
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2014

Using Class Interfaces and Mock Objects to Unit
Test Aspects
Michael Bryan Snider
Nova Southeastern University, mbsnider@comcast.net

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: http://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Michael Bryan Snider. 2014. Using Class Interfaces and Mock Objects to Unit Test Aspects. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (8)
http://nsuworks.nova.edu/gscis_etd/8.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/51072429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Using Class Interfaces and
Mock Objects to Unit Test Aspects

by

Michael Bryan Snider

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Science

Graduate School of Computer and Information Sciences
Nova Southeastern University

2014

We hereby certify that this dissertation, submitted by Michael Snider, conforms to acceptable

standards and is fully adequate in scope and quality to fulfill the dissertation requirements

for the degree of Doctor of Philosophy.

___ ________________

Francisco J. Mitropoulos, Ph.D. Date

Chairperson of Dissertation Committee

___ ________________

Sumitra Mukherjee, Ph.D. Date

Dissertation Committee Member

___ ________________

Michael J. Laszlo, Ph.D. Date

Dissertation Committee Member

Approved:

___ ________________

Eric S. Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2014

An Abstract of a dissertation submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Using Class Interfaces and Mock Objects to Unit Test Aspects

by

Michael B. Snider
May 2014

Aspect oriented programming (AOP) has garnered a great deal of research interest in the
past decade. The research has centered on the ability to implement aspects and to
identify cross-cutting concerns in existing software. Little work has been done on the
ability to test software that is created using AOP constructs.

In object oriented programming (OOP) class objects are individual units of code that
encapsulate the desired functionality of each object. AOP is an attempt to handle the
cross-cutting concerns that represent functionality needed by a class, but is not specific to
that class. The cross-cutting functionality is implemented in AOP by using a class-like
structure, the aspect. Aspects do not have their own context and as such are dependent
upon other objects for their context. By not having their own context it is difficult to test
the functionality of aspects. This study investigated the effectiveness of using class
interfaces and mock objects to unit test aspects. This was accomplished by having the
mock object inherit from the same interface as the base code, so that the mock object
could be swapped in for the aspect.

Acknowledgements

This dissertation would not have been possible without the support and understanding

of many individuals.

I would like to start by thanking my wife Sharon, if it were not for her loving support

this would not have been possible. She put up with all of the hours of studying and
countless trips to Florida that have allowed me to reach this achievement. I also wish to
dedicate this work to my daughters Alexa and Madelyne who continually pushed me to
keep going by asking when I was going to get done and by telling everyone that I was
working on my doctorate.

Next I wish to thank Dr. Frank Mitropoulos. When I started my dissertation I was a

ship lost at sea. Through his guidance I was able to identify a topic of research. He
continued to guide me and advice me so that I continued to make steady progress until
reaching the end. I would also like to thank my committee members Dr. Laszlo and Dr.
Mukherjee.

I wish to thank my father, Bryan William Snider, for his support and faith in me. He

was always there when I needed him no matter where I was or what the need. While he
did not get to see me finish this project he always knew that I would.

Finally I would like to mention my Nova Southeastern doctoral colleagues and study

group. The individuals in this group were there for me providing support and
encouragement during course work and the dissertation process. I would particularly like
to mention Dr. Raymond Halper for being a friend and study partner during the majority
of my course work and Dr. Ron Krawitz for continually providing help and support to
keep me going during the dissertation process.

v

Table of Contents

Abstract iii
List of Figures vii
List of Tables viii

Chapters

1. Introduction 1

Background 1
Problem Statement 3
Goal 13
Research Questions 13
Relevance and Significance 14
Barriers and Issues 16
Limitations 17
Definitions of Terms 18
Summary 18

2. Review of Literature 20

Unit Testing 20
Data-flow Based Unit Testing 20
State Based Testing 25
Joinpoint Testing 27
Unit Testing of Aspects 29

3. Methodology 34
Research Methods 34
Test Criteria 36
Implementation Strategy 39
Procedures 46
Resource requirements 54

4. Results 55
Analysis 55
Summary of Results 58

How many aspect joinpoint types 60
Is a class interface beneficial 61
Can mock objects supply aspect context 61

Summary 62

5. Conclusions 63

Implications 63
Recommendations 64

vi

Summary 65

Reference 71

vii

List of Figures

Figures

1. AOP Weaving Process 2
2. Testing with a stub 6
3. Testing with a mock object 7
4. Interface example 10
5. Stub versus mock 11
6. A stub 12
7. A mock 12

8. Example of an ASM 26
9. Unit test account Id updated 42
10. Person class assigned Id by advice 43
11. Unit test customer class 45
12. Class interface 46
13. Account class in application inheriting interface 48
14. Aspect to validate account class 49
15. Mock account class in test project 51
16. Unit test before aspect weaving 52
17. Unit test after aspect weaving 53
18. Interface usage in an aspect 60

viii

List of Tables

Tables

1. Overview of AspectJ programs evaluated 41
2. Insertion coverage 56
3. Code coverage 57
4. Time comparison 58

1

Chapter 1

Introduction

Background

Aspect Oriented Programming (AOP) was first introduced by Gregor Kickzales in

1996 (Haque, 2011). It was not proposed as a replacement to Object Oriented

Programming (OOP), but as an enhancement. AOP is a methodology that deals with the

problem of cross-cutting concerns found within a software application (Lemos, Ferrari,

Masiero, & Lopes, 2006). In OOP classes are created to represent functional objects that

are specified within the design requirements. However, there exist requirements that

cannot be confined to a single object and do not represent needed functionality of that

object. When a requirement is not a core concern of a class or method and that concern

is needed in numerous places it is considered to be a cross-cutting concern (Monteiro &

Aguiar, 2007). As an example, logging of actions within a method is typically a cross-

cutting concern. Within the method, logging is not a core concern, but it is a requirement

of the application that actions are to be logged. The logging takes place within numerous

methods within the application, but the concern of logging is a functional requirement of

the application.

2

AOP is a programming paradigm that addresses the issue of modularization of cross-

cutting concerns (Wedyan & Ghosh, 2010). AOP extends programming by introducing

four new concepts: joinpoints, pointcuts, advice and aspects (Wloka, Hirschfeld, &

Hansel, 2008). The aspect is the construct for encapsulating a cross-cutting concern.

Each aspect contains the functionality for a cross-cutting concern. An AOP aspect is

very similar to a class found within an OOP application. Aspects have the same

constraints as an OOP class (Parizi & Ghani, 2007). The aspect is implemented by

weaving it into the base application code, see Figure 1.

Figure 1: AOP Weaving Process

A joinpoint is a well-defined point within an application. A pointcut selects specific

joinpoints and values at those joinpoints. The advice is code that will be executed when

the joinpoint is reached during execution. The most common type of joinpoint is a

method call. As AOP has advanced, the joinpoint types have grown to include attribute

access and the initialization of an object (Parizi & Ghani, 2007). The pointcut is a set of

patterns that designate how to recognize a joinpoint. By using a pointcut to identify

several joinpoints within a program a software developer is able to implement a single

piece of functionality at several places within an application (Parizi & Ghani, 2007). The

3

number of places the pointcut is implemented is dependent upon the joinpoint definition.

The definition can be tight to look for a specific method within a specific class or, on the

opposite, end it can be broad to include all methods in all classes.

In AOP there are three types of advice available; before, after and around. The before

advice will execute as the joinpoint is reached and prior to the base code at the joinpoint

being executed. The after advice will be executed at the joinpoint after the base code is

executed. The around advice will execute instead of the base code at the associated

joinpoint. The base code is not always skipped by the around advice. By calling the

proceed method from within the around advice the base code will be executed (Monteiro

& Aguiar, 2007).

As with any software construct, to ensure that the code works properly it must be

tested for correctness at the time of development. This testing should be done before and

during integration and repeated during continuing development. It is through the process

of verification that one is able to increase the confidence that a program functions as

intended (Olan, 2003). A programmer cannot assume that because their code compiles

that it will execute properly or as intended. Unfortunately, too many programmers

assume that because there are no syntax errors the code will work correctly (Olan, 2003).

Problem Statement

This study proposes to research the benefit of, or lack thereof, using class interfaces

and mock objects in unit testing of aspects.

4

Parizi and Ghani (2007) noted that the testing of AOP and aspects is very difficult,

due to aspects not having their own context and thus being dependent upon other objects.

This difficulty includes the following (Alexander, Bieman, & Andrews, 2004):

• Aspects do not have their own identity or existence. They are dependent upon

another class for their identity and execution context.

• Aspects are tightly coupled to the classes with which they are woven. Aspects are

dependent on the internal representation and configuration of the methods to

which they are woven. Any change to these methods is likely to have a direct

effect on the aspect.

• When looking at source code the control and data dependencies are not readily

visible for either the aspects or the base classes. The developer of the base code

and the aspects are likely to be different personnel and, as such, it is very likely

that neither developer will know the resulting control flow of the woven code.

Finding failures in the resulting woven code may be difficult.

• There are many possible locations of a fault. The location of a fault may lie

within the implementation of either the aspect or the base code method, or it could

be the result of the weaving order of multiple aspects.

Unit testing was first introduced by Kent Beck in the 1970’s in association with

Smalltalk (Osherove, 2009). A unit test is a piece of code that invokes another piece of

code. The desired effect of a unit test is to check for correctness of the invoked code by

making assumptions about what the invoked code should or should not do. If the

5

assumption fails to happen then the unit test has failed and a change must be made to

either the code tested or the unit test (Olan, 2003).

When testing units of code it is often required to provide additional information to

handle external dependencies. Stubs are one device for solving the dependency problem

in unit tests. A stub is a controllable replacement for a system dependency (Osherove,

2009). The stub allows for the testing of code without having to worry about an external

dependency. The stub code will simulate what is actually done by the dependency code.

In unit testing, a unit of code is being tested in isolation. To help achieve this

isolation, stubs have been used to create artificial dependencies that mimic a unit’s actual

dependencies. There are also times when the unit test interacts with other objects by

sending inputs or receiving outputs from the other objects. In Mackinnon, Freeman, and

Craig (2001) a new technique is proposed to handle the interaction testing by the usage of

mock objects.

With normal unit testing a tester is trying to test the units from the outside. With

mock objects one is replacing the domain code with dummy code (Mackinnon, et al.,

2001). As stated previously, this is similar to stubs but with two differences: 1) the testing

has a finer granularity and 2) the stubs and tests are used to drive the development of the

domain code.

When one first looks at stubs and mock objects the difference seems to be very small.

However, the distinction is quite important (Osherove, 2009). A stub will replace an

object so that one is able to test another object without problems. A stub is used for doing

action-driven testing, meaning that a particular action an object takes is being tested. A

mock object is used for result-driven testing. In result-driven testing the test is looking to

6

see that an end result is now true (Osherove, 2009). The easiest method for determining

if one is dealing with a stub is that the stub never fails a test, while mock objects will be

used to verify whether a test is passed or failed. In using a stub, the operations assert is

performed against the class being tested. The stub assists in making sure the test runs

smoothly, see Figure 2. When using a mock object the test communicates with the mock

object and the mock object records the communications. The test is using the mock

object to verify that the test passes, see Figure 3.

