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ABSTRACT 

In the field of biomaterials, naturally-derived and synthetic polymers are 

utilized individually or in combination with each other, to create bio-inspired or 

biomimetic materials for various bioengineering applications, including drug delivery 

and tissue engineering. Natural polymers, such as proteins and polysaccharides, are 

advantageous due to low or non-toxicity, sustainable resources, innocuous byproducts, 

and cell-instructive properties. Synthetic polymers offer a variety of controlled 

chemical and physical characteristics, with enhanced mechanical properties. Together, 

natural and synthetic polymers provide an almost endless supply of possibilities for the 

development of novel, smart materials to resolve limitations of current materials, such 

as limited resources, toxic components and/or harsh chemical reactions. Herein is 

discussed the synthetic-biological material formation for cell-instructive tissue 

engineering and controlled drug delivery. We hypothesized that the combination of 

hydrogel-based scaffold and engineered nanomaterials would assist in the development 

or regeneration of tissue and disease treatment. 

Chemically-modified alginate was formed into alginate-based nanoparticles 

(ABNs) to direct the intracellular delivery of proteins (e.g., growth factors) and small 

molecular drugs (e.g., chemotherapeutics). The ABN surface was modified with cell-

targeting ligands to control drug delivery to specific cells. The ABN approach to 

controlled drug delivery provides a platform for studying and implementing non-

traditional biological pathways for disease (e.g., osteoporosis, multiple sclerosis) and 

cancer treatment.  

Through traditional organic and polymer chemistry techniques, and materials 

engineering approaches, a stimuli-responsive alginate-based smart hydrogel (ASH) was 

developed. Physical crosslinks formed based on supramolecular networks consisting of 

β-cyclodextrin-alginate and a tri-block amphiphilic polymer, which also provided a 

reversible thermo-responsiveness to the hydrogel. The hydrogel was shear-thinning, 

and recovered physical crosslinks, i.e., self-healed, after un-loading. The ASH 

biomaterials provide a platform for injectable, therapeutics for tissue regeneration and 

disease treatment. Indeed, various hydrogel constituents and tunable mechanical 

properties created cell-instructive hydrogels which promoted tissue formation. 
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 CHAPTER 1: CONPREHENSIVE LITERATURE REVIEW 

PREFACE 

In the field of bioengineering, the essence and motivation for research are 

ultimately driven by fundamental questions in biology. To provide technical support in 

the discovery of significant biological (and medical) findings, bioengineers contribute 

methodologies and tools, to perform research in a safe and controllable manner.  In 

order to do so, bioengineers must have an understanding of, and appreciation for, the 

work of biologists and doctors. Herein, my thesis has introduced and discussed relevant 

biology in order to provide context for my work, and the motivation for my research 

projects.  

The contributions of my PhD thesis research are highlighted in detail below, in 

regards to the collaborative publications in the field of biomaterials and biomedical 

engineering:  

Throughout the 4 years of my PhD research, I designed a natural-based 

polysaccharide (i.e., alginate) nanoparticle platform for targeted and controlled delivery 

of a variety of therapeutics, in order to meet treatment requirements for different 

diseases, including: osteoporosis, lung cancer and multiple sclerosis. Various chemical 

modifications of the polysaccharide core nanoparticle, and surface conjugation 

chemistries, were utilized, characterized, and in some respects quantified, to enhance 

the functionality of the nanoparticles. 1) I synthesized an alginate-graft-poly(ethylene 

glycol) copolymer in order to form nanoparticles via water/oil emulsions; the side-

chain addition of poly(ethylene glycol) (PEG) onto the alginate backbone was designed 

to partially neutralize the  nanoparticle. 2) I performed dithioldipyridine modification of 

the alginate backbone in order to conjugate a targeting peptide (i.e., arginine-glycine-

aspartic acid, RGD) onto the surface of the nanoparticles. 3) I helped design the 

emulsion of double-crosslinked hydrogel nanoparticles to prolong the release profile of 

small molecules. In addition, I also performed flow cytometry to verify the nanoparticle 

cellular uptake, and designed and completed the statistical analysis of the nanoparticle 

data. The shared nanoparticle fabrication, and cell culture, was performed by Spencer 

Fenn, a fellow graduate student in the Oldinski Laboratory. 4) I designed and 

implemented an avidin coating on the nanoparticles, to allow subsequent conjugation of 

any biotinylated antibody (e.g., a cell surface marker) to target drug delivery to 

selective cell types. The remainder of the targeting efficacy verification in vitro and in 

vivo were done by Abbas, in the Cory Teuscher Ph.D. Laboratory, and Dr. Dimitry 

Krementostov. 5) I quantified the encapsulation efficiency and drug release profiles 

over 14 days, for vascular endothelia growth factor A (VEGF-A), fibroblast growth 

factor 2 (FGF-2), doxorubicin, bovine serum albumin (BSA). I quantified the 

nanoparticles’ size and surface charge with dynamic light scattering, and characterized 

the surface morphology with scanning electron microscopy. I created an efficient 
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fluorescent labeling procedure to efficiently tag nanoparticles with Alexa-647, which 

can be tracked and traced in vitro and in vivo. I also used these tagged nanoparticles to 

semi-quantitatively determine how cells are internalized by cells, and how they are 

transported inside cells.  I cultured the nanoparticles with cancer cells, human epithelial 

cells, and human mesenchymal stem cells. I was able to induce osteogenic 

differentiation using MSC treated with VEGF-A loaded nanoparticles, and able to slow 

down lung cancer proliferation using FGF-2 loaded nanoparticles.  

The other significant part of my PhD research was to design an injectable 

thermo-responsive hydrogel, based on alginate, for tissue regeneration and disease 

treatment, specifically, drug delivery and cell transplantation. I synthesized and 

characterized the mechanical properties of the hydrogels. I also conjugated RGD, a pro-

adhesion peptide, onto the alginate backbone, mixed with cells, injected the material 

into a tissue culture dish, and verified cell viability.  

In the project of poly vinyl alcohol (PVA) /gelatin scaffold, I was able to create 

porous hydrogels using freeze/thaw methods. I also synthesized theta-gels consisting of 

PVA, gelatin and PEG. I quantified the mechanical properties of the hydrogels using 

rheometry and scanning electron microscopy. I also performed a chondrogenesis assay 

using the PVA/gelatin scaffold to verify the efficacy of using this material to regenerate 

articular cartilage. 
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1.1. Introduction to Polysaccharides 

Natural-based polysaccharides from different sources attract much attention 

from various industrial fields, such as the food and feed industries, and medical and 

pharmaceutical industries[1]. Polysaccharides comprise a groups of molecules known 

as carbohydrates. Along with oligosaccharides, they are one of the most abundant 

group of materials in the class of biopolymers to be involved in many biological 

structural building blocks and processes[2]. The basic structure for polysaccharides 

consists of a monosaccharide repeating unit with hydroxyl groups, such as cellulose 

and amylose. Some polysaccharides have other functional groups in addition to basic 

hydroxyl groups, such as chitosan’s amine group, and alginate’s carboxyl groups, 

offering more functionality compared to more basic polysaccharides (Figure 1-1). Due 

to similar biochemical properties compared with human extracellular matrix (ECM), 

polysaccharides are readily recognized and accepted by the body, and are viewed as 

biocompatible. In addition, these polymers are susceptible to enzymatic and/or 

hydrolytic degradation in biological environments, resulting in innocuous byproducts, 

which can either be reused by the human body or cleared by the immune system[3]. 

Modern nanotechnology has boosted the development of drug delivery systems 

to enhance the therapeutic efficacy for different type of diseases. With the tunable small 

sizes that researchers can achieve, micro/nanoparticles can travel through the smallest 

capillary vessels while avoiding clearance by phagocytes, resulting in a prolonged 

blood stream residence time. The small size also facilitates their ability to penetrate 
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tissue and cell gaps, and to even be internalized by targeted cells for efficient drug 

delivery. Furthermore, the availability of additional chemical conjugation techniques 

provides controlled–release drug profiles to target cells with different triggers, such as 

pH, ion and/or temperature[4]. 

Compared to other type of polymers, polysaccharides have several advantages 

for controlled drug delivery. First, the backbone structure of polysaccharides, 

particularly hydroxyl and amine groups, yield high aqueous solubility, and are better 

absorbed by the human body, and undergo hydrolysis to degrade into innocuous simple 

sugar molecules. Second, many polysaccharides possess innate bioactivity, particularly 

mucoadhesive, antimicrobial, and anti-inflammatory properties[5]. For example, 

chitosan, which is the only natural positively charged polysaccharide, is capable of 

attaching to negatively charged mucosal layers via electrostatic interactions[6]. Another 

example is hyaluronic acid, which binds to CD44 sites in the extracellular domain[7]. 

Third, polysaccharide-based nanoparticles exhibit biocompatible and biodegradable 

properties. Finally, polysaccharides are extremely amenable to chemical modification. 

For example pegylation, peptide conjugation, and antibody coatings provide various 

physiological behaviors and bioactivities for different applications[8]. 
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Figure 1-1. Structures of repeating units of some of the polysaccharides discussed in this 

review. Branching is not shown for dextran. The structures of alginate and hyaluronic 

acid are shown as two linkage types rather than a formal repeating unit. The chitin and 

chitosan structures represent extremes of a continuum of structures. 

1.2.  Structures and Modifications of Polysaccharides 

1.2.1. Alginate 

Alginates are non-branched polysaccharides consisting of 1→4 linked β-D-

mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G), extracted from algae 

(such as kelp), or an exopolysaccharide of bacterial origin including Pseudomanas 

aeruginosa. Commercially available alginates are most often derived from brown 
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algae[9]. With the widely found extrusion source as well as the low cost of purifying 

techniques, alginate has been applied in the food, biochemical, and biomedical 

industries. The U.S. Food and Drug Administration (US-FDA) recognizes alginate as a  

“Generally Referred As Safe (GRAS)” material[10]. 

Referring to the backbone structure of alginate, two functional groups have been 

used for chemical conjugation. One is the common hydroxyl group from 

polysaccharides and the other is the carboxyl group. The hydroxyl group can be reacted 

with methacrylic anhydride via esterification, which can then be crosslinked upon 

exposure to long-wave UV light in the presence of a photoinitiator[11]. Jeon et al. have 

also developed a protocol using 2-aminoethyl methacrylate to react with the carboxyl 

groups on alginates, providing alternatives for designing alginate-based photo-sensitive 

materials[12]. 

Hydroxyl groups can also be oxidized to create more reactive groups and 

increase the rate of degradation[13-15]. The periodate oxidation of alginate, which 

chemically breaks the carbon-carbon bond of the cis-diol group in the urinate residue 

and changes the chain conformation, results in promotion of hydrolysis of alginate in 

aqueous solutions[13]. Jeon et al. also suggested that photo-crosslinked oxidized 

methacrylated alginate hydrogels can promote enhanced cell adhesion and spreading 

compared to those prepared with alginate that had not been oxidized[16], due to the 

free aldehyde groups on photo-crosslinked oxidized methacrylated alginate hydrogels 

forming bonds with amines present on cell surface or ECM proteins[16, 17]. 
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The carboxyl group also offers potential variations of alginate-based materials. 

The most common strategy is to react the carboxyl group with an amine group to form 

peptide bond using water-based reaction, which is catalyzed by 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-

NHS)[18-20]. While the water-based reaction is capable of directing bioconjugation 

without prior organic solvent dissolution, excess reagent and byproducts can be easily 

removed by dialysis or gel-filtration. The high reaction efficiency allows researchers to 

conjugate polymers[20-22], peptides[23, 24] and proteins[25] onto alginate. In addition 

to aqueous reactions, carbodiimide chemistry can also be performed in organic solvent, 

rendering alginate soluble in organic solvent. The organic-based carbodiimide 

chemistry was performed with (benzotriazol-1-yloxy)tris(dimethylamino) phophonium 

hexa-fluorophosphate (BOP)[26]. To render alginate soluble in organic solvent, Pawar 

et al. dissolved tetrabutylammonium (TBA) salts of alginic acid in polar aprotic 

solvents containing tetrabutylammonium fluoride (TBAF)[27], which react with 

alginates homogeneously in organic solvents, including dimethyl sulfoxide (DMSO) 

and  dimethylformamide (DMF). 

Alginate particles have the ability to deliver proteins such as growth factors[9] 

and cytokines[28], chemotherapeutics such as doxorubicin[29] and paclitaxel[30], 

small molecules drugs[28] and nucleic acids including DNA[31] and RNA[32] (Figure 

1-2). Thus, alginate shows great potential for the development of innovative drug 

delivery systems. 
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Figure 1-2. Schematic representation of alginate particulates for surface medication and 

encapsulated drugs. 

1.2.2. Chitosan/Chitin 

Chitin is one of the most abundant polysaccharides in the natural world, and is 

the supporting material for crustaceans, insects, etc., where it represents the major 

component of their exoskeleton. The structure of chitin consists of 2-acetamido-2-

deoxy-β-D-glucose through a β (1→4) linkage[33]. Chitosan is the N-deacetylated 

derivative of chitin, which consists of β(1-4)-linked D-glucosamine and N-acetyl-D-

glucosamine, though this N-deacetylation is almost never complete[33, 34].Chitosan 

has been used in the pharmaceutical industry for almost three decades, inspiring both 
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academic and industrial researchers to create various therapeutic systems. In contrast to 

all biodegradable polysaccharides, chitosan is cationic, based on its primary amino 

groups. The polycations can be used to promote mucoadhesion, because the mucus gel 

layer contains anionic sub-structures including sialic acid and sulfonic acid. Based on 

the ionic interactions between the cationic primary amino groups of chitosan and the 

anionic sub-structures of mucus, mucoadhesion can be achieved. In addition, 

hydrophobic interactions may also contribute to the mucoadhesive properties [34, 35].  

The solubility of chitosan in water is relatively poor, which limits its application in the 

pharmaceutical industry. To facilitate dissolution, researchers have utilized acidic 

solution with pH below 6.5 to increase the repulsion between different polymer 

chains[36]. The backbone of chitosan contains multiple hydroxyl groups, capable of 

supporting many reactions including methacylation[37]. Chitosan also contains amine 

groups, which can react with carboxylate groups via carbodiimide chemistry catalyzed 

by NHS/EDC. Rafat et al. reported using poly(ethylene glycol) dibutylaldehyde (PEG-

DBA) and short-range amide-type cross-linkers (EDC and NHS) to crosslink collagen 

and chitosan molecules, which enhanced the mechanical strength and elasticity[38]. 

The unique properties of chitosan make it useful for developing drug delivery 

systems for various applications. Studies have shown that chitosan can assist oral drug 

delivery, ocular drug delivery, nasal drug delivery, vaginal drug delivery, buccal drug 

delivery, parenteral drug delivery, intravesical drug delivery and vaccine delivery[34]. 

The commercially available chitosan derivative “Ciclopoli®” has been registered and 
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we foresee more commercially available chitosan derivative products boosting the 

pharmaceutical industry[34]. 

1.2.3. Hyaluronic Acid 

Hyaluronic acid (HA) is a naturally occurring linear polysaccharide with 

repeating units of D-glucuronic acid and N-acetyl-D-glucosamine disaccharide (Figure 

1-1). It was first isolated from the vitreous humor of bovine eyes by Meyer and 

Palmer[39, 40]. Due to the presence of carboxyl group on each of the repeat units, HA 

is usually associated with cations at pH=7. As with other polysaccharides, HA is highly 

hydrophilic, capable of absorbing large amounts of water and swelling up to 1000 times 

[39, 41]. The unique character of HA that is different from other polysaccharides is that 

it is capable of interacting with cell receptors, i.e. hyaluronan binding proteins, such as 

CD44, RHAMM, LYVE-1, IVd4 and LEC receptors, since it is a major constituent of 

skin and ECM[7, 42]. The inherent bioactivity of HA makes it a desirable biomaterial 

for tissue engineering and drug delivery (Figure 1-3)[39, 43, 44]. 
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Figure 1-3. Schematic representation of advantages of HA in drug delivery [44] 

(Adapted from reference). 

