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 For over two decades, mathematicians and cryptologists have evaluated and 

presented the theoretical performance of Elliptic-curve scalar point-multiplication in 

projective geometry. Because computation in projective domain is composed of a wide 

array of formulations and computing optimizations, there is not a comprehensive 

performance comparison of point-multiplication using projective transformation available 

to verify its realistic efficiency in 64-bit x86 computing platforms. Today, research on 

explicit mathematical formulations in projective domain continues to excel by seeking 

higher computational efficiency and ease of realization. An explicit performance 

evaluation will help implementers choose better implementation methods and improve 

Elliptic-curve scalar point-multiplication. This paper was founded on the practical 

solution that obtaining realistic performance figures should be based on more precise 

computational cost metrics and specific computing platforms. As part of that solution, an 

empirical performance benchmark comparison between two approaches implementing 

projective Elliptic-curve scalar point-multiplication will be presented to provide the 

selection of, and subsequently ways to improve scalar point-multiplication technology 

executing in a 64-bit x86 runtime environment.   
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Chapter 1 

Introduction 

 For over two decades, mathematicians and cryptologists have evaluated and 

presented the performance of Elliptic-curve scalar point-multiplication in projective 

geometry using two basic quantitative metrics: the total number of multiplications (M) 

and squarings (S). Although these two single-digit mathematical operations are necessary 

to complete the multiplication of a scalar value k and a point p with coordinates (x, y) on 

an Elliptic curve, the question remains whether they are really sufficient to provide 

proper selection between projective Elliptic-curve scalar point-multiplication. Such 

questionable sufficiency in evaluating performance using single-digit M and S metrics, 

without accounting for optimizations and the cost of modulo arithmetic, will remain 

theoretical and unrealistic. Therefore, the performance result will not reflect the true 

figure between different projective transformation technologies.  

 This research will center on the performance comparison between two Projective 

Elliptic-curve Point Multiplication Agents (PEPMA) software: One was implemented in 

Network Security Services (NSS, 2013) and the second in (OpenSSL, 2013). Both NSS 

and OpenSSL have been deployed in the field to target a wide range of applications. 

Nevertheless, given the variety of projective transformations, diversity of underlying 

arithmetic optimizations (NIST, 2010), and different computing platform architecture, an 

unanswered question is whether there is a way to select a faster one, or to improve 

PEPMA’s efficiency based on an empirical comparison. 

This chapter provides an introduction to research involving the evaluation of performance 

and the performance comparison of projective Elliptic-curve Point Multiplication in a 64-
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bit x86 run-time environment (Kasper, 2012; Levinthal, 2004). This research contains the 

most relevant information which supports the preparation of essential evaluation software 

tools to address the unanswered questions (BOCHS, 2013; PAPI, 2013). It further 

elaborates the significance of research and provides a discussion of the issues. The 

investigation advocates the need for research on an enhanced-accuracy performance 

comparison of Projective Elliptic-curve Point Multiplication Agent, or PEPMA.  

 The goal of this investigation is to develop a formal evaluation methodology which 

will provide a practical approach to selecting higher-performance based on precise and 

accurate quantitative computational metrics. This research will address implementation 

differences between NSS and OpenSSL, present connectivity between mathematical 

modules (Blake, 2001), and explore weaknesses with current performance evaluation 

methods. Subsequently, the selection approach based on a formal evaluation 

methodology will provide definitive, repeatable and quantitative means to improve new 

designs or existing implementations of PEPMA.  

 The principles discussed below will provide a means to achieve formal evaluation 

methodology. 

Projective Elliptic-curve Point Multiplication Preliminary 

 PEPMA is an efficient mathematical procedure (NIST, 2010) to compute a product 

of a scalar k with an affine coordinate (x, y). In order to produce the result k×(x, y), 

PEPMA must take into its functional equations several additional parameters besides k, x, 

and y (Koc, 2009; Certicom Research, 2009; ANSI, 2005; ANSI, 2001). Additional 

parameters include, but not limited to, Elliptic-curve coefficients a, b, and the modulus m 

for modular arithmetic. PEPMA normally works under a Public-key Exchange protocol 
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(PKE). One available PKE protocol is Elliptic-Curve Diffie-Hellman (ECDH), where 

most parameters required for PEPMA are usually taken from a public certificate, 

subcategory "domain parameters". The ECDH Public-key Exchange protocol processes 

the scalar product k(x, y) outputting from PEPMA to generate cryptographic private keys 

for data encryption or decryption (IASE, 2013; NIST, 2007). Typically, PEPMA will 

position itself in a cryptographic service hierarchy as shown in Figure 1. 

 

 

Figure 1. Position of PEPMA in a Cryptographic Service Hierarchy 

Performance comparison and improving PEMA efficiency begins with a root 

understanding of point-multiplication in the projective domain (NIST, 2010; Hankerson 

et al., 2004; Menezes et al., 1996). In Figure 2, the scalar value k and the affine 

coordinates (x, y) of an Elliptic-curve point p enters . These entrant parameters to the 

projective transformation Elliptic-curve Point Multiplication (EPM) are 521 bits in 

length. At , the affine input parameters (k, x, y) are transformed into the projective 
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coordinate system simply by attaching Z=1 to the coordinates x and y. Chapter two will 

further explain why this attachment is valid in a finite field. 

 For representation purposes, the coordinates are designated as (X, Y, Z), and the 

first projective coordinate to enter the computational loop  has a value of (X = x, Y = y, 

Z = 1). A more detailed discussion can be found in Chapter two. 

 

 

Figure 2.   Projective Elliptic-Curve Point-multiplication Agent 

The scalar k will control the number of point-doubling  and point-adding  operations 

in the computation loop . Operations in  are commonly designated as exponentiation 

procedures for PEPMA.  The computation looping  will call functions  and  a few 

hundred times to produce the final result (X, Y, Z) at . 

Efficiency in terms of how many times point-doubling or point adding is required to 

execute depends on the exponentiation algorithm used: left-to-right binary-shift, right-to-
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left binary-shift, left-to-right fixed-base windowing-shift, or right-to-left fixed-base 

windowing-shift (Brown et al., 2001).  Both NSS and OpenSSL use the right-to-left 

fixed-base windowing-shift exponentiation method. These methods have been frequently 

discussed (Saldamli et al., 2009; Avanzi, 2004; Koblitz, 2000;  Cohen et al., 1998). 

 At , the "Projective to Affine Transformation" procedure converts the final 

projective coordinates (X, Y, Z) back to the affine coordinates at . The result k(x, y) 

will be the multiplication of a scalar k with an Elliptic-curve point p having two affine 

coordinates (x, y). 

 All mathematical routines shown in , , and  call for multi-digit modulo 

arithmetic with the chosen field-modulus m (NIST, 2010). The Elliptic-curve Point 

Multiplication (EPM) mathematical services recommended in the NIST Suite B 

cryptography prime field suggests that a complete 521-bit big-number in a 64-bit system 

can be efficiently stored in nine 64-bit registers using 9 × 64 = 576 bits (NSA, 2013). 

However, both NSS and OpenSSL represent the big-numbers differently from the nine 

64-bit registers with arithmetic carry bit. The notation of big-numbers in Chapter two will 

further describe the format, differences, advantages, and disadvantages between the NSS 

and OpenSSL representation of multi-digit numbers. 

 At the multi-digit arithmetic , six big-number arithmetic operations are required 

to support PEPMA: adding, subtracting, modular reduction, squaring, multiplication, and 

inversion (Certicom Research, 2009). Except for modular inversion, all five operations 

are necessary for point-doubling and adding in the computing loop .  To convert 

projective coordinates back to affine coordinates, one or two modular inversions along 

with adding, modular reduction, and squarings are required in block . Since block  
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"P to A Transformation" is located outside of the loop and executed only once at the end, 

its computing cost is low compared to the cost of point-doubling and adding while in the 

computational loop . 

 All arithmetic in block  will be compiled into machine codes, as shown in block 

. Computational costs of projective EPM at block  can be documented by examining 

the assembly codes produced by the target C compiler. The NSS code in Appendix A 

further details this process.  

Point Doubling and Point Adding 

 The Elliptic-curve Point Multiplication procedure (EPM) requires two functions 

working together in the exponentiation loop: point-doubling of a point and point-adding 

of two different points (Certicom Research, 2009; Cohen et al., 2006; Connel, 1999). For 

example, let p(x, y) be an affine point on an Elliptic curve. Let k be a scalar multiplied 

with point p. If k = 5, then to obtain 5 × p efficiently, two point-doublings and one point-

adding are applied:   

    k(x, y) ≙ 5 × p  ≙ [2 × (2 × p)] + p    

 

Figure 3. Elliptic-Curve Point-multiplication in Affine Coordinate 

The efficient affine-coordinate mathematical operations above require exactly two point-

doublings and one point-adding, while k controls which function to use and how many 
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times to call them. In other words, the exponentiation of p has occurred 2 times in the 

exponentiation loop [2 × (2 × p)] while the adding of p has occurred once.  

 There are several ways to construct software servicing the scalar product k(x, y) in 

64-bit computing platforms (Avanzi et al., 2006; Fong et al., 2004; Koblitz, 2000). One 

method applies the time-domain computation to affine coordinates in a finite field (Koc, 

2009). Based on algebraic laws, 2 × (x, y) is equivalent to the point-doubling of point p(x, 

y) on an Elliptic curve (EC). Point-doubling arithmetic will produce a result in another 

point p3(x3, y3). The coordinates of this resultant vector are precisely defined by two 

Cartesian coordinate equations in the Euclidian plane. A derivation of these formulas can 

be found below, and in (Blake, 2001): 

   x
y

ax
x 2

2

3
22

3 






 
 ,    yxx

y

ax
y 







 
 3

2

3 2

3
   

The parameter "a" is defined as a domain coefficient of an Elliptic curve. The selection of 

"a" has been chosen carefully by cryptologists for computational ease, and at the same 

time, to satisfy important security criteria. Coefficient "a" is set to –3 per NIST 

recommendation for implementation of a P-521 curve. NIST defined and explained these 

settings in (FIPS PUB 186-4, 2013) and (NIST, 2010).  

 Precise modulo arithmetic must be applied after each arithmetic operation whenever 

there is an arithmetic overflow beyond the chosen boundary of finite field F. In 

calculating coordinates x3 and y3, take the inverse of 2y  

   m
y

r mod
2

1
  

by following the inversion rule (Ciet et al., 2006): 

       (1.1) mry mod1
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 To derive the inversion of y, PEPMA might need to search for one unique value of r 

in the entire finite field having 2521 – 1 elements for which equation (1.1) is satisfied. This 

operation will be computationally intensive (Ciet et al., 2006; Itoh et al., 1988). However, 

the calculation of the scalar product 2 × p(x, y) will be faster if the inversions of y can be 

eliminated, or at least significantly reduced from a few hundred to one or two times in the 

k×(x, y) loop. 

 Despite the power of modern-day computing platforms, the current embedded 

processors and RISC in tablets have limited arithmetic capabilities to process Elliptic 

Curve Point Multiplication in a timely manner (ARM, 2013; ZigBee, 2010; Jennic 

JN5184, 2010). Computation using affine coordinates will require significant longer time, 

due to the lengthiness to compute inversions. Therefore, realization of time-domain EPM 

in these limited arithmetic capability processors will not be practical. Under the finite 

projective theory, the elimination of inversions can be realized by transforming the affine 

coordinates (x, y) into projective coordinates and processing the computation of scalar 

product k(x, y) entirely in the projective domain. Computation in projective coordinates 

found in Chapter two will further explain this realization. 

 When a projective transformation is activated, a forward Affine-to-Projective 

Transformation (APT) converts affine input parameters k, x, y to parameters with their 

representations in projective domain. After point-adding or point-doubling functions 

complete their mathematical operations entirely in projective domain, the reverse 

Projective-to-Affine Transformation routine (PAT) converts the result back into its 

equivalent affine coordinates, k(x, y). This concept is recorded in Figure 4, and in (NSS 

PEPMA, 2013; OpenSSL PEPMA, 2013; Cohen et al., 2006).  
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Figure 4. Elliptic-Curve Point-multiplication in Projective Coordinate 

When implementing PEPMA to work efficiently under weighted projective 

transformation, also known as transformation of variables into Jacobian's domain (Koc, 

2009), there will be exactly one 521-bit inversion in the PAT and none in the APT. The 

repetitive mathematical operations in point-adding or point-doubling functions do not 

have any inversions. The point-adding and point-doubling functions described in Figure 4 

above will be processed entirely in the projective domain. Their mathematical operations 

will no longer be associated with affine coordinates after an Affine-to-Projective 

Transformation (Bernstein et al., 2007; Ryabko et al. 2005). 

 There are different ways to compute projective point-doubling or point-adding 

functions; but yet, the product k(x, y) will be the same at the end (Cohen et al., 2006; 

Brown et al., 2001). This raises an issue of interoperability between these computing 

approaches. Can point-doubling or point-adding functions be mixed and matched? Which 

one is better in terms of efficiency? An immediate question is whether the performance of 

PEPMA is unknown based on existing theoretical work. 

Associated Environments of PEPMA 

 The environments surrounding PEPMA will potentially affect the runtime 

performance of PEPMA. These environments include system architecture, compiling 

options, and runtime domain parameters.   
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System Architecture 

 The chosen system architecture for PEPMA will limit how a big-number or Multi-

Digit Number (MDN) can be represented efficiently. Testimony from researchers 

indicated several ways to represent an MDN contained in a finite field F (GNU-MP, 

2011; SEC 1, 2000). However, only two types of representations are commonly used in 

the industry: Prime field Fp and exponential prime field Fp
s. 

 If prime p is set to 2, then the exponential prime field Fp
s becomes F2

s, or an 

exponential binary field. Moreover, if the MDN is implemented using a two-bit field F2,  

then NSS or OpenSSL PEPMA can represent an S-bit Multi-Digit Number as a finite 

discrete polynomial along with a sign indicator 

   1 2 1
1 2 1 0( ) (2 ) (2 ) ... (2 ) (2 )S S

S SMDN sign b b b b 
       

0

Each arithmetic digit in 64-bit system architecture can hold 64 bits plus a carry bit. 

Effectively, a full digit contains 65 bits. Since NSS uses a half-digit representation (32 

bits) and OpenSSL uses a 58-bit representation (also called field element or felem) 

instead of 64 bits architecture, a question that comes to mind is which method would be 

more efficient.  
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Compiling Options 

 Users compiling options have several levels of optimization to choose from (GCC, 

2013). For example, optimization switch –O0 in a GCC compiler will turn off all 

optimizations while an –O1 option will turn on some optimizations. Another facet to 

explore is whether optimizations affect the cost index and what setting would work best 

for computational efficiency. 

Run-time Domain Parameters 

 The binary content of vectors coming from domain parameters is expected to 

contribute to the performance evaluation of PEPMA.  Both NSS and OpenSSL PEPMA 

work under an Elliptic-Curve Diffie-Hellman (ECDH) Public-key Exchange protocol to 

generate cryptographic keys for data encryption and decryption.  

 The ECDH cryptography protocol used for exchanging private keys is believed by 

researchers and industry professionals to provide a secured transaction under an 

unsecured communication channel. One area of concern in evaluating PEPMA's 

performance is why, where and how domain parameters affect the assessment. A further 

examination of ECDH protocol might help in this regard. For a more detailed transaction 

of ECDH protocol and associated domain parameters, readers are referred to the contents 

of Appendix B and Appendix C. 
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Under public viewers and on an unsecured communication channel, the calculations 

calling for PEPMA's services in transaction sequences  to  are summarized in Figure 

5 below. More details descriptions of the Elliptic-Curve Diffie-Hellman key exchange 

protocol (ECDH) are found in (NIST, 2007), NIST Special Publication 800-56A. 

 

Figure 5. Elliptic-Curve Diffie-Hellman Key Exchange Used with PEPMA 

The Client's ECDH procedure initiates transaction  starting with Client's domain 

parameters (p, a, b, G, n, h)1. Subsequently, the scalar product calculations of k(x, y) 

provided by PEPMA occur at the computations of sG, cG, csG, and scG, where G(x, y) is 

the generator2 for the cyclic subgroup within the chosen finite field. At transaction , the 

Server receives Client's key and is ready for data encryption using Advanced Encryption 

Standard, AES (FIPS-197, 2001), or Data Encryption Standard, DES, or Rivest Cipher 4 

(RC4) encryption algorithm for streaming data. 
                                                 

1 The ECDH transaction with numerical details and definitions of domain parameters are 
recorded in Appendix B. 
2 The generator for the cyclic subgroup is a point on Elliptic-curve where the result of the 
product nG(x, y) equals to a point at infinity. This generator is also known as the base 
point of the cyclic subgroup. 
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The Empirical Performance Evaluation 

 To acquire parametric pertaining to performance and to compare the computational 

efficiency of PEPMA in a 64-bit x86 run-time environment, two optimizing codes will be 

selected for investigation: one made in Network Security Services (NSS, 2013) and the 

other from the OpenSSL Project (OpenSSL, 2013). Both projects have core 

implementations of PEPMA recommended in the NIST Suite B cryptography under 

prime field (NSA, 2013). The NSS and OpenSSL PEPMA are among the first industry 

open-source applications to implement and deploy an NIST public key exchange with 

521-bit Elliptic-curve cryptography. In order to achieve higher efficiency, both NSS and 

OpenSSL 521-bit prime-field implementations applied the weighted projective 

transformation, or the transformation of variables into Jacobian's domain. 

 The NSS and OpenSSL provide free source codes of cryptographic low-level 

implementation, along with high-level implementation protocols. The NSS libraries 

currently service cryptographic functions for Firefox, Android, and other applications that 

require Public Key Exchange services. The OpenSSL currently serves a majority of 

consumer products, such as embedded TCP/IP cameras, home desktop videos, and smart 

TVs.  

 Both NSS and OpenSSL have received a variety of FIPS-140-2, security level 1, 2 

or 3 certifications indicating that the implementations are adequately stable (FIPS-140-2, 

2001). The codes can be applied to Elliptic-curve public key exchange cryptography to 

ensure authenticity in the public-key infrastructure. 

Open-source projects can offer an exceptionally important role in benchmarking. A 

particular FIPS certified implementation that has gone through thorough testing by a 

certification and accreditation agent might provide a well-defined baseline for 
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comparison. Cryptographic Algorithm Verification Program (CAVP, 2013) also 

describes the verification procedures and provides additional information. Without this 

reference for comparison, it might be difficult if not impossible to present any valid 

performance evaluation by counting the number of mathematical operations as often 

claimed in current literature. This is a primary motivation for deriving a comprehensive 

performance comparison between NSS PEPMA and OpenSSL PEPMA, all operating in a 

64-bit x86 run-time environment. 

 Additionally, the 64-bit x86 computing architecture available today is becoming 

popular computer platform; hence, obtaining comparative performance figures based on 

these specific computing platforms with accurate cost metrics will have immediate 

commercial benefits. Such explicit performance evaluation will help crypto software 

developers to choose an effective projective transformation method which contain 

efficient underlying mathematics for the realization of a Projective Elliptic-curve Scalar 

Point Multiplication Agent. 

 It has been suggested by (Pare, 2004; Gillham, 2003; Yin, 2003; Yin 1994) that the 

empirical performance evaluation based on case studies will be well suited to answer the 

questions on PEPMA's topic such as: "Is performance of PEPMA unknown even based 

on existing theoretical work; Or, what are the metrics to truthfully evaluate PEPMA's 

efficiency?" 

Latency of PEPMA 

 Many researchers have used the computational unit for multiplication based on a 

full-word mathematical procedure. The computational unit does not account for the cost 

of a digit-by-digit (or limb-by-limb) operation and is counted as 1M in literature (M = 
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Multiplcation). For example, if an operand Elliptic-curve key length is 521 bits, then a 

full-word hardware multiplier operates a multiplication of 521-bit word by 521-bit word 

operands simultaneously, and immediately produces a 1042-bit result in a single 

multiplication. This 521-bit "single- shot" multiplication is currently not available in any 

general CPU. This lack of “single shot” multiplication compounds the latency evaluation. 

Thus, in order to practically determine the latency of PEPMA, the measurement unit “M” 

should at least be converted to computational cost based on digit-by-digit multiplication. 

Furthermore, the latency evaluation becomes even more complicated in NSS and 

OpenSSL 64-bit processing where each digit in a target CPU could be any arithmetic 

word length: 8, 15, 16, 22, 32, 56, or 64 bits with or without hardware carry bit. 

 Also, the latency of PEPMA affected not by one, but by at least two hardware 

components: Arithmetic unit integer quad-word multiplication with imulq instruction and 

memory utilization with quad-word memory move, movq instruction. Both NSS-PEPMA 

and OpenSSL-PEPMA executable codes use a significant number of movq instructions 

(Intel Latency, 2013). While the latency index of movq and imulq instruction is 6 and 10 

respectively, the multiplication routine s_mpv_mul_d_add() in NSS PEPMA executes a 

total of 29 movq instructions and only 4 imulq instructions (Intel Latency, 2013). Table 

66 in Appendix A lists out the routine s_mpv_mul_d_add(). 

       With the same memory utilization subject, literature from (Singhal et al., 2011; 

Levinthal, 2009) provides some guidance for reading and applying memory utilization 

factors as an intricate part of the performance analysis. Given these two hardware 

dependencies, it is difficult to extrapolate from academic findings. It is exceedingly 
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difficult to construct a vector test set without reference implementations because latency 

will vary substantially by the test vector's content.  

 In order to address the complexities of performance improvement of PEPMA, one 

needs to determine how academia and industry have tried to evaluate PEPMA in terms of 

computing costs. 

Coarse Estimates Efficiency of PEPMA 

 Counting mathematical operations with Multiplications (M) or Squaring (S) at the 

top level of PEPMA service routines offer coarse estimates. To address the performance 

issues quickly and more precisely than coarse estimates, the researchers often rank 

software latency with a single metric using clock() time function (See Appendix I), which 

is readily available in common computing platforms (GNU-CPU-Time, 2014). 

  

 

Figure 6. Performance Measurement Techniques 

Although the estimated cost using a computing platform's clock() function offers a quick 

evaluation of performance, it lacks insights into the internal structure of PEPMA; thus, 

these cost indexes do not furnish any useful information for improvement along the 

computational chain. The M, S and clock() metrics for obtaining rough cost indexes are 
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shown in Figure 6. Operational difficulty spans from easy on the left to more difficult on 

the right. 

 Ranking the efficiency with a CPU cycle counter clock() under a run-time 

environment, as shown in Figure 6, will help approximate the overall performance of 

PEPMA. However, the result will not be accurate and precise due to Operating System 

(OS) overhead, active running treads, and other processes running in the same runtime 

environment.  

 Academic work comparing PEPMA by the ratio of one processing runtime to the 

other runtime in terms of CPU clock cycles appeared in eBACS (eBACS, 2004) and from 

researchers (Bernstein, 2007; Somani, 2010). The eBACS performance evaluation was an 

eight year European research initiative launched in February 2004. In 2007, the group 

posted a web page where it tabulated a processing runtime of an Elliptic-Curve Diffie-

Hellman key exchange procedure (ECDH) 256 key-pair generation without 

precomputation over GF(p) (Crypto++, 2007).  This evaluation model has since been 

popular. If one decided to use PEPMA right out of an open-source repository, he or she 

knows right away whether the processing time can fit well into computing architecture. 

 While such single-unit performance-measurement process is mostly intuitive, there 

is an abundance of hidden features in the computing chain that can drastically change this 

performance measurement. Several hidden features can be spotted by systematically 

examining the NSS and OpenSSL PEPMA codes. Two particular features are noted at the 

exponentiation procedure where a number of projective doubling/adding functions can be 

reduced by the order of computations. Another hidden property is located in an NSS half-

digit 32-bit numeric representation (NSS-1, 2013). However, the conversion of existing 
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codes from a half-digit 32-bit representation to a 58-bit or full-digit 65-bit numeric 

representation is possible in a 64-bit x86 system (IA-64-32, 2013, Section 4.2). Such 

successful conversion can significantly change the outcome of a single-unit performance-

measurement. Hence, a PEPMA procedure can be improved using better evaluation 

metrics. 

Fine Estimates Efficiency of PEPMA 

 Better performance evaluation of PEPMA available in cryptographic communities 

can be classified into two categories: performance measurement (PAPI, 2013; Levinthal, 

2009; Drongowski, 2008) and program profiling through emulation (BOCHS, 2013; 

Code XL, 2013). The instrumentation setup in an efficiency measurement process might 

include one or two on-chip machine-code instruction hardware counters counting the 

occurrences of instructions. For example, operations MUL, the number of multiply 

operations executed by PEPMA, has resulted in an event 0x12, mask 0x00 in 

performance monitoring processing unit (IA-64, 2013). The Performance Hardware 

Counters sit inside CPU hardware. Their position related to PEPMA code is shown in 

Figure 6. 

 Almost all 64-bit x86 systems, including Intel Pentium and AMD processors made 

for PC/Servers, have incorporated two on-chip 40-bit performance hardware counters, 

which can be used to collect execution times of cryptographic service routines (Intel 

PERC, 2013). The performance program profiling through the emulation of a 

cryptographic program like PEPMA is available from Wind River SIMICS (WindRiver 

SIMICS, 2013) and from an open-source repository (BOCHS, 2013). 
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In 2008, a more elaborate performance comparison between cryptographic algorithms 

was performed on Intel XScale architecture (Bartolini et al., 2008). Bartolini et al. used 

an XScale computing platform (Intel XScale, 2007) as a reference processor and Multi-

precision Integer and Rational Arithmetic (MIRACL, 2013) C library to construct 571-bit 

large integers during the evaluation. This signified that PEPMA required more accurate 

performance comparison and that coarse estimates will not suffice.  

 Targeting open-source software like OpenSSL, Google Corporation has been 

working on displaying performance tables and charts using a set of metrics such as 

benchmark machines, cycles per operation, and iteration counts for algorithms (Kasper, 

2010). Kasper targeted the performance evaluation applied toward the Transport Layer 

Security (TLS) protocol (NSS-1, 2013) with shorter key-length (224 bits) NIST P-224 

Elliptic-curve under prime field. The NIST P-224 mathematical procedure produces 224-

bit crypto keys versus 521 bits in this evaluation (NIST, 2010). This indicated that 

another way to improve measurements is to use program profiling technology. 

Program Profiling through Virtualization and Emulation 

 A virtual machine is a software engine that redirects code and data of an application 

and executes it within a newly created and isolated runtime environment. The VMware or 

VirtualBox by Oracle performs this function well (VirtualBox, 2014). Thus, 

virtualization refers to technology that provides an additional layer of glue-logic and 

services between hardware and PEPMA as an application. Different type of technologies 

can be used to employ virtual machines. The two most commonly used are direct 

execution with CPU instructions for fast speed, and emulation of CPU instructions for 

flexibility. Virtualization by emulation of PEPMA coding increases flexibility in terms of 

 



20 

obtaining computing costs (Mihocka & Shwartsman, 2014) Within the virtual 

environment, the emulation of PEPMA codes will allow precise and accurate counting of 

frequently used instructions such as imulq or movq (Intel Latency, 2013). Readers are 

referred to Appendix A for an accurate counting a small sample of NSS code (actual 

count will be in the order of million units). This performance measurement technology is 

referred to as program profiling of a PEPMA procedure and the units of measurement 

can be any CPU instructions (machine code). As a result of units of measurement like 

MULq or MOVq, counting these executing instructions with instruction emulation will 

be exact. Subsequently, computational cost equations from these units of measurements 

can be made. Under a particular emulation environment with a Community Enterprise 

Operating System, CentOS, a Linux OS, PEPMA will position itself in a software service 

hierarchy as shown in Figure 7. 

 

Figure 7. Program Profiling and Emulation of PEPMA 

Accurate and Precise Efficiency Evaluation of PEPMA 

 When observing PEPMA as a mathematical solver, one will uncover a number of 

performance deficiencies during implementation due to misused algorithms, inefficient 

numerical representation, or platform dependency. According to Mittelmann (2004) and 
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other professionals (COCO, 2014; BBOD, 2013) in the field of benchmarking of linear 

optimization software3, comprehensive benchmarking of each part of the solver will help 

identify potential efficiency problems, and will lead to software improvements. To 

benchmark each part of the solver, metrics M, S, clock(), Performance Hardware Counter 

and Software Counter can effectively provide input to the formulation analysis for 

verification of the result. More precise and accurate cost index can be derived from 

formulas instead of from other coarse cost indexes. The concept for verification is shown 

in a diagram in Figure 8. 

 

 

 

  Figure 8. Accurate and Precise Efficiency Evaluation of PEPMA 

Motivation and Direct Application 

 Of particular interest is the result obtained from applying PEPMA toward private 

key generation, specifically the outcome of the Elliptic Curve Diffie-Hellman Public Key 

                                                 

3 Linear optimization is a method to achieve the best outcome. 
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Exchange protocol (IASE, 2013; NIST, 2007). Today in the Public-Key Infrastructure, 

these protocols are commonly used in many client-server transactions, and PEPMA may 

eventually be the dominant method for public key exchange in cyberspace security in the 

near future. This comparison topic was selected because PEPMA's fast response is an 

important factor in client-server transactions. Furthermore, obtaining maximum 

efficiency offers superior advantages in terms of shorter user waiting times, even in less 

powerful processors. 

Problem Statement, Goal and Objectives 

Problem Statement: 

 Presenting the computational performance of Elliptic-curve scalar point-

multiplication approaches in projective geometry using: 

(a) the total number of single-digit non-modular multiplications (M) metric,  

(b) the total number of single-digit non-modular squarings (S) metric,  

(c) or executing computations under unspecified underlying arithmetic methods, 

(d) or under an unspecified computing architecture  

to complete the multiplication of a scalar value k and a point p with coordinates (x, y)  is 

necessary but insufficient. 

Goal: 

 Given a mixture of projective transformations, diversity of underlying arithmetic 

algorithms, and different computing platform architectures, the goal of this research is to 

improve the projective Elliptic-curve point-multiplication agent by dynamically or 

statically selecting higher-performance arithmetic approaches based on quantitative 

computational metrics. 
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Objectives:  

 In order to provide a higher-performance approach between PEPMA, additional 

quantitative performance figures of merit will be introduced. 

Barriers and Issues 

Qualifications of Quantifiable Metrics 

 Qualifying metrics will be the most difficult part of this research. Challenges come 

from determining quantifiable cost indexes for each mathematical procedure in the 

computing chain of PEPMA. An initial investigation showed that the contributing 

complications to the cost index might include optimizations in selected algorithms, 

presentation of big numbers, values of chosen field modulus, test vectors, base points, 

and mathematical optimization factors.  

Mathematical Optimization Factors 

 In order to construct accurate metrics, optimization factors must be included in the 

equation. The contributing complexities to mathematical optimization include operators 

such as bypassing functions based on special vector contents, early exiting executing 

loops, modulo reduction methods, and the dynamic selection of computations via other 

transformations or dynamic shortcuts such as a function of input vectors. 

Selection Criteria 

 The criteria of selection for better efficiency will pose other challenges as well. 

These challenges come from constructing of practical Key Performance Indicators based 

on quantifiable metrics of various PEPMAs.   
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Mathematical Traceability 

 There is concern regarding the qualification of cryptographic mathematics and 

underlying low-level implementation of mathematical routines. Many original concepts, 

underlying theorems, formulations and properties described will be introduced in the 

context of Elliptic-curve point-multiplication, finite-field projective geometry, and 521-

bit prime-field arithmetic. Rigorous proofs for these theorems may be found in Elliptic-

curve and projective transformation literature (NIST, 2010; Certicom Research, 2009; 

Blake, 2001; Menezes et. al., 1996; Cohn, 1962) and Finite-Field Projective Geometry 

(Rosen, 2006). 

Research Questions 

 This research will answer the following questions: 

1) Is the performance of PEPMA unknown based on existing theoretical work? 

2) What are the metrics to truthfully evaluate PEPMA's efficiency? 

3) Are there ways to improve PEPMA’s efficiency based on the empirical comparison?  

Relevance, Significance and the Need to Evaluate 

Relevance: 

 In the fast-paced cyberspace security, threats to public key exchange are constantly 

emerging. One possible goal of improving security is to maximize the burden for 

adversaries in terms of computational costs, such that adversaries will not be able to 

retrieve or reveal private keys. According to US-CERT (2014), more than hundred 

thousands damaging intrusion attacks to the U.S. military network occurred in FY 2011 

(OMB, 2012). This highlights the need for next-generation public-key exchange design to 
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have the capability to withstand brute-force cryptanalysis executing under high-

performance, but low-cost computing platforms (Intel AVX, 2012). 

Naturally, to meet these goals, usage of longer key length is necessary (NIST 800-56A, 

2013; Barker et al., 2012). This requirement poses a major challenge to software 

professionals who will need to search for an innovative approach to derive private keys as 

efficiently as possible. Despite a large working community in cryptology mathematics, 

the foundation has only provided limited evaluation techniques for reducing Elliptic 

Curve (EC) computation (Hankerson et al., 2004). 

 In NIST Special Publication 800-57 (Barker et al., 2012), a recommendation of key 

size and algorithm was provided for Public-Key Infrastructure (PKI) users and 

infrastructure components (e.g. X.509, X.509 DoD certificates). Table 2-1 in 800-57 lists 

a time period NIST recommended for use of the ECDH PKE class. According to this 

table, the ECDH curve P-384 digital signature certificate has expired after 12/31/2010. If 

the use of the public key is expected to continue after certificate expiration, then all 

certificates should also expire at an earlier date than specified in the table. Since the 

ECDH curve P-384 has already expired, this recommendation signifies an urgency to 

implement PEPMA P-521 for higher security PKE. This urgency pushes the optimal 

design and implementation of PEPMA an immediately valuable tool. 

 Today, research on explicit mathematical formulations in projective domain 

continues to excel by seeking higher computational efficiency and ease of realization 

(EFD, 2013). However, because computation in projective geometry is composed of a 

wide array of algorithms and optimizations, there are different ways to construct the 

arithmetic under projective transformations to produce different results in terms of 
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computational efficiency as seen in the literature of (Cohen et al., 2006). Given choices 

between selecting a variety of techniques to implement the projective transformations and 

the diversity of underlying mathematics, a fundamental issue of software engineering 

remains to be the optimum solution to a projective EPM problem. The consideration by 

software developers is usually efficient algorithms combine with the ease of 

implementation, which can be easily verified through comprehensive quantitative or 

qualitative performance figures of merit. 

