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Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia that affects an
estimated 33.5 million people worldwide. Despite its prevalence and economic burden,
treatments remain relatively ineffective. Interventional treatments using catheter
ablation have shown more success in cure rates than pharmacologic methods for AF.
However, success rates diminish drastically in patients with more advanced forms of
the disease.

The focus of this research is to develop a mapping strategy to improve the suc-
cess of ablation. To achieve this goal, I used a computational model of excitation in
order to simulate atrial fibrillation and evaluate mapping strategies that could guide
ablation. I first propose a substrate guided mapping strategy to allow patient-specific
treatment rather than a one size fits all approach. Ablation guided by this method
reduced AF episode durations compared to baseline durations and an equal amount
of random ablation in computational simulations. Because the accuracy of electro-
gram mapping is dependent upon catheter-tissue contact, I then provide a method
to identify the distance between the electrode recording sites and the tissue surface
using only the electrogram signal. The algorithm was validated both in silico and in
vivo. Finally, I develop a classification algorithm for the identification of activation
patterns using simultaneous, multi-site electrode recordings to aid in the development
of an appropriate ablation strategy during AF.

These findings provide a framework for future mapping and ablation studies in
humans and assist in the development of individualized ablation strategies for patients
with higher disease burden.
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Chapter 1

Introduction

The cardiovascular system is a closed system of tubes responsible for providing

nutrients and oxygen to the body while removing wastes. These critical functions are

mediated by the continuous circulation of blood pumped by the heart. Fundamentally,

the mechanism of the heart is a simple pulsatile flow pump in which its contents

are ejected at regular intervals. However, this mechanical function is the result of

the coordinated contraction of the building blocks of the heart, cardiac myocytes.

Individually, myocytes behave without direct neural control but rather initiate a

contraction, or action potential, when neighboring myocytes pass a sufficient amount

of current to exceed a threshold voltage. This, in turn, initiates action potentials in

its neighbors via voltage gradients. Therefore, a single contraction of the heart is the

result of a wave of electrical excitation passing from cell to cell until all cells become

excited and contract as a cohesive whole.

We can think of the heart as a complex system. As such, depending on the

properties and initial conditions of its building blocks, a number of different emergent

behaviors may manifest. In a normal heart beat, pacemaker cells in the superior

right atrium initiate a wave of excitation that propagates in a serial pattern through

the atria and extinguishes at the inferior left atrium. Ventricular myocytes become

excited via multiple insertion points, known as the Purkinje fibers, via activation
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of the atrioventricular node which results in a coordinated ventricular contraction.

Therefore, a single activation of the pacemaker cells leads to the excitation of all

cardiac myocytes followed by quiescence until the following paced beat begins.

Given a different set of initial conditions, such as a premature atrial contraction,

a pathological arrhythmia can be created. One such behavior, known as reentry, con-

sists of a single wave of excitation that continues to re-excite myocytes via rotational

motion. This motion may be around a structural obstacle such as a valve or a fixed

point. In this case, the rate of the heart is dependent on the cycle length around

the point or obstacle rather than enervated pacemaker cells. If the reentry remains

spatially stable, this arrhythmia is known as tachycardia. Similar to a normal heart

beat, tachycardia follows a predictable pattern of excitation but does not require re-

initiation. Further modulation of the electrical properties and heterogeneity between

building blocks can create a more chaotic diseased state. Similar to tachycardia, fib-

rillation is a reentrant arrhythmia whose rate is independent of pacemaker cells in

the right atrium. However, fibrillation lacks a repeating pattern of activation and

can be described by spatially and temporally unstable spiraling waves causing unsyn-

chronized contraction of the muscle fibers in the heart. Atrial fibrillation is regarded

as the most common sustained arrhythmia and has been the topic of research for

scientists and physicians over the past 500 years.

Evidence of atrial fibrillation was first acknowledged by physicians in ancient Chi-

nese, Egyptian, and Greek civilizations via a chaotic irregular arterial pulse thousands

of years ago [1]. While a number of scientists were able to witness chaotic contrac-

tions in the atria as early as the 1600’s [2], insights into the pathophysiology of atrial

fibrillation would not come until the early 1900’s when a number of technological
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advances allowed observational measurements of the heart. James Mackenzie was the

first scientist to make direct measurements of the human pulse with the kymograph

and observed the irregularly timed beats during atrial fibrillation [3]. However, it was

the development of the electrocardiogram in the early 1900’s that created a much

larger interest in the field of atrial fibrillation. Since its development, the number of

published papers about atrial fibrillation have increased exponentially. Electrograms

provided the ability to observe the electric potential field generated by myocytes such

that they could track the motion of conduction throughout the tissue. This allowed

physicians to identify the mechanism for sinus rhythm and a number of simple ar-

rhythmias.

Despite the advancements of electrocardiography to be able to observe electrical

conduction in the heart, a consensus for the mechanism of atrial fibrillation could not

be reached. Early observations by Sir Thomas Lewis suggested that reentry was the

cause for the perpetuation of atrial fibrillation [4]. Following stimulation of the atrial

appendage until sustained fibrillation was achieved, he then separated the appendage

from the rest of the atria. After its removal, fibrillation stopped in the appendage

but continued in the remainder of the tissue. He therefore deduced that reentry must

be the mechanism behind sustained fibrillation because no additional current was

being added. He also proposed that a critical tissue mass is required to support the

perpetuation of fibrillation as a result of the rapid termination of fibrillation in the

appendage following removal from the atria.

Observations by Scherf [5] in canine atria led to the theory that atrial fibrilla-

tion was driven by ectopic foci. Injection of aconitine caused rapid excitation of a

region of tissue and led to changing activation sequences in regions distal from the

3



focally firing tissue. After he removed the focal firing via cooling of the tissue and

the arrhythmia stopped, he was led to believe that fibrillation was the result of is-

lands of refractory tissue causing a changing activation pattern from the focal firing

region. These findings were refuted by Gordon Moe [6] who repeated a similar ex-

periment to both Scherf and Lewis by inducing atrial fibrillation via burst pacing in

the atrial appendage. He then clamped off the appendage from the rest of the atria

and stopped pacing. This produced a similar result to Sir Thomas Lewis, with fibril-

lation ceasing in the clamped off appendage but continuing in the rest of the atria.

Moe proposed perpetuation was likely due to a number of reentrant wavelets acting

independently causing the chaotic electrocardiograms and coined the term multiple

wavelet hypothesis to describe this phenomenon [7].

More recently, scientists have developed advanced computational models to mimic

the behavior of cardiac myocytes in order to study atrial fibrillation with complete

control over the parameter space. The Courtemanche model [8] is a widely used model

that allows control of individual ion channels making it useful for both studying the

mechanism of the disease as well as drug interactions to improve pharmacological

treatments. Directly observing the chaotic rhythms produced in computational mod-

els under a range of different parameters prove that both reentry and rhythms driven

by ectopic foci can act as the driving force for atrial fibrillation.

Despite a number of theories describing the mechanism of atrial fibrillation and

complete observation of the disease using computer models, treatments have not had

nearly the same success as other reentrant arrhythmias. This is likely in part due

to the progressive nature of the disease. The longer the heart continues to fibrillate,

properties of the individual myocytes change to support fibrillation further. The size

4



of the atria also grows due to its perpetual use during fibrillation. Pharmacologic

treatments attempt to reverse some of these effects on the tissue substrate to prevent

atrial fibrillation from perpetuating, but alone have shown limited success in patients

with advanced forms of atrial fibrillation. An early surgical treatment, known as the

MAZE procedure [9, 10, 11, 12, 13, 14], acted on the findings of the critical mass

hypothesis to section the atria into smaller electrically divided regions. While this

method showed a high success rate, the procedure required an open chest to perform

and is usually only performed as an add-on during other cardiovascular surgeries.

Endocardial catheter ablation therapy allowed the electrical isolation techniques to

be achieved with a minimally invasive approach. The most common method for

ablation today involves the isolation of the pulmonary veins from the rest of the

atria as a means of removing sources of ectopic foci [15]. This procedure has a high

rate of success for early onset cases but success rates diminish for advanced forms

of atrial fibrillation. More recent approaches such as CFAE ablation [16], which

targets areas of tissue that generate complex electrograms, and FIRM mapping [17],

which identifies spiral wave drivers, have taken a more targeted approach for when

traditional ablation is insufficient but nothing has been able to match the success

rates achieved in other arrhythmias.

The primary goal of this thesis is to develop a mapping strategy for the successful

ablation of atrial fibrillation. To achieve this, I used a computational model of excita-

tion that sacrifices some of the intricacies seen in the Courtemanche model to achieve

a high throughput in order to study the wide range of parameter values seen during

the progression of atrial fibrillation. I propose a substrate guided mapping strategy

to treat a specific arrhythmia rather than a one size fits all approach. To improve this
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method, I then provide an electrogram derived metric for improved electrode spatial

resolution. Finally, I develop a method for classification of local activation patterns

using simultaneous, multisite electrode recordings to assist in ablation strategies.
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Chapter 2

Literature Review

2.1 Cardiac Electrophysiology

2.1.1 Basics of Cardiovascular Physiology

The primary function of the heart is to distribute blood throughout the body.

More specifically, the heart can be described as two separate pumps. The right side

of the heart receives deoxygenated blood that has circulated through the body and

sends it to the lungs to be oxygenated. Oxygenated blood then returns to the left

side of the heart to be pumped out through the body again. Each side of the heart

can be further subdivided into top and bottom halves, known as atria and ventricles,

respectively. The atria passively collect blood returning to the heart from the veins

and fill the ventricles. The ventricles are much larger chambers with thicker walls

allowing sufficient force to deliver blood to the body or lungs. Atria and ventricles

are separated by unidirectional valves to keep the blood from regurgitating back into

the atria as well as fibrous tissue which, unlike the rest of cardiac tissue, acts as an

electrical insulator effectively separating the top and bottom heart.

The mechanical behavior of the heart is contingent on its electrical conduction

system. When sufficient ionic current reaches the membrane of a cardiac muscle cell

9



to increase its membrane potential beyond a threshold, it undergoes a pattern of

excitation known as an action potential. When this occurs, membrane permeabil-

ity to ions drastically changes causing a rapid depolarization of the transmembrane

potential. This also triggers the release of intracellular calcium and the initiation

of a mechanical contraction. The depolarized cell passively exchanges current with

its neighboring cells due to electrochemical gradients which can lead to its action

potential when the membrane potential exceeds a threshold. Importantly, cells that

have been recently excited enter a period of refractoriness when it cannot undergo an

additional action potential until its potential repolarizes towards its resting potential.

This causes excitation to propagate unidirectional throughout the tissue and leads to

the simultaneous contraction of multiple myocytes.

Figure 2.1: Simplified schematic of the four chambers of the heart: Right atrium, left atrium,
right ventricle, and left ventricle (RA, LA, RV, LV respectively) showing both electrical
conduction pathways (yellow) and blood flow (red and blue). Electrical conduction begins in
the sinus node (SA) and passes to the ventricles via the atrioventricular node (AV).
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In a healthy normally functioning heart, excitation begins in the superior right

atrium with a group of cells capable of spontaneous depolarization. This group of

cells, known as the sinoatrial (SA) node, determine the heart rate and are highly

regulated by the parasympathetic nervous system. Conduction through the atria

spreads in a serial pattern causing each cell to become excited once per activation

of the SA node. Excitation from the atria passes to the ventricles via the atrioven-

tricular (AV) node. The AV node contains cells with fewer intercellular ion channels

that act to delay the conduction time between the atria and ventricles. This delay

allows the ventricles to become filled with blood before initiating a contraction. From

the AV node, conduction passes through a network of fibers with widely distributed

ventricular access points. Therefore, electrical conduction begins at multiple insertion

points in the ventricles causing a parallel excitation pattern and a more coordinated

contraction.

2.1.2 Atrial Fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia, or irregular

rhythm, affecting an estimated 33.5 million people worldwide [1]. It can be de-

scribed as a disorganized and highly irregular electrical conduction pattern through

the atrial tissue. Mechanically, this manifests as a quivering motion, preventing the

upper chambers of the heart to act as an effective pump to fill the ventricles. For-

tunately, the majority of ventricular filling is a passive process and therefore the

mechanical dysfunction of the atria is not a large burden on the cardiac output. The

mechanical function of the ventricles is largely unaffected by the chaotic rhythm oc-

curring in the atria, but contractions occur at intermittent rates due to the excitation
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of the AV node at irregular intervals. This can typically be observed clinically via an

electrocardiogram (EKG) by irregularly timed QRS complexes with little evidence of

a P-wave.

Although episodes of atrial fibrillation are not considered to be deadly, AF is asso-

ciated with an increased risk of a number of life-threatening outcomes. Cardioembolic

stroke is frequently observed in patients suffering from AF due to the mechanical fail-

ure of the atria. Because AF causes the atria to act ineffectively as a pump, blood

can become stagnant and coagulate over time. This coagulation, or thrombus, can

then become a blockage downstream. Extended episodes of atrial fibrillation may also

cause cardiomyopathy due tachycardia over a long period of time. If left untreated,

this can lead to heart failure. While not all patients are symptomatic experiencing

an episode of AF, common symptoms include weakness, dizziness, and fatigue. Each

of the above complications leads to a decreased quality and life and an estimated

two-fold increased risk of mortality [2].

