of characteristics of the

software weapons to be defined, categorize them, and calculate the standard deviation from

the main characteristics.

While the problem of defining a Trojan and its characteristics takes a substantial
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amount of literature, there is a segment of the literature that avoids the problem altogether

and follows a more operational approach, focusing on the detection of the Trojans based on

assumed characteristics or behavior. Qin et al. (2010) use a module that detects operating

systems objects such as registry, file, and ports systems services, among others, to monitor

the state of the operating system. Each object being monitored is assigned a weight and

a suspicious degree, and is then evaluated using a dot product; and if it exceeds a certain

threshold value, then it is labeled as a Trojan. Tang (2009) focuses on the Microsoft PE

executable format, uses decision trees to derive relevant characteristics of the format, and

uses these filtered characteristics to train a neural network. The experimental results show

that the selected headers of the PE executable format provide better results than using

all headers. Alternatively, Y.-F. Liu et al. (2010) use instance based learner, Naive Bayes,

and decision trees to evaluate a system’s catalog of operating system behavior. The system

behavior catalog includes multiple attributes in network messages, processor, thread, system,

and object categories. The authors concluded that depending on the specific mixture of

attributes, some might become relevant, while others might become less relevant and can

provide lower results. Further, the authors found that NaiveBayes performed better in terms

of efficiency and accuracy than the other compared classifiers.

A recent trend in malware is the addition of Trojans at the hardware level. A proposed

taxonomy to describe hardware Trojans is given in Tehranipoor & Koushanfar (2010). The

authors’ taxonomy focuses more on hardware mechanisms such as particular activation char-

acteristics actions and physical characteristics that distinguishes hardware Trojans. While

some are related to software Trojans, other mechanisms, such as activations through sensors

or logic circuit execution, are particular to hardware Trojans.

Baumgarten et al. (2011), on the other hand, put particular interest on the hardware

Trojans distribution channel, which is particularly vulnerable to attacks. They describe the

vulnerabilities in hardware distribution channel and how trust, lack of secure part authenti-

cation, and theft can all play to the attacker’s advantage when using hardware Trojans. The

authors also describe different types of attackers along the supply chain: designer attackers,
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fabrication attackers, and distribution attackers.

A particular hardware Trojan horse that has been documented, which is of particular

significance, is given in Wei & Potkonjak (2013). The Trojan is particular in its difficulty

in detection, since it relies on stressing certain gates and delay faults within the integrated

circuit’s output. These methods of hardware Trojan activation due to stress can be quite

effectively implemented, based on the available documentation and represent a real concern

in modern circuit design.

A field of virology that is not directly related to Trojans, but has been used in Trojans,

has been Cryptovirology (Young & Yung, 2004). Cryptovirology is the study of the uses

of cryptography applied to viral applications. There are two general application scenarios

(Anandrao Shivale, 2011). The first is polymorphism: where the virus uses encryption to

change and make unreadable part of its code. The second is the crypto viral extortion:

where the virus encrypts a target system’s files. The attacker then demands a ransom to

hand over the key to regain access to the hostage files. The author provides analysis of

a Trojan attack that used the crypto viral extortion and further giving counter measures

that can be implemented to protect against such attack. The uses of encryption as they are

applied by AI algorithms are covered more thoroughly in the next section.

Encryption Through AI Algorithm

Encryption in AI algorithms is a field that is of recent interest, and based on the

reviewed literature, had its beginning with the work of (Pointcheval, 1995). The objective

of the field is to use the AI or machine learning algorithm to make a message unreadable.

A particular example is given in (Kanter et al., 2002), where two two-layered perceptron

neural networks are trained together until they synchronize to form a cryptographic system.

A recent effort is that of Ismail et al. (2012), where they use a Multi Layer Perceptron to

do symmetric encryption. The analogy is drawn by representing the weights as the public

key, and the biases of the hidden and output layers as the private keys. The private keys
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are agreed by the sender and receiver, and act as private keys in a symmetric encryption

scheme. The key length is chosen based on the number of neurons in the hidden layer for the

hidden bias, and the number of neurons in the output layer used for the output bias. The

keys must be numeric. The network is trained using a variant of backpropagation (using

momentum). The public key is then distributed, and the output can be transmitted.

Another area of research is selecting the ’key’ in image encryption using genetic algo-

rithms is covered in Bhowmik & Acharyya (2011). The authors’ objective is to choose the

best chromosome by maximizing the fitness value. This will make the chromosome the best

’key’, so that when it is applied to the Blowfish algorithm (Schneier, 2007), the correlations

among the pixels become minimized. An alternative approach is presented by Mahmood

et al. (2013), who worked with genetic algorithms to use selective encryption to provide

security to medical images. Selective encryption is the encryption of selected parts of the

image or using different algorithms to achieve better performance in processing the images.

The system evaluates: the encryption algorithm to be used, key-length, robustness parame-

ter (correlation or pixel change rate), number of regions, and side information (information

needed for transmission of the encrypted data). The objective is to minimize the trade-offs

incurred between the processing time and the resulting robustness of the encryption.

A novel approach to using neural networks for cryptoanalysis is presented in Alani

(2012). Where the neural network used scaled conjugate-gradient, and was utilized using

ciphertext as its input and plaintext as its output. The network is assumed that it will

retrieve plaintext from cyphertext not used in the training, if the same key is used.

Adversarial Machine Learning

The security of machine learning has attracted recent attention due to the proliferation

of machine learning algorithms in security applications, such as spam detection and intrusion

detection. The interest lies in that these systems are subjected to an adversary whose

purpose is to constantly change behavior to avoid detection and subvert the system. This
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contrasts with traditional applications of machine learning where the distribution is assumed

to be stationary due to the slowly changing nature of the phenomena traditionally studied.

In Barreno et al. (2006, 2010) a taxonomy for attack categorization is presented by the

authors, in which they specify the influence, security violations, and specificity of attacks

as the central axes of the taxonomy. The proposed taxonomy allows categorizations of the

attack, as well as exploring the defenses that are available to counter such attacks.

In characterizing the domain of adversarial learning, the attack’s effectiveness is de-

pendent on several factors, such as the knowledge of the attacker. A major principle that

should be followed when studying adversarial machine learning is Kerckhoffs’s principle that

states “the security of a system should not rely on unrealistic expectations of secrecy” (Huang

et al., 2011). The initial study under this assumption was done by Dalvi et al. (2004), where

they used a similar approach to evolutionary game theory. They assumed that adversary

can use an optimal plan, and that the Classifier also uses an optimal classification to counter

the inputs of the attacker.

In Lowd & Meek (2005), the authors present an alternative to Dalvi et al. statement

of the problem and propose the adversarial classifier reverse engineering (ACRE) problem.

As opposed to obtaining an optimal strategy, ACRE assumes imperfect knowledge on the

part of the attacker, and that the aim of the attacker is to identify the outcomes of queries

that provide insight into a classifier’s inner workings. The ACRE problem relies not just on

the attacker’s knowledge of the classifier, but also on the adversarial cost function, which is

the cost associated to the usage of particular instances, depending on the complexity of the

implementation. In other words, under ACRE, some implementations of the attack might

involve less effort to carry out to extract information, than others.

Nelson, Rubinstein, et al. (2011) expand the notion of ACRE by generalizing the

problem in two different ways. The first generalization opens the analysis to many classifiers

that are not convex and utilized in practice. The second generalization deals with evasion

techniques which consist of the attackers ability to refine the method of sampling data to see

if better estimates can be obtained. The new attack strategy also contemplates additional
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feedback from the training distribution, such as the information gleaned by the adversary

when he obtains samples from the training data, which may become representative of the

underlying distribution. The authors also try to delimit the available information that the

attacker has with respect to the mappings to the feature space.

A different approach to Nelson, Rubinstein, et al. is explored in W. Liu & Chawla

(2009), where ACRE is used under the assumption that adversarial machine learning is a

Stackelberg game. The Stackelberg game model assumes that a leader (the adversary) will

make the first move, and the follower is the learning algorithm. The follower reacts to the

leader, and it is assumed that the leader will know this and will maximize the payoff, and

in turn so will the follower. The authors used genetic algorithms simulating the scenarios of

the adversarial Stackelberg game. The simulations always ended with a solution where the

Stackelberg equilibrium was effectively found.

A more general and relaxed approach to the analysis of adversarial learning is done

by Laskov & Kloft (2009). The authors take a different approach to the other authors in

that they provide an analysis procedure consisting of four steps. The first step consists of

axiomatizing the learning procedure and the attack process. The second step relies on a

detailed specification of the attacker’s constraints. The next step consists of specifying the

various attack scenarios and identifying the optimal ones. The final step consists of the

determination of the bounds for the selected optimal attack scenarios specified in step three.

The use of this strategy led the authors to conclude that applying the steps to practical

problems led to more optimistic results on the part of designing effective algorithms to

counter adversaries.

Nelson, Biggio, & Laskov (2011) analyze the risks of learning within an adversarial

setting through a statistical learning framework. However, the exposition is theoretical,

as opposed to the preceding discussion of Laskov & Kloft, and cannot be calculated in real

case scenarios. Nonetheless, by arriving at bounds for a particular contamination, the model

may yield worst case scenarios on which to provide upper bounds on adversarial capacity.

These worst case scenarios can then be used as criteria in the selection of algorithms for
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contamination scenarios. The authors present the analysis starting with the scenario where

the contamination exhibits itself as an outlier. The second scenario is the data perturbation

where the data points are perturbed by noise. This noise is intended to displace the data

points to the attackers’ advantage. The next scenario is label flipping where benign and

malicious labels are interchanged. Finally, the authors present the feature constrained outlier

scenario, in which the features themselves are corrupted. These scenarios are then used by

the authors to measure the stability of the classifier subjected to contamination. The derived

measure to measure the stability is referred to by the authors as the classification robustness.

This measure translates in linear classifiers as the rotation angle of the hyperplane under

contamination.

Biggio et al. (2013) use an adversarial model that describes the adversary’s goal in

terms of a utility loss function. The model also contemplates the adversary’s target system

and the adversary’s capabilities in similar organizational manner as that of Laskov & Kloft

(2009). The model is used by Biggio et al. to characterize attacks on systems using gradient

descent. The objective is to fool the algorithms, such as neural networks and support vector

machines, into classifying samples which have close relationship between them (as in the case

of similar handwritten digits). The caveat is that the attacker must guess the underlying

distribution, and use data points from densely populated regions to carry out a successful

evasion by using the closeness between benign and malicious data. The framework was also

used in defeating biometric systems Biggio et al. (2012), as a poisoning attack that gradually

compromises the biometric template used to store the biometric signature until the benign

template is replaced by the malicious one.

Overall the field of adversarial learning can be compared to an arms race (Roli, 2013),

where the attacker first analyzes the machine learning algorithm and tries to use it to his

advantage; then the designer of the machine learning algorithm system counteracts with an

update to the system. The process then repeats itself in a recurring cycle.
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Neural Network Trojan

Implementation vulnerabilities for neural networks were described in Geigel (2013),

nonetheless, these vulnerabilities can be generalized to other learning algorithms and can

be classified into three categories. The first category are vulnerabilities that arise from

the data, and aim to poison the data (Kloft & Laskov, 2007; Nelson & Joseph, 2006), by

adding specifically crafted data to influence the learning. The specific taxonomy in this

category of attacks is given in Barreno et al. (2010). The second category of vulnerabilities

takes advantage of the algorithm behavior by compromising the integrity of the algorithm,

encompassing attacks where the attacker uses the training cycle to embed malicious payloads

in order to create a compromise. The third category is a compromise on the programming

or the hardware where the learning algorithm runs. While the three vulnerabilities can be

exploited independently, the use of the three categories to launch an attack can fall under

the category of Trojan horses (Thimbleby et al., 1998).

The implementation of the NnT assumes that the elements of Payload P ′ can be

modeled as independent from one another. This assumption is needed, since insertion of P ′

into a benign training data B′ may lead to some elements of P ′ to be categorized as B′, as

well as some elements of B′ into P ′. The relationship between any vector x εX on the mixed

data set that contains elements of the category C is expressed in terms of the conditional

probability density:

φi (X|Cγ) =

∫
P (x|Cγ) dx (1)

Where the category label γ may be either B′ or P ′. Since the training set mixes both

B′ or P ′, this gives rise to the notion of a mixture of densities expressed as:

2∑
i=1

φi (X|Cγ) = φ1((X|CP ′)) + φ2((X|CB′)) (2)

This last formula gives rise to the possibility of N mixtures of payloads that can be

expressed in terms of a more general formula:
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Ω =
n∑
i=1

φi (X|Cγ) (3)

This generalized mixture of conditional densities leads to the problem of creating a

Trojan for a neural network as the embedding problem that can be postulated as:

“Given a Neural network N, can we use a training data based on the mixture of conditional

probability densities Ω to train the neural network N to memorize the known distribution

payload P ′ that is embedded as part of Ω, and generalize the distribution of the benign data

B′?” (Geigel, 2013)

The embedding problem for the neural Trojan is based upon several underlying as-

sumptions listed below:

1. The attacker controls the process of development of the algorithm implementation and the

end user does not know that the application has an unwanted side effect.

2. The attacker controls the training and testing process of the Neural Trojan implementation.

3. The attacker can construct the distribution of the payload P ′ in an arbitrary fashion.

4. The attacker can manipulate the parameters of the algorithm.

5. The attacker can manipulate encoding of the data to his advantage.

6. Any lack of convergence can be compensated at the post processing stage.

These assumptions allow the attacker to deploy the Trojan under reasonable real world

scenarios. The NnT is implemented on a basic backpropagation neural network and on the

Neural Network Trojan with Sequence Processing Connections (NNTSPC). In the NNTSPC,

the backpropagation neural network is followed by a gating function that is activated by one

of the inputs. The Trojanized networks are tested on a synthetic data set and on the

Congressional Voting Records Data Set (Asuncion & Newman, n.d.). Due to the different

training parameters, the NnT can encode the payload under different weight matrices. This
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ability to achieve a high mutation rate of matrices gives the NnT a high polymorphic capa-

bility, making it extremely difficult to detect in the encoded phase, and it is only after the

Trojan is decoded and executed that it may be possible to discern its compromised nature.

Summary

The field of machine learning is being actively studied as the trend of using machine

learning in diverse areas continues to grow. As the applications for machine learning in

security related areas continue to grow, so do the threats to the algorithms that make up

these systems. Current research shows that the need to adopt Kerckhoffs’s principle is

essential in providing the necessary robustness to withstand attacks on machine learning

algorithms. The research has provided different assumptions and criteria on which to judge

Kerckhoffs’s principle based on theoretical upper bounds, as well as reasonable practical

assumptions. As the field matures, it is expected that several of the related fields such as

cryptoviruses, AI encryption, and Trojans see a converging path. Recently, the convergence

has only been slightly touched by the implementation of the Neural Network Trojan.
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Chapter 3

Methodology

Overview of Research Methodology

The proposed approach starts with the analysis of the Unsupervised Learning Trojan

from the basic assumptions of the NnT, and then shows how the unsupervised Trojan devi-

ates from the supervised learning assumptions. The discussion then describes the analysis of

the unsupervised learning parameters that need to be taken into account to carry out a suc-

cessful attack. Three algorithms, four data sets, and eight payloads were arbitrarily selected

as representatives of the unsupervised learning field. An individual background is given on

each of the individual algorithms, and based on the general characteristics of the algorithms,

the procedures for payload encoding were adjusted accordingly. An experimental setup is

devised to simulate the steps required by an adversary before the attack. These steps can be

taken to be the “training” set of the experimental procedure. An evaluation criteria is given

based on the measurements obtained during the “training session” which serve as selection

criteria of the best parameters to use in the actual compromise. The actual compromise

would represent the “testing” procedure of the experimental setup.

The Unsupervised Learning Trojan Density Problem

For the Unsupervised Learning Trojan, the assumptions given for the NnT embedding

problem described above must be reevaluated, as they either would need to be modified or

would not apply. For the NnT, these assumptions allow the attacker to have an ideal

scenario, where the attacker can manipulate both the training data set and the payload

without any restriction, so that he can arbitrarily construct any training distribution. In

such cases, the attacker has perfect information and is able to choose the strategy that

maximizes his utility. This means that attacker can successfully manipulate the training so

that the prior probability of the compromise can be theoretically chosen to be unity. Under



26

this scenario, the attacker can train the neural network to a desired degree of accuracy vs.

the polymorphic ability of the attack. This leaves the attacker with just needing to set the

appropriate mixture Ω to achieve his goal.

This is not the case for the Unsupervised Learning Trojan. Under this new type of

attack, the attacker does not have control of a training set, and now the parameters need

to be estimated instead of being available for manipulation. This process takes the form

of density estimation of the distributions. Since the benign data and the payload are given

to the algorithm without labels, the goal of the compromised algorithm is to discriminate

between the benign data and the payload. The question to be answered is whether an

unsupervised algorithm is capable of discriminating between unlabeled malicious samples

and the benign data. We can start the analysis with Equation 3, which now becomes:

Ω =
n∑
i=1

φi (X|ψ) (4)

where ψ are the parameter vectors for the class. In addition, the attacker no longer

has the full control of the prior probabilities as in the NnT, and the mixtures are now

determined by:

Ω =

n∑
i=1

φi (X|ψ)P (ψ) (5)

The question that immediately follows is: If given a Unsupervised Learning Trojan,

can the attacker arbitrarily manipulate the cluster selection?

The goal of the attacker will be: To achieve a mixture, given two densities φ and φi+1,

such that:

φ (x|ψcomp) 6= φi+1 (x|ψCi+1) (6)

where ψcomp is the composite parameter vector for the attackers mixture. This argu-

ment can then be generalized to any number of mixtures.
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The equations above must satisfy the following relation for the parameter vectors

ψcomp for the class:

ψcomp 6= ψCi+1 (7)

and must also meet the requirement of the Trojan elements xT ′1i ∈ XT ′ , where XT ′ is

the vector class of Trojanized inputs. To meet these requirements, the attacker must estimate

the volume density spread of the Trojan cluster and maximize the inter cluster distance

with the benign data to avoid overlaps between the payload and the benign information

that may hamper the execution of the compromise. It can also be stated that: in absence

of any information about the Trojanized inputs, the assumption will be made that the

Trojan elements will be treated as random vectors, whose behavior can be described by a

parametrized form, and will behave the same along all dimension of the vector space on

which it operates. This will simplify the analysis of the Trojan behavior and the benign

data, and will also have a big impact on the encoding of the Trojan payload P ′.

The volume density of the Trojan attack may be determined by:

P (Trojan) =

∫
V

p (x) dx (8)

While the attacker does not have a training set to compromise, as in the case of the

NnT, it is assumed that the attacker has access to the algorithm, its implementation, and

to information regarding the goal of the implementation. By having access to the goal of

the implementation, he can sample elements from the population and draw inferences as to

the possible clusters that might be formed during an actual implementation.

To model the compromise, the sampling done by the attacker will have a sample N

that has embedded a set of compromised points mTrojan, which are the result of the inputs

XT ′ into a solution space, acting as the payload P ′. The probability P (Trojan) of mTrojan

falling on the correct cluster defined by a density function p (x) covering a volume v that

lies on an interval V is given by:
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P (Trojan) =

∫
V

p (x) dx = p (x) v ≈
mTrojan

N
= M (9)

p (x) =
M

v
(10)

The attacker must further assume that there will still be scattering of the Trojan

elements around the centroid. As long as the attacker has no specific information on the

Trojan density behavior, the p(x) can be modeled in general terms by:

p(x) =
1

N

N∑
n=1

1

(2πσ2)1/2
exp

(
− (x− µ)2

2σ

)
(11)

which gives the volume v in terms of the σ, and mTrojan
N as µ.

A similar definition can be done for the benign data that the attacker will try to keep

in a separate cluster but cannot avoid scattering. As the attacker defines the specific Trojan

and gathers information on the data set, he may acquire certain information on the centrality

of the points and the scattering, which may or may not be homogeneous. Therefore, a more

general description becomes:

Ω′ =
n∑
i=1

φi

(
X|µ,

∑)
(12)

where Ω′ contains φi densities that belong to Payload P ′, and the component density

φi (X|µ,
∑

) is a D dimensional Gaussian (Murphy, 2012), where
∑

i is the covariance matrix

D and Transp is the transpose:

φi

(
X|µ,

∑)
=

1(
2π)D/2 ‖

∑
i‖
)1/2 exp(−1

2
(x− µ)Transp

∑−1
i (x− µ)

)
(13)

The next section will lay the groundwork for the actual attack deployment, followed by

the analysis of a practical example, taking under consideration the model explained above.
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Attacker’s Analysis of the Unsupervised Learning Trojan Density Problem

The compromise scenarios presented are based on the assumption that the attacker

can have access to the samples and approximate the behavior of the attack with the obtained

samples. The analysis will focus on testing the assumptions before launching the attack on

a compromised algorithm and obtain the equivalent of cluster validity measures (Davies

& Bouldin, 1979; Bezdek & Pal, 1998; Kim & Ramakrishna, 2005; Deborah et al., 2010).

This analysis carried out by the attacker occurs during a calibration phase of the attack,

which is similar to the validation phase under supervised learning, where the attacker,

using the compromised algorithm, will tweak the parameters of the attack before the actual

compromise takes place.

While the attacker does not have full control of the prior probability for all the data,

the attacker may impose some constraints on the payload’s prior P (ψ) based on strategic

selection of the payload’s characteristics and encoding. If no other information is obtained

during the calibration phase of the attack besides the sampled obtained data, he must

assume a certain distribution of the unknown example and this will be based on equation

13. Under special scenarios where the attacker chooses to attack certain selected data sets,

the attacker can make further assumptions under most real scenarios of the spread of the

densities of the benign data. For example, given a census data, the attacker can infer that

the probability that a sample X from the data is over 100 years of age and has Y other

characteristics. While the aforementioned analysis may be used it is a strong assumption

that will not further be pursued in this study and the basic starting point of equation 13

will be used.

The attacker can leverage the intercepted data to select the appropriate subspace for

the Trojan, and from there, he can approximate:

f (N,mTrojan) ≈ ftraining(M) (14)

where ftraining is the training derived function using sampled data. This last equa-
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tion justifies that an analysis of the calibration phase, under the reasonable assumptions

and properly executed attack components, the attacker can, in principle, approximate the

underlying distribution that the algorithm will use in the compromise. This reasoning, in

turn, allows for the attacker’s analysis of the clusters under a calibration or “training” phase.

The starting measurement to be used is an approximation to the equation 10, using

the obtained data set during the calibration stage of the attack. The approximation in D

dimensions is the cluster density DY that can be obtained by:

DYTrojan =
Mtrojan√

(Max−Min)2D1Trojan
+ ...+ (Max−Min)2DnTrojan

, (15)

where M is the average number of sample points in the Trojan cluster over the total

number of elements of the Trojan, and the denominator volume measurement can be made

on n dimensions D of the Trojan cluster. The density for the benign clusters can be defined

similarly.

The use of equation 15 can be adversely be affected by the misclassification of samples

and malicious data during the calibration phase. To quantify the possible misclassification

due to the overlap in the tails of the assumed Gaussians, the attacker can use the degree of

similarity DS between the clusters. The DS measure is intended to determine the degree

of overlap between the clusters. The formula for the degree of similarity DS is given below:

DS =
NMCTrojan +NMCBenign

N
(16)

where N represents the number of points in the two clusters, NMCTrojan is the num-

ber of Trojan elements that were misclassified as part of the benign cluster, and NMCBenign

is defined similarly. The goal is to minimize the number of misclassified elements on both

cluster elements. The formula is also applicable to more than two clusters, since the mis-

classification is centered on Trojan elements and inclusion of other members into the Trojan

cluster.