Significance: 

 The evolution of the Internet toward a vast, ubiquitously connected society is 

imminent. Services of large devices, formerly placed on desks, have now become 

consumer small parts, providing continuous information, business transactions and 

personal entertainment. Thus, efficient PEPMA is a critical technology to ensure that 

personal computing devices can deploy security functions as fast as possible. At the same 

time, that technology must be operable with existing security certificates. The 

comprehensive benchmarking of each computational part, as shown previously, can help 

establish precise baseline performance. It’s important to understand the weaknesses and 

strengths of each service routine; be able to identify computational efficiency and provide 

ways for improvement; and track PEPMA's cryptographic performance over time as 

future computing platforms evolve with cryptographic instruction extensions.  

 The performance comparison of PEPMAs will offer an important role in the EPM 

literature pool by uniquely comparing two reference implementation codes. This detailed 

evaluation can set a direction for future research in which this field can be built upon for 

more efficient PEPMA, and can also be tailored to the underlying computing platform. 
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Be able to implement this concept to the entire chain of computing services, and not just 

selecting the best PEPMA available and then use it as is, is certainly worth the research 

effort. The comprehensive interpretation and analysis of the performance parameters 

generated by the benchmarking of each computing process will comprise the main 

technical issues addressed in this paper. 

 The immediate contribution that this study makes to the cryptology field is that the 

performance comparison will provide the implementers/technologist of PEPMA with 

tools and analysis to select the best methodology in order to minimize development time 

and maximize the efficiency requirements in a 64-bit x86 system. If interventions such as 

those previously explained were not presented, PEPMA efficiency in implementation 

may not be easily realized. Additionally, future research and development directions 

pertaining to the NIST 521-bit PEPMA might advance faster as a result of step-by-step 

formulations in this research study. Using the same approach as presented, the less 

powerful, but ubiquitous 64-bit embedded processor Advanced RISC Machines (ARM), 

used mostly in today's tablets and cell phones, might even benefit from the analysis and 

formulation with just a few modifications to the approach schematic and metrics. An 

ARM architecture description is currently accessible from (ARM, 2013). 

 After carefully digesting the comparisons between PEPMAs, one should be able to 

suggest the first systematic examination of the design, deployment, and operational 

challenges encountered by projective transformation over the years. This performance 

comparison will reveal a fundamental gap between theory and operational arithmetic 

costs particularly with the computing resource-constrained processors. It is believed that 

the insights gained from the evaluation can offer valuable input for the improvement of 
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the arithmetic chain either dynamically or statically, in the application toward scalar 

multiplication kp in 32-bit or 64-bit run-time environments. 

The need to evaluate PEPMA with more precision and accuracy: 

 During reviewing the literature on PEPMA with the intention to investigate where 

the validity of this evaluation stands with respect to the current research, one noticeable 

point is that benchmarking a complex solver akin to PEPMA technology in the 

commercial sector is much different than in academic research, where the primary goal is 

to quickly verify a simple computing approach. Although most publications support only 

conceptual findings, the importance of academic research is evident. Furthermore, 

regardless of what services are required underneath, the efficiency metrics developed 

while examining the exponentiation function will provide a speedy gauge between 

projective exponent algorithms (see blocks 1-8 in Introduction, Figure 2). However, this 

evaluation model resembles the comparison between black-box software, which is not 

very meaningful in terms of improving the black-box itself. This situation has likely 

arisen due to the fact that PEPMA is a highly intellectual product solely based on its own 

multipart arithmetic merits; and thus, it is difficult to evaluate without a complete 

solution and additional metrics, or without specifying an exact computing architecture. 

As a result of dealing with such complexity, academic researchers tend to publish papers 

about efficient ideas, instead of publishing about what is actually required in a full, 

practical implementation setting. 

Lacking the support of concrete literature in processing PEPMA poses major obstacles in 

understanding intricate connections between computing modules; and thus, such dilemma 
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prevents improving software implementation or slowing down adapting services to the 

target computing hardware.  

 

As of today, an evaluation of 521-bit key-pair generation with pre-computation over 

GF(p) with NIST Mersenne prime modulus (Solinas, 1999) is seldom found  in academic 

literature or any industrial publication. This predicament exists because practical usage of 

such technology is just about to begin in both government and commercial sectors after a 

lengthy FIPS-140-2 certification and accreditation of the implementation. So far, there 

has not been public availability of this comprehensive performance comparison 

pertaining to PEPMA in a 64-bit x86 runtime environment. The author's claim was based 

on reading through the literatures as listed in the reference section. The completion of this 

study is important and necessary to the future construction of a 521-bit projective-domain 

Elliptic-curve public key infrastructure. 
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Definition of Terminology 

 The following terms are defined in the context of Elliptic-curve cryptography and 

this research. More detailed discussion of these terms can be found in standards (IEEE 

982.1, 1988), IEEE Standard Dictionary of Measures to Produce Reliable Software, in 

IEEE 610.12, 2002), Standard Glossary of Software Engineering Terminology, in 

(ISBSG, 2006), Glossary of Terms, or in (IEEE 1363, 2000),  Standard Specifications for 

Public-Key Cryptography. 

Accuracy: Measurement that is closer to the actual. 

Cost: Any measure, such as latency, of quantitative properties that has to be spent to 

obtain the result of the product k(x, y). 

Cost Index: A value that has been normalized from the cost value. 

Homomorphism: Homomorphism allows mapping the numbers back into themselves. 

Homomorphism is a structure-preserving map between two algebraic structures of affine 

coordinates (x, y) and projective coordinates (X, Y) operable in groups, sub-groups, or 

fields. 

Group: A group G is defined as a set, in which it is subsequently possible to define a 

binary operation that has an identity element, and has multiplicative inverses for each of 

its elements. The cryptology PEPMA works with large elements in the group; for this 

reason, the properties of the group are enormous and a complete understanding of the 

group is impossible. This led to a more practical approach in studying the properties of 

smaller groups by looking at a subset of a known group under a specific modulus (e.g. 

modulus m). This smaller group is known as cyclic subgroup inside a finite field F. 
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Field: An algebraic system consisting of a set S, two operations O1, O2 and their 

respective inverse operations, and two  identity elements I1, I2, one for each operation.  

    K = ( S, O1, O2, I1, I2 ) 

        S is a set of integers 

        O1 is the operation of addition. The inverse operation is subtraction. 

   O2 is the operation of multiplication. The inverse operation is defined 

    below. 

        I1 is the identity element zero (0) 

        I2 is the identity element one (1) 

 
Inverse: The word “inverse” is used in this context to indicate a numerical inversion of a 

polynomial with its presentation as a multi-digit number. Let F be forwarding functions 

of the variable x, and x is invertible if there exists a function R in domain X and range Y, 

with the following properties: 

     
1

( ) ( )F x x iff R x
x

   

Let r be the inverse of x, then this congruent modulo must be true in domain X and range 

[0 ... m–1 ] 

     mrx mod1  

If a multi-digit number, MDN, is invertible, then the inverse of MDN is unique; in other 

words, there can be at most one MDN-1 satisfying the inverse properties. 

Performance Formula: a mathematical relationship or rule expressed in symbols used 

for calculating the performance of PEPMA. Performance formulas are components of 

KPI. 
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Key Performance Indicator: (KPI). It is an indicator which is used to determine how an 

evaluator will apply it against objectives. PKI has the ability to provide recommendation 

for course of action. For example, overall performance of PEPMA is a KPI.  

Measurement: Measurement provides a single-point-in-space view of PEPMA specific, 

discrete factors. Measurement is generated by counting. 

Metric: Statement of measurement. Metric is derived by comparison of predetermined 

baseline two or more measurements. Metric is generated by analysis.  A metric can be 

absolute or a ratio. Thus metric can be of type “absolute metric” or “ratio metric”. 

Metrics are components of formulas.   

Reverse: The word “reverse” does not have the same meaning mathematically as 

“inverse.” It is intended to indicate transformation functions that undo other 

transformation functions. 

Precision: Measurement that is consistent for every reading. 

Projectivity: A transformation within and between projective spaces. 

Program Profiling: Investigation of PEPMA executing instructions. 

Verification: The software engineering activities include testing, inspection, design 

analysis, and/or specification analysis to confirm that the performance formulas meet 

specifications levied on the design. Verification activities help produce high-quality 

performance formulas and metrics.  
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Point Doubling and Point Adding Definition: 

 By algebraic laws, a point-doubling of a point (x, y) on the curve y2= x3 + ax + b 

results in a second point (x3, y3) whose coordinates must also be on the curve. This result 

(x3, y3) is defined by two Cartesian coordinate equations in the Euclidian plane: 
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Similarly for point-adding, by algebraic laws, adding point (x1, y1) to point (x2, y2) on the 

curve y2= x3 + ax + b results in a third point (x3, y3) whose coordinates must also be on 

the curve. This result (x3, y3) is defined by two Cartesian coordinate equations in the 

Euclidian plane: 

  21

2

12

12
3 xx

xx

yy
x 











 ,   131
12

12
3 yxx

xx

yy
y 











    

Point-doubling of point p (x, y) is defined as adding the same point together 

    Point-doubling  ≙ p + p 

Point-doubling is also equivalent to a multiplication of a scalar 2 and a point p 

    Point-doubling ≙ 2 × p (x, y).   

Adding two different points p1 (x1, y1) to p2 (x2, y2) is not the same as point-doubling. 

Rather, point-adding is defined as adding two EC points having different coordinates: 

    Point-adding  ≙ p1 + p2 

Mersenne prime: a prime of the form 2p − 1 where p is a prime. The NIST P-521 

modulus m has a form of a Mersenne prime. 
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Mathematical Symbol 

≡    congruency 

≙    equal by definition 

ℤ   integer number set 

⇔   transformation 

m   spatial modulus 

N   digit count in a number, sometime referred to as limbs 

⌈x⌉   rounds number to upper integer 

⌊x⌋    rounds number to lower integer 

mod   remainder calculation 

= =   equality 

=   assignment of value 

 [ ]   square bracket, digit index 

K   an integer field containing elements of ℤ  

F   an infinite field 

x, y   variables in Cartesian coordinates, or affine coordinates (lowercase italic) 

X, Y, Z variables in projective domain (uppercase non-italic) 

k(x,y) Elliptic-curve multiplication of scalar k and point p having affine 

coordinates (x, y) 

≈  approximately equality 
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Acronym 

ARM Advanced RISC Machine 

CPU   Central Processing Unit 

CISC Common Instruction-set Computer 

ECDH Elliptic-curve Diffie-Hellman, a protocol to exchange private keys in 

public domain 

EC  Elliptic curve 

EPM  Elliptic-curve Point Multiplication 

GF(p) Galois prime field 

MDN Multi-digit Number, a big-number 

NSS  Network Security Services, and open-source of cryptographic library 

OpenSSL Open Secured Socket Layer, and open-source of cryptographic library 

PEPMA Projective Elliptic-curve Point Multiplication Agent 

PMS  Performance Measurement System 

KPI  Key Performance Indicator 

RSA  Ron Rivest, Adi Shamir and Leonard Adleman public-key encryption 

algorithm 

RISC Reduced Instruction-set Computer 
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Chapter Summary 

 The beginning part of the introduction briefly presented the problem to investigate.  

It is believed that the performance comparison between PEPMAs would be unknown 

based on coarse performance metrics M, S, and clock(). 

 The performance comparison of PEPMA in a 64-bit x86 environment has three 

important, top-level contexts: (a) the structure of PEPMA, (b) associated environment of 

PEPMA, and (c) existing and expected methods for comparison and verification. The top 

two contexts were briefly presented in the preliminary section on PEPMA and in the 

section on how environmental factors would affect the performance of PEPMA. 

 To advance the investigation, two optimizing PEPMA codes, NSS and OpenSSL, 

will be selected for the empirical case study.  These two open-sources, coupled with 

methods for comparison and verification, will help answer which metrics will objectively 

evaluate PEPMA's efficiency and ways to improve PEPMA’s efficiency based on the 

empirical comparison. 
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Chapter 2 

Literature Review 

 The literature review is a collection of research papers, journals and reports that 

have been gathered as a basis for the evaluation and comparison of PEPMA in a 64-bit 

x86 run-time environment. The review is to locate a set of widely accepted principles in 

the area of concern. Based on this prior research, a common ground for the Performance 

Measurement System (PMS) of PEPMA can be characterized. Accordingly, the outcome 

of prior research and analysis will be used as a source of input to support the performance 

evaluation methods of PEPMA. Critical knowledge and substantive findings include: (a) 

performance evaluation using IEEE standards, (b) Elliptic-curve principles and their 

components and (c) the concept of point computation in projective geometry. These three 

important topics will point out specific formulations, theories, requirements, and 

analytical methodology to help evaluate PEPMA’s performance and support the 

comparison of performance between NSS and OpenSSL.  

 PMS principles indicated that when measuring PEPMA, various aspects of 

evaluation must be taken into account. Current "state of the art" knowledge includes up-

to-date evaluation methods. Results and empirical data from these evaluators will 

facilitate an understanding of the structures and relationships among various measures of 

NSS and OpenSSL PEPMA.  

 The primary purpose of the arithmetic literature review, including a big-number 

representation, is to ascertain whether the proposed metrics can objectively evaluate 

PEPMA's efficiency and whether there are effective ways to improve PEPMA’s 

efficiency based on the empirical comparison. Subsequently, critical points of knowledge 
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about the Elliptic-curve field, projective geometry, and optimization efforts on low-level 

arithmetic will provide best practices for determining the optimum computationally 

efficient PEPMA under x86 64-bit platforms. 

Performance Evaluation Standards 

 The purpose for reviewing the following standards and sub-components of the 

formulas is to assist in developing a formal evaluation methodology that will address 

questions from the research. It is important to derive accurate quantitative computational 

metrics available from a 64-bit executable environment and provided such measurements 

to a performance specialist.  

 One cannot reasonably evaluate performance accurately without first investigating 

the measurement principles noted in Shukri's paper that "software measurement science 

should use the same basic principles as physical measurement science, which requires a 

reference, measurement method, and an uncertainty statement" (Shukri et al., 1999, p. 3). 

While Shukri's measurement method refers to specific formulations recommended in the 

NIST standards, PEPMA's key performance measurement method relies on IEEE 

standards. Furthermore, while Shrukri requires the uncertainty parametric such that "the 

behavior conforming to the chosen reference, and options the reference permits" (p. 4) to 

be included in the measurement equations, the efficiency of PEPMA derives its 

uncertainty parametric though program profiling and simulation. 
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Both IEEE standards 982.1-1988 and 982.1-2005 provide some, but incomplete 

measurement references suitable for the Key Performance Indicators of PEPMA. 

However, efforts to tailor the efficiency measurements are necessary because no 

standards exist in this area. These IEEE standards also offer a recommendation for 

continual self-assessment and improvement of the software aspects of dependability. 

Within the revision released in 2005, IEEE 982.1 stated its boundary in the scope that 

“this standard specifies and classifies measures of the software aspects of dependability. 

It is an expansion of the scope of the existing standard; the revision includes the 

following aspects of dependability: reliability, availability, and maintainability of 

software. The applicability of this standard is any software system; in particular, it 

applies to mission-critical systems, where high reliability, availability, and 

maintainability are of utmost importance...” (p. 2). Under the limited capacity of these 

IEEE standards, the terminology and metrical formulations pertaining to the availability 

of critical systems are generally applicable to the Key Performance Indicators of 

PEPMA.  

 Specific definitions of primitives and formulations pertaining to software reliability 

are found in IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE 

982.1 (1988), which is an older and original version of IEEE 982.1 (2005). Although this 

standard was published in the early microprocessor computing era of 1988, it was not 

revised until 2005. Regardless of the deficiencies in some areas, there are useful metrics 

to evaluate software reliability, which can be applied to ensure that PEPMA’s top-level 

software module and some sub-modules exhibit accurate, consistent, repeatable, and 

predictable performance under a 64-bit environment. 
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In particular, IEEE 982.1 (1988) provides formulations of the following five metrics: 

Compliance Metric, Static Complexity, Weighted Information Flow Complexity, Module 

Maturity Index and Functional Metric. The methodology chapter will present applications 

of these formulas, along with the acquisition of sub-components of the formulas, known 

as primitives. 

 Despite the fact that the performance evaluation presented in the IEEE literature is 

incomplete, Herrmann (2007, p. 111) cross-referenced the software and  security 

engineering metrics in her book, as she made an observation that,  “Although not 

recognized as such, software engineering is also a first cousin of security engineering”. 

She also noted that software engineering metrics defined by IEEE standards have been 

proven and “passed the accuracy, precision, validity, and correctness test” (Herrmann 

2007, p. 120). Although Herrmann did not mention where one can find the origin of 

formulations for the Key Performance Indicators and other formulas as she presented, 

they were probably derived from the recommendations in standards IEEE 982.1 (1988) 

and IEEE 982.1 (2005). Another source that discusses these topics is available from 

Keyes (2005). 

Efficiency Measurement 

 Efficiency measurement is one of most significant aspects beside other Key 

Performance Indicators in the processing of PEPMA in real-time. The efficiency will be 

measured with respect to its main objective, which is a minimization of computing costs 

in terms of reducing the number of CPU instructions. To date, there have not been 

significant standards available for evaluating the efficiency of Elliptic-curve point-

multiplication in a projective domain. In an attempt to address this issue, general 
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discussion of this topic can be found scattered in Keyes's literature (Keyes et al., 2005) 

and many other research papers presented in the following review sections. Additionally, 

because there is not an absolute reference that PEPMA's efficiency measurement can be 

based on, the reference for measuring PEPMA's efficiency will be relative ─ meaning in 

between efficiencies of NSS and OpenSSL. Hence, the efficiency metrics are best if the 

following attributes are presented: they have ground truth, have a formal technical 

approach, are quantitative, are objective, are obtainable, are inexpensive to derive, are 

repeatable, and are verifiable. Certainly, the evaluation for efficiency might not be able to 

encompass all of those attributes. However, a few important ones – such as the empirical 

verification through program profiling and simulation – should be included. Taken from 

NSS and OpenSSL C source codes, Table 1 provides an incomplete list of similarities 

and differences between NSS and OpenSSL implementations that will potentially 

contribute to the point of reference for comparison and efficiency metrics. 

Table 1. NSS and OpenSSL Similarity and Difference 
NSS Unit of 
Analysis 

OpenSSL 
Unit of Analysis 

Comment Compared 
in between 

APT APT APT = Affine to Projective 
Transformation 

Similar 

4-bit windows and 
pre-comp EF 

5-bit windows and 
pre-comp EF 

EF = Exponentiation 
Function 

Different 

Point Doubling type 
1, (Cohen et al., 
1998) 

Point Doubling type 
2 
(Brown et al., 2001) 

 Different 

Point Adding type 1 
(Brown et al., 2001) 

Point Adding type 2 
(Brown et al., 2001) 

 Different 

PAT PAT PAT = Projective to Affine 
Transformation 

Similar 

32-bit numeric 
representation 

58-bit numeric 
representation 

 Different 
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Elliptic-Curve Principles in PEPMA 

 One important element of PEPMA pertains to Elliptic-curve Cryptography (EC). 

There are many theories in this area since the discussion of EC began early in the Isaac 

Newton era. The discussions on this topic are included in several sources (Avanzi et al., 

2006; Burton et al., 2006; Aoki et al., 2001; Brown et al., 2001). In this Elliptic-curve 

preliminary, principles closely related to helping the performance comparison of 

PEPMA, will be extracted and presented. 

  It has been shown that many Elliptic curves exist in a three-dimensional torus 

(Cohen et al., 2006, pp. 272-273), which is a donut-shaped object shown in Figure 9 

below (Hankerson et al., 2004, p. 75-86).  

 

Figure 9. A 521-bit Elliptic-curve Point vs. 15,360-bit RSA Cryptographic Key 

 

Of these curves, the 2D locus of points p on a Cartesian x-y plane must satisfy an 

algebraic cubic equation of the form y2 = dx3 + cx2 + ax + b. In contrast with one-

dimensional RSA cryptography, the distinction between a two-dimensional point p of an 

Elliptic-curve residing in a torus and a one-dimensional 15360-bit RSA cryptographic 

 



43 

key sitting along the x-axis is depicted in the Cartesian (x, y, z) coordinate system on 

Figure 9. Hankerson et al. (2004, pp. 15-19) and Certicom discusses this topic (Certicom 

Research, 2009; Certicom Research, 2004). Online information regarding key size is also 

posted at (RSA Key Size, 2013). Not all Elliptic curves are good for cryptography 

because they can be easily exploited or too difficult to manipulate in the forward 

direction. Readers are referred elsewhere for discussion on this topic (Bos et al., 2014). 

One particular curve P-521 per NIST recommendation has the cubic form:  

     y2= x3 + ax + b    

where the coefficients in a larger curve y2 = dx3 + cx2 + ax + b have been set to d = 1, c = 

0, a = –3, and the constant b, known as the domain curve’s parameters, will be selected at 

run-time. These coefficients, a and b, are usually stored in an X.509 certificate for public- 

key management (ITU-X509, 2014). This same curve, P-521, was used in NSS and 

OpenSSL implementation; but since b is variable, will its value change the latency of 

PEPMA at all? By setting b = 0, the NIST curve's appearance in (x, y) coordinates is 

depicted by the blue graphs below. 
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Figure 10. NIST EC in the Domain of Real Numbers in 3D 
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The solution associated with NIST Elliptic-curve in equation y2= x3 + ax + b can be 

performed in real, imaginary, binary, or prime-field numbers. It is natural to work with 

curves within an algebraic closure of real numbers. However, it has been shown that real, 

imaginary, and small-value numbers are used mainly for illustrating and understanding 

point addition, multiplication, squaring, and inversion, but it has no practical use for 

cryptology (Hankerson et al., 2004, pp. 80-82). 

 Since the NIST P-521 curve has a form y2= x3 + ax + b, by setting b = 0, the EC now 

becomes an even simpler equation, . Definitions for a family of curves 

were established and published in NIST 186-2, or in FIPS PUB 186-4 (2013).  

0332  xxy

 The equation  can be equivalently written as0332  xxy  322  xxy . The 

three coordinates and 2D graph of this curve bounded in small real numbers are depicted 

in Figure 11 below. The red curve shows another infinite subfield when b = 3. This red 

curve will have different base points G(x, y) from the blue curve, although they are in the 

same family. By changing the domain parameter b and having different base points G(x, 

y), the illustration shows that calculating computational efficiency for the red curve might 

not be the same as for the blue curve. 
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Figure 11. NIST EC  in Small Numbers 
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When y equals 0, then  30 2  xx ; this equality implies that there are, at most, three 

distinct roots for the curve. These three roots must all satisfy the equation  30 2  xx : 

     , 0x 3x , and 3x  

Thus, three distinct points, p, exist on the curve: p(0, 0), p( 3 , 0) and p( 3 , 0).  

Based on algebraic laws, a point-doubling operation of a point p = (x, y) on a P-521 EC 

will result in another point p3(x3, y3) that is defined by two Cartesian coordinate equations 

in the Euclidian plane (Hankerson et al., 2004, p. 80): 
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By substituting point p(x = 3 , y = 0) to (1), the product of scalar 2 and EC point p yields 

k×p = 2 × p ( 3 , 0) =  p3(x3 = ∞, y3 = ∞ ).     

 In the process of calculating the parameters x3 and y3, one needs to take the inverse 

of 2y, including when y = 0. This inversion operation will be expensive even with real 

numbers, more so if the arithmetic was done with 521 bits in a finite field. In NSS or 

OpenSSL, truthful performance evaluation must account for the condition where p3(x3 = 

∞, y3 = ∞). It has been shown that both point-doubling and point-adding functions must 

handle this peculiar mathematic condition known as the processing of a point at infinity 

(Cohen et al., 2006, pp. 268-271). 

 In an Elliptic-curve crypto system, the key length denotes a number of binary bits. 

PEPMA will manufacture cryptographic keys as a coordinate (x, y) of a point p in a 

finite-field 2-dimensional space. Thus, the length for each big-number x or y could range 

from 128 bits to 576 bits, depending on the security strength requirements. It has been 

shown that  521-bit key works well mathematically under a prime field (See Appendix J) 
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or (Cohen et al., 2006, p. 182); thus, it will be the chosen crypto key length in this 

research. NIST Special Publication 800-56A also discussed this topic. 

Concept of Point Computation in Projective Domain 

 The concept of point computation in a Projective domain will explain why the 

existence of coordinate Z and why the first projective coordinate to enter the 

exponentiation computational loop has a value of (X = x, Y = y, Z = 1). The literature 

from (Rovenski, 2006; Ryabko et al., 2005, p. 98; Veblan et al., 1906) provided 

discussion of this topic. 

 Additionally, the concept will help answer many other questions about efficient 

computation in projective geometry. Salomon (2006) briefly described this conception in 

a 3x3 matrix representation (p. 13).  

 Boston and Darnall in literature have researched this mathematically intense topic 

(Koc, 2009). They noted that although an Elliptic curve having one genus (one doughnut-

hole) is a subset of Hyperelliptic curves, formulations derived for Hyperelliptic curves 

can be used among different families of curves, such as the formulation for counting 

points on a Jacobian curve JAC(C). They further noted that to compute kP for some 

element P in Jac(C) and the order n   Z using the standard double-and-add method, one 

would be forced to expend a computational cost of O(log2(n)) inversions4. Boston and 

Darnall also showed that the high cost of inversions in an affine coordinate is usually 

valid for software. The final evaluation would signify a higher-performance improvement 

if one performs the comparison between a non-weighed projective transformation system 

                                                 

4 When using Boston and Darnall’s formulation, log2(n) cost index in PEPMA equals 
exactly 521 inversions per double-and-add method. 
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and a system that uses a weighed projective transformation. Naturally, both NSS and 

OpenSSL PEPMA 2013 releases used the weighed projective transformation to obtain 

higher efficiency. 

 Boston and Darnall indicated that by introducing another variable Z, it is possible to 

delay performing inversions until the last step of the algorithm. They also noted that for 

Elliptic curves, this extra coordinate Z is equivalent to storing the point in projective 

coordinates. This is not the case for higher genus curves greater than 1; however, they 

still called these coordinates projective because of the similarity to Elliptic curves. Their 

notion helps clarify the concept of point computation in projective geometry. In turn, it 

distinguishes between different approaches implementing point-doubling or point-adding 

functions.  

 Joye also included the performance comparison between Jacobian and Chudnovsky 

coordinates (Joye, 2008). His idea of saving one Multiplication, 1M, and one squaring, 

1S was achieved by using two more new coordinates, E and F, additionally with the 

Jacobian representation of points. The Chudnovsky presentation of a point P then 

becomes P(X : Y : Z : E : F). Neither NSS PEPMA nor OpenSSL PEPMA uses point 

presentation in the form of Chudnowsky, but uses three projective coordinates in a point 

P(X : Y : Z) described as Projective-3 per Bernstein and Lange (Bernstein & Lange, 

2007). 

 In 2007, Bernstein joined efforts with Lange, and together they published a paper 

titled “Analysis and Optimization of Elliptic-curve Single-scalar Multiplication.”  Their 

work was supported in part by both the National Science Foundation and the European 

Commission through the IST Programme (Bernstein & Lange, 2007). In their research, 
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they intended to present greater precision on how many field multiplications were 

required for the computation of kP.  

To further elaborate the reasoning of other researchers in the projective field, Ryabko et 

al. (2005) and Salomon (2006) explain the same idea in their work. Other mathematicians 

(Cohen et al., 2006;   Case, 2006) studying the projective geometry first examined the 

computation of an Elliptic-Curve point by drawing a point p, which has Euclidian 2D 

coordinates (x, y). This point p, shown in the previous graph as p( 3 , 0), represents a 

point on an Elliptic curve E. For simplicity, coordinate y is set to zero. Point p is situated 

on a flat surface π and in a Cartesian “x-y” coordinate system as shown in Figure 12 

below.  General discussion of projective geometry can be found in (Cohen et al., 2006, p. 

46). 

 

Figure 12. Transforming an Elliptic Point onto Projective Geometry 

Point p (italic letter) is then lifted upward one unit in the z direction. Point p now 

becomes another point p (non-italic letter) that has an additional z coordinate equal to 1. 

The vertical movement engages point p (italic letter) to enclose an Euclidian distance 

vector equal to (x, y, 1) but this point is still in the Cartesian coordinate system. 
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However, from PEPMA's computational perspective, coordinate z =1 has no effect on the 

result. Thus, both points p (italic letter) and point p (non-italic letter) are the same point. 

In referencing the points located on an axis parallel to the z axis shown in Figure 12, any 

scalar value where z = α, point p and its many other point p’s located vertically above or 

below point p are all identical. Ryabko et al. (2005, pp. 99-101) declared such 

equivalency as follows: 

( x , y ) ≙( x , y , 1 ) 

 In technical terms, all points p(s) having coordinates (x, y, α) are "homogeneous" 

with respect to point p for the reason that they all represent the same point p that exists in 

Euclidean space (Bennett, 1995). Because of the homogeneity of point p (non-italic 

letter), the flat surface “Hi” in Figure 12 can also be thought of as a projective plane 

submerged in a homogenous coordinate system (Greenberg, 1995). The transition from 

affine coordinates (x, y) to projective geometry containing the first point P(x, y, 1) and 

immediately back to affine (x, y) is shown in the figure below. 

 

Figure 13. First Movement of EC Point Onto PG and Back 

The original Euclidian point p can now be correctly derived from its homogenous 

coordinate to the Cartesian coordinate by “mapping,” or making a projection of p onto 

plane π on the projection axis parallel to the Cartesian axis z (Greenberg, 1995). This 

 



50 

 

calculation is valid since a chosen working finite field F within Euclidean geometry is 

completely contained within a finite field K of Projective Geometry (Rovenski, 2006). 

Because the transformation of (x, y) ↔ (x, y, 1) has already brought (x, y) into a 

homogenous coordinate system, for distinction of notation, one can denote point p with 

upper-case letters instead: 

     p(x, y, 1) ≙ P(X, Y, 1) 

To further elaborate the analysis of the projective field, let another point Q with its 

homogenous coordinates (X3, Y3, Z3) shown in Figure 14 be a point which its values are 

the result of the projectivity of point P along axis vector V (Ryabko et al., 2005, pp. 99-

101). This vector, V, passes through the Cartesian original point (0, 0, 0).  

 

 

Figure 14. Projectivity of Elliptic Points 
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Due to the principle of similar triangles, the relationship between the two coordinates P 

and Q is given by 

    
3 3

X 1

X Z
  and   

3 3

Y 1

Y Z
    

Under the working finite field F and the chosen modulus m, a 521-bit NIST Mersenne 

prime (Solinas, 1999) for example, and by the congruent relationship of similar triangles, 

homogenous coordinate X3 can be derived such that 

    
3 3

X 1

X Z
  →   mmodZXX 33   (2.1) 

and the homogenous coordinate Y3 is given by 

     
3 3

Y 1

Y Z
  →   mmodZYY 33   (2.2) 

In applying expressions (2.1) and (2.2), point Q will be correctly projected back to point 

P, provided an inversion of Z3 modulo m exists. Once point P has been recovered by 

reversing the projectivity of point Q, one can derive the Cartesian coordinates (x, y) right 

after a projective transformation reverse (Cantor, 1987). Figure 15 illustrates a complete 

computation loop of an Elliptic-Curve point p in the projective domain. The term PT 

denotes any Projective Transformation, weighted or non-weighted. 

 

 

Figure 15. PT and Projectivity of EC Points 
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Assuming that point p(x, y) will be transformed into a homogenous coordinate by the 

chosen weighted relationship 

    X = x×Z2 Y = y×Z3 Z = z    (2.3) 

Accordingly, a constant vector α(1,1,1) in Cartesian has three homogenous coordinates 

    Λ (Z2,  Z3,  Z)       (2.4) 

Using the principle of homogeneity in projective geometry, one can multiply coordinates 

of Q by a homogenous vector without changing its perspectives (Blake, 2001; Cantor, 

1987). 

     Q(X, Y, Z) ≙ Λ × Q(X, Y, Z)      (2.5) 

Due to the inversions required in expressions (2.1) and (2.2), the result of a point-

doubling or point-adding in a projective-domain finite-field yields three coordinates with 

two inversions in place     
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where X3, Y3, ZX, and ZY are the labels of the result of point-doubling or point-adding 

done in projective domain. Point Q has a “Z?” at z-coordinate because its value will be 

determined later in the computation process. Multiplying point Q with the homogenous 

vector Λ will yield the same point. The challenge for NSS and OpenSSL developers 

implementing PEPMA is to find a commonality between the terms Z, ZX and ZY, such 

that inversions in the x and y-coordinates will be eliminated. Ryabko et al. (2005) 

described and derived this common denominator using substitution of variables and 

reduction of mathematical terms (p. 99). Assuming such a commonality is found, 

   ZX = Z2 and   ZY = Z3    (2.7) 
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then the computations in expression (2.6) require no inversions, but the term Z must be  

carried onto the next computation of Z (EFD, 2001). The homogenous vector Q is just 

          (2.8)  3 3Q X , Y , Z

Expression (2.8) concludes that point Q, the result of point-doubling or point-adding, can 

be manipulated in a homogenous coordinate without any modulo inversions.  

 In summary, findings from mathematicians in projective geometry have indicated 

that a projective space of an Elliptic curve can be formed by mapping vector spaces along 

a line through origin O. Additionally, projective geometry where the Elliptic curve 

reshaped is a non-metrical form of geometry. This means that coordinates associated with 

projectivity are no longer based on the concept of Euclidian distance. However, when the 

projective space of an Elliptic curve is projected back onto the Euclidean plane, the 

original coordinates presented in finite-field big-numbers will be restored. The 

homogeneous characteristic in projective geometry makes the exclusion of mathematical 

inversions possible.  