HA contains a carboxyl group on each repeat unit, making it an anionic polymer 

at neutral pH. Similar to alginate, the available hydroxyl and carboxyl groups on HA 

are subject to a series of modifications including methacrylation[45] and carbodiimide 

conjugation[46]. Methacrylated HA can be photo-crosslinked with either ultraviolet 

(UV) light[46] or visible light[46]. The -NHCOCH3 group, which is distinctive in HA, 

is available for deacetylation and amidation activated by hydrazine sulfate[47]. There is 
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a trend of conjugating other polysaccharides onto hyaluronic acid for tissue 

regeneration.  Rodell et al. reported a shear-thinning hydrogel based on the guest-host 

interactions of adamantine modified HA and β-cyclodextrin modified HA. The physical 

crosslinked hydrogels show potential as a minimally invasive injectable hydrogel for 

biomedical applications [48]. Owing to the unique and valuable physico-chemical 

property of HA, researchers have designed and synthesized innovative HA derivatives 

for various biomedical applications. 

1.2.4. Dextran 

Dextran consists of repeat units of branched glucans of varying lengths, which 

is medically applied as an antithrombotic to reduce blood viscosity, or as a volume 

expander for hypovolaemia. Dextran is produced by numerous types of bacteria, 

including Leuconostocmesenteroids. Similar to other type of polysaccharides, the 

properties of dextrans are strongly dependent on their structure including molecular 

weight and degree of branching. Dextran is soluble in water, formamide and DMSO, 

and insoluble in alcohol and acetone[49]. Only normal hydroxyl groups from the sugar 

repeat unit are present on the dextran backbone; therefore, reactions which modify 

hydroxyl groups are applicable to dextran. Maia et al. have investigated the degree of 

oxidation of dextran using sodium periodate[50].  

Cyclodextrin is one type of dextran obtained from the enzymatic degradation of 

starch, belonging to the family of cage molecules (Figure 1-1). Supramolecular 
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hydrogels utilizing interactions between macrocyclic host and guest polymers to form 

inclusion complexes have drawn attention in the biomedical field[51]. The most 

common host polymer is cyclodextrin, of which there are three types with different 

numbers of sugar units on the ring[52]. The 3-dimensional structure of cyclodextrin 

(CD) reveals an inner hydrophobic cavity, The core of cyclodextrin is composed of a 

dimensionally stable hydrophobic cavity, able to trap and encapsulate other molecules, 

making it a valuable material for drug delivery[53]. However, the smaller size of CD 

limits its application. Therefore, there is a great need to conjugate CDs onto other 

polysaccharides, such as alginate. Rodell et al. conjugated β-CD onto HA to form 

supramolecular hydrogels. Alginate is also a popular polysaccharide to react with CD. 

Pluemsab et al. reported a coupling reaction between α-CD and alginate at the hydroxyl 

groups of alginate via the Cyanogen bromide (CNBr) method. After ionically 

crosslinking with CaCl2, alginate-CD microparticles were generated approximately 500 

µm in diameter[54]. Researchers have also reported using carbodiimide chemistry to 

synthesize alginate-CD, providing alternatives for similar formulations[55]. Dextran 

modification yielded other polymers with different molecular weights, shapes, 

structures and various coupling groups, which is helpful in achieving controlled drug 

delivery and release[56]. 

1.3. Preparation of Polysaccharide-Based Particles 

To maintain the network of polysaccharide particles while avoiding dissolution 
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of the hydrophilic polymer chains/segments into the aqueous phase, crosslinking is 

performed. In general, labile bonds are introduced to form the crosslinked network. 

However, these bonds are subjected to degradation either enzymatically or chemically. 

Both chemical and physical crosslinking methods have been applied in forming 

polysaccharide particulates[57]. 

1.3.1. Crosslinking Reaction 

1.3.1.1. Physical Crosslinking 

The advantage of physical crosslinking is that it can avoid using toxic 

crosslinkers, which need to be extracted from particles before application in vivo. The 

most common physical interactions are ionic. Alginate is a well-established material 

that has been extensively studied to form nanoparticles. As stated above, the 

mannuronic and guluronic repeat units on an alginate backbone contain carboxyl 

groups, which can be crosslinked by calcium ions. The reaction is simple and fast, and 

can be performed at room temperature. It occurs through the exchange of sodium ions 

from the guluronic acid blocks with multivalent cations, such as Ca2+, forming a 

characteristic “egg-box” structure [58]. The higher the percentage of guluronic acid, the 

tighter the ionically crosslinked network, resulting in a prolonged drug release 

profile[58]. The mild gelation method has enabled particle-based delivery of pDNAs, 

growth factors or even live cells[28]. The formation of ionic crosslinks is reversible, 

and the addition of a chelating agent will destabilize the crosslinked network, causing 



· 

15 

particle degradation. 

An example of Ca2+ crosslinked alginate microspheres was generated from a 

microfluidic device by Chen et al. They reported on a versatile droplet microfluidics 

method to fabricate alginate microspheres while simultaneously immobilizing anti-

Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies on 

the porous alginate microspheres for specific binding and binding affinity 

tests[59].They showed that calcium crosslinked alginate microspheres were generally 

round with undulating membranes. 

1.3.1.2. Covalent Crosslinking 

The water solubility of polysaccharides comes from the presence of functional 

groups, including hydroxyl groups, carboxyl groups and amine groups, which can also 

react to form new bonds in order form crosslinked networks. Yoon et al. developed 

photo-crosslinked HA nanoparticles (c-HANPs) with improved stability for tumor-

targeted drug delivery[60]. The photo-crosslinking reaction was triggered by UV-Vis 

activation of acrylate groups in the polymer backbone. c-HANPs showed significantly 

higher stability in a physiological buffer and prolonged the release profile of a 

chemotherapeutic, paclitaxel, enabling long circulation in the body with enhanced 

tumor targeting ability. Researchers compared the near infrared fluorescence (NIRF) 

imaging of SCC7 tumor-bearing mice treated with FPR675-labeled HANP and c-

HANP. C-HANP showed longer body circulation and higher tumor accumulation 
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compared to NHNP without crosslinking, with lower excretion within 24 h post-

injection of PR674-labeled nanoparticles[60]. 

1.3.2. Methods 

1.3.2.1. Emulsions 

Emulsions have been widely applied in the design of drug delivery particles and 

pharmacotherapy. Emulsions provide a number of attributes, such as optical clarity, 

ease of preparation, thermodynamic stability, and increased surface area. Phase 

behavior studies have shown that the size of the droplets is determined by the surfactant 

phase structure (bicontinuousmicroemulsion or lamellar) at the inversion point induced, 

by either material composition or temperature[61]. Since polysaccharides are usually 

water soluble, water/oil emulsions are most applicable in the fabrication of 

polysaccharide nanoparticles. Machado et al. prepared calcium alginate nanoparticles 

using w/o nano-emulsions. The emulsions were produced from mixtures of nonionic 

surfactant tetraethylene glycol monododecyl ether (C12E4), decane, and aqueous 

solutions of up to 2 wt % sodium alginate by means of the phase inversion temperature 

(PIT) emulsification method. This method produced finely dispersed emulsions without 

a large input of mechanical energy[62]. 

To ensure evenly sized nanoparticles, a homogenizer is often used in the 

emulsion process to reduce the size of droplets in liquid-liquid dispersions, thus 

generating stable homogenized particles. However, the inherent random emulsion 
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process is not ideal for industry. Microfluidics have shown unparalleled advantages for 

the synthesis of polymer particles and have been utilized to produce hydrogel particles 

with a well-defined size, shape and morphology. Most importantly, during the cell 

encapsulation process, microfluidics can control the number of cells per particle and the 

overall encapsulation efficiency. Therefore, microfluidics is becoming a powerful 

approach for cell microencapsulation and construction of cell-based drug delivery 

systems[63]. 

1.3.2.2. Microfluidic Device 

Microfluidic devices utilize the science of manipulating and controlling fluids 

and particles at micron or sub-micron dimensions to exploit a wide range of biological 

applications such as high-throughput drug screening, single cell or molecular analysis 

and manipulation, drug delivery and advanced therapeutics, biosensing, and point of 

care diagnostics, among others[64]. Fluid flow in microchannels is diffusion-based 

laminar flow due to low Reynolds numbers[65]. Several materials have been cast to 

make microfluidic devices, including polymer polydimethylsiloxane (PDMS), 

polymethylmethacrylate (PMMA), polystyrene (PS), polycarbonate (PC), cyclic olefin 

copolymer (COC)[66], silicon[67] and metal[68].Typically syringe pumps or 

microfabricated pumps provide pressure-driven flow in the microchannels; 

electrokinetic devices provide additional options for pumping liquids. Reagent 

solutions are manipulated inside microfluidic devices. A T-junction is usually designed 
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to generate droplets alternatively and fuse droplets in a tapered chamber[69]. Indeed, in 

the Oldinski Laboratory, a microfluidic flow focusing device was developed, which is 

consistently reproducible, readily characterized, and easy to test and use, to produce 

homogeneous alginate microparticles[70]. Microfluidic devices allow researchers to 

control the physical conditions and behavior of fluids in a micro/nano scaled domain to 

fabricate polysaccharide biomaterials, offering versatile solutions for fabrication, 

manufacturing and research in the field of cell biology, pharmacology and tissue 

engineering. 

1.4.  Preclinical Applications 

1.4.1. Tissue Engineering and Regeneration 

Polysaccharides form hydrogels and micro/nanoparticles through various 

reactions, and are able to encapsulate drug for therapeutic applications. Polysaccharide 

based micro/nanoparticles also provide protection to encapsulated growth factors, 

offering versatile release profiles in a controlled manner, while reducing the risk of 

adverse events[71]. Tissue engineering is an emerging biomedical field aiming to assist 

and enhance the regeneration of tissue as well as to substitute for the biological 

functions of damaged organs. To promote tissue regeneration or wound healing, growth 

factors are required to induce angiogenesis, which supplies oxygen and nutrients to 

cells transplanted for organ substitution, to maintain their biological functions[72]. 

Some growth factors stimulate the proliferation and differentiation of stem cells via 

certain cellular signaling pathway[73]. Various growth factors enhance the proliferation 
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and survival of multipotential stromal cells, including transforming growth factor beta 

(TGF-β), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), 

platelet-derived growth factor (PDGF), epidermal growth factor (EGF), hepatocyte 

growth factor (HGF) and Wnt[74]. Almubarak et al. summarized the role of common 

growth factors in angiogenesis and osteogenesis, with the current status of preclinical 

and clinical trials[75]. Table 1-1 lists a series of examples of different polysaccharides 

for the delivery of bioactive agents for various applications. 

Polysaccharide 

type 

Bioactive 

Agents 

Application Role in Tissue 

Engineering 

Reference 

Alginate Amidated pectin 

hosting 

doxycycline 

(Antibiotics) 

Wound healing Inhibit bacterial-

infection-caused 

necrosis in wound 

healing process 

[76] 

Alginate human 

fibroblast 

growth factor 1 

(FGF-1) 

human bone 

morphogenetic 

protein 4 (BMP-

4) 

Cartilage 

defects 

Promote the in 

vitro development 

of mature 

adipocytes 

[77] 

Alginate human 

fibroblast 

growth factor 1 

(FGF-2) 

Peripheral 

artery disease 

and coronary 

artery disease 

Promote 

neovascularization 

and restore blood 

flow and tissue 

function of heart 

muscle 

[78] 

Alginate FGF-1 Hypoxia Enhancement of 

graft 

neovascularization 

in a retrievable  

rat omentum 

pouch 

[79] 
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Alginate Transforming 

growth factor-

beta (TGF-β) 

Articular 

cartilage 

defects 

Controlled 

delivery of TGF-β 

selectively to the 

injury site and 

improve the repair 

of articular 

cartilage defects 

in rabbit model 

[80] 

Alginate Insulin-like 

growth factor-1 

(IGF-1) 

Nervous 

system 

disorders such 

as stroke 

Enhanced the 

proliferation of 

the encapsulated 

NSCs 

[81] 

Hyaluronic acid None atherosclerosis Reach the 

atherosclerotic 

lesion after 

systemic 

administration 

with high 

potential as carrier 

for diagnosis and 

therapy of 

atherosclerosis 

[82] 

Hyaluronic acid 

Chitosan 

VEGF Wound healing Promote 

angiogenesis and 

accelerate healing 

[83] 

Hyaluronic acid 

Chitosan 

VEGF 

PGDF-BB 

Development 

of vascular 

network during 

implantation 

Promote 

angiogenesis 

[84] 

Poly(L-lactide-

co-glycolide) 

(PLGA)-grafted 

hyaluronic acid 

bone 

morphogenetic 

protein-2 (BMP-

2) and IGF-1 

Bone 

regeneration 

Promote the 

attachment, 

proliferation, 

spreading, and 

alkaline 

phosphatase 

(ALP) activity of 

human adipose-

derived stem cells 

(hADSCs). 

 

 

[85] 
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Alginate 

microspheres 

within 

hyaluronic acid 

hydrogels 

TGF-β3 

Parathyroid 

hormone related 

protein (PTHrP) 

Cartilage repair Promote neo 

cartilage 

formation  

[86] 

Hyaluronic 

acid/Chitosan 

nanoparticles 

embedded in 

porous chitosan 

scaffold 

DNA encoding 

TGF-β1 

Cartilage tissue 

engineering 

Promotion of 

chondrocyte 

proliferation 

[87] 

Glycidyl 

methacrylated 

dextran 

BMP-2 Wound 

Healing 

Periodontium 

Drug Delivery 

[88] 

Acetalated 

Dextran 

Hepatocyte 

growth factor 

fragment 

Myocardial 

Infarction (MI) 

Largest arterioles, 

fewest apoptotic 

cardiomyocytes 

bordering the 

infarct, and the 

smallest infarcts 

[89] 

Methacrylated 

dextran 

VEGF Ischemia Increase blood 

perfusion and 

angiogenesis 

[90] 

Chitosan–

polyethylenimine 

BMP-2 gene Repair of bone 

defect 

Affect cell 

differentiation 

through a BMP-2 

signal pathway 

and promote new 

bone formation at 

the defect area 

[91] 

Table 1-1. A series of examples of different polysaccharides for the delivery of bioactive 

agents for various applications. 

1.4.2. Cancer Therapy 

1.4.2.1. Therapeutic Aspect 

Cancer remains one of the worlds’ major causes of death[92] and the 
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improvement of effective therapies continues to challenge researchers. With optimal 

size and surface properties, polysaccharide nanoparticles can be designed and 

engineered to increase bloodstream circulation time. Due to the enhanced permeability 

and retention effect, and ligand conjugation, nanoparticles can accumulate in the tumor 

site while delivering anticancer therapeutics, providing a higher targeting efficacy 

comparing to traditional drug delivery methods. Surface conjugation of cell targeting 

moieties also facilitates precise delivery of chemotherapeutics, resulting in higher 

treatment efficiency and fewer adverse events[93]. Table 1-2 list a serious of examples 

of polysaccharide based drug delivery systems for cancer therapy. 