Figure 2: Testing with a stub

7

A
s
s
e
rt

Figure 3: Testing with a mock object

The advantage to using a mock object is that the usage will assist in making the test

more readable since a developer can identify the interactions by setting the constraints to

the mock object in the test. The mock object also has the advantage of assisting the test

to execute rapidly and smoothly (Kim, Park, & Wu, 2006). When developing code one

of the most important advantages to mock objects is the ability to create the interaction

between an object and its neighbors. It is typical for the neighbor objects to not exist at

the time a developer is creating an object. By implementing mock objects to act as

placeholders for the missing neighbors a developer is able to continue working on the

object at hand. When creating the mock object the developer would only need to

implement those methods used by the object under development. Mock objects are

usually used in the following cases:

• Tests are taking too long to execute

8

• Tests do not run consistently

• When it may not be possible to run all of the tests

• When there exists a large dependency chain

• When a collaborator could cause events that cannot be easily recreated within

a test.

In their follow up work Freeman, Mackinnon, Pryce, and Walnes (2004) updated the

work that had been done in their original paper, Mackinnon, Freeman, and Craig (2001),

on mock objects based upon their experiences with using mock objects. In this work they

presented the usage of interfaces with mock objects. Interfaces are one of the

foundations of an object-oriented system (Nandigam, et al., 2009). Interface based

systems show three key characteristics: flexibility, extensibility and plug-ability. In OOP

an interface is a language construct that will specify a set of method signatures that will

define the objects behavior. The signature of a method will include the name of the

method, any input parameters and a return type. Interfaces are only a specification

construct and do not contain any implementation. The implementation is left to the

object that is declaring usage of the interface (Nandigam, et al., 2009). By using an

interface one is able to decouple the classes within a system. This decoupling will help

reduce the dependencies between the classes and subsystem. The reduction comes from

an adhering to the reusability principle design of “program to an interface, not to an

implementation” (Gamma, Helm, Johnson, & Vlissides, 1995).

The following is an example of an interface inherited by two different classes. In the

Main procedure each of the classes is instantiated and stored into an array based upon the

9

class interface. The elements of the array can be accessed either as their base class or by

the interface.

public interface IAnimal

{

public void Name(string filename);

public string Speak();

public void Birth();

}

public class Bird : IAnimal

{

 Private string name;

public void Name(string filename)

{

 name = filename;

}

public string Speak()

{

 return "chirp, chirp";

}

public void Birth()

{

 //code to lay an egg

}

}

public class Dog : IAnimal

{

 Private string name;

public void Name(string filename)

{

 name = filename;

}

public string Speak()

{

 return "bark, bark";

}

public void Birth()

{

 //code to have puppies

}

}

10

public static void Main(string[] args)

{

 Bird bird = new Bird();

 Dog dog = new Dog();

IAnimal[] animals = new IAnimal[2];

animals[0] = bird;

animals[1] = dog;

dog.Name = "Fred";

bird.Name = "Tweety";

string output = "bird says " + animals[0].speak + " dog

says " + animals[1].speak;

}

Figure 4: Interface Example

Instead of creating mock objects in isolation that duplicate the domain code Freeman,

et al. (2004) propose using interfaces that are thus inherited by both the domain code and

the mock object code. By inheriting the interface the work to maintain the mock objects

is reduced. The reduction in work was achieved by coding to an interface, the mock

objects then only need to implement that functionality needed to complete the testing.

The usage of an interface allows a developer to create a class that needs another class that

does not yet exist. The interface is created and used by the dependent class, then at some

later time the interface is inherited by a class and its functionality is created. An interface

also assists in keeping the mock code and base code synchronized. If a new construct is

added to the interface it must also be added to the base and mock classes, if not the code

will not compile.

In the example that follows we can see the difference in the usage of a stub and a

mock object. Both the stub and the mock object are created by inheriting from an

interface that readily allows for substitution of the actual object within the test code.

11

public interface IExtensionMgr { public bool IsValid(

string filename); }

public class ExtensionMgrMock : IExtensionMgr

{

 public string lastError;

 public bool IsValid(string filename)

{

…

if(invalidFilename) lastError =

String.Format("Filename {0} is not valid",

filename);

}

}

public class ExtensionMgrStub : IExtensionMgr

{

 public void IsValid(string filename)

{

 Return true;

}

}

public class FileLogAnalyzer

{

 private IExtensionMgr manager;

FileLogAnalyzer ()

{

manager = new FileExtensionMgr();

}

FileLogAnalyzer (IExtensionMgr mgr)

{

manager = mgr;

}

public bool setFilename (string name)

{

Return mgr.IsValid(name);

}

}

Figure 5: Stub versus Mock

A stub would test if a filename is correct by calling the base class’s method, in this
case FileLogAnalyzer’s log method. The code is:

12

public class TestFileLogAnalyzer …

{

 public void testIsNameValid()

{

FileLogAnalyzer log = new FileLogAnalyzer ();

ExtensionMgrStub mailer = new ExtensionMgrStub ();

log.setMailer(mailer);

bool rtn = log. setFilename ("afile");

Assert.IsTrue(rtn);

}

}

Figure 6: A stub

A mock object would test if a message is sent by calling the mock object, as shown:

public class TestFileLogAnalyzer …

{

 public void testOrderMsgSent()

{

FileLogAnalyzer log = new FileLogAnalyzer ();

ExtensionMgrMock mailer = new ExtensionMgrMock ();

log.setMailer(mailer);

log. setFilename ("afile");

Assert.AreEqual("Filename {0} is not valid",

mailer.SentCount());.

}

}

Figure 7: A mock

Mortensen, Ghosh, and Bieman (2006) looked at how to test during refactoring of

existing OOP code so that AOP and aspects are used to handle cross-cutting concerns.

The authors proposed using a mock system to reduce the time needed for the unit testing

of the aspects. In their work a mock system was created that duplicated the functions and

classes that existed in the actual system. It was found that using a mock system reduced

the compile and weave times. This decrease in compilation time allowed a developer to

quickly experiment with different pointcuts and advice. The mock system provided for a

fast and effective way to develop and test the pointcuts and aspects. However, in this

13

work and their following work Mortensen, Ghosh, and Bieman (2012) acknowledge a

problem with maintaining the mock system to match the real system.

Mock objects as introduced by Mackinnon, et al. (2001) have introduced a way to

handle external interactions with objects outside the unit being tested. In their follow up

work Freeman, et al. (2004) further explored mock objects but added the usage of

interfaces. The authors showed that a developer is able to create an interface to handle

the unit’s external interactions, but as their goal was to look at refactoring code from

OOP to AOP they did not explore the effectiveness of testing aspects with mock objects

using class interfaces.

Goal

This paper proposes to determine the effectiveness of developer testing of aspects

using mock objects that inherit from a class interface. The class interface will be

inherited by both the base code and the mock object code. By using mock objects in the

testing it is proposed that the aspects will be given context outside of the base code, thus

the aspects can then be independently tested for joinpoint cover and advice correctness.

By using a class interface that is common to both the base code classes and the test code

mock objects classes it is proposed that the effort needed to keep the two systems

synchronized will be simplified. The study will be using coverage criteria as proposed by

Mortensen and Alexander (2005) to determine the effectiveness of the tests and

determine the effectiveness of the class interface in the developer testing.

14

Research Question

A developer of aspect classes needs to be able to test the code that is written. There

are numerous questions about how this testing can be accomplished. This study intends

to look at the questions of:

1. The testing of the aspect consists of validating joinpoint coverage and advice

code correctness. With advice not having their own context, how capable are

mock objects at supplying the needed context?

2. What is the benefit to a developer of using a class interface for keeping a

mock object and base application synchronized?

3. How many object constructs are available within a class interface that can

have joinpoints?

Relevance and Significance

As presented in Parizi and Ghani (2007), software testing has many definitions.

Testing can be defined as the act of executing a portion of code or an entire application

with the intent of finding errors. A second definition presented is that software testing

has the goal of evaluating any attribute. A third definition is that testing can be the

capability of an application or system to determine if it meets its functional requirements.

In Zhu, Hall, and May (1997), the authors state that the testing of an application can

show the presence of defects, but never the absence of defects. Parizi and Ghani (2007)

state software testing has the goal of quality assurance, verification, validation and

reliability estimation. Quality assurance refers to the ability of an application to perform

as required by its specifications. Verification refers to the accuracy with which all

15

software development documentation was transformed into the application. Validation is

the evolution of the accuracy of model input/output with respect to the input/output of the

application. The reliability estimation is a probability value representing how likely the

application is fault free (Parizi & Ghani, 2007).

The usage of AOP to create a software application, as with object-oriented and

procedure-oriented, has the goal of creating high quality software. As discussed by

Alexander et al. (2004) what AOP brings is new questions and challenges to the testing of

applications. Due to the uniqueness of aspects the challenges of testing include:

• Aspects do not exist independently.

• Aspects tend to be tightly woven with their coupled classes.

• When reading through the source code of an application, the control and data

dependencies that exist between a class and an aspect are not always obvious.

• When a defect occurs there exist many possible locations for the defect to occur.

As Alexander et al. (2004) point out; AOP adds to the modularity and cohesion,

thereby increasing understanding and easing the maintenance burden. With the growth of

AOP, the authors raise the following questions:

• How do we properly test AOP?

• How do we know when it is properly tested?

• Is there a way to tell when we have tested enough?

In Mortensen, Ghosh, and Bieman, (2006) the ability to use mock objects for testing

of aspects was shown to be feasible. The study used AspectC++ in the refactoring of

existing C++ applications to use aspects. To validate the aspect code mock objects were

16

used to test the aspect code. While the usage was successful the types of joinpoints was

limited and the author’s attested to a problem with keeping the mock object code

synchronized with the base class code.

Barriers and Issues

AOP as a methodology has been around since its introduction in 1996. During this

time advances have been made in the support of this methodology within various

languages and development environments. The best supported implementation of AOP is

AspectJ in the Eclipse IDE. There are implementations in other languages, such as C++

and C#. However, a number of the various language implementations were done as

graduate research projects. Once the project was completed continued support and

extension of the implementation stopped (Parizi & Ghani, 2007).

During the past decade there have been a variety of research projects on the ability to

test AOP applications. The existing research has focused mainly on the ability to detect

whether joinpoints are properly woven into the base application. The work by

Mortensen, et al. (2206) did look at the unit testing of aspects at the developer level. This

work still focused on the proper weaving of joinpoints and the testing of the advice code.

As noted by Kollanus (2010), while there have been numerous studies on the usage of

unit testing and mock objects the current empirical evidence on their effectiveness has

yielded contradictory results.

