
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

Performance Comparison of Projective Elliptic-
curve Point Multiplication in 64-bit x86 Runtime
Environment
Ninh Winson
Nova Southeastern University, winston@ninh.org

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons, and the Mathematics Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Ninh Winson. 2014. Performance Comparison of Projective Elliptic-curve Point Multiplication in 64-bit x86 Runtime Environment.
Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information
Sciences. (11)
http://nsuworks.nova.edu/gscis_etd/11.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Performance Comparison of Projective Elliptic-curve

Point Multiplication in 64-bit x86 Runtime Environment

by
Winston Ninh

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Computer Science

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

We hereby certify that this dissertation, submitted by Winston Ninh, conforms to
acceptable standards and is fully adequate in scope and quality to fulfill the dissertation
requirements for the degree of Doctor of Philosophy.

__ _________________________

Wei Li, Ph.D. Date
Chairperson of Dissertation Committee

__ _________________________

James Cannady, Ph.D. Date
Dissertation Committee Member

__ _________________________

Junping Sun, Ph.D. Date
Dissertation Committee Member

Approved:

__ _________________________

Eric S. Ackerman, Ph.D. Date
Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Performance Comparison of Projective Elliptic-curve

Point Multiplication in 64-bit x86 Runtime Environment

by
Winston Ninh

September 2014

 For over two decades, mathematicians and cryptologists have evaluated and

presented the theoretical performance of Elliptic-curve scalar point-multiplication in

projective geometry. Because computation in projective domain is composed of a wide

array of formulations and computing optimizations, there is not a comprehensive

performance comparison of point-multiplication using projective transformation available

to verify its realistic efficiency in 64-bit x86 computing platforms. Today, research on

explicit mathematical formulations in projective domain continues to excel by seeking

higher computational efficiency and ease of realization. An explicit performance

evaluation will help implementers choose better implementation methods and improve

Elliptic-curve scalar point-multiplication. This paper was founded on the practical

solution that obtaining realistic performance figures should be based on more precise

computational cost metrics and specific computing platforms. As part of that solution, an

empirical performance benchmark comparison between two approaches implementing

projective Elliptic-curve scalar point-multiplication will be presented to provide the

selection of, and subsequently ways to improve scalar point-multiplication technology

executing in a 64-bit x86 runtime environment.

Acknowledgements

 I offer my sincere gratitude to my dissertation chair, Dr. Wei Li, who patiently

guided me throughout this entire endeavor. I could not have completed this without his

advice. I would like to thank my committee members, Dr. James Cannady and Dr.

Junping Sun, who also provided me invaluable input throughout this process.

 I would also like to thank my wonderful wife, Lan. She has always encouraged and

supported me in my academic pursuits, often taking the reins on household matters (not

to mention sacrificing many vacations and trips to the shopping mall) in order to allow

me to focus on school work.

 I would also like to acknowledge our two daughters, Kimberly and Amie, for

spending countless hours pointing out awkward sentences and misspellings. I am so

thankful for having such eloquent children.

 Last but not least, I would like to express the utmost thanks to my adorable cat,

Timmy, who spent many late nights cuddling around my feet and keeping me company

while I worked on this dissertation.

Table of Contents

1. Introduction 1
Projective Elliptic-curve Point Multiplication Preliminary 2

Point Doubling and Point Adding 6
Associated Environments of PEPMA 9

System Architecture 10
Run-time Domain Parameters 11

The Empirical Performance Evaluation 13
Latency of PEPMA 14
Coarse Estimates Efficiency of PEPMA 16
Fine Estimates Efficiency of PEPMA 18

Program Profiling through Virtualization and Emulation 19
Accurate and Precise Efficiency Evaluation of PEPMA 20
Motivation and Direct Application 21
Problem Statement, Goal and Objectives 22
Barriers and Issues 23

Qualifications of Quantifiable Metrics 23
Mathematical Optimization Factors 23
Selection Criteria 23
Mathematical Traceability 24

Research Questions 24
Relevance, Significance and the Need to Evaluate 24
Definition of Terminology 30
Mathematical Symbol 34
Acronym 35
Chapter Summary 36

2. Literature Review 37
Performance Evaluation Standards 38
Efficiency Measurement 40
Elliptic-Curve Principles in PEPMA 42
Concept of Point Computation in Projective Domain 46

Point at Infinity 53
Computation in Mixed Coordinate 54
PEPMA Domain Parameters 54

Research in Numeric Presentation and Computation 55
Modulo Reduction 59
Inversion 59

Prior Research in Evaluating PEPMA 60
Explicit Formulation 62

Chapter Summary 66
3. Methodology 67

Overview 67
Unit of Analysis 70

Compliance Metric 72
Static Complexity Metric 72
Weighted Information Flow Complexity 73

v

Module Maturity Index 73
Functionality Metric 74
Efficiency Metric and Formulation 74
NSS PEPMA 75
OpenSSL PEPMA 79
Point at Infinity 81
Performance Hardware Counter 82
Program Profiling and Emulation 82
Run-time Factors 84
Efficiency Formulation Analysis 86

Method for Verification 89
Projected Outcome 89
Proposition of Format for Presenting the Results 90

Combined Key Performance Indicator 91
Resource Requirements 92
Timeline 92
Chapter Summary 93

4. Results 94
Introduction 94
Systematic Software Reviews and Selection of Unit of Analysis 95
Concept of Instrumentation 102
Overview of the Finding in General 103
Overview of the Findings of Efficiency Metric and Formulation 104
Finding of NSS Affine to Projective Transformation 107
Findings of APT in OpenSSL 109
Analysis of Affine to Projective Transformation 111
Finding of NSS Exponentiation Function 112
Analysis of NSS Exponentiation Function 116
Finding of NSS Point-Doubling 119
Analysis of NSS Point-Doubling 119
Finding of NSS Point-Adding 120
Analysis of NSS Point-Adding 120
Analysis of NSS Exponentiation Function, Revisited 121
Finding of OpenSSL Exponentiation Function 122
Analysis of NSS vs. OpenSSL Exponentiation Function 126
Finding of NSS Pre-computation 129
Analysis of Pre-computation 130
Finding of NSS/OpenSSL Projective to Affine Transformation 133
Analysis of NSS/OpenSSL Projective to Affine Transformation 133
Finding of the Compliance Metric 134
Analysis of Compliance Metric 136
Finding of Cyclomatic Complexity Metric 142
Finding of Cyclomatic Complexity Metric 142
Analysis of Cyclomatic Complexity Metric 144
Findings of Weighted Information Flow Complexity 146
Analysis of Weighted Information Flow Complexity (WIFC) 147

vi

Finding of Module Maturity Index 149
Analysis of Module Maturity Index 150
Finding of Functionality Metric 150
Analysis of Functional Metric 150
Summary of Key Performance Indicators 151
Finding of Combined Key Performance Indicator 152
Chapter Summary 154

5. Conclusion, Implications, Recommendations, and Summary 155
Objective and Goal Review 155
Conclusion 157
Implications 160

Practical Applications 160
Recommendations 162
Future Work 164
Appendix A. Counting CPU Instructions 165
Appendix B. ECDH Protocol 167
Appendix C. An ECDH Transaction 169
Appendix D. Modulus m, Order m 171
Appendix E. Point Adding of NSA Test Vectors 172
Appendix F. NIST Test Vectors 173
Appendix G. NSS Exponentiation Procedure 175
Appendix H. OpenSSL Exponentiation Procedure 178
Appendix I. Description of Clock() Function 180
Appendix J. Selection of Operational Parameters for P-521 181
Appendix K. Operation of BOCHS 183
Appendix L. Operation of PAPI 191
Appendix M. Configuration and Compilation of NSS 193
Appendix N. Configuration and Compilation of OpenSSL 194
Appendix O. Test Vector Type A 195
Appendix P. Test Vector Type B 196
Appendix Q. Test Vector Type B 197
Appendix R. Computing Platform Type A 198
Appendix S. Computing Platform Type B 201
Appendix T. Computing Platform Type C, CPU Resource Busy 204
Appendix U. Description of Metrics TOT_CYC and TOT_INS 205
Appendix V. Description of Metrics imulq and movq 208
References 209

vii

List of Figures

Figure 1. Position of PEPMA in a Cryptographic Service Hierarchy 3

Figure 2. Projective Elliptic-Curve Point-multiplication Agent 4

Figure 3. Elliptic-Curve Point-multiplication in Affine Coordinate 6

Figure 4. Elliptic-Curve Point-multiplication in Projective Coordinate 9

Figure 5. Elliptic-Curve Diffie-Hellman Key Exchange Used with PEPMA 12

Figure 6. Performance Measurement Techniques 16

Figure 7. Program Profiling and Emulation of PEPMA 20

Figure 8. Accurate and Precise Efficiency Evaluation of PEPMA 21

Figure 9. A 521-bit Elliptic-curve Point vs. 15,360-bit RSA Cryptographic Key 42

Figure 10. NIST EC in the Domain of Real Numbers in 3D 43

Figure 11. NIST EC in Small Numbers 44

Figure 12. Transforming an Elliptic Point onto Projective Geometry 48

Figure 13. First Movement of EC Point Onto PG and Back 49

Figure 14. Projectivity of Elliptic Points 50

Figure 15. PT and Projectivity of EC Points 51

Figure 16. Representation of a Spatial Multi-Digit Number 58

Figure 17. PEPMA Performance Measurement System 67

Figure 18. 4-bit Windowing Exponentiation Service 75

Figure 19. 4-bit Pre-comp Indexing Method 76

Figure 20. 5-bit Windowing Exponentiation Service 79

Figure 21. BOCHS Hardware Emulation 82

Figure 22. Accurate Efficiency Evaluation of PEPMA 83

Figure 23. Formulation Analysis Block Diagram 86

Figure 24. An Example of Performance Formulation 87

Figure 25. Efficiency Verification Block Diagram 89

Figure 26. Timeline 92

Figure 27. Types of Software Review Used in the Research 95

Figure 28. Formal Performance Evaluation Approach 100

Figure 29. Efficiency Verification Block Diagram 101

Figure 30. Projective Elliptic-Curve Point-multiplication Agent, Complete 105

viii

Figure 31. Exponentiation Function in NSS 112

Figure 32. Real-time Samplings, EF in NSS, Test Vector Type A 113

Figure 33. Real-time Samplings, EF in NSS, Test Vector Type A vs. Type B 114

Figure 34. 5-bit Windowing Exponentiation Service in OpenSSL 122

Figure 35. Real-time Samplings, EF in OpenSSL, Test Vector Type A 123

Figure 36. Real-time samplings, EF in OpenSSL, test Vector type B 124

Figure 37. Result of 5-bit Windowing Exponentiation Service in OpenSSL 127

Figure 38. 4-bit Pre-comp Indexing Method used in NSS 130

Figure 39. Elliptic Curve Diffie-Hellman Key Exchange Used with PEPMA 167

Figure 40. Virtual Machine BOCHS Main Screen 183

Figure 41. Virtual Machine BOCHS Rescue Screen 184

Figure 42. Virtual Machine BOCHS Language Screen 184

Figure 43. Virtual Machine BOCHS Final Screen 185

Figure 44. Virtual Machine BOCHS Calculating k×(x, y) 186

Figure 45. Instruction Software Counters Displayed while Calculating k×(x, y) 187

Figure 46. Computing Platform Type A, CPU and Memory 198

Figure 47. Computing Platform Type A, Running/Sleeping Processes 199

Figure 48. Computing Platform Type A at Busy State 200

Figure 49. Computing Platform Type B, CPU and Memory 201

Figure 50. Computing Platform Type B with Running/Sleeping Processes 202

Figure 51. Computing Platform Type B, Resource Utilization 203

Figure 52. Computing Platform Type C, Resources Busy 204

ix

List of Tables

Table 1. NSS and OpenSSL Similarity and Difference 41

Table 2. NIST P-521 Domain Parameters (FIPS PUB 186-4, 2013, p. 16) 54

Table 3. Performance of EPM in Hardware 64

Table 4. Unit of Analysis 70

Table 5. Unit of Analysis, EMF 70

Table 6. KPI between NSS and OpenSSL PEPMA 90

Table 7. Finding of Six Units of Analyses 94

Table 8. Finding Limitation 98

Table 9. Findings of Key Performance Indicators 103

Table 10. Finding of Efficiency Metric and Formulation 105

Table 11. Finding of NSS Affine to Projective Transformation 107

Table 12. NSS APT Formulation 108

Table 13. NSS BOCHS/PAPI APT Limits 108

Table 14. Finding of OpenSSL Affine to Projective Transformation 109

Table 15. Finding of OpenSSL Affine to Projective Transformation (Continued) 110

Table 16. NSS APT Formulation 110

Table 17. APT Comparison 111

Table 18. Real-time Samplings, Function EF in NSS, Vectors Type A 113

Table 19. Real-time Samplings, Function EF in NSS, Vectors Type B 114

Table 20. Formulation of NSS Exponentiation Function 114

Table 21. Sequence of NSS Exponentiation Function 115

Table 22. Alternate Formulation of NSS Exponentiation Function 117

Table 23. Finding of NSS Exponentiation Function by BOCHS 118

Table 24. Finding of NSS Point-Doubling by BOCHS 119

Table 25. Formulation of NSS Point-Doubling 119

Table 26. Finding of NSS Point-Adding by BOCHS 120

Table 27. Formulation of NSS Point-Adding 120

Table 28. Formulation of NSS Exponentiation Function by BOCHS 121

Table 29. Formulation of NSS Exponentiation Function, Complete 121

Table 30. Real-time Samplings, Function EF in OpenSSL, Vectors Type A 122

x

Table 31. Real-time Samplings, Function EF in OpenSSL, Vectors Type B 123

Table 32. Formulation of OpenSSL Exponentiation Function 124

Table 33. Finding of OpenSSL Exponentiation Function by BOCHS 125

Table 34. Finding of OpenSSL Point-Doubling by BOCHS 125

Table 35. Finding of OpenSSL Point-Adding by BOCHS 125

Table 36. Formulation of OpenSSL Exponentiation Function, Complete 125

Table 37. Analysis of OpenSSL vs. NSS Exponentiation Function, Test Vector A 126

Table 38. Finding of NSS Pre-computation 129

Table 39. NSS Pre-computation Values in PRE-COMP Table 131

Table 40. Finding of OpenSSL Pre-computation 132

Table 41. Real-time Samplings, Function PAT in NSS/OpenSSL, Vectors Type A 133

Table 42. Finding of NSS/OpenSSL Compliance Metric, Level 1 134

Table 43. Formulation for Compliance Metric 135

Table 44. Technical Risk Ratings 136

Table 45. Compliance Metric, Seven Inspection Areas, Security Level 1 138

Table 46. Compliance Metric, Security Level 140

Table 47. Findings of NSS Cyclomatic Complexity Metric of PD 142

Table 48. Findings of NSS Cyclomatic Complexity Metric of PA 143

Table 49. NSS CCM Formulations 143

Table 50. Findings of OpenSSL Cyclomatic Complexity Metric of PD 143

Table 51. Findings of OpenSSL Cyclomatic Complexity Metric of PA 143

Table 52. NSS CCM Formulations 144

Table 53. CCM Level 145

Table 54. Comparison between NSS and OpenSSL CCM 145

Table 55. Findings of NSS Information Flow Complexity of PD 146

Table 56. Findings of NSS Information Flow Complexity of PA 146

Table 57. Findings of OpenSSL Weighted Information Flow Complexity of PD 147

Table 58. Findings of OpenSSL Weighted Information Flow Complexity of PA 147

Table 59. Comparison between NSS and OpenSSL WIFC 148

Table 60. Module Maturity Index, NSS 149

Table 61. Module Maturity Index, OpenSSL 149

xi

xii

Table 62. Functional Metric 150

Table 63. Final cKPI of NSS/OpenSSL PEPMA 153

Table 64. Future Work 164

Table 65. Cost Index of s_mpv_mul_d_add() 165

Table 66. The s_mpv_mul_d_add NSS PEPMA Executable Code 165

Table 67. The Modulus of Finite Field 171

Table 68. The Order of Finite Field 171

Table 69. Request-For-Comment Related to Selection of P-521 Curve 181

Table 70. ANSI, NSA, NIST, and SECS Publications 182

Table 71. Test Vector Type C, Modulus m. 197

Table 72. Test Vector Type C, Vector x. 197

1

Chapter 1

Introduction

 For over two decades, mathematicians and cryptologists have evaluated and

presented the performance of Elliptic-curve scalar point-multiplication in projective

geometry using two basic quantitative metrics: the total number of multiplications (M)

and squarings (S). Although these two single-digit mathematical operations are necessary

to complete the multiplication of a scalar value k and a point p with coordinates (x, y) on

an Elliptic curve, the question remains whether they are really sufficient to provide

proper selection between projective Elliptic-curve scalar point-multiplication. Such

questionable sufficiency in evaluating performance using single-digit M and S metrics,

without accounting for optimizations and the cost of modulo arithmetic, will remain

theoretical and unrealistic. Therefore, the performance result will not reflect the true

figure between different projective transformation technologies.

 This research will center on the performance comparison between two Projective

Elliptic-curve Point Multiplication Agents (PEPMA) software: One was implemented in

Network Security Services (NSS, 2013) and the second in (OpenSSL, 2013). Both NSS

and OpenSSL have been deployed in the field to target a wide range of applications.

Nevertheless, given the variety of projective transformations, diversity of underlying

arithmetic optimizations (NIST, 2010), and different computing platform architecture, an

unanswered question is whether there is a way to select a faster one, or to improve

PEPMA’s efficiency based on an empirical comparison.

This chapter provides an introduction to research involving the evaluation of performance

and the performance comparison of projective Elliptic-curve Point Multiplication in a 64-

2

bit x86 run-time environment (Kasper, 2012; Levinthal, 2004). This research contains the

most relevant information which supports the preparation of essential evaluation software

tools to address the unanswered questions (BOCHS, 2013; PAPI, 2013). It further

elaborates the significance of research and provides a discussion of the issues. The

investigation advocates the need for research on an enhanced-accuracy performance

comparison of Projective Elliptic-curve Point Multiplication Agent, or PEPMA.

 The goal of this investigation is to develop a formal evaluation methodology which

will provide a practical approach to selecting higher-performance based on precise and

accurate quantitative computational metrics. This research will address implementation

differences between NSS and OpenSSL, present connectivity between mathematical

modules (Blake, 2001), and explore weaknesses with current performance evaluation

methods. Subsequently, the selection approach based on a formal evaluation

methodology will provide definitive, repeatable and quantitative means to improve new

designs or existing implementations of PEPMA.

 The principles discussed below will provide a means to achieve formal evaluation

methodology.

Projective Elliptic-curve Point Multiplication Preliminary

 PEPMA is an efficient mathematical procedure (NIST, 2010) to compute a product

of a scalar k with an affine coordinate (x, y). In order to produce the result k×(x, y),

PEPMA must take into its functional equations several additional parameters besides k, x,

and y (Koc, 2009; Certicom Research, 2009; ANSI, 2005; ANSI, 2001). Additional

parameters include, but not limited to, Elliptic-curve coefficients a, b, and the modulus m

for modular arithmetic. PEPMA normally works under a Public-key Exchange protocol

3

(PKE). One available PKE protocol is Elliptic-Curve Diffie-Hellman (ECDH), where

most parameters required for PEPMA are usually taken from a public certificate,

subcategory "domain parameters". The ECDH Public-key Exchange protocol processes

the scalar product k(x, y) outputting from PEPMA to generate cryptographic private keys

for data encryption or decryption (IASE, 2013; NIST, 2007). Typically, PEPMA will

position itself in a cryptographic service hierarchy as shown in Figure 1.

Figure 1. Position of PEPMA in a Cryptographic Service Hierarchy

Performance comparison and improving PEMA efficiency begins with a root

understanding of point-multiplication in the projective domain (NIST, 2010; Hankerson

et al., 2004; Menezes et al., 1996). In Figure 2, the scalar value k and the affine

coordinates (x, y) of an Elliptic-curve point p enters . These entrant parameters to the

projective transformation Elliptic-curve Point Multiplication (EPM) are 521 bits in

length. At , the affine input parameters (k, x, y) are transformed into the projective

4

coordinate system simply by attaching Z=1 to the coordinates x and y. Chapter two will

further explain why this attachment is valid in a finite field.

 For representation purposes, the coordinates are designated as (X, Y, Z), and the

first projective coordinate to enter the computational loop has a value of (X = x, Y = y,

Z = 1). A more detailed discussion can be found in Chapter two.

Figure 2. Projective Elliptic-Curve Point-multiplication Agent

The scalar k will control the number of point-doubling and point-adding operations

in the computation loop . Operations in are commonly designated as exponentiation

procedures for PEPMA. The computation looping will call functions and a few

hundred times to produce the final result (X, Y, Z) at .

Efficiency in terms of how many times point-doubling or point adding is required to

execute depends on the exponentiation algorithm used: left-to-right binary-shift, right-to-

5

left binary-shift, left-to-right fixed-base windowing-shift, or right-to-left fixed-base

windowing-shift (Brown et al., 2001). Both NSS and OpenSSL use the right-to-left

fixed-base windowing-shift exponentiation method. These methods have been frequently

discussed (Saldamli et al., 2009; Avanzi, 2004; Koblitz, 2000; Cohen et al., 1998).

 At , the "Projective to Affine Transformation" procedure converts the final

projective coordinates (X, Y, Z) back to the affine coordinates at . The result k(x, y)

will be the multiplication of a scalar k with an Elliptic-curve point p having two affine

coordinates (x, y).

 All mathematical routines shown in , , and call for multi-digit modulo

arithmetic with the chosen field-modulus m (NIST, 2010). The Elliptic-curve Point

Multiplication (EPM) mathematical services recommended in the NIST Suite B

cryptography prime field suggests that a complete 521-bit big-number in a 64-bit system

can be efficiently stored in nine 64-bit registers using 9 × 64 = 576 bits (NSA, 2013).

However, both NSS and OpenSSL represent the big-numbers differently from the nine

64-bit registers with arithmetic carry bit. The notation of big-numbers in Chapter two will

further describe the format, differences, advantages, and disadvantages between the NSS

and OpenSSL representation of multi-digit numbers.

 At the multi-digit arithmetic , six big-number arithmetic operations are required

to support PEPMA: adding, subtracting, modular reduction, squaring, multiplication, and

inversion (Certicom Research, 2009). Except for modular inversion, all five operations

are necessary for point-doubling and adding in the computing loop . To convert

projective coordinates back to affine coordinates, one or two modular inversions along

with adding, modular reduction, and squarings are required in block . Since block

6

"P to A Transformation" is located outside of the loop and executed only once at the end,

its computing cost is low compared to the cost of point-doubling and adding while in the

computational loop .

 All arithmetic in block will be compiled into machine codes, as shown in block

. Computational costs of projective EPM at block can be documented by examining

the assembly codes produced by the target C compiler. The NSS code in Appendix A

further details this process.

Point Doubling and Point Adding

 The Elliptic-curve Point Multiplication procedure (EPM) requires two functions

working together in the exponentiation loop: point-doubling of a point and point-adding

of two different points (Certicom Research, 2009; Cohen et al., 2006; Connel, 1999). For

example, let p(x, y) be an affine point on an Elliptic curve. Let k be a scalar multiplied

with point p. If k = 5, then to obtain 5 × p efficiently, two point-doublings and one point-

adding are applied:

 k(x, y) ≙ 5 × p ≙ [2 × (2 × p)] + p

Figure 3. Elliptic-Curve Point-multiplication in Affine Coordinate

The efficient affine-coordinate mathematical operations above require exactly two point-

doublings and one point-adding, while k controls which function to use and how many

7

times to call them. In other words, the exponentiation of p has occurred 2 times in the

exponentiation loop [2 × (2 × p)] while the adding of p has occurred once.

 There are several ways to construct software servicing the scalar product k(x, y) in

64-bit computing platforms (Avanzi et al., 2006; Fong et al., 2004; Koblitz, 2000). One

method applies the time-domain computation to affine coordinates in a finite field (Koc,

2009). Based on algebraic laws, 2 × (x, y) is equivalent to the point-doubling of point p(x,

y) on an Elliptic curve (EC). Point-doubling arithmetic will produce a result in another

point p3(x3, y3). The coordinates of this resultant vector are precisely defined by two

Cartesian coordinate equations in the Euclidian plane. A derivation of these formulas can

be found below, and in (Blake, 2001):

 x
y

ax
x 2

2

3
22

3

 , yxx

y

ax
y

 3

2

3 2

3

The parameter "a" is defined as a domain coefficient of an Elliptic curve. The selection of

"a" has been chosen carefully by cryptologists for computational ease, and at the same

time, to satisfy important security criteria. Coefficient "a" is set to –3 per NIST

recommendation for implementation of a P-521 curve. NIST defined and explained these

settings in (FIPS PUB 186-4, 2013) and (NIST, 2010).

 Precise modulo arithmetic must be applied after each arithmetic operation whenever

there is an arithmetic overflow beyond the chosen boundary of finite field F. In

calculating coordinates x3 and y3, take the inverse of 2y

 m
y

r mod
2

1

by following the inversion rule (Ciet et al., 2006):

 (1.1) mry mod1

8

 To derive the inversion of y, PEPMA might need to search for one unique value of r

in the entire finite field having 2521 – 1 elements for which equation (1.1) is satisfied. This

operation will be computationally intensive (Ciet et al., 2006; Itoh et al., 1988). However,

the calculation of the scalar product 2 × p(x, y) will be faster if the inversions of y can be

eliminated, or at least significantly reduced from a few hundred to one or two times in the

k×(x, y) loop.

 Despite the power of modern-day computing platforms, the current embedded

processors and RISC in tablets have limited arithmetic capabilities to process Elliptic

Curve Point Multiplication in a timely manner (ARM, 2013; ZigBee, 2010; Jennic

JN5184, 2010). Computation using affine coordinates will require significant longer time,

due to the lengthiness to compute inversions. Therefore, realization of time-domain EPM

in these limited arithmetic capability processors will not be practical. Under the finite

projective theory, the elimination of inversions can be realized by transforming the affine

coordinates (x, y) into projective coordinates and processing the computation of scalar

product k(x, y) entirely in the projective domain. Computation in projective coordinates

found in Chapter two will further explain this realization.

 When a projective transformation is activated, a forward Affine-to-Projective

Transformation (APT) converts affine input parameters k, x, y to parameters with their

representations in projective domain. After point-adding or point-doubling functions

complete their mathematical operations entirely in projective domain, the reverse

Projective-to-Affine Transformation routine (PAT) converts the result back into its

equivalent affine coordinates, k(x, y). This concept is recorded in Figure 4, and in (NSS

PEPMA, 2013; OpenSSL PEPMA, 2013; Cohen et al., 2006).

9

Figure 4. Elliptic-Curve Point-multiplication in Projective Coordinate

When implementing PEPMA to work efficiently under weighted projective

transformation, also known as transformation of variables into Jacobian's domain (Koc,

2009), there will be exactly one 521-bit inversion in the PAT and none in the APT. The

repetitive mathematical operations in point-adding or point-doubling functions do not

have any inversions. The point-adding and point-doubling functions described in Figure 4

above will be processed entirely in the projective domain. Their mathematical operations

will no longer be associated with affine coordinates after an Affine-to-Projective

Transformation (Bernstein et al., 2007; Ryabko et al. 2005).

 There are different ways to compute projective point-doubling or point-adding

functions; but yet, the product k(x, y) will be the same at the end (Cohen et al., 2006;

Brown et al., 2001). This raises an issue of interoperability between these computing

approaches. Can point-doubling or point-adding functions be mixed and matched? Which

one is better in terms of efficiency? An immediate question is whether the performance of

PEPMA is unknown based on existing theoretical work.

Associated Environments of PEPMA

 The environments surrounding PEPMA will potentially affect the runtime

performance of PEPMA. These environments include system architecture, compiling

options, and runtime domain parameters.

10

System Architecture

 The chosen system architecture for PEPMA will limit how a big-number or Multi-

Digit Number (MDN) can be represented efficiently. Testimony from researchers

indicated several ways to represent an MDN contained in a finite field F (GNU-MP,

2011; SEC 1, 2000). However, only two types of representations are commonly used in

the industry: Prime field Fp and exponential prime field Fp
s.

 If prime p is set to 2, then the exponential prime field Fp
s becomes F2

s, or an

exponential binary field. Moreover, if the MDN is implemented using a two-bit field F2,

then NSS or OpenSSL PEPMA can represent an S-bit Multi-Digit Number as a finite

discrete polynomial along with a sign indicator

 1 2 1
1 2 1 0() (2) (2) ... (2) (2)S S

S SMDN sign b b b b

0

Each arithmetic digit in 64-bit system architecture can hold 64 bits plus a carry bit.

Effectively, a full digit contains 65 bits. Since NSS uses a half-digit representation (32

bits) and OpenSSL uses a 58-bit representation (also called field element or felem)

instead of 64 bits architecture, a question that comes to mind is which method would be

more efficient.

11

Compiling Options

 Users compiling options have several levels of optimization to choose from (GCC,

2013). For example, optimization switch –O0 in a GCC compiler will turn off all

optimizations while an –O1 option will turn on some optimizations. Another facet to

explore is whether optimizations affect the cost index and what setting would work best

for computational efficiency.

Run-time Domain Parameters

 The binary content of vectors coming from domain parameters is expected to

contribute to the performance evaluation of PEPMA. Both NSS and OpenSSL PEPMA

work under an Elliptic-Curve Diffie-Hellman (ECDH) Public-key Exchange protocol to

generate cryptographic keys for data encryption and decryption.

 The ECDH cryptography protocol used for exchanging private keys is believed by

researchers and industry professionals to provide a secured transaction under an

unsecured communication channel. One area of concern in evaluating PEPMA's

performance is why, where and how domain parameters affect the assessment. A further

examination of ECDH protocol might help in this regard. For a more detailed transaction

of ECDH protocol and associated domain parameters, readers are referred to the contents

of Appendix B and Appendix C.

12

Under public viewers and on an unsecured communication channel, the calculations

calling for PEPMA's services in transaction sequences to are summarized in Figure

5 below. More details descriptions of the Elliptic-Curve Diffie-Hellman key exchange

protocol (ECDH) are found in (NIST, 2007), NIST Special Publication 800-56A.

Figure 5. Elliptic-Curve Diffie-Hellman Key Exchange Used with PEPMA

The Client's ECDH procedure initiates transaction starting with Client's domain

parameters (p, a, b, G, n, h)1. Subsequently, the scalar product calculations of k(x, y)

provided by PEPMA occur at the computations of sG, cG, csG, and scG, where G(x, y) is

the generator2 for the cyclic subgroup within the chosen finite field. At transaction , the

Server receives Client's key and is ready for data encryption using Advanced Encryption

Standard, AES (FIPS-197, 2001), or Data Encryption Standard, DES, or Rivest Cipher 4

(RC4) encryption algorithm for streaming data.

1 The ECDH transaction with numerical details and definitions of domain parameters are
recorded in Appendix B.
2 The generator for the cyclic subgroup is a point on Elliptic-curve where the result of the
product nG(x, y) equals to a point at infinity. This generator is also known as the base
point of the cyclic subgroup.

13

The Empirical Performance Evaluation

 To acquire parametric pertaining to performance and to compare the computational

efficiency of PEPMA in a 64-bit x86 run-time environment, two optimizing codes will be

selected for investigation: one made in Network Security Services (NSS, 2013) and the

other from the OpenSSL Project (OpenSSL, 2013). Both projects have core

implementations of PEPMA recommended in the NIST Suite B cryptography under

prime field (NSA, 2013). The NSS and OpenSSL PEPMA are among the first industry

open-source applications to implement and deploy an NIST public key exchange with

521-bit Elliptic-curve cryptography. In order to achieve higher efficiency, both NSS and

OpenSSL 521-bit prime-field implementations applied the weighted projective

transformation, or the transformation of variables into Jacobian's domain.

 The NSS and OpenSSL provide free source codes of cryptographic low-level

implementation, along with high-level implementation protocols. The NSS libraries

currently service cryptographic functions for Firefox, Android, and other applications that

require Public Key Exchange services. The OpenSSL currently serves a majority of

consumer products, such as embedded TCP/IP cameras, home desktop videos, and smart

TVs.

 Both NSS and OpenSSL have received a variety of FIPS-140-2, security level 1, 2

or 3 certifications indicating that the implementations are adequately stable (FIPS-140-2,

2001). The codes can be applied to Elliptic-curve public key exchange cryptography to

ensure authenticity in the public-key infrastructure.

Open-source projects can offer an exceptionally important role in benchmarking. A

particular FIPS certified implementation that has gone through thorough testing by a

certification and accreditation agent might provide a well-defined baseline for

14

comparison. Cryptographic Algorithm Verification Program (CAVP, 2013) also

describes the verification procedures and provides additional information. Without this

reference for comparison, it might be difficult if not impossible to present any valid

performance evaluation by counting the number of mathematical operations as often

claimed in current literature. This is a primary motivation for deriving a comprehensive

performance comparison between NSS PEPMA and OpenSSL PEPMA, all operating in a

64-bit x86 run-time environment.

 Additionally, the 64-bit x86 computing architecture available today is becoming

popular computer platform; hence, obtaining comparative performance figures based on

these specific computing platforms with accurate cost metrics will have immediate

commercial benefits. Such explicit performance evaluation will help crypto software

developers to choose an effective projective transformation method which contain

efficient underlying mathematics for the realization of a Projective Elliptic-curve Scalar

Point Multiplication Agent.

 It has been suggested by (Pare, 2004; Gillham, 2003; Yin, 2003; Yin 1994) that the

empirical performance evaluation based on case studies will be well suited to answer the

questions on PEPMA's topic such as: "Is performance of PEPMA unknown even based

on existing theoretical work; Or, what are the metrics to truthfully evaluate PEPMA's

efficiency?"

Latency of PEPMA

 Many researchers have used the computational unit for multiplication based on a

full-word mathematical procedure. The computational unit does not account for the cost

of a digit-by-digit (or limb-by-limb) operation and is counted as 1M in literature (M =

15

Multiplcation). For example, if an operand Elliptic-curve key length is 521 bits, then a

full-word hardware multiplier operates a multiplication of 521-bit word by 521-bit word

operands simultaneously, and immediately produces a 1042-bit result in a single

multiplication. This 521-bit "single- shot" multiplication is currently not available in any

general CPU. This lack of “single shot” multiplication compounds the latency evaluation.

Thus, in order to practically determine the latency of PEPMA, the measurement unit “M”

should at least be converted to computational cost based on digit-by-digit multiplication.

Furthermore, the latency evaluation becomes even more complicated in NSS and

OpenSSL 64-bit processing where each digit in a target CPU could be any arithmetic

word length: 8, 15, 16, 22, 32, 56, or 64 bits with or without hardware carry bit.

 Also, the latency of PEPMA affected not by one, but by at least two hardware

components: Arithmetic unit integer quad-word multiplication with imulq instruction and

memory utilization with quad-word memory move, movq instruction. Both NSS-PEPMA

and OpenSSL-PEPMA executable codes use a significant number of movq instructions

(Intel Latency, 2013). While the latency index of movq and imulq instruction is 6 and 10

respectively, the multiplication routine s_mpv_mul_d_add() in NSS PEPMA executes a

total of 29 movq instructions and only 4 imulq instructions (Intel Latency, 2013). Table

66 in Appendix A lists out the routine s_mpv_mul_d_add().

 With the same memory utilization subject, literature from (Singhal et al., 2011;

Levinthal, 2009) provides some guidance for reading and applying memory utilization

factors as an intricate part of the performance analysis. Given these two hardware

dependencies, it is difficult to extrapolate from academic findings. It is exceedingly

16

difficult to construct a vector test set without reference implementations because latency

will vary substantially by the test vector's content.

 In order to address the complexities of performance improvement of PEPMA, one

needs to determine how academia and industry have tried to evaluate PEPMA in terms of

computing costs.

Coarse Estimates Efficiency of PEPMA

 Counting mathematical operations with Multiplications (M) or Squaring (S) at the

top level of PEPMA service routines offer coarse estimates. To address the performance

issues quickly and more precisely than coarse estimates, the researchers often rank

software latency with a single metric using clock() time function (See Appendix I), which

is readily available in common computing platforms (GNU-CPU-Time, 2014).

Figure 6. Performance Measurement Techniques

Although the estimated cost using a computing platform's clock() function offers a quick

evaluation of performance, it lacks insights into the internal structure of PEPMA; thus,

these cost indexes do not furnish any useful information for improvement along the

computational chain. The M, S and clock() metrics for obtaining rough cost indexes are

17

shown in Figure 6. Operational difficulty spans from easy on the left to more difficult on

the right.

 Ranking the efficiency with a CPU cycle counter clock() under a run-time

environment, as shown in Figure 6, will help approximate the overall performance of

PEPMA. However, the result will not be accurate and precise due to Operating System

(OS) overhead, active running treads, and other processes running in the same runtime

environment.

 Academic work comparing PEPMA by the ratio of one processing runtime to the

other runtime in terms of CPU clock cycles appeared in eBACS (eBACS, 2004) and from

researchers (Bernstein, 2007; Somani, 2010). The eBACS performance evaluation was an

eight year European research initiative launched in February 2004. In 2007, the group

posted a web page where it tabulated a processing runtime of an Elliptic-Curve Diffie-

Hellman key exchange procedure (ECDH) 256 key-pair generation without

precomputation over GF(p) (Crypto++, 2007). This evaluation model has since been

popular. If one decided to use PEPMA right out of an open-source repository, he or she

knows right away whether the processing time can fit well into computing architecture.

 While such single-unit performance-measurement process is mostly intuitive, there

is an abundance of hidden features in the computing chain that can drastically change this

performance measurement. Several hidden features can be spotted by systematically

examining the NSS and OpenSSL PEPMA codes. Two particular features are noted at the

exponentiation procedure where a number of projective doubling/adding functions can be

reduced by the order of computations. Another hidden property is located in an NSS half-

digit 32-bit numeric representation (NSS-1, 2013). However, the conversion of existing

18

codes from a half-digit 32-bit representation to a 58-bit or full-digit 65-bit numeric

representation is possible in a 64-bit x86 system (IA-64-32, 2013, Section 4.2). Such

successful conversion can significantly change the outcome of a single-unit performance-

measurement. Hence, a PEPMA procedure can be improved using better evaluation

metrics.

Fine Estimates Efficiency of PEPMA

 Better performance evaluation of PEPMA available in cryptographic communities

can be classified into two categories: performance measurement (PAPI, 2013; Levinthal,

2009; Drongowski, 2008) and program profiling through emulation (BOCHS, 2013;

Code XL, 2013). The instrumentation setup in an efficiency measurement process might

include one or two on-chip machine-code instruction hardware counters counting the

occurrences of instructions. For example, operations MUL, the number of multiply

operations executed by PEPMA, has resulted in an event 0x12, mask 0x00 in

performance monitoring processing unit (IA-64, 2013). The Performance Hardware

Counters sit inside CPU hardware. Their position related to PEPMA code is shown in

Figure 6.

 Almost all 64-bit x86 systems, including Intel Pentium and AMD processors made

for PC/Servers, have incorporated two on-chip 40-bit performance hardware counters,

which can be used to collect execution times of cryptographic service routines (Intel

PERC, 2013). The performance program profiling through the emulation of a

cryptographic program like PEPMA is available from Wind River SIMICS (WindRiver

SIMICS, 2013) and from an open-source repository (BOCHS, 2013).