Polysaccharide 

Type 

Anticancer 

agents 

Imaging 

Agents 

Cancer 

Type 

Result and 

Application 

Referen

ce 

Hyaluronic Acid 

(HA) 

None Cy5.5 Xenograft 

subcutaneous 

dorsa of 

athymic nude 

mice 

To visualize the 

biodistribution 

of HA 

nanoparticles 

accumulating 

into the tumor 

with a 

combination of 

passible and 

active targeting 

mechanism 

[94] 
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Liposome-

protamine-

hyaluronic acid 

TGF-β 

siRNA 

None Melanoma Induction of 

antigen-specific 

immune 

response and 

target 

modification of 

tumor 

microenvironm

ent; powerful 

tool for 

immunotherapy 

[95] 

Chitosan siRNA for 

VEGRA, 

VEGFR1 

and 

VEGFR2 

None Breast 

Cancer 

Suppressive 

effect on VEGF 

expression and 

tumor volume  

[96] 

Chitosan/Alginat

e 

Doxorubici

n 

None HepG2 

hepatoma 

cells 

xenografts 

Induce the 

apoptosis of 

HepG2 tumor 

cells both in 

vitro and in 

vivo 

[97] 

Alginate Doxorubici

n 

None Liver tumor Tumor 

necrosis; heart 

cells and 

healthy liver 

cells 

surrounding the 

tumor were not 

affected 

[98] 

Glycyrrhetinic 

acid-modified 

alginate 

Doxorubici

n 

None Hepatoma 

Carcinoma 

Tumor 

inhabitation 

rate reach 

79.3% 

[99] 
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Alginate-g- Poly 

(N-

isopropylacrylam

ide) (PNIPAAm) 

Doxorubici

n 

FCR-675 Squamous 

cell 

carcinoma 

DOX-loaded 

alginate-g-

PNIPAAm 

micelles 

showed 

excellent anti-

cancer 

therapeutic 

efficacy in a 

mouse model 

without any 

significant side 

effects 

[100] 

Alginate Cisplatin Cy5.5 Human 

caucasian 

ovary 

adenocarcino

ma 

Enhance 

delivery of 

CDDP into 

ovarian tumor 

tissues and 

improved the 

antitumor 

efficacy of 

CDDP, while 

reducing 

nephrotoxicity 

and body 

weight loss in 

mice 

[101] 

N-trimethyl 

chitosan 

Cisplatin–

alginate 

complex 

None Human 

ovarian and 

lung 

Carcinoma 

Induce 

apoptosis 

[102] 

Hyaluronic acid Cisplatin None Human 

malignant 

gliomas 

Induce 

apoptosis 

[103] 

Chitosan Destran-

doxorubici

n 

None Various 

Cancer type 

Induce 

apoptosis and 

shrink tumor 

size 

[104] 
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Hyaluronic acid Cisplatin 

siRNA that 

downregula

te anti-

apopotic 

genes 

overexpress

ed in 

cisplatin 

resistant 

tumor 

Indocyani

ne green 

Lung cancer Overcome the 

Multidrug 

resistance 

effect of lung 

cancer in 

xenograft 

model and 

induce 

apopotosis 

[105] 

Table 1-2. Examples of polysaccharide based drug delivery systems for controlled 

delivery anticancer agents. 

Zhang et al. used glycyrrhetinic acid (GA) modified alginate nanoparticles to 

target the delivery of doxorubicin (DOX) to mice for treating liver cancer. After single 

tail-vein injections of 7mg/kg body weight, the concentration of DOX in the liver 

reached 67.8  4.9 µg/g, which was 2.8-fold and 4.7-fold higher compared to non-GA 

modified alginate nanoparticles and free DOX HCl. Histological examination showed 

tumor necrosis in both experimental groups. Most importantly, the heart cells and the 

liver cells surrounding the tumor were not affected by administration of DOX/GA-ALG 

NPs, whereas myocardial necrosis and apparent liver cell swelling were observed after 

DOX·HCl administration[106]. 

1.4.2.2. Imaging/Monitoring Aspect 

The rapid developing field of cancer treatment requires an appealing and 

versatile strategy for selective drug delivery, diagnostic and therapy purpose. Molecular 
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imaging technology has gained tremendous attention in cancer therapy,  driven by 

nanoparticle mediated theranostics[107-111]. The nanotheranostics-based imaging 

platform holds great potential to provide invaluable insights into both cancer diagnosis 

and therapeutic response monitoring. Polysaccharide particulates can encapsulate 

multiple imaging contrasts into one single system for systematic administration. Chan 

et al. reported of using gadolinium-chelating crosslinkers to crosslink self-assembled 

pullulan nanogels to both impact magnetic properties and to stabilize the materials for 

tumor magnetic response imaging (MRI). The polysaccharide coating provides high 

signal enhancement lasting 7 days in  long imaging time scales while causing no 

damage or toxicity in major organs over three months’ monitoring, highlighting the 

potential clinical application of this Gd-chelating pullulan nanogels as a tumor-imaging 

MRI contrast agent, permitting tumor identification and assessment with a high signal-

to-background ratio[112]. 

Another application of polysaccharides in assisting cancer imaging is through 

surface coating of nanoparticles, especially magnetic nanoparticles. The polysaccharide 

coatings of magnetic particles increased their biocompatibility, stability and 

concentration in the in vivo circulation[113, 114]. Thomas et al. reported     developing 

hyaluronic acid (HA) coated superparamagnetic iron oxide nanoparticles (SPIONs) 

primarily for use in a hyperthermia application with an MR diagnostic feature. As 

stated in the previous session, HA is able to target CD44 over expressed cancer cells, 

providing more functionality to the imaging contrast agent. HA-SPION-injected mice 
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tumors showed nearly 40% MR T2 contrast compared to the 20% MR T2 contrast of 

the HA-PEG10-SPION group over a 3 h time period[115]. 

The RNA interference (RNAi) technique has been a new route for cancer therapy 

and several candidates are being tested clinically. In the development of RNAi-based 

techniques, imaging methods provide a visible and quantitative solution to investigate 

the therapeutic effect at anatomical, cellular and molecular level, able to noninvasively 

trace the distribution and study the biological processes in preclinical and clinical 

stages[116]. Nanocarrier-mediated delivery of RNAi therapeutics usually encounters 

different biological barriers including reaching the circulation, crossing the vascular 

barrier, cellular uptake, and endosomal escape.  With the advancements in chemical 

modification and nanotechnology, polysaccharide nanoparticles are diverse in size and 

charge, being widely applied as platforms for simultaneous gene/drug delivery and 

imaging[117]. Yoon et al. reported a novel type of biodegradable hyaluronic acid-graft-

poly(dimethylaminoethyl methacrylate) (HPD) conjugate  that can form complexes 

with siRNA and be chemically crosslinked via the formation of the disulfide bonds 

under facile conditions, exhibiting high stability in 5-% serum solution compere  

to uncrosslinked ones.The in vivo study, which was performed using FPR675labeled 

HPDwith siRNAcomplexes, showed the efficacy of selective accumulation of the 

complexes at the tumor site after intravenous injection into tumor-bearing mice, 

achieving successful gene silencing effect while being able to be monitored with whole 

body NIRF imager[118].  
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 While the application of polysaccharide-coated particles show promising 

results in research, there are limitations. One problem is to target sites located farther 

from the magnetic source. Future research should  focus on designing multimodality 

imaging probes with polysaccharide coatings to upgrade the use of particle based 

imaging based contrasts, offering versatile solutions for early cancer  detection

and monitoring[113]. 

1.5. Clinical Translations 

Despite the potential for polysaccharide-based nanoparticles, they  remain 

elusive to the market and only a few products have continued to a clinical trial. As 

natural biomaterials, polysaccharides have been applied in different industries, 

including food and medical. Table 1-3 includes a list of ongoing and completed clinical 

trials with polysaccharide-based drug delivery systems; many of the clinical trials 

involving alginate focus on dietary supplements, such as iron[119].  DIABECELL is 

one of the most promising products available, in Phase III clinical trial, for the 

encapsulation of porcine islets for the treatment of type 1 diabetes[79]. In addition, 

there are a wide variety of applications using polysaccharide coatings on other 

nanoparticles to reduce cytotoxicity and immunogenicity[120, 121]. 



· 

29 

Indications Name Delivery 

Route 

Bioactive 

Components 

Delivery 

System 

Developmen

t Phase 

Country Referenc

e 

Iron deficiency 

anemia 

Alginate 

beads 

Dietary 

Supplement 

ferrous 

gluconate 

Alginate 

beads 

Complete 

Phase I trial 

United 

Kingdom 

[119] 

Gastroesophag

eal Reflux 

Disease 

Systemic 

Sclerosis 

Scleroderma 

Alginic acid Dietary 

Supplement 

Domperidon

e 

Omeprazole 

Alginic acid 

N/A Ongoing 

Phase III 

Thailand N/A 

Type 1 diabetes DIABECEL

L 

Xenotranspl

antation 

Porcine 

islets 

Alginate Ongoing 

Phase III 

New 

Zealand 

[122] 

Myocardial 

Infarction 
IK-5001 Intracoronar

y slow bolus 

injection 

Calcium 

Gluconate 

Sodium 

Alginate 

Phase I United 

States,   

Australia,   

Belgium,   

Canada,   

France,   

Germany

,   Israel,   

Poland,   

Spain 

[123] 

Cystic Fibrosis OligoG CF-

5/20 

Inhalation OligoG CF-

5/20 G-

block 

Oligosaccha

ride Derived 

From 

Alginate 

Polysacchari

de 

N/A Phase I Merthyr 

Tydfil, 

United 

Kingdom 

[124] 

Breast Cancer RadiaPlex 

Aquaphor 

Injection to 

the medial 

half or the 

lateral half 

of the 

irritated 

breast. 

Radiation Hyaluroni

c acid 

Phase III United 

States 

[125] 

Immune related 

Disease 

Chitin 

Micro-

Particles 

Intranasal 

dosing 

N/A Chitin Phase I Denmark [126] 

non-muscle 

invasive 

bladder cancer 

Immucist® Intravesical 

administrati

on 

Bacillus 

Calmette-

Guérin 

Hyaluroni

c acid 

Phase I Italy [127] 
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Table 1-3. Examples of clinical trials with polysaccharides. 

1.6.  Conclusions 

The biocompatibility, accessibility, and versatile options for chemical modifications 

make polysaccharides desired materials for applications in biomedical engineering. I 

have selected alginate as the focus of my research to make different systems for tissue 

engineering and drug delivery applications. 
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CHAPTER 2: OSTEOGENIC DIFFERENTIATIO OF HUMAN 

MESENCHYMAL STEM CELLS THROUGH ALGINATE-GRAFT-

POLY(ETHYLENE GLYCOL) MICROSPHERE-MEDIATED 

INTRACELLULAR GROWTH FACTOR DELIVERY 

The intracellular delivery of growth factors increases opportunities for 

controlling cell behavior and maintaining tissue homeostasis. Recently, VEGFA was 

reported to enhance osteogenic differentiation of mesenchymal stem cells (MSCs) 

through an intracrine mechanism, suggesting a new strategy to promote bone tissue 

formation in osteoporotic patients. The goal of this study was to design and fabricate 

ligand-conjugated alginate-graft-poly(ethylene glycol) microspheres for intracellular 

delivery and release of VEGFA in primary human MSCs to enhance osteogenic 

differentiation as a potential therapeutic. Three types of microspheres were synthesized 

and characterized by scanning electron microscopy, in vitro drug release kinetics, MSC 

uptake and internalization: alginate alone (Alg), alginate-graft-poly(ethylene glycol) 

(Alg-g-PEG) and alginategraft-poly(ethylene glycol)-S-S-arginine-glycine-aspartic acid 

(Alg-g-RGD). Each of the different microsphere formulations successfully transported 

bioactive VEGFA into primary human MSCs within 48 h of culture, and significantly 

enhanced osteogenic differentiation compared to control treatments with empty 

microspheres (intracellular control) or non-encapsulated VEGFA (extracellular 

control). Adipogenic differentiation was not affected by the presence of VEGFA 

intracellularly or extracellularly. These results demonstrating the internalization of 
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alginate-based microspheres and intracellular delivery of VEGFA support the efficacy 

of using this drug delivery and intracrine mechanism to control the fate of human 

MSCs and enhance osteogenic differentiation. 

 

2.1. Introduction  

Osteoporosis is defined by a reduction in the quantity and quality of bone that 

results in skeletal fragility [1]. As people age, bone resorption rates become unbalanced 

and bone resorption dominates over bone formation, which leads to reduced bone mass 

and altered bone architecture. Human bone marrow progenitor cells known as 

multipotent stromal cells or mesenchymal stem cells (MSCs) can differentiate into 

osteoblasts, chondrocytes and adipocytes and show promise for clinical bone repair [2]. 

A notable recent study with murine MSCs showed that intracellular as opposed to 

extracellular signaling of vascular endothelial growth factor A (VEGFA) had the ability 

to distinctly regulate MSC lineage commitment toward osteoblasts or adipocytes [3]. 

Liu et al. (2012) demonstrated that murine bone marrow stromal cells were more likely 

to differentiate into osteoblasts when MSC expressed VEGFA and possessed 

intracellular VEGFA, compared with no change in osteoblastic differentiation 

following exposure of MSCs to extracellular VEGFA. The investigators proposed that 

VEGFA regulated differentiation through an intracrine mechanism unique to the 

intracellular form of VEGFA and different from the typical mechanism for secreted, 

extracellular VEGFA and signaling through cell surface receptors. For patients, the 
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intracellular delivery of VEGFA into MSCs prior to cell therapy could be a potential 

approach to speed the repair of large or complex bone fractures or perhaps even to treat 

chronic skeletal diseases such as osteoporosis [4]. In this work, we developed and 

functionally tested a specialized drug delivery system designed to accomplish the 

controlled, intracellular delivery of VEGFA in MSCs. 

 Modern drug delivery systems are designed to maintain the structure and 

bioactivity of biomolecules and to release therapeutics in a controlled and predictable 

manner. Micro-encapsulation is one of the core technologies used in polymer drug 

delivery systems [5]. Polymeric particles or microspheres for controlled drug delivery 

applications are designed to provide uniform particle dimensions, shield the drug from 

the extracellular environment, and be biocompatible [6]. Alginate microspheres have 

attracted much attention for the development of controlled- and sustained-release drug 

delivery systems for proteins [7], cytokines [8] and cells [9, 10]. Alginate is a naturally 

occurring polysaccharide extracted from brown seaweed that is generally regarded as 

non-toxic. The fabrication of alginate microspheres is favorable for drug delivery due 

to the relatively mild yet rapid gelation process that omits the use of harsh chemicals to 

ensure stability of encapsulated biomolecules [11-14]. However, the application of 

alginate microspheres has been limited due to their relatively large diameters (10 – 100 

μm) and rapid drug-release rates (< 24 h) [15]. In addition, the anionic nature of 

alginate interferes with the encapsulation and release of charged molecules such as 

polyelectrolytes. To overcome these limitations, alginate microspheres have been 
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refined by varying molecular weight and concentration, stirring conditions, degree of 

crosslinking, and chemical modification of the alginate polymer to achieve sustained 

drug release [16, 17]. 

Poly(ethylene glycol) (PEG) is the most widely applied synthetic polymer in the 

emerging field of biomaterials for drug delivery. Recently, alginate has been modified 

with PEG for the fabrication of microcapsule coatings [18], mucoadhesive polymers 

[19, 20], self-assembling nanospheres [21, 22] and hybrid microspheres [23, 24]. The 

ability of PEG to influence the pharmacokinetic properties of drugs and drug carriers 

has been used to modify many different pharmaceutical compounds and components 

[25]. Biocompatibility and stealth behavior make PEG an ideal material to avoid 

opsonization and subsequent elimination by the reticuloendothelial system [26]. In 

addition, PEG-modified products are less immunogenic and antigenic; hemolysis and 

aggregation of erythrocytes may also decrease, as can the risk of embolism. However, 

the lack of a cell adhesion ligand limits its application in targeted drug delivery 

systems. To address this issue, we developed novel PEG-modified alginate copolymer 

microspheres with and without the surface conjugation of a bioactive cell adhesion 

ligand.  

Proteins containing tri-peptide arginine-glycine-aspartate (RGD) attachment 

sites, along with the integrins serving as receptors for them, constitute a major 

recognition system for cell adhesion to the extracellular matrix (ECM) [27]. 