Point at Infinity 

 While observing stars in the sky hundred of years before Poncelet, an important 

concept regarding a point at infinity appeared to the German mathematician and 

astronomer Kepler (1571). Today, in the principle of Elliptic-curve point computation, a 

point O at infinity must exist, be presentable, and be calculable. Thus, PEPMA's 

performance measurements will be affected by how a point-at-infinity is presented and 

processed. The point at infinity principle will be of assistance in selecting test vectors for 

PEPMA composed of order n of subfield and base point G(x, y) from domain parameters. 
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Computation in Mixed Coordinate 

 Cohen, Miyaji, and Ono presented an application of mixed coordinates, a 

combination of affine and projective computation toward Elliptic curve exponentiation in 

an article titled "Efficient Elliptic Curve Exponentiation using Mixed Coordinates." Their 

research shaped the mathematical foundation for computations in a projective domain 

with mixed coordinates (Cohen et al., 1998). Both NSS PEPMA and OpenSSL PEPMA 

use the mixed coordinates approach to save costs during pre-computation. Thus, an 

accurate performance evaluation should account for this “mixed coordinate” condition as 

well.  

PEPMA Domain Parameters 

 Processing PEPMA requires additional parameters associated with the 

characteristics of the curve. These domain parameters are chosen based on certain 

security criteria and performance levels. They are also based on the possible attacks that 

can be instigated on an Elliptic curve cryptosystem. For this reason, the ANSI X9.62, 

NIST 186-2 and IEEE standards provide the acceptable global parameters for all fifteen 

Elliptic curves. 

Table 2. NIST P-521 Domain Parameters (FIPS PUB 186-4, 2013, p. 16) 

Description Letter Value (521 bits) 
Field size m 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

Coefficient for the 
Elliptic curve 
equation (521 bits) 

a ─3 (decimal) 
000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFC 

Coefficient for the 
Elliptic curve 
equation (521 bits) 

b 00000051 953EB961 8E1C9A1F 929A21A0 B68540EE 
A2DA725B 99B315F3 B8B48991 8EF109E1 56193951 
EC7E937B 1652C0BD 3BB1BF07 3573DF88 3D2C34F1 
EF451FD4 6B503F00 

Order of the curve 
(521 bits) 

n 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFA 51868783 
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BF2F966B 7FCC0148 
F709A5D0 3BB5C9B8 899C47AE BB6FB71E 91386409 

Cofactor h  1 
 

Documentation in NIST 186-2 identified fifteen sets of parameters: five for prime fields, 

five for binary fields, and five for Koblitz curves. These parameters have been chosen for 

fast reduction with their respective modulo. A question here is whether NSS and 

OpenSSL PEPMA have applied the fast NIST modulo reduction using the Mersenne 

prime modulus (Solinas, 1999), since this mathematical optimization is a major 

contributor to the efficiency of PEPMA. 

 One of the other not so obvious parameters from NIST was the cofactor h: product 

of the cofactor and the order of the curve equals to the number of points on the chosen 

Elliptic curve: . For a more detailed discussion of cofactor h, readers 

are referred to (FIPS PUB 186-4, 2013, p. 87) or (NIST, 2010). 

))((# pGFEnh 

 NIST curves utilize a cofactor term with a value of 1. However, determining the 

order n for an NIST curve requires a way to count the number of points available from 

the curve. These principles and findings will help select test vectors for PEPMA 

composed of order n of subfield and base point G(x, y) from domain parameters. 

Research in Numeric Presentation and Computation 

 Integer computation for PEPMA requires processing multi-digit multiplications, 

divisions, and inversions (NIST, 2010). If one views PEPMA as part of Digital Signal 

Processing (DSP) at the microscopic level, the EPM operation begins with a low-level 

multiplication of two polynomial signals. 

 Various numeric theories (Cohn, 1962) and DSP literatures (Li, 2008; Lathi, 1998) 

have described the problem of N-digit polynomial multiplication (Bi et al., 2004); 
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however, from a fundamental aspect, the multiplication of two polynomials is equivalent 

to the problem of convolving two sequences of N-point signals.  

If one denotes both n and k as non-negative integers for indexing into an N-digit number, 

all multiplications and summations required in (2.9) can be done entirely in spatial 

domain. However, in light of reducing computational costs, an existing problem is 

computing the result r[n] with a multiplication algorithm that has the least multiplications 

and additions among all algorithms that compute r[n]. 

 Let x be the polynomial multiplicand and y be the polynomial multiplier, the 

multiplication resulting in another polynomial r is obtainable by convolving x and y 

        (2.9)  





1

0

][][][][][
N

k

nynxknykxnr

Computational efficiency of PEPMA begins with a proficient representation of a Multi-

Digit Number (MDN). The following information sets up essential terminology for a 

discrete polynomial representation of a multi-digit number and prepares its usage for low-

level arithmetic calls from PEPMA.  

There are several ways to represent an MDN contained in a finite field K (Koc, 2009; 

Saldamli, 2009). However, two types of presentations are popular, the prime field Fp and 

the exponential prime field Fp
s. 

 If prime p is set to 2, then the exponential prime field Fp
s becomes F2

s, an 

exponential binary field. Moreover, if the MDN is implemented using a two-bit field F2,  

then NSS or OpenSSL PEPMA can represent an S-bit multi-digit number, contained in an 

exponential binary field, implemented over a two-bit field b as a finite discrete 

polynomial, along with a sign indicator.  
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   (2.10) 1 2 1
1 2 1 0( ) (2 ) (2 ) ... (2 ) (2 )S S

S SMDN sign b b b b 
       

0

For a more detailed discussion of numeric representation, readers are referred to (Cohen 

et al., 2006, p. 169) or (FIPS PUB 186-4, 2013, p. 88). Although expression (2.10) can 

provide a workable representation of MDN as a bit vector, the representation is not yet 

efficient for performing arithmetic between MDNs. Instead, almost all 64-bit 

computational units currently available in general processors provide signed arithmetic 

operations with arithmetic word lengths set to 32 (half-digit in 64-bit system), 58, 64, or 

65 bits (64 bits plus hardware carry bit). 

 If one denotes arithmetic word lengths to be L, then the absolute minimum number 

of digits N required in an S-bit MDN is a ceiling function of s and L 

   
S

N
L
    

        (2.11) 

and the representation of an MDN as a signed digit vector is given by 

         (2.12) 
1

0

MDN ( ) (2 )
N

nL
n

n

sign d




  
 



where digit d located at index n of an MDN is a weighed sum of the bit vector 

     (2.13) )2()2(...)2()2( 0
0

1
1

2
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1n 





  nLnL

L
LnL

L
LnL bbbbd

   n = {0, 1, 2, …, N–2}   

Readers are referred to (Cohen et al., 2006, p. 171) for a general discussion of internal 

representation of a single-precision number (digit d). The summation in (2.12) is valid 

only for the lower N–2 digits, digit 0 to digit N–2. The most significant digit (MSD), 

located at index N–1, is different because the computation in Elliptic-Curve Point 

Multiplication (EPM) might not require all available bits in N digits. Upper zero bits in 
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NSS and OpenSSL architecture are used for arithmetic overflow. How upper zero bits are 

used will significantly affect efficiency.  

For example, an EPM modulus is an MDN with S = 521 bits, but there are 544 bits 

available in seventeen 32-bit digits. This setting always creates 23 zeros unused in the 

most significant bits (MSB) in the digit N–1. The MSD of an MDN is a polynomial of 

degree L, but it has a different form if S is smaller than the product N×L: 

     (2.14) )2(...)2()2(...0 0
1)1(

2
2

1
11- 





  LN

L
S

L
SN bbbd

For a discussion of multi-precision number, readers are referred to (Cohen et al., 2006, p. 

170). The representation of a Multi-Digit Number (MDN) in a computing platform’s 

memory is illustrated in Figure 16 below: 

 

Figure 16. Representation of a Spatial Multi-Digit Number 

 

Several particular cryptographic service routines in NSS and OpenSSL, such as finding 

an inverse of an MDN with an extended Euclidian algorithm, require a sign flag (sign) for 

each MDN, allowing the arithmetic operations to work properly. A single bit in F2 will be 

adequate to indicate a plus or a minus sign of an MDN.  Computations in NSS and 

OpenSSL PEPMA use a complete MDN with their representation shown in Figure 16.  
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Modulo Reduction 

 Methods for performing modulo reduction after multiplying two polynomials in 

spatial domain can be carried on with standard integer division (Maeder, 1996). The 

modulo reduction can also be carried on using NIST reduction method (Hankerson et al., 

2004, p. 44; NIST, 2010). One can also choose an optimized division similar to Knuth’s 

division technique (Knuth, 1985). With the selection of Knuth's algorithm, division in 

spatial domain becomes highly efficient in that the quotient and remainder converge to 

correct values fast; this quick convergence is possible because the error can be reduced 

quadratically on each iteration. Setting a modulo reduction method other than the NIST 

recommended way might change the efficiency of PEPMA. In this research, optimization 

of modulo reduction algorithm other than NIST's approach will not be considered. 

Inversion 

 Both NSS and OpenSSL PEPMA calculate the inversion of a number in spatial 

domain using an extended Euclidean algorithm (Hankerson, 2004, p. 39). Given a 

number n, its multiplicative inverse i, and the modulus m, then the relationship of 

 holds true between them.  )(mod1 mni 

Since m divides the term (in – 1), m is also a divisor of (in – 1). The relationship between 

i, n and m can be rewritten as bmni  1)( , where b is any non-zero integer. 

Rearranging the terms of the equation equivalently produces: 

1)()(  mbni       

Given n and m, the extended Euclidean algorithm discovers three unknowns i, c and g 

corresponding to the equation in + cm = g. Thus, if g = 1, then i is the inverse of n. 
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Although the extended Euclidean function can calculate cofactors i, c and gcd(i, m) 

quicker than Lagrange’s exponential method, it still can be further optimized to provide 

additional efficiency for larger multi-digit numbers. 

 

Input:   n to inverse, modulo m 
Output:   i, the multiplicative modulo inverse of n 
Processing Unit: Euclidean Algorithmic 
Processing Cost:  ))](([log 2

2 mO

Prior Research in Evaluating PEPMA 

 A comprehensive review on Elliptic curve cryptography for embedded systems has 

been provided (Afreen et al., 2011). This document graphically shows various methods of 

scalar point-multiplication kp. Figure 5 in the document describes the separation of kp 

into three levels of abstraction: (a) upper level for protocol such as ECDH, (b) middle 

level for Elliptic-curve Point-multiplication (EPM), and (c) low level for core arithmetic 

such as addition, subtraction, and multiplication. At the middle level, Afreen illustrated 

two different implementation methods: a projective coordinate standard projective 

algorithm and the Jacobian based approach. In its context, the standard projective 

implementation refers to Elliptic-curve arithmetic operations with orientation to 

projective geometry, while the Jacobian implementation refers to weighted Elliptic-curve 

arithmetic operations in the entire range of Jacobian space. Note that the comparison 

between NSS and OpenSSL of two EPMs in projective domain was limited to a specific 

weighted Jacobian computing space (Z2 and Z3). Their paper was recently published in 

the International Journal of Computer Science & Information Technology (IJCSIT) in 

2011. 
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In the Journal of Computer article published in January 2010, the performance of Elliptic 

curves in projective coordinates with parallel computing in GF(p) was evaluated 

(Somani, 2010). Somani noted that projective-coordinate systems are used to eliminate 

the need for performing inversions. He found and recorded several projective-coordinate 

systems that had been proposed before his time. He noted that similar research on 

computation in projective-coordinate systems is recorded in Bernstein (2007). Somani 

describes how a homogeneous coordinate can be viewed as an Elliptic curve point p that 

takes the form (x, y) = (X/Z, Y/Z). For the Jacobian coordinate system, point P takes the 

form (x, y) = (X/Z2, Y/Z3). Without presenting any concrete proof, Somani provided the 

formula for point adding and point doubling in a projective-coordinate system. 

 Several critical articles for Elliptic-curve computations were collected (Cetin Kaya 

Koc 2009).  Chapter 8, “Elliptic and Hyperelliptic Curve Cryptography,” written by 

Nigel Boston and Matthew Darnall, also provides an introduction to the topic of elliptic 

and hyperelliptic curves.  

 An article, published in the Arithmetic of Finite Fields of Lecture Notes in 

Computer Science, described several strategies to speed up the arithmetic of Point-

multiplication on Elliptic-curve using right-to-left and left-to-right methods (Joye, 2008). 

Both NSS and OpenSSL PEPMA use a right-to-left algorithm. In the point addition of 

section 2.2, Joye calculated the costs of adding two different Elliptic-curve  points in the 

weighted projective coordinate system to be 12 multiplications (12M) and 4 squarings 

(4S). 
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Explicit Formulation 

 Explicit formulation offers specific formulas for calculating point-doubling and 

point-adding. Derivations and proofs for these formulas require mathematical intensive 

and tedious efforts. However, accessing the context of explicit-formula might be helpful 

for optimizing the point-doubling or point-adding function. For completeness, the 

derivation of explicit formulas will be listed in the report (Brown et al., 2001). 

 Bernstein and Lange introduced their Explicit-Formulas Database (EFD). It is a 

web-based collection of explicit formulas for elliptic-curve cryptology. Additionally, the 

EFD website has posted several useful formulas for other coordinate systems, such as 

Edward’s curves. Bernstein and Lange designed the transformation as Projective-3 and 

posted its cost for computing to be 12M+ 2S. Compared to a standard method, adding 

two points in a Projective-3 coordinate system totally eliminates the inversion and, at the 

same time, increase multiplications from 1 to 12 and squarings from 1 to 2. 

 For doubling a point in a Projective-3 coordinate, Bernstein and Lange posted the 

cost for computing to be 7M+ 3S. Compared to the standard method, doubling a point 

eliminates the inversion altogether but also increases the number of multiplications from 

1 to 7 and the number of squarings from 1 to 3.  

From a collection of each cost from the algorithm 3.21 for point doubling of curve y2 = x3 

−3x + b in Jacobian coordinates5, estimated costs can be accumulated as follows: 

2
11 ZT       1 S 

)()(32 2
11

2
11 ZXZXAT    2 M 

13 2 YBY      1 M 

                                                 

5 This algorithm 3.21 is available from Vanstone’s literature  
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13 2 YBY      1 M 

13 ZBZ       1 M 
2

3 BCY       1 S 

13 XCDT      1 M 
2

3 CY       1 S 
2

3 AY       1 S 

DT  21      1 M 

AXDT  )( 31     1 M 

2/)( 2
33 CAXDY     1 M 

 
The total cost turns out to be 9M+3S, which supports Bernstein and Lange’s record of 

7M+ 3S. 

 To evaluate PEPMA coarsely, researchers calculated the arithmetic costs in 

projective coordinates of a specific point-adding and point-doubling method and 

summarized them up to a total expenditure of mathematical operations for the scalar 

point-multiplication kp. In certain findings, total arithmetic expenditures to compute kp 

were 3668M + 3668S (Cohen et al., 1998; Brown et al., 2001); in Bernstein's findings, 

the total arithmetic expenditure was 2983M + 3275S (EFD_Double, 2001; EFD_Add, 

2007). From these explicit expenditures, two metrics multiplications (M) and squarings 

(S) were the main coefficients of the cost equation to measure the performance of elliptic-

curve point-multiplication kP residing in projective domain. 

  Theoretically, Bernstein's approach should be slightly faster than Cohen/Brown's 

method. However, in a 64-bit x86 run-time environment, timing costs do not correlate 

well to either Cohen/Brown's or Bernstein's total expenditures. In other words, the 

metrics M and S alone cannot provide truthful performance between two elliptic-curve 

scalar multiplications. Coarse-performance metrics can be used to validate the 

correctness of formulations. 
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Cohen and Frey collected a variety of articles belonging to the computations and 

optimizations of an Elliptic-curve (2006). One article written by Christophe Doche and 

Tanja Lange describes the arithmetic of elliptic curves. In section 13.2 (Choice of the 

coordinates), Doche and Tanja presented computations in an affine coordinate, 

computations with projective coordinates, and computations using mixed coordinates. 

This topic has been shown in (Cohen, 1998). The computation of EPM in a mixed 

coordinate was a new suggestion at that time. Both NSS and OpenSSL can activate the 

computation in non-mixed and mixed coordinates. 

 In 2004, Aigner, Bock, Hutter, and Wolkerstorfer from Infineon Technologies took 

a different approach toward the application of the kp process for computing EPM (Aigner 

et al., 2004). They applied EPM using an affine coordinate to a low-cost ECC 

coprocessor for smartcards. This custom-made, hardware-based co-processor runs a 

specific function to produce an Elliptic Curve Digital Signature (ECDSA) in a GF(2m) 

field. Table 3 of their paper lists the performance for a 191-bit ECDSA algorithm. Table 

3 is duplicated here for investigation (Aigner et al., 2004, p. 117). NIST has approved the 

use of test vectors for Elliptic Curve Digital Signature Algorithm as specified in ANSI 

X9.62 (ANSI, 2005) to informally verify the implementation. 

Table 3. Performance of EPM in Hardware 
 Operation clock cycle 

Scalar Multiplication 341,430 
30% overhead 102,429 
GF(p) inversion 24,310 
5% overhead 1,216 
Total  469,385 
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In particular, Aigner et al. noted that having a fast GF(2m) inversion makes it possible to 

use affine coordinates instead of projective coordinates for an elliptic-curve scalar point 

operation. This fast inversion is shown in the table above with 24,310 out of 469,385 

clock cycles. Their paper marked a milestone in showing the best approaches for 

performing a kp function in hardware. Their findings reinforce Joye’s theory about using 

mixed coordinates in computation to improve efficiency. NSS and Open SSL PEPMA 

switched this feature on and off under the user’s command. 

 In 2000, the Microprocessor and Microcomputer Standards Committee of the IEEE 

Computer Society approved an IEEE Standard Specification for Public-Key 

Cryptography. This standard, (IEEE 1363, 2000), specifies common public-key 

cryptographic techniques, including mathematical primitives for deriving private keys, 

public-key encryption, digital signatures, and cryptographic schemes based on those 

primitives. It also specifies related cryptographic parameters, public keys, and private 

keys. The purpose of this standard is to provide a reference for a variety of calculating 

techniques from which applications may select. 

 In section A.10.5, projective elliptic addition (prime case), IEEE 1363-2000 defines 

the projective formulation for point adding on the curve y2 = x3 + ax + b modulo m. The 

algorithm will consume ten field multiplications (10M) and five temporary variables. 

In section A.10.4, page 124, projective elliptic doubling (prime case), (IEEE 1363, 2000) 

defines the projective formulation for point doubling on the same curve. The algorithm 

will consume sixteen field multiplications (16M) and seven temporary variables. 

 This IEEE 1363 marked a significant developmental point where the industry tried 

to standardize common computations, including computations in affine and computations 
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in projective coordinates. The findings can also direct better usage of temporary variables 

in point-doubling and point-adding to improve performance evaluation.  

Chapter Summary 

 The literature review of PEPMA in a 64-bit x86 environment has two important, 

top-level contexts: (a) prior research on the structure of PEPMA and (b) existing methods 

for comparison and verification. Prior research on the structure of PEPMA was presented 

at the beginning of the literature review. This section seeks research pertaining to 

principles, findings, analysis in IEEE standards for Key Performance Indicators, Elliptic-

curve principles, the concept of computation in projective coordinates, and big-number 

arithmetic representation. These four principles will answer which metrics can 

objectively evaluate PEPMA's efficiency. 

 To answer which metrics can be used for comparison and to subsequently provide 

ways to improve PEMA, this research will depend on kin topics: basic arithmetic service 

routines and modulo reduction. The main purpose of this literature review section is to 

ascertain whether the proposed metrics can truthfully evaluate PEPMA's efficiency and 

whether there are effective ways to improve PEPMA’s efficiency based on the empirical 

comparison. 
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Chapter 3 

Methodology 

Overview 

 Given a mixture of projective transformations, diversity of underlying arithmetic 

algorithms, and different computing platform architectures, the goal of this research is to 

provide suggestions to improve the projective Elliptic-curve point-multiplication agent. 

The objective is accomplished by dynamically or statically selecting higher-performance 

arithmetic approaches based on quantitative computational metrics. To fulfill the ultimate 

goal and to answer the particular research question of which metrics can truthfully 

evaluate PEPMA's efficiency, construction of a specific performance measurement 

system for PEPMA is necessary. The path to successfully derive Key Performance 

Indicators is illustrated in Figure 17. For a general discussion of Key Performance 

Indicators, readers are referred to the standard ISO/IEC 15939 (2001). 

 

Figure 17. PEPMA Performance Measurement System 
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The PEPMA Performance Measurement System (PMS) can be briefly defined as a set of 

accurate, precise and quantifiable metrics applied to cost equations. The accuracy and 

precision of these metrics are derived from an analysis of the accurate and precise 

counting of the measurement units (MULq, MOVq etc.) Thus, the development of PMS 

will start at the bottom, defining the measurement units, and ladder up toward KPI 

through the maturity path. A general definition of PMS pertaining to the measurement 

and rating of performance of computer-based software systems can be found in (IEC-

14756, 1999).   

 To date, there have not been significant standards available for developing the 

performance of Elliptic-curve point-multiplication in a projective domain. Accordingly, 

the construction of PMS will have to level on tailored models as described in software 

engineering (Herrmann, 2007; Fenton, 1996) and other comparable publications (Keyes, 

2005). There have been three other comparable publications in the field of security and 

privacy metrics that can be applied to the construction of PMS: NIST SP 800-55 (NIST, 

2008), and NIST SP 800-80 (NIST, 2003). In 2003, the National Institute of Standards 

and Technology released a Special Publication 800-80 titled “Guide for Developing 

Performance Metrics for Information Security.” These publications in the field of security 

and privacy metrics can be applied to the construction of PMS as well. 

 The research on the construction of a performance measurement system for PEPMA 

is quantitative and primary6. Following suggestions from Pare (2004) and Gillman 

(2003), this research used an empirical case study with the following components: (a) the 

                                                 

6Measurement primacy definition: The majority of measurement data for evaluation and 
comparison will come directly from actual software coding and the run-time environment 
of PEPMA but not from a secondary data source. 
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three research questions presented previously, (b) six units of analyses, (c) a specific 

procedure of performance measurement system to obtain evidence, and (d), a method to 

verify the results. 

 For the Performance Measurement System (PMS) to be accurate and precise, a 

mathematical assessment in the projective domain is necessary. PMS’s context will 

contain an interdependent group of leading metrics forming a unified whole, the KPI. 

Leading metrics will be obtained at three specific levels of evaluation: (a) exponentiation 

service, (b) point-doubling and point-adding functions, and (c) supporting mathematical 

software routines for point-doubling and point-adding functions.  

 To answer all three research questions and be able to verify the empirical results, the 

author proposes applying IEEE standards 982.1-1988 and 982.1-2005 to evaluate and 

construct the Key Performance Indicators, while tailoring the efficiency measurements 

based on academic research and industry practices.  

 In addition to standards IEEE 982.1 (1988) and 982.1-2005, ISO/IEC 15939 (2001) 

and ISBSG (2007) standards also provide direction for successfully implementing a 

measurement program. Although these standards do not directly provide a method of 

measurement, they provide guidance to identify, define, and improve processes to obtain 

metrics. By these international standards, the core measurement of PEPMA's 

performance can be facilitated by monolithic software measurement tools taking a set of 

measurements as input and producing metrics, formulas, and Key Performance Indicators 

(KPI) together with evaluation and analysis.  
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Unit of Analysis 

 There were six units of analyses involved in conducting research. They are listed in 

Table 4 below. Readers are referred to IEEE 982.1 (1988), Herrmann (2007), Laird et al.,  

(2006),  and Keyes (2005) for discussions of these first five units of analyses. 

Table 4. Unit of Analysis 
Unit of Analysis Formula Reference/Comment 
Compliance Metric CM FIPS-140-2 
Static Complexity SCM  
Weighted Information Flow Complexity WIFC  
Module Maturity Index MMI  
Functional Metric FM  
Efficiency Metric and 
Formulation 

EMF Has the most weighting 
toward KPI 

 

The Efficiency Metric and Formulation (EMF) is the most important and difficult task in 

this research. The EMF has the highest weighting for KPI since the research topic focuses 

on computation efficiency. The major variables for each unit of analysis are summarized 

in Table 5 below. 

Table 5. Unit of Analysis, EMF 
Unit of Analysis Major Variable Comment 
NSS PEPMA APT, EF, PD, PA, PAT  
OpenSSL PEPMA APT, EF, PD, PA, PAT  
Infinity Point   
Run-time Factor  Includes System Architecture, 

Compilation Environment, 
Test Vectors 

Performance Hardware 
Counter 

Instruction Counter Will call PAPI Services 

Program Profiling Instruction Soft Counter Will load BOCHS Emulator 
Formulation Analysis  Manual analysis steps 

 
Note:  APT, EF, PD, PA, PAT respectively stands for Affine to Projective 
Transformation, Exponentiation Function, Point Doubling, Point Adding, and Projective 
to Affine Transformation 
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The empirical evaluation method was used to provide a framework for research in the 

area of efficiency metrics and formulations. The first two units of analyses shown in 

Table 5 embrace two specific implementations used for the empirical study: NSS 

PEPMA and OpenSSL PEPMA. These two open-source implementations provided 

necessary procedures to execute: (a) projective transformation, (b) the exponentiation 

function, (c) point-doubling and point-adding computations in Jacobian's transformed 

domain, (d) modulo arithmetic (including 521-bit NIST modulo reduction), and (e) 

localized mathematical procedures. Thus, a large portion of the analysis was focused on 

these five sub-units (a-e) with specially chosen test vectors. Readers are referred to 

Appendix F for a listing of test vectors.  

 In addition, the definition of an infinity point will formalize how point-doubling and 

point-adding function can handle infinity coordinates in projective geometry.  

 The unit of analysis belonging to a runtime environment will identify the system 

architecture. Analysis of this particular unit was directed toward internal characteristics 

of the target CPU and its arithmetic unit. The results of the CPU characteristics partially 

contributed to runtime factors in the performance equation.  

 NSS PEPMA and OpenSSL PEPMA were written in C language; hence, the 

compilation environment and C compiler option settings will introduce some variations 

in the resulting code. The performance equations should record these characteristics as 

one of their performance coefficients so that the final result can be more defined. 

OS overhead, threading time, and delay due to processor interrupt services are run-time 

factors. They might affect the cost index produced from the Performance Hardware 

Counter or Program Profiling process. These run-time factors are categorized as Quality 

 



72 

of Service (QoS) for the verification procedure under the targeted Operating System. For 

that reason, the evaluation used a low-overhead, 64-bit x86 Community Enterprise Linux 

Operating System, version 6.4 (CentOS) for performance analysis. This specific OS is 

stable; and the low-overhead helps decrease the error induced by the Performance 

Hardware Counter. However, since these QoS run-time factors are a complex subject, 

they were excluded from the report.  

 The Performance Hardware Counter and Program Profiling through Emulation will 

assist and provide verification for the results during the development of efficiency 

formulations. Mainly, the outcomes from Performance Hardware Counter and program 

profiling data will contribute to part of the verification process. For a more detailed 

description of Performance Hardware Counter or Program Profiling through Emulation, 

readers are referred to open-source PAPI (2013) or BOCHS (2013). 

 Compliance Metric 

 The Compliance Metric (CM) of PEPMA measures the compliance with FIPS-140-

2 (FIPS-140-2, 2001; Herrmann, 2007, p. 91). 

 Static Complexity Metric 

 The Static Complexity Metric (SCM) measures the complexity of NSS or OpenSSL 

PEPMA’s software modules (IEEE 982.1, 1988, p. 23; IEEE 982.2, 1988, p. 60).  

1NESCM   
      RGSCM   
where 
E = number of edges 
N = number of nodes 
RG = number of software modules bounded by edges with no edges crossing 
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Weighted Information Flow Complexity 

 The Weighted Information Flow Complexity (WIFC) measures inter-module 

complexity.  The local direct flow exists if either PEPMA module invokes a second 

module and passes information to it, or the invoked PEPMA module returns a result to 

the caller (Herrmann, 2007, p. 121; IEEE 982.2, 1988, p. 74). 

 
lengthfanoutfanin  2)(WIFC  

where: 

fanin = Local flows into module + number of data structures from which the module 

receives data 

fanin = Local flows out of module + number of data structures that the module outputs 

length = Number of source statement in the module 

Module Maturity Index 

 The Module Maturity Index (MMI) measures the effect of changes from one 

software module baseline to the next. The effect of these changes will solely be directed 

toward the efficiency of PEPMA. The MMI will be derived with different compiler 

optimizing option settings based upon a general discussion in (Herrmann, 2007, p. 121), 

as originated in particular standards (IEEE 982.1, 1988, p. 19; IEEE 982.2, 1988, p. 51), 

or as described in other standards (IEEE 982.1, 2005, p. 26). 

T

CT

M

)FM(
MMI


  

MT = Number of modules in current baseline 

FC =  Current baseline that includes changes from previous baseline 
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Functionality Metric 

 The Functionality Metric (FM) measures the consistency and interoperability 

between available point-doubling and point-adding functions. As noted, there are several 

different approaches currently available to construct point-doubling and point-adding 

functions in a projective domain. General discussions of this metric are found in (IEEE 

982.2, 1988, pp. 70-71). 

Efficiency Metric and Formulation 

 Efficiency measurement and formulation will be one of most significant aspects 

beside other Key Performance Indicators as presented previously. The efficiency will be 

measured with respect to its main objective, which is a minimization of computing costs 

to reduce the number of CPU instructions. To date, there have not been significant 

standards available for evaluating the efficiency of PEPMA; general discussions on a 

comparable topic are suggested in some IEEE sources (IEEE 982.1, 1988, pp. 33-34; 

IEEE 982.2, 1988, pp. 33-34, 91-93). Related information to address techniques used in 

Efficiency Metric and Formulation is also scattered in Keyes's literature (Keyes et al., 

2005) and many other research papers presented in the literature review sections. 

Additionally, because there is not an absolute reference that PEPMA's efficiency 

measurement can be based on, the reference for measuring PEPMA's efficiency will be 

relative ─ meaning in between efficiencies of NSS and OpenSSL. Essentially, the 

Efficiency Metric and Formulation (EMF) will be derived from analysis of computing 

procedures and counting the execution of units of measurement while applying specific 

test vectors. The sections below further define the sub-units of analysis for obtaining 

EMF. 
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NSS PEPMA 

Exponentiation Function: 

 In a 2013 open-source release, Network Security Services (NSS, 2013) applied a 4-

bit window on the scalar k in PEPMA's exponentiation service. This service is shown as a 

computation loop  in Figure 18 below.  

 

 

 

Figure 18. 4-bit Windowing Exponentiation Service 

 

The NSS PEPMA computation makes 524 calls to the point-doubling and 131 calls to the 

point-adding function (NSS-2, 2014).  Readers are referred to Appendix G for examining 

an exact number of calls. The 4-bit exponentiation windowing requires a pre-computing 

 



76 

of 15 Elliptic-curve points (pre = before entering exponentiation loop ). The 15-point 

pre-computation calls point-doubling or point-adding services to calculate k(x, y) using k 

= 2 to 15, and the coordinates (x, y) are the base coordinates of the cyclic subgroup of the 

chosen Elliptic curve. When k = 1, the pre-comp coordinates are actually the base point 

itself; thus, it requires no computation, just storing the coordinates in the table. 

 During the exponentiation computation in loop , k slides from right to left (bottom 

to top as shown) and 4 bits are extracted for indexing into the PRE-COMP table. The 

PRE-COMP value p(x, y) will be used for point-adding if the index is non-zero (1...15); 

otherwise, a zero-value table index will signify a "No-Add" condition. The 15-point, pre-

computing function makes service calls to 1 point doubling and 13 point-adding functions 

to completely fill the 15-point recomputed table. 

 

 

Figure 19. 4-bit Pre-comp Indexing Method 

The mixed coordinate control signal directs the results from the 15-point pre-computing 

function to output the coordinates of type hybrid (mixed coordinates between affine and 
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projective coordinates). Building the pre-computed table is done outside the computation 

loop. The point-adding function then uses the 4-bit window taken from k to index into the 

table without the need to call point-adding four times. This reduces calling the point-

adding function by 4:1 (131 × 4 = 524). 

Point-doubling: 

 Inside the 4-bit windowing exponentiation service, NSS implemented a software 

function point-doubling R(X3, Y3, Z3) = 2×P(X, Y, Z) using weighted projective 

transformation (WPT) as described by (Cohen et al., 1998). In this document, the affine 

coordinate variable x is substituted with X/Z2, and the affine coordinate variable y is 

substituted with Y/Z3. These substitutions yield formulas for the point-doubling 

coordinates (X3, Y3, Z3) as follows: 

Let S = 4XY2, M = 3X2 −3Z4, T = M2 − 2S   (1) 
X3 = T        (2) 
Y3 = −8Y4 + M ( S − T )     (3) 
Z3 = 2YZ       (4) 

 Based on a source-code written in C language and publicly released in 2013, any 

computing platform executing NSS point-doubling codes requires 4M+4S+5A+4Su+1Sh 

operations, where the arithmetic operators are designated as  M=multiplying, S=squaring, 

A=addition, Su=subtraction, and Sh=Shift. Although the modular reduction routine 

calling is hidden from computing codes, it is actually called from inside at the end of 

each arithmetic operator (NSS, 2013). The computing cost index of Cohen yields 4M+6S, 

as compared to 4M+4S+5A+4Su+1Sh from NSS. 

Point-adding: 

 Network Security Services (NSS) implemented a software function point-adding of 

point P1 and P2 using weighted projective transformation described by (Brown et al., 
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2001). In their paper titled "Software Implementation of the NIST Elliptic Curves over 

Prime Fields," coordinate variable x is substituted with X/Z2, and coordinate variable y is 

substituted with Y/Z3, with the result R being R(X3, Y3, Z3) = P1(X1, Y1, Z1) +P2(X2, Y2, 

Z2).  