19

In 2008, a more elaborate performance comparison between cryptographic algorithms

was performed on Intel XScale architecture (Bartolini et al., 2008). Bartolini et al. used

an XScale computing platform (Intel XScale, 2007) as a reference processor and Multi-

precision Integer and Rational Arithmetic (MIRACL, 2013) C library to construct 571-bit

large integers during the evaluation. This signified that PEPMA required more accurate

performance comparison and that coarse estimates will not suffice.

 Targeting open-source software like OpenSSL, Google Corporation has been

working on displaying performance tables and charts using a set of metrics such as

benchmark machines, cycles per operation, and iteration counts for algorithms (Kasper,

2010). Kasper targeted the performance evaluation applied toward the Transport Layer

Security (TLS) protocol (NSS-1, 2013) with shorter key-length (224 bits) NIST P-224

Elliptic-curve under prime field. The NIST P-224 mathematical procedure produces 224-

bit crypto keys versus 521 bits in this evaluation (NIST, 2010). This indicated that

another way to improve measurements is to use program profiling technology.

Program Profiling through Virtualization and Emulation

 A virtual machine is a software engine that redirects code and data of an application

and executes it within a newly created and isolated runtime environment. The VMware or

VirtualBox by Oracle performs this function well (VirtualBox, 2014). Thus,

virtualization refers to technology that provides an additional layer of glue-logic and

services between hardware and PEPMA as an application. Different type of technologies

can be used to employ virtual machines. The two most commonly used are direct

execution with CPU instructions for fast speed, and emulation of CPU instructions for

flexibility. Virtualization by emulation of PEPMA coding increases flexibility in terms of

20

obtaining computing costs (Mihocka & Shwartsman, 2014) Within the virtual

environment, the emulation of PEPMA codes will allow precise and accurate counting of

frequently used instructions such as imulq or movq (Intel Latency, 2013). Readers are

referred to Appendix A for an accurate counting a small sample of NSS code (actual

count will be in the order of million units). This performance measurement technology is

referred to as program profiling of a PEPMA procedure and the units of measurement

can be any CPU instructions (machine code). As a result of units of measurement like

MULq or MOVq, counting these executing instructions with instruction emulation will

be exact. Subsequently, computational cost equations from these units of measurements

can be made. Under a particular emulation environment with a Community Enterprise

Operating System, CentOS, a Linux OS, PEPMA will position itself in a software service

hierarchy as shown in Figure 7.

Figure 7. Program Profiling and Emulation of PEPMA

Accurate and Precise Efficiency Evaluation of PEPMA

 When observing PEPMA as a mathematical solver, one will uncover a number of

performance deficiencies during implementation due to misused algorithms, inefficient

numerical representation, or platform dependency. According to Mittelmann (2004) and

21

other professionals (COCO, 2014; BBOD, 2013) in the field of benchmarking of linear

optimization software3, comprehensive benchmarking of each part of the solver will help

identify potential efficiency problems, and will lead to software improvements. To

benchmark each part of the solver, metrics M, S, clock(), Performance Hardware Counter

and Software Counter can effectively provide input to the formulation analysis for

verification of the result. More precise and accurate cost index can be derived from

formulas instead of from other coarse cost indexes. The concept for verification is shown

in a diagram in Figure 8.

 Figure 8. Accurate and Precise Efficiency Evaluation of PEPMA

Motivation and Direct Application

 Of particular interest is the result obtained from applying PEPMA toward private

key generation, specifically the outcome of the Elliptic Curve Diffie-Hellman Public Key

3 Linear optimization is a method to achieve the best outcome.

22

Exchange protocol (IASE, 2013; NIST, 2007). Today in the Public-Key Infrastructure,

these protocols are commonly used in many client-server transactions, and PEPMA may

eventually be the dominant method for public key exchange in cyberspace security in the

near future. This comparison topic was selected because PEPMA's fast response is an

important factor in client-server transactions. Furthermore, obtaining maximum

efficiency offers superior advantages in terms of shorter user waiting times, even in less

powerful processors.

Problem Statement, Goal and Objectives

Problem Statement:

 Presenting the computational performance of Elliptic-curve scalar point-

multiplication approaches in projective geometry using:

(a) the total number of single-digit non-modular multiplications (M) metric,

(b) the total number of single-digit non-modular squarings (S) metric,

(c) or executing computations under unspecified underlying arithmetic methods,

(d) or under an unspecified computing architecture

to complete the multiplication of a scalar value k and a point p with coordinates (x, y) is

necessary but insufficient.

Goal:

 Given a mixture of projective transformations, diversity of underlying arithmetic

algorithms, and different computing platform architectures, the goal of this research is to

improve the projective Elliptic-curve point-multiplication agent by dynamically or

statically selecting higher-performance arithmetic approaches based on quantitative

computational metrics.

23

Objectives:

 In order to provide a higher-performance approach between PEPMA, additional

quantitative performance figures of merit will be introduced.

Barriers and Issues

Qualifications of Quantifiable Metrics

 Qualifying metrics will be the most difficult part of this research. Challenges come

from determining quantifiable cost indexes for each mathematical procedure in the

computing chain of PEPMA. An initial investigation showed that the contributing

complications to the cost index might include optimizations in selected algorithms,

presentation of big numbers, values of chosen field modulus, test vectors, base points,

and mathematical optimization factors.

Mathematical Optimization Factors

 In order to construct accurate metrics, optimization factors must be included in the

equation. The contributing complexities to mathematical optimization include operators

such as bypassing functions based on special vector contents, early exiting executing

loops, modulo reduction methods, and the dynamic selection of computations via other

transformations or dynamic shortcuts such as a function of input vectors.

Selection Criteria

 The criteria of selection for better efficiency will pose other challenges as well.

These challenges come from constructing of practical Key Performance Indicators based

on quantifiable metrics of various PEPMAs.

24

Mathematical Traceability

 There is concern regarding the qualification of cryptographic mathematics and

underlying low-level implementation of mathematical routines. Many original concepts,

underlying theorems, formulations and properties described will be introduced in the

context of Elliptic-curve point-multiplication, finite-field projective geometry, and 521-

bit prime-field arithmetic. Rigorous proofs for these theorems may be found in Elliptic-

curve and projective transformation literature (NIST, 2010; Certicom Research, 2009;

Blake, 2001; Menezes et. al., 1996; Cohn, 1962) and Finite-Field Projective Geometry

(Rosen, 2006).

Research Questions

 This research will answer the following questions:

1) Is the performance of PEPMA unknown based on existing theoretical work?

2) What are the metrics to truthfully evaluate PEPMA's efficiency?

3) Are there ways to improve PEPMA’s efficiency based on the empirical comparison?

Relevance, Significance and the Need to Evaluate

Relevance:

 In the fast-paced cyberspace security, threats to public key exchange are constantly

emerging. One possible goal of improving security is to maximize the burden for

adversaries in terms of computational costs, such that adversaries will not be able to

retrieve or reveal private keys. According to US-CERT (2014), more than hundred

thousands damaging intrusion attacks to the U.S. military network occurred in FY 2011

(OMB, 2012). This highlights the need for next-generation public-key exchange design to

25

have the capability to withstand brute-force cryptanalysis executing under high-

performance, but low-cost computing platforms (Intel AVX, 2012).

Naturally, to meet these goals, usage of longer key length is necessary (NIST 800-56A,

2013; Barker et al., 2012). This requirement poses a major challenge to software

professionals who will need to search for an innovative approach to derive private keys as

efficiently as possible. Despite a large working community in cryptology mathematics,

the foundation has only provided limited evaluation techniques for reducing Elliptic

Curve (EC) computation (Hankerson et al., 2004).

 In NIST Special Publication 800-57 (Barker et al., 2012), a recommendation of key

size and algorithm was provided for Public-Key Infrastructure (PKI) users and

infrastructure components (e.g. X.509, X.509 DoD certificates). Table 2-1 in 800-57 lists

a time period NIST recommended for use of the ECDH PKE class. According to this

table, the ECDH curve P-384 digital signature certificate has expired after 12/31/2010. If

the use of the public key is expected to continue after certificate expiration, then all

certificates should also expire at an earlier date than specified in the table. Since the

ECDH curve P-384 has already expired, this recommendation signifies an urgency to

implement PEPMA P-521 for higher security PKE. This urgency pushes the optimal

design and implementation of PEPMA an immediately valuable tool.

 Today, research on explicit mathematical formulations in projective domain

continues to excel by seeking higher computational efficiency and ease of realization

(EFD, 2013). However, because computation in projective geometry is composed of a

wide array of algorithms and optimizations, there are different ways to construct the

arithmetic under projective transformations to produce different results in terms of

26

computational efficiency as seen in the literature of (Cohen et al., 2006). Given choices

between selecting a variety of techniques to implement the projective transformations and

the diversity of underlying mathematics, a fundamental issue of software engineering

remains to be the optimum solution to a projective EPM problem. The consideration by

software developers is usually efficient algorithms combine with the ease of

implementation, which can be easily verified through comprehensive quantitative or

qualitative performance figures of merit.

Significance:

 The evolution of the Internet toward a vast, ubiquitously connected society is

imminent. Services of large devices, formerly placed on desks, have now become

consumer small parts, providing continuous information, business transactions and

personal entertainment. Thus, efficient PEPMA is a critical technology to ensure that

personal computing devices can deploy security functions as fast as possible. At the same

time, that technology must be operable with existing security certificates. The

comprehensive benchmarking of each computational part, as shown previously, can help

establish precise baseline performance. It’s important to understand the weaknesses and

strengths of each service routine; be able to identify computational efficiency and provide

ways for improvement; and track PEPMA's cryptographic performance over time as

future computing platforms evolve with cryptographic instruction extensions.

 The performance comparison of PEPMAs will offer an important role in the EPM

literature pool by uniquely comparing two reference implementation codes. This detailed

evaluation can set a direction for future research in which this field can be built upon for

more efficient PEPMA, and can also be tailored to the underlying computing platform.

27

Be able to implement this concept to the entire chain of computing services, and not just

selecting the best PEPMA available and then use it as is, is certainly worth the research

effort. The comprehensive interpretation and analysis of the performance parameters

generated by the benchmarking of each computing process will comprise the main

technical issues addressed in this paper.

 The immediate contribution that this study makes to the cryptology field is that the

performance comparison will provide the implementers/technologist of PEPMA with

tools and analysis to select the best methodology in order to minimize development time

and maximize the efficiency requirements in a 64-bit x86 system. If interventions such as

those previously explained were not presented, PEPMA efficiency in implementation

may not be easily realized. Additionally, future research and development directions

pertaining to the NIST 521-bit PEPMA might advance faster as a result of step-by-step

formulations in this research study. Using the same approach as presented, the less

powerful, but ubiquitous 64-bit embedded processor Advanced RISC Machines (ARM),

used mostly in today's tablets and cell phones, might even benefit from the analysis and

formulation with just a few modifications to the approach schematic and metrics. An

ARM architecture description is currently accessible from (ARM, 2013).

 After carefully digesting the comparisons between PEPMAs, one should be able to

suggest the first systematic examination of the design, deployment, and operational

challenges encountered by projective transformation over the years. This performance

comparison will reveal a fundamental gap between theory and operational arithmetic

costs particularly with the computing resource-constrained processors. It is believed that

the insights gained from the evaluation can offer valuable input for the improvement of

28

the arithmetic chain either dynamically or statically, in the application toward scalar

multiplication kp in 32-bit or 64-bit run-time environments.

The need to evaluate PEPMA with more precision and accuracy:

 During reviewing the literature on PEPMA with the intention to investigate where

the validity of this evaluation stands with respect to the current research, one noticeable

point is that benchmarking a complex solver akin to PEPMA technology in the

commercial sector is much different than in academic research, where the primary goal is

to quickly verify a simple computing approach. Although most publications support only

conceptual findings, the importance of academic research is evident. Furthermore,

regardless of what services are required underneath, the efficiency metrics developed

while examining the exponentiation function will provide a speedy gauge between

projective exponent algorithms (see blocks 1-8 in Introduction, Figure 2). However, this

evaluation model resembles the comparison between black-box software, which is not

very meaningful in terms of improving the black-box itself. This situation has likely

arisen due to the fact that PEPMA is a highly intellectual product solely based on its own

multipart arithmetic merits; and thus, it is difficult to evaluate without a complete

solution and additional metrics, or without specifying an exact computing architecture.

As a result of dealing with such complexity, academic researchers tend to publish papers

about efficient ideas, instead of publishing about what is actually required in a full,

practical implementation setting.

Lacking the support of concrete literature in processing PEPMA poses major obstacles in

understanding intricate connections between computing modules; and thus, such dilemma

29

prevents improving software implementation or slowing down adapting services to the

target computing hardware.

As of today, an evaluation of 521-bit key-pair generation with pre-computation over

GF(p) with NIST Mersenne prime modulus (Solinas, 1999) is seldom found in academic

literature or any industrial publication. This predicament exists because practical usage of

such technology is just about to begin in both government and commercial sectors after a

lengthy FIPS-140-2 certification and accreditation of the implementation. So far, there

has not been public availability of this comprehensive performance comparison

pertaining to PEPMA in a 64-bit x86 runtime environment. The author's claim was based

on reading through the literatures as listed in the reference section. The completion of this

study is important and necessary to the future construction of a 521-bit projective-domain

Elliptic-curve public key infrastructure.

30

Definition of Terminology

 The following terms are defined in the context of Elliptic-curve cryptography and

this research. More detailed discussion of these terms can be found in standards (IEEE

982.1, 1988), IEEE Standard Dictionary of Measures to Produce Reliable Software, in

IEEE 610.12, 2002), Standard Glossary of Software Engineering Terminology, in

(ISBSG, 2006), Glossary of Terms, or in (IEEE 1363, 2000), Standard Specifications for

Public-Key Cryptography.

Accuracy: Measurement that is closer to the actual.

Cost: Any measure, such as latency, of quantitative properties that has to be spent to

obtain the result of the product k(x, y).

Cost Index: A value that has been normalized from the cost value.

Homomorphism: Homomorphism allows mapping the numbers back into themselves.

Homomorphism is a structure-preserving map between two algebraic structures of affine

coordinates (x, y) and projective coordinates (X, Y) operable in groups, sub-groups, or

fields.

Group: A group G is defined as a set, in which it is subsequently possible to define a

binary operation that has an identity element, and has multiplicative inverses for each of

its elements. The cryptology PEPMA works with large elements in the group; for this

reason, the properties of the group are enormous and a complete understanding of the

group is impossible. This led to a more practical approach in studying the properties of

smaller groups by looking at a subset of a known group under a specific modulus (e.g.

modulus m). This smaller group is known as cyclic subgroup inside a finite field F.

31

Field: An algebraic system consisting of a set S, two operations O1, O2 and their

respective inverse operations, and two identity elements I1, I2, one for each operation.

 K = (S, O1, O2, I1, I2)

 S is a set of integers

 O1 is the operation of addition. The inverse operation is subtraction.

 O2 is the operation of multiplication. The inverse operation is defined

 below.

 I1 is the identity element zero (0)

 I2 is the identity element one (1)

Inverse: The word “inverse” is used in this context to indicate a numerical inversion of a

polynomial with its presentation as a multi-digit number. Let F be forwarding functions

of the variable x, and x is invertible if there exists a function R in domain X and range Y,

with the following properties:

1

() ()F x x iff R x
x

Let r be the inverse of x, then this congruent modulo must be true in domain X and range

[0 ... m–1]

 mrx mod1

If a multi-digit number, MDN, is invertible, then the inverse of MDN is unique; in other

words, there can be at most one MDN-1 satisfying the inverse properties.

Performance Formula: a mathematical relationship or rule expressed in symbols used

for calculating the performance of PEPMA. Performance formulas are components of

KPI.

32

Key Performance Indicator: (KPI). It is an indicator which is used to determine how an

evaluator will apply it against objectives. PKI has the ability to provide recommendation

for course of action. For example, overall performance of PEPMA is a KPI.

Measurement: Measurement provides a single-point-in-space view of PEPMA specific,

discrete factors. Measurement is generated by counting.

Metric: Statement of measurement. Metric is derived by comparison of predetermined

baseline two or more measurements. Metric is generated by analysis. A metric can be

absolute or a ratio. Thus metric can be of type “absolute metric” or “ratio metric”.

Metrics are components of formulas.

Reverse: The word “reverse” does not have the same meaning mathematically as

“inverse.” It is intended to indicate transformation functions that undo other

transformation functions.

Precision: Measurement that is consistent for every reading.

Projectivity: A transformation within and between projective spaces.

Program Profiling: Investigation of PEPMA executing instructions.

Verification: The software engineering activities include testing, inspection, design

analysis, and/or specification analysis to confirm that the performance formulas meet

specifications levied on the design. Verification activities help produce high-quality

performance formulas and metrics.

33

Point Doubling and Point Adding Definition:

 By algebraic laws, a point-doubling of a point (x, y) on the curve y2= x3 + ax + b

results in a second point (x3, y3) whose coordinates must also be on the curve. This result

(x3, y3) is defined by two Cartesian coordinate equations in the Euclidian plane:

 x
y

ax
x 2

2

3
22

3

 , yxx

y

ax
y

 3

2

3 2

3

Similarly for point-adding, by algebraic laws, adding point (x1, y1) to point (x2, y2) on the

curve y2= x3 + ax + b results in a third point (x3, y3) whose coordinates must also be on

the curve. This result (x3, y3) is defined by two Cartesian coordinate equations in the

Euclidian plane:

 21

2

12

12
3 xx

xx

yy
x

 , 131
12

12
3 yxx

xx

yy
y

Point-doubling of point p (x, y) is defined as adding the same point together

 Point-doubling ≙ p + p

Point-doubling is also equivalent to a multiplication of a scalar 2 and a point p

 Point-doubling ≙ 2 × p (x, y).

Adding two different points p1 (x1, y1) to p2 (x2, y2) is not the same as point-doubling.

Rather, point-adding is defined as adding two EC points having different coordinates:

 Point-adding ≙ p1 + p2

Mersenne prime: a prime of the form 2p − 1 where p is a prime. The NIST P-521

modulus m has a form of a Mersenne prime.

34

Mathematical Symbol

≡ congruency

≙ equal by definition

ℤ integer number set

⇔ transformation

m spatial modulus

N digit count in a number, sometime referred to as limbs

⌈x⌉ rounds number to upper integer

⌊x⌋ rounds number to lower integer

mod remainder calculation

= = equality

= assignment of value

 [] square bracket, digit index

K an integer field containing elements of ℤ

F an infinite field

x, y variables in Cartesian coordinates, or affine coordinates (lowercase italic)

X, Y, Z variables in projective domain (uppercase non-italic)

k(x,y) Elliptic-curve multiplication of scalar k and point p having affine

coordinates (x, y)

≈ approximately equality

35

Acronym

ARM Advanced RISC Machine

CPU Central Processing Unit

CISC Common Instruction-set Computer

ECDH Elliptic-curve Diffie-Hellman, a protocol to exchange private keys in

public domain

EC Elliptic curve

EPM Elliptic-curve Point Multiplication

GF(p) Galois prime field

MDN Multi-digit Number, a big-number

NSS Network Security Services, and open-source of cryptographic library

OpenSSL Open Secured Socket Layer, and open-source of cryptographic library

PEPMA Projective Elliptic-curve Point Multiplication Agent

PMS Performance Measurement System

KPI Key Performance Indicator

RSA Ron Rivest, Adi Shamir and Leonard Adleman public-key encryption

algorithm

RISC Reduced Instruction-set Computer

36

Chapter Summary

 The beginning part of the introduction briefly presented the problem to investigate.

It is believed that the performance comparison between PEPMAs would be unknown

based on coarse performance metrics M, S, and clock().

 The performance comparison of PEPMA in a 64-bit x86 environment has three

important, top-level contexts: (a) the structure of PEPMA, (b) associated environment of

PEPMA, and (c) existing and expected methods for comparison and verification. The top

two contexts were briefly presented in the preliminary section on PEPMA and in the

section on how environmental factors would affect the performance of PEPMA.

 To advance the investigation, two optimizing PEPMA codes, NSS and OpenSSL,

will be selected for the empirical case study. These two open-sources, coupled with

methods for comparison and verification, will help answer which metrics will objectively

evaluate PEPMA's efficiency and ways to improve PEPMA’s efficiency based on the

empirical comparison.

37

Chapter 2

Literature Review

 The literature review is a collection of research papers, journals and reports that

have been gathered as a basis for the evaluation and comparison of PEPMA in a 64-bit

x86 run-time environment. The review is to locate a set of widely accepted principles in

the area of concern. Based on this prior research, a common ground for the Performance

Measurement System (PMS) of PEPMA can be characterized. Accordingly, the outcome

of prior research and analysis will be used as a source of input to support the performance

evaluation methods of PEPMA. Critical knowledge and substantive findings include: (a)

performance evaluation using IEEE standards, (b) Elliptic-curve principles and their

components and (c) the concept of point computation in projective geometry. These three

important topics will point out specific formulations, theories, requirements, and

analytical methodology to help evaluate PEPMA’s performance and support the

comparison of performance between NSS and OpenSSL.

 PMS principles indicated that when measuring PEPMA, various aspects of

evaluation must be taken into account. Current "state of the art" knowledge includes up-

to-date evaluation methods. Results and empirical data from these evaluators will

facilitate an understanding of the structures and relationships among various measures of

NSS and OpenSSL PEPMA.

 The primary purpose of the arithmetic literature review, including a big-number

representation, is to ascertain whether the proposed metrics can objectively evaluate

PEPMA's efficiency and whether there are effective ways to improve PEPMA’s

efficiency based on the empirical comparison. Subsequently, critical points of knowledge

38

about the Elliptic-curve field, projective geometry, and optimization efforts on low-level

arithmetic will provide best practices for determining the optimum computationally

efficient PEPMA under x86 64-bit platforms.

Performance Evaluation Standards

 The purpose for reviewing the following standards and sub-components of the

formulas is to assist in developing a formal evaluation methodology that will address

questions from the research. It is important to derive accurate quantitative computational

metrics available from a 64-bit executable environment and provided such measurements

to a performance specialist.

 One cannot reasonably evaluate performance accurately without first investigating

the measurement principles noted in Shukri's paper that "software measurement science

should use the same basic principles as physical measurement science, which requires a

reference, measurement method, and an uncertainty statement" (Shukri et al., 1999, p. 3).

While Shukri's measurement method refers to specific formulations recommended in the

NIST standards, PEPMA's key performance measurement method relies on IEEE

standards. Furthermore, while Shrukri requires the uncertainty parametric such that "the

behavior conforming to the chosen reference, and options the reference permits" (p. 4) to

be included in the measurement equations, the efficiency of PEPMA derives its

uncertainty parametric though program profiling and simulation.

39

Both IEEE standards 982.1-1988 and 982.1-2005 provide some, but incomplete

measurement references suitable for the Key Performance Indicators of PEPMA.

However, efforts to tailor the efficiency measurements are necessary because no

standards exist in this area. These IEEE standards also offer a recommendation for

continual self-assessment and improvement of the software aspects of dependability.

Within the revision released in 2005, IEEE 982.1 stated its boundary in the scope that

“this standard specifies and classifies measures of the software aspects of dependability.

It is an expansion of the scope of the existing standard; the revision includes the

following aspects of dependability: reliability, availability, and maintainability of

software. The applicability of this standard is any software system; in particular, it

applies to mission-critical systems, where high reliability, availability, and

maintainability are of utmost importance...” (p. 2). Under the limited capacity of these

IEEE standards, the terminology and metrical formulations pertaining to the availability

of critical systems are generally applicable to the Key Performance Indicators of

PEPMA.

 Specific definitions of primitives and formulations pertaining to software reliability

are found in IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE

982.1 (1988), which is an older and original version of IEEE 982.1 (2005). Although this

standard was published in the early microprocessor computing era of 1988, it was not

revised until 2005. Regardless of the deficiencies in some areas, there are useful metrics

to evaluate software reliability, which can be applied to ensure that PEPMA’s top-level

software module and some sub-modules exhibit accurate, consistent, repeatable, and

predictable performance under a 64-bit environment.

40

In particular, IEEE 982.1 (1988) provides formulations of the following five metrics:

Compliance Metric, Static Complexity, Weighted Information Flow Complexity, Module

Maturity Index and Functional Metric. The methodology chapter will present applications

of these formulas, along with the acquisition of sub-components of the formulas, known

as primitives.

 Despite the fact that the performance evaluation presented in the IEEE literature is

incomplete, Herrmann (2007, p. 111) cross-referenced the software and security

engineering metrics in her book, as she made an observation that, “Although not

recognized as such, software engineering is also a first cousin of security engineering”.

She also noted that software engineering metrics defined by IEEE standards have been

proven and “passed the accuracy, precision, validity, and correctness test” (Herrmann

2007, p. 120). Although Herrmann did not mention where one can find the origin of

formulations for the Key Performance Indicators and other formulas as she presented,

they were probably derived from the recommendations in standards IEEE 982.1 (1988)

and IEEE 982.1 (2005). Another source that discusses these topics is available from

Keyes (2005).

Efficiency Measurement

 Efficiency measurement is one of most significant aspects beside other Key

Performance Indicators in the processing of PEPMA in real-time. The efficiency will be

measured with respect to its main objective, which is a minimization of computing costs

in terms of reducing the number of CPU instructions. To date, there have not been

significant standards available for evaluating the efficiency of Elliptic-curve point-

multiplication in a projective domain. In an attempt to address this issue, general

41

discussion of this topic can be found scattered in Keyes's literature (Keyes et al., 2005)

and many other research papers presented in the following review sections. Additionally,

because there is not an absolute reference that PEPMA's efficiency measurement can be

based on, the reference for measuring PEPMA's efficiency will be relative ─ meaning in

between efficiencies of NSS and OpenSSL. Hence, the efficiency metrics are best if the

following attributes are presented: they have ground truth, have a formal technical

approach, are quantitative, are objective, are obtainable, are inexpensive to derive, are

repeatable, and are verifiable. Certainly, the evaluation for efficiency might not be able to

encompass all of those attributes. However, a few important ones – such as the empirical

verification through program profiling and simulation – should be included. Taken from

NSS and OpenSSL C source codes, Table 1 provides an incomplete list of similarities

and differences between NSS and OpenSSL implementations that will potentially

contribute to the point of reference for comparison and efficiency metrics.

Table 1. NSS and OpenSSL Similarity and Difference
NSS Unit of
Analysis

OpenSSL
Unit of Analysis

Comment Compared
in between

APT APT APT = Affine to Projective
Transformation

Similar

4-bit windows and
pre-comp EF

5-bit windows and
pre-comp EF

EF = Exponentiation
Function

Different

Point Doubling type
1, (Cohen et al.,
1998)

Point Doubling type
2
(Brown et al., 2001)

 Different

Point Adding type 1
(Brown et al., 2001)

Point Adding type 2
(Brown et al., 2001)

 Different

PAT PAT PAT = Projective to Affine
Transformation

Similar

32-bit numeric
representation

58-bit numeric
representation

 Different

42

Elliptic-Curve Principles in PEPMA

 One important element of PEPMA pertains to Elliptic-curve Cryptography (EC).

There are many theories in this area since the discussion of EC began early in the Isaac

Newton era. The discussions on this topic are included in several sources (Avanzi et al.,

2006; Burton et al., 2006; Aoki et al., 2001; Brown et al., 2001). In this Elliptic-curve

preliminary, principles closely related to helping the performance comparison of

PEPMA, will be extracted and presented.

 It has been shown that many Elliptic curves exist in a three-dimensional torus

(Cohen et al., 2006, pp. 272-273), which is a donut-shaped object shown in Figure 9

below (Hankerson et al., 2004, p. 75-86).

Figure 9. A 521-bit Elliptic-curve Point vs. 15,360-bit RSA Cryptographic Key

Of these curves, the 2D locus of points p on a Cartesian x-y plane must satisfy an

algebraic cubic equation of the form y2 = dx3 + cx2 + ax + b. In contrast with one-

dimensional RSA cryptography, the distinction between a two-dimensional point p of an

Elliptic-curve residing in a torus and a one-dimensional 15360-bit RSA cryptographic

43

key sitting along the x-axis is depicted in the Cartesian (x, y, z) coordinate system on

Figure 9. Hankerson et al. (2004, pp. 15-19) and Certicom discusses this topic (Certicom

Research, 2009; Certicom Research, 2004). Online information regarding key size is also

posted at (RSA Key Size, 2013). Not all Elliptic curves are good for cryptography

because they can be easily exploited or too difficult to manipulate in the forward

direction. Readers are referred elsewhere for discussion on this topic (Bos et al., 2014).

One particular curve P-521 per NIST recommendation has the cubic form:

 y2= x3 + ax + b

where the coefficients in a larger curve y2 = dx3 + cx2 + ax + b have been set to d = 1, c =

0, a = –3, and the constant b, known as the domain curve’s parameters, will be selected at

run-time. These coefficients, a and b, are usually stored in an X.509 certificate for public-

key management (ITU-X509, 2014). This same curve, P-521, was used in NSS and

OpenSSL implementation; but since b is variable, will its value change the latency of

PEPMA at all? By setting b = 0, the NIST curve's appearance in (x, y) coordinates is

depicted by the blue graphs below.

-2
-1

0
1

2
3

4
5

-10

-5

0

5

10

-1

-0.5

0

0.5

1

y

x

z

x

y

Figure 10. NIST EC in the Domain of Real Numbers in 3D

44

The solution associated with NIST Elliptic-curve in equation y2= x3 + ax + b can be

performed in real, imaginary, binary, or prime-field numbers. It is natural to work with

curves within an algebraic closure of real numbers. However, it has been shown that real,

imaginary, and small-value numbers are used mainly for illustrating and understanding

point addition, multiplication, squaring, and inversion, but it has no practical use for

cryptology (Hankerson et al., 2004, pp. 80-82).

 Since the NIST P-521 curve has a form y2= x3 + ax + b, by setting b = 0, the EC now

becomes an even simpler equation, . Definitions for a family of curves

were established and published in NIST 186-2, or in FIPS PUB 186-4 (2013).

0332 xxy

 The equation can be equivalently written as0332 xxy 322 xxy . The

three coordinates and 2D graph of this curve bounded in small real numbers are depicted

in Figure 11 below. The red curve shows another infinite subfield when b = 3. This red

curve will have different base points G(x, y) from the blue curve, although they are in the

same family. By changing the domain parameter b and having different base points G(x,

y), the illustration shows that calculating computational efficiency for the red curve might

not be the same as for the blue curve.

x

y

-3 -2 -1 0 1 2 3 4 5
-10

-8

-6

-4

-2

0

2

4

6

8

10

Red curve, b = 3Red curve, b = 3Red curve, b = 3

Blue curve
b = 0

Blue curve
b = 0

-sqrt(3) sqrt(3)

Figure 11. NIST EC in Small Numbers

45

When y equals 0, then 30 2 xx ; this equality implies that there are, at most, three

distinct roots for the curve. These three roots must all satisfy the equation 30 2 xx :

 , 0x 3x , and 3x

Thus, three distinct points, p, exist on the curve: p(0, 0), p(3 , 0) and p(3 , 0).

Based on algebraic laws, a point-doubling operation of a point p = (x, y) on a P-521 EC

will result in another point p3(x3, y3) that is defined by two Cartesian coordinate equations

in the Euclidian plane (Hankerson et al., 2004, p. 80):

 x
y

x
x 2

2

33
22

3

 , yxx

y

x
y

 3

2

3 2

33

By substituting point p(x = 3 , y = 0) to (1), the product of scalar 2 and EC point p yields

k×p = 2 × p (3 , 0) = p3(x3 = ∞, y3 = ∞).

 In the process of calculating the parameters x3 and y3, one needs to take the inverse

of 2y, including when y = 0. This inversion operation will be expensive even with real

numbers, more so if the arithmetic was done with 521 bits in a finite field. In NSS or

OpenSSL, truthful performance evaluation must account for the condition where p3(x3 =

∞, y3 = ∞). It has been shown that both point-doubling and point-adding functions must

handle this peculiar mathematic condition known as the processing of a point at infinity

(Cohen et al., 2006, pp. 268-271).

 In an Elliptic-curve crypto system, the key length denotes a number of binary bits.

PEPMA will manufacture cryptographic keys as a coordinate (x, y) of a point p in a

finite-field 2-dimensional space. Thus, the length for each big-number x or y could range

from 128 bits to 576 bits, depending on the security strength requirements. It has been

shown that 521-bit key works well mathematically under a prime field (See Appendix J)

46

or (Cohen et al., 2006, p. 182); thus, it will be the chosen crypto key length in this

research. NIST Special Publication 800-56A also discussed this topic.

Concept of Point Computation in Projective Domain

 The concept of point computation in a Projective domain will explain why the

existence of coordinate Z and why the first projective coordinate to enter the

exponentiation computational loop has a value of (X = x, Y = y, Z = 1). The literature

from (Rovenski, 2006; Ryabko et al., 2005, p. 98; Veblan et al., 1906) provided

discussion of this topic.

 Additionally, the concept will help answer many other questions about efficient

computation in projective geometry. Salomon (2006) briefly described this conception in

a 3x3 matrix representation (p. 13).

 Boston and Darnall in literature have researched this mathematically intense topic

(Koc, 2009). They noted that although an Elliptic curve having one genus (one doughnut-

hole) is a subset of Hyperelliptic curves, formulations derived for Hyperelliptic curves

can be used among different families of curves, such as the formulation for counting

points on a Jacobian curve JAC(C). They further noted that to compute kP for some

element P in Jac(C) and the order n Z using the standard double-and-add method, one

would be forced to expend a computational cost of O(log2(n)) inversions4. Boston and

Darnall also showed that the high cost of inversions in an affine coordinate is usually

valid for software. The final evaluation would signify a higher-performance improvement

if one performs the comparison between a non-weighed projective transformation system

4 When using Boston and Darnall’s formulation, log2(n) cost index in PEPMA equals
exactly 521 inversions per double-and-add method.

47

and a system that uses a weighed projective transformation. Naturally, both NSS and

OpenSSL PEPMA 2013 releases used the weighed projective transformation to obtain

higher efficiency.

 Boston and Darnall indicated that by introducing another variable Z, it is possible to

delay performing inversions until the last step of the algorithm. They also noted that for

Elliptic curves, this extra coordinate Z is equivalent to storing the point in projective

coordinates. This is not the case for higher genus curves greater than 1; however, they

still called these coordinates projective because of the similarity to Elliptic curves. Their

notion helps clarify the concept of point computation in projective geometry. In turn, it

distinguishes between different approaches implementing point-doubling or point-adding

functions.

 Joye also included the performance comparison between Jacobian and Chudnovsky

coordinates (Joye, 2008). His idea of saving one Multiplication, 1M, and one squaring,

1S was achieved by using two more new coordinates, E and F, additionally with the

Jacobian representation of points. The Chudnovsky presentation of a point P then

becomes P(X : Y : Z : E : F). Neither NSS PEPMA nor OpenSSL PEPMA uses point

presentation in the form of Chudnowsky, but uses three projective coordinates in a point

P(X : Y : Z) described as Projective-3 per Bernstein and Lange (Bernstein & Lange,

2007).

 In 2007, Bernstein joined efforts with Lange, and together they published a paper

titled “Analysis and Optimization of Elliptic-curve Single-scalar Multiplication.” Their

work was supported in part by both the National Science Foundation and the European

Commission through the IST Programme (Bernstein & Lange, 2007). In their research,

48

they intended to present greater precision on how many field multiplications were

required for the computation of kP.

To further elaborate the reasoning of other researchers in the projective field, Ryabko et

al. (2005) and Salomon (2006) explain the same idea in their work. Other mathematicians

(Cohen et al., 2006; Case, 2006) studying the projective geometry first examined the

computation of an Elliptic-Curve point by drawing a point p, which has Euclidian 2D

coordinates (x, y). This point p, shown in the previous graph as p(3 , 0), represents a

point on an Elliptic curve E. For simplicity, coordinate y is set to zero. Point p is situated

on a flat surface π and in a Cartesian “x-y” coordinate system as shown in Figure 12

below. General discussion of projective geometry can be found in (Cohen et al., 2006, p.

46).

Figure 12. Transforming an Elliptic Point onto Projective Geometry

Point p (italic letter) is then lifted upward one unit in the z direction. Point p now

becomes another point p (non-italic letter) that has an additional z coordinate equal to 1.

The vertical movement engages point p (italic letter) to enclose an Euclidian distance

vector equal to (x, y, 1) but this point is still in the Cartesian coordinate system.

49

However, from PEPMA's computational perspective, coordinate z =1 has no effect on the

result. Thus, both points p (italic letter) and point p (non-italic letter) are the same point.

In referencing the points located on an axis parallel to the z axis shown in Figure 12, any

scalar value where z = α, point p and its many other point p’s located vertically above or

below point p are all identical. Ryabko et al. (2005, pp. 99-101) declared such

equivalency as follows:

(x , y) ≙(x , y , 1)

 In technical terms, all points p(s) having coordinates (x, y, α) are "homogeneous"

with respect to point p for the reason that they all represent the same point p that exists in

Euclidean space (Bennett, 1995). Because of the homogeneity of point p (non-italic

letter), the flat surface “Hi” in Figure 12 can also be thought of as a projective plane

submerged in a homogenous coordinate system (Greenberg, 1995). The transition from

affine coordinates (x, y) to projective geometry containing the first point P(x, y, 1) and

immediately back to affine (x, y) is shown in the figure below.

Figure 13. First Movement of EC Point Onto PG and Back

The original Euclidian point p can now be correctly derived from its homogenous

coordinate to the Cartesian coordinate by “mapping,” or making a projection of p onto

plane π on the projection axis parallel to the Cartesian axis z (Greenberg, 1995). This

50

calculation is valid since a chosen working finite field F within Euclidean geometry is

completely contained within a finite field K of Projective Geometry (Rovenski, 2006).

Because the transformation of (x, y) ↔ (x, y, 1) has already brought (x, y) into a

homogenous coordinate system, for distinction of notation, one can denote point p with

upper-case letters instead:

 p(x, y, 1) ≙ P(X, Y, 1)

To further elaborate the analysis of the projective field, let another point Q with its

homogenous coordinates (X3, Y3, Z3) shown in Figure 14 be a point which its values are

the result of the projectivity of point P along axis vector V (Ryabko et al., 2005, pp. 99-

101). This vector, V, passes through the Cartesian original point (0, 0, 0).

Figure 14. Projectivity of Elliptic Points

51

Due to the principle of similar triangles, the relationship between the two coordinates P

and Q is given by

3 3

X 1

X Z
 and

3 3

Y 1

Y Z

Under the working finite field F and the chosen modulus m, a 521-bit NIST Mersenne

prime (Solinas, 1999) for example, and by the congruent relationship of similar triangles,

homogenous coordinate X3 can be derived such that

3 3

X 1

X Z
 → mmodZXX 33 (2.1)

and the homogenous coordinate Y3 is given by

3 3

Y 1

Y Z
 → mmodZYY 33 (2.2)

In applying expressions (2.1) and (2.2), point Q will be correctly projected back to point

P, provided an inversion of Z3 modulo m exists. Once point P has been recovered by

reversing the projectivity of point Q, one can derive the Cartesian coordinates (x, y) right

after a projective transformation reverse (Cantor, 1987). Figure 15 illustrates a complete

computation loop of an Elliptic-Curve point p in the projective domain. The term PT

denotes any Projective Transformation, weighted or non-weighted.