Consequently, researchers continue to utilize RGD in order to mimic cell adhesion 
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proteins and bind to integrins [28], inhibit apoptosis, angiogenesis, and tumor formation 

[29], coat surfaces for use as biomaterials [30], and enhance drug delivery systems [31, 

32], including microspheres [33]. In this study RGD was utilized as a model cell-

recognition molecule to demonstrate the efficacy of immobilizing ligands onto 

microsphere surfaces. Our results demonstrate that the incorporation of an adhesion 

ligand onto the surface of alginate-graft-PEG (Alg-g-PEG) microspheres containing 

VEGFA provides a promising strategy to regulate osteoprogenitor cell differentiation 

and bone tissue homeostasis, in addition to providing efficacy for the use of surface 

ligands for cell-targeted therapeutic applications in vivo. 

 

2.2 Materials and Methods 

2.2.1. Materials 

Sodium alginate (MW = 65–75 kg/mol, 60-70% guluronic acid residues) was 

generously donated by FMC BioPolymer. Cysteine-L-arginyl-glycyl-L-aspartic acid 

(CRGD) was purchased from Genscript. Amine-poly(ethylene glycol)-thiol (NH2-PEG-

SH, MW = 1000 g/mol) and methyl-poly(ethylene glycol)-amine (mPEG-NH2, Mw = 

500 g/mol) were purchased from Laysan Bio. N-ethyl-N’(3-dimethylaminopropyl) 

carbodiimide hydrochloric acid (EDC), N-hydroxysuccinimide (NHS),  2,2’-

dithiodipyridine,  methanol (MeOH, anhydrous, 99.8%), biology-grade mineral oil, 

Span  80, Tween 80, ethylenediaminetetraacetic acid (EDTA), dexamethasone, ascorbic 

acid, β-glycerol phosphate, hydrocortisone, isobutylmethylxanthine, indomethacin, 
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deuterium oxide (D2O), the In Vitro Toxicology Assay Kit (MTT-based), Hoechst 

33342 and Alizarin red were purchased from Sigma-Aldrich. One molar hydrochloric 

acid (HCl) and 1 M sodium hydroxide were purchased from BDH ARISTAR®PLUS. 

Dichloromethane (DCM, 99.9%), sodium citrate, isopropanol, sodium chloride (NaCl), 

sodium acetate (NaAc), alpha-modified eagle medium (α-MEM, Hyclone), DyLight 

550 Microscale Antibody Labeling Kit, and 20X phosphate buffered saline (PBS) were 

purchased from Fisher Scientific. Penicillin, streptomycin and Trypsin EDTA were 

purchased from Corning Cellgro. AdipoRedTM was purchased from Lonza Inc.  Human 

VEGF DuoSet ELISA Kit was purchased from R&D Systems. Fetal bovine serum 

(FBS) was purchased from Atlanta Biologics and screened for a lot that best supported 

growth of human MSCs.  Green fluorescent protein (GFP)-labeled human MSCs were 

generated by lentiviral transduction for stable integration of the gene and enriched by 

selecting for GFP-positive cells by fluorescence activated cell sorting (FACS). 

 

2.2.2. Alg-g-PEG-S-S-Pyridine Copolymer Synthesis 

First, NH2-PEG-SH (0.1 mg, 0.1 mM) was dissolved in 5 mL of de-gassed 

acetate buffer (0.1 N sodium acetate adjusted to pH 4.6 with acetic acid, 0.3 M sodium 

chloride, and 1 mM EDTA) into which a solution of 2,2’-dithiodipyridine (88.124 mg, 

0.4 mM) dissolved in 10 mL of MeOH was added; the mixture was stirred at room 

temperature under a flowing N2 atmosphere for 4 h. The MeOH was extracted three 

times with DCM and the sample was prepared for 1H-NMR analysis [34].  
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Alginate was modified with the newly formed NH2-PEG-S-S-pyridine using 

EDC and NHS chemistry. The COOH:EDC:NHS molar ratio remained consistent at 

1:8:3.2 during the carbodiimide reactions, where COOH refers to the moles of alginate 

carboxyl groups. A 1% (w/v) alginate solution was adjusted to pH 5 with 1 N HCl. 

EDC was then added followed by NHS and the solution was mixed at room 

temperature for 30 min. NH2-PEG-S-S-pyridine and mPEG-NH2 (the control PEG graft 

chain) were added to separate alginate solutions, respectively; the target degrees of 

PEG modification of the alginate was 10 %. After 12 h of reacting at room temperature, 

the various alginate and PEG polymer solutions were placed into dialysis cassettes 

(MWCO 20 kDa, Pierce Biotechnology) and dialyzed against deionized (DI) water for 

4 d; dialysis solution was changed every 12 h. The Alg-g-PEG-S-S-pyridine copolymer 

product was lyophilized and the powder was stored in a desiccator until use. PEG 

retention post-fabrication was verified using 13C-NMR (Bruker AVANCE III 500 MHz 

high-field NMR spectrometer) in D2O [34]. As a control, Alg-g-PEG copolymers were 

synthesized with this approach using mPEG-NH2. The polymer was dissolved in D2O 

and the result was verified via 1H-NMR (Bruker AVANCE III 500 MHz high-field 

NMR spectrometer). 

 

2.2.3. Microsphere Fabrication 

To fabricate microspheres containing VEGFA, Alg-g-PEG-S-S-pyridine was 

dissolved in phosphate buffered saline (PBS) with pH pre-adjusted to 5.0 with 1 N HCl. 
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Non-modified alginate (Alg) and Alg-g-PEG microspheres were fabricated using a 1% 

(w/v) polymer solution. VEGFA was added to the copolymer solution at a ratio of 106:1 

(copolymer:VEGFA). Microspheres without VEGFA were fabricated as blank controls. 

One mL of polymer/VEGFA solution was slowly added to 6.72 mL of biological-grade 

mineral oil containing 5% (v/v) Spam 80 while mixing at 1200 rpm for 5 min at room 

temperature. Next, 400 µL of 30% (v/v) Tween 80 was added and the emulsion was 

mixed for an additional 5 min. Then, 5 mL of 1 M calcium chloride (CaCl2) solution 

was added slowly. After 30 min of mixing, 3 mL of isopropanol was added to the 

emulsion and allowed to mix for 5 min, then was centrifuged at 400 rpm for 5 min to 

precipitate microspheres. The microspheres were washed sequentially with isopropanol 

(x2) and DI water (x2), respectively, and centrifuged after each wash. The Alg-g-PEG-

S-S-pyridine microspheres were formed in a similar fashion, however, the DI water 

wash was replaced with a 1% (w/v) CRGD solution (x2); the corresponding 

microspheres are here-after identified as Alg-g-RGD. Microspheres were flash frozen 

in liquid N2.  

After lyophilization Alg, Alg-g-PEG and Alg-g-RGD microspheres were 

characterized by scanning electronic microscopy (SEM, JEOL 600; samples were 

sputter coated with 45 nm of gold). SEM micrographs of various magnifications were 

used to quantify microsphere diameters; images were analyzed using ImageJ (3 images 

per group). 
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2.2.4. Cytotoxicity Assay 

Human MSCs were isolated from bone marrow aspirates with an IRB-approved 

protocol. Human MSCs (passage 7) were seeded in 24 well tissue culture polystyrene 

(TCPS) plates at a density of 20,000 cells/well in 500 µL/well of standard MSC growth 

medium (α-MEM, 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL 

streptomycin) and allowed to adhere for 24 h. Cells were incubated in the presence of 

Alg, Alg-g-PEG, and Alg-g-RGD microspheres encapsulating VEGFA (n = 3 per 

group) at concentrations of 10, 50, 100, 500 µg/mL at 37°C and 5% CO2. After 24 h of 

incubation, medium containing the microspheres was removed, and cells were rinsed 

two times in sterile PBS then analyzed using a MTT-based In Vitro Toxicology Assay 

Kit following the manufacturer’s protocol. The optical density was measured at 570 nm 

using a BioTek plate reader. Background absorbance at 690 nm was subtracted from 

the measured absorbance. Absorbance values for the experimental and control samples 

were normalized to non-modified TCPS controls [35].  

 

2.2.5. Dylight 550 Labeling of Human VEGFA 

Recombinant human VEGFA was cloned, expressed in HEK 293 cells, and 

purified in the Spees laboratory [36]. 1 mg/mL of purified VEGFA in PBS was used for 

labeling. The DyLight Microscale Antibody Labeling Kit was used according to the 

manufacturer’s instructions. Briefly, 100 μL of 1 mg/mL protein was mixed with a 

commercial vial of DyLight 550 reagent and incubated for 60 min in the dark after 
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gentle vortexing and a quick centrifugation step to mix the sample and dye. Spin 

columns provided by the kit were then placed into microfuge collection tubes and used 

for purification of protein from unbound dye. The labeling solution was mixed with 

purification resin and centrifuged in the spin column to purify labeled protein. The dye: 

protein ratio was determined based on methods described in the labeling kit. 

 

2.2.6. VEGFA Encapsulation and Release 

A known amount of lyophilized VEGFA-loaded Alg, Alg-g-PEG and Alg-g-

RGD microspheres was dissolved by immersion in 3% (w/v) sodium citrate solution to 

dissolve the microspheres by displacing calcium ions [37]. The VEGFA concentration 

was measured with a DuoSet ELISA Development Kit. Briefly, standard series and 

sample solutions were added to a culture plate (100 µL/well) pre-coated with capture 

antibody after washing in mild detergent (0.05% Tween 20 in PBS). After 2 h of 

blocking and incubation at room temperature, the biotin-conjugated detection antibody 

was added and incubated for another 2 h. Then 100 µL poly HRp conjugated 

streptavidin substrate was incubated in each well for 20 min after washing the detection 

antibody, followed by incubation with 100 µL substrate (ABTS, Thermo Scientific.) in 

the dark at room temperature. The absorbance was measured at 450 nm with a BioRad 

microplate reader. The VEGFA concentration was determined with a standard curve, 

and the VEGFA encapsulation efficiency (mass of VEGFA encapsulated in the 

microspheres / mass of VEGFA added when forming the microspheres) was calculated.  
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A VEGFA release test was performed in a 48 well plate at 37°C.  Six mg 

lyophilized VEGFA-loaded Alg, Alg-g-PEG and Alg-g-RGD microspheres was 

dissolved in 500 µL of PBS (pH 7.4). At each time point (1, 2, 4, 8, 12, and 24 h, 

followed by collection each day for a total of 14 d) 100 µL of the PBS was removed 

and another 100 µL was added to maintain the total volume. The released VEGFA 

concentration was determined with the DuoSet ELISA Development Kit as above.  

 

2.2.7. Human Mesenchymal Stem Cells Intracellular Delivery 

DyLight 550-labeled VEGFA (red fluorescence) was incorporated within Alg, 

Alg-g-PEG and Alg-g-RGD microspheres using the same above approach except the 

ratio of polymer to VEGFA was increased from 106:1 to 105:1 to increase the intensity 

of the visualized signal. Microspheres (500 μg/mL) were cultured with GFP-labeled 

human MSCs (100,000 cells, passage 4, green fluorescence) for 24 h in glass bottom 

culture dishes pre-coated with poly-d-lysine (MatTek Corporation). Confocal laser 

scanning (CLS) microscopy (Zeiss LSM 510 META) was used to visualize the 

microspheres by detecting directly through the plate. Z-stack images were formed with 

the use of AimImage Software.  

 

2.2.8. Human Mesenchymal Stem Cells Differentiation Assay 

Human MSCs (passage 4) were seeded in 12 well TCPS plates at a seeding 

density of 50,000 cells/well. Cells were cultured at 37°C and 5% CO2 in standard MSC 
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growth medium containing 100 μg/mL of VEGFA-encapsulated microspheres (Alg, 

Alg-g-PEG or Alg-g-RGD) or pure microspheres not containing VEGFA. The 

experiments were done in triplicate. After 48 h, old medium was aspirated off and one 

plate was given osteogenic differentiation medium (growth medium including 

dexamethasone, ascorbic acid, β-glycerol phosphate) and the other plate received 

adipogenic differentiation medium (growth medium including hydrocortisone, 

isobutylmethylxanthine, indomethacine). Cells that served as controls were cultured 

without the addition of microspheres (either with VEGFA or without VEGFA). 

Differentiation medium was changed every 3 d. After 14 d of culture in differentiation 

medium, cells were rinsed with sterile PBS and analyzed via an Alizarin Red 

osteogenic differentiation assay [38, 39] or an AdipoRedTM adipogenesis assay 

(Sigma). In addition, six different concentrations of VEGFA ranging from 0 to 20 

ng/ml (0, 0.01, 0.025, 0.05, 0.5, 20 ng/ml) were incubated with human MSCs for the 

control assay (extracellular VEGFA). The extracellular VEGFA differentiation 

experiment was conducted in 24 well TCPS plates with a seeding density of 30,000 

cells/well. After 48 h, medium containing VEGFA was aspirated off and the plates 

were given either osteogenic or adipogenic differentiation medium. Differentiation 

medium was changed every 3 d. After 7 d of culture in differentiation medium, cells 

were rinsed with sterile PBS and analyzed via an Alizarin Red osteogenic 

differentiation assay [38, 39] or an AdipoRedTM adipogenic differentiation assay 

(Sigma).  
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2.2.9. Statistical Methods 

All experiments were performed in triplicate; results are reported as mean ± 

standard deviation. Statistical analysis was performed using one-way ANOVA with 

Tukey multiple comparisons (α = 0.05) via the SAS statistics program in the GLM 

procedure as the post-test to compare all of the groups. A p < 0.05 is considered 

significantly different. 

 

2.3 Results 

2.3.1. Synthesis of Alg-g-PEG and Alg-g-PEG-pyridine Copolymers 

The copolymer reactions for the chemical modification of alginate are shown in 

Figure 2-1. To synthesize Alg-g-PEG-pyridine, the oligomer NH2-PEG-S-S-pyridine 

was synthesized first. 1H-NMR spectral analysis confirmed the presence of both PEG 

and pyridine in the final product (7.1 ppm, 7.5 ppm, 7.7 ppm, 7.9 ppm corresponding to 

the hydrogen on pyridine ring and 3.6 ppm corresponding to the hydrogen within the 

repeat group in PEG) when compared to the alginate and PEG controls (Figure 2-7). 

The large peak at 1.8 ppm corresponds to the excess acetate in the reaction system; this 

by-product does not interfere with the carbodiimide chemistry and can be removed 

through dialysis in the proceeding step of the copolymer reaction. Quantification of the 

reaction yield by peak integration determined approximately 70% reaction efficiency. 
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Figure 2-1. Chemical modification of alginate (Alg) with two different poly(ethylene 

glycol) (PEG) oligomers with methyl and pyridine end groups, respectively. The 

synthesis of Alg-g-PEG was conducted using carbodiimide chemistry at pH 5 and room 

temperature. To synthesize Alg-g-PEG–S-S-Pyridine, NH2-PEG-SH was reacted with 

2,2’-dithiodipyridine in degassed acetate buffer at pH 4 and room temperature under N2 

flow. Next, the modified NH2-PEG-pyridine was conjugated to alginate using 

carbodiimide chemistry. 