The density calculation 15 is very useful in providing density information, however
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within the enclosed volume, the distribution of samples may be skewed. A measure of

“skewness” will be calculated by using Degree of Cluster Distance (DCD) given by:

DCD =

√
(CLTrojan − CLBenign)2D1

+ . . .+ (CLTrojan − CLBenign)2Dn√
(Max−Min)2D1

+ . . .+ (Max−Min)2Dn

, (17)

where CL is the specific centroid location coordinates, and (Max−Min)2 is the

squared distance of the maximum and minimum of the data points along the dimension D

of the clusters. The DCD grows as the distance between centroids increases (the numerator)

or as the spread distance between the dimension D decreases (the denominator). The Trojan

designer will try to maximize the DCD.

If the DCD is too small, then the cluster should be reassessed or eliminated due to

the closeness of the clusters. What this implies is that cluster centroids that are too close

with little spread among the data might be too similar for discriminative assignments.

The attacker can use the information obtained to establish the measures given above

and make reasonable estimates of the attacks effectiveness. An important question to answer

is whether he can further take advantage of the Gaussian assumption to simulate the rest of

the data that the user will work with during the compromise. This will lead to two different

scenarios to test, one where the attacker uses only the intercepted data, and the other where

the attacker extends the obtained data using the parametric assumptions to further increase

his chances of success.

The Cluster Identification Sub Problem

The cluster identification sub problem is the distinguishing of the malicious cluster

from those identified by the algorithm as benign. This presents several challenges, since the

algorithm’s discriminative measures are not designed to discriminate clusters, just separate

them. Cluster discriminative measures can be altered to identify one or more compromise

clusters using either intrinsic or extrinsic attributes of the malicious payload.
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Intrinsic properties are those properties that can be found by just analyzing the prop-

erties within a single cluster. Some of the properties that can be used are:

• Size of the sampled data
• Location
• Uniformity
• Density
• Shape
• Surface area
• Topology
• Inter point relationship
• Temporal behavior

The size of the sampled data within a specified cluster can be used as identification when it

reaches a certain threshold, where it acts as a trigger for the payload to be decoded, executed

or both. For example, if the amount of data in a particular cluster exceeds the normal count

of n samples, then this serves as the trigger for the next data elements that form part of

the cluster to be malicious. The strategy can also be implemented by using the location

of the cluster or when the cluster moves its position to a certain predetermined location.

The location trigger can be obtained if, for example, the location of the cluster falls within

the lower right quadrant of the usual locations prescribed in a Cartesian coordinate system,

tagging this cluster as the malicious one.

The clusters uniformity, density, shape, and surface area can also be used to trigger

the cluster identification in a manner similar to previous attributes. When a particular

identified cluster reaches the predetermined uniformity measure or density, then the cluster

is identified as malicious.

Using topology as an intrinsic property that identifies the malicious cluster is more

difficult to implement. However, the topological property of connectedness in a region can

be implemented by partitioning the clusters into equal size subspaces. If a subspace within

the cluster is empty, then we can say that two regions separated by this subspace are not

connected and may lead to identification of the cluster as malicious.

Identifying malicious clusters by using inter point relationship within a cluster can
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be carried out in one of several ways. An example would be to measure the angle of each

point relative to a single identified point in the cluster, such as the cluster’s centroid. Other

interrelation attributes may be the Euclidean distance relative to the cluster’s centroid,

positioned in a specific order, such as clockwise or counterclockwise measurement execution.

The temporal behavior can be broken down into three sub properties. The first strat-

egy is to take advantage of the frequency of occurrence in a specific temporal interval in

order to activate the payload. The second strategy is to use a specific input sequence, in an

order for which its probability of occurrence is highly improbable. In the third variant, the

sequence elements are not relevant, but the timing of arrival into an online algorithm will

be the activation trigger.

Extrinsic properties are those that set the malicious payload apart from the rest of

the benign data, by comparing the behavior of the malicious cluster(s) from those that

are benign. The same properties used under the intrinsic analysis can be used as extrinsic

properties. To give several examples, the size of the sampled data can now be measured as

the difference between clusters, as opposed to just a predetermined cluster, (e.g. make the

cluster an outlier that can be distinguished as the attack payload). The location property

can be measured as the location relative to other clusters that are being analyzed. The same

extension used in these two examples can be done for the other properties as well.

A final example would be the density relationship of the clusters, where the comparison

between clusters can be represented as an imbalanced set. Under this scenario, one of the

classes is underrepresented with respect to other classes that are present in the data set,

making the relative density of the cluster less than the others. The attacker can take

advantage of this imbalance to determine which of the clusters is the Trojan payload and

activate it.

Payload Activation and Decoding

The payload activation and encoding strategy will depend on the specific data set
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qualities that the attacker can use to his advantage. The strategy can be divided into

two separate stages: payload activation and encoding. The activation and decoding of the

payload are directly related to the cluster identification sub problem, since the identification

leads to both the activation and decoding of the payload. The activation and decoding of

the payload may occur at the same time or at different stages of the exploit.

In the activation phase, the compromised algorithm detects that one or more data

items are part of the payload of the attack. While offline algorithms may not have a specific

sequence of data input or are using randomized ordering for the input data, it is necessary

to have an ordering for payload decoding.

The payload decoding is described by:

P (Ssuccess) = P (s1, . . . , sn) =
∏

P (sj |sj−1, . . . , s) (18)

= P (sj |sj−1, . . . , s)P (sj−1|sj−2, . . . , s) . . . P (s2|s1)P (s1)

The success of carrying out the probability constraint in Equation 18 lies in the ability

to have a successful activation and subsequent strategy using intrinsic or extrinsic properties

that can take advantage of the well ordering principle. That is, in this work, a well ordered

sequence using this principle is a decoding sequence using an intrinsic or extrinsic property

that can be put in a one to one relationship with the natural numbers, such that the first

element of the sequence is the first element, and the second element of the sequence is the

second element, and so on. This one to one correspondence can in turn be translated into a

temporal sequence using this one to one relationship.

Practical Considerations

The implementation phase deals with inserting compromised elements into the al-

gorithm, such that when it receives the desired data inputs, it will carry out the desired

behavior of the attacker. The generic architecture of a typical unsupervised learning algo-

rithm is given in Figure 1, which presents the architecture in three parts: the preprocessing
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part, the main algorithm, and the post processing part of the algorithm. The proposed

attack focuses on compromising the algorithm and using the post processing part of the

architecture to decode the payload in an optimal manner. While it can be advantageous to

prefilter the data in the preprocessing part to further guarantee the chances of success, it

will not be covered in this work.

Figure 1. Diagram of a compromised algorithm

The generic steps to carry out the compromise are given in the Algorithm 1 shown

below:

Algorithm 1 Generic steps carried out by an attacker to construct an Unsupervised Learn-
ing Trojan
1. Determine which intrinsic or extrinsic measurements to add

as part of the compromised code and the decoding sequence strategy.

2. Carry out the analysis of the Unsupervised Learning Trojan
density problem. If successful, go to step 4, else continue to step 3.

3. Determine stabilization techniques that are necessary, and return to step 1.

4. Substitute the benign code with the compromised algorithm.

5. Inject the payload in the same manner as steps 1 through 3, to achieve the predetermined
objective.

The first step is to determine which intrinsic or extrinsic property will be used to

trigger the payload activation and decoding of the attack. The selection does not exclude

the possibility of combining multiple properties to carry out the compromise. An example

would be using the location of the cluster within a predetermined location as the activation

trigger, and then use the inter point distance to decode the payload. From this step, the
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attack can then be tested by inserting the payload into the benign data.

The second step involves the analysis of Equations 15 through 17 to determine the

attack’s efficacy. A careful tradeoff must be considered by the attacker at this stage between

making a successful attack, and at the same time minimizing the possibility of detection due

to a recognizable pattern that characterizes the payload.

The third step consists of stabilizing of the cluster, if required. The stabilization is

aimed at manipulating the clusters of benign data to maximize the probability that the

compromise is successful. A description of cluster stabilization can be carried out using

the influence and security violations axis (Barreno et al., 2010). The influence axis allows

for causative and exploratory attacks, and deals with the adversary’s ability to influence

or observe the training data. The security violations axis describes the type of security

violations that the attacker can make, and consists of integrity and availability attacks.

Integrity attacks refer to allowing false negatives, while availability attacks create denials of

service.

In this work, the influence axis will be modified in the form of malicious data influ-

encing benign data, so that the attacker can attempt to maximize the inter cluster distance.

In turn, the security violations axis will be used as access denial, so the attacker can force

the clusters into a stationary state, where the attacker can inject the payload without being

overtaken by the benign data. This deviates from Nelson & Joseph (2006) approach, where

the objective is to subvert a detector by shifting the non-anomalous region hypersphere

into the space where the attack vector is located, so that the detector would treat it as

non-anomalous.

If the compromise is not successful at steps 2 and 3, the attacker may carry out further

cluster stabilization techniques such as: denial of service, inserting more data to balance the

cluster to the desired outcome, or return to step 1 to redesign the attack. If the attack is

successful, the attacker can then proceed to step 4, which is to substitute the benign code

with the Trojanized code and let it stay dormant until step 5 can be executed. Step 5 will

be the actual injection of the payload into the benign stream, which will depend on whether
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the algorithm is online or batch. The attack will mimic the simulation of data injection

carried out by the attacker in steps 1 through 3.

Algorithms and Data Sets

This section shows the necessary setup to carry out the Unsupervised Learning Trojan

with three selected unsupervised algorithms to demonstrate the analysis and concepts that

the attacker must take into account for a successful attack. The three selected algorithms

are:

• K-means algorithm (MacQueen, 1967)

• Kohonen Neural Network (Kohonen, 1982, 1989)

• Adaptive Resonance Theory (ART-1) (Carpenter & Grossberg, 1998)

Within this work, implementation of each algorithm were be based on the original algorithm

to increase the vector surface of attack, since it is more probable that the original algorithms

have a wider adoption than more recent variants of the algorithms. It is also easier to gen-

eralize from the original algorithm to the more recent variants, than the other way around.

Each of the three algorithms presented a different aspect of unsupervised learning and dif-

ferent challenges to the deployment of the ULT. While K-means measures the centroids on

a real dimensional space, Adaptive Resonance is based on binary input variables. Adaptive

Resonance also has a growing number of clusters, while Kohonen and K-means have fixed

number of clusters. These differences will be covered during the analysis of the compromise.

The selected data sets to be analyzed were taken from the UCI Machine Learning

Repository (Asuncion & Newman, n.d.). The four selected data sets are shown in Table

1. The choice of data set for a particular algorithm will be made based on the algorithm’s

ability to process a specific attribute type and the need for multiple data sets per algorithm.

The vector entries within each of these data sets will be divided into “training”, “vali-
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dation”, and “testing” sets. The “training” set will be the data available to the attacker, and

the "testing" will simulate the algorithm in the attack environment. The sets were chosen

to reflect possible power, medical, and scientific analysis, to cover some possible real world

scenarios under which the compromise might be possible. Also, the data sets were selected

with both integer and real values, to simulate various types of possible encoding strategies.

Finally, the data sets were also selected varying from “low” to “high” instance availability,

to show various loose, as well as constrained access, to data scenarios.

Data set Attribute Type Instances Attributes

KEGG Metabolic Relation Network Integer, Real 53,414 24

Individual Household Electric Power Consumption Real 2,075,259 9

Statlog Project (Shuttle) Integer 58,000 9

Water Treatment Plant Integer, Real 527 38

Table 1: Proposed data sets

Analysis Carried Out by the Attacker on the Data Sets and Malicious Payload

The analysis to be carried out by the attacker will be broken down into several stages.

The first stage is the analysis of the Trojan payload as in Geigel (2013). The Trojan Payloads

were selected from the Exploit Database (http://www.exploit-db.com) to serve as payload.

These are given in Table 2

The main focus in the ULT payload is the frequency of occurrence of binary elements,

and that the encoding surface be as small as possible so it does not overlap with benign

clusters. On some algorithms such as K-means the size of the payload will help in moving

the cluster belonging to the malicious code further. On the other hand, the K-means will

need specific sizes to be processed on an N*N Kohonen layer since size could interfere with

the success of the compromise.

Once the payload is encoded appropriately, the analysis of modifications of the algo-

rithms to Trojanize them will be carried out. The next stage of the analysis will be the
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process of injection of the payload into the benign data. This stage will concentrate on

analyzing the trajectories of the clusters and the measures described in the section of the

attackers’ analysis of the clusters.

Exploit Size (in bytes)

1 Linux x86 ASLR deactivation 83

2 Linux_x86 Polymorphic ShellCode - setuid(0)+setgid(0)+add user
’iph’ without password to _etc_passwd

124

3 OSX_Intel reverse_tcp shell x86_64 131

4 OSX/Intel - setuid shell x86_64 51

5 win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode 112

6 win32/xp pro sp3 (EN) 32-bit - add new local administrator 113

7 Windows XP PRO SP3 - Full ROP calc shellcode 428

8 Windows XP SP3 English MessageBoxA Shellcode 87

Table 2: Proposed payloads

Compromising K-means Clustering Algorithms

This section introduces the compromise of the K-means clustering algorithms by an

ULT instance. A brief review of the algorithm is given to describe its main functionality.

The discussion is followed by the attack strategy to be implemented on the algorithm and

the data.

K-means clustering was first proposed by MacQueen (1967), and since then, it has

become one of the most important clustering algorithms in machine learning and data mining

fields. Its success can be attributed to its simplicity, while at the same time being very useful

for the purpose of determining the centroid on a predetermined number of clusters. The

K-means algorithm processing can be broken into the following stages:

1. Randomly initialize the centroids.

2. Assign the sample points according to: |x− µj | < |x− µk|.
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3. Calculate the new centroids using the assigned centroid and the samples closest to it using

µk = 1
Nk

ΣNk
q=1xq, where q are the elements assigned to a cluster k.

4. Update cluster center based on step 3.

5. Return step 2 until convergence.

The vulnerability analysis carried out by an opponent is based on Algorithm 1 and cus-

tomization to the K-means clustering, as in Algorithm 2. The selection of cluster separation

as the trigger is based on the sample point assignment (step 2) of the K-means algorithm.

As the separation between malicious payload and the benign clusters increases, so will the

probability of attack’s success.

Algorithm 2 K-means Trojan compromise procedure
1. Use the centroid location as a trigger for the K-means Trojan. The decoding will use the

angle of the payload elements to determine the membership of elements as part of the payload

P ′.The decoding strategy will read the points in a counter clockwise manner relative to the

centroid and decode the values as the angle relative to the previous point in the cluster.

2. Identify which cluster will be used as the malicious one, and quantify the error.

3. If necessary, unbalance the data set to maximize the inter cluster distance and continue to
step 4. Else, return to step 1.

4. Compromise the target by substituting the benign code with the compromised algorithm.

5. Inject the payload to achieve the predetermined objective.

The attack’s complexity lies in that the attacker must guess the predetermined number

of clusters. Therefore, the attacker must carry out his tests under different cluster configu-

rations that he predicts the user may use. The attack may also need to be supplemented by

the use other techniques such as data poisoning, so that the data set becomes imbalanced.

The cycle will be repeated under different configurations until the attack becomes viable.

The decoding strategy will take the centroid of the compromised cluster as point of reference

on which to start a clockwise decoding sequence based on the relative angle of each previous
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point in the sequence.

Payload Encoder and Decoder for K-means Compromise

Out of the intrinsic and extrinsic properties of the malicious clusters, the angle between

data points was chosen. The particular angle encoding can then be expressed in terms of

polar coordinates, specified by an angle θ and a ray r. The selection of the angle is based

on the hexadecimal code chosen as payload of the attack. Each malicious data point angle

is encoded using two hexadecimal numbers. This gives 256 possible angles for the malicious

data points. Once the angle is converted from hex to decimal representation, the length of

the ray is arbitrarily given by the adversary, and will remain fixed throughout the encoding.

From these two pieces of data, the attacker can calculate the new (x, y) coordinates by using

the following formulas:

x = r ∗ cos (θ) (19)

y = r ∗ sin (θ) (20)

A symbolic representation of this process is shown in Figure 2 (a). For the attacker,

the next step is to place the initial payload points in an offset, as shown in Figure 2 (b).

The offset will be chosen according to the feature landscape targeted for compromise.

(a) (b)

Figure 2. Encoding of: a) the malicious angle and b) offset to the starting coordinates specified by
the attacker
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An initial representation of the malicious points for the Linux x86 ASLR deactivation

Payload is shown in Figure 3. While this representation appears plausible as an attack

payload, it has a particular drawback, since the decoding sequence cannot be guaranteed

for all payload variations to be unique. Although the occurrence of such error is small, an

encoding scheme with possible zero error in encoding is preferred.

Figure 3. Representation of malicious points for Linux x86 ASLR deactivation payload

A second alternative is to rearrange the attack points to form a hull, and then center

the random points around the compromising hull. This procedure has the advantage of

including additional points to the attack vector that are used as padding for the encoding,

and can further help in attracting the cluster into the required range.

The method of constructing the compromising hull is to calculate each attack point

using an encoded angle at a distance r, as shown in Figure 4. The angle of the padding will

be calculated using the following formula:

θpadding = 360− θ + ∆ (21)

where θ is the angle to be padded and ∆ is the compensating angle. For example,

this angle can be 360, divided by the total number of the payload’s hex characters. For the
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Linux x86 ASLR deactivation Payload, ∆ = 4.337.

Figure 4. Malicious point encoded with offset and padding angle

The final result of the process described above is shown in Figure 5. The drawback

with this simple implementation is that the shape can be easily discriminated from a benign

cluster of points. A more complex extension to this algorithm is to use cubic splines (Press

et al., 1992), to make more complex hulls which also define the ∆ of each padding. For

the cubic spline alternative, r is left fixed for the purposes of recognition by the decoder

algorithm.

Figure 5. Result of hull creation for Linux x86 ASLR deactivation payload with padding points

The pseudo code for an encoder using 360 degrees as parameter for the hull shape is

given in Algorithm 3 . The code is a single procedure that takes 4 arguments: the payload
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translated from hexadecimal to decimal numbers, the initial x and y positions on which to

start the compromising hull, and the fixed ray length. Lines 5 through 10 generate the x

and y coordinates with the initial offset, and store them as previous values for the main

loop. Line 11 is the main loop. Lines 13-16 compensate for angles that are more than 180

degrees. This compensation makes it possible to achieve the surface without sub surfaces,

as in Figure 3. Lines 18-23 generate the x and y points of the payload within the load. The

points are inserted into the array at line 24, and the padding angle with its corresponding

points is generated in lines 25 through 31, and stored in line 32. The for loop is continued

until all the points have been processed, and then the procedure ends.

Algorithm 3 Payload encoder for K-means compromise

1 PROCEDURE Generate_hull_of_attack_points ( ang le l i s t in decimal form ,
2 in i t i a l_x , i n i t i a l_y , r )
3 average_angle=360/ t o t a l number o f e lements in ang le l i s t ;
4 CALL Insert_into_array (x , y )
5 x= r ∗ cos ( phi_tot∗PI /180)
6 x_vector=x+ in i t i a l_x
7 previous_xpoint=x_vector
8 y= r ∗ s i n ( phi_tot∗PI /180)
9 y_vector=y+in i t i a l_xy

10 previous_ypoint=y_vector
11 FOR each o f the ang l e s in decimal form l i s t
12 phi=cur rent ang le o f decimal l i s t
13 IF ( $phi >=180){
14 CALL Insert_into_array ( previous_xpoint , previous_ypoint )
15 phi=phi−180
16 END IF
17 phi_tota l=phi+phi_tota l
18 x= r ∗ cos ( phi_tot ∗ PI /180)
19 x_vector=x+previous_xpoint
20 previous_xpoint=x_vector
21 y= r ∗ s i n ( phi_tot ∗ PI /180)
22 y_vector=y+previous_ypoint
23 previous_ypoint=y_vector
24 CALL Insert_into_array ( x__vector , y_vector )
25 phi_tota l=−phi+average_angle+phi_tota l
26 x= r ∗ cos ( phi_tota l ∗ PI /180)
27 x_vector=x+previous_xpoint
28 previous_xpoint=x_vector
29 y= r ∗ s i n ( phi_tota l ∗ PI /180)
30 y_tmp_vector=y+previous_ypoint
31 previous_ypoint=y_vector
32 CALL i n s e r t i n to array ( x_vector , y_vector )
33 END FOR
34 END PROCEDURE

The particular decoder procedure initially takes the centroid location as a trigger for

the K-means Trojan. Another alternative is to use distance between 2 clusters as a trigger
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for the K-means Trojan. However, if there are more than two clusters, then the measure

should be taken against the malicious cluster and each of the benign clusters individually. If

a distance reaches a threshold bigger than N, it will trigger the decoder sequence, as shown

in PROCEDURE Decoder phase1 of Algorithm 4. Once the decoder is activated it will call

the PROCEDURE Decoder phase2. This part of the code will keep executing the while

loop of line 12 until the exploit chain that holds the exploit is completed and convert the

candidates to hexadecimal. To process the chain within the while loop of line 12 calls the

procedure PROCEDURE f i n d _ n e x t _ p o i n t. This procedure will go through all

the points within the cluster boundary assigned to the centroid to determine if they are part

of the exploit.

To find if the point is part of the chain two crucial elements must be specified which

are: the initial x-y coordinates and the distance r between exploit points. The distance

between elements is calculated in lines 21 and 22 of Algorithm 4. The candidate distance is

calculated using the euclidean distance in line 25. If the result form the calculations is odd

then it is saved into the list of candidates. The even candidates that are eliminated from

the list are the ones that represent the padding angles. While these points are not relevant

to the payloads content they are part of the decoding mechanism as is shown in lines 23 and

24 where the coordinates are saved to complete the decoding process.

To get the final hexadecimal numbers the Algorithm 4 uses the inverse of the tangent

to extract the decimal representation of the hexadecimal code in lines 35 and 37. In line 37,

if phi is greater than -400 then 180 degrees are added to undo the addition of 180 degrees

of line 15 of Algorithm 3. Additional routines such as opening files and saving files must

be included as part of the decoder and must be contemplated in the overall size of the code

base that is part of the exploit. Leveraging native routines to minimize the size of the

exploit coding “surface” is essential to reduce the possibility of detection on the part of the

adversary.
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Algorithm 4 Payload decoder for K-means compromise

1 PROCEDURE Decoder phase1 ( c lu s t e r_d i s tance ,N, r , i n i t i a l x , i n i t i a l y ,
2 average angle , l i s t_of_points_from_cluster )
3 IF c lu s t e r_d i s t anc e > N
4 CALL Decoder phase2 ( r , i n i t i a l x , i n i t i a l y , average angle ,
5 l i s t_of_points_from_cluster )
6 END IF
7 END PROCEDURE
8
9 PROCEDURE Decoder phase2 ( r , i n i t i a l x , i n i t i a l y , average angle ,

10 l i s t_of_points_from_cluster )
11
12 WHILE explo i t_cha in not completed
13 phi = CALL find_next_Point ( l i s t_of_points_from_cluster , r , next_point )
14 hex_number = CALL convert_to_hex ( phi )
15 CALL store_value (hex_number )
16 END WHILE
17 END PROCEDURE
18
19 PROCEDURE find_next_point ( l i s t_of_points_from_cluster , r )
20 FOR i=1 to number o f po in t s from c l u s t e r l i s t
21 x= x coord ina te from c l u s t e r point−prev ious coordinate_x
22 y= y coord ina te from c l u s t e r point−prev ious coordinate_y
23 prev ious coordinate_x=x
24 prev ious coordinate_y=y
25 length_candidate_r=SQRT(x^2+y^2)
26 IF ( length_candidate_r = r ){
27 IF ( i=odd )
28 CALL push ( chosen_candidate_r_stack , member from l i s t )
29 ELSE
30 d i s ca rd element
31 END IF
32 END IF
33 END FOR
34 IF phi<=−400
35 phi = tan−1 ( next point_y / next point_x )
36 ELSE
37 phi =tan−1 ( next point_y / next point_x )+180
38 END IF
39 CALL El iminate_from_list ( )
40 RETURN phi
41 END PROCEDURE

The compromise, as viewed from the attacker’s perspective, first intercepts a sample

of the data that will be compromised at a future time. It is assumed that a partial capture

will hold at least some portion of the underlying distribution. The underlying assumption

is that the distribution is stationary and does not vary significantly in time. Using this

assumption and the partial capture of information, it will be viable for the attacker to

infer the underlying distribution, and therefore have an estimate of the clustering procedure

outcome. This part of the process is shown in Figure 6, using the fifth and eight column

from the first 10,000 samples of the Statlog (Shuttle) training data set. In this example, the
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attacker is assuming that the user of the K-means algorithm will use two centroids (shown

as circles in Figure 6).