Figure 15. PT and Projectivity of EC Points

52

Assuming that point p(x, y) will be transformed into a homogenous coordinate by the

chosen weighted relationship

 X = x×Z2 Y = y×Z3 Z = z (2.3)

Accordingly, a constant vector α(1,1,1) in Cartesian has three homogenous coordinates

 Λ (Z2, Z3, Z) (2.4)

Using the principle of homogeneity in projective geometry, one can multiply coordinates

of Q by a homogenous vector without changing its perspectives (Blake, 2001; Cantor,

1987).

 Q(X, Y, Z) ≙ Λ × Q(X, Y, Z) (2.5)

Due to the inversions required in expressions (2.1) and (2.2), the result of a point-

doubling or point-adding in a projective-domain finite-field yields three coordinates with

two inversions in place

Z?,mod

Z

Y
,mod

Z

X
Q

Y

3

X

3 mm (2.6)

where X3, Y3, ZX, and ZY are the labels of the result of point-doubling or point-adding

done in projective domain. Point Q has a “Z?” at z-coordinate because its value will be

determined later in the computation process. Multiplying point Q with the homogenous

vector Λ will yield the same point. The challenge for NSS and OpenSSL developers

implementing PEPMA is to find a commonality between the terms Z, ZX and ZY, such

that inversions in the x and y-coordinates will be eliminated. Ryabko et al. (2005)

described and derived this common denominator using substitution of variables and

reduction of mathematical terms (p. 99). Assuming such a commonality is found,

 ZX = Z2 and ZY = Z3 (2.7)

53

then the computations in expression (2.6) require no inversions, but the term Z must be

carried onto the next computation of Z (EFD, 2001). The homogenous vector Q is just

 (2.8) 3 3Q X , Y , Z

Expression (2.8) concludes that point Q, the result of point-doubling or point-adding, can

be manipulated in a homogenous coordinate without any modulo inversions.

 In summary, findings from mathematicians in projective geometry have indicated

that a projective space of an Elliptic curve can be formed by mapping vector spaces along

a line through origin O. Additionally, projective geometry where the Elliptic curve

reshaped is a non-metrical form of geometry. This means that coordinates associated with

projectivity are no longer based on the concept of Euclidian distance. However, when the

projective space of an Elliptic curve is projected back onto the Euclidean plane, the

original coordinates presented in finite-field big-numbers will be restored. The

homogeneous characteristic in projective geometry makes the exclusion of mathematical

inversions possible.

Point at Infinity

 While observing stars in the sky hundred of years before Poncelet, an important

concept regarding a point at infinity appeared to the German mathematician and

astronomer Kepler (1571). Today, in the principle of Elliptic-curve point computation, a

point O at infinity must exist, be presentable, and be calculable. Thus, PEPMA's

performance measurements will be affected by how a point-at-infinity is presented and

processed. The point at infinity principle will be of assistance in selecting test vectors for

PEPMA composed of order n of subfield and base point G(x, y) from domain parameters.

54

Computation in Mixed Coordinate

 Cohen, Miyaji, and Ono presented an application of mixed coordinates, a

combination of affine and projective computation toward Elliptic curve exponentiation in

an article titled "Efficient Elliptic Curve Exponentiation using Mixed Coordinates." Their

research shaped the mathematical foundation for computations in a projective domain

with mixed coordinates (Cohen et al., 1998). Both NSS PEPMA and OpenSSL PEPMA

use the mixed coordinates approach to save costs during pre-computation. Thus, an

accurate performance evaluation should account for this “mixed coordinate” condition as

well.

PEPMA Domain Parameters

 Processing PEPMA requires additional parameters associated with the

characteristics of the curve. These domain parameters are chosen based on certain

security criteria and performance levels. They are also based on the possible attacks that

can be instigated on an Elliptic curve cryptosystem. For this reason, the ANSI X9.62,

NIST 186-2 and IEEE standards provide the acceptable global parameters for all fifteen

Elliptic curves.

Table 2. NIST P-521 Domain Parameters (FIPS PUB 186-4, 2013, p. 16)

Description Letter Value (521 bits)
Field size m 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Coefficient for the
Elliptic curve
equation (521 bits)

a ─3 (decimal)
000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFC

Coefficient for the
Elliptic curve
equation (521 bits)

b 00000051 953EB961 8E1C9A1F 929A21A0 B68540EE
A2DA725B 99B315F3 B8B48991 8EF109E1 56193951
EC7E937B 1652C0BD 3BB1BF07 3573DF88 3D2C34F1
EF451FD4 6B503F00

Order of the curve
(521 bits)

n 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFA 51868783

55

BF2F966B 7FCC0148
F709A5D0 3BB5C9B8 899C47AE BB6FB71E 91386409

Cofactor h 1

Documentation in NIST 186-2 identified fifteen sets of parameters: five for prime fields,

five for binary fields, and five for Koblitz curves. These parameters have been chosen for

fast reduction with their respective modulo. A question here is whether NSS and

OpenSSL PEPMA have applied the fast NIST modulo reduction using the Mersenne

prime modulus (Solinas, 1999), since this mathematical optimization is a major

contributor to the efficiency of PEPMA.

 One of the other not so obvious parameters from NIST was the cofactor h: product

of the cofactor and the order of the curve equals to the number of points on the chosen

Elliptic curve: . For a more detailed discussion of cofactor h, readers

are referred to (FIPS PUB 186-4, 2013, p. 87) or (NIST, 2010).

))((# pGFEnh

 NIST curves utilize a cofactor term with a value of 1. However, determining the

order n for an NIST curve requires a way to count the number of points available from

the curve. These principles and findings will help select test vectors for PEPMA

composed of order n of subfield and base point G(x, y) from domain parameters.

Research in Numeric Presentation and Computation

 Integer computation for PEPMA requires processing multi-digit multiplications,

divisions, and inversions (NIST, 2010). If one views PEPMA as part of Digital Signal

Processing (DSP) at the microscopic level, the EPM operation begins with a low-level

multiplication of two polynomial signals.

 Various numeric theories (Cohn, 1962) and DSP literatures (Li, 2008; Lathi, 1998)

have described the problem of N-digit polynomial multiplication (Bi et al., 2004);

56

however, from a fundamental aspect, the multiplication of two polynomials is equivalent

to the problem of convolving two sequences of N-point signals.

If one denotes both n and k as non-negative integers for indexing into an N-digit number,

all multiplications and summations required in (2.9) can be done entirely in spatial

domain. However, in light of reducing computational costs, an existing problem is

computing the result r[n] with a multiplication algorithm that has the least multiplications

and additions among all algorithms that compute r[n].

 Let x be the polynomial multiplicand and y be the polynomial multiplier, the

multiplication resulting in another polynomial r is obtainable by convolving x and y

 (2.9)

1

0

][][][][][
N

k

nynxknykxnr

Computational efficiency of PEPMA begins with a proficient representation of a Multi-

Digit Number (MDN). The following information sets up essential terminology for a

discrete polynomial representation of a multi-digit number and prepares its usage for low-

level arithmetic calls from PEPMA.

There are several ways to represent an MDN contained in a finite field K (Koc, 2009;

Saldamli, 2009). However, two types of presentations are popular, the prime field Fp and

the exponential prime field Fp
s.

 If prime p is set to 2, then the exponential prime field Fp
s becomes F2

s, an

exponential binary field. Moreover, if the MDN is implemented using a two-bit field F2,

then NSS or OpenSSL PEPMA can represent an S-bit multi-digit number, contained in an

exponential binary field, implemented over a two-bit field b as a finite discrete

polynomial, along with a sign indicator.

57

 (2.10) 1 2 1
1 2 1 0() (2) (2) ... (2) (2)S S

S SMDN sign b b b b

0

For a more detailed discussion of numeric representation, readers are referred to (Cohen

et al., 2006, p. 169) or (FIPS PUB 186-4, 2013, p. 88). Although expression (2.10) can

provide a workable representation of MDN as a bit vector, the representation is not yet

efficient for performing arithmetic between MDNs. Instead, almost all 64-bit

computational units currently available in general processors provide signed arithmetic

operations with arithmetic word lengths set to 32 (half-digit in 64-bit system), 58, 64, or

65 bits (64 bits plus hardware carry bit).

 If one denotes arithmetic word lengths to be L, then the absolute minimum number

of digits N required in an S-bit MDN is a ceiling function of s and L

S

N
L

 (2.11)

and the representation of an MDN as a signed digit vector is given by

 (2.12)
1

0

MDN () (2)
N

nL
n

n

sign d

where digit d located at index n of an MDN is a weighed sum of the bit vector

 (2.13))2()2(...)2()2(0
0

1
1

2
2

1
1n

 nLnL

L
LnL

L
LnL bbbbd

 n = {0, 1, 2, …, N–2}

Readers are referred to (Cohen et al., 2006, p. 171) for a general discussion of internal

representation of a single-precision number (digit d). The summation in (2.12) is valid

only for the lower N–2 digits, digit 0 to digit N–2. The most significant digit (MSD),

located at index N–1, is different because the computation in Elliptic-Curve Point

Multiplication (EPM) might not require all available bits in N digits. Upper zero bits in

58

NSS and OpenSSL architecture are used for arithmetic overflow. How upper zero bits are

used will significantly affect efficiency.

For example, an EPM modulus is an MDN with S = 521 bits, but there are 544 bits

available in seventeen 32-bit digits. This setting always creates 23 zeros unused in the

most significant bits (MSB) in the digit N–1. The MSD of an MDN is a polynomial of

degree L, but it has a different form if S is smaller than the product N×L:

 (2.14))2(...)2()2(...0 0
1)1(

2
2

1
11-

 LN

L
S

L
SN bbbd

For a discussion of multi-precision number, readers are referred to (Cohen et al., 2006, p.

170). The representation of a Multi-Digit Number (MDN) in a computing platform’s

memory is illustrated in Figure 16 below:

Figure 16. Representation of a Spatial Multi-Digit Number

Several particular cryptographic service routines in NSS and OpenSSL, such as finding

an inverse of an MDN with an extended Euclidian algorithm, require a sign flag (sign) for

each MDN, allowing the arithmetic operations to work properly. A single bit in F2 will be

adequate to indicate a plus or a minus sign of an MDN. Computations in NSS and

OpenSSL PEPMA use a complete MDN with their representation shown in Figure 16.

59

Modulo Reduction

 Methods for performing modulo reduction after multiplying two polynomials in

spatial domain can be carried on with standard integer division (Maeder, 1996). The

modulo reduction can also be carried on using NIST reduction method (Hankerson et al.,

2004, p. 44; NIST, 2010). One can also choose an optimized division similar to Knuth’s

division technique (Knuth, 1985). With the selection of Knuth's algorithm, division in

spatial domain becomes highly efficient in that the quotient and remainder converge to

correct values fast; this quick convergence is possible because the error can be reduced

quadratically on each iteration. Setting a modulo reduction method other than the NIST

recommended way might change the efficiency of PEPMA. In this research, optimization

of modulo reduction algorithm other than NIST's approach will not be considered.

Inversion

 Both NSS and OpenSSL PEPMA calculate the inversion of a number in spatial

domain using an extended Euclidean algorithm (Hankerson, 2004, p. 39). Given a

number n, its multiplicative inverse i, and the modulus m, then the relationship of

 holds true between them.)(mod1 mni

Since m divides the term (in – 1), m is also a divisor of (in – 1). The relationship between

i, n and m can be rewritten as bmni 1)(, where b is any non-zero integer.

Rearranging the terms of the equation equivalently produces:

1)()(mbni

Given n and m, the extended Euclidean algorithm discovers three unknowns i, c and g

corresponding to the equation in + cm = g. Thus, if g = 1, then i is the inverse of n.

60

Although the extended Euclidean function can calculate cofactors i, c and gcd(i, m)

quicker than Lagrange’s exponential method, it still can be further optimized to provide

additional efficiency for larger multi-digit numbers.

Input: n to inverse, modulo m
Output: i, the multiplicative modulo inverse of n
Processing Unit: Euclidean Algorithmic
Processing Cost:))](([log 2

2 mO

Prior Research in Evaluating PEPMA

 A comprehensive review on Elliptic curve cryptography for embedded systems has

been provided (Afreen et al., 2011). This document graphically shows various methods of

scalar point-multiplication kp. Figure 5 in the document describes the separation of kp

into three levels of abstraction: (a) upper level for protocol such as ECDH, (b) middle

level for Elliptic-curve Point-multiplication (EPM), and (c) low level for core arithmetic

such as addition, subtraction, and multiplication. At the middle level, Afreen illustrated

two different implementation methods: a projective coordinate standard projective

algorithm and the Jacobian based approach. In its context, the standard projective

implementation refers to Elliptic-curve arithmetic operations with orientation to

projective geometry, while the Jacobian implementation refers to weighted Elliptic-curve

arithmetic operations in the entire range of Jacobian space. Note that the comparison

between NSS and OpenSSL of two EPMs in projective domain was limited to a specific

weighted Jacobian computing space (Z2 and Z3). Their paper was recently published in

the International Journal of Computer Science & Information Technology (IJCSIT) in

2011.

61

In the Journal of Computer article published in January 2010, the performance of Elliptic

curves in projective coordinates with parallel computing in GF(p) was evaluated

(Somani, 2010). Somani noted that projective-coordinate systems are used to eliminate

the need for performing inversions. He found and recorded several projective-coordinate

systems that had been proposed before his time. He noted that similar research on

computation in projective-coordinate systems is recorded in Bernstein (2007). Somani

describes how a homogeneous coordinate can be viewed as an Elliptic curve point p that

takes the form (x, y) = (X/Z, Y/Z). For the Jacobian coordinate system, point P takes the

form (x, y) = (X/Z2, Y/Z3). Without presenting any concrete proof, Somani provided the

formula for point adding and point doubling in a projective-coordinate system.

 Several critical articles for Elliptic-curve computations were collected (Cetin Kaya

Koc 2009). Chapter 8, “Elliptic and Hyperelliptic Curve Cryptography,” written by

Nigel Boston and Matthew Darnall, also provides an introduction to the topic of elliptic

and hyperelliptic curves.

 An article, published in the Arithmetic of Finite Fields of Lecture Notes in

Computer Science, described several strategies to speed up the arithmetic of Point-

multiplication on Elliptic-curve using right-to-left and left-to-right methods (Joye, 2008).

Both NSS and OpenSSL PEPMA use a right-to-left algorithm. In the point addition of

section 2.2, Joye calculated the costs of adding two different Elliptic-curve points in the

weighted projective coordinate system to be 12 multiplications (12M) and 4 squarings

(4S).

62

Explicit Formulation

 Explicit formulation offers specific formulas for calculating point-doubling and

point-adding. Derivations and proofs for these formulas require mathematical intensive

and tedious efforts. However, accessing the context of explicit-formula might be helpful

for optimizing the point-doubling or point-adding function. For completeness, the

derivation of explicit formulas will be listed in the report (Brown et al., 2001).

 Bernstein and Lange introduced their Explicit-Formulas Database (EFD). It is a

web-based collection of explicit formulas for elliptic-curve cryptology. Additionally, the

EFD website has posted several useful formulas for other coordinate systems, such as

Edward’s curves. Bernstein and Lange designed the transformation as Projective-3 and

posted its cost for computing to be 12M+ 2S. Compared to a standard method, adding

two points in a Projective-3 coordinate system totally eliminates the inversion and, at the

same time, increase multiplications from 1 to 12 and squarings from 1 to 2.

 For doubling a point in a Projective-3 coordinate, Bernstein and Lange posted the

cost for computing to be 7M+ 3S. Compared to the standard method, doubling a point

eliminates the inversion altogether but also increases the number of multiplications from

1 to 7 and the number of squarings from 1 to 3.

From a collection of each cost from the algorithm 3.21 for point doubling of curve y2 = x3

−3x + b in Jacobian coordinates5, estimated costs can be accumulated as follows:

2
11 ZT 1 S

)()(32 2
11

2
11 ZXZXAT 2 M

13 2 YBY 1 M

5 This algorithm 3.21 is available from Vanstone’s literature

63

13 2 YBY 1 M

13 ZBZ 1 M
2

3 BCY 1 S

13 XCDT 1 M
2

3 CY 1 S
2

3 AY 1 S

DT 21 1 M

AXDT)(31 1 M

2/)(2
33 CAXDY 1 M

The total cost turns out to be 9M+3S, which supports Bernstein and Lange’s record of

7M+ 3S.

 To evaluate PEPMA coarsely, researchers calculated the arithmetic costs in

projective coordinates of a specific point-adding and point-doubling method and

summarized them up to a total expenditure of mathematical operations for the scalar

point-multiplication kp. In certain findings, total arithmetic expenditures to compute kp

were 3668M + 3668S (Cohen et al., 1998; Brown et al., 2001); in Bernstein's findings,

the total arithmetic expenditure was 2983M + 3275S (EFD_Double, 2001; EFD_Add,

2007). From these explicit expenditures, two metrics multiplications (M) and squarings

(S) were the main coefficients of the cost equation to measure the performance of elliptic-

curve point-multiplication kP residing in projective domain.

 Theoretically, Bernstein's approach should be slightly faster than Cohen/Brown's

method. However, in a 64-bit x86 run-time environment, timing costs do not correlate

well to either Cohen/Brown's or Bernstein's total expenditures. In other words, the

metrics M and S alone cannot provide truthful performance between two elliptic-curve

scalar multiplications. Coarse-performance metrics can be used to validate the

correctness of formulations.

64

Cohen and Frey collected a variety of articles belonging to the computations and

optimizations of an Elliptic-curve (2006). One article written by Christophe Doche and

Tanja Lange describes the arithmetic of elliptic curves. In section 13.2 (Choice of the

coordinates), Doche and Tanja presented computations in an affine coordinate,

computations with projective coordinates, and computations using mixed coordinates.

This topic has been shown in (Cohen, 1998). The computation of EPM in a mixed

coordinate was a new suggestion at that time. Both NSS and OpenSSL can activate the

computation in non-mixed and mixed coordinates.

 In 2004, Aigner, Bock, Hutter, and Wolkerstorfer from Infineon Technologies took

a different approach toward the application of the kp process for computing EPM (Aigner

et al., 2004). They applied EPM using an affine coordinate to a low-cost ECC

coprocessor for smartcards. This custom-made, hardware-based co-processor runs a

specific function to produce an Elliptic Curve Digital Signature (ECDSA) in a GF(2m)

field. Table 3 of their paper lists the performance for a 191-bit ECDSA algorithm. Table

3 is duplicated here for investigation (Aigner et al., 2004, p. 117). NIST has approved the

use of test vectors for Elliptic Curve Digital Signature Algorithm as specified in ANSI

X9.62 (ANSI, 2005) to informally verify the implementation.

Table 3. Performance of EPM in Hardware
 Operation clock cycle

Scalar Multiplication 341,430
30% overhead 102,429
GF(p) inversion 24,310
5% overhead 1,216
Total 469,385

65

In particular, Aigner et al. noted that having a fast GF(2m) inversion makes it possible to

use affine coordinates instead of projective coordinates for an elliptic-curve scalar point

operation. This fast inversion is shown in the table above with 24,310 out of 469,385

clock cycles. Their paper marked a milestone in showing the best approaches for

performing a kp function in hardware. Their findings reinforce Joye’s theory about using

mixed coordinates in computation to improve efficiency. NSS and Open SSL PEPMA

switched this feature on and off under the user’s command.

 In 2000, the Microprocessor and Microcomputer Standards Committee of the IEEE

Computer Society approved an IEEE Standard Specification for Public-Key

Cryptography. This standard, (IEEE 1363, 2000), specifies common public-key

cryptographic techniques, including mathematical primitives for deriving private keys,

public-key encryption, digital signatures, and cryptographic schemes based on those

primitives. It also specifies related cryptographic parameters, public keys, and private

keys. The purpose of this standard is to provide a reference for a variety of calculating

techniques from which applications may select.

 In section A.10.5, projective elliptic addition (prime case), IEEE 1363-2000 defines

the projective formulation for point adding on the curve y2 = x3 + ax + b modulo m. The

algorithm will consume ten field multiplications (10M) and five temporary variables.

In section A.10.4, page 124, projective elliptic doubling (prime case), (IEEE 1363, 2000)

defines the projective formulation for point doubling on the same curve. The algorithm

will consume sixteen field multiplications (16M) and seven temporary variables.

 This IEEE 1363 marked a significant developmental point where the industry tried

to standardize common computations, including computations in affine and computations

66

in projective coordinates. The findings can also direct better usage of temporary variables

in point-doubling and point-adding to improve performance evaluation.

Chapter Summary

 The literature review of PEPMA in a 64-bit x86 environment has two important,

top-level contexts: (a) prior research on the structure of PEPMA and (b) existing methods

for comparison and verification. Prior research on the structure of PEPMA was presented

at the beginning of the literature review. This section seeks research pertaining to

principles, findings, analysis in IEEE standards for Key Performance Indicators, Elliptic-

curve principles, the concept of computation in projective coordinates, and big-number

arithmetic representation. These four principles will answer which metrics can

objectively evaluate PEPMA's efficiency.

 To answer which metrics can be used for comparison and to subsequently provide

ways to improve PEMA, this research will depend on kin topics: basic arithmetic service

routines and modulo reduction. The main purpose of this literature review section is to

ascertain whether the proposed metrics can truthfully evaluate PEPMA's efficiency and

whether there are effective ways to improve PEPMA’s efficiency based on the empirical

comparison.

67

Chapter 3

Methodology

Overview

 Given a mixture of projective transformations, diversity of underlying arithmetic

algorithms, and different computing platform architectures, the goal of this research is to

provide suggestions to improve the projective Elliptic-curve point-multiplication agent.

The objective is accomplished by dynamically or statically selecting higher-performance

arithmetic approaches based on quantitative computational metrics. To fulfill the ultimate

goal and to answer the particular research question of which metrics can truthfully

evaluate PEPMA's efficiency, construction of a specific performance measurement

system for PEPMA is necessary. The path to successfully derive Key Performance

Indicators is illustrated in Figure 17. For a general discussion of Key Performance

Indicators, readers are referred to the standard ISO/IEC 15939 (2001).

Figure 17. PEPMA Performance Measurement System

68

The PEPMA Performance Measurement System (PMS) can be briefly defined as a set of

accurate, precise and quantifiable metrics applied to cost equations. The accuracy and

precision of these metrics are derived from an analysis of the accurate and precise

counting of the measurement units (MULq, MOVq etc.) Thus, the development of PMS

will start at the bottom, defining the measurement units, and ladder up toward KPI

through the maturity path. A general definition of PMS pertaining to the measurement

and rating of performance of computer-based software systems can be found in (IEC-

14756, 1999).

 To date, there have not been significant standards available for developing the

performance of Elliptic-curve point-multiplication in a projective domain. Accordingly,

the construction of PMS will have to level on tailored models as described in software

engineering (Herrmann, 2007; Fenton, 1996) and other comparable publications (Keyes,

2005). There have been three other comparable publications in the field of security and

privacy metrics that can be applied to the construction of PMS: NIST SP 800-55 (NIST,

2008), and NIST SP 800-80 (NIST, 2003). In 2003, the National Institute of Standards

and Technology released a Special Publication 800-80 titled “Guide for Developing

Performance Metrics for Information Security.” These publications in the field of security

and privacy metrics can be applied to the construction of PMS as well.

 The research on the construction of a performance measurement system for PEPMA

is quantitative and primary6. Following suggestions from Pare (2004) and Gillman

(2003), this research used an empirical case study with the following components: (a) the

6Measurement primacy definition: The majority of measurement data for evaluation and
comparison will come directly from actual software coding and the run-time environment
of PEPMA but not from a secondary data source.

69

three research questions presented previously, (b) six units of analyses, (c) a specific

procedure of performance measurement system to obtain evidence, and (d), a method to

verify the results.

 For the Performance Measurement System (PMS) to be accurate and precise, a

mathematical assessment in the projective domain is necessary. PMS’s context will

contain an interdependent group of leading metrics forming a unified whole, the KPI.

Leading metrics will be obtained at three specific levels of evaluation: (a) exponentiation

service, (b) point-doubling and point-adding functions, and (c) supporting mathematical

software routines for point-doubling and point-adding functions.

 To answer all three research questions and be able to verify the empirical results, the

author proposes applying IEEE standards 982.1-1988 and 982.1-2005 to evaluate and

construct the Key Performance Indicators, while tailoring the efficiency measurements

based on academic research and industry practices.

 In addition to standards IEEE 982.1 (1988) and 982.1-2005, ISO/IEC 15939 (2001)

and ISBSG (2007) standards also provide direction for successfully implementing a

measurement program. Although these standards do not directly provide a method of

measurement, they provide guidance to identify, define, and improve processes to obtain

metrics. By these international standards, the core measurement of PEPMA's

performance can be facilitated by monolithic software measurement tools taking a set of

measurements as input and producing metrics, formulas, and Key Performance Indicators

(KPI) together with evaluation and analysis.

70

Unit of Analysis

 There were six units of analyses involved in conducting research. They are listed in

Table 4 below. Readers are referred to IEEE 982.1 (1988), Herrmann (2007), Laird et al.,

(2006), and Keyes (2005) for discussions of these first five units of analyses.

Table 4. Unit of Analysis
Unit of Analysis Formula Reference/Comment
Compliance Metric CM FIPS-140-2
Static Complexity SCM
Weighted Information Flow Complexity WIFC
Module Maturity Index MMI
Functional Metric FM
Efficiency Metric and
Formulation

EMF Has the most weighting
toward KPI

The Efficiency Metric and Formulation (EMF) is the most important and difficult task in

this research. The EMF has the highest weighting for KPI since the research topic focuses

on computation efficiency. The major variables for each unit of analysis are summarized

in Table 5 below.

Table 5. Unit of Analysis, EMF
Unit of Analysis Major Variable Comment
NSS PEPMA APT, EF, PD, PA, PAT
OpenSSL PEPMA APT, EF, PD, PA, PAT
Infinity Point
Run-time Factor Includes System Architecture,

Compilation Environment,
Test Vectors

Performance Hardware
Counter

Instruction Counter Will call PAPI Services

Program Profiling Instruction Soft Counter Will load BOCHS Emulator
Formulation Analysis Manual analysis steps

Note: APT, EF, PD, PA, PAT respectively stands for Affine to Projective
Transformation, Exponentiation Function, Point Doubling, Point Adding, and Projective
to Affine Transformation

71

The empirical evaluation method was used to provide a framework for research in the

area of efficiency metrics and formulations. The first two units of analyses shown in

Table 5 embrace two specific implementations used for the empirical study: NSS

PEPMA and OpenSSL PEPMA. These two open-source implementations provided

necessary procedures to execute: (a) projective transformation, (b) the exponentiation

function, (c) point-doubling and point-adding computations in Jacobian's transformed

domain, (d) modulo arithmetic (including 521-bit NIST modulo reduction), and (e)

localized mathematical procedures. Thus, a large portion of the analysis was focused on

these five sub-units (a-e) with specially chosen test vectors. Readers are referred to

Appendix F for a listing of test vectors.

 In addition, the definition of an infinity point will formalize how point-doubling and

point-adding function can handle infinity coordinates in projective geometry.

 The unit of analysis belonging to a runtime environment will identify the system

architecture. Analysis of this particular unit was directed toward internal characteristics

of the target CPU and its arithmetic unit. The results of the CPU characteristics partially

contributed to runtime factors in the performance equation.

 NSS PEPMA and OpenSSL PEPMA were written in C language; hence, the

compilation environment and C compiler option settings will introduce some variations

in the resulting code. The performance equations should record these characteristics as

one of their performance coefficients so that the final result can be more defined.

OS overhead, threading time, and delay due to processor interrupt services are run-time

factors. They might affect the cost index produced from the Performance Hardware

Counter or Program Profiling process. These run-time factors are categorized as Quality

72

of Service (QoS) for the verification procedure under the targeted Operating System. For

that reason, the evaluation used a low-overhead, 64-bit x86 Community Enterprise Linux

Operating System, version 6.4 (CentOS) for performance analysis. This specific OS is

stable; and the low-overhead helps decrease the error induced by the Performance

Hardware Counter. However, since these QoS run-time factors are a complex subject,

they were excluded from the report.

 The Performance Hardware Counter and Program Profiling through Emulation will

assist and provide verification for the results during the development of efficiency

formulations. Mainly, the outcomes from Performance Hardware Counter and program

profiling data will contribute to part of the verification process. For a more detailed

description of Performance Hardware Counter or Program Profiling through Emulation,

readers are referred to open-source PAPI (2013) or BOCHS (2013).

 Compliance Metric

 The Compliance Metric (CM) of PEPMA measures the compliance with FIPS-140-

2 (FIPS-140-2, 2001; Herrmann, 2007, p. 91).

 Static Complexity Metric

 The Static Complexity Metric (SCM) measures the complexity of NSS or OpenSSL

PEPMA’s software modules (IEEE 982.1, 1988, p. 23; IEEE 982.2, 1988, p. 60).

1NESCM
 RGSCM
where
E = number of edges
N = number of nodes
RG = number of software modules bounded by edges with no edges crossing

73

Weighted Information Flow Complexity

 The Weighted Information Flow Complexity (WIFC) measures inter-module

complexity. The local direct flow exists if either PEPMA module invokes a second

module and passes information to it, or the invoked PEPMA module returns a result to

the caller (Herrmann, 2007, p. 121; IEEE 982.2, 1988, p. 74).

lengthfanoutfanin 2)(WIFC

where:

fanin = Local flows into module + number of data structures from which the module

receives data

fanin = Local flows out of module + number of data structures that the module outputs

length = Number of source statement in the module

Module Maturity Index

 The Module Maturity Index (MMI) measures the effect of changes from one

software module baseline to the next. The effect of these changes will solely be directed

toward the efficiency of PEPMA. The MMI will be derived with different compiler

optimizing option settings based upon a general discussion in (Herrmann, 2007, p. 121),

as originated in particular standards (IEEE 982.1, 1988, p. 19; IEEE 982.2, 1988, p. 51),

or as described in other standards (IEEE 982.1, 2005, p. 26).

T

CT

M

)FM(
MMI

MT = Number of modules in current baseline

FC = Current baseline that includes changes from previous baseline

74

Functionality Metric

 The Functionality Metric (FM) measures the consistency and interoperability

between available point-doubling and point-adding functions. As noted, there are several

different approaches currently available to construct point-doubling and point-adding

functions in a projective domain. General discussions of this metric are found in (IEEE

982.2, 1988, pp. 70-71).

Efficiency Metric and Formulation

 Efficiency measurement and formulation will be one of most significant aspects

beside other Key Performance Indicators as presented previously. The efficiency will be

measured with respect to its main objective, which is a minimization of computing costs

to reduce the number of CPU instructions. To date, there have not been significant

standards available for evaluating the efficiency of PEPMA; general discussions on a

comparable topic are suggested in some IEEE sources (IEEE 982.1, 1988, pp. 33-34;

IEEE 982.2, 1988, pp. 33-34, 91-93). Related information to address techniques used in

Efficiency Metric and Formulation is also scattered in Keyes's literature (Keyes et al.,

2005) and many other research papers presented in the literature review sections.

Additionally, because there is not an absolute reference that PEPMA's efficiency

measurement can be based on, the reference for measuring PEPMA's efficiency will be

relative ─ meaning in between efficiencies of NSS and OpenSSL. Essentially, the

Efficiency Metric and Formulation (EMF) will be derived from analysis of computing

procedures and counting the execution of units of measurement while applying specific

test vectors. The sections below further define the sub-units of analysis for obtaining

EMF.

75

NSS PEPMA

Exponentiation Function:

 In a 2013 open-source release, Network Security Services (NSS, 2013) applied a 4-

bit window on the scalar k in PEPMA's exponentiation service. This service is shown as a

computation loop in Figure 18 below.

Figure 18. 4-bit Windowing Exponentiation Service

The NSS PEPMA computation makes 524 calls to the point-doubling and 131 calls to the

point-adding function (NSS-2, 2014). Readers are referred to Appendix G for examining

an exact number of calls. The 4-bit exponentiation windowing requires a pre-computing

76

of 15 Elliptic-curve points (pre = before entering exponentiation loop). The 15-point

pre-computation calls point-doubling or point-adding services to calculate k(x, y) using k

= 2 to 15, and the coordinates (x, y) are the base coordinates of the cyclic subgroup of the

chosen Elliptic curve. When k = 1, the pre-comp coordinates are actually the base point

itself; thus, it requires no computation, just storing the coordinates in the table.

 During the exponentiation computation in loop , k slides from right to left (bottom

to top as shown) and 4 bits are extracted for indexing into the PRE-COMP table. The

PRE-COMP value p(x, y) will be used for point-adding if the index is non-zero (1...15);

otherwise, a zero-value table index will signify a "No-Add" condition. The 15-point, pre-

computing function makes service calls to 1 point doubling and 13 point-adding functions

to completely fill the 15-point recomputed table.

Figure 19. 4-bit Pre-comp Indexing Method

The mixed coordinate control signal directs the results from the 15-point pre-computing

function to output the coordinates of type hybrid (mixed coordinates between affine and

77

projective coordinates). Building the pre-computed table is done outside the computation

loop. The point-adding function then uses the 4-bit window taken from k to index into the

table without the need to call point-adding four times. This reduces calling the point-

adding function by 4:1 (131 × 4 = 524).

Point-doubling:

 Inside the 4-bit windowing exponentiation service, NSS implemented a software

function point-doubling R(X3, Y3, Z3) = 2×P(X, Y, Z) using weighted projective

transformation (WPT) as described by (Cohen et al., 1998). In this document, the affine

coordinate variable x is substituted with X/Z2, and the affine coordinate variable y is

substituted with Y/Z3. These substitutions yield formulas for the point-doubling

coordinates (X3, Y3, Z3) as follows:

Let S = 4XY2, M = 3X2 −3Z4, T = M2 − 2S (1)
X3 = T (2)
Y3 = −8Y4 + M (S − T) (3)
Z3 = 2YZ (4)

 Based on a source-code written in C language and publicly released in 2013, any

computing platform executing NSS point-doubling codes requires 4M+4S+5A+4Su+1Sh

operations, where the arithmetic operators are designated as M=multiplying, S=squaring,

A=addition, Su=subtraction, and Sh=Shift. Although the modular reduction routine

calling is hidden from computing codes, it is actually called from inside at the end of

each arithmetic operator (NSS, 2013). The computing cost index of Cohen yields 4M+6S,

as compared to 4M+4S+5A+4Su+1Sh from NSS.

Point-adding:

 Network Security Services (NSS) implemented a software function point-adding of

point P1 and P2 using weighted projective transformation described by (Brown et al.,

78

2001). In their paper titled "Software Implementation of the NIST Elliptic Curves over

Prime Fields," coordinate variable x is substituted with X/Z2, and coordinate variable y is

substituted with Y/Z3, with the result R being R(X3, Y3, Z3) = P1(X1, Y1, Z1) +P2(X2, Y2,

Z2).

These substitutions yield the formulas as follows:

Let A = X2Z12, B = Y2Z13, C = A − X1, D = B − Y1 (1)
X3 = D2 − (C3 + 2X1 C2) (2)
Y3 = D (X1C2 − X3) (3)
Z3 = Z1C (4)

Brown at al. (2001) recorded the arithmetic expenditure equal to 12M + 4S and excluded

other arithmetic operations such as additions, subtractions and multiplications with

constants. NSS actually executes a total of 8M+3S+2A+5Su.

 Based on the explicit formulas above, NSS developers certified coding under FIPS

140-2 level 1 and released the point-adding function with C codes.

79

OpenSSL PEPMA

Exponentiation Function:

 In a 2013 open-source release, OpenSSL applied a 5-bit window on the scalar k in

PEPMA's exponentiation service shown as a computation loop in Figure 20 below.

Figure 20. 5-bit Windowing Exponentiation Service

OpenSSL PEPMA makes 520 calls to the point-doubling and 104 calls to the point-

adding function (OpenSSL-2, 2014). Readers are referred to Appendix H for examining

an exact number of calls. The 5-bit windowing requires a pre-computing of 31 points

using k = 1 to 31 and the base coordinates taken from the cyclic subgroup of the chosen

80

Elliptic curve. The 31-point pre-computing function makes service calls to 1 point

doubling and 29 point-adding functions to fill the 31-point, pre-computed table. The

point-adding function then uses the 5-bit window taken from k to index the table without

the need to execute point-adding five times. This reduces calling the point-adding

04 × 5 = 520).

stitutions yield the formulas for the point-doubling

Y3 = C(A − D) − B (3)
3 =

ex of Brown et al yields 8M+3S, as compared to

3M+5S+3A+4Su from OpenSSL.

function by 5:1 (1

Point-doubling:

 Inside the 5-bit windowing exponentiation service, OpenSSL PEPMA implemented

a software function point-doubling R(X3, Y3, Z3) = 2×P(X, Y, Z) using weighted

projective transformation as described by (Brown et al., 2001). In this document, the

affine coordinate variable x is substituted with X/Z2, and the affine coordinate variable y

is substituted with Y/Z3. These sub

coordinates (X3, Y3, Z3) as follows:

Let A = 4X1Y1
2, B = 8Y1

4, C = 3(X1
 − Z1

2)(X1
 + Z1

2), D = C2 − 2A (1)
X3 = D (2)

Z 2Y1Z1 (4)

 Based on a source-code written in C language and publicly released in 2013, any

computing platform executing OpenSSL codes will consume 3M+5S+3A+4Su

operations, where the arithmetic operators are designated as M=multiplying, S=squaring,

A=addition, Su=subtraction. Although calling to the modular reduction routine is hidden

from computing codes, it is actually called from inside at the end of each arithmetic

operator. The computing cost ind

81

Point-adding:

 OpenSSL implemented a software function point-adding of point P1 and P2 using

weighted projective transformation as described by one paper (Brown et al., 2001). In the

paper, coordinate variable x is substituted with X/Z2, and coordinate variable y is

substituted with Y/Z3, with the result R being R(X3, Y3, Z3) = P1(X1, Y1, Z1) +P2(X2, Y2,

Z2).

These substitutions yield the formulas as follows:

Let A = X2Z12, B = Y2Z13, C = A − X1, D = B − Y1 (1)
X3 = D2 − (C3 + 2X1 C2) (2)
Y3 = D (X1C2 − X3) (3)
Z3 = Z1C (4)

Brown at al. (2001) recorded the arithmetic expenditure equal to 12M + 4S and excluded

other arithmetic operations such as addition, subtraction, and multiplication with

constants. NSS actually executes a total of 8M+3S+2A+5Su.

 Based on the formulas above, OpenSSL developers certified coding under FIPS

140-2 level 1 and released the point-adding function with C-language source codes.

Point at Infinity

 Based on point computation in the projective domain, there will be no use of the

projective coordinates at (X = 0, Y = 0, Z = 0). These particular projective coordinates

will be used as variable labels for a specific point at infinity. During mathematical

processing, this zero-vector will be detected and subsequently called for a software

handler to take care of the point at infinity.

82

Performance Hardware Counter

 The purpose of using the Performance Hardware Counter is to approximate PEPMA

machine instruction counts. This metric is available by calling the Performance

Application Programming Interface, PAPI. Both PEMA and PAPI will run under host OS

in real-time; thus, there will be synchronization issues and activation of filtering to

address multiple accesses into the Performance Hardware Counter.