17

Limitations

This study created a Java software application to use as the base application for the

aspects. JUnit was used to run the unit tests. The advantage to creating a software

application as opposed to using an existing application is that the study will not be

restricted to only those objects needed to meet functional requirements, but can instead

create objects as needed for the sole purpose of the study. This approach does have the

limitation of not being a very robust application and there are limited function

requirements for the application to meet.

This study used mock objects within unit tests to validate that joinpoints are correctly

woven with the desired pointcuts. There are a multitude of ways to write a pointcut and

an equally large number of ways to create a joinpoint. This study did not attempt to look

at all combinations of joinpoints and pointcuts for any given object. The scope of the

study was limited to using each of the various types of pointcuts supported creating

instances that are generic in nature. Against these pointcuts, joinpoints were created that

ranged from a very exacting definition to a very broad definition. The desire was to have

a wide sampling of joinpoints and pointcuts to test, validating that the pointcuts were

woven to the desired joinpoints.

This study also used mock objects for the testing of an aspects advice code. The code

within the advice can vary greatly depending on the needs of the application. The code

written did not try to be all inclusive, but to be a general representation of the types of

functionality that can exist within an advice module. In an attempt to overcome these

limitations the study was not only executed against the test application being created, but

18

also contained testing against existing open source applications. By executing the study

against open source code the desire was to have a more robust sampling of actual

production software.

Definitions of Terms

Term Definition

Advice A piece of code within an aspect that is executed when a
joinpoint is reached.

Aspect A unit of modularity similar to a class. They contain pointcuts,
advice and inter-type declarations

Cross-cutting concern Software features that are spread across multiple code modules
resulting in a 1 to n implementations of design implementations
to feature requirement.

Interface A programming construct that enforces certain properties upon
inheriting classes.

Joinpoint A well-defined point in the program flow

Mock object Dummy implementation of domain code that emulates the real
code.

Pointcut Picks out specific joinpoints in the program flow.

Stub A controllable replacement for an external dependency.

Unit A method or function.

Unit test A piece of code that invokes another piece of code with the
intent of checking the correctness of the invoked code

Weaving The task undertaken by the AOP compiler to link the classes
and aspects together to produce an executable.

Summary

AOP is a methodology that allows for the handling of cross-cutting concerns found

within a software application. AOP is able to modularize cross-cutting concerns so that

19

there is a one-to-one mapping of design concepts and functional requirements. This

increases the encapsulation of the design requirements into separate modules, aspects.

To ensure that the requirements are met an application must be tested at the developer

and at the integration levels. This testing applies to code contained within classes as well

as the code implemented within an aspect. While AOP has been around for over a

decade there is still a lack of research on the ability to test aspects at the developer level

or at the integration level. Mortensen, Ghosh, and Bieman, (2006) used unit testing and

mock objects to test aspects created in the refactoring of C++ applications to use aspects,

this study extended their work to include the usage of class interfaces with the mock

objects for the testing of aspects.

In Mortensen, et al. (2008) the study’s main focus was the ability to refactor C++

applications to use aspects. As part of the study, unit testing with mock objects was used

in the testing of the aspect code. That study was limited in the type of joinpoints to only

those needed by the existing applications. The authors also noted that there was a

problem in trying to keep the base code synchronized with the mock objects. This study

expanded on the work done by Mortensen, et al. to include constructors, exceptions,

object instantiations, and properties. This study evaluated the effectiveness of having the

mock object classes inherit from a class interface common to the base code.

20

Chapter 2

Review of the Literature

The existing research done on AOP has focused on software development; e.g.

requirements, design, implementation and discovery of crosscutting concerns (Kumar,

Sharma, & Garg, 2009). While the research done is important, testing of aspects has

received very little research attention. The research that has been done falls into four

categories; data-flow based unit testing, joinpoint testing, state based testing and unit

testing of aspects. Prior to delving into a review of the research of AOP testing, a brief

review of the literature on unit testing will be done.

Unit Testing

As noted earlier unit testing was developed in the 1970’s in association with

SmallTalk. A unit is a small piece of code and thus works well with OOP and AOP. In

OOP the software is divided into units called classes which contain methods and AOP

software adds units called aspects which contain advice. In unit testing, each unit is

tested in isolation and the results are compared against the expected results. Because unit

tests are completed in isolation, additional dependencies are often required by the unit

under test. The usage of mock objects was first introduced to the testing community in

the work by Mackinnon, Freeman, and Craig (2001) as a way of solving the missing

dependency problem. The authors proposed that domain objects be replaced with

21

dummy implementations to simulate the real code. The mock object will be used by the

test object instead of the actual class object. The usage of a mock object is similar to the

usage of stub objects except for two differences; 1) the mock object is able to test to a

finer granularity and 2) the tests plus stubs are used in the development.

In the work by Thomas and Hunte (2002), the authors build upon the work done by

MacKinnon, et al (2001). The study attempts to further clarify what constitutes a mock

object. The authors offered the following six reasons to use a mock object:

• The real object has nondeterministic behavior

• The real object is hard to set up

• It is hard to trigger the real object

• There exists a user interface with the real object

• The real object has not been developed

• The real object needs to be queried about usage

In Sobering, Cook, and Anderson (2004) it is suggested that a mock object is more

than what is needed. Instead of using a mock object they proposed to use a pseudo-class.

The starting point of the pseudo-class is the type-declaration interface. To actually create

a class the interface would be inherited and only the desired methods to be tested would

be implemented. The remaining methods in the interface would simply throw an

unimplemented exception. By taking this approach the creation time of the pseudo-class

is greatly reduced. It was found that by using the interfaces with mock objects the

creation and maintenance of the mock objects was greatly reduced.

22

In Freeman, Mackinnon, Pryce, and Walnes (2004) the authors refine and adjust their

earlier work in MacKinnon et al (2001). Their first work showed how mock objects

encouraged better structured tests and improved domain code by increasing

encapsulation. In their new work, the authors looked at the usage and better

understandability provided by the usage of interfaces. They observed that mock

development is similar to Lean Development. In both, a core principle is that an object

exists out of demand and is not pulled into existence. By testing objects as units, the

objects are tested in isolation from the rest of the application. This isolation will force a

tester to consider an object’s interactions with its collaborators in the abstract and

possibly before the collaborators even exist. The collaborators that an object requires

will be filled by the usage of interfaces in the mock objects.

Data-flow Based Unit Testing

In Zhao (2003) and Wedyan and Ghosh (2010) data flow unit testing was studied as a

method of testing AOP. Data flow testing focuses on the value assignment for each

variable in the code. This is done by tracking the variable from instantiation to a desired

point in the code where the variable is used. To do the testing the desired variables were

first identified within the source code. The source code was then compiled to get the byte

code and then using the byte code the selected variables are tracked.

The study by Zhao (2003) was able to work with computational Def-Use associations

in a three level testing approach. The three levels covered the perspectives of intra-

module, inter-module and intra-aspect/class. To build the def-use pairs the source code

into five categories:

23

1. Clustering aspect – an aspect that affects some class or classes.

2. Clustering class – a class that is affected by one or more aspects.

3. Clustering method – a method that is affected by one or more advice.

4. Normal class – a class that is not affected by any aspects.

5. Normal method – a method that is not affected by any aspect.

Flow graphs would be constructed for each of the categories and tested separately. In

Zhao (2003) only the clustering aspects (c-aspect) and clustering classes (c-class) are

studied.

The construction of the flow graph required a three step process beginning with a call

graph. A call graph represents the call relationships that exist between the various

modules. For a c-aspect the call graph will contain only vertices that represent modules

within the c-aspect and arcs that represent the calling relationships between the modules.

The call sequence is shown by using directed edges between the modules of the c-aspect.

The second step consists of adding vertices to the call graph. These vertices consist of an

entry vertex, loop vertex, exit vertex, return vertex and a call vertex. These vertices

combined create a frame that allow for the simulation of randomly calling certain

modules within a c-aspect or c-class.

The last step in the construction has each vertex that represents a module in the c-

aspect replaced by its own control flow graph. The result of the above steps results in the

construction of what Zhao calls a Framed Control Flow Graph. For the modules

identified a three level testing approach was performed, the levels consisted of:

• Intra-module - testing is performed on variables that have def-use pairs within

a single module.

24

• Inter-module – testing is performed on variables that have def-use pairs across

modules

• Intra-aspect/class – testing is performed on variables that have def-use pairs

within a module but can be called in any order by user of the module

The study found that it was possible to handle testing problems that are unique to

aspect-oriented programming. While study was able to show that it could identify def-

use pairs for testing, the study did not cover a variable with a predicate usage. The study

also failed to handle around advice, join points with multiple advice or dynamic

pointcuts. Around advice have the ability to change the behavior, control or data

dependencies of a method resulting in a change of def-use pairs.

The work by Wedyan and Gosh (2010) expanded on the work of Zhao (2003) by

including in the study the predicate usage of variables and around advice. The research

started with the tool AJANA, created by Xu and Rountev (Wedyan & Ghosh, 2010).

AJANA creates CFG’s of the methods and advice in the program. The CFG’s of the

advised methods are merged with the DFG’s of the related advice uning interactive

graphs. There will exist one interactive graph for each joinpoint. At each joinpoint that

matchs a before or after advice the : (1) call-site and return-site nodes are added to the

CFG, (2) the call-site node is connected to the entry node in the DFG of the desired

advice, and (3) the exit node of the advice CFG is connected to the return-site node. If an

around advice is called, its CFG replaces that of the method. Should the around advice

contain a proceed statement, the advice CFG is connected to the method CFG using call-

25

site and return-site nodes. The resulting ICFG shows what methods and advice are

invoked from any single call to a class or method.

The AJANA tool does not use a frame as proposed by Zhao (2003). To follow in

Zhao’s work the study modified the AJANA tool to include frames for ICFG’s to create

the frame the following nodes and edges were added:

• Frame entry node – the entry to the frame with edges to the entry nodes of

CFG’s for public constructors

• Frame exit node – exit points from the frame.

• Frame edges – connections between the exit node of a CFG representing

either a public method or constructor and the entry node of a CFG of a public

method or constructor.

With the modified AJANA tool the study was able to then create Def-Use

Associations for the targeted AOP application. These DUA’s are then monitored in the

bytecode to measure their coverage when executed against a test suite.

The research used the AjMutater application to seed faults into the test application

written for the study. The study found that it was possible to use the automated test

generation tool AjMutater if the aspects are written in @AspectJ annotation style. The

study does have the limitation of using a small test application and the mutation operators

used might not be representative of AO program faults.

State Based Testing

Xu and Xu, (2006) did work in the area of state-based testing. The advices within an

aspect have the ability to change the state model of the core concerns. The new states

26

that are introduced to the system can cause the classes to violate their state invariants.

Flattened Regular Expressions (FREE) are comparable to UML state models. By using

FREE tests from OOP the authors are able to build state models called Aspectual State

Model (ASM). By adding in FREE the authors were able to specify both classes and

aspects. The entities were then placed in a transitional tree and from the transitional tree

they were able to identify abstract test cases.

