COMPOSICIÓN Y ESTRUCTURA DE LA COMUNIDAD FITOPERIFÍTICA DE LA CUENCA DEL RÍO ALVARADO (TOLIMA-COLOMBIA)

JONATHAN GERARDO GORDILLO-GUERRA

Trabajo de grado presentado como requisito parcial para optar el título de Biólogo

Co-directora

cM.Sc. Yessica Tatiana Parra Trujillo

Directora

M.Sc. Gladys Reinoso Flórez

UNIVERSIDAD DEL TOLIMA

FACULTAD DE CIENCIAS BÁSICAS

DEPARTAMENTO DE BIOLOGÍA

GRUPO DE INVESTIGACIÓN EN ZOOLOGÍA

IBAGUÉ-TOLIMA

2014

FACULTAD DE CIENCIAS PROGRAMA DE BIOLOGÌA

ACTA DE SUSTENTACIÓN DE TRABAJO DE GRADO

TITULO: COMPOSICIÓN Y ESTRUCTURA DE LA COMUNIDAD FITOPERIFÍTICA DE LA CUENCA DEL RÍO ALVARADO (TOLIMA-COLOMBIA)

AUTORES: JONATHAN GERARDO GORDILLO GUERRA

DIRECTOR: Gladys Reinoso Flórez

CO-DIRECTOR: Yessica Tatiana Parra Trujillo

JURADOS: Edwin Orlando López Delgado Jesús Manuel Vásquez Ramos

CALIFICACIÓN: 4,6	
X_APROBADO	REPROBADO
OBSERVACIONES:	
FIRMAS	
Edwn O. Lope D. JURADO I.	JURADO 2.
Jodys Reinoroj Director del trabajo	Director del programa

Ciudad y fecha: Ibagué, 31 de enero de 2014.

FACULTAD DE CIENCIAS PROGRAMA DE BIOLOGÍA

ACTA DE SUSTENTACIÓN DE TRABAJO DE GRADO

TITULO: COMPOSICIÓN Y ESTRUCTURA DE LA COMUNIDAD FITOPERIFÍTICA DE LA CUENCA DEL RÍO ALVARADO (TOLIMA-COLOMBIA)

AUTORES: JONATHAN GERARDO GORDILLO GUERRA

DIRECTOR: Gladys Reinoso Flórez

CO-DIRECTOR: Yessica Tatiana Parra Trujillo

JURADOS: Edwin Orlando López Delgado Jesús Manuel Vásquez Ramos

4.6	
BADOREPROBADO	
S:	
2 /1	
The state of the s	
JURADO 2.	
Peinopol July 5	
JURADO 2.	

Ciudad y fecha: Ibagué, 31 de enero de 2014.

DEDICATORIA

HDios por permitirme llegar a cumplir este sueño.

H mis padres por ser un apoyo incondicional, por su lucha y esfuerzo en esta etapa de vida, este logro es también de ustedes. Los adoro con todo mi corazón y son motivo para seguir adelante.

A mi tío Pedro Javier Gordillo quien apoyo siempre a mis padres y me oriento con sus consejos.

H mis hermanitas, Karol y Juliana, por ser mí motivo de lucha y ser un ejemplo a seguir con ellas. Las quiero.

H mis Abuelos por todos sus consejos a lo largo de mi vida.

H toda mi familia, gracias por su apoyo en este proceso.

AGRADECIMIENTOS

Al Comité Central de Investigaciones de la Universidad del Tolima, por su colaboración económica para el desarrollo de este trabajo.

A la profesora Gladys Reinoso Flórez, coordinadora del Grupo de Investigación en Zoología, por permitirme hacer parte de este proyecto, la confianza, asesoría y apoyo incondicional en el desarrollo de este trabajo.

A Yessica Tatiana Parra Trujillo quien amablemente me orientó, su dedicación me ayudó a resolver muchas dudas, y su paciencia fue esencial para el desarrollo del trabajo. Gracias por todo, por su amistad y por hacer parte de este bello proyecto. Mil gracias.

A mis compañeros Adriana Marcela Forero Céspedes, Laura Daniela Rojas, Juan Gabriel Albornoz, Cristhian Conde, Edison Duarte, Cristhian Gaitán y Andrea Tarquino por su compañía en este proceso.

A mi amigo incondicional Michael Alejandro Castro Bonilla por su valiosa amistad y su compañía en toda la carrera.

CONTENIDO

INTR	ODUCCIÓN	20
1. 0	BJETIVOS	22
1.1.	OBJETIVO GENERAL	22
1.2.	OBJETIVOS ESPECÍFICOS	22
2. M	IARCO REFERENCIAL	23
2.1.	ANTECEDENTES	23
2.2.	MARCO CONCEPTUAL	33
2.2.1.	Generalidades del perifiton	33
2.2.2.	Organización taxonómica.	34
2.2.3.	Importancia del perifiton como indicador de la calidad del agua	35
3. M	IATERIALES Y MÉTODOS	36
3.1.	METODOLOGÍA DE CAMPO	36
3.2.	PARÁMETROS FISICOQUÍMICOS Y BACTERIOLÓGICOS	39
3.3.	PROCESAMIENTO DE LAS MUESTRAS EN EL LABORATORIO	39
3.4.	ANÁLISIS DE DATOS	40
3.4.1.	Densidad relativa	40
3.4.2.	Índices Ecológicos	41
3.4.3.	Análisis de variables fisicoquímicas.	42
3.4.4.	Análisis de Correspondencia	42
4. R	ESULTADOS	43

4.1.	VARIABLES BIOLÓGICAS	43
4.1.1.	Composición General	43
4.1.2.	Muestreo 1. Septiembre de 2012 (Altas precipitaciones)	47
4.1.3.	Muestreo 2: Diciembre de 2012 (Bajas precipitaciones)	53
4.1.4.	MICROHÁBITAT DE ALGAS PERIFÍTICAS	58
4.2.	ÍNDICES ECOLÓGICOS	61
4.2.1.	Índices de diversidad a nivel general (Septiembre y Diciembre)	61
4.2.2.	Índices de diversidad por estaciones	62
4.2.3.	Índices de diversidad a nivel de sustratos	63
4.2.4.	Índices de diversidad a nivel temporal	64
4.2.5.	Índices de diversidad de sustratos a nivel temporal	66
4.2.6.	Índices de diversidad de sustratos por estación a nivel temporal	68
4.3.	VARIABLES FISICOQUÍMICAS Y BACTERIOLÓGICAS	71
4.3.1.	ANOVA de Kruskal-Wallis	72
4.3.2.	ANÁLISIS DE COMPONENTES PRINCIPALES (ACP)	76
FISIC	ANÁLISIS DE CORRESPONDENCIA CANÓNICA ENTRE VARIABLES OQUÍMICAS Y LA COMUNIDAD FITOPERIFITICA DE LA CUENCA DEL RADO	
5. DI	ISCUSIÓN	89
5.1.	VARIABLES BIOLÓGICAS	89
5.2.	ÍNDICES ECOLÓGICOS	92
5.3.	VARIABLES FISICOQUÍMICAS Y BACTERIOLÓGICAS	94
6 C		07

RECOMENDACIONES	99
REFERENCIAS	100
ANEXOS	112

LISTADO DE CUADROS

Cuadro 1. Investigaciones realizadas a nivel mundial sobre la comunidad fito	perifítica.
	23
Cuadro 2. Investigaciones realizadas en Suramérica	25
Cuadro 3. Investigaciones realizadas en Colombia sobre aspectos generales	y algunos
registros taxonómicos del Perifiton	27
Cuadro 4. Investigaciones realizadas en el departamento del Tolima sobre	variables
biológicas, fisicoquímicas e hidrológicas en la comunidad fitoperifítica	32

LISTADO DE TABLAS

Tabla 1. Estaciones muestreadas en la cuenca del río Alvarado-Tolima
Tabla 2. Composición taxonómica de la comunidad fitoperifítica registrada en las 9
estaciones de muestreo en la cuenca del río Alvarado-Tolima durante septiembre y
diciembre de 201243
Tabla 3. Composición taxonómica de la comunidad fitoperifitica registrada en las 9
estaciones de muestreo en la cuenca del río Alvarado-Tolima, durante el mes de
septiembre de 201248
Tabla 4. Composición taxonómica de la comunidad fitoperifítica registrada en las 9
estaciones de muestreo en la cuenca del río Alvarado-Tolima, durante el mes de
diciembre de 201254
Tabla 5. Parámetros bacteriológicos analizados en las nueve estaciones muestreadas
de la cuenca del río Alvarado en el mes de septiembre de 201271
Tabla 6. Parámetros bacteriológicos analizados en las nueve estaciones muestreadas
de la cuenca del río Alvarado en el mes de diciembre de 201272
Tabla 7. ANOVA de Kruskal-Wallis para los 19 parámetros fisicoquímicos y
bacteriológicos analizados en las 9 estaciones de la cuenca del río Alvarado en
septiembre y diciembre de 2012
Tabla 8. Parámetros fisicoquímicos analizados en nueve estaciones muestreadas de la
cuenca del río Alvarado en septiembre de 2012
Tabla 9. Parámetros fisicoquímicos analizados en nueve estaciones muestreadas de la
cuenca del río Alvarado en diciembre de 2012
Tabla 10. Factores en el ACP de los parámetros fisicoquímicos y bacteriológicos
evaluados en la cuenca del río Alvarado en septiembre de 2012
Tabla 11. Contribuciones de las variables fisicoquímicas y bacteriológicas en los factores
1, 2 y 3 del análisis de componente principal en septiembre de 2012 77
Tabla 12. Factores en el ACP de los parámetros fisicoquímicos y bacteriológicos
evaluadas en la cuenca del río Alvarado en diciembre de 201280

Tabla 13. Contribuciones de las variables fisicoquímicas y bacteriológicas en lo	s factores
1, 2 y 3 del análisis de componente principal en diciembre de 2012	80

LISTADO DE FIGURAS

Figura 1. Ubicación geográfica de la cuenca del río Alvarado (Tolima) y sus principales
tributarios
Figura 2. Sustratos evaluados y materiales usados para la colecta del fitoperifiton. Roca
(A), Tronco (C) y material de colecta (B)
Figura 3. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de
muestreo en la cuenca del río Alvarado, durante septiembre y diciembre de 2012 45
Figura 4. Densidad relativa a nivel espacial de la comunidad fitoperifítica en las 9
estaciones evaluadas de la cuenca del río Alvarado (Tolima) durante los periodos
comprendidos entre septiembre y diciembre de 201246
Figura 5. Distribución temporal del perifiton en las 9 estaciones muestreadas de la
cuenca del río Alvarado durante septiembre (Altas precipitaciones) y diciembre (bajas
precipitaciones) de 2012
Figura 6. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de
muestreo en la cuenca del río Alvarado durante septiembre de 2012 50
Figura 7. Distribución altitudinal de los géneros de la clase Bacillariophyceae
encontrados en la cuenca del río Alvarado durante septiembre de 2012 (Altas
precipitaciones)
Figura 8. Distribución altitudinal de los géneros de las clases Chlorophyceae y
Conjugatophyceae encontrados en la cuenca del río Alvarado durante septiembre de
2012 (Altas precipitaciones)
Figura 9. Distribución altitudinal de los géneros de las 6 clases restantes de la comunidad
fitoperifítica evaluada en la cuenca del río Alvarado durante septiembre de 2012 (Altas
precipitaciones)
Figura 10. Distribución espacial de la comunidad fitoperifítica en las 9 estaciones
muestreadas de la cuenca del río Alvarado durante septiembre (altas precipitaciones) de
201253

Figura 11. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de
muestreo en la cuenca del río Alvarado durante diciembre de 2012 55
Figura 12. Distribución altitudinal de los géneros de la clase Bacillariophyceae
encontrados en la cuenca del río Alvarado durante diciembre de 2012 (bajas
precipitaciones)56
Figura 13. Distribución altitudinal de los géneros de las clases Chlorophyceae y
Conjugatophyceae encontrados en la cuenca del río Alvarado durante diciembre de 2012
(bajas precipitaciones) 57
Figura 14. Distribución altitudinal de los géneros de las clases Cryptophyceae y
Cyanophyceae encontrados en la cuenca del río Alvarado durante diciembre de 2012
(bajas precipitaciones) 57
Figura 15. Distribución espacial de la comunidad fitoperifítica en las 9 estaciones
muestreadas de la cuenca del río Alvarado durante diciembre (Bajas precipitaciones) de
201258
Figura 16. Distribución de la comunidad fitoperifitica en dos sustratos naturales en la
cuenca del río Alvarado durante septiembre (altas precipitaciones) y diciembre (bajas
precipitaciones) de 2012 59
Figura 17. Densidad relativa del perifiton en los sustratos naturales (roca y tronco) en las
9 estaciones evaluadas en la cuenca del río Alvarado durante septiembre de 2012 60
Figura 18. Densidad relativa del perifiton en los sustratos naturales (roca y tronco) en las
9 estaciones evaluadas en la cuenca del río Alvarado durante diciembre de 2012 60
Figura 19. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica de la cuenca del río Alvarado durante septiembre y diciembre
de 201261
Figura 20. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica de la cuenca del río Alvarado por estaciones durante
septiembre y diciembre de 2012
Figura 21. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener en
la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río
Alvarado durante sentiembre y diciembre de 2012 63

Figura 22. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica de la cuenca del río Alvarado durante septiembre de 2012. 64
Figura 23. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica de la cuenca del río Alvarado durante el mes de diciembre de
201265
Figura 24. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río
Alvarado en el mes septiembre de 201266
Figura 25. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río
Alvarado en el mes diciembre de 201267
Figura 26. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica, en los diferentes sustratos muestreados por estación en la
cuenca del río Alvarado en el mes de septiembre de 201269
Figura 27. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de
la comunidad fitoperifitica, en los diferentes sustratos muestreados por estación en la
cuenca del río Alvarado en el mes de diciembre de 201270
Figura 28. Diagrama de dispersión de las variables analizadas en los componentes I, II
y III en la cuenca del río Alvarado en septiembre de 201278
Figura 29. Diagrama de dispersión de las estaciones de acuerdo a los parámetros
fisicoquímicos medidos en la cuenca del Alvarado en septiembre de 201279
Figura 30. Diagrama de dispersión de las variables analizadas en los componentes I, II
y III en la cuenca del río Alvarado en diciembre de 2012
Figura 31. Diagrama de dispersión de las estaciones de acuerdo a los parámetros
fisicoquímicos medidos en la cuenca del Alvarado en diciembre de 201283
Figura 32. Análisis de Correspondencia Canónica entre variables fisicoquímicas y la
comunidad fitoperifitica en las diferentes estaciones muestreadas de la cuenca del río
Alvarado en los periodos de muestreo (septiembre y diciembre de 2012)84
Figura 33. Análisis de Correspondencia Canónica entre variables fisicoquímicas y la
comunidad fitoperifitica en las diferentes estaciones muestreadas de la cuenca del río
Alvarado en septiembre de 2012

Figura 34.	Análisis de	Correspondencia	Canónica er	ntre variables	fisicoquímicas	y la
comunidad	fitoperifitica	en las diferentes	estaciones n	nuestreadas d	e la cuenca del	río
Alvarado er	n diciembre	de 2012				. 87

ANEXOS

Anexo 1. Ficha de campo de la cuenca112
Anexo 2. Prueba t-diversidad de Shannon
Anexo 3. Registro fotográfico de las 9 estaciones evaluadas en la cuenca del río
Alvarado Tolima en los meses de septiembre y diciembre de 2012114
Anexo 4. Géneros encontrados de la clase Bacillariophyceae en la cuenca del río
Alvarado-Tolima en los meses de septiembre y diciembre de 2012 115
Anexo 5. Géneros encontrados de la clase Chlorophyceae en la cuenca del río Alvarado-
Tolima en los meses de septiembre y diciembre de 2012
Anexo 6. Géneros encontrados de la clase Conjugatophyceae en la cuenca del río
Alvarado-Tolima en los meses de septiembre y diciembre de 2012 118
Anexo 7. Géneros encontrados de la clase Cyanophyceae en la cuenca del río Alvarado-
Tolima en los meses de septiembre y diciembre de 2012119
Anexo 8. Géneros encontrados de la clase Ulvophyceae en la cuenca del río Alvarado-
Tolima en los meses de septiembre y diciembre de 2012120
Anexo 9. Densidad relativa de los géneros en las nueve estaciones de muestreo
evaluadas durante septiembre de 2012
Anexo 10. Densidad relativa de los géneros en las nueve estaciones de muestreo
evaluadas durante diciembre de 2012
Anexo 11. Análisis de correlación de Pearson para el periodo de septiembre y diciembre.
Anexo 12 (a). Efectos condicionantes del análisis de correspondencia canónica en las
dos épocas evaluadas, en la cuenca del río Alvarado y sus tributarios

RESUMEN

El fitoperifiton es importante para la estructura y funcionamiento de los ecosistemas lóticos debido a su contribución a la producción primaria, lo cual lo posiciona de manera importante ya que son de interés ecológico por los patrones de distribución como respuesta a las condiciones ambientales. Durante este estudio se evaluó la composición y estructura de la comunidad fitoperifítica en la cuenca del río Alvarado (Tolima) y su posible relación con algunas características fisicoquímicas del río, durante dos muestreos (septiembre y diciembre) en periodos climáticos contrastantes. Se muestrearon nueve estaciones ubicadas a lo largo del río Alvarado y sus principales tributarios. En cada punto de muestreo se realizaron dos raspados de la superficie correspondiente al área de un portaobjetos (0,093 m²), en los sustratos naturales (roca y tronco), mediante el uso de cepillos plásticos. El fitoperifiton colectado estuvo representado por seis phyllum, nueve clases, 26 órdenes, 35 familias y 43 géneros. Los géneros más representativos en términos de densidad relativa fueron Navicula (24,52%), Fragilaria (11,89%), Nitzschia (8,92%) y Cocconeis (7,80%). La clase Bacillariophyceae fue la de mayor distribución altitudinal desde 351 a 1057 m, mientras que la clase Ulvophyceae se encontró restringida a los 697 m. Las localidades con mayor diversidad y riqueza fueron río Alvarado-Puente (H'= 2,562; λ= 0,1; Mg=2,892) y quebrada Chumba $(H'= 2,304; \lambda= 0,14; Mg= 2,468)$, mientras que quebrada Chembe $(H'= 1,928; \lambda= 0,21;$ Mg= 1,719) y río Alvarado-Caldas Viejo (H'= 1,735; λ = 0,3035; Mg= 1,63), registraron los valores más bajos. A nivel temporal, el periodo de septiembre (altas precipitaciones) reportó las mayores densidades (58,93%), y valores altos de diversidad y riqueza (H'= 2,767; Mg= 4,156), así mismo, el sustrato tronco presentó el mayor valor de diversidad y riqueza (H'=2723; Mg=4,139). Según el análisis de correspondencia canónica, las variables fisicoquímicas que determinaron de manera significativa en el ensamblaje de la comunidad algal en esta cuenca, especialmente sobre los géneros Nitzschia, Gomphonema y Synedra fueron, en su orden, sólidos totales, dureza, conductividad eléctrica, pH y alcalinidad, las cuales influyeron de manera significativa en la distribución en la comunidad fitoperifitica en la cuenca del río Alvarado y sus tributarios.

Palabras claves: diversidad, distribución altitudinal, fitoperifíton, río Alvarado.

SUMMARY

The phytoperiphyton is important for the structure and functioning of aquatic ecosystems because of their contribution to primary production, which positions it an important way since ecological interest are the distribution patterns in response to environmental conditions. The composition and structure of the community phytoperiphytic Alvarado river basin (Tolima) and its possible relation to some physico-chemical characteristics of the river for two surveys (September and December) in contrasting climatic periods were evaluated. Nine stations along the Alvarado river and its major tributaries were sampled. At each sampling point two were made scrapings corresponding to a storage area (0.093) m²), on the natural substrates (rock and wood), by using brushes plastic surface. The collected periphyton was represented by six phyllum, nine classes, 26 orders, 35 families and 43 genera. The most representative genres in terms of relative density were Navicula (24.52%), Fragilaria (11.89%), Nitzschia (8.92%) and Cocconeis (7.80%). The Bacillariophyceae class was the most altitudinal distribution from 351-1057 m, while the Ulvophyceae class was limited to 697 m. Localities with greater diversity and richness was river Alvarado-Puente (H '= 2.562, λ = 0.1, Mg = 2,892) and creek Chumba (H' = 2.304, λ = 0.14, Mg = 2.468), while creek Chembe (H '= 1.928, λ = 0.21, Mg = 1,719) and river Alvarado-Caldas-Viejo (H' = 1.735, λ = 0.3035, Mg = 1.63) recorded the lowest values. In a temporal level, the period from September reported the highest densities (58.93%) and high values of richness and diversity (H '= 2.767, Mg = 4,156), likewise, the substrate stem had the highest value of diversity and richness (H '= 2723; Mg = 4,139). The physicochemical variables that significantly determined the algal community in this watershed, especially the genera *Nitzschia*, and *Synedra*, *Gomphonema* were, in order, total solids, hardness, electrical conductivity, pH and alkalinity, which significantly influenced the distribution in the community fitoperifitica of the Alvarado river basin and its tributaries.

Keywords: diversity, altitudinal distribution, fitoperifítica community, Alvarado river.

INTRODUCCIÓN

Los ecosistemas acuáticos son altamente complejos y de suma importancia ya que albergan una gran cantidad de organismos y almacenan una de las moléculas más importantes en el planeta, el agua. En la actualidad estos ecosistemas se están deteriorando principalmente a causa de impactos de tipo antropogénico, como por ejemplo el uso irracional del agua, la descarga de residuos líquidos y sólidos provenientes de algunas actividades como la minería, generación de energía, canalización entre otros (Goulart et al., 2009), que afectan directamente las comunidades acuáticas.

El perifiton hace parte de estos ecosistemas y se define como una comunidad compleja de microorganismos vivos (algas, bacterias, hongos, animales, detritos orgánicos e inorgánicos) adherida o fijados a un sustrato, que puede ser orgánico o inorgánico, vivo o muerto (Wetzel, 1983). Sin embargo, debido a la gran complejidad que encierran las comunidades perifíticas, en las últimas décadas se ha considerado al perifiton como un biofilm, biopelícula o película microbiana que resulta del proceso de colonización, crecimiento y metabolismo celular microbiano (Roldan & Ramírez, 2008).

Las microalgas perifíticas son importantes para la estructura y funcionamiento de los ecosistemas lóticos por ser el principal punto de entrada de la energía, se encargan de la producción de metabolitos orgánicos que alimentan diversos organismos en la red trófica, contribuyen con más del 70% de la materia orgánica a la productividad total, presentan altas tasas de reciclaje de nutrientes, proporcionan abrigo y alimento a varios tipos de organismos, principalmente a peces (Montoya & Ramírez, 2007).