Program Profiling and Emulation

 The purpose of using Program Profiling and Emulation is to obtain precise and

accurate PEPMA counts of executing machine-codes. This metric is made available by

activation of the BOCHS hardware emulator (BOCHS, 2013). In turn, BOCHS will

supply a virtual-machine runtime environment to PEPMA. In this virtual-machine setup,

the Operating System CentOS 6.4 is the host OS that provides a virtual environment to

the guest OS, which is also a Centos 6.x OS. PEPMA runs under the Guest OS. The

diagram in Figure 21 shows a structure of Program Profiling and Emulation in relation to

other OSes, a Synchronization Agent, Software Counters, and PEPMA itself.

Figure 21. BOCHS Hardware Emulation

83

The Synchronization Agent filters the commands to BOCHS to adjust for access into

each machine-code emulation. When the code in PEPMA's executable file accesses the

emulated machine-code, the precise and accurate number of accesses will be recorded in

Software Counters. An example of the emulation workflow is shown below:

Figure 22. Accurate Efficiency Evaluation of PEPMA

The virtual machine loads the entire Guest Operating System without any

modification to the Guest OS executable binary image. The Guest OS then loads and

executes PEPMA code without modification to the PEPMA executable binary image.

Inside PEPMA code , the executable CPU instructions – for example, MULq or

MOVq – will call the procedure "proc MULq" or "proc MOVq" at the hardware

emulator. These two procedures will emulate the CPU instruction MULq or MOVq

. In turn, procedures and will call the hardware CPU to fulfill the machine-

code emulation. However, the other processes and can also call "proc MOVq"

from the hardware emulator to emulate MULq or MOVq . Because the emulated

CPU instructions can be called from multiple processes, emulation of PEPMA codes

must synchronize with the hardware emulator via the communication path to obtain

consistent and correct counting of the execution of machine-codes from PEPMA.

84

Run-time Factors

System Architecture:

 Associated environments of PEPMA are factors that could potentially change the

efficiency indexes of PEPMA in run-time. Thus, without accounting for these factors, the

comparison between two PEPMAs might not be accurate. One influential environmental

factor is the use of digit representation. As presented in the literature review chapter, a

digit contained in a complete big number is usually referred to as a limb – a computation

unit composed of several bits that should fit into a chosen system architecture. Otherwise,

computational efficiency might suffer.

 Operating System overhead, pipe-line queuing, memory cache, threading lost time

due to other processes, and system interrupts overhead are factors that affect the run-time

environments of PEPMA. These run-time environments exist but will not be considered

in this research. Background of these factors can be found in computer architecture and

quantitative experimental analyses from these references (Hennessy, 2006; Szerwinski,

2008).

Compiling Environment:

 Other influential environmental factors are compiling options. Today, NSS,

OpenSSL, and other open sources are mostly written in high-level languages. Given the

different compiler option settings, the compilation of high-level languages will end up

with different run-time machine codes.

85

Domain Parameters:

 Vector contents coming from the domain parameter are expected to contribute to the

performance evaluation of PEPMA as well. Domain parameters from the Client or Server

side are of the same tuple (p, a, b, G, n, h), where the product n×G(x, y) using the EPM

method must equal to infinity point O of the Elliptic curve. The domain parameter n is

the order of the subgroup, and h is the cofactor equal to the size of the cyclic subgroup

divided by n. The descriptions of these parameters are found in (FIPS PUB 186-4, 2013,

p. 16).

Test Vectors:

 A global third-party laboratory, which is accredited as Cryptographic and Security

Testing (CST), can provide validation testing for FIPS approved and NIST recommended

cryptographic algorithms and components of algorithms. A description of the validation

program for cryptographic algorithms (CAVP) can be found at the NIST website (CAVP,

2013). Within the body of CAVP, NIST has approved the use of test vectors for Elliptic

Curve Digital Signature Algorithm (ECDSA) as specified in ANSI X9.62 (ANSI, 2005)

to informally verify implementation. To keep efficiency measurement consistent across

the verification platform, NIST-recommended test vectors for ECDSA which will be

applied toward the comparison between NSS and OpenSSL PEPMA.

 Another recommendation for the test vector is posted in NIST Special Publication

800-56A (NIST 800-56A, 2013). The older version test vectors for ECDH are also

available from Certicom Research (Certicom, 1999), also known as Standards for

Efficient Cryptography organization (SEC). These test vectors will also be applied in the

comparison between NSS and OpenSSL PEPMA to explore the inconsistency between

86

measurements of efficiency due to the application of different test vectors. Readers are

referred to Appendix F for NIST recommended test vectors.

 Rigorous evidence of characteristics of the test vector may be found in Elliptic-

curve and projective transformation literature (NIST, 2010; Certicom Research, 2009;

Blake, 2001; Menezes et. al., 1996; Cohn, 1962) and Finite-Field Projective Geometry

(Rosen, 2006). Following suggestions from these papers, other possible test vector

contents can be calculated from the order of the curve n, modulus m, and infinity point O.

Readers are referred to Appendix D for the value of modulus m and the order n of cyclic

subfield.

Efficiency Formulation Analysis

 From a top-level formulation analysis, our adopted 12-step, closed-loop concept to

generate formulations of new metrics and to verify formulas is shown in Figure 23 below.

The overall technical approach included analysis, collected costs, and formulated the

efficiency of these necessary procedures based on the actual number of machine-code

instructions in a 64-bit x86 run-time environment. Subsequently, the formulation analysis

did allow the development of quantifiable key performance indicators, which provided

the benchmark in supporting realistic performance figures for PEPMA.

Figure 23. Formulation Analysis Block Diagram

87

The System Architecture and Compilation Environment , along with two open-

sources – NSS and OpenSSL PEPMAs – will generate a 64-bit x86 Machine Code .

 Dependencies such as algorithms, looping, runtime factors, etc. from , and

feeds Analysis and Formulation to generate efficiency formulas. The analysis, design,

development, and test of efficiency formulas occur in block .

 Outcomes from Analysis and Formulation will feed PHC, the Performance-

Hardware Counter and PPE, Program Profiling through Emulation for comparison.

Feedback paths and will adjust and verify formulations in the Analysis and

Formulation block , which is the focus of this study. The work-flow approach for the

analysis and formulation of block will mostly be based on a deductive-reasoning

model. An example of the work-flow for formulations of NSS PEPMA is shown in

Figure 24 below:

Figure 24. An Example of Performance Formulation

From the top-level, we derive two PEPMA formulas: one in theory (Cohen et al., 2006;

Brown et al., 2001) and one with actual implementation (NSS, 2013). If the arithmetic

operators are designated as M=multiplying, S=squaring, A=addition, Su=subtraction,

88

Sh=Shift bit, then the performance formulation of NSS PEPMA might have five new

metrics: A, Su, Sh, k4, k5, etc. Therefore, the formula might be:

)5Su2A3S(8Mk1Sh)4Su5A4S(4Mk 54 f

From the formula above, the equations for M, S, A, Su, Sh, k4, k5 in terms of algorithms,

methods, looping, modulo reduction, test vectors, runtime factors, etc. can be derived.

The equation M and its coefficients might have a form:

 B RTF) s,testVectormodulus, looping, (method, M f

From the metrology requirement B, formulas G in terms of how many 64-bit x86

machine codes are required to accomplish function M can be derived. At the bottom-

level, performance functions G, H, J, K and L will have the formulations in terms of

machine-code instructions, such as MULq or MOVq, as units of measurement.

 Complications will arise at the Arithmetic Layer, the 64-bit-x86-Machine-Code

Layer, and the Measurement Unit Layer. The Performance Hardware Counter and

Program Profiling through Emulation instruments will help fine-tune and verify the

formulations at these layers.

 Point in Figure 23 indicates an exit path for this technical approach, where the

outcomes will delineate final descriptions, comprehensive analysis, numeric

presentations, and computing cost formulations for this study.

 Individual performance comparisons of computing procedures (f hat, f, A, B, C,

D...L etc.) will help software developers choose better projective computation and

superior underlying mathematical service routines for the implementation of PEPMA.

Subsequently, combining these quantifiable metrics into a single key performance

indicator will offer ways to finally improve projective scalar point-multiplication

89

technology. The results will offer users the ability to dynamically or statically select the

most efficient PEPMA.

Method for Verification

 Program Profiling through Emulation (PPE) and its internal Software Counters,

along with Performance Hardware Counters (PHC), was used to verify the efficiency

formulas. Readers are referred to (BOCHS, 2013; Code XL, 2013) for a description of

PPE, and to (Intel PERC, 2013; PAPI, 2013; Levinthal, 2009; Drongowski, 2008) for a

description of PHC. A flowchart of the verification method is shown in Figure 25.

Figure 25. Efficiency Verification Block Diagram

Projected Outcome

 The projected outcome will be the verification of the efficiency formulations with

the prescribed method. Due to limited development resources, this research will not

provide a verification method for the other five performance indicators: CM, SCM,

WIFC, MMI, FM. Readers can reference industry practices for detailed descriptions of

these five KPIs. Industry practice recommendations can be found at these cited sources

(Herrmann, 2007; Hennessy, 2006).

90

Proposition of Format for Presenting the Results

 The Performance Measurement System (PMS) used in this research will produce an

interdependent group of leading performance indexes forming intermediate and final

performance indicators. Table 6 shows an example of the final result.

Table 6. KPI between NSS and OpenSSL PEPMA
KPI Max

Value
OpenSSL

Score
(Target
Value)

NSS
Score
(Unit
Under
Test)

Weight
%

Subtotal

CM 2 2
SCM 2 2
WIFC 3 5
MMI 5 10
FM 3 5
EMF 100 85 90 80 72
Total 90 100 95

The proposed PMS will obtain six Key Performance Indicators (KPI) and post them in a

table along with their weighting factor. The EMF's score for NSS PEPMA, the Unit

Under Test, for example, will be 90. Since the weight of this EMF KPI is 80% of the

KPIs, then NSS PEPMA scores 72, as shown in the subtotal column. Presumably, after

summing all KPIs in the column subtotal, NSS is given a score of 95, which is higher

than the OpenSSL target value of 90. This implies that NSS PEPMA is a better Projective

Elliptic-curve Point Multiplication Agent. Revisiting the EMF formulas will offer

insights to improve PEPMA's computing efficiency.

As shown in Table 6, formulations for the top five KPIs – CM, SCM, WIFC, MMI, FM –

are described in the previous sections. The formulas for efficiency will likely have the

following structures:

91

 ...RTF)MOVqkMULq(kkMOVq)kMULq(kkEMF 143b21a1

 ...RTF)MOVqkMULq(kkMOVq)kMULq(kkEMF 287d65c2

 ...EMFK

K

N
N

1
NSS EMFEMF

Labels MULq or MOVq are the anticipated units of measurement. Each element of the

equation is the efficiency (or cost) of the mathematical module servicing PEPMA. Each

EMF value will be normalized.

Values in Table 6 can be applied toward a Combined Key Performance Indicator. Its

formula is defined as follows.

Combined Key Performance Indicator

 The Combined Key Performance Indicator (CKPI) is defined as follows (Herrmann,

2007, pp. 123-124):

i
i

6

1

KPICKPI

KPI1 = 0 if accuracy goals are not met
KPI1 = 1 if accuracy goals are met
KPI1 = 2 if accuracy goals are exceeded

KPI2 = 0 if precision goals are not met
KPI2 = 1 if precision goals are met
KPI2 = 2 if precision goals are exceeded

KPI3 = 0 if response-time goals are not met
KPI3 = 1 if response-time goals are met
KPI3 = 2 if response-time goals are exceeded

KPI4 = 0 if memory-utilization goals are not met
KPI4 = 1 if memory-utilization goals are met
KPI4 = 2 if memory-utilization goals are exceeded

92

KPI5 = 0 if storage goals are not met
KPI5 = 1 if storage goals are met
KPI5 = 2 if storage goals are exceeded

KPI6 = 0 if storage goals are not met
KPI6 = 1 if storage goals are met
KPI6 = 2 if storage goals are exceeded

KPI7 = 0 if transaction processing rates are not met
KPI7 = 1 if transaction processing rates are met
KPI7 = 2 if transaction processing rates are exceeded

Resource Requirements

 NSS and OpenSSL implementations of PEPMA will run under a 64-bit Linux based

Operating System. Particularly, the 64-bit OS will be the Community ENTerprise

Operating System version 6.4 (CENTOS). The GCC version 4.4.7.3 compiler from

Redhat Linux will be used for the compilation of NSS and OpenSSL PEPMA C codes to

x86 assembly language, and then onto 64-bit x86 machine-code instructions.

Timeline

 The following was the proposed time line toward the completion of this study:

Figure 26. Timeline

93

Chapter Summary

 The construction of a precision Performance Measurement System for PEPMA will

be required to accurately evaluate the efficiency of PEPMA and provide a formal

approach to improve the performance of the system measured. The beginning of the

approach is a proposal for obtaining leading performance indexes that can be constructed

at three specific levels of evaluation: (a) exponentiation service, (b) point-doubling and

point-adding functions, and (c) supporting mathematical software routines for point-

doubling and point-adding functions. These three assessment levels, six units of analyses,

a specific comparative method with BOCHS and PAPI for the verification of results, and

the manual formulation analysis will all help reach the final goal while IEEE standards

will help to construct Key Performance Indicators.

94

Chapter 4

Results

Introduction

 This chapter reports the findings, the associated formulas (if any), and presents data

analysis of such findings. The findings consisted of outcomes, which were discovered

during close examination of six units of analyses directed toward the performance

comparison between NSS and OpenSSL PEPMA in 64-bit x86 runtime environment. The

units of analyses are listed in Table 7 below.

Table 7. Finding of Six Units of Analyses
Unit of Analysis Formula
Efficiency Metric and Formulation EMF
Compliance Metric CM
Weighted Information Flow Complexity WIFC
Cyclomatic Complexity Metric CCM
Functional Metric FM
Module Maturity Index MMI

 The data analysis section in this chapter provides information to familiarize the

reader with the basis of the finding. The chapter concludes with a summary of all findings

and data analyses, preparing the readers for the final chapter.

 The ultimate goal of this research with two FIPS-140-2 certified studying cases was

to develop a repeatable and deterministic evaluation approach of the performance of

PEPMA. The study provides a detailed framework for the evaluators to construct a better

evaluation method. Thus, the final contribution to the field of cryptography is the formal

evaluation method that can lead to the performance improvement of PEPMA. Other

benefits related to industrial applications in the field will not be discussed in this chapter.

95

They will be discussed in the closing conclusion, implication, recommendation and

summary of the final chapter.

Systematic Software Reviews and Selection of Unit of Analysis

 The software reviews in this study adhered to the code walk-through and software

inspection formal process as recommended in IEEE 1028 (2008). The purpose of the

review is to determine and put together the performance improvements through the

findings and data analysis. IEEE-1028 covered code walk-through along with software

inspections first appeared in 1988 and then 1997 (IEEE 1028, 1997). This standard

suggested six reviewing areas of software products and provided ways to identify

anomalies, including errors and deviations from standards and specifications. However, it

is important to note that this research does not intend to identify and correct the

implementation errors; multiple comprehensive reviews across six areas have been

accomplished at the product design phase and/or at an accredited FIPS certification site.

Leveraging the same walk-through and code inspection procedures recommended in

IEEE standards, this study aims to provide ways for code improvements through findings

and data analysis as shown in Figure 27.

Figure 27. Types of Software Review Used in the Research

96

The shaded areas in Figure 27 show an entry and exit path to obtain potential code

improvement portions which the formal code walk-though or inspection procedure

possibly might have missed or was not intended to correct.

 While Fagan developed a formal software inspection process at IBM in the mid

1970s focusing on finding software defects, his work also resulted in a schematic of

defect classification and distribution (Fagan, 1976). However, the detail of the

classification was not clearly presented at that time. Later, Fagan's inspection methods

were thoroughly discussed in software inspection by Gilb & Graham (1993), which

focused on defect identification. According to Runeson et al (2006) or Jones (2010),

defects can be classified in many different ways. First, a defect can be cataloged as either

an omission (something is missing) or a commission (something is incorrect). Second, a

defect may be defined based on technical contents as to whether the product meets or

does not meet a specific requirement (i.e., efficiency or FIPS compliance). Third, defects

may be categorized by the impact to the user as the result of technical capability running

on a specific computing platform. During software review of PEPMA coding, this

research seeks for the omission and presents it in the key performance indicators and

improvements. The standard IEEE code walk-though and software inspection process

were used to collect quantitative data at defined points on prior works in this area.

 Although code walk-through and code inspection are two related software review

methodologies, the latter is more formal than the first. Both walk-through and inspection

focus on finding errors in the product but not correcting them. Code walk-through often

requires less expertise in the subject domain while inspection might require

professionally trained inspectors.

97

The software inspections remove roughly 85% of the total errors as Fagan reported in his

studying cases. It has been shown no other techniques, walk-through, or testing using

automatic checking tools identify errors better than the manual code inspection. Jones

suggested that manual code inspection could potentially remove 70% of the total errors as

he observed the outcomes in industrial projects (Jones, 2010, p. 574). It has been

advocated in (Source-Selection, 2011) that the end users in the field might experience the

remaining defects through the so called "degradation of performance." These user

experiences pertain to the remaining 15% to 30% of anomalies not found by code walk-

though or code inspections. The shaded area in Figure 27 shows an opportunity for

improving efficiency that the code walk-though process or software inspection procedure

at the product design phase, or at an accredited FIPS certification site, possibly missed or

did not intend to correct.

 The discussion above offers some hints that the code walk-through could help to

promote the improvement of the product, as seen by a person with less expertise;

meanwhile, code inspection could improve the product, according to the checklist of

items to be examined. For example, if PEPMA code is to be manually inspected, the

inspection checklist can include such items listed as six units of analyses pointing to the

efficiency, standards compliance, or coding information flow complexity. For a general

discussion of why these key performance indicators were selected, readers are referred to

recommendations in the standard ISO/IEC 15939 (2001). To answer three research

questions and be able to verify the empirical results, we suggested applying IEEE

standards 982.1-1988 and 982.1-2005 to evaluate and construct six units of analyses

while tailoring the efficiency measurements based on machine virtualization technology.

98

Limitation

 Since the goal of this study was to develop a more rigorous understanding of a

formal performance evaluation approach, the reader should bear in mind that all findings

in this report are subject to several limitations. First, the findings presented here are only

a representation of the essential outcome, which should provide meaningful evaluation

results. As an example, Table 8 (below) lists eleven findings to provide adequate results

for the evaluation of Cyclomatic Complexity Metric; however, one finding of the sub-

module is needed to represent the idea adequately.

Table 8. Finding Limitation
Unit Under Test Sub-Module Low-Level Routine
Cyclomatic
Complexity
Metric

APT, EF, PD,
PA, PAT

Adding, Subtraction, Modulo Reduction
Squaring, Multiplication, Inversion

Second, findings of other units of analyses have been purposely excluded due to the

limited scope of this research. Third, the limitations mentioned above are also applicable

to the construct of formulations and data analysis. Fourth, only Efficiency Metric and

Formulation contains verification methodology while the other five units do not. Fifth,

the current research was not specifically designed to evaluate the importance factors of

each Key Performance Indicator.

 Because of these limitations, the comparison results should be interpreted

cautiously; further investigation and report of the unlisted findings might be necessary to

achieve a realistic goal. Furthermore, the emphasis of this research was to uncover

whether the performance of PEPMA might be unknown based on existing theoretical

work, and what metrics should be used to candidly evaluate PEPMA's efficiency.

However, the findings and analyses of low-level mathematic routines are beyond the

99

scope of this results chapter. They are presented here for completeness; although, the

findings and analyses of such low-level mathematic routines do offer more accuracy to

the final product.

 While the literature review and the methodology section provided some evidence to

answer these research questions, the findings from six units of analyses could uncover

concrete facts of whether the performance of PEPMA might be unknown based on

existing theoretical work. Together with the findings, the constructed formulas and data

analysis could further confirm which metrics can be used to truthfully evaluate PEPMA's

efficiency.

 For the benefits of applications in the cryptographic field, are there realistic and

deterministic performance evaluation approaches which will enable the code

implementers to improve PEPMA’s efficiency based on the empirical comparison? In

this results chapter, the findings and results based on six units of analyses could also

suggest a tangible setup for such a formal evaluation method.

100

Chapter Organization

 This results chapter is organized into seven sections: to , corresponding to the

six units of analyses, and a combined performance indicator as shown in Figure 28.

Figure 28. Formal Performance Evaluation Approach

Figure 28 also represents the sequential order of flow of a suggested formal approach

for the performance evaluation where unit of analysis 1 – Finding of Compliance Metric

and Formulation – carries the highest level of importance/weight; and unit of analysis 6 –

Finding of Module Maturity Index – carries the lowest level of importance/weight.

However, this research is not specifically designed to evaluate the importance factors of

each Key Performance Indicator; hence the order of evaluation might change based on a

case-by-case application where the level of importance/weight can change for each unit

101

of analysis. One possible approach to determine the importance level is found in (Source-

Selection, 2011).

Verification of the Finding

 As previously presented in the methodology chapter, the performance relating to

computational efficiency shall be verified through a formal verification process using

Program Profiling and Emulation with BOCHS. Additionally, the computational

efficiency shall be verified through another formal verification process by acquiring the

Performance Hardware Counter via Performance Application Programming Interface

(PAPI). In this section titled the "Analysis of Efficiency Metric and Formulation," we

applied these formal verification methods to fulfill the verification of the findings; hence,

the verification will be reported thoroughly in the analysis section. This formal

verification of efficiency will provide supports for a tangible closing conclusion of this

research. The approach for verification is depicted in Figure 29 below.

Figure 29. Efficiency Verification Block Diagram

Activation of virtual machine BOCHS to sandbox PEPMA under a guest Operating

System was complex. It required a specific set of instructions and process

synchronization in order to properly execute PEPMA under the virtual machine

102

environment. Readers are referred to Appendix K, the Operation of BOCHS, for more

details on the commands and the setups of BOCHS.

 Acquiring the performance hardware counter via Performance Application

Programming Interface (PAPI) also required a specific setup and compilation. Readers

are referred to Appendix L, the Operation of PAPI, for more details on the commands

and the setups of PAPI.

Concept of Instrumentation

 This section describes the concept and rationale using two measuring instruments

PAPI and BOCHS. The instrument PAPI can accurately measure the total number of

instructions, TOT_INS, which are required to process a particular unit-under-test (a unit-

under-test may be any of sub-modules belonging to six units of analysis). However, the

measurement TOT_INS is just a lump sum of all CPU instructions (around 26 millions

for NSS PEPMA); this metric does not indicate what types of CPU instruction that the

unit-under-test uses. Therefore, it is not a good metric for modular improvement (see

Appendix U, V for the descriptions of metrics). On the other hand, the instrument

BOCHS can accurately measure the total number of instructions; and it can also indicate

what types of CPU instruction that the unit-under-test uses. If the cost for processing a

module was approximately constructed by BOCHS as follows:

 MODULE_COST ≈ k1(MULq) + k2(MOVq)

then the exact formula of MODULE_COST must be

 MODULE_COST = k1(MULq) + k2(MOVq) + OHF

where the term OHF is defined as an overhead factor; and the OHF might include other

MULq, MOVq, or other types CPU instruction.

103

If the metric TOT_INS is exact, then the following equality must be true

 TOT_INS = MODULE_COST = k1(MULq) + k2(MOVq) + OHF

To be absolutely accurate, the equation TOT_INS must include all of the CPU

instructions. For instance, two additional coefficients k3(ADD) and k4(SUB) in the

equation TOT_INS will make the result more accurate:

 TOT_INS ≈ k1(MULq) + k2(MOVq) + k3(ADD) + k4(SUB)

Due to limited scope of this study, the coefficient in TOT_INS equation does not expand

beyond the first two CPU instructions. Thus, the expansion coefficients (k3(ADD) +

k4(SUB) + others CPU Instruction...) are lumped sum into a single over-head factor,

OHF. For comparison, one could convert TOT_INS to the total number of CPU cycles.

Overview of the Finding in General

 Documentation search and/or certificates were used to collect some findings;

however, the primary method for collecting the findings was through the examination of

NSS/OpenSSL source codes. Additionally, the findings were discovered through running

executable binaries under both host and guest Operating Systems (Virtual Machine using

BOCHS) and taking the results from the program output messages. Since the results from

six units of analyses directly contributed to the performance comparison, six Key

Performance Indicators were derived from the following six units of analyses.

Table 9. Findings of Key Performance Indicators
Key Performance Indicator Formula Importance

Level (Note 1)
Efficiency Metric and Formulation EMF 6 = Highest
Compliance Metric CM 5
Weighted Information Flow Complexity WIFC 4
Cyclomatic Complexity Metric CCM 3
Functional Metric FM 2
Module Maturity Index MMI 1 = Lowest

104

Note 1: The importance levels are only a representation/example. These levels were taken

from a particular investigation of ECDH public-key exchange protocol used in the

Department of Defense. This research was not specifically designed to evaluate the

importance factors of each Key Performance Indicator. However, it has been advocated

in the (Source-Selection, 2011) from the DoD suggesting approaches to obtain

importance levels pertaining to technical risk of a product.

Overview of the Findings of Efficiency Metric and Formulation

 The findings of the efficiency metric in this section is a collection of outcomes that

have been discovered in examining computational efficiency directed toward the

performance comparison between NSS and OpenSSL PEPMA in 64-bit x86 runtime

environment. Essentially, this section shows the results of evaluating the components as

illustrated in Figure 2, the Projective Elliptic-Curve Point-multiplication Agent in the

introduction chapter. For reading convenience, Figure 2 has been expanded and shown

here with three other units-under-test: infinity point, pre-computation table, and

runtime factor.

105

Figure 30. Projective Elliptic-Curve Point-multiplication Agent, Complete

The figure above illustrates the efficiency of NSS/OpenSSL PEPMA governed mainly by

five sub-modules: Affine to Projective Transformation, Exponentiation Function, Point-

Doubling, Point-Adding, and Projective to Affine Transformation (APT, EF, PD, PA, and

PAT respectively). The efficiency of NSS/OpenSSL PEPMA also depends on how

NSS/OpenSSL is implemented to handle the pre-computation, the infinity point, and the

runtime factor.

Table 10. Finding of Efficiency Metric and Formulation
Unit Under Test Sub-Module Low-Level Routine
PEPMA APT, EF, PD,

PA, PAT
Adding, Subtraction, Modulo Reduction
Squaring, Multiplication, Inversion

Pre-computation PD, PA Adding, Subtraction, Modulo Reduction
Squaring, Multiplication, Inversion

Infinity Point
Runtime Factor

From Table 10, counting down from unit-under-test PEPMA, there were eleven findings:

five counts for sub-modules (APT, etc.,) and six counts for low-level routines. Although

the naming convention shown in the Sub-Module column and in the Low-Level Routine

column is the same for both NSS and OpenSSL, sub-modules and low-level functional

services comparing NSS PEPMA and OpenSSL PEPMA are not the same routines.

 Furthermore, while all six low-level routines (listed in Table 10) fulfill the intended

function, each sub-module might not need to call all six low-level routines; the

explanation of which sub-level module calls which low-level routines is in order. Seven

low-level routines for each sub-module are summarized in the last column of Table 10.

The findings are presented in pairs (NSS APT vs. OpenSSL APT etc.) throughout the

section for the convenience of reading when comparing NSS and OpenSSL cases. The

106

data analysis of this chapter includes only essential information to familiarize the reader

with the basis of the findings. The formulations for computational cost are presented at

the end of the findings section.

 In the section “The Finding of Efficiency Metric and Formulation,” the word

"Formulation" refers to the construct of more succinct computational cost formulations as

the results of finding and data analysis. These formulations were used for verification of

the findings, with the lowest units of measurement being MULq instruction and MOVq

instruction, or scalar values. In the comparison of efficiency, NSS will serve as a

reference point (compared OpenSSL against the results from NSS).

 BOCHS and PAPI were the verification instruments that provide Program Profiling

and Emulation Software Counters and Performance Hardware Counter, respectively.

Based on such formal verification of efficiency, a more tangible closing conclusion can

be drawn in the final chapter. The formal approach for verification of efficiency was

previously illustrated in Figure 28.

 The verification instruments worked with specially chosen test vectors. For a listing

of test vectors used in this study, see Appendix F.

Infinity Point

 In NSS, the representation of an infinity point in projective domain is defined as

follows:

 NSS infinity point ≙ (X, Y, 0) where X = don't care, Y = don't care

In OpenSSL, the representation of an infinity point in projective domain is defined as

follows:

 OpenSSL infinity point ≙ (X, Y, 0) where X = don't care, Y = don't care

107

Runtime Factor

 OS overhead, threading time, and delay due to processor interrupt services are run-

time factors. They might affect the cost index produced from the Performance Hardware

Counter or Program Profiling process. These run-time factors are categorized as Quality

of Service (QoS) for the verification procedure under the targeted Operating System.

However, since these QoS run-time factors are a system specific subject, they were

excluded from the findings and data analysis.

Finding of NSS Affine to Projective Transformation

 The NSS Affine to Projective Transformation (APT) is a functional service routine

that converts affine coordinates to the coordinate representations in the projective

domain. File location and function calling conventions are listed in Table 11 below.

Table 11. Finding of NSS Affine to Projective Transformation
Finding
of

Description of APT Comment

File
location

NSS\mozilla\security\nss\lib\freebl\ecl\ecp_jac.c "NSS\" is the root
directory where project
was installed

Function ec_GFp_pt_aff2jac
mp_err ec_GFp_pt_aff2jac (const mp_int *px,
const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group)
{
... calling Sub-functions below...
};

Note:
Description of data structure type "mp_int" can
be found in the literature review section of low-
level arithmetic representation

*px, *py are the pointers
to affine coordinates (x,
y).

*group points to a data
structure having
characteristics of the
Elliptic-curve

Sub-
function

mp_copy(px, rx);
mp_copy(py, ry);
mp_set_int(rz, 1);

*rx, *ry, *rz are the
pointers to the results in
projective domain

108

As designed, the NSS APT function is conditionally called at the beginning of the Point-

Adding function. The calling sequence is shown below:

 Start computing PA:
 if (Z = = 0) ec_GFp_pt_aff2jac(...)
 calling other functions...

Formulation

 The formulations were derived by examining the operation of the following

statements:

mp_copy(px, rx);
mp_copy(py, ry);
mp_set_int(rz, 1);

Table 12. NSS APT Formulation
Sub-Module Formula Unit of Measurement

NSS APT NSS_APT ≈ 3(MULq)+29(MOVq) MULq, MOVq
NSS APT NSS_APT_PAPI_TOT_INS = 2745 All CPU Instructions
NSS APT NSS_APT_PAPI_TOT_CYC = 7879 CPU cycles

For comparison, testing for efficiency of APT was repeated under two verification

instruments, BOCHS and PAPI as shown in Table 13. The values shown in lower-limit

(MIN), Typical (TYP), and upper-limit (MAX) are the accuracy ranges of the measuring

instrument.

 Table 13. NSS BOCHS/PAPI APT Limits
Components MIN TYP MAX Unit of

Measurement
NSS APT BOCHS
(Note 1)

3 3 MULq

NSS APT BOCHS

29 29 MOVq

NSS APT PAPI 2745 TOT_INS
NSS APT PAPI 7879 TOT_CYC

Note 1: Readers are referred to Appendix K, the Operation of BOCHS, and Appendix L,

the Operation of PAPI, for more details on commands and setups of BOCHS/PAPI.

109

The same values presented in both "MIN" and "MAX" columns indicate that readings

from instrumentation are exact. Readings presented in "TYP" column are not exact. They

change from one sampling to the other.

Findings of APT in OpenSSL

 The OpenSSL Affine to Projective Transformation (APT) is a service routine that

converts affine coordinates to the coordinate representation in projective domain. File

location and function calling conventions for OpenSSL are listed in Table 14 below.

Table 14. Finding of OpenSSL Affine to Projective Transformation
Finding
of

Description Comment

File
location

O\crypto\ec\ec_lib.c "O\" is the root
directory where project
was installed

Function EC_POINT_set_Jprojective_coordinates_GFp
(group, point, x, y, BN_value_one(), ctx);
{
......
group->meth->
point_set_Jprojective_coordinates_GFp(group,
point, x, y, z, ctx);
......
}
Note: group->meth->
point_set_Jprojective_coordinates_GFp(...)
is a name holder for function
EC_POINT_set_Jprojective_coordinates_GFp
"......" represents some other house-keeping
functions

*group points to an
object having
characteristics of the
Elliptic-curve (as data),
and points to executing
functional pointers (as
method). Thus,
"group->meth->" is a
pointer to an executing
method.
"point" is an array of
MDN.
BN_value_one() is a
521-bit MDN having a
scalar value of 1.

Sub-
function

EC_POINT_set_Jprojective_coordinates_GFp
(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, const
BIGNUM *z, BN_CTX *ctx)
{
......
calling group->meth->
point_set_Jprojective_coordinates_GFp(group,
point, x, y, z, ctx);
.......
};

EC_GROUP,
EC_POINT,
BIGNUM,
BN_CTX are data
structures.
"*ctx" is a pointer to a
context database, a
temporary and volatile
holding data structure
for the function

110

Table 15. Finding of OpenSSL Affine to Projective Transformation (Continued)
Finding of Description Comment
Sub-
function

group->meth->
point_set_Jprojective_coordinates_GFp(group, point,
x, y, z, ctx);
Note:
group->meth->
point_set_Jprojective_coordinates_GFp(...)
is a name holder for the function below

Sub-
function

ec_GFp_simple_set_Jprojective_coordinates_GFp
(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, const
BIGNUM *z, BN_CTX *ctx)
{
......
BN_nnmod(&point->X, x, &group->field, ctx)
BN_nnmod(&point->Y, y, &group->field, ctx)
BN_nnmod(&point->Z, z, &group->field, ctx)
......
}

Sub-
function

BN_nnmod(&point->X, x, &group->field, ctx)
BN_nnmod(&point->Y, y, &group->field, ctx)
BN_nnmod(&point->Z, z, &group->field, ctx)

BN_nnmod()
reduces an MDN
and places the
result in
"&point->Z"

Formulation

 The formulation was carried out by executing the arithmetic operation of three

statements with a specific test vector, and using BOCHS to read the results.

BN_nnmod(&point->X, x, &group->field, ctx)
BN_nnmod(&point->Y, y, &group->field, ctx)
BN_nnmod(&point->Z, z, &group->field, ctx)

Table 16. NSS APT Formulation
Sub-Module Formula Unit of

Measurement
OpenSSL APT OpenSSL APT ≈ 151(MULq) + 198(MOVq) MULq, MOVq

111

For comparison, these measurements were repeated under two verification instruments,

BOCHS and PAPI with test vector type A (see Appendix O).

Table 17. APT Comparison
Components NSS OpenSSL MAX Unit of

Measurement
APT BOCHS 3 151 MULq
APT BOCHS 29 198 MOVq
APT PAPI 745 1626 * TOT_INS
APT PAPI 4190 ** TOT_INS
APT PAPI 879 5052 TOT_CYC

* Test vector type A (see Appendix O). Computing platform type A (see Appendix R).

** Test vector type C (see Appendix Q) using CPU type C in a busy run-time

environment (see Appendix T).

Analysis of Affine to Projective Transformation

 The data gathered in Table 14, 15, 16 and 17 suggest that the computing time of

target CPU for performing APT function is significantly different when comparing NSS

and OpenSSL implementations. The data yielded by these findings provide convincing

evidence that NSS implementation of APT might be more efficient since it uses three

simple functions "copy" and "set" to set the values into the results of APT

mp_copy(px, rx);
mp_copy(py, ry);
mp_set_int(rz, 1);

while OpenSSL uses three modulo arithmetic routines BN_nnmod() to set three values

into the results of APT. The cost of this computation depends on the content of the input

test vector (x, y, z) and how efficient the modulo reduction arithmetic was done.

BN_nnmod(&point->X, x, &group->field, ctx)
BN_nnmod(&point->Y, y, &group->field, ctx)
BN_nnmod(&point->Z, z, &group->field, ctx)

112

For a detailed discussion of Affine to Projective Transformation, readers are referred to

the Concept of Point Computation in Projective Domain, which was previously presented

in the Literature Review chapter. Similarly, Ryabko et al. (2005) and Salomon (2006)

have found that using a sub-function as shown in Table 11 would be more

straightforward and better than using function BN_nnmod() as shown in Table 14, 15 for

computation of Affine to Projective Transformation.

Finding of NSS Exponentiation Function

 In an open-source version 3.12.4 release, Network Security Services (NSS, 2013)

applied a 4-bit window on the scalar k in an exponentiation service. The Exponentiation

Function (EF) is shown as computation loop in Figure 31 below.

Figure 31. Exponentiation Function in NSS

The NSS PEPMA computation makes 524 calls to the point-doubling and 131 calls to the

point-adding function (NSS-2, 2014). Readers are referred to Appendix G for examining

the exact number of calls.

113

Real-time Samplings with PAPI, Function EF in NSS

 The real-time sampling was taken from a particular desktop PC type B (see

Appendix S) with test vectors type A (see Appendix O).

Table 18. Real-time Samplings, Function EF in NSS, Vectors Type A
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC

from Minimum
1 15,094,162 26,707,442 49416
2 15,188,326 26,707,443 143,580
3 15,195,070 26,707,443 150,324
4 15,044,746 26,707,442 0
5 15,252,588 26,707,442 207,842

Figure below illustrates the deviations from iteration 4 of TOT_CYC as listed in Table

18.

1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

5

Sampling

C
P

U
 c

yc
le

s

Figure 32. Real-time Samplings, EF in NSS, Test Vector Type A

Another real-time sampling was taken from the same desktop PC with test vectors type B

(see Appendix P).

114

Table 19. Real-time Samplings, Function EF in NSS, Vectors Type B
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC

from Minimum
1 14,842,668 26,248,085 179,771
2 14,669,926 26,248,085 7,029
3 14,662,897 26,248,085 0
4 14,743,208 26,248,085 80,311
5 14,693,759 26,248,087 30,862

Figure below illustrates the deviations between TOT_CYC as listed in tables 18, 19;

deviations between TOT_INS as listed in tables 18, 19.

TOT CYC A/B TOT INS A/B TOT CYC A/B TOT INS A/B
0

0.5

1

1.5

2

2.5

3
x 10

7

TWO SAMPLING POINTS

C
P

U
 C

Y
C

LE
S

 o
r

C
P

U
 I

N
S

T
R

U
C

T
IO

N

Deviation due to Test Vector

Figure 33. Real-time Samplings, EF in NSS, Test Vector Type A vs. Type B

Formulation

 Table 20 lists the efficiency formula for NSS Exponentiation Function with the unit

of measurements being PD, Point-Doubling, PA, Point-Adding, and Overhead Factor

(OHF). Overhead Factor includes all runtime factors.