Over the past ten years, there has a been a rise in both the incidence and preva-

lence of atrial fibrillation [1, 3, 2]. Incidence and prevalence of AF are expected to

increase substantially over the next 20 years [4] due to increased screening as well as

a growing older population with underlying heart abnormalities such as heart disease

[5, 6, 7, 8, 9]. AF is more commonly observed in men than women (1.1% to 0.8%

overall) and this difference in observed in all age groups [6]. The high incidence and

morbidity of AF and its associated diseases impose a significant financial burden.

Costs of healthcare for patients with AF in the United States alone are estimated to

be $6.5 billion per year [10].

The severity of atrial fibrillation can be classified by the proportion of time spent
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in AF. The most recent guidelines classify the severity of AF into four categories:

paroxysmal, persistent, long-standing persistent, and permanent[11, 12, 13, 14, 15].

Paroxysmal AF describes short duration episodes with spontaneous termination and

variable reoccurrence. Episodes of AF lasting longer than seven days that typically

require some form of intervention are classified as Persistent AF. Long-standing per-

sistent AF is defined by episodes that last longer than 12 months. Finally, Permanent

AF is used to describe patients with irreversible episodes of fibrillation. Furthermore,

atrial fibrillation is a progressive disease; if left untreated, the rate of progression from

paroxysmal AF to persistent and/or permanent AF is reported to be 25% of patients

within five years [16, 17, 18]. During extended exposure to episodes of fibrillation,

changes occur in the atrial substrate, known as remodeling, allowing the tissue to

more easily support future occurrences of AF [19, 20]. Unfortunately, treatment suc-

cess rates diminish drastically for advanced forms of atrial fibrillation [14] implying

the importance for both early detection and treatment of AF.

2.2 Mechanisms of Atrial Fibrillation

In order to develop an effective strategy for the treatment of atrial fibrillation, the

mechanism for its perpetuation should be investigated. While scientists and physi-

cians were able to observe irregularly timed ventricular contractions and fibrillating

tissue several centuries ago [21, 22, 23], concrete theories regarding the perpetuation

of AF would not surface until the development of electrocardiography provided our

modern understanding of electrophysiology. With the help of intracardiac electro-

grams and later development of computer models to simulate the behavior of atrial

13



fibrillation, two leading theories emerged to describe its mechanism: multi-wavelet

reentry and focal drivers with fibrillatory conduction. Regardless of which theory

governs the mechanism of atrial fibrillation in the majority of patients, all would

agree that ongoing fibrillation requires a continuous source electrical activity. There

are two distinct mechanisms by which tissue is supplied with continuous electrical

activity. First, spontaneous depolarization in the atria can occur frequently enough

to outpace the sinus node. The disorganized activity commonly witnessed in AF is

then produced when spontaneously formed wave fronts encounter refractory tissue

which causes the wave to divide and conduct in irregular pathways. This irregular

wave pattern caused by a focal source is known as fibrillatory conduction.

Secondly, a wave whose path progresses in an uninterrupted circular motion can

propagate indefinitely. So long as the conduction time to complete a revolution ex-

ceeds the repolarization time of local cells, the wave front will always encounter ex-

citable tissue. The circular path, or circuit, that a wave travels can be either spatially

stable or dynamic. The first case, known as a focal rotor, mechanistically behaves sim-

ilarly to ectopic foci acting as a stable source of electrical activity. The stable source

can then cause fibrillatory conduction in regions of tissue with insufficient repolar-

ization time to compete with the source activation rate. Dynamic reentrant circuits

frequently interact with refractory tissue causing wave break and spawning daughter

wavelets. These daughter waves can then form circuits of their own contributing to

the perpetuation of AF. The chaotic interactions between multiple dynamic reen-

trant waves are commonly known as multi-wavelet reentry (MWR). Over the past

100 years, evidence for both focal sources as well as multi-wavelet reentry has been

presented. While both theories are theoretically feasible and have been demonstrated
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in computer models, successful treatment is contingent on identifying the governing

mechanism behind atrial fibrillation.

2.2.1 Evidence of Multi-Wavelet Reentry

Early observations of atrial fibrillation in a canine atria by Moe [24] suggested that

the perpetuation of AF was caused by the wandering of multiple wavelets continuously

re-exciting non-refractory tissue. These findings formed the basis for the multiple

wavelet hypothesis, later termed multi-wavelet reentry (MWR). This theory agreed

with earlier observations by Garrey [25] suggesting that fibrillation required a critical

mass in order to perpetuate. Following continuous stimulation in the atrial appendix

to induce fibrillation, the appendix of the tissue was removed. Irregular conduction

continued in the atria while fibrillation in the appendix terminated when stimulation

was removed. Moe later demonstrated the feasibility of MWR in the development

of a computer model of cardiac propagation [26]. Additionally, Moe expanded on

the critical mass hypothesis proposed by Garrey suggesting that the minimal area of

tissue was not a constant value but rather a measure of the size of wavelets in the

tissue.

Simultaneous, multi-site electrogram recordings allowed higher resolution mapping

to investigate activation patterns during atrial fibrillation. A study of canine heart

with acetylcholine-induced AF by Allessie [27] with 192 simultaneously recorded elec-

trograms showed beat to beat changing activation patterns. He concluded the critical

number of wavelets in the left and right atria required to maintain AF was between

three and six. Konings [28] later performed high-density mapping of AF in humans

with Wolff-Parkinson-White syndrome. The degree of disorganization observed in the
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atria was related to the frequency of atrial fibrillation. In the most chronic cases of

AF observed, random reentrant waves were frequently observed. Multiple wavelets

were further identified by other groups using multisite electrode mapping [29, 30].

2.2.2 Evidence of Focal Drivers

Prior to Moe’s postulation of the multiple wavelet hypothesis, Scherf [31] sug-

gested fibrillation was initiated and perpetuated by rapid ectopic beats. Injection of

aconitine in canine atria caused rapid impulse formation with disorganized fibrillation

away from the source. After tissue cooling, the impulse formation stopped as well as

the fibrillation. When cooling was interrupted, the ectopic foci reappeared and fibril-

lation continued. While many argue that this fibrillation was induced by an artificial

substrate because aconitine induces focal firing, ectopic beats were later observed in

future studies [32, 33, 34]. These findings were supported by future multi-site elec-

trode mapping studies with basket catheters by Narayan [35, 36]. Using unipolar

electrode recordings, activation maps identified both ectopic beats as well as focal

rotors.

An alternative to multi-site electrode arrays for activation pattern detection is op-

tical mapping. Via injection of a voltage sensitive dye, cells emit a visible wavelength

of light during activation. Using this technique, Jalife [37] induced atrial fibrillation

in sheep hearts and identified focal rotor sites. He concluded that multiple wavelets

observed were the result of breakup caused by higher frequency organized rotors and

could not be the mechanism for AF alone. This was tested in a separate study in

which Jalife used spectral analysis of bipolar electrograms collected in humans during

atrial fibrillation [38]. In 32 patients with paroxysmal and permanent atrial fibrilla-
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tion, the dominant frequency and its 1:1 conduction zone were shown to be responsible

for AF maintenance. When these sites were removed, fibrillation terminated in 87%

of patients. The remain patients showed a significant slowing of the frequency of AF.

Substantial evidence has been presented in support of both focal drivers with

fibrillatory conduction as well a multi-wavelet reentry. The breadth of sometimes

contradictory results can be contributed to a number of different factors. First, the

models used to study atrial fibrillation are not consistent among studies. It is plausible

that canine atria have a structural substrate better suited to support focal rotors or

ectopic foci than the atria of a sheep. Also, physiologic responses to drugs are likely to

be variable among different species. Secondly, it is widely known that atrial fibrillation

is a progressive disease. Patients with lower disease burden (paroxysmal AF) will have

different structural and functional substrate than someone with permanent atrial

fibrillation. As such, it is likely that the mechanism for the maintenance of AF is

dependent on the severity of disease burden. The lack of agreement on the mechanism

for AF is reflected by our failure to develop an adequate strategy for its treatment.

2.3 Treatments for Atrial Fibrillation

Despite the economic and clinical burden imposed by atrial fibrillation, treatment

options remain limited. While success rates for other cardiac arrhythmias such as

atrial flutter are well above 95%, even aggressive treatment options for atrial fibril-

lation fail to achieve success rates above 75% in patients with paroxysmal AF [39].

Treatments for AF can be divided into two main categories: pharmacological and

interventional.
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2.3.1 Pharmacological Treatments

Pharmacologic therapy can be further subdivided into two major groups to treat

the symptoms of AF: rate control and rhythm control drugs. Anti-arrhythmic therapy

for younger patients or those who are highly symptomatic is typically directed toward

a rhythm control strategy. The goal of this therapy is the maintenance of sinus

rhythm in order to achieve a higher quality of life [40]. To achieve this, rhythm

control drugs modify the atrial tissue substrate to reduce its propensity to initiate

and support future episodes of atrial fibrillation. Drugs commonly used for rhythm

control strategies either interfere with sodium channels (Quinidine and Flecainide)

or block potassium channels (Amiodarone and Dofetilide) [41]. On the other hand,

rate control therapy aims to control the ventricular rate rather than the maintenance

of sinus rhythm. These drugs target cells in the AV node that are responsible for

transferring conduction between the atria and ventricles. Rate control is achieved

by either slowing or blocking the irregular patterns of conduction reaching the AV

node from the fibrillating atria. Rate control drugs are typically divided into two

categories: beta blockers (propranolol and metoprolol) and calcium channel blockers

(verapamil and diltiazem) which both act by decreasing conduction through the AV

node [41].

Despite the widespread use of pharmacologic treatments for atrial fibrillation,

rate control and rhythm control drugs have shown marginal success in clinical trials.

In the AFFIRM trial (n = 2,027), rate control was achieved in 58% of patients

while sinus rhythm was maintained in approximately 52% of patients [39, 42]. While

rhythm control drugs are desirable for their ability to maintain sinus rhythm and
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eliminate fibrillation, further analyses have shown a positive trend toward increasing

mortality rates due to a higher risk of complications associated with the medications

[42]. Furthermore, patients on both rate and rhythm control therapy are typically

put on anti-thrombotic therapy to reduce the likelihood of stroke [43].

2.3.2 Interventional Treatments

While anti-arrhythmic therapies attempt to manage atrial fibrillation through

alteration of cellular properties, interventional methods modify the architecture of

the heart in order to reduce the likelihood of AF perpetuation and initiation. The

earliest interventional treatment to show high rates of success in curing AF was the

surgical Maze procedure introduced by Cox [44, 45, 46, 47]. Applying the findings

of early physiologists that the maintenance of AF required a critical mass of tissue

[25], the Maze procedure involves a series of transmural incisions producing a maze-

like pattern in the atria limiting the tissue’s ability to support macro-reentry. Since

its introduction, the success rate of freedom from AF is reported to be 98% [48,

49]. However, due to the complexity of the surgery as well as the requirement of a

cardiopulmonary bypass for an arrested heart, most physicians and patients opt for

other treatments [50]. The introduction of more minimally invasive interventional

methods has further relegated the Maze procedure to patients requiring other open

chest procedures such as valve repairs to be done concurrently or patients with an

extremely high disease burden.

Since the 1960’s, physicians and scientists have used minimally invasive methods

to gain access to the heart for both mapping and stimulation [51]. This is achieved by

threading an electrode-tipped catheter through the venous system. Catheter-based
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ablation, introduced in the 1990’s, enabled the formation of electrically unexcitable

scars by applying radiofrequency (high frequency) current to the cardiac tissue causing

resistive heating [52]. However, unlike surgical methods, incomplete radiofrequency

ablation may temporarily inhibit the ability of cells to electrically conduct rather than

cause permanent scars [53, 54]. This results in a high incidence of repeat ablation

procedures to correct incomplete lesions [55]. Despite the risk of repeat procedures

and difficulty to achieve accurate and complete lesions in an actively beating heart,

catheter ablation has been the most widely accepted interventional treatment for AF

over the past 20 years.

A number of strategies for catheter-based ablation have evolved since its intro-

duction. However, the most common ablation strategy evolved via the recognition of

ectopic foci in the pulmonary veins [32]. These foci were identified as precursors to

episodes of AF. As a result, ablation lesions are placed circumferentially around the

pulmonary veins to isolate them from the atria. This method, known as pulmonary

vein isolation (PVI) has shown moderate success in patients with paroxysmal AF by

eliminating episodes at one-year follow-up in 62-87% of patients [39, 56, 57, 58]. Suc-

cess rates of PVI for patients with persistent atrial fibrillation are significantly lower

with single procedure success rates below 50% and multiple procedure rates around

60% [56, 57, 58, 59, 60].

Due to the variable success of PVI to treat patients with persistent AF, a number

of additional linear lesions have been proposed on top of traditional PVI in order to

compartmentalize the atria and prevent macro-reentry similar to the Maze procedure.

The most commonly applied additional lesions are the roof line, mitral isthmus line,

and cavotricuspid isthmus line (shown in Figure 2.2). Each of these additional lines
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has shown success over PVI alone; however, none have shown the same success rates

as the Maze procedure. In paroxysmal AF patients, success rates were 69% with

PVI alone versus 87% with the placement of addition lesions [61]. Success rates in

persistent AF improved from 39% to 75% with the placement of additional lesions

[56, 57, 59, 60].