Figure 6. Initial cluster results with a 10K sample of the Statlog (Shuttle) data set

The next step of the process is to encode the payload, put it on the desired coordinate

range, and insert it into the data set to see the behavior of the cluster. For this example, the

chosen exploit is the Linux x86 ASLR deactivation payload. The result is shown in Figure

7, where it is shown that payload insertion is not enough to cause a substantial movement

of the clusters. This would mean that if the attacker chooses to use as trigger the inter

distance between the two clusters, he will need additional data points to trigger the exploit,

or it might accidentally trigger if the measure presented is actually used.

Figure 7. Cluster results with a 10K sample of the Statlog (Shuttle) data with payload injected
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Figure 8. Cluster results with a 10K sample of the Statlog (Shuttle) data set with injected payload
and 400 points

To solve the problem of the centroid distance, the attacker would need to insert random

data points into the data sets, until he reaches a result such as the one shown in Figure

8. The increments were done in batches of 50 until reaching 400 data points. The random

points were generated using the following center: -67.52 in the x coordinate and -261.31 in

the y coordinate, with a maximum radius of 5. The radius size and the angles were randomly

generated and then translated into x and y coordinates.

Careful analysis will have to be carried out on the part of the adversary under a

scenario such as the one in the figures, where the inclusion of significant amount of data

points and a substantial distance could raise suspicion. A careful analysis needs to be done

by the attacker to minimize the distance needed to move the clusters, so that a reasonable

amount of points generated can move the centroid to the desired coordinate.

As an additional consideration, when compromising other variants of K-means such

as online K-means version, the attacker may leverage these additional data points to time

the execution of the payload to his advantage. Under this scenario, the attacker must also

estimate the learning rate range. This range can be reasonably be estimated by injecting

specific data and viewing the response of the learning algorithm or its user. This scenario is

plausible in intrusion detection, where the attacker can view a deny rule behavior activation

on the part of the algorithm as part of the countermeasures of a filtering system.
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Compromising Kohonen Neural Network

Kohonen Neural Network compromise presents several challenges that are not present

in the K-means compromise. To understand the intricacies of the exploit, a review of the

Kohonen Neural Network is given, followed by the compromise execution details.

The Self-Organizing Map (SOM) or Kohonen network (Kohonen, 2013, 1988) is a type

of unsupervised Hebbian (Munakata & Pfaffly, 2004) network that originated from the early

associative memory and adaptive learning networks, and can be used to solve clustering

problems. A typical characteristic of the Kohonen derived from its relation to Hebbian

networks is that it consists of just two layers: the input and the output or map layer.

The SOM neural network converts complex, generally high-dimensional data vectors

with N features, into (usually) a low-dimensional map. The SOM consists of two fully

connected layers of nodes: the input layer and the Kohonen layer, as shown in the figure

below.

Figure 9. Self Organizing Map

The SOM can work as both a Maxnet and Minnet, but for this presentation, a Minnet

will be assumed. The competitive learning of the SOM is related to the K-means algorithm,

as explained in Bacao et al. (2005), where the update occurs only on the winning units of

the Kohonen Neural Network.

The first phase consists on calculating the Euclidean distance given by Distancej for
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node j of the Kohonen layer:

Distancej =
n∑
i=1

(Inputi −Wold ij) (22)

Once the distance is calculated, then the next phase is to choose the winner through

a Minnet process.

As part of the competitive scheme of the Minnet in a winner take all configuration,

the network will suppress the contribution to the other nodes in the Kohonen layer output

map, while “attracting” similar nodes. This suppression and ordering through similarity is

manifested in the SOM through lateral feedback and the following learning rule:

Wnew ij = Wold ij + c · η (Inputi −Wold ij) (23)

Where W are the weights, c is a learning coefficient and η is the neighborhood function.

The original derivation of the formula is given in Kohonen (1982):

dµ

dt
= α (ξ − ξb) η (24)

where µ is the efficacy of the input weight, ξ is the presynaptic input, ξb is an effective

background value, α is a proportionality constant, and η is the post synaptic triggering

frequency. This equation yields:

µij(t+ 1) = µij(t) + αηi(t) (ξ − ξb) (25)

with η as the neighborhood function that implements the lateral feedback, and in its

simplest form, this function can assume binary values. It is set to 1 for those neurons being

positively trained and zero otherwise. This equation yields the same result as Formula 23.

The next phase is to calculate the contribution of lateral feedback on the network.

Several functions can be used to mode the lateral feedback of the SOM. The model can be

given by a crude approximation of the rectangular function:
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Rect(x) =


0 if ‖t‖ > 1

2

1
2 if ‖t‖ = 1

2

1 if ‖t‖ < 1
2

(26)

Another model implementation can be the Gaussian function:

f(x) = ae−
(x−µ)2

2c (27)

or the Mexican Hat function (in one dimension):

f(x) = 1− x2 · e
x2

2 (28)

A graph of each of the functions is shown in the Figure 10 below.

a) Rectangular b) Gaussian c) Mexican Hat

Figure 10. Lateral feedback function graphs

The Kohonen Neural Network presents several challenges for the encoding and inser-

tion of the payload of the malicious attack. While the attack can mimic the procedures

of the K-means by substituting the term centroid for neuron, there is a lateral feedback to

account for as an additional force that may disable the centroid distance as trigger, if not

planned properly. Since what is usually of interest after the algorithm is used is not how

well the data falls within the centroids, but how does the Kohonen layer and the weights

behave, then this requires a change in payload encoding. In order to be stealthy, the attack

must change, so that the payload is expressed in terms of these components. An alternative
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procedure is outlined in Algorithm 5.

Algorithm 5 Kohonen Trojan compromise procedure
1. Use a coordinate range on which one of the neurons may relocate after training, as a trigger

for the Kohonen Trojan. The decoding uses the angle between the nodes of the Kohonen

layer or the distances between the nodes to determine the payload P ′.

The decoding procedure depends on whether the distance or the angle is chosen.

2. Identify which nodes to be used as the malicious one, and quantify the error.

3. If necessary, calculate additional points to achieve the inter cluster distance or angle, and
continue to step 4. Else, return to step 1.

4. Compromise the target by substituting the benign code with the compromised algorithm.

5. Inject the payload to achieve the predetermined objective.

Payload Encoder and Decoder for the Kohonen Neural Network Compromise

The Kohonen Neural Network attack differs from the encoding of the K-means pay-

load. The main main difference in the algorithms is that the Kohonen algorithm acts as a

dimensionality reduction process as mentioned above, by converting high-dimensional data

vectors into (usually) a low-dimensional map. Another difference is that the clustering acts

on multiple nodes of the Kohonen layer through lateral feedback, and the training may

therefore influence more than one neuron which could be interpreted as more than one

“centroid”.

While the same encoding can be used to demonstrate the Kohonen compromise, several

factors need to be considered. First, the encoding used in the K-means algorithm duplicates

the amount of data points utilized for the compromise. This can be a drawback for the

Kohonen algorithm, where the N*N Kohonen layer might be limited to a certain size and

can compete with the benign data. To avoid this, two alternate encodings were employed for

the compromise. A second factor to take into account is that the lateral feedback and random

initialization of the clusters may destroy the order of the encoding, therefore rendering the
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compromise into a non functional one.

The first Kohonen payload encoder is shown in Algorithm 6 , where the compromise

leverages the column values to insert the payload and the sequence order. The insertion

of the payload is prety straight forward in that once the columns for the payload and the

execution counter are chosen it is a matter of generating the payload and sequence value

pair in lines 4 and 5 of the payload encoder algorithm for the SOFM. Since a new vector is

being added and it cannot be presummed that the data will consist of only two columns,

additional values are added through the function call in line 6. Finally, the function call of

line 7 inserts the compromised vector into the dataset.

Algorithm 6 Payload encoder for SOFM compromise

1 PROCEDURE Encoder_SOFM( payload_values , column_compromise ,
2 column_counter , number_of_points_to_generate )
3 FOR i=1 to number_of_points_to_generate
4 CALL insert_payload ( payload_value , column_compromise )
5 CALL insert_incrementa l_value ( column_counter )
6 CALL generate_rest_of columns_to_get_target_distance ( )
7 CALL inse r t_add i t i ona l_po in t s ( )
8 END FOR
9 END PROCEDURE

The insertion of additional points in the encoder will help in shifting the weight train-

ing towards the specific coordinate point. The corresponding decoder (Algorithm 7 ) takes

as input the final trained weights of the algorithm, the column where the sequence counter

is located, the column where the payload is located and the sequence counter initial value.

The last parameter is added since both the payload and the sequence number may be shifted

to allow positioning within the weight space formed by the SOFM. Line 3 will initiate the

reading of the weight matix, line 4 reads the values and line five will determine the resolution

of the decoder (in decimal places) where a candidate is compared to the initial value. If

the initial value falls within the tolerance of the decoder then it is recognized as the pay-

load, its corresponding payload value is also extracted from the weights and the counter is

incremented so that the routine can go to the next incremental candidate value.
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Algorithm 7 Payload decoder for SOFM compromise

1 PROCEDURE Decoder_SOFM(SOFM_weight_array , column of_incremental_value ,
2 column_of_payload , in i t i a l_counte r_va lue )
3 FOR i=1 to numberof rows −1
4 ( candidate 1 , sequence value )=CALL extract_value ( column of_incremental_value , column_of_payload )
5 CALL determine_candidate ( candidate 1 , sequence value )
6 END FOR
7 END PROCEDURE

The second attack aimed at the Kohonen Neural Network is more challenging than the

first Kohonen compromise in its execution. The payload encoder inserts the compromised

values as distance in the U-Matrix (Stefanovic & Kurasova, 2011) representation of the

Kohonen Neural Network.

The attack is aimed not at the algorithm itself, but at the visualization of the algo-

rithm’s output. A graphical representation of what the algorithm works is shown in Figure

11.

Figure 11. Graphical representation of the U-Matrix encoding compromise

Each of the entries in the U-Matrix will be constrained by the neighboring values.

To construct the U-Matrix as is shown in Figure 11, the algorithm starts from the top left

corner and goes through each row until finished. The entries can have free values which are

indicated by the outgoing arrows. These values obey the formula:
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yfree = (payloadvalue ∗ number of sides) + (xcurrent ∗ number of sides)− side values (29)

The top left corner of the figure shows the initial value R which can be the start of

the payload and is unconstrained by any value. The payload value of R can be obtained by

finding the value, which divided by two, gives the desired payload result. The values in the

first row, represented by S, have one free variable on the next row. The right hand value T

is chosen randomly to complete the three way constraint of the S values.

The same process is repeated with the other values, taking into account the number

of constraints. Once the first row is made, the center row follows, before taking the sides

represented by U and W. Finally, the second to last row is over-constrained in that if

padding is not supplied, an iterative process would have to take place to converge to a

solution. Rather than using iterative converging solutions it was opted to use padding to

simply compute the last values without the output constraint, allowing for a quick and

efficient solution to the last row problem.

Algorithms 8 and 9 represents the pseudo-code for the encoder algorithm. Line 6 of

the algorithm is responsible for generating the values for the first row values which are free

parameters in the encoding scheme. These values can be prechosen or generated randomly,

depending on the particular attack scenario. Lines 19 through 26 are designed to encode the

first value which is the R value of Figure 11 using calls to functions given in Algorithm 10.

The first step is to compute the third value using equation 29. This equation uses variables

first value and second value which are the start of the exploit and are used to calculate the

third value. Calls to get the two dimensional position into a one dimensional array and then

store the values by assignning them to the U-Matrix u_encoding



56

Algorithm 8 Payload encoder for SOFM U-Matrix compromise

1 PROCEDURE Encoder_SOFM( matrix_size_x , matrix_size_y , pad_value , f i r s t_va lue , second_value , beg in ing , range )
2 matrix_minus2_x=matrix_size_x−2
3 matrix_minus2_y=matrix_size_y−2
4 ;−−generate random va lues f o r f i r s t row
5 FOR x=0 to x<matrix_minus2_x
6 values_f i rst_xrow [ x]= in t ( rand ( range ) ) +beg in ing
7 END FOR
8
9 coord inate =CALL load_attack_coordinate_array

10 payload=CALL load_attack_payload_array
11 CALL determine_if_padding_is_needed
12 u_encoding [0 ]= f i r s t_va l u e
13
14 x_rand_ctr=0
15 y_rand_ctr=0
16 FOR y=0 to y< t o t a l e n t r i e s in payload array
17 ( offset_matrix_x , of fset_matrix_y)= CALL ca l c u l a t e_o f f s e t (y , matrix_size_x , matrix_size_y )
18 ;−−−−−−corners−−−−−−−−−
19 IF ( ( of fset_matrix_y==0) AND ( offset_matrix_x==0))
20 third_value=(2∗payload [0 ])− second_value+f i r s t_va l u e+f i r s t_va l u e
21 u_encoding [0 ]= f i r s t_va l u e
22 array_coordinate=CALL get_array_pos it ion ( matrix_size_x , 1 , 0 )
23 u_encoding [ array_coordinate ]= third_value
24 array_coordinate=CALL get_array_pos it ion ( matrix_size_x , 0 , 1 )
25 u_encoding [ array_coordinate ]=second_value
26 END IF
27 ;−−−−−−−s id e s−−−−−−−
28 Else IF ( ( of fset_matrix_y==0)AND ( offset_matrix_x !=0)AND ( offset_matrix_x !=matrix_size_x −1))
29 x_right=values_f irst_xrow [ x_rand_ctr ]
30 ; f i l l in the f i r s t row va lues o f the U−Matrix one by one
31 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , offset_matrix_y ,
32 offset_matrix_x+1)]=x_right
33 x_rand_ctr++
34 x_le f t=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , offset_matrix_y ,
35 offset_matrix_x −1]
36 x_curr=u_encoding [ y ]
37 y_down=(payload [ y ]∗3)+( x_curr∗3)−x_left−x_right
38 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , of fset_matrix_y+1,
39 offset_matrix_x ]=y_down
40
41 IF offset_matrix_x==matrix_size_x−2
42 x_curr=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
43 offset_matrix_y , matrix_size_x −1)]
44 payload_value=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
45 offset_matrix_y , matrix_size_x −1) ] ]
46 x_le f t =u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
47 offset_matrix_y , matrix_size_x−2]
48 y_down=(payload_value ∗2)+(x_curr∗2)− x_le f t
49 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
50 offset_matrix_y+1, matrix_size_x−1]=y_down
51 END IF
52
53 END IF
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Algorithm 9 Continuation of payload encoder for SOFM U-Matrix compromise

1 Else IF ( ( of fset_matrix_y !=0) AND ( offset_matrix_y !=matrix_size_y ) AND ( offset_matrix_x !=0)
2 AND ( offset_matrix_x !=matrix_size_x −1))
3 x_curr=u_encoding [ y ]
4 y_up=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , offset_matrix_y −1,
5 offset_matrix_x ]
6 x_le f t=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , offset_matrix_y ,
7 offset_matrix_x −1]
8 x_right=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , offset_matrix_y ,
9 offset_matrix_x+1]

10 y_down=(payload [ y ]∗4)+( x_curr∗4)−x_left−x_right−y_up
11 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , of fset_matrix_y+1,
12 offset_matrix_x ]=y_down
13
14 IF ( offset_matrix_x==matrix_size_x−2){
15 ;−−−−−−− f i r s t entry o f the row
16 x_curr=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
17 offset_matrix_y , 0 ]
18 payload_value=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
19 offset_matrix_y , 0 ]
20 y_up=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
21 offset_matrix_y −1, 0 ]
22 x_right =u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
23 offset_matrix_y , 1 ]
24 y_down=(payload_value ∗3)+(x_curr∗3)−x_right−y_up
25 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
26 offset_matrix_y+1,0]=y_down
27
28 ;−−−−−−− l a s t entry o f the row
29 x_curr=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
30 offset_matrix_y , matrix_size_x−1]
31 payload_value=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
32 offset_matrix_y , matrix_size_x−1]
33 y_up=u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
34 offset_matrix_y −1, matrix_size_x−1]
35 x_le f t =u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
36 offset_matrix_y , matrix_size_x−2]
37 y_down=(payload_value ∗3)+(x_curr∗3)−x_left−y_up
38 u_encoding [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x ,
39 offset_matrix_y+1,matrix_size_x−1]=y_down
40 END IF
41
42 END IF
43
44 END FOR
45
46 END PROCEDURE

The process of filling the entire matrix follows the same same format as the calculation

for the R value of value of Figure 11 with the exception that as the matrix progresses the

algorithm has to extract previous calculated values. each one of the quadrants in the Figure

11 is covered by exceptions specified in IF conditionals. The routine keeps executing through

the for loop until all values are entered into the U-Matrix.
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Algorithm 10 Support procedures for payload encoder for SOFM U-Matrix compromise

1 PROCEDURE ca l c u l a t e_o f f s e t ( calc_value , x_value )
2 of fset_value_x= calc_value% x_value ;
3 of fset_value_y= calc_value / x_value ;
4 re turn ( of fset_value_x , i n t ( of f set_value_y ) ) ;
5 END PROCEDURE
6
7
8 PROCEDURE get_array_pos it ion (y_pos , x_size , x_pos )
9 array_pos= y_pos∗ x_size+ x_pos ;

10 re turn array_pos ;
11 END PROCEDURE
12
13 PROCEDURE rand_range
14 re turn i n t ( srand ( y − x ) ) + x ;
15 END PROCEDURE
16
17 PROCEDURE determine_if_padding_is_needed
18 mat_size= matrix_size_x∗ matrix_size_y ;
19 IF tot< mat_size
20 last_value_ctr= coord inate [ tot −1]+1;
21 d i f f= mat_size− to t ;
22 FOR x=0 to x< d i f f
23 push ( payload , pad_value ) ;
24 push ( coord inate , last_value_ctr ) ;
25 last_value_ctr= last_value_ctr +1;
26 End FOR
27 Else IF $tot>$mat_size
28 d i e "matrix s i z e i s too smal l f o r payload"
29 END IF
30 END PROCEDURE

The decoder shown in Algorithm 11 is just the formula for the U-Matrix which for

the center values is given by the formula:

Payloadvalue =
(xright − current+ xleft − current+Xup − current+Xdown − current)

4

(30)

An additional element to pass to the decoder is the location of the sub rectangle that

composes the payload. This will give the position of the payload within the Kohonen layer

and will instruct the decoder on where to look for the sub matrix. As with the Encoder the

algorithm is divided into the sections of Figure 11 by the IF conditions within the algorithm.

The For loops in lines 2 and 3 iterate through each element of the array and depending on

the position within the matrix it will process Equation 30 with the appropriate number of

sides and store it in a variable distance which can then be used as the value of the payload.
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Algorithm 11 SOFM payload decoder U-Matrix compromise

1 PROCEDURE Decoder_SOFM( matrix_size_x , matrix_size_y , coord inate , payload )
2 For y=0 to y<matrix_size_y
3 For x=0 to x<matrix_size_x
4 array_coordinate=get_array_pos it ion matrix_size_x , y , x
5 cur rent=payload [ array_coordinate ]
6 IF x==0 AND y==0
7 x_right=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
8 y_down=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
9 d i s t =(x_right−cur rent + y_down−cur rent )/2

10 End IF
11 IF x!=0 AND x!=matrix_size_x−1 AND y==0
12 x_right=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
13 x_le f t=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
14 y_down=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
15 d i s t =(x_right−cur rent+x_left−cur rent+y_down−cur rent )/3
16 End IF
17 IF x == matrix_size_x−1 AND y==0
18 x_le f t=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
19 y_down=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
20 d i s t =(x_left−cur rent + y_down−cur rent )/2
21 End IF
22 IF x == 0 AND y!=0 AND y!=matrix_size_y−1
23 x_right=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
24 y_up=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
25 y_down=payload [ array_coordinate = CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
26 d i s t =(x_right−cur rent + y_up−cur rent + y_down−cur rent ) / 3 ;
27 End IF
28 IF x!=0 && y!=0 AND x!=matrix_size_x−1 AND y!=matrix_size_y−1
29 x_right=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
30 x_le f t=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
31 y_up=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
32 y_down=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
33 d i s t =(x_right−cur rent + x_left−cur rent + y_up−cur rent + y_down−cur rent )/4
34 End IF
35 IF y!=0 AND x==matrix_size_x−1 AND y!=matrix_size_y−1
36 x_le f t=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
37 y_up=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
38 y_down=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y+1,x ) ]
39 d i s t =(x_left−cur rent + y_up−cur rent + y_down−cur rent )/3
40 End IF
41 IF x==0 AND y==matrix_size_y−1
42 x_right=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
43 y_up=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
44 d i s t =(x_right−cur rent + y_up−cur rent ) / 2 ;
45 End IF
46 IF y==matrix_size_y−1 AND x!=0 AND x!=matrix_size_x−1
47 x_right=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x+1)]
48 x_le f t=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
49 y_up=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
50 d i s t =(x_right−cur rent + x_left−cur rent + y_up−cur rent )/3
51 End IF
52 IF y==matrix_size_y−1 AND x==matrix_size_x−1
53 x_le f t=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y , x−1)]
54 y_up=payload [ array_coordinate=CALL get_array_pos it ion ( matrix_size_x , y−1,x ) ]
55 d i s t= ( x_left−cur rent + y_up−cur rent )/2
56 End IF
57 End For
58 End For
59
60 END PROCEDURE
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Compromising Adaptive Resonance Algorithm

Adaptive Resonance Theory, developed by Stephen Grossberg, is a family of supervised

and unsupervised algorithms (Carpenter & Grossberg, 1998):

• ART1- is an unsupervised model that is “capable of self-organizing, self-stabilizing,

and self-scaling its recognition codes in response to arbitrary temporal sequences and arbi-

trarily many input patterns of variable complexity” (Carpenter & Grossberg, 1987b).

• ART2- is the “class of adaptive resonance architectures which rapidly self-organize

categories in response to arbitrary sequences of either analog or binary input patterns”

(Carpenter & Grossberg, 1987a).

The current work will concentrate only on the ART1 algorithm that consists of two layers

that are fully connected and use binary representation for both layers. The layers are called

F1 and F2, for the first and second layers, respectively. There are forward connections from

each neuron of F1 to each of the neurons at the F2 layer via forward weights WFij , as

shown in Figure 12. The same is done from all neurons at F2 to neurons at F1 via WBij .

The initial architecture starts as in Figure 12 a), where there are no neurons at the F2 layer.