Table 20. Formulation of NSS Exponentiation Function
Unit Under Test Formula Unit of

Measurement
NSS Exponentiation
Function

NSS_EF = 524(PD) + 131(PA) + OHF
(Value of OHF will be determined in the
next section)

PD, PA,
OHF

115

This test sequence shows that PEPMA computation does depend on value of k. Given k =

(00100011) in binary to process PEPMA, the NSS Exponentiation Function always

extracts the index for the PRE-COMP table from the leftmost four bits. Thus, k must be

shifted left 4 bits for the next 4-bit extraction (This shifting also gives a name "right-to-

left" exponentiation function). Furthermore, let the base-point affine vector be (x, y); then

the NSS computing sequence of k×(x, y) occurs exactly as follows:

Table 21. Sequence of NSS Exponentiation Function
Iterat
ion

Parameter Value Comment

Entry EF shifting method Right-to-Left
 Affine coordinate to multiply (x, y)
 k 0010,0011 (binary) Lower 8 bits

Upper (521−8) =
513 bits are all
zeros

 Affine-to-Projective
Transformation (APT)

(RX, RY, 0)

1 Coordinates before doubling (RX, RY, 0)
 Coordinates after point-

doubling
(RX, RY, RZ) =
(RX, RY, 0)

 4 bits extracted from k 0010
 Index to PRE-COMP table 2 (decimal) 4 bits extracted

from k
 Coordinates from PRE-COMP

table
2×(x, y)

≙ (x2, y2)

Affine coordinates

1.6

Coordinates after point-adding (RX, RY, RZ) =
(RX, RY, RZ) +
(X = x2, Y = y2, Z=1)

Another Affine-to-
Projective
Transformation

2 Coordinates before doubling (RX, RY, RZ), same
as above

 Coordinates after four point-
doubling operations

16 × (RX, RY, RZ) Exponentiation of
(RX, RY, RZ) by 4

 4 bits extracted from k 0011
 Index to PRE-COMP table 3 (decimal)
 Coordinates after point-adding 16 × (RX, RY, RZ)

+ 3×(x, y, RZ)

Mixed-coordinate
point-adding

Exit k × (x, y) = 23 × (x, y) Same as above

116

Analysis of NSS Exponentiation Function

 The Exponentiation Function in NSS can be more efficient if NSS did not use step

1.6 (as shown in Table 21) but instead followed the recommendation from Ryabko et al.

(2005) or Salomon (2006). This improvement in NSS Exponentiation Function can be

further verified by examining the following operational sequence:

 After processing the Affine-to-Projective Transformation, APT, the affine input

coordinates (x, y) have been converted to projective coordinates (RX, RY, 0). These

coordinates are the representation of an infinity point in the projective domain of input (x,

y).

 In the EF computation loop , the first iteration of the loop is special; thus, a

comprehensive explanation is in order. At the beginning of the EF computation loop, the

result vector (RX, RY, RZ) is set to an infinity point (RX, RY, 0). This setting of the

infinity point always makes the result of point-doubling of (RX, RY, 0) to be an infinity

point since a multiplication of any scalar values with an infinity point always results in an

infinity point.

 When this infinity point (RX, RY, 0) reaches the point-adding function for the first

time (first iteration in the loop) as shown in Figure 30, the point-adding function detects

the "point at infinity" condition (RZ = = 0) and returns a result (PX, PY, RZ = 1) without

any further computation. This operation (PX, PY, RZ = 1) sets the Z coordinate to 1 for

the first time in the EF iteration loop ; and the result vector (RX, RY, RZ) is set to (PX,

PY, RZ = 1). Note that PX, PY are the coordinates extracted from the PRE-COMP table

according to the 4 bits that extracted from k.

117

When loop goes into the second iteration, the point-doubling function computes the

doubling of vector (RX, RY, RZ) recursively four times:

 2 × (2 ×(2 × (2 × (RX, RY, RZ)))) ≙ 16 × RX, RY, RZ

and the results are set back to result vector (RX, RY, RZ). The point-adding function then

adds this result vector (RX, RY, RZ) with the next vector extracted from the PRE-COMP

table.

 Another interesting observation from Figure 31 and Table 22 is that if the size of

extracting window were 5 bits instead of 4 bits, higher efficiency can be achieved. New

values are the results of minor optimization in the implementation of EF as shown in

Table 22. Units of measurement are the same as before, PD and PA.

Table 22. Alternate Formulation of NSS Exponentiation Function
Unit Under Test MIN TYP MAX Unit of

Measurement
NSS Exponentiation Function
(5-bit Window)

 520 PD

NSS Exponentiation Function
(5-bit Window)

 104 PA

118

Verification

 Table 23 lists the efficiency formula found by BOCHS for NSS Exponentiation

Function with the units of measurement being MULq, integer multiplication, and MOVq,

moving quad words (64 bits). Test vectors are of type A (see Appendix O).

Table 23. Finding of NSS Exponentiation Function by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
NSS EF 1,461,962 1,461,962 MULq
NSS EF 2,744,501 2,744,501 MOVq
NSS_OHF To be

determined
when

NSS_PA,
NSS_PD has
been derived

 MULq, MOVq
and other

Instructions

The data collected in Table 23 is quite revealing in several ways. Since BOCHS can read

exactly the number of MULq or MOVq instructions used in NSS Exponentiation

Function, data in Table 23 could answer which metrics should be used to evaluate

PEPMA's efficiency. Second, since the counting of MOVq instruction did exceed the

counting of MULq instruction, data in Table 23 also uncovered the notion of whether the

performance of PEPMA might be unknown based on existing theoretical work (for

example, using only metric M, Multiplication).

 Data from this table can be compared with the data in Table 32, which shows the

difference in efficiency between NSS and OpenSSL PEPMA.

119

Finding of NSS Point-Doubling

 Network Security Services implemented a software function point-doubling R(X3,

Y3, Z3) = 2×P(X, Y, Z) using weighted projective transformation as described by (Cohen

et al., 1998). Executing NSS Point-Doubling (PD) codes requires 4M+4S+5A+4Su+1Sh

operations, where the arithmetic operators are designated as M=Multiplying,

S=Squaring, A=Addition, Su=Subtraction, and Sh=Shift. These measurement units have

been directly converted to the lowest measurement units MULq and MOVq using

BOCHS. Table 24 recorded this operation.

Table 24. Finding of NSS Point-Doubling by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
NSS_PD 1550 MULq
NSS_PD 3084 MOVq

Formulation

 Table 25 below lists the efficiency formula for NSS Point-Doubling with the units

of measurement being MULq and MOVq. The formula for NSS_PD can be constructed

from values in Table 24.

Table 25. Formulation of NSS Point-Doubling
Unit Under Test Formula Unit of

Measurement
NSS_PD NSS_PD ≈ 1550(MULq) + 3084(MOVq) MULq, MOVq

Analysis of NSS Point-Doubling

 The data gathered in Tables 24 and 25 suggested that the target CPU had spent more

time moving data than doing multiplication in PD function. The partial efficiency

formulation of Exponentiation Function can now be derived as follows (OHF = Overhead

Factor):

 NSS_EF = 524(1550(MULq) + 3084(MOVq)) + 131(PA) + OHF

120

Finding of NSS Point-Adding

 Network Security Services implemented a software function point-adding of point

P1 and P2 using weighted projective transformation as described by (Brown et al., 2001).

NSS actually executed a total of 8M+3S+2A+5Su. These measurement units have been

directly converted to the lowest measurement units MULq and MOVq using BOCHS.

Table 26. Finding of NSS Point-Adding by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
NSS_PA 1808 MULq
NSS_PA 3592 MOVq

Formulation

 Table 27 below lists the efficiency formula for NSS Point-Adding with the unit of

measurements being MULq and MOVq. The formula for NSS_PA was constructed from

the values in Table 26.

Table 27. Formulation of NSS Point-Adding
Unit Under Test Formula Unit of

Measurement
NSS_PA NSS_PA ≈ 1808(MULq) + 3592(MOVq) MULq, MOVq

Analysis of NSS Point-Adding

 Similar to the characteristic of NSS_PD metric, the data gathered in tables 26 and

27 suggested that in Point-Adding function, the target CPU did spend more time moving

data than doing multiplication. Partial efficiency metric of Exponentiation Function now

can be calculated using NSS_PA metric (OHF = Overhead Factor):

 NSS_EF = 524(PD) + 131(1808(MULq) + 3592(MOVq)) + OHF

121

Analysis of NSS Exponentiation Function, Revisited

 The results of NSS_PD and NSS_PA, as shown in tables 25 and 27, indicate that the

NSS Overhead Factor, NSS_OHF, now can be derived. Since the NSS_EF formulation

was constructed earlier as NSS_EF = 524(PD) + 131(PA) + OHF, then

 NSS_EF = 524(1550(MULq)+3084(MOVq))+131(1808(MULq)+3592(MOVq)) +

OHF

Equivalently, NSS_EF = 1,049,048(MULq) + 2,086,568(MOVq) + OHF

From the findings earlier, the absolute computing cost for doing NSS_EF was:

Table 28. Formulation of NSS Exponentiation Function by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
NSS EF 1,461,962 1,461,962 MULq
NSS EF 2,744,501 2,744,501 MOVq

If an approximate value of NSS_EF is 1,461,962(MULq) + 2,744,501(MOVq),

and given NSS_EF = 1,049,048(MULq) + 2,086,568(MOVq) + OHF, then the value of

Overhead Factor (OHF) for NSS must exactly equal to:

NSS_OHF = 412,914(MULq) + 657,933(MOVq) + OHF

The formulation for NSS Exponentiation Function (EF) now can be compiled from the

findings listed above along with the Overhead Factor, NSS_OHF.

Table 29. Formulation of NSS Exponentiation Function, Complete
Unit Under
Test

Formula Unit of
Measurement

PD NSS_PD ≈ 1550(MULq) + 3084(MOVq) MULq, MOVq
PA NSS_PA ≈ 1808(MULq) + 3592(MOVq) MULq, MOVq
OHF NSS_OHF ≈ 412,914(MULq) + 657,933(MOVq) MULq, MOVq
NSS EF NSS_EF≈524(NSS_PD)+131(NSS_PA)+NSS_OHF

(NSS_OHF = Overhead Factor)

PD, PA,
OHF

122

Finding of OpenSSL Exponentiation Function

 In a release of open-source version 1.0.1e, dated 11 Feb 2013, OpenSSL applied a

5-bit window on the scalar k in PEPMA's exponentiation service shown as a computation

loop in Figure 34 below.

Figure 34. 5-bit Windowing Exponentiation Service in OpenSSL

Real-time Samplings with PAPI, Function EF in OpenSSL

 The real-time sampling was taken from a particular desktop PC type A (see

Appendix R) with test vectors type A (see Appendix O).

Table 30. Real-time Samplings, Function EF in OpenSSL, Vectors Type A
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC

from Minimum
1 2,938,817 3,814,105 13695
2 2,935,684 3,814,104 10562
3 2,932,579 3,814,102 7457
4 2,925,122 3,814,104 0
5 2,925,122 3,814,104 0

123

Figure below illustrates the deviations from iteration 4, 5 of TOT_CYC as listed in Table

30.

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

Sampling

C
P

U
 c

yc
le

s

Figure 35. Real-time Samplings, EF in OpenSSL, Test Vector Type A

Another real-time sampling was taken from the same desktop PC with test vectors type B

(see Appendix P).

Table 31. Real-time Samplings, Function EF in OpenSSL, Vectors Type B
Iteration TOT_CYC TOT_INS Deviation of TOT_CYC

from Minimum
1 2,944,852 3,814,106 5675
2 2,942,158 3,814,106 2981
3 2,942,373 3,814,105 3196
4 2,939,177 3,814,107 0
5 2,951,294 3,814,106 12117
6 2,845,369 * 3,814,106 *

* Iteration 6 measured the TOT_CYC and TOT_INS parameters from a less activity

runtime environment. The TOT_INS value stayed the same, but the TOT_CYC value

has reduced to a smaller number. This signified a runtime dependency for TOT_CYC

parameter (see Appendix R, Figure 48 for the CPU loading condition).

124

Figure below illustrates the deviations of TOT_CYC between Table 30 and Table 31,

and deviations of TOT_INS between Table 30 and Table 31.

TOT CYC A/B TOT INS A/B TOT CYC A/B TOT INS A/B
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

TWO SAMPLING POINTS

C
P

U
 C

Y
C

LE
S

 o
r

C
P

U
 I

N
S

T
R

U
C

T
IO

N

Deviation due to Test Vector

Figure 36. Real-time samplings, EF in OpenSSL, test Vector type B

Formulation

 OpenSSL PEPMA makes 520 calls to the point-doubling and 104 calls to the point-

adding function (OpenSSL-2, 2014). Readers are referred to Appendix H for examining

the exact number of calls to PD or PA. Open_SSL Overhead part is designated as

Overhead Factor (OHF) in the formula.

Table 32. Formulation of OpenSSL Exponentiation Function
Unit Under Test Formula Unit of

Measurement
OpenSSL
Exponentiation
Function

OpenSSL_EF = 520(PD) + 104(PA) + OHF PD, PA,
OHF

125

The following three tables list the results of EF, PD, PA by BOCHS:

Table 33. Finding of OpenSSL Exponentiation Function by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
OpenSSL_EF 449,033 MULq
OpenSSL_EF 470,443 MOVq

Table 34. Finding of OpenSSL Point-Doubling by BOCHS

Unit Under Test MIN TYP MAX Unit of
Measurement

OpenSSL_PD 455 MULq
OpenSSL_PD 428 MOVq

Table 35. Finding of OpenSSL Point-Adding by BOCHS
Unit Under Test MIN TYP MAX Unit of

Measurement
OpenSSL_PA 1114 MULq
OpenSSL_PA 843 MOVq

From tables 33, 34, and 35 above, the cost formulas of OpenSSL EF and Overhead Factor

(OHF) now can be derived:

Table 36. Formulation of OpenSSL Exponentiation Function, Complete
Unit
Under
Test

Formula Unit of
Measurement

PD OpenSSL_PD ≈ 455(MULq) + 428(MOVq) MULq, MOVq
PA OpenSSL_PA ≈ 1114(MULq) + 843(MOVq) MULq, MOVq
EF OpenSSL_EF = 352,516(MULq) + 310,232(MOVq)

+ OHF
MULq, MOVq

OHF OpenSSL_OHF ≈ 96,517(MULq) + 160,211(MOVq) MULq, MOVq
OpenSSL
EF

OpenSSL_EF ≈
520(OpenSSL_PD)+104(OpenSSL_PA)
+OpenSSL_OHF

(OpenSSL_OHF = Overhead Factor)

PD, PA,
OHF

126

Analysis of NSS vs. OpenSSL Exponentiation Function

 From the data in Table 29 and Table 36, it is apparent that the length of computing

time for NSS was longer than OpenSSL in a magnitude of at least 4 to 1.

 NSS_EF ≈ 1,461,962(MULq) + 2,744,501(MOVq)

 Open_SSL_EF ≈ 449,033(MULq) + 470,443(MOVq)

This 4:1 computing ratio was not correctly shown in the theoretical work of (Brown et

al., 2001), or (Cohen et al., 1998), or any other publications found in the literature review.

Instead, if one summarizes the total arithmetic expenditures in the exponentiation

function, he would find them to be 3668M + 3668S per (Cohen et al., 1998; Brown et al.,

2001); and 2983M + 3275S per Bernstein's explicit formulation (EFD_Double, 2001;

EFD_Add, 2007). From these explicit formulations, two metrics multiplications (M) and

squarings (S) are the main coefficients of the cost equation to measure the performance of

elliptic-curve point-multiplication kP residing in projective domain. Using these metrics,

the cost ratios between NSS and OpenSSL would be far off as compared to the ones

derived from BOCHS, or PAPI, or even from commonly used clock() function. The

comparisons between explicit formulation, BOCHS, PAPI, and Clock() are summarized

in Table below. The model of computing platform was of type A (see Appendix R).

Table 37. Analysis of OpenSSL vs. NSS Exponentiation Function, Test Vector A
Evaluation Method Used for
Unit Under Test

NSS

OpenSSL

Cost Ratio
NSS:OpenSSL

Explicit Formulation Metric M 3668 2983 1.25:1
Explicit Formulation Metric S 3668 3275 1.12:1
BOCHS, MULq 1,461,962 449,033 3.25:1
BOCHS, MOVq 2,744,501 470,443 5.83:1
PAPI, Number of Instructions 26,710,515 3,814,259 7:1
PAPI, Number of Clocks 15,230,372 2,939,649 5.18:1
Clock(), absolute time in mili Seconds 5101 909 5.6:1

127

By PAPI, the number of instructions and the number of cycles are found by executing

OpenSSL PEPMA under host OS.

Figure 37. Result of 5-bit Windowing Exponentiation Service in OpenSSL

The outputs shown above are the results of computation with specific input test vectors as

follows:

k=1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BF
A9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FD
CB1

x=1D5C693F66C08ED03AD0F031F937443458F601FD098D3D0227B4BF62873AF50
740B0BB84AA157FC847BCF8DC16A8B2B8BFD8E2D0A7D39AF04B089930EF6DA
D5C1B4

y=144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818E
D037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC0
1823

128

and the modulus for modulo arithmetic is:

m=1FFF
FF
FFFFF

The unrealistic calculation from existing theoretical work has happened due to the fact

that OpenSSL did apply 58-bit on multi-digit number whilst NSS used half-digit (32-bit)

representation (See System Architecture, section 1.2.1, or Research in Numeric

Presentation and Computation, section 2.5). Table 36 showing the overhead factor in

doing EF for OpenSSL was also lower than for NSS, but it is still a significant computing

cost contributing to the overall efficiency equation.

 NSS_OHF ≈ 412,914(MULq) + 657,933(MOVq)

 OpenSSL_OHF ≈ 96,517(MULq) + 160,211(MOVq)

None of these found differences were possible without the constructed formulations and

verifications from BOCHS/PAPI. The improvement of efficiency for PEPMA can be

effectively located by examining those comparative formulations and the findings

presented throughout this section. The results show that there are effective ways to

improve PEPMA’s efficiency based on these empirical comparisons. The findings and

analyses also have shown to account for "data/memory move" metrics to candidly

evaluate PEPMA's efficiency.

129

Finding of NSS Pre-computation

 The Pre-computation is an additional cost to perform exponentiation function since

the PRE-COMP table must be computed before entering EF. The performance evaluation

must account for this cost to gain more accuracy. During the processing of exponentiation

function, one of the significant costs is to compute the sub-exponentiation function be,

where b is a number of bits w (window width) extracted from scalar k, and the exponent e

is any small positive integer (0...15 etc.) The most common method for computing the

sub-exponentiation function be is the sliding window approach, which enhances the

efficiency at the expense of pre-computation efforts. As shown in the Methodology

chapter, Figure 18 provides an idea of the sliding-window: The Network Security

Services (NSS, 2013) applied a 4-bit sliding-window on the scalar k in PEPMA's

exponentiation service. Additionally, as shown in Figure 20 and also in the Methodology

chapter, OpenSSL applied a 5-bit window on the scalar k. However, Figure 18, Figure 20

and the associated information presented in the methodology were just a preliminary

investigation which contained incomplete/undefined data. This section recorded the

findings of Exponentiation Function (EF) and provided descriptions/explanations of the

differences between preliminary investigation and findings of this function.

Table 38. Finding of NSS Pre-computation
Parameters NSS

Preliminary

NSS
in version
3.12.4

Window Width 4-bit 4-bit
Shift Direction Right-to-left Right-to-left
Pre-computation of Elliptic-curve point 16

Note 1
16
Note 2

130

Analysis of Pre-computation

NSS Pre-computation:

 Note 1: Out of sixteen Elliptic-curve points, two Elliptic-curve points do not need

the computation: Elliptic-curve point zero and Elliptic-curve point P itself. Effectively,

there were only fourteen Elliptic-curve coordinates (X, Y, Z), or 14 × 3 = 42 coordinates

(coordinates are multi-digit-numbers) to be computed since an Elliptic-curve point in the

projective domain has three coordinates (X, Y, Z).

Note 2: Same as above.

The NSS 4-bit exponentiation windowing requires a pre-computing of 15 Elliptic-curve

points (pre = before entering exponentiation loop). The 15-point pre-computation calls

point-doubling (PD) or point-adding (PA) services to calculate k(x, y) using k = 2 to 15,

and the coordinates (x, y) are the base coordinates of the cyclic subgroup of the chosen

Elliptic curve. When k = 1, the pre-comp coordinates are actually the base point itself;

thus, it requires no computation, just storing the coordinates in the table PRE-COMP.

Figure 38. 4-bit Pre-comp Indexing Method used in NSS

131

During the exponentiation computation in the loop, k slides from right to left (bottom to

top as shown) and 4 bits are extracted for indexing into the PRE-COMP table. The PRE-

COMP value p(x, y) will be used for point-adding if the index is non-zero (1...15);

otherwise, a zero-value table index will signify a "No-Add" condition. The 15-point, pre-

computing function makes service calls to 1 point doubling and 13 point-adding functions

to completely fill the 15-point recomputed table.

Table 39. NSS Pre-computation Values in PRE-COMP Table
Table
Index

x coordinate
(Affine)

y coordinate
(Affine)

Comment

0 0 0 Infinity Point in Affine
No-Add condition

1 p(x) p(y) Base point
2 2p(x) 2p(y) Doubling of (x, y)
3 3p(x) 3p(y)
4 4p(x) 4p(y) Doubling(Doubling of (x, y))
5 5p(x) 5p(y)
6 6p(x) 6p(y)
7 7p(x) 7p(y)
8 8p(x) 8p(y) Doubling(Doubling(Doubling of (x, y)))
9 9p(x) 9p(y)
10 10p(x) 10p(y)
11 11p(x) 11p(y)
12 12p(x) 12p(y)
13 13p(x) 13p(y)
14 14p(x) 14p(y)
15 15p(x) 15p(y)

Data in Table 39 uncovered that an improvement to NSS implementation can be achieved

by doing three point-doublings (at table index 2, 4 and 8) and eleven point-addings.

 Building the pre-computed table is done outside the computation loop. The point-

adding function then uses the 4-bit window taken from k to index into the table without

the need to call point-adding four times. This reduces calling the point-adding function by

4:1 (131 × 4 = 524).

132

Table 40. Finding of OpenSSL Pre-computation
Parameters OpenSSL

Preliminary
(Ver 1.0.1)

OpenSSL
in version
2.0.5

Window Width 5-bit 5-bit
Shift Direction Right-to-left Right-to-left
Pre-computation of
Elliptic-curve point

32
Note 3

16
Note 4

Note 3: The description of this value was incomplete in the preliminary investigation.

The pre-computation of Elliptic-curve points should have been sixteen. Negation of these

coordinates (X, Y, Z) makes thirty two vectors. NSS did not use this method.

Note 4: In performing the computation of exponentiation function where the negation is

relatively easy, the binary signed representation (using +1, −1, 0) is meaningful because

this method can decrease the amount of required pre-computation. The best signed

representation is Non-Adjacent-Form (NAF), where the term "non-adjacent" implies

there will not be any two bits "1" located right next to each other (0110 is not a NAF,

etc.) As a result, the required pre-computation routines are reduced in half because the

negative number is just a sign-changing (negation) of the positive number. This bit

encoding enhances the efficiency of pre-computation since the pre-comp table now has

only half of it. Even though OpenSSL used 5-bit sliding windows for computation of

Exponentiation Function, there were only sixteen pre-computed values since OpenSSL

implementation applied the binary signed representation as described above. The 14-

point pre-computing function makes service calls to 1 point doubling and 13 point-adding

functions to fill the 16-point pre-computed table. The point-adding function then uses the

5-bit window taken from k to index the table without the need to execute point-adding

five times. This reduces calling the point-adding function by 5:1 (104 × 5 = 520).

133

Finding of NSS/OpenSSL Projective to Affine Transformation

 The Projective to Affine Transformation (PAT) is the last step to be executed inside

an Exponentiation Function. The PAT procedure converts a final computation of Elliptic-

curve coordinates (X, Y, Z) in projective domain back into the Cartesian coordinates. The

results are two affine coordinates (x, y). Afterward, this conversion completes the scalar

multiplication function k(x, y) and returns the two affine values (x, y) to the caller of EF

function. The concept of PAT is shown in Figure 4, in (NSS PEPMA, 2013; OpenSSL

PEPMA, 2013; Cohen et al., 2006), and in "Concept of Point Computation in Projective

Domain" of the literature reviews chapter. Table 41 shows the real-time costs for

computing PAT in NSS/OpenSSL with vectors type A (see Appendix O).

Table 41. Real-time Samplings, Function PAT in NSS/OpenSSL, Vectors Type A
Iteration NSS PAT

TOT_CYC
OpenSSL PAT

TOT_CYC
NSS PAT
TOT_INS

OpenSSL PAT
TOT_INS

1 164,904 208,209 285,500 306,445
2 163,525 206,878 285,500 306,445
3 163,631 207,377 285,500 306,445
4 163,281 209,220 285,500 306,445
5 162,703 209,184 285,500 306,445

Analysis of NSS/OpenSSL Projective to Affine Transformation

 The difference of computational cost between two Projective to Affine

Transformations, NSS and OpenSSL was not significant. Given that both NSS and

OpenSSL must execute an inversion in PAT procedure, the results in Table 41 suggested

that the computing cycles were mostly consumed by the 521-bit inversion routine. Since

both NSS and OpenSSL PEPMA calculate the inversion of a number in spatial domain

using an extended Euclidean algorithm (Hankerson, 2004, p. 39), the results suggested

that further improvement for efficiency could not be done easily.

134

Finding of the Compliance Metric

 The Compliance Metric (CM) of NSS PEPMA or OpenSSL PEPMA measures the

compliance of computing modules to the Federal Information Processing Standard, FIPS-

140-2 (FIPS-140-2, 2001). According to the records from the Cryptographic Algorithm

Verification Program for certifying NSS/OpenSSL cryptographic modules (CAVP NSS,

2010; CAVP OpenSSL, 2012), both NSS and OpenSSL have received a variety of FIPS-

140-2, security level 1, 2 and level 3 certifications.

Table 42. Finding of NSS/OpenSSL Compliance Metric, Level 1
Level Description NSS OpenSSL
Overall Complied to
FIPS-140-2 Security
Level 1

Validation date:
12/28/2010
Software Version:
3.12.4

Validation date:
06/27/2012;07/09/2012;07/18/2012;
10/24/2012;01/22/2013;02/06/2013;
02/22/2013;02/28/2013;03/28/2013;
05/16/2013;06/14/2013;08/16/2013;
08/23/2013;11/08/2013;12/20/2013;
06/27/2014;07/03/2014
Software Version: 2.0, 2.0.1, 2.0.2,
2.0.3, 2.0.4, 2.0.5, 2.0.6, 2.0.7

PEPMA Complied
to FIPS-140-2
Security Level 1

Validation date:
12/28/2010
Software Version:
3.12.4
ECDH, ECDSA
Cert. # 1280

Validation date: 07/03/2014
Software Version: 2.0.7
Module Elliptic-curve Diffie-Hellman
Cert #1747

NSS Certification

 The NSS software cryptographic modules have been validated five times on

08/29/1997, 1999, 2002, 2007, and 12/28/2010 (certificate #1280 including ECDH

module) for conformance to FIPS-140-1 and FIPS-140-2 at security levels 1 and 2.

Additionally, NSS was the first open source cryptographic library to receive FIPS-140

validation.

135

OpenSSL Certification

 The OpenSSL version v2.0.7 has been validated on 07/03/2014, and the passing

grades were recorded in FIPS 140-2 certificate #1747 (FIPS-1747, 2014). Although the

software library version v2.0.7 is compatible with previous OpenSSL libraries (including

versions 2.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 2.0.5, and 2.0.6), it is important to note that the

FIPS 140-1 or FIPS 140-2 certificate applies only to the version that was submitted for

validation.

Formulation

 The compliance metric for either NSS or OpenSSL is a complex matter, and the

interpretation of these metrics might be subjective; thus, a quantitative verification using

BOCHS or PAPI is not applicable for this unit-under-test. To simplify the research, the

result of compliance is set to either "true" if PEPMA's technical risk assessment was low,

or set to "false" if PEPMA's technical risk assessment was high. There is no comparison

of compliance between NSS and OpenSSL. Nonetheless, the findings and formulations

listed here still form the basis of a formal performance evaluation approach. Based on

such a formal process to verify compliance, a more concrete closing conclusion about the

performance may be drawn.

 For the purpose of evaluating NIST 521-bit prime-field PEPMA, the Compliance

Metric (CM) result was quantized to "low" from three available levels: low, moderate,

and high according to the DoD source-selection procedure (Source-Selection, 2011).

 Table 43. Formulation for Compliance Metric
Unit Under Test Formula Comment
NSS CM CM=low NSS has complied with FIPS. It has little

potential to cause degradation of

136

performance
OpenSSL CM CM=low OpenSSL has complied with FIPS. It has

little potential to cause degradation of
performance

Analysis of Compliance Metric

 Since the judgment to determine the compliance is subjective, we discuss the

rationale of the judgment to accept the compliance of a product in a specific military case

study; and then apply the same evaluation method to this research. Readers should bear in

mind that the analyses presented here are only a representation, which should provide

somewhat meaningful evaluation results in a cryptographic application. With that said,

the following process used by the US Department of Defense (DoD) could describe the

compliance scenario for cryptographic module like PEPMA:

 The DoD often solicited a Request for Proposal (RFP) publicly to fulfill an

operational product requirement, after which the military procurement authorities

normally follow a formal source-selection process to analyze/judge the proposals made

by potential providers. As stated in the DoD source-selection procedures (Source-

Selection, 2011), one of the assessments in the source-selection process is the technical

risk. The term “technical,” as used throughout the source-selection document, refers to all

non-cost factors.

Table 44. Technical Risk Ratings
Rating Description
Low Has little potential to cause disruption of schedule, increased cost or

degradation of performance. Normal contractor effort and normal
Government monitoring will likely be able to overcome any difficulties.

Moderate Can potentially cause disruption of schedule, increased cost or
degradation of performance. Special contractor emphasis and close
Government monitoring will likely be able to overcome difficulties.

High Is likely to cause significant disruption of schedule, increased cost or
degradation of performance. Is unlikely to overcome any difficulties,
even with special contractor emphasis and close Government monitoring.

137

With respect to the rating of technical risk, the assessment of technical risk manifested by

the identification of weaknesses, which have the potential for disruption of schedule,

increased costs, degradation of performance, increased Government oversight, or the

likelihood of unsuccessful contract performance. Technical risk shall be rated using the

ratings listed in Table 44 (Source-Selection, 2011, p. 16).

 In a specific case study, the DoD did not have any intention to evaluate/prove the

validity of compliance submitted from the potential contractor. It is the potential offerer's

sole responsibility to obtain certification from a third-party prior to submitting the

proposal. The DoD only reviewed the “proof” of certification of technical factors and

accepted it as a "passing" condition.

 As advocated in the source-selection procedures, the technical factors may be

divided into subfactors that represent the specific areas that are significant enough to be

discriminators and to have an impact on the source-selection decision. When subfactors

are used, the evaluator should establish the minimum number necessary for the

evaluation of proposals. The following technical subfactos are believed to be applicable

to the performance evaluation of PEPMA:

 The Federal Information Processing Standards FIPS-140, entitled “Security

Requirements for Cryptographic Modules,” described the government requirements for

sensitive but unclassified products in terms of security and information assurance. The

FIPS standards are published by the National Institute of Standards and Technology

(NIST) and have been adopted by the Canadian government’s Communications Security

Establishment (CSE, 2014). The security requirements for cryptographic modules also

have been adopted in the financial community through the American National Standards

138

Institute (ANSI, 2001; ANSI, 2005). Since NSS and OpenSSL PEPMA cryptographic

modules have adhered to some reasonable security requirements (i.e., implementing

FIPS-approved algorithms), they are better suited for more accurate analysis than

general-purpose computing systems. As such, PEPMA cryptographic with FIPS-140

ratings could provide a valuable measurement of the security controls and system

information assurance in place for a given cryptographic module.

 From 1994 to 2014, NIST has released three versions of FIPS-140 publications. The

first version, (FIPS-140-1, 1994), was issued on 11 January 1994. This version was

developed by the US government and a commercial working group and subsequently

approved by the Secretary of Commerce. For security level 1, the FIPS 140-1

specification identified seven inspection areas as listed in Table 45 below.

Table 45. Compliance Metric, Seven Inspection Areas, Security Level 1
Area Unit Under Test Comment
1 Crypto Module Product specification
2 Module Interface Information flow
3 Roles & Services Definition of module’s roles and services
4 Finite-State Model How module transitions occur
5 Software Security Specification of the software design
6 Key Management FIPS approved generation/distribution techniques
7 Cryptographic

Algorithms
FIPS approved cryptographic algorithms for protecting
unclassified information

NIST operates both the Cryptographic Algorithm Validation Program (CAVP, 2013) and

the Cryptographic Module Validation Program (CMVP) where CAVP is a prerequisite to

CVMP. This way, NIST ensures that cryptographic modules have been implemented

correctly prior to validating their security properties. Together, these programs provide an

organization with a framework to orderly certify cryptographic products against the

FIPS-140 standards. Under such guidance for certification, NSS or OpenSSL applicants

139

have already followed at least four product requirements: (a) design a product that is

compliant with the selected FIPS-140 standard, (b) prepare the documentation required

for certification, (c) submit the product and documentation to an accredited testing

laboratory (CAVP LABS, 2014), and (d) submit test results from the laboratory to NIST

(or the Canadian government’s Communications Security Establishment) for

governmental approval of usage, and to receive a certification number.

 In 2014, all tests under the Cryptographic Algorithm Verification Program (CAVP,

2013) are currently handled by 21 third-party laboratories that are accredited as

cryptographic module testing laboratories (CAVP LABS, 2014) and by the National

Voluntary Laboratory Accreditation Program. However, it is imperative to recognize that

the testing laboratory could derive some of the test results from the seven inspection areas

(listed in Table 45) using empirical experiments in which the results might never be fully

proven. Such results can only support a passing hypothesis or can invalidate the entire

validation process. Thus, while evaluating the compliance for cryptographic NSS or

OpenSSL PEPMA, one could either support the passing score or reject the compliance

based on seven inspection areas as shown in Table 45.

 The second version, (FIPS-140-2, 2001), was issued on 25 May 2001. This version

took into account changes in computing technologies and suggestions received from the

communities since its first release in 1994. FIPS 140-2 defines four levels of security for

cryptographic modules: security levels 1 through 4 as shown in Table 46.

140

Table 46. Compliance Metric, Security Level
Security Level Summary of Qualification
FIPS-140-2 Level 1
Lowest security

At least one approved algorithm or approved security function
used. No specific tampering detection or intrusion prevention
mechanisms employed

FIPS-140-2 Level 2 Level 1 + Module must show evidence of tampering or
intrusion

FIPS-140-2 Level 3 Level 2 + Module must prevent intruder from gaining access
FIPS-140-2 Level 4,
highest security

Level 3 + Provide reliable level of intrusion detection and
prevention system

Several security requirements pertaining to each security level have been incorporated

into Version 2. This addition was the direct result of the feedbacks from the communities.

The rationale for having different levels of security follows: The total number of

cryptographic service modules is usually large. This is certainly true in the case of NSS

or OpenSSL which has been around the industry for decades (NSS, 2013; OpenSSL,

2013). The security aspects of these modules are complex and costly for verification and

validation. Thus, not all modules can be certified at once. Instead, only special FIPS

object modules have been derived from un-certified core components and brought in for

certification at the third-party laboratories such as (CAVP LABS, 2014). These FIPS

object modules were carefully designed with specific compilation instructions so that the

certification can be transferred with minimal effort to the products applying

NSS/OpenSSL cryptographic service modules.

 As shown in Table 42, both NSS and OpenSSL have gone through several certifying

iterations and have been working well in the fields. The evidence of having inspections in

seven or more areas covering Elliptic-curve Diffie-Hellman and Elliptic-curve Digital

Signature Algorithm indicated that both NSS or OpenSSL PEPMA implementations are

believed to be adequately stable; and that the codes can be applied to Elliptic-curve

public key exchange cryptography to ensure authenticity in the public key infrastructure.

141

 The third version, FIPS 140-3, is currently under development this year. In the first

draft, NIST introduced one additional security level: information assurance (level 5) and

two new power analyses to measure the signal leakages (Simple Power Analysis and

Differential Power Analysis). We discuss these new security aspects with respect to the

performance of PEPMA as follows:

One way to add dimension to the performance evaluation is to leverage the measurements

of outliers, that is, coding practices which produced signal patterns, or use of data outside

of the norm. According to Herrmann (2007) and Fenton (1996), the compliance to

federal standards could detect and correct outliers and thus contribute to the overall

performance of NSS/OpenSSL PEMA. Per Keyes (2005), further analysis of CM showed

that any service modules that have adequately complied tend to have lower complexity

and will eventually lead to better performance in the field. Thus, it is imperative to accept

that these new security aspects in FIPS-140-3 might contribute to PEPMA’s overall

performance if one chooses to emphasize the importance of information assurance level

5. In this evaluation, we did not emphasize the importance of information assurance

toward the combined key performance indicator for both NSS and OpenSSL; thus, for the

design of cryptographic modules, the technical risk level is still believed to be low for all

intended purposes of the performance evaluation of PEPMA.

142

Finding of Cyclomatic Complexity Metric

 The Cyclomatic Complexity measures the structural complexity of NSS or

OpenSSL PEPMA’s software modules. The terminology "Static Complexity Metric" was

used in the older literature (IEEE 982.1, 1988, p. 23; IEEE 982.2, 1988, p. 60); however,

the term "Cyclomatic Complexity" is more commonly used today. Readers are referred to

NIST Special Publication 500-235 (Watson & McCabe, 1996) for a more detailed

discussion of Cyclomatic Complexity Metric.

 This section is the follow-up from the previous methodology chapter, which already

constructed the Static Complexity Metric (SCM) in terms of the number of edges, E;

number of nodes, N; and a constant 1:

SCM = E – N + 1

Before proceeding to evaluate the Cyclomatic Complexity Metric (CCM) with respect to

PEPMA, it will be necessary to adjust the constant 1, which assumed the number of exit

path to be a loop-back to itself. If the number of exit path, P, is other than a loop-back,

then the SCM formula becomes:

 CCM = E – N + 2P

The following tables present the findings for NSS Cyclomatic Complexity Metric of

Point-Doubling (PD), and Point-Adding (PA). Both PD and PA were called by two

functions: Exponentiation Function and Pre-computation.

Table 47. Findings of NSS Cyclomatic Complexity Metric of PD
Coefficients of
NSS Cyclomatic Complexity
of Point-Doubling Function

MIN TPY MAX Unit of
Measurement

E = number of edges 123 Scalar
N = number of nodes 82 Scalar
P = number of exit paths 1 Scalar
CCM_NSS_PD 43 Scalar

143

Table 48. Findings of NSS Cyclomatic Complexity Metric of PA
Coefficients of
NSS Cyclomatic Complexity
of Point-Doubling Function

MIN TPY MAX Unit of
Measurement

E = number of edges 90 Scalar
N = number of nodes 60 Scalar
P = number of exit paths 1 Scalar
CCM_NSS_PA 32 Scalar

Formulation

 The formulations of CCM were derived from the coefficients of Cyclomatic

Complexity:

Table 49. NSS CCM Formulations
Sub-Module Formula Unit of

Measurement
NSS PD CCM = 123 - 82 + 2 E, N, P
NSS PA CCM = 90 - 60 + 2 E, N, P

The following tables present the findings for OpenSSL Cyclomatic Complexity Metric of

Point-Doubling (PD), and Point-Adding (PD). Both PD and PA were called by two

functions: Exponentiation Function and Pre-computation.