These substitutions yield the formulas as follows: 

Let A = X2Z12, B = Y2Z13, C = A − X1, D = B − Y1 (1) 
X3 = D2 − ( C3 + 2X1 C2 )     (2) 
Y3 = D ( X1C2 − X3 )      (3) 
Z3 = Z1C       (4) 

Brown at al. (2001) recorded the arithmetic expenditure equal to 12M + 4S and excluded 

other arithmetic operations such as additions, subtractions and multiplications with 

constants. NSS actually executes a total of 8M+3S+2A+5Su. 

 Based on the explicit formulas above, NSS developers certified coding under FIPS 

140-2 level 1 and released the point-adding function with C codes.  
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OpenSSL PEPMA 

Exponentiation Function: 

 In a 2013 open-source release, OpenSSL applied a 5-bit window on the scalar k in 

PEPMA's exponentiation service shown as a computation loop  in Figure 20 below.  

 

 

Figure 20. 5-bit Windowing Exponentiation Service 

 

OpenSSL PEPMA makes 520 calls to the point-doubling and 104 calls to the point-

adding function (OpenSSL-2, 2014).  Readers are referred to Appendix H for examining 

an exact number of calls. The 5-bit windowing requires a pre-computing of 31 points 

using k = 1 to 31 and the base coordinates taken from the cyclic subgroup of the chosen 
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Elliptic curve. The 31-point pre-computing function makes service calls to 1 point 

doubling and 29 point-adding functions to fill the 31-point, pre-computed table. The 

point-adding function then uses the 5-bit window taken from k to index the table without 

the need to execute point-adding five times. This reduces calling the point-adding 

04 × 5 = 520). 

stitutions yield the formulas for the point-doubling 

Y3 = C(A − D) − B        (3) 
3 = 

ex of Brown et al yields 8M+3S, as compared to 

3M+5S+3A+4Su from OpenSSL. 

function by 5:1 (1

Point-doubling: 

 Inside the 5-bit windowing exponentiation service, OpenSSL PEPMA implemented 

a software function point-doubling R(X3, Y3, Z3) = 2×P(X, Y, Z) using weighted 

projective transformation as described by (Brown et al., 2001). In this document, the 

affine coordinate variable x is substituted with X/Z2, and the affine coordinate variable y 

is substituted with Y/Z3. These sub

coordinates (X3, Y3, Z3) as follows: 

Let A = 4X1Y1
2, B = 8Y1

4, C = 3(X1
 − Z1

2)( X1
 + Z1

2), D = C2 − 2A (1) 
X3 = D          (2) 

Z 2Y1Z1         (4) 

 Based on a source-code written in C language and publicly released in 2013, any 

computing platform executing OpenSSL codes will consume 3M+5S+3A+4Su 

operations, where the arithmetic operators are designated as  M=multiplying, S=squaring, 

A=addition, Su=subtraction. Although calling to the modular reduction routine is hidden 

from computing codes, it is actually called from inside at the end of each arithmetic 

operator. The computing cost ind
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Point-adding: 

 OpenSSL implemented a software function point-adding of point P1 and P2 using 

weighted projective transformation as described by one paper (Brown et al., 2001). In the 

paper, coordinate variable x is substituted with X/Z2, and coordinate variable y is 

substituted with Y/Z3, with the result R being R(X3, Y3, Z3) = P1(X1, Y1, Z1) +P2(X2, Y2, 

Z2).  

These substitutions yield the formulas as follows: 

Let A = X2Z12, B = Y2Z13, C = A − X1, D = B − Y1 (1) 
X3 = D2 − ( C3 + 2X1 C2 )     (2) 
Y3 = D ( X1C2 − X3 )      (3) 
Z3 = Z1C       (4) 

Brown at al. (2001) recorded the arithmetic expenditure equal to 12M + 4S and excluded 

other arithmetic operations such as addition, subtraction, and multiplication with 

constants. NSS actually executes a total of 8M+3S+2A+5Su. 

 Based on the formulas above, OpenSSL developers certified coding under FIPS 

140-2 level 1 and released the point-adding function with C-language source codes. 

Point at Infinity 

 Based on point computation in the projective domain, there will be no use of the 

projective coordinates at (X = 0, Y = 0, Z = 0). These particular projective coordinates 

will be used as variable labels for a specific point at infinity. During mathematical 

processing, this zero-vector will be detected and subsequently called for a software 

handler to take care of the point at infinity. 

 



82 

Performance Hardware Counter 

 The purpose of using the Performance Hardware Counter is to approximate PEPMA 

machine instruction counts. This metric is available by calling the Performance 

Application Programming Interface, PAPI. Both PEMA and PAPI will run under host OS 

in real-time; thus, there will be synchronization issues and activation of filtering to 

address multiple accesses into the Performance Hardware Counter.  

Program Profiling and Emulation 

 The purpose of using Program Profiling and Emulation is to obtain precise and 

accurate PEPMA counts of executing machine-codes. This metric is made available by 

activation of the BOCHS hardware emulator (BOCHS, 2013). In turn, BOCHS will 

supply a virtual-machine runtime environment to PEPMA. In this virtual-machine setup, 

the Operating System CentOS 6.4 is the host OS that provides a virtual environment to 

the guest OS, which is also a Centos 6.x OS. PEPMA runs under the Guest OS. The 

diagram in Figure 21 shows a structure of Program Profiling and Emulation in relation to 

other OSes, a Synchronization Agent, Software Counters, and PEPMA itself.  

 

Figure 21. BOCHS Hardware Emulation 
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The Synchronization Agent filters the commands to BOCHS to adjust for access into 

each machine-code emulation. When the code in PEPMA's executable file accesses the 

emulated machine-code, the precise and accurate number of accesses will be recorded in 

Software Counters. An example of the emulation workflow is shown below: 

 

Figure 22. Accurate Efficiency Evaluation of PEPMA 

The virtual machine  loads the entire Guest Operating System  without any 

modification to the Guest OS executable binary image. The Guest OS then loads and 

executes PEPMA code  without modification to the PEPMA executable binary image. 

Inside PEPMA code , the executable CPU instructions – for example, MULq  or 

MOVq  – will call the procedure "proc MULq"  or "proc MOVq"  at the hardware 

emulator. These two procedures will emulate the CPU instruction MULq  or MOVq 

. In turn, procedures  and  will call the hardware CPU  to fulfill the machine-

code emulation. However, the other processes  and   can also call "proc MOVq" 

from the hardware emulator to emulate MULq  or MOVq . Because the emulated 

CPU instructions can be called from multiple processes, emulation of PEPMA codes 

must synchronize with the hardware emulator via the communication path  to obtain 

consistent and correct counting of the execution of machine-codes from PEPMA. 
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Run-time Factors 

System Architecture: 

 Associated environments of PEPMA are factors that could potentially change the 

efficiency indexes of PEPMA in run-time. Thus, without accounting for these factors, the 

comparison between two PEPMAs might not be accurate. One influential environmental 

factor is the use of digit representation. As presented in the literature review chapter, a 

digit contained in a complete big number is usually referred to as a limb – a computation 

unit composed of several bits that should fit into a chosen system architecture. Otherwise, 

computational efficiency might suffer. 

 Operating System overhead, pipe-line queuing, memory cache, threading lost time 

due to other processes, and system interrupts overhead are factors that affect the run-time 

environments of PEPMA. These run-time environments exist but will not be considered 

in this research. Background of these factors can be found in computer architecture and 

quantitative experimental analyses from these references (Hennessy, 2006; Szerwinski, 

2008). 

Compiling Environment: 

 Other influential environmental factors are compiling options. Today, NSS, 

OpenSSL, and other open sources are mostly written in high-level languages. Given the 

different compiler option settings, the compilation of high-level languages will end up 

with different run-time machine codes.  
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Domain Parameters: 

 Vector contents coming from the domain parameter are expected to contribute to the 

performance evaluation of PEPMA as well. Domain parameters from the Client or Server 

side are of the same tuple (p, a, b, G, n, h), where the product n×G(x, y) using the EPM 

method must equal to infinity point O of the Elliptic curve. The domain parameter n is 

the order of the subgroup, and h is the cofactor equal to the size of the cyclic subgroup 

divided by n. The descriptions of these parameters are found in (FIPS PUB 186-4, 2013, 

p. 16). 

Test Vectors: 

 A global third-party laboratory, which is accredited as Cryptographic and Security 

Testing (CST), can provide validation testing for FIPS approved and NIST recommended 

cryptographic algorithms and components of algorithms. A description of the validation 

program for cryptographic algorithms (CAVP) can be found at the NIST website (CAVP, 

2013). Within the body of CAVP, NIST has approved the use of test vectors for Elliptic 

Curve Digital Signature Algorithm (ECDSA) as specified in ANSI X9.62 (ANSI, 2005) 

to informally verify implementation. To keep efficiency measurement consistent across 

the verification platform, NIST-recommended test vectors for ECDSA which will be 

applied toward the comparison between NSS and OpenSSL PEPMA. 

 Another recommendation for the test vector is posted in NIST Special Publication 

800-56A (NIST 800-56A, 2013).  The older version test vectors for ECDH are also 

available from Certicom Research (Certicom, 1999), also known as Standards for 

Efficient Cryptography organization (SEC). These test vectors will also be applied in the 

comparison between NSS and OpenSSL PEPMA to explore the inconsistency between 
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measurements of efficiency due to the application of different test vectors. Readers are 

referred to Appendix F for NIST recommended test vectors. 

 Rigorous evidence of characteristics of the test vector may be found in Elliptic-

curve and projective transformation literature (NIST, 2010; Certicom Research, 2009; 

Blake, 2001; Menezes et. al., 1996; Cohn, 1962) and Finite-Field Projective Geometry 

(Rosen, 2006). Following suggestions from these papers, other possible test vector 

contents can be calculated from the order of the curve n, modulus m, and infinity point O. 

Readers are referred to Appendix D for the value of modulus m and the order n of cyclic 

subfield.   

Efficiency Formulation Analysis 

 From a top-level formulation analysis, our adopted 12-step, closed-loop concept to 

generate formulations of new metrics and to verify formulas is shown in Figure 23 below. 

The overall technical approach included analysis, collected costs, and formulated the 

efficiency of these necessary procedures based on the actual number of machine-code 

instructions in a 64-bit x86 run-time environment. Subsequently, the formulation analysis 

did allow the development of quantifiable key performance indicators, which provided 

the benchmark in supporting realistic performance figures for PEPMA.  

 

Figure 23. Formulation Analysis Block Diagram 
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The System Architecture  and Compilation Environment , along with two open-

sources – NSS and OpenSSL PEPMAs  – will generate a 64-bit x86 Machine Code .  

 Dependencies such as algorithms, looping, runtime factors, etc. from ,  and  

feeds Analysis and Formulation  to generate efficiency formulas. The analysis, design, 

development, and test of efficiency formulas occur in block . 

  Outcomes  from Analysis and Formulation will feed PHC, the Performance-

Hardware Counter  and PPE, Program Profiling through Emulation  for comparison. 

Feedback paths  and  will adjust and verify formulations in the Analysis and 

Formulation block , which is the focus of this study. The work-flow approach for the 

analysis and formulation of block  will mostly be based on a deductive-reasoning 

model. An example of the work-flow for formulations of NSS PEPMA is shown in 

Figure 24 below: 

 

Figure 24. An Example of Performance Formulation 

From the top-level, we derive two PEPMA formulas: one in theory (Cohen et al., 2006; 

Brown et al., 2001) and one with actual implementation (NSS, 2013). If the arithmetic 

operators are designated as M=multiplying, S=squaring, A=addition, Su=subtraction, 
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Sh=Shift bit, then the performance formulation of NSS PEPMA might have five new 

metrics: A, Su, Sh, k4, k5, etc. Therefore, the formula might be: 

  )5Su2A3S(8Mk1Sh)4Su5A4S(4Mk 54 f    

From the formula above, the equations for M, S, A, Su, Sh, k4, k5 in terms of algorithms, 

methods, looping, modulo reduction, test vectors, runtime factors, etc. can be derived.  

The equation M and its coefficients might have a form: 

  B  RTF) s,testVectormodulus, looping, (method, M   f     

From the metrology requirement B, formulas G in terms of how many 64-bit x86 

machine codes are required to accomplish function M can be derived. At the bottom-

level, performance functions G, H, J, K and L will have the formulations in terms of 

machine-code instructions, such as MULq or MOVq, as units of measurement.  

 Complications will arise at the Arithmetic Layer, the 64-bit-x86-Machine-Code 

Layer, and the Measurement Unit Layer. The Performance Hardware Counter  and 

Program Profiling through Emulation  instruments will help fine-tune and verify the 

formulations at these layers. 

 Point  in Figure 23 indicates an exit path for this technical approach, where the 

outcomes will delineate final descriptions, comprehensive analysis, numeric 

presentations, and computing cost formulations for this study.  

 Individual performance comparisons of computing procedures (f hat, f, A, B, C, 

D...L etc.) will help software developers choose better projective computation and 

superior underlying mathematical service routines for the implementation of PEPMA. 

Subsequently, combining these quantifiable metrics into a single key performance 

indicator will offer ways to finally improve projective scalar point-multiplication 
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technology. The results will offer users the ability to dynamically or statically select the 

most efficient PEPMA. 

Method for Verification 

 Program Profiling through Emulation (PPE) and its internal Software Counters, 

along with Performance Hardware Counters (PHC), was used to verify the efficiency 

formulas. Readers are referred to (BOCHS, 2013; Code XL, 2013) for a description of 

PPE, and to (Intel PERC, 2013; PAPI, 2013; Levinthal, 2009; Drongowski, 2008) for a 

description of PHC. A flowchart of the verification method is shown in Figure 25. 

 

Figure 25. Efficiency Verification Block Diagram 

Projected Outcome 

 The projected outcome will be the verification of the efficiency formulations with 

the prescribed method. Due to limited development resources, this research will not 

provide a verification method for the other five performance indicators: CM, SCM, 

WIFC, MMI, FM. Readers can reference industry practices for detailed descriptions of 

these five KPIs. Industry practice recommendations can be found at these cited sources 

(Herrmann, 2007; Hennessy, 2006). 
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Proposition of Format for Presenting the Results 

 The Performance Measurement System (PMS) used in this research will produce an 

interdependent group of leading performance indexes forming intermediate and final 

performance indicators. Table 6 shows an example of the final result. 

Table 6. KPI between NSS and OpenSSL PEPMA 
KPI Max 

Value 
OpenSSL 

Score 
(Target 
Value) 

NSS 
Score 
(Unit 
Under 
Test) 

Weight 
% 

Subtotal 

CM    2 2 
SCM    2 2 
WIFC    3 5 
MMI    5 10 
FM    3 5 
EMF 100 85 90 80 72 
Total  90  100 95 

 

The proposed PMS will obtain six Key Performance Indicators (KPI) and post them in a 

table along with their weighting factor. The EMF's score for NSS PEPMA, the Unit 

Under Test, for example, will be 90. Since the weight of this EMF KPI is 80% of the 

KPIs, then NSS PEPMA scores 72, as shown in the subtotal column. Presumably, after 

summing all KPIs in the column subtotal, NSS is given a score of 95, which is higher 

than the OpenSSL target value of 90. This implies that NSS PEPMA is a better Projective 

Elliptic-curve Point Multiplication Agent. Revisiting the EMF formulas will offer 

insights to improve PEPMA's computing efficiency.  

As shown in Table 6, formulations for the top five KPIs – CM, SCM, WIFC, MMI, FM –

are described in the previous sections. The formulas for efficiency will likely have the 

following structures: 
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 ...RTF)MOVqkMULq(kkMOVq)kMULq(kkEMF 143b21a1    

 ...RTF)MOVqkMULq(kkMOVq)kMULq(kkEMF 287d65c2   

  ...EMFK 

  



K

N
N

1
NSS EMFEMF

Labels MULq or MOVq are the anticipated units of measurement. Each element of the 

equation is the efficiency (or cost) of the mathematical module servicing PEPMA. Each 

EMF value will be normalized. 

Values in Table 6 can be applied toward a Combined Key Performance Indicator. Its 

formula is defined as follows. 

Combined Key Performance Indicator 

 The Combined Key Performance Indicator (CKPI) is defined as follows (Herrmann, 

2007, pp. 123-124): 

i
i




6

1

KPICKPI  

KPI1 = 0 if accuracy goals are not met 
KPI1 = 1 if accuracy goals are met 
KPI1 = 2 if accuracy goals are exceeded 
 
KPI2 = 0 if precision goals are not met 
KPI2 = 1 if precision goals are met 
KPI2 = 2 if precision goals are exceeded 
 
KPI3 = 0 if response-time goals are not met 
KPI3 = 1 if response-time goals are met 
KPI3 = 2 if response-time goals are exceeded 
 
KPI4 = 0 if memory-utilization goals are not met 
KPI4 = 1 if memory-utilization goals are met 
KPI4 = 2 if memory-utilization goals are exceeded 
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KPI5 = 0 if storage goals are not met 
KPI5 = 1 if storage goals are met 
KPI5 = 2 if storage goals are exceeded 
 
KPI6 = 0 if storage goals are not met 
KPI6 = 1 if storage goals are met 
KPI6 = 2 if storage goals are exceeded 
 
KPI7 = 0 if transaction processing rates are not met 
KPI7 = 1 if transaction processing rates are met 
KPI7 = 2 if transaction processing rates are exceeded 

Resource Requirements 

 NSS and OpenSSL implementations of PEPMA will run under a 64-bit Linux based 

Operating System. Particularly, the 64-bit OS will be the Community ENTerprise 

Operating System version 6.4 (CENTOS). The GCC version 4.4.7.3 compiler from 

Redhat Linux will be used for the compilation of NSS and OpenSSL PEPMA C codes to 

x86 assembly language, and then onto 64-bit x86 machine-code instructions. 

Timeline 

 The following was the proposed time line toward the completion of this study:  

 

Figure 26. Timeline 

 



93 

Chapter Summary 

 The construction of a precision Performance Measurement System for PEPMA will 

be required to accurately evaluate the efficiency of PEPMA and provide a formal 

approach to improve the performance of the system measured. The beginning of the 

approach is a proposal for obtaining leading performance indexes that can be constructed 

at three specific levels of evaluation: (a) exponentiation service, (b) point-doubling and 

point-adding functions, and (c) supporting mathematical software routines for point-

doubling and point-adding functions. These three assessment levels, six units of analyses, 

a specific comparative method with BOCHS and PAPI for the verification of results, and 

the manual formulation analysis will all help reach the final goal while IEEE standards 

will help to construct Key Performance Indicators. 
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Chapter 4 

Results 

Introduction 

 This chapter reports the findings, the associated formulas (if any), and presents data 

analysis of such findings. The findings consisted of outcomes, which were discovered 

during close examination of six units of analyses directed toward the performance 

comparison between NSS and OpenSSL PEPMA in 64-bit x86 runtime environment. The 

units of analyses are listed in Table 7 below. 

Table 7. Finding of Six Units of Analyses 
Unit of Analysis Formula 
Efficiency Metric and Formulation EMF 
Compliance Metric CM 
Weighted Information Flow Complexity WIFC 
Cyclomatic Complexity Metric CCM 
Functional Metric FM 
Module Maturity Index MMI 

 

 The data analysis section in this chapter provides information to familiarize the 

reader with the basis of the finding. The chapter concludes with a summary of all findings 

and data analyses, preparing the readers for the final chapter. 

      The ultimate goal of this research with two FIPS-140-2 certified studying cases was 

to develop a repeatable and deterministic evaluation approach of the performance of 

PEPMA. The study provides a detailed framework for the evaluators to construct a better 

evaluation method. Thus, the final contribution to the field of cryptography is the formal 

evaluation method that can lead to the performance improvement of PEPMA. Other 

benefits related to industrial applications in the field will not be discussed in this chapter. 

 



95 

They will be discussed in the closing conclusion, implication, recommendation and 

summary of the final chapter. 

Systematic Software Reviews and Selection of Unit of Analysis 

 The software reviews in this study adhered to the code walk-through and software 

inspection formal process as recommended in IEEE 1028 (2008). The purpose of the 

review is to determine and put together the performance improvements through the 

findings and data analysis. IEEE-1028 covered code walk-through along with software 

inspections first appeared in 1988 and then 1997 (IEEE 1028, 1997). This standard 

suggested six reviewing areas of software products and provided ways to identify 

anomalies, including errors and deviations from standards and specifications. However, it 

is important to note that this research does not intend to identify and correct the 

implementation errors; multiple comprehensive reviews across six areas have been 

accomplished at the product design phase and/or at an accredited FIPS certification site. 

Leveraging the same walk-through and code inspection procedures recommended in 

IEEE standards, this study aims to provide ways for code improvements through findings 

and data analysis as shown in Figure 27. 

 

Figure 27. Types of Software Review Used in the Research 
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The shaded areas in Figure 27 show an entry and exit path to obtain potential code 

improvement portions which the formal code walk-though or inspection procedure 

possibly might have missed or was not intended to correct. 

 While Fagan developed a formal software inspection process at IBM in the mid 

1970s focusing on finding software defects, his work also resulted in a schematic of 

defect classification and distribution (Fagan, 1976). However, the detail of the 

classification was not clearly presented at that time. Later, Fagan's inspection methods 

were thoroughly discussed in software inspection by Gilb & Graham (1993), which 

focused on defect identification. According to Runeson et al (2006) or Jones (2010), 

defects can be classified in many different ways. First, a defect can be cataloged as either 

an omission (something is missing) or a commission (something is incorrect). Second, a 

defect may be defined based on technical contents as to whether the product meets or 

does not meet a specific requirement (i.e., efficiency or FIPS compliance). Third, defects 

may be categorized by the impact to the user as the result of technical capability running 

on a specific computing platform. During software review of PEPMA coding, this 

research seeks for the omission and presents it in the key performance indicators and 

improvements. The standard IEEE code walk-though and software inspection process 

were used to collect quantitative data at defined points on prior works in this area.  

 Although code walk-through and code inspection are two related software review 

methodologies, the latter is more formal than the first. Both walk-through and inspection 

focus on finding errors in the product but not correcting them. Code walk-through often 

requires less expertise in the subject domain while inspection might require 

professionally trained inspectors.  
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The software inspections remove roughly 85% of the total errors as Fagan reported in his 

studying cases. It has been shown no other techniques, walk-through, or testing using 

automatic checking tools identify errors better than the manual code inspection. Jones 

suggested that manual code inspection could potentially remove 70% of the total errors as 

he observed the outcomes in industrial projects (Jones, 2010, p. 574). It has been 

advocated in (Source-Selection, 2011) that the end users in the field might experience the 

remaining defects through the so called "degradation of performance." These user 

experiences pertain to the remaining 15% to 30% of anomalies not found by code walk-

though or code inspections. The shaded area in Figure 27 shows an opportunity for 

improving efficiency that the code walk-though process or software inspection procedure 

at the product design phase, or at an accredited FIPS certification site, possibly missed or 

did not intend to correct. 

 The discussion above offers some hints that the code walk-through could help to 

promote the improvement of the product, as seen by a person with less expertise; 

meanwhile, code inspection could improve the product, according to the checklist of 

items to be examined. For example, if PEPMA code is to be manually inspected, the 

inspection checklist can include such items listed as six units of analyses pointing to the 

efficiency, standards compliance, or coding information flow complexity. For a general 

discussion of why these key performance indicators were selected, readers are referred to 

recommendations in the standard ISO/IEC 15939 (2001). To answer three research 

questions and be able to verify the empirical results, we suggested applying IEEE 

standards 982.1-1988 and 982.1-2005 to evaluate and construct six units of analyses 

while tailoring the efficiency measurements based on machine virtualization technology. 
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Limitation 

 Since the goal of this study was to develop a more rigorous understanding of a 

formal performance evaluation approach, the reader should bear in mind that all findings 

in this report are subject to several limitations. First, the findings presented here are only 

a representation of the essential outcome, which should provide meaningful evaluation 

results. As an example, Table 8 (below) lists eleven findings to provide adequate results 

for the evaluation of Cyclomatic Complexity Metric; however, one finding of the sub-

module is needed to represent the idea adequately.  

Table 8. Finding Limitation 
Unit Under Test Sub-Module Low-Level Routine 
Cyclomatic 
Complexity 
Metric 

APT, EF, PD, 
PA, PAT 

Adding, Subtraction, Modulo Reduction 
Squaring, Multiplication, Inversion 

 

Second, findings of other units of analyses have been purposely excluded due to the 

limited scope of this research. Third, the limitations mentioned above are also applicable 

to the construct of formulations and data analysis. Fourth, only Efficiency Metric and 

Formulation contains verification methodology while the other five units do not. Fifth, 

the current research was not specifically designed to evaluate the importance factors of 

each Key Performance Indicator. 

 Because of these limitations, the comparison results should be interpreted 

cautiously; further investigation and report of the unlisted findings might be necessary to 

achieve a realistic goal. Furthermore, the emphasis of this research was to uncover 

whether the performance of PEPMA might be unknown based on existing theoretical 

work, and what metrics should be used to candidly evaluate PEPMA's efficiency. 

However, the findings and analyses of low-level mathematic routines are beyond the 

 



99 

scope of this results chapter. They are presented here for completeness; although, the 

findings and analyses of such low-level mathematic routines do offer more accuracy to 

the final product. 

 While the literature review and the methodology section provided some evidence to 

answer these research questions, the findings from six units of analyses could uncover 

concrete facts of whether the performance of PEPMA might be unknown based on 

existing theoretical work. Together with the findings, the constructed formulas and data 

analysis could further confirm which metrics can be used to truthfully evaluate PEPMA's 

efficiency. 

 For the benefits of applications in the cryptographic field, are there realistic and 

deterministic performance evaluation approaches which will enable the code 

implementers to improve PEPMA’s efficiency based on the empirical comparison? In 

this results chapter, the findings and results based on six units of analyses could also 

suggest a tangible setup for such a formal evaluation method. 
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Chapter Organization 

 This results chapter is organized into seven sections:  to , corresponding to the 

six units of analyses, and a combined performance indicator as shown in Figure 28.  

 

Figure 28. Formal Performance Evaluation Approach 

Figure 28 also represents the sequential order of flow of a suggested formal approach   

for the performance evaluation where unit of analysis 1 – Finding of Compliance Metric 

and Formulation – carries the highest level of importance/weight; and unit of analysis 6 – 

Finding of Module Maturity Index – carries the lowest level of importance/weight. 

However, this research is not specifically designed to evaluate the importance factors of 

each Key Performance Indicator; hence the order of evaluation might change based on a 

case-by-case application where the level of importance/weight can change for each unit 
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of analysis. One possible approach to determine the importance level is found in (Source-

Selection, 2011). 

Verification of the Finding 

 As previously presented in the methodology chapter, the performance relating to 

computational efficiency shall be verified through a formal verification process using 

Program Profiling and Emulation with BOCHS. Additionally, the computational 

efficiency shall be verified through another formal verification process by acquiring the 

Performance Hardware Counter via Performance Application Programming Interface 

(PAPI). In this section titled the "Analysis of Efficiency Metric and Formulation," we 

applied these formal verification methods to fulfill the verification of the findings; hence, 

the verification will be reported thoroughly in the analysis section. This formal 

verification of efficiency will provide supports for a tangible closing conclusion of this 

research. The approach for verification is depicted in Figure 29 below. 

 

Figure 29. Efficiency Verification Block Diagram 

Activation of virtual machine BOCHS to sandbox PEPMA under a guest Operating 

System was complex. It required a specific set of instructions and process 

synchronization in order to properly execute PEPMA under the virtual machine 
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environment. Readers are referred to Appendix K, the Operation of BOCHS, for more 

details on the commands and the setups of BOCHS. 

 Acquiring the performance hardware counter via Performance Application 

Programming Interface (PAPI) also required a specific setup and compilation. Readers 

are referred to Appendix L, the Operation of PAPI, for more details on the commands 

and the setups of PAPI. 

Concept of Instrumentation 

 This section describes the concept and rationale using two measuring instruments 

PAPI and BOCHS. The instrument PAPI can accurately measure the total number of 

instructions, TOT_INS, which are required to process a particular unit-under-test (a unit-

under-test may be any of sub-modules belonging to six units of analysis). However, the 

measurement TOT_INS is just a lump sum of all CPU instructions (around 26 millions 

for NSS PEPMA); this metric does not indicate what types of CPU instruction that the 

unit-under-test uses. Therefore, it is not a good metric for modular improvement (see 

Appendix U, V for the descriptions of metrics). On the other hand, the instrument 

BOCHS can accurately measure the total number of instructions; and it can also indicate 

what types of CPU instruction that the unit-under-test uses. If the cost for processing a 

module was approximately constructed by BOCHS as follows: 

    MODULE_COST ≈ k1(MULq) + k2(MOVq) 

then the exact formula of MODULE_COST must be 

   MODULE_COST = k1(MULq) + k2(MOVq) + OHF 

where the term OHF is defined as an overhead factor; and the OHF might include other 

MULq, MOVq, or other types CPU instruction. 
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If the metric TOT_INS is exact, then the following equality must be true 

   TOT_INS = MODULE_COST = k1(MULq) + k2(MOVq) + OHF 

To be absolutely accurate, the equation TOT_INS must include all of the CPU 

instructions. For instance, two additional coefficients k3(ADD) and k4(SUB) in the 

equation TOT_INS will make the result more accurate: 

  TOT_INS ≈ k1(MULq) + k2(MOVq) + k3(ADD) + k4(SUB)  

Due to limited scope of this study, the coefficient in TOT_INS equation does not expand 

beyond the first two CPU instructions. Thus, the expansion coefficients (k3(ADD) + 

k4(SUB) + others CPU Instruction... ) are lumped sum into a single over-head factor, 

OHF. For comparison, one could convert TOT_INS to the total number of CPU cycles. 

Overview of the Finding in General 

 Documentation search and/or certificates were used to collect some findings; 

however, the primary method for collecting the findings was through the examination of 

NSS/OpenSSL source codes. Additionally, the findings were discovered through running 

executable binaries under both host and guest Operating Systems (Virtual Machine using 

BOCHS) and taking the results from the program output messages. Since the results from 

six units of analyses directly contributed to the performance comparison, six Key 

Performance Indicators were derived from the following six units of analyses.  

Table 9. Findings of Key Performance Indicators 
Key Performance Indicator Formula Importance 

Level (Note 1) 
Efficiency Metric and Formulation EMF 6 = Highest 
Compliance Metric CM 5 
Weighted Information Flow Complexity WIFC 4 
Cyclomatic Complexity Metric CCM 3 
Functional Metric FM 2 
Module Maturity Index MMI 1 = Lowest 
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Note 1: The importance levels are only a representation/example. These levels were taken 

from a particular investigation of ECDH public-key exchange protocol used in the 

Department of Defense. This research was not specifically designed to evaluate the 

importance factors of each Key Performance Indicator. However, it has been advocated 

in the (Source-Selection, 2011) from the DoD suggesting approaches to obtain 

importance levels pertaining to technical risk of a product. 

Overview of the Findings of Efficiency Metric and Formulation 

 The findings of the efficiency metric in this section is a collection of outcomes that 

have been discovered in examining computational efficiency directed toward the 

performance comparison between NSS and OpenSSL PEPMA in 64-bit x86 runtime 

environment. Essentially, this section shows the results of evaluating the components as 

illustrated in Figure 2, the Projective Elliptic-Curve Point-multiplication Agent in the 

introduction chapter. For reading convenience, Figure 2 has been expanded and shown 

here with three other units-under-test:  infinity point,  pre-computation table, and  

runtime factor. 
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Figure 30.   Projective Elliptic-Curve Point-multiplication Agent, Complete 

The figure above illustrates the efficiency of NSS/OpenSSL PEPMA governed mainly by 

five sub-modules: Affine to Projective Transformation, Exponentiation Function, Point- 

Doubling, Point-Adding, and Projective to Affine Transformation (APT, EF, PD, PA, and 

PAT respectively). The efficiency of NSS/OpenSSL PEPMA also depends on how 

NSS/OpenSSL is implemented to handle the pre-computation, the infinity point, and the 

runtime factor. 

Table 10. Finding of Efficiency Metric and Formulation 
Unit Under Test Sub-Module Low-Level Routine 
PEPMA APT, EF, PD, 

PA, PAT 
Adding, Subtraction, Modulo Reduction 
Squaring, Multiplication, Inversion 

Pre-computation PD, PA Adding, Subtraction, Modulo Reduction 
Squaring, Multiplication, Inversion 

Infinity Point   
Runtime Factor   

 

From Table 10, counting down from unit-under-test PEPMA, there were eleven findings: 

five counts for sub-modules (APT, etc.,) and six counts for low-level routines. Although 

the naming convention shown in the Sub-Module column and in the Low-Level Routine 

column is the same for both NSS and OpenSSL, sub-modules and low-level functional 

services comparing NSS PEPMA and OpenSSL PEPMA are not the same routines. 

  Furthermore, while all six low-level routines (listed in Table 10) fulfill the intended 

function, each sub-module might not need to call all six low-level routines; the 

explanation of which sub-level module calls which low-level routines is in order. Seven 

low-level routines for each sub-module are summarized in the last column of Table 10. 

The findings are presented in pairs (NSS APT vs. OpenSSL APT etc.) throughout the 

section for the convenience of reading when comparing NSS and OpenSSL cases. The 
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data analysis of this chapter includes only essential information to familiarize the reader 

with the basis of the findings. The formulations for computational cost are presented at 

the end of the findings section. 

 In the section “The Finding of Efficiency Metric and Formulation,” the word 

"Formulation" refers to the construct of more succinct computational cost formulations as 

the results of finding and data analysis. These formulations were used for verification of 

the findings, with the lowest units of measurement being MULq instruction and MOVq 

instruction, or scalar values. In the comparison of efficiency, NSS will serve as a 

reference point (compared OpenSSL against the results from NSS).  

 BOCHS and PAPI were the verification instruments that provide Program Profiling 

and Emulation Software Counters and Performance Hardware Counter, respectively. 

Based on such formal verification of efficiency, a more tangible closing conclusion can 

be drawn in the final chapter. The formal approach for verification of efficiency was 

previously illustrated in Figure 28. 

 The verification instruments worked with specially chosen test vectors. For a listing 

of test vectors used in this study, see Appendix F.  