In addition, there are two gain subsystems that control the neural network behavior. The

network is initialized to F2 = 0, if no previous data has been shown to the network. The

initial values of WFij are chosen randomly, such that:

0 < WF <
L

(L− 1) + |M |
(31)

where M is the number of nodes representing the input vector, and the constant L >

1. The vigilance parameter ρ is set to the desired value. The weights of WB are all set to 1.

A high vigilance value will yield a highly selective clustering, producing clusters of tightly

coupled members. A lower vigilance parameter value will results in more general clusters,

and will be less discriminative.
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The steps to execute the neural network are as follows:

Step 1: For each input, do:

f1→ f2 =

inputs∑
i=1

WF · fi(0,1)(X, gain, feedback) (32)

The input function f0,1 takes as arguments three parameters: the inputs X, the gain,

and the feedback. The gain is the result of two individual gain mechanisms: Gain 1 and

Gain 2. Gain 2 is the logical or of the inputs X, such that:

Gain2 =


1 if or X 6= 0

0 if or X = 0

(33)

The output of Gain 1 is given by:

Gain1 =


1 if inputs 6= 0 andT = 0

0 if x < σ

(34)

where T is the logical or of the outputs t. The feedback is the amount of the nodej

at F2 with the corresponding weight that points to the input node being calculated. The

feedback is more formally expressed as:

feedbacki =
M∑
j=1

WB · t (35)

From the three inputs: X, gain, feedback, the activated nodes will be the ones that

pass the 2/3 rule, in which at least two of the three components must be present in order

to activate. This means that at least the gain or the feedback must activate the neuron.

Step 2: From this, select the output node that has the biggest output, such that:

Max (f1→ f2) (36)

Step 3: The selected node will then go through the vigilance test, which evaluates the
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closeness of the input pattern to the stored “ideal pattern of the node”:

∑inputs
i=1 WF · f0,1(X, gain, feedback)∑

x
> ρ (37)

Step 4: If the node fails the vigilance test, then mask the node as unavailable, and

pick the runner up. Repeat this step, until a node passes the vigilance test. Should all

neurons fail the test, then create a new node.

Step 5: For the winner node, do the training with:

WFij =
L · fi(0,1)(X, gain, feedback)

L− 1 +
∑
f(0,1)(X, gain, feedback)

and tij = fi(0,1)(X, gain, feedback) (38)

a) ART1 starting state b) ART1 with nodes in F2

Figure 12. Adaptive Resonance Theory network
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Payload Encoder and Decoder for the Adaptive Resonance Algorithm Compromise

The attack on Adaptive Resonance differs substantially from the previous two attacks

in that the processing carried out by ART1 is binary in nature. The encoding of the payload

is broken into two main segments: the payload itself and an ordering part. The ordering

part is essential in case the strings arrive at the algorithm in different order. Figure 13shows

three possible alternatives to encode the payload and the order.

Figure 13. Encoding layout of payload and order

The encoder for the Adaptive Resonance payload is given in Algorithm 12.

Algorithm 12 Payload encoder for Adaptive Resonance compromise

PROCEDURE Encoder_ART( l ist_of_hex_characters_payload , sequence , data_sample )
CALL insert_payload ( payload_value , column_to_compromise )
CALL insert_incrementa l_value ( column_counter , column_to_compromise )
CALL Insert_zero_value_padding ( column_to_compromise )
CALL convert_dataset_to_binary ( compromised_data_sample )

END PROCEDURE

One particular difference in the encoding process using Algorithm 12 is that it requires

more trial and error on the part of the attacker to achieve a particular payload encoding.

The formula for the division of clusters may yield multiple compromised clusters which

may make the attack cumbersome in nature. However, the decoder for the ART1 payload is
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simpler in nature, than the other decoders mentioned thus far, and is given in the Algorithm

13.

Algorithm 13 Payload decoder for the Adaptive Resonance compromise

PROCEDURE Decoder_ART( sequence column_id , datase t column , start ing_value , payload_size )
CALL Sort_column ( datase t column )
CALL Ident i fy_star t_va lue ( s tart ing_value , sequence _column)
; r e tu rn s o f f s e t to s ta r t ing_va lue in sequence column
FOR j= s ta r t i ng_va lue_o f f s e t to payload_size va lue

IF sorted_column_value_at_offset == i
CALL extract_compromised Column_value ( )

END IF
END FOR

END PROCEDURE

The selected encoding for the tests carried out for this thesis was the order-payload

sequence encoding. While in other compromises random numbers can be generated based

on information from the sample distribution, in Adaptive Resonance this can be counter

productive. The additional data elements inserted into the columns can lead to a detrimental

discrimination in Adaptive Resonance. For the tests carried out a zero value entry in each

binary value was selected as method of padding the payload.

Experimental Setup for the Attack Simulation

To carry out the scenario outlined above, it assumes that the attacker has a well

established methodology for analyzing the behavior of the data under study. The attacker

must also have a measurement of effectiveness that maximizes the probability of success of

the attack, while maintaining the clusters as close as possible, to avoid arousing suspicion.

An additional requirement is that the attacker must find a way to simulate more data

for the attack scenario, to test the payload injection and triggering of the attack. If he

does not have access to a sample, then the attacker could assume a random distribution.

However, this simulation works under the reasonable assumption that an attacker has access

to intercepted or obtained data sample.

Another reasonable assumption is that the intercepted or obtained data is just a sub-

sample of the underlying distribution that will be processed by the algorithm. A possibility
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for the attacker is to leverage the obtained sample to generate additional samples. While

bootstrapping (P. Cohen, 1995) can be an effective way to generate additional training sets,

it does not necessarily meet the particular requirements for the evaluation of the attack’s

effectiveness. An alternative is to generate the data set as bootstrap, but with an additional

generation consisting of perturbed data points. From this, two alternatives can immediately

be utilized to test an attack’s effectiveness:

• No addition of points to serve as a baseline.

• Based on the datapoints, use a normal distribution to distribute the random points.

The second option is based on obtaining the mean of each of the dimensions of the data

points, and then use the first, second, and third standard deviations to create the additional

random points.

The proposed experimental setup is outlined to simulate the attacker’s setup and

actual attack:

1. Divide into training and testing using a 20-80 rule or similar ratio, respectively. This will

simulate reasonable real scenarios of an attacker capturing partial information gathered by

the user of the unsupervised learning algorithm. If the data set contains a testing and

training set, they must meet these parameters. If training set exceeds this ratio, elements

will be eliminated randomly from the training set until the ratio is met.

2. Calculate the minimum, maximum, mean and standard deviation from the obtained set to

be used as training.
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3. From the selected set used as training, generate a training set using the bootstrap method

and generate a second one to use as the baseline. For the Bootstrap data set, randomly

generate additional n elements on the first, second, and third standard deviations using

the mean deviation for the first technique, using 68–27–5.7 percentages of the standard

deviations percentages of this distribution. A baseline of no additional elements will first

be run, followed by the two techniques generating the random elements, using the total

number of elements of the test set. This particular number of samples is given under the

assumption that the attacker can estimate the number of samples to be processed, but

does not have access to the particular set of elements to be processed by the algorithm at

testing.

4. Insert the malicious data into the benign data set serving as training.

5. Process the payload through the decoder, to see if it decodes.

6. Perform the attacker’s analysis of the ULT Density Problem. Evaluate the result taking into

account additional constraints such as stealthiness of the candidate solution and the ULT

density measurements.

7. Tweak the solution until satisfied or until a candidate solution emerges from the training

runs.

8. Repeat the procedure using different data sets and different parameters.

9. Run the malicious payload against the test set, record the results as success or failure on

triggering the payload, and whether the decoder succeeds or not.

10. Carry out significance tests for the results obtained.

The step 10 of the proposed experimental method makes two measurements that can benefit
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from the quantification and use of significance test (Wackerly et al., 2002). The first one will

evaluate the use of a particular attack on a particular shared data set between algorithms.

The encodings that are used on each of the algorithms vary substantially and there is a need

to know if a particular encoding is more efficient than another. The assumption tested uses

three particular algorithms, four different malicious payload encodings, and different data

sets for the tests. Under the described test conditions where three classifiers are used and no

assumptions can be made to justify ANOVA (Demsar, 2006), statistical significance testing

is done using the Friedman nonparametric test.

The second measurement carried out is the use of a baseline of just the obtained data,

set as opposed to generating additional samples to approximate the actual scenario of the

compromise. The assumption used to justify the test of significance is that while there are

three different algorithms, the comparison will be made under the same parameters and the

same data sets. The only difference between the tests will be the addition of samples for

the non baseline test. The parametric test under this assumption would be equivalent to

two different classifiers (Demsar, 2006). Under these conditions, the statistical evaluation

selected is the Wilcoxon signed ranked test.

To standardize results for the data sets for all tests with the exception of the Adaptive

Resonance algorithm, the distances of the payloads were arranged so that either:

1. The complete payload stays outside the 1st standard deviation in at least one of

the tests.

2. Half of the payload values fall within the 3rd and standard deviation in at least

one of the tests.

3. The payload falls completely within the right tail of standard deviation and the

minimum value on the left tail of the distribution.

This standardization will help in making a consistent result tabulation for the hypoth-

esis testing. The Adaptive resonance algorithm exception will be discussed below.
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For the K-means, the fourth step will be based on one of the three case scenarios above,

and consists on generating a random coordinate, which will become the malicious cluster

centroid’s initial placement. The attacker will calculate the DS, the DCD, and DyTrojan for

the setup on step 6. Optimization will be tested to see if the trigger of the payload on step

5 is adequate. This will be adjusted repeatedly, as stated in step 7 and as needed, until the

attacker is confident that he has obtained a viable solution. The process will be repeated

for three random coordinates.

The process will be repeated using the KEGG Metabolic, Statlog (Shuttle), and Water

Treatment data sets, using payloads 2, 3 and 7 from Table 2. The KEGG Metabolic data set

the data was divided into a 20-80 ratio which is 10,683 for training and 42,730 of the 53,413

samples in that data set. The Statlog (Shuttle) data set was divided into 2,900 random

samples chosen from the training file and the full test data of 14500 samples for the test run.

Finally Water Treatment data set was processed using only Fpv Close,High, Bypass, Bpv

Close, and Bpv Open columns with 105 samples for training and 422 samples for testing.

All the 18 tests carried out for the K-means algorithm were done using 2 clusters on

the first two columns of the data sets. In the final step, the tests were run and significance

tests were made to see if there was a difference between the ratios.

The Kohonen Neural Network attack testing will be similar to the K-means compro-

mise attack with some changes. On step 1, the percentage will be approximately 27-73 ratio

due to the small sizes of the selected data set. On step 4, the attacker will use the generated

malicious data to move the nodes of the Kohonen layer into the appropriate coordinates.

From there, the attacker will calculate the DS, the DCD, and DY for the setup. The

measurements will be accompanied by the payload tests in step 4 to see if the decoder func-

tions properly. The process of the Kohonen compromise is repeated and adjusted to find

the number of elements that make the nodes move to the precise coordinates. The DS will

determine if an actual error occurs; and the DCD and DY will help in determining if the

chosen distance has a probability of failure. These values will help determine the amount of

tolerance for the decoder.
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The process of improving the Kohonen layer movement of points is refined by repeating

the process by using different random coordinates and 2 of the payloads to be minimized.

The malicious payload is then used against the test set, the results recorded as success or

failure on triggering the payload, and whether the decoder succeeds or not. The results

of these tests will then be validated using tests of significance using the non parametric

Friedman test on preselected ratios, to see if the increase in ratios is significant. The Null

hypothesis states that there is no difference between using different ratios.

The selected data sets for the Kohonen Neural Network attack simulation are: KEGG

Metabolic, Power Consumption, and Water Treatment using the payloads 5 and 6 from Table

2. The data sample sizes for the Kohonen algorithm were restricted to random samples sizes

of 200 for the training set, but were limited to 560 samples for the testing in the KEGG

Metabolic and Power Consumption data sets due to processing time restrictions. For the

water treatment data set, the 105 sample size for the training set was used alongside 422

instances for the test set.

The Adaptive Resonance experimental setup somewhat deviates from the other two

algorithms due to its binary nature. Given the particular clustering of Adaptive Resonance,

a first run will test the point were zero error is made at .1 vigilance parameter setting; and

then a Gaussian number generator will be used to select 2 numbers around this value to see

how the vigilance varies. If the samples vary, then the one with the highest DCD will be

chosen as representative for the test run.

The offset of the payload from the benign data is determined on zero based error given

the vigilance parameter. The DS reads 0 because there are no errors in the payload in a

discrete cluster that has been fully separated. The DY will also reach a steady state within

the same sample and depends on the volume of the cluster being described. This process

is done using two of the specified payloads to be minimized. Besides the difference due to

the measurements, the rest of the procedure steps are the same as the ones described above

for the use of the KEGG Metabolic and Statlog (Shuttle) data sets, using payloads 8 and 4

from Table 2. The data set sizes and column selections for the Adaptive Resonance training
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and testing followed the same specifications as the K-means algorithm.

Quantifying and Scoring the Results of the Training and Testing Data

This section is aimed at explaining the quantifying and scoring of the results reported

in the experimental results chapter and Appendices B through E. The section is divided into

three parts. The first part is an overview of the evaluation format of the appendices, the

second is the training evaluation, and finally, the evaluation of the test data.

The evaluation format of the experimental runs given in the appendices is provided

in a table format, and is divided into the training results and the test results. The table

section belonging to the training starts with the sample’s basic statistics such as min/max

values, mean and standard deviation. The sample statistics display basic measures from

which to compare the samples of the training and the test runs. The statistics reported for

the sample consist mainly on the columns that are used in the compromise. The other tables

are not reported, since depending on the attack, they can be considered noise or simply do

not provide any measurable difference to the results.

The sample statistics are followed by the three samples’ positions with regards to the

sample space where the compromise is taking place. The positions are usually given in

terms of the offsets to start the payload and sequence order. The sequence is located in

the first column of the selected data set. The second coordinate is that of the value used

as offset to start the payload encoding embedded in the second column of the selected data

set. Afterwards, each sample’s use of additional points, additional payload data elements,

DS, DCD, DYTrojan, and DYBenign are reported. The number of additional points column

is not utilized if the runs are part of the baseline training. The additional payload column

is not utilized in Adaptive Resonance, instead it is utilized to report the specific vigilance

parameter used for the training run.

The DS, DCD, DYTrojan, and DYBenign are reported for each training run and

utilized in the evaluation of the training run. The only measurement that is excluded in the
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evaluation criteria for all runs is the DYBenign. The rationale for the exclusion lies in that

while this property is useful in providing a sense of the training set distribution, it was found

not to be an effective indicator as the other measurements, due to the low ratio of intercepted

messages utilized in the process. As the adversary gathers more information about the final

distribution, then the measurement can become more reliable and more important in the

decision process.

The testing report is similar to that of the training starting with the testing data’s

basic statistics. The statistics are followed by the DS, DCD, DYTrojan and DYBenign

measurements. Finally, a confusion matrix for the test run is provided to quantify the error

in the test run. While the DS provides a basic error reporting, the confusion matrix provides

a more detailed information on where the error occurred.

The measurement’s interpretation taken during the training phase of the compromise

will depend on the particular goal of the attacker. If the attacker’s goal is to provide

stealthiness, then particular care needs to be taken in interpreting the ULT DS, DCD,

and DY measurements. These formulas for documenting the ULT measurements are aimed

at discriminating the payload from the benign data. Under such assumption, the cluster

measurements will tend to favor compromises in which the attack may be considered an

outlier and therefore draw attention. To take into account stealthiness, a tradeoff has to be

made between guaranteeing the execution of the payload and the stealthiness factor of the

attack. The additional payload represents additional data elements that are injected to bias

the centroids towards the desired outcome.

For the K-means and Kohonen algorithms training the following scoring of each indi-

vidual run was done using the information shown in Table 3:
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DS, DCD, DY Additional Payload Distance to Mean

Best Result Highest Lowest Highest Lowest Closest

Highest Points Awarded 3 3 3 3*1.5 3*2

Lowest Points Awarded 1 1 1 1*1.5 1*2

Table 3: K-means and Kohonen scoring criteria

The scoring criteria tries to balance the measurement’s objective of cluster discrim-

ination and the need to remain less detectable. The two additional evaluation criteria of

awarding points for compromising the data set with the least amount of additional malicious

points and the closeness to the mean bring the desired tradeoff between cluster discrimina-

tion and detectability. The evaluation criteria also took into consideration when two runs

had the same outcome on each individual measurement. Under such circumstance, a value

of 1.5 or 2.5 was awarded, depending on whether the tie was for first or second place.

An additional consideration in the K-means algorithm run evaluation was the mis-

classification assignment. The evaluation consisted on granting a misclassified status of the

benign cluster if both centroids fell inside the payload circle. Similarly, if both centroids fell

outside the circle of the payload, then the payload is misclassified as benign. The rationale

for this evaluation criteria consisted in the algorithm’s goal to move the centroids and not

the data, therefore the evaluation rested not on the data location, but on the centroids’

location. While this evaluation criteria was the selected one, there are other criteria that

can be used, such as quantifying the data points that were misplaced based on the Euclidean

distance to the centroids. The complication would then be on determining which centroid

is considered benign or malicious in a predetermined fashion.

For the Kohonen algorithm, the rules of classification were made based on a threshold

value. If the benign neuron or weight fell within the integer value of the encoding for the

payload, then the point was misclassified as malicious. In contrast, if a point did not reach

convergence, then it was misclassified as benign.
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As opposed to the K-means and Kohonen algorithm, the Adaptive Resonance can-

didate selection algorithm varied considerably. As previously mentioned, since Adaptive

Resonance is based on a binary classification without preselection of the number of clusters,

the measurements selected for the other two algorithms would not give accurate results.

As an alternative, the procedure for Adaptive Resonance was done by choosing the closest

distance to the cluster, since the encoding will be affected and turned into a longer binary

sequence that can be easily detectable upon inspection. The selection criteria was based on

randomly selecting the vigilance parameter with a value between 0.01 and 0.10 , a value at

0.10, and a value between 0.10 and 0.20. The winner was selected based on which value

obtained the zero result with the lowest offset in the payload column. This minimum offset

provided the encoding values tested on a randomly selected vigilance parameter.

Discussion of Possible Real World Scenarios

This provides a discussion of further considerations of the attack under a real world

scenario. The discussion focuses on initial compromise scenarios, distribution channels,

and advantages of certain programming languages in hiding the compromise. Each of the

different unsupervised learning algorithms is used under certain scenarios, and the imple-

mentations of the ULT will vary to accommodate changes in environment.

The ULT attack instances are considered to be possible under two particular scenarios

which the simulations carried out try to capture. The first scenario considers an attack by

an internal agent that has access to the programming or hardware configuration of an orga-

nization that uses learning algorithms for the analysis of its data. This scenario reinforces

the notion of Kerckhoffs’ Principle discussed in the review of literature. Under this scenario,

the attacker has complete access to the information, providing a scenario in which the end

user of the algorithm cannot not rely on expectations of secrecy, since the information is

shared or can even be generated by an attacker.

The second scenario contemplates an attacker that distributes the software himself.
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The attacker will either portray himself as a distributor of the software or modify an exist-

ing distribution channel for an existing unsupervised learning software. Again, under this

scenario, it is the attacker who is providing the software and can alter the software and even

the supplied data, if the conditions are appropriate.

The capacity of the end user noticing the compromises will depend on the auditing

done periodically on the source code and the experience of the user with the data that he

processes. In terms of the programming, the detection will depend on the specific activation

routine and the lines of code necessary to carry out the decoding and execution of the

payload. Some implementations, such as with a compiled language programming, can be

extremely difficult to detect once the application is compiled. Interpreted languages and

accessibility to source code will be more amenable to evaluation.Also, a forensic analysis

may yield discovery of the compromise.

Depending on the end user’s experience and the particular activation and decoding

used in the ULT, if the attacker also needs to unbalance the data set excessively through

additional compromised data points to carry out the attack, the user may be able to notice

the discrepancy with previous results. As the benign data and the payload deviate from

the usual data patterns for the particular problem domain, the easier it will be to spot the

attack.

Resources

The resources used for the dissertation work consist of computing and software re-

sources, and data sets processed. Each of the three resource types are discussed below.

The computing resources used to carry out the proposed work consist of a workstation

with a Pentium i7 processor, 9 GB RAM, and a 500 GB storage capacity.

Necessary software resources are: preprocessing and insertion of payload, unsupervised

learning programs, and post processing software to quantify and visualize the results. The

unsupervised learning software was programmed in C language and compiled with the GCC
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compiler, running on Fedora Linux. The preprocessing and insertion of the payload into the

unsupervised learning algorithms was programmed using PERL for easy of modification and

evaluation. Visualization primarily consists of custom scripts with GNUPlot and LibreOffice

Calc charts.

Summary

This chapter has introduced the unsupervised Learning Trojan Density Problem,

where the attacker does not have control of a training set. This implies that the parameters

of the attack have to be estimated, instead of learned, and the problem is now expressed in

terms of the density estimation of the distributions. Under this scenario, the chapter has

introduced the question of whether an unsupervised algorithm is capable of discriminating

between unlabeled malicious samples and the benign data.

The material covered several techniques that the attacker can use to measure the

progress and the quality of the attack. As the narrative continues, a cluster identification

sub problem is presented, which inquires the reliable identification of the malicious cluster

from those identified by the algorithm as benign.

The chapter also covered the payload activation and encoding strategy used in these

types of attacks. The chapter narrative then provided the three algorithms and the four data

sets to be used in the experiments. Eight payloads were specified to carry out the attacks.

The algorithms, data sets, and payloads in the provided experimental setup produce the

following: 18 test runs on the K-means algorithm, 12 on the Kohonen Neural Network, and

12 runs on ART-1. The chapter included the procedures and the particular encodings utilized

for each of the algorithms, and provided the necessary experimental setup and resources to

carry out the experiments under this dissertation.
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Chapter 4

Results

Experimental Results for K-Means

This section provides a discussion of the results obtained from the experiments

carried out with the K-means algorithm on the KEGG Metabolic, Statlog (Shuttle),

and Water Treatment data sets, using the Linux_x86 Polymorphic ShellCode - se-

tuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd, OSX_Intel re-

verse_tcp shell x86_64 and the Windows XP PRO SP3 - Full ROP calc shellcode as pay-

loads. The particular results for each of the 18 baseline and additional benign datapoints

experiments are shown in Appendix A. All the results obtained were done using a Gaussian

random number generator for the coordinates and uniform random number of additional

payload coordinates.

The overall results for the 18 data sets are summarized in Figure 14. The results are

based on the centroids being classified as either malicious or non malicious for the purposes

of activating the payload, based on lines 3-7 of the decoder shown in Algorithm 4. The focus

of the results were concentrated on this part of the decoder, since it is the part that is most

prone to failure and it is the one that depends on the actual K-means algorithm.

Figure 14. Summary of confusion matrix results for the K-means compromise
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As can be seen from Figure 14, the addition of benign data points surpassed the

baseline in terms of performance during the test runs carried out. A big percentage of the

errors in the baseline came from not being able to activate the payload, due to having the

centroid fall outside of the hull formed by the malicious payload data points.

The second part of the decoder, which obtains the hex numbers from the hull points is

more resistant to failure and it does not rely on K-means itself. During the tests carried out,

all trials successfully decoded the payload with a resolution of 4 decimal places. The results

obtained can be explained by the fact that the decoder relies on the spread of the data on

a torus described by a thin shell ε along a radius r and that the hull points inside the thin

shell ε did not overlap with benign data points. The possibility of payload decoding failure

once it is activated may be due to a mistaken data point that is classified as malicious in

line 24 of Algorithm 4. This failure can be described as a benign point falling on the thin

shell ε as shown in Figure 15.

Figure 15. Volume of thin shell for the decoding string

The total area of the encoding region is given by the radius r of the two coordinates

used in the description of the payload. The radius r is used to determine the inner boundary

of the shell ε, whose length is determined by the decoding resolution of the implemented

algorithm. As the decoder resolution increases in the decimal values needed to fall as an

accurate representation of the radius, the ε shell decreases in volume and the more robust
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the algorithm becomes with respect to possible failure. That is to say, if the resolution of

the decoder is just one decimal place, the length of ε is bigger than if the resolution of the

decoder is 4 decimal places. Having a benign data point fall in the exact place with four

decimal places is more difficult than having a benign point being misclassified by using just

one decimal place.