En Colombia, los estudios sobre el perifiton se han realizado principalmente en ecosistemas lénticos; mientras que son pocos los trabajos asociados con la diversidad, estructura y distribución de las comunidades perifíticas en ríos (Bustamante et al., 2008). En el departamento del Tolima se destacan los estudios de Villa et al., (1998); Guevara et al., (2006) en el río Combeima y Gualtero & Trilleras (2001) en el embalse de Prado.

En el río Alvarado se han evaluado las comunidades de macroinvertebrados acuáticos y peces (Albornoz et al., 2013; Conde et al., 2013; Rojas et al., 2013; Lozano et al., 2013; Duarte et al., 2013 & Forero et al., 2013), sin embargo el fitoperifiton no ha sido estudiado en esta área, Se ha concluido de manera general que la cuenca Alvarado es importante para las comunidades de los municipios de Alvarado e Ibagué debido a que abastece de agua el sector urbano y el riego agrícola (Cortolima, 2009); por lo tanto está influenciado por la presencia de asentamientos urbanos y depósitos de desechos cuya principal consecuencia ha sido la reducción sustancial de las comunidades acuáticas.

De acuerdo con lo anterior y sumado a la importancia del perifiton como indicador de la calidad del agua y en su capacidad para responder a los cambios fisicoquímicos, es necesario realizar estudios sobre la comunidad fitoperifítica en los ecosistemas acuáticos que permitan evaluar y determinar los cambios a nivel espacial que presentan estos cuerpos de agua y de las comunidades que hacen parte de ellos. El propósito de esta investigación fue establecer la composición y estructura de la comunidad fitoperifítica en la cuenca del río Alvarado y su posible relación con las variables fisicoquímicas.

1. OBJETIVOS

1.1. OBJETIVO GENERAL

Establecer la composición y estructura de la comunidad fitoperifítica en la cuenca del río Alvarado (Tolima) y su posible relación con algunas variables fisicoquímicas del río.

1.2. OBJETIVOS ESPECÍFICOS

Determinar hasta el mínimo nivel taxonómico posible la comunidad fitoperifítica de la cuenca del río Alvarado.

Estimar la composición a nivel espacial y temporal de la comunidad fitoperifítica en las localidades evaluadas en la cuenca del río Alvarado.

Establecer las posibles relaciones entre la comunidad fitoperifítica y algunas variables físicas y químicas de las localidades evaluadas.

2. MARCO REFERENCIAL

2.1. ANTECEDENTES

En los siguientes cuadros se presentan algunos estudios realizados a nivel mundial (Cuadro 1), Suramérica (Cuadro 2), Colombia (Cuadro 3) y en el departamento del Tolima (Cuadro 4).

Cuadro 1. Investigaciones realizadas a nivel mundial sobre la comunidad fitoperifítica.

MUNDIAL		
Año	Autor (es)	Aportación
		En este estudio, los autores discutieron el
1999	Busse, S., Jahn, R	efecto de desalinización sobre la
1999	& Schulz, C.	comunidad de diatomeas bénticas en ríos
		del norte de Thuringia, Alemania.
		Evalúan los efectos de la perturbación
2003	Casco, M.A & Tola,	por la fluctuación del nivel del agua en la
2003	J.	biomasa y la diversidad del embalse de
		La Minilla (España).
		Reportan por primera vez un género y
2006	Chou, J.Y., Sheng,	especie de macroalga (<i>Hydrodictyon</i>
2000	J.C. & Wang, W.L.	<i>reticulatum</i>) en Taiwán.
		Realizaron el estudio de diatomeas y
2007	Rodríguez, M.P &	calidad del agua de los ríos del Macizo
2007	López, C.	Central de Gallego-España, mediante la
		aplicación de índices diatomológicos.
		Analizó la variación temporal de
2007		comunidad epilítica de sistemas lóticos
2007	Gualtero, D.M.	de Puerto Rico, con énfasis en las

		diatomeas, y sus relaciones con algunos
		parámetros fisicoquímicos de estos
		cuerpos de agua.
		Describen las poblaciones naturales y de
		cultivo de cianobacterias, clorofíceas y
2000	Cilvo AM Cili C	
2008	Silva, A.M., Sili, C.,	diatomeas de varios ríos de Costa Rica,
	& Torzillo, G.	con el fin de contribuir al conocimiento de
		las microalgas bentónicas de una zona
		tropical.
		Analizaron el estado trófico que presenta
2009	Ortega et al.	actualmente el lago en Michoacán
		(México).
		Los autores evalúan la distribución de las
2012		asociaciones de diatomeas bentónicas y
2012	Rovira et al.	su relación con los factores ambientales
		en un estuario altamente estratificado del
		Mediterráneo (estuario del Ebro).
		En este trabajo, los autores evaluaron 41
		arroyos ubicados en el sur de Ontario
	Porter, E., Frost, P &	(Canadá) donde estudiaron los cambios
2013	Xenopoulos, M.	de la composición de las comunidades
		de diatomeas bentónicas ante la
		influencia de la salinidad.
		illiucificia de la Salifficad.

Cuadro 2. Investigaciones realizadas en Suramérica.

SURAMÉRICA		
Año	Autor (es)	Aportación
		Analizaron el aporte mensual promedio
	Cruz, V & Salazar,	de biomasa de perifiton al sistema,
1989	P.	durante el periodo de inundación en la
		sabana inundable de Mantecal
		(Venezuela).
		En un estudio, los autores demostraron
2001	Branco, L.H.,	que las cianobacterias se pueden
2001	Necchi, O &	desarrollar en entornos con medios a
	Branco, C.	baja concentración de iones y
		condiciones de estrés de nutrientes en
		ecosistemas loticos del estado de São
		Paulo.
		Estudiaron la influencia en la biomasa
2005	Pizarro, H &	del perifiton y algunas variables
	Alemanni, M.E	fisicoquímicas en sustratos artificiales
		en el tramo inferior del Río Luján-
		Argentina.
		En la cuenca del río Sauce Grande se
2005	Vouilloud, A., Sala, S	registra algunos taxones de diatomeas
	& Sabbatini, M.R.	perifíticas, que se citan por primera vez
		para Argentina.
		Evalúan la variación temporal de la
2010	Giorgi, A &	biomasa de perifiton sobre <i>Egeria densa</i>
	Feijoó,C.	en el arroyo Las flores-Argentina.
		En este estudio se analizó la
		composición específica y distribución
		espacio-temporal de algas epilíticas y su

	relación con variables físico-químicas,
Amaidén & Gari	en un mesohábitat de corredera de un
	arroyo serrano (suroeste de Río Cuarto,
	Córdoba-Argentina).
	Este estudio está enfocado en el análisis
	de la morfología, taxonomía y
Sar et al.	distribución de las especies
	pertenecientes al género de diatomeas
	Pleurosigma W. Smith presentes en
	aguas marinas costeras de la Argentina.

Cuadro 3. Investigaciones realizadas en Colombia sobre aspectos generales y algunos registros taxonómicos del Perifiton.

COLOMBIA		
Año	Autor (es)	Aportación
		Se realizó una revisión de algunos
		taxones de los órdenes centrales y
		pennales. Se citan por primera vez para
	Sala, E., Duque, S.,	la cuenca amazónica colombiana. Cuatro
1999	Avellaneda, M., &	de ellos, <i>Aulacosiera granulata varo</i>
	Lamaro, A.	enqustissime, Achnanthes intlete,
		Gyrosigma spencerii y Stauroneis
		phoenicenteron se registran por primera
		vez en Colombia.
		En la Zona litoral cerca de los lagos
		Yahuarcaca y Tarapoto mediante el
		diseño de un sistema de sustratos
		artificiales, se cuantifico la productividad
		primaria fitoperifitica por clorofila a, en
2000	Castillo-León, C.T	tres periodos hidrológicos, aguas bajas,
		ascenso y altas o desborde; y a
		diferentes profundidades; determinando
		estos factores tienen un efecto sobre la
		productividad y la biomasa fitoperifitica
		en relación con la mineralización de las
		aguas, el transporte de nutrientes de los
		afluentes.
		Estos autores desarrollaron un estudio
		en la ensenada de Utría (Pacifico

		Colombiano), con el propósito de
2002	Peña, V. & Pinilla, G.	caracterizar la composición, distribución
	A.	y abundancia de la comunidad
		fitoplanctónica, se llevó a cabo un estudio
		que revelo la presencia de especies
		estuarinas, neríticas y oceánicas.
		En veinte ríos de la cuenca alta y media
		del Río Bogotá (Cundinamarca,
2004	Díaz, C. & Rivera, C.	Colombia) se estudió la relación entre
	A.	algunas variables físicas, químicas e
		hidrológicas con la comunidad de
		diatomeas perifíticas.
		En el río Tota-Boyacá se evaluó como la
	Zapata-Anzola, A &	velocidad de la corriente y otras variables
2005	Donato-Rondón, J.C.	ambientales direccionan a los cambios
		diarios de composición y la abundancia
		del perifiton en sustratos artificiales.
		En un humedal en Bogotá D.C se
		encontraron diferencias espacio-
		temporales en términos de composición y
		abundancia, la distribución y sucesión de
2006	Arcos-Pulido, M.P. &	los grupos de microalgas durante las
	Gómez-Prieto, A. C.	etapas de colonización, además de
		indicar el proceso de eutrofización por el
		que atraviesa el humedal, así como, el
		estado de sus aguas que se encuentran
		medianamente contaminadas y muy
		contaminadas en algunos sectores.
		En este estudio se evaluó la distribución y
		abundancia de la comunidad de
		microalgas asociadas al perifiton del Río

		Quindío, determinándose la existencia de
		tres divisiones Bacillariophyta,
	Bustamante, C. A.,	Chlorophyta y Cyanophyta con
2008	Dávila, C. A., Torres,	dominancia de las diatomeas,
	S.L & Ortiz, J.F.	adicionalmente se observó que las
		limitaciones de la comunidad estuvieron
		asociadas con las condiciones climáticas,
		físicoquímicas, tróficas, hidrodinámicas y
		geomorfológicas que presenta el río
		Quindío en su trayecto.
		Se evaluaron los gremios de algas
		perifíticas (ficoperifiton) que se
		desarrollan alrededor de las principales
2008	Montoya-Moreno, Y &	macrófitas acuáticas de la Ciénaga de
	Aguirre-Ramírez, N.	Paticos, donde se reportan 43 especies
		perifíticas, predominando las diatomeas,
		en las raíces de macrófitas.
		Se evaluó las diatomeas provenientes de
		sistemas lénticos y lóticos andinos de los
		departamentos de Antioquia, Santander y
		Chocó-Colombia, se encontraron los
2008	Sala, S. E. & Ramírez,	órdenes Thalassiosirales (1),
	J. J.	Aulacoseirales (1), Fragilariales (4),
		Cymbellales (7), Achnanthales (2),
		Naviculales (7) y Thalassiophysales (1),
		donde se registraron por primera vez en
		Colombia y América del Sur.
	Vidal I A Naguera	Se registra por primera vez viviendo en
2000	Vidal, L. A., Noguera,	tubos sobre el sustrato rocoso para la
2009	C., Camacho, O., &	región de Santa Marta en la costa Caribe
	Bohórquez, D.	

		Colombiana la especie Nitzschia martiana
		(Agardh) Van Heurck (Bacillariophyceae).
		Los autores realizaron una revisión
		bibliográfica de información disponible
		sobre las especies registradas de
	Lozano, Y, Vidal, L, &	diatomeas (Bacillariophyta) para las
2010	Navas, G.	zonas costera y oceánica del mar Caribe
		colombiano, donde presenta un listado de
		337 taxones correspondientes a 312
		especies, 19 variedades y siete formas,
		agrupadas en 54 familias y 106 géneros.
		En el incremento de nutrientes en la
		adición de amonio (NH ₄ +) y fosfatos
2010	Morales, S, Donato, J	(PO ₄ ³⁻) sobre la estructura de una
	& Castro, M.	comunidad de diatomeas en sustratos
		artificiales en el sector medio del río Tota
		(Boyacá, Colombia).
		Se determinó el Índice de Estado
	Pinilla, A, Duarte C, &	Limnológico (IEL) para las ciénagas del
2010	Vega, L.	Canal del Dique, estableciendo que el
		estado limnológico de la mayoría de
		ciénagas de esta región es aceptable.
		En el humedal Jaboque (Bogotá-
		Colombia) se estudió la composición,
		diversidad y variaciones espacio-
2011	Mejía, D.	temporales de las diatomeas perifíticas
		presentes, se evaluaron algunas
		características físicas y químicas del
		agua.
		En tres puntos del sector medio del río
		Tota-Boyacá, se evaluaron las

		comunidades asociadas a los coriotopos
	Pedraza, E & Donato,	hojarasca, tronco y roca, donde permitió
2011	J.	establecer la estructura de las diatomeas
		bénticas y los factores ambientales que la
		determinan en diferentes tramos y
		sustratos ubicados a largo del río.
		En esta publicación se dan a conocer
		algunas especies abundantes o de amplia
2012	Montoya et al	distribución en el área de estudio, las que
		fueron analizadas empleando
		microscopía óptica y electrónica de
		barrido.
		Se realizaron nueve muestreos donde se
	Montoya-Moreno &	evaluó la variación espacial y temporal de
2012	Aguirre	los ensambles de algas epifíticas
		asociadas con raíces de macrófitas
		durante tres ciclos hidrológicos en la
		planicie inundable de Ayapel.
		Se instalaron láminas de acetato en dos
	Andramunio-Acero, C.	ambientes de sistema lagunar de
2013		Yahuarcaca (Amazonas), para estimar la
		sucesión o dinámica de las algas
		perifíticas.

Cuadro 4. Investigaciones realizadas en el departamento del Tolima sobre variables biológicas, fisicoquímicas e hidrológicas en la comunidad fitoperifítica.

TOLIMA		
Año	Autores (es)	Aportación
		Los autores estudiaron las
		Bacillariophyceae asociadas al perifiton
		del río Combeima (Tolima), donde
1998	Villa, F, Losada, S &	identificaron 25 especies pertenecientes
	Quintana, M.	a 6 familias. Además observaron una
		baja correlación entre los parámetros
		fisicoquímicos medidos y el índice de
		Riqueza de Margalef en todas las
		estaciones a lo largo del estudio.
		Se evaluó el estado actual del rio
1998	Villa, F, Losada, S &	Combeima con el propósito de establecer
1000	Quintana, M.	las fluctuaciones de las diferentes
		comunidades bióticas que forman parte
		del perifiton durante un periodo de 6
		meses.
		Los autores estimaron la estructura,
		productividad primaria y la biomasa
		perifítica del embalse de Prado. Para esto
		se ubicaron 24 muestreadores que fueron
2001		retirados quincenalmente para analizar la
	Gualtero, D &	composición, productividad (mg/m²),
	Trilleras, J.	biomasa (g/m²), concentración de
		clorofila (mg/m²) y feofitina (mg/m²), se
		presentaron 76 especies fitoperifíticas y

		54 zooperifíticas que colonizaron
		exitosamente los sustratos instalados.
		En dos zonas del río Combeima (Juntas y
		Chapetón) se evaluó la dinámica espacial
		y temporal de la comunidad zooperifítica
2006	Guevara, G, Reinoso,	con la utilización de sustratos artificiales
	G, & Villa, F.	que reflejen la variación en su
		composición y abundancia, distribución
		temporal y adaptaciones a sustratos.

2.2. MARCO CONCEPTUAL

2.2.1. Generalidades del perifiton. El termino perifiton se adopta para designar a una comunidad compleja de microbiota (algas, bacterias, hongos, insectos y detritus orgánico e inorgánico) que está adherida a un sustrato, que puede ser orgánico e inorgánico, vivo o muerto (Wetzel, 1983). La mayoría de los organismos del perifiton presentan diversas adaptaciones para la fijación (Roldán, 1992; Bouchard & Anderson, 2001).

Desde el punto de vista de la región, el perifiton de aguas lóticas se ubica en la zona de rabiones, donde es muy difícil distinguirla del bentos (Roldan & Ramírez, 2008). En cuanto a las adaptaciones morfológicas las algas epifíticas se adhieren a las plantas por medio de sustancias pegajosas o gelatinosas, cojines de adherencia, tallos o rizoides en la base de los filamentos, organizados a manera de campana (Roldán, 1992). Las algas epipélicas en su mayoría son móviles o pueden formar agregados de filamentos celulares con los cuales flotan en la superficie del sedimento.

Las fluctuaciones diarias y estacionales en la biomasa del perifiton se deben a la contribución e interacción de distintos factores que afecten el desarrollo. Los principales factores que determinan el desarrollo de la comunidad perifítica son: temperatura, luz, nutrientes, fosfatos, nitratos, sílice, pH, sustrato (naturaleza química, grado de rugosidad

y estructuras de adhesión), turbulencia e interacciones biológicas (Roldan, 1992); sin embargo, Bellinger & Sigee (2010) mencionan que la desarrollo de la composición de las comunidades es en respuesta al flujo, la química natural, la eutrofización y la contaminación tóxica del agua, y el pastoreo.

2.2.2. Organización taxonómica. De acuerdo a Ramírez (2000), las divisiones algales del perifiton más representativas del agua dulce son seis phyllum: Bacillariophyta, Cyanophyta, Euglenophyta, Cryptophyta, Chrysophyta, Pyrrophyta y Chlorophyta. De las cuales las clases más representativas son las siguientes:

Bacillariophyceae. Mejor conocidas como diatomeas, son las algas más importantes del plancton de muchos lagos. El grupo comprende formas unicelulares o de vida colonial, cuya característica más notable es la de poseer una cubierta pectínica impregnada de sílice, en cantidades variables, denominada frústula, la cual está formada por dos mitades o tecas que se unen una a la otra como la tapa y el fondo de una caja. La superior se denomina epiteca y la inferior, hipoteca. La frústula posee poros muy finos ordenados en patrones característicos (Roldan & Ramírez, 2008).

Chlorophyceae. Se denominan también algas verdes. Constituyen un grupo muy amplio y variado de algas unicelulares, de vida colonial y filamentosa. Su color es verde intenso debido a que las clorofilas a y b enmascaran a los carotenos y xantofilas. En los pirenoides situados en los cloroplastos almacenan almidón como sustancia de reserva. Algunas clorofíceas son desnudas, pero la mayoría posee una pared celular formada por dos o más capas; la interna es celulósica y la externa es pectínica (Roldan & Ramírez, 2008).

Cyanophyceae. Las algas verde-azules se han denominado también Myxophyta, Schizophyta y Cianobacterias, dada su afinidad con las bacterias respecto a la organización procariótica. Sin embargo, el tamaño es su diferencia fundamental, pues las algas verde-azules son de mayor tamaño que las bacterias. Además, mientras la mayoría de las cianofitas son productores primarios del plancton, muy pocas bacterias lo son. Estas algas predominantes en aguas continentales, aunque hay muchas especies

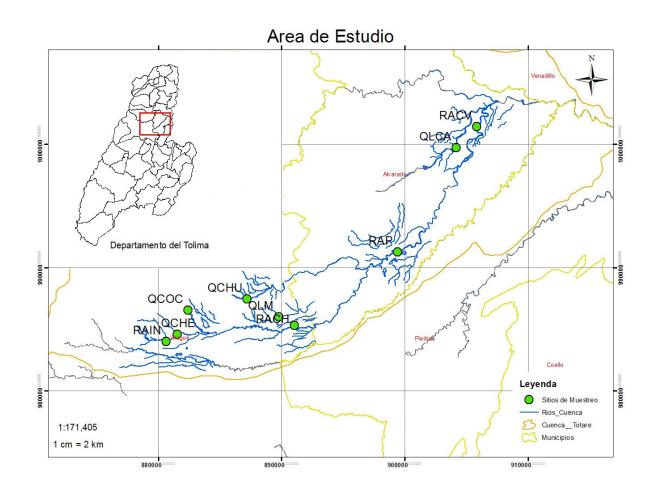
marinas Ramírez (2000). Roldan (1992), presentó una clasificación de las algas de acuerdo con el tipo de sustrato en el cual viven, llama "epipélicas" a las que viven sobre el fango, siendo representadas principalmente por diatomeas. "epilícticas", como aquellas que viven sobre piedras u objetos similares y, "epifíticas" son las que viven sobre plantas, bien sea adherida a la superficie.

2.2.3. Importancia del perifiton como indicador de la calidad del agua. Existen diferentes factores que contribuyen a la disminución de la calidad del agua; entre los más importantes se encuentran la actividad industrial, las prácticas agrícolas intensivas y la explosión demográfica, que incrementan la demanda por el suministro de agua doméstico. Las leyes, las regulaciones y los programas de manejo surgieron para reducir el daño antropogénico a los sistemas acuáticos. Sin embargo, al comienzo, el componente biológico fue ignorado o simplemente se implementaron políticas con estrechas concepciones de las condiciones biológicas (Naiman & Bilby, 2001).

En los ríos, las algas bénticas poseen características que las hacen ideales como indicadores de la calidad del agua, gracias a que la composición de especies está relacionada con las características del sistema acuático (Roldan & Ramírez, 2008). Por tener ciclos de vida cortos, las algas responden rápidamente a los cambios en las condiciones ambientales. Las formas de crecimiento sésil sobre el sustrato no les permiten evitar los contaminantes, y por tanto toleran el ambiente o fallecen (Hauer & Lamberti, 1996; Wunsam et al., 2002; Hering et al., 2006).

3. MATERIALES Y MÉTODOS

3.1. METODOLOGÍA DE CAMPO


3.1.1. Área de estudio. El río Alvarado, pertenece a la cuenca del río La China, que a su vez hace parte de la cuenca mayor del río Totare en el departamento del Tolima. Presenta un área de 29988,14 hectáreas, un perímetro de 91,66 Km y una longitud del cauce de 55,06 Km, de acuerdo a lo establecido por Holdridge (1971) y el IAvH (1998) esta cuenca se localiza dentro del ecosistema de Bosque Seco Tropical. Debido a su ubicación, fertilidad de sus suelos y condiciones ecológicas, las zonas boscosas de esta cuenca han sido reemplazadas por grandes zonas de cultivo, pastos para ganadería y urbanización (Cortolima, 2009). Los principales afluentes del río Alvarado son Santo Domingo, El Neme, Mercadillo, El Ceboso, La Leona, Acedratas, San Isidro, El Guayabo, La Totuma, Trujillo, Amesitas, El Lazo, El Retiro, Peñonosa, La Babillera, Cachipa, Cocare, La Caima y Del Valle (Espinosa et al., 2005) (Figura 1).

3.1.2. Zonas de Muestreo. En el estudio se seleccionaron nueve estaciones ubicadas en los tributarios y cauce principal a lo largo de la cuenca del río Alvarado, que van desde los 351 a los 1057 m (Anexo 3). Los muestreos se llevaron a cabo trimestralmente, se seleccionaron dos tipos de sustratos (roca y tronco), donde se realizó la colecta del material biológico; cada una de las estaciones fue descrita mediante el diligenciamiento de una ficha de campo (Anexo 1) y referenciada con un geoposicionador satelital (GPS) GARMIN- 60CSx (Tabla 1).