 

The natural polysaccharide alginate was grafted with a short chain PEG 

decorated with either pyridine or methyl end groups resulting in the copolymers Alg-g-
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PEG or Alg-g-PEG-pyridine. For the synthesis of Alg-g-PEG, 1H-NMR spectral 

analysis confirmed the presence of both alginate and PEG functional groups in the final 

purified graft copolymers through the appearance of new peaks and peak shifts in the 

Alg-g-PEG spectrum (Figure 2-8); 3.36 ppm corresponds to the -CH3 moiety of the 

PEG side chain and 4.31 ppm corresponds to the shift of hydrogen atoms due to the 

grafting of the PEG side chain when compared to the alginate and PEG controls. As 

stated in the methods, the theoretical degree of PEG modification was 10 molar % of 

alginate backbone. Quantification of PEG conjugation by peak integration of the 1H-

NMR spectra was not successful due to extensive broadening and overlapping of peaks 

corresponding to alginate in the Alg-g-PEG spectra. The synthesis of Alg-g-PEG-

pyridine was confirmed by 13C-NMR (Figure 2-9); 132.31 ppm, 136.05 ppm, 141.37 

ppm, 143.53 ppm, 149.24 ppm correspond to carbon on the pyridine ring, 69.76 ppm 

corresponds to the carbon within the repeat unit of PEG, and 42.84 ppm corresponds to 

the carbon on the alginate. Verification of NH2-PEG-S-S-pyridine by 13C-NMR 

confirmed that the reaction was successful.  

 

2.3.2. Fabrication of Alg, Alg-g-PEG and Alg-g-RGD Microspheres 

Complete microsphere fabrication strategies are shown in Fig. 2. Alg, Alg-g-

PEG and Alg-g-RGD microspheres were designed to encapsulate VEGFA without 

interfering with the bioactivity and electrostatically-condensed structure of VEGFA. 

The mild gelation method by the addition of CaCl2 during an emulsion was successful 
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in creating microspheres encapsulating VEGFA. The surface functionalization of 

microspheres through CRGD conjugation did not appear to affect the shape or yield of 

the microspheres. SEM photomicrographs demonstrate that the microspheres (Alg, 

Alg-g-PEG and Alg-g-RGD) were spherical in shape with an average diameters and 

standard deviations of approximately 1.9 ± 1.0 µm, 0.5 ± 0.1 µm, and 1.1 ± 0.4 µm, 

respectively (Figure 2-2).   

 

Figure 2-2. Schematic representation of microsphere fabrication techniques. 

Microspheres with or without VEGFA were prepared by premixing alginate or alginate-

based copolymer solutions with VEGFA and creating a water/oil emulsion at room 

temperature in the presence of 1M calcium chloride. An additional surface modification 

step was performed on Alg-g-PEG-S-S-Pyridine microspheres to chemically conjugate 

CRGD via disulfide bonds. For Alg-g-RGD microspheres, the conjugation of 2,2’-

dithiodipyridine was used to exchange the thiol group on the cysteine-RGD (CRGD) after 
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microsphere fabrication. 

 

Figure 2-3. The shape, average diameter, VEGFA encapsulation efficiency and 

cytotoxicity of alginate-based microspheres were verified using scanning electron 

microscopy (SEM), an ELISA assay (n = 3), and an MTT-based In Vitro Toxicology 

assay. SEM micrographs representing (A, D) Alg, (B, E) Alg-g-PEG, and (C,F) Alg-g-

RGD microspheres were fabricated without the addition of VEGFA through a water/oil 

emulsion; micrographs shown in A,B,C have a scale bar = 10 μm while micrographs in 

D,E,F have a scale bar = 10 μm. In preparation for imaging, microspheres were frozen by 

immersion in liquid N2 and subsequently lyophilized; samples were sputter-coated with 

45 nm of Au-Pb. (G) Microsphere diameters were determined using ImageJ analysis on 

SEM micrographs. (H) The effect of microsphere concentration (10, 50, 100, and 500 
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μg/mL) on primary human MSC viability after 24 h culture in standard MSC growth 

medium at 37°C and 5% CO2 was determined. Experimental groups were normalized to 

non-modified confluent human MSCs cultured on tissue culture polystyrene. 

 

2.3.3. Alg-g-PEG Microspheres Exhibit no Cytotoxic Effects 

The viability of human MSCs in the presence of Alg, Alg-g-PEG and Alg-g-

RGD microspheres containing no VEGFA was determined at increasing concentrations 

(10, 50, 100 and 500 µg/mL, Fig. 3H). These results demonstrated that Alg, Alg-g-PEG 

and Alg-g-RGD microspheres were non-toxic (cell viability > 90%) at concentrations 

up to 100 µg/mL. and cell viability > 75% at a concentration as high as 500 µg/mL. 

RGD-modified and PEG-modified alginate microspheres showed increased viability in 

higher concentrations compared to Alg microspheres.  

 

2.3.4. VEGFA Encapsulation and Release Rates 

VEGFA release rates from Alg, Alg-g-PEG and Alg-g-RGD microspheres are 

shown in Fig. 4. VEGFA encapsulation efficiency values were 52, 22 and 35% 

respectively for the different microsphere groups (see Fig. 3G). All of the microsphere 

groups sustained VEGFA release for 14 d; almost 100% of the encapsulated VEGFA 

was released within the 14 d sudy. Alg-g-RGD microspheres released more drug 

overall when compared to the other microsphere groups (shown in Fig. 4A). More 

importantly, within the first 72 h the VEGFA release profile demonstrated that the 

microspheres released a substantial amount correlating to the 48 h incubation time used 
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during for the differentiation assays. Alg and Alg-g-RGD microspheres released nearly 

twice that of Alg-g-PEG microspheres (shown in Fig. 4B). When comparing the 72 h 

release profile with the longer 14 d release profile, it is evident that a burst release 

within the first 12 h was followed by a gradual sustained release until the termination of 

the study. 
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Figure 2-4. Quantitative release of VEGFA was calculated using the encapsulation 

efficiencies of each sample group and the VEGFA concentration after each time point. 

Sample aliquots were collected and VEGFA concentration was determined using an 

ELISA assay (n = 3). (A) Cumulative VEGFA release (ng/mL) from alginate-based 
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microspheres in phosphate buffered saline at pH 7.4 and 37°C over a sampling period of 

14 days and (B) 72 hours was determined. 

 

2.3.5. Microsphere Internalization 

Internalized Alg, Alg-g-PEG and Alg-g-RGD microspheres encapsulated with 

DyLight 550 (red fluorescent) labeled VEGFA was verified after examination of CLS 

micrographs. GFP human MSCs (green) were successfully delivered DyLight-labeled 

VEGFA (red) using the Alg, Alg-g-PEG and Alg-g-RGD microsphere delivery systems 

(Figure 2-5). The red microspheres were spread throughout the cytoplasm and 

appeared to surround the nucleus. The intensity of red is a qualitative visualization of 

microsphere internalization rather than a quantitative measurement.  
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Figure 2-5. Confocal light microscopy images of GFP-labeled human MSCs (green) 

after 24 h of culture with DyLight 550 labeled-VEGFA-encapsulated alginate-based 
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microspheres (red) at a concentration of 500 µg/mL in standard MSC growth medium. 

The Alg, Alg-g-PEG and Alg-g-RGD images all verify the internalization of 

microspheres, especially compared to the non-modified empty Alg microsphere 

control. The red intensity is a qualitative visualization of microspheres internalization 

rather than a quantitative measurement. 

 

2.3.6. Human MSC Differentiation 

The UV absorbance of Alizarin red and fluorescent AdipoRed™ assays were 

used to quantify the osteogenic and adipogenic differentiation of human MSCs, 

respectively. The extent of differentiation was normalized to cell number by measuring 

the fluorescence intensity of Hoechst nuclear staining. As shown in Figure 2-6, 

incubation of human MSCs with microspheres containing VEGFA resulted in a 

significant increase in osteogenic differentiation when compared with non-modified 

TCPS controls. Statistical analysis of the data indicated a significant difference (p < 

0.04) between the experimental groups (Alg, Alg-g-PEG and Alg-g-RGD) and the 

control group (cells cultured without the addition of VEGFA-encapsulated 

microspheres). The p-values for Alg, Alg-g-PEG and Alg-g-RGD microsphere groups 

compared to the control group were 0.0001, 0.0005 and 0.0330, respectively. For the 

adipogenesis differentiation assay, the Alg microsphere group showed a significant 

enhancement compared to the control group (p = 0.02). For the other two groups (Alg-

g-PEG and Alg-g-RGD), there were no significant differences for the adipogenesis 
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assay with p-value of 0.28 and 0.57 respectively (Figure 2-6). The empty microspheres 

and pure VEGFA experimental groups did not exhibit any trends or significant 

differences for either adipogenic or osteogenic differentiation (p > 0.06) as shown in 

Figure 2-6. The significant differences between the experimental and control groups 

demonstrate that the VEGFA-encapsulated microspheres (Alg, Alg-g-PEG, Alg-g-

RGD) were internalized by hMSCs and that VEGFA was delivered intracellularly, 

resulting in a functional output (osteogenic differentiation). 
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Figure 2-6. In vitro osteogenic (gray) and adipogenic (black) differentiation assay 

results of human MSCs after 14 days in culture with differentiation growth medium. 

(A) and (B) represent the VEGFA-encapsulated microspheres, (C) and (D) represent 

empty microspheres, and (E) and (F) represent extracellular delivery of pure VEGFA at 

different concentrations ranging from 0 to 20 ng/ml. A turkey statistical test was 

performed to compare the experimental groups to the control groups (n = 3). ** shows 
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a significant p-value less than 0.0005 and * shows p-value less than 0.04. For the 

control group, only standard MSC growth medium was added. The graphs illustrate a 

significant difference between VEGFA encapsulated Alg, Alg-g-PEG and Alg-g-RGD 

microsphere groups compared to the control group in the osteogenesis assay as well as 

for the VEGFA encapsulated Alg microsphere group in the adipogenesis group. No 

significant differences were seen (p ≤ 0.05) between control and experimental groups 

for the osteogenesis and adipogenesis assays when empty microspheres were used or 

VEGFA was delivered extracellularly. 

 

2.4. Discussion  

There is a growing demand for injectable acellular therapeutics for the enhanced 

mineralization of osteoporotic bone. This study provides the first evidence that Alg, 

Alg-g-PEG and Alg-g-RGD microspheres, fabricated from graft copolymers of alginate 

and amine-terminated PEG or alginate and pyridine-conjugated PEG, may be used for 

the controlled intracellular delivery of VEGFA into living human stem/progenitor cells 

for enhanced osteogenic differentiation. Through the use of a biodegradable natural 

polymer, mild gelation methods, chemical conjugation of PEG, and immobilization of 

the adhesion ligand RGD, the applicability of controlled drug delivery by means of 

microspheres increases. The Alg, Alg-g-PEG and Alg-g-RGD microspheres were 

uniform in shape, of a moderate size to allow for internalization into human MSCs, and 

proved adaptable to surface-modification [34, 35]. The fabrication was easy to perform 
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and translate to engineering applications compared to other approaches which require 

higher spinning speeds and double emulsion processes.  

VEGFA release from alginate-based microspheres was sustained over a period 

of 14 d, which is promising for targeted intracellular delivery. However, the main 

interest of this paper was the intracellular delivery of VEGFA into human MSCs, which 

took place over a shorter time-span of 48 h during culture. The non-selectivity of the 

microspheres in culture with MSCs allowed uptake to occur quickly, and this is also 

believed to be the case for the internalization of microspheres during the differentiation 

assay; the microsphere concentration and duration of co-culture were consistent among 

the internalization and differentiation studies. The short time frame allowed for delivery 

also suggests that the VEGFA content of the internalized microspheres was high 

enough to significantly affect human MSC differentiation. Indeed, alginate 

modification with bulky side groups can hinder drug diffusion; an effect that has been 

reported for Alg-g-PEG chains of moderate to high molecular weights [19]. 

Modification of alginate through PEG conjugation at the carboxyl groups decreases the 

electrostatic repulsion within the hydrogel, thus decreasing the degree of swelling and 

decreasing the rate of drug diffusion. The varying release kinetics with time suggest 

that the microsphere structure may be optimized further for controlled release 

applications [40].  

Multiple uptake pathways have been targeted as a means of delivering material 

intracellularly, namely endocytosis, in the case of cationic nanoparticles [41] or for 
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larger micron-scale particles [42]. Due to the mild and quick gelation used to fabricate 

Alg, Alg-g-PEG and Alg-g-RGD microspheres, encapsulated drugs and proteins are 

better protected. Chemical conjugation of RGD onto PEG utilized disulfide bonds, 

which are covalent linkages arising from the oxidation of two sulfhydryl (SH) groups 

of cysteine connected to RGD (CRGD) and the SH terminal group on PEG (SH-PEG-

NH2). Disulfide bonds exist commonly in eukaryotic cell proteins with the function of 

fortifying the protein tertiary structure. Due to the reversibility and relative stability in 

plasma, the disulfide bond linkage becomes attractive in designing drug delivery 

systems. In addition, the physical properties and network structure of the calcium 

crosslinked alginate-based microspheres are readily changed after alterations in pH 

(such as in an endosome) or in the presence of calcium chelators. For the system 

described herein, it is hypothesized that the microspheres rapidly released VEGFA into 

the cytoplasm once inside the human MSCs [43, 44] due to the disassembly of the 

microspheres.  

RGD is widely utilized in tissue engineering studies and has been used in 

studies with alginate [45, 46]. In the current study RGD was used a model ligand which 

may be replaced with more relevant cell-recognition molecules for targeting MSCs in 

vivo. However, RGD has been shown to increase uptake of surface modified DNA 

complexes for intracellular delivery [47]. Although a limitation of the current study was 

in the collection of qualitative internalization results, future work will investigate RGD 

modified microspheres for enhanced MSC uptake and it may be combined with other 
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cell-recognition motifs to control drug delivery for target cell populations. Results of 

the differentiation assays did not exhibit significant enhancement of the RGD or PEG 

modification between alginate microsphere groups in promoting osteoblast 

differentiation. Although Alg-g-PEG microspheres resulted in the highest Alizarin red 

absorbance, several reasons may account for this. The cells in the current study were 

only directed to differentiate for 14 d, meaning that the human MSCs cultured with 

Alg-g-RGD microspheres might still result in enhanced osteogenesis but more time is 

needed to demonstrate that result. Another possible explanation is RGD’s influence on 

differentiation signaling. The research of Garcia et al. (2005) and Park et al. (2010) 

indicate a promotion effect of RGD in stem cell differentiation [33, 48]. In addition, it 

could also enhance chondrogenic differentiation [49]. However, other studies present 

findings in disagreement with the aforementioned work [50, 51]. The potential for Alg, 

Alg-g-PEG and Alg-g-RGD microspheres to deliver VEGFA intracellularly may be 

applied to investigate a wide array of differentiation lineages for MSCs and perhaps 

other progenitor cells.  

Of special interest, our functional tests with VEGFA-bearing microspheres 

support an intracrine mechanism for VEGFA in human MSCs and are consistent with 

results reported by Liu et al. (2012) with retroviral expression of VEGFA in murine 

MSCs. We found that intracellular delivery of VEGFA via alginate-based microspheres 

resulted in up-regulated osteogenic differentiation by human MSCs, suggesting the 

effectiveness of our drug delivery system to control the intracrine mechanism that 
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balances osteoblast and adipocyte activity. Extracellular VEGFA did not alter 

differentiation of human MSCs. To carefully evaluate the function of intracellular 

VEGFA in regard to specificity for bone formation, we used adipogenesis as an 

alternative differentiation out-put. MSCs from osteoporotic bones exhibit a higher 

adipogenic capacity compared to healthy MSC donors, which is why adipogenic 

differentiation was chosen as the alternative lineage [52]. Except for the Alg 

microsphere group, in which adipogenesis by MSCs was enhanced, there was not a 

significant difference in adipogenesis for MSCs incubated with the VEGFA-

encapsulated Alg-g-PEG and Alg-g-RGD microspheres. Based on the enhanced 

adipogenesis we observed in the VEGFA-encapsulated Alg microspheres group, Alg-g-

PEG and Alg-g-RGD microspheres may be better suited for controlled intracellular 

delivery to enhance osteogenesis in vivo. The investigation of various cell-recognition 

molecules (i.e. ligands, antibodies, etc.) may provide a viable option for targeting a 

specific cell population in vivo for enhanced mineralization of osteoporotic bone. 