Figure 2.2: Posterior view of left and right atria of common lesion sets employed for AF
ablation. (A) Pulmonary vein isolation lesion set; LSPV, LIPV, RSPV, and RIPV refer
to the left and right superior and inferior veins. SVC and IVC refer to the superior and
inferior vena cava. (B) Traditional pulmonary vein isolation with additional roof line, mitral
isthmus line, and cavotricuspid isthmus line. Modified from Calkins et al. [14]Posterior view
of left and right atria of common lesion sets employed for AF ablation.

Each of the previously described strategies for interventional treatment of atrial

fibrillation utilized a blind, one-size-fits-all approach. While this showed significant

success in the Maze procedure, more recent catheter-based ablation strategies have

failed to emulate the same results especially in patients with high disease burden.

Unlike arrhythmias such as atrial flutter in which there is a repeating sequence of

activation, atrial fibrillation not only varies over time, but also between patients

21



depending on the structural and functional substrate it is presented. As a result,

one region of tissue acting as a driving force for AF in an individual patient may

be completely different than another. One of the main benefits to catheter-based

ablation is its ability to simultaneously record the intracardiac potentials to identify

potentially advantageous sites for ablation.

In an early mapping study, the morphology of unipolar electrograms in various

locations throughout the atria during AF was correlated with varying patterns of

activation [62]. The most complicated electrogram morphology, termed fragmented

potentials, were associated with slow conduction regions or pivot points of activation.

Acting on these findings, Nademanee et al. [63] argued that these sites, which he

called complex fractionated atrial electrograms (CFAEs), could serve as target sites

for focal catheter ablation of AF. In his original study of 121 patients with equal rates

of paroxysmal and persistent AF, ablation of CFAE sites resulted in the termination

of AF in 95% of patients and 91% free of AF at one-year follow-up.

While the original CFAE ablation trial showed high success rates in both parox-

ysmal and persistent cases of AF, future studies failed to achieve repeatable results

in either paroxysmal and persistent AF patients [64, 65, 66, 67, 68, 69, 70, 71, 72,

73]. The majority of studies investigated the benefit of adding CFAE ablation to

the standard pulmonary vein isolation. Of these, only two suggested CFAE ablation

improved outcomes over PVI alone. One of the biggest arguments regarding CFAEs

is the lack of a universal definition. The studies presented utilized multiple detection

algorithms or visual inspection to identify fractionated sites. Perhaps more impor-

tantly, a fractionated electrogram can be produced by a variety of different activation

patterns such as conduction slowing, wave collision, and the combined potential field
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resulting from two dissociated waves. Each of these factors has contributed to CFAE

ablation becoming less favorable within the electrophysiology community.

In an optical mapping study with Langendorff sheep hearts, the Jalife group iden-

tified multiple spatially stable high-frequency rotors. Dissociated regions of tissue

were also observed in the optical maps; however, the frequency of activation in these

regions was lower suggesting they were being driven by the higher frequency drivers

[38]. Because the rotors identified were spatially stable, the cycle lengths between

activations are temporally consistent. Using a Fourier transform to decompose the

recorded electrograms into their component frequencies, rotor sites could be easily

identified by a prominent, and high magnitude, peak in the frequency histogram

known as the dominant frequency (DF) [74]. Using this spectral analysis technique,

the Jalife group mapped atrial fibrillation in both paroxysmal and permanent AF

in humans. In patients with paroxysmal atrial fibrillation, DF sites were most com-

monly observed in the pulmonary veins (11 out of 13). Dominant frequency sites were

much more prevalent around the atria in permanent AF. Following ablation of the

identified DF sites, AF terminated in 87% of paroxysmal cases. Ablation of DF sites

in patients with permanent AF had no effect (0 out of 13).

Further studies using DF mapping showed similar results [75] resulting in some

success treating patients with low disease burden but failing to effectively treat persis-

tent and permanent AF. Failure of termination in patients with persistent arrhythmia

may have been due to a number of factors. First, ablation did not include all the crit-

ical focal drivers responsible for its maintenance. Second, DF sites were not identified

due to insufficient frequency gradients between focal sources and passively fibrillat-

ing tissue. Third, the mechanism for AF maintenance is fundamentally different in
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paroxysmal versus persistent and permanent AF [38]. Due to the electrical and struc-

tural remodeling that occurs during extended episodes of AF, it is probable that a

shift in the mechanism for its perpetuation was the cause for the failure of DF-guided

ablation.

More recently, another mapping technique aimed at identifying focal rotors and

sources has shown favorable outcomes. This technique, focal impulse and rotor mod-

ulation (FIRM), relies on unipolar electrograms from a multi-site simultaneous map-

ping catheter as well as repolarization dynamics from monophasic action potentials to

infer activation patterns within the atria [36]. Focal sources were identified as either a

rotational activation pattern (rotor) or activation radially from a point (ectopic foci).

Identified focal sources are administered focal ablation [35]. Early investigations ex-

hibited improved ablation success for FIRM guided ablation over traditional methods

(82.4% vs 44.9%, respectively) after a single procedure. Follow-up investigations have

shown mixed outcomes. While one study showed significant improvement over tra-

ditional ablation for treating persistent AF (80% freedom from AF) [76], another

reported AF termination in only 20% of patients [77]. Several concerns arise regard-

ing the methodology of this approach. The use of low-resolution electrodes in areas of

high spatial complexity promotes the occurrence of fractionated electrograms. Also,

the structure of the catheter used (128 electrode basket catheter) impedes the ability

to ensure adequate contact between electrodes and the atrial tissue. Each of these

aspects disrupts the accuracy of electrograms as a reflection of the true activation

pattern in the atria. Ultimately, a randomized clinical trial will be required to assess

the effectiveness of this approach.
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2.4 Computational Models of Cardiac

Excitation

One of the biggest obstacles to our understanding of the mechanism for atrial fib-

rillation is our inability to directly observe tissue activation during the arrhythmia.

Until sampling limitations for intra-cardiac mapping of arrhythmias are overcome,

computer models of excitation provide critically useful tools to study complex acti-

vation patterns with complete visibility of the system. While in silico models can

be incredibly useful tools to form hypotheses about excitation dynamics, the useful-

ness of a model is limited by the assumptions on which it is based. Various levels

of biological accuracy can be achieved in modeling the behavior of excitable tissue.

In the most complex models, individual ion channel dynamics are modeled to study

drug interactions at the extreme cost of simulation speed. On the other hand, those

studying the macroscopic behavior of tissue can sacrifice some of the intricacies of bio-

logical realism to achieve high throughput models to observe long duration fibrillation

events. Because the complexity of a model has a huge impact on the computational

burden, the simplest model that provides insight on a hypothesis is most frequently

recommended.

Generally, computational models of excitation can be divided into two categories:

biophysically detailed models, which typically involve modeling intracellular dynam-

ics with a set of ordinary differential equations, and those focused on investigating

excitation propagation using rule-based models for increased computational efficacy.

The majority of modern biophysical models are derived from the work of Hodgkin and
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Huxley [78]. Observations of electrical behavior in the membrane of the giant squid

neuron were shown to be analogous to the behavior of an electrical circuit. Earliest

iterations were modeled with potassium, sodium, and leakage currents but modifica-

tions in future biophysical models expanded on this to include specific ion channel

dynamics for modeling cardiac electrophysiology [79, 80, 81, 82, 83]. Because solving

a set of ordinary differential equations is required to update an individual myocyte

between time iterations, the computational burden to model an entire tissue of cells

impedes the ability to observe propagation dynamics on the fly.

Figure 2.3: Electrical circuit representation of the giant squid neuron cell membrane. INa,
IK , and IL correspond with sodium, potassium, and leakage current, respectively. RNa, RK ,
and RL are equal to the inverse of sodium, potassium, and leakage conductance (permeabil-
ity coefficient). The difference in membrane potential and equilibrium potential of ions is
denoted by E. Finally, membrane capacitance is denoted by CM . [78]

On the other hand, rule-based models such as cellular automata are favorable for

rapid observation of macroscopic behavior due to changes in intercellular properties

and basic electrophysiological properties like the duration of an action potential.
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The earliest model of excitation by Moe [26] used to develop the multiple wavelet

hypothesis was a rule-based cellular automaton. While the complexity of the model

was limited by the processing power available in the 1950’s, the macroscopic behavior

observed was able to mimic observations seen previously in animal models of AF.

A more recent iteration of rule-based models introduced by Spector and Bates [84]

represents the atrial action potential as a piecewise linear model thereby eliminating

the computational burden of solving a set of differential equations. Despite this

simplification, complex patterns of macroscopic behavior such as rotors and multi-

wavelet reentry can emerge spontaneously.
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3.1 Abstract

Background: A key mechanism responsible for atrial fibrillation is multi-wavelet reen-

try (MWR). We have previously demonstrated that ablation in regions of increased

circuit-density reduces the duration of, and decreases the inducibility of MWR. In this

study we demonstrate a method for identifying local circuit-density using electrogram

frequency and validated its effectiveness for map-guided ablation in a computer model

of MWR.

Methods and Results: We simulated MWR in tissues with variation of action poten-
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tial duration and intercellular resistance. Electrograms were calculated using various

electrode sizes and configurations. We measured and compared the number of circuits

to the tissue activation frequency and electrogram frequency using three recording

configurations (unipolar, contact bipolar, orthogonal closed unipolar (OCU)) and two

frequency measurements (dominant frequency, centroid frequency). We then used the

highest resolution electrogram frequency map (OCU centroid frequency) to guide the

placement of lesions to high frequency regions. Map guided ablation was compared

with no ablation and random/blind ablation lesions of equal length. Electrogram fre-

quency correlated with tissue frequency and circuit-density as a function of electrode

spatial resolution. Map-guided ablation resulted in a significant reduction in MWR

duration (142±174s vs. 41±63s).

Conclusion: Electrogram frequency correlates with circuit-density in MWR provided

electrodes have high spatial resolution. Map-guided ablation is superior to no ablation

and to blind/random ablation.

3.2 Introduction

Atrial fibrillation (AF) affects over 5 million people in the United States alone and

results in a cost to the US healthcare system estimated to be between 6 and 26 billion

dollars per year[1]. Despite its impact treatments remain less than adequate, partic-

ularly for persistent AF. Anti-arrhythmics work poorly, maintaining sinus rhythm in

only approximately 45% of patients. Ablation is only marginally better, effectively

treating only approximately 50% of patients with persistent AF[2]. Ablation is much

more effective when one can guide lesion placement by defining the arrhythmia circuit
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through mapping; for example 92% in AFL[3]. Unfortunately, due to the dynamic

and complex nature of activation during fibrillation, it is very difficult to define the

circuitry responsible for arrhythmia perpetuation in individual patients with the use

of activation mapping[4, 5].

We have previously demonstrated that ablation lesions which target regions of

high circuit-density maximize the effectiveness of ablation for multi-wavelet reentry

(MWR)[6, 7]. In this paper, we describe an algorithm for identifying circuit-core-

density and distribution during multi-wavelet reentry based upon high resolution

electrogram frequency mapping and validate its efficacy through a map guided abla-

tion trial. High resolution frequency mapping does not require activation mapping;

identification of circuits without the use of isochronal maps obviates the need to over-

come the engineering hurdles inherent in creating full activation maps of MWR (e.g.

large numbers of closely spaced and high resolution electrodes).

3.2.1 Theoretical Foundation

We hypothesized that during MWR 1) circuit distribution is dependent upon

the heart’s electrophysiologic properties, 2) those areas with the shortest wavelength

would have the highest probability of containing a circuit-core and 3) would (on aver-

age) be excited more frequently than other heart regions. Thus if one could accurately

identify local tissue excitation frequency this would indirectly identify circuit-density.

Unfortunately, in the clinical setting one cannot directly measure tissue activation

(or its frequency); rather we are dependent upon electrogram recordings to identify

cardiac electrical events. Electrogram frequency reflects the frequency of electrical

activity within the recording region of the electrode(s); therefore, electrogram fre-
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quency may not accurately reflect the activation frequency of any individual cell but

rather the ensemble frequency of a group of cells. If there is electrical dyssynchrony

within the group of cells recorded, then the electrogram frequency may not be the

same as any individual cell in the group. Therefore, electrogram frequency accurately

reflects tissue frequency only if the spatial resolution of the recording electrode(s)

encompasses a region of tissue that is synchronously activated.

3.3 Methods

3.3.1 Model and Tissue Setup

In order to assess the accuracy of electrogram mapping the true map must be

known precisely. In biological systems the details of electrical activity are very diffi-

cult to discern. Accordingly, we used a computational model of electrical excitation

in which precisely controlled and fully known electrical activity can be generated. We

used a physics-based cellular automaton model previously described[8]. Our model

consists of a two dimensional array of electrically excitable cells (each representing

a large group of myocytes) connected via resistive pathways. Each cell generates an

action potential when it receives sufficient current from neighboring cells and subse-

quently undergoes a period of refractoriness during which it cannot be re-excited.

The exact characteristics of each cell’s action potential are determined by 1) its

programmed baseline parameters (including restitution) and 2) electrotonic current

shifts. Intercellular resistance is user defined.

We created 9 test tissues with varied physiologic properties. Each tissue consists
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of a 2-dimensional sheet of cells - "tissue" (80x80mm2) (Figure 3.1a). Each cell’s

action potential duration (APD) is randomly chosen from a programmed mean and

standard deviation. To produce tissues with regional circuit-density heterogeneity we

created patches of cells with shorter average APD and higher intercellular resistance

than the remainder of the tissue - "patch". Varying the number of patches and tissue

parameters produced variations of circuit-density gradients and distributions.