Infinity Point 

 In NSS, the representation of an infinity point in projective domain is defined as 

follows: 

  NSS infinity point ≙ (X, Y, 0) where X = don't care, Y = don't care 

In OpenSSL, the representation of an infinity point in projective domain is defined as 

follows: 

  OpenSSL infinity point ≙ (X, Y, 0) where X = don't care, Y = don't care 
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Runtime Factor 

 OS overhead, threading time, and delay due to processor interrupt services are run-

time factors. They might affect the cost index produced from the Performance Hardware 

Counter or Program Profiling process. These run-time factors are categorized as Quality 

of Service (QoS) for the verification procedure under the targeted Operating System. 

However, since these QoS run-time factors are a system specific subject, they were 

excluded from the findings and data analysis.  

Finding of NSS Affine to Projective Transformation 

 The NSS Affine to Projective Transformation (APT) is a functional service routine 

that converts affine coordinates to the coordinate representations in the projective 

domain. File location and function calling conventions are listed in Table 11 below. 

Table 11. Finding of NSS Affine to Projective Transformation 
Finding 
of 

Description of APT Comment 

File 
location 

NSS\mozilla\security\nss\lib\freebl\ecl\ecp_jac.c "NSS\" is the root 
directory where project 
was installed 

Function ec_GFp_pt_aff2jac 
mp_err ec_GFp_pt_aff2jac ( const mp_int *px, 
const mp_int *py, mp_int *rx, 
mp_int *ry, mp_int *rz, const ECGroup *group) 
{ 
... calling Sub-functions below... 
}; 
 
Note: 
Description of data structure type "mp_int" can 
be found in the literature review section of low-
level arithmetic representation 

*px, *py are the pointers 
to affine coordinates (x, 
y). 
 
*group points to a data 
structure having 
characteristics of the 
Elliptic-curve 

Sub-
function 

mp_copy(px, rx); 
mp_copy(py, ry); 
mp_set_int(rz, 1); 

*rx, *ry, *rz are the 
pointers to the results in 
projective domain 
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As designed, the NSS APT function is conditionally called at the beginning of the Point-

Adding function. The calling sequence is shown below: 

  Start computing PA: 
   if (Z = = 0) ec_GFp_pt_aff2jac(...) 
     calling other functions... 

Formulation 

 The formulations were derived by examining the operation of the following 

statements:  

mp_copy(px, rx); 
mp_copy(py, ry); 
mp_set_int(rz, 1); 

Table 12. NSS APT Formulation 
Sub-Module Formula Unit of Measurement 

NSS APT  NSS_APT ≈ 3(MULq)+29(MOVq) MULq, MOVq 
NSS APT  NSS_APT_PAPI_TOT_INS = 2745  All CPU Instructions 
NSS APT  NSS_APT_PAPI_TOT_CYC = 7879 CPU cycles 

 

For comparison, testing for efficiency of APT was repeated under two verification 

instruments, BOCHS and PAPI as shown in Table 13. The values shown in lower-limit 

(MIN), Typical (TYP), and upper-limit (MAX) are the accuracy ranges of the measuring 

instrument.  

 Table 13. NSS BOCHS/PAPI APT Limits 
Components MIN TYP MAX Unit of 

Measurement 
NSS APT  BOCHS 
(Note 1) 

3  3 MULq 

NSS APT  BOCHS 
 

29  29 MOVq 

NSS APT  PAPI  2745  TOT_INS 
NSS APT  PAPI  7879  TOT_CYC 

 
Note 1: Readers are referred to Appendix K, the Operation of BOCHS, and Appendix L, 

the Operation of PAPI, for more details on commands and setups of BOCHS/PAPI. 

 



109 

The same values presented in both "MIN" and "MAX" columns indicate that readings 

from instrumentation are exact. Readings presented in "TYP" column are not exact. They 

change from one sampling to the other. 

Findings of APT in OpenSSL 

 The OpenSSL Affine to Projective Transformation (APT) is a service routine that 

converts affine coordinates to the coordinate representation in projective domain. File 

location and function calling conventions for OpenSSL are listed in Table 14 below. 

Table 14. Finding of OpenSSL Affine to Projective Transformation 
Finding 
of 

Description Comment 

File 
location 

O\crypto\ec\ec_lib.c "O\" is the root 
directory where project 
was installed 

Function EC_POINT_set_Jprojective_coordinates_GFp
(group, point,  x,  y, BN_value_one(), ctx); 
{ 
...... 
group->meth-> 
point_set_Jprojective_coordinates_GFp(group, 
point, x, y, z, ctx); 
...... 
} 
Note: group->meth-> 
point_set_Jprojective_coordinates_GFp(...) 
is a name holder for function 
EC_POINT_set_Jprojective_coordinates_GFp 
"......" represents some other house-keeping 
functions 

*group points to an 
object having 
characteristics of the 
Elliptic-curve (as data), 
and points to executing 
functional pointers (as 
method). Thus, 
"group->meth->" is a 
pointer to an executing 
method. 
"point" is an array of 
MDN. 
BN_value_one() is a 
521-bit MDN having a 
scalar value of 1. 

Sub-
function 
 

EC_POINT_set_Jprojective_coordinates_GFp
(const EC_GROUP *group, EC_POINT *point, 
const BIGNUM *x, const BIGNUM *y, const 
BIGNUM *z, BN_CTX *ctx) 
{  
......  
calling group->meth-> 
point_set_Jprojective_coordinates_GFp(group, 
point, x, y, z, ctx);   
.......  
}; 

EC_GROUP, 
EC_POINT,  
BIGNUM, 
BN_CTX are data 
structures. 
"*ctx" is a pointer to a 
context database, a 
temporary and volatile 
holding data structure 
for the function 
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Table 15. Finding of OpenSSL Affine to Projective Transformation (Continued) 
Finding of Description Comment 
Sub-
function 

group->meth-> 
point_set_Jprojective_coordinates_GFp(group, point, 
x, y, z, ctx); 
Note: 
group->meth-> 
point_set_Jprojective_coordinates_GFp(...) 
is a name holder for the function below 

 

Sub-
function 

ec_GFp_simple_set_Jprojective_coordinates_GFp
(const EC_GROUP *group, EC_POINT *point, 
const BIGNUM *x, const BIGNUM *y, const 
BIGNUM *z, BN_CTX *ctx) 
{ 
...... 
BN_nnmod(&point->X, x, &group->field, ctx) 
BN_nnmod(&point->Y, y, &group->field, ctx) 
BN_nnmod(&point->Z, z, &group->field, ctx) 
...... 
} 

 

Sub-
function 

BN_nnmod(&point->X, x, &group->field, ctx) 
BN_nnmod(&point->Y, y, &group->field, ctx) 
BN_nnmod(&point->Z, z, &group->field, ctx) 

BN_nnmod() 
reduces an MDN  
and places the 
result in 
"&point->Z" 

 

Formulation 

 The formulation was carried out by executing the arithmetic operation of three 

statements with a specific test vector, and using BOCHS to read the results.  

BN_nnmod(&point->X, x, &group->field, ctx) 
BN_nnmod(&point->Y, y, &group->field, ctx) 
BN_nnmod(&point->Z, z, &group->field, ctx) 

Table 16. NSS APT Formulation 
Sub-Module Formula Unit of 

Measurement 
OpenSSL APT  OpenSSL APT ≈ 151(MULq) + 198(MOVq) MULq, MOVq 

 

 



111 

For comparison, these measurements were repeated under two verification instruments, 

BOCHS and PAPI with test vector type A (see Appendix O). 

Table 17. APT Comparison 
Components NSS OpenSSL MAX Unit of 

Measurement
APT BOCHS 3 151  MULq 
APT BOCHS 29 198  MOVq 
APT PAPI 745 1626 *  TOT_INS 
APT PAPI  4190 **  TOT_INS 
APT PAPI 879 5052  TOT_CYC 

 

* Test vector type A (see Appendix O). Computing platform type A (see Appendix R). 

** Test vector type C (see Appendix Q) using CPU type C in a busy run-time 

environment (see Appendix T). 

Analysis of Affine to Projective Transformation 

 The data gathered in Table 14, 15, 16 and 17 suggest that the computing time of 

target CPU for performing APT function is significantly different when comparing NSS 

and OpenSSL implementations. The data yielded by these findings provide convincing 

evidence that NSS implementation of APT might be more efficient since it uses three 

simple functions "copy" and "set" to set the values into the results of APT 

mp_copy(px, rx);    
mp_copy(py, ry);    
mp_set_int(rz, 1);    

while OpenSSL uses three modulo arithmetic routines BN_nnmod() to set three values 

into the results of APT. The cost of this computation depends on the content of the input 

test vector (x, y, z) and how efficient the modulo reduction arithmetic was done. 

BN_nnmod(&point->X, x, &group->field, ctx)  
BN_nnmod(&point->Y, y, &group->field, ctx)  
BN_nnmod(&point->Z, z, &group->field, ctx)  
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For a detailed discussion of Affine to Projective Transformation, readers are referred to 

the Concept of Point Computation in Projective Domain, which was previously presented 

in the Literature Review chapter. Similarly, Ryabko et al. (2005) and Salomon (2006) 

have found that using a sub-function as shown in Table 11 would be more 

straightforward and better than using function BN_nnmod() as shown in Table 14, 15 for 

computation of Affine to Projective Transformation. 

Finding of NSS Exponentiation Function 

 In an open-source version 3.12.4 release, Network Security Services (NSS, 2013) 

applied a 4-bit window on the scalar k in an exponentiation service. The Exponentiation 

Function (EF) is shown as computation loop  in Figure 31 below.  

 

Figure 31. Exponentiation Function in NSS 

The NSS PEPMA computation makes 524 calls to the point-doubling and 131 calls to the 

point-adding function (NSS-2, 2014).  Readers are referred to Appendix G for examining 

the exact number of calls.  
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Real-time Samplings with PAPI, Function EF in NSS 

 The real-time sampling was taken from a particular desktop PC type B (see 

Appendix S) with test vectors type A (see Appendix O). 

Table 18. Real-time Samplings, Function EF in NSS, Vectors Type A 
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC 

from Minimum 
1 15,094,162 26,707,442 49416 
2 15,188,326 26,707,443 143,580 
3 15,195,070 26,707,443 150,324 
4 15,044,746 26,707,442 0 
5 15,252,588 26,707,442 207,842 

 

Figure below illustrates the deviations from iteration 4 of TOT_CYC as listed in Table 

18. 

1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

5

Sampling

C
P

U
 c

yc
le

s

 

Figure 32. Real-time Samplings, EF in NSS, Test Vector Type A 

Another real-time sampling was taken from the same desktop PC with test vectors type B 

(see Appendix P). 
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Table 19. Real-time Samplings, Function EF in NSS, Vectors Type B 
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC 

from Minimum 
1 14,842,668 26,248,085 179,771 
2 14,669,926 26,248,085 7,029 
3 14,662,897 26,248,085 0 
4 14,743,208 26,248,085 80,311 
5 14,693,759 26,248,087 30,862 

 

Figure below illustrates the deviations between TOT_CYC as listed in tables 18, 19; 

deviations between TOT_INS as listed in tables 18, 19. 
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Figure 33. Real-time Samplings, EF in NSS, Test Vector Type A vs. Type B 

Formulation 

 Table 20 lists the efficiency formula for NSS Exponentiation Function with the unit 

of measurements being PD, Point-Doubling, PA, Point-Adding, and Overhead Factor 

(OHF). Overhead Factor includes all runtime factors. 

Table 20. Formulation of NSS Exponentiation Function 
Unit Under Test Formula Unit of 

Measurement 
NSS Exponentiation 
Function 

NSS_EF = 524(PD) + 131(PA) + OHF 
(Value of OHF will be determined in the 
next section) 

PD, PA, 
OHF 
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This test sequence shows that PEPMA computation does depend on value of k. Given k = 

(00100011) in binary to process PEPMA, the NSS Exponentiation Function always 

extracts the index for the PRE-COMP table from the leftmost four bits. Thus, k must be 

shifted left 4 bits for the next 4-bit extraction (This shifting also gives a name "right-to-

left" exponentiation function). Furthermore, let the base-point affine vector be (x, y); then 

the NSS computing sequence of k×(x, y) occurs exactly as follows: 

Table 21. Sequence of NSS Exponentiation Function 
Iterat
ion 

Parameter Value Comment 

Entry EF shifting method Right-to-Left  
 Affine coordinate to multiply (x, y)  
 k  0010,0011 (binary) Lower 8 bits 

Upper (521−8) = 
513 bits are all 
zeros 

 Affine-to-Projective 
Transformation (APT) 

(RX, RY, 0)  

1 Coordinates before doubling (RX, RY, 0)  
 Coordinates after point-

doubling 
(RX, RY, RZ) =  
(RX, RY, 0) 

 

 4 bits extracted from k 0010  
 Index to PRE-COMP table 2 (decimal) 4 bits extracted 

from k 
 Coordinates from PRE-COMP 

table 
2×(x, y)  

≙ (x2, y2)  

Affine coordinates 

          
1.6 

Coordinates after point-adding (RX, RY, RZ) =  
(RX, RY, RZ) +  
(X = x2, Y = y2, Z=1) 

Another Affine-to-
Projective 
Transformation  

2 Coordinates before doubling (RX, RY, RZ), same 
as above 

 

 Coordinates after four point-
doubling operations 

16 × (RX, RY, RZ) Exponentiation of 
(RX, RY, RZ) by 4 

 4 bits extracted from k 0011  
 Index to PRE-COMP table 3 (decimal)  
 Coordinates after point-adding 16 × (RX, RY, RZ) 

+ 3×(x, y, RZ)  
 

Mixed-coordinate 
point-adding 

Exit k × (x, y) = 23 × (x, y) Same as above  
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Analysis of NSS Exponentiation Function 

 The Exponentiation Function in NSS can be more efficient if NSS did not use step 

1.6 (as shown in Table 21) but instead followed the recommendation from Ryabko et al. 

(2005) or Salomon (2006). This improvement in NSS Exponentiation Function can be 

further verified by examining the following operational sequence: 

 After processing the Affine-to-Projective Transformation, APT, the affine input 

coordinates (x, y) have been converted to projective coordinates (RX, RY, 0). These 

coordinates are the representation of an infinity point in the projective domain of input (x, 

y). 

  In the EF computation loop , the first iteration of the loop is special; thus, a 

comprehensive explanation is in order. At the beginning of the EF computation loop, the 

result vector (RX, RY, RZ) is set to an infinity point (RX, RY, 0). This setting of the 

infinity point always makes the result of point-doubling of (RX, RY, 0) to be an infinity 

point since a multiplication of any scalar values with an infinity point always results in an 

infinity point. 

 When this infinity point (RX, RY, 0) reaches the point-adding function for the first 

time (first iteration in the loop) as shown in Figure 30, the point-adding function detects 

the "point at infinity" condition (RZ = = 0) and returns a result (PX, PY, RZ = 1) without 

any further computation. This operation (PX, PY, RZ = 1) sets the Z coordinate to 1 for 

the first time in the EF iteration loop ; and the result vector (RX, RY, RZ) is set to (PX, 

PY, RZ = 1). Note that PX, PY are the coordinates extracted from the PRE-COMP table 

according to the 4 bits that extracted from k. 
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When loop  goes into the second iteration, the point-doubling function computes the 

doubling of vector (RX, RY, RZ) recursively four times: 

   2 × (2 ×( 2 × (2 × (RX, RY, RZ) ) ) ) ≙ 16 × RX, RY, RZ 

and the results are set back to result vector (RX, RY, RZ). The point-adding function then 

adds this result vector (RX, RY, RZ) with the next vector extracted from the PRE-COMP 

table. 

 Another interesting observation from Figure 31 and Table 22 is that if the size of 

extracting window were 5 bits instead of 4 bits, higher efficiency can be achieved. New 

values are the results of minor optimization in the implementation of EF as shown in 

Table 22. Units of measurement are the same as before, PD and PA. 

Table 22. Alternate Formulation of NSS Exponentiation Function 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
NSS Exponentiation Function 
(5-bit Window) 

 520  PD 

NSS Exponentiation Function 
(5-bit Window) 

 104  PA 
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Verification 

 Table 23 lists the efficiency formula found by BOCHS for NSS Exponentiation 

Function with the units of measurement being MULq, integer multiplication, and MOVq, 

moving quad words (64 bits). Test vectors are of type A (see Appendix O). 

Table 23. Finding of NSS Exponentiation Function by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
NSS EF 1,461,962  1,461,962 MULq 
NSS EF 2,744,501  2,744,501 MOVq 
NSS_OHF  To be 

determined 
when 

NSS_PA, 
NSS_PD has 
been derived 

 MULq, MOVq 
and other 

Instructions 

 

The data collected in Table 23 is quite revealing in several ways. Since BOCHS can read 

exactly the number of MULq or MOVq instructions used in NSS Exponentiation 

Function, data in Table 23 could answer which metrics should be used to evaluate 

PEPMA's efficiency. Second, since the counting of MOVq instruction did exceed the 

counting of MULq instruction, data in Table 23 also uncovered the notion of whether the 

performance of PEPMA might be unknown based on existing theoretical work (for 

example, using only metric M, Multiplication).  

 Data from this table can be compared with the data in Table 32, which shows the 

difference in efficiency between NSS and OpenSSL PEPMA. 
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Finding of NSS Point-Doubling 

 Network Security Services implemented a software function point-doubling R(X3, 

Y3, Z3) = 2×P(X, Y, Z) using weighted projective transformation as described by (Cohen 

et al., 1998). Executing NSS Point-Doubling (PD) codes requires 4M+4S+5A+4Su+1Sh 

operations, where the arithmetic operators are designated as  M=Multiplying, 

S=Squaring, A=Addition, Su=Subtraction, and Sh=Shift. These measurement units have 

been directly converted to the lowest measurement units MULq and MOVq using 

BOCHS. Table 24 recorded this operation. 

Table 24. Finding of NSS Point-Doubling by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
NSS_PD 1550   MULq 
NSS_PD 3084   MOVq 

 
Formulation 

 Table 25 below lists the efficiency formula for NSS Point-Doubling with the units 

of measurement being MULq and MOVq. The formula for NSS_PD can be constructed 

from values in Table 24. 

Table 25. Formulation of NSS Point-Doubling 
Unit Under Test Formula Unit of 

Measurement 
NSS_PD NSS_PD ≈  1550(MULq) + 3084(MOVq) MULq, MOVq 

Analysis of NSS Point-Doubling 

 The data gathered in Tables 24 and 25 suggested that the target CPU had spent more 

time moving data than doing multiplication in PD function. The partial efficiency 

formulation of Exponentiation Function can now be derived as follows (OHF = Overhead 

Factor): 

   NSS_EF = 524(1550(MULq) + 3084(MOVq)) + 131(PA) + OHF 
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Finding of NSS Point-Adding 

 Network Security Services implemented a software function point-adding of point 

P1 and P2 using weighted projective transformation as described by (Brown et al., 2001). 

NSS actually executed a total of 8M+3S+2A+5Su. These measurement units have been 

directly converted to the lowest measurement units MULq and MOVq using BOCHS. 

Table 26. Finding of NSS Point-Adding by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
NSS_PA 1808   MULq 
NSS_PA 3592   MOVq 

 

Formulation 

 Table 27 below lists the efficiency formula for NSS Point-Adding with the unit of 

measurements being MULq and MOVq. The formula for NSS_PA was constructed from 

the values in Table 26. 

Table 27. Formulation of NSS Point-Adding 
Unit Under Test Formula Unit of 

Measurement 
NSS_PA NSS_PA ≈  1808(MULq) + 3592(MOVq) MULq, MOVq 

 

Analysis of NSS Point-Adding 

 Similar to the characteristic of NSS_PD metric, the data gathered in tables 26 and 

27 suggested that in Point-Adding function, the target CPU did spend more time moving 

data than doing multiplication. Partial efficiency metric of Exponentiation Function now 

can be calculated using NSS_PA metric (OHF = Overhead Factor): 

  NSS_EF = 524(PD) + 131(1808(MULq) + 3592(MOVq)) + OHF 

 



121 

 

Analysis of NSS Exponentiation Function, Revisited 

 The results of NSS_PD and NSS_PA, as shown in tables 25 and 27, indicate that the 

NSS Overhead Factor, NSS_OHF, now can be derived. Since the NSS_EF formulation 

was constructed earlier as NSS_EF = 524(PD) + 131(PA) + OHF, then 

    NSS_EF = 524(1550(MULq)+3084(MOVq))+131(1808(MULq)+3592(MOVq)) + 

OHF 

Equivalently, NSS_EF = 1,049,048(MULq) +  2,086,568(MOVq) + OHF 

From the findings earlier, the absolute computing cost for doing NSS_EF was: 

Table 28. Formulation of NSS Exponentiation Function by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
NSS EF 1,461,962  1,461,962 MULq 
NSS EF 2,744,501  2,744,501 MOVq 

 

If an approximate value of NSS_EF is 1,461,962(MULq) + 2,744,501(MOVq), 

and given NSS_EF = 1,049,048(MULq) +  2,086,568(MOVq) + OHF, then the value of 

Overhead Factor (OHF)  for NSS must exactly equal to:  

NSS_OHF =  412,914(MULq) + 657,933(MOVq) + OHF 

The formulation for NSS Exponentiation Function (EF) now can be compiled from the 

findings listed above along with the Overhead Factor, NSS_OHF. 

Table 29. Formulation of NSS Exponentiation Function, Complete 
Unit Under 
Test 

Formula Unit of 
Measurement 

PD NSS_PD ≈  1550(MULq) + 3084(MOVq) MULq, MOVq 
PA NSS_PA ≈  1808(MULq) + 3592(MOVq) MULq, MOVq 
OHF NSS_OHF ≈  412,914(MULq) + 657,933(MOVq) MULq, MOVq 
NSS EF NSS_EF≈524(NSS_PD)+131(NSS_PA)+NSS_OHF 

 
(NSS_OHF = Overhead Factor) 

PD, PA, 
OHF 
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Finding of OpenSSL Exponentiation Function 

 In a release of open-source version 1.0.1e, dated 11 Feb 2013, OpenSSL applied a 

5-bit window on the scalar k in PEPMA's exponentiation service shown as a computation 

loop  in Figure 34 below.  

 

Figure 34. 5-bit Windowing Exponentiation Service in OpenSSL 

Real-time Samplings with PAPI, Function EF in OpenSSL 

 The real-time sampling was taken from a particular desktop PC type A (see 

Appendix R) with test vectors type A (see Appendix O). 

Table 30. Real-time Samplings, Function EF in OpenSSL, Vectors Type A 
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC 

from Minimum 
1 2,938,817 3,814,105 13695 
2 2,935,684 3,814,104 10562 
3 2,932,579 3,814,102 7457 
4 2,925,122 3,814,104 0 
5 2,925,122 3,814,104 0 
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Figure below illustrates the deviations from iteration 4, 5 of TOT_CYC as listed in Table 

30. 
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Figure 35. Real-time Samplings, EF in OpenSSL, Test Vector Type A 

Another real-time sampling was taken from the same desktop PC with test vectors type B 

(see Appendix P). 

Table 31. Real-time Samplings, Function EF in OpenSSL, Vectors Type B 
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC 

from Minimum 
1 2,944,852 3,814,106 5675 
2 2,942,158 3,814,106 2981 
3 2,942,373 3,814,105 3196 
4 2,939,177 3,814,107 0 
5 2,951,294 3,814,106 12117 
6 2,845,369 * 3,814,106 *  

 

* Iteration 6 measured the TOT_CYC and TOT_INS parameters from a less activity 

runtime environment. The TOT_INS value stayed the same, but the TOT_CYC value 

has reduced to a smaller number. This signified a runtime dependency for TOT_CYC 

parameter (see Appendix R, Figure 48 for the CPU loading condition). 
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Figure below illustrates the deviations of TOT_CYC between Table 30 and Table 31, 

and deviations of TOT_INS between Table 30 and Table 31. 
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Figure 36. Real-time samplings, EF in OpenSSL, test Vector type B 

Formulation 

 OpenSSL PEPMA makes 520 calls to the point-doubling and 104 calls to the point-

adding function (OpenSSL-2, 2014).  Readers are referred to Appendix H for examining 

the exact number of calls to PD or PA. Open_SSL Overhead part is designated as 

Overhead Factor (OHF) in the formula. 

Table 32. Formulation of OpenSSL Exponentiation Function 
Unit Under Test Formula Unit of 

Measurement 
OpenSSL 
Exponentiation 
Function 

OpenSSL_EF = 520(PD) + 104(PA) + OHF PD, PA, 
OHF 
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The following three tables list the results of EF, PD, PA by BOCHS: 

Table 33. Finding of OpenSSL Exponentiation Function by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
OpenSSL_EF 449,033   MULq 
OpenSSL_EF 470,443   MOVq 

 
Table 34. Finding of OpenSSL Point-Doubling by BOCHS 

Unit Under Test MIN TYP MAX Unit of 
Measurement 

OpenSSL_PD 455   MULq 
OpenSSL_PD 428   MOVq 

 

Table 35. Finding of OpenSSL Point-Adding by BOCHS 
Unit Under Test MIN TYP MAX Unit of 

Measurement 
OpenSSL_PA 1114   MULq 
OpenSSL_PA 843   MOVq 

 

From tables 33, 34, and 35 above, the cost formulas of OpenSSL EF and Overhead Factor 

(OHF) now can be derived: 

Table 36. Formulation of OpenSSL Exponentiation Function, Complete 
Unit 
Under 
Test 

Formula Unit of 
Measurement 

PD OpenSSL_PD ≈  455(MULq) + 428(MOVq) MULq, MOVq 
PA OpenSSL_PA ≈  1114(MULq) + 843(MOVq) MULq, MOVq 
EF OpenSSL_EF = 352,516(MULq) + 310,232(MOVq)  

+ OHF 
MULq, MOVq 

OHF OpenSSL_OHF ≈  96,517(MULq) + 160,211(MOVq) MULq, MOVq 
OpenSSL 
EF 

OpenSSL_EF  ≈ 
520(OpenSSL_PD)+104(OpenSSL_PA) 
+OpenSSL_OHF 
 
(OpenSSL_OHF = Overhead Factor) 

PD, PA, 
OHF 
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Analysis of NSS vs. OpenSSL Exponentiation Function 

 From the data in Table 29 and Table 36, it is apparent that the length of computing 

time for NSS was longer than OpenSSL in a magnitude of at least 4 to 1.  

   NSS_EF ≈  1,461,962(MULq) + 2,744,501(MOVq) 

   Open_SSL_EF ≈  449,033(MULq) + 470,443(MOVq) 

This 4:1 computing ratio was not correctly shown in the theoretical work of (Brown et 

al., 2001), or (Cohen et al., 1998), or any other publications found in the literature review. 

Instead, if one summarizes the total arithmetic expenditures in the exponentiation 

function, he would find them to be 3668M + 3668S per (Cohen et al., 1998; Brown et al., 

2001); and 2983M + 3275S per Bernstein's explicit formulation (EFD_Double, 2001; 

EFD_Add, 2007). From these explicit formulations, two metrics multiplications (M) and 

squarings (S) are the main coefficients of the cost equation to measure the performance of 

elliptic-curve point-multiplication kP residing in projective domain. Using these metrics, 

the cost ratios between NSS and OpenSSL would be far off as compared to the ones 

derived from BOCHS, or PAPI, or even from commonly used clock() function. The 

comparisons between explicit formulation, BOCHS, PAPI, and Clock() are summarized 

in Table below. The model of computing platform was of type A (see Appendix R).  

Table 37. Analysis of OpenSSL vs. NSS Exponentiation Function, Test Vector A 
Evaluation Method Used for 
Unit Under Test 

NSS 
 

OpenSSL 
 

Cost Ratio 
NSS:OpenSSL

Explicit Formulation Metric M 3668 2983 1.25:1 
Explicit Formulation Metric S 3668 3275 1.12:1 
BOCHS, MULq 1,461,962 449,033 3.25:1 
BOCHS, MOVq 2,744,501 470,443 5.83:1 
PAPI, Number of Instructions 26,710,515 3,814,259 7:1 
PAPI, Number of Clocks 15,230,372 2,939,649 5.18:1 
Clock(), absolute time in mili Seconds 5101 909 5.6:1 
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By PAPI, the number of instructions and the number of cycles are found by executing 

OpenSSL PEPMA under host OS. 

 

Figure 37. Result of 5-bit Windowing Exponentiation Service in OpenSSL 

The outputs shown above are the results of computation with specific input test vectors as 

follows: 

k=1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BF
A9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FD
CB1 
 
x=1D5C693F66C08ED03AD0F031F937443458F601FD098D3D0227B4BF62873AF50
740B0BB84AA157FC847BCF8DC16A8B2B8BFD8E2D0A7D39AF04B089930EF6DA
D5C1B4 
 
y=144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818E
D037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC0
1823 
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and the modulus for modulo arithmetic is: 
 
m=1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFF 
 

The unrealistic calculation from existing theoretical work has happened due to the fact 

that OpenSSL did apply 58-bit on multi-digit number whilst NSS used half-digit (32-bit) 

representation (See System Architecture, section 1.2.1, or Research in Numeric 

Presentation and Computation, section 2.5). Table 36 showing the overhead factor in 

doing EF for OpenSSL was also lower than for NSS, but it is still a significant computing 

cost contributing to the overall efficiency equation.  

  NSS_OHF ≈  412,914(MULq) + 657,933(MOVq) 

  OpenSSL_OHF ≈  96,517(MULq) + 160,211(MOVq) 

None of these found differences were possible without the constructed formulations and 

verifications from BOCHS/PAPI. The improvement of efficiency for PEPMA can be 

effectively located by examining those comparative formulations and the findings 

presented throughout this section. The results show that there are effective ways to 

improve PEPMA’s efficiency based on these empirical comparisons. The findings and 

analyses also have shown to account for "data/memory move" metrics to candidly 

evaluate PEPMA's efficiency. 
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Finding of NSS Pre-computation 

 The Pre-computation is an additional cost to perform exponentiation function since 

the PRE-COMP table must be computed before entering EF. The performance evaluation 

must account for this cost to gain more accuracy. During the processing of exponentiation 

function, one of the significant costs is to compute the sub-exponentiation function be, 

where b is a number of bits w (window width) extracted from scalar k, and the exponent e 

is any small positive integer (0...15 etc.) The most common method for computing the 

sub-exponentiation function be is the sliding window approach, which enhances the 

efficiency at the expense of pre-computation efforts. As shown in the Methodology 

chapter, Figure 18 provides an idea of the sliding-window: The Network Security 

Services (NSS, 2013) applied a 4-bit sliding-window on the scalar k in PEPMA's 

exponentiation service. Additionally, as shown in Figure 20 and also in the Methodology 

chapter, OpenSSL applied a 5-bit window on the scalar k. However, Figure 18, Figure 20 

and the associated information presented in the methodology were just a preliminary 

investigation which contained incomplete/undefined data. This section recorded the 

findings of Exponentiation Function (EF) and provided descriptions/explanations of the 

differences between preliminary investigation and findings of this function. 

Table 38. Finding of NSS Pre-computation 
Parameters NSS 

Preliminary
 

NSS 
in version 
3.12.4 

Window Width 4-bit 4-bit 
Shift Direction Right-to-left Right-to-left 
Pre-computation of Elliptic-curve point 16 

Note 1 
16 
Note 2 
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Analysis of Pre-computation 

NSS Pre-computation: 

 Note 1: Out of sixteen Elliptic-curve points, two Elliptic-curve points do not need 

the computation: Elliptic-curve point zero and Elliptic-curve point P itself. Effectively, 

there were only fourteen Elliptic-curve coordinates (X, Y, Z), or 14 × 3 = 42 coordinates 

(coordinates are multi-digit-numbers) to be computed since an Elliptic-curve point in the 

projective domain has three coordinates (X, Y, Z). 

Note 2: Same as above. 

The NSS 4-bit exponentiation windowing requires a pre-computing of 15 Elliptic-curve 

points (pre = before entering exponentiation loop). The 15-point pre-computation calls 

point-doubling (PD) or point-adding (PA) services to calculate k(x, y) using k = 2 to 15, 

and the coordinates (x, y) are the base coordinates of the cyclic subgroup of the chosen 

Elliptic curve. When k = 1, the pre-comp coordinates are actually the base point itself; 

thus, it requires no computation, just storing the coordinates in the table PRE-COMP. 

 

Figure 38. 4-bit Pre-comp Indexing Method used in NSS 
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During the exponentiation computation in the loop, k slides from right to left (bottom to 

top as shown) and 4 bits are extracted for indexing into the PRE-COMP table. The PRE-

COMP value p(x, y) will be used for point-adding if the index is non-zero (1...15); 

otherwise, a zero-value table index will signify a "No-Add" condition. The 15-point, pre-

computing function makes service calls to 1 point doubling and 13 point-adding functions 

to completely fill the 15-point recomputed table. 

Table 39. NSS Pre-computation Values in PRE-COMP Table 
Table 
Index 

x coordinate 
(Affine) 

y coordinate 
(Affine) 

Comment 

0 0 0 Infinity Point in Affine 
No-Add condition 

1 p(x) p(y) Base point 
2 2p(x) 2p(y) Doubling of (x, y) 
3 3p(x) 3p(y)  
4 4p(x) 4p(y) Doubling(Doubling of (x, y)) 
5 5p(x) 5p(y)  
6 6p(x) 6p(y)  
7 7p(x) 7p(y)  
8 8p(x) 8p(y) Doubling(Doubling(Doubling of (x, y))) 
9 9p(x) 9p(y)  
10 10p(x) 10p(y)  
11 11p(x) 11p(y)  
12 12p(x) 12p(y)  
13 13p(x) 13p(y)  
14 14p(x) 14p(y)  
15 15p(x) 15p(y)  

 

Data in Table 39 uncovered that an improvement to NSS implementation can be achieved 

by doing three point-doublings (at table index 2, 4 and 8) and eleven point-addings. 

 Building the pre-computed table is done outside the computation loop. The point-

adding function then uses the 4-bit window taken from k to index into the table without 

the need to call point-adding four times. This reduces calling the point-adding function by 

4:1 (131 × 4 = 524). 