 

2.5. Conclusion 

This study is the first to report the fabrication and surface-functionalization of 

Alg, Alg-g-PEG and Alg-g-RGD microspheres for the encapsulation and intracellular 

delivery of a bioactive growth factor, VEGFA. Alg, Alg-g-PEG and Alg-g-RGD 

microspheres containing VEGFA promoted osteogenic differentiation of human MSCs 

upon intracellular delivery after 48 h of incubation time. These results provide 



 

· 

69 

encouraging evidence for development of a systemic growth factor delivery system 

with potential to treat many debilitating diseases. Future work will involve 

manipulation of the surface ligand to enhance cell-targeted internalization of 

microspheres for intracellular growth factor delivery. 

 

2.6. Supplemental Materials 

NH2-S-S-pyridine was verified via 1H-NMR spectra (500 MHz, D2O) as shown 

in Figure 2-7. The peaks within the range of 7-8 ppm confirmed the success of the 

chemistry. 1H-NMR analysis of Alg-g-PEG was performed to verify the retention of 

PEG after the grafting reaction. Alg-g-PEG was synthesized using mPEG-NH2 and 

sodium alginate via carbodiimide chemistry (Figure 2-8). 1H-NMR spectra (500 MHz, 

D2O) are shown, comparing the graft copolymer Alg-g-PEG to the homopolymer 

constituents: mPEG-NH2 and sodium alginate. The inset image is the chemical 

structure of the Alg-g-PEG copolymer. The alginate conjugation onto NH2-S-S-

pyridine which forms the Alg-g-pyridine was confirmed by 13C-NMR (500 MHz, D2O) 

(Figure 2-9). 
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Figure 2-7. 1H-NMR spectra of NH2-PEG-S-S-pyridine copolymer. The fours peaks 

between 7-8 ppm, which is amplified on the left, indicated the successful conjugation of 

pyridine onto PEG. The H2O peak represents the solvent D2O and the large peaks near 2 

ppm and 3.7 ppm represent residual CH3COOH in the reaction buffer. 
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Figure 2-8. 1H-NMR result of Alg-g-PEG copolymer synthesis.  The peak of 3.36 ppm 

corresponds to the CH3 moiety of the PEG side chain and 4.31 ppm corresponds to the 

shift of hydrogen atoms due to the grafting of the PEG side chain. Quantification of Alg-

g-PEG conjugation by peak integration of the 1H-NMR was not successful due to 

extensive broadening and overlapping of the peaks corresponding to the alginate in the 

Alg-g-PEG. 
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Figure 2-9. 13C-NMR result of Alg–g-PEG-S-S-pyridine synthesis. Peaks at 132.31 ppm, 

136.05 ppm, 141.37 ppm, 143.53 ppm, 149.24 ppm correspond to carbon on the pyridine 

ring, 69.76 ppm corresponds to carbon in the repeat unit of PEG, and 42.84 ppm 

corresponds to carbon on the alginate repeat unit. 
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CHAPTER 3: DUAL-CROSSLINKED METHARYLATED ALGINATE SUB-

MICROSPHERES FOR INTRACELLULAR CHEMOTHERAPEUTIC 

DELIVERY  

Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) 

were developed for the internalization and release of doxorubicin hydrochloride 

(DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA 

and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently 

crosslinked sub-microspheres were formed via exposure to green light, in order to 

investigate effects of crosslinking on drug release and cell internalization, compared to 

traditional techniques such as ultra violet (UV) light. Crosslinking was performed using 

light exposure alone, or in combination with ionic crosslinking using calcium chloride 

(CaCl2). Alg-MA sub-microsphere diameters were between 88 – 617 nm, and zeta-

potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells 

(A549s) as a model, cellular internalization was confirmed using flow cytometry; 

different sub-microsphere formulations varied the efficiency of internalization, with 

UV-crosslinked sub-microspheres achieving the highest internalization percentages. 

While blank (non-loaded) Alg-MA sub-microspheres were non-cytotoxic to A549s, 

DOX-loaded sub-microspheres significantly reduced mitochondrial activity after five 

days of culture. Photo-crosslinked Alg-MA sub-microspheres may be a potential 

chemotherapeutic delivery system for cancer treatment. 
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3.1. Introduction  

Lung cancer is one of the most widespread type of carcinoma, resulting in the 

largest number of cancer-related deaths around the world.[1-3] Greater than 85% of 

lung cancer cases are currently classified as non-small-cell lung cancer (NSCLC), 

including adenocarcinoma, squamous-cell carcinoma and large-cell carcinoma. Despite 

the recent advances in early detection and cancer treatment, NSCLC is often diagnosed 

at an advanced stage and has a poor prognosis.[1] Chemotherapy is one of the current 

recommended treatments to prevent or reduce tumor-induced symptoms, prolong 

patient survival, and maintain patient quality of life.[4] Chemotherapy treatments can 

last as long as 6 months at high parenteral dosages, and are frequently associated with 

systemic toxicity.[5, 6]  

 

Doxorubicin hydrochloride (DOX) is one of the most widely used 

chemotherapeutic drugs, and is known as an anthracycline antibiotic.[7] The main anti-

cancer mechanisms that have been suggested for DOX fall into the following 

categories: 1) DOX intercalation into DNA, shutting down protein synthesis and DNA 

replication; 2) DOX-induced production of reactive oxygen species (ROS), inducing 

DNA damage and/or lipid membrane peroxidation; 3) DNA crosslinking, binding and 

alkylation; 4) DOX interference with DNA unwinding, strand separation and helicase 

activity; 5) damage to the bilayer structure of cell membranes; 6) DNA inhibition of 

topoisomerase II, initiating DNA damage pathways. All the above activities require that 
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DOX be presented inside the cytoplasm,[8-10] which requires intracellular delivery of 

DOX to cancer cells. DOX treatment induces several side effects including nausea, 

vomiting, and fever in patients.[11] A significant incidence of cardiovascular side 

effects – hypotension, tachycardia, arrhythmias, and ultimately congestive heart failure 

– are also reported.[8, 12] Therefore, there is a need for drug delivery systems which 

efficiently encapsulate and deliver chemotherapeutics while reducing adverse events. 

As a small molecule, concerns of low encapsulation efficiency, drug leakage, and 

aggregation limit the therapeutic efficacy of DOX, and complications associated with 

sterilization have not been resolved.[5]  

 

Modern drug delivery systems are designed to maintain the structure and 

bioactivity of biomolecules and to release therapeutics in a controlled and predictable 

manner. Micro-encapsulation is one of the core technologies used in polymer drug 

delivery systems.[13] However, the relatively large micron-size (> 10 µm) of the drug 

delivery particles limits cellular internalization. Therefore, the association of DOX to 

sub-micron carriers has drawn greater interest,[14] including liposomes,[15] 

nanospheres and sub-microspheres,[16] and micelles.[17] 

 

Alginate is an unbranched polysaccharide consisting of 1→4 linked β-D-

mannuronic acid (M) and its C-5 epimer α-L-guluronic acid (G). Alginate is extracted 

from brown seaweed, and has been investigated for biomedical and pharmaceutical 
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applications due to its relatively low cost, low toxicity, biocompatibility, and 

biodegradability.[18-21] Alginate particles have increasingly been shown to offer 

controllable drug encapsulation efficiencies and release profiles, while maintaining the 

bioactivity of various drugs, including proteins,[22] cytokines,[23] and small 

molecules.[24] Through the formation of a water/oil emulsion and subsequent exposure 

to calcium ions, alginate particles within the micrometer – nanometer size scale can be 

generated, and are often referred to as ionically crosslinked alginate particles.[20, 22, 

25]  

 

The fabrication of alginate microspheres and sub-microspheres is favorable for 

drug delivery due to the relatively mild ionic gelation process.[22, 26] However, 

limitations associated with the relatively weak ionic bonds include low drug 

encapsulation efficiency and rapid drug-release rates (< 24 h).[27] To overcome these 

limitations, methacrylated alginate (Alg-MA) was synthesized [28] and sub-

microspheres were generated utilizing a water/oil emulsion [22] and subsequent 

crosslinking. Alg-MA sub-microspheres were covalently crosslinked using 

photoinitiators and visible (i.e., green) or UV light irradiation.[28] Dual-crosslinked 

sub-microspheres were generated with the subsequent addition of calcium chloride.[22] 

To evaluate the efficiency of internalization and the bioactivity of DOX-loaded Alg-

MA sub-microspheres, human lung epithelial carcinoma cells (A549s) were utilized as 

a model system. We hypothesized the dual-crosslinking would result in a tighter 
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hydrogel network for more efficient intracellular DOX delivery (Figure 1). DOX 

encapsulation efficiency and in vitro release were quantified using an absorbance assay. 

While blank (non-loaded) Alg-MA sub-microspheres were non-cytotoxic to A549s, 

DOX-loaded sub-microspheres significantly reduced mitochondrial activity after five 

days of in vitro culture.   

 

 

3.2. Materials and Methods 

3.2.1. Materials and Reagents 

Sodium alginate (MW = 65–75 kg/mol, 60-70% guluronic acid residues) was 

generously donated by FMC BioPolymer. Irgacure D2959 was generously donated by 

Ciba Inc. Biology-grade mineral oil, Span  80, Tween 80, ethylenediaminetetriacetic 

acid (EDTA), deuterium oxide (D2O), dimethyl sulfoxide (DMSO, 99% anhydrous), 

dodecyltrimethylammonium bromide salt (DTAB), methacrylic anhydride (MA), 4-

(dimethylamino)pyridine (DMAP), doxorubicin hydrochloride (DOX), N-ethyl-N’(3-

dimethylaminopropyl) carbodiimide hydrochloric acid (EDC), N-hydroxysuccinimide 

(NHS), and the in vitro toxicology assay kit (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)-based) were purchased from Sigma-Aldrich. One 

molar hydrochloric acid (HCl) and 1 M sodium hydroxide (NaOH) were purchased 

from BDH ARISTAR®PLUS. Dichloromethane (DCM, 99.9%), sodium citrate, 

isopropanol, sodium chloride (NaCl), sodium citrate, DMEM/F-12 mammalian cell 
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culture medium, Alexa Fluor® 647 cadaverine and 20X phosphate buffered saline 

(PBS) were purchased from Fisher Scientific. Fetal bovine serum (FBS) was purchased 

from Atlanta Biologics. Penicillin, streptomycin, and 0.25% trypsin EDTA were 

purchased from Corning Cellgro. A549 (CCL-185™) human lung epithelial carcinoma 

cells were purchased from ATCC®.  

 

3.2.2. Synthesis and Characterization of Methacrylated Alginate (Alg-MA) 

Alg-MA was synthesized utilizing an anhydrous reaction to control the degree 

of methacrylation (DOM).[28, 29] Sodium alginate was rendered soluble in anhydrous 

DMSO through an ion exchange with DTAB. Aqueous solutions of sodium alginate 

(1%, w/v) and DTAB (2%, w/v) were prepared and slowly mixed while stirring at 1000 

rotations per minute (rpm). The precipitate was washed in DI water and lyophilized. A 

1% (w/v) alginate-DTA/DMSO solution was reacted with MA in the presence of a 

catalyst, DMAP, for 24 hours at room temperature. The solution was hydrolyzed 

through extensive dialysis in 0.2 M sodium phosphate dibasic salt solution followed by 

further dialysis in DI water. Alginate methacrylation was confirmed using 1H-NMR 

spectroscopy, (Bruker AVANCE III 500 MHz high-field NMR spectrometer) by the 

presence of methacrylate (6.25, 5.75 ppm) and alginate methyl resonances (2.0 ppm). A 

1% (w/v) polymer solution in D2O was analyzed at room temperature, spinning at 20 

Hz for 16 scans.[28, 30] The DOM was quantified by peak integration and calculation 

of the ratio between of the methyl protons at 2.0 ppm and the newly formed methylene 
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protons of methacrylate at 5.75 ppm and 6.25 ppm.[30, 31] 

 

3.2.3. Dual-crosslinked Alg-MA Sub-Microspheres Design and Fabrication 

Aqueous Alg-MA solutions were mixed with photoinitiators for UV (0.05%, 

w/v, Irgacure D2959) or visible green light activation [1 mM eosin Y (photosensitizer), 

125 mM triethanolamine (initiator) and 20 mM 1-vinylpyrrolidone (catalyst)], 

respectively. Two percent (w/v) Alg-MA solutions were mixed with 0.1% (w/v) DOX 

and formed into sub-microspheres using a water/oil emulsion and subsequent 

crosslinking (Figure 2). Alg-MA sub-microspheres without DOX were fabricated as 

blank (i.e., non-loaded) controls.22 One milliliter of polymer/DOX solution was slowly 

added to 6.72 mL of biological-grade mineral oil containing 5% (v/v) Span 80, while 

mixing at 1200 rpm for 5 minutes at room temperature. Subsequently, 400 µL of 30% 

(v/v) Tween 80 (in biological-grade mineral oil) was added and mixed for an additional 

5 minutes. Crosslinking was performed four different ways: 1) green light exposure for 

10 minutes (Green, using 525 nm wavelength, NFLS-G30 3-WHT, SuperBrightLEDs); 

2) UV light exposure for 10 minutes (UV, using 320–390 nm wavelength, Uvitron 

Intelliray 400); 3) green light plus 5 mL of 0.5 M CaCl2, mixing for 15 minutes 

(Green+C); and 4) UV light plus 5 mL of 0.5 M CaCl2, mixing for 15 minutes 

(UV+C).28  After crosslinking, 3 mL of isopropanol was added to the emulsion and 

mixed for 5 minutes, then centrifuged at 400 rpm for 5 minutes to precipitate sub-

microspheres. Alg-MA sub-microspheres were washed sequentially with isopropanol 
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(x2) and DI water (x2), respectively, and centrifuged after each wash.  

The diameters and zeta-potentials (i.e., surface charge) for hydrated, blank and 

DOX-loaded Alg-MA sub-microspheres were quantified using dynamic light scattering 

(DLS, Zetasizer Nano ZSP, Malvern). Sub-microspheres were suspended in PBS, pH = 

7.4, at room temperature. Hydrodynamic diameters were determined based on number 

averages, and the size distribution was plotted for each sub-microsphere group. After 

lyophilization, Alg-MA sub-microspheres were characterized by scanning electronic 

microscopy (SEM, JEOL 600); samples were sputter coated with 45 nm of Au-Pb prior 

to imaging. SEM micrographs of various magnifications were used to visualize or 

attempt to visualize Alg-MA sub-microspheres. 

 

3.2.4. Drug Loading and Mechanism of Release 

Covalently and/or dual-crosslinked Alg-MA sub-microspheres were evaluated 

for use as chemotherapeutic delivery vehicles. DOX was utilized as a model drug for its 

intrinsic UV absorbance and ease of quantification, for drug encapsulation, drug release 

and effectiveness assays. To determine whether or not UV or green light exposure 

changed the chemical structure or bioactivity of DOX, aqueous DOX solutions were 

exposed to UV and green light for 10 minutes, and then characterized by 1H-NMR, 

using non-modified DOX as a control. DOX encapsulation efficiency, i.e., drug 

retention during sub-microsphere fabrication, was calculated as a percentage of the 

initial loading concentration. Covalent crosslinking of the sub-microspheres prevents 
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dissolution; therefore, an extended diffusion process was utilized to quantify 

encapsulated drug. Briefly, 1 mg of sub-microspheres was suspended in 1 mL of PBS, 

incubated at 37°C and agitated for three weeks. The solution was centrifuged, and the 

supernatant was analyzed on a microplate reader (Synergy HT microplate reader, 

BioTek) at 485 nm absorbance, and compared to standard curve (EE = Actual Drug 

Encapsulated ÷ Theoretical Drug Loaded). Detection of drug lost during washing 

procedures was not possible due to presence of multiple phases of emulsion additives 

and the absorbance detection limit of DOX on the equipment utilized. 