Tabla 1. Estaciones muestreadas en la cuenca del río Alvarado-Tolima

No	ESTACIÓN	SIGLA	Altura	Coordenadas	
			(m)	N	W
1	Río Alvarado-Caldas Viejo	RACV	351	04 ⁰ 36' 41,2"	74 ⁰ 55' 46,2"
2	Q. La Caima	QLCA	374	04 ⁰ 35' 45,8"	74 ⁰ 56' 39,6"
3	Río Alvarado-Puente	RAP	521	04 ⁰ 31' 11,3"	74 ⁰ 59' 14,0"
4	Río Alvarado-Chucuni	RACH	697	04 ⁰ 27' 56,7"	75 ⁰ 03' 46,7"
5	Q. La Manjarres	QLM	758	04 ⁰ 28' 19,3"	75° 04' 26,9"
6	Q. Chumba	QCHU	973	040 29' 06,2"	75 ⁰ 05' 48,6"
7	Río Alvarado -Inicio	RAIN	977	04 ⁰ 27' 13,1"	75 ⁰ 09' 23,2"
8	Q. Chembe	QCHE	988	04° 27′ 34,2″	75 ⁰ 08' 54,7"
9	Q. Cocare	QCOC	1057	04° 28' 37,4"	75 ⁰ 08' 25,4"

Figura 1. Ubicación geográfica de la cuenca del río Alvarado (Tolima) y sus principales tributarios.

Estaciones: Río Alvarado Caldas Viejo (RACV); quebrada la Caima (QLCA); río Alvarado-Puente (RAP); río Alvarado Chucuni (RACH); quebrada la Manjarres (QLM); quebrada la Chumba (QCHU); quebrada Cocare (QCOC); quebrada Chembe (QCHE); río Alvarado Inicio (RAIN).

Fuente. Plan general de ordenación forestal para el departamento del Tolima (2007). Elaboró. Cruz, H (2013).

3.1.3. Toma de muestras biológicas. En cada punto de muestreo con la ayuda de cepillos plásticos se realizaron dos raspados de la superficie correspondiente al área de un portaobjetos (0,093 m²), en los sustratos naturales (roca y tronco) (Figura 2). Posteriormente, las muestras fueron colocadas en frascos plásticos de 100 ml, se fijaron inmediatamente con una solución preservante de Formol al 10% y Lugol siguiendo la metodología propuesta por Losada (2004).

Figura 2. Sustratos evaluados y materiales usados para la colecta del fitoperifiton. Roca (A), Tronco (C) y material de colecta (B).

3.2. PARÁMETROS FISICOQUÍMICOS Y BACTERIOLÓGICOS

Para los análisis físico-químicos, se tomaron muestras "*in situ*" de la temperatura del agua y el ambiente empleando un termómetro graduado. Adicionalmente las muestras de agua fueron colectadas en frascos plásticos con capacidad para 2000 ml, de forma superficial y en contra de la corriente y preservadas en frío para su transporte al laboratorio de Servicios de Extensión en Análisis Químico (LASEREX) de la Universidad del Tolima, donde se analizaron los siguientes parámetros fisicoquímicos: pH, conductividad eléctrica (μS/cm), oxígeno disuelto (mg O₂/L), porcentaje de saturación de oxígeno (% SAT. O₂), turbidez (UNF), alcalinidad total y dureza (mg Ca O₃/L), cloruros (mg Cl/L), nitratos (mgNO₃ /L), fosfatos (mg PO4 /L), sólidos suspendidos y sólidos totales (mg/L), demanda Química de Oxígeno-DQO (mg O₂ /L) y Demanda Bioquímica de Oxígeno-DBO₅ (mg O₂ /L), fósforo (P), clorofila *a* (μg/L), sulfatos (mgSO₄/L).

En el caso de los parámetros bacteriológicos, se tomaron muestras de agua en frascos de vidrio con capacidad para 300 ml, superficialmente y en contra corriente, las muestras fueron rotuladas y preservadas en frío para su transporte al laboratorio de Servicios de Extensión en Análisis Químico (LASEREX) de la Universidad del Tolima donde se analizaron los parámetros de coliformes totales (UFC/100ml) y fecales (UFC/100ml).

3.3. PROCESAMIENTO DE LAS MUESTRAS EN EL LABORATORIO

Conteo y determinación. En el Laboratorio de Investigación en Zoología, se realizó la determinación y conteo del fitoperifiton con la ayuda de un microscopio óptico Motic BA-210 en el objetivo de 40 X, usando la cámara de conteo Sedgwick-Rafter (SR), que limita el área y volumen, permitiendo calcular las densidades poblacionales después de un periodo de asentamiento considerable, mediante un conteo en bandas (APHA, 1992 & Ramírez, 2000), se analizaron 30 campos en 1 ml de cada una de las muestras colectadas (Roca y tronco), y para ello la densidad de células por unidad de área fue calculada siguiendo la fórmula (APHA, 1992 & Ramírez, 2000):

Organismos/mm² =
$$\frac{N \times A_t \times V_t}{A_c \times V_s \times A_s}$$

Dónde:

N = número de organismos contados,

 A_t = Área total de la cámara (mm²)

Vt= Volumen total de la muestra en suspensión

A_c= Área contada (bandas o campos) (mm²)

V_s=Volumen usado en la cámara (ml)

A_s= Área del sustrato o superficie raspada (mm²)

La identificación taxonómica de las algas se hizo siguiendo las claves de Yacubson (1969), Prescott (1968), Needham & Needham (1982), Streble & Krauter (1987), Lopretto & Tell (1995), Ramírez (2000), y Bellinger & Sigee (2010), e ilustraciones de algas en el libro de APHA (1999). Además, se soportó la determinación de las algas con la base de datos electrónica (Guiry & Guiry, 2013).

3.4. ANÁLISIS DE DATOS

3.4.1. Densidad relativa. Se determinó la densidad relativa (AR%) a partir del número de individuos colectados de cada género y su relación con el número total de individuos de la muestra; ésta se utilizó con el fin de establecer la importancia y proporción en la cual se encuentra cada género con respecto a la comunidad.

DR= N° de individuos de cada género en la muestra X100

N° total de individuos en la muestra

3.4.2. Índices Ecológicos

Los índices ecológicos son herramientas que permiten determinar el estado de los ecosistemas, aquellos lugares con valores altos de los índices de diversidad se pueden considerar como conservados o en buen estado (Magurran, 2004), ya que estos albergan un gran número de especies y esto solo es posible si el cuerpo de agua presenta una adecuada cantidad de nutrientes, hábitat heterogéneos y buenas condiciones físicas y químicas.

3.4.2.1. Riqueza de Margalef (D):

$$D= S-1/ In (N)$$

Dónde S= número de especies N=tamaño de la muestra

3.4.2.2. Diversidad de Shannon-Wiener (H'):

$$H' = -\sum (ni/N) \ln (ni/Ni)$$

Dónde pi= ni/N

ni= número de individuos por especie en una muestra de una población.

N= número total de individuos en la muestra de una población.

In: Logaritmo natural.

3.4.2.3. Dominancia de Simpson

$$D = \sum pi^2$$

Dónde:

pi = abundancia proporcional de la especie i, lo cual implica obtener el número de individuos de la especie i dividido entre el número total de individuos de la muestra.

3.4.3. Análisis de variables fisicoquímicas.

Se realizó un análisis de componentes principales utilizando el programa STATISTICA 7®, con el fin de determinar las variables con mayor influencia en la dinámica fisicoquímica de la cuenca en los dos periodos de muestreo.

En contraste se aplicó una prueba de Kruskal-Wallis para determinar la existencia de diferencias significativas de densidad de la comunidad fitoperifítica a nivel temporal, espacial y por sustratos usando el paquete estadístico STATISTICA 7 ®.

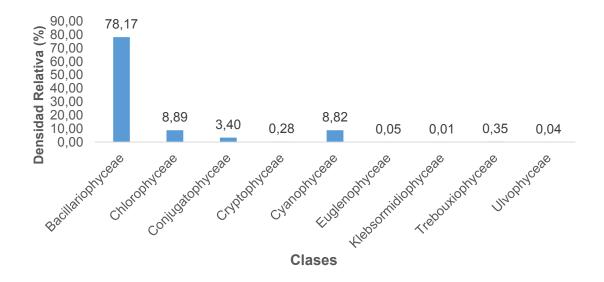
3.4.4. Análisis de Correspondencia. Se realizó un análisis de Correspondencia Canónica (CCA), con el propósito de analizar posibles asociaciones entre las variables fisicoquímicas y la comunidad fitoperifítica del río Alvarado, para este análisis se empleó el programa Canoco versión 4.5 (Ter Braak & Smilauer, 2004). Adicionalmente se utilizó el coeficiente de correlación de Pearson donde se analizó la asociación entre las variables fisicoquímicas y la abundancia de los taxones de fitoperifiton colectados a lo largo de la cuenca del río Alvarado del departamento del Tolima, donde se empleó el programa InfoStat.

4. **RESULTADOS**

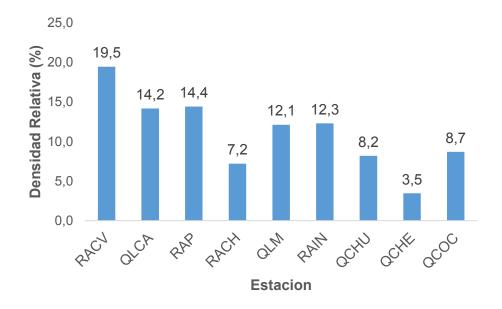
4.1. VARIABLES BIOLÓGICAS

4.1.1. Composición General. La comunidad de algas perifíticas estuvo compuesta por 6 phyllum, 9 clases, 26 órdenes, 35 familias y 43 géneros en las 9 estaciones evaluadas durante los períodos comprendidos entre septiembre y diciembre de 2012 (Tabla 2). La clase que registró una mayor densidad relativa fue Bacillariophyceae (78,17%) (Anexo 4), seguida por Cyanophyceae (8,82%) (Anexo 7), Chlorophyceae (7,77%) (Anexo 5) y Conjugatophyceae (4,52%) (Anexo 6), mientras que las clases Trebouxiophyceae, Cryptophyceae, Euglenophyceae, Ulvophyceae (Anexo 8) y Klebsormidiophyceae registraron los menores valores de densidad relativa con 0,35%, 0,28%, 0,05%, 0,04% y 0,01%, respectivamente (Figura 3).

Tabla 2. Composición taxonómica de la comunidad fitoperifítica registrada en las 9 estaciones de muestreo en la cuenca del río Alvarado-Tolima durante septiembre y diciembre de 2012.


CLASE	ORDEN	FAMILIA	GÉNERO	Densidad	DR
				(cel mm ⁻²)	(%)
		Achnanthaceae	Achnanthes	2943	7,08
	Achnanthales	Cocconeidaceae	Cocconeis	3149	7,58
	Bacillariales	Bacillariaceae	Nitzschia	3603	8,67
		Cymbellaceae	Cymbella	1531	3,69
	Cymbellales	Gomphonemataceae	Gomphonema	565	1,36
		Rhoicospheniaceae	Rhoicosphenia	50	0,12
	Eunotiales	Eunotiaceae	Eunotia	15	0,04
			Fragilaria	4801	11,5
		Fragilariaceae	Hannaea	37	0,09
	Fragilariales		Synedra	957	2,30
	Melosirales	Melosiraceae	Melosira	583	1,40
		Amphipleuraceae	Frustulia	551	1,33

CLASE	ORDEN	FAMILIA	GÉNERO	Densidad	DR
				(cel mm ⁻²)	(%)
		Naviculaceae	Navicula	9902	23,84
			Caloneis	4	0,01
Bacillariophyceae	Naviculales	Pinnulariaceae	Pinnularia	806	1,94
		Pleurosigmataceae	Gyrosigma	184	0,44
	Surirellales	Surirellaceae	Surirella	1277	3,07
	Thalassiophysales	Catenulaceae	Amphora	12	0,03
	Thalassiosirales	Stephanodiscaceae	Cyclotella	1501	3,61
	Chaetophorales	Chaetophoraceae	Stigeoclonium	58	0,14
	Chlorosarcinales	Chlorosarcinaceae	Chlorosarcina	16	0,04
			Hydrodictyon	253	0,61
		Hydrodictyaceae	Pediastrum	403	0,97
	Sphaeropleales		Tetraedron	16	0,04
Chlorophyceae		Scenedesmaceae	Scenedesmus	2241	5,39
		Selenastraceae	Monoraphidium	232	0,56
	Volvocales	Volvocaceae	Volvox	8	0,02
			Closterium	23	0,06
	Desmidiales	Closteriaceae	Coelastrum	465	1,12
		Desmidiaceae	Cosmarium	19	0,05
Conjugatophyceae			Mougeotia	8	0,02
	Zygnematales	Zygnemataceae	Spirogyra	1349	3,25
			Zygnema	15	0,04
Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	114	0,28
	Chroococcales	Chroococcaceae	Chroococcus	38	0,09
	Nostocales	Nostocaceae	Anabaena	109	0,26
Cyanophyceae	Oscillatoriales	Oscillatoriaceae	Oscillatoria	1976	4,76
	Synechococcales	Merismopediaceae	Merismopedia	1539	3,71
Euglenophyceae	Euglenales	Euglenaceae	Euglena	22	0,05
Klebsormidiophyceae	Klebsormidiales	Klebsormidiaceae	Klebsormidium	4	0,01
	Chlorellales	Chlorellaceae	Dictyosphaerium	58	0,14
Trebouxiophyceae	Trebouxiales	Botryococcaceae	Botryococcus	85	0,21
Ulvophyceae	Cladophorales	Cladophoraceae	Cladophora	16	0,04
				41537	100


Distribución Espacial. Durante los dos periodos de muestreo, la estación río Alvarado-Caldas Viejo (RACV) presentó la mayor densidad relativa (19,5%). En contraste, las

localidades con menor densidad relativa fueron quebrada Chembe (QCHE) con 3,5% y río Alvarado-Chucuni (RACH) con 7,2% (Figura 4).

Figura 3. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de muestreo en la cuenca del río Alvarado, durante septiembre y diciembre de 2012.

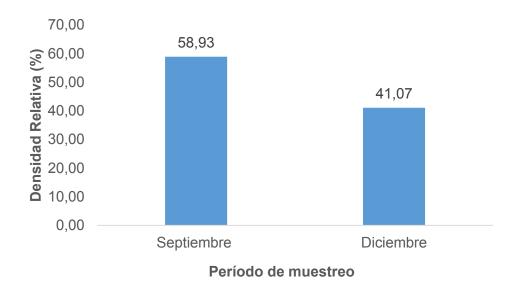


Figura 4. Densidad relativa a nivel espacial de la comunidad fitoperifítica en las 9 estaciones evaluadas de la cuenca del río Alvarado (Tolima) durante los periodos comprendidos entre septiembre y diciembre de 2012.

Distribución temporal. De la comunidad fitoperifítica evaluada en los dos periodos de muestreos en la cuenca del río Alvarado, la mayor densidad relativa se registró en el primer muestreo (58,93%), que corresponde a la época de altas precipitaciones (septiembre), mientras que en diciembre, época de bajas precipitaciones se registró una menor densidad con 41,07% (Figura 5).

Figura 5. Distribución temporal del perifiton en las 9 estaciones muestreadas de la cuenca del río Alvarado durante septiembre (Altas precipitaciones) y diciembre (bajas precipitaciones) de 2012.

4.1.2. Muestreo 1. Septiembre de 2012 (Altas precipitaciones)

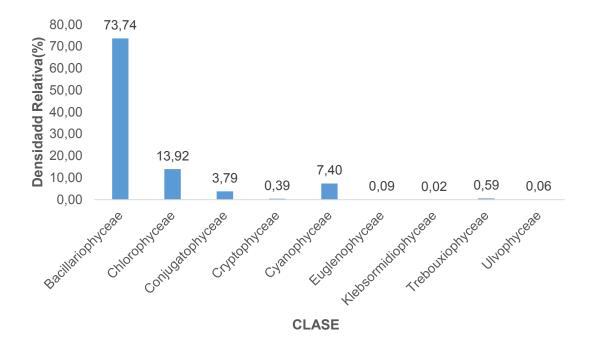
Densidad Relativa. Durante el primer muestreo, se registraron 6 phyllum, 9 clases, 26 órdenes, 35 familias y 43 géneros. De los seis phyllum registrados, Heterokontophyta reportó la mayor abundancia con 75,51%, seguido de Chlorophyta con 12,80%, Cyanobacteria con 7,40% y Charophyta con 3,79%, los phyllum Cryptophyta y Euglenozoa reportaron bajas densidades con valores de 0,39% y 0,09% (Tabla 3).

Tabla 3. Composición taxonómica de la comunidad fitoperifitica registrada en las 9 estaciones de muestreo en la cuenca del río Alvarado-Tolima, durante el mes de septiembre de 2012.

CLASE	ORDEN	FAMILIA	GÉNERO	Densidad	DR
				(cel mm-	(%)
				2)	
		Achnanthaceae	Achnanthes	1789	7,31
	Achnanthales	Cocconeidaceae	Cocconeis	1949	7,96
	Bacillariales	Bacillariaceae	Nitzschia	2259	9
		Cymbellaceae	Cymbella	1015	4,15
	Cymbellales	Gomphonemataceae	Gomphonema	449	1,83
		Rhoicospheniaceae	Rhoicosphenia	50	0,21
	Eunotiales	Eunotiaceae	Eunotia	15	0,06
			Fragilaria	1269	5,19
	Fragilariales	Fragilariaceae	Hannaea	37	0,15
			Synedra	618	2,53
Bacillariophyceae	Melosirales	Melosiraceae	Melosira	247	1,01
		Naviculaceae	Caloneis	4	0,02
			Navicula	5984	24,45
	Naviculales	Pleurosigmataceae	Gyrosigma	162	0,66
		Amphipleuraceae	Frustulia	307	1,25
		Pinnulariaceae	Pinnularia	576	2,35
	Surirellales	Surirellaceae	Surirella	367	1,50
	Thalassiophysales	Catenulaceae	Amphora	12	0,05
	Thalassiosirales	Stephanodiscaceae	Cyclotella	940	3,84
	Chaetophorales	Chaetophoraceae	Stigeoclonium	58	0,24
	Chlorosarcinales	Chlorosarcinaceae	Chlorosarcina	16	0,06
			Tetraedron	16	0,06
		Hydrodictyaceae	Hydrodictyon	249	1,02
			Pediastrum	403	1,65
	Sphaeropleales		Coelastrum	434	1,77
Chlorophyceae		Scenedesmaceae	Scenesdesmus	2041	8,34
		Selenastraceae	Monoraphidium	182	0,74
	Volvocales	Volvocaceae	Volvox	8	0,03
	Desmidiales	Closteriaceae	Closterium	23	0,10
		Desmidiaceae	Cosmarium	8	0,03
			Mougeotia	8	0,03
Conjugatophyceae	Zygnematales	Zygnemataceae	Spirogyra	875	3,58

CLASE	ORDEN	FAMILIA	GÉNERO	Densidad	DR
				(cel mm-	(%)
				2)	
			Zygnema	15	0,06
Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	95	0,39
	Chroococcales	Chroococcaceae	Chroococcus	31	0,12
	Nostocales	Nostocaceae	Anabaena	109	0,44
Cyanophyceae	Oscillatoriales	Oscillatoriaceae	Oscillatoria	480	1,96
	Synechococcales	Merismopediaceae	Merismopedia	1193	4,87
Euglenophyceae	Euglenales	Euglenaceae	Euglena	22	0,09
Klebsormidiophyceae	Klebsormidiales	Klebsormidiaceae	Klebsormidium	4	0,02
	Trebouxiales	Botryococcaceae	Botryococcus	85	0,35
Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	58	0,24
Ulvophyceae	Cladophorales	Cladophoraceae	Cladophora	16	0,06
TOTAL				24478	100

Con relación a las clases del perifiton registradas en el mes de septiembre en las nueve estaciones de muestreo, la más frecuente y abundante fue Bacillariophyceae (73,74%), seguida por Chlorophyceae (13,92%), Cyanophyceae (7,40%) y Conjugatophyceae (3,79), las cinco clases restantes presentaron valores bajos (<1,15) (Figura 6).

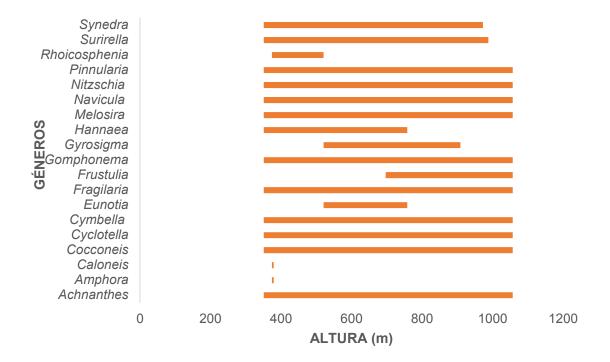

A nivel de género los mayores porcentajes de densidad relativa los registraron *Navicula*, *Nitzschia*, *Scenedesmus*, *Cocconeis* y *Achnanthes* con 24,45%, 9,0%, 8,34%, 7,96% y 7,31% respectivamente. En cuanto a los taxones con menor abundancia y poco frecuentes fueron *Closterium*, *Euglena*, *Volvox*, *Tetraedron* y *Caloneis*, con 0,10%, 0,09%, 0,06%, 0,03% y 0,02% respectivamente (Tabla 3).

A nivel espacial y temporal se observaron diferencias en los patrones de distribución de los géneros que componen la comunidad fitoperifítica. Durante el periodo de alta precipitación (septiembre de 2012) el género *Navicula* registró un valor alto de densidad relativa en las estaciones río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN) y quebrada Chembe (QCHE) (Anexo 9).

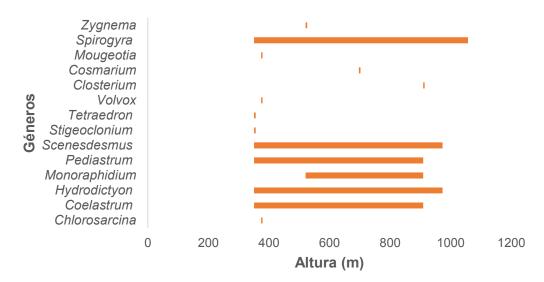
Mientras que en las localidades río Alvarado-Caldas Viejo (RACV) y río Alvarado-Puente (RAP) el género dominante de la comunidad fitoperifítica fue *Scenedesmus*. Adicionalmente, el género *Nitzschia* se presentó en cuatro de los nueve puntos

evaluados río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP) y quebrada la Manjarres (QLM) y *Merismopedia* sólo fue colectado en la localidad río Alvarado-Inicio (RAIN) (Anexo 9).

Figura 6. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de muestreo en la cuenca del río Alvarado durante septiembre de 2012.