 



132 

Table 40. Finding of OpenSSL Pre-computation 
Parameters OpenSSL 

Preliminary
(Ver 1.0.1) 

OpenSSL 
in version 
2.0.5 

Window Width 5-bit 5-bit 
Shift Direction Right-to-left Right-to-left 
Pre-computation of 
Elliptic-curve point 

32 
Note 3 

16 
Note 4 

 

Note 3: The description of this value was incomplete in the preliminary investigation. 

The pre-computation of Elliptic-curve points should have been sixteen. Negation of these 

coordinates (X, Y, Z) makes thirty two vectors. NSS did not use this method.  

Note 4: In performing the computation of exponentiation function where the negation is 

relatively easy, the binary signed representation (using +1, −1, 0) is meaningful because 

this method can decrease the amount of required pre-computation. The best signed 

representation is Non-Adjacent-Form (NAF), where the term "non-adjacent" implies 

there will not be any two bits "1" located right next to each other (0110 is not a NAF, 

etc.) As a result, the required pre-computation routines are reduced in half because the 

negative number is just a sign-changing (negation) of the positive number. This bit 

encoding enhances the efficiency of pre-computation since the pre-comp table now has 

only half of it. Even though OpenSSL used 5-bit sliding windows for computation of 

Exponentiation Function, there were only sixteen pre-computed values since OpenSSL 

implementation applied the binary signed representation as described above. The 14-

point pre-computing function makes service calls to 1 point doubling and 13 point-adding 

functions to fill the 16-point pre-computed table. The point-adding function then uses the 

5-bit window taken from k to index the table without the need to execute point-adding 

five times. This reduces calling the point-adding function by 5:1 (104 × 5 = 520). 
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Finding of NSS/OpenSSL Projective to Affine Transformation  

 The Projective to Affine Transformation (PAT) is the last step to be executed inside 

an Exponentiation Function. The PAT procedure converts a final computation of Elliptic-

curve coordinates (X, Y, Z) in projective domain back into the Cartesian coordinates. The 

results are two affine coordinates (x, y). Afterward, this conversion completes the scalar 

multiplication function k(x, y) and returns the two affine values (x, y) to the caller of EF 

function. The concept of PAT is shown in Figure 4, in (NSS PEPMA, 2013; OpenSSL 

PEPMA, 2013; Cohen et al., 2006), and in "Concept of Point Computation in Projective 

Domain" of the literature reviews chapter. Table 41 shows the real-time costs for 

computing PAT in NSS/OpenSSL with vectors type A (see Appendix O).  

Table 41. Real-time Samplings, Function PAT in NSS/OpenSSL, Vectors Type A 
Iteration NSS PAT 

TOT_CYC 
OpenSSL PAT 

TOT_CYC 
NSS PAT 
TOT_INS 

OpenSSL PAT 
TOT_INS 

1 164,904 208,209 285,500 306,445 
2 163,525 206,878 285,500 306,445 
3 163,631 207,377 285,500 306,445 
4 163,281 209,220 285,500 306,445 
5 162,703 209,184 285,500 306,445 

 

Analysis of NSS/OpenSSL Projective to Affine Transformation 

 The difference of computational cost between two Projective to Affine 

Transformations, NSS and OpenSSL was not significant. Given that both NSS and 

OpenSSL must execute an inversion in PAT procedure, the results in Table 41 suggested 

that the computing cycles were mostly consumed by the 521-bit inversion routine. Since 

both NSS and OpenSSL PEPMA calculate the inversion of a number in spatial domain 

using an extended Euclidean algorithm (Hankerson, 2004, p. 39), the results suggested 

that further improvement for efficiency could not be done easily. 
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Finding of the Compliance Metric 

 The Compliance Metric (CM) of NSS PEPMA or OpenSSL PEPMA measures the 

compliance of computing modules to the Federal Information Processing Standard, FIPS-

140-2 (FIPS-140-2, 2001). According to the records from the Cryptographic Algorithm 

Verification Program for certifying NSS/OpenSSL cryptographic modules (CAVP NSS, 

2010; CAVP OpenSSL, 2012), both NSS and OpenSSL have received a variety of FIPS-

140-2, security level 1, 2 and level 3 certifications. 

Table 42. Finding of NSS/OpenSSL Compliance Metric, Level 1 
Level Description NSS OpenSSL 
Overall Complied to 
FIPS-140-2 Security 
Level 1 

Validation date: 
12/28/2010 
Software Version: 
3.12.4 

Validation date: 
06/27/2012;07/09/2012;07/18/2012; 
10/24/2012;01/22/2013;02/06/2013; 
02/22/2013;02/28/2013;03/28/2013; 
05/16/2013;06/14/2013;08/16/2013; 
08/23/2013;11/08/2013;12/20/2013; 
06/27/2014;07/03/2014 
Software Version: 2.0, 2.0.1, 2.0.2, 
2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7 

PEPMA Complied 
to FIPS-140-2 
Security Level 1 

Validation date: 
12/28/2010 
Software Version: 
3.12.4 
ECDH, ECDSA 
Cert. # 1280 

Validation date: 07/03/2014 
Software Version: 2.0.7 
Module Elliptic-curve Diffie-Hellman 
Cert #1747 
 

 

NSS Certification 

 The NSS software cryptographic modules have been validated five times on 

08/29/1997, 1999, 2002, 2007, and 12/28/2010 (certificate #1280 including ECDH 

module) for conformance to FIPS-140-1 and FIPS-140-2 at security levels 1 and 2. 

Additionally, NSS was the first open source cryptographic library to receive FIPS-140 

validation.  
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OpenSSL Certification 

 The OpenSSL version v2.0.7 has been validated on 07/03/2014, and the passing 

grades were recorded in FIPS 140-2 certificate #1747 (FIPS-1747, 2014). Although the 

software library version v2.0.7 is compatible with previous OpenSSL libraries (including 

versions 2.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.0.5, and 2.0.6), it is important to note that the 

FIPS 140-1 or FIPS 140-2 certificate applies only to the version that was submitted for 

validation. 

Formulation 

 The compliance metric for either NSS or OpenSSL is a complex matter, and the 

interpretation of these metrics might be subjective; thus, a quantitative verification using 

BOCHS or PAPI is not applicable for this unit-under-test. To simplify the research, the 

result of compliance is set to either "true" if PEPMA's technical risk assessment was low, 

or set to "false" if PEPMA's technical risk assessment was high. There is no comparison 

of compliance between NSS and OpenSSL. Nonetheless, the findings and formulations 

listed here still form the basis of a formal performance evaluation approach. Based on 

such a formal process to verify compliance, a more concrete closing conclusion about the 

performance may be drawn. 

 For the purpose of evaluating NIST 521-bit prime-field PEPMA, the Compliance 

Metric (CM) result was quantized to "low" from three available levels: low, moderate, 

and high according to the DoD source-selection procedure (Source-Selection, 2011). 

   Table 43. Formulation for Compliance Metric 
Unit Under Test Formula Comment 
NSS CM CM=low NSS has complied with FIPS. It has little 

potential to cause degradation of 
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performance 
OpenSSL CM CM=low OpenSSL has complied with FIPS. It has 

little potential to cause degradation of 
performance 

Analysis of Compliance Metric 

 Since the judgment to determine the compliance is subjective, we discuss the 

rationale of the judgment to accept the compliance of a product in a specific military case 

study; and then apply the same evaluation method to this research. Readers should bear in 

mind that the analyses presented here are only a representation, which should provide 

somewhat meaningful evaluation results in a cryptographic application. With that said, 

the following process used by the US Department of Defense (DoD) could describe the 

compliance scenario for cryptographic module like PEPMA:  

 The DoD often solicited a Request for Proposal (RFP) publicly to fulfill an 

operational product requirement, after which the military procurement authorities 

normally follow a formal source-selection process to analyze/judge the proposals made 

by  potential providers. As stated in the DoD source-selection procedures (Source-

Selection, 2011), one of the assessments in the source-selection process is the technical 

risk. The term “technical,” as used throughout the source-selection document, refers to all 

non-cost factors.  

Table 44. Technical Risk Ratings 
Rating Description 
Low Has little potential to cause disruption of schedule, increased cost or 

degradation of performance. Normal contractor effort and normal 
Government monitoring will likely be able to overcome any difficulties. 

Moderate Can potentially cause disruption of schedule, increased cost or  
degradation of performance. Special contractor emphasis and close  
Government monitoring will likely be able to overcome difficulties. 

High Is likely to cause significant disruption of schedule, increased cost or  
degradation of performance. Is unlikely to overcome any difficulties,  
even with special contractor emphasis and close Government monitoring. 
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With respect to the rating of technical risk, the assessment of technical risk manifested by 

the identification of weaknesses, which have the potential for  disruption of schedule, 

increased costs, degradation of performance, increased Government oversight, or the 

likelihood of unsuccessful contract  performance. Technical risk shall be rated using the 

ratings listed in Table 44 (Source-Selection, 2011, p. 16). 

 In a specific case study, the DoD did not have any intention to evaluate/prove the 

validity of compliance submitted from the potential contractor. It is the potential offerer's 

sole responsibility to obtain certification from a third-party prior to submitting the 

proposal. The DoD only reviewed the “proof” of certification of technical factors and 

accepted it as a "passing" condition.  

 As advocated in the source-selection procedures, the technical factors may be 

divided into subfactors that represent the specific areas that are significant enough to be 

discriminators and to have an impact on the source-selection decision. When subfactors 

are used, the evaluator should establish the minimum number necessary for the 

evaluation of proposals. The following technical subfactos are believed to be applicable 

to the performance evaluation of PEPMA: 

 The Federal Information Processing Standards FIPS-140, entitled “Security 

Requirements for Cryptographic Modules,” described the government requirements for 

sensitive but unclassified products in terms of security and information assurance. The 

FIPS standards are published by the National Institute of Standards and Technology 

(NIST) and have been adopted by the Canadian government’s Communications Security 

Establishment (CSE, 2014). The security requirements for cryptographic modules also 

have been adopted in the financial community through the American National Standards 
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Institute (ANSI, 2001; ANSI, 2005). Since NSS and OpenSSL PEPMA cryptographic 

modules have adhered to some reasonable security requirements (i.e., implementing 

FIPS-approved algorithms), they are better suited for more accurate analysis than 

general-purpose computing systems. As such, PEPMA cryptographic with FIPS-140 

ratings could provide a valuable measurement of the security controls and system 

information assurance in place for a given cryptographic module. 

      From 1994 to 2014, NIST has released three versions of FIPS-140 publications. The 

first version, (FIPS-140-1, 1994), was issued on 11 January 1994. This version was 

developed by the US government and a commercial working group and subsequently 

approved by the Secretary of Commerce. For security level 1, the FIPS 140-1 

specification identified seven inspection areas as listed in Table 45 below. 

Table 45. Compliance Metric, Seven Inspection Areas, Security Level 1 
Area Unit Under Test Comment 
1 Crypto Module Product specification 
2 Module Interface Information flow 
3 Roles & Services  Definition of module’s roles and services 
4 Finite-State Model How module transitions occur 
5 Software Security Specification of the software design 
6 Key Management FIPS approved generation/distribution techniques 
7 Cryptographic 

Algorithms 
FIPS approved cryptographic algorithms for protecting 
unclassified information 

 

NIST operates both the Cryptographic Algorithm Validation Program (CAVP, 2013) and 

the Cryptographic Module Validation Program (CMVP) where CAVP is a prerequisite to 

CVMP. This way, NIST ensures that cryptographic modules have been implemented 

correctly prior to validating their security properties. Together, these programs provide an 

organization with a framework to orderly certify cryptographic products against the 

FIPS-140 standards. Under such guidance for certification, NSS or OpenSSL applicants 
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have already followed at least four product requirements: (a) design a product that is 

compliant with the selected FIPS-140 standard, (b) prepare the documentation required 

for certification, (c) submit the product and documentation to an accredited testing 

laboratory (CAVP LABS, 2014), and (d) submit test results from the laboratory to NIST 

(or the Canadian government’s Communications Security Establishment) for 

governmental approval of usage, and to receive a certification number. 

  In 2014, all tests under the Cryptographic Algorithm Verification Program (CAVP, 

2013) are currently handled by 21 third-party laboratories that are accredited as 

cryptographic module testing laboratories (CAVP LABS, 2014) and by the National 

Voluntary Laboratory Accreditation Program. However, it is imperative to recognize that 

the testing laboratory could derive some of the test results from the seven inspection areas 

(listed in Table 45) using empirical experiments in which the results might never be fully 

proven. Such results can only support a passing hypothesis or can invalidate the entire 

validation process. Thus, while evaluating the compliance for cryptographic NSS or 

OpenSSL PEPMA, one could either support the passing score or reject the compliance 

based on seven inspection areas as shown in Table 45. 

 The second version, (FIPS-140-2, 2001), was issued on 25 May 2001. This version 

took into account changes in computing technologies and suggestions received from the 

communities since its first release in 1994. FIPS 140-2 defines four levels of security for 

cryptographic modules: security levels 1 through 4 as shown in Table 46.  
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Table 46. Compliance Metric, Security Level 
Security Level Summary of Qualification 
FIPS-140-2 Level 1 
Lowest security 

At least one approved algorithm or approved security function 
used. No specific tampering detection or intrusion prevention 
mechanisms employed 

FIPS-140-2 Level 2 Level 1 + Module must show evidence of tampering or 
intrusion 

FIPS-140-2 Level 3 Level 2 + Module must prevent intruder from gaining access 
FIPS-140-2 Level 4, 
highest security 

Level 3 + Provide reliable level of intrusion detection and 
prevention system 

Several security requirements pertaining to each security level have been incorporated 

into Version 2. This addition was the direct result of the feedbacks from the communities. 

The rationale for having different levels of security follows: The total number of 

cryptographic service modules is usually large. This is certainly true in the case of NSS 

or OpenSSL which has been around the industry for decades (NSS, 2013; OpenSSL, 

2013). The security aspects of these modules are complex and costly for verification and 

validation. Thus, not all modules can be certified at once. Instead, only special FIPS 

object modules have been derived from un-certified core components and brought in for 

certification at the third-party laboratories such as (CAVP LABS, 2014). These FIPS 

object modules were carefully designed with specific compilation instructions so that the 

certification can be transferred with minimal effort to the products applying 

NSS/OpenSSL cryptographic service modules. 

 As shown in Table 42, both NSS and OpenSSL have gone through several certifying 

iterations and have been working well in the fields. The evidence of having inspections in 

seven or more areas covering Elliptic-curve Diffie-Hellman and Elliptic-curve Digital 

Signature Algorithm indicated that both NSS or OpenSSL PEPMA implementations are 

believed to be adequately stable; and that the codes can be applied to Elliptic-curve 

public key exchange cryptography to ensure authenticity in the public key infrastructure.  
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 The third version, FIPS 140-3, is currently under development this year. In the first 

draft, NIST introduced one additional security level: information assurance (level 5) and 

two new power analyses to measure the signal leakages (Simple Power Analysis and 

Differential Power Analysis). We discuss these new security aspects with respect to the 

performance of PEPMA as follows: 

One way to add dimension to the performance evaluation is to leverage the measurements 

of outliers, that is, coding practices which produced signal patterns, or use of data outside 

of the norm.  According to Herrmann (2007) and Fenton (1996), the compliance to 

federal standards could detect and correct outliers and thus contribute to the overall 

performance of NSS/OpenSSL PEMA. Per Keyes (2005), further analysis of CM showed 

that any service modules that have adequately complied tend to have lower complexity 

and will eventually lead to better performance in the field. Thus, it is imperative to accept 

that these new security aspects in FIPS-140-3 might contribute to PEPMA’s overall 

performance if one chooses to emphasize the importance of information assurance level 

5. In this evaluation, we did not emphasize the importance of information assurance 

toward the combined key performance indicator for both NSS and OpenSSL; thus, for the 

design of cryptographic modules, the technical risk level is still believed to be low for all 

intended purposes of the performance evaluation of PEPMA.  
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Finding of Cyclomatic Complexity Metric 

 The Cyclomatic Complexity measures the structural complexity of NSS or 

OpenSSL PEPMA’s software modules. The terminology "Static Complexity Metric" was 

used in the older literature (IEEE 982.1, 1988, p. 23; IEEE 982.2, 1988, p. 60); however, 

the term "Cyclomatic Complexity" is more commonly used today. Readers are referred to 

NIST Special Publication 500-235 (Watson & McCabe, 1996) for a more detailed 

discussion of Cyclomatic Complexity Metric. 

 This section is the follow-up from the previous methodology chapter, which already 

constructed the Static Complexity Metric (SCM) in terms of the number of edges, E; 

number of nodes, N; and a constant 1: 

SCM = E – N + 1 

Before proceeding to evaluate the Cyclomatic Complexity Metric (CCM) with respect to 

PEPMA, it will be necessary to adjust the constant 1, which assumed the number of exit 

path to be a loop-back to itself. If the number of exit path, P, is other than a loop-back, 

then the SCM formula becomes: 

       CCM = E – N + 2P 

The following tables present the findings for NSS Cyclomatic Complexity Metric of 

Point-Doubling (PD), and Point-Adding (PA). Both PD and PA were called by two 

functions: Exponentiation Function and Pre-computation. 

Table 47. Findings of NSS Cyclomatic Complexity Metric of PD 
Coefficients of 
NSS Cyclomatic Complexity 
of Point-Doubling Function 

MIN TPY MAX Unit of 
Measurement 

E = number of edges 123   Scalar 
N = number of nodes 82   Scalar 
P = number of exit paths 1   Scalar 
CCM_NSS_PD 43   Scalar 
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Table 48. Findings of NSS Cyclomatic Complexity Metric of PA 
Coefficients of 
NSS Cyclomatic Complexity 
of Point-Doubling Function 

MIN TPY MAX Unit of 
Measurement 

E = number of edges 90   Scalar 
N = number of nodes 60   Scalar 
P = number of exit paths 1   Scalar 
CCM_NSS_PA 32   Scalar 

 

Formulation 

 The formulations of CCM were derived from the coefficients of Cyclomatic 

Complexity:  

Table 49. NSS CCM Formulations 
Sub-Module Formula Unit of 

Measurement
NSS PD CCM = 123 - 82 + 2 E, N, P 
NSS PA CCM = 90 - 60 + 2 E, N, P 

 

The following tables present the findings for OpenSSL Cyclomatic Complexity Metric of 

Point-Doubling (PD), and Point-Adding (PD). Both PD and PA were called by two 

functions: Exponentiation Function and Pre-computation. 

Table 50. Findings of OpenSSL Cyclomatic Complexity Metric of PD 
Coefficients of 
NSS Cyclomatic Complexity 
of Point-Adding Function 

MIN TPY MAX Unit of 
Measurement 

E = number of edges 34   Scalar 
N = number of nodes 34   Scalar 
P = number of exit paths 1   Scalar 
CCM_OpenSSL_PD 2   Scalar 

 
 

Table 51. Findings of OpenSSL Cyclomatic Complexity Metric of PA 
Coefficients of 
Cyclomatic Complexity 

MIN TPY MAX Unit of 
Measurement 

E = number of edges 73   Scalar 
N = number of nodes 71   Scalar 
P = number of exit paths 1   Scalar 
CCM_OpenSSL_PA 3   Scalar 
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Formulation 

 The formulations of CCM were derived from the coefficients of Cyclomatic 

Complexity:  

Table 52. NSS CCM Formulations 
Sub-Module Formula Unit of 

Measurement
OpenSSL PD CCM = 34 - 34 + 2 E, N, P 
OpenSSL PA CCM = 73 - 71 + 2 E, N, P 

 

Analysis of  Cyclomatic Complexity Metric 

 The cyclomatic complexity of PEPMA source code is the counting of linearly 

independent paths through the service module (Watson & McCabe, 1996). A simple case 

example is when CCM=2. If the PEPMA source code does not have any decision 

branching such as an "if" statement, then the Cyclomatic Complexity Metric CCM equals 

to 2, since there exists only one edge (E=1), one node (N=1), and one exit path (P=1) 

throughout the module. However, if the PEPMA service module has an "if" statement, 

there will be three edges through the code: one edge where the "if" statement is evaluated 

as a "true" and two edges where the "if" statement is evaluated as a "false." In this case, 

E=3, and N equals to 2. Thus CCM = 3. Simply, the Cyclomatic Complexity Metric = ( 

ifs + loops + cases − return + 2 ) 

 Prior studies of cyclomatic complexity have shown a correlation between a 

program's structural complexity and its testability. The scalar level of cyclomatic 

complexity suggests that a software module of higher complexity tends to produce higher 

probability of errors when fixing or enhancing the source code. Thus a high level of CCM 

denotes a service module that exhibits lower reliability, a difficulty to test, more costs to 
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certify, and a difficulty to maintain. Hence, a higher level of CCM can be thought of in 

terms of lower performance, and vice versa. The Software Engineering Institute (SEI, 

1997, p. 147) established the thresholds of CCM as follows: 

Table 53. CCM Level 
CCM Level Complexity Risk 
1-10 Simple Module Not much risk 
11-20 Moderate Complex Module Moderate risk 
21-50 Complex Module High risk 
51-above Very complex, untestable Very high risk 

 

The comparison of coding complexity between NSS and OpenSS were made using 

Cyclomatic Complexity Metrics with the thresholds of CCM as shown above. 

Table 54. Comparison between NSS and OpenSSL CCM 
Sub-Module CCM_NSS CCM_OpenSSL Comment 
PD 43 2 NSS PD Module has higher risk 
PA 32 3 NSS PA Module has higher risk 
PD+PA 75 5 Used for calculating cKPI 
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Findings of Weighted Information Flow Complexity 

 The Weighted Information Flow Complexity (WIFC) measures inter-module 

structural complexity. The detailed characteristics of WIFC can be found in (Herrmann, 

2007, p. 121; IEEE 982.2, 1988, p. 74). 

lengthfanoutfanin  2)(WIFC  

where: 

fanin = Number of sinking capability into the module (module loading) 

fanout = Number of sourcing capability from the module (module supplying) 

length = Number of source statements in the module 

The following tables present the findings for NSS/OpenSSL Weighted Information Flow 

Complexity of Point-Doubling, PD, and Point-Adding module, PA. The values of fanin 

and fanout were derived from NSS/OpenSSL Exponentiation Function and pre-

computation as the callers to PD or PA. 

Table 55. Findings of NSS Information Flow Complexity of PD 
Coefficients of 
Information Flow Complexity 

MIN TYP MAX Unit of 
Measurement 

fanin 2 2 2 Scalar 
fanout  12 12 Scalar 
length   58 Scalar 
NSS_WIFC_PD   33408 Scalar 

 

Table 56. Findings of NSS Information Flow Complexity of PA 
Coefficients of 
Information Flow Complexity 

MIN TYP MAX Unit of 
Measurement 

fanin 2 2 2 Scalar 
fanout  11 11 Scalar 
length   45 Scalar 
NSS_WIFC_PA   21780 Scalar 
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Table 57. Findings of OpenSSL Weighted Information Flow Complexity of PD 
Coefficients of 
Weighted Information Flow 
Complexity 

MIN TYP MAX Unit of 
Measurement 

fanin 2 2 2 Scalar 
fanout  14 14 Scalar 
length   33 Scalar 
OpenSSL_WIFC_PD   8448 Scalar 

 

Table 58. Findings of OpenSSL Weighted Information Flow Complexity of PA 
Coefficients of 
Weighted Information Flow 
Complexity 

MIN TYP MAX Unit of 
Measurement 

fanin 2 2 2 Scalar 
fanout  14 14 Scalar 
length   68 Scalar 
OpenSSL_WIFC_PA   17408 Scalar 

 

Analysis of Weighted Information Flow Complexity (WIFC) 

 The high level of information flow complexity indicates a possibility for broader 

testing or major redesign. Additionally, the usage of WIFC might offer the following 

advantages: (a) controlling the service modules with improved efficiency, (b) enabling 

improvement in terms of complexity and flow content, and (c) more accuracy in 

performance comparison. In short, the WIFC is another important performance factor of 

PEPMA, which contributes to the overall performance evaluation.  

 The fanin coefficient of WIFC is the number of other modules calling to the unit-

under-test; thus, fanin indicates the sinking capability. The fanout is the number of other 

modules being called by this unit-under-test; hence, it is the sourcing capability of the 

unit-under-test. 
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The high level of fanin indicates a better design structure of the module.  A higher fanin 

level also reveals that the unit-under-test has been called heavily. The fanin parameter 

also shows the re-usability, and thus, it can help the code implementer to reduce 

redundancy during coding. 

  The fanout coefficient indicates the coupling between this unit-under-test and other 

modules in the system. A high level of fanout means a highly coupled module. A high 

level of fanout also indicates that the unit-under-test depends highly on the other module; 

thus, a high level of fanout indicates a poor design structure. A high level of fanout also 

increases the cost to maintain. Any code changes in the module will require modifications 

to the other modules and thus directly contribute to the increased level of maintenance. 

 Since the number of source-code statements can vary widely, the module can be 

very simple or very complex. This suggests that the metric WIFC is to be weighted with 

coefficient length. Readers are referred to the literature from (Herrmann, 2007, p. 121; 

IEEE 982.2, 1988, p. 74) for more descriptions of this parameter. A comparison between 

NSS and OpenSSL CCM  is shown below. 

  Table 59. Comparison between NSS and OpenSSL WIFC 
Sub-Module WIFC_NSS WIFC_OpenSSL Comment 
PD 33408 8448 NSS PD Module has higher 

information flow complexity 
PA 21780 17408 NSS PA Module has higher 

information flow complexity 
PD+PA 55188 25856 Use in cPKI 
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Finding of Module Maturity Index 

 The Module Maturity Index (MMI) measures the effect of changes from one 

software module baseline to the next. The findings of MMI were derived with two 

different software versions based upon a general discussion in (Herrmann, 2007, p. 121), 

as originated in standards (IEEE 982.1, 1988, p. 19; IEEE 982.2, 1988, p. 51), or as 

described in other standards (IEEE 982.1, 2005, p. 26). 

M

D)C(AM
MMI


  

M = Number of modules in the baseline 

A = Number of added modules from baseline 

C = Number of changed modules from baseline 

D = Number of deleted modules from baseline 

 

Table 60. Module Maturity Index, NSS 
MMI Coefficient NSS Version 3.12.4 NSS Version 3.16.1 
M 1758 1785 
A 0 27 
C 0 0 
D 0 0 
NSS_MMI 1 0.98 

 

Table 61. Module Maturity Index, OpenSSL 
MMI Coefficient OpenSSL Version 

FIPS 1.2.3 
OpenSSL Version 

FIPS 2.0.5 
M 980 1044 
A 0 64 
C 0 197 
D 0 389 
OpenSSL_MMI 1 0.3 
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Analysis of Module Maturity Index 

 In order to derive the Module Maturity Index, MMI, a side-by-side file comparison 

was set out to work on files with extension *.c and *.h. With these specific settings for 

file filtering, WinMerge – a “file-diff” program – computed six coefficients A, C, D for 

NSS and OpenSSL as shown in tables 60 and 61. From these coefficients, the Module 

Maturity Index for NSS was found to be 0.9, and the MMI for OpenSSL was 0.3. 

Apparently, NSS implementation was more mature than OpenSSL implementation. 

Finding of Functionality Metric 

 The Functionality Metric (FM) measures the interoperability between available 

point-doubling and point-adding functions. There were several alternate arithmetic 

approaches currently available to construct Point-Doubling (PD) and Point-Adding (PA) 

functions in a projective domain. However, the mathematical results of NSS or OpenSSL 

PEPMA are still the same in applying these alternate PA and PD functions. The literature 

(IEEE 982.2, 1988, pp. 70-71) provided a general discussion of this metric. 

Table 62. Functional Metric 
Module Description Interoperable with 
Point Doubling type 1 
(Cohen et al., 1998) 

Used in NSS Point-Doubling 
function 

OpenSSL PD 

Point Doubling type 2 
(Brown et al., 2001) 

Used in OpenSSL Point-
Doubling function 

NSS PD 

Point Adding type 1 
(Brown et al., 2001) 

Used in NSS Point-Adding 
function 

OpenSSL PA 

Point Adding type 2 
(Brown et al., 2001) 

Used in OpenSSL Point-
Adding function 

NSS PA 

Analysis of Functional Metric 

 The Functional Metric indicates that Point-Doubling or Point-Adding functions ─ as 

suggested in (Cohen et al., 1998) or in (Brown et al., 2001) ─ are mathematically 

interchangeable between NSS and OpenSSL. Although there was limited evidence 
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showing the benefit of exchanging modules in terms of efficiency, it is interesting to note 

that in some applications, exchanging modules to gain federal compliance might be 

beneficial.  

Summary of Key Performance Indicators 

 For the metric EMF, equation TOT_INS should include all CPU instructions. For 

instance, one additional coefficient RET in the equation TOT_INS will make the result of 

EMF accurate. This case study is described in Appendix U, and in Appendix V for a 

simple 64 bit multiplication: 

  TOT_INS = MULq + MOVq + RET 

For comparison, one should convert TOT_INS to the total number of CPU cycles. 

However, there is always a “cost of quality” associated with measuring instrumentation 

and modular improvements. Intensive analysis labor for adding more coefficients into the 

BOCHS equations will be required to construct EMF accurately. Consequently, the 

TOT_CYC values approximated by PAPI were applied: 15,230,372 for NSS EF and 

2,939,649 for openSSL EF. Lower PAPI value indicates a better performance. For 

computing the combined key performance indicator, the perform ratio between OpenSSL 

and NSS is 518/100. Higher value indicates a better performance. 

 As shown in Table 42, both NSS and OpenSSL have gone through several certifying 

iterations and have been working well in the fields; thus, the CM performance scores for 

NSS and OpenSSL are even. For computing the combined key performance indicator, the 

CM scores are normalized to 100. 

 Table 54 shows the results of code walk-through and inspection of CCM: 75 for 

NSS and 5 for OpenSSL. Lower values indicate a better performance. For computing the 
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combined key performance indicator, the perform ratio between OpenSSL and NSS is 

1500/100. Higher value indicates a better performance. 

 Table 59 shows the results of code walk-through and inspection of WIFC: 55,188 

for NSS and 25,856 for OpenSSL. Lower value indicates a better performance. For 

computing the combined key performance indicator, the perform ratio between OpenSSL 

and NSS is 213/100. Higher value indicates a better performance. 

 Table 60 and 61 show the MMI values as the results of a side-by-side file 

comparison on the source codes. The final scores are 0.98 for NSS and 0.3 for OpenSSL.  

For computing the combined key performance indicator, the perform ratio between 

OpenSSL and NSS is 33/100. Higher value indicates a better performance. 

 Table 62 shows the results of code walk-through and inspection of FM: the 

performance scores for NSS and OpenSSL are even. For computing the combined key 

performance indicator, the FM scores are normalized to 100. 

Finding of Combined Key Performance Indicator 

 The combined Key Performance Indicator (cKPI) is the final single scalar-value to 

provide the overall performance of PEPMA. It has been shown in Herrmann (2007, pp. 

123-124) that in order to derive the cKPI, the evaluator should determine the importance 

level of each individual performance indicator. Subsequently, the weighted factors can be 

derived from these importance levels. The lack of a proper approach to determine the 

importance level might be a handicap for a practical application; however, in this study, 

an observation that emerged from the findings of importance levels, and weighted factors 

was that EMF usually carries the most weight; but there might be some application where 

the Certification Metric may become a greater governing factor for the performance of 
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PEPMA; thus, the determination of importance levels and weighted factors has been left 

off from this study and should be determined on a case-by-case application. With that 

said, the weighed factors listed in Table 63 on the fifth column were the author’s own 

opinions while working with Certificate and Authority in 2013. 

Table 63. Final cKPI of NSS/OpenSSL PEPMA 
Key 
Performance 
Indicator 

Max 
Value 

NSS 
Score 

(Reference) 

OpenSSL 
Score 

 

Weight 
% 

Subtotal 
(OpenSSL) 

EMF  100 100*15,230,372/ 
2,939,649 

60 311 

CM 100 100 100 15 15 
CCM   100 1500 (normalized) 10 150 
WIFC  100 213  (normalized) 7 15.1 
MMI  100 33 5 1.65 
FM 100 100 100 3 3 
cKPI  100  100 496 

 

A higher cKPI value signifies a better performance as compared to NSS. Overall, 

OpenSSL's performance is 5 times better than NSS's performance. The method for 

calculating a final value of cPKI = 496 was briefly described in methodology section. 

Detailed industry practice and recommendations for calculating a value of cKPI can be 

found at these cited sources (Herrmann, 2007; Hennessy, 2006). 
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Chapter Summary 

 This chapter reports the findings from six units of analyses, associated formulations, 

and analysis of the findings to show evidence that the performance of PEPMA might be 

unknown based on existing theoretical work. More key performance indicators to 

evaluate PEPMA’s efficiency are also presented in the findings, rather than just the three 

metrics (M, S and I) suggested by the existing theoretical work. The findings from two 

studying cases suggested that the efficiency metrics and formal verification method along 

with other key performance indicators (CM, WIFC, CCM, MMI, FM) can be used to 

accurately evaluate the performance of Projective Elliptic-curve Point Multiplication in 

64-bit x86 Runtime Environment. 

 What has emerged in the findings and analysis of the key performance indicators is 

the overall performance of PEPMA, which measured by the combined key performance 

indicator, should be a function based on role-sharing rather than a single dedicated 

performance indicator. The role-sharing relates to the importance of each role, and it 

must be carefully determined on a case-by-case basis. Finally, based on the empirical 

comparison of sub-modules and low-level services, clearly that a formal performance 

evaluation approach will provide a useful tool to enable the code implementers to 

improve PEPMA’s efficiency.  
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Chapter 5 

Conclusion, Implications, Recommendations, and Summary 

 This chapter is organized into five sections. The beginning section titled "Objective 

and Goal" reiterates several main evaluation methodologies and summarizes the purpose 

of this study. The concept of reductionism, which is finding the most fundamental 

metrics and formulations and reducing them to one final result, is central to this research. 