The tissues each contained 1-3 short wave-length patches. All "patches" had APDs

of 80±5ms and intercellular resistance of 13ohms. "Tissues" were comprised of APDs

of 110±10ms, 120±10ms or 130±10ms (intercellular resistance was 9ohms in each

case).

3.3.2 Electrogram Recordings

Electrograms were calculated using both unipolar and bipolar electrode configura-

tions from 100 recording sites distributed over each tissue. Electrodes were cylindrical;

each created using a finite element mesh (element-area 0.75mm2, element-number var-

ied with electrode size); electrograms were calculated as described previously[9]. All

recordings were made from a 10x10 (evenly spaced) array of recording sites, 1mm

above the tissue. For unipolar recordings (UNI), a single electrode was placed at each

recording site. Contact bipolar electrograms (CBP) were recorded by placing a pair of

electrodes (2mm inter-electrode distance) centered over each recording site. A second

array of electrodes (2mm) above the unipolar array allowed creation of bipolar pairs

arranged orthogonal to the tissue surface ("orthogonal close unipolar" [10] (OCU)).

For the UNI and OCU configurations, electrograms were generated with both small

(1mm diameter/height) and large (3mm diameter/height) electrodes (only the small
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electrodes were used for the CBP configuration). Figure 3.1b shows an example of

electrograms generated from each of the recording configurations.

Figure 3.1: Experimental setup and electrogram analysis. a) High-resolution frequency map-
ping setup. Red and blue rectangles represent 2 dimensional sheet of tissue, action potential
duration varies through tissue (red "cells" have longer APD, blue cells have shorter APD).
Gray cylinders represent electrode array (height of electrodes [*] is exaggerated in figure).
Inset: a finite element electrode mesh. b) Electrograms (UNI [blue], CBP [red], and OCU
[black]). c) Power spectrum generated from a unipolar electrogram demonstrating the dif-
ference between DF (red line) and CF (blue line).

3.3.3 Circuit-Density

We required an accurate (and computationally tractable) algorithm for identifi-

cation of circuit-density. One standard approach to circuit identification is through

transformation of activation-maps into phase-maps and the subsequent identification

of phase-singularities[11] (PS). This has some limitations, including high computa-

tional burden, false positive identification of cores and failure to identify circuit-cores

that are not phase singularities (i.e. larger cores). Therefore, we developed an algo-

rithm that 1) identified wave ends and 2) tracked those wave ends through space-time
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until they returned to a previously occupied location forming a closed circuit (Figure

3.2). The area encompassed by this closed loop is defined as being a single instance

of a circuit-core. A circuit-density (Cd) map was then constructed as the sum of all

circuits identified over the recording period.

We compared the accuracy of closed-loop and PS-mapping against using direct

visualization as our gold standard (activation was tracked every millisecond for 500ms

of MWR). We calculated a 2D correlation with both the closed-loop and PS maps.

Correlation was calculated as:

r =
∑

m

∑
n

[
Amn − Ā

] [
Bmn − B̄

]
√∑

m

∑
n

[
Amn − Ā

]2 [
Bmn − B̄

]2
(3.1)

where A and B are the tissue frequency and circuit-density matrices, respectively.

The sensitivity of each was calculated as:

Sensitivity = TP

TP − FN
(3.2)

where TP (true positive) is the number of circuits correctly identified and FN (false

negative) is the number of circuits not identified by the algorithm. Computation time

was measured.
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Figure 3.2: Circuit density mapping. 1) Leading edge of excitation is identified in voltage
map. 2) Wave-end paths are tracked. 3) Closed loops and their enclosed areas are identified.
4) Circuit-density map = sum of all closed loops.

3.3.4 Tissue and Electrogram Frequencies

Multi-wavelet reentry was induced with burst pacing (cycle-length 50ms x 2s).

Induction was attempted sequentially from 16 locations (4x4 evenly distributed pacing

sites). Cell voltages and electrogram potentials were recorded for 10s of MWR. Time

to termination was measured. Tissue activation frequency (TF) (determined directly

from membrane voltages) was calculated for each cell as the inverse of the average

cycle-length during 10s of MWR. Circuit-density and tissue frequency maps were

compared using a 2D correlation (equation 1).

Electrograms frequencies calculated with a fast Fourier transform (FFT). Fre-

quency was characterized as: 1) dominant frequency (DF) (largest peak in the power
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spectrum) and 2) centroid frequency (CF) (geometric center /arithmetic mean fre-

quency; calculated as:

Centroid =
∫ 15

3 F ∗ Y (F )dF∫ 15
3 Y (F )dF

(3.3)

where F is the frequency and Y is the amplitude in the power spectrum). Figure 3.1c

shows an example of the DF and CF.

Electrogram frequencies (of UNI, CBP and OCU recordings) were compared to TF

and Cd of the cells immediately beneath the footprint of each electrode. Correlation

coefficients were calculated as:

r =
∑n

i=1

[
Xi − X̄

] [
Yi − Ȳ

]
√∑n

i=1

[
Xi − X̄

]2
√[
Yi − Ȳ

]2
(3.4)

where X and Y represent the electrogram frequency and tissue activation frequency.

Maps were created by assigning the electrogram frequency (DF or CF) to each record-

ing site and performing a least squares interpolation (Figure 3.3).

3.3.5 Ablation Protocol

We compared map-guided with blind/random ablation. In each of the nine tis-

sues, MWR was induced and allowed to perpetuate up to a maximum of 10 minutes.

We measured the time to termination with map-guided and blind/random ablation.

For map-guidance we used the highest-resolution frequency maps (OCU, small elec-

trodes, centroid frequency). Linear lesions were distributed such that 1) lesions were

always connected to one of the tissue’s outer boundaries and 2) lines covered the ar-

eas with highest circuit-density. Blinded/random lesions were applied to each tissue
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by randomly selecting target sites in the tissue and placing a lesion from an exist-

ing boundary to the target (Figure 3.6). The length of lesions (38mm, 59mm, and

86mm for 1, 2 and 3 patches respectively) used for both the blind/random and guided

approaches remained equal for all tissues.

3.3.6 Statistical Analysis

We compared circuit-density and frequency inside and outside the patch(es). Data

are presented as mean ± standard deviation. Paired student’s t-test was used to

compare differences. Statistically significant differences were defined as p<0.01.

3.4 Results

3.4.1 Quantifying Circuit-Density

We compared the circuit-density and phase-singularity mapping algorithms against

visual inspection of circuits. The Cd algorithm had a sensitivity of 0.79 and a cor-

relation coefficient of 0.76. The PS map had a sensitivity of 0.53 and a correlation

coefficient of 0.46. Computation time (for 500ms of MWR) was 14.9s (Cd algorithm)

vs. 98.3s (PS algorithm).
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Table 3.1: Tissue frequency, circuit-density and electrogram frequency (average±SD) inside
and outside the patch region (low, medium and high circuit-gradient).

TF Cd
UNI

CF

UNI

DF

CBP

CF

CBP

DF

OCU

CF

OCU

DF

In
sid

e

Low
11.82±

0.1

50.10±

13.6

9.24±

0.1

10.36±

0.2

10.32±

0.1

10.93±

0.2

10.11±

0.1

10.90±

0.2

Med
11.38±

0.2

37.80±

13.4

9.03±

0.1

9.73±

0.2

10.09±

0.1

10.31±

0.3

9.92±

0.1

10.33±

0.3

High
11.08±

0.2

27.54±

10.4

8.86±

0.1

9.12±

0.2

9.92±

0.1

9.77±

0.3

9.78±

0.1

9.88±

0.3

O
ut

sid
e

Low
10.91±

0.2

20.15±

10.6

9.14±

0.1

10.47±

0.1

10.10±

0.1

10.79±

0.2

9.80±

0.1

10.71±

0.1

Med
10.10±

0.2

14.83±

8.9

8.85±

0.1

9.69±

0.1

9.79±

0.1

10.01±

0.2

9.48±

0.1

9.90±

0.2

High
9.45±

0.3

11.31±

7.8

8.65±

0.1

9.05±

0.1

9.57±

0.2

9.38±

0.3

9.25±

0.1

9.26±

0.2

3.4.2 Tissue Frequency vs. Circuit Density

For illustrative purposes figure 3.3 shows examples of patch location (cell property

distribution), circuit-density and tissue frequencies in tissues with patches of random

dimension. In the test-tissues circuit-density (#circuits/mm2 /10s) was higher in-

side than outside the patches (38±16 vs. 15±10, inside vs. outside respectively;

p<0.001). Tissue frequency was higher inside than outside the short wave-length
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patches (11.4±0.4 vs. 10.2±0.6, inside vs. outside respectively; p<0.001). There

was a strong correlation between TF and Cd (r2=0.59 all tissues combined). Figure

3.4 shows the correlation coefficient and sensitivity for each tissue. Correlation di-

minished as the number of high circuit-density patches increased and as the density

gradient decreased.

Figure 3.3: Relationship between tissue properties (left), circuit-density (middle) and tissue
activation frequency (right). Maps were generated from 10s of MWR.

3.4.3 Electrogram Frequency vs. Tissue

Frequency

Table 3.2 shows the correlation coefficients for each electrode configuration. Fre-

quency of unipolar electrograms were the least accurate compared with tissue fre-

quency (DF: r2=0.08, CF: r2=0.35). CBP were more accurate (DF: r2=0.20, CF:
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r2=0.46). OCU most accurately reflected TF (DF: r2=0.57, CF: r2=0.93). When all

recording configurations were combined centroid frequency was superior to dominant

frequency (CF: r2=0.58, DF: r2=0.28).

Table 3.2: Correlation between electrogram frequency, circuit-density and tissue activation
frequency.

Patches 1 2 3

Gradient Low Med High Low Med High Low Med High

TF

DF

UNI 0.10 0.01 0.19 0.07 0.17 0.05 0.07 0.00 0.03

CBP 0.14 0.29 0.53 0.13 0.19 0.15 0.03 0.17 0.17

OCU 0.15 0.46 0.76 0.62 0.70 0.69 0.39 0.67 0.68

CF

UNI 0.32 0.52 0.66 0.17 0.34 0.41 0.07 0.33 0.32

CBP 0.48 0.56 0.68 0.31 0.48 0.50 0.27 0.40 0.47

OCU 0.90 0.94 0.96 0.88 0.93 0.93 0.95 0.95 0.92

Cd

DF

UNI 0.14 0.03 0.11 0.08 0.10 0.07 0.03 0.02 0.05

CBP 0.10 0.40 0.55 0.08 0.28 0.43 0.07 0.28 0.33

OCU 0.06 0.51 0.55 0.47 0.41 0.27 0.24 0.41 0.25

CF

UNI 0.30 0.40 0.50 0.15 0.32 0.39 0.13 0.22 0.30

CBP 0.51 0.51 0.58 0.26 0.47 0.44 0.35 0.39 0.45

OCU 0.72 0.70 0.73 0.56 0.60 0.48 0.60 0.49 0.44
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3.4.4 Electrogram Frequency vs. Circuit

Density

Similar to the trends seen with electrogram frequency vs. tissue frequency, OCU

electrograms more accurately reflected the Cd than UNI or CBP electrograms (table

3.2). Again, CF was superior to DF.

Figure 3.4: Correlation coefficients and sensitivity between circuit-density and tissue acti-
vation frequency. Black bars, gray bars and white bars indicate tissues with low, medium
and high circuit-density gradient, respectively.

3.4.5 Effect of Electrode Size on Map

Accuracy

For both UNI and OCU the correlation between electrogram centroid frequency

and circuit-density was higher with smaller electrodes. Correlation decreased with

tissue spatial complexity/gradient in Cd (low-gradient 4r=0.15, medium-gradient

4r=0.07, high-gradient 4r=0.02).
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Figure 3.5: Impact of spatial resolution and frequency metric (DF vs. CF) on electrogram
frequency maps. The high circuit-density patch was located in the upper left hand corner of
the tissue, best seen on the "OCU Centroid" map.

3.4.6 Map Guided Ablation

We compared the impact of map-guided vs. random/blind ablation (and no ab-

lation) on time to termination of MWR. Map-guided ablation resulted in reduction

of MWR duration compared with no ablation (142±174s vs. 171±193s vs. 41±63s,

no ablation, blind/random ablation, map-guided ablation respectively; p=NS no ab-

lation vs. blind/random ablation, p<0.001 no ablation vs. map-guided ablation).
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Figure 3.6: Example of ablation lesions for (A) guided and (B-F) several random/blinded
ablation lesions. Note that random/blind lesions sometimes overlap the high circuit-density
patches (C and E).

3.5 Discussion

3.5.1 Discriminating active drivers from passive

followers in multi-wavelet reentry

Defining the substrate responsible for perpetuation of MWR and identifying its

distribution is critical for planning ablation strategies that reduce the hearts ability

to maintain fibrillation. Using computational modeling we were able to observe tissue

excitation in its entirety (e.g. the voltage of every cell for every millisecond during
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MWR). Interestingly even direct observation of MWR does not reveal which tissue

regions are actively perpetuating the rhythm and which are being passively driven by

the rhythm.