An example of an ASM is shown in Figure 8. State A has received a message to go

to State B. There are three advice that are associated with the creation of State B, a

before, an around and an after. At the first condition point the message is affected by the

before advice moving the state to State C. At condition 2 the around advice is

encountered and moving the state to State D. The last condition encountered is for the

after advice which moves the message to State E. This is a representation of the

conditional transition tree and represents both legal and illegal events.

Figure 8: Example of an ASM

The study found that when treating aspects as incremental modifications to a base

class, it is possible to extend base class state models to show the impact of aspects on

State A State B

State E

State C

State D

After Advice

Before Advice
Around Advice

27

states and transitions of base class objects and generate abstract test cases. Additionally,

the study showed that it was possible to reuse base class tests for conformance with AOP.

The main issue with this approach is that the state based diagram can suffer from state

explosion. While the study showed it is possible to reuse the base class tests a tester

needs to be aware that a positive (or negative) test can become a negative (or positive)

aspect test.

Joinpoint Testing

Joinpoint testing was done in the work by Lemos and Masiero (2008) and Wedyan

and Ghosh (2008). In joinpoint testing, the work is designed to look at the coverage of a

class by an aspect. The objective of the research is to determine if the joinpoints are

being executed against the desired pointcuts and only the desired pointcuts. To make the

coverage determination the authors inspected the byte code. The authors were looking

for four types of pointcut faults:

• Selecting only a subset of the adequate joinpoints

• Selecting a superset of the adequate joinpoints

• Selecting a set of joinpoints with no intersection with the adequate set of

joinpoints

• Selecting a subset of the adequate joinpoints and unintended joinpoints.

In Lemos and Masiero (2008) the focus is on structured integration testing. The

method and the advice are considered to be the smallest units to be tested. In structured

testing the CFG is used to represent the flow of control in the program with a node being

a block of code and an edge representing the flow from one node to another. The base

28

unit for testing in this paper was the aspect-oriented def-use graph (AODU). An AODU

is generated for each unit to be tested, either a method or an advice. A graph consists of a

set of nodes (N) – composed of blocks of bytecode instructions that are executed. Edges

(D) that connect the nodes, showing transfer of control. Entry points (s), exit points (T)

and the nodes (C) that are affected by advice. The graphs also differentiated regular

edges from exception edges, exception edges represent a flow resulting from an

exception handler. A completed AODU graph has the following conventions: single

circle node for regular blocks, double circle nodes for method calls, bold nodes for exit

nodes, dashed ellipses for advice, regular edges are for regular flow and dashed edges for

exception flow.

With the AODU’s the study creates pointcut-based CFG’s for each advice-pointcut

pair. The PCCFG’s consist of nodes and edges of the base units which are selected by a

pointcut. Each PCCFG is labeled based on its bytecode offset and corresponding block.

Then all PCCFG nodes and edges should be exercised at least once by a test case. If this

is not the case then an error can occur since there is not 100% coverage of the pointcuts

by test cases. With the PCCFG’s the study was able to help in gaining confidence that all

advice paths were properly executed during testing. The authors did note that there exists

a scalability problem with advice that affect a large portion of the program and thus

creating a large PCCFG.

Wedyan and Gosh (2008) present a tool that will assist in the measurement of

joinpoint coverage for given test suite. The tool has the ability to measure from two

perspectives; by advice, which measures the execution of an advice at each joinpoint and

29

by class, which measures the execution of all advice within the class. The tool uses the

bytecode only of the post woven application.

The tool works in two phases. In the first phase the bytecode is parsed looking for

joinpoint shadows. A joinpoint shadow is inserted by the AspectJ weaver in the locations

of possible joinpoints. The located joinpoint shadow information is stored by the tool in

an XML based file. The bytecode is also parsed for advice information which is stored in

an XML file. Once the bytecode has been parsed the test runner component of the tool

executes the test driver of the test suite. The runner component tracks the covered

joinpoints whenever a shadow is executed. When the test is completed there is a listing

consisting of joinpoints in the class, number of executed joinpoints, how often each

joinpoint is executed and overall joinpoint coverage. When the tool was tested against

the Apache BCEL library it was able to locate joinpoints within the tests executed against

the library.

Unit Testing of Aspects

In the research by Lopes and Ngo (2005), the authors claim that unit testing of AOP

code is difficult. In their work they look to see if a pointcut definition matches anything

or if it includes and excludes only those joinpoints that are supposed to be captured. To

do the tests the authors used Java Aspect Markup Language (JAML) for performing their

unit tests. JAML is a markup language created by the authors for implementing aspects.

The language uses core modules and aspect modules that contain a developer’s code

written in Java. The aspect binding is handled with the XML-based specifications

specific to JAML. The specifications contain the binding instructions that determine how

30

the core and aspect modules are composed. The binding rules are the same as found in

AspectJ.

With the JAML system in place the authors created applications to show that

effectiveness of their system. To show that the bindings were properly made the authors

used an extension of JUnit that would handle the JAML applications. The authors tested

the aspect bindings, such as pointcut definitions, but state that the testing could be done

on such constructs as interceptors and introductions.

It was found that the system created was able to provide a cost-effective means of

testing and finding faults in aspect programs. It was also noted that there was success

with the approach, there exist two challenges:

• Selecting the appropriate mock joinpoints. The JAML required that the

testers select and mock the joinpoints to be tested. If an aspect has numerous

joinpoints within a base class it would be necessary for a tester to find and

create mock objects for each occurrence. The authors felt that creating mock

objects for all joinpoints to be too daunting of a task and thus recommended

identifying the most meaningful joinpoints and select only those for testing.

• Creating mock execution content. As noted an aspect can have numerous

joinpoints and thus need a mock object for each joinpoint. With each mock

object code must be created to test the joinpoint, which the authors felt would

be a lengthy and difficult task. The authors see a need for support tools that

would create the mock object content.

In the works by Mortensen, Gosh and Bieman (2006, 2008, 2012) the authors

refactored three commercial VLSI CAD applications created at the Hewett-Packard

31

Company. The refactoring goal was to replace cross-cutting concerns within the three

applications with aspects. Since the original applications were created with C++, the

aspects were created using Aspect-C++. The steps taken to refactor the applications

were:

• Identify the cross-cutting concerns.

• Create the aspects and unit test

• Remove the cross-cutting code in the applications and weave in the aspects

• Perform regression testing on the applications using existing regression tests.

To identify the cross-cutting concerns within the applications, the code was manually

reviewed to find candidates. The manual review was used due to a lack of tools available

for C++ analysis. Once the cross-cutting candidates were found aspects were created to

mimic the existing functionality.

To test the aspects that were created, the authors developed a set of mock objects.

The mock system, to be useful, must contain joinpoints that use naming conventions and

structures consistent with the real system. The mock system created contained a subset

of the methods, functions and classes found within the actual applications. When the

aspects were created they were woven with the mock system. Using unit tests the aspects

were tested until satisfactory joinpoint coverage was reached. Satisfactory joinpoint

coverage was determined by checking logs recording whether all pointcuts had been

woven with joinpoints in the mock system. They also checked the logs to determine if all

advice methods had a pointcut woven to them.

32

Once testing with the mock system was completed, the advices were woven with the

real applications code. Regression tests were executed to validate that the applications

were executing as they had before the refactoring. To validate the weaving of the

pointcuts to the joinpoints the authors created tools that would parse the woven code.

The tools would check for unused aspects or unadvised methods, determine joinpoint

coverage and if any advice or joinpoints with advice had not been tested.

Mortensen, et al. (2008) found that they were able to improve testing with the mock

system and unit testing. The largest gain was with compilation and weave times. With

the mock system being a smaller system the developer was able to quickly test, make

error corrections, recompile and retest using the mock system. The study did have

problems with keeping the mock system synchronized with the actual application. When

a developer made a change in the real system they had to make sure the mock system was

also updated to reflect the change. The study was also limited in scope to joinpoints

consisting of classes and methods.

The research by Xie, Zhao, Marinov, and Notkin (2006) studied testing AOSD

applications with Unit tests. In the study the authors:

• Present Raspect, a tool created to detect redundant unit tests in AspectJ

projects.

• Presented an implementation of Raspect for detecting redundant unit tests on

advised methods, advice and intertype methods.

• Evaluated Raspect using twelve AspectJ applications ranging from simple

aspect sample applications to open source applications.

33

To use the Raspect tool the desire aspects are created then unit tests are constructed to

test the aspects. The Raspect tool works by dynamically monitoring the executing tests.

With each test execution, sequences of method calls are produced. The method

execution’s behavior is dependent upon the state of the receiving object and the method

arguments. Raspect identifies and collects these method-entry states. The method-entry

states are then linearized to allow for ease of comparison. Linearization’s that are

determined to b equivalent are deemed to be redundant.

In the study the authors used the AspectJ compiler to compile and weave the twelve

applications being tested. To create unit tests the generated byte-code was feed into

Purasoft Jtest, a tool for creating unit tests. The unit tests were then executed with

Raspect monitoring the executions. Raspect was able to detect and determine that Jtest

was producing a number of redundant unit tests. The authors feel that their tool is

capable of assisting developers and testers by helping to identify redundant unit tests and

reduce the number of unit tests being executed, thus reducing the amount of time needed

to test AspectJ applications.

34

Chapter 3

Methodology

Research Methods

This research investigated developer testing of aspects, validating and extending the

work done by Mortensen, et al. (2006). In testing of software there exist different phases

of testing, two of which are developer and integration (Parizi & Ghani, 2007). Developer

testing is done by the person writing the software and it is intended to validate that the

code works correctly. Integration testing is done after developer testing and is designed

to assure that all of the modules work together correctly.

In the work by Mortensen, et al. (2006) the authors validated that they could use a

mock system to test the aspects created in refactoring a C++ application. A mock system

was created that contained functions and classes as found in the real system, but on a

much simpler scale. This mock system was created by copying a subset of the classes,

methods and functions found in the real system to create the mock system. The mock

system was created so that it contained the joinpoints used in the real system. In the

study the main object was to study the refactoring of a C++ application to use aspects.

Because of this the types of joinpoints used consisted of method calls and executions. In

creating the mock system it was noted by Mortensen et al. (2008) that there was a cost in

35

maintaining the mock system. Every time there were changes made to the real system

these changes had to be mirrored in the mock system.

In using mock objects a mock is easiest to create and use if one adheres to an

interface based design (Nandigam, Gudivada, Hamou-Lhadj, & Tao, 2009). If one does

not commit to a concrete implementation and instead uses an interface mock objects can

be substituted for the real objects since both adhere to the same interface. By using an

Interface Segregation Principle clients and mock objects are not forced to implement

methods that are not required. The use of the interface will help reduce the complexity of

the mock object, with only the needed interfaces implemented by the mock object

(Bender & McWherter, 2011).

This study added the usage of a class interface inherited by the base application

classes and the mock object classes. The study evaluated the effectiveness of the class

interface in making available the type of objects that can be used as joinpoints. By using

interfaces the resulting systems plug ability is increased allowing for gracefully

substituting of identical objects (Nandigam, et al., 2009).