In the section titled “Conclusion,” we present our thoughts regarding reductionism. The 

“Implications” section recapitulates the findings and the results from chapter 4. On 

logical grounds, there is no compelling reason to disagree with the generality of this 

research. Section 3 implies that this research on PEPMA can be realistically expanded 

beyond its original goal and scope. Section 4 “Practical Applications” provides ways to 

apply this study to industry applications; and the section titled “Recommendation” 

provides a recommendation of changes to improve PEPMA’s performance evaluation. 

Lastly, a "Future Work" clause briefly lists out future tasks that could enhance the 

performance evaluation. 

Objective and Goal Review 

 It is becoming increasingly difficult to ignore the fact that network penetration by 

malicious software is getting more sophisticated every day. According to US-CERT, 

more than one hundred thousand damaging intrusion attacks to the U.S. military network 

have occurred every year. This highlights the need for the next-generation public-key 

exchange design to encompass high withstanding capability. This requirement poses a 

major challenge to software professionals who will need to search for an innovative 
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approach to derive longer private keys with the best performance possible. For this 

reason, the main topic of this study was to focus on a specific performance comparison of 

projective Elliptic-curve point-multiplication in a 64-bit x86 runtime environment ─ an 

effort to compare quantitative key performance indicators between two FIPS-certified 

Projective Elliptic-curve Point-Multiplication Agents for the purpose of improving 

PEPMA itself. 

 To realize such empirical comparisons, the research focused on uncovering whether 

the performance of PEPMA might be unknown based on existing theoretical work and 

revealing what metrics should be used to truthfully evaluate efficiency through the use of 

virtual machine and performance hardware counters. After these questions have been 

satisfactorily answered, the evaluator eventually will attempt to seek ways to improve 

PEPMA’s final performance based on such empirical comparisons. 

 In order to fulfill these objectives, we constructed a specific performance 

measurement system that targeted two FIPS-certified PEPMA open-sources: NSS and 

OpenSSL. We used various means to extract the findings. They were found through the 

review of existing industrial documentation and the active contents of cryptographic 

certificates. They were also found by examining NSS/OpenSSL open-source codes, and 

by discovered the efficiency through executable-binaries that run under both host and 

guest Operating Systems. We were able to complete all objectives of this study 

successfully. The ultimate goal of this research was to develop and suggest a repeatable 

and deterministic evaluation approach of the performance of PEPMA.  

 As previously stated in the product requirements, the evaluation approach shall 

provide a detailed framework to construct a better evaluation method with deterministic 
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verification systems. Thus, the final contribution to the field of cryptography is a formal 

and practical evaluation method that can guide the evaluator through the performance 

improvement of PEPMA.  

Conclusion 

 This study provided the following answers to the three research questions posted in 

Chapter 1.  

Research Question 1: Is the performance of PEPMA unknown based on existing 

theoretical work? 

 Case evidence for this question showed that the performance of PEPMA is unknown 

based on existing theoretical work. In order to accurately describe the performance of 

PEPMA, the evaluator should include at least six Key Performance Indicators and 

combine them into a final value cKPI as listed in Table 63. 

 The quantity Efficiency Metric and Formulation was derived from the software 

reviews combined with the usage of a special virtualization technology and hardware 

performance counters. The computational efficiency comparison leveraged around these 

two technologies. 

 The judgment of Compliance Metric is subjective; thus, the research provided a 

discussion for ruling the compliance with respect to the DoD source-selection guide. The 

remaining key performance indicators (CCM, WIFC, MMI and FM) are quantitative 

metrics. They were derived from the manual software reviews. The manual software 

reviews in this study adhered to the code walk-through and software inspection formal 

process as recommended in IEEE standards. 
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Research Question 2: What metrics should be used to truthfully evaluate PEPMA's 

efficiency? 

 NSS/OpenSSL case evidence and data validations from BOCHS and PAPI showed 

that the metric to truthfully evaluate PEPMA's efficiency is the cost equations provided 

by the CPU instruction software counters. The CPU instruction software counters are 

realized with machine virtualization technology, BOCHS. 

 The instruments BOCHS which provided machine virtualization can accurately 

measure the total number of CPU instructions and CPU cycles. It can also indicate what 

types of CPU instruction that PEPMA uses. In short, machine virtualization allowed 

accurate counting each CPU instruction; and at the same time, provided an indication of 

what CPU instructions are being used. By analyzing these parameters in the cost 

equations, the evaluator will be able to determine ways to improve PEPMA’s efficiency 

and targeting precisely which software module can be improved, even without library 

source code. It is also feasible to derive an accurate cost equation by expanding the 

BOCHS software counters to cover all CPU instructions. 

 There is always a “cost of quality” associated with measuring instrumentation and 

improvements. Intensive analysis labor for adding more coefficients into the BOCHS 

equations will be required to construct this metric. 

 The second most accurate metric is the PAPI hardware CPU instruction counter. 

This quantity can be measured quickly and effortlessly but it cannot be used for modular 

improvement. The third accurate metric is the PAPI hardware CPU cycle counter. This 

quantity can also be measured quickly and effortlessly but it, too, cannot be used for 
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modular improvement. All PAPI type measurements are less accurate than BOCH 

instrumentation; however they do complement the construction of cost equations.  

Research Question 3: Are there ways to improve PEPMA’s efficiency based on the 

empirical comparison?  

 Documentation search and/or certificates were used to determine some possible 

areas of improvement with respect to PEPMA’s overall performance. However, the 

primary method of searching for ways to improve efficiency was through the examination 

of NSS/OpenSSL source codes. Subsequently, the cost formulas for the empirical 

comparison and data validation were constructed. Furthermore, PEPMA’s efficiency can 

also be improved by running the executable binaries under both host and guest Operating 

Systems (Virtual Machine using BOCHS) then comparing the results to the program 

outputs. 

In general, the reductionism method is a powerful approach for studying and improving 

complex mathematical systems ─ systems such as PEPMA. This is an approach to 

comprehend each level of complexity in terms of the next lower level; and perhaps, this is 

the traditional philosophy of reductionism simply stated: "Let us find the most 

fundamental parts and laws." Gell-Mann (1996) and Morowitz (2002) further see the 

complex system that always possesses multiple complexities; and such complexities 

always reside scattering in an extended space of dimensionalities.  

 While the introduction, literature review, and methodology sections already 

provided some evidence to describe those complexities, the findings from six units of 

analyses in the results chapter have uncovered those extended spaces of dimensionalities. 

The exploration of findings has shown concrete facts that the performance of PEPMA 
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was incomplete based on existing theoretical work, which operates and resides only in a 

one-dimensional metric. Additionally, together with the findings, the constructed 

formulas and multiple data analyses have confirmed which metrics could be used to 

truthfully evaluate PEPMA's efficiency. 

 Furthermore, the findings and the results based on six units of analyses suggested a 

comprehensive setup for a formal evaluation method with several Key Performance 

Indicators instead of a single indicator as suggested through existing theoretical work. A 

combined Key Performance Indicator, cPKI, then can be derived from these individual 

Key Performance Indicators; the final single numerical score registered in the combined 

Key Performance Indicator will show how well a PEPMA performs relative to other 

PEPMA(s).  

Implications 

 Although the ultimate goal of this research singularly focused on an evaluation 

approach of the performance of PEPMA, this research can be realistically expanded 

beyond its original goal and scope.  

Practical Applications  

 One possible application in the cryptographic field is the code implementation of 

Elliptic-curve Diffie-Hellman (ECDH) public-key-exchange protocol running on limited 

computing-power platforms. These platforms may include tablet PCs, wrist-worn 

computers, or futuristic micro-size computing gadgets. Because of limited computing-

power, these tablet PCs or wrist-worn computers must rely on highly efficient public-key 

exchange, PEPMA in particular, to accomplish its public-key exchange function in a very 

short duration; at the same time, the computing platforms must also meet or exceed other 
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performance indicators such as Cyclomatic Complexity. The results of this research 

support the idea that to effectively improve PEPMA, the evaluator should have a way to 

accurately measure it first. Along with a concept of point-computation in a projective 

domain, a deep understanding of how PEPMA was implemented and processed is the key 

to realize a high-performance Elliptic-curve Diffie-Hellman protocol. 

 Another possible application of this research relates to Intrusion Detection Systems 

(IDS). As the name implies, IDS is a device that is specifically designed to detect and 

prevent malicious intrusion to a system. However, before it can effectively perform that 

defensive task, the internal structure of IDS must provide accurate and reliable intrinsic 

services. The performance evaluation and measuring instruments of PEPMA may be used 

to improve IDS design. Furthermore, the performance evaluation of PEPMA can be 

mapped directly to the performance evaluation of IDS with minimum re-engineering 

efforts since most methodologies and verification tools have already been built. 

 The third benefit as the result of improving efficiency of PEPMA can be directed at 

the cryptographic hardware units. For instance, most Internet data traffic coming in and 

out of a military base must go through several layers of data filtering. These session-

based digital filtering functions are being executed inside a piece of high-speed hardware 

known as "the Guard" which is capable of accomplishing traffic filtering at a data rate of 

ten or more Giga-bit per second (multiple Giga bytes per second filtering capability in 

real-time). To realize this lightning task, the Guard must transform all data into a 

projective domain, process data filtration in this domain, and convert them back into 

time-domain – all done in real-time on custom-made hardware fabrics (or using Field 

Programmable Gate Array, FPGA).  The efficiency evaluation of PEPMA may be useful 
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during design and/or evaluation of the Guard and thus might result in better hardware 

design and firmware/micro code engineering. 

Recommendations 

Applying Formal Evaluation Approach: 

 What has emerged from the result of this study was the overall performance of 

PEPMA measured by a combined key performance indicator. This indicator suggested 

that the performance measurement should be a function based on role-sharing rather than 

a single dedicated performance indicator. This research sought to remedy the use of an 

insufficient one-dimensional performance indicator as suggested in theoretical work. The 

objective was done by reviewing other methods used in industry during a time period 

spanning two decades. Because of this insufficient performance merriment, one of the 

recommendations is to instigate a change to the way performance evaluation has been 

performed. The rationale behind giving out this suggestion is to remedy a problem: It is 

necessary but insufficient to evaluate the performance of Elliptic-curve scalar point-

multiplication in projective geometry using the total number of single-digit non-modular 

multiplication metric, or single-digit non-modular squaring metric, or under an 

unspecified computing architecture.  

 Another recommendation relates to the use of advanced measurement 

instrumentation: A virtual machine can be used to precisely and accurately measure the 

performance metrics. As a matter of fact, commercial industry and government entity are 

utilizing virtual machines today to suppress adversaries on the world-wide network by 

accurately measuring suspicious activities occurring real-time on a piece of malware. 

Bottom-line, using a virtual machine to acquire metrics instead of relying on the primitive 
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clock() measurement method will offer consistent and accurate results on the 

performance comparison of a projective Elliptic-curve point-multiplication in a 64-bit 

x86 runtime environment. 

Efficiency Improvement: 

 A particular feature was noted at NSS exponentiation procedure where a number of 

projective point-adding can be reduced by increasing the width of the sliding-window 

from 4 to 5. Even though the exponentiation procedure uses a 5-bit sliding-window for 

the computation, there will be only sixteen pre-computed values needed since the 

implementation could apply the binary signed representation as described previously. 

This reduces calling the point-adding function by 5:1 instead of 4:1 as currently 

implemented in NSS. 

 During the findings, another property was spotted in NSS half-digit 32-bit numeric 

representation that can be adjusted for improving efficiency. The conversion of existing 

codes from a half-digit 32-bit representation to a 65-bit numeric representation (64-bit 

with hardware carry bit) is possible in a 64-bit x86 system. Such successful conversion 

can significantly change the computing efficiency of PEPMA. This improvement can also 

be applied to OpenSSL PEPMA since its 58-bit numeric representation was not at the 

optimum level. 
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Future Work 

 Performance evaluation of PEPMA is a complex interdisciplinary research and thus, 

works involved with such multiple complexities will never be complete. One of the 

dimensions within interdisciplinary research is the uncertainties associated with their 

complexities. Before dealing more with such multidisciplinary exploration, it is necessary 

to acknowledge any missing or weaknesses of the findings in this study. Among the 

desirable findings listed in the result chapter, three essential findings as shown below in 

Table 64 have yet been fully realized. Those open deficiencies should be remedied to 

provide better accuracy in the evaluation. Realizing these additional measuring 

instruments suggests a variety of research to improve the combined key performance 

indicator; and the plan is to continue tackling these problems with future works and/or in 

the extension of this study making the performance evaluation more accurate. 

Table 64. Future Work 
Future Work 
(Why) 

Area of Enhancing Rationale of 
Deficiency 

Evaluating Low-level 
Arithmetic and Arithmetic 
Optimization 
(To enhance efficiency 
measurement) 

Including the findings and 
data analyses on six low-
level mathematic routines as 
shown in Figure 30, block .

We could not provide 
such findings and 
data analyses due to 
limited scope of this 
paper 

Enhancing Synchronization 
Agent 
(Improving accuracy for 
efficiency measurement) 

Figure 21, BOCHS Hardware 
Emulation and 
Synchronization Agent 

Virtual machine real-
time response was 
slow 

Evaluating Compliance 
Metric on every service 
module 
(To enhance compliance) 

Compliance Subjective and 
complex 
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Appendix A. Counting CPU Instructions 

 The cost indexes of s_mpv_mul_d_add () NSS PEPMA executable code:  

Table 65. Cost Index of s_mpv_mul_d_add() 

movq 
Count 

movq 
Latency 

movq Cost Index imulq 
Count 

imulq 
Latency 

imulq 
Cost Index 

29 6 174 4 10 40 
 
Cost for functional computation is higher when cost index is higher. 
 
The s_mpv_mul_d_add () NSS PEPMA 64-bit executable code compiled under GCC 4.7:  

Table 66. The s_mpv_mul_d_add  NSS PEPMA Executable Code 

s_mpv_mul_d_add: 
.LFB122:    
 .cfi_startproc   
 pushq %r12 # 
 .cfi_def_cfa_offset 16   
 .cfi_offset 12, -16   
 pushq %rbp # 
 .cfi_def_cfa_offset 24   
 .cfi_offset 6, -24   
 pushq %rbx # 
 .cfi_def_cfa_offset 32   
 .cfi_offset 3, -32   
 movq $0, carry(%rip) #, carry 
 testl %esi, %esi # a_len 
 je .L117 #, 
 movq %rdx, %r9 # b, D.6652 
 shrq $32, %r9 #, D.6652 
 subl $1, %esi #, tmp90 
 leaq 8(,%rsi,8), %r10 #, D.9447 
 movl $0, %eax #, ivtmp.694 
 andl $4294967295, %edx #, D.6649 
 movabsq $4294967296, %r11 #, tmp105 
.L122:    
 movq (%rdi,%rax), %r8 #* ivtmp.694, a_i.273 
 movq %r8, a_i(%rip) # a_i.273, a_i 
 movq %r8, %rsi # a_i.273, D.6648 
 andl $4294967295, %esi #, D.6648 
 movq %r8, %rbp # a_i.273, D.6651 
 shrq $32, %rbp #, D.6651 
 movq %r9, %rbx # D.6652, a0b1 
 imulq %rsi, %rbx # D.6648, a0b1 
 movq %rdx, %r8 # D.6649, a1b0 
 imulq %rbp, %r8 # D.6651, a1b0 
 addq %rbx, %r8 # a0b1, a1b0.706 
 movq %r8, %r12 # a1b0.706, tmp92 
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 shrq $32, %r12 #, tmp92 
 imulq %r9, %rbp # D.6652, tmp93 
 leaq (%r12,%rbp), %rbp #, a1b1.278 
 movq %rbp, a1b1(%rip) # a1b1.278, a1b1 
 cmpq %r8, %rbx # a1b0.706, a0b1 
 jbe .L118 #, 
 addq %r11, %rbp # tmp105, tmp95 
 movq %rbp, a1b1(%rip) # tmp95, a1b1 
.L118:    
 salq $32, %r8 #, a1b0.707 
 imulq %rdx, %rsi # D.6649, a0b0.281 
 leaq (%rsi,%r8), %rsi #, a0b0.281 
 cmpq %r8, %rsi #a1b0.707, a0b0.281 
 movq a1b1(%rip), %rbx # a1b1, tmp100 
 adcq $0, %rbx #, tmp99 
 movq carry(%rip), %r8 # carry, carry.283 
 addq %r8, %rsi #carry.283, a0b0.284 
 movq %rsi, a0b0(%rip) # a0b0.284, a0b0 
 cmpq %r8, %rsi #carry.283, a0b0.284 
 adcq $0, %rbx #, tmp106 
 movq %rbx, a1b1(%rip) # tmp106, a1b1 
 movq (%rcx,%rax), %r8 #* ivtmp.694, a_i.285 
 movq %r8, a_i(%rip) # a_i.285, a_i 
 addq %r8, %rsi # a_i.285, a0b0.286 
 movq %rsi, a0b0(%rip) # a0b0.286, a0b0 
 cmpq %r8, %rsi # a_i.285, a0b0.286 
 adcq $0, %rbx #, tmp101 
 movq %rbx, a1b1(%rip) # tmp101, a1b1 

 movq %rsi, (%rcx,%rax) 
#a0b0.286,* 
ivtmp.694 

 movq a1b1(%rip), %rbx # a1b1, a1b1 
 movq %rbx, carry(%rip) # a1b1, carry 
 addq $8, %rax #, ivtmp.694 
 cmpq %r10, %rax # D.9447, ivtmp.694 
 jne .L122 #, 
 addq %r10, %rcx # D.9447, c 
.L117:    
 movq carry(%rip), %rax # carry, carry 
 movq %rax, (%rcx) # carry,* c 
 popq %rbx # 
 .cfi_def_cfa_offset 24   
 popq %rbp # 
 .cfi_def_cfa_offset 16   
 popq %r12 # 
 .cfi_def_cfa_offset 8   
 ret   
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Appendix B. ECDH Protocol 

 The ECDH cryptography protocol used for exchanging private keys is believed to 

be intractable under an unsecured communication channel. Additionally, it is not feasible 

to find the discrete logarithm of a random 521-bit Elliptic curve element with respect to a 

publicly known base point G(x, y). The ECDH procedure starts out at transaction (1) with 

Client's domain parameters (p, a, b, G, n, h). The complete ECHD transaction under a 

public viewer and on an unsecured communication channel is summarized in the figure 

below. The scalar product calculation of k(x, y) occurs at the computations of sG, cG, 

csG, where G(x, y) is the generator for the cyclic subgroup with order n. Furthermore, the 

scalar product nG(x, y) must equal to the infinity point O of the Elliptic curve; h is the 

cofactor that equals to the size of cyclic subgroup divided by n; h = E(Fp)/n 

 

Figure 39. Elliptic Curve Diffie-Hellman Key Exchange Used with PEPMA 
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At time (1), Client initiates the session by sending a request signal followed by a 

proposed cipher and the client’s PKE capability. Since both Server and Client have 

agreed on the cipher suite, they have the same domain parameters, including modulus7 p; 

curve coefficient a and b; base point G(x, y); curve’s order n; and cofactor h. At time (2), 

Server is ready to accept the connection and generates 521-bit random number s. Server 

then multiplies s with the base point G(x, y). This product is designated as Qs = s×G(x, y).  

 The Server sends Qs to the client (optionally with digital signature ECDSA). At time 

(3), Client receives Qs and verifies that it has received the one sent from Server. Then 

Client computes the shared secret key: the product of two components c × Qs . Since Qs 

equals to s × G(x, y), then the shared secret key c × Qs  must be c × s × G(x, y).  

 The Client then proceeds to compute the public key c × G  and sends it to the Server. 

This product is designated as Qc = c × G(x, y). At time (4), Server receives Qc and 

computes the product s × Qc . Equivalently, s × Qc equals to s × c × G(x, y); it also equals 

to c × Qs – the shared secret of Client that sent from Client. At time (4), both parties have 

exchanged an elliptic curve based private key under the observation of public viewers.  

 On the Server side, PEPMA can help reduce computing costs when calculating sG 

and cQs. On the Client side, PEPMA can help reduce computing costs when calculating 

cG and cQs. Readers are referred to the next Appendix for a numerical example of this 

transaction. 

 

                                                 

7 Modulus p is the same as modulus m in this research. It is a 521-bit prime. 
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Appendix C. An ECDH Transaction 

 The following data shows the results from an ECDH key negotiation corresponding 

to the transactions described in ECDH protocol. 

base point x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C6 
85 8E 06 B7 04 04 E9 CD 9E 3E CB 66 23 95 B4 42 
9C 64 81 39 05 3F B5 21 F8 28 AF 60 6B 4D 3D BA 
A1 4B 5E 77 EF E7 59 28 FE 1D C1 27 A2 FF A8 DE 
33 48 B3 C1 85 6A 42 9B F9 7E 7E 31 C2 E5 BD 66 
 
base point y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 18 
39 29 6A 78 9A 3B C0 04 5C 8A 5F B4 2C 7D 1B D9 
98 F5 44 49 57 9B 44 68 17 AF BD 17 27 3E 66 2C 
97 EE 72 99 5E F4 26 40 C5 50 B9 01 3F AD 07 61 
35 3C 70 86 A2 72 C2 40 88 BE 94 76 9F D1 66 50 
 
Server public key x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 42 
B5 EF EB 9C 79 89 77 5C F2 E4 B8 5F 0C EA 2E 2F 
84 3D D7 DF 63 0E 9E 68 5F 9D 6B 0C F4 C7 9A A4 
D9 83 7E C9 FB 53 B3 0D 3A 18 9E E3 50 4A 61 8D 
47 55 FB 5A 88 C0 FF 3C 0F 73 A9 1D C5 AF 1D 60 
 
Server public key y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 
62 AE 23 71 19 28 7A 17 DF 44 91 ED 14 F8 73 AD 
4C BC 3F 6C C9 82 54 3B B5 07 CE 5D A4 AD E7 28 
91 86 F3 D3 02 26 57 5E 70 54 A8 CC F5 E0 2B EF 
D7 45 DA 26 CF 7C A9 8B A8 3B 4E DD 4D 25 2E 7D 
 
Client private key x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 21 
FF 0E 29 45 9A 0B 2F 19 C0 81 C8 91 4E 30 8B 47 
FF 8D 93 DD CC 06 BF 5D 20 70 82 73 55 7A 1F F1 
73 44 F2 53 E7 1B 44 39 13 89 2C 60 43 7F 6F BD 
15 D6 F2 8B EA 55 E1 30 CE 3D DC D9 A4 B9 F0 74 
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Client private key y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28 
0A EA 55 12 25 26 44 1F 69 7C A9 F2 13 CF F3 3A 
AB BF B6 25 BD C7 47 AC BA 2A 5E 20 5D BE E3 ED 
9B D2 F5 0E C9 0B D7 F9 79 52 92 77 F8 94 88 8F 
E8 BA 5C B7 2A 7D 95 55 28 6D C3 A9 8E 0D E9 E1 
 
Client public key x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 0F 
D4 4B 13 C3 4A F1 9C DA E0 88 28 8D 5A 88 99 B1 
67 23 6D 41 EE 77 1B 1D 06 64 AA 05 94 23 4A F1 
78 A8 FB CA 5E 51 C0 AA 85 6C BB 3C E2 0C 10 B9 
A1 ED 79 33 F0 0D BD 0A 2A 6B 87 F2 6F 06 43 84 
 
Client public key y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 DB 
63 3D 86 7A 51 AB 8B D3 81 5F 50 B7 C5 5F 05 21 
58 14 0A D0 D7 74 A4 1B 4B BC 91 C0 5A 5D 5C 86 
D9 3C 54 34 4D 90 C8 EB 62 5A 28 98 76 00 6E 8C 
7F D8 59 E9 19 B0 58 3B 4E A1 B6 D9 9F 87 FF 27 
 
Server private key x, a.k.a. our key x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 21 
FF 0E 29 45 9A 0B 2F 19 C0 81 C8 91 4E 30 8B 47 
FF 8D 93 DD CC 06 BF 5D 20 70 82 73 55 7A 1F F1 
73 44 F2 53 E7 1B 44 39 13 89 2C 60 43 7F 6F BD 
15 D6 F2 8B EA 55 E1 30 CE 3D DC D9 A4 B9 F0 74 
 
Server private key y, a.k.a. our key y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28 
0A EA 55 12 25 26 44 1F 69 7C A9 F2 13 CF F3 3A 
AB BF B6 25 BD C7 47 AC BA 2A 5E 20 5D BE E3 ED 
9B D2 F5 0E C9 0B D7 F9 79 52 92 77 F8 94 88 8F 
E8 BA 5C B7 2A 7D 95 55 28 6D C3 A9 8E 0D E9 E1 
 
Exchanged key x part was successful 
Exchanged key y part was successful 
 
The numeric example above shows the private key has two parts: x and y. The actual 

private key can be concatenated from x and y, making it a 1042-bit key. 
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Appendix D. Modulus m, Order m 

 In this research, italic letter "m" is used as a label for the Mersenne modulus of 

NIST P-521 Elliptic curve. Related literature might have used another letter to represent 

the modulus. One common designation from the industry is letter "p" for prime. Here, 

this letter "p" has already been designated as a Cartesian Elliptic-curve point p(x, y). 

Table 67. The Modulus of Finite Field 

Format m = 2521 – 1, log2(m+1) = 521 
Hexadecimal 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF 

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765605212255964066145455497729631
1391480858037121987999716643812574028291115057151 

Number 
of Bits 

521 

Is m Prime? Probably 
 

The order of the cyclic subgroup is designated as italic letter "n". 

Table 68. The Order of Finite Field 

Hexadecimal 00001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFA 51868783 BF2F966B 
7FCC0148 F709A5D0 3BB5C9B8 899C47AE BB6FB71E  
91386409 

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765539424505774633321719753296399
6371363321113864768612440380340372808892707005449 

Number 
of Bits 

521 

Is n Prime? Probably 
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Appendix E. Point Adding of NSA Test Vectors 

Input: k, x, y 
Output: k×(x, y) 
 
scalar k 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 EB 
7F 81 78 5C 96 29 F1 36 A7 E8 F8 C6 74 95 71 09 
73 55 54 11 1A 2A 86 6F A5 A1 66 69 94 19 BF A9 
93 6C 78 B6 26 53 96 4D F0 D6 DA 94 0A 69 5C 72 
94 D4 1B 2D 66 00 DE 6D FC F0 ED CF C8 9F DC B1 
 
point x 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 D5 
C6 93 F6 6C 08 ED 03 AD 0F 03 1F 93 74 43 45 8F 
60 1F D0 98 D3 D0 22 7B 4B F6 28 73 AF 50 74 0B 
0B B8 4A A1 57 FC 84 7B CF 8D C1 6A 8B 2B 8B FD 
8E 2D 0A 7D 39 AF 04 B0 89 93 0E F6 DA D5 C1 B4 
 
point y 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 44 
B7 77 09 63 C6 3A 39 24 88 65 FF 36 B0 74 15 1E 
AC 33 54 9B 22 4A F5 C8 66 4C 54 01 2B 81 8E D0 
37 B2 B7 C1 A6 3A C8 9E BA A1 1E 07 DB 89 FC EE 
5B 55 6E 49 76 4E E3 FA 66 EA 7A E6 1A C0 18 23 
 
point x3 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 91 
B1 5D 09 D0 CA 03 53 F8 F9 6B 93 CD B1 34 97 B0 
A4 BB 58 2A E9 EB EF A3 5E EE 61 BF 7B 7D 04 1B 
8E C3 4C 6C 00 C0 C0 67 1C 4A E0 63 31 8F B7 5B 
E8 7A F4 FE 85 96 08 C9 5F 0A B4 77 4F 8C 95 BB 
 
point y3 
MSB.........................................LSB 
|.........| |.........| |.........| |.........| 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 30 
F8 F8 B5 E1 AB B4 DD 94 F6 BA AF 65 4A 2D 58 10 
41 1E 77 B7 42 39 65 E0 C7 FD 79 EC 1A E5 63 C2 
07 BD 25 5E E9 82 8E B7 A0 3F ED 56 52 40 D2 CC 
80 DD D2 CE CB B2 EB 50 F0 95 1F 75 AD 87 97 7F 
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Appendix F. NIST Test Vectors 

#  CAVS 11.0 
#  "Key Pair" information 
#  Curves selected: P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571 
B-163 B-233 B-283 B-409 B-571 
#  Generated on Wed Mar 16 16:16:42 2011 
[P-521] 
[B.4.2 Key Pair Generation by Testing Candidates] 
N = 10 
d = 
0184258EA667AB99D09D4363B3F51384FC0ACD2F3B66258EF31203ED30363FCDA7661B6A817DA
AF831415A1F21CB1CDA3A74CC1865F2EF40F683C14174EA72803CFF 
Qx = 
019EE818048F86ADA6DB866B7E49A9B535750C3673CB61BBFE5585C2DF263860FE4D8AA8F7486
AED5EA2A4D733E346EAEFA87AC515C78B9A986EE861584926CE4860 
Qy = 
01B6809C89C0AA7FB057A32ACBB9AB4D7B06BA39DBA8833B9B54424ADD2956E95FE48B7FBF6
0C3DF5172BF386F2505F1E1BB2893DA3B96D4F5AE78F2544881A238F7 
 
d = 
014B967F6651B5E6A482FCCC609AB6630B3806FE1F94F4083319B0B50575FB3436A04F508172F7F
C396D6E969CA3E8D1C1E9A84D431A48B94F30566DC6808DD1D138 
Qx = 
0145F371040D3D4A24D6D3CEB2681DB207B77096AB57606D92981A69CE35A0AC4628C2DC1284E
4DD9715CDE46F18B59E9FC98FEA162CEB6E2C481ECBFAD4E19D3ABF 
Qy = 
0125EB751FF4FB8BB98E1FB455D2CFB35E3323DE5C7280FC9E51729704F4FEC51D5A6CE6C1F75
DBF710E1F9D3EE9F2A77E7C12C045E729D0E9A281C37F0F07B8CF0C 
 
d = 
7616133442038E27357DB450C353BD11FBA3BCAC8B7B8C3EF76AADB5FE05BE1DD57A22D42A5
444D00DCD018D389170C54FE781CB21C36020F657D001E1CBB41DD1 
Qx = 
BBECF65446053080CC1CF955938C58EB630C84ECAD2756F93B47EBFA9F9BCA3FA834353981260
8CAB2D3A9F8079AB8311A4F269B0A3CD9E0DDD066FC4121D92F0E 
Qy = 
01DD96DB411AD67997B10D42C76B8510C8A930DFA9A5927AC274B0C5021798690777B8E77E6AE
2648BF513E02F586898E7DAE20D71D19838A9F3175F06B057C5F2F4 
 
d = 
013BCC0ED286861D3F5463BCFC0B68A6EC0FCF86291BA41257838B72536ADA986E43E05EC4C32
C0B29DA632DD1CE39EFC81C8278F5D18D9CF27F6E75523821A46D99 
Qx = 
A3A165C2BB535D1041D54B749E2F6E6C734A03C09DF69C14A5DD2AA57790ACC504548885F0BD
3A44F8B66BB9C36B3FF257D7D465EFB81445D4CC5A5AF7F36C679C 
Qy = 
8A5D094E4F2AA18FB877D2649DFD76F9482AC2E049AEFBB463F3C9061CFDFAEC785DF9577A09
0E45A17330F422FB16A16ACCCFF9ADE7B034EC544C7A8AEA441C49 
 
d = 
01F79977450CE5887AE2EF7D648AB658C056E57F0A690CF28A4E94F373F2C15EB3C0D3E0D670FE
CA6FF02D5FD03187146EB85E09D72F8CABB1900D0C338A23080C12 
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Qx = 
016D9EDE24A3950098798766E57C53F2749CD0D3F56CA0904A3711C030965291EDD5C6FE0903771
768F42340E88E1CD2F161358972775FA53E5B87C3B660ACC447E2 
Qy = 
010CA5CFE6DF8E069AE1326DD9E18CCA75CDE7CB24B427A409025F9E12B5098A56A20BB90B1
D23B75FAD7A54F9E25FF892E1236D1717F1F94E18FA2289F899FE2221 
 
d = 
9A9160D2614937C33284627826BE871C26407C84D23E6D23DE5F5F48B500B89B0BC07F10C4E0FB9
9C085D9E9D7149278F76E3FAE4ABAEEEF2495FE3D228EF0F949 
Qx = 
019ED72E6BFC673F2A852ACF9D60E2C3B19C50A56C54AC304612B26F83AFE1AFF4F87DCA458E
83B6F89EC48F8B1A20931ACD3C97C71BF21B5633CF4FD68437DB45C1 
Qy = 
D141DC4272CA03A528AD8FDADE9ECB3070FB2D4AF0BB296ABDAED651B5D26573EB4443A4D
0D4134FF248D8ED402C93BF6A905CB2792B9CECB4AEB69ED78F410382 
 
d = 
2FDC02492573228ADA3FA8A2DB68D72E9396A2BFCA9A8EBDB5C2955CC894A7493CFAE001759
368EB8FFC3C29B15365F6484CDD6A44E084F1D3C88DBA7AA4F29C3C 
Qx = 
010BA48733FC3E8F54F601F74659BCD43FDE4CF8C5A07DA341CE68E792F8F70721C23DC6D9B1B
401BD3254C8DE546E9367F10AEE947B1DD295E6D822524546DDC195 
Qy = 
01B2C0EA5C4171CDC069FC6C69E18636CFA404F487A143B3981A1F212969CDBD6601A84302867F
8A4A4730FDCD0F994C226F7C02C5E664B79C34B7E5D071423FF528 
 
d = 
01AD69406C11C66FAD5FE2295F0E526622488755ECB18BA12EE51FA879ED47FF5F5B05195A821E
8D36489492B5DE2009F303E17B9FDF6379DAE52C0178A16927CA38 
Qx = 
01F1CA24041BA73812C1124E96454545C45AB903407AFCE3105108362ED3CB4F7D0D5B1466074C
2EF22C7FD1EBC16E74A74A163FBB2F530EF44549DAD81E806F24D6 
Qy = 
6B34D6EFF12BB76AEE9BD7AC590E437735AE77DA4A60191E8E01F1CEB8AD7C1EDA4D0F84D4
ED2DC72DE702D351EF8F64B2CDF2A95EF185D3119F276F6CCB3C5A65 
 
d = 
013C41B6514C608A2E4696CFC6BD2DDD36611CA5DBF6F2D2E3E32A1925C5AE4FF591DCAA75C
4E8043ADCB99D510CB664868BB638A2C52B81BB240A974548A68FCE79 
Qx = 
C6D82F16433C71E37F2E9779BE4599A3B1DDA415F6C338E52DF4CA70607A69637B50170F21BBB7
F60B9A9C145BB63E6D4F370FCD00BFB60F7A0DC55CC44F65FC90 
Qy = 
0152344D6F2E72DEB2C59FF2AE268FB067279A1942AE231734BA980C5457A6A73BBF2B13343AE4
4A0C8A712572851DA4B91065EE0436ABE811AE71883C4A2F1B797F 
 
d = 
316E2D06FD00C9C4266EA20BF60CDF867859A6F5BA242DE35054CDCF5486E5E344AB1D1BCE13
E2CC831137320774EC3AB0F6FB554FCCEC56ADA267959794898028 
Qx = 
A183880E61C6E0435E591694E51F63C099FCD5B61E3DDACC4057399AFC6A90321424AB0EC1699
AEEB9C404616D62C23466132B52583C18D3530116B58AD41452F0 
Qy = 
191E06057E2282B4DE6E0741FB37B04F0E6AE172BE81267B0DB3023E7A116AC5861DECD54BA84
E15D5FD64D6CA628461B79E120851BED1C74ADEBE3DDEE838A170 
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Appendix G. NSS Exponentiation Procedure 

 Users will find NSS PEPMA in its source code repository (NSS-1, 2014). The NSS 

exponentiation procedure is coded in the source file "ecp_jac.c". NSS PEPMA makes 524 

calls to the point-doubling and 131 calls to the point-adding function. The following 

messages list some essential entrant parameters to the PEPMA:  

GFMethod_consGFp 
modulus =    
1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFF 
order =    
1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386
409 
a =    
1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFC 
b =    
51953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E
156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00 
genx =    
81D687818FC9BA21A2C7B00FE84C69E8113DA5FB1439D7A83A0585DC2550ABF
E423DE7C6E0B54595C5FEC716853E9CD7825844C9877B6D6AE0DA7571A4FD9B0
23B 
geny =    
144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818ED
037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC01
823 
scalar d =    
1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BFA
9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FDC
B1 
ec_GFp_pt_mul_jac 
mp_digit size = 8 
unsigned int = 4 
unsigned long = 8 
unsigned long long = 8 
Exiting ec_GFp_pt_mul_jac 
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Total double = 524, total add = 131 
Total double bypass = 0, total add bypass = 1 
 
   result x =  
4634C62EEC4F2D875DE95AE71E95C58812342A29A37139A23299F053203F9BE9D
00E057C6CBBFB8D6C6D9EFDBE34BA409949AD09809B15A98A08637136CE7239
37 
   result y =  
162495DB3E31BE7E8EEFCD96EE6698EB915DE882118DFAD1BC83B1369FAB93A
35D69C0E9A7A3CA1D7F83ED2EE2FBFD565AAF76A65BBC1C1C7C97CFF45DD7
B533FAF 
 
An incomplete listing of NSS PEPMA is provided below for reference.  