We developed a novel method for identifying the circuits that drive MWR. Our

method, closed loop mapping, is based upon the necessity for closed circuits in order

to maintain continuous activation on a finite surface. Activation paths vary and are

dynamically formed by shifting excitability, refractoriness and structurally and/or

functionally defined source-sink balance[12]. Circuits can be defined by the full path

of activation or by the boundaries of that activation. This is analogous to identifying

a road by the extent of the pavement vs. the location of the inner and outer guard

rails. In the context of reentrant circuits, the tissue edge is the outer boundary and

the circuit-core is the inner boundary. Successful ablation requires complete circuit

transection[6] (outer-inner boundary); we know where the tissue edge is therefore the

goal of mapping is identification of the inner boundary, i.e. the circuit-core.

We tracked wave ends (the outermost tip of each wave-front) as they traversed the

tissue; we defined a circuit-core as the area circumscribed by the loop formed when

an internal wave-end (those not connected to the tissue edge) returned to a location

it had previously occupied (video). The number of times a given region of tissue

was included in a circuit-core was then defined as that region’s circuit-core density.

This method outperformed PS tracking (greater sensitivity and specificity with lower

computational burden).
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3.5.2 Circuit-Density vs. Tissue Frequency

One cannot directly observe tissue activation in the clinical setting and hence

closed loop tracking cannot be employed in patients. We therefore sought to develop

an electrogram guided metric that correlates with circuit-density. We hypothesized

that 1) local tissue activation frequency (on average) correlates with circuit-density

and 2) electrogram frequency, provided it is recorded by electrodes of adequate spatial

resolution, correlates with local tissue frequency. Due to the simultaneous presence

of multiple wave-fronts and shifting conduction block during MWR not all cells are

activated at the same rate. We reasoned that those cells responsible for driving

MWR would activate more frequently, while passively driven cells would at times

be activated less frequently due to following the reentrant drivers with less than 1:1

continuity. While it is possible that some cells can be passively driven by 2 separate

reentrant circuits and actually be excited more frequently than any individual driver;

ultimately, because local tissue properties influence wavelength and hence maximal

excitation rates, on average driver regions are activated more rapidly than passive

follower regions even if there are times when followers are transiently activated more

frequently. Our data indicated that tissue activation frequency correlates with circuit-

density over a wide range of conditions.

3.5.3 Tissue vs. Electrogram Frequency

We have previously demonstrated that electrogram frequency does not accurately

reflect tissue frequency if the spatial resolution of the electrodes results in simulta-

neous recording of multiple dissociated muscle fibers[5]. Under these circumstances
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one measures the frequency of some combination of dissociated cells and hence the

electrogram frequency is not the same as the activation frequency of any individual

myocyte. If the electrode’s spatial resolution is sufficient to record only synchronously

activated cells its electrogram frequency does accurately reflect local tissue frequency.

We demonstrated that the accuracy of electrogram frequency for identifying local tis-

sue frequency (and local circuit-density) improves with improving spatial resolution

(e.g. orthogonal close unipolar > contact bipolar > unipolar).

3.5.4 Centroid vs. Dominant Frequency

Due to the variability in local activation during MWR both tissue frequency and

electrogram frequency, vary over time; fast Fourier transformation reveals a wide

spectrum of frequencies. We found that the DF could be quite variable and correlated

poorly with tissue frequency whereas the centroid of the power spectrum correlated

better with tissue frequency. A frequency range of 3 to 15 Hz was put in place during

the calculation of centroid frequency in order to reduce high and low frequency noise

as well as evaluate the physiologic range of the signal. This range was chosen to be

optimized for this simulated series of atrial fibrillation and may need to be altered for

higher or lower frequency AF.

3.5.5 Map-Guided Ablation

Ultimately the purpose of identifying the substrate responsible for perpetuating

MWR is to direct therapy to modify that substrate; hence the relevant test of a map’s

adequacy is its ability to guide effective ablation. We have previously demonstrated
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that knowledge of circuit-density distribution can improve ablation efficiency[7]. In

this study we examined whether an electrogram guided map could improve ablation

when compared with blind/random ablation. Electrogram guided ablation increased

the probability of MWR termination (measured as reduction in time to termination)

compared with both un-ablated tissue and random ablation (using the same total

lesion length). In fact as we have previously shown[7], because ablation at sites of

low circuit-density actually increases new wave formation (more than they increase

wave annihilation) random ablation was worse than no ablation.

3.5.6 Comparison with previous studies

Multi-wavelet reentry vs. focal driver with fibrillatory conduction

Historically strategies for ablation of AF have been formulated based upon assump-

tions about its mechanisms. The most commonly employed ablation strategies involve

targeting of both focal triggers and modification of the atria’s ability to support multi-

wavelet reentry. The successes of the surgical and catheter maze procedures[13, 14]

strongly suggest that the mechanism of AF (at least in responders) is MWR; un-

less the maze lesion set coincidently transects the site of focal firing it should limit

fibrillatory conduction but not eliminate the focal driver. The lack of success of the

maze procedures in non-responders may attest to a focal mechanism in these patients.

Alternatively, it may simply be that by delivering non-map guided lesions the maze

procedure suffers from insufficient guidance (it is undirected) and insufficient mag-

nitude (it is untitrated). It is quite possible that not all patients with AF have the

same underlying mechanism. It is also likely, based upon the remodeling that results

from sustained tachycardia, that MWR ultimately plays a crucial role in perpetuation
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of AF in the majority of cases. It is therefore of great interest to identify a means

for mapping the spatial distribution of the substrate responsible for perpetuation of

MWR.

Frequency Mapping

Map-guidance for AF ablation has been the subject of intense research. Several

other approaches have been suggested in the past. Frequency mapping developed

by Jalife[15] and tested clinically by Haissaguerre[16] conferred little advantage over

conventional ablation[17]. This may reflect either inadequacy of the spatial resolution

of the recording electrodes and/or the variability of using DF rather than centroid

frequency. During MWR tissue frequency is dynamic; there is not therefore a sin-

gle value for tissue frequency but rather a spectrum. Prior studies have used the

dominant frequency as a metric for tissue frequency[16]. We found that the DF can

vary based upon small changes in the height of large peaks in the power spectrum;

the centroid frequency which reflects the mean frequency is less variable and more

reliably correlated with tissue activation frequency in our studies.

Complex Fractionated Atrial Electrograms

Complex fractionated atrial electrograms (CFAE) have also been used widely as tar-

gets for ablation[18]. Interestingly, fractionation results from inadequate spatial reso-

lution relative to local tissue spatio-temporal variability[5] (STV). Thus CFAE map-

ping identifies the distribution of STV. Because STV is related largely to tissue elec-

trophysiologic properties STV (CFAE) mapping reflects somewhat the distribution

of tissue physiology. There are two theoretical limitations to CFAE mapping; 1) the
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distribution is spatial resolution dependent (i.e. electrode size, inter-electrode spacing

and recording configuration dependent) and 2) STV while related to, does not directly

correspond with activation frequency. A number of studies have demonstrated a lack

of correlation between the distributions of CFAE and DF[19].

Focal Impulse and Rotor Modulation (FIRM)

A more recent approach to mapping AF, FIRM mapping[20], employs an extremely

different approach for circuit identification. FIRM mapping identifies circuit-cores

by creating and interpreting activation maps. This is done with the use of a rela-

tively small number of electrodes (64) with relatively low spatial resolution (1.25mm,

4 or 5mm inter-electrode spacing). Determination of local activation time despite

electrogram fractionation under these circumstances requires assumptions about lo-

cal refractory times and physiologically possible conduction velocities based upon

monophasic action potential recordings. There is none-the-less relatively low sample

density so this approach requires interpolation for interpretation of activation and

hence identification of circuits. Frequency mapping obviates the need to first recon-

struct activation maps and then identify circuits thereby obviating the need for high

density mapping.

3.5.7 Limitations

The work described in this study was performed entirely in a computational model

of electrical propagation. Ultimately biological confirmation is essential. However, in

order to directly establish the links from activation through circuit-core distribution

to tissue frequency and finally electrogram frequency one must have the ability to
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make direct measurements of each of these quantities. Such information is exceed-

ingly difficult to obtain in biologic preparations yet easily accessible in computational

modeling. In addition, modeling allows simultaneous recording using electrodes of

varying spatial resolution at the same location during the same episodes of MWR.

As a result, the variation between electrograms recorded with different electrodes

is attributable only to recording resolution and not to changes between episodes of

MWR.

3.6 Conclusions

Improved success rates for ablation of atrial fibrillation are likely to require patient-

specific map-guided ablation strategies. We have previously demonstrated that one

can achieve a greater reduction in the ability of tissue to support MWR when ablation

lesion placement is guided by circuit-density[7]. Our data indicate that circuit-density

correlates with average tissue frequency and tissue frequency correlates with electro-

gram frequency (provided sufficient spatial resolution). Frequency analysis using the

centroid of the power spectrum more accurately reflects tissue frequency than does

the dominant frequency.

Electrogram guided ablation using this method is superior to blind ablation (which

can be worse than no ablation). This work represents an important step in the

evolution of ablation techniques for AF: it allows for identification of the substrate

responsible for perpetuation of multi-wavelet reentry and does so without the need

for high density electrode arrays.

Future work will be needed to determine the optimal electrode design for mapping
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of circuit-density. This study indicates that the design of such mapping catheters

will require the use of electrodes with adequate spatial resolution to generate maps

that accurately reflect local tissue activation frequency. Based upon our prior work,

"adequate" spatial resolution is not an absolute quantity but rather is relative to the

local spatio-temporal frequency of activation[5]. Clinical studies will be required to

identify the range of spatio-temporal frequencies in patients during AF.
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Chapter 4
Mapping Multi-wavelet Reentry:
An Electrogram Derived Metric
to Identify Tissue Contact
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1University of Vermont College of Mathematics and Engineering, Burlington, VT;
2University of Vermont College of Medicine, Burlington, VT

4.1 Abstract

Background: We have previously demonstrated that identification of circuit core dis-

tribution during multi-wavelet reentry can guide effective ablation. Using high spatial

resolution electrodes, electrogram frequency correlates with circuit core density. How-

ever, here we demonstrate electrogram frequency varies with electrode height. There-

fore, we developed and tested a new algorithm to identify catheter tissue contact via

comparison of the time derivative of the electrogram potential (dV/dt) between two

electrodes oriented orthogonal to the heart surface.

Methods: Using computational studies and confirmed with swine epicardial mapping,

we recorded electrograms in sinus rhythm and atrial fibrillation. The first derivative of
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each unipolar electrogram was calculated and the maximum dV/dt of the 30 highest

peaks was measured. The efficacy of this measure to identify tissue contact was

evaluated in both simulated and swine models of AF.

Results: Electrogram frequency decreased as a function of increasing height by a

degree that varied with AF frequency (0.4 ± 0.1 Hz (7Hz AF) to 2 ± 0.5 Hz (9Hz

AF)). The difference in dV/dt decreased exponentially as a function of increasing

distance to the tissue. Mapping of simulated multi-wavelet reentry using electrodes

of randomly varied heights produced inaccurate frequency maps (r2=0.6). Excluding

electrodes > 2mm improved accuracy (r2 =0.96) and delta dV/dt produced results

similar to direct height measurements (r2=0.94).

Conclusions: The accuracy of electrogram frequency mapping is dependent on the

electrode distance to the tissue surface. Catheter-tissue contact can be identified

with electrogram analysis alone.

4.2 Introduction

Atrial fibrillation (AF) is a common cardiac arrhythmia contributing to a large

burden on cardiac health. Despite its complications, it has remained problematic

to treat both pharmacologically and interventionally. Traditional catheter ablation

(pulmonary vein isolation) has shown modest success in patients with paroxysmal

AF, but success rates diminish in progressed forms of the disease. This is largely due

to the failure of this method to identify and target the substrate responsible for AF

maintenance.

We previously demonstrated that identification of circuit core distribution during

63



multi-wavelet reentry can guide effective ablation [1]. Furthermore, we found that

the tissue frequency distribution could be used as a surrogate for the identification of

the circuit density. Provided high electrode spatial resolution, electrogram frequency

correlates with both tissue frequency and circuit core distribution and could be used

as a guide for targeted ablation [2].

While certain aspects of spatial resolution are controllable such as the size of the

recording electrode and the configuration of electrodes within a recording site (unipo-

lar recordings vs. bipolar recordings), the distance between an electrode and the tis-

sue surface is difficult to identify clinically. In this paper, we investigate the change

in electrogram morphology as a result of increasing electrode distance to the tissue

surface and propose an electrogram derived tool to identify proper electrode-tissue

contact and orientation. To further improve the accuracy of electrogram frequency

mapping, a method for filtering fractionation from the electrogram signal is proposed.

4.3 Methods

4.3.1 Model of Excitable Media

To assess the robustness of electrogram frequency to changes in spatial resolution

and electrode position, we utilized a reproducible model of cardiac electrical prop-

agation described previously [3]. The model consists of a two dimensional grid of

excitable "cells" (each representing a group of myocytes) which are electrically con-

nected via resistive pathways in von Neumann neighborhoods (cells sharing edges).

Neighboring cells exchange current according to their voltage difference and intercel-
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lular resistance, R. When the voltage of a cell exceeds a user defined threshold, an

action potential is initiated and the cell cannot be re-excited for the duration of its

refractory period (APD). The morphology of an action potential is determined by

its pre-programmed intrinsic behavior (upstroke, plateau, and repolarization phase

durations) and the extrinsic current exchanges with neighboring cells.

4.3.2 Tissue Setup

In order to test the accuracy of electrogram mapping over a variety of activation

frequencies, virtual tissues were created with heterogeneous physiologic parameters.