Fuente. Autor

Distribución Altitudinal. La comunidad fitoperifítica colectada en la cuenca del rio Alvarado, se distribuyó desde 351 a 1057 m, siendo los géneros pertenecientes a la clase Bacillariophyceae, los que registraron una amplia distribución altitudinal en esta cuenca. El género *Rhoicosphenia* presentó el menor rango de distribución, desde los 374 a los 521 m. Los géneros *Amphora* y *Caloneis* se restringieron a la estación quebrada La Caima localizada a 374 m (Figura 7).


Los géneros *Hydrodictyon* y *Scenesdesmus* (Chlorophyceae) y *Spirogyra* (Conjugatophyceae) presentaron un mayor rango de distribución desde los 351 a los 1057 m, mientras que *Monoraphidium* (Chlorophyceae) registró el menor rango de distribución desde los 521 a 909 m (Figura 8).

En la clase Cyanophyceae, el género *Oscillatoria* presentó el mayor rango de distribución desde los 374 a 1057 m, mientras que *Cryptomonas* reportó el menor rango desde los 521 a 758 m. Los géneros *Klebsormidium* (Klebsormidiophyceae) y *Botryococcus* (Trebouxiophyceae) se encontraron en la estación río Alvarado-Caldas Viejo (Figura 9).

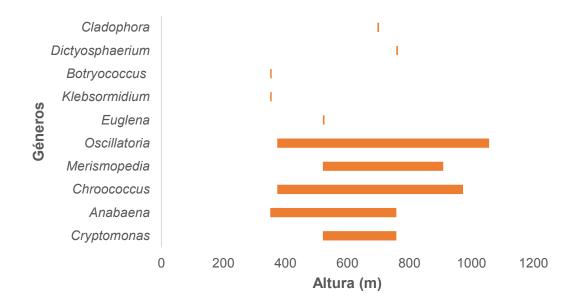

Figura 7. Distribución altitudinal de los géneros de la clase Bacillariophyceae encontrados en la cuenca del río Alvarado durante septiembre de 2012 (Altas precipitaciones).

Figura 8. Distribución altitudinal de los géneros de las clases Chlorophyceae y Conjugatophyceae encontrados en la cuenca del río Alvarado durante septiembre de 2012 (Altas precipitaciones).

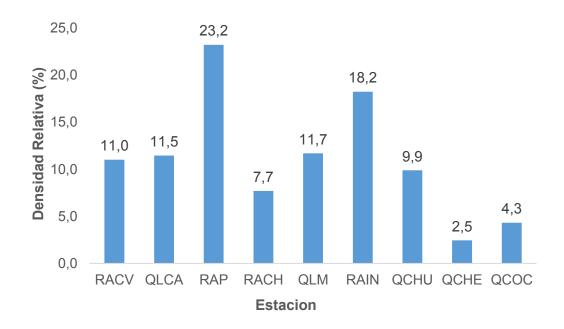


Figura 9. Distribución altitudinal de los géneros de las 6 clases restantes de la comunidad fitoperifítica evaluada en la cuenca del río Alvarado durante septiembre de 2012 (Altas precipitaciones).

Distribución Espacial. Las 9 estaciones evaluadas en la cuenca del río Alvarado durante el mes de septiembre de 2012 presentaron un comportamiento heterogéneo, encontrándose la mayor densidad de la comunidad fitoperifitica en el río Alvarado-Puente (RAP) con 23,2%, seguida de la localidad río Alvarado-Inicio (RAIN) con 18,2%. Las estaciones con densidades bajas fueron quebrada Chembe (QCHE) con 2,5%, quebrada Cocare (QCOC) con 4,5%, río Alvarado-Chucuni (RACH) con 7,7% (Figura 10).

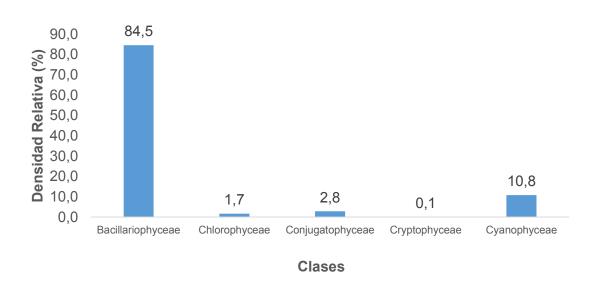
Figura 10. Distribución espacial de la comunidad fitoperifítica en las 9 estaciones muestreadas de la cuenca del río Alvarado durante septiembre (altas precipitaciones) de 2012.

Fuente. Autor

4.1.3. Muestreo 2: Diciembre de 2012 (Bajas precipitaciones)

Densidad Relativa. Durante este periodo de muestreo, la comunidad fitoperifítica estuvo compuesta por 5 phyllum, 5 clases, 22 familias, 24 géneros. De los cinco phyllum registrados, Heterokontophyta reportó la mayor abundancia con 84,71%, seguido de Cyanobacteria (12,80%) y Charophyta (2,84%), los phyllum restantes Chlorophyta y

Cryptophyta reportaron bajas densidades con valores de 1,48% y 0,11%. Las clases más representativas de la comunidad fitoperifítica fueron Bacillariophyceae (87,52%), Cyanophyceae (10,84%), y las tres clases restantes presentaron valores bajos (<1,64) (Tabla 4).

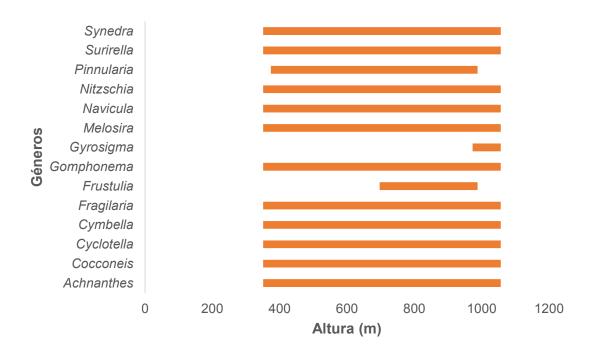

Tabla 4. Composición taxonómica de la comunidad fitoperifítica registrada en las 9 estaciones de muestreo en la cuenca del río Alvarado-Tolima, durante el mes de diciembre de 2012.

CLASE	ORDEN	FAMILIA	GÉNERO	Densidad	DR
				(cel mm-2)	(%)
		Achnanthaceae	Achnanthes	1154	6,77
	Achnanthales	Cocconeidaceae	Cocconeis	1200	7,03
	Bacillariales	Bacillariaceae	Nitzschia	1344	7,88
		Cymbellaceae	Cymbella	516	3,03
Bacillariophyceae	Cymbellales	Gomphonemataceae	Gomphonema	116	0,68
			Synedra	339	1,99
	Fragilariales	Fragilariaceae	Fragilaria	3532	20,70
	Melosirales	Melosiraceae	Melosira	336	1,97
		Amphipleuraceae	Frustulia	244	1,43
		Naviculaceae	Navicula	3917	22,96
	Naviculales	Pleurosigmataceae	Gyrosigma	21	0,13
		Pinnulariaceae	Pinnularia	229	1,35
	Surirellales	Surirellaceae	Surirella	910	5,33
	Thalassiosirales	Stephanodiscaceae	Cyclotella	561	3,29
		Hydrodictyaceae	Hydrodictyon	4	0,02
			Coelastrum	31	0,18
Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenesdesmus	199	1,17
		Selenastraceae	Monoraphidium	49	0,29
	Desmidiales	Desmidiaceae	Cosmarium	12	0,07
Conjugatophyceae	Zygnematales	Zygnemataceae	Spirogyra	474	2,78
Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	19	0,11
	Chroococcales	Chroococcaceae	Chroococcus	8	0,05
Cyanophyceae	Oscillatoriales	Oscillatoriaceae	Oscillatoria	1496	8,77
	Synechococcales	Merismopediaceae	Merismopedia	347	2,03
TOTAL				17059	100

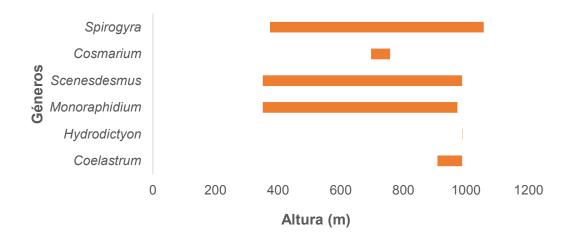
De los géneros registrados los mayores porcentajes de densidad relativa corresponden a *Navicula* (22,96%), *Fragilaria* (20,70%), *Oscillatoria* (8,77%) y *Nitzschia* (7,88%). Por otra parte, los taxones menos abundantes y poco frecuentes fueron *Gyrosigma* (0,17%), *Cryptomonas* (0,11%), *Cosmarium* (0,07%) y *Chroococcus* (0,05%) (Tabla 4).

A nivel espacial y temporal se observaron diferencias en los patrones de distribución de los géneros que componen la comunidad perifítica. Durante este periodo de baja precipitación (diciembre de 2012), el género *Navicula* se registró en las localidades río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), quebrada Chumba (QCHU) y quebrada Cocare (QCOC), mientras que el género *Merismopedia* se reportó para las estaciones río Alvarado-Chucuni (RACH) y quebrada Cocare (QCOC). Adicionalmente *Achnanthes* sólo fue observada en la localidad quebrada la Caima (QLCA) y *Frustulia* en la localidad quebrada la Manjarres (QLM) (Anexo 10).

Figura 11. Densidad relativa de las clases del perifiton evaluadas en las 9 estaciones de muestreo en la cuenca del río Alvarado durante diciembre de 2012.



Distribución Altitudinal. El fitoperifiton en este periodo se distribuyó altitudinalmente desde 351 a 1057 m, siendo la clase Bacillariophyceae, la de mayor distribución en cuanto a los géneros registrados. El género *Gyrosigma presentó* el menor rango de distribución desde los 973 a 1057 m (Figura 12).


Los géneros *Scenedesmus* (Chlorophyceae) y *Spirogyra* (Conjugatophyceae) presentaron el mayor rango de distribución altitudinal, desde los 351 a 1057 m; mientras que *Coelastrum* registró el menor rango de distribución desde los 909 a 988 m, y el género *Hydrodictyon* se encontró en la estación quebrada Cocare (Figura 13).

Respecto a los géneros pertenecientes a la clase Cyanophyceae, *Oscillatoria* presentó el mayor rango de distribución desde los 374 a 1057 m, mientras que *Chroococcus* se observó únicamente a una altura de 758 m (Figura 14).

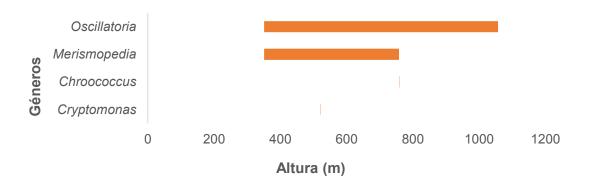

Figura 12. Distribución altitudinal de los géneros de la clase Bacillariophyceae encontrados en la cuenca del río Alvarado durante diciembre de 2012 (bajas precipitaciones).

Figura 13. Distribución altitudinal de los géneros de las clases Chlorophyceae y Conjugatophyceae encontrados en la cuenca del río Alvarado durante diciembre de 2012 (bajas precipitaciones).


Figura 14. Distribución altitudinal de los géneros de las clases Cryptophyceae y Cyanophyceae encontrados en la cuenca del río Alvarado durante diciembre de 2012 (bajas precipitaciones).

Fuente. Autor

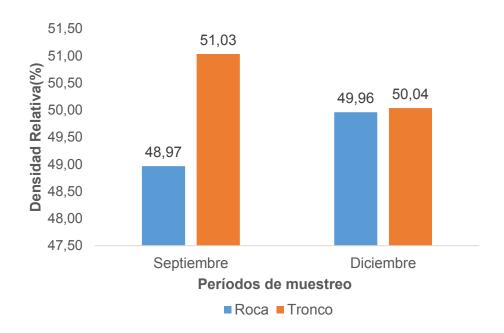

Distribución Espacial. En el periodo de muestreo del mes de diciembre (bajas precipitaciones), la estación con mayor densidad relativa fue río Alvarado-Caldas Viejo (31,6%). Las estaciones con un menor porcentaje fueron río Alvarado-Puente (1,8%) y río Alvarado-Inicio (3,8%) (Figura 15).

Figura 15. Distribución espacial de la comunidad fitoperifítica en las 9 estaciones muestreadas de la cuenca del río Alvarado durante diciembre (Bajas precipitaciones) de 2012.

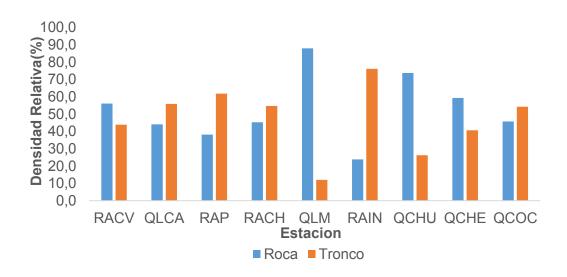
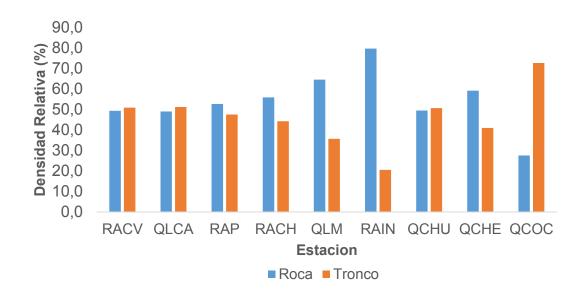
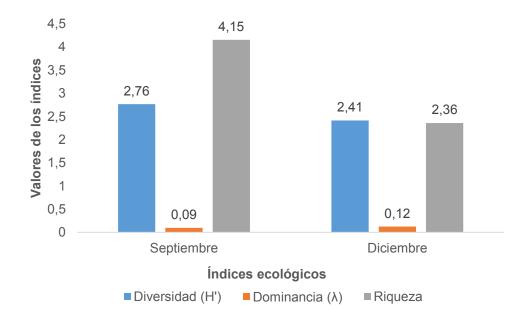

4.1.4. MICROHÁBITAT DE ALGAS PERIFÍTICAS. En septiembre de 2012, la mayor densidad relativa se registró en el sustrato tronco con 51,03%, mientras que roca registró una densidad de 48,97%. En cuanto al número de taxones, el mayor número se registró en el sustrato tronco (39 géneros); mientras que en roca tan solo se registraron 28 géneros. En contraste, durante diciembre de 2012 se presentó un porcentaje de densidad relativa similar en roca (49,96%) y tronco (50,04%), con la misma proporción de géneros (22) (Figura 16).

Figura 16. Distribución de la comunidad fitoperifitica en dos sustratos naturales en la cuenca del río Alvarado durante septiembre (altas precipitaciones) y diciembre (bajas precipitaciones) de 2012.



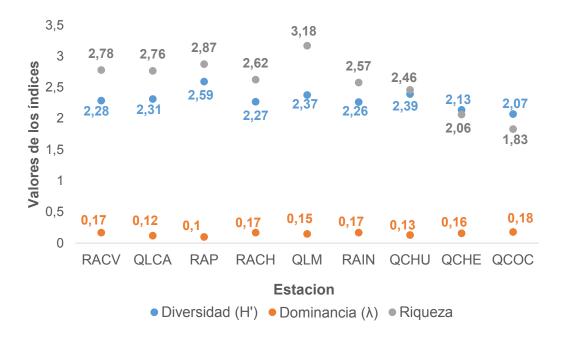
Distribución Espacial. En septiembre, la estación quebrada la Manjarres (QLM) presentó un valor alto de densidad relativa para el sustrato roca con 87,9%, seguido por la quebrada Chumba con 76,7%. Para el sustrato tronco el valor alto se evidenció en la localidad río Alvarado-Inicio (RAIN) con 76,1%, seguido por río Alvarado-Puente (RAP) con 61,8% (Figura 17). En diciembre, río Alvarado-Inicio (RAIN) registró el mayor valor con 79,5% en el sustrato roca, seguido por la quebrada la Manjarres con 64,4%. La estación quebrada Cocare (QCOC) tuvo el mayor valor de densidad relativa para el sustrato tronco con 72,5%, seguido por la quebrada la Caima (QLCA) con 51,1% (Figura 18).

Figura 17. Densidad relativa del perifiton en los sustratos naturales (roca y tronco) en las 9 estaciones evaluadas en la cuenca del río Alvarado durante septiembre de 2012.


Figura 18. Densidad relativa del perifiton en los sustratos naturales (roca y tronco) en las 9 estaciones evaluadas en la cuenca del río Alvarado durante diciembre de 2012.

4.2. ÍNDICES ECOLÓGICOS

4.2.1. Índices de diversidad a nivel general (Septiembre y Diciembre). La composición de la comunidad fitoperifítica en la cuenca del río Alvarado registró valores altos para la época de lluvias (Mg= 4,156; λ = 0,09972 y H'= 2,76 septiembre de 2012), Mientras que para la temporada de bajas lluvias se reportan valores bajos (Mg= 2,36; λ = 0,1264 y H'= 2,414 diciembre de 2012). Mediante una prueba t-diversidad, aplicada al índice de Shannon-Weiner, se registró diferencias significativas entre las épocas climáticas evaluadas (t: 34,452; gl: 39277; p: 2,7879E- 256) (Anexo 2; Figura 19).

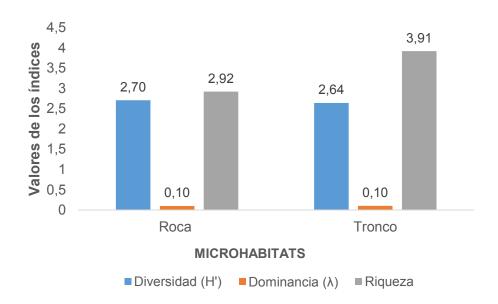

Figura 19. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica de la cuenca del río Alvarado durante septiembre y diciembre de 2012.

4.2.2. Índices de diversidad por estaciones

Índice de Margalef. En los dos periodos de muestreo, la estación quebrada la Manjarres (QLM) registró el mayor valor de riqueza de especies (Mg= 3,168), seguido por río Alvarado-Puente (RAP) con (Mg= 2,874). Mientras que los menores valores para este índice correspondieron a la quebrada Cocare (QCOC) y quebrada Chembe (QCHE) con 1,831 y 2,064, respectivamente (Figura 20).

Figura 20. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica de la cuenca del río Alvarado por estaciones durante septiembre y diciembre de 2012.

Fuente. Autor

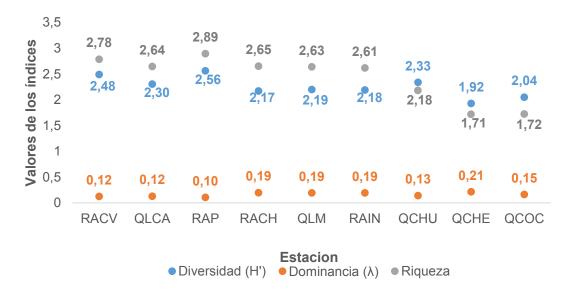

Índice de dominancia de Simpson. En los dos periodos de muestreo, la estación quebrada Cocare (QCOC) reflejó la mayor dominancia (λ = 0,1756), seguido por río Alvarado-Caldas Viejo (RACV) con (λ = 0,1718), y la menor le correspondió a la estación río Alvarado-Puente (RAP) (λ = 0,1006) (Figura 20).

Índice de Shannon-Wiener. La estación río Alvarado-Puente (RAP) registró un valor alto (H`=2,594), seguido por las estaciones río Alvarado-Caldas Viejo (RACV) y río Alvarado-Inicio (RAIN) con (H`= 2,289; H`= 2,266, respectivamente), sin diferencias significativas entre las estaciones mencionadas anteriormente (*t:* 1,0933; *gl:* 11041; *p:* 0,27431), mientras que quebrada Cocare (H'= 2,072) y quebrada Chembe (H'= 2,138) reportaron valores bajos, observándose diferencias significativas entre estas dos localidades (*t:* 2,2807; *gl:* 2652,9; *p:* 0,022644) (Anexo 2; Figura 20).

4.2.3. Índices de diversidad a nivel de sustratos

Índice de Margalef. Durante las dos épocas de muestreo, el sustrato tronco registró el mayor valor de riqueza (Mg= 3,918), en comparación con el sustrato roca (Mg= 2,921) (Figura 21).

Figura 21. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener en la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río Alvarado durante septiembre y diciembre de 2012.


Índice de dominancia de Simpson. Para este índice, tronco fue el sustrato con el mayor valor de dominancia (λ = 0,1053), mientras el sustrato de roca presentó un bajo valor (λ = 0,1003) (Figura 21).

Índice de Shannon-Wiener. El sustrato roca presentó un mayor diversidad (H`= 2,708) frente al sustrato tronco (H`= 2,64), con diferencia significativa (*t:* 6,6922; *gl:* 41514; *p:* 2,2259E-11) (Anexo 2; Figura 21).

4.2.4. Indices de diversidad a nivel temporal

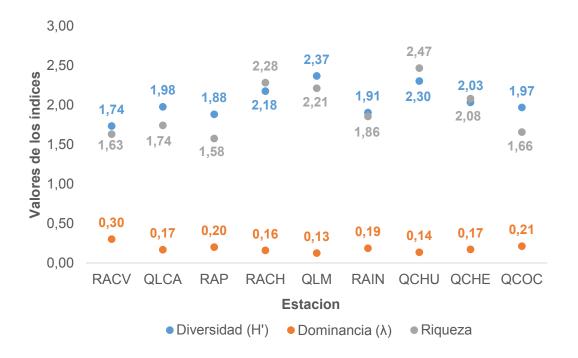
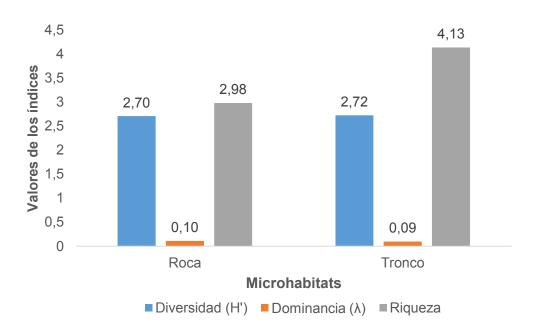

Índice de Margalef. Dentro de los dos periodos analizados, los mayores valores de riqueza se reportaron en septiembre. La estación Río Alvarado-Puente (RAP) presentó el mayor valor (Mg= 2,892), seguido de la estación río Alvarado-Caldas Viejo (RACV) (Mg= 2,785). En contraste, los valores bajos se registraron en la estación quebrada Chembe (QCHE) (Mg= 1,719) y quebrada Cocare (QCOC) (Mg= 1,723) (Figura 22). Para diciembre, la estación con el mayor valor fue quebrada Chumba (Mg= 2,468), seguido de río Alvarado-Chucuni (Mg= 2,283). La estación río Alvarado-Puente registró el menor índice (Mg= 1,576) (Figura 23).

Figura 22. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica de la cuenca del río Alvarado durante septiembre de 2012.