The increased resistance to failure of the second part of the decoder is offset by the

activation part of the payload. The results of Figure 14 can also be analyzed by the obtained

DD values. A point of inquiry is whether the DS value from the selected sample during

training correlates with the outcome of the test result. The DS values for the selected

configuration against the DS obtained during the testing run is shown in Figure 16.

Figure 16. Comparison of DS value for selected configuration against the test run

The figure shows that there were only two instance where the DS for the training

was zero; and for the test run, it was nonzero. Alternatively, there are three instances

where the training DS was nonzero, and the test error is zero. The overall accuracy for the

procedure is 33 percent error free. On the other hand, taking in as error only the instances

where there was no detectable error in the training and error in the testing, gives an overall

training selection accuracy of 72.2 percent. Based on this last finding, it was investigated

if there were any correlation between training and testing outcomes. The r correlation
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coefficient was calculated to measure the degree of correlation between the two variables.

The result indicated a moderate to strong relationship with a score of 0.795 score. While

the measurement was relatively high no clear trend line was discernible from the gathered

data that could provide further indication of correlation as shown in the Figure 17.

Figure 17. Plot of Training vs Testing DS of K-means Compromise

While the reported training selection accuracy was relatively high for the DS value

where there was no detectable error in the training and error in the testing and strong

correlation which is what an adversary is looking for, care must be taken with this inter-

pretation. The first concern is that there was no clear trend line and the second is that the

DS is an indicator of the overall confusion matrix error but it does not provide the type of

error that occurred during the training and testing to see if the error types were the same.

This is important, since there can be cases where the benign data cluster falls within the

malicious boundary and may cause misclassification, but the malicious centroid fell within

the boundary and depending on the attack composition, may have activated the payload.

This type of error interpretation will depend on how the compromise is setup and if it is

relevant to the activation of the attack itself.

Several factor can contribute to the results obtained in the training and test results.

These include the specific data set used as well as the payload that was inserted into the

data. Looking at the error in terms of the data sets that were used, it can be seen in Figure

18that the none of the data sets produced zero error in either their baseline or the additional
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benign datapoint insertion. While the Stalog Shuttle data set produced fewer errors it is

not substantial to assert any statement on the relative performance advantage of the data

set.

(a) (b) (c)

Figure 18. Errors for (a) KEGG Metabolic (b) Water Treatment (c) Stalog Shuttle data sets

The breakdown by data sets did not show significant differences in behavior, due to

the sample sizes being too small to draw any definite conclusion, and should be further

explored to determine their impact. These results contrast with some moderate differences

that were found when considering the analysis by type of malware as shown in Figure 19.

(a) (b) (c)

Figure 19. Errors from (a) Linux_x86 Polymorphic ShellCode (b) OSX_Intel reverse_tcp shell
x86_64 (c) Windows XP PRO SP3 - Full ROP calc shellcode

The results for the Linux_x86 Polymorphic ShellCode showed that all attempt on

the baseline configuration resulted in nonzero error. A possible explanation for this result
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is that this particular payload has the least amount of bytes of the three attacks selected,

which implies less data points in the intended malicious cluster. The non baseline result for

the Polymorphic ShellCode shows a performance difference in the three trial runs that were

executed. The same can be said in the opposite case for the baseline error for the Windows

XP PRO SP3, where the baseline error in all three instances was zero. Again, while these

results are not conclusive, they yield some preliminary explanations on the behavior of the

compromises.

The training set behavior yields useful information on the behavior of the compromises

with respect to the data set by using the DS and the DCD as measures of compromise

behavior. As shown in the Figure 20, as the DCD becomes higher, the DS becomes very

low.

Figure 20. DCD and DS plot of the KEGG Metabolic and Shuttle data sets for the K-means
compromise training. Size of symbols represent additional malicious elements added to move the
clusters

This behavior was also seen in the Water Treatment aset showing a trend that is

consistent with the theory that as the DCD becomes higher there should be a lower DS.

Another interesting pattern is that due to the way the error was calculated, there is a center
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gap between 0.4 and 0.6. This pattern can be expected to vary depending on the error

quantification strategy selected. The inclusion of additional payload elements is shown in

Figure 20 represented by the size of the shapes in the figure. No discernible pattern was

reflected in the executed runs carried out during the training. The figure also shows that

the Shuttle data set has a bigger spread in values of the DCD with respect to the KEGG

Metabolic data set. The water treatment had a bigger spread than both the KEGG and

shuttle data set with respect to the DCD indicating that significant variability in the DCD

can be expected among data sets.

An important point to take into consideration is the value of the DS during additional

point insertion on the training phase. As shown in this example, from Table 25 of Appendix

A, the DS measurement can give the wrong impression due to the number of additional

elements added to simulate an additional benign data set.

Figure 21. Example of possible failure of attack due to addition of points when the attack could
be successful

Figure 21 shows the results of sample 2 that was selected as the best candidate to

execute the attack. While the there is clear evidence that the additional malicious elements

and the payload were not enough to drive the centroid to activate the attack during training,

the same did not occur in the test scenario and could lead to overestimation of the number
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of additional malicious points to add during an attack. This overestimation may lead to

higher degree of detection.

This section has covered some of the important elements of assessment in the execution

of the K-means compromise carried out by an adversary. The following section will cover

the results and interpretation of the test runs carried out for the Kohonen Neural Network

compromise.

Experimental Results for Kohonen Neural Network Compromise

The Kohonen Neural Network implementation poses several constraints for the at-

tacker in terms of fixed parameters which may make or break the viability of the attack,

such as the size of the Kohonen layer and the data set size, among others. This section

explores the Kohonen network in terms of a fixed Kohonen layer of 50 by 50 neurons, with a

fixed constraint of 2,000 epochs and a learning rate of 0.005. The selection of the particular

parameters were chosen to represent a small type of experimental setup which would be

carried out during exploratory analysis of a data set before putting it into production. This

type of scenario would be less susceptible to formal code verification. The parameter con-

straints given are usually fixed by the person running the experiments and would fall outside

of the attackers’ control. This would leave the attacker with the selection of additional data

samples to inject into the application as the only free parameter in an effort to try to shift

the training in favor of the payload execution. The size of the experiment will be limited to

700 randomly chosen samples from the selected data sets. From these, it is assumed that the

attacker has intercepted 200 samples from the data set which are excluded from the testing

set.

The three simulations made by the attacker were structured using three different

positions for the payload within the benign data set. The locations were randomly selected

to simulate various possible conditions under which the attack may be carried out. Under

real training conditions, the attacker would select the position which reflects a distinct
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advantage during a compromise to maximize his possibilities of success.

The results of the tests carried out for the Kohonen network compromise documented

in Appendix B are shown in Figure 22. As with the K-means algorithm, these results

reflect the intrinsic error and are not based on the decoder resolution. The results show

the outcome of the integer value discrimination in the decoder algorithm 7. An interesting

result is that zero error was not achieved in any of the runs using the default evaluation

criteria for the Kohonen algorithm. Notwithstanding, the payload was decoded successfully

in every instance using four decimal places in the extract value function of the decoder

sequence of the algorithm. The selection of the decoding resolution will vary depending

on the additional amount of code that can be inserted into the compromised program, to

dictate the final metric to be used in actual compromises.

Figure 22. Summary of confusion matrix results for the Kohonen compromise

Figure 23 shows that there is no clear trend line between the training versus testing

DS, while the Pearson coefficient shows a weak correlation at .55. The lack of a trend line is

also indicative that there is no clear indication of relationship between the training DS and

testing DS.
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Figure 23. Plot of training vs testing DS of the Kohonen compromise

The training of the Kohonen network’s DS and DCD readings are shown in Figure 24.

The output shows that while the the empty upper right quadrant is smaller than K-means

algorithm, it still follows the intuition of the proposed formulas. Some of the possible reasons

for this deviation may be attributed to the particulars of the encoding and specific data sets

chosen, in addition to the Kohonen’s lateral feedback. While the K-means algorithm treats

each cluster independently, the Kohonen network’s lateral feedback influences nodes that

are in the vicinity of each other.

Figure 24. DCD and DS plot of the three data sets for the Kohonen compromise training. Size of
symbols represent additional malicious elements added to move the clusters
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This phenomena may initially pull neighboring nodes closer to each other, and in some

particular cases, may contribute to additional convergence error and therefore a shift in the

DS towards centered DCD values.

In addition to the difficulty of convergence, the addition of malicious payload to achieve

convergence needs to be considered during training. The figure also shows the results of the

DCD and the DS, while additional payload elements are represented by the sizes of the

icons. The impact of the error minimization of additional malicious payload data points can

also be seen in the epochs as the neural network is trained.

This impact can be seen in Table 29 of the Appendix B, where sample 1 is shown with

an additional payload sequence. This means that to achieve zero error, the attacker had to

reinsert the 112 vector sequence once more to achieve the desired result. In summary, for

that particular sample, the training entails: 140 intercepted vectors, 112 samples inserted

twice, and 505 randomly generated samples, for total 869 samples of training data. The

figure 25 shows the training set, with the top line being the single insertion of the payload,

and the bottom one is the payload that was inserted twice, that achieves zero error

Figure 25. Comparison of insertion of additional payload sequence and single insertion of payload
sequence
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Additional Results for Kohonen Neural Network with Different Kohonen Layer Sizes

The Kohonen experiments were done with a 50*50 fixed layer size. An important

question to answer is what effect on the payload execution does to the variation of the

Kohonen layer size have when the end user that utilizes the compromised algorithm. The

data set used for this test was the KEGG Metabolic Relation Network Data Set Baseline

using win32/xp pro sp3 (EN) 32-bit - add new local administrator payload. 22 offsets were

selected for the order column offset, and 31 for the payload column offset. The epochs and

the learning rate used were the same as those for the rest of the Kohonen experiments.

The results obtained for the different Kohonen layer sizes are shown in Table 4. As can

be seen from the table results, the same caution as with the K-means algorithm needs to

be taken with the Kohonen algorithm’s DS reading. While the DS reading can be a good

confusion matrix summary, it does not necessarily reflect the type of error that the algorithm

is obtaining due to the data. The table shows that while the Kohonen layer size grows, so

does the DS value. While this may not be indicative of a definitive trend, it does highlight

a possible point to consider on the part of the adversary when deploying the attack.

Size DS Error in Payload

50*50 1.0600 2

40*40 0.6712 7

30*30 0.4149 57

20*20 0.1494 94

Table 4: Results of varying Kohonen layer sizes using the KEGG Metabolic Relation Network Data
Set Baseline and win32/xp pro sp3 (EN) 32-bit - add new local administrator payload

Experimental Results for Kohonen Neural Network U-Matrix Attack Variant

The Kohonen Neural Network U-Matrix compromise merits a separate discussion from

the previous Kohonen compromise. While the compromised algorithm is the same, the

characteristics of the encoding do change and merit closer inspection, since they will impact

the results obtained. As discussed in the previous chapter, the encoding of the U-Matrix
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compromise is an actual embedding of a submatrix within the matrix that comprises the

Kohonen layer. A common observed characteristic shared by all the payloads encoded was

that there was a substantial spread in the magnitude of the numbers embedded as part of

the compromise. This phenomenon can be seen in Figure 26. This will have an influence in

the Kohonen algorithm with its convergence results, especially with lateral feedback.

Figure 26. win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode with its Corresponding U-Matrix
Encoding

The results of the tests carried out for this compromise in Appendix C are summarized

in Figure 27. As can be seen in the comparison between both the Kohonen and the Kohonen

U-Matrix compromise, the results vary substantially in composition. The biggest error in the

Kohonen U-Matrix compromise is the benign data considered as payload in the test carried

out, by adding additional benign samples to the data set. This contrasts with the Kohonen’s
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previous compromise, in which the biggest error was in the baseline, and consisted in both

types of error, benign as payload and payload as benign.

Figure 27. Summary of confusion matrix results for the Kohonen algorithm U-Matrix compromise

To further investigate the results obtained, a correlation analysis was made, as with

the previous algorithms. A weak correlation of 0.59 was obtained. The plot of the training

vs testing DS is shown in Figure 28, where it can be seen that there is a slight trend, but it

is not of a linear nature.

Figure 28. Plot of training vs testing DS of Kohonen U-Matrix compromise

The plot of the DCD versus DS sustains the results observed with the previous algo-

rithms, in that as DCD becomes higher, there should be a lower DS.
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Figure 29. DCD and DS plot of the three data sets for the Kohonen U-Matrix compromise training.
Size of symbols represent additional malicious elements added to move the clusters

An additional consideration to take into account for this compromise is the padding

for the compromise. As discussed in the previous chapter, the U-Matrix compromise needs

a padding at the lower part of the matrix to be feasible. It was found that on Table 44, in

the confusion matrix, payload misclassified as benign was composed of the padding points,

and not on the payload attack points themselves. This points to caution on the part of the

adversary, since the selection of the padding values may also be critical in establishing zero

error.

Experimental Results for Adaptive Resonance Algorithm

The Adaptive Resonance 1 Algorithm uses binary input; and outputs a cluster assign-

ment based on a cluster prototype. In this work, all computations were made by converting

the binary values back to decimal to maintain uniformity in the measurements with regards

to other algorithms. To carry out the tests described in the previous chapter for Adaptive

Resonance 1, all inputs from the data sets that were not of integer value were converted by
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rounding to the closest integer, using a fixed learning rate of 2.0. All attacks were carried

out by using zero values in the rest of the vector that comprises the payload. The selection of

the zero value as the padding for the Adaptive Resonance was due to the way the algorithm

classifies the data. The vigilance parameter determines the granularity of the clusters based

on the differences between binary vectors. If the vectors were filled with random values,

their binary equivalent would add too much noise to the data processed by the algorithm.

The drawback of this technique is that while it increases the probability of successful attack,

it can also lead to easier detection.

The test results of Appendix D are shown in Figure 30.The results show that, as

opposed to other algorithms, the Adaptive Resonance response to payload injection is very

favorable due to its high success rate. Nonetheless, the encoding conversion to binary values

may be enough to arise suspicion since binary vectors will appear unreasonable large if done

on a data set with small values.

Figure 30. Summary of confusion matrix results for the Adaptive Resonance algorithm compromise

Figure 31 demonstrates a graph of the vigilance parameters used in the test results

displayed in order of increasing value. The figure demonstrates that zero error is achieved

while the vigilance parameter falls below a given vigilance value.
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Figure 31. Sorted vigilance parameter on the x-axis with its corresponding DS value result for the
test runs

While the algorithm displays several favorable qualities, such as encoding simplicity

and a high degree of success versus other algorithms, it has some drawbacks in terms of

analyzing the training of the algorithm. Being binary valued in nature, the algorithm’s

success was hard limited in terms of being successful or not. The densities remained the

same throughout the training, since the cluster assignment into either malicious or benign

is independent of the number of clusters. Another limitation is that while the DS is a good

indicator of success, it was dependent mainly on the value of the vigilance parameter that

falls outside of the attacker’s control. While there might be perfect execution of the algorithm

under training, it may completely fail if the vigilance parameter varies considerably. This

phenomenon occurred only in a limited number of tests, however it remains a considerable

factor when the adversary is implementing the algorithm.

Another result that was obtained, which might be interpreted as a drawback, is the

example in Table 5, which shows an interesting behavior in the DCD. These results were

derived from Table 64 of Appendix E. The results illustrate that the DCD must be carefully

handled for unsupervised algorithms that do not specify in advance the number of clusters,

since the cluster distance may be warped by the equation’s denominator as the number of

clusters grow.
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Sample 1 with DCD of 0.180

Trojan Payload Benign Data

Cluster 0 1 2 3

Frequency: 51 130 1491 1279

Sample 2 with DCD of 0.210

Trojan Payload Benign Data

Cluster 0 1 2 3 4

Frequency: 24 27 521 1277 1102

Sample 3 with DCD of 0.074

Trojan Payload Benign Data

Cluster 0 1 2

Frequency: 31 20 2900

Table 5: Results of Statlog (Shuttle) Data Set Baseline using Windows XP PRO SP3 - Full ROP
calc shellcode

Effects of Varying the Number of Data Columns and the Vigilance Parameter

The results demonstrated for the tests made on the Adaptive Resonance algorithm in

the last section were done using a fixed number of columns and a fixed vigilance parameter

throughout all runs. This section covers the impact of the selection of columns and vig-

ilance parameter in a given data set and the implications for the attacker’s design of the

compromise.

The tests were started by varying the number of columns using a fixed vigilance

parameter of 0.3 and a fixed learning rate 2.0. The tests were carried out on the KEGG

Metabolic Network Data Set by selecting 10,683 random instances from the data set using

OSX/Intel - setuid shell x86_64 payload. The ranges used for the payload and benign data

set tested are shown in Table 6. The addition of columns were also filled with zero vectors
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to limit the amount of influence due to random variations in non payload columns.

Data Set Payload 1 Payload 2

Min Max Min Max Min Max

Column 1 2 116 170 225 257 312

Column 2 1 509 1024 1279 2049 2304

Table 6: Minimum and maximum of data set range of the two columns used along with the Payload
Range

Figure 32 shows the output for payload 2 and benign data. The graph starts by

showing the results of just three columns from the data set and incrementally showing the

addition of more columns from the data set to make a larger feature vector. While there

is a clear trend towards reduction of clusters as the columns from the data set are added,

(showing signs of homogeneity as the addition progresses), a sudden change occurs in column

5, indicating that the pattern of homogenization depends on the column values. In this case,

column 5 of the data set has a significantly smaller range than the rest of the first eight

columns sampled.

Figure 32. Log plot showing results of data set column additions for payload 3 of Table 6
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Table 7 shows the average values of DYTrojan DS and DCD for the clusters obtained

for each run. As it should be expected, the DS will be decreased as the number of elements

belonging to cluster 1 increases, with the addition of columns making the denominator larger

in magnitude. The density for the malicious cluster remained fixed during the duration of

the addition of the columns.

The reason behind the fixed density is that the elements inside the clusters and the

dimensions of the column grew at a constant ratio, therefore giving the same result. The

DCD value behavior can be explained by observing that the number of cluster decreases

as the number of rows increases. The row increase allows for greater homogeneity on the

ratio of zeros to ones in the encoding, giving way to a consolidation of clusters. This will

mean that the numerator in the DCD computation will decrease in magnitude. While the

distances of the centroids may vary, the decreasing number of clusters is enough to influence

the computation of the DCD towards smaller values.

Payload 2

Columns DS DY_Trojan DCD

2 0.0287 0.0011 2.64

3 0.0230 0.0011 2.34

4 0.0245 0.0011 2.33

5 0.0113 0.0011 1.55

6 0.0142 0.0011 1.19

7 0.0120 0.0011 0.92

8 0.0112 0.0011 0.92

Table 7: Impact of column additions on DY_Mal DS and DCD

Figure 33 shows the vigilance parameter effects on the same data set using payload

1. The results show how the clustering arrangement for the payload and how the malicious

payload achieves total exclusion of the benign sets as the vigilance parameter is lowered.

The lowering of the vigilance parameter makes the cluster threshold bound tighter, and
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therefore creates a more crisp segregation between the payload and the benign data.

Figure 33. Log plot of vigilance parameter behavior

For the payload 1, the total segregation happened at the vigilance parameter of 0.13,

while the payload 2 segregation occurred at 0.16. This places a constraint on the attacker,

since the vigilance parameter has to be estimated in order to carry out a successful attack.

Table 8 shows the results of the DS, DYTrojan, and DCD, as the vigilance parameter

is increased in payload 1. Zero error was achieved in this instance at a value between the

0.13 and 0.14. This is the same response as payload 2 but with a different threshold value

for the vigilance parameter, and zero error in classifying the payload from the benign data.

Payload 1

Vigilance Parameter DS DY_Trojan DCD

0.13 0.0000 0.0038 3.02

0.14 0.0727 0.0036 2.74

0.30 1.0000 0.0000 0.00

0.90 1.0000 0.0000 0.00

Table 8: Parameters DY, DS, and DCD for the vigilance parameter variation
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Significance Tests on the Use of a Particular Algorithm Attack on Shared Data Set

The use of the same data set on different machine learning algorithms lead to the

question on whether compromising a particular algorithm and using a particular data set

is more advantageous. To carry out this analysis, the Friedman nonparametric test was

utilized. The results analyzed were based on the error obtained during the test executed,

and were normalized using the total number of samples in the test run. The algorithm that

obtained the least normalized error was chosen to be the biggest score.

The selected data set, which overlaps all algorithms, is the KEGG Metabolic Network

Data Set Using Baseline and the additional benign data point addition tests. For this data

set, the number of tests carried out on simple Kohonen and Kohonen U-Matrix compromises

were less than those for the K-means and Adaptive Resonance compromises. To resolve this

difference, two more tests were added to both Appendix B and C to match the number of

samples for the KEGG Metabolic Network Data Set to three runs baseline and three runs

with additional benign data sets. This allows to approximate the Friedman rank test F

to the χ2 distribution with k-1 degrees of freedom (Stamatis, 2002). The formula for this

statistic is:

F =
12

Nk(k + 1)

[∑
R2
i

]
− 3N(k + 1) (39)

For the Friedman test, it was assumed that:

H0: There is no difference among learning algorithms used to insert the payload.

Ha: There is a difference among learning algorithms used to insert the payload.

The scoring for the Friedman test is presented in Table 9.

The result for the Equation 39 was:

F =
12

6 ∗ 4 (4 + 1)

(
18.52 + 102 + 92 + 22.52

)
− 3 ∗ 6 (4 + 1) = 11.125 (40)

The value of χ2
.005 = 12.838, thus the result is that 11.125 ≯ 12.838, giving way to a

rejection of the alternate hypothesis and accepting that the null hypothesis is correct.
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K-means Kohonen Kohonen U-Matrix Adaptive Resonance

2.000 3.000 1.0 4.00

3.000 1.000 2.0 4.00

3.500 1.000 2.0 3.50

3.500 2.000 1.0 3.50

3.500 2.000 1.0 3.50

3.000 1.000 2.0 4.00 Column Sum

Sums 18.500 10.000 9.0 22.50 40

Observed Means 3.083 1.667 1.5 3.75 10

Null Hypothesis 2.500 2.500 2.5 2.50 10

Sample Count 6.000 6.000 6.0 6.00 24

Table 9: Results of Friedman test scoring for the KEGG Metabolic Network data set with baseline
and additional data points

The graph of the mean rank of the expected null hypothesis versus the obtained mean

ranks appears in Figure 34:

Figure 34. Friedman values for the mean rank of Expected Null Hypothesis vs observed

Significance Tests of Baseline Versus Additional Samples in Data Set

An important part of the experimental design presented throughout this dissertation

is the tests between a baseline of intercepted messages and the addition of generated benign
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Baseline Additional Signed Rank

89 100 5

97 100 3

100 97 -3

62 100 6

59 60 1

100 100 0

97 100 3

100 100 0

100 11 -7

Figure 35. Results of Wilcoxon signed ranked test for the K-means compromise

samples. The addition of samples is intended to simulate the rest of the data that was not

intercepted by the attacker, in an effort to make the training more realistic with regards

to the eventual size of the analyzed data. To achieve this comparison, all test results were

normalized using the error over the total number of samples. This result was then subtracted

from one to obtain a normalized score.

To answer the question whether the tests with added samples are effective, a Wilcoxon

significance test was carried out for each of the algorithms tested. For the test, it is assumed

that:

H0: The distribution of baseline intercepted samples and additional benign samples

is the same.