To characterize in vitro release profiles, released DOX concentration was 

quantified using the intrinsic absorbance at 485 nm in a 48-well tissue culture 

polystyrene (TCPS) plate at 37°C (Synergy HT microplate reader, BioTek). One 

milligram of lyophilized DOX-loaded Alg-MA sub-microspheres was dissolved in 500 

µL of PBS, pH 7.4 (n = 3). At 1, 2, 4, 8, 12, and 24 hours, and daily up to 11 days, 100 

µL of PBS was removed for analysis, and replaced with 100 µL of fresh PBS to 

maintain the total volume. DOX concentration was determined using an absorbance 

assay and generating a standard curve. Cumulative DOX (µg) released over time was 

calculated by adding the mass of DOX released at each time point per mass of sub-

microspheres. 

3.2.5. Cellular Uptake of Alg-MA Sub-Microspheres 

Four different formulations of blank (i.e., non-loaded) Alg-MA sub-

microspheres were reacted with Alexa Fluor® 647 cadaverine dye to form fluorescent 
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sub-microspheres (Alexa 647-Alg-MA); the surface reaction chemistry was performed 

according to the manufacturers protocol through carbodiimide chemistry at room 

temperature catalyzed by NHS/EDC. Alg-MA sub-microspheres without DOX were 

used in order to avoid cell death during internalization and analysis. A549s were seeded 

in 48-well TCPS plates at 25,000 cells/well in 500 µL/well of standard growth culture 

medium (DMEM/F-12, 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin), and 

allowed to adhere for 24 hours at 37°C and 5% CO2. Cells were then incubated with 

blank Alexa 647-Alg-MA sub-microspheres (n = 6 per group) at 100 µg/mL, 37°C and 

5% CO2. After 12 hours, culture medium containing Alexa 647-Alg-MA sub-

microspheres was removed, and adherent cells were thoroughly rinsed with PBS three 

times to remove non-internalized and cell-surface-bound sub-microspheres. Cells were 

trypsinized and re-suspended in PBS at 1x106 cells/mL, and analyzed by flow 

cytometry (BD LSRII Flow Cytometer) to quantify the percentage of A549s that 

internalized the sub-microspheres. A549s cultured with no sub-microspheres, and cells 

cultured with non-fluorescent sub-microspheres, were prepared and analyzed as 

controls.[22] 

 

 

3.2.6. Drug Bioactivity and Efficacy of Alg-MA Sub-Microsphere Delivery 

Vehicles 

3.2.6.1. Cytotoxicity of Blank and Drug-loaded Alg-MA Sub-Microspheres 
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The cytotoxicity of blank (i.e., non-loaded) and DOX-loaded sub-microspheres 

was evaluated using a toxicology, MTT-based assay. A549s were seeded in 48-well 

TCPS plates at 25,000 cells/well in 500 µL/well of standard growth culture medium, 

and allowed to adhere for 24 hours at 37°C and 5% CO2. Cells were then incubated in 

the presence of blank Alg-MA sub-microspheres or DOX-loaded Alg-MA sub-

microspheres (n = 6 per group, per fabrication type) at sub-microsphere concentrations 

of 10, 50, 100 µg/mL. After 24 hours, medium containing sub-microspheres (blank 

groups and DOX-loaded groups) was removed, cells were rinsed two times in sterile 

PBS, and then analyzed using a MTT-based assay according to the manufacturer’s 

protocol. The optical density was measured at 570 nm; background absorbance at 690 

nm was subtracted from the measured absorbance at 570 nm (Synergy HT microplate 

reader, BioTek). Absorbance values for the experimental samples were normalized to 

controls and reported as normalized mitochondrial activity.[22] 

 

3.2.6.2. Effective of Intracellular VS. Extracellular Drug Delivery on Cell 

Proliferation 

The bioactivity of the DOX-loaded sub-microspheres was evaluated using a 

similar method discussed in section 2.6.1.  A549s were seeded in 48-well TCPS plates 

at 10,000 cells/well in 500 µL/well of standard growth culture medium, and allowed to 

adhere for 24 hours. Cells were incubated in the presence of DOX-loaded Alg-MA sub-

microspheres (n = 6 per fabrication type) at sub-microsphere concentrations of 10, 50, 
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and 100 µg/mL. A549s and Alg-MA sub-microspheres were co-cultured for 5 days 

with media exchanges. Free DOX (i.e., DOX contained within the cell culture medium) 

was added to A549s at different concentrations (5, 4, 3, 2, 1, 0.5, 0.25, 0.125, 0.06, 

0.03, 0.015 and 0 µg/mL) to compare the effect of intracellular versus extracellular 

DOX delivery. After 1, 3 and 5 days of culture, a MTT-based assay was performed 

according to the manufacturer’s protocol, to quantify the effects of DOX-loaded Alg-

MA sub-microspheres and free DOX on in vitro cancer cell proliferation. Absorbance 

values for the experimental samples were normalized to controls and reported as 

normalized mitochondrial activity.[22] 

 

3.2.7. Data Analysis 

The quantitative results for all experiments are reported as mean ± standard 

deviation. Statistical analysis was performed on Alg-MA sub-microsphere co-cultured 

cell assays, using one-way ANOVA with Tukey multiple comparisons (α = 0.05) via 

the SAS statistics program in the GLM procedure, as the post-test to compare all of the 

groups. A p < 0.05 was considered significantly different. 

 

 

3.3. Results and Discussion 

3.3.1. Synthesis and Characterization of Alg-MA 

The chemical modification of alginate rendered it hydrophobic and soluble in 
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organic solvents. An anhydrous methacrylation of alginate resulted in a functionalized 

biomacromolecule with a controllable DOM.[28] 1H-NMR spectra for Alg-MA and 

non-modified alginate are shown in Supplemental Figure S1. The DOM for the Alg-

MA used as the base material in the sub-microspheres was approximately 64%.[31-34] 

Peaks between 3.0 and 3.5 ppm indicate methyl groups at the end of alginate chains 

resulting from degradation during the methacrylation chemistry.  

 

Figure 3-1. Schematic of the hydrogel network structure comprising photo-crosslinked 

and dual-crosslinked Alg-MA sub-microspheres. (I) Photo-crosslinked sub-microspheres 
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exhibit a porous hydrogel network with intermolecular covalent crosslinks, encapsulating 

DOX. (II) Upon the addition of ionic crosslinking, the hydrogel network tightens, 

resulting in reduced drug loss and slower diffusion-based drug release; this is the desired 

product. (III) However, the introduction of aqueous-based calcium chloride (CaCl2) 

solution may result in drug loss during the ionic crosslinking step. (IV) The non-ideal 

dual-crosslinked product may exhibit lower drug loading capacity due to the additional 

steps in the fabrication process. 
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Figure 3-2. (A) Chemical structure of methacrylated alginate (Alg-MA). Alg-MA was 

covalently crosslinked in the presence of photoinitiators under light activation, to form 

photo-crosslinked Alg-MA hydrogel networks. Alg-MA hydrogels were ionically 

crosslinked in the presence of calcium chloride (CaCl2) to form dual-crosslinked Alg-MA 

hydrogel networks. (B) Schematic representation of microsphere fabrication techniques. 

Microspheres with or without DOX were prepared by premixing Alg-MA solutions and 

creating a water/oil emulsion at room temperature. Alg-MA sub-microspheres were 

photo-crosslinked upon exposure to visible or UV light, respectively, and further dual-

crosslinked in the presence of 1 M CaCl2. 
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Figure 3-3 Dynamic light scattering size distribution plots for photo-crosslinked and 

dual-crosslinked Alg-MA sub-microspheres: green photo-crosslinked (Green), green + 

Ca2+ dual-crosslinked (Green+C), UV photo-crosslinked (UV), UV + Ca2+ dual-

crosslinked (UV+C). H 

3.3.2. Fabrication and Characterization of Dual-crosslinked Alg-MA Hydrogel 
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Sub-Microsphere 

The formation of Alg-MA sub-microspheres was indicative of a crosslinked 

hydrogel network, obtained through either covalent crosslinking[35] (e.g., via photo-

crosslinking) alone, or in combination with ionic crosslinking (e.g., by the addition of 

CaCl2), as illustrated in Figure 2.[27, 35, 36] The DOM for the Alg-MA base material 

was 64%, and this moderate-DOM sustained both covalent and ionic crosslinking. 

Photo-crosslinking occurred upon UV or green light activation between adjacent 

acrylate groups, while the subsequent presence of CaCl2 induced ionic crosslinking 

between adjacent carboxyl groups. While methacrylation took place at available 

hydroxyl groups, ionic crosslinks formed between adjacent carboxyl side-groups on 

neighboring alginate chains, thus allowing Alg-MA to sustain dual-crosslinking.  

DOX-loaded sub-microsphere hydrodynamic diameters were quantified using 

DLS analysis (Table 1). The largest populations of DOX-loaded sub-microspheres were 

sized between 243 – 391 nm: UV = 243 nm, Green = 391 nm, UV+C = 346 nm, 

Green+C = 358 nm. The variability of the sub-microsphere diameters, plotted as size 

distributions in Figure 3A+B, is an almost unavoidable result of the emulsion process, 

and is indeed a limitation of the fabrication method; however, the linear size 

distribution plots indicate the following: Alg-MA sub-microspheres exhibited size 

populations within the same size scale, thus demonstrating consistency in fabrication 

method. SEM images (see Supplemental Figure S2) also indicated that Alg-MA sub-

microspheres were spherical in shape, however heterogeneous in size. The zeta-
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potentials ranged between -20 mV and -37 mV, and none of the groups demonstrated 

any significant outlying data. 

 

3.3.3. Swelling and Diffusion-based Drug Release 

The efficacy of Alg-MA sub-microspheres as chemotherapeutic delivery 

vehicles was investigated. DOX was utilized as a model drug for its intrinsic UV 

absorbance and ease of quantification for subsequent drug encapsulation, drug release 

and effectiveness assays. Alg-MA sub-microspheres were designed to encapsulate 

DOX without interfering with the detectability or bioactivity of DOX. Both photo-

crosslinking alone or dual-crosslinking were successful in fabricating DOX-loaded sub-

microspheres. The low level of UV or green light exposure required for sub-

microsphere fabrication did not change the chemical structure of DOX, verified by 1H-

NMR spectroscopy (see Supplemental Figure S3), and the toxic effects of DOX were 

still active.37 The mild-gelation techniques used to form Alg-MA sub-microspheres 

may retain the functionality and bioactivity of other therapeutics. Indeed, it was 

hypothesized that secondary, ionic crosslinking may show no beneficial effect on DOX 

encapsulation efficiency, however, the effect of ionic crosslinking may result in 

sustained drug release due to a tighter hydrogel network structure.  

The cumulative mass of DOX released over time was calculated from four 

different types of Alg-MA sub-microspheres, and release profiles are shown in Figure 

4. The DOX release profiles followed two different trends – a linear release profile was 
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seen during the first 8 hours of release, consistent with hydrogel-swelling induced drug 

release (see Figure 4A). Cumulative DOX release profiles through 11 days are shown 

in Figure 4B. The release profiles for UV, Green, and Green+C groups followed a 

logarithmic trend (trend line R2 ≥ 0.92), while the UV+C group followed a linear 

release profile up to 11 days (trend line R2 = 0.98); however, these trends were not 

analyzed further. The amount of DOX released did show a similar trend with 

encapsulation efficiencies: dual-crosslinked sub-microspheres encapsulated less drug 

and released less drug over an 11 day period.38-39 The introduction of aqueous-based 

CaCl2 solution to the emulsion resulted in drug loss due to DOX solubility in aqueous 

solutions.40 The varying release kinetics with time suggest that the sub-microsphere 

structure may be optimized further for controlled release applications, by varying the 

degree of crosslinking to extend or delay the drug release rate.35 It is hypothesized that 

increasing the drug-loading concentration, increased efficacy over longer time periods 

could be achieved. Decreasing the variability in the diameter of the sub-microspheres 

and varying the Alg-MA DOM may also result in varied release rates due to changes in 

the network microstructure. However, sub-microsphere size homogeneity and drug 

release profile optimization were outside the scope of this study and may be addressed 

through further investigations.  
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Figure 3-4. Quantitative cumulative release of doxorubicin (DOX) from DOX-loaded 

Alg-MA sub-microspheres for a period of 11 days (average ± standard deviation, n = 6 

hydrogel samples per group). Sample aliquots were collected and the DOX concentration 

was determined using a standard curve at an absorption wavelength of 485 nm. (A) 

Cumulative DOX release profile during the first 8 hours; the release profiles for all of the 

Alg-MA sub-microsphere groups followed a linear trend (trend line R2 ≥ 0.98). (B) 

Cumulative DOX release profile during 11 days; the release profiles for the UV, Green, 

and Green+C Alg-MA sub-microsphere groups followed a logarithmic trend (trend line 

R2 ≥ 0.92), while the UV+C group continued to follow a linear release profile up to 11 

days (trend line R2 = 0.98). 

3.3.4. Cellular Uptake of Alg-MA Sub-Microsphere 

Uptake of Alg-MA sub-microspheres into A549s was quantitatively determined 

via flow cytometry to detect the fluorescent signal of Alexa-647-labeled sub-

microspheres. Non-treated A549s and cells cultured with non-fluorescently labeled sub-

microspheres were used as controls. Utilizing gate settings based on the fluorescent 



 

· 

96 

intensity level of the probe, negative and positive populations were established, and it 

was found that all four types of Alg-MA sub-microspheres were readily internalized by 

A549s.[22] The positive population was > 80% in all four treatment groups (Figure 5A-

F). UV crosslinked Alg-MA sub-microspheres (single and dual-crosslinked) exhibited 

higher internalization rates compared to green light crosslinked groups (Figure 5G), 

which may be related to sub-microsphere diameter; however, statistics were not 

performed on the internalization data.  

Sub-Microsphere Group 

Hydrodynamic Diameter by 

Number (nm) 
Zeta-Potential (mV) 

Encapsulation 

Efficiency (%) 

Blank DOX Loaded Blank DOX Loaded DOX Loaded 

Green Light 334 391 -37 -27 28 

UV Light 331 243 -21 -21 84 

Green Light + Calcium 88 358 -29 -33 26 

UV Light + Calcium 197 346 -27 -25 3 

Table 3-1. Dynamic light scattering (DLS) quantitative analysis of hydrodynamic 

diameters and zeta-potentials of blank (i.e., non-loaded) and DOX-loaded photo-

crosslinked and dual-crosslinked Alg-MA sub-microspheres. DOX encapsulation 

efficiencies were determined using an absorbance assay after sub-microsphere 

fabrication. 
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Figure 3-5. Flow cytometry analysis of Alg-MA sub-microspheres after 12 hours of co-

culture with human lung epithelial carcinoma (A549) cells. (A) Non-treated cell control, 

(B) cells cultured with non-labeled blank sub-microspheres, (C) cells cultured with green 

photo-crosslinked sub-microspheres, (D) cells cultured with green photo-crosslinked and 

calcium crosslinked sub-microspheres, (E) cells cultured with UV photo-crosslinked sub-

microspheres, and (F) cells cultured with UV photo-crosslinked and calcium crosslinked 

sub-microspheres. (G) Flow cytometry histograms were presented to show the different 

fluorescence intensity between control cells and different Alg-MA groups. 