Índice de dominancia de Simpson. En el período de septiembre, la estación quebrada Chembe (QCHE) presentó la mayor dominancia (λ = 0,2117) y el menor valor correspondió a la estación río Alvarado-Puente (λ = 0,1038) (Figura 22). En el período de diciembre, el mayor valor correspondió a la estación río Alvarado-Caldas Viejo (λ = 0,30), mientras que la quebrada la Manjarres (QLM) evidenció la menor dominancia (λ =0,13) (Figura 23).

Figura 23. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica de la cuenca del río Alvarado durante el mes de diciembre de 2012.

Fuente. Autor

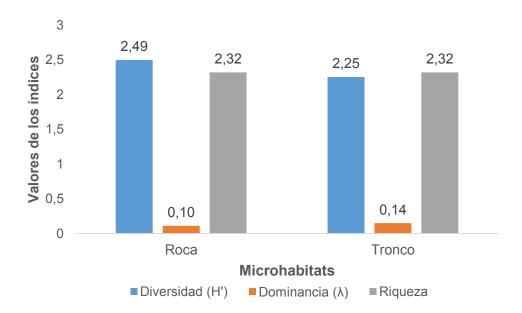

Índice de Shannon-Wiener. Respecto a este índice los mayores valores correspondieron a septiembre. Las estaciones río Alvarado-Caldas Viejo (RACV) y río Alvarado-Puente (RAP) mostraron valores altos (H'= 2,488 y H'= 2,562), con diferencias significativas entre sí (t: 3,1531; gl: 4970,8; p: 0,00015282), mientras que los menores valores fueron registrados en las localidades quebrada Chembe (QCHE) y quebrada Cocare (QCOC) (H'= 1,928 y H'= 2,049), con diferencias significativas entre sí (t: 2,6156; gl: 1040,7; p:

0,0090348) (Anexo 2; Figura 22). Durante el mes de diciembre no se registraron diferencias significativas entre las estaciones quebrada la Manjarres (QLM) y quebrada Chumba (QCHU) (*t*: 1,7499; *gl*: 1795,4; *p*: 0,080308) siendo estos los que evidenciaron los valores altos para este índice (H'= 2,367 y H'= 2,304, respectivamente). Mientras que, los valores bajos se presentaron en las estaciones río Alvarado-Caldas Viejo (RACV) y río Alvarado-Puente (RAP) (H'= 1,735 y H'= 1,882), con diferencias significativas entre sí (*t*: 2,8317; *gl*: 380,45; *p*: 0,0048762) (Anexo 2; Figura 23).

4.2.5. Índices de diversidad de sustratos a nivel temporal

Índice de Margalef. A nivel temporal, el mes de septiembre se registraron valores altos de riqueza; para esta época de muestreo el sustrato tronco obtuvo el mayor valor (Mg=4,134) y roca el menor (Mg=2,981) (Figura 24). Para diciembre, los sustratos naturales roca y tronco presentaron el mismo valor de riqueza con (Mg=2,32) (Figura 25).

Figura 24. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río Alvarado en el mes septiembre de 2012.

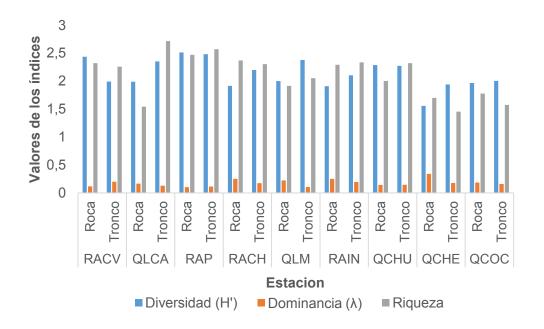


Índice de dominancia de Simpson. Para septiembre, el sustrato de roca registró la mayor dominancia (λ = 0,1095), mientras que para el sustrato tronco se observó el menor valor

 $(\lambda = 0,09699)$ (Figura 24). En contraste, en diciembre el sustrato tronco registró la mayor dominancia $(\lambda = 0,1491)$ mientras que el sustrato roca presentó el menor valor $(\lambda = 0,1099)$ (Figura 25).

Índice de Shannon-Wiener. En septiembre, la mayor diversidad fue para tronco (H'= 2,723) el cual no mostró diferencias significativas con el sustrato de roca (H'= 2,706) (*t:* 1,201; *gl:* 24364; *p:* 0,22978) (Anexo 2; Figura 24). En diciembre, roca representó el mayor valor de diversidad (H'= 2,499) y tronco el menor (H'= 2,254), mostrando diferencias significativas (*t:* 16,976; *gl:* 16712; *p:* 4,267E-⁶⁴) (Anexo 2; Figura 25).

Figura 25. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica, en los diferentes sustratos muestreados de la cuenca del río Alvarado en el mes diciembre de 2012.



4.2.6. Índices de diversidad de sustratos por estación a nivel temporal

Índice de Margalef. A nivel temporal, durante el período de septiembre las estaciones río Alvarado-Puente (RAP) y quebrada la Caima (QLCA) registraron los mayores valores de riqueza en el sustrato roca (Mg= 2,437) y tronco (Mg= 2,719), mientras que las estaciones quebrada la Caima (QLCA) y quebrada Chembe (QCHE) presentaron los menores valores en el sustrato roca (Mg= 1,545) y tronco (Mg= 1,455) (Figura 26). En diciembre, en la estación río Alvarado-Chucuni (RACH) registró los mayores valores de riqueza en los dos sustratos roca (Mg= 2,024) y tronco (Mg=2,261) y los menores valores corresponden a la estación quebrada Cocare (QCOC) con el sustrato de roca (Mg=1,526) y tronco (Mg=1,329) (Figura 27).

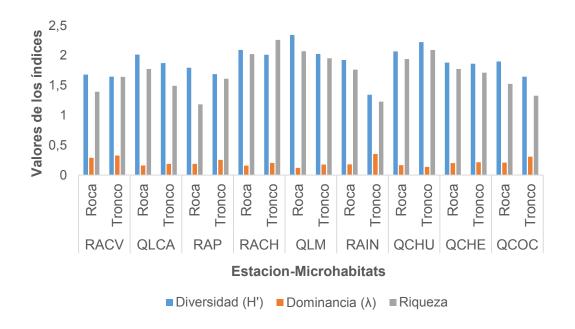

Índice de dominancia de Simpson. A nivel temporal, septiembre registró los menores valores de dominancia en la estación río Alvarado-Puente (RAP) para los sustratos de roca (λ =0,1006) y tronco (λ =0,1139) caso contrario con las estaciones quebrada Chembe (QCHE) y río Alvarado-Caldas Viejo (RACV), las cuales registraron los mayores valores en los sustratos de roca (λ =0,3384) y tronco (λ =0,1989) (Figura 26). Para diciembre, las estaciones río Alvarado-Caldas Viejo (RACV) y río Alvarado-Inicio (RAIN) presentaron los mayores valores en los sustratos de roca (λ = 0,2892) y tronco (λ = 0,3529), respectivamente, mientras que la quebrada la Manjarres (QLM) y quebrada Chumba (QCHU) los menores (λ =0,1218 y λ =0,1371, respectivamente) (Figura 27).

Figura 26. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica, en los diferentes sustratos muestreados por estación en la cuenca del río Alvarado en el mes de septiembre de 2012.

Índice de Shannon-Weiner. En septiembre, los sustratos roca y tronco registraron los mayores valores de diversidad en la estación río Alvarado-Puente (RAP) (H'=2,516 y H'=2,484, respectivamente), no hubo diferencias significativas (*t*: 1,4811; *gl*: 5180,8; *p*: 0,13863), mientras la estación quebrada Chembe (QCHE) registró los menores valores para estos sustratos (H'=1,557 y H'=1,941), los cuales mostraron diferencias significativas (t: 5,0741; *gl*: 566,81; p: 5,2864E-07) (Anexo 2; Figura 26). En el periodo de diciembre, los sustratos de roca (H'=2,346) y tronco (H'= 2,026) en la estación quebrada la Manjarres (QLM) reportaron los mayores valores de diversidad, con diferencias significativas (*t*: 8,2643; *gl*: 1393,6; *p*: 3,2354E-¹⁶). La estación río Alvarado-Caldas Viejo (RACV) presentó menor diversidad en los sustratos de roca (H'= 1,68) y tronco (H'= 1,647), sin diferencias significativas (*t*: 1,0604; *gl*: 5324,1; *p*: 0,28901) (Anexo 2; Figura 27).

Figura 27. Índice de riqueza de Margalef, dominancia de Simpson y Shannon-Wiener de la comunidad fitoperifitica, en los diferentes sustratos muestreados por estación en la cuenca del río Alvarado en el mes de diciembre de 2012.

4.3. VARIABLES FISICOQUÍMICAS Y BACTERIOLÓGICAS

A nivel general las variables fisicoquímicas y ambientales en la cuenca del río Alvarado en los dos periodos de muestreo presentaron similitudes y particularidades; en septiembre se caracterizó por presentar valores bajos en solidos suspendidos y nitratos, y valores altos de turbiedad con respecto a diciembre (Tabla 8, 9). En los parámetros bacteriológicos, las localidades río Alvarado- Inicio (RAIN), río Alvarado-Caldas Viejo (RACV) y quebrada la Manjarres (QLM) reportaron los mayores valores para coliformes fecales y totales en cada período de muestreo (Tabla 5,6).

Tabla 5. Parámetros bacteriológicos analizados en las nueve estaciones muestreadas de la cuenca del río Alvarado en el mes de septiembre de 2012.

Estación	Coli Fecal (Coli/100ml)	Coliformes Total (Coli/100ml)
RACV	120	250000
QLCA	100	130000
RAP	150	30000
RACH	230	21000
QLM	1500	280000
RAIN	160000	3100000
QCHU	360	75000
QCHE	1200	240000
QCOC	200	110000

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC).

Tabla 6. Parámetros bacteriológicos analizados en las nueve estaciones muestreadas de la cuenca del río Alvarado en el mes de diciembre de 2012.

Estación	Coli Fecal	Coliformes
	(Coli/100ml)	Total
		(Coli/100ml)
RACV	20	800000
QLCA	150	370000
RAP	10	340000
RACH	10	720000
QLM	10	340000
RAIN	5000	670000
QCHU	10	160000
QCHE	500	200000
QCOC	20	540000
4000		J 1 0000

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor

4.3.1. ANOVA de Kruskal-Wallis

A nivel temporal, los parámetros como el pH, turbiedad, porcentaje de saturación de oxígeno, oxígeno disuelto, sólidos suspendidos, DQO₅, fósforos totales, fosfatos, coliformes fecales y coliformes totales mostraron diferencias significativas; sin embargo, a nivel espacial no evidenciaron diferencias significativas. Por otra parte, la temperatura del agua, la conductividad eléctrica y la alcalinidad presentaron diferencias significativas a nivel espacial (Tabla 7).

Tabla 7. ANOVA de Kruskal-Wallis para los 19 parámetros fisicoquímicos y bacteriológicos analizados en las 9 estaciones de la cuenca del río Alvarado en septiembre y diciembre de 2012.

fisicoquímicas y bacteriológicas Temperatura ambiente	H(8, N=18)	_		
	H(8, N=18)			
Temperatura ambiente		р	H(1,N=18)	р
remperatura ambiente	12,69	0,12	1,54	0,21
°C				
Temperatura del agua	15,96	0,04	0,23	0,62
Conductividad eléctrica	16,38	0,03	0,09	0,75
рН	5,59	0,69	9,56	0,0020
Turbiedad	4,28	0,83	10,23	0,0014
% de saturación de	2,16	0,97	12,80	0,0003
Oxígeno				
Oxígeno disuelto	7,08	0,52	5,07	0,02
Solidos totales	14,24	0,07	1,03	0,30
Solidos suspendidos	2,83	0,94	12,84	0,0003
Demanda química de	5,29	0,72	1,58	0,20
Oxígeno (DQO)				
Demanda bioquímica	7,57	0,47	7,74	0,005
de Oxígeno (DBO5)				
Nitratos	12,81	0,11	1,53	0,21
Fósforos totales	3,05	0,93	11,24	0,0008
Fosfatos	3,13	0,92	11,98	0,0005
Cloruros	14,02	0,08	0,03	0,85
Alcalinidad	16,84	0,03	0,01	0,89
Dureza	14,42	0,07	0,23	0,62
Coliformes fecales	8,53	0,38	4,54	0,03
Coliformes totales	7,08	0,52	5,07	0,02

Fuente. Autor.

Tabla 8. Parámetros fisicoquímicos analizados en nueve estaciones muestreadas de la cuenca del río Alvarado en septiembre de 2012.

ESTACIÓN	Tem	Tem	*Cond	рН	Turbiedad	Oxi	%	Sol.	Sol.	DQO	DBO₅	Nitratos	Fosfatos	F.	*Clor.	* Alc.	Dureza
	Amb Agua		Eléct			Disuel.	SAT- To	Totales	Susp.	sp.				Totales.			
	°C	°C					O ₂ .										
RACV	26	26,3	416	8,45	4	7,54	87,1	346	13	52	2,8	1,2	6,7	2,2	22	185	139
QLCA	31	28,2	482	8,36	2	6,76	84,4	322	14	8	3,2	0,09	3,4	1,09	23	221	221
RAP	34	30,4	365	8,64	7	6,17	78	292	13	26	3,4	0,2	6,7	2,2	25	165	156
RACH	32	27	199	8,11	6	6,33	80,3	220	16	145	2,7	1,93	3,4	1,09	14	90	116
QLM	32	25,4	290	8,23	3	5,57	80,3	225	15	8	2,2	0,99	3,4	1,09	10	156	180
RAIN	23	22,4	262	8,41	4	6,26	86,6	207	16	13	5,1	1,93	6,7	2,2	23	103	141
QCHU	26	22	194	8,25	2	7,03	87,2	164	11	43	2,9	0,82	3,4	1,09	12	107	125
QCHE	29	24	91	8,1	4	5,77	80,7	111	14	8	3,3	0,18	6,7	2,2	11	57	79
QCOC	31	23	123	8,22	5	5,91	76,2	116	10	11	2,4	1,48	3,4	1,09	14	69	107

^{*}Clor: Cloruros, Alc: Alcalinidad, Cond Eléct: Conductividad eléctrica.

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

Tabla 9. Parámetros fisicoquímicos analizados en nueve estaciones muestreadas de la cuenca del río Alvarado en diciembre de 2012.

ESTACIÓN	T.	T. Agua	*Cond.	pН	Turbidez	Oxi	%	Sol.	Sol.	DQO	DBO5	Nitratos	Fosfatos	F.	*Clor.	*Alc.	Dureza
	Amb	°C	Eléct			Disuel.	SAT-	Totales	Susp.					Totales			
	°C						O2.										
RACV	29	25,5	373	7,94	9	6,96	91,4	263	24	8	5,95	3,17	3,4	1,09	26	175	167
QLCA	27,5	25,9	435	8,32	4	7,17	96	265	26	8	8,38	0,54	1,3	0,44	21	256	218
RAP	30,5	28,4	295	8,10	13	7,11	95,9	205	24	8	6,46	1,2	1,3	0,44	20	159	143
RACH	32	27,6	198	7,32	22	7,02	94,6	166	28	8	4,48	6,69	3,35	1,09	17	85	140
QLM	31	25,3	234	7,74	17	7,19	96,8	157	22	8	2,62	0,96	1,3	0,44	11	150	133
RAIN	22	22,2	211	7,03	157	6,82	94	232	156	85	12	2,08	1,34	0,44	14	99	123
QCHU	27,375	22,5	212	8,01	23	7,2	96,1	175	19	8	4,66	0,33	1,34	0,44	15	123	97
QCHE	24	23,8	83	6,54	24	6,73	90,8	105	48	182	11	1,47	1,34	0,44	12	53	67
QCOC	23	21,6	122	7,24	23	6,92	93	94	32	8	11	1,24	1,34	0,44	11	82	87

^{*}Clor: Cloruros, Alc: Alcalinidad, Cond Eléct: Conductividad eléctrica.

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

4.3.2. ANÁLISIS DE COMPONENTES PRINCIPALES (ACP)

4.3.2.1. Análisis de Componentes Principales en septiembre (Alta precipitación). A través de este análisis de ordenación, se determinó que la varianza acumulada es de 70,81% en los primeros tres valores, lo cual es suficiente para explicar en mayor parte la dinámica fisicoquímica del cuerpo de agua. El factor 1 presentó un valor propio de 5,82 con una varianza del 34,25%. El primer valor propio define el primer componente principal representando la dirección máxima de la varianza de todas las observaciones en el plano. El factor 2 registró un valor propio de 3,61 representa el 21,24% de la varianza, y el tercer factor con valor propio de 2,60 con una varianza del 70,81%. (Tabla 10).

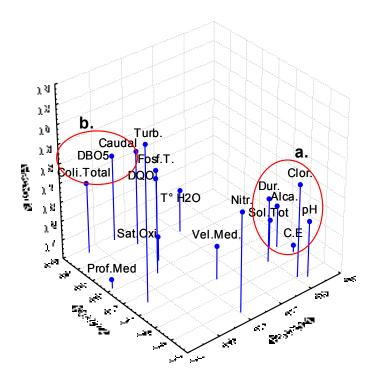
Tabla 10. Factores en el ACP de los parámetros fisicoquímicos y bacteriológicos evaluados en la cuenca del río Alvarado en septiembre de 2012.

Factor	Valor propio	Porcentaje varianza	Valor Acumulado	Porcentaje de la varianza
		total		acumulada
1	5,82	34,24	5,82	34,24
2	3,61	21,24	9,43	55,49
3	2,60	15,32	12,03	70,81
4	2,05	12,07	14,09	82,88
5	1,54	9,10	15,63	91,99
6	0,75	4,44	16,39	96,43
7	0,34	2,01	16,73	98,44
8	0,26	1,55	17	100

Fuente. Autor.

Para el factor 1 las variables de mayor contribución presentaron fueron conductividad eléctrica, pH, sólidos totales, cloruros, alcalinidad y dureza; para el factor 2 fueron

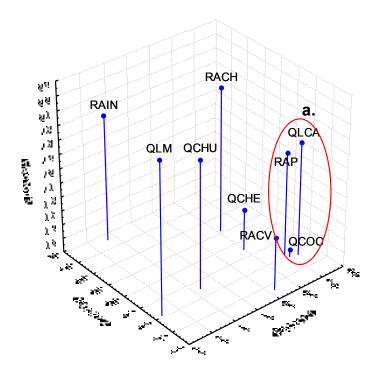
temperatura del agua, demanda bioquímica de oxígeno (DBO₅), coliformes totales y caudal, y para el factor 3, turbiedad y nitratos (Tabla 11).


Tabla 11. Contribuciones de las variables fisicoquímicas y bacteriológicas en los factores 1, 2 y 3 del análisis de componente principal en septiembre de 2012.

Variables	Factor 1	Factor 2	Factor 3
T° H2O	0,60	0,64	0,22
C.E	0,93	0,22	0,03
рН	0,85	0,06	0,29
Turb.	0,10	0,34	0,80
Sat.Oxi	0,36	0,53	0,12
Sol.Tot	0,87	0,32	0,14
DQO	0,29	0,47	0,49
DBO5	0,30	0,76	0,44
Nitr.	0,40	0,06	0,52
Fosf.T.	0,33	0,51	0,50
Clor.	0,81	0,09	0,48
Alca.	0,90	0,30	0,22
Dur.	0,78	0,24	0,33
Coli.Total	0,13	0,76	0,36
Vel.Med.	0,48	0,28	0,17
Caudal	0,37	0,68	0,49
Prof.Med	0,03	0,50	0,04

Fuente. Autor.

En el diagrama de dispersión de las variables fisicoquímicas se observa la formación de dos grupos principales de variables, los cuales son: a) pH, solidos totales, alcalinidad, dureza y conductividad eléctrica; b) coliformes totales, demanda bioquímica de oxigeno (DBO₅) y caudal (Figura 28).


Figura 28. Diagrama de dispersión de las variables analizadas en los componentes I, II y III en la cuenca del río Alvarado en septiembre de 2012.

Fuente. Autor

Las localidades río Alvarado-Puente (RAP), quebrada La Caima (QLCA) y quebrada Cocare (QCOC) reflejaron una alta correlación con pH, solidos totales, alcalinidad, dureza y conductividad eléctrica. La estación río Alvarado-Inicio (RAIN) se relacionó a las variables de coliformes totales, demanda bioquímica de oxigeno (DBO₅) y caudal (Figura 29).

Figura 29. Diagrama de dispersión de las estaciones de acuerdo a los parámetros fisicoquímicos medidos en la cuenca del Alvarado en septiembre de 2012.

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

4.3.2.2. Análisis de Componentes Principales en diciembre (baja precipitación). El ACP mostró que los tres primeros factores explican el 74,47% de la varianza acumulada suficiente para explicar en mayor parte la dinámica fisicoquímica del cuerpo de agua. El primer valor propio fue de 5.45 y define el primer componente principal, representando la dirección máxima de la varianza de todas las observaciones en el plano (Tabla 12).

Tabla 12. Factores en el ACP de los parámetros fisicoquímicos y bacteriológicos evaluadas en la cuenca del río Alvarado en diciembre de 2012.

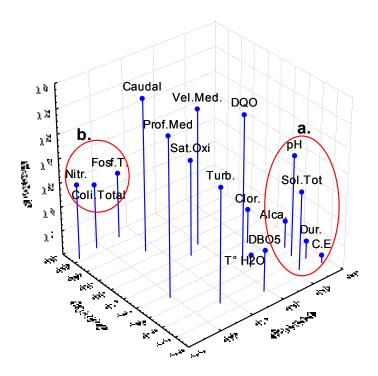
Factor	Valor	Porcentaje	Valor	Porcentaje de la
	propio	varianza	Acumulado	varianza
		total		acumulada
1	6,74	39,67	6,74	39,67
2	3,40	20,01	10,14	59,68
3	2,51	14,78	12,66	74,47
4	1,95	11,47	14,61	85,95
5	1,15	6,78	15,76	92,73
6	0,75	4,45	16,52	97,18
7	0,34	2,05	16,87	99,24
8	0,12	0,75	17	100

Fuente, Autor.

Para el factor 1, las variables que mayor contribución ofrecieron fueron conductividad eléctrica, pH, solidos totales, cloruros, alcalinidad y dureza; para el factor 2 fueron nitratos, fósforos totales, coliformes fecales y en el factor 3, demanda química de oxigeno (DQO), velocidad media, caudal y profundidad media (Tabla 13).

Tabla 13. Contribuciones de las variables fisicoquímicas y bacteriológicas en los factores 1, 2 y 3 del análisis de componente principal en diciembre de 2012.

Variables	Factor 1	Factor 2	Factor 3
T° H2O	0,65	0,20	0,05
C.E	0,95	0,005	0,03
рН	0,87	0,14	0,41
Turb.	0,33	0,07	0,47
Sat.Oxi	0,48	0,47	0,40
Sol.Tot	0,82	0,03	0,32


Variables	Factor 1	Factor 2	Factor 3
DQO	0,63	0,24	0,61
DBO ₅	0,56	0,007	0,17
Nitr.	0,03	0,81	0,31
Fosf.T.	0,31	0,84	0,27
Clor.	0,78	0,37	0,14
Alca.	0,90	0,22	0,11
Dur.	0,91	0,08	0,07
Coli.Total	0,16	0,83	0,26
Vel.Med.	0,57	0,53	0,56
Caudal	0,33	0,65	0,63
Prof.Med	0,18	0,26	0,65

Fuente. Autor.