Ha: The distribution of the additional generated samples varies substantially from

the baseline.

For the K-means algorithm, the signed ranked score is given in Table 35.

The rank-sum test statistic W for the K-means sample is 10, with the number of

samples n = 7. The critical W for 5% level is 2. Therefore, the results demonstrate that

the null hypothesis must be accepted, since W >= critical W.

The Kohonen compromise test results are given in Table 36
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Baseline Additional Signed Rank

96 97 1.5

84 92 5

93 95 3.5

93 94 1.5

97 97 0

94 92 -3.5

Figure 36. Results of Wilcoxon signed ranked test for the Kohonen compromise

Baseline Additional Signed Rank

85 86 1

90 83 -4

86 95 5

94 90 -3

87 85 -2

89 89 0

Figure 37. Results of Wilcoxon signed ranked test for the Kohonen U-Matrix compromise

In this case, the obtained W value was 3.5. The critical value of W for N = 5 at p

≤ 0.05 is 0. Therefore, the result is not significant at p ≤ 0.05. Under this result, the null

hypothesis must also be accepted for the Kohonen test results.

Finally, the results for the Kohonen U-Matrix test results are given in Table 37, where

W = 6, and the critical value of W for N = 5 at p ≤ 0.05 is 0. Therefore, the result is not

significant at p ≤ 0.05.

Adaptive Resonance was not included, since the errors obtained in the tests were

less than 0.5, giving zero difference throughout all samples, when rounded to a percentage

number without decimal positions in all the Wilcoxon Signed Rank results.
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Performance Analysis of the Compromises

The results presented where based on an evaluation that included two factors that

decreased the accuracy results. The first factor is that the criteria contemplated both the

stealth and the accuracy of the compromise. Both of these goals an be visualized as opposing

objectives in a gradient as shown in Figure 38. The second factor was the random selection

of the measurements that added to the decrease in accuracy of the results obtained.

Figure 38. Compromise vs. stealth gradient

It can be argumented that whenever the adversary chooses this tradeoff of stealth

versus accuracy the attack results will be mixed as those obtained in the experiments carried

out in this dissertation. In the next paragraphs a brief explanation using K-means, the Self

Organizing Feature Map, and Adaptive Resonance algorithms will be given as examples of

why this tradeoff is intrinsic of the nature of the attack. Empirical tests of the analysis is

proposed as future work.

The K-means algorithm was presented in chapter three and it described the steps

carried out by the algorithm. In the algorithm execution, the second step is to assign the

sample points according to the distance metric comparison of: |x− µj | < |x− µk|. Distance

measures for segregation assume that if the clusters are separated by enough distance then

discrimination into the correct cluster can be done. This is the first assumption that must

be sacrificed under a K-means attack (and under any distance measurement unsupervised

algorithm) if stealth is desired. For the attacker to be effective in providing stealth the

payload must be close to the real data as possible. If this is not done, the payload may

appear as unreasonable outliers that can alert the end user that the data is wrong, and

may lead to suspicion of an attack taking place. Under the tests carried out, the locations
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were randomly chosen which violated optimal placement that increases the accuracy of the

results but gave reasonable stealth to the attack.

The second point to consider in the tradeoff is the result of step 3 of the algorithm

that calculates the new centroids by using the update rule: µk = 1
Nk

ΣNk
q=1xq. The update

rule is sensitive to two specific issues. The first is the presence of an outlier within the

elements contemplated within the assigned cluster. The second is the number of elements

that are part of the assigned cluster. Both of this issues can be controlled by the adversary

to the desired degree of accuracy. By fulfilling the distance criteria (given by the distance

measure of step 2 of the algorithm) the attacker can then choose the appropriate encoding

to minimize the possibility of an outlier being present in the dataset. This will guarantee

that the numerator will be roughly homogeneous within the update rule and will not bias

the mean measurement of the centroid. The second issue is the number of elements that are

assigned to the cluster that, if the attacker fulfills the distance criteria, then he can inject

additional instances of the attack or closely spaced points to bias the centroid even more

towards the attack surface.

For the Self Organizing Feature Map The distance is calculated using: Distancej =∑n
i=1 (Inputi −Wold ij) which offers the same tradeoff for the adversary. Nonetheless, there

are three major differences in carrying out the SOFM compromise that need to be care-

fully analyzed. The first one is that individual payload elements are assigned to individual

neurons as opposed to clusters in K-means. Individual assignment of payload elements will

depend on whether a node can be assigned on a one to one correspondence to the pay-

load value. This has to be forecasted by the adversary using as guide the results obtained

in the experimental section on different Kohonen layer sizes. As the Kohonen layer sizes

decrease an additional number of payload copies have to be injected by the adversary to

close the distance within epoch calculations and decrease stealthiness. Notwithstanding, the

distance can be arbitrarily small by the attacker by injecting enough payload copies given a

reasonable size Kohonen layer which can support the mixture of payload and benign data.

The second difference lies in the lateral feedback impact on payload elements with
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benign neighbors. The impact of the lateral feedback imposes another hurdle that can be

remedied by increasing the number of payload copies into the algorithm to compensate for

the lateral feedback “pull” from neighbors on payload nodes. Additional copies of the nodes

have to be injected by the adversary to negate the effects of the pull of the neighbors on the

final payload value with the same result of reducing the stealth of the attack.

The final difference lies in the weight adjustment by the learning coefficient c and the

neighborhood function η of equation 23. These two parameters will impact the within epoch

learning rate and convergence of the neural network to the desired values. The setting of

these values will definitely determine the convergence of the nodes upon the payload values

and this must be compensated by the adversary by additional copies to be calculated during

a particular epoch of the algorithm. This third parameter will also increase the number of

copies if the parameters are to low and make the learning steps slow in convergence.

The Adaptive Resonance Algorithm works in a winner take all fashion in which the

closeness to the clusters is already formed by the algorithm. The closeness measure is given

by equation 37 which is governed by the vigilance parameter. If the left hand side of the

equation falls below the established vigilance parameter it rejects the cluster assignment

until all clusters are compared and a new cluster is formed. The success of the compromise

depends mostly on the previous consideration which takes into account the following two

elements. The payload values should be close enough in value such that the conversion to

binary values should remain below the vigilance parameter. This implies careful selection

of the exploit to cluster the values close enough within a single cluster. The second element

to consider is that the separation of binary differences between the payload and the benign

data set are enough so that benign data fails the vigilance test and fall in a cluster that is

not part of the payload. These criteria set the theoretical limitations of the attack for the

adaptive resonance and can be met by an attacker under reasonable assumptions.

The discussion above does not include additonal compromise elements that the at-

tacker can carry out to guarantee the attacks success. Since the Trojan also contains a

software compromise the attacker can also fix some of the parameters during the learning of



104

the exploit. The attacker can also carry out denial of service on the benign data elements to

skew the learning towards favorable compromise outcomes, among other possibilities. While

these attacks can greatly improve the outcome of the adversary, it also alerts the user of the

adversary’s acitvities and therefore lower the stealth of the attacks. These techniques were

not contemplated as part of the work, since they are not part of the learning compromise

but can skew the results on the part of the adversary more than show the effects of the

compromise on the learning algorithm’s results.

Under the experiments carried the optimal convergence criteria were not pursued

directly to obtain high degree of accuracy, since this would completely bias the experimental

results for the test of hypothesis. Instead it was chosen to represent scenarios were the

attacker was forced to contemplate the tradeoff of accuracy to present a broader scenario

and provide random results that presents the middle bounds of accuracy versus stealth. In

addition, further knowledge of the data domain was not considered in the modeled attacks

which can further increase the chances of success and stealth of the adversary.

Summary

This section has presented the tests carried out on the unsupervised learning Trojan

compromise. The section implemented the procedures introduced in Chapter 3 that con-

templated three algorithms, eight exploits and four data sets. The data sets and exploits

were divided so that each of the algorithms contained at least one data set in common with

all others.

The chapter also presented individual analysis of each of tests and training runs for

each of the algorithms. Several highlights were made in this chapter, especially with the

relationship between the DS and the DCD. The chapter also emphasized caution on incor-

rectly interpreting the DS value, since it is a summary of the error and does not provide

exact information on the specific type of error encountered during the tests.

Two hypotheses tests were carried out in this chapter. The first hypothesis test per-

tained to the performance of the compromises on the algorithms tested. Using the Friedman
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nonparametric test, it was found that there was no statistical significance in in terms of per-

formance, among the encoding tested on the three unsupervised learning algorithms.

The second significance test involved evaluating the difference between a baseline of

intercepted data samples versus an intercepted data sample with additional benign vectors

generated based on a Gaussian distribution assumption. To answer this hypothesis, the

Wilcoxon signed rank test was utilized. It was found that in each of the algorithms the null

hypothesis had to be accepted, since the difference was not statistically significant.

The chapter also discussed the performance analysis of the compromised algorithms

where a discussion of the results presented arguments to show that performance of the

algorithms can in principle achieve high degree of accuracy if stealth is neglected. Under the

arguments presented, it should be reasonable to assume that the attacks can be optimized

by an adversary with enough accuracy can be successfully employed in real world scenarios.
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Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

In this research, the design of the unsupervised learning Trojan methodology was

presented to highlight the importance of Trojans within the field of machine learning. This

work extended the work of the Neural Network Trojan and it is part of a hypothesis that

all machine learning algorithms are susceptible to Trojans.

The main problem to solve within the unsupervised learning compromise is the un-

supervised learning Trojan density problem and a subproblem of the cluster identification.

The unsupervised learning density problem is the general question of whether under general

conditions the malicious cluster can be identified by an unsupervised learning algorithm.

It was shown that this type of problem is basically a density estimation problem, and in

principle, can be generally be solved.

The subproblem of cluster identification was analyzed to obtain general guidelines on

the particular characteristics of the data that can be leveraged to solve the cluster identifi-

cation subproblem. The challenge in finding a solution to the cluster identification problem

is that the unsupervised learning algorithms are designed to separate clusters and not nec-

essarily discriminate them. From there, an analysis was presented on intrinsic and extrinsic

attributes of the payload that can be leveraged to discriminate malicious from benign data.

Intrinsic properties were defined as those within a single cluster, while the extrinsic proper-

ties are those that can differentiate a malicious clusters from other benign clusters.

To show the effectiveness of the analysis, four compromises were designed to be carried

out on three learning algorithms. Two of the compromises were designed for the Kohonen

algorithm, another was designed for the K-means algorithm, and the final one was directed

towards Adaptive Resonance. All four compromises were tested on the three algorithms

under random testing, and with an emphasis on evaluating only the impact of the payload

on the algorithms behavior with a less discriminative decoder, the results were moderate in
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success.

Under the analysis presented, it was shown that if the payload displayed extreme val-

ues such as those of the Kohonen U-Matrix encoding and big payloads under the Adaptive

Resonance compromise, the attacks could be susceptible to discovery without much inspec-

tion. This presents a limitation in those types of attacks that are efficient, but provide less

stealth capability for the attack. With the K-means compromise, the radius and shape of

the compromise can lead to detection, but this detection would take place upon execution

of a visualization technique.

The drawbacks of the particular encoding also lead to possible improvements to avoid

detection. These rely on diminishing the surface area of the attack. In other words, the

payloads can be selected and encoded with minimal impact on the characteristics of the

data set. For example, in Adaptive Resonance, the distance from the payload can be tested

to see what is the minimal distance that can lead to a minimal impact on the size of the

binary encoding. With respect to K-means, the radius of the hull can be chosen to be less

conspicuous.

The detection problem leads to another element of evaluation, which is the decoder

of the payload. This requires access to modify the algorithm’s implementation. Four modi-

fications were presented to demonstrate the changes required to carry out the compromises

documented in this research. The decoders explored do provide for particular implementa-

tions that can take into account the accuracy required to carry out the particular type of

attack.

The research also presented a procedure that the adversary could use to evaluate the

effectiveness of the compromises on the given data sets. The procedure consisted on analyz-

ing an obtained sample from the expected data set to be analyzed, and use it as a training

set on which to test the payload configurations. The procedure utilized a random selection

of parameters to demonstrate a variety of possible scenarios which might be encountered

during the execution of the procedure. Two particular aspects of the procedure were evalu-

ated for statistical significance: the use of a particular algorithm attack on a data set and
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the use of a baseline versus a sample with added data points to simulate a larger dataset.

For this evaluation, the null hypothesis presented was that none of the four particular

encodings on the three data sets had a particular advantage, while the alternate hypothesis

sustained that the encoding did make a difference. Under the Friedman non parametric

test, it was found that none of the attacks had a particular advantage over the other in

obtaining better results. This does not necessarily mean that for an adversary this will be

the case, as under most scenarios, the adversary will select the compromise algorithm which

provides the best attack surface. It will also depend on the particular preference and ease

of deployment that a particular compromise may have on a given scenario.

The second test carried out was the use of a baseline of only the intercepted sample

for training, versus a training that included the intercepted data plus an additional number

of samples added based on a Gaussian distribution. Each of the compromises was tested

independently using the Wilcoxon ranked test and found no significant difference between

them. Doing a non statistical analysis of the results of the K-means algorithm provided an

example of a situation addition of samples can lead to an overestimation of the complexity

of the capacities needed to drive the centroids towards the payload for activation. This effect

may lead the adversary into injecting additional malicious data vectors to bias the results.

In principle, this could lead to a better overall success rate, but also to a higher detection

rate.

While the two tests carried out led to acceptance of the null hypothesis and that the

results showed mixed success rates in the compromises, there are several elements to take

into consideration when interpreting the results. The experimental setup presented in this

chapter had as a goal to demonstrate a random selection of parameters to introduce the new

types of attacks. The random nature of the setup is designed to show average performance

behavior and does not necessarily show optimal conditions that an attacker may carry out.

It was also documented that under reasonable configurations of the decoder, the attacks

were substantially more successful than the bound imposed in the tests results presented.

While the assumptions for the experiment followed Kerckhoffs’s principle, the experimental
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setup itself assumed random scenarios which lead to substantial underperformance of the

compromises. These factors imply that careful interpretation of the results are needed to

assess the real implications of these attacks under real life scenarios.

Implications

In this work, the unsupervised learning Trojan was presented which aimed at demon-

strating a proof of concept of how malware directed towards this kind of learning can be

achieved. The implications of this compromise can be seen from a security perspective and

from a more general perspective on machine learning.

From the security perspective, it is the first time that a malware is designed to take

advantage of this type of learning. While there existed several compromises in adversarial

machine learning, their aim was to subvert the learning process and not to take advantage

of the algorithm to introduce a payload into a system as the ULT does.

While the research focused on showing how the compromise is achieved, its ultimate

objective is to bring to light the capability that an adversary could possess, before it can

actually happen in a real world scenario. This opens the possibility of research in areas

such as malware detection and prevention, in order to study compromise work detection

techniques that can be designed to prevent possible attacks.

The execution of the ULT under this work also gives further positive indications on

the hypothesis that in principle, all machine learning algorithms are susceptible to malware

compromises. The repercussions of these findings support the need for further research in

other types of machine learning algorithms that may be either unsupervised, supervised, or

reinforcement learning.

The work presented, along with the neural network Trojan, has further implications

that go beyond the security aspects of machine learning. Learning entails not just the

generalization capability, but also the capability to memorize. The insertion of the payloads

which the algorithm needs to be precisely recalled, as well as having a data set which needs

to be generalized, provides an example of both types of capabilities.
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Recommendations and Future Work

The field of adversarial machine learning is a very important one within the general

field of machine learning. As machine learning continues to gain prominence outside of the

academic field and into production environments, more security concerns will arise. This

need is not just based on finding out what are the possible compromises, but also on ways

to detect and prevent them.

The work presented in this dissertation was delimited to a proof of concept of the un-

supervised learning Trojan. This initial effort opens the door to substantial further research

in the area of malware for machine learning algorithm. These areas of future research can

be divided into:

1. Exploring different constraints on the access available to the attacker.

2. Refining the methodology presented.

3. Finding detection techniques for such compromises.

Each of these will be briefly discussed below.

The work presented assumed that the source code was readily available for compro-

mise. Under certain circumstances, this may not be possible or practical for the adversary.

Future work may concentrate on different methods in which the attacker could gain access

to the learning algorithm, including compiled executables. Another area that merits further

research is the execution of the algorithm in embedded hardware platforms and specialized

circuits. Future research could include how to compromise such hardware devices without

necessarily obtaining schematics or additional information on the platform.

Other constrains that merit further research are the assumptions that the attacker

cannot leverage information about the data set. Research in this area may focus on how

to take advantage of additional information such as sample statistics of individual fields

to maximize the attack probability. It can also focus on real constraints, such as avoiding

detection by adjusting the values to reasonable thresholds that the data may have within
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a specific data set. These constraints can also be tested under the assumption that the

attacker needs minimal stealth and test the analytical assumptions proposed at the end of

the previous chapter.

An assumption that was maintained throughout the procedure was the Gaussian dis-

tribution assumption on which to generate the additional benign samples. This does not

necessarily reflect the distribution of the targeted data set. Future work can focus on how to

analyze small samples to calculate the moments of the samples and obtain a better expanded

training set on which to test the payloads.

Additional refinements to the methodology also include a more realistic assessment

of the misclassified samples during the training and testing session. The addition of a loss

function in future work may assign different weights to the benign data classified as malicious

samples that are different to the weights assigned to malicious samples classified as benign.

This will provide a better assessment of the results obtained in the confusion matrix results.

The work needs to be extended on the number of samples used for the statistical

measurements to further corroborate the results presented here, along with additional un-

supervised algorithms. This will support the results already obtained and expand the work

on further techniques that leverage the intrinsic and extrinsic properties of the clusters. Ad-

ditional work also needs to be carried on density estimation based on the obtained sample

so that inclusion of the bening density measurement can provide useful measurment of the

test density

The work focused on presenting the proof of concept and did not go into the critical

part of detection and prevention of the attack. Two immediate mitigation techniques that

can be implemented are: Improvements in code validation of machine learning software and

outlier detection. Improvements to current code validation techniques require segregation

of duties between the programmers who build the code for the machine learning algorithm

and those that put together and run the dataset on the machine learning algorithm. Im-

proved code walk through validation techniques taking into account possible compromises

on machine learning algorithms will help mitigate any possible malicious code insertions.
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Additional work on detection techniques can focus on outlier detection. The outlier

detection may focus on leveraging the tradeoff between stealth and accuracy. As the attacker

chooses a strategy of accuracy and neglects stealth, the attack data can be target to outlier

detection. The outlier detection code can be done by an independent party and provide

additional segregation of duties in the execution of the code that is used in machine learning.

Further work in this area that may be considered future work is to leverage the intrinsic

and extrinsic properties of utilized in the compromise to try to develop signatures for the

attack. The challenge in this area is that the variability of the parameters of the intrinsic and

extrinsic properties exploited by the compromises can be hard to normalize into a signature

based system. Another technique that might be pursued is the use of different algorithms

to pretest the data to determine whether there is a compromise in the data. This would

lead to new analysis techniques on which to detect discriminating patterns, and not just

identification of clusters in the data.

Summary

The Unsupervised learning Trojan is a malware insertion technique that leverages the

unsupervised algorithms to carry out the activation and encoding of a malicious payload.

The attack leverages either intrinsic or extrinsic properties, such as size of the sampled data,

location, uniformity or density, among other possible properties to encode and activate the

attack.

The unsupervised learning Trojan is a continuation on the work started on the Neural

Network Trojan. Under the supervised learning of the neural network Trojan the attacker

had complete control of the properties of the malware. Under the Unsupervised Learning

Trojan, the adversary does not have access to a training set on which to encode the values

that will be embedded on the matrix of weights as in the Neural Network Trojan. Instead,

the learning Trojan poses a challenge of the Unsupervised Learning Trojan density problem.

The main problem is to find a way on which the algorithm can, without any prior training,

isolate the payload that is inserted as part of a benign data set into a distinct group.
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Mathematically, this is equivalent to density estimation of the distributions of the targeted

data set under unsupervised learning.

A sub problem within the density estimation is the malicious cluster identification.

By leveraging the intrinsic and extrinsic properties of the payload, the attacker can then

discriminate the malicious points within the data set’s underlying distribution. The prop-

erties can also be leveraged to provide a mechanism to activate the payload upon certain

threshold or embedded requirement that is integrated into the design of the unsupervised

learning malware.

To analyze the Unsupervised Learning Trojan Density problem and the cluster iden-

tification subproblem, several formulas are proposed as part of generalized procedure. The

procedure consists of converting an unsupervised learning execution into a “training” or cal-

ibration phase where the attacker measures the effectiveness of an attack. This training

phase is based on the assumption that the adversary has intercepted part of the data that

will be used by the compromised code of the algorithm, and it serves to obtain estimates of

the underlying distribution of the data that will be subjected to payload insertion.

The outlined training procedure also provides a scoring example based on a compro-

mise between execution and stealthiness. This scoring procedure can be changed by an

adversary to allow for the particulars of a specific compromise. The scoring’s intended goal

is to choose the particular training instance that matches the attacker’s main goal, whether

it is malware execution guarantee or stealthiness. For example, execution guarantee may

incur in additional malicious samples being injected into the data steam, therefore making

the compromise more susceptible to detection.

To demonstrate the effectiveness of the procedure, four example compromises were

devised on three algorithms. The algorithms chosen for the compromise were K-means,

Kohonen, and Adaptive Resonance 1. Each of these algorithms had particular differences

that made each of the compromises particular in nature.

For the K-means algorithm, the compromise consisted on encoding the payload as

a hull, which provided the boundary of the malicious cluster. The objective was to put
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enough additional malicious samples within the hull, so that one of the centroids fell within

the confines of the hull. The centroids’ action of falling into the hull would then activate

the decoder sequence to read the values of the points that comprised the hull and decode

them into their final hexadecimal values.

The second and third compromises were directed at the Kohonen algorithm. The

first Kohonen compromise consisted on embedding the decimal equivalent of the payload

hexadecimal values into one of the set of weights of the algorithm. The sequence was then

inserted into a second set of weights which provided the execution order for the payload.

Finally, the compromise allowed the weights of the Kohonen algorithms to converge on these

values. Once the algorithm finishes its epoch runs, the decoder is run on the particular

sequence. A starting value of the sequence and payload must be given to the decoder so

that the decoder can successfully read the compromise.

The second Kohonen compromise is directed at the visualization of the algorithm’s

output as a U-Matrix. The visualization technique compromise embeds the values of the

payload into a submatrix of the Kohonen layer. When the U-Matrix visualization functions

are called, the values of the Kohonen layer are processed by the U-Matrix formula which

will then also decode the payload submatrix. The decoder of this compromise just needs

the position of the submatrix within the Kohonen layer to read the payloads contents.

The final compromise is directed towards the Adaptive Resonance algorithm, and

consisted on a similar encoding technique as the first Kohonen compromise. Two columns

from the data set were identified as the targets of insertion for the payload and the sequence,

respectively. The decimal values of the payload, the sequence, and the rest of the data set

were then converted to binary values for processing by the Adaptive Resonance algorithm.

The four compromises were tested on a total of four data sets and eight selected

payloads. For the K-means compromise, a total of 18 procedures were carried out, consisting

of three training runs and one testing run. The runs used three of the four data sets and

three of the selected compromises. The Kohonen compromise procedure was repeated 12

times for each compromise, using three data sets and two payloads. Finally, for Adaptive
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Resonance, 12 procedures were carried out with two data sets and two payloads.

The tests carried out were configured to demonstrate a random selection of parameters

to introduce the new types of attacks. This implies that some of the runs exhibited less than

optimal outcomes, while other showed superior performance, which may not be indicative of

possible results under real life conditions. Under real life conditions, the attacker may choose

the optimal outcome based on the information that is available to him. Notwithstanding,

the procedures showed a variety of outcomes that represent a wide range of scenarios, which

was the main objective of the study.