In refactoring existing systems it was shown that mock objects could be used to test

the joinpoints for class methods and functions. In this study the types of objects used as

joinpoints was expanded to include constructors, exceptions, object instantiations, and

properties. After creation of the expanded list of joinpoints the study evaluated whether

it is possible to test the joinpoints and advice using the mock objects.

The study also looked at using a class interface to assist in developing the mock

object. The study tested to see if the joinpoints used by the aspects can be created in the

36

class interface. The effectiveness of the class interface construct was determined by the

number and variety of joinpoints that could be defined in the interface.

Test Criteria

In Zhu, Hall, and May (1997), the authors look at the concept of test adequacy for

software applications. To determine if an application is adequately tested, there has to

exist a set of test criterion. The criterion for testing is one of four types:

• Statement Coverage – Testers are expected to create tests that will execute all of

the statements in the application.

• Branch Coverage – Testers are expected to test all locations where control

transfers.

• Path coverage – All paths from start to finish through the application are expected

to be tested.

• Mutation Coverage – Tests are designed to find faults in the software.

In Mortensen and Alexander (2005) the coverage criteria were modified and

expanded to encompass aspects. The coverage definitions are:

• Statement Coverage – Every path through the aspect code fragment is executed

after weaving.

• Insertion Coverage – Each aspect code fragment is tested at the points where it is

woven into the base code.

• Context Coverage – This is a combination of statement and insertion coverage, so

that each aspect code fragment is executed at its point of insertion.

37

• Def-use Coverage – this is the testing of def-use pairs within advice, between

different advice, between advice and methods, and where flow control has been

changed because of an advice.

With a set of criteria one is able to determine when a program has been adequately

tested. Zhu et al. (1997) created definitions that quantify Stopping Rules and

Measurements based upon the criteria set for test data adequacy. In classifying adequacy

criteria the usage of the underlying testing approach is one method available. When

classifying by testing approach there are three types of approaches to the testing:

• Structural testing – testing requirements are based in terms of coverage for a

particular set of elements in the program.

• Fault based testing – testing centers on finding defects within the software.

• Error based testing – testing requires that test cases are checking the program for

certain error-prone points.

 To validate the testing of the aspects this research followed the work of Mortensen

and Alexander (2005) in using coverage criteria. The criteria used to determine adequacy

of advice tested within an aspect, as used by Mortensen and Alexander (2005) and then

again by Wedyan and Ghosh (2008), was statement coverage. To determine adequacy of

pointcuts tested the research used insertion coverage. As with Wedyan and Ghosh (2008)

the ability to determine the insertion coverage was determined by analyzing the bytecode

generated from the weaving process.

 This research focused on developer testing of the aspect code and not the integration

testing of the aspects to the base application. As such the research focused on the testing

38

done with the mock objects. The mock objects were used to validate that the aspect code

worked as designed.

 As with Mortesen and Bienem (2006), to test the aspects with the mock objects the

research ensured that each aspect is covered by test cases. In the testing there are two

criteria to be met for having all the advice within an aspect tested. The coverage criteria

of the advise, but the criteria does not include having the advice woven against all

joinpoints only that the advice itself is tested. Joinpoint coverage is achieved by having

the advice tested and that the tests find all of the intended joinpoints.

 The last criteria used in the research measured the effectiveness of the class interface

in assisting in keeping the base classes and the mock object classes synchronized. This

criterion consisted of a comparison between the number of possible joinpoint types

available to an advice and the joinpoints that can exist in a class interface.

 With the criteria listed above the research questions will be evaluated using with the

following metrics:

• Insertion coverage, the percentage of joinpoint that were correctly woven against

the mock pointcuts.

• Code coverage, the percentage of code that was covered by unit tests.

• Development time, the time needed to develop classes using and not using a class

interface within the mock project.

• Class objects that are declarable within a class interface that can be matched by

joinpoint.

39

Implementation Strategy

This research used Java, AspectJ and the Eclipse IDE. The study selected Java and

AspectJ so that it was testing a different language than C++ used by Mortensen et al

(2006). Additionally AspectJ has a number of open source projects that provided for a

diverse collection of code to test. The study consisted of studying the ability to use unit

tests at the developer level to test the correctness of an advice. The correctness included

the ability to test the code contained within an aspects advice as well as determining

whether an aspects joinpoints were woven with the correct pointcuts. Mock objects were

used to give the aspects context and allow for the testing of the joinpoints and advice

code within the aspects. The testing was conducted on a sample application created for

this study and then repeated on existing open source code. In Zhu, Hall and May (1997),

it is pointed out that while the testing of an application can show the presence of defects,

it can never show the absence of defects.

A test set is a set of test cases for testing an application or part of an application. A

test set should have a goal of executing all of the statements within an application. The

percentage of statements executed is a measure of adequacy (Zhu et al., 1997). How well

the unit tests are exercising the application code is expressed by the code test coverage or

the code coverage (Bender & McWherter, 2011). Code coverage of 100% does not

guarantee good code only that all of the code has been subjected to a test.

In creating the unit tests for this study, the optimal goal was to have all of the aspects

fully covered by a test set. While the achievement of 100% coverage of the joinpoints

40

and the advice would be optimal it was not a goal of this research. This research instead

attempts to set a bench mark level for aspect testers to use as a comparison.

In the research a software application was written that simulates a banking

application. The application is be able to create new accounts, allow for withdrawals,

accept deposits and close an account. Aspects were created to check for sufficiency of

funds and to log transactions. Approximately half of the classes in the application were

inherit from a class interface. The class interfaces created were inherited by a mock

object for the testing of the aspects and the classes without interfaces were duplicated in

the mock system. Once the mock objects were created, one set of unit tests were created

to test the aspect functionality and to test the joinpoints of the aspects. The effectiveness

of the unit tests written to test aspect functionality was determined using statement

coverage. To do the testing of the aspects mock object classes were created inheriting

from the classes interfaces, thus simulating the actual application classes. Unit tests,

using the JUnit framework, were created with the goal of covering all execution paths

through each aspect. Each unit test contained at least one assert statement that validated a

portion of the aspect code. An assert statement evaluated to true when the desired value

is obtained from the aspect code under test and at that point, it was be considered to have

passed.

The effectiveness of the joinpoint unit tests was evaluated using insertion coverage

metric. Using the same mock objects created for the statement coverage tests, a set of

unit tests was created that validated that the before, after, and around advice executed

against the desired joinpoints. These unit tests each had at least one assert statement that

41

was capable of validating that each before, after and around advice executed against

advice’s joinpoints.

To further validate the results of the testing done using the banking application,

testing was performed against additional existing applications, see Table 1. The

applications contain aspects containing all three types of advice; before, after and around.

The advices have pointcuts that range from being narrow in scope to broad in scope. The

pointcuts have joinpoints using many different class object types.

Table 1: Overview of AspectJ programs evaluated

Name Lines of Code Source Description

Introduction 200 AspectJ example1 Simple example
using aspects

Telecom 725 AspectJ example1 A telephony
simulation

Spacewar 2,700 AspectJ example1

AJHotDraw 22,104 open source project2 2D Graphics
Framework

PetStoreAspectJ 17,800 open source project2

Bean 246 AspectJ example1 Makes point objects
into Java Beans

The testing of the aspects, as done by Mortensen et al. (2008), consisted of validating

the pointcuts were correctly finding their intended joinpoints and that the code within the

advice worked as intended. The joinpoint coverage was checked by using three different

types of patterns within the mock system.

The first pattern type tested joinpoints that are not affected by the advice creation. An

example of such an aspect would be an aspect that logs the joinpoint was called. To test

1 http://www.eclipse.org/aspectj/index.php
2 http://www.kevinjhoffman.com/tosem2012/

42

this pattern a mock object was created such that the naming convention of the pointcut in

the mock object matches that in the real system. This pattern tested joinpoint coverage.

Such as when an IAccount class is modified the aspect will log a message indicating that

the account was modified. The aspect does not have an effect on the actual IAccount

object.

pointcut accountModified(Account acct) : call(*

Account+.*(..)) && target(acct);

after (Account acct) : accountModified(acct){

System.out.println("Account modified, account number-" +

acct.IdNum());

}

@Test

public void testAccountModified(){

 mockAccount tmp = new mockAccount();

 tmp.Balance(5000.00F);

 assertEquals("Check balance",5000.00F, tmp.Balance(),

0.009);

}

Figure 9: Unit Test Account Id updated

The second pattern type tested that the advice does not change the existing joinpoint

functionality. This pattern was tested by creating joinpoints that match between mock

and real system. Simple functionality is added to the mock that validated the advice does

not change the joinpoint functionality. The mock joinpoint was executed with differing

parameters values to validate that the joinpoint functionality was not altered. The pattern

test validated joinpoint coverage and the woven mock system validated the advice

statements were executed for statement coverage. The personAdded pointcut is woven to

those instances where the AddPerson routine is called. When the advice executes the

43

person object is assigned an identification number. In the test code there is change to the

functionality, but the object is updated by the aspect.

pointcut personAdded(Person per) : call(void AddPerson(..))

 && args(per);

before(Person per): personAdded(per){

 per.IdNum(People.MaxId++);

}

@Test

public void testAddPerson(){

 Person tmp = new Person();

 tmp.FirstName("Fred");

 tmp.LastName("Jones");

 tmp.City("Paradise");

 tmp.State("pa");

 tmp.Zip("02038");

 mockPeople people = new mockPeople();

 people.AddPerson(tmp);

 Person chk = people.GetPerson("1");

 assertEquals("Set id to 1", 1, chk.IdNum());

assertEquals("Set maxid to 1001", 1000,

mockPeople.MaxId);

}

Figure 10: Person assigned id by advice

The third pattern type involved making sure the mock object has the functionality

necessary for the advice to execute. There are times when the advice requires methods

and data structures to be present to execute properly. The mock object must contain the

needed methods and data structures. This pattern tested that the joinpoint exists in the

mock object and matches that in the application class. Any data structures needed by the

advice had to be identified and created within the mock object. As with the second

pattern, this pattern validated that pointcut provides joinpoint coverage and was able to

test the advice execution, giving statement coverage. An example of this is the

44

Customers class which stores a list of Customer objects; the mock Customers class does

not need a full list. In the mock Customers class the list was replaced with a mock

Customer variable. Then in the unit test the mock object needed was created. The

joinpoints were woven into the mock Customers class and the additionally needed mock

objects were available.

public class Customers implements ICustomers {

 static int MaxId = 1000;

 protected Customer holder;

 @Override

 public void AddCustomer(ICustomer toAdd) throws

Exception {

 holder = (Customer)toAdd;

 }

 @Override

 public void UpdateCustomer(ICustomer toUpdate) throws

Exception{

 holder = (Customer)toUpdate;

 }

 @Override

 public ICustomer GetCustomer(String Id) {

 return holder;

 }

 @Override

 public void CustomerLeaves(ICustomer toAdd) {

 holder.CloseCust();

 }

 @Override

 public int GetMaxId() { return MaxId; }

 @Override

 public void IncrMaxId() { MaxId++; }

}

45

@Test

public void testAddMockCustomer(){

 try{

 mockCustomer tmp = new mockCustomer("Test Business

Acct");

 mockAccount acct = new mockAccount();

 tmp.AddAccount(acct);

 customers.AddCustomer(tmp);

 mockCustomer rtn =

(mockCustomer)customers.GetCustomer("1");

 assertEquals("Set id to 1000", 1000, rtn.IdNum());

 assertEquals("Set maxid to 1001", 1001,

customers.GetMaxId());

 }

 catch (Exception ex){

 fail("Shouldn't be here");

 }

}

Figure 11: Unit Test Customer class

The testing of the usage of a class interface was accomplished by two methods. In

Mortensen et al. (2008) a measurement of development time was used as one of the

factors to determine if using mock objects is beneficial. This study also used a

measurement of developer time. In creating the mock objects approximately half of the

mock objects were created by inheriting from a class interface that the base code also

inherits and approximately half of the mock objects were created by duplicating the base

code. The amount of time to create and maintain each of the mock objects was kept so

that a comparison of the time needed to create mock objects inheriting an interface and

mock objects created by duplication could be made.