El diagrama de dispersión de las variables fisicoquímicas en los factores 1, 2 y 3 mostró dos grupos principales de variables: a) pH, solidos totales, alcalinidad, dureza y conductividad eléctrica; b) nitratos, coliformes totales y fósforos totales (Figura 30).

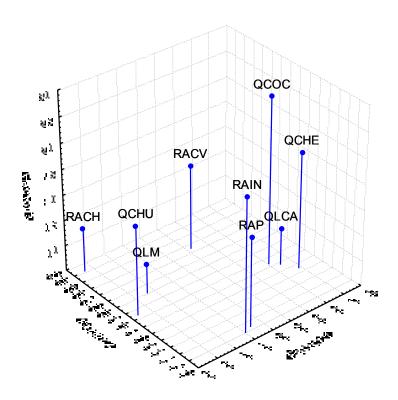
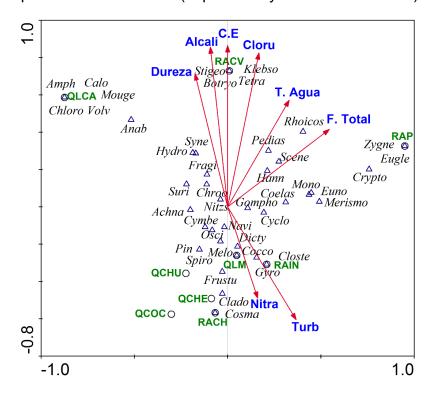

Las localidades quebrada Cocare (QCOC), quebrada la Caima (QLCA) y quebrada Chembe (QCHE) reflejaron una alta correlación con pH, solidos totales, alcalinidad, dureza y conductividad eléctrica. La estación río Alvarado-Chucuni (RACH) se relacionó a las variables de nitratos, coliformes totales y fósforos totales (Figura 31).

Figura 30. Diagrama de dispersión de las variables analizadas en los componentes I, II y III en la cuenca del río Alvarado en diciembre de 2012.

Fuente. Autor.

Figura 31. Diagrama de dispersión de las estaciones de acuerdo a los parámetros fisicoquímicos medidos en la cuenca del Alvarado en diciembre de 2012.



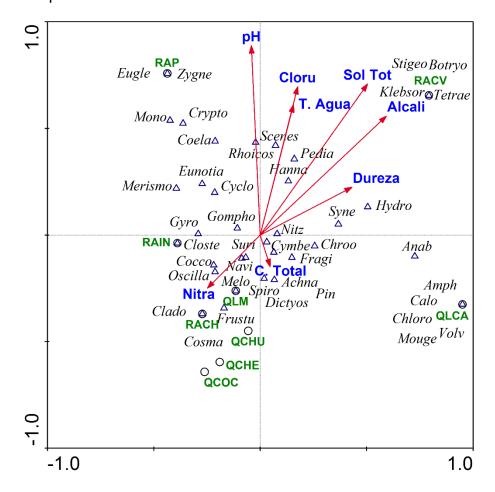
Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

4.3.3. ANÁLISIS DE CORRESPONDENCIA CANÓNICA ENTRE VARIABLES FISICOQUÍMICAS Y LA COMUNIDAD FITOPERIFITICA DE LA CUENCA DEL RÍO ALVARADO

Para los dos períodos de muestreo (septiembre y diciembre) se efectuó un análisis de correspondencia canónica para determinar la relación entre las variables fisicoquímicas y los géneros de la comunidad fitoperifítica. En las estaciones río Alvarado-Caldas Viejo, quebrada la Manjarres y río Alvarado-Inicio; los géneros: *Botryococcus, Cocconeis, Closterium, Dictyosphaerium, Gyrosigma, Klebsormidium, Stigeoclonium* y *Tetraedron;* se relacionan de manera positiva con los parámetros de dureza, alcalinidad, conductividad eléctrica, cloruros, nitratos y turbiedad (Figura 32).

Figura 32. Análisis de Correspondencia Canónica entre variables fisicoquímicas y la comunidad fitoperifitica en las diferentes estaciones muestreadas de la cuenca del río Alvarado en los periodos de muestreo (septiembre y diciembre de 2012).

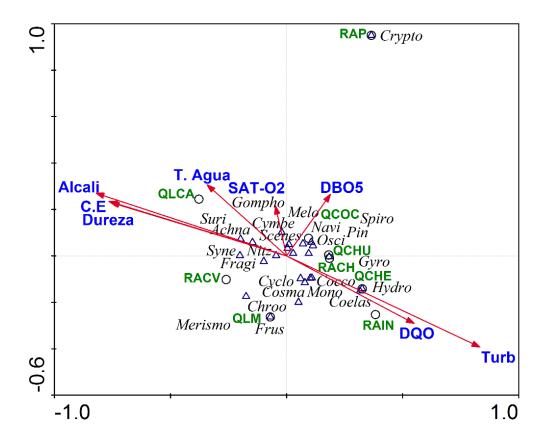
Géneros. Achnanthes (Achna); Amphora (Amph); Anabaena (Anab); Botryococcus (Botryo); Caloneis (Calo); Chlorosarcina (Chloro); Chroococcus (Chroo); Cladophora (Clado); Closterium (Closte); Cocconeis (Cocco); Coelastrum (Coelas); Cosmarium (Cosma); Cryptomonas (Crypto); Cyclotella (Cyclo); Cymbella


(Cymbe); Dictyosphaerium (Dicty); Euglena (Eugle); Eunotia (Euno); Fragilaria (Fragi); Frustulia (Frustu); Gomphonema (Gompho); Gyrosigma (Gyro); Hannaea (Hann); Hydrodictyon (Hydro); Klebsormidium (Klebso); Melosira (Melo); Merismopedia (Merismo); Monoraphidium (Mono); Mougeotia (Mouge); Navicula (Navi); Nitzschia (Nitzs); Oscillatoria (Osci); Pediastrum (Pedias); Pinnularia (Pin); Rhoicosphenia (Rhoicos); Scenedesmus (Scene); Spirogyra (Spiro); Stigeoclonium (Stigeo); Surirella (Suri); Synedra (Syne); Tetraedron (Tetra); Volvox (Volv); Zygnema (Zygne).

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

En el periodo de septiembre de 2012, los resultados de este análisis muestran que las variables pH, alcalinidad, cloruros, temperatura del agua y solidos totales influyeron de manera positiva con los géneros *Rhoicosphenia, Scenedesmus, Hannaea, Pediastrum, Stigeoclonium, Botryococcus, Klebsormidium* y *Tetraedron,* y estos a la vez se asocian con la estación río Alvarado-Caldas Viejo. Los géneros *Navicula, Surirella, Oscillatoria* y *Cocconeis* se relacionan de manera positiva con la variable de nitratos. Sin embargo, la presencia de ciertos géneros (*Amphora, Anabaena, Caloneis, Cryptomonas, Monoraphidium, Mougeotia, Chlorosarcina, Volvox, Zygnema* y *Euglena*) no estuvo condicionada a las variables fisicoquímicas evaluadas, en estaciones como quebrada la Caima y río Alvarado-Puente (Figura 33).

Para la época de diciembre de 2012, se observó que las variables alcalinidad, conductividad eléctrica, dureza, turbiedad y demanda química de oxigeno (DQO) se relacionan de manera positiva con los géneros *Nitzschia, Achnanthes, Surirella, Coelastrum* e *Hydrodictyon* y estos a su vez se asocian con las localidades río Alvarado-Inicio y quebrada Chembe. En contraste, los géneros *Merismopedia, Frustulia, Chroococcus* y *Cryptomonas* no se encuentran influenciadas con las variables fisicoquímicas evaluadas, en estaciones como río Alvarado-Caldas Viejo, quebrada la Manjarres y río Alvarado-Puente (Figura 34).


Figura 33. Análisis de Correspondencia Canónica entre variables fisicoquímicas y la comunidad fitoperifitica en las diferentes estaciones muestreadas de la cuenca del río Alvarado en septiembre de 2012.

Géneros. Achnanthes (Achna); Amphora (Amph); Anabaena (Anab); Botryococcus (Botryo); Caloneis (Calo); Chlorosarcina (Chloro); Chroococcus (Chroo); Cladophora (Clado); Closterium (Closte); Cocconeis (Cocco); Coelastrum (Coelas); Cosmarium (Cosma); Cryptomonas (Crypto); Cyclotella (Cyclo); Cymbella (Cymbe); Dictyosphaerium (Dicty); Euglena (Eugle); Eunotia (Euno); Fragilaria (Fragi); Frustulia (Frustu); Gomphonema (Gompho); Gyrosigma (Gyro); Hannaea (Hann); Hydrodictyon (Hydro); Klebsormidium (Klebso); Melosira (Melo); Merismopedia (Merismo); Monoraphidium (Mono); Mougeotia (Mouge); Navicula (Navi); Nitzschia (Nitzs); Oscillatoria (Osci); Pediastrum (Pedias); Pinnularia (Pin); Rhoicosphenia (Rhoicos); Scenedesmus (Scene); Spirogyra (Spiro); Stigeoclonium (Stigeo); Surirella (Suri); Synedra (Syne); Tetraedron (Tetra); Volvox (Volv); Zygnema (Zygne).

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

Figura 34. Análisis de Correspondencia Canónica entre variables fisicoquímicas y la comunidad fitoperifitica en las diferentes estaciones muestreadas de la cuenca del río Alvarado en diciembre de 2012.

Géneros. Achnanthes (Achna); Chroococcus (Chroo); Cocconeis (Cocco); Coelastrum (Coelas); Cosmarium (Cosma); Cryptomonas (Crypto); Cyclotella (Cyclo); Cymbella (Cymbe); Fragilaria (Fragi); Frustulia (Frustu); Gomphonema (Gompho); Gyrosigma (Gyro); Hydrodictyon (Hydro); Melosira (Melo); Merismopedia (Merismo); Monoraphidium (Mono); Navicula (Navi); Nitzschia (Nitzs); Oscillatoria (Osci); Pinnularia (Pin); Scenedesmus (Scene); Spirogyra (Spiro); Surirella (Suri); Synedra (Syne).

Estaciones. Río Alvarado-Caldas Viejo (RACV), quebrada la Caima (QLCA), río Alvarado-Puente (RAP), río Alvarado-Chucuni (RACH), quebrada la Manjarres (QLM), río Alvarado-Inicio (RAIN), quebrada Chumba (QCHU), quebrada Chembe (QCHE), quebrada Cocare (QCOC). Fuente. Autor.

De acuerdo con los resultados del análisis de correlación de Pearson, la comunidad algal de la cuenca del río Alvarado, principalmente los géneros *Nitzschia, Gomphonema y Synedra,* estuvieron relacionados de manera positiva con los factores de conductividad eléctrica, pH, solidos totales, alcalinidad y dureza. Adicionalmente, los géneros *Fragilaria*

y *Scenedesmus* solamente presentaron una relación positiva con la dureza (*r*: 0,478; *p*: 0,045) y sólidos totales (*r*: 0,486; *p*: 0,041), respectivamente (Anexo 11).

5. DISCUSIÓN

5.1. VARIABLES BIOLÓGICAS

5.1.1. Composición y estructura de la comunidad fitoperifítica. La estructura de la comunidad fitoperifítica en los dos periodos evaluados, estuvo dominada en su mayor parte por la clase Bacillariophyceae. Tanto a nivel espacial y temporal, esta clase se caracterizó por su abundancia y frecuencia a lo largo de todas las estaciones de muestreo. Estos resultados concuerdan con lo reportado por Montoya & Ramírez (2007), Bustamante et al., (2008), Silva et al., (2008) y Pedraza & Donato (2011), quienes consideran que los organismos pertenecientes a la clase Bacillariophyceae son muy comunes y abundantes en ecosistemas lóticos como: ríos, riachuelos y arroyos de alta montaña. Este hecho se debe posiblemente a que los organismos pertenecientes a esta clase se caracterizan principalmente por segregar estructuras mucilaginosas las cuales les permiten adherirse a los diferentes sustratos ofrecidos por el cuerpo de agua y, de esta manera soportar las fuertes corrientes (Pinilla, 1998).

La clase Chlorophyceae presentó valores altos durante el muestreo de septiembre, que corresponde al periodo de altas precipitaciones, mientras que en diciembre (bajas precipitaciones) registró una menor abundancia, lo anterior podría relacionarse con lo reportado por Hill (1996) y Gualtero (2007), donde la luz es uno de los factores ambientales que incide altamente sobre el desarrollo de las clorofíceas, debido a que facilita el crecimiento vertical, reduciendo el desarrollo de formas no móviles y postradas en los microhábitat presentes en estos cuerpos de agua.

Es importante tener en cuenta que los ensambles fitoperifíticos fluctúan en el espacio y el tiempo, debido a factores como el ciclo hidrológico, nutrientes y condiciones físicas y químicas de los cuerpos de agua, que favorecen a ciertos grupos de organismos en diferentes épocas (Lopretto & Tell, 1995). Las localidades que presentaron la mayor densidad en los dos periodos de muestreo fueron, río Alvarado-Puente, río Alvarado-

Inicio (septiembre de 2012), río Alvarado-Caldas Viejo y quebrada la Caima (diciembre de 2012), las cuales se relacionan con la acción del caudal (Arcos & Prieto, 2006), enriquecimiento de materia orgánica (Pizarro & Alemanni, 2005) y con algunos parámetros fisicoquímicos como conductividad eléctrica, pH y turbiedad (Díaz & Rivera, 2004), que favorecen el establecimiento y desarrollo de un gran número de organismos.

En cuanto a la distribución altitudinal de la comunidad fitoperifítica en la cuenca del río Alvarado, se observó que la clase Bacillariophyceae tuvo una mayor distribución de los géneros registrados en los periodos evaluados, según Díaz & Rivera (2004), Ramírez & Plata (2008), Bellinger & Sigee (2010), consideran que esta clase puede soportar diferentes temperaturas y niveles de cargas de nutrientes, por lo que serían comunidades que se distribuyen ampliamente en ríos tropicales.

Con respecto a la distribución de los géneros a nivel temporal *Navicula* fue el género con mayor densidad relativa durante los dos periodos de muestreo, estas densidades pueden estar asociadas con la respuesta a los incrementos de nutrientes por la intervención antrópica a causa del vertimiento de contaminantes domésticos, industriales y la actividad agrícola (Roldan & Ramírez, 2008; Morales et al., 2010).

Así mismo, se observan cambios en la densidad relativa a nivel temporal *Nitzschia* y *Scenedesmus* fueron dominantes y frecuentes en septiembre de 2012, mientras que en diciembre de 2012, *Fragilaria* y *Oscillatoria* fueron los taxones que presentaron una alta abundancia. Estas densidades podrían estar relacionadas con las estructuras de fijación al sustrato, formas de crecimiento y la capacidad de estos organismos para tolerar los cambios en las condiciones ambientales (Bicudo & Menezes, 2006; Andramunio, 2013).

Sin embargo, algunos géneros como *Closterium, Euglena, Volvox Tetraedron, Caloneis, Gyrosigma, Cryptomonas, Cosmarium* y *Chroococcus*, registraron valores bajos de densidad relativa, por lo tanto a este grupo de organismos se les pueden considerar como inestables y poco frecuentes, hecho que probablemente se puede atribuir a que son muy sensibles y necesitan condiciones muy particulares para su desarrollo (Andramunio, 2013).

Con relación a los sustratos evaluados, tronco presentó el mayor valor de densidad y riqueza (39 géneros) en septiembre de 2012, lo cual se puede asociar a la presencia de materia orgánica en descomposición (Bustamante et al., 2008); mientras que en el periodo de diciembre de 2012, tanto roca y tronco presentaron un porcentaje similar de abundancia de géneros, este hecho posiblemente se relacione con la permanencia y estabilidad de estos sustratos en el río (Roldan & Ramírez, 2008).

A nivel espacial y temporal, la estación quebrada La Manjarres registró el mayor valor de densidad en el sustrato roca en los dos periodos evaluados, mientras que, las localidades río Alvarado-Inicio y quebrada Cocare presentaron valores altos de densidad en tronco durante las dos épocas de muestreo, esto puede indicar que la abundancia de la comunidad fitoperifítica es mayor cuando la acción y velocidad de la corriente es mínima (Martínez & Donato, 2003; Zapata & Donato, 2005).

5.2. ÍNDICES ECOLÓGICOS

A nivel temporal, tanto en septiembre (alta precipitación) como en diciembre (baja precipitación), las estaciones quebrada Chumba, río Alvarado-Puente y quebrada La Manjarres presentaron los valores altos de diversidad y riqueza, mientras que, las localidades quebrada Chembe y río Alvarado-Caldas Viejo presentaron los mayores valores de dominancia. La diversidad y riqueza de la comunidad fitoperifitica, pueden estar asociadas a los periodos hidroclimáticos, por lo que es posible suponer, que esta comunidad está sujeta principalmente a las variaciones en el caudal, (Montoya et al., 2008; Pedraza & Donato, 2011), algunos autores recalcan la influencia que tiene la velocidad de la corriente sobre la productividad algal, las tasas de acumulación y la estructura de la comunidad (Horner & Welch, 1981; Traaen & Lindstrom, 1983; Wetzel, 2001).

La riqueza de especies mostró como un buen indicador de cambios en la estructura de la comunidad fitoperifítica, puesto que tuvo cambios significativos entre cada uno de los periodos de muestreo. Las estaciones quebrada Chembe y quebrada Cocare presentaron baja riqueza y diversidad, configurando ensamblajes de la comunidad algal específicos, esto es debido a la alteración del flujo y extracción de material, lo que reduce la disponibilidad de los recursos y condiciones del hábitat (Clausen & Biggs, 1977; Kingsley, 2004; Pedraza & Donato, 2011).

Al comparar los índices de diversidad, dominancia y riqueza entre los monitoreos realizados en septiembre y diciembre de 2012, se observó que los valores para estos índices fueron mayores durante septiembre, en relación a lo obtenido durante la época de diciembre; lo anterior es favorecido por la baja fluctuación de las condiciones hidroclimáticas, bajo nivel de turbiedad y bajo caudal, que permitieron una mayor estabilidad y colonización de las microalgas perifíticas en esta cuenca (Ramírez & Plata, 2008).

A nivel temporal, septiembre presentó valores altos de riqueza, diversidad y dominancia en el sustrato tronco, este comportamiento concuerda con lo encontrado por Sabater et

al., (1998) y Quinn et al., (2010), quienes registraron para los ríos una mayor diversidad en la comunidad asociada a los troncos respecto a la comunidad epilítica, debido a la irregularidad que presenta el sustrato leñoso. En el mes de diciembre, los sustratos (roca y tronco) no mostraron variaciones entre sí, presentando un comportamiento homogéneo en los índices evaluados.

5.3. VARIABLES FISICOQUÍMICAS Y BACTERIOLÓGICAS

Las variables fisicoquímicas evaluadas en las diferentes estaciones de la cuenca del río Alvarado presentaron variaciones y/o fluctuaciones en los dos periodos de muestreo, indicando así un comportamiento heterogéneo y dinámico a lo largo de esta cuenca. Los parámetros bacteriológicos (coliformes fecales y coliformes totales) se vieron incrementados en las localidades ubicadas cerca de las zonas urbanas, especialmente al municipio de Ibagué. Temporalmente, se estableció que existe una clara incidencia de las condiciones hidroclimáticas sobre las variables fisicoquímicas como; pH, turbiedad, solidos suspendidos, solidos totales y fósforos totales

En cuanto a la temperatura del agua, las localidades ubicadas en la parte baja de la cuenca; río Alvarado-Caldas Viejo, quebrada La Caima y río Alvarado-Puente, registraron valores altos; esto probablemente se relaciona con la dinámica natural de los ecosistemas lóticos, sumado a la poca vegetación riparia que se observa en estos sectores intervenidos de la cuenca, los cuales reciben una mayor intensidad lumínica, y por ende se refleja un incremento en la abundancia de la comunidad fitoperifítica (Pedraza & Donato, 2011).

Las estaciones río Alvarado-Caldas Viejo, quebrada La Caima y río Alvarado-Puente en los dos periodos de muestreo presentaron valores altos de conductividad y solidos totales disueltos (STD) a consecuencia de las descargas domésticas, agrícolas e industriales que reciben estos en su cauce (Díaz & Rivera, 2004; Roldan & Ramírez, 2008). Por otra parte, la localidad quebrada Chembe registró valores bajos, lo que permite catalogar a esta zona como muy pobres en nutrientes y baja productividad primaria.

Los valores altos de turbiedad y sólidos en suspensión (SS) en la época de diciembre, especialmente en la estación río Alvarado-Inicio se deben principalmente al aumento de la precipitación, que favorece el aporte y arrastre de materiales como desechos domésticos e industriales, los cuales inciden directamente en la productividad y el flujo de energía dentro del ecosistema (O'Farrell et al., 2002; Roldan & Ramírez, 2008 y

Pizarro & Alemanni, 2005). En septiembre, estas variables mencionadas se caracterizaron por tener valores muy bajos a lo largo de la cuenca del río Alvarado.

En cuanto a los gases disueltos en el agua, las estaciones río Alvarado-Inicio, quebrada Chembe y quebrada Cocare mostraron bajos valores de oxígeno disuelto (OD) en las dos épocas de muestreo, esto puede atribuirse al gradiente altitudinal y a factores antropogénicos como la descarga de aguas residuales y doméstica (Roldan & Ramírez, 2008). La estación río Alvarado-Inicio registró el valor alto de demanda bioquímica de oxígeno (DBO₅) en los dos periodos evaluados indica que esta zona presenta una alta concentración de materia orgánica biodegradable (Roldan & Ramírez, 2008). Las concentraciones de nitratos y fosfatos, claramente mayores en las localidades río Alvarado Caldas-Viejo, río Alvarado-Inicio y río Alvarado-Chucuni, corresponderían, según Pesson (1979) y Roldan & Ramírez (2008) al aporte de los efluentes domésticos, polvos de lavar, detergentes y fertilizantes de la actividad agrícola.

Por otro lado, los cloruros presentaron un incremento en las zonas bajas en las localidades de río Alvarado-Caldas Viejo, quebrada la Caima y río Alvarado-Puente, indicando una moderada concentración de salinidad; esto concuerda con Roldan & Ramírez (2008), los cuales afirman que estos valores incrementan su contenido en las partes bajas del río.

Finalmente, las estaciones río Alvarado-Inicio, río Alvarado-Caldas Viejo y quebrada Chembe presentaron valores altos de coliformes totales, coliformes fecales, fosfatos, fósforos totales y nitratos relacionado con las descargas de tipo doméstico que se observaron en estas localidades, lo que aporta niveles altos de materia orgánica, lo cual genera un aumento en la densidad del perifiton en estos puntos de muestreo. A su vez, la reducida calidad de agua en estos sectores de la cuenca, hace que el recurso hídrico sea no apto para el consumo humano y animal (Parra, 2008; Forero, 2011).