Table 50. Findings of OpenSSL Cyclomatic Complexity Metric of PD
Coefficients of
NSS Cyclomatic Complexity
of Point-Adding Function

MIN TPY MAX Unit of
Measurement

E = number of edges 34 Scalar
N = number of nodes 34 Scalar
P = number of exit paths 1 Scalar
CCM_OpenSSL_PD 2 Scalar

Table 51. Findings of OpenSSL Cyclomatic Complexity Metric of PA
Coefficients of
Cyclomatic Complexity

MIN TPY MAX Unit of
Measurement

E = number of edges 73 Scalar
N = number of nodes 71 Scalar
P = number of exit paths 1 Scalar
CCM_OpenSSL_PA 3 Scalar

144

Formulation

 The formulations of CCM were derived from the coefficients of Cyclomatic

Complexity:

Table 52. NSS CCM Formulations
Sub-Module Formula Unit of

Measurement
OpenSSL PD CCM = 34 - 34 + 2 E, N, P
OpenSSL PA CCM = 73 - 71 + 2 E, N, P

Analysis of Cyclomatic Complexity Metric

 The cyclomatic complexity of PEPMA source code is the counting of linearly

independent paths through the service module (Watson & McCabe, 1996). A simple case

example is when CCM=2. If the PEPMA source code does not have any decision

branching such as an "if" statement, then the Cyclomatic Complexity Metric CCM equals

to 2, since there exists only one edge (E=1), one node (N=1), and one exit path (P=1)

throughout the module. However, if the PEPMA service module has an "if" statement,

there will be three edges through the code: one edge where the "if" statement is evaluated

as a "true" and two edges where the "if" statement is evaluated as a "false." In this case,

E=3, and N equals to 2. Thus CCM = 3. Simply, the Cyclomatic Complexity Metric = (

ifs + loops + cases − return + 2)

 Prior studies of cyclomatic complexity have shown a correlation between a

program's structural complexity and its testability. The scalar level of cyclomatic

complexity suggests that a software module of higher complexity tends to produce higher

probability of errors when fixing or enhancing the source code. Thus a high level of CCM

denotes a service module that exhibits lower reliability, a difficulty to test, more costs to

145

certify, and a difficulty to maintain. Hence, a higher level of CCM can be thought of in

terms of lower performance, and vice versa. The Software Engineering Institute (SEI,

1997, p. 147) established the thresholds of CCM as follows:

Table 53. CCM Level
CCM Level Complexity Risk
1-10 Simple Module Not much risk
11-20 Moderate Complex Module Moderate risk
21-50 Complex Module High risk
51-above Very complex, untestable Very high risk

The comparison of coding complexity between NSS and OpenSS were made using

Cyclomatic Complexity Metrics with the thresholds of CCM as shown above.

Table 54. Comparison between NSS and OpenSSL CCM
Sub-Module CCM_NSS CCM_OpenSSL Comment
PD 43 2 NSS PD Module has higher risk
PA 32 3 NSS PA Module has higher risk
PD+PA 75 5 Used for calculating cKPI

146

Findings of Weighted Information Flow Complexity

 The Weighted Information Flow Complexity (WIFC) measures inter-module

structural complexity. The detailed characteristics of WIFC can be found in (Herrmann,

2007, p. 121; IEEE 982.2, 1988, p. 74).

lengthfanoutfanin 2)(WIFC

where:

fanin = Number of sinking capability into the module (module loading)

fanout = Number of sourcing capability from the module (module supplying)

length = Number of source statements in the module

The following tables present the findings for NSS/OpenSSL Weighted Information Flow

Complexity of Point-Doubling, PD, and Point-Adding module, PA. The values of fanin

and fanout were derived from NSS/OpenSSL Exponentiation Function and pre-

computation as the callers to PD or PA.

Table 55. Findings of NSS Information Flow Complexity of PD
Coefficients of
Information Flow Complexity

MIN TYP MAX Unit of
Measurement

fanin 2 2 2 Scalar
fanout 12 12 Scalar
length 58 Scalar
NSS_WIFC_PD 33408 Scalar

Table 56. Findings of NSS Information Flow Complexity of PA
Coefficients of
Information Flow Complexity

MIN TYP MAX Unit of
Measurement

fanin 2 2 2 Scalar
fanout 11 11 Scalar
length 45 Scalar
NSS_WIFC_PA 21780 Scalar

147

Table 57. Findings of OpenSSL Weighted Information Flow Complexity of PD
Coefficients of
Weighted Information Flow
Complexity

MIN TYP MAX Unit of
Measurement

fanin 2 2 2 Scalar
fanout 14 14 Scalar
length 33 Scalar
OpenSSL_WIFC_PD 8448 Scalar

Table 58. Findings of OpenSSL Weighted Information Flow Complexity of PA
Coefficients of
Weighted Information Flow
Complexity

MIN TYP MAX Unit of
Measurement

fanin 2 2 2 Scalar
fanout 14 14 Scalar
length 68 Scalar
OpenSSL_WIFC_PA 17408 Scalar

Analysis of Weighted Information Flow Complexity (WIFC)

 The high level of information flow complexity indicates a possibility for broader

testing or major redesign. Additionally, the usage of WIFC might offer the following

advantages: (a) controlling the service modules with improved efficiency, (b) enabling

improvement in terms of complexity and flow content, and (c) more accuracy in

performance comparison. In short, the WIFC is another important performance factor of

PEPMA, which contributes to the overall performance evaluation.

 The fanin coefficient of WIFC is the number of other modules calling to the unit-

under-test; thus, fanin indicates the sinking capability. The fanout is the number of other

modules being called by this unit-under-test; hence, it is the sourcing capability of the

unit-under-test.

148

The high level of fanin indicates a better design structure of the module. A higher fanin

level also reveals that the unit-under-test has been called heavily. The fanin parameter

also shows the re-usability, and thus, it can help the code implementer to reduce

redundancy during coding.

 The fanout coefficient indicates the coupling between this unit-under-test and other

modules in the system. A high level of fanout means a highly coupled module. A high

level of fanout also indicates that the unit-under-test depends highly on the other module;

thus, a high level of fanout indicates a poor design structure. A high level of fanout also

increases the cost to maintain. Any code changes in the module will require modifications

to the other modules and thus directly contribute to the increased level of maintenance.

 Since the number of source-code statements can vary widely, the module can be

very simple or very complex. This suggests that the metric WIFC is to be weighted with

coefficient length. Readers are referred to the literature from (Herrmann, 2007, p. 121;

IEEE 982.2, 1988, p. 74) for more descriptions of this parameter. A comparison between

NSS and OpenSSL CCM is shown below.

 Table 59. Comparison between NSS and OpenSSL WIFC
Sub-Module WIFC_NSS WIFC_OpenSSL Comment
PD 33408 8448 NSS PD Module has higher

information flow complexity
PA 21780 17408 NSS PA Module has higher

information flow complexity
PD+PA 55188 25856 Use in cPKI

149

Finding of Module Maturity Index

 The Module Maturity Index (MMI) measures the effect of changes from one

software module baseline to the next. The findings of MMI were derived with two

different software versions based upon a general discussion in (Herrmann, 2007, p. 121),

as originated in standards (IEEE 982.1, 1988, p. 19; IEEE 982.2, 1988, p. 51), or as

described in other standards (IEEE 982.1, 2005, p. 26).

M

D)C(AM
MMI

M = Number of modules in the baseline

A = Number of added modules from baseline

C = Number of changed modules from baseline

D = Number of deleted modules from baseline

Table 60. Module Maturity Index, NSS
MMI Coefficient NSS Version 3.12.4 NSS Version 3.16.1
M 1758 1785
A 0 27
C 0 0
D 0 0
NSS_MMI 1 0.98

Table 61. Module Maturity Index, OpenSSL
MMI Coefficient OpenSSL Version

FIPS 1.2.3
OpenSSL Version

FIPS 2.0.5
M 980 1044
A 0 64
C 0 197
D 0 389
OpenSSL_MMI 1 0.3

150

Analysis of Module Maturity Index

 In order to derive the Module Maturity Index, MMI, a side-by-side file comparison

was set out to work on files with extension *.c and *.h. With these specific settings for

file filtering, WinMerge – a “file-diff” program – computed six coefficients A, C, D for

NSS and OpenSSL as shown in tables 60 and 61. From these coefficients, the Module

Maturity Index for NSS was found to be 0.9, and the MMI for OpenSSL was 0.3.

Apparently, NSS implementation was more mature than OpenSSL implementation.

Finding of Functionality Metric

 The Functionality Metric (FM) measures the interoperability between available

point-doubling and point-adding functions. There were several alternate arithmetic

approaches currently available to construct Point-Doubling (PD) and Point-Adding (PA)

functions in a projective domain. However, the mathematical results of NSS or OpenSSL

PEPMA are still the same in applying these alternate PA and PD functions. The literature

(IEEE 982.2, 1988, pp. 70-71) provided a general discussion of this metric.

Table 62. Functional Metric
Module Description Interoperable with
Point Doubling type 1
(Cohen et al., 1998)

Used in NSS Point-Doubling
function

OpenSSL PD

Point Doubling type 2
(Brown et al., 2001)

Used in OpenSSL Point-
Doubling function

NSS PD

Point Adding type 1
(Brown et al., 2001)

Used in NSS Point-Adding
function

OpenSSL PA

Point Adding type 2
(Brown et al., 2001)

Used in OpenSSL Point-
Adding function

NSS PA

Analysis of Functional Metric

 The Functional Metric indicates that Point-Doubling or Point-Adding functions ─ as

suggested in (Cohen et al., 1998) or in (Brown et al., 2001) ─ are mathematically

interchangeable between NSS and OpenSSL. Although there was limited evidence

151

showing the benefit of exchanging modules in terms of efficiency, it is interesting to note

that in some applications, exchanging modules to gain federal compliance might be

beneficial.

Summary of Key Performance Indicators

 For the metric EMF, equation TOT_INS should include all CPU instructions. For

instance, one additional coefficient RET in the equation TOT_INS will make the result of

EMF accurate. This case study is described in Appendix U, and in Appendix V for a

simple 64 bit multiplication:

 TOT_INS = MULq + MOVq + RET

For comparison, one should convert TOT_INS to the total number of CPU cycles.

However, there is always a “cost of quality” associated with measuring instrumentation

and modular improvements. Intensive analysis labor for adding more coefficients into the

BOCHS equations will be required to construct EMF accurately. Consequently, the

TOT_CYC values approximated by PAPI were applied: 15,230,372 for NSS EF and

2,939,649 for openSSL EF. Lower PAPI value indicates a better performance. For

computing the combined key performance indicator, the perform ratio between OpenSSL

and NSS is 518/100. Higher value indicates a better performance.

 As shown in Table 42, both NSS and OpenSSL have gone through several certifying

iterations and have been working well in the fields; thus, the CM performance scores for

NSS and OpenSSL are even. For computing the combined key performance indicator, the

CM scores are normalized to 100.

 Table 54 shows the results of code walk-through and inspection of CCM: 75 for

NSS and 5 for OpenSSL. Lower values indicate a better performance. For computing the

152

combined key performance indicator, the perform ratio between OpenSSL and NSS is

1500/100. Higher value indicates a better performance.

 Table 59 shows the results of code walk-through and inspection of WIFC: 55,188

for NSS and 25,856 for OpenSSL. Lower value indicates a better performance. For

computing the combined key performance indicator, the perform ratio between OpenSSL

and NSS is 213/100. Higher value indicates a better performance.

 Table 60 and 61 show the MMI values as the results of a side-by-side file

comparison on the source codes. The final scores are 0.98 for NSS and 0.3 for OpenSSL.

For computing the combined key performance indicator, the perform ratio between

OpenSSL and NSS is 33/100. Higher value indicates a better performance.

 Table 62 shows the results of code walk-through and inspection of FM: the

performance scores for NSS and OpenSSL are even. For computing the combined key

performance indicator, the FM scores are normalized to 100.

Finding of Combined Key Performance Indicator

 The combined Key Performance Indicator (cKPI) is the final single scalar-value to

provide the overall performance of PEPMA. It has been shown in Herrmann (2007, pp.

123-124) that in order to derive the cKPI, the evaluator should determine the importance

level of each individual performance indicator. Subsequently, the weighted factors can be

derived from these importance levels. The lack of a proper approach to determine the

importance level might be a handicap for a practical application; however, in this study,

an observation that emerged from the findings of importance levels, and weighted factors

was that EMF usually carries the most weight; but there might be some application where

the Certification Metric may become a greater governing factor for the performance of

153

PEPMA; thus, the determination of importance levels and weighted factors has been left

off from this study and should be determined on a case-by-case application. With that

said, the weighed factors listed in Table 63 on the fifth column were the author’s own

opinions while working with Certificate and Authority in 2013.

Table 63. Final cKPI of NSS/OpenSSL PEPMA
Key
Performance
Indicator

Max
Value

NSS
Score

(Reference)

OpenSSL
Score

Weight
%

Subtotal
(OpenSSL)

EMF 100 100*15,230,372/
2,939,649

60 311

CM 100 100 100 15 15
CCM 100 1500 (normalized) 10 150
WIFC 100 213 (normalized) 7 15.1
MMI 100 33 5 1.65
FM 100 100 100 3 3
cKPI 100 100 496

A higher cKPI value signifies a better performance as compared to NSS. Overall,

OpenSSL's performance is 5 times better than NSS's performance. The method for

calculating a final value of cPKI = 496 was briefly described in methodology section.

Detailed industry practice and recommendations for calculating a value of cKPI can be

found at these cited sources (Herrmann, 2007; Hennessy, 2006).

154

Chapter Summary

 This chapter reports the findings from six units of analyses, associated formulations,

and analysis of the findings to show evidence that the performance of PEPMA might be

unknown based on existing theoretical work. More key performance indicators to

evaluate PEPMA’s efficiency are also presented in the findings, rather than just the three

metrics (M, S and I) suggested by the existing theoretical work. The findings from two

studying cases suggested that the efficiency metrics and formal verification method along

with other key performance indicators (CM, WIFC, CCM, MMI, FM) can be used to

accurately evaluate the performance of Projective Elliptic-curve Point Multiplication in

64-bit x86 Runtime Environment.

 What has emerged in the findings and analysis of the key performance indicators is

the overall performance of PEPMA, which measured by the combined key performance

indicator, should be a function based on role-sharing rather than a single dedicated

performance indicator. The role-sharing relates to the importance of each role, and it

must be carefully determined on a case-by-case basis. Finally, based on the empirical

comparison of sub-modules and low-level services, clearly that a formal performance

evaluation approach will provide a useful tool to enable the code implementers to

improve PEPMA’s efficiency.

155

Chapter 5

Conclusion, Implications, Recommendations, and Summary

 This chapter is organized into five sections. The beginning section titled "Objective

and Goal" reiterates several main evaluation methodologies and summarizes the purpose

of this study. The concept of reductionism, which is finding the most fundamental

metrics and formulations and reducing them to one final result, is central to this research.

In the section titled “Conclusion,” we present our thoughts regarding reductionism. The

“Implications” section recapitulates the findings and the results from chapter 4. On

logical grounds, there is no compelling reason to disagree with the generality of this

research. Section 3 implies that this research on PEPMA can be realistically expanded

beyond its original goal and scope. Section 4 “Practical Applications” provides ways to

apply this study to industry applications; and the section titled “Recommendation”

provides a recommendation of changes to improve PEPMA’s performance evaluation.

Lastly, a "Future Work" clause briefly lists out future tasks that could enhance the

performance evaluation.

Objective and Goal Review

 It is becoming increasingly difficult to ignore the fact that network penetration by

malicious software is getting more sophisticated every day. According to US-CERT,

more than one hundred thousand damaging intrusion attacks to the U.S. military network

have occurred every year. This highlights the need for the next-generation public-key

exchange design to encompass high withstanding capability. This requirement poses a

major challenge to software professionals who will need to search for an innovative

156

approach to derive longer private keys with the best performance possible. For this

reason, the main topic of this study was to focus on a specific performance comparison of

projective Elliptic-curve point-multiplication in a 64-bit x86 runtime environment ─ an

effort to compare quantitative key performance indicators between two FIPS-certified

Projective Elliptic-curve Point-Multiplication Agents for the purpose of improving

PEPMA itself.

 To realize such empirical comparisons, the research focused on uncovering whether

the performance of PEPMA might be unknown based on existing theoretical work and

revealing what metrics should be used to truthfully evaluate efficiency through the use of

virtual machine and performance hardware counters. After these questions have been

satisfactorily answered, the evaluator eventually will attempt to seek ways to improve

PEPMA’s final performance based on such empirical comparisons.

 In order to fulfill these objectives, we constructed a specific performance

measurement system that targeted two FIPS-certified PEPMA open-sources: NSS and

OpenSSL. We used various means to extract the findings. They were found through the

review of existing industrial documentation and the active contents of cryptographic

certificates. They were also found by examining NSS/OpenSSL open-source codes, and

by discovered the efficiency through executable-binaries that run under both host and

guest Operating Systems. We were able to complete all objectives of this study

successfully. The ultimate goal of this research was to develop and suggest a repeatable

and deterministic evaluation approach of the performance of PEPMA.

 As previously stated in the product requirements, the evaluation approach shall

provide a detailed framework to construct a better evaluation method with deterministic

157

verification systems. Thus, the final contribution to the field of cryptography is a formal

and practical evaluation method that can guide the evaluator through the performance

improvement of PEPMA.

Conclusion

 This study provided the following answers to the three research questions posted in

Chapter 1.

Research Question 1: Is the performance of PEPMA unknown based on existing

theoretical work?

 Case evidence for this question showed that the performance of PEPMA is unknown

based on existing theoretical work. In order to accurately describe the performance of

PEPMA, the evaluator should include at least six Key Performance Indicators and

combine them into a final value cKPI as listed in Table 63.

 The quantity Efficiency Metric and Formulation was derived from the software

reviews combined with the usage of a special virtualization technology and hardware

performance counters. The computational efficiency comparison leveraged around these

two technologies.

 The judgment of Compliance Metric is subjective; thus, the research provided a

discussion for ruling the compliance with respect to the DoD source-selection guide. The

remaining key performance indicators (CCM, WIFC, MMI and FM) are quantitative

metrics. They were derived from the manual software reviews. The manual software

reviews in this study adhered to the code walk-through and software inspection formal

process as recommended in IEEE standards.

158

Research Question 2: What metrics should be used to truthfully evaluate PEPMA's

efficiency?

 NSS/OpenSSL case evidence and data validations from BOCHS and PAPI showed

that the metric to truthfully evaluate PEPMA's efficiency is the cost equations provided

by the CPU instruction software counters. The CPU instruction software counters are

realized with machine virtualization technology, BOCHS.

 The instruments BOCHS which provided machine virtualization can accurately

measure the total number of CPU instructions and CPU cycles. It can also indicate what

types of CPU instruction that PEPMA uses. In short, machine virtualization allowed

accurate counting each CPU instruction; and at the same time, provided an indication of

what CPU instructions are being used. By analyzing these parameters in the cost

equations, the evaluator will be able to determine ways to improve PEPMA’s efficiency

and targeting precisely which software module can be improved, even without library

source code. It is also feasible to derive an accurate cost equation by expanding the

BOCHS software counters to cover all CPU instructions.

 There is always a “cost of quality” associated with measuring instrumentation and

improvements. Intensive analysis labor for adding more coefficients into the BOCHS

equations will be required to construct this metric.

 The second most accurate metric is the PAPI hardware CPU instruction counter.

This quantity can be measured quickly and effortlessly but it cannot be used for modular

improvement. The third accurate metric is the PAPI hardware CPU cycle counter. This

quantity can also be measured quickly and effortlessly but it, too, cannot be used for

159

modular improvement. All PAPI type measurements are less accurate than BOCH

instrumentation; however they do complement the construction of cost equations.

Research Question 3: Are there ways to improve PEPMA’s efficiency based on the

empirical comparison?

 Documentation search and/or certificates were used to determine some possible

areas of improvement with respect to PEPMA’s overall performance. However, the

primary method of searching for ways to improve efficiency was through the examination

of NSS/OpenSSL source codes. Subsequently, the cost formulas for the empirical

comparison and data validation were constructed. Furthermore, PEPMA’s efficiency can

also be improved by running the executable binaries under both host and guest Operating

Systems (Virtual Machine using BOCHS) then comparing the results to the program

outputs.

In general, the reductionism method is a powerful approach for studying and improving

complex mathematical systems ─ systems such as PEPMA. This is an approach to

comprehend each level of complexity in terms of the next lower level; and perhaps, this is

the traditional philosophy of reductionism simply stated: "Let us find the most

fundamental parts and laws." Gell-Mann (1996) and Morowitz (2002) further see the

complex system that always possesses multiple complexities; and such complexities

always reside scattering in an extended space of dimensionalities.

 While the introduction, literature review, and methodology sections already

provided some evidence to describe those complexities, the findings from six units of

analyses in the results chapter have uncovered those extended spaces of dimensionalities.

The exploration of findings has shown concrete facts that the performance of PEPMA

160

was incomplete based on existing theoretical work, which operates and resides only in a

one-dimensional metric. Additionally, together with the findings, the constructed

formulas and multiple data analyses have confirmed which metrics could be used to

truthfully evaluate PEPMA's efficiency.

 Furthermore, the findings and the results based on six units of analyses suggested a

comprehensive setup for a formal evaluation method with several Key Performance

Indicators instead of a single indicator as suggested through existing theoretical work. A

combined Key Performance Indicator, cPKI, then can be derived from these individual

Key Performance Indicators; the final single numerical score registered in the combined

Key Performance Indicator will show how well a PEPMA performs relative to other

PEPMA(s).

Implications

 Although the ultimate goal of this research singularly focused on an evaluation

approach of the performance of PEPMA, this research can be realistically expanded

beyond its original goal and scope.

Practical Applications

 One possible application in the cryptographic field is the code implementation of

Elliptic-curve Diffie-Hellman (ECDH) public-key-exchange protocol running on limited

computing-power platforms. These platforms may include tablet PCs, wrist-worn

computers, or futuristic micro-size computing gadgets. Because of limited computing-

power, these tablet PCs or wrist-worn computers must rely on highly efficient public-key

exchange, PEPMA in particular, to accomplish its public-key exchange function in a very

short duration; at the same time, the computing platforms must also meet or exceed other

161

performance indicators such as Cyclomatic Complexity. The results of this research

support the idea that to effectively improve PEPMA, the evaluator should have a way to

accurately measure it first. Along with a concept of point-computation in a projective

domain, a deep understanding of how PEPMA was implemented and processed is the key

to realize a high-performance Elliptic-curve Diffie-Hellman protocol.

 Another possible application of this research relates to Intrusion Detection Systems

(IDS). As the name implies, IDS is a device that is specifically designed to detect and

prevent malicious intrusion to a system. However, before it can effectively perform that

defensive task, the internal structure of IDS must provide accurate and reliable intrinsic

services. The performance evaluation and measuring instruments of PEPMA may be used

to improve IDS design. Furthermore, the performance evaluation of PEPMA can be

mapped directly to the performance evaluation of IDS with minimum re-engineering

efforts since most methodologies and verification tools have already been built.

 The third benefit as the result of improving efficiency of PEPMA can be directed at

the cryptographic hardware units. For instance, most Internet data traffic coming in and

out of a military base must go through several layers of data filtering. These session-

based digital filtering functions are being executed inside a piece of high-speed hardware

known as "the Guard" which is capable of accomplishing traffic filtering at a data rate of

ten or more Giga-bit per second (multiple Giga bytes per second filtering capability in

real-time). To realize this lightning task, the Guard must transform all data into a

projective domain, process data filtration in this domain, and convert them back into

time-domain – all done in real-time on custom-made hardware fabrics (or using Field

Programmable Gate Array, FPGA). The efficiency evaluation of PEPMA may be useful

162

during design and/or evaluation of the Guard and thus might result in better hardware

design and firmware/micro code engineering.

Recommendations

Applying Formal Evaluation Approach:

 What has emerged from the result of this study was the overall performance of

PEPMA measured by a combined key performance indicator. This indicator suggested

that the performance measurement should be a function based on role-sharing rather than

a single dedicated performance indicator. This research sought to remedy the use of an

insufficient one-dimensional performance indicator as suggested in theoretical work. The

objective was done by reviewing other methods used in industry during a time period

spanning two decades. Because of this insufficient performance merriment, one of the

recommendations is to instigate a change to the way performance evaluation has been

performed. The rationale behind giving out this suggestion is to remedy a problem: It is

necessary but insufficient to evaluate the performance of Elliptic-curve scalar point-

multiplication in projective geometry using the total number of single-digit non-modular

multiplication metric, or single-digit non-modular squaring metric, or under an

unspecified computing architecture.

 Another recommendation relates to the use of advanced measurement

instrumentation: A virtual machine can be used to precisely and accurately measure the

performance metrics. As a matter of fact, commercial industry and government entity are

utilizing virtual machines today to suppress adversaries on the world-wide network by

accurately measuring suspicious activities occurring real-time on a piece of malware.

Bottom-line, using a virtual machine to acquire metrics instead of relying on the primitive

163

clock() measurement method will offer consistent and accurate results on the

performance comparison of a projective Elliptic-curve point-multiplication in a 64-bit

x86 runtime environment.

Efficiency Improvement:

 A particular feature was noted at NSS exponentiation procedure where a number of

projective point-adding can be reduced by increasing the width of the sliding-window

from 4 to 5. Even though the exponentiation procedure uses a 5-bit sliding-window for

the computation, there will be only sixteen pre-computed values needed since the

implementation could apply the binary signed representation as described previously.

This reduces calling the point-adding function by 5:1 instead of 4:1 as currently

implemented in NSS.

 During the findings, another property was spotted in NSS half-digit 32-bit numeric

representation that can be adjusted for improving efficiency. The conversion of existing

codes from a half-digit 32-bit representation to a 65-bit numeric representation (64-bit

with hardware carry bit) is possible in a 64-bit x86 system. Such successful conversion

can significantly change the computing efficiency of PEPMA. This improvement can also

be applied to OpenSSL PEPMA since its 58-bit numeric representation was not at the

optimum level.

164

Future Work

 Performance evaluation of PEPMA is a complex interdisciplinary research and thus,

works involved with such multiple complexities will never be complete. One of the

dimensions within interdisciplinary research is the uncertainties associated with their

complexities. Before dealing more with such multidisciplinary exploration, it is necessary

to acknowledge any missing or weaknesses of the findings in this study. Among the

desirable findings listed in the result chapter, three essential findings as shown below in

Table 64 have yet been fully realized. Those open deficiencies should be remedied to

provide better accuracy in the evaluation. Realizing these additional measuring

instruments suggests a variety of research to improve the combined key performance

indicator; and the plan is to continue tackling these problems with future works and/or in

the extension of this study making the performance evaluation more accurate.

Table 64. Future Work
Future Work
(Why)

Area of Enhancing Rationale of
Deficiency

Evaluating Low-level
Arithmetic and Arithmetic
Optimization
(To enhance efficiency
measurement)

Including the findings and
data analyses on six low-
level mathematic routines as
shown in Figure 30, block .

We could not provide
such findings and
data analyses due to
limited scope of this
paper

Enhancing Synchronization
Agent
(Improving accuracy for
efficiency measurement)

Figure 21, BOCHS Hardware
Emulation and
Synchronization Agent

Virtual machine real-
time response was
slow

Evaluating Compliance
Metric on every service
module
(To enhance compliance)

Compliance Subjective and
complex

165

Appendix A. Counting CPU Instructions

 The cost indexes of s_mpv_mul_d_add () NSS PEPMA executable code:

Table 65. Cost Index of s_mpv_mul_d_add()

movq
Count

movq
Latency

movq Cost Index imulq
Count

imulq
Latency

imulq
Cost Index

29 6 174 4 10 40

Cost for functional computation is higher when cost index is higher.

The s_mpv_mul_d_add () NSS PEPMA 64-bit executable code compiled under GCC 4.7:

Table 66. The s_mpv_mul_d_add NSS PEPMA Executable Code

s_mpv_mul_d_add:
.LFB122:
 .cfi_startproc
 pushq %r12 #
 .cfi_def_cfa_offset 16
 .cfi_offset 12, -16
 pushq %rbp #
 .cfi_def_cfa_offset 24
 .cfi_offset 6, -24
 pushq %rbx #
 .cfi_def_cfa_offset 32
 .cfi_offset 3, -32
 movq $0, carry(%rip) #, carry
 testl %esi, %esi # a_len
 je .L117 #,
 movq %rdx, %r9 # b, D.6652
 shrq $32, %r9 #, D.6652
 subl $1, %esi #, tmp90
 leaq 8(,%rsi,8), %r10 #, D.9447
 movl $0, %eax #, ivtmp.694
 andl $4294967295, %edx #, D.6649
 movabsq $4294967296, %r11 #, tmp105
.L122:
 movq (%rdi,%rax), %r8 #* ivtmp.694, a_i.273
 movq %r8, a_i(%rip) # a_i.273, a_i
 movq %r8, %rsi # a_i.273, D.6648
 andl $4294967295, %esi #, D.6648
 movq %r8, %rbp # a_i.273, D.6651
 shrq $32, %rbp #, D.6651
 movq %r9, %rbx # D.6652, a0b1
 imulq %rsi, %rbx # D.6648, a0b1
 movq %rdx, %r8 # D.6649, a1b0
 imulq %rbp, %r8 # D.6651, a1b0
 addq %rbx, %r8 # a0b1, a1b0.706
 movq %r8, %r12 # a1b0.706, tmp92

166

 shrq $32, %r12 #, tmp92
 imulq %r9, %rbp # D.6652, tmp93
 leaq (%r12,%rbp), %rbp #, a1b1.278
 movq %rbp, a1b1(%rip) # a1b1.278, a1b1
 cmpq %r8, %rbx # a1b0.706, a0b1
 jbe .L118 #,
 addq %r11, %rbp # tmp105, tmp95
 movq %rbp, a1b1(%rip) # tmp95, a1b1
.L118:
 salq $32, %r8 #, a1b0.707
 imulq %rdx, %rsi # D.6649, a0b0.281
 leaq (%rsi,%r8), %rsi #, a0b0.281
 cmpq %r8, %rsi #a1b0.707, a0b0.281
 movq a1b1(%rip), %rbx # a1b1, tmp100
 adcq $0, %rbx #, tmp99
 movq carry(%rip), %r8 # carry, carry.283
 addq %r8, %rsi #carry.283, a0b0.284
 movq %rsi, a0b0(%rip) # a0b0.284, a0b0
 cmpq %r8, %rsi #carry.283, a0b0.284
 adcq $0, %rbx #, tmp106
 movq %rbx, a1b1(%rip) # tmp106, a1b1
 movq (%rcx,%rax), %r8 #* ivtmp.694, a_i.285
 movq %r8, a_i(%rip) # a_i.285, a_i
 addq %r8, %rsi # a_i.285, a0b0.286
 movq %rsi, a0b0(%rip) # a0b0.286, a0b0
 cmpq %r8, %rsi # a_i.285, a0b0.286
 adcq $0, %rbx #, tmp101
 movq %rbx, a1b1(%rip) # tmp101, a1b1

 movq %rsi, (%rcx,%rax)
#a0b0.286,*
ivtmp.694

 movq a1b1(%rip), %rbx # a1b1, a1b1
 movq %rbx, carry(%rip) # a1b1, carry
 addq $8, %rax #, ivtmp.694
 cmpq %r10, %rax # D.9447, ivtmp.694
 jne .L122 #,
 addq %r10, %rcx # D.9447, c
.L117:
 movq carry(%rip), %rax # carry, carry
 movq %rax, (%rcx) # carry,* c
 popq %rbx #
 .cfi_def_cfa_offset 24
 popq %rbp #
 .cfi_def_cfa_offset 16
 popq %r12 #
 .cfi_def_cfa_offset 8
 ret

167

Appendix B. ECDH Protocol

 The ECDH cryptography protocol used for exchanging private keys is believed to

be intractable under an unsecured communication channel. Additionally, it is not feasible

to find the discrete logarithm of a random 521-bit Elliptic curve element with respect to a

publicly known base point G(x, y). The ECDH procedure starts out at transaction (1) with

Client's domain parameters (p, a, b, G, n, h). The complete ECHD transaction under a

public viewer and on an unsecured communication channel is summarized in the figure

below. The scalar product calculation of k(x, y) occurs at the computations of sG, cG,

csG, where G(x, y) is the generator for the cyclic subgroup with order n. Furthermore, the

scalar product nG(x, y) must equal to the infinity point O of the Elliptic curve; h is the

cofactor that equals to the size of cyclic subgroup divided by n; h = E(Fp)/n

Figure 39. Elliptic Curve Diffie-Hellman Key Exchange Used with PEPMA

168

At time (1), Client initiates the session by sending a request signal followed by a

proposed cipher and the client’s PKE capability. Since both Server and Client have

agreed on the cipher suite, they have the same domain parameters, including modulus7 p;

curve coefficient a and b; base point G(x, y); curve’s order n; and cofactor h. At time (2),

Server is ready to accept the connection and generates 521-bit random number s. Server

then multiplies s with the base point G(x, y). This product is designated as Qs = s×G(x, y).

 The Server sends Qs to the client (optionally with digital signature ECDSA). At time

(3), Client receives Qs and verifies that it has received the one sent from Server. Then

Client computes the shared secret key: the product of two components c × Qs . Since Qs

equals to s × G(x, y), then the shared secret key c × Qs must be c × s × G(x, y).

 The Client then proceeds to compute the public key c × G and sends it to the Server.

This product is designated as Qc = c × G(x, y). At time (4), Server receives Qc and

computes the product s × Qc . Equivalently, s × Qc equals to s × c × G(x, y); it also equals

to c × Qs – the shared secret of Client that sent from Client. At time (4), both parties have

exchanged an elliptic curve based private key under the observation of public viewers.

 On the Server side, PEPMA can help reduce computing costs when calculating sG

and cQs. On the Client side, PEPMA can help reduce computing costs when calculating

cG and cQs. Readers are referred to the next Appendix for a numerical example of this

transaction.

7 Modulus p is the same as modulus m in this research. It is a 521-bit prime.

169

Appendix C. An ECDH Transaction

 The following data shows the results from an ECDH key negotiation corresponding

to the transactions described in ECDH protocol.

base point x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C6
85 8E 06 B7 04 04 E9 CD 9E 3E CB 66 23 95 B4 42
9C 64 81 39 05 3F B5 21 F8 28 AF 60 6B 4D 3D BA
A1 4B 5E 77 EF E7 59 28 FE 1D C1 27 A2 FF A8 DE
33 48 B3 C1 85 6A 42 9B F9 7E 7E 31 C2 E5 BD 66

base point y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 18
39 29 6A 78 9A 3B C0 04 5C 8A 5F B4 2C 7D 1B D9
98 F5 44 49 57 9B 44 68 17 AF BD 17 27 3E 66 2C
97 EE 72 99 5E F4 26 40 C5 50 B9 01 3F AD 07 61
35 3C 70 86 A2 72 C2 40 88 BE 94 76 9F D1 66 50

Server public key x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 42
B5 EF EB 9C 79 89 77 5C F2 E4 B8 5F 0C EA 2E 2F
84 3D D7 DF 63 0E 9E 68 5F 9D 6B 0C F4 C7 9A A4
D9 83 7E C9 FB 53 B3 0D 3A 18 9E E3 50 4A 61 8D
47 55 FB 5A 88 C0 FF 3C 0F 73 A9 1D C5 AF 1D 60

Server public key y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 27
62 AE 23 71 19 28 7A 17 DF 44 91 ED 14 F8 73 AD
4C BC 3F 6C C9 82 54 3B B5 07 CE 5D A4 AD E7 28
91 86 F3 D3 02 26 57 5E 70 54 A8 CC F5 E0 2B EF
D7 45 DA 26 CF 7C A9 8B A8 3B 4E DD 4D 25 2E 7D

Client private key x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 21
FF 0E 29 45 9A 0B 2F 19 C0 81 C8 91 4E 30 8B 47
FF 8D 93 DD CC 06 BF 5D 20 70 82 73 55 7A 1F F1
73 44 F2 53 E7 1B 44 39 13 89 2C 60 43 7F 6F BD
15 D6 F2 8B EA 55 E1 30 CE 3D DC D9 A4 B9 F0 74

170

Client private key y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28
0A EA 55 12 25 26 44 1F 69 7C A9 F2 13 CF F3 3A
AB BF B6 25 BD C7 47 AC BA 2A 5E 20 5D BE E3 ED
9B D2 F5 0E C9 0B D7 F9 79 52 92 77 F8 94 88 8F
E8 BA 5C B7 2A 7D 95 55 28 6D C3 A9 8E 0D E9 E1

Client public key x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 0F
D4 4B 13 C3 4A F1 9C DA E0 88 28 8D 5A 88 99 B1
67 23 6D 41 EE 77 1B 1D 06 64 AA 05 94 23 4A F1
78 A8 FB CA 5E 51 C0 AA 85 6C BB 3C E2 0C 10 B9
A1 ED 79 33 F0 0D BD 0A 2A 6B 87 F2 6F 06 43 84

Client public key y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 DB
63 3D 86 7A 51 AB 8B D3 81 5F 50 B7 C5 5F 05 21
58 14 0A D0 D7 74 A4 1B 4B BC 91 C0 5A 5D 5C 86
D9 3C 54 34 4D 90 C8 EB 62 5A 28 98 76 00 6E 8C
7F D8 59 E9 19 B0 58 3B 4E A1 B6 D9 9F 87 FF 27

Server private key x, a.k.a. our key x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 21
FF 0E 29 45 9A 0B 2F 19 C0 81 C8 91 4E 30 8B 47
FF 8D 93 DD CC 06 BF 5D 20 70 82 73 55 7A 1F F1
73 44 F2 53 E7 1B 44 39 13 89 2C 60 43 7F 6F BD
15 D6 F2 8B EA 55 E1 30 CE 3D DC D9 A4 B9 F0 74

Server private key y, a.k.a. our key y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 28
0A EA 55 12 25 26 44 1F 69 7C A9 F2 13 CF F3 3A
AB BF B6 25 BD C7 47 AC BA 2A 5E 20 5D BE E3 ED
9B D2 F5 0E C9 0B D7 F9 79 52 92 77 F8 94 88 8F
E8 BA 5C B7 2A 7D 95 55 28 6D C3 A9 8E 0D E9 E1

Exchanged key x part was successful
Exchanged key y part was successful

The numeric example above shows the private key has two parts: x and y. The actual

private key can be concatenated from x and y, making it a 1042-bit key.

171

Appendix D. Modulus m, Order m

 In this research, italic letter "m" is used as a label for the Mersenne modulus of

NIST P-521 Elliptic curve. Related literature might have used another letter to represent

the modulus. One common designation from the industry is letter "p" for prime. Here,

this letter "p" has already been designated as a Cartesian Elliptic-curve point p(x, y).

Table 67. The Modulus of Finite Field

Format m = 2521 – 1, log2(m+1) = 521
Hexadecimal 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765605212255964066145455497729631
1391480858037121987999716643812574028291115057151

Number
of Bits

521

Is m Prime? Probably

The order of the cyclic subgroup is designated as italic letter "n".