The second test for the class interface usage consisted of determining how many of

the joinpoints needed could be created within a class interface. Not all data objects can

exist within a class interface, but can still be joinpoints. The study tracked how many of

46

the joinpoints were able to be instantiated within the class interface structure. The

usefulness of the class interface was determined by the percentage of joinpoints that

could be instantiated within the class interface structure.

Procedure

Step 1: Created an AspectJ project that contained an application with class interfaces,

application class code, and aspect code. The base application is a simple project that

simulates a banking application. The base application is only for the purposes of testing

the concept of using a class interface and mock objects for testing and as such has no real

purpose. The Java project for the banking application was created containing one

package, NovaSE. The package contained the application class interfaces, application

classes and aspects. The class interfaces were created followed by the classes and the

aspects. The IAccount interface was implemented by the Account class and the mock

Account class.

package NovaSE;

public interface IAccount {

 public void AddUser(Person toAdd);

 public void RemoveUser(Person toAdd);

 public boolean NoUsers();

 public void IdNum(int nm);

 public int IdNum();

 public void Balance(float bal);

 public float Balance();

 public void CloseAcct();

 public boolean IsActive();

}

Figure 12: Class Interface

47

 Step 2: Created the application class files within the NovaSE package. These files

contained the functionality needed to for the application. The files included classes for

customers (personal and business), accounts (savings, loans and checking) and additional

classes Main and Setup to hand running the application. The Account class is one of the

classes created:

public class Account implements IAccount{

 protected int IdNumber;

 private boolean acctActive;

 protected float balance = 0.0f;

 private HashMap<Integer, Person> acctUsers = new

HashMap<Integer, Person>();

 public Account(){

 super();

 acctActive = true;

 }

 public void IdNum(int nm) {

 IdNumber = nm;

 }

 public int IdNum() {

 return IdNumber;

 }

 public boolean IsActive(){

 return acctActive;

 }

 public void CloseAcct(){

 if(acctActive == false) throw new

BankingException("Account already closed.");

 acctActive = false;

 }

48

 public void AddUser(Person toAdd){

 if(toAdd == null) throw new BankingException("No

Person to add.");

 acctUsers.put(toAdd.IdNum(), toAdd);

 }

 public void RemoveUser(Person toAdd){

 Person tmp = acctUsers.remove(toAdd.IdNum());

 if(tmp == null) throw new BankingException("Person

not found");

 tmp = null;

 }

 @Override

 public boolean NoUsers() {

 return acctUsers.isEmpty();

 }

 @Override

 public void Balance(float bal) {

 balance = bal;

 }

 @Override

 public float Balance() {

 return balance;

 }

}

Figure 13: Account class in application inheriting interface

Step 3: Created the aspects, an example is the ValidateAccount aspect. The aspect

joinpoints and advice were written to interact with the class objects. The code was not

modified to work with the unit tests in the test project.

public aspect ValidateAccount {

 pointcut accountHasPerson(Account acct) :

(execution(void Accounts.AddAccount(..)) ||

execution(void Accounts.UpdateAccount(..))) &&

args(acct);

49

pointcut accountModified(Account acct) : call(*

Account+.*(..)) && target(acct) &&

!within(ValidateAccount);

pointcut newLoan(): call(ILoan+.new(float, int, float));

 pointcut loanBalanceChanged(ILoan acct):

 set(float balance) && target(acct) &&

!withincode(new(..));

 after (Account acct) : accountModified(acct) &&

!target(ValidateAccount){

System.out.println("Account modified, account number-

" + acct.IdNum());
 }

 before(Account acct) throws Exception :

accountHasPerson(acct){

 if(acct.NoUsers())

 throw new Exception("Must Contain at least 1

account");

 }

 after() returning(ILoan acct) : newLoan(){

 float monthlyRate = acct.InterestRate()/12;

double a = monthlyRate / (1-1/Math.pow(1+monthlyRate,

acct.LoanTerm()));

acct.LoanBalance(acct.LoanBalance() +

(acct.LoanBalance() * (float)a));

 acct.Payment(acct.LoanBalance()/acct.LoanTerm());

 }

 after(ILoan acct) : loanBalanceChanged(acct){

 if(acct.LoanBalance() <= 0){

 acct.LoanPaid();

 acct.Payment(0);

 System.out.println("Loan is paid off");

 }

 }

}

Figure 14: Aspect to validate Account classes

Step 4: Created the test project containing the exact same package, NovaSE, as the

base application. The aspect class files and the class interface files were then linked from

50

the base application project to the test application project. By linking the files the exact

same code will be used by both the base application and the test project. The linked files

were placed in the NovaSE package as they were in the base application.

public class Account implements IAccount{

 private int idNum;

 protected float balance;

 private boolean active;

 Person holder;

 public Account(){

 super();

 active = true;

 }

 public void IdNum(int nm) {

 idNum = nm;

 }

 public int IdNum() {

 return idNum;

 }

 public void CloseAcct() {

 if(active == false) throw new

BankingException("Account already closed.");

 active = false;

 }

 public boolean IsActive(){

 return active;

 }

 public void AddUser(Person toAdd) {

 if(toAdd == null) throw new BankingException("No

Person to add.");

 holder = toAdd;

 }

51

 public void RemoveUser(Person toAdd) {

 if(holder == null) throw new BankingException("No

Person to remove.");

 holder = null;

 }

 @Override

 public boolean NoUsers() {

 return holder == null;

 }

 @Override

 public void Balance(float bal) {

 balance = bal;

 }

 @Override

 public float Balance() {

 return balance;

 }

}

Figure 15: Mock Account class in test project

Step 5: Unit tests were created that are from one of the four patterns listed in the

implementation section. The unit test files were next created in the NovaSE package.

These unit tests tested the joinpoint coverage of the pointcuts and the statement coverage

of the advice. As the unit tests were created the needed mock objects were added to the

NovaSe package. The mock objects were created by either inheriting from a class

interface or by duplicating the base code. In both cases the mock object only contained

enough code to allow the unit tests to execute. An example is the mock Account class

use to mock the Account class.

There is at least one unit test per aspect. Each unit test contains at least one assert

statement to validate a portion of the aspect code. The testAddMockAccount, in the

testAccount class, is an example of a unit test that was created. Its purpose was to

52

validate that when an account was created the account id’s were properly added by the

aspect.

@Test

public void testAddAccount(){

 try{

 Account tmp = new Account();

 Person per = new Person();

 tmp.AddUser(per);

 accounts.AddAccount(tmp);

 mockAccount rtn =

(mockAccount)accounts.GetAccount(1);

 assertEquals("id set to 1000", 1000, rtn.IdNum());

 assertEquals("maxid set to 1001", 1001,

accounts.GetMaxId());

 }

 catch (Exception ex){

 fail("Shouldn't be here");

 }

}

Figure 16: Unit test before aspect weaving

Step 6: The coverage criterion is used to evaluate the effectiveness of the testing.

Coverage of 100% would indicate that all paths through the aspect code were testable

using the unit tests running against the mock object.

Step 7: The insertion criterion was used to evaluate the effectiveness of the advice

testing. Coverage of 100% indicates that all advice are associated with their desired

joinpoints. The decompile testAddAccount from the decompile testAccount class is

shown below. The insertion of an joinpoint can be found by the search for the string

“aspectOf().ajc$”.

/* */ @Test

/* */ public void testAddAccountNoPerson()

/* */ {

/* */ try

53

/* */ {

/* */ Account localAccount1;

/* 42 */

CreateID.aspectOf().ajc$afterReturning$NovaS

E_CreateID7a53f022e (localAccount1);

Account tmp = localAccount1 = new Account();

/* 43 */ Account localAccount2 = tmp;

Accounts localAccounts = this.accounts;

/* */ try {

CreateID.aspectOf().ajc$before$NovaSE_Crea

teID$8$2aefc8b6 (localAccounts,

localAccount2);

localAccounts.AddAccount(localAccount2); }

catch (BankingException

localBankingException) {

Validate.aspectOf().ajc$afterThrowing$Nov

aSE_Validate2bd737665(localBankingExcep

tion);

throw localBankingException; }

/* */ }

/* */ catch (Exception ex) {

/* 46 */ Assert.assertEquals("Should have exception",

"Must Contain at least 1 account",

/* 47 */ ex.getMessage());

/* */ }

/* */ }

Figure 17: Unit test after aspect weaving

Step 8: Once all of the unit tests were run once, the other criterion was evaluated to

determine the effectiveness of the class interfaces. The effectiveness of the class

interface was based upon the comparison of time needed to code the mock objects using a

class interface verses the time needed to code the mock objects not using a class

interface. The effectiveness of the interface was determined by the percentage of

joinpoints that can be instantiated within a class interface. The fewer the number of

additional items needed the more effective the class interface is at minimizing the work

needed to keep the mock objects and the application synchronized.

54

Resources Requirements

The code development and experiments were run on a personal computer using

Eclipse IDE, Java, AspectJ, JUnit (for unit testing), EclEmma (for code coverage) and

JD-GUI3 (a Java decompiler).

3 http://jd.benow.ca/jd-gui/downloads/jd-gui-0.3.5.windows.zip

55

Chapter 4

Results

Analysis

Four metrics were used in evaluate the effectiveness of using a class interface to unit

test aspects. The metrics are:

• Code coverage, the percentage of code within a project covered by unit tests.

• Insertion coverage, the percentage of pointcuts that were correctly woven

against the mock joinpoints. This value is only intended joinpoints and not

unintended joinpoints.

• Development time, the time needed to develop the classes with the mock

project being used to test the aspect code.

• Class objects declarable within a class interface that can be matched by

joinpoints.