De acuerdo al análisis de componentes principales, durante los dos periodos evaluados las variables fisicoquímicas, conductividad eléctrica, pH, sólidos totales, cloruros,

alcalinidad y dureza registraron una alta influencia en la dinámica fisicoquímica de la cuenca del río Alvarado; estos factores fisicoquímicos se relacionan con procesos de mineralización de la materia orgánica, generados por erosión, sedimentación y arrastre de material alóctono (Kamp-Nielsen, 2008; Montoya & Ramírez, 2007). Lo anterior probablemente está determinado por actividades agropecuarias y de extracción material de arrastre, que se desarrollan en la mayor parte de la cuenca y que inciden en procesos erosivos y de incremento de los sólidos totales y demás variables asociadas con el fenómeno de mineralización.

Con respecto al análisis de correspondencia canónica (CCA), se determinó que en las localidades evaluadas, las variables que intervienen en los ensambles de la comunidad algal son alcalinidad y fósforos totales en la localidad río Alvarado-Caldas Viejo y los géneros *Stigeoclonium*, *Botryococcus*, *Tetraedron*, *Klebsormidium*, *Scenedesmus* y *Hannaea* en los dos periodos de muestreo, los cuales se relacionan con procesos de mineralización (Ramírez & Viña, 1998) (Anexo 12a). El pH y la alcalinidad se relacionan de manera positiva con los géneros *Rhoicosphenia*, *Scenedesmus*, *Hannaea* y *Pediastrum* en el periodo de septiembre (Anexo 12b); y en la época de diciembre, la turbiedad se asoció positivamente con la quebrada Chembe, con *Coelastrum* e *Hydrodictyon* (Anexo 12c), indicando que posiblemente estos géneros tengan un mejor soporte y estabilidad al efecto diferencial de esta variable.

De acuerdo con el análisis de correlación de Pearson, la comunidad fitoperifitica de la cuenca del río Alvarado, especialmente los géneros pertenecientes a la clase Bacillariophyceae estuvieron relacionados a los factores: pH, alcalinidad, conductividad eléctrica, dureza y sólidos totales; estos se pueden asociar con el hecho que junto al caudal, nutrientes como nitratos y fosfatos, así como otras variables fisicoquímicas determinan la respuesta del perifiton de ríos tropicales (Pedraza & Donato, 2011).

6. CONCLUSIONES

La comunidad fitoperifítica para la cuenca del río Alvarado estuvo dado principalmente por algas pertenecientes a las clases Bacillariophyceae y Chlorophyceae, las cuales registraron las mayores densidades durante los dos muestreos realizados, este comportamiento es común para los ecosistemas lóticos, debido a que estos organismos están adaptados para estos ambientes.

Los géneros de la comunidad algal de mayor distribución y abundancia fueron *Navicula, Fragilaria, Nitzschia* y *Scenedesmus* en los dos periodos de muestreo, en cambio, *Hydrodictyon, Chroococcus, Klebsormidium* y *Caloneis* presentaron bajas abundancias y poca distribución espacial en esta cuenca.

A nivel espacial, las estaciones que están menos impactadas (río Alvarado-Caldas Viejo y río Alvarado-Puente) presentaron los mayores valores de diversidad y riqueza, en cambio, las estaciones que están impactadas por la influencia antrópica y agrícola (quebrada Chembe y quebrada Cocare) presentaron los menores valores de diversidad y riqueza.

La variación de la composición, diversidad, densidad y el desarrollo de la comunidad fitoperifitica dependen de variables hidrológicas y biológicas (caudal, velocidad del flujo, presencia de lluvias y enriquecimiento de nutrientes), y factores fisicoquímicos como pH, conductividad eléctrica, alcalinidad, solidos totales, dureza, coliformes totales y fecales. Así mismo, en el mes de septiembre presentó una mayor abundancia y diversidad de la comunidad algal, el cual se vio beneficiado por condiciones ambientales y fisicoquímicas favorables que permitieron una buena estructuración y composición de estos organismos dentro de estos cuerpos de agua.

Las variables fisicoquímicas que determinaron de manera significativa la comunidad algal en esta cuenca, especialmente a los géneros *Nitzschia*, *Gomphonema* y *Synedra*, fueron

en su orden de importancia, sólidos totales, dureza, conductividad eléctrica, pH y alcalinidad, las cuales influyeron de manera significativa de la distribución en la comunidad fitoperifitica en la cuenca del río Alvarado y sus tributarios.

RECOMENDACIONES

Realizar una mayor frecuencia de muestreos durante el año para observar cambios en la estructura y composición de la comunidad de algal con respecto a la influencia de las variables hidrológicas en la dinámica ecológica y fisicoquímica de la cuenca.

Evaluar la estructura de la comunidad de las algas con respecto a otros tipos de sustratos inestables que se encuentran en la cuenca, como hojarasca y sedimento.

En necesario continuar con estudios de taxonomía y ecología de algas en otras cuencas hidrográficas del departamento del Tolima, los cuales son importantes para conocer el estado actual del cuerpo de agua.

REFERENCIAS

- Albornoz, J.G., Conde-Saldaña, C.C & Villa-Navarro, F.A. (2013). Diversidad Íctica en cinco tributarios del rio Alvarado (Tolima-Colombia). Resumen del XVII Congreso de la sociedad mesoamericana para la biología y la conservación. La Habana, Cuba.
- Amaidén, M. A., & Gari, E. N. (2011). Perifiton en el mesohábitat de corredera de un arroyo serrano: dinámica estacional en relación a variables físico-químicas. Boletín de la Sociedad Argentina de Botánica, 46(3-4), 235-250.
- Andramunio-Acero, C. P. (2013). Dinámica sucesional y ecología trófica de la comunidad perifítica en dos ambientes del sistema lagunar de Yahuarcaca (Amazonas, Colombia) (Doctoral dissertation, Universidad Nacional de Colombia).
- APHA. (1992). Standard Methods for the Examination of Water and Waste Water.

 American Public Health Association, 18th Ed, Academic Press, Washington D.C.
- APHA. (1999). Standard Methods for the Examination of Water and Waste Water. American Public Health Association, 20 Ed, Academic Press, Washington D.C.
- Arcos-Pulido, M. d. P. & Prieto-Gómez, A. C. (2006). Microalgas perifíticas como indicadoras del estado de las aguas de un humedal urbano: Jaboque, Bogotá DC, Colombia. NOVA, 4, 60-79.
- Bellinger, E. G., & Sigee, D. C. (2010). Freshwater algae: identification and use as bioindicators. John Wiley & Sons.
- Bicudo, C., Menezes, M. (2006). Géneros de algas de aguas continentales do Brasil (chave para identificação e descrições). Segunda edición. 502p.

- Bouchard, R. W., Anderson, J. A., & Hall, F. (2001). Description and protocol for two quantitative periphyton samplers used for multihabitat stream sampling. Report for the Central Plains Center for Bioassessment, 1-13.
- Branco-Z, L. H., Necchi-Júnior, O., & Branco-Z, C. C. (2001). Ecological distribution of Cyanophyceae in lotic ecosystems of São Paulo State. *Revista Brasileira de Botánica*, 24, 99-108.
- Busse, S., Jahn, R., & Schulz, C. J. (1999). Desalinization of running waters: II. Benthic diatom communities: A comparative field study on responses to decreasing salinities. *Limnologica-Ecology and Management of Inland Waters*, 29, 465-474.
- Bustamante-Toro, C. A., Dávila-Mejía, C. A., Torres-Cohecha, S. L., & Ortiz-Díaz, J. F. (2008). Composición y abundancia de la comunidad de fitoperifiton en el Río Quindío. *Rev.Invest.Univ.Quindío*, 15-21.
- Carranza, X. (2006). Evaluación de la fauna de dípteros (Insecta: Díptera) acuáticos de las cuencas de los río Prado y la parte baja de Amoyá en el departamento del Tolima. Biólogo, Universidad del Tolima, Ibagué-Tolima.
- Casco, M. A. & Toja, J. (2003). Efecto de la fluctuación de nivel del agua en la biomasa, la diversidad y las estrategias del perifiton de los embalses. *Limnetica*, *22*, 115-134.
- Castillo, C. T. (2000). Productividad y biomasa fitoperifítica en los lagos de Yahuarcaca y Tarapoto (Amazonas-Colombia). *Revista Ambiental Universidad de Pamplona*, 1, 59-68.
- Chou, J. Y., Chang, J. S., & Wang, W. L. (2006). *Hydrodictyon reticulatum* (Hydrodictyaceae, Chlorophyta), A New Recorded Genus and Species of Freshwater Macroalga in Taiwan. *BioFormosa*, 41, 1-8.

- Clausen, B. & Biggs, B. J. (1997). Relationships between benthic biota and hydrological indices in New Zealand streams. *Freshwater Biology*. 38: 327-342.
- Conde-Saldaña, C.C., Albornoz, J.G & Villa-Navarro, F.A. (2013). Composición, diversidad y distribución altitudinal de la ictiofauna en el río Alvarado, Tolima-Colombia. Resumen del XVII Congreso de la sociedad mesoamericana para la biología y la conservación. La Habana, Cuba.
- Cortolima. (2009). Plan De Ordenación Y Manejo De La Cuenca Hidrográfica Mayor Del Río Totare, Convenio Cortolima, Corpoica, Sena Y Universidad Del Tolima. Retrieved from Corporación Autónoma del Tolima website: http://www.cortolima.gov.co.
- Cruz, V. & Salazar, P. (1989). Biomasa y producción primaria del perifiton en una sábana inundable de Venezuela. *Rev. Hydrobiol. Trop.*, 22, 213-222.
- Díaz-Quirós, C. & Rivera-Rondón, C. A. (2004). Diatomeas de pequeños ríos andinos y su utilización como indicadoras de condiciones ambientales. *Caldasia 26*, 381-394.
- Dollar, E.S.J. (2004). Fluvial geomorphology. *Progress in Physical Geography* 28(3):405-450.
- Duarte-Ramos, J.L., Vásquez-Ramos, J.M & Reinoso-Flórez, G. (2013). Composición y estructura de los trichopteros de la cuenca del río Alvarado del departamento del Tolima (Colombia). Resumen de ponencia del XLVIII Congreso Nacional de Ciencias Biológicas. Bogotá-Colombia.
- Espinosa Rico, M.A., Trujillo Manrique, G., Bernal Niño, F.A., Sandoval, F., Mendoza, R.D., Pinzón, J.V., & Gómez Tapias, J. (2005). Municipio De Alvarado: *Esquema de Ordenamiento Territorial Ley* 388/97 Sistemas Administrativo Y Biofísico,

- *Tomo I. Tolima*: Retrieved from http://www.alvarado-tolima.gov.co/sitio.shtml?apc=p-r2--&x=2199399.
- Forero-Céspedes, A. (2011). Caracterización biológica y fisicoquímica de la cuenca del río Opia, Tolima (Colombia). Biólogo, Universidad del Tolima, Ibagué-Tolima.
- Forero-Céspedes, A. & Reinoso-Flórez, G. (2013). Estudio de la calidad del agua en la cuenca del río Alvarado (Tolima-Colombia). Resumen de ponencia del XLVIII Congreso Nacional de Ciencias Biológicas. Bogotá-Colombia.
- Giorgi, A. & Feijo, C. (2010). Variación temporal de la biomasa del perifiton de *Egeria densa* Planch, en un arroyo pampeano. *Limnetica*, 29, 269-278.
- Goulart, M; Elías, T; Pereira, J; Campos, M & Peixoto, M. (2009). Caracterizacao limnologica e avaliacao da qualidade da agua dabacia hidrografica do rio Tocantinzinho (Go, Brasil). *Anais do IX Congresso de Ecologia do Brasil*, 13 a 17 de septiembre de 2009, Sao Lorenco. p 1-4.
- Gualtero-Leal, D. M. (2007). Composición y abundancia de las algas benticas de cinco sistemas loticos de Puerto Rico. University of Puerto Rico, Mayaguez (Puerto Rico).
- Gualtero-Leal, D. M. & Trilleras-Motha, J. M. (2001). Estudio de la comunidad perifítica del embalse de Prado, departamento del Tolima. Universidad del Tolima, Facultad de Ciencias, Departamento de Biología.
- Guevara, G., Reinoso, G., & Villa, F. (2006). Comunidad de invertebrados del Perifiton del Rio Combeima (Tolima, Colombia). *Tumbaga*, 1, 43-54.
- Guiry, M.D. & Guiry, G.M. 2013. *AlgaeBase*. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 13 September 2013.

- Hauer, F. R. & G. A. Lamberti. (1996). Methods in streams ecology. *Academic Press, USA*.
- Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. *Freshwater Biology* 51:1757-1785.
- Hill, W. (1996). Effects of light. En: J. R. Stevenson, M.L. Bohwell & R. L. Lowe (eds.). Algal ecology: freshwater benthic ecosystems, 121-148 pp. *Academic Press, USA*.
- Hillebrand, H. & Sommer, U. (2000). Diversity of benthic microalgae in response to colonization time and eutrophication. *Aguat. Bot.*, *67*: 221-236.
- Holdridge, L. R., & Grenke, W. C. (1971). Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study.
- Horner, R.R., & Welch, E.B. (1981). Stream Periphyton development in relation to current velocity and nutrients. *Canadian Journal of Fish Aquatic Science*, 38:449-457.
- Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Programa de inventario de la Biodiversidad Grupo de Exploraciones y Monitoreo Ambiental GEMA. El bosque seco tropical (bs-T) en Colombia. 1998. Fecha de revisión: 23 noviembre 2006. http://araneus.humboldt.org.co/download/inventarios/bst/Doc3.pdf
- Kamp-Nielsen, L. (2008). Sediments: Setting, Transport, Mineralization, and Modeling. In
 J. Editors-in-Chief: Sven Erik & F. Brian (Eds.), *Encyclopedia of Ecology* (pp. 3181-3188). Oxford: Academic Press.

- Kingsley, M. (2004). The effects of nutrient and hydrology on periphyton and phytoplankton in fraser river tributaries, British Columbia. Tesis M. Sc. Ottawa-Carleton Institute of Biology.
- Lopretto, E. & Tell, G. (1995). Ecosistemas de aguas continentales. Argentina: Ediciones Sur, p. 1401.
- Losada-Prado, S. (2004). Variación espacio-temporal de la estructura fitoplanctónica, de la biomasa de la clorofila a y la productividad primaria en el estuario del río Dagua (bahía de Buenaventura). Magister en Ciencias -Biologicas, Universidad del Valle, Santiago de Cali.
- Lozano-Duque, Y., Vidal, L. A., & Navas, G. R. (2010). Listado de diatomeas (Bacillariophyta) registradas para el Mar Caribe colombiano. *Boletín de Investigaciones Marinas y Costeras*, 39, 83-116.
- Lozano-Bravo, J.L., Vásquez-Ramos, J.M & Reinoso-Flórez, G. (2013). Composición y estructura de los coleópteros acuáticos de la cuenca del río Alvarado del departamento del Tolima (Colombia). Resumen de ponencia del XLVIII Congreso Nacional de Ciencias Biológicas. Bogotá-Colombia.
- Magurran, A.E. (2004). An Index of Diversity. *Measuring Biological Diversity* (pp. 100-130). Cornwall United Kingdon: *Blackwell Publishing Company*.
- Martínez, L., & Donato, J. C. (2003). Efectos del caudal sobre la colonización de algas en un río de alta montaña tropical (Boyacá, Colombia). *Caldasia*, *25* (1), 337-354.
- Mejía Rodríguez, D. M. (2011). Diatomeas perifíticas y algunas características limnológicas de un humedal urbano en la sabana de Bogotá. Universidad Nacional de Colombia.

- Montoya, M. & Ramírez, J. J. (2007). Variación estructural de la comunidad perifítica colonizadora de sustratos artificiales en la zona de ritral del río Medellín, Colombia. *Revista de biología tropical*, *55*, 585-593.
- Montoya-Moreno, Y. & Aguirre-Ramírez, N. (2008). Asociación de algas perifíticas en raíces de macrófitas en una ciénaga tropical Colombiana. *Hidrobiológica*, 18, 189-197.
- Montoya-Moreno, Y & Aguirre, N. (2012). Aproximación multivariada a la dinámica del ensamblaje algal epifítico en un sistema de planos inundables tropical. Investigación, *Biodiversidad y Desarrollo 2012*; 31 (2): 83-95 p.
- Montoya-Moreno, Y., Sala, S.E., Vouilloud, A.A., Aguirre, N. (2012). Diatomeas (Bacillariophyta) perifíticas del complejo cenagoso de Ayapel, Colombia. *Caldasia* 34(2):457-474 p.
- Morales-Duarte, S. J., Donato-Rondón, J. C., & Castro, M. I. (2010). Respuesta de *Navicula rhynchocephala* (Bacillariophyceae) al incremento de nutrientes en un arroyo Andino (Colombia). *Acta Biológica Colombiana*, 15, 73-78.
- Naiman, R. J. y Bilby, R. E. (2001). River ecology and management. *Springer-Verlag*, New York, Inc.
- Needham, J. G., & Needham, P. R. (1982). Guía para el estudio de los seres vivos de las aguas dulces. Editorial Reverte.
- Ortega Murillo, M. d. R., Hernández Morales, R., Israde Alcántara, I., Alvarado Villanueva, R., Sánchez Heredia, J. D., Arredondo Ojeda, M. et al. (2009). El Perifiton de un lago hiposalino hipereutrófico en Michoacán, México. *Biológicas*, 11, 56-63.
- O` Farrell, I., Lombardo, R; Tezanos-Pinto, P & López, C. (2002). The assessment of water quality in the Lower Lujan River (Buenos Aires, Argentina): phytoplankton and algal bioassays. *Environmental Pollution* 120(2):207-218.

- Parra-Trujillo, Y.T. (2008). Estudio de los hemípteros (Hemiptera: Heteroptera) de la cuenca del río Totare (Tolima Colombia) taxonomía, distribución, diversidad y algunos aspectos ecológicos. Biólogo, Universidad del Tolima, Ibagué-Tolima.
- Pedraza-Garzón, E. & Donato-Rondón, J. (2011). Diversidad y distribución de diatomeas en un arroyo de montaña de los Andes Colombianos. *Caldasia*, 33, 177-191.
- Peña, V. & Pinilla, G. A. (2002). Composición, distribución y abundancia de la comunidad fitoplanctónica de la ensenada de Utría, Pacífico Colombiano. *Revista de biología marina y oceanografía*, 37, 67-81.
- Pesson, P. (1979). La contaminación de las aguas continentales. Incidencias sobre las biocenosis acuáticas. *Mundi Prensa*. Madrid. 335 pp.
- Pinilla, G. A. (1998). Indicadores biológicos en ecosistemas acuáticos de Colombia. Compilación Bibliográfica. Centro de Investigaciones Científicas. Universidad de Bogotá Jorge Tadeo Lozano. Colombia. 115 p.
- Pinilla, G. A., Duarte-Coy, J., & Vega-Mora, L. (2010). Índice de estado limnológico (IEL) para evaluar las condiciones ecológicas de las ciénagas del Canal del Dique. *Acta Biológica Colombiana*, 15, 169-188.
- Pizarro, H. & Alemanni, M. E. (2005). Variables Físico-Quimicas del Agua y su influencia en la biomasa del Perifiton en un tramo inferior del Río Luján (Pcia. de Buenos Aires). *Asociación Argentina de Ecología*, 15, 73-88.
- Porter-Goff, E. R., Frost, P. C., & Xenopoulos, M. A. (2013). Changes in riverine benthic diatom community structure along a chloride gradient. Ecological Indicators, 32, 97-106.
- Prescott, G. W. (1968). The algae: a review (p. 436). Boston: Houghton Mifflin.

- Quinn, J. M., Cooper, A. B., Davies-Colley, R. J., Rutherford, J. C., & Williamson, R. B. (2010). Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. *New Zealand journal of marine and freshwater research*, 31(5), 579-597.
- Ramirez, A. & Viña, G. (1998). Sistemas Lóticos: Caracterización fisicoquímica Limnología Colombiana: Aportes a su conocimiento y estadísticas de análisis (pp. 73-74): BP Exploration Company (Colombia) limited por la Fundación Universidad de Bogotá Jorge Tadeo Lozano.
- Ramírez, J. (2000). Fitoplancton de agua dulce: bases ecológicas, taxonómicas y sanitarias. Colombia. Editorial Universidad de Antioquia.
- Ramírez, A. & Plata, Y. (2008). Diatomeas perifíticas en diferentes tramos de dos sistemas lóticos de alta montaña (páramo de Santurbán, Norte de Santander, Colombia) y su relación con las variables ambientales. *Acta biol.colomb*, 13, 199-216.
- Richardson, J. S. & Danehy, R.J. (2007). A Synthesis of the Ecology of Headwater Streams and their Riparian Zones in Temperate forest. Fort Sci. 53: 131-147.
- Rodríguez, M. P., & Rodríguez, M. D. C. L. (2007). Diatomeas y calidad del agua de los ríos del Macizo Central gallego (Ourense, NO España) mediante la aplicación de índices diatomológicos. *Limnética*, 26(2), 351-358.
- Rojas-Sandino, L.D., Vásquez-Ramos, J.M & Reinoso-Flórez, G. (2013). Composición y estructura de la fauna de Dípteros de la cuenca del río Alvarado (Tolima-Colombia. Resumen de ponencia del XLVIII Congreso Nacional de Ciencias Biológicas. Bogotá-Colombia.
- Roldán-Pérez, G. A., & Ramírez-Restrepo, J. J. (2008). Fundamentos de limnología neotropical (Vol. 15). Universidad de Antioquia.

- Roldán G. (1992). Fundamentos de Limnología Neotropical. Medellín (Colombia): Universidad de Antioquia. 529 pp.
- Rovira, L., Trobajo, R., Leira, M., & Ibáñez, C. (2012). The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: the case of the Ebro Estuary (Catalonia, Spain). Estuarine, Coastal and Shelf Science, 101, 1-14.
- Sabater, S., Gregory, S.V. & Sedell, J.R. (1998). Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J. *Phycol*. 34:561-567.
- Sala, S. E., Duque, S. R., Nuñez-Avellaneda, M., & Lamaro, A. A. (1999). Nuevos registros de diatomeas (Bacillariophyceae) de la Amazonia Colombiana. *Caldasia*, 21, 26-37.
- Sala, S. E. & Ramírez, J. J. (2008). Diatoms from lentic and lotic systems in Antioquia, Chocó and Santander departments in Colombia. *Revista de biología tropical*, 56, 1159-1178.
- Sar, E.A., Sterrenburg, F.A., Lavigne, A.S., & Sunesen, I. (2013). Diatomeas de ambientes marinos costeros de Argentina. Especies del género Pleurosigma (Pleurosigmataceae). *Bol. Soc. Argent. Bot.* 48 (1): 17-51.
- Silva-Benavides, A. M., Sili, C., & Torzillo, G. (2008). Cyanoprocaryota y microalgas (Chlorophyceae y Bacillariophyceae) bentónicas dominantes en ríos de Costa Rica. *Rev.Biol.Trop*, 56, 221-235.
- Streble, H., & Krauter, D. (1987). Atlas de los microorganismos de agua dulce: la vida en una gota de agua. Omega.
- Ter Braak, C. & Smilauer, P. (2004). Canoco for Windows (Version Trial Version). Wageningen, The Netherlands.