 

3.3.5. Cytotoxicity of Blank and Drug-Loaded Alg-MA Sub-Microspheres 

To verify the non-toxicity and retention of DOX bioactivity after sub-

microsphere encapsulation, MTT assays were performed on blank Alg-MA sub-

microspheres and DOX-loaded Alg-MA sub-microspheres after 24 hours of culture 
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with A549s to quantify mitochondrial activity. A549 viability was assessed in the 

presence of Alg-MA sub-microspheres at increasing concentrations (10, 50, 100 

µg/mL, Figure 6). Blank Alg-MA sub-microspheres (with no drug content) were 

minimally cytotoxic to A549s (mitochondrial activity > 80%) at concentrations up to 

100 µg/mL (Figure 6A). Increased mitochondrial activity may be attributed to low 

molecular weight soluble alginate (i.e., sugar) in the culture media. Additionally, we 

hypothesize the reduced cytotoxicity seen in the UV+C group may be due to enhanced 

clearance of residual UV photoinitiator upon secondary crosslinking with an aqueous 

calcium chloride solution.[37] DOX-encapsulated sub-microspheres delivered bioactive 

drug, significantly reducing mitochondrial activity within 24 hours (Figure 6B). 

 

Figure 3-6. Human lung epithelial carcinoma (A549) cells were cultured in the presence 

of hydrogel sub-microspheres for 24 hours in standard growth medium at 37˚C and 5% 

C02. Cell viability was determined using an absorbance-based quantitative assay to 

measure mitochondrial activity (MTT); absorbance data for the groups treated with sub-

microspheres were normalized to the non-treated cell control (average ± standard 
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deviation, n = 6 hydrogel samples per group). The cytotoxicity of Alg-MA sub-

microspheres was analyzed on (A) blank (non-loaded) sub-microspheres. The bioactivity 

of doxorubicin (DOX) was verified using (B) DOX-loaded sub-microspheres. Various 

groups (white diamonds = green photo-crosslinked, white circles = UV photo-

crosslinked, black diamonds = green + Ca2+ dual crosslinked, black circles = UV + Ca2+ 

dual crosslinked) and sub-microsphere concentrations (10, 50, 100 µg/mL) were 

characterized.  

 

3.3.6. Effect of Soluble Drug VS Sub-Microparticle Mediated Delivery on Cell 

Proliferation 

Four different types of DOX-loaded Alg-MA sub-microspheres were cultured 

with A549s at concentrations of 10, 50 and 100 µg/mL. In addition, different 

concentrations of free DOX was added to the culture media and served a control. A 

short-term cell proliferation study (utilizing an MTT assay) was performed for 5 days. 

On day 1, all of the Alg-MA sub-microsphere groups reduced A549 proliferation, 

regardless of the crosslinking type or concentration (Figure 7A). On days 3 and 5, the 

UV crosslinked Alg-MA sub-microspheres showed the greatest reduction in the A549 

proliferation. For comparison, normalized mitochondrial activity was plotted versus 

free DOX, Figure 7B, or DOX-loaded sub-microspheres calculated, Figure 7C. 

Compared to the free DOX control, Alg-MA sub-microsphere-mediated delivery shows 

a similar decreasing trend as drug concentration increases, though remains less 
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effective. Also, it is likely that drug remains within the sub-microspheres and is not 

released intracellularly. Another consideration is that due to the extended drug release 

profile of DOX from sub-microspheres (Figure 4B), improved efficacy beyond 5 days 

may be achieved. Indeed, photo-crosslinked microspheres alone are advantageous for 

delivering a chemotherapeutic to cancer cells, at clinically-relevant dosages, and 

decreased lung cancer cell mitochondrial activity.  
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Figure 3-7. The efficacy of doxorubicin (DOX)-loaded Alg-MA sub-microspheres as 
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chemotherapeutic delivery vehicles was assessed using a MTT-based assay, to quantify 

cell proliferation over a 5-day period.  A549 activity was recorded as mitochondrial 

activity and normalized to non-modified cell controls. Various formulations and 

concentrations (10-100 µg/mL) of sub-microspheres were assessed: green photo-

crosslinked (Green), green + Ca2+ dual-crosslinked (Green+C), UV photo-crosslinked 

(UV), UV + Ca2+ dual-crosslinked (UV+C). DOX was added exogenously (Free DOX) to 

the cell culture medium at various concentrations to test the effect of intracellular versus 

extracellular DOX delivery. (A) Effect of Alg-MA sub-microsphere concentration for 

each crosslinking type on A549 mitochondrial activity; (B) Effect of ‘free dox’ 

concentration on A549 mitochondrial activity on days 1, 3, and 5; (C) Effect of DOX 

concentration encapsulated within Alg-MA sub-microspheres on A549 mitochondrial 

activity on days 1, 3, and 5. 

3.4. Conclusions 

The study reported here-in focused on the efficacy of utilizing crosslinked Alg-

MA sub-microspheres to intracellularly deliver a chemotherapeutic. Photo-crosslinked 

and dual-crosslinked Alg-MA sub-microspheres successfully encapsulated DOX, were 

internalized by A549s, and delivered DOX to A549s, reducing mitochondrial activity 

compared to non-modified cell controls. The outcome of this study suggests that photo-

crosslinking alone, and in particular green light activation, is an effective means of 

producing drug delivery vehicles, and perhaps additional crosslinking steps or 

procedures are not beneficial, perhaps even detrimental, to drug encapsulation 
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efficiencies. Based on drug encapsulation predictions and calculations, effective 

clinical drug dosages were achieved, as compared to free DOX delivery, and were 

controllable. While the efficacy for using photo-crosslinking Alg-MA sub-

microspheres was shown during a short time frame (5 days) in vitro, future in vivo work 

may show enhanced drug efficacy using microsphere-mediated delivery compared to 

exogenous intravenous chemotherapy over extended periods of time. 

 

3.5. Supplemental Materials 

 
Figure 3-8. The 1H-NMR spectra of Alg-MA and alginate are shown here. The peaks at 

5.75 and 6.25 ppm indicated that hydrogens on the methylene of the methacrylate groups 

were present on the alginate backbone after modification. 
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CHAPTER4: NANOPARTICLE-MEDIATED INTRACELLULAR FGF-2 

DELIVERY AS A CELL-SELECTIVE, INTRACRINE CANCER THERAPEUTIC 

Systemic toxicity and adverse events (AEs) are often unavoidable drawbacks of 

conventional chemotherapy. Therefore, it is highly desirable to develop more specific 

treatments to target cancer cells that avoid use of broad-spectrum toxins. Previous 

reports have shown that cytosolic fibroblast growth factor 2 (FGF-2) promotes 

chromatin compaction and death of cancer cells through intracrine-mediated activation 

of Extracellular signal Regulated Kinase (ERK1/2) and engagement of mitochondria. 

The goal of our study was to provide controlled, intracellular delivery of FGF-2 using 

alginate-graft-poly(ethylene glycol) nanoparticles (ABN) to activate the FGF-2 

intracrine signaling mechanism(s) and reduce cancer cell proliferation. We observed 

that both adenocarcinomic human alveolar basal epithelial cells (A549 cells) and 

healthy bronchial epithelial cells (HBE) readily internalized ABN by means of non-

selective endocytosis, and displayed intracellular trafficking within 24 hours. 

Compared with extracellular exposure to FGF-2, intracellular delivery of FGF-2 via 

ABN significantly reduced mitochondrial activity and significantly increased the 

nuclear content of activated-ERK1/2 in A549 cells. In contrast, HBE were not affected 

by ABN-mediated intracellular FGF-2 treatment. Our results demonstrate that FGF-2-

loaded ABN hold promise as an effective cancer therapeutic that selectively targets 

cancer cells through the intracrine FGF-2 signaling pathway. 
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4.1. Introduction 

 

Lung cancer is one of the most prevalent types of carcinoma, resulting in the 

largest number of cancer-related deaths worldwide.[1-3] Greater than 85% of lung 

cancer cases are classified as non-small-cell lung cancer (NSCLC), including 

adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Despite recent 

advances in early detection and cancer treatment, NSCLC is often diagnosed at a late 

stage in the disease and bears a poor prognosis.[1] Standard of Care treatment for 

NSCLC includes surgical resection of pulmonary lesions, combined with 

radiotherapy[4] or chemotherapy to prevent or reduce tumor-induced symptoms, 

prolong patient survival, and maintain quality of life.[5] Chemotherapy can last up to 6 

months at high parenteral dosages, and is frequently associated with systemic 

toxicity[6, 7] and long-term adverse effects (AEs) for patients that include hearing loss, 

cardiomyopathy, sterility, and hypomagnesaemia.[8] Accordingly, cancer treatments 

that are selectively-cytotoxic and that prevent recurrence are highly sought after by 

clinicians and the biomedical research community. 

Among the family of receptor tyrosine kinases (RTKs), fibroblast growth factor 

receptors (FGFRs)  transmit signals from the extracellular space to the cytoplasm, and 

are commonly altered in cancer. FGFs are secreted glycoproteins that are readily 

sequestered by the extracellular matrix and cell surface. FGF-FGFR binding leads to 

receptor dimerization and trans-phosphorylation of tyrosine kinase domains,[9, 10] 

extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation and nuclear transport; 
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these signals commonly result in cell proliferation, drug resistance, and 

neoangiogenesis.[11] FGFR signaling also plays significant roles in the invasion and 

survival of several types of tumor cells.[12-14] Notably, the ERK pathway is reported 

as a master regulator of cell proliferation, survival, transformation, and programmed 

death.[15-18]  

Low and high molecular weight FGF-2 (lo-FGF-2 and hi-FGF-2) isoforms can 

have similar, as well as isoform-specific, effects on cell proliferation, differentiation, 

migration, and survival, and accumulate in varying proportions in different cell 

types.[19] Lo-FGF-2 is associated with paracrine/autocrine signaling – it is smaller and 

can be secreted from cells.[20] In contrast, hi-FGF-2 is a larger protein that is generally 

not secreted by cells.[21] The hi-FGF-2 isoform, specifically, has activity independent 

of cell surface FGFR activation and that instead involves an intracrine signaling 

pathway which activates ERK1/2. This, in turn, can activate a Death Associated Protein 

Kinase (DAPK) that promotes nuclear transport of ERK1/2, chromatin compaction and 

cell death.[22] Notably, several reports suggest the FGF-2 isoform can negatively 

impact cell division,[23-25] and endocytosis of FGF-2 bound latex microspheres by 

cultured avian cochleovestibular ganglion cells was shown to deplete cell surface 

FGFR.[26] Furthermore,  hi-FGF-2 was shown to reduce glioma cell proliferation in 

vivo by inhibiting cell-cycle progression and protein translation.[27] Thus, intracellular 

delivery of FGF-2 has exciting potential to target proliferating cancer cells and may led 

to novel intracrine-based therapeutics for cancer patients. 
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Particle encapsulation is a core technology used in drug delivery systems,[28] 

and provides the following benefits: (a) uniform particle size and shape; (b) protective 

barrier from the extracellular environment; and (c) controlled temporal and drug 

release.[29] Nanoparticles encompass an assortment of colloidal nano-systems (<1 

µm), capable of passing through biological barriers (i.e., passive targeting), and 

encapsulating drugs at relatively high densities. Compared with systemic or exogenous 

drug delivery methods, nanoparticles that deliver chemotherapeutics through 

intracellular means exhibit enhanced drug efficacy.[30]  

Alginate, a naturally occurring biopolymer, has been formed into microspheres 

and used to deliver proteins, cytokines, cells, and small molecules.[31-33] However, 

the relatively large diameter, rapid drug-release,[34] and anionic properties of alginate 

particles impede efficient cellular uptake and drug encapsulation, limiting its clinical 

application. To overcome these limitations, we conjugated poly(ethylene glycol) onto 

alginate to form a slightly-neutralized alginate-graft-poly(ethylene glycol) (Alg-g-

PEG), which was then used to form nanoparticles.[35] The Alg-g-PEG-based 

nanoparticles (ABN) improved cellular uptake compared with that of non-modified 

alginate nanoparticles. 

Using an engineered ABN, here we investigate the direct, controlled 

intracellular delivery of FGF-2 as a potential intracrine-mediated cancer treatment. 

Unlike typical FGF-2 signaling, which requires cell surface FGF-2/FGFR dimerization, 

we delivered FGF-2 by non-FGFR-mediated endocytosis, via ABN, to determine 
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whether we could effectively activate an FGF-2-mediated intracrine signaling pathway. 

We hypothesized that non-FGFR-mediated internalization of FGF-2-loaded ABN 

would generate intracrine signals that are: 1) Selectively-toxic to proliferating cancer 

cells and 2) Relatively non-toxic for normal, healthy, non-cycling primary cells. 

Herein, for both diseased (transformed) and healthy (non-transformed) primary cells 

treated with FGF-2-loaded ABN, we report the routes of cellular uptake, 

internalization, and intracellular trafficking for FGF-2-loaded ABN.  Furthermore, we 

demonstrate dramatic, specific effects of internalized, FGF-2-loaded ABN on the 

cytosolic and nuclear protein pools that correlate to decreased proliferation of cancer 

cells, but not of healthy primary cells. 

4.2. Materials and Methods 

4.2.1. Materials  

Sodium alginate (Mw=65–75 kg/mol, 60–70% guluronic acid residues) was 

generously donated by FMC BioPolymer. Amine-poly(ethylene glycol)-thiol (NH2-

PEG-SH, Mw=1000 g/mol) and methyl-poly(ethylene glycol)-amine (mPEG-

NH2, Mw=500 g/mol) were purchased from Laysan Bio. N-ethyl-N′(3-

dimethylaminopropyl) carbodiimide hydrochloric acid (EDC), N-hydroxysuccinimide 

(NHS), 2,2′-dithiodipyridine, methanol (MeOH, anhydrous, 99.8%), biology-grade 

mineral oil, Span 80, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT)-based In Vitro Toxicology Assay Kit, cholera toxin, bovine serum albumin 

(BSA) and dexamethasone were purchased from Sigma-Aldrich. One molar 
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hydrochloric acid (HCl) and 1 M sodium hydroxide were purchased from BDH 

ARISTAR®PLUS. Sodium citrate, isopropanol, calcium chloride (CaCl2), sodium 

chloride (NaCl), magnesium chloride (MgCl2), Alexa Fluor® 647 Cadaverine, 20x 

phosphate buffered saline (PBS), 4% paraformaldehyde (PFA) in PBS, Triton® X-100, 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), glycerol, 

phenylmethylsulfonyl fluoride (PMSF), sodium orthovanadate (Na3VO4 ), aprotinin, 

leupeptin, a bicinchoninic acid assay (BCA) kit,  a subcellular protein fractionation kit 

for cultured cells, and BupH™ MES Buffered Saline Packs were purchased from Fisher 

Scientific. Fetal bovine serum (FBS) was purchased from Atlanta Biologics. Dulbecco's 

Modification of Eagle's Medium (DMEM, glutaGRO™)/F-12 media, penicillin, 

streptomycin and trypsin EDTA were purchased from Corning Cellgro. A human FGF 

ELISA Kit was purchased from BioLegend. Human anti-FGF-2 antibody and 

immunoglobulin G (IgG) (rabbit) were purchased from Abcam. Human epidermal 

growth factor (EGF), insulin, transferrin, and bovine pituitary extract (BPE) were 

purchased from Lonza. A549 (CCL-185™) adenocarcinomic human alveolar basal 

epithelial cells (A549 cells) and healthy bronchial epithelial cells (HBEs), were isolated 

and cultured in Dr. Van der Vliet’s laboratory.[36] 

 

4.2.2. Alginate-g-PEG Sub-microsphere (ABN) Fabrication 

FGF-2-loaded ABN Fabrication 

ABN fabrication was based on our previous work, including Alg-g-PEG 

synthesis.[35] FGF-2 was added to a 1% (w/v) Alg-g-PEG solution at a weight ratio of 
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1:105 (FGF-2:polymer). ABNs without FGF-2 were fabricated as blank controls. At 

room temperature, 1 mL of Alg-g-PEG/FGF-2 solution was added to 6.72 mL of 5% 

(v/v) Span 80 in mineral oil and mixed at 1200 rpm for 5 minutes. Next, 400 µL of 