In the testing of the mock object usage the metric of insertion coverage was used. To

determine the percentage of coverage the test project was compiled to create the

bytecode. The bytecode should contain the woven joinpoints. A decompiler, jd-gui, was

run against the bytecode to convert the bytecode back into readable Java code. To find

the joinpoints a simple text search was conducted on each decompiled Java file looking

56

for the marker “aspectof().ajc$” which would identify where a weaving had taken place.

As each marker was identified the joinpoint being woven was identified and recorded.

The joinpoints in the aspects that were tested all had 100% coverage. In all cases the

joinpoints were woven into the pointcut as expected. In Table 2 below, the number of

aspects tested per project, with the number of possible joinpoints per project. As such the

mock objects within the test projects were capable of supplying context to the aspects and

allowed for the testing of the aspect code.

Table 2 Insertion Coverage

Name Aspects Tested Joinpoint

Available

Joinpoints Found

Introduction 3 1 1

Telecom 3 6 6

Spacewar 5 7 7

AJHotDraw 4 6 6

PetStoreAspectJ 4 17 17

Bean 1 1 1

NovaSE Bank 3 12 12

The second metric used for evaluating mock objects for the unit testing of aspects was

code coverage; the percentage of aspect code that could be unit tested using a mock

object in a test project. To determine the amount of aspect code that was covered by the

unit tests the study used EclEmma, a Java code coverage tool for Eclipse. The code

coverage is outlined in Table 3.

The tool EclEmma was designed to look at code coverage of Junit tests against Java

code. When running the code coverage tool against AspectJ code the coverage

percentage is artificially low. The coverage rates in most of the projects are below 50%

because the EclEmma counts joinpoint declarations as lines of code. The coverage rate

57

in Spacewar was the lowest of all of the applications tested. The Spacewar application

had a lower coverage rate due to the way three classes were developed. In each of the

three class an aspect was created within a class. The unit tests tested only the aspect

portion of the three classes and not the remaining class code. However, the EclEmma

tool counted all of the lines of code in each of the three files resulting in a skewed

coverage rate. The joinpoints are not testable code except when associated with an aspect.

The code coverage results shows that it is possible to test the aspect code effectively

using a mock object to supply the context for the aspects.

Table 3 Code Coverage

Name Aspects Tested Code Coverage %

Introduction 3 49.8

Telecom 3 43.3

Spacewar 5 33.3

AJHotDraw 4 46.2

PetStoreAspectJ 4 39.8

Bean 1 72.7

NovaSE Bank 3 54.5

To evaluate the effectiveness of using a class interface in the construction of the mock

objects there were two metrics used. The first of the metrics was the time needed to build

and maintain the mock objects. This metric involved keeping track of the approximate

amount of time needed to create and maintain the mock objects.

In creating the mock objects to be used in testing the aspects, the mock objects were

divided into two groups. One set of mock objects was created by inheriting a class

interface that was also inherited by the application code class being mocked. The other

58

set of mock objects was created without using a class interface. The number of mock

objects per test project and the time needed is shown in Table 4.

Table 4 Time Comparison

Name Mock Objects

w/ Interface

Time to

create and

maintain

Mock Objects

w/o Interface

Time to create

and maintain

Introduction 1 1 hr 0 N/A

Telecom 2 2 hrs 4 4 hrs

Spacewar 2 4 hrs 2 4 hrs

AJHotDraw 8 10 hrs 15 20 hrs

PetStoreAspectJ 6 8 hrs 5 7 hrs

Bean 1 1 hr 0 N/A

NovaSE Bank 6 8 hrs 3 5 hrs

When creating the mock objects only the necessary functionality needed was added.

The mock objects that inherited from a class interface had all interface methods created.

The methods within the class actually being used had code added else the method would

throw a not implemented exception. The mock objects that did not inherit from a class

interface only had the methods needed created. In both cases an empty class of the

appropriate name was created in the test project. Then as functionality was needed it

would be added to the mock object. An additional amount of time was needed in the

maintenance of the class interface. As a new public method was needed in the base

application to keep the class interface updated.

While the class interface shortened the time to a small degree there wasn’t a great

difference in the amount of time between the two methods. In the creation of the mock

objects only functionality needed to successfully test an aspect was needed. Thus the

mock functionality was copied into or reproduced from the application object piece by

59

piece. If new functionality was added to the base application object, the mock object

only needed the functionality if needed by a unit tester aspect being tested.

The second metric to be evaluated was the number of declarable class objects, such as

methods, constructors, exception handlers, and attributes, within the class interface that

could be joinpoints. The aspect pointcuts would not actually be woven against the

interface joinpoints, but the interface joinpoints would give definition to the Java objects

and thus be available within any class inheriting from the interface.

Of the available Java object types such as attributes, methods, etc., the only object

that could be used in the interface is the public method. The class interface in Java is not

capable of containing any private attributes or method declarations. It is also not capable

of having public attributes or constructors. From a percentage rate evaluation the usage

of the class interface was not helpful in the testing of aspects using mock objects.

Summary of Results

The goal of this research was to determine the effectiveness of testing aspects using

mock objects with class interfaces. The testing was done with the Java language using

AspectJ and within the Eclipse IDE.

To determine whether mock objects and interfaces are beneficial three questions were

asked:

• With advice not having their own context will mock objects supply that

context?

• Does the class interface benefit the user for keeping the mock object and

application class synchronized?

60

• How many class constructs that can have joinpoints can a class interface

contain?

How many aspect joinpoint types are available in a class interface

In Java a class interface is able to contain public method declarations and public

constants. Of these two types aspects are able to have joinpoints against only the public

method declarations. In contrast AspectJ is able to create joinpoints against public and

private methods, public and private attributes and constructors.

The inability of the interface to have more constructs hampers the usefulness of the

class interface with mock objects testing aspects. With the method declarations one is

able to use the interface declaration within the joinpoint and the advice. By using the

interface declaration one is able to match against either the application class or the mock

object, with resolution at runtime. The code below, taken from the Spacewar and

Telecom applications, shows the usage of an interface within a joinpoint and advice.

 pointcut helmCommandsCut(IShip ship):
 target(ship) && (call(void rotate(int)) ||

 call(void thrust(boolean)) ||

 call(void fire()));

 after(ITimer t): target(t) && call(* ITimer.start()){

 System.err.println("Timer started: " +

t.getStartTime());

 start = true;

}

Figure 18: Interface usage in an Aspect

61

Is a class interface beneficial for synchronization

The class interface was able to supply just public methods of the application class for

use as possible pointcuts. The usage of a class interface was not valuable at keeping the

application class and the mock object synchronized. As a result when a change was made

to the application class the developer had to remember to provide the new functionality to

the mock object.

The usefulness of the class interface was determined by keeping track of the time

needed to create and maintain a mock object inheriting from a class interface versus the

time needed to create and maintain a mock object not inheriting from a class interface.

As with the class objects there was not a distinct advantage in using the class interface.

The time needed to create and maintain the mock code was roughly the same whether an

interface was used or not used. The time needed for the mock objects in the Telecom

example was on average one hour for the non-interface code and the interface code. The

time needed for the NovaSE code the time needed was on average one hour and fifteen

minutes for the interface code and one hour and forty-four minutes for the non-interface

code.

Can mock objects supply aspect context

As was seen by Mortenson et al. (2006), the usage of mock objects is a viable method

of testing aspect code. By creating a separate project for the unit tests a tester is able to

create mock objects that are contained in the same package and have the same class name

as those in the base application. The tester is then able to add only the code needed for

62

the testing. The research was able to test pointcuts that had joinpoints of method calls,

object instantiations, exceptions and constructors.

Summary

The ability to use mock objects for the testing of Java aspect code was shown by the

study to be a viable method for testing. To properly test, the mock objects must be in a

mock project with the package structure the same as the application project. The aspect

code is able to use the mock objects for pointcuts and object instantiations. The unit tests

were able to use the mock objects to test that the pointcuts are found and that the advice

code properly executes.

The addition of an interface to the creation of a mock object, while helpful, did not

supply an overwhelming addition to the process. The class interface did help in keeping

public methods synchronized between the classes in the two projects. With only public

methods being available as possible pointcuts combined with the negligible difference in

the time needed to create a mock object inheriting from a class interface versus a mock

object that does not inherit from a class interface, the usage of a class interface when

creating mock objects to unit test aspects is not warranted. A tester would spend as much

time creating and maintaining the mock objects with a class interface as without.

63

Chapter 5

Conclusions

Conclusions

This dissertation found that using mock objects in a mock project it is possible to test

aspect class code. The study was able to create mock objects that were able to give

aspects context by supplying the joinpoints with pointcuts identical to those found in the

application classes. The pointcuts were verified by using a decompiler and verifying that

the advice code was woven into the pointcut.

By using the mock objects unit tests were able to be written that tested the

functionality of the aspect advice. With the unit testing the study showed that a

developer would be able to test their aspect code to validate that it was working as

expected.

The usage of a class interface was also incorporated into the study to see if a class

interface would ease the problem of keeping application class code and mock object code

synchronized. When using a class interface it was found that the interface code was not a

detriment, conversely it was also found to not be advantageous. The time needed to

create and maintain the mock objects with a class interface verses the mock objects

without a class interface was almost the same. In both cases a tester would have to

64

continually refer to the application code to manually copy or reproduce code in the mock

object to duplicate the code found in the application class.

Implications

This dissertation investigated whether the usage of a class interface with the

construction of mock objects was beneficial. The class interface did not cause any

adverse effects, but in the ability to save time there was no worthwhile advantage. The

mock object, in a Java environment, was shown to be able to provide context to aspect

classes. With the mock objects a tester is able to validate that an aspect performs as

expected.

Recommendations

The usage of AOP as a method of developing software not only requires the tools for

effectively and efficiently creating aspects, but the ability to make sure the code works

and is maintainable. With this work developers have a way of testing their code to make

sure that it works and to test that it is woven where desired. While it is possible to test

that the joinpoints are woven where desired it is still a problem of detecting that

joinpoints are not incorrectly woven into the code.

This study was concerned with the ability to effectively test aspects by a developer to

ensure that the aspect code written would work as expected. The ability for testers at the

integration level to test that aspect code is working correctly and not adversely affecting

other modules still needs to be studied.

65

Cross-cutting concerns are a problem and AOP is a possible solution. Singleton

classes are an additional solution to cross-cutting concerns. Is one a better solution than

the other?

Summary

AOP has its origins in 1996 in a proposal by Gregor Kickzale (Haque, 2011). AOP

was proposed as an enhancement to OOP. The AOP methodology is a possible solution

to the occurrence of cross-cutting concerns found within OOP applications (Lemos, et al.,

2006).

In OOP classes are created to emulate functional objects that are specified within the

application design requirements. In design requirements there exist requirements that are

not specific to a single object. Instead these requirements are needed by multiple objects,

but are not core functionality of any one object. These requirements are known as cross-

cutting concerns (Monteiro & Aguiar, 2007). A common example of a cross-cutting

concern is the logging of information by an application is it executes.