- Traaen, T.S & Lindstrom, E.A. (1983). Influence of current velocity on periphyton distribution. Pp.97-99. En: Wetzel RG (ed.). Periphyton of Freshwater Ecosystems: Proceedings of the First International Workshop on Periphyton of Freshwater Ecosystems, held in Växjö, Sweden, 14-17 September 1982. Junk Publishers, The Hague, Netherlands.
- Universidad del Tolima. (2007). Proyecto Plan General de Ordenación Forestal para el Departamento del Tolima. Ibagué: Universidad del Tolima. 309 pags.
- Vidal, L. A., Noguera, C., Camacho-Hadad, O., & Bohórquez, D. (2009). Primer registro de *Nitzschia martiana* (Agardh) Van Heurck (Bacillariophyceae) viviendo en tubos en la costa Caribe Colombiana. *Rev.Acad.Colomb.Cienc*, 33, 331-337.
- Villa Navarro, F. A., Losada, S., & Quintana, M. I. (1998). Estudio del perifiton del Río Combeima-Tolima. Universidad del Tolima, Facultad de ciencias, departamento de Biología. Ref Type: Unpublished Work
- Villa Navarro, F. A., Losada Prado, S., & Quintana, M. I. (1998). Bacillariophyceae asociadas al perifiton del río Combeima (Tolima). *Revista de la Asociación Colombiana de Ciencias Biológicas*.
- Vouilloud, A., Sala, S., & Sabbatini, M. R. (2005). Diatomeas perifíticas de la Cuenca del Río Sauce Grande (Buenos Aires, Argentina). *Iheringia, Serie Botánica,* 60, 77-90.
- Wetzel, R.G. (ed.) (1983). Periphyton of aquatic ecosystem. B.V. Junk, The Hague, Holanda. 346 p.
- Wetzel RG. (2001). Limnology: Lake and river ecosystems. 3a ed. Academic Press. San Diego, E.U. A.

- Wunsam, S., Cattaneo, A., & Bourassa, N. (2002). Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Québec, Canadá). *Freshwater Biology* 47: 325-340 p.
- Yacubson, S. 1969. Algas de ambientes Continentales nuevos para Venezuela (Cyanophytas y Chlorophitas). *Boletín del centro de investigaciones biológicas*, Universidad de Zulia, facultad de humanidades y Educación, Maracaibo, Venezuela.
- Zapata, A. M. & Donato, J. C. (2005). Cambios diarios de las algas perifíticas y su relación con la velocidad de corriente en un río tropical de montaña (río Tota-Colombia). *Limnetica*, 24, 327-338.

ANEXOS

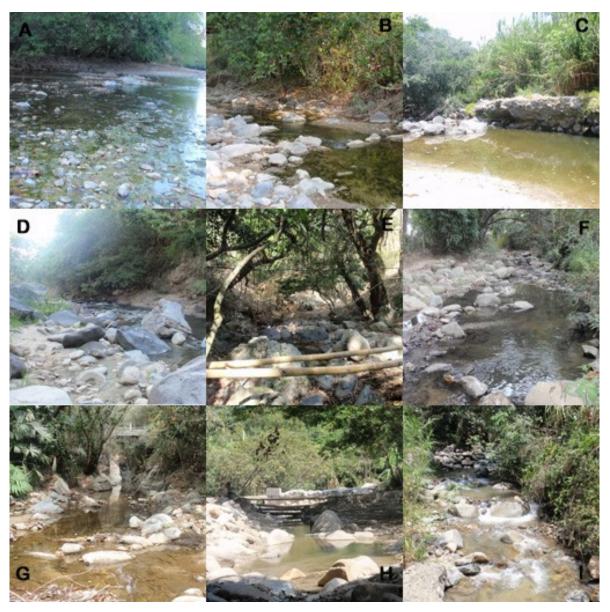
Anexo 1. Ficha de campo de la cuenca.

FICHA DE CAMPO-PERIFITON

INFORMACIÓN GENERAL DE LA CUENCA

Nombre de la estación		No	
Fecha Hora	Condición o	del tiempo	
Coordenadas geográficas	NN	W	
Altura (m) Tipo de c	orriente. Rápido	Remanso	
Microhábitat. Roca Tronco_	Turbiedad. Alta_	Media Baja	
Profundidad (Microhábitat/cm)	Metodología	
Observaciones			
Fisicoquímicos			
Temperatura ambiental (°C)	temperatura del a	agua (°C)	
Conductividad eléctrica	Velocidad de corr	iente (flujometro)	
inicial final			
Profundidad (cm)			
Ancho (m)			

Fuente. Grupo de Investigación en Zoología (2013)

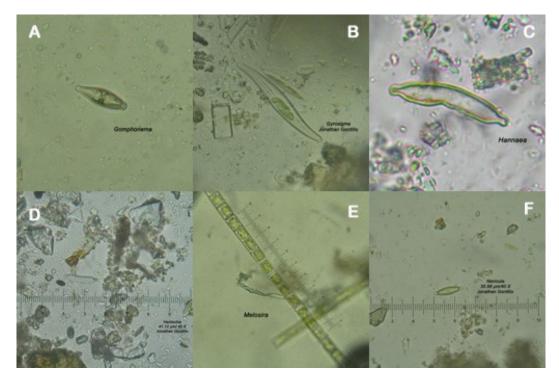

Anexo 2. Prueba t-diversidad de Shannon

Prueba t-diversidad de	t	gl	p	Observaciones
Shannon				
Índices de diversidad a	34,452	39277	2,7879E-256	**
nivel general				
Índices de biodiversidad	1,0933	11041	0,27431	*
por estaciones a nivel	2,2807	2652,9	0,022644	**
general				
Índices de biodiversidad				
de sustratos a nivel	6,6922	41514	2,2259E-11	**
general				
	3,1531	4970,8	0,00015282	**
Índices de biodiversidad -	2,6156	1040,7	0,0090348	**
a nivel temporal	1,7499	1795,4	0,080308	*
-	2,8317	380,45	0,0048762	**
Índices de biodiversidad	1,201	24364	0,22978	*
de sustratos a nivel	16,976	16712	4,267E-64	**
temporal				
Índices de biodiversidad	1,4811	5180,8	0,13863	*
de sustratos por	5,0741	566,81	5,2864E-07	**
estación a nivel temporal -	8,2643	1393,6	3,2354E-16	**
_	1,0604	5324,1	0,28901	*

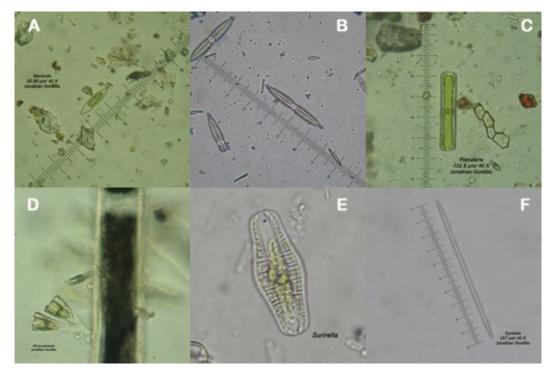
^{*}No hay diferencia significativa

^{**}Si hay diferencia significativa

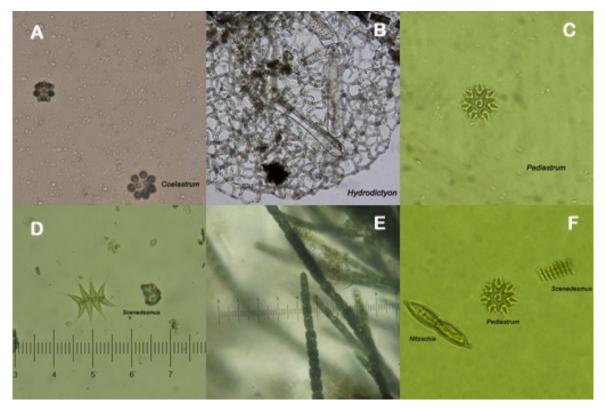
Anexo 3. Registro fotográfico de las 9 estaciones evaluadas en la cuenca del río Alvarado Tolima en los meses de septiembre y diciembre de 2012.



A. Río Alvarado-Caldas Viejo (RACV); B. Quebrada la Caima (QLCA); C. Río Alvarado-Puente (RAP); D. Río Alvarado-Chucuni (RACH); E. Quebrada la Manjarres (QLM); F. Río Alvarado-Inicio (RAIN); G. Quebrada Chumba (QCHU); H. Quebrada Chembe (QCHE); I. Quebrada Cocare (QCOC). Fuente. Autor.

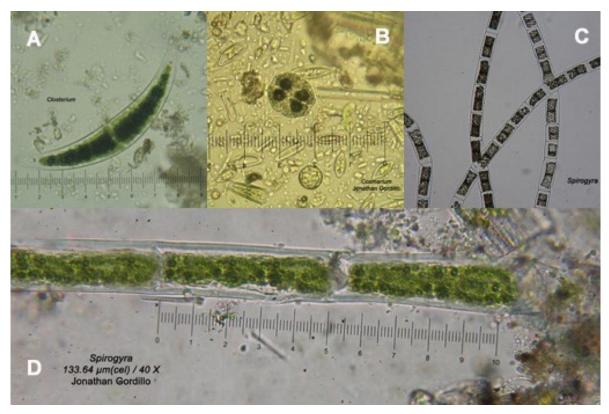

Anexo 4. Géneros encontrados de la clase Bacillariophyceae en la cuenca del río Alvarado-Tolima en los meses de septiembre y diciembre de 2012.

Clase Bacillariophyceae. A. Cocconeis; B. Cyclotella; C. Cymbella; D. Diploneis; E. Fragilaria; F. Frustulia.

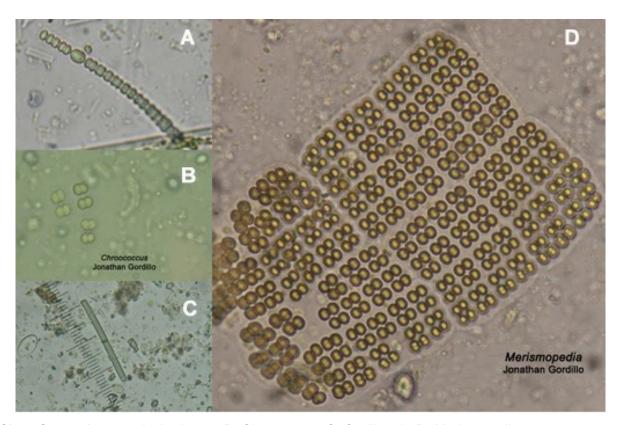


Clase Bacillariophyceae. A. Gomphonema; B. Gyrosigma; C. Hannaea; D. Hantzschia; E. Melosira; F. Navicula. Fuente. Autor.

Clase Bacillariophyceae. A. Navicula; B. Nitzschia; C. Pinnularia; D. Rhoicosphenia; E. Surirella; F. Synedra. Fuente. Autor.


Anexo 5. Géneros encontrados de la clase Chlorophyceae en la cuenca del río Alvarado-Tolima en los meses de septiembre y diciembre de 2012.

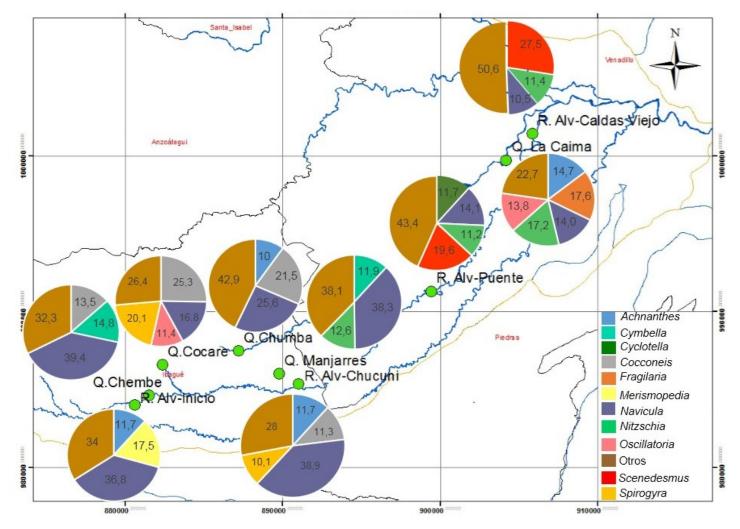
Clase Chlorophyceae. A. Coelastrum; B. Hydrodictyon; C. Pediastrum; D. Scenesdesmus; E. Stigeoclonium; F. Pediastrum, Scenesdesmus.


Fuente. Autor.

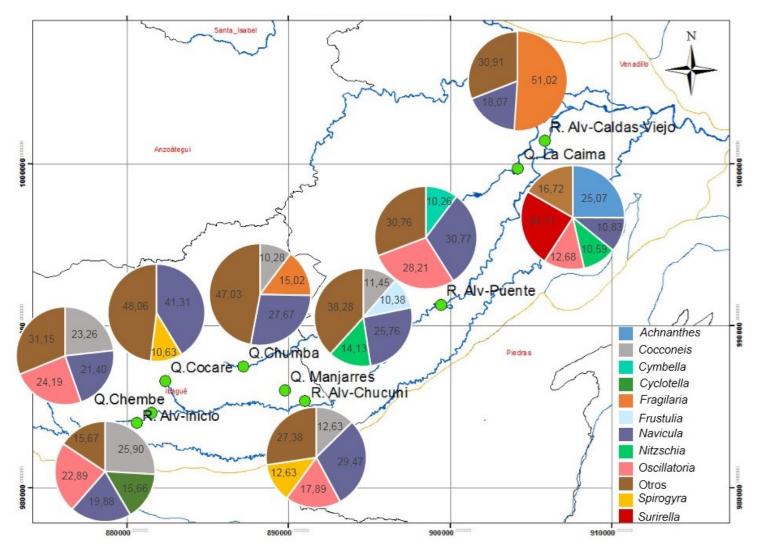
Anexo 6. Géneros encontrados de la clase Conjugatophyceae en la cuenca del río Alvarado-Tolima en los meses de septiembre y diciembre de 2012.

Clase Conjugatophyceae. A. *Closterium*; B. *Cosmarium*; C y D. *Spirogyra*. Fuente. Autor.

Anexo 7. Géneros encontrados de la clase Cyanophyceae en la cuenca del río Alvarado-Tolima en los meses de septiembre y diciembre de 2012.


Clase Cyanophyceae. A. *Anabaena*; B. *Chroococcus*; C. *Oscillatoria*; D. *Merismopedia*. Fuente. Autor.

Anexo 8. Géneros encontrados de la clase Ulvophyceae en la cuenca del río Alvarado-Tolima en los meses de septiembre y diciembre de 2012.



Clase Ulvophyceae. Cladophora.

Anexo 9. Densidad relativa de los géneros en las nueve estaciones de muestreo evaluadas durante septiembre de 2012.

Anexo 10. Densidad relativa de los géneros en las nueve estaciones de muestreo evaluadas durante diciembre de 2012

Anexo 11. Análisis de correlación de Pearson para el periodo de septiembre y diciembre.

Géneros Pea	Pearson	T.	C.E	≣ рН	Turb	% SAT-	Sol.	DQO	DBO5	Nit	Fosforo	Clor	Alc	Dur	Coli.	Caudal
		AGUA				O2.	Totales				Tot.				Total	m3/s
Achnanthes	r	-0,203	0,318	0,404	-0,671	-0,151	0,246	0,006	-0,124	-0,201	0,176	0,226	0,339	0,419	-0,100	-0,060
	р	0,419	0,199	0,096	0,002	0,549	0,325	0,981	0,625	0,424	0,485	0,368	0,168	0,083	0,694	0,812
Cocconeis	r	-0,286	-0,370	-0,057	0,070	-0,289	-0,347	0,202	-0,129	0,188	0,257	-0,196	-0,454	-0,358	-0,062	-0,011
	р	0,249	0,130	0,822	0,781	0,245	0,158	0,422	0,611	0,454	0,303	0,435	0,058	0,145	0,806	0,966
Cyclotella	r	0,210	0,104	0,123	0,037	-0,151	0,110	0,129	-0,078	-0,060	0,277	0,217	0,076	-0,042	-0,293	0,000
	р	0,403	0,681	0,627	0,883	0,549	0,665	0,609	0,757	0,812	0,266	0,387	0,764	0,870	0,238	0,999
Cymbella	r	0,142	0,548	0,477	-0,448	-0,249	0,531	-0,261	-0,433	-0,133	0,438	0,134	0,536	0,543	0,120	-0,198
	р	0,575	0,018	0,045	0,062	0,319	0,023	0,295	0,073	0,599	0,069	0,595	0,022	0,020	0,637	0,430
Fragilaria	r	0,181	0,465	0,084	-0,101	0,068	0,405	-0,234	0,132	0,200	0,075	0,481	0,441	0,478	0,306	0,108
	р	0,471	0,052	0,740	0,691	0,789	0,096	0,350	0,603	0,427	0,768	0,043	0,067	0,045	0,216	0,669
Gomphonema	r	0,233	0,527	0,508	-0,345	-0,415	0,518	0,022	-0,348	-0,096	0,384	0,332	0,444	0,580	-0,326	-0,113
	р	0,353	0,025	0,032	0,161	0,087	0,028	0,932	0,157	0,706	0,115	0,179	0,065	0,012	0,187	0,654
Melosira	r	-0,573	-0,371	-0,394	0,417	0,139	-0,312	0,435	0,545	0,322	-0,025	-0,075	-0,432	-0,474	0,277	0,485
	р	0,013	0,130	0,106	0,085	0,583	0,207	0,071	0,019	0,192	0,920	0,767	0,074	0,047	0,265	0,041
Navicula	r	-0,171	0,153	0,197	-0,334	-0,225	0,086	0,021	-0,218	0,045	0,206	-0,129	0,144	0,231	-0,112	0,168
	р	0,499	0,544	0,433	0,176	0,370	0,735	0,935	0,384	0,858	0,412	0,611	0,569	0,356	0,658	0,505
Nitzschia	r	0,277	0,659	0,471	-0,420	-0,247	0,567	-0,196	-0,295	-0,275	0,303	0,364	0,674	0,668	-0,147	-0,057
	р	0,266	0,003	0,048	0,083	0,322	0,014	0,435	0,235	0,270	0,221	0,138	0,002	0,002	0,561	0,823
Pinnularia	r	-0,178	0,165	0,294	-0,398	-0,245	0,191	0,048	-0,481	-0,340	0,159	-0,144	0,140	0,307	-0,155	-0,629
	р	0,481	0,513	0,237	0,102	0,326	0,447	0,849	0,043	0,167	0,527	0,568	0,580	0,215	0,540	0,005
Oscillatoria	r	0,042	-0,236	-0,417	0,367	0,498	-0,404	-0,139	0,553	0,159	-0,618	-0,140	-0,112	-0,121	0,154	0,160
	р	0,870	0,346	0,085	0,135	0,036	0,096	0,583	0,017	0,528	0,006	0,580	0,659	0,632	0,543	0,525
Scenesdesmus	r	0,053	0,374	0,326	-0,254	-0,152	0,486	0,244	-0,295	-0,027	0,500	0,298	0,308	0,144	-0,040	-0,089
	р	0,835	0,126	0,187	0,309	0,548	0,041	0,330	0,234	0,915	0,035	0,229	0,213	0,568	0,875	0,725
Surirella	r	0,138	0,402	0,222	-0,342	-0,162	0,378	-0,181	-0,194	-0,359	0,063	0,274	0,386	0,465	-0,121	-0,124
	р	0,585	0,098	0,376	0,164	0,520	0,122	0,472	0,440	0,143	0,803	0,271	0,114	0,052	0,633	0,625

Géneros	Pearson	T.	C.E	рН	Turb	% SAT-	Sol.	DQO	DBO5	Nit	Fosforo	Clor	Alc	Dur	Coli.	Caudal
		AGUA				O2.	Totales				Tot.				Total	m3/s
Synedra	r	0,071	0,488	0,328	-0,350	-0,128	0,543	0,073	-0,293	-0,172	0,362	0,359	0,446	0,334	-0,023	-0,099
	р	0,781	0,040	0,184	0,154	0,613	0,020	0,772	0,238	0,494	0,140	0,143	0,064	0,176	0,927	0,697

C.E: Conductividad eléctrica; Turb: Turbiedad; % SAT-O₂: Porcentaje de saturación de Oxigeno; Sol. Totales: Solidos totales; DQO: Demanda química de Oxigeno; DBO₅: Demanda bioquímica de Oxigeno; Nit: Nitratos; Clor: Cloruros; Dur: Dureza; Coli total: Coliformes totales. Fuente. Autor.

Anexo 12 (a). Efectos condicionantes del análisis de correspondencia canónica en las dos épocas evaluadas, en la cuenca del río Alvarado y sus tributarios.

Variables	Var.N	LambdaA	р	f
Alcalinidad	12	0.12	0.008	1.89
Fosforo totales	10	0.12	0.044	1.90
Cloruros	11	0.07	0.264	1.34
T. Agua	1	0.06	0.406	1.07
Turbiedad	4	0.08	0.160	1.91
Dureza	13	0.07	0.192	2.27
Nitratos	9	0.05	0.268	2.54
Conductividad	2	0.01	1.000	0.00
eléctrica				

Anexo 12 (b). Efectos condicionantes del análisis de correspondencia canónica en la época de septiembre de 2012, en la cuenca del río Alvarado y sus tributarios.

Variables	Var.N	LambdaA	р	f
рН	3	0.18	0.014	2.02
Alcalinidad	12	0.16	0.022	2.10
Dureza	13	0.12	0.114	1.79
Cloruros	11	0.11	0.100	1.93
Sol. Tot	6	0.09	0.128	2.00
Coli. Total	14	0.07	0.148	2.10
Nitratos	9	0.04	0.380	1.62
T. Agua	1	0.02	1.000	0.00

Anexo 12 (c). Efectos condicionantes del análisis de correspondencia canónica en la época de diciembre de 2012, en la cuenca del río Alvarado y sus tributarios.

Variables	Var.N	LambdaA	р	f
Turbiedad	4	0.14	0.006	1.92
DBO5	8	0.08	0.250	1.24
% Sat-O ₂	5	0.08	0.336	1.13
DQO	7	0.07	0.402	1.06
Alcalinidad	12	0.07	0.466	1.07
T. Agua	1	0.06	0.550	0.77
Dureza	13	0.10	0.232	2.86
Conductividad	2	0.04	1.000	0.00
eléctrica				