Table 68. The Order of Finite Field

Hexadecimal 00001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFA 51868783 BF2F966B
7FCC0148 F709A5D0 3BB5C9B8 899C47AE BB6FB71E
91386409

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765539424505774633321719753296399
6371363321113864768612440380340372808892707005449

Number
of Bits

521

Is n Prime? Probably

172

Appendix E. Point Adding of NSA Test Vectors

Input: k, x, y
Output: k×(x, y)

scalar k
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 EB
7F 81 78 5C 96 29 F1 36 A7 E8 F8 C6 74 95 71 09
73 55 54 11 1A 2A 86 6F A5 A1 66 69 94 19 BF A9
93 6C 78 B6 26 53 96 4D F0 D6 DA 94 0A 69 5C 72
94 D4 1B 2D 66 00 DE 6D FC F0 ED CF C8 9F DC B1

point x
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 D5
C6 93 F6 6C 08 ED 03 AD 0F 03 1F 93 74 43 45 8F
60 1F D0 98 D3 D0 22 7B 4B F6 28 73 AF 50 74 0B
0B B8 4A A1 57 FC 84 7B CF 8D C1 6A 8B 2B 8B FD
8E 2D 0A 7D 39 AF 04 B0 89 93 0E F6 DA D5 C1 B4

point y
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 44
B7 77 09 63 C6 3A 39 24 88 65 FF 36 B0 74 15 1E
AC 33 54 9B 22 4A F5 C8 66 4C 54 01 2B 81 8E D0
37 B2 B7 C1 A6 3A C8 9E BA A1 1E 07 DB 89 FC EE
5B 55 6E 49 76 4E E3 FA 66 EA 7A E6 1A C0 18 23

point x3
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 91
B1 5D 09 D0 CA 03 53 F8 F9 6B 93 CD B1 34 97 B0
A4 BB 58 2A E9 EB EF A3 5E EE 61 BF 7B 7D 04 1B
8E C3 4C 6C 00 C0 C0 67 1C 4A E0 63 31 8F B7 5B
E8 7A F4 FE 85 96 08 C9 5F 0A B4 77 4F 8C 95 BB

point y3
MSB...LSB
|.........| |.........| |.........| |.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 30
F8 F8 B5 E1 AB B4 DD 94 F6 BA AF 65 4A 2D 58 10
41 1E 77 B7 42 39 65 E0 C7 FD 79 EC 1A E5 63 C2
07 BD 25 5E E9 82 8E B7 A0 3F ED 56 52 40 D2 CC
80 DD D2 CE CB B2 EB 50 F0 95 1F 75 AD 87 97 7F

173

Appendix F. NIST Test Vectors

CAVS 11.0
"Key Pair" information
Curves selected: P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571
B-163 B-233 B-283 B-409 B-571
Generated on Wed Mar 16 16:16:42 2011
[P-521]
[B.4.2 Key Pair Generation by Testing Candidates]
N = 10
d =
0184258EA667AB99D09D4363B3F51384FC0ACD2F3B66258EF31203ED30363FCDA7661B6A817DA
AF831415A1F21CB1CDA3A74CC1865F2EF40F683C14174EA72803CFF
Qx =
019EE818048F86ADA6DB866B7E49A9B535750C3673CB61BBFE5585C2DF263860FE4D8AA8F7486
AED5EA2A4D733E346EAEFA87AC515C78B9A986EE861584926CE4860
Qy =
01B6809C89C0AA7FB057A32ACBB9AB4D7B06BA39DBA8833B9B54424ADD2956E95FE48B7FBF6
0C3DF5172BF386F2505F1E1BB2893DA3B96D4F5AE78F2544881A238F7

d =
014B967F6651B5E6A482FCCC609AB6630B3806FE1F94F4083319B0B50575FB3436A04F508172F7F
C396D6E969CA3E8D1C1E9A84D431A48B94F30566DC6808DD1D138
Qx =
0145F371040D3D4A24D6D3CEB2681DB207B77096AB57606D92981A69CE35A0AC4628C2DC1284E
4DD9715CDE46F18B59E9FC98FEA162CEB6E2C481ECBFAD4E19D3ABF
Qy =
0125EB751FF4FB8BB98E1FB455D2CFB35E3323DE5C7280FC9E51729704F4FEC51D5A6CE6C1F75
DBF710E1F9D3EE9F2A77E7C12C045E729D0E9A281C37F0F07B8CF0C

d =
7616133442038E27357DB450C353BD11FBA3BCAC8B7B8C3EF76AADB5FE05BE1DD57A22D42A5
444D00DCD018D389170C54FE781CB21C36020F657D001E1CBB41DD1
Qx =
BBECF65446053080CC1CF955938C58EB630C84ECAD2756F93B47EBFA9F9BCA3FA834353981260
8CAB2D3A9F8079AB8311A4F269B0A3CD9E0DDD066FC4121D92F0E
Qy =
01DD96DB411AD67997B10D42C76B8510C8A930DFA9A5927AC274B0C5021798690777B8E77E6AE
2648BF513E02F586898E7DAE20D71D19838A9F3175F06B057C5F2F4

d =
013BCC0ED286861D3F5463BCFC0B68A6EC0FCF86291BA41257838B72536ADA986E43E05EC4C32
C0B29DA632DD1CE39EFC81C8278F5D18D9CF27F6E75523821A46D99
Qx =
A3A165C2BB535D1041D54B749E2F6E6C734A03C09DF69C14A5DD2AA57790ACC504548885F0BD
3A44F8B66BB9C36B3FF257D7D465EFB81445D4CC5A5AF7F36C679C
Qy =
8A5D094E4F2AA18FB877D2649DFD76F9482AC2E049AEFBB463F3C9061CFDFAEC785DF9577A09
0E45A17330F422FB16A16ACCCFF9ADE7B034EC544C7A8AEA441C49

d =
01F79977450CE5887AE2EF7D648AB658C056E57F0A690CF28A4E94F373F2C15EB3C0D3E0D670FE
CA6FF02D5FD03187146EB85E09D72F8CABB1900D0C338A23080C12

174

Qx =
016D9EDE24A3950098798766E57C53F2749CD0D3F56CA0904A3711C030965291EDD5C6FE0903771
768F42340E88E1CD2F161358972775FA53E5B87C3B660ACC447E2
Qy =
010CA5CFE6DF8E069AE1326DD9E18CCA75CDE7CB24B427A409025F9E12B5098A56A20BB90B1
D23B75FAD7A54F9E25FF892E1236D1717F1F94E18FA2289F899FE2221

d =
9A9160D2614937C33284627826BE871C26407C84D23E6D23DE5F5F48B500B89B0BC07F10C4E0FB9
9C085D9E9D7149278F76E3FAE4ABAEEEF2495FE3D228EF0F949
Qx =
019ED72E6BFC673F2A852ACF9D60E2C3B19C50A56C54AC304612B26F83AFE1AFF4F87DCA458E
83B6F89EC48F8B1A20931ACD3C97C71BF21B5633CF4FD68437DB45C1
Qy =
D141DC4272CA03A528AD8FDADE9ECB3070FB2D4AF0BB296ABDAED651B5D26573EB4443A4D
0D4134FF248D8ED402C93BF6A905CB2792B9CECB4AEB69ED78F410382

d =
2FDC02492573228ADA3FA8A2DB68D72E9396A2BFCA9A8EBDB5C2955CC894A7493CFAE001759
368EB8FFC3C29B15365F6484CDD6A44E084F1D3C88DBA7AA4F29C3C
Qx =
010BA48733FC3E8F54F601F74659BCD43FDE4CF8C5A07DA341CE68E792F8F70721C23DC6D9B1B
401BD3254C8DE546E9367F10AEE947B1DD295E6D822524546DDC195
Qy =
01B2C0EA5C4171CDC069FC6C69E18636CFA404F487A143B3981A1F212969CDBD6601A84302867F
8A4A4730FDCD0F994C226F7C02C5E664B79C34B7E5D071423FF528

d =
01AD69406C11C66FAD5FE2295F0E526622488755ECB18BA12EE51FA879ED47FF5F5B05195A821E
8D36489492B5DE2009F303E17B9FDF6379DAE52C0178A16927CA38
Qx =
01F1CA24041BA73812C1124E96454545C45AB903407AFCE3105108362ED3CB4F7D0D5B1466074C
2EF22C7FD1EBC16E74A74A163FBB2F530EF44549DAD81E806F24D6
Qy =
6B34D6EFF12BB76AEE9BD7AC590E437735AE77DA4A60191E8E01F1CEB8AD7C1EDA4D0F84D4
ED2DC72DE702D351EF8F64B2CDF2A95EF185D3119F276F6CCB3C5A65

d =
013C41B6514C608A2E4696CFC6BD2DDD36611CA5DBF6F2D2E3E32A1925C5AE4FF591DCAA75C
4E8043ADCB99D510CB664868BB638A2C52B81BB240A974548A68FCE79
Qx =
C6D82F16433C71E37F2E9779BE4599A3B1DDA415F6C338E52DF4CA70607A69637B50170F21BBB7
F60B9A9C145BB63E6D4F370FCD00BFB60F7A0DC55CC44F65FC90
Qy =
0152344D6F2E72DEB2C59FF2AE268FB067279A1942AE231734BA980C5457A6A73BBF2B13343AE4
4A0C8A712572851DA4B91065EE0436ABE811AE71883C4A2F1B797F

d =
316E2D06FD00C9C4266EA20BF60CDF867859A6F5BA242DE35054CDCF5486E5E344AB1D1BCE13
E2CC831137320774EC3AB0F6FB554FCCEC56ADA267959794898028
Qx =
A183880E61C6E0435E591694E51F63C099FCD5B61E3DDACC4057399AFC6A90321424AB0EC1699
AEEB9C404616D62C23466132B52583C18D3530116B58AD41452F0
Qy =
191E06057E2282B4DE6E0741FB37B04F0E6AE172BE81267B0DB3023E7A116AC5861DECD54BA84
E15D5FD64D6CA628461B79E120851BED1C74ADEBE3DDEE838A170

175

Appendix G. NSS Exponentiation Procedure

 Users will find NSS PEPMA in its source code repository (NSS-1, 2014). The NSS

exponentiation procedure is coded in the source file "ecp_jac.c". NSS PEPMA makes 524

calls to the point-doubling and 131 calls to the point-adding function. The following

messages list some essential entrant parameters to the PEPMA:

GFMethod_consGFp
modulus =
1FFF
FF
FFF
order =
1FFF
FFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386
409
a =
1FFF
FF
FFC
b =
51953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E
156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00
genx =
81D687818FC9BA21A2C7B00FE84C69E8113DA5FB1439D7A83A0585DC2550ABF
E423DE7C6E0B54595C5FEC716853E9CD7825844C9877B6D6AE0DA7571A4FD9B0
23B
geny =
144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818ED
037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC01
823
scalar d =
1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BFA
9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FDC
B1
ec_GFp_pt_mul_jac
mp_digit size = 8
unsigned int = 4
unsigned long = 8
unsigned long long = 8
Exiting ec_GFp_pt_mul_jac

176

Total double = 524, total add = 131
Total double bypass = 0, total add bypass = 1

 result x =
4634C62EEC4F2D875DE95AE71E95C58812342A29A37139A23299F053203F9BE9D
00E057C6CBBFB8D6C6D9EFDBE34BA409949AD09809B15A98A08637136CE7239
37
 result y =
162495DB3E31BE7E8EEFCD96EE6698EB915DE882118DFAD1BC83B1369FAB93A
35D69C0E9A7A3CA1D7F83ED2EE2FBFD565AAF76A65BBC1C1C7C97CFF45DD7
B533FAF

An incomplete listing of NSS PEPMA is provided below for reference.

NSS PEPMA:

mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
 mp_int *rx, mp_int *ry, const ECGroup *group)
{
 mp_err res = MP_OKAY;
 mp_int precomp[16][2], rz;
 int i, ni, d;

 MP_DIGITS(&rz) = 0;
 for (i = 0; i < 16; i++) {
 MP_DIGITS(&precomp[i][0]) = 0;
 MP_DIGITS(&precomp[i][1]) = 0;
 }

 ARGCHK(group != NULL, MP_BADARG);
 ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);

 /* initialize precomputation table */
 for (i = 0; i < 16; i++) {
 MP_CHECKOK(mp_init(&precomp[i][0]));
 MP_CHECKOK(mp_init(&precomp[i][1]));
 }

 /* fill precomputation table */
 mp_zero(&precomp[0][0]);
 mp_zero(&precomp[0][1]);
 MP_CHECKOK(mp_copy(px, &precomp[1][0]));
 MP_CHECKOK(mp_copy(py, &precomp[1][1]));

177

for (i = 2; i < 16; i++) {
 MP_CHECKOK(group->
 point_add(&precomp[1][0], &precomp[1][1],
 &precomp[i - 1][0], &precomp[i - 1][1],
 &precomp[i][0], &precomp[i][1], group));
 }

 d = (mpl_significant_bits(n) + 3) / 4;

 /* R = inf */
 MP_CHECKOK(mp_init(&rz));
 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));

 for (i = d - 1; i >= 0; i--) {
 /* compute window ni */
 ni = MP_GET_BIT(n, 4 * i + 3);
 ni <<= 1;
 ni |= MP_GET_BIT(n, 4 * i + 2);
 ni <<= 1;
 ni |= MP_GET_BIT(n, 4 * i + 1);
 ni <<= 1;
 ni |= MP_GET_BIT(n, 4 * i);
 /* R = 2^4 * R */
 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
 /* R = R + (ni * P) */
 MP_CHECKOK(ec_GFp_pt_add_jac_aff
 (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
 &rz, group));
 }

 /* convert result S to affine coordinates */
 MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));

 CLEANUP:
 mp_clear(&rz);
 for (i = 0; i < 16; i++) {
 mp_clear(&precomp[i][0]);
 mp_clear(&precomp[i][1]);
 }
 return res;
}

178

Appendix H. OpenSSL Exponentiation Procedure

 Users will find OpenSSL PEPMA in its source code repository (OpenSSL-1, 2014).

Source code containing Elliptic-curve service routines is included only in compressed file

(tar) with Elliptic-curve capability. The OpenSSL PEPMA exponentiation procedure is

coded in the source file "ecp_nistp521.c". By executing the code below, OpenSSL

PEPMA makes 520 calls to the point-doubling and 104 calls to the point-adding function.

An incomplete listing of OpenSSL PEPMA is provided for reference as follows:

static void batch_mul(felem x_out, felem y_out, felem z_out,
 const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
 const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3])
 {...
for (i = (num_points ? 520 : 130); i >= 0; --i)
 {
 /* double */
 if (!skip)
 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);

 /* add multiples of the generator */
 if (gen_mul && (i <= 130))
 {
 bits = get_bit(g_scalar, i + 390) << 3;
 if (i < 130)
 {
 bits |= get_bit(g_scalar, i + 260) << 2;
 bits |= get_bit(g_scalar, i + 130) << 1;
 bits |= get_bit(g_scalar, i);
 }
 /* select the point to add, in constant time */
 select_point(bits, 16, g_pre_comp, tmp);
 if (!skip)
 {
 point_add(nq[0], nq[1], nq[2],
 nq[0], nq[1], nq[2],
 1 /* mixed */, tmp[0], tmp[1], tmp[2]);
 }
 else
 {
 memcpy(nq, tmp, 3 * sizeof(felem));
 skip = 0;

179

 }
 }

 /* do other additions every 5 doublings */
 if (num_points && (i % 5 == 0))
 {
 /* loop over all scalars */
 for (num = 0; num < num_points; ++num)
 {
 bits = get_bit(scalars[num], i + 4) << 5;
 bits |= get_bit(scalars[num], i + 3) << 4;
 bits |= get_bit(scalars[num], i + 2) << 3;
 bits |= get_bit(scalars[num], i + 1) << 2;
 bits |= get_bit(scalars[num], i) << 1;
 bits |= get_bit(scalars[num], i - 1);
 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

 /* select the point to add or subtract, in constant time */
 select_point(digit, 17, pre_comp[num], tmp);
 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
 copy_conditional(tmp[1], tmp[3], (-(limb) sign));

 if (!skip)
 {
 point_add(nq[0], nq[1], nq[2],
 nq[0], nq[1], nq[2],
 mixed, tmp[0], tmp[1], tmp[2]);
 }
 else
 {
 memcpy(nq, tmp, 3 * sizeof(felem));
 skip = 0;
 }
 }
 }
 }
 felem_assign(x_out, nq[0]);
 felem_assign(y_out, nq[1]);
 felem_assign(z_out, nq[2]);
 }

180

Appendix I. Description of Clock() Function

 The clock() function provides an elapsed CPU time used by a running process. In

measuring the elapsed processing time, PEPMA calls the clock function clock() at the

beginning and at the ending of the executing interval. PEPMA subtracts the end_time

from start_time to obtain the absolute elapsed_time. It then divides the absolute time by

CLOCKS_PER_SEC. A typical setup in Linux environment is shown below:

#include <time.h>

clock_t start_time, end_time;
double elapsed_time;

 start_time = clock();
 for (loop_count...;)
 {
 // do EPM (calling point-adding, point-doubling functions etc.)
 }
 end_time = clock();
 elapsed_time =
 ((double) (end_time - start_time))/(CLOCKS_PER_SEC * loop_count);

The constant CLOCKS_PER_SEC defines the number of ticks per second. In a Linux

system, CLOCKS_PER_SEC is an integer value normally equates to 1000. The data type

of "clock_t" is equivalent to "long int" which is 64-bit integer in a 64-bit x 86 computing

platform.

The purpose of using "for loop" with loop count is to increase measurement precision.

181

Appendix J. Selection of Operational Parameters for P-521

 The listing below is an incomplete set of Request-For-Comment (RFC) introducing

Elliptic-curve Cryptography into the cyber-space security system. In the contexts of these

RFCs, the selection of P-521 was analyzed and proposed for which operational

parameters of curve P-521 would be best suited to use or to exclude. Besides the security

requirements, some of the important recommendations for selecting the operational

parameters of P-521 curve were the efficiency and ease of implementation of underlying

arithmetic.

 Table 69. Request-For-Comment Related to Selection of P-521 Curve
Request-For-Comment Year Discussion of
RFC-6637: Elliptic Curve Cryptography
(ECC) in OpenPGP

2012 NIST ECC curve P-521 Profile

RFC-5639: Elliptic Curve Cryptography
(ECC) Brainpool Standard Curves and Curve
Generation

2010 Operational parameters of
curve P-521

RFC-3766: Determining Strengths For Public
Keys Used For Exchanging Symmetric Keys

2004 Choosing parameters for the
equation

OpenPGP: Email encryption standard, open-source Pretty-Good-Privacy

As stated in RFCs listed above, the AES-256 symmetric key encryption system requires

an asymmetric Elliptic-curve key length around 512 to 576 bits. Since there is only one

unique Mersenne probable prime of length 521 bits, all standards should converge to the

arithmetic using 521 bits. It has been known that the efficiency and easiness of modulo

arithmetic can be obtained with a Mersenne prime (Hankerson et al., 2004, pp. 44-46).

 The American National Standards Institute (ANSI), National Security Agency

(NSA), National Institute of Standards and Technology (NIST), and Standards for

Efficient Cryptography Group (SECG) authorities published their own selection of curves

and underlying arithmetic. Within the context of security and computing efficiency, they

recommended to the industry what and how to apply operational parameters. The

182

publication listing below is an incomplete set of standards recommending the

implementation of underlying arithmetic for P-521 curve.

Table 70. ANSI, NSA, NIST, and SECS Publications
Standards Year Discussion of
FIPS PUB 186-4: Digital Signature Standard
(FIPS PUB 186-4, 2013). NIST

Jul/
2013

P-521 curve, efficiency,
arithmetic approach, and
modulo reduction,
and projective transformation
in depth

NSA Suite B (NSA, 2013) 2013 P-521 curve, efficiency, and
arithmetic approach

SECG: Standards for Efficient Cryptography
Group (SEC 1, 2000)

Jan/
2010

P-521 curve, efficiency,
arithmetic approach,
modulo reduction

ANSI X9.62 (ANSI, 2005) 2005 General Elliptic-curves and
arithmetic

The 521-bit Mersenne prime has a unique property that can be written as the sum or

difference of a small number of powers of 2. For example, a 521-bit Mersenne prime has

an integer value of p = 2521 – 1. This unique property offers a fast reduction algorithm on

computing platforms with machine word size = 64 bits; the arithmetic for modulo

reduction requires only additions and subtractions (Hankerson et al., 2004, pp. 44-46).

183

Appendix K. Operation of BOCHS

 BOCHS is a piece of software to emulate a virtual machine. Virtualization allows

code and data of PEPMA to execute within a newly created and isolated runtime

environment. In this study, BOCHS runs under CENTOS 6.4, a Linux variation

Operating System (OS). Because this CENTOS 6.4 OS runs at the lowest level of a

hardware platform, thus, it is known as the host Operating System. In this study, BOCHS

emulates CENTOS 6.0. Then this OS becomes a guest OS, which provides all necessary

operating system resources to execute PEPMA in a rescue mode. This rescue operating

mode provides a minimum but adequate set of peripheral and working environment. To

start BOCHS, execute the bash script as follows:

 /BOCHS/bochs -q -f c6.txt

/BOCH/ is a directory where BOCHS installed and “c6.txt” is the configuration file for

“bochs” program. When BOCHS starts successfully, a welcome screen will appear as

follows:

Figure 40. Virtual Machine BOCHS Main Screen

184

Press <ESC> to bring in next screen, and enter “linux rescue” as shown on the screen

below (without entering double quotes).

Figure 41. Virtual Machine BOCHS Rescue Screen

When host OS and BOCHS bring in next screen, the emulation has been going

successfully up to this point:

Figure 42. Virtual Machine BOCHS Language Screen

185

When BOCHS asks for enabling the network, enter “no”, enter “skip” for checking

rescue environment, then enter “shell start” at the menu to start bash shell. After this

point, BOCHS loads the terminal and ready for commands. If this terminal screen shows

up with “bash-4.1#” prompt, the virtualization has been completely successful.

Figure 43. Virtual Machine BOCHS Final Screen

To execute PEPMA, enter the commands at bash prompt as follows:

cd /mnt

mkdir f

mount –t ext2 /dev/fd0 /mnt/f

/mnt/f/ectest

/mnt/f/ecp_test

186

A typical display from machine emulation is shown in the picture below. This screen

shows the "bash" terminal in virtual machine BOCHS. The texts shown on the screen are

the results from PEPMA exponentiation function calculating the scalar product k×(x, y).

Counting of CPU instructions (MULq, MOVq etc.) are outputted on the host-machine

terminal.

Figure 44. Virtual Machine BOCHS Calculating k×(x, y)

187

From the figure shown below, the terminal running on host OS displays selected

software-counters of unit-under-test. Target identification (0001BF75) is located at the

first parameter; and its executing thread is located at the second parameter (00006400).

BOCHS counts the number of MULq and MOVq CPU instructions and displays them at

the third parameter (00001E6D) and the last parameter (0005A362) respectively.

Figure 45. Instruction Software Counters Displayed while Calculating k×(x, y)

188

Update Image

 To update PEPMA image from host OS, enter the commands at guest OS bash

prompt as follows:

umount /mnt/f

Enter the commands at host OS bash prompt as follows:

cd /BOCHS
losetup /dev/loop0 a.img
mount -t ext2 /dev/loop0 -o loop /mnt/floppy

Then copy OpenSSL PEPMA (ectest) or NSS PEPMA (ecp_test) to the guest Disk

(executing commands from host OS terminal):

cp /O/test/ectest /mnt/floppy/ectest
cp /NSS/mozilla/security/nss/lib/freebl/ecl/ecp_test /mnt/floppy/ecp_test
umount /dev/loop0
losetup -d /dev/loop0

Content of c6.txt

megs: 512
romimage: file=$BXSHARE/BIOS-bochs-latest
vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest
floppya: 1_44=a.img, status=inserted
floppyb: 1_44=b.img, status=inserted
ata0-master: type=disk, path="c6min.img", mode=flat
ata1-master: type=cdrom, path=./c6min.iso, status=inserted
boot: cdrom
this simulates /dev/ttyS0 on guest
com1: enabled=1, mode=file, dev=serial.out
this simulates /dev/ttyS0 on guest
com1: enabled=1, mode=term, dev=/dev/pts/0
com1: enabled=1, mode=term, dev=/dev/tty0
com1: enabled=1, mode=term, dev=/dev/ttyS0
panic: action=ask
panic: action=report
error: action=report
info: action=report
debug: action=ignore
ne2k: ioaddr=0x300, irq=9, mac=00:c4:3B:00:C3:00, ethmod=win32, ethdev=NE2000
default config interface is textconfig.

189

#config_interface: textconfig
#config_interface: wx
display_library: x
other choices: win32 sdl wx carbon amigaos beos macintosh nogui rfb term svga
log: bochsout.txt
mouse: enabled=0, type=ps2
fullscreen: enabled=0

cpu: ips=400000000, ignore_bad_msrs=1
clock: sync=both
keyboard_serial_delay: 250
keyboard: keymap=$BXSHARE/keymaps/x11-pc-us.map
keyboard_paste_delay: 100000
user_shortcut: keys="f7"
mouse: enabled=1
#magic_break: enabled=1
#port_e9_hack: enabled=1
#text_snapshot_check: enabled=0
#private_colormap: enabled=0

BOCHS Configuration and Compilation

./configure --enable-cpu-level=6 \
--enable-smp \
--enable-x86-64 \
--enable-pci \
--enable-disasm \
--enable-logging \
--enable-cdrom \
--disable-plugins \
--enable-usb \
--enable-usb-ohci \
--enable-usb-xhci \
--enable-plugins \
--enable-vmx \
--enable-fpu \
--enable-debugger \
--with-x --with-x11 --with-term

--disable-assert-checks \
--enable-debugger \
--enable-debugger-gui \
--enable-sb16 \

#./configure --enable-cpu-level=6 \
#--enable-ne2000 \

190

#--enable-pci \
#--enable-pcidev \
#--enable-pnic \
#--enable-repeat-speedups \
#--enable-fast-function-calls \
#--enable-all-optimizations \
#--enable-fpu \
#--enable-cdrom \
#--enable-x86-64 \
#--with-x --with-x11 --with-term
./configure --enable-cpu-level=6 \
--disable-smp \
--enable-ne2000 \
--enable-pci \
--enable-pcidev \
--enable-pnic \
--enable-repeat-speedups \
--enable-cdrom \
--enable-x86-64 \
--with-x --with-x11 --with-term
#./configure --enable-cpu-level=6 \
#--enable-x86-64 \
#--enable-pci \
#--enable-pcidev \
#--enable-debugger \
--with-x --with-x11 --with-term

if this error happens while compiling:
#gui/libgui.a(gtk_enh_dbg_osdep.o): In function `MakeGTKthreads()':
#./build/bochs-2.4.2/gui/gtk_enh_dbg_osdep.cc:2120:
undefined reference to `pthread_create'
add this statement -lpthread to Makefile under LIBS (around line 100)

Put text above into bash file RUN.bat
Compile BOCHS by executing ./RUN.bat
alias m = "make"
alias r = "./RUN.bat"

191

Appendix L. Operation of PAPI

 The Performance Application Programming Interface, PAPI, is a machine

independent set of callable routines that provide access to the hardware performance

counters inside a CPU. It is currently being developed at the University of Tennessee, and

the codes are mostly written in C language. To use PAPI counting services, PEPMA links

to code library "libpapi.a". Compilation of PEPMA must include a PAPI header, papi.h,

declared variables, and the library path to the "libpapi.a":

#include "/usr/local/include/papi.h"

#define NUM_EVENTS 2
#define ERROR_RETURN(retval) { fprintf(stderr, "Error %d %s:line %d: \n",
retval,__FILE__,__LINE__); exit(retval); }
int EventSet = PAPI_NULL;
long long papi_values[NUM_EVENTS];
char errstring[PAPI_MAX_STR_LEN];
int retval;

Then before measuring, initialize PAPI and create counting events with:

if((retval = PAPI_library_init(PAPI_VER_CURRENT)) != PAPI_VER_CURRENT)

ERROR_RETURN(retval);

 /* Creating the EventSet */

 if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)

 ERROR_RETURN(retval);

 /* Add Total Instructions executed to the EventSet */

 if ((retval = PAPI_add_event(EventSet, PAPI_TOT_INS)) != PAPI_OK)

 ERROR_RETURN(retval);

 /* Add Total Cycles executed to the EventSet */

 if ((retval = PAPI_add_event(EventSet, PAPI_TOT_CYC)) != PAPI_OK)

 ERROR_RETURN(retval);

192

Start the PAPI measuring instrument by calling function PAPI_start() just before

executing the unit-under-test Exponentiation Function (EF):

if ((retval = PAPI_start(EventSet)) != PAPI_OK) ERROR_RETURN(retval);

 EF()...

Then read the PAPI instrument with PAPI_read() to acquire the results:

 /* Read the counter values and store them in the values array */

 if ((retval=PAPI_read(EventSet, papi_values)) != PAPI_OK)

 ERROR_RETURN(retval);

 /* Stop counting and store the values into the array */

 if ((retval = PAPI_stop(EventSet, papi_values)) != PAPI_OK)

 ERROR_RETURN(retval);

 printf("\nTotal instructions executed are %lld", papi_values[0]);

 printf("\nTotal cycles executed are %lld \n",papi_values[1]);

 /* Free the resources used by PAPI */

 PAPI_shutdown();

193

Appendix M. Configuration and Compilation of NSS

 Execute the following commands to compile NSS:

cd /NSS/mozilla/security/nss
printenv $CFLAGS
read -p "Press any key to continue"
unset NSS_ENABLE_ECC
unset NSS_ECC_MORE_THAN_SUITE_B
unset ECL_ENABLE_GFP_PT_MUL_JAC
unset BUILD_OPT
unset NSS_USE_COMBA
NSS_USE_COMBA=0
export NSS_USE_COMBA
NSS_ENABLE_ECC=1
export NSS_ENABLE_ECC
NSS_ECC_MORE_THAN_SUITE_B=1
export NSS_ECC_MORE_THAN_SUITE_B
USE_64=1
export USE_64
ECL_ENABLE_GFP_PT_MUL_JAC=1
export ECL_ENABLE_GFP_PT_MUL_JAC
no debug
#BUILD_OPT=1
#export BUILD_OPT
this flag does not work well yet

unset ECL_ENABLE_GFP_PT_MUL_JAC
make clean
NSS_ECC_MORE_THAN_SUITE_B=1
make nss_build_all USE_64=1 NSS_ENABLE_ECC=1
make nss_build_all USE_64=1 NSS_ECC_MORE_THAN_SUITE_B=1
ECL_ENABLE_GFP_PT_MUL_JAC=1

cd /NSS/mozilla/security/nss/lib/freebl/ecl
alias n="make clean"
alias m="make tests"
alias r="./ecp_test --print --time"

194

Appendix N. Configuration and Compilation of OpenSSL

 Execute the following commands to configure OpenSSL for compilation:

./config enable-ec_nistp_64_gcc_128
#make depend
#make

add this line in make file
for PAPI
EX_LIBS= /usr/local/lib64/libpapi.a

cd /O
alias m="make"
alias r="./test/ectest"

195

Appendix O. Test Vector Type A

scalar k =
1EB7F81785C9629F136A7E8F8C674957109735554111A2A866FA5A166699419BFA
9936C78B62653964DF0D6DA940A695C7294D41B2D6600DE6DFCF0EDCFC89FDC
B1

affine coordinate x =
1D5C693F66C08ED03AD0F031F937443458F601FD098D3D0227B4BF62873AF50740
B0BB84AA157FC847BCF8DC16A8B2B8BFD8E2D0A7D39AF04B089930EF6DAD5
C1B4

affine coordinate y =
144B7770963C63A39248865FF36B074151EAC33549B224AF5C8664C54012B818ED
037B2B7C1A63AC89EBAA11E07DB89FCEE5B556E49764EE3FA66EA7AE61AC01
823

The results of function k(x, y) are:

result x =
91B15D09D0CA0353F8F96B93CDB13497B0A4BB582AE9EBEFA35EEE61BF7B7D
041B8EC34C6C00C0C0671C4AE063318FB75BE87AF4FE859608C95F0AB4774F8C9
5BB

result y =
130F8F8B5E1ABB4DD94F6BAAF654A2D5810411E77B7423965E0C7FD79EC1AE5
63C207BD255EE9828EB7A03FED565240D2CC80DDD2CECBB2EB50F0951F75AD
87977F

196

Appendix P. Test Vector Type B

scalar k =
7616133442038E27357DB450C353BD11FBA3BCAC8B7B8C3EF76AADB5FE05BE1
DD57A22D42A5444D00DCD018D389170C54FE781CB21C36020F657D001E1CBB41
DD1

affine coordinate x =
BBECF65446053080CC1CF955938C58EB630C84ECAD2756F93B47EBFA9F9BCA3
FA8343539812608CAB2D3A9F8079AB8311A4F269B0A3CD9E0DDD066FC4121D9
2F0E

affine coordinate y =
1DD96DB411AD67997B10D42C76B8510C8A930DFA9A5927AC274B0C5021798690
777B8E77E6AE2648BF513E02F586898E7DAE20D71D19838A9F3175F06B057C5F2
F4

The results of function k(x, y) are:

result x =
1CE3631976395AD8957F367446D6C99308D5B9E8E0C42DE27CA568CFBE6155D01
6F54AF8A4B751F75AA61255FE09340A8F36A5BD61FD45E0A217123362A459D78
A5

result y =
D5AD0E3B4B1BA4C9C462DF92A198067CD4E3176D8F6C710D50B109B3590F7A8
0BCA504D19A2BFAD400713ED774A629EFB6DA24ABB037EFCF4B6040C92BDB4
CAB8D

197

Appendix Q. Test Vector Type B

Table 71. Test Vector Type C, Modulus m.

Format m = 2521 – 1, log2(m+1) = 521
Hexadecimal 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF

Decimal 686479766013060971498190079908139321726943530014330540
939446345918554318339765605212255964066145455497729631
1391480858037121987999716643812574028291115057151

Number
of Bits

521

Is m Prime? Probably

Table 72. Test Vector Type C, Vector x.

Format x = 2544 – 1
Hexadecimal FFF

FFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE

Decimal 575860965701529136999748928983805677935321231142645329
036896713294315210325950447400837207821298029715189876
561090674575770658055103270360193089943150740973457244
14

Number
of Bits

544

Is m Prime? Not a Prime

198

Appendix R. Computing Platform Type A

 A computing platform of type A was used for real-time measurements. The

following figures describe the operating characteristics of this particular computing

platform with respect to its CPU type, memory, and running processes in the system at

the times of measurement.

Figure 46. Computing Platform Type A, CPU and Memory

199

 Figure 47. Computing Platform Type A, Running/Sleeping Processes

200

Figure 48. Computing Platform Type A at Busy State

201

Appendix S. Computing Platform Type B

 The following computing platform of type B was applied for real-time

measurements:

Figure 49. Computing Platform Type B, CPU and Memory

202

Figure 50. Computing Platform Type B with Running/Sleeping Processes

203

Figure 51. Computing Platform Type B, Resource Utilization

204

Appendix T. Computing Platform Type C, CPU Resource Busy

 A computing platform type C was used for some real-time measurements. Most of

CPU resources were allocated to other running processes at the times of measurement.

The following figure illustrates the characteristics of this particular computing platform

with respect to its CPU type, memory, and running processes in the system at the times of

measurement.

Figure 52. Computing Platform Type C, Resources Busy

205

Appendix U. Description of Metrics TOT_CYC and TOT_INS

 The metric TOT_CYC measures total number of CPU cycles to complete a software

function. The TOT_CYC metric is just a convenience way to name the total CPU clock

cycles for a program as described generally in (Patterson & Hennessy, 2012, pp. 30-39).

In this research, the TOT_CYC was specifically used to measure the total number of

CPU clock cycles to accomplish a top-level mathematical function k(x, y) with a fairly

known run-time environment (this specific function k(x, y) is to calculate a scalar

multiplication with two affine coordinates x and y). Additionally, this research also

acquired and analyzed the TOT_CYC metric to assess the CPU clock cycles of sub-

modules such as point-adding, or point doubling. Thus, to realize the performance

comparison accurately, the measurement pairs: TOT_CYC for NSS and TOT_CYC for

OpenSSL must be acquired on the same computing platform, and on the same runtime

environment. Then the comparison can be done with each of these measurement pairs.

 According to Patterson and Hennessy, the definition of time is called wall clock

time, response time, or elapsed time. These terms mean the whole time to complete a

task, including disk accesses, memory accesses, input/output (I/O) activities, operating

system overhead etc. Thus, the metric TOT_CYC acquired by PAPI measurement

method can only be an approximation of the entire time to complete a task.

 The total number CPU instructions in a software function, namely as metric

TOT_INS can be accurately converted to the TOT_CYC according to the computing

clock cycle-time per CPU instruction (see Intel Latency, 2013). Consequently, the

number of clock cycles required for function k(x, y), or for computing sub-modules can

206

be written as:

TOT_CYC = Total Instructions for k(x, y) × Clock Cycles per Instruction (see Patterson

& Hennessy, 2012, p. 33).

 From the equation above, one must obtain both coefficients Total Instructions and

Clock Cycles per Instruction in order to derive accurately the TOT_CYC. The TOT_INS

metric used in this research is a convenience way to name the Total Instructions for a

program as described generally in (Patterson & Hennessy, 2012, pp. 30-39).

 For example, when the following 64-bit multiplication routine

int64_t mul_low_64x64 (int64_t a64, int64_t b64) {
return (int64_t)((__int128_t)a64 * b64);
}

is compiled with compiler optimization option 1,

 gcc -O1 -S D.c -oD.asm_opti

the GCC compiler will produce the following assembly codes

 .file "D.c"
 .text
.globl mul_low_64x64
 .type mul_low_64x64, @function
mul_low_64x64:
.LFB37:
 .cfi_startproc
 movq %rsi, %rax
 imulq %rdi, %rax
 ret
 .cfi_endproc

Thus, BOCHS virtual machine will count exactly one "movq" CPU instruction, one

"imulq", and one "ret" for the arithmetic routine mul_low_64x64 (int64_t a64,

int64_t b64). In that case, the Total Instructions coefficient, TOT_INS, must exactly

equal to 3.

207

Since the value of TOT_INS exactly equals to 3, then the following equality must be true

for the function mul_low_64x64():

 TOT_INS = MODULE_COST = k1(imulq) + k2(movq) + OHF

where k1 = 1, k2 = 1, and the Overhead Factor, OHF = 1 for the "ret" instruction.

One could convert the TOT_INS to TOT_CYC by referencing the CPU instruction

latency of the target computing platform (see Appendix V for the details of acquiring

coefficients of TOT_CYC).

Note:

The CPU mnemonic MULq used in this research is a representation of imulq instruction.

Thus, the imulq CPU instruction could be a subset of MULq.

The CPU mnemonic MOVq used in this research is a representation of movq instruction.

Thus, the movq CPU instruction could be a subset of MOVq.

208

Appendix V. Description of Metrics imulq and movq

 The CPU instruction imulq8 in an x86, 64-bit hardware platform computes an

integer multiplication of two 64-bit operands. The 128-bit result will be stored into two

64-bit registers. In case of the routine

 mul_low_64x64 (int64_t a64, int64_t b64),

the target CPU multiplies the content of register RDI (routine parameter a64) to the

content of register RAX (routine parameter b64)

 imulq %rdi, %rax (machine codes 0x48, 0xF7, 0xEE)

and returns an 128-bit result in a resister pair RDX:RAX, where the register RAX is

designated as low-word of the result.

 According to Intel literature (see IA-64-32, 2013), and in a summary paper from

(Granlund, 2014), executing the MULq instruction for Intel Pentium P4 processor will

take exactly ten clock cycles. However, for the Intel Nehalem processors, executing the

MULq instruction will take exactly three clock cycles.