Each tissue was made up of 6400 cells (80x80mm2) to provide sufficient tissue area

to support MWR. To generate heterogeneity in the activation frequency, a Gaussian

filter was applied to an array (80x80) with a random distribution of values to create

smooth gradients between regions of higher and lower APDs (Range 60-100ms). Local

APD heterogeneity was programmed into the tissue (±10ms). Intercellular resistance

remained constant in all tissues (11Ω).

4.3.3 Electrogram Recordings

As shown previously [4, 5], the accuracy of electrogram frequency mapping is

dependent on both the size of the electrode and the configuration used (unipo-

lar<contact bipolar<orthogonal close unipolar (OCU)) to generate electrograms.

Therefore, we sought to create an electrode shape that would allow near OCU-like

recordings independent of its rotation with the tissue plane. At each recording loca-

tion, four electrodes were made up of the quadrants of a cylinder positioned on its side.
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Each electrode was created using a finite element mesh (20 elements per electrode);

electrogram calculations were described previously [4]. Electrogram recordings were

made from an 8x8 array of evenly spaced recording sites.

4.3.4 Analysis

MWR was induced by burst pacing (20ms cycle length for 1 second) from random

locations within the tissue. Electrograms and cell voltages were collected during 10s

of MWR. Action potential times were detected at each cell and cycle lengths between

activations were identified. Tissue activation frequency (TF) was calculated as the

inverse of the average cycle-length during the recorded 10s episode of MWR.

At each electrode recording location, the electrode closest to the tissue was iden-

tified by the electrogram with the highest magnitude of its time derivative (sharpest

peaks). Bipolar electrograms were created at each location using the electrogram of

the contact electrode and its opposite pair. Bipolar electrograms were then filtered

using a low pass filter (75Hz cutoff frequency) to remove high frequency noise. Peaks

were identified using the zero crossings of the time derivative of the electrogram sig-

nal. Electrogram frequency was then calculated as the inverse of the average cycle

length between identified peaks at each recording location.

As shown previously [6], spatiotemporal variability of a tissue can change over time

causing fractionated events if electrode spatial resolution is inadequate. Therefore,

a filter was created to remove confounding effects by fractionation on the calculated

electrogram frequency. Cycle lengths between peaks that were identified as less than

25ms were considered fractionated events and were removed from the frequency cal-

culation.
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We hypothesized that the height of an electrode could be identified using only

the characteristics of its electrogram signal. Unipolar electrograms from 10s of MWR

were filtered with a low pass filter (75 Hz cutoff frequency) and the time derivative

of each signal was taken. The peak amplitude of the electrogram derivative (dV/dt)

was identified for each action potential. The 20 highest peaks were then averaged

to exclude electrogram potentials from far-field sources. We calculated the difference

of the peak dV/dt (delta dV/dt) between each electrode and its opposite electrode

within a pair. The electrode pair with the lower difference in peak dV/dt at each

recording location is discarded.

4.3.5 Impact of electrode position on frequency

and accuracy

We investigated the effect of electrode distance from the tissue and its rotation

with respect to the tissue plane on the electrogram frequency and its accuracy (with

respect to TF). Electrode height (distance from tissue) was varied from tissue contact

to 8mm (2mm intervals) from the tissue surface. For each electrode height, electrode

rotation was varied between 0◦ and 90◦ (15◦ intervals). Electrograms and TF were

calculated in ten different tissues with 10 initiations of MWR per tissue for each elec-

trode height and rotation. The delta dV/dt and correlation coefficient were calculated

between TF and electrogram frequency for each electrode height and rotation. We

identified the delta dV/dt threshold above which electrode height was less than 2mm.
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Figure 4.1: Impact of the electrode distance to the tissue on the morphology of the electro-
gram generated from tissue activation passing by the recording region. Both signal amplitude
as well as sharpness are affected by increasing the distance of the recording electrode from
the potential source.

4.3.6 Impact of electrode spatial resolution on

frequency and accuracy

In order to investigate the effect of fractionation on the electrogram frequency

and accuracy (with respect to TF), the spatial resolution of electrodes was altered

by increasing the electrode size. Electrode radius was varied between 1mm and 5mm

(1mm interval) while electrode length was varied between 2mm and 10mm (2mm

interval). Electrograms and TF were calculated from five tissues with ten episodes of

MWR per tissue. The number of fractionated events was identified from each episode

of MWR by counting the number of inter-potential cycle lengths less than 25ms. The

correlation between electrogram frequency and TF was calculated for each electrode

size before and after filtering out fractionated events.
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4.3.7 Effectiveness of delta dV/dt to identify

tissue contact

To validate the efficacy of the electrode height identification with delta dV/dt,

we simulated a clinical environment where both the orientation and the distance

from the tissue surface of an electrode are unknown. Electrode heights were selected

from a gamma distribution (k=2, θ=1) to generate a larger sample size of near-tissue

electrograms. Electrode rotations were randomly selected from a normal distribution

(µ=θ, σ=15◦). Electrograms and TF were calculated from ten episodes of MWR per

tissue in ten tissues. Electrogram frequency was then calculated with fractionation

effects removed. Delta dV/dt was identified at all recording locations (8x8 array of

evenly spaced electrodes). Correlation coefficient was calculated between TF and EF

at 1) all recording locations, 2) locations whose delta dV/dt > 0.02, and 3) locations

at which electrode distance from the tissue < 2mm.

4.3.8 Biologic Validation

In four swine, access to the left atrium was gained through a left lateral thoraco-

tomy. MWR was induced via burst pacing on the epithelial surface of the left atrium.

In order to increase the propensity and duration of MWR events, the vagus nerve was

stimulated with 2-5V at 10Hz. During both sinus rhythm and MWR, electrograms

were collected epicardially using a stacked electrode catheter placed orthogonally to

the tissue surface. Electrogram delta dV/dt was assessed for each electrogram as

described above.
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4.4 Results

4.4.1 Electrogram frequency as a function of

height

In simulated data of multi-wavelet reentry, electrogram frequency decreased ex-

ponentially as a function of increasing height. Correlation to activation frequency

was highest at tissue contact (r2 = 0.97) and dropped rapidly when electrode dis-

tance to the tissue surface exceeded 2mm. Electrogram frequency similarly decreased

with increasing electrode height in vivo. The degree by which electrogram frequency

decreased was a function of the frequency of atrial fibrillation. During lower fre-

quency AF (7Hz), the difference in electrogram frequency observed between contact

and noncontact electrodes was 0.4 ± 0.1 Hz. On the contrary, during higher frequency

AF (9Hz), the difference in observed electrogram frequency varied by 2Hz between

contact and non-contact electrodes.
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Figure 4.2: Assessment of unipolar electrogram frequency as a function of electrode distance
to the tissue surface. The range of frequencies observed due to changes in electrode height
are on the same order as frequency differences due to heterogeneous physiologic parameters
in the tissue addressing the importance of tissue-contact electrogram mapping.

4.4.2 Delta dV/dt as a function of electrode

height and rotation

In simulated as well as induced AF in pigs, the magnitude of electrogram delta

dV/dt fell off exponentially as a function of both electrode height and rotation from

an orthogonal axis (Figure 4.3). The correlation between tissue frequency and elec-

trogram frequency weakened as a function of both electrode distance from the tissue

and the orientation of the electrode configuration. However, for electrode heights

≤2mm and electrode rotation <30◦ from the orthogonal axis, correlations remained
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relatively constant (r2 = ±0.05). The delta dV/dt threshold was therefore selected

by identifying the delta dV/dt where electrode height was equal to 2mm (0.02).

Figure 4.3: Assessment of electrogram derived metric as a tool to identify tissue contact and
rotation. The magnitude of delta dV/dt is shown as a function of both electrode distance
to the tissue (x-axis) and rotation away from an orthogonal electrode configuration. Due to
the dissociation of electrogram frequency and activation frequency for distances greater than
2mm and bipolar rotations greater than 30 degrees, a cutoff threshold of 0.02 was chosen.

4.4.3 Effect of filtering fractionated events

The mean number of fractionated events identified per episode of MWR increased

linearly with increasing electrode size (decreased spatial resolution). Accordingly,

correlation between tissue frequency and electrogram frequency decreased linearly

as electrode size increased. The number of fractionated events varied significantly

between episodes of MWR. The coefficient of variation of fractionated events ranged
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from 0.34 with the largest electrode to 0.68 with the smallest electrode. This suggests

that fractionated events were not temporally stable and the spatial complexity of the

tissue varied over time. After the application of the filter to remove fractionated

events from the electrogram frequency measurement, correlation to tissue frequency

improved (r2 = 0.90 vs 0.82, p < 0.05) and the rate of correlation decay decreased

with increasing electrode size (-0.007 per mm radius vs. -0.012 per mm radius).

Figure 4.4: Relationship between delta dV/dt and electrode distance to the tissue collected
during induced AF in swine (Left). Correlation between electrogram frequency and activation
frequency with random distribution of electrode heights, using only electrograms whose delta
dV/dt exceeds a contact threshold, and electrograms generated from electrodes with distance
to the tissue < 2mm (Right).

4.4.4 Efficacy of delta dV/dt to identify tissue

contact

Following randomization of electrode orientation and distance from the tissue

surface, overall correlation of electrogram frequency to tissue frequency was 0.61 (r2)
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and was highly variable (SEM=0.036). Using the electrogram derived filter, frequency

correlation increased to 0.94 and the range of correlations stabilized (SEM=0.004).

To compare the success of the algorithm to the physical height of the electrodes, using

only electrodes whose distance from the tissue surface exceeded 2mm increased the

correlation to tissue frequency to 0.96±0.007.

4.5 Discussion

In order to develop a more successful strategy for the treatment of atrial fibril-

lation, one must explore the substrate responsible for the perpetuation of AF. As

with all arrhythmias, unless current is continuously being supplied to the tissue, con-

tinuous activation requires re-excitation by existing waves within the tissue. In its

most organized form, this would take the shape of either structural reentry around

an existing boundary or scar tissue or a stable rotating wave around a functional

boundary. In MWR, we find the path traveled by a reentrant wave is not stable and

multiple reentrant waves can exist in the tissue at any given time. Similar to the

termination of a structural reentrant wave, successful ablation of spatially unstable

reentrant waves requires the complete transection of the wave-front. It is, therefore,

necessary to identify the center of rotation of these waves, or circuits, for complete

termination. We have previously demonstrated a method for the identification of

circuits in MWR [7]. Briefly, a circuit is defined by the enclosed area circumscribed

by a rotating wave-end which is unattached to a tissue boundary. It was shown that

linear ablation guided by the distribution of circuits was more effective than both

random ablation and baseline duration.
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The precise tracking of waves clinically is challenging with current technologies.

We discovered that the circuit density distribution correlated inversely with the local

wavelength of the tissue [2]. The presence of MWR in a tissue with a heteroge-

neous distribution of wavelength causes a shifting conduction block in regions with

slower repolarization times. We postulated that regions of tissue responsible for driv-

ing MWR would be activated more frequently, while regions being passively activated

would have instances of conduction block, therefore, reducing its activation frequency.

Our data gathered in computer simulations supported our hypothesis; tissue activa-

tion frequency correlated with circuit density over a wide range of conditions.

While the use of tissue activation frequency proved to be an effective surrogate

for the identification of reentrant drivers in MWR, one cannot directly measure its

frequency. An electrode measures the distance weighted current density of all cells in

the heart. As such, an electrogram is not a measure of an individual myocyte, but

rather a region of tissue whose size is dependent on the spatial resolution of the elec-

trode. We previously demonstrated that electrogram frequency inaccurately identifies

tissue frequency when the spatial resolution of the electrode causes the simultaneous

mapping of multiple dissociated muscle fibers [4]. Therefore, electrogram frequency

only reflects tissue frequency when the spatial resolution of the electrode is suffi-

cient to record a synchronously activated region of tissue. Previous data showed that

the accuracy of electrogram frequency improved with increasing spatial resolution [5]

(orthogonal close unipolar>contact bipolar>unipolar).

One might expect that by raising the electrode farther from the tissue surface,

it would create the potential to observe multiple wave events thereby increasing its

chance to overestimate the local activation frequency similar to the effect of using
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a larger electrode or an electrode configuration with lower spatial resolution. We

find, however, that in the process of increasing the distance to the tissue, electrogram

potentials begin to blend with each other. The result of which causes undercounting

in the electrogram frequency measurement. The degree to which this occurs is on the

same order as the tissue frequency varies due to its heterogeneous properties (APD,

resistance) emphasizing the importance of electrode-tissue contact. Clinically, the

position of an electrode relative to the tissue surface is difficult to validate. We,

therefore, sought to develop an electrogram derived metric to assess the distance of

a recording electrode to the tissue surface.

We hypothesized that electrogram sharpness best identifies electrode proximity to

the tissue surface. With unipolar electrodes, sharpness can also be affected by changes

in wave conduction velocity and the presence of wave collisions within the recording

region. However, using the relative difference in sharpness between two electrodes

oriented orthogonally to the tissue plane enhances its relationship with distance to

tissue (difference in sharpness falls off more quickly with increasing distance) while

reducing the impact of conduction velocity and wave collision. Our data suggests, in

both in silico and in vivo settings, that the difference in electrogram sharpness can

be used to identify electrode proximity to the tissue surface.