Additional considerations of the outcomes of the study pertain to the chosen resolution

of the decoder. The reported outcomes of the study were made with the minimum resolution

of a decoder, which in most instances was suboptimal. Under the optimal configuration of the

decoder, the attacks obtained substantial success rate above the reported results documented

in this study. This was also part of the aims of the study, which is to provide a lower bound

on the success rate of the attack.

A specific goal of the study was to test two particular hypothesis of the described

procedures. The first one was to test whether the use of a particular algorithm attack on

shared data set was significant. For this test, a common data set was selected among all the

compromises and a Friedman significance test was implemented. It was determined under

the test that there was no significant difference among the compromise chosen in terms of

its performance over the others.

The second test was to determine whether there was a particular advantage of utilizing

additional generated samples to simulate the final environment on which the malware will

execute. The generation of additional vectors assumed a Gaussian distribution to generate

the additional data elements for the simulation. It was determined, using the Wilcoxon

ranked test, that there was no advantage over using only the intercepted sample by the

adversary.

It should be highlighted, that while research carried out followed Kerckhoffs’s principle,

the experimental setup itself assumed random scenarios which lead to substantial underper-
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formance of the compromises. The goal of the study was to establish a lower bound on

performance, however the expected success rate under real life conditions are much higher,

since the attacker will not choose general and random setups but ones that are optimal.

This underscores the importance of future work on further experimental setups for the cho-

sen compromises, along with other compromises targeted at other algorithms. The need for

future work on detection techniques is essential to counter the threat demonstrated in this

proof of concept.

While the main focus of this research was to present the Unsupervised Learning Trojan

security aspect, its scope goes beyond security. Other possible implications reside in the

potential to further machine learning research on problems where memorization of sequences

for execution are desired, alongside the generalization properties of the algorithm. Future

research may provide further insight on this and other properties of this field of study.
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Appendices

A. Result Tables for K-means Experiments

Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 14.23 12.80

2 1 567 27.12 43.53

Sample Offset for Order Column Offset for Payload Column

1 -15.44 -26.12

2 4.950 -3.86

3 69.44 -33.59

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 3199 0.24 0.0045 5.90*e-5 0.0011 11

2 0 4863 0.32 0.0046 7.89*e-5 0.0014 13

3 0 1441 0.13 0.0049 3.24*e-5 0.0017 12

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.00 12.69

2 1 606 26.73 43.91

DS DCD dy_Trojan dy_Ben

0.32 0.0013 2.26*e-5 0.0014

Confusion Matrix

Payload Benign Total

Payload 0 (124*2)+4863 (124*2)+4863

Benign 0 42730 42730

Table 10: Results of KEGG Metabolic Relation Network Data Set Baseline Using Polymorphic
ShellCode - setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 107 14.19 12.69

2 1 567 27.30 44.87

Sample Offset for Order Column Offset for Payload Column

1 -5.27 -64.87

2 20.80 22.01

3 28.43 53.76

Sample Addl points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 40723 4427 0.08 0.0030 6.08*e-5 9.96*e-5 12

2 44286 24 0.99 0.0038 2.67*e-7 0.0003 11

3 34684 2654 0.94 0.0024 6.24*e-6 0.0003 13

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.02 12.72

2 1 606 26.69 43.57

DS DCD dy_Trojan dy_Ben

0 0.002 1.45*e-5 0.0017

Confusion Matrix

Payload Benign Total

Payload (124*2)+2654 0 (124*2)+2654

Benign 0 42730 42730

Table 11: Results of KEGG Metabolic Relation Network Data Set with Additional Points using-
Polymorphic ShellCode - setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistcs

Column Min Max Mean STD_dev

1 2 92 13.97 12.61

2 1 579 26.72 44.16

Sample Offset for Order Column Offset for Payload Column

1 2.66 25.21

2 -26.52 13.85

3 54.45 5.56

Sample Addl points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 889 0.10 0.0027 0.0002 0.0001 14

2 0 3670 0.27 0.0023 3.16*e-05 0.0014 8

3 0 1500 0.14 0.0038 1.68*e-05 0.0017 14

Test Results for Selected Attack Using Sample 1(Randomly Selected)

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.07 12.75

2 1 606 26.83 43.75

DS DCD dy_Trojan dy_Ben

0.10 0.0016 .077*e-6 0.0018

Confusion Matrix

Payload Benign Total

Payload 0 (131*2)+889 (131*2)+889

Benign 0 42730 42730

Table 12: Results of KEGG Metabolic Relation Network Data Set Baseline Using OSX_Intel re-
verse_tcp shell x86_64
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 14.07 12.57

2 1 606 26.098 45.00

Sample Offset for Order Column Offset for Payload Column

1 49.75 -1.67

2 -22.08 42.82

3 36.42 -17.65

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 47106 2460 0.96 0.0027 4.62*e-5 0.0001 10

2 28946 4003 0.10 0.0026 1.07*e-5 0.0010 8

3 31168 1966 0 0.0028 5.65*e-6 0.0009 18

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.04 12.75

2 1 579 26.76 43.54

DS DCD dy_Trojan dy_Ben

0 0.0018 1.23*e-5 0.0016

Confusion Matrix

Payload Benign Total

Payload (131*2)+31168 0 (131*2)+31168

Benign 0 42730 42730

Table 13: Results of KEGG Metabolic Relation Network Data Set with Additional Points using
OSX_Intel reverse_tcp shell x86_64
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 92 13.94 12.63

2 1 509 26.32 42.67

Sample Offset for Order Column Offset for Payload Column

1 3.94 60.39

2 -13.83 33.83

3 12.14 16.20

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 1804 0 0.0033 0.0004 9.62*e-5 9

2 0 413 0 0.0034 7.32*e-6 0.0016 10.5

3 0 4343 0 0.0034 0.0008 8.03*e-5 10.5

Test Results for Selected Attack Using Sample 2(Randomly Chosen)

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.08 12.74

2 1 606 26.93 44.12

DS DCD dy_Trojan dy_Ben

0 0.0020 1.16*e-6 0.0015

Confusion Matrix

Payload Benign Total

Payload (428*2)+413 0 (428*2)+413

Benign 0 42730 42730

Table 14: Results of KEGG Metabolic Relation Network Data Set Baseline Using Windows XP
PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 94 13.97 12.51

2 1 606 26.64 43.60

Sample Offset for Order Column Offset for Payload Column

1 -33.74 44.68

2 -41.71 6.42

3 -30.64 -60.05

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 27628 1466 0.95 0.0017 0.0007 0.9558 9.5

2 45021 305 0.01 0.0021 7.24*e-6 6.99*e-5 13

3 52233 3775 0.06 0.0017 4.29*e-6 0.0007 7.5

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 2 94 13.98 12.51

2 1 606 26.64 43.60

DS DCD dy_Trojan dy_Ben

0.01 0.0034 3.20*e-5 0.0001

Confusion Matrix

Payload Benign Total

Payload 0 (428*2)+305 (428*2)+305

Benign 0 42730 42730

Table 15: Results of KEGG Metabolic Relation Network Data Set with Additional Points using
Windows XP PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 688 404.28 112.02

2 -1 60017 35847.80 9055.42

Sample Offset for Order Column Offset for Payload Column

1 -52.52 -171.88

2 -685.40 -17.81

3 -281.10 42.66

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 37 0.61 0.6100 1.78*e-5 2.50*e-5 8

2 0 4 0.54 0.6151 1.62*e-5 2.87*e-5 13

3 0 8 0 0.6143 1.64*e-5 2.83*e-5 15

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 401.75 130.64

2 -1 60081 35981.72 9470.95

DS DCD dy_Trojan dy_Ben

0.24 0.6160 6.660*e-6 4.28*e-5

Confusion Matrix

Payload Benign Total

Payload 0 (124*2)+8 (124*2)+8

Benign 0 422 422

Table 16: Results of Water Treatment Plant Data Set Baseline Using Linux_x86 Polymorphic
ShellCode - setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 743 403.17 104.64

2 -1 57629 35588.37 9261.62

Sample Offset for Order Column Offset for Payload Column

1 -168.07 -770.24

2 158.09 243.36

3 -106.44 -393.13

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 318 26 0.26 0.5541 5.45*e-6 3.85*e-5 9

2 478 41 0.26 0.5814 6.08*e-6 4.02*e-5 12

3 372 44 0.26 0.5751 5.91*e-6 4.01*e-5 9

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 743 403.17 104.64

2 -1 57629 35588.37 9261.62

DS DCD dy_Trojan dy_Ben

0 0.6151 8.11*e-6 4.04*e-5

Confusion Matrix

Payload Benign Total

Payload (124*2)+41 0 (124*2)+41

Benign 0 422 422

Table 17: Results of Water Treatment Plant Data Set with Additional Points using Linux_x86
Polymorphic ShellCode - setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size of 105 Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 815 391.28 124.68

2 -1 54578 37118.45 7616.57

Sample Offset for Order Column Offset for Payload Column

1 -638.04 297.62

2 93.84 269.38

3 843.95 -393.48

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 23 0 0.6814 2.08*e-5 2.28*e-5 11

2 0 26 0 0.6819 2.09*e-5 2.27*e-5 12

3 0 27 0 0.6880 2.10*e-5 2.21*e-5 13

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 404.98 127.61

2 -1 60081 35665.56 9759.65

DS DCD dy_Trojan dy_Ben

0.60 0.6169 1.68*e-5 2.47*e-5

Confusion Matrix

Payload Benign Total

Payload 0 (131*2)+27 (131*2)+27

Benign 0 422 422

Table 18: Results of Water Treatment Plant Data Set Baseline Using OSX_Intel reverse_tcp shell
x86_64
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Training Results Baseline Size of 105 Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 419.81 135.35

2 -1 52258 36235.11 9316.50

Sample Offset for Order Column Offset for Payload Column

1 -18.83 -67.37

2 415.64 -249.75

3 133.95 313.97

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 396 38 0.24 0.5796 5.49*e-6 4.10*e-5 9

2 391 11 0.22 0.5934 5.11*e-6 4.05*e-5 12

3 268 29 0.30 0.5533 6.38*e-6 3.69*e-5 9

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 887 397.88 124.65

2 -1 60081 35885.35 9406.63

DS DCD dy_Trojan dy_Ben

0.57 0.5879 1.31*e-5 2.20*e-5

Confusion Matrix

Payload Benign Total

Payload 0 (131*2)+11 (131*2)+11

Benign 0 422 422

Table 19: Results of Water Treatment Plant Data Set with Additional Points using OSX_Intel
reverse_tcp shell x86_64
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Training Results Baseline Size of 105 Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 815 386.96 115.871

2 -12 57606 37891.71 8073.71

Sample Offset for Order Column Offset for Payload Column

1 -65.73 345.85

2 264.89 464.50

3 231.59 206.75

206.753716698854

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 21 0 0.6574 2.972*e-5 5.48*e-6 11

2 0 16 0 0.6554 2.973*e-5 5.51*e-6 14

3 0 5 0 0.6597 2.969*e-5 5.55*e-6 11

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 406.06 129.53

2 -1 60081 35473.16 9629.18

DS DCD dy_Trojan dy_Ben

0 0.6023 2.028*e-5 1.54*e-5

Confusion Matrix

Payload Benign Total

Payload (428*2)+16 0 (428*2)+16

Benign 0 422 422

Table 20: Results of Water Treatment Plant Data Set Baseline Using Windows XP PRO SP3 - Full
ROP calc shellcode
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Training Results Baseline Size of 105 Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 887 404.21 143.54

2 -1 57629 36631.10 9117.38

Sample Offset for Order Column Offset for Payload Column

1 144.49 -135.54

2 734.99 207.75

3 702.94 48.13

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 245 4 0 0.6527 0.00043 1.16*e-5 15

2 420 32 0 0.6179 3.349*e-5 8.99*e-6 10

3 243 11 0 0.5463 3.78e-5 5.65*e-6 11

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 401.77 122.73

2 -1 60081 35786 9448.83

DS DCD dy_Trojan dy_Ben

0 0.6156 3.73*e-5 8.96*e-6

Confusion Matrix

Payload Benign Total

Payload (428*2)+4 0 (428*2)+4

Benign 0 422 422

Table 21: Results of Water Treatment Plant Data Set with Additional Points using Windows XP
PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 71 113 85.32 8.74

2 -46 336 34.39 21.80

Sample Offset for Order Column Offset for Payload Column

1 83.01 3.87

2 20.67 154.31

3 76.59 105.77

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 1392 0 0.0222 0.0012 0.0002 12

2 0 228 0 0.0244 5.23*e-5 0.0004 13

3 0 836 0 0.0200 0.0001 0.0003 11

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.88

2 -46 310 34.61 21.52

DS DCD dy_Trojan dy_Ben

0.11 0.0016 7.11*e-06 3.31*e-05

Confusion Matrix

Payload Benign Total

Payload 0 (124*2)+228 (124*2)+228

Benign 0 14500 14500

Table 22: Results of Statlog (Shuttle) Data Set baseline using Linux_x86 Polymorphic ShellCode-
setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 72 113 85.39 9.08

2 -46 72 34.22 21.43

Sample Offset for Order Column Offset for Payload Column

1 -57.46 -21.50

2 24.16 201.21

3 -21.09 9.19

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 12015 1010 0.07 0.0249 9.26*e-5 7.86*e-5 9

2 11768 434 0.04 0.0252 3.52*e-5 8.25*e-5 11

3 12090 13 0.01 0.0246 1.12*e-5 8.39*e-5 10

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.889

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.0044 5.99*e-6 5.53*e-5

Confusion Matrix

Payload Benign Total

Payload (124*2)+434 0 (124*2)+434

Benign 0 14500 14500

Table 23: Results of Statlog (Shuttle) Data Set with Additional Points using Linux_x86 Polymorphic
ShellCode- setuid(0)+setgid(0)+add user ’iph’ without password to _etc_passwd
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 71 113 85.51 8.89

2 -100 72 34.74 21.23

Sample Offset for Order Column Offset for Payload Column

1 32.76 -68.78

2 -15.98 17.86

3 -74.95 7.58

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 532 0 0.0905 0.0001 0.0013 11

2 0 1132 0 0.0935 0.0019 0.0004 12

3 0 796 0 0.1228 0.0015 0.0004 13

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.0044 1.99*e-5 2.58*e-5

Confusion Matrix

Payload Benign Total

Payload (131*2)+1132 0 (131*2)+1132

Benign 0 14500 14500

Table 24: Results of Statlog (Shuttle) Data Set baseline using OSX_Intel reverse_tcp shell x86_64
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 29 141 85.23 8.90

2 -188 72 34.19 21.79

Sample Offset for Order Column Offset for Payload Column

1 116.50 13.32

2 -131.27 -38.37

3 -26.40 -42.30

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 8795 412 0.96 0.0309 3.54*e-5 6.96*e-5 10

2 11748 895 0.07 0.0303 4.60*e-5 6.80*e-5 11

3 8439 1373 0.12 0.0299 7.35*e-5 6.43*e-5 9

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 29 141 85.23 8.90

2 -188 72 34.19 21.79

DS DCD dy_Trojan dy_Ben

0 0.0073 1.68*e-5 2.76*e-5

Confusion Matrix

Payload Benign Total

Payload (131*2)+895 0 (131*2)+895

Benign 0 14500 14500

Table 25: Results of Statlog (Shuttle) Data Set with Additional Points using OSX_Intel reverse_tcp
shell x86_64
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 71 113 85.39 8.92

2 -188 72 34.46 21.05

Sample Offset for Order Column Offset for Payload Column

1 79.15 0.001

2 24.14 7.37

3 -38.96 162.69

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 611 0 0.0140 3.13*e-5 0.0002 11

2 0 370 0 0.0147 7.62*e-5 8.75*e-5 15

3 0 852 0.69 0.0129 3.64*e-5 0.0002 9

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.88

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.0042 1.42*e-5 2.91*e-5

Confusion Matrix

Payload Benign Total

Payload (428*2)+370 0 (428*2)+370

Benign 0 14500 14500

Table 26: Results of Statlog (Shuttle) Data Set baseline using Windows XP PRO SP3 - Full ROP
calc shellcode
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 71 149 85.37 9.06

2 -160 336 33.93 22.99

Sample Offset for Order Column Offset for Payload Column

1 -67.91 -96.25

2 -25.74 42.81

3 12.59 15.06

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 12065 2 0 0.0162 2.53*e-6 0.0002 12

2 10205 1028 0.90 0.0209 9.04*e-6 0.0002 13

3 11691 1173 0.91 0.0211 9.01*e-6 0.0002 11

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.88

2 -46 310 34.61 21.52

DS DCD dy_Trojan dy_Ben

0.67 0.0037 1.25*e-5 4.29*e-5

Confusion Matrix

Payload Benign Total

Payload (428*2)+1028 0 (428*2)+1028

Benign 14500 0 14500

Table 27: Results of Statlog (Shuttle) Data Set with Additional Points using Windows XP PRO
SP3 - Full ROP calc shellcode
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B. Experimental Results Tables for Kohonen network Experiments

Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 65 13.48 12.21

2 1 218 23.38 34.22

Sample Offset for Order Column Offset for Payload Column

1 28 209

2 27 58

3 23 26

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.531 0.077 0.0002 0.0247 12.75

2 0 0 1.559 0.671 0.0002 0.0236 13.75

3 0 0 1.766 0.624 0.0002 0.0311 11.75

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.96 11.87

2 1 539 25.95 25.97

DS DCD dy_Trojan dy_Ben

0.796 0.551 0.0002 0.011

Confusion Matrix

Payload Benign Total

Payload 109 3 112

Benign 26 534 560

Table 28: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 67 13.17 11.52

2 1 144 20.66 27.82

Sample Offset for Order Column Offset for Payload Column

1 46 143

2 25 48

3 16 2

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 505 1 0.44 0.70 0.0007 0.005 14.5

2 652 3 0.73 0.62 0.0004 0.007 13

3 654 4 1.35 0.57 0.0003 0.006 10.5

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.98 12.04

2 1 539 26.65 45.44

DS DCD dy_Trojan dy_Ben

0.10 0.43 0.003 0.001

Confusion Matrix

Payload Benign Total

Payload 7 105 112

Benign 0 560 560

Table 29: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 71 14.27 12.23

2 1 270 26.09 39.95

Sample Offset for Order Column Offset for Payload Column

1 28 89

2 27 66

3 22 31

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.60 0.68 0.0002 0.0298 12

2 0 0 1.30 0.66 0.0003 0.0235 11.5

3 0 0 1.57 0.64 0.0003 0.0354 14.5

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 84 13.20 11.88

2 1 314 24.08 37.18

DS DCD dy_Trojan dy_Ben

1.06 0.62 0.0003 0.0226

Confusion Matrix

Payload Benign Total

Payload 113 0 113

Benign 47 513 560

Table 30: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/xp pro sp3
(EN) 32-bit - add new local administrator
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 84 13.42 12.49

2 1 217 25.97 40.83

Sample Offset for Order Column Offset for Payload Column

1 39 117

2 25 54

3 7 12

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 692 4 0.58 0.66 0.0004 0.0040 12.25

2 695 4 0.86 0.59 0.0003 0.0058 12.25

3 398 0 2.07 0.53 0.0002 0.0197 12.75

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 71 13.41 11.82

2 1 314 24.11 36.94

DS DCD dy_Trojan dy_Ben

0.66 0.71 0.0005 0.0048

Confusion Matrix

Payload Benign Total

Payload 111 2 113

Benign 47 513 560

Table 31: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/xp pro sp3 (EN) 32-bit - add new local administrator
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 1 27.80 11.65 4.69

2 231.85 247.26 238.90 4.13

Sample Offset for Order Column Offset for Payload Column

1 24 243

2 16 243

3 11 233

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.12 0.65 0.0004 0.0468 16

2 0 0 1.38 0.66 0.0003 0.0411 15

3 0 0 2.03 0.64 0.0002 0.1591 7

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 33.2 11.34 4.93

2 230.98 249.37 239.31 4.44

DS DCD dy_Trojan dy_Ben

0.58 0.68 0.0009 0.0197

Confusion Matrix

Payload Benign Total

Payload 104 8 112

Benign 11 549 560

Table 32: Results of Individual Household Electric Power Consumption Data Set Baseline Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 1 25.40 9.39 5.04

2 231.88 246.70 240.21 3.38

Sample Offset for Order Column Offset for Payload Column

1 14 244

2 14 244

3 2 237

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 602 4 0.55 0.05 0.0005 0.0057 14.5

2 383 2 0.95 0.53 0.0004 0.0060 15.75

3 412 2 2.58 0.66 0.0002 0.9413 7.75

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 30 9.62 5.02

2 231.61 247.08 240.21 3.18

DS DCD dy_Trojan dy_Ben

1.00 0.69 0.0004 0.0850

Confusion Matrix

Payload Benign Total

Payload 112 0 112

Benign 42 518 560

Table 33: Results of Individual Household Electric Power Consumption Data Set with Additional
Points Using win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 20 7.97 6.27

2 229.85 248.48 240.28 5.08

Sample Offset for Order Column Offset for Payload Column

1 18 245

2 14 245

3 4 234

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.17 0.67 0.0003 0.0620 16

2 0 0 1.80 0.69 0.0002 0.130 14.5

3 0 0 2.18 0.66 0.0002 0.121 7.5

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 26 7.45 6.18

2 229.57 248.33 240.66 5.26

DS DCD dy_Trojan dy_Ben

0.75 0.67 0.0005 0.0576

Confusion Matrix

Payload Benign Total

Payload 101 12 113

Benign 7 553 560

Table 34: Results of Individual Household Electric Power Consumption Data Set Baseline Using
win32/xp pro sp3 (EN) 32-bit - add new local administrator
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 20.6 6.74 3.74

2 235.32 247.43 241.40 3.01

Sample Offset for Order Column Offset for Payload Column

1 15 246

2 10 244

3 4 243

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 448 3 0.75 0.56 0.0005 0.0044 11.5

2 576 2 0.87 0.54 0.0004 0.0058 13

3 476 1 2.26 0.49 0.0002 0.0223 13.5

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 21.8 6.24 3.48

2 234.19 248.32 241.63 2.978

DS DCD dy_Trojan dy_Ben

2.41 0.65 0.0002 1.0457

Confusion Matrix

Payload Benign Total

Payload 111 2 113

Benign 52 508 560

Table 35: Results of Individual Household Electric Power Consumption Data Set with Additional
Points Using win32/xp pro sp3 (EN) 32-bit - add new local administrator



143

Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 81 941 394.58 128.37

2 -1 55930 36041.76 9361.62

Sample Offset for Order Column Offset for Payload Column

1 893 45967

2 523 45404

3 198 26990

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 0.85 0.46 2.14*e-6 2.58*e-5 12

2 0 0 1.25 0.39 2.04*e-6 3.28*e-5 11

3 0 0 1.23 0.47 1.83*e-6 3.23*e-5 15

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 -1 887 404.16 126.78

2 -1 60081 35933.46 9396.65

DS DCD dy_Trojan dy_Ben

0.57 0.44 3.21*e-6 2.09*e-5

Confusion Matrix

Payload Benign Total

Payload 85 27 112

Benign 0 422 422

Table 36: Results of Water Treatment Data Set Baseline Using win32/PerfectXp-pc1/sp3 (Tr) Add
Admin Shellcode
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 841 414.17 125.12

2 -1 50942 35631.84 6216.95

Sample Offset for Order Column Offset for Payload Column

1 630 42549

2 539 41848

3 482 14109

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 295 2 0.58 0.477 5.93*e-6 2.49*e-5 13.75