 The CPU instruction movq9 in an x86, 64-bit hardware platform moves the data

between two 64-bit operands. In case of executing the instruction movq with two CPU

registers (no external memory, or cache)

 movq %rsi, %rax (machine codes 0x48, 0x89, 0xF8),

it will take one clock cycle for most of processors (P4, AMK K10 etc.)

8 The CPU mnemonic MULq used in this research is a representation of imulq

instruction. Thus, the imulq CPU instruction could be a subset of MULq.
9 The CPU mnemonic MOVq used in this research is a representation of movq

instruction. Thus, the movq CPU instruction could be a subset of MOVq.

209

References

ANSI. (2001). Public Key Cryptography for the Financial Services Industry, Key
 Agreement and Key Transport Using Elliptic Curve Cryptography, ANSI X9.63.

ANSI. (2005). Public Key Cryptography for the Financial Services Industry: The
 Elliptic Curve Digital Signature Algorithm (ECDSA). ANSI X9.62.

ARM. (2013). ARM Processor Architecture. The Architecture for Digital World.
 Retrieved November, 01, 2013 from
 http://www.arm.com/products/processors/instruction-set-architectures/index.php

Avanzi, R., & Sica, F. (2006). Scalar Multiplication on Koblitz Curves using Double

 Bases. Technical Report Number 2006/067, Cryptology ePrint Archive.

Avanzi, R. (2004). A Note on the Signed Sliding Window Integer Recoding and a Left-to-
 Right Analogue. LNCS vol. 3357, pp. 130–143, Springer, Heidelberg.
 Retrieved November, 01, 2013 from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1946&rep=rep1&type=pdf

Aoki, K., Hoshino, F. Kobayashi, & T. Oguro, H. (2001). Elliptic Curve Arithmetic

Using SIMD. ISC2001, vol. 2200 of Lecture Notes in Computer Science, pp. 235-
247, Springer-Verlag.

Afreen, R., Mehrotra, S. C., & Patrick, T. (2011). A Review on Elliptic Curve
 Cryptography for Embedded System. International Journal of Computer Science &
 Information Technology (IJCSIT), 3(3), June 2011.
 Retrieved November, 01, 2013 from
 http://airccse.org/journal/jcsit/0611csit07.pdf

Aigner, H., Bock, H., Hütter, M., & Wolkerstorfer, J. (2004). A Low-Cost ECC

Coprocessor for Smartcards. Cryptographic Hardware and Embedded Systems -
CHES 2004. Lecture Notes in Computer Science, vol. 3156, pp. 107-118, Springer
Heidelberg.

 Retrieved February, 01, 2013 from
 http://link.springer.com/chapter/10.1007%2F978-3-540-28632-5_8

http://www.iacr.org/archive/ches2004/31560104/31560104.pdf

http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1946&rep=rep1&type=pdf
http://airccse.org/journal/jcsit/0611csit07.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-28632-5_8
http://www.iacr.org/archive/ches2004/31560104/31560104.pdf

210

Barker, E., Barker W., Burr, W., Polk, W., & Smid, M. (2012). Recommendation
for Key Management – Part 1: General (Revision 3). NIST Special Publication
800-57, pp. 63-64.

 Retrieved November, 01, 2013 from
 http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Brown, M., Hankerson, D., Lopez, J., & Menezes, A. (2001). Software Implementation
 of theNIST Elliptic Curves Over Prime Fields.
 Retrieved August, 17, 2013 from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.6300&rep=rep1&type
=pdf

Blake, I., Seroussi, G., & Smart, N. (2001). Elliptic curves in Cryptology. Cambridge:
 Cambridge University Press.

Burton, K., & Yin, Y. (2006). Storage-Efficient Finite Field Basis Conversion. RSA

Laboratory. Selected Areas in Cryptography ‘98 Proceedings, Lecture
Notes in Computer Science, Springer, 1999, vol. 1556, pp. 81-93.

Bernstein, D., & Lange, T. (2007). Analysis and Optimization of Elliptic-curve Single-

scalar Multiplication. American Mathematical Society. Contemporary Mathematics,
Finite Fields and Applications, vol. 461, pp. 1-19.

BOCHS. (2013). The Cross Platform IA-32 Emulator. Bochs 2.6.2 released on

May 26, 2013.
Retrieved October, 20, 2013 from
http://bochs.sourceforge.net/

Bos, J., Marcelo, E. Kaihara, K., Thorsten, K., Arjen, K., Lenstra, A., & Montgomery, P.
 (2009). On the Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography.
 Alcatel-Lucent Bell Laboratories and Microsoft Research.

Retrieved October, 20, 2013 from
 http://eprint.iacr.org/2009/389.pdf

Bos, J., Costello, C., Longa, P., & Naehrig, M. (2014). Selecting Elliptic Curves for
 Cryptography: An Efficiency and Security Analysis.
 Retrieved October, 20, 2013 from
 http://research.microsoft.com/pubs/209303/curves.pdf

Bartolini, S., Branovic, I., Giorgi, R., & Martinelli, E. (2008). Effects of Instruction-Set

Extensions on an Embedded Processor: A Case Study on Elliptic-Curve
Cryptography over GF(2m). IEEE Transaction on Computer, 57(5), May 2008.
Retrieved October, 20, 2013 from
http://www.dii.unisi.it/~giorgi/papers/Bartolini08a.pdf

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.6300&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.6300&rep=rep1&type=pdf
http://bochs.sourceforge.net/
http://eprint.iacr.org/2009/389.pdf
http://research.microsoft.com/pubs/209303/curves.pdf
http://www.dii.unisi.it/%7Egiorgi/papers/Bartolini08a.pdf

211

Bennett, M. K. (1995). Affine and Projective Geometry. New York: John Wiley & Sons
 Inc.

Bi, G., & Zeng, Y. (2004). Transforms and Fast Algorithms for Signal Analysis and
 Presentations. p. 27. Boston: Birkhauser.

BBOD. (2013). Black-Box Optimization Benchmarking.
 Retrieved January, 07, 2014 from
 http://coco.gforge.inria.fr/doku.php?id=bbob-2013

CAVP. (2013). Cryptographic Algorithm Verification Program. NIST Computer Security
 Division. Computer Security Resources Center.
 Retrieved January, 09, 2013 from
 http://csrc.nist.gov/groups/STM/cavp/

CAVP LABS. (2014). Testing Laboratories. Cryptographic Algorithm Verification
 Program. NIST Computer Security Division. Computer Security Resources Center.
 Retrieved May, 09, 2014 from
 http://csrc.nist.gov/groups/STM/testing_labs/index.html

CAVP OpenSSL. (2012). Validated FIPS 140-1 and FIPS 140-2 Cryptographic

Modules. Cryptographic Algorithm Verification Program. NIST Computer Security
Division. Computer Security Resources Center.

 Retrieved May, 09, 2014 from
 http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2012.htm

CAVP NSS. (2010). Validated FIPS 140-1 and FIPS 140-2 Cryptographic

Modules. Cryptographic Algorithm Verification Program. NIST Computer Security
Division. Computer Security Resources Center.

 Retrieved May, 09, 2014 from
 http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2010.htm

Ciet, M., Joye, M., Lauter, K., & Montgomery, P. (2006). Trading Inversions for
 Multiplications in Elliptic Curve Cryptography. Designs, Codes and
 Cryptography, 39(2), pp. 189-206.
 Retrieved August, 17, 2013 from
 http://research.microsoft.com/apps/pubs/default.aspx?id=178808

Certicom Research. (2009). Elliptic curve Cryptography.
 Retrieved August, 17, 2013 from
 www.secg.org/download/aid-780/sec1-v2.pdf

Certicom Research. (2004). An Elliptic Curve Cryptography (ECC) Primer.
 Retrieved August, 17, 2013 from
 http://www.certicom.com/images/pdfs/WP-ECCprimer.pdf

http://coco.gforge.inria.fr/doku.php?id=bbob-2013
http://csrc.nist.gov/groups/STM/cavp/
http://csrc.nist.gov/groups/STM/testing_labs/index.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2012.htm
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2010.htm
http://research.microsoft.com/apps/pubs/default.aspx?id=178808
http://www.secg.org/download/aid-780/sec1-v2.pdf
https://www.certicom.com/images/pdfs/WP-ECCprimer.pdf

212

Certicom Research. (1999). GEC 2: Test Vectors for SEC 1.
 Retrieved August, 17, 2013 from
 http://www.secg.org/download/aid-390/gec2.pdf
 http://www.secg.org/

Cantor, D. (1987). Computing in the Jacobian of a Hyperelliptic Curve.
 Mathematics of Computation, 48(177), pp. 95-101.
 Retrieved August, 17, 2013 from

http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866101-
0/S0025-5718-1987-0866101-0.pdf

Cohen, H., Miyaji, A., & Ono, T. (1998). Efficient Elliptic Curve Exponentiation
Using Mixed Coordinates. Advances in Cryptology - ASIACRYPT 98, International
Conference on the Theory and Applications of Cryptology and Information
Security, Beijing, China, October 18-22, 1998, Proceedings. Lecture Notes in
Computer Science, vol. 1514, pp. 51-65, Springer, 1998.

 Retrieved August, 17, 2013 from
 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2566

Cohen, H., Frey, G., Doche, C., & Avanzi, R. (2006). Handbook of Elliptic
 and Hyperelliptic Curve Cryptography. Boca Raton, FL: Chapman & Hall/CRC.

Cohn, H. (1962). Advanced Number Theory. New York: Dover Publications.

Connel, I. (1999). Elliptic Curve Handbook. McGill University.

Code XL. (2013). Advance Micro Devices Development Central.
 Retrieved October, 20, 2013 from
 http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

Crypto++. (2007). Crypto++® Library 5.6.2.
 Retrieved October, 20, 2013 from
 http://www.cryptopp.com/benchmarks-p4.html

COCO. (2013). Comparing Continuous Optimisers.
 Retrieved March, 20, 2014 from
 http://coco.gforge.inria.fr/doku.php

CST. (2014). Cryptographic and Security Testing. Directory of Accredited Laboratories,
 National Volunteer Laboratory Accreditation Program.
 Retrieved April, 09, 2014 from
 http://ts.nist.gov/standards/scopes/crypt.htm

http://www.secg.org/download/aid-390/gec2.pdf
http://www.secg.org/
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866101-0/S0025-5718-1987-0866101-0.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866101-0/S0025-5718-1987-0866101-0.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2566
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
http://www.cryptopp.com/benchmarks-p4.html
http://coco.gforge.inria.fr/doku.php
http://ts.nist.gov/standards/scopes/crypt.htm

213

CSE, (2014). Communications Security Establishment. Government of Canada.
 Retrieved July, 06, 2014 from
 http://www.cse-cst.gc.ca/index-eng.html

Mihocka, D., & Shwartsman, S. (2014). Virtualization Without Direct Execution or
 Jitting:Designing a Portable Virtual Machine Infrastructure.
 Retrieved January, 20, 2014 from
 http://bochs.sourceforge.net/Virtualization_Without_Hardware_Final.pdf

Drongowski, D. (2008). Basic Performance Measurements for AMD Athlon™ 64, AMD
 Opteron™ and AMD Phenom™ Processors. Advnace Micro Devices.
 Retrieved October, 20, 2013 from

http://developer.amd.com/wordpress/media/2012/10/Basic_Performance_Measurem
ents.pdf

EFD. (2001). Explicit-Formulas Database.
 Retrieved August, 17, 2013 from
 http://hyperelliptic.org/EFD

EFD_Double. (2001). Explicit-Formulas Database.
 Retrieved August, 17, 2013 from
 http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b

EFD_Add. (2007). Explicit-Formulas Database.
 Retrieved August, 17, 2013 from
 http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl

eBACS. (2004). eBACS: ECRYPT Benchmarking of Cryptographic Systems. European
 Network of Excellence in Cryptology II
 Retrieved October, 20, 2013 from
 http://bench.cr.yp.to/

FIPS-140-1. (1994). Security Requirements for Cryptographic
 Modules. FIPS PUB 140-1.
 Retrieved July, 06, 2014 from
 http://csrc.nist.gov/publications/fips/fips1401.htm

FIPS-140-2. (2001). Security Requirements for Cryptographic
 Modules. FIPS PUB 140-2.
 Retrieved August, 17, 2013 from
 http://csrc.nist.gov/groups/STM/cmvp/standards.html
 http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS-197. (2001). Specification for the Advanced Encryption Standard. FIPS PUB 197.
 Retrieved August, 17, 2013 from
 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://www.cse-cst.gc.ca/index-eng.html
http://bochs.sourceforge.net/Virtualization_Without_Hardware_Final.pdf
http://developer.amd.com/wordpress/media/2012/10/Basic_Performance_Measurements.pdf
http://developer.amd.com/wordpress/media/2012/10/Basic_Performance_Measurements.pdf
http://hyperelliptic.org/EFD
http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
http://bench.cr.yp.to/
http://csrc.nist.gov/publications/fips/fips1401.htm
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

214

FIPS PUB 186-4. (2013). Digital Signature Standard (DSS). Federal Information
 Processing Standards Publication, p. 87.
 Retrieved January, 01, 2014 from
 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS-1747. (2014). Validated FIPS 140-1 and FIPS 140-2 Cryptographic Modules.
 Retrieved July, 06, 2014 from
 http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm#1747

Fong, K., Hankerson, D., Lopez, & J., Menezes, A. (2004). Field Inversion and Point
 Halving Revisited. IEEE Trans. Computers, vol. 53, p. 1047–1059.

Jennic JN5148. (2010). Jennic Wireless Mote.
 Retrieved October, 20, 2013 from
 http://www.jennic.com/products/wireless_microcontrollers/jn5148

Jones, C. (2010). Software Engineering Best Practices. Lessons from Successful Projects
 in the Top Companies. NY: McGraw Hill.

Floyd, R. (1967). Nondeterministic Algorithms. Journal of the ACM, 14(4), p. 11,
 pp. 640-642.
 Retrieved November, 01, 2013 from
 http://repository.cmu.edu/cgi/viewcontent.cgi?article=2787&context=compsci

Fagan, M. (1976). Design and Code Inspections to Reduce Errors in Program
 Development. IBM Systems Journal 15(3), pp. 182-211, 1976.

Greenberg, M. (1995). Euclidean and non-Euclidean Geometries. Development and
 History, 3rd Ed. New York: W.H Freeman.

Gillham, B. (2003). Case Study Research Methods. Series Continuum Research Methods,
 1st Ed. Bloomsbury Academic, September 13, 2000.

Gilb, T. & Graham, D. (1993). Software Inspection. MA: Addison Wesley.

GNU-MP. (2011). The GNU Multiple Precision Arithmetic Library, 5.0.2. Ed., p. 116.
 Retrieved November, 01, 2013 from
 http://gmplib.org/

GNU-CPU-Time. (2014). CPU Time Inquiry.
 Retrieved March, 01, 2014 from
 http://www.gnu.org/software/libc/manual/html_node/CPU-Time.html

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm#1747
http://www.jennic.com/products/wireless_microcontrollers/jn5148
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2787&context=compsci
https://gmplib.org/
http://www.gnu.org/software/libc/manual/html_node/CPU-Time.html

215

GCC. (2013). The GNU Compiler Collection.
 Retrieved November, 01, 2013 from
 http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
 http://gcc.gnu.org/

Gell-Mann, M. (1995). What is complexity? Complexity 1(1): pp. 16-19.

Granlund, T. (2014). Instruction Latencies and Throughput forAMD and Intel x86
 Processors.
 Retrieved August, 09, 2014 from
 http://gmplib.org/~tege/x86-timing.pdf

Hennessy, J., & Patterson, D. (2006). Computer Architecture: A Quantitative Approach.
 Morgan Kaufman.

Hankerson, D., Menezes, A., & Vanstone, S. (2004). Guide to Elliptic Curve
 Cryptography. NY: Springer-Verlag Inc.

Herrmann, D. (2007). Complete Guide to Security and Privacy Metrics: Measuring

Regulatory Compliance, Operational Resilience, and ROI. Boca Raton FL:
Auerbach Publications.

Itoh, T., Tsujii, S. (1988). A Fast Algorithm for Computing Multiplicative Inverses in
 GF(2n) using Normal Bases. Information and Computation, vol. 78, pp.171-177.

IA-64-32. (2013). Intel 64 and IA-32 Architectures Software Developer’s Manual,
 Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, Section 4.2.
 Retrieved November, 01, 2013 from
 http://download.intel.com/products/processor/manual/325462.pdf

IA-64. (2013). Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume

3B: System Programming Guide, Part 2. Order Number: 253669-047 US. June
2013.

 Retrieved November, 01, 2013 from
 http://download.intel.com/products/processor/manual/253669.pdf

Intel AVX. (2011). Using Intel Advanced Vector Extensions to Implement an
 Inverse Discrete Cosine Transform.
 Retrieved November, 01, 2013 from
http://software.intel.com/en-us/articles/using-intel-advanced-vector-extensions-to-
implement-an-inverse-discrete-cosine-transform/

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/
http://gmplib.org/%7Etege/x86-timing.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/253669.pdf
http://software.intel.com/en-us/articles/using-intel-advanced-vector-extensions-to-implement-an-inverse-discrete-cosine-transform/
http://software.intel.com/en-us/articles/using-intel-advanced-vector-extensions-to-implement-an-inverse-discrete-cosine-transform/

216

IASE. (2013). Information Assurance Support Environment. Public Key Infrastructure
 (PKI) and Public Key Enabling (PKE).
 Retrieved from
 http://iase.disa.mil/pki-pke/index.html
 http://iase.disa.mil/index2.html

IEC-14756. (1999). Measurement and Rating of Performance of Computer-based
 Software Systems.

IEEE 1363. (2000). Standard Specifications for Public-Key Cryptography.
 IEEE Std 1363.12.2000 (Rev: 2000).

IEEE 610-12. (2002). Standard Glossary of Software Engineering Terminology.
 IEEE Std 610.12.1990 (Rev: 2002).

IEEE 982.1. (1998). Standard Dictionary of Measures to Produce Reliable
 Software. IEEE Std 982.1-1988.

IEEE 982.2. (1998). Guide for the Use of Standard Dictionary of Measures to
 Produce Reliable Software. IEEE Std 982.2-1988.

IEEE 982.1. (2005). Standard Dictionary of Measures of the Software
 Aspects of Dependability. IEEE Std 982.1-2005.

IEEE 1028. (1997). Standard for Software Reviews. IEEE Std 1028-1997.

IEEE 1028. (2008). Standard for Software Reviews and Audits. IEEE Std 1028-2008.

Intel PERC. (2013). Performance Counter Monitor. Intel® Performance Counter
 Monitor - A better way to measure CPU utilization.
 Retrieved October, 20, 2013 from

http://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-
way-to-measure-cpu-utilization

Intel Xscale. (2007). 3rd Generation Intel XScale® Microarchitecture.

Developer Manual. May 2007.
Retrieved November, 01, 2013 from
http://download.intel.com/design/intelxscale/31628302.pdf

Intel Latency. (2013). Intel 64 and IA-32 Architectures Optimization Reference Manual.
Order Number 248966-028, p. C-21, C-26, July 2013.
Retrieved November, 01, 2013 from
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf

ISO/IEC 15939. (2001). Software Engineering - Software Measurement Process.

http://iase.disa.mil/pki-pke/index.html
http://iase.disa.mil/index2.html
http://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
http://software.intel.com/en-us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-utilization
http://download.intel.com/design/intelxscale/31628302.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

217

ISBSG. (2007). ISBSG R10 Database. International Software Benchmarking Standards
 Group.

ISBSG. (2006). Glossary of Terms, version 5.9.1. International Software Benchmarking
 Standards Group.

ITU-X509. (2012). X.509: Information Technology - Open Systems Interconnection - The
 Directory: Public-key and Attribute Certificate Frameworks.

Retrieved January , 2014 from
 http://www.itu.int/rec/T-REC-X.509-201210-I/en
 http://www.itu.int/rec/T-REC-X.509

Joye, M. (2008). Fast Point Multiplication on Elliptic Curves without Precomputation.

 Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 5130, pp. 36-
46. Berlin Heidelberg: Springer-Verlag.

 Retrieved November, 01, 2013 from
 http://link.springer.com/chapter/10.1007%2F978-3-540-69499-1_4
 http://www.joye.site88.net/papers/Joy08fastecc.pdf

Kasper, E. (2012). Fast Elliptic Curve Cryptography in OpenSSL. Belgium,
 ESAT/COSIC, Katholieke Universiteit Leuven, Belgium Proceeding FC'11

Proceedings of the 2011 International Conference on Financial Cryptography and
Data Security, pp. 27-39. Heidelberg, Berlin: Springer-Verlag.
Retrieved October, 20, 2013 from
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google
.com/en/us/pubs/archive/37376.pdf

Koc, C. (2009). Cryptographic Engineering. Springer Science Business Media, LLC.

Koblitz, N. (2000). Efficient Arithmetic on Koblitz Curves. Designs, Codes and

Cryptography - Special issue on towards a quarter-century of public key
cryptography, 19(2-3), pp. 195-249. Norwell, MA: Kluwer Academic Publishers.

 Retrieved October, 20, 2013 from
 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.2469

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0F99ACB6138C89D0591
A157C1B73E55D?doi=10.1.1.157.2469&rep=rep1&type=pdf

Kepler, J. (1571). Johannes Kepler: His Life, His Laws and Times.

Retrieved October, 20, 2013 from
http://kepler.nasa.gov/Mission/JohannesKepler/

Knuth, D. (1969). The Art of Computer Programming, vol. II: Seminumerical Algorithm,
. exercises 6 and 7, p. 7. Addison-Wesley.

http://www.itu.int/rec/T-REC-X.509-201210-I/en
http://www.itu.int/rec/T-REC-X.509
http://link.springer.com/chapter/10.1007%2F978-3-540-69499-1_4
http://www.joye.site88.net/papers/Joy08fastecc.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37376.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37376.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.2469
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0F99ACB6138C89D0591A157C1B73E55D?doi=10.1.1.157.2469&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0F99ACB6138C89D0591A157C1B73E55D?doi=10.1.1.157.2469&rep=rep1&type=pdf
http://kepler.nasa.gov/Mission/JohannesKepler/

218

Keyes, J. (2005). Software Engineering Handbook. Boca Raton NY: Auerbach
 Publications.

Levinthal, D. (2009). Performance Analysis Guide for Intel Core™ i7 Processor and
 Intel® Xeon™ 5500 Processors.
 Retrieved October, 20, 2013 from

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_g
uide.pdf

Lathi, P. (1998). Signal Processing and Linear Systems, p. 641. Berkerley-Cambrigde.

Li, T. (2008). Digital Signal Processing Fundamentals and Applications, p. 87. Elsevier.

Laird, L., & Brennan, M. (2006). Software Measurement and Estimation: A Practical
 Approach. John Wiley & Sons Inc.

Menezes, A., Oorschot, P., & Vanstone, S. (1996). Handbook of Applied Cryptography.
 Boca Raton, FL: CRC Press LLC.

Mittelmann, H., & Pruessner, A. (2004). A Server for Automated Performance Analysis
 of Benchmarking Data. Arizona State University.
 Retrieved October, 20, 2013 from
 http://plato.asu.edu/ftp/papers/paper99.pdf

MIRACL. (2013). Multiprecision Integer and Rational Arithmetic.

Retrieved November, 01, 2013 from
 http://www.certivox.com/miracl/

Maeder, R. (1996). Long Integers: Efficient Algorithm. Mathematica Programmer,

6(3), Summer 1996.
Retrieved March, 01, 2014 from
http://www.mathematica-
journal.com/issue/v6i3/columns/maeder/contents/63maeder.pdf

Morowitz, H. (2002). The Emergence of Everything: How the World Became Complex.
 Newyork, NY: Oxford University Press.

NSS. (2013). Network Security Services.
 Retrieved August, 17, 2013 from
 http://developer.mozilla.org/en-US/docs/NSS
 https://developer.mozilla.org/en-US/docs/NSS_Sources_Building_Testing

NSS-1. (2013). Overview of NSS. Open Source Crypto Libraries.
 Retrieved August, 17, 2013 from
 http://developer.mozilla.org/en-US/docs/Overview_of_NSS

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://plato.asu.edu/ftp/papers/paper99.pdf
http://www.certivox.com/miracl/
http://www.mathematica-journal.com/issue/v6i3/columns/maeder/contents/63maeder.pdf
http://www.mathematica-journal.com/issue/v6i3/columns/maeder/contents/63maeder.pdf
http://developer.mozilla.org/en-US/docs/NSS
https://developer.mozilla.org/en-US/docs/NSS_Sources_Building_Testing
https://developer.mozilla.org/en-US/docs/Overview_of_NSS

219

NSS-2. (2014). NSS Open Source Repository
 Retrieved March, 30, 2014 from
 ftp://ftp.mozilla.org/pub/mozilla.org/security/nss/releases/NSS_3_16_RTM/src/

NIST 800-56A. (2013). Recommendation for Pair-Wise Key Establishment Schemes
 Using Discrete Logarithm Cryptography. NIST Special Publication 800-56A,
 Revision 2.
 Retrieved January, 17, 2014 from
 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf

NIST. (2010). Mathematical Routines for the NIST Prime Elliptic Curves.
 Retrieved August, 17, 2013 from
 http://www.nsa.gov/ia/_files/nist-routines.pdf

NIST. (2008). Performance Measurement Guide for Information Security. NIST Special

Publication 800-55, Revision 1.
Retrieved August, 17, 2013 from

 http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf

NIST. (2007). Key Exchange Establishment Elliptic Curve Diffie Hellman (ECDH) Using
 256 and 384-bit Prime Moduli. NIST Special Publication 800-56A.
 Retrieved August, 17, 2013 from
 http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-56Arev1_3-8-07.pdf

NIST. (2003). Security Metrics for Information Technology Systems. National Institute of
 Standards and Technology Special Publication 800-55, July 2003.

NSA. (2013). NSA Suite B Cryptography. National Security Agency.
 Retrieved January 21, 2013 from
 http://www.nsa.gov/ia/programs/suiteb_cryptography/

http://www.gdc4s.com/Documents/Products/COTS%20Tectical%20Wireless%20N
etworking/Fortress%20Secure%20Client%20Comms/SuiteB_FINAL.pdf

 http://www.gdfortress.com/Technology-Article/suite-b.html

Fenton, N., & Pfleeger, S. (1996). Software Metrics: A Rigorous and Practical Approach.
 (2nd Edition). International Thomson Computer Press.

OpenSSL. (2013). Open Security Sockets Layer.
 Retrieved August, 17, 2013 from
 http://www.openssl.org/
 http://www.openssl.org/source/

OpenSSL-1. (2014). Open Source Repository. Open Security Sockets Layer.
 Retrieved March, 30, 2014 from
 https://www.openssl.org/source/

ftp://ftp.mozilla.org/pub/mozilla.org/security/nss/releases/NSS_3_16_RTM/src/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://www.nsa.gov/ia/_files/nist-routines.pdf
http://csrc.nist.gov/publications/nistpubs/800-55-Rev1/SP800-55-rev1.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-56Arev1_3-8-07.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.gdc4s.com/Documents/Products/COTS%20Tectical%20Wireless%20Networking/Fortress%20Secure%20Client%20Comms/SuiteB_FINAL.pdf
http://www.gdc4s.com/Documents/Products/COTS%20Tectical%20Wireless%20Networking/Fortress%20Secure%20Client%20Comms/SuiteB_FINAL.pdf
http://www.gdfortress.com/Technology-Article/suite-b.html
http://www.openssl.org/
http://www.openssl.org/source/
https://www.openssl.org/source/

220

OMB. (2012). Fiscal year 2011 Report to Congress on the Implementation of the Federal
 Iinformation Security Management Act of 2002. Office of Management and Budget
 Retrieved from

http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/fy11_fisma.pdf

PAPI. (2013). Performance Application Programming Interface. Innovative Computing
 Laboratory at the University of Tennessee.
 Retrieved October, 20, 2013 from
 http://icl.cs.utk.edu/papi

Pollard, M. (1975). A Monte Carlo method for factorization. BIT Numerical Mathematics
 15(3), pp. 331–334.

Pohlig, S., & Hellman, M. (1978). An Improved algorithm for computing logarithms over

GF(p) and its cryptographic significance. IEEE transactions on Information Theory
24, pp. 106–110.

Paré, G. (2004). Investigating Information Systems with Positivist Case Research.
 Communications of the Association for Information Systems, 3(18).
 Retrieved October, 20, 2013 from

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=32CF66873A325F269E01
00CA17671D82?doi=10.1.1.65.4667&rep=rep1&type=pdf

Patterson, D. & Hennessy, J. (2012). Computer Organization and Design, the
 Hardware/Software Interface. New York, NY: Elsevier.

Rovenski, V. (2006). Differential Geometry of Curves and Surfaces, pp. 65-70. Boston,
 MA: Birkhauser.

RSA Key Size. (2013). How Large a Key Should be Used in the RSA Cryptosystem? RSA
 Laboratories.
 Retrieved January 21, 2013 from

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/how-large-a-key-
should-be-used.htm

Rosen, K. (2006). Discrete Mathematics and Its Applications, 3rd Ed.
 Boca Raton, FL: Chapman & Hall.

Ryabko, B., & Fionov, A. (2005). Basics of Contemporary Cryptography for IT
 Practitioners, vol. 1. Series on Coding Theory and Cryptology. Hackensack,
 NJ: World Scientific Publishing Company (September 2005).

Runeson, P., Andersson, C., Thelin, A., Andrews, A. & Berling, T. (2006). What Do We
 Know about Defect Detection Methods. IEEE Software, 23(3), pp. 82-90,
 May/June 2006.

http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/fy11_fisma.pdf
http://icl.cs.utk.edu/papi
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=32CF66873A325F269E0100CA17671D82?doi=10.1.1.65.4667&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=32CF66873A325F269E0100CA17671D82?doi=10.1.1.65.4667&rep=rep1&type=pdf
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/how-large-a-key-should-be-used.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/how-large-a-key-should-be-used.htm

221

SEI. (1997). C4 Software Technology Reference Guide — A Prototype. Software.
 Engineering Institute, Carnegie Mellon University. Pittsburgh, Pennsylvania.
 Retrieved January 21, 2013 from
 http://www.sei.cmu.edu/reports/97hb001.pdf

Stevenhagen, P. (2008). The Number Field Sieve. Algorithmic Number Theory,
 44, pp. 83-100. MSRI Publications.

Somani, T. (2010). Performance Evaluation of Elliptic Curve Projective Coordinates
 with Parallel GF(p) Field Operations and Side-Channel Atomicity. Journal of
 Computers, 5(1), Jan 2010.
 Retrieved October, 20, 2013 from

http://ojs.academypublisher.com/index.php/jcp/article/view/050199109

Solinas, J. (1999). Generalized Mersenne Numbers. Tech. Report Centre for Applied
 Cryptographic Research.

Retrieved November, 01, 2013 from
 http://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf

SEC 1. (2000). Standards for Efficient Cryptography Group. SEC 1: Elliptic Curve

Cryptography, 1st Ed., Sep. 2000.
Retrieved November, 01, 2013 from
http://www.secg.org/download/aid-385/sec1_final.pdf
http://www.secg.org/index.php?action=secg,docs_secg

Saldamli, G., & Koc, K. (2009). Cryptographic Engineering, p. 125. Springer Science.

Szerwinski, R., Guneysu, T. (2008). Exploiting the Power of GPUs for Asymmetric
 Cryptography. Workshop on Cryptographic Hardware and Embedded Systems
 (CHES’08), LNCS (5154), pp. 79–99.

Source-Selection. (2011). Source Selection procedures. Department of Defense.

Retrieved July, 01, 2013 from
http://www.acq.osd.mil/dpap/policy/policyvault/USA007183-10-DPAP.pdf

Singhal, N., & Raina, J. (2011). Comparative Analysis of AES and RC4 Algorithms for
 Better Utilization. International. Journal of Computer Trends and Technology.
 July to Aug Issue 2011, pp. 177-181.

Salomon, D. (2006). Transformations and Projections in Computer Graphics.
 pp. 98-101. London: Springer-Verlag.

Shukri, A., Wakid, D., Richard, K., & Dolores, R. W. (1999). Toward Credible IT
 Testing and Certification, pp. 39-47. IEEE Software, July-Aug 1990

http://www.sei.cmu.edu/reports/97hb001.pdf
http://ojs.academypublisher.com/index.php/jcp/article/view/050199109
http://cacr.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://www.secg.org/download/aid-385/sec1_final.pdf
http://www.secg.org/index.php?action=secg,docs_secg
http://www.acq.osd.mil/dpap/policy/policyvault/USA007183-10-DPAP.pdf

222

US-CERT. (2014). United States Emergency Readyness Team.
Retrieved January, 01, 2014 from

 http://www.us-cert.gov/

VirtualBox. (2014). VirtualBox by Oracle. Oracle Corporation.

Retrieved January, 01, 2014 from
https://www.virtualbox.org

Veblan, O., & Bussey, W. (1906). Finite Projective Geometry.
 Retrieved October, 20, 2013 from

http://www.ams.org/journals/tran/1906-007-02/S0002-9947-1906-1500747-
6/S0002-9947-1906-1500747-6.pdf

WindRiver SIMICS. (2013). Wind River Simics Full System Simulation.
 Retrieved October, 20, 2013 from
 http://www.windriver.com/products/simics/
 http://www.windriver.com/products/simics/simics_po_0520.pdf

Watson, A. H., & McCabe, T. J. (1996). Structured Testing: A Testing Methodology
 Using the Cyclomatic Complexity Metric (NIST Special Publication 500-235).
 Retrieved May, 20, 2014 from
 http://www.mccabe.com/pdf/mccabe-nist235r.pdf

Yin, K. (2003). Case Study Research, Design and Methods, 3rd Ed. Beverly Hills,
 CA: Sage Publications.

Yin, K. (1994), Case Study Research. Design and Methods, 2nd Ed. Thousand Oaks,
 CA: Sage Publications,

ZigBee. (2010). ZigBee Alliance, Understanding ZigBee
 Retrieved January, 01, 2014 from
 http://www.zigbee.org/About/UnderstandingZigBee.aspx
 http://www.zigbee.org/

http://www.us-cert.gov/
https://www.virtualbox.org/
http://www.ams.org/journals/tran/1906-007-02/S0002-9947-1906-1500747-6/S0002-9947-1906-1500747-6.pdf
http://www.ams.org/journals/tran/1906-007-02/S0002-9947-1906-1500747-6/S0002-9947-1906-1500747-6.pdf
http://www.windriver.com/products/simics/
http://www.windriver.com/products/simics/simics_po_0520.pdf
http://www.mccabe.com/pdf/mccabe-nist235r.pdf
http://www.zigbee.org/About/UnderstandingZigBee.aspx
http://www.zigbee.org/

	Nova Southeastern University
	NSUWorks
	2014

	Performance Comparison of Projective Elliptic-curve Point Multiplication in 64-bit x86 Runtime Environment
	Ninh Winson
	Share Feedback About This Item
	NSUWorks Citation

	Introduction
	Projective Elliptic-curve Point Multiplication Preliminary
	Point Doubling and Point Adding

	Associated Environments of PEPMA
	System Architecture
	Run-time Domain Parameters

	The Empirical Performance Evaluation
	Latency of PEPMA
	Coarse Estimates Efficiency of PEPMA
	Fine Estimates Efficiency of PEPMA
	Program Profiling through Virtualization and Emulation

	Accurate and Precise Efficiency Evaluation of PEPMA
	Motivation and Direct Application
	Problem Statement, Goal and Objectives
	Barriers and Issues
	Qualifications of Quantifiable Metrics
	Mathematical Optimization Factors
	Selection Criteria
	Mathematical Traceability

	Research Questions
	Relevance, Significance and the Need to Evaluate
	Definition of Terminology

	Literature Review
	Performance Evaluation Standards
	Efficiency Measurement
	Elliptic-Curve Principles in PEPMA
	Concept of Point Computation in Projective Domain
	Point at Infinity
	Computation in Mixed Coordinate
	PEPMA Domain Parameters

	Research in Numeric Presentation and Computation
	Modulo Reduction
	Inversion

	Prior Research in Evaluating PEPMA
	Explicit Formulation

	Methodology
	Overview
	Unit of Analysis
	Compliance Metric
	Static Complexity Metric
	Weighted Information Flow Complexity
	Module Maturity Index
	Functionality Metric
	Efficiency Metric and Formulation
	NSS PEPMA
	OpenSSL PEPMA
	Point at Infinity
	Performance Hardware Counter
	Program Profiling and Emulation
	Run-time Factors
	Efficiency Formulation Analysis

	Method for Verification
	Projected Outcome
	Proposition of Format for Presenting the Results
	Combined Key Performance Indicator

	Resource Requirements
	Timeline
	Chapter Summary

	Results
	Introduction
	Systematic Software Reviews and Selection of Unit of Analysis
	Concept of Instrumentation
	Overview of the Finding in General
	Overview of the Findings of Efficiency Metric and Formulation
	Finding of NSS Affine to Projective Transformation
	Findings of APT in OpenSSL
	Analysis of Affine to Projective Transformation
	Finding of NSS Exponentiation Function
	Analysis of NSS Exponentiation Function
	Finding of NSS Point-Doubling
	Analysis of NSS Point-Doubling
	Finding of NSS Point-Adding
	Analysis of NSS Point-Adding
	Analysis of NSS Exponentiation Function, Revisited
	Finding of OpenSSL Exponentiation Function
	Analysis of NSS vs. OpenSSL Exponentiation Function
	Finding of NSS Pre-computation
	Analysis of Pre-computation
	Finding of NSS/OpenSSL Projective to Affine Transformation
	Analysis of NSS/OpenSSL Projective to Affine Transformation
	Finding of the Compliance Metric
	Analysis of Compliance Metric
	Finding of Cyclomatic Complexity Metric
	Analysis of Cyclomatic Complexity Metric
	Findings of Weighted Information Flow Complexity
	Analysis of Weighted Information Flow Complexity (WIFC)
	Finding of Module Maturity Index
	Analysis of Module Maturity Index
	Finding of Functionality Metric
	Analysis of Functional Metric
	Summary of Key Performance Indicators
	Finding of Combined Key Performance Indicator
	Chapter Summary

	Conclusion, Implications, Recommendations, and Summary
	Objective and Goal Review
	Conclusion
	Implications
	Practical Applications

	Recommendations
	Future Work
	Appendix A. Counting CPU Instructions
	Appendix B. ECDH Protocol
	Appendix C. An ECDH Transaction
	Appendix D. Modulus m, Order m
	Appendix E. Point Adding of NSA Test Vectors
	Appendix F. NIST Test Vectors
	Appendix G. NSS Exponentiation Procedure
	Appendix H. OpenSSL Exponentiation Procedure
	Appendix I. Description of Clock() Function
	Appendix J. Selection of Operational Parameters for P-521
	Appendix K. Operation of BOCHS
	Appendix L. Operation of PAPI
	Appendix M. Configuration and Compilation of NSS
	Appendix N. Configuration and Compilation of OpenSSL
	Appendix O. Test Vector Type A
	Appendix P. Test Vector Type B
	Appendix Q. Test Vector Type B
	Appendix R. Computing Platform Type A
	Appendix S. Computing Platform Type B
	Appendix T. Computing Platform Type C, CPU Resource Busy
	Appendix U. Description of Metrics TOT_CYC and TOT_INS
	Appendix V. Description of Metrics imulq and movq