As described in our previous paper [2], the accuracy of electrogram frequency

mapping is dependent on the spatial resolution of the recording site. We showed

that electrograms generated from an orthogonal electrode configuration were more

accurate that a parallel orientation. This is the result of both the directional depen-

dence of waves approaching the parallel recording site as well as having lower spatial

resolution compared to an orthogonal configuration. Similar to electrode distance to
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the tissue surface, the orientation of a catheter with respect to the tissue is clinically

difficult to validate. However, by comparing the electrogram sharpness for each of the

unipolar electrodes making up the bipolar configuration, one can gain insight on its

rotation with respect to the tissue surface. We find that the difference in electrogram

sharpness between the unipolar electrodes is greatest in an orthogonal configuration

and approaches zero as the angle approaches a parallel configuration. This suggests

that electrogram sharpness can be used not only to identify electrode distance to the

tissue but also to assess its orientation relative to the tissue plane.

Fractionation in electrograms has been an area of interest in the identification

of ablation sites for complex fractionated atrial electrogram (CFAE) mapping [8,

9, 10, 11, 12]. Algorithms for the detection of CFAE sites typically involve the

detection of multiple peaks per activation in an electrogram or a short average cycle

length (<80ms). Observing multiple peaks per activation can be the result of having

electrodes with an insufficient spatial resolution to dissociate independent wave events

in the recording region of the electrode. This information can be useful as this will

likely identify sites of focal firing events but can also be the result of wave collisions

or simultaneous passive activation through the tissue and conduction fibers. By

classifying a region of tissue to be continuously fractionated with a cycle length <

80ms, one must assume that continuous activation at this rate is not physiologically

viable during AF. If on the other hand, the tissue is capable of supporting this rate

during AF, this form of CFAE mapping becomes the identification of high-frequency

sites in the tissue which is the premise of frequency mapping. In this paper, we

define a ’fractionation filter’ by declaring cycle lengths to be physiology inviable under

25ms in order to remove activations involving multiple peaks which are likely to be

77



caused by electrodes with insufficient spatial resolution. In doing so, we find that the

accuracy of electrogram frequency to tissue frequency improves. The degree to which

the filter improves its accuracy is dependent on the spatial resolution of the electrode.

For larger electrodes, spatial resolution decreases and we observe more fractionated

events in electrograms. Therefore, the fractionated filter improves the accuracy to a

larger degree than electrodes with higher spatial resolution.

4.5.1 Limitations

As is the case with all experiments relying heavily on computational modeling,

many of these findings will need to be validated in a biological system. While we were

able to validate the effect of increasing electrode distance to the tissue on the sharpness

of the electrogram in swine, the use of computational models was required to accu-

rately identify tissue frequency and make correlations to electrogram frequency under

various electrode positions and orientations. Electrode size and morphology could be

modified immediately without long wait times for fabrication of new catheters. Com-

putational simulations also permitted complete control over physiologic parameters

such as action potential duration and intercellular resistance to vary both the rate

and complexity of wave events. This along with the high throughput nature of our

computational model allowed us to investigate our hypotheses over a wide spectrum

of MWR quickly.
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4.6 Conclusions

The accuracy of electrogram frequency mapping is dependent on both the spatial

resolution of the recording electrode as well as its position and relative orientation

to the tissue plane. While the spatial resolution of an electrode can be permanently

affected through the use of a bipolar configuration or by changing its size, the mor-

phology and distance to the surface of the heart are largely unknowns. Our data

suggests that one can use a signature of an electrogram to assess both the electrode

proximity to the tissue surface and its orientation.

Although fractionation can have a large impact on the accuracy of electrogram

frequency mapping, we found that it can be largely mitigated through the use of

higher resolution electrodes as well as providing a filter eliminating very short cycle

length events (multiple peaks per activation). Each of these effects increased the

correlation of electrogram frequency to tissue activation frequency. Further work will

be required to assess the degree of fractionated events in a biological model as it

has a more complex conduction system than our computational simulations. While

we have shown adequate spatial resolution of our electrode design in a swine model

of AF, a clinical study will be required to identify the range of spatial complexities

seen in human patients to evaluate if the spatial resolution of our electrode design is

sufficient.
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5.1 Abstract

Introduction: We recently demonstrated that electrogram frequency mapping using

high resolution electrodes can identify circuit core distribution in multi-wavelet reen-

try. High frequency sites are not unique to multi-wavelet reentry; they can also be

produced by focal drivers (triggered firing or stable rotors). Ablation strategy may

vary depending upon the underlying substrate. After identifying high frequency re-

gions, it would be ideal if local multi-electrode recordings could reveal their underlying

mechanism. We developed a real-time automated tool to distinguish driver type.

Methods: In computational modeling, stable rotors, concentric activation, and passive

linear activation were generated. Virtual electrograms were calculated from locations
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resembling a Pentaray catheter (5 splines/3 electrodes per spline). Activation times

were identified in 100ms windows and normalized to be used as inputs for a counter-

propagation neural network. 3600 examples of concentric activation, rotational waves,

and linear activation were used in training the network for classification of activation

patterns.

Results: Following training of the neural network, 897 of 900 randomized activation

patterns were successfully classified. The computational efficiency of our algorithm

allows real-time classification of activation patterns, making it potentially useful for

clinical mapping.

Conclusions: The activation pattern of a driver in AF influences the appropriate

ablation strategy. Real-time pattern recognition can be achieved via a neural network

with simultaneous multi-electrode recordings.

5.2 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia and can be de-

scribed as the chaotic motion of electrical waves throughout the atria. This irregular

behavior contributes to a large burden on cardiac health. Despite its prevalence and

complications, treatments have remained problematic both pharmacologically and

surgically [1]. Catheter ablation is a minimally invasive surgical treatment of AF

which involves guiding wires into the heart through a vein in the arm, groin, or neck.

Radiofrequency energy is then applied through the wires to destroy regions of tissue

in the atria as a means to disrupt the chaotic electrical behavior. Traditional catheter

ablation involves the elimination of potential trigger sites and has shown moderate
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success in patients with early onset (paroxysmal) AF, but success rates diminish in

more progressed forms of the disease. This is largely due to its failure to identify the

substrate responsible for the perpetuation of arrhythmia.

We recently demonstrated that electrogram frequency mapping using high-resolution

electrodes can identify circuit core distribution in multi-wavelet reentry, a form of AF

consisting of multiple spatially unstable wavelets causing perpetual arrhythmia [2]. In

computer simulations, ablation guided to high-frequency regions caused a significant

reduction in the duration of fibrillation compared to blind ablation [3].

High-frequency sites are not unique to multi-wavelet reentry, but can also be

produced by focal drivers [4]. Focal drivers can take the form of triggered firing (con-

centric activation) or spatially stable rotors. Ablation of focal drivers is imperative

for successful treatment; however, the technique of intervention required is dependent

on the form of driver. Simultaneous multi-electrode recordings in the high-frequency

area of interest could reveal the underlying mechanism. We, therefore, developed

a real-time automated tool to distinguish driver type using electrogram activation

timings and assessed its ability to correctly classify activation patterns.

5.3 Methods

In order to develop a tool for the classification of focal drivers during AF, the true

activation pattern must be known. In a biological setting, recreating an activation

map is difficult to achieve without high-density electrode arrays with sufficient spatial

resolution. We, therefore, used a computational model of excitable media to allow

complete visibility of the activation pattern as well as control over electrode design
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and placement [5].

Activation patterns of stable rotors (clockwise and counter-clockwise rotation),

concentric activation, and passive linear activation were simulated in a computer

model of excitable media. The model consists of a grid of two-dimensional excitable

’cells’, each representing a group of myocytes. Cells are electrically connected to their

neighbors (Von Neumann neighborhood) via resistive pathways and exchange current

according to their voltage difference and intercellular resistance. Upon exceeding

a threshold voltage, cells exhibit a simulated action potential whose morphology is

dependent on intrinsic behavior (upstroke time, plateau time, repolarization time) as

well as extrinsic current exchanges with neighboring cells.

Virtual electrograms were calculated simultaneously, as described previously [6],

from a multiple electrode catheter design during each activation pattern. The catheter

consisted of five splines, with three electrodes per spline at 2, 6, and 10 mm radial

distance from the center of the catheter. The catheter center was varied with respect

to the center of focal drivers in each scenario to account for activation timing dis-

crepancies when the catheter was not centered on the activation pattern. Electrode

positions and the flowchart for activation pattern classification is shown in figure 5.1
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Figure 5.1: Flowchart for the classification of activation patterns using a neural network.
Electrode position is shown centered over a concentric activation pattern.

A counter-propagation style neural network [7] was chosen to classify the electro-

gram signals into an activation pattern. In order to translate the electrogram signals

into a usable input to the neural network, the time series was split up into 100ms

segments. Activation times were identified as the time index for each peak in the

electrogram signal. If no peak appeared for an electrode within a 100ms window, the

maximum time (100ms) was assigned. In the case of two peaks occurring within the

same time segment, the first peak was chosen.
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Figure 5.2: Visual representation of the classification algorithm used to identify activation
patterns using electrograms. Normalized activation times within a 100ms window from
the 15 electrogram signals are treated as inputs to the system. Outputs correspond to the
classified activation pattern assigned by the trained weights between layers.

The activation times for each electrode in a given window were then normalized

to their combined Euclidean distance and used as inputs to the network. Because

the relative positions of the electrodes with respect to each other remains unchanged,

location data was omitted as an input to the network. Initial Kohonen (1st to 2nd

layer) weights to the 5,000 node hidden layer as well as Grossberg weights (2nd to

3rd layer) were initially randomized and normalized to their combined Euclidean dis-

tance. The output layer was limited to three classifications: stable rotors, concentric

activation, and passive linear activation.
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Figure 5.3: Simulated electrograms generated from five locations within the multi-electrode
catheter. The gray rectangle denotes a window of time to identify the electrogram activation
times. These activation times are then normalized and fed into the neural network (from
all 15 locations) and are then classified into an activation pattern.

Kohonen layer values were calculated as the dot product between inputs and

weights to a given node. The node with the highest dot product was selected as the

winner and all weights connected to it were updated as shown in equation 5.1 below.

W
′

ij = Wij + a ∗ (P −Wij) (5.1)

Where Wij are the previous weights attached to the winning node j, a is the learning

coefficient to the Kohonen layer (0.7), and P is the current training pattern. The

winning node from the hidden layer was then activated and set to one while all other

nodes are eliminated. Finally, the Grossberg weights are updated from the winning

Kohonen node to match its associated activation pattern as shown below.
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W
′

jk = Wjk + b ∗ (T −Wjk) (5.2)

Where Wjk are the previous weights from the winning node j, b is the learning coeffi-

cient for the Grossberg layer, and T is the correct classification to the current training

pattern.

Training success was evaluated during each iteration using the root mean square

error (RMSE) between the assigned classification at the given iteration and the true

activation patterns. The network was allowed 200 iterations for the weights to con-

verge. Following training, the network was evaluated via an interpolation set of 600

additional patterns consisting of each of the three classifications. The robustness

of the network to slight perturbations in the activation times was evaluated by a

applying white noise filter with amplitude up to 10% of the activation time.

5.4 Results

In the training phase, 1200 examples of stable rotors, concentric activation, and

passive linear activation were created (3600 total). Network weights converged within

50 iterations with an RMSE of 0.015 (Figure). Following 200 iterations of training,

99.94% (3,598 of 3,600) training patterns were successfully classified.
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Figure 5.4: Root mean square error (RMSE) as a function of the number of training itera-
tions. Convergence is observed within 50 iterations of training.

An interpolation set of 900 additional patterns was created in the computational

model (300 of each classification) to evaluate the network using an untrained series

of data. The network successfully classified 99.7% (897 of 900) of the untrained

activation patterns. Following the addition of a white noise filter to evaluate the

robustness of the neural network to random small changes in the input patterns,

95.1% (856 of 900) input patterns were successfully classified.

In addition to its ability to successfully classify activation patterns, the network

is computational efficient (0.003s) in classifying additional patterns. This makes it

a viable tool for real-time classification of activation patterns in a clinical mapping

scenario.
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5.5 Discussion

A successful ablation strategy for atrial fibrillation requires a complete depiction

of the substrate responsible for its perpetuation. The limited success of traditional

catheter ablation is largely due to the blind approach it takes by eliminating potential

trigger sites in the pulmonary veins. Using computer modeling we have the ability

to study the excitation of every cell and make inferences about the driving forces

causing the maintenance of AF. Depending on the collective properties of the under-

lying tissue, atrial fibrillation can take a number of different forms. In its simplest

form, perpetuation is caused by a single stable rotating wave that can spawn daugh-

ter wavelets causing fibrillatory conduction outside its direct area of influence. In

this scenario, elimination of the rotor terminates the arrhythmia as the surrounding

tissue is unable to maintain the arrhythmia. Decreasing the excitability of the tissue

destabilizes the single rotor causing it to meander; however, its elimination leads to

the quiescence of the tissue. In its most chaotic form, multi-wavelet reentry (MWR),

multiple spatially unstable rotating waves are responsible for the perpetuation of the

rhythm and only when all of these driving forces are eliminated does MWR cease to

perpetuate. Separate from reentrant based arrhythmias, AF can also be maintained

by regions of tissue spontaneously depolarizing known as focal firing. These mecha-

nisms manifest similarly to focal rotors in that they are typically spatially stable and

cause fibrillatory conduction further from the source.