2 287 2 0.71 0.24 5.07*e-6 2.50*e-5 14.75

3 390 8 0.86 0.59 3.89*e-6 2.57*e-5 9.5

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 399.29 127.48

2 -1 60081 36035.45 10022.79

DS DCD dy_Trojan dy_Ben

1.06 0.61 2.40*e-6 2.71*e-5

Confusion Matrix

Payload Benign Total

Payload 112 0 112

Benign 31 391 422

Table 37: Results of Water Treatment Data Set with Additional Points Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 81 941 408.27 124.48

2 -1 60017 36344.12 10152.93

Sample Offset for Order Column Offset for Payload Column

1 621 55131

2 533 46497

3 509 46413

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.03 0.84 0.0004 2.6*e-5 12

2 0 0 1.23 0.80 2.0*e-6 3.0*e-5 12

3 0 0 1.13 0.45 2.2*e-6 2.8*e-5 13

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 -1 887 400.758 127.76

2 -1 60081 35858 9197.50

DS DCD dy_Trojan dy_Ben

0.54 0.121 4.17*e-6 2.06*e-5

Confusion Matrix

Payload Benign Total

Payload 105 8 113

Benign 6 418 422

Table 38: Results of Water Treatment Data Set Baseline Using win32/xp pro sp3 (EN) 32-bit - add
new local administrator
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 815 389.15 133.423

2 -1 57606 35561.43 3.025

Sample Offset for Order Column Offset for Payload Column

1 737 50511

2 523 35564

3 287 21582

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 330 3 0.66 0.48 5.19*e-6 2.2*10-5 12.25

2 441 3 0.84 0.27 2.36*e-6 2.23*e-5 14.25

3 511 2 1.36 0.48 1.71*e-6 2.94*e-5 11.50

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 405.51 125.33

2 -1 60081 36052.97 9036.87

DS DCD dy_Trojan dy_Ben

0.95 0.27 2.8*e-6 2.5*e-5

Confusion Matrix

Payload Benign Total

Payload 113 0 113

Benign 45 377 422

Table 39: Results of Water Treatment Data Set with Additional Points Using win32/xp pro sp3
(EN) 32-bit - add new local administrator
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 67 13.97 11.18

2 1 217 24.50 33.08

Sample Offset for Order Column Offset for Payload Column

1 18 200

2 22 209

3 17 217

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 4 0.04 2.06 0.0062 0.0016 16.5

2 0 5 0.04 2.05 0.0053 0.0015 11.5

3 0 7 0.05 2.04 0.0047 0.0016 10.5

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.77 12.13

2 1 539 25.69 44.62

DS DCD dy_Trojan dy_Ben

0.0400 1.48 0.0053 0.0006

Confusion Matrix

Payload Benign Total

Payload 5 107 112

Benign 0 560 560

Table 40: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode for additional data to carry out Friedman test
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 67 14.03 13.02

2 1 539 28.12 56.00

Sample Offset for Order Column Offset for Payload Column

1 22 100

2 37 70

3 31 110

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 309 8 0.03 2.25 0.0079 0.0018 14.5

2 312 15 0.04 2.29 0.0080 0.0018 16.5

3 403 18 0.04 2.26 0.0077 0.0017 9

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.76 11.66

2 1 499 24.79 38.46

DS DCD dy_Trojan dy_Ben

0.055 2.72 0.0062 0.0030

Confusion Matrix

Payload Benign Total

Payload 4 108 112

Benign 0 560 560

Table 41: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode for additional data to carry out Friedman test
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C. Experimental Results Tables for Kohonen network Experiments U-Matrix Encoding

Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 57 13.11 10.69

2 1 145 21.86 28.43

Sample Offset for Order Column Offset for Payload Column

1 49 56

2 23 50

3 15 49

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.58 0.07 1.29*e-11 9.46*e-05 12

2 0 0 1.85 0.04 1.21*e-11 0.0008 12

3 0 0 2.13 0.11 1.01*e-11 0.0194 14

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.99 12.23

2 1 539 26.35 45.38

DS DCD dy_Trojan dy_Ben

1.66 0.089 1.36*e-11 1.82*e-7

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 105 455 560

Table 42: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 65 15.83 13.03

2 1 218 28.14 37.78

Sample Offset for Order Column Offset for Payload Column

1 57 205

2 29 66

3 10 38

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 546 5 1.30 0.12 4.28*e-11 2.56*e-8 7.5

2 463 3 0.97 0.13 7.24*e-11 0.0005 15

3 613 2 2.17 0.20 3.57*e-11 0.0201 15.5

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.31 11.60

2 1 539 24.78 43.66

DS DCD dy_Trojan dy_Ben

2.15 0.15 3.21*e-11 0.0910

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 95 465 560

Table 43: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 84 13.48 12.33

2 1 190 24.50 34.35

Sample Offset for Order Column Offset for Payload Column

1 40 174

2 26 59

3 6 14

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 2.28 0.07 2.88*e-11 0.0049 9

2 0 0 1.88 0.08 3.01*e-11 0.0002 15.5

3 0 0 2.56 0.08 2.31*e-11 1.11 13.5

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 2 71 13.39 11.85

2 1 314 24.48 38.57

DS DCD dy_Trojan dy_Ben

1.09 0.05 5.88*e-11 0.0054

Confusion Matrix

Payload Benign Total

Payload 130 2 132

Benign 67 493 560

Table 44: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/xp pro sp3
(EN) 32-bit - add new local administrator with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 71 15.01 13.61

2 1 314 31.8 51.21

Sample Offset for Order Column Offset for Payload Column

1 48 86

2 29 83

3 8 58

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 357 0 0.65 0.70 8.61*e-11 5.82*e-6 13

2 384 0 1 0.08 4.33*e-11 1.07*e-6 13

3 635 6 2.10 0.07 3.15*e-11 0.0006 10.5

Test Results for Selected Attack Using Sample 1(Chosen Randomly)

Sample Statistics

Column Min Max Mean STD_dev

1 2 84 13.01 11.47

2 1 241 22.66 33.32

DS DCD dy_Trojan dy_Ben

0.9 0.14 5.02*e-11 1.01*e-5

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 115 445 560

Table 45: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/xp pro sp3 (EN) 32-bit - add new local administrator with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 33.2 10.98 4.72

2 230.98 249.37 239.37 4.37

Sample Offset for Order Column Offset for Payload Column

1 30 245

2 16 244

3 5 237

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.66 0.08 1.25*e-11 7.03*e-5 11

2 0 0 1.89 0.66 1.17*e-11 0.0091 14

3 0 0 2.57 0.11 9.51*e-12 0.2506 13

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 30.6 11.50 4.922

2 231.57 248.94 239.19 4.38

DS DCD dy_Trojan dy_Ben

1.03 0.04 2.07*e-11 8.52*e-6

Confusion Matrix

Payload Benign Total

Payload 130 2 132

Benign 92 468 560

Table 46: Results of Individual Household Electric Power Consumption Data Set Baseline Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 1 24.6 9.87 4.33

2 231.99 246.58 240.11 3.26

Sample Offset for Order Column Offset for Payload Column

1 21 245

2 14 243

3 11 232

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 486 2 1.28 0.11 1.68*e-11 0.0002 12.5

2 421 2 1.33 0.23 1.54*e-11 0.0003 16.75

3 510 4 1.86 0.19 1.18*e-11 8.86*e-6 8.75

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 30 9.50 5.18

2 231.61 247.08 240.23 3.21

DS DCD dy_Trojan dy_Ben

1.05 0.20 2.08*e-11 0.006

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 35 525 560

Table 47: Results of Individual Household Electric Power Consumption Data Set with Additional
Points Using win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 21.2 6.38 6.21

2 229.57 248.31 241.18 5.30

Sample Offset for Order Column Offset for Payload Column

1 18 246

2 13 246

3 10 242

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.56 0.14 3.29*e-11 0.0004 15

2 0 0 1.96 0.11 2.94*e-11 4.09*e-6 11

3 0 0 2.01 0.01 3.08*e-11 0.0006 13

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 26.6 7.73 6.18

2 230.35 248.48 240.44 5.19

DS DCD dy_Trojan dy_Ben

0.68 0.17 6.90*e-11 3.57*e-7

Confusion Matrix

Payload Benign Total

Payload 128 4 132

Benign 37 523 560

Table 48: Results of Individual Household Electric Power Consumption Data Set Baseline Using
win32/xp pro sp3 (EN) 32-bit - add new local administrator with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 16.4 6.86 3.68

2 234.53 248.32 241.58 3.05

Sample Offset for Order Column Offset for Payload Column

1 13 246

2 11 245

3 7 240

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 456 2 1.33 0.21 3.80*e-11 0.0006 9.5

2 482 1 1.09 0.14 4.56*e-11 0.0013 15.75

3 683 1 1.69 0.10 2.59*e-11 0.0002 12.75

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 0.8 21.8 6.19 3.49

2 234.19 247.67 241.58 2.97

DS DCD dy_Trojan dy_Ben

1.18 0.19 3.70*e-11 0.0067

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 70 490 560

Table 49: Results of Individual Household Electric Power Consumption Data Set with Additional
Points Using win32/xp pro sp3 (EN) 32-bit - add new local administrator with U-Matrix Encoding
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 81 841 410.35 127.58

2 -1 60017 37422.16 8541.91

Sample Offset for Order Column Offset for Payload Column

1 766 54323

2 538 45964

3 171 10514

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 0 1.62 0.93 1.07*e-12 9.86*e-8 13

2 0 0 1.82 0.52 1.13*e-12 9.47*e-8 14

3 0 0 1.54 0.05 4.45*e-12 1.60*e-6 11

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 400.24 126.96

2 -1 60081 35590.00 9544.17

DS DCD dy_Trojan dy_Ben

0.83 0.09 2.32*e-12 3.92*e-8

Confusion Matrix

Payload Benign Total

Payload 120 12 132

Benign 61 361 422

Table 50: Results of Water Treatment Data Set Baseline Using win32/PerfectXp-pc1/sp3 (Tr) Add
Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 841 397.89 122.15

2 -1 60081 35285.49 9820.49

Sample Offset for Order Column Offset for Payload Column

1 573 56447

2 520 45106

3 217 40999

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 446 5 0.87 0.62 1.80*e-12 6.51*e-8 8

2 339 3 0.91 0.04 2.12*e-12 1.84*10-5 15.5

3 451 11 0.70 0.43 2.94*e-12 2.18*e-11 14.5

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 403.34 128.34

2 -1 60017 3621.63 9272.00

DS DCD dy_Trojan dy_Ben

0.99 0.12 1.97*e-12 2.83*e-7

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 83 339 422

Table 51: Results of Water Treatment Data Set with Additional Points Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 105 713 413.69 106.09

2 -1 49493 34395.04 10126.10

Sample Offset for Order Column Offset for Payload Column

1 705 48913

2 339 44521

3 314 30144

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 2 1.33 0.12 1.49*e-12 1.87*e-5 11.75

2 0 0 2.01 0.10 1.11*e-12 8.77*e-8 10.75

3 0 0 1.94 0.19 1.67*e-12 3.91*e-5 15.50

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 399.41 131.72

2 -1 60081 36343.19 9156.22

DS DCD dy_Trojan dy_Ben

1.522 0.60 2.10*e-12 2.13*e-8

Confusion Matrix

Payload Benign Total

Payload 124 8 132

Benign 55 367 422

Table 52: Results of Water Treatment Data Set Baseline Using win32/xp pro sp3 (EN) 32-bit - add
new local administrator with U-Matrix Encoding
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Training Results Baseline Size 105 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 -1 713 413.63 115.12

2 -1 5528 36454.51 7835.27

Sample Offset for Order Column Offset for Payload Column

1 671 6957

2 529 44290

3 310 22613

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 412 7 0.62 0.04 1.69*e-11 1.06*e-8 8.25

2 340 2 1.076 0.62 1.99*e-11 3.28*e-6 16.5

3 179 7 1.85 0.07 2.33*e-12 8.85*e-7 13.25

Test Results for Selected Attack Using Sample 2

Sample Statistics

Column Min Max Mean STD_dev

1 -1 941 399.42 129.82

2 -1 60081 35830.76 9734.11

DS DCD dy_Trojan dy_Ben

0.82 0.03 2.52*e-12 4.33*e-9

Confusion Matrix

Payload Benign Total

Payload 132 0 132

Benign 61 361 422

Table 53: Results of Water Treatment Data Set with Additional Points Using win32/xp pro sp3
(EN) 32-bit - add new local administrator with U-Matrix Encoding
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Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 65 11.43 12.39

2 1 218 28.86 37.88

Sample Offset for Order Column Offset for Payload Column

1 16 63

2 31 71

3 22 39

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 0 2 0.33 0.15 1.41*e-10 0.0322 8.5

2 0 0 0.26 0.17 2.30*e-10 0.0003 15

3 0 1 0.31 0.17 1.75*e-10 0.0021 15.5

Test Results for Selected Attack Using Sample 3

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.49 11.81

2 1 539 24.60 43.62

DS DCD dy_Trojan dy_Ben

0.2655 0.16 1.98*e-10 0.0156

Confusion Matrix

Payload Benign Total

Payload 68 64 132

Benign 0 560 560

Table 54: Results of KEGG Metabolic Relation Network Data Set Baseline Using win32/PerfectXp-
pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding for additional data to carry out Fried-
man test



162

Training Results Baseline Size 200 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 65 14.45 12.49

2 1 147 26.45 32.83

Sample Offset for Order Column Offset for Payload Column

1 71 190

2 21 134

3 36 46

Sample Addl Points Addl Payload DS DCD dy_Trojan dy_Ben Score

1 546 9 0.33 0.16 1.44*e-10 0.0170 17

2 463 11 0.34 0.15 1.33*e-10 8.22*e-5 12.5

3 613 13 0.34 0.16 1.37*e-10 0.0185 9.5

Test Results for Selected Attack Using Sample 1

Sample Statistics

Column Min Max Mean STD_dev

1 2 74 13.66 11.80

2 1 539 25.20 44.67

DS DCD dy_Trojan dy_Ben

0.3379 0.17 1.62*e-10 0.0027

Confusion Matrix

Payload Benign Total

Payload 102 30 132

Benign 0 560 560

Table 55: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
win32/PerfectXp-pc1/sp3 (Tr) Add Admin Shellcode with U-Matrix Encoding for additional data
to carry out Friedman test
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D. Experimental Results Tables for Adaptive Resonance Algorithm Experiments

Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 13.98 12.88

2 1 509 26.40 42.15

Sample Offset for Order Column Offset for Payload Column

1 117 517

2 130 650

3 200 1700

Sample Addl Points Vigilance DS DCD dy_Trojan dy_ben_av Score

1 0 0.065 0 1.34 0.0038 0.0019 1

2 0 0.100 0 1.63 0.0038 0.0019 2

3 0 0.200 0 1.84 0.0038 0.0019 3

Test Results for Selected Attack Using Vigilance of 0.16

Offset 117 for Order Column and 517 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 1 116 14.65 12.66

2 1 606 43.67 43.67

DS DCD dy_Trojan dy_Ben

0.67 1.64 0.0012 0.00162

Confusion Matrix

Payload Benign Total

Payload 18 37 51

Benign 0 42730 42730

Table 56: Results of KEGG Metabolic Relation Network Data Set Baseline Using OSX/Intel - setuid
shell x86_64
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 13.89 11.58

2 1 539 25.37 44.13

Sample Offset for Order Column Offset for Payload Column

1 300 5000

2 275 3000

3 275 2500

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 60 0.04 0 2.17 0.0038 0.0019 2

2 100 0.100 0 2.12 0.0038 0.0019 3

3 78 0.11 0 2.29 0.0038 0.0019 1

Test Results for Selected Attack Using Vigilance of 0.19

Offset 275 for Order Column and 2500 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.01 12.65

2 1 606 26.72 43.68

DS DCD dy_Trojan dy_Ben

0.32 1.87 0.0026 0.0016

Confusion Matrix

Payload Benign Total

Payload 37 14 51

Benign 0 42730 42730

Table 57: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
OSX/Intel - setuid shell x86_64
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.14 12.78

2 1 567 27.23 44.36

Sample Offset for Order Column Offset for Payload Column

1 175 800

2 300 1200

3 300 1200

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 0 .044 0 2.37 0.0020 0.0017 1

2 0 .10 0 2.09 0.0020 0.0017 2

3 0 .16 0 2.41 0.0020 0.0017 3

Test Results for Selected Attack Using Vigilance of 0.022

Offset 175 for Order Column and 800 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 2 107 14.03 12.70

2 1 606 26.71 43.70

DS DCD dy_Trojan dy_Ben

0 1.44 0.0020 0.0017

Confusion Matrix

Payload Benign Total

Payload 428 0 428

Benign 0 42730 42730

Table 58: Results of KEGG Metabolic Relation Network Data Set Baseline Using Windows XP
PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 14.07 12.81

2 1 539 26.85 43.53

Sample Offset for Order Column Offset for Payload Column

1 475 3000

2 375 2400

3 550 3600

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 44 0.17 0 2.64 0.002 0.0018 2

2 11 0.10 0 2.59 0.002 0.0018 1

3 147 0.18 0 1.9 0.002 0.0018 3

Test Results for Selected Attack Using Vigilance of 0.14

Offset 375 or Order Column and 2400 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.05 12.69

2 1 606 26.80 43.91

DS DCD dy_Trojan dy_Ben

0 2.26 0.0020 0.0016

Confusion Matrix

Payload Benign Total

Payload 428 0 428

Benign 0 42730 42730

Table 59: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
Windows XP PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 13.97 12.69

2 1 539 26.68 43.28

Sample Offset for Order Column Offset for Payload Column

1 190 1300

2 257 2250

3 257 2250

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 0 0.042 0 1.26 0.0040 0.0018 1

2 0 0.10 0 1.62 0.0040 0.0018 2

3 0 0.088 0 1.62 0.0040 0.0018 3

Test Results for Selected Attack Using Vigilance of 0.045

Offset 190 or Order Column and 1300 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.07 43.97

2 1 606 26.84 43.97

DS DCD dy_Trojan dy_Ben

0 1.26 0.0040 0.0016

Confusion Matrix

Payload Benign Total

Payload 87 0 87

Benign 0 42730 42730

Table 60: Results of KEGG Metabolic Relation Network Data Set Baseline Using Windows XP SP3
English MessageBoxA Shellcode
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Training Results Baseline Size 10683 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 2 116 14.23 12.71

2 1 579 27.13 43.94

Sample Offset for Order Column Offset for Payload Column

1 257 2250

2 257 2250

3 210 2050

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 186 0.14 0 2.08 0.0037 0.0017

2 64 0.10 0 1.61 0.0037 0.0017

3 156 0.05 0 2.25 0.0037 0.0017

Test Results for Selected Attack Using Vigilance of 0.04

Offset 210 or Order Column and 2050 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 2 111 14.07 12.71

2 1 606 26.72 43.80

DS DCD dy_Trojan dy_Ben

0 1.30 0.0037 0.0016

Confusion Matrix

Payload Benign Total

Payload 87 0 87

Benign 0 42730 42730

Table 61: Results of KEGG Metabolic Relation Network Data Set with Additional Points Using
Windows XP SP3 English MessageBoxA Shellcode
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 21 113 85.32 8.99

2 -46 336 34.29 22.71

Sample Offset for Order Column Offset for Payload Column

1 140 550

2 140 550

3 140 550

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 0 .12 0 0.18 0.0039 0.0002 2

2 0 .10 0 0.18 0.0039 0.0002 1

3 0 .13 0 0.18 0.0039 0.0002 3

Test Results for Selected Attack Using Vigilance of 0.05

Offset 140 or Order Column and 550 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.03 0.0039 2.38*e-05

Confusion Matrix

Payload Benign Total

Payload 51 0 51

Benign 0 14500 14500

Table 62: Statlog (Shuttle) Data Set Baseline Using OSX/Intel - setuid shell x86_64
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 64 113 85.14 8.81

2 -188 336 34.29 22.47

Sample Offset for Order Column Offset for Payload Column

1 313 1101

2 210 750

3 597 1763

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 194 .046 0 0.27 0.0038 9.33*e-5 1

2 83 0.10 0 0.16 0.0038 9.33*e-5 2

3 196 0.19 0 0.28 0.0038 9.33*e-5 3

Test Results for Selected Attack Using Vigilance of 0.19

Offset 313 or Order Column and 1101 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0.33 0.057 0.0025 2.38*e-5

Confusion Matrix

Payload Benign Total

Payload 34 17 51

Benign 0 14500 14500

Table 63: Statlog (Shuttle) Data Set with Additional Points Using OSX/Intel - setuid shell x86_64
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 72 113 85.40 8.82

2 -100 72 34.64 20.73

Sample Offset for Order Column Offset for Payload Column

1 140 550

2 120 450

3 120 245

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 0 0.15 0 0.18 0.0039 0.0002 3

2 0 0.10 0 0.21 0.0039 0.0002 2

3 0 0.03 0 0.07 0.0039 0.0002 1

Test Results for Selected Attack Using Vigilance of 0.16

Offset 120 or Order Column and 245 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0.78 0.015 0.0009 2.37*e-5

Confusion Matrix

Payload Benign Total

Payload 11 40 428

Benign 0 14500 14500

Table 64: Statlog (Shuttle) Data Set Baseline Using Windows XP PRO SP3 - Full ROP calc shellcode
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 71 113 85.33 9.00

2 -188 436 34.49 23.19

Sample Offset for Order Column Offset for Payload Column

1 170 2700

2 170 7100

3 170 3100

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 9 0.18 0 0.31 0.0039 6.82*e-5 3

2 73 0.10 0 0.96 0.0039 6.82*e-5 1

3 47 0.13 0 0.41 0.0039 6.82*e-5 2

Test Results for Selected Attack Using Vigilance of 0.09

Offset 170 or Order Column and 7100 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.33 0.0039 2.38*e-5

Confusion Matrix

Payload Benign Total

Payload 428 0 428

Benign 0 14500 14500

Table 65: Statlog (Shuttle) Data Set with Additional Points Using Windows XP PRO SP3 - Full
ROP calc shellcode
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 21 113 85.22 8.62

2 -46 436 33.95 23.24

Sample Offset for Order Column Offset for Payload Column

1 120 630

2 120 760

3 120 840

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 0 0.07 0 0.14 0.0041 0.0001 1

2 0 0.10 0 0.17 0.0041 0.0001 2

3 0 0.17 0 0.26 0.0041 0.0001 3

Test Results for Selected Attack Using Vigilance of 0.12

Offset 120 or Order Column and 630 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.03 0.0041 2.38*e-5

Confusion Matrix

Payload Benign Total

Payload 87 0 87

Benign 0 14500 14500

Table 66: Statlog (Shuttle) Data Set Baseline Using Windows XP SP3 English MessageBoxA Shell-
code
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Training Results Baseline Size 2900 of Intercepted Samples

Sample Statistics

Column Min Max Mean STD_dev

1 64 141 85.55 9.02

2 -46 72 35.38 20.47

Sample Offset for Order Column Offset for Payload Column

1 140 520

2 140 520

3 140 12009

Sample Addl Points Vigilance DS DCD dy_Trojan dy_Ben Score

1 28 0.12 0 0.10 0.0041 8.45*e-5 3

2 34 0.10 0 0.10 0.0041 8.45*e-5 2

3 37 0.04 0 1.41 0.0041 8.45*e-5 1

Test Results for Selected Attack Using Vigilance of 0.11

Offset 140 or Order Column and 12009 for Payload Column

Sample Statistics

Column Min Max Mean STD_dev

1 40 118 85.37 8.89

2 -46 310 34.61 21.53

DS DCD dy_Trojan dy_Ben

0 0.48 0.0041 2.38*e-5

Confusion Matrix

Payload Benign Total

Payload 87 0 87

Benign 0 14500 14500

Table 67: Statlog (Shuttle) Data Set with Additional Points Using Windows XP SP3 English Mes-
sageBoxA Shellcode
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