NSS PEPMA: 

mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, 
      mp_int *rx, mp_int *ry, const ECGroup *group) 
{ 
 mp_err res = MP_OKAY; 
 mp_int precomp[16][2], rz; 
 int i, ni, d; 
 
 MP_DIGITS(&rz) = 0; 
 for (i = 0; i < 16; i++) { 
  MP_DIGITS(&precomp[i][0]) = 0; 
  MP_DIGITS(&precomp[i][1]) = 0; 
 } 
 
 ARGCHK(group != NULL, MP_BADARG); 
 ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG); 
 
 /* initialize precomputation table */ 
 for (i = 0; i < 16; i++) { 
  MP_CHECKOK(mp_init(&precomp[i][0])); 
  MP_CHECKOK(mp_init(&precomp[i][1])); 
 } 
 
 /* fill precomputation table */ 
 mp_zero(&precomp[0][0]); 
 mp_zero(&precomp[0][1]); 
 MP_CHECKOK(mp_copy(px, &precomp[1][0])); 
 MP_CHECKOK(mp_copy(py, &precomp[1][1])); 
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for (i = 2; i < 16; i++) { 
  MP_CHECKOK(group-> 
       point_add(&precomp[1][0], &precomp[1][1], 
        &precomp[i - 1][0], &precomp[i - 1][1], 
        &precomp[i][0], &precomp[i][1], group)); 
 } 
 
 d = (mpl_significant_bits(n) + 3) / 4; 
 
 /* R = inf */ 
 MP_CHECKOK(mp_init(&rz)); 
 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz)); 
 
 for (i = d - 1; i >= 0; i--) { 
  /* compute window ni */ 
  ni = MP_GET_BIT(n, 4 * i + 3); 
  ni <<= 1; 
  ni |= MP_GET_BIT(n, 4 * i + 2); 
  ni <<= 1; 
  ni |= MP_GET_BIT(n, 4 * i + 1); 
  ni <<= 1; 
  ni |= MP_GET_BIT(n, 4 * i); 
  /* R = 2^4 * R */ 
  MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 
  MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 
  MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 
  MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group)); 
  /* R = R + (ni * P) */ 
  MP_CHECKOK(ec_GFp_pt_add_jac_aff 
       (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry, 
     &rz, group)); 
 } 
 
 /* convert result S to affine coordinates */ 
 MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group)); 
 
  CLEANUP: 
 mp_clear(&rz); 
 for (i = 0; i < 16; i++) { 
  mp_clear(&precomp[i][0]); 
  mp_clear(&precomp[i][1]); 
 } 
 return res; 
} 
 

 



178 

Appendix H. OpenSSL Exponentiation Procedure 

 Users will find OpenSSL PEPMA in its source code repository (OpenSSL-1, 2014). 

Source code containing Elliptic-curve service routines is included only in compressed file 

(tar) with Elliptic-curve capability. The OpenSSL PEPMA exponentiation procedure is 

coded in the source file "ecp_nistp521.c". By executing the code below, OpenSSL 

PEPMA makes 520 calls to the point-doubling and 104 calls to the point-adding function. 

An incomplete listing of OpenSSL PEPMA is provided for reference as follows: 

static void batch_mul(felem x_out, felem y_out, felem z_out, 
 const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar, 
 const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3]) 
 {... 
for (i = (num_points ? 520 : 130); i >= 0; --i) 
  { 
  /* double */ 
  if (!skip) 
   point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); 
 
  /* add multiples of the generator */ 
  if (gen_mul && (i <= 130)) 
   { 
   bits = get_bit(g_scalar, i + 390) << 3; 
   if (i < 130) 
    { 
    bits |= get_bit(g_scalar, i + 260) << 2; 
    bits |= get_bit(g_scalar, i + 130) << 1; 
    bits |= get_bit(g_scalar, i); 
    } 
   /* select the point to add, in constant time */ 
   select_point(bits, 16, g_pre_comp, tmp); 
   if (!skip) 
    { 
    point_add(nq[0], nq[1], nq[2], 
     nq[0], nq[1], nq[2], 
     1 /* mixed */, tmp[0], tmp[1], tmp[2]); 
    } 
   else 
    { 
    memcpy(nq, tmp, 3 * sizeof(felem)); 
    skip = 0; 
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    } 
   } 
 
  /* do other additions every 5 doublings */ 
  if (num_points && (i % 5 == 0)) 
   { 
   /* loop over all scalars */ 
   for (num = 0; num < num_points; ++num) 
    { 
    bits = get_bit(scalars[num], i + 4) << 5; 
    bits |= get_bit(scalars[num], i + 3) << 4; 
    bits |= get_bit(scalars[num], i + 2) << 3; 
    bits |= get_bit(scalars[num], i + 1) << 2; 
    bits |= get_bit(scalars[num], i) << 1; 
    bits |= get_bit(scalars[num], i - 1); 
    ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); 
 
    /* select the point to add or subtract, in constant time */ 
    select_point(digit, 17, pre_comp[num], tmp); 
    felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */ 
    copy_conditional(tmp[1], tmp[3], (-(limb) sign)); 
 
    if (!skip) 
     { 
     point_add(nq[0], nq[1], nq[2], 
      nq[0], nq[1], nq[2], 
      mixed, tmp[0], tmp[1], tmp[2]); 
     } 
    else 
     { 
     memcpy(nq, tmp, 3 * sizeof(felem)); 
     skip = 0; 
     } 
    } 
   } 
  } 
 felem_assign(x_out, nq[0]); 
 felem_assign(y_out, nq[1]); 
 felem_assign(z_out, nq[2]); 
 } 
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Appendix I. Description of Clock() Function 

 The clock() function provides an elapsed CPU time used by a running process. In 

measuring the elapsed processing time, PEPMA calls the clock function clock() at the 

beginning and at the ending of the executing interval. PEPMA subtracts the end_time 

from start_time to obtain the absolute elapsed_time. It then divides the absolute time by 

CLOCKS_PER_SEC. A typical setup in Linux environment is shown below: 

#include <time.h> 
 
clock_t start_time, end_time; 
double elapsed_time; 
 
 start_time = clock(); 
 for (loop_count...;) 
  { 
   // do EPM (calling point-adding, point-doubling functions etc.) 
  } 
 end_time = clock(); 
 elapsed_time =  
 ((double) (end_time - start_time))/(CLOCKS_PER_SEC * loop_count); 
 

The constant CLOCKS_PER_SEC defines the number of ticks per second. In a Linux 

system, CLOCKS_PER_SEC is an integer value normally equates to 1000. The data type 

of "clock_t" is equivalent to "long int" which is 64-bit integer in a 64-bit x 86 computing 

platform. 

The purpose of using "for loop" with loop count is to increase measurement precision.  
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Appendix J. Selection of Operational Parameters for P-521 

 The listing below is an incomplete set of Request-For-Comment (RFC) introducing 

Elliptic-curve Cryptography into the cyber-space security system. In the contexts of these 

RFCs, the selection of P-521 was analyzed and proposed for which operational 

parameters of curve P-521 would be best suited to use or to exclude. Besides the security 

requirements, some of the important recommendations for selecting the operational 

parameters of P-521 curve were the efficiency and ease of implementation of underlying 

arithmetic. 

 Table 69. Request-For-Comment Related to Selection of P-521 Curve 
Request-For-Comment Year Discussion of  
RFC-6637: Elliptic Curve Cryptography 
(ECC) in OpenPGP 

2012 NIST ECC curve P-521 Profile 

RFC-5639: Elliptic Curve Cryptography 
(ECC) Brainpool Standard Curves and Curve 
Generation 

2010 Operational parameters of 
curve P-521 

RFC-3766: Determining Strengths For Public 
Keys Used For Exchanging Symmetric Keys 

2004 Choosing parameters for the 
equation 

OpenPGP: Email encryption standard, open-source Pretty-Good-Privacy 

As stated in RFCs listed above, the AES-256 symmetric key encryption system requires 

an asymmetric Elliptic-curve key length around 512 to 576 bits. Since there is only one 

unique Mersenne probable prime of length 521 bits, all standards should converge to the 

arithmetic using 521 bits. It has been known that the efficiency and easiness of modulo 

arithmetic can be obtained with a Mersenne prime (Hankerson et al., 2004, pp. 44-46). 

 The American National Standards Institute (ANSI), National Security Agency 

(NSA), National Institute of Standards and Technology (NIST), and Standards for 

Efficient Cryptography Group (SECG) authorities published their own selection of curves 

and underlying arithmetic. Within the context of security and computing efficiency, they 

recommended to the industry what and how to apply operational parameters. The 
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publication listing below is an incomplete set of standards recommending the 

implementation of underlying arithmetic for P-521 curve. 

Table 70. ANSI, NSA, NIST, and SECS Publications 
Standards Year Discussion of  
FIPS PUB 186-4: Digital Signature Standard 
(FIPS PUB 186-4, 2013). NIST 

Jul/ 
2013 

P-521 curve, efficiency,  
arithmetic approach, and 
modulo reduction, 
and projective transformation 
in depth 

NSA Suite B (NSA, 2013) 2013 P-521 curve, efficiency, and 
arithmetic approach 

SECG: Standards for Efficient Cryptography 
Group (SEC 1, 2000) 

Jan/ 
2010 

P-521 curve, efficiency, 
arithmetic approach, 
modulo reduction  

ANSI X9.62 (ANSI, 2005) 2005 General Elliptic-curves and 
arithmetic 

 

The 521-bit Mersenne prime has a unique property that can be written as the sum or 

difference of a small number of powers of 2. For example, a 521-bit Mersenne prime has 

an integer value of  p = 2521 – 1. This unique property offers a fast reduction algorithm on 

computing platforms with machine word size = 64 bits; the arithmetic for modulo 

reduction requires only additions and subtractions (Hankerson et al., 2004, pp. 44-46). 
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Appendix K. Operation of BOCHS 

 BOCHS is a piece of software to emulate a virtual machine. Virtualization allows 

code and data of PEPMA to execute within a newly created and isolated runtime 

environment. In this study, BOCHS runs under CENTOS 6.4, a Linux variation 

Operating System (OS). Because this CENTOS 6.4 OS runs at the lowest level of a 

hardware platform, thus, it is known as the host Operating System. In this study, BOCHS 

emulates CENTOS 6.0. Then this OS becomes a guest OS, which provides all necessary 

operating system resources to execute PEPMA in a rescue mode. This rescue operating 

mode provides a minimum but adequate set of peripheral and working environment. To 

start BOCHS, execute the bash script as follows: 

     /BOCHS/bochs -q -f c6.txt 

/BOCH/ is a directory where BOCHS installed and “c6.txt” is the configuration file for 

“bochs” program. When BOCHS starts successfully, a welcome screen will appear as 

follows: 

 

Figure 40. Virtual Machine BOCHS Main Screen 
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Press <ESC> to bring in next screen, and enter “linux rescue” as shown on the screen 

below (without entering double quotes). 

 

Figure 41. Virtual Machine BOCHS Rescue Screen 

When host OS and BOCHS bring in next screen, the emulation has been going 

successfully up to this point: 

 

Figure 42. Virtual Machine BOCHS Language Screen 
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When BOCHS asks for enabling the network, enter “no”, enter “skip” for checking 

rescue environment, then enter “shell start” at the menu to start bash shell.  After this 

point, BOCHS loads the terminal and ready for commands. If this terminal screen shows 

up with “bash-4.1#” prompt, the virtualization has been completely successful. 

 

Figure 43. Virtual Machine BOCHS Final Screen 

To execute PEPMA, enter the commands at bash prompt as follows: 

cd /mnt 

mkdir f 

mount –t ext2 /dev/fd0 /mnt/f 

/mnt/f/ectest 

/mnt/f/ecp_test 

 

 



186 

A typical display from machine emulation is shown in the picture below. This screen 

shows the "bash" terminal in virtual machine BOCHS. The texts shown on the screen are 

the results from PEPMA exponentiation function calculating the scalar product k×(x, y). 

Counting of CPU instructions (MULq, MOVq etc.) are outputted on the host-machine 

terminal.  

 

Figure 44. Virtual Machine BOCHS Calculating k×(x, y) 
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From the figure shown below, the terminal running on host OS displays selected 

software-counters of unit-under-test. Target identification (0001BF75) is located at the 

first parameter; and its executing thread is located at the second parameter (00006400). 

BOCHS counts the number of MULq and MOVq CPU instructions and displays them at 

the third parameter (00001E6D) and the last parameter (0005A362) respectively. 

 

 

Figure 45. Instruction Software Counters Displayed while Calculating k×(x, y) 
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Update Image 

 To update PEPMA image from host OS, enter the commands at guest OS bash 

prompt as follows: 

umount /mnt/f 

Enter the commands at host OS bash prompt as follows: 

cd /BOCHS 
losetup /dev/loop0 a.img 
mount -t ext2 /dev/loop0 -o loop /mnt/floppy 
 
Then copy OpenSSL PEPMA (ectest) or NSS PEPMA (ecp_test) to the guest Disk 

(executing commands from host OS terminal): 

cp /O/test/ectest /mnt/floppy/ectest 
cp /NSS/mozilla/security/nss/lib/freebl/ecl/ecp_test /mnt/floppy/ecp_test 
umount /dev/loop0 
losetup -d /dev/loop0 

Content of c6.txt 

megs: 512 
romimage: file=$BXSHARE/BIOS-bochs-latest 
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest 
floppya: 1_44=a.img, status=inserted 
floppyb: 1_44=b.img, status=inserted 
ata0-master: type=disk, path="c6min.img", mode=flat 
ata1-master: type=cdrom, path=./c6min.iso, status=inserted 
boot: cdrom 
# this simulates  /dev/ttyS0 on guest 
# com1: enabled=1, mode=file, dev=serial.out 
# this simulates  /dev/ttyS0 on guest 
# com1: enabled=1, mode=term, dev=/dev/pts/0 
# com1: enabled=1, mode=term, dev=/dev/tty0 
com1: enabled=1, mode=term, dev=/dev/ttyS0 
# panic: action=ask 
panic: action=report 
error: action=report 
info: action=report 
debug: action=ignore 
# ne2k: ioaddr=0x300, irq=9, mac=00:c4:3B:00:C3:00, ethmod=win32, ethdev=NE2000 
# default config interface is textconfig. 
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#config_interface: textconfig 
#config_interface: wx 
display_library: x 
# other choices: win32 sdl wx carbon amigaos beos macintosh nogui rfb term svga 
log: bochsout.txt 
mouse: enabled=0, type=ps2 
fullscreen: enabled=0 
 
cpu: ips=400000000, ignore_bad_msrs=1 
clock: sync=both 
keyboard_serial_delay: 250 
keyboard: keymap=$BXSHARE/keymaps/x11-pc-us.map 
# keyboard_paste_delay: 100000 
user_shortcut: keys="f7" 
# mouse: enabled=1 
#magic_break: enabled=1 
#port_e9_hack: enabled=1 
#text_snapshot_check: enabled=0 
#private_colormap: enabled=0 
 
BOCHS Configuration and Compilation 
 
#  ./configure --enable-cpu-level=6 \ 
#              --enable-smp \ 
#              --enable-x86-64 \ 
#              --enable-pci \ 
#              --enable-disasm \ 
#              --enable-logging \ 
#              --enable-cdrom \ 
#              --disable-plugins \ 
#              --enable-usb \ 
#              --enable-usb-ohci \ 
#              --enable-usb-xhci \ 
#              --enable-plugins \ 
#              --enable-vmx \ 
#              --enable-fpu \ 
#              --enable-debugger \ 
#             --with-x --with-x11 --with-term 
# 
# --disable-assert-checks \ 
#            --enable-debugger \ 
#              --enable-debugger-gui \ 
#              --enable-sb16 \ 
# 
#./configure --enable-cpu-level=6 \ 
#--enable-ne2000 \ 
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#--enable-pci \ 
#--enable-pcidev \ 
#--enable-pnic \ 
#--enable-repeat-speedups \ 
#--enable-fast-function-calls \ 
#--enable-all-optimizations \ 
#--enable-fpu \ 
#--enable-cdrom \ 
#--enable-x86-64 \ 
#--with-x --with-x11 --with-term 
./configure --enable-cpu-level=6 \ 
--disable-smp \ 
--enable-ne2000 \ 
--enable-pci \ 
--enable-pcidev \ 
--enable-pnic \ 
--enable-repeat-speedups \ 
--enable-cdrom \ 
--enable-x86-64 \ 
--with-x --with-x11 --with-term 
#./configure --enable-cpu-level=6 \ 
#--enable-x86-64 \ 
#--enable-pci \ 
#--enable-pcidev \ 
#--enable-debugger \ 
# --with-x --with-x11 --with-term 
 
# if this error happens while compiling: 
#gui/libgui.a(gtk_enh_dbg_osdep.o): In function `MakeGTKthreads()': 
#./build/bochs-2.4.2/gui/gtk_enh_dbg_osdep.cc:2120:  
# undefined reference to `pthread_create' 
# add this statement -lpthread to Makefile under LIBS (around line 100) 
# 
# Put text above into bash file RUN.bat 
# Compile BOCHS by executing ./RUN.bat 
# alias m = "make" 
# alias r = "./RUN.bat" 
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Appendix L. Operation of PAPI 

 The Performance Application Programming Interface, PAPI, is a machine 

independent set of callable routines that provide access to the hardware performance 

counters inside a CPU. It is currently being developed at the University of Tennessee, and 

the codes are mostly written in C language. To use PAPI counting services, PEPMA links 

to code library "libpapi.a". Compilation of PEPMA must include a PAPI header, papi.h, 

declared variables, and the library path to the "libpapi.a": 

#include "/usr/local/include/papi.h" 

#define NUM_EVENTS 2 
#define ERROR_RETURN(retval) { fprintf(stderr, "Error %d %s:line %d: \n", 
retval,__FILE__,__LINE__);  exit(retval); } 
int EventSet = PAPI_NULL; 
long long papi_values[NUM_EVENTS]; 
char errstring[PAPI_MAX_STR_LEN]; 
int retval; 

Then before measuring, initialize PAPI and create counting events with: 

if((retval = PAPI_library_init(PAPI_VER_CURRENT)) != PAPI_VER_CURRENT ) 

ERROR_RETURN(retval); 

   /* Creating the EventSet */               

   if ( (retval = PAPI_create_eventset(&EventSet)) != PAPI_OK) 

      ERROR_RETURN(retval); 

 

   /* Add Total Instructions executed to the EventSet */ 

   if ( (retval = PAPI_add_event(EventSet, PAPI_TOT_INS)) != PAPI_OK) 

      ERROR_RETURN(retval); 

 

   /* Add Total Cycles executed to the EventSet */ 

   if ( (retval = PAPI_add_event(EventSet, PAPI_TOT_CYC)) != PAPI_OK) 

      ERROR_RETURN(retval); 
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Start the PAPI measuring instrument by calling function PAPI_start() just before 

executing the unit-under-test Exponentiation Function (EF): 

if ( (retval = PAPI_start(EventSet)) != PAPI_OK) ERROR_RETURN(retval); 

 EF()... 

Then read the PAPI instrument with PAPI_read() to acquire the results: 

   /* Read the counter values and store them in the values array */ 

   if ( (retval=PAPI_read(EventSet, papi_values)) != PAPI_OK) 

      ERROR_RETURN(retval); 

   /* Stop counting and store the values into the array */ 

   if ( (retval = PAPI_stop(EventSet, papi_values)) != PAPI_OK) 

      ERROR_RETURN(retval); 

   printf("\nTotal instructions executed are %lld", papi_values[0] ); 

   printf("\nTotal cycles executed are %lld \n",papi_values[1]); 

   /* Free the resources used by PAPI */ 

   PAPI_shutdown(); 
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Appendix M. Configuration and Compilation of NSS 

 Execute the following commands to compile NSS: 

cd /NSS/mozilla/security/nss 
# printenv $CFLAGS 
# read -p "Press any key to continue" 
unset NSS_ENABLE_ECC 
unset NSS_ECC_MORE_THAN_SUITE_B 
unset ECL_ENABLE_GFP_PT_MUL_JAC 
unset BUILD_OPT 
unset NSS_USE_COMBA 
NSS_USE_COMBA=0 
export NSS_USE_COMBA 
# NSS_ENABLE_ECC=1 
# export NSS_ENABLE_ECC 
NSS_ECC_MORE_THAN_SUITE_B=1 
export NSS_ECC_MORE_THAN_SUITE_B 
USE_64=1 
export USE_64 
ECL_ENABLE_GFP_PT_MUL_JAC=1 
export ECL_ENABLE_GFP_PT_MUL_JAC 
# no debug 
#BUILD_OPT=1 
#export BUILD_OPT 
# this flag does not work well yet 
# 
unset ECL_ENABLE_GFP_PT_MUL_JAC 
make clean 
NSS_ECC_MORE_THAN_SUITE_B=1 
# make nss_build_all USE_64=1 NSS_ENABLE_ECC=1 
make nss_build_all USE_64=1 NSS_ECC_MORE_THAN_SUITE_B=1 
ECL_ENABLE_GFP_PT_MUL_JAC=1 
 
cd /NSS/mozilla/security/nss/lib/freebl/ecl 
alias n="make clean" 
alias m="make tests" 
alias r="./ecp_test --print --time" 
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Appendix N. Configuration and Compilation of OpenSSL 

 Execute the following commands to configure OpenSSL for compilation: 

./config enable-ec_nistp_64_gcc_128 
#make depend 
#make 
 
# add this line in make file 
# for PAPI 
# EX_LIBS= /usr/local/lib64/libpapi.a 
 
cd /O 
alias m="make" 
alias r="./test/ectest" 
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Appendix O. Test Vector Type A 

 
scalar k =    
1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BFA
9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FDC
B1 
 
affine coordinate x =    
1D5C693F66C08ED03AD0F031F937443458F601FD098D3D0227B4BF62873AF50740
B0BB84AA157FC847BCF8DC16A8B2B8BFD8E2D0A7D39AF04B089930EF6DAD5
C1B4 
 
affine coordinate y =    
144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818ED
037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC01
823 
 
The results of function k(x, y) are: 
 
result x =  
91B15D09D0CA0353F8F96B93CDB13497B0A4BB582AE9EBEFA35EEE61BF7B7D
041B8EC34C6C00C0C0671C4AE063318FB75BE87AF4FE859608C95F0AB4774F8C9
5BB 
 
result y =  
130F8F8B5E1ABB4DD94F6BAAF654A2D5810411E77B7423965E0C7FD79EC1AE5
63C207BD255EE9828EB7A03FED565240D2CC80DDD2CECBB2EB50F0951F75AD
87977F 
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Appendix P. Test Vector Type B  

scalar k =    
7616133442038E27357DB450C353BD11FBA3BCAC8B7B8C3EF76AADB5FE05BE1
DD57A22D42A5444D00DCD018D389170C54FE781CB21C36020F657D001E1CBB41
DD1 
 
affine coordinate x =    
BBECF65446053080CC1CF955938C58EB630C84ECAD2756F93B47EBFA9F9BCA3
FA8343539812608CAB2D3A9F8079AB8311A4F269B0A3CD9E0DDD066FC4121D9
2F0E 
 
affine coordinate y =    
1DD96DB411AD67997B10D42C76B8510C8A930DFA9A5927AC274B0C5021798690
777B8E77E6AE2648BF513E02F586898E7DAE20D71D19838A9F3175F06B057C5F2
F4 
 
The results of function k(x, y) are: 
 
result x =  
1CE3631976395AD8957F367446D6C99308D5B9E8E0C42DE27CA568CFBE6155D01
6F54AF8A4B751F75AA61255FE09340A8F36A5BD61FD45E0A217123362A459D78
A5 
 
result y =  
D5AD0E3B4B1BA4C9C462DF92A198067CD4E3176D8F6C710D50B109B3590F7A8
0BCA504D19A2BFAD400713ED774A629EFB6DA24ABB037EFCF4B6040C92BDB4
CAB8D 
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Appendix Q. Test Vector Type B 

  

Table 71. Test Vector Type C, Modulus m. 

Format m = 2521 – 1, log2(m+1) = 521 
Hexadecimal 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF 

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765605212255964066145455497729631
1391480858037121987999716643812574028291115057151 

Number 
of Bits 

521 

Is m Prime? Probably 

 

Table 72. Test Vector Type C, Vector x. 

Format x = 2544 – 1 
Hexadecimal FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE 

Decimal 575860965701529136999748928983805677935321231142645329
036896713294315210325950447400837207821298029715189876
561090674575770658055103270360193089943150740973457244
14 

Number 
of Bits 

544 

Is m Prime? Not a Prime 
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Appendix R. Computing Platform Type A 

 A computing platform of type A was used for real-time measurements. The 

following figures describe the operating characteristics of this particular computing 

platform with respect to its CPU type, memory, and running processes in the system at 

the times of measurement. 

 

 

Figure 46. Computing Platform Type A, CPU and Memory 
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 Figure 47. Computing Platform Type A, Running/Sleeping Processes 
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Figure 48. Computing Platform Type A at Busy State 
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Appendix S. Computing Platform Type B  

 The following computing platform of type B was applied for real-time 

measurements:  

 

 

Figure 49. Computing Platform Type B, CPU and Memory 

 



202 

 

 

Figure 50. Computing Platform Type B with Running/Sleeping Processes 
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Figure 51. Computing Platform Type B, Resource Utilization 
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Appendix T. Computing Platform Type C, CPU Resource Busy 

 A computing platform type C was used for some real-time measurements. Most of 

CPU resources were allocated to other running processes at the times of measurement. 

The following figure illustrates the characteristics of this particular computing platform 

with respect to its CPU type, memory, and running processes in the system at the times of 

measurement. 

 

 

Figure 52. Computing Platform Type C, Resources Busy 
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Appendix U. Description of Metrics TOT_CYC and TOT_INS 

 The metric TOT_CYC measures total number of CPU cycles to complete a software 

function. The TOT_CYC metric is just a convenience way to name the total CPU clock 

cycles for a program as described generally in (Patterson & Hennessy, 2012, pp. 30-39). 

In this research, the TOT_CYC was specifically used to measure the total number of 

CPU clock cycles to accomplish a top-level mathematical function k(x, y) with a fairly 

known run-time environment (this specific function k(x, y) is to calculate a scalar 

multiplication with two affine coordinates x and y). Additionally, this research also 

acquired and analyzed the TOT_CYC metric to assess the CPU clock cycles of sub-

modules such as point-adding, or point doubling. Thus, to realize the performance 

comparison accurately, the measurement pairs: TOT_CYC for NSS and TOT_CYC for 

OpenSSL must be acquired on the same computing platform, and on the same runtime 

environment. Then the comparison can be done with each of these measurement pairs. 

 According to Patterson and Hennessy, the definition of time is called wall clock 

time, response time, or elapsed time. These terms mean the whole time to complete a 

task, including disk accesses, memory accesses, input/output (I/O) activities, operating 

system overhead etc. Thus, the metric TOT_CYC acquired by PAPI measurement 

method can only be an approximation of the entire time to complete a task. 

 The total number CPU instructions in a software function, namely as metric 

TOT_INS can be accurately converted to the TOT_CYC according to the computing 

clock cycle-time per CPU instruction (see Intel Latency, 2013). Consequently, the 

number of clock cycles required for function k(x, y), or for computing sub-modules can  
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be written as: 

TOT_CYC = Total Instructions for k(x, y) × Clock Cycles per Instruction (see Patterson 

& Hennessy, 2012, p. 33). 

 From the equation above, one must obtain both coefficients Total Instructions and  

Clock Cycles per Instruction in order to derive accurately the TOT_CYC. The TOT_INS 

metric used in this research is a convenience way to name the Total Instructions for a 

program as described generally in (Patterson & Hennessy, 2012, pp. 30-39). 

 For example, when the following 64-bit multiplication routine 

int64_t mul_low_64x64 (int64_t a64, int64_t b64) { 
return (int64_t)((__int128_t)a64 * b64); 
} 

is compiled with compiler optimization option 1, 

  gcc -O1 -S D.c  -oD.asm_opti 

the GCC compiler will produce the following assembly codes 

 .file "D.c" 
 .text 
.globl mul_low_64x64 
 .type mul_low_64x64, @function 
mul_low_64x64: 
.LFB37: 
 .cfi_startproc 
 movq %rsi, %rax 
 imulq %rdi, %rax 
 ret 
 .cfi_endproc 

Thus, BOCHS virtual machine will count exactly one "movq" CPU instruction, one 

"imulq", and one "ret" for the arithmetic routine mul_low_64x64 (int64_t a64, 

int64_t b64). In that case, the Total Instructions coefficient, TOT_INS, must exactly 

equal to 3. 
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Since the value of TOT_INS exactly equals to 3, then the following equality must be true 

for the function mul_low_64x64(): 

  TOT_INS = MODULE_COST = k1(imulq) + k2(movq) + OHF 

where k1 = 1, k2 = 1, and the Overhead Factor, OHF = 1 for the "ret" instruction. 

One could convert the TOT_INS to TOT_CYC by referencing the CPU instruction 

latency of the target computing platform (see Appendix V for the details of acquiring 

coefficients of TOT_CYC). 

Note:  

The CPU mnemonic MULq used in this research is a representation of imulq instruction. 

Thus, the imulq CPU instruction could be a subset of MULq. 

The CPU mnemonic MOVq used in this research is a representation of movq instruction. 

Thus, the movq CPU instruction could be a subset of MOVq. 
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Appendix V. Description of Metrics imulq and movq 

 The CPU instruction imulq8 in an x86, 64-bit hardware platform computes an 

integer multiplication of two 64-bit operands. The 128-bit result will be stored into two 

64-bit registers. In case of the routine 

 mul_low_64x64 (int64_t a64, int64_t b64), 

the target CPU multiplies the content of register RDI (routine parameter a64) to the 

content of register RAX (routine parameter b64) 

 imulq %rdi, %rax  (machine codes 0x48, 0xF7, 0xEE) 

and returns an 128-bit result in a resister pair RDX:RAX, where the register RAX is 

designated as low-word of the result. 

 According to Intel literature (see IA-64-32, 2013), and in a summary paper from 

(Granlund, 2014), executing the MULq instruction for Intel Pentium P4 processor will 

take exactly ten clock cycles. However, for the Intel Nehalem processors, executing the 

MULq instruction will take exactly three clock cycles. 

 The CPU instruction movq9 in an x86, 64-bit hardware platform moves the data 

between two 64-bit operands. In case of executing the instruction movq with two CPU 

registers (no external memory, or cache) 

 movq %rsi, %rax  (machine codes 0x48, 0x89, 0xF8), 

it will take one clock cycle for most of processors (P4, AMK K10 etc.) 

                                                 

8 The CPU mnemonic MULq used in this research is a representation of imulq 

instruction. Thus, the imulq CPU instruction could be a subset of MULq. 
9 The CPU mnemonic MOVq used in this research is a representation of movq 

instruction. Thus, the movq CPU instruction could be a subset of MOVq. 
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