AOP is a software development paradigm that addresses the problem of cross-cutting

concerns (Wedyan & Gosh, 2010). AOP solves the problem with the introduction of four

new concepts: joinpoints, pointcuts, advice and aspects (Wloka, et al., 2008). An aspect

is a class like structure that encapsulates the pointcuts and advice. Like a class an aspect

is able to contain attributes and methods along with the pointcuts and advice. The aspect

is implemented in the application by having the aspect code woven into the application

code during the compilation process.

66

A joinpoint is an aspect construct that defines where within an application an advice

is to be woven. The location within the application that the weaving will take place is

known as the pointcut. An advice is similar to a class method. The advice contains code

that will be executed at the corresponding pointcuts (Parizi & Ghani, 2007).

As with any software construct the code written must be tested for correctness. This

testing takes place at the time of development to ensure it is functionally correct. It is

tested again at integration time to ensure that the code interfaces properly with other parts

of the application. A programmer cannot assume that because an applications code

compiles, that it is correct. Unfortunately too many developers make this mistake (Olan,

2003).

This study researched the benefit of using class interfaces with mock object to do unit

testing of aspects.

Unit testing was introduced by Kent Beck in the 1990’s in association with Smalltalk

(Osherove, 2009). A unit test is code that will test a specific piece of code in isolation

from the overall application. The test is conducted by making an assumption of what the

application code should do. The unit test will execute and if the assumption occurs the

test passed (Olan, 2003)

Since unit tests are executing in isolation there is often additional information or

objects needed for the application code under test to properly execute (Osherove, 2009).

A mock object is code written that will provide the additional information. A mock

object will replace an actual application object by immolating the application object

without duplication all of the application objects functionality, only that functionality

which is needed for the test (Mackinnon, et al., 2001)

67

The ability to use mock objects to test AOP applications was tested by Mortensen et

al. (2006). In their study C++ OOP applications were refactored to use AOP. To test the

aspects being created a mock system was created that allowed the researchers to test the

validity of the aspect code.

The authors found that the time needed to compile the mock system was significantly

less than that needed for the full application system. With the quicker compilation times,

the time needed for running of the unit tests was shortened. The mock system also

allowed for quicker experimentation with the joinpoints and advice, due to the shorter

compilation time. The authors noted that there existed a problem with keeping the mock

system and the actual application objects synchronized. There was also a limitation in

the types of joinpoints created, mainly being limited to method calls

This research looked to determine the effectiveness of using a class interface inherited

by mock objects for the testing of aspects. To determine the effectiveness three questions

were asked:

• Can mock objects supply context for aspects?

• Is there a benefit to using a class interfaces inherited by the application classes

and the corresponding mock objects?

• How many object constructs that can as as joinpoints are available in an

interface?

The research to answer these questions consisted of two main steps. The first step

involved writing a Java based application that simulated a banking application. The

banking application project was created containing a package, NovaSE. In the package

68

was placed the java class code, class interfaces and the aspect code. The aspect

joinpoints were written to find pointcuts within the application classes and perform

actions needed by the application.

A test project was created that duplicated the structure of the base application. In the

case of the banking application the project Test_NovaSE Bank with a package of

NovaSE was created. The class interfaces files and the aspect class files were linked into

the test NovaSE package allowing for the test project and the application project to share

the same files.

To test the aspects, unit tests were created that would validate correctness. The tests

were designed to validate that joinpoints were being correctly found and that there were

no joinpoints missed. Tests were also designed to validate that the code within the advice

executed as expected. The mock objects were created by either inheriting from the class

interface or then creating the needed functionality or they were created by duplicating the

application class structure and then completed only the needed functionality.

In addition to testing with a sample application the study used six open source

projects; AspectJ Introduction, Bean, Telecom, Spacewar, Petstore AspectJ and

AJHotDraw. With each of these applications the procedures outlined above were

followed:

• A test project was created with the same package names

• The aspect and interface code files were imported into the test project package

• Unit tests were written to test the aspects

• Mock objects were created as needed to test the aspect code.

69

The research for the class interface provided very little benefit. The joinpoint objects

available in a class interface were limited to just public methods. Excluded were

constructors, public variables and any private construct. With only the public method

available in the class interface a time savings verses creating the mock object by copying

the needed functionality from the application class was not seen. The main reason for the

lack of a time difference was that the mock object functionality was only added as it was

needed to properly test the aspect code. Thus the code for the mock inheriting an

interface had to have the majority of its code created by duplicating the code found in the

application object, same as the mock without the interface.

The mock object was created as an empty class shell. Functionality was first added to

satisfy the aspect code and then code was added to allow the unit tests to run. The

functionality for the mock objects was either cut and pasted straight from the application

object or a subset of the application code was taken as needed. The aspect code from the

base application was linked into the test project, placing the aspect code in the same

package as in the base application. Unit tests created to test the pointcuts and advice

were now able to execute as expected.

This dissertation found that using mock objects in a test project is a viable method of

providing aspects context. With context provided by the mock objects unit testing of

aspect within the Java language is possible. The usage of a class interface to ease the

ability to keep application code and mock project code synchronized was shown to be

neither a help nor a deterrent. The time need to create and maintain the mock was

negligibly different between using and not using a class interface.

70

71

References

Alexander, R. T., Bieman, J. M., & Andrews, A. A. (2004). Towards the systematic

testing of aspect-oriented programs, Technical Report CS-4-105. Colorado State
University.

Bender, J., & McWherter, J. (2011). Test Driven Development with C#. Indianapolis,
Indiana: Wiley Publishing Co.

Freeman, S., Mackinnon, T., Pryce, N., & Walnes, J. (2004). Mock roles, Not Objects.
19th annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications (OOPSLA '04) (pp. 236-246). New York,
NY: ACM.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns - Elements of

Reusable Object-Oriented Software. Addison Wesley.

Haque, M. A. (2011). Problems in Aspect Oriented Design: Facts and Thoughts.
International Journal of Computer Science Issues, 8(2), 552-556.

Kim, T., Park, C., & Wu, C. (2006). Mock Object Models for Test Driven Development.
Fourth International Conference on Software Engineering Research,

Management and Applications (SERA'06), (pp. 221-228).

Kollanus, S. (2010). Test-Driven Development - Still a Promising Approach?,. 2010

Seventh International Conference on the Quality of Information and

Communications Technology (pp. 403-408). IEEE.

Kumar, M., Sharma, A., & Garg, S. (2009, October). A study of aspect oriented testing
techniques. Industrial Electronics & Applications, pp. 996-1001.

Lemos, O. A., & Masiero, P. C. (2008). Using Structural Testing to Identify Unintended
Join Points Selected by Pointcuts in Aspect-Oriented Programs. 32nd Annual

IEEE Software Engineering Workshop, 84-93.

Lemos, O. A., Ferrari, F. C., Masiero, P. C., & Lopes, C. V. (2006). Testing aspect-
oriented programming Pointcut Descriptors. In Proceedings of the 2nd workshop

on Testing aspect-oriented programs (pp. 33-38). New York, NY: ACM.

Lopes, C., & Ngo, T. (2005). Unit-Testing Aspectual Behavio. 4th International

Conference on Aspect-Oriented Software Development.

Mackinnon, T., Freeman, S., & Craig, P. (2001). Endo-testing: unit testing with mock
objects. In In Extreme Programming Examined (pp. 287-301.). Boston, MA.:
Addison-Wesle.

72

Monteiro, M. P., & Aguiar, A. (2007). Patterns for refactoring to aspects: an incipient
pattern language. In Proceedings of the 14th Conference on Pattern Languages of

Programs (PLOP '07). New York, NY: ACM.

Mortensen, M., & Alexander, R. T. (2005). An Approach for Adequate Testing of
AspectJ Programs. 2005 Workshop on Testing Aspect-Oriented Programs in

conjunction with AOSD 2005.

Mortensen, M., Ghosh, S., & Bieman, J. (2012). Aspect-Oriented Refactoring of Legacy
Applications: An Evaluation. IEEE Transactions on Software Engineering,

PP(99).

Mortensen, M., Ghosh, S., & Bieman, J. M. (2006). Testing During Refactoring: Adding
Aspects to Legacy Systems. 17th International Symposium on Software

Reliability Engineering (ISSRE'06), (pp. 221-230).

Mortensen, M., Ghosh, S., & Bieman, J. M. (2008). A Test Driven Approach for
Aspectualizing Legacy Software Using Mock Systems. Information and Software

Technology, 50, 621-640.

Nandigam, J., Gudivada, V. N., Hamou-Lhadj, A., & Tao, Y. (2009). Interface-Based
Object-Oriented Design with Mock Objects. 2009 Sixth International Conference

on Information Technology, (pp. 713-718).

Olan, M. (2003). Unit testing: test early, test often. J. Comput. Small Coll, 19(2), 319-
328.

Osherove, R. (2009). The Art of Unit Testing with Examples in.Net. Greenwich, CT:
Manning Publications Co.

Parizi, R. M., & Ghani, A. A. (2007). A Survey on Aspect-Oriented Testing Approaches.
The 2007 International Conference Computational Science and its Applications,
78-85.

Sobering, G., Cook, L., & Anderson, S. (2004). Pseudo-classes: very simple and
lightweight mockObject-like classes for unit-testing. In Companion to the 19th

annual ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications (OOPSLA '04) (pp. 162-163). New York, NY, USA:
ACM.

Thomas, D., & Hunte, A. (May/June 2002). Mock Objects. IEEE Software, vol. 19, no. 3,
22-24.

Wedyan, F., & Ghosh, S. (2008). A Joinpoint Coverage Measurement Tool for
Evaluating the Effectiveness of Test Inputs for AspectJ Programs. 2008 19th

International Symposium on Software Reliability Engineering, 207-212.

73

Wedyan, F., & Ghosh, S. (2010). A Dataflow Testing Approach for Aspect-Oriented
Programs. 2010 IEEE 12th International Symposium on High-Assurance Systems

Engineering, 64-73.

Wloka, J., Hirschfeld, R., & Hansel, J. (2008). Tool-supported Refactoring of Aspect-
oriented Programming. 7th international conference on Aspect-oriented software

development, (pp. 132-143). Brussels, Belgium.

Xie, T., Zhao, J., Marinov, D., & Notkin, D. (2006). Detecting Redundant Unit Tests for
AspectJ Programs. 17th International Symposium on Software Reliability

Engineering, 179-190.

Xu, D., & Xu, W. (2006). State-based incremental testing of aspect-oriented programs. In

Proceedings of the 5th international conference on Aspect-oriented software

development (pp. 180-189). New York, NY: ACM.

Zhao, J. (2003). Data-Flow-Based Unit Testing of Aspect-Oriented Programs. 27th

Annual International Computer Software and Applications Conference, 188-197.

Zhu, H., Hall, P. A., & May, J. H. (December 1997). Software unit test coverage and
adequacy. ACM Comput. Surv. 29, 4 , 366-427.

	Nova Southeastern University
	NSUWorks
	2014

	Using Class Interfaces and Mock Objects to Unit Test Aspects
	Michael Bryan Snider
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1421167159.pdf.qKLZo