The successful treatment of AF is contingent on distinguishing the substrate re-

sponsible for its perpetuation. In the case of a reentrant arrhythmia (rotors and

MWR), only ablation lesions which completely transect a rotating wave from an
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outer boundary to its core will cause termination. In MWR and meandering rotors,

this involves the placement of lesions based on the probability distribution of where

rotor cores are most likely to occur [8]. Conversely, successful ablation of a focal

firing mechanism simply requires the elimination of spontaneously depolarizing cells

[9]. Although the primary goal of ablation therapy is to restore sinus rhythm to the

heart, lesions placed will permanently block conduction pathways and inhibit some

of the mechanical function of the atria. It is, therefore, necessary to optimize the

placement and strategy of ablation lesions such that sinus rhythm is restored while

preserving the mechanical function of the atria.

In a clinical setting, our understanding of the underlying mechanism is convoluted.

Intracardiac electrograms provide us with insight on the local current density in a

region of tissue. The accuracy of electrograms with respect to cellular excitation is

dependent on the spatial resolution of the electrode as well as its proximity to the

tissue [10]. However, using electrograms to map the activation sequence in the atria

is not clinically viable due to the electrode sampling requirements to recreate its

chaotic behavior. We previously demonstrated that local tissue activation frequency

and electrogram frequency, provided adequate spatial resolution, correlated with the

distribution of rotor cores in MWR [2]. Similarly, frequency mapping can be used

to localize stable rotors and focal firing to their region of 1:1 conduction as they are

driving the arrhythmia and thus activating faster than other regions [4, 11].

Although electrogram frequency mapping is able to identify the area of interest

for a successful ablation, it is unable to distinguish between reentry and focal firing

mechanisms. Activation mapping was previously mentioned to be inviable in AF due

to the constraints on sampling and the size of the tissue. However, when used in
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conjunction with frequency mapping to focus on an area of interest, we hypothesized

that high-density simultaneous electrogram recordings could be used to reveal the

underlying mechanism. To be used viably in a clinical setting, mechanism classifi-

cation should be accomplished real-time and not subject to a human interpretation

of electrograms. We, therefore, reasoned that a neural network trained on activation

patterns from reentrant arrhythmias, focal firing, and passively driven tissue could

be used as a tool to classify activation patterns real-time.

The counter-propagation network was first introduced by Hecht-Nielsen [7]. This

network combined the architecture of the self-organizing map by Kohonen [12] and

the outstar structure by Grossberg. The network was chosen in this scenario for its

ability to classify patterns efficiently as well as its ability to handle continuous vector

inputs. In order to reduce the dimensionality of electrograms to be fed into the neural

network as inputs, activation times were identified at peaks in the electrograms for

each location. The signals were then segmented into 100ms windows to investigate

the pattern of a single activation as it passes through the area of interest. In order

to prevent bias in the training phase, the vector of activation times was normalized

by their Euclidean length. The number of nodes in the Grossberg (hidden) layer of

the network was chosen according to the number of patterns used in training the

network with additional included to envelope a larger percent of the state space.

Initial Kohonen and Grossberg weights were initially randomized due to the absence

of large clusters of input vectors in the training patterns. The rapid convergence of

weights as shown in the RMSE curve after 50 iterations suggested the representation

of electrograms as activation times was adequate for classification into driver types.

We demonstrated the accuracy of the neural network with an interpolation set of 900
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additional patterns which were correctly classified in 99.7% of the patterns.

5.5.1 Limitations

A computational model of excitation was used in the creation of activation pat-

terns as well as electrogram generation. In order to be clinically viable, an interpola-

tion set including activation patterns collected from a biological system will ultimately

be required. The network was also trained for a specific electrode layout with the as-

sumption that the position of electrodes relative to each other remained unchanged.

Intracardiac catheters are designed to have pliable splines to maneuver themselves

into the heart and make contact with the tissue surface. The compliance of this

catheter design must be investigated to ensure this assumption holds. Otherwise, an

alternative catheter design in which electrodes are rigidly held on a flat plaque could

be trained on the network to ensure their relative positions to each other remains

constant.

5.6 Conclusion

Recent mapping strategies for atrial fibrillation have begun to take a targeted ap-

proach to identifying the substrate responsible its perpetuation. We have previously

demonstrated that electrogram frequency mapping can be used to identify regions

of tissue responsible for driving the arrhythmia. Classification of the driving mecha-

nism is required to develop an optimized ablation strategy and minimize unnecessary

lesions. Electrogram frequency guided activation mapping can provide insight on

the driving mechanism. We developed a neural network to distinguish the underly-

94



ing mechanism in the high frequency area using the relative activation times from a

multi-electrode recording.

95



Bibliography

[1] C. T. January et al. “2014 AHA/ACC/HRS guideline for the management
of patients with atrial fibrillation: executive summary: a report of the Amer-
ican College of Cardiology/American Heart Association Task Force on prac-
tice guidelines and the Heart Rhythm Society”. In: Circulation 130.23 (2014),
pp. 2071–104.

[2] B. E. Benson et al. “Mapping multi-wavelet reentry without isochrones: an
electrogram-guided approach to define substrate distribution”. In: Europace
16 Suppl 4 (2014), pp. iv102–iv109.

[3] P. S. Spector et al. “Ablation of multi-wavelet re-entry: general principles and
in silico analyses”. In: Europace 14 Suppl 5 (2012), pp. v106–v111.

[4] Omer Berenfeld et al. “Spatially Distributed Dominant Excitation Frequencies
Reveal Hidden Organization in Atrial Fibrillation in the Langendorff-Perfused
Sheep Heart”. In: J Cardiovasc Electrophysiol 11.8 (2000), pp. 869–879.

[5] Peter S. Spector et al. “Emergence of Complex Behavior: An Interactive Model
of Cardiac Excitation Provides a Powerful Tool for Understanding Electrical
Propagation”. In: Circulation: Arrhythmia and Electrophysiology (2011).

[6] D. D. Correa de Sa et al. “Electrogram fractionation: the relationship between
spatiotemporal variation of tissue excitation and electrode spatial resolution”.
In: Circ Arrhythm Electrophysiol 4.6 (2011), pp. 909–16.

[7] R. Hecht-Nielsen. “Counterpropagation networks”. In: Appl Opt 26.23 (1987),
pp. 4979–83.

[8] R. T. Carrick et al. “Ablation of multiwavelet re-entry guided by circuit-density
and distribution: maximizing the probability of circuit annihilation”. In: Circ
Arrhythm Electrophysiol 6.6 (2013), pp. 1229–35.

[9] Sanjiv M. Narayan et al. “Treatment of Atrial Fibrillation by the Ablation of
Localized Sources: CONFIRM (Conventional Ablation for Atrial Fibrillation
With or Without Focal Impulse and Rotor Modulation) Trial”. In: J Am Coll
Cardiol 60.7 (2012), pp. 628–636.

[10] J. M. Stinnett-Donnelly et al. “Effects of electrode size and spacing on the
resolution of intracardiac electrograms”. In: Coron Artery Dis 23.2 (2012),
pp. 126–32.

96



[11] Felipe Atienza et al. “Real-time Dominant Frequency Mapping and Ablation
of Dominant-Frequency Sites in Atrial Fibrillation with Left-to-Right Fre-
quency Gradients Predicts Long-Term Maintenance of Sinus Rhythm”. In:
Heart Rhythm 6.1 (2009), pp. 33–40.

[12] Teuvo Kohonen. “Self-organized formation of topologically correct feature maps”.
In: Biological Cybernetics 43.1 (1982), pp. 59–69.

97



Chapter 6
Conclusion

Atrial fibrillation continues to be a growing problem in our healthcare system to-

day despite seemingly immeasurable amounts of money, time, and manpower given in

search for a cure. While numerous research groups have developed effective strategies

for treating patients with early onset disease, patients with the highest disease burden

remain refractory to all modern methods of treatment. In part, this is the result of

our failure to grasp that the mechanism for AF perpetuation may exist in multiple

forms. Existing mapping and ablation strategies are tailored to a specific mechanism

which will ultimately fail upon encountering alternative forms of AF.

Since the discovery of ectopic foci in the pulmonary veins which ushered our mod-

ern standard of care for ablation of AF (pulmonary vein isolation), the emphasis has

shifted away from the multiple wavelet theory as the primary mechanism for the per-

petuation of atrial fibrillation. However, high-resolution multi-site electrode mapping

studies have recently shown multi-wavelet reentry (MWR) is commonly observed in

patients with various levels of disease burden. Identification of the substrate respon-

sible for the perpetuation of MWR using clinically available means has yet to be

thoroughly investigated. Here, a substrate guided mapping strategy is proposed built

on findings that show ablation guided by the distribution of circuits are most effec-

tive in treating multi-wavelet reentry. While activation mapping to identify reentrant

circuits is inviable due to the sampling requirements for MWR, we hypothesized that

the distribution of circuits is dependent on electrophysiologic properties of the tissue;
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areas with the shortest wavelength should have the highest probability to contain a

circuit. Due to the complexity of multi-wavelet reentry, regions of tissue with shorter

refractory periods will on average be excited more frequently. Therefore, identifica-

tion of activation frequency should be an indirect measure of the circuit distribution.

While direct measurement of tissue activation is impossible in a clinical setting, elec-

trogram recordings provide a convoluted view of electrical events. We have demon-

strated that provided sufficient spatial resolution, electrogram frequency can be used

to identify circuit distribution in MWR and ablation guided by electrogram frequency

maps are more effective than random ablation.

Although the spatial resolution of electrodes is attributed to manageable proper-

ties such as electrode size and configuration, the distance between a recording elec-

trode and the tissue surface is difficult to identify clinically. Using both electrograms

generated from simulated data as well as in vivo observations, we showed that the

morphology of electrograms is highly sensitive to electrode height. This results in the

undercounting of electrogram frequency measurements. Depending on the variation

is electrode positions, changes in electrogram frequency can be on the same order as

the inherent distribution of activation frequencies due to electrophysiologic hetero-

geneities. As a result, we sought to develop a method to determine electrode-tissue

contact using the electrogram signal alone. We hypothesized that electrogram sharp-

ness could serve as a measure for tissue contact and the difference in sharpness between

two orthogonally arranged electrodes would enhance this identification. Additionally,

this metric can be used to ensure orthogonality of the bipolar configuration because

as the orientation approaches parallel, electrogram sharpness between the electrode

pairs homogenizes. We demonstrated in both simulation and swine models that this
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metric can be used to identify tissue contact and selection of frequencies based on

electrogram sharpness maximizes the correlation to activation frequency.

While frequency mapping can be used to identify the distribution of circuits in

multi-wavelet reentry, high-frequency sites are not unique to this mechanism. Focal

drivers with fibrillatory conduction will also exhibit high-frequency regions within

areas of 1:1 conduction. While ablation of focal drivers is required for successful

treatment, the strategy of intervention varies depending on the driver type. Both

rotor reentry and multi-wavelet reentry require the interruption of circuits with lin-

ear ablation connected to a boundary; however, termination of ectopic foci can be

achieved through focal ablation. Because unnecessary ablation has been shown to

have detrimental effects, a method for the identification of activation patterns would

be ideal. Using simultaneous multi-site electrode recordings, we used a neural net-

work to classify activation patterns within an area of high frequency. Using training

patterns and an interpolation set generated from simulated activation, the network

successfully classified 99% of patterns with enough computational efficiency to be

used during clinical cases.

6.1 Suggestions for future work

The research presented provides a framework for future studies. The majority of

this work is built on observations in a computational model of excitation. Ultimately,

biological validation of these findings will be imperative.

Chapters 4 and 5 proposed a novel mapping technique for the treatment of multi-

wavelet reentry as well as a tool to assure electrode-tissue contact. While compu-

tational findings showed promising results, it is unclear whether the simplifications
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imposed create a reentrant substrate reflective of atrial fibrillation in humans. Fu-

ture studies may choose either a stepwise validation of this mapping technique by

evaluating its success in biophysical models and animal models of AF or take these

theories straight to a clinical trial in human atrial fibrillation. While the latter can

be a risky solution should these findings not translate to human AF, current treat-

ment for patients with high levels of disease burden are less than 50% effective and

therefore alternative treatments should be investigated.

Frequency mapping may also aid in another research topic arising from our lab,

the fibrillogenicity index. Building on the critical mass hypothesis, this metric is used

to assess the propensity of a tissue to support multi-wavelet reentry. In computational

experiments, the fibrillogenicity index was found to correlate strongly with the du-

ration of episodes of MWR and could be used to calculate titrated ablation therapy

tailored to disease burden. Despite promising results during in silico experiments,

its calculation is built on tissue parameters that are clinically impossible to measure

during observation and treatment of a patient. However, we presented here that tis-

sue frequency and, with sufficient spatial resolution, electrogram frequency correlates

with tissue properties (action potential duration) and could, therefore, be used as a

surrogate for unobtainable parameters to generate a clinically viable fibrillogenicity

index.

The combination of frequency mapping with activation pattern classification is

an exciting prospect which deserves further development. Activation pattern classi-

fication showed encouraging early findings in computational simulations. However,

the activation patterns created for both training patterns and interpolation sets were

ideal cases where rotors and focal sources were not impeded by fibrillatory conduction
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or nearby reentrant waves. As a result, virtual electrograms generated were free from

fractionation making activation time identification highly simplified. Future studies

should include training and interpolation sets produced from activation patterns dur-

ing fibrillation. Automated classification may prove to be unnecessary clinically as

local activation mapping can reproduce excitation patterns with sufficient resolution.

This, however, introduces the possibility of human bias while observing reconstructed

excitation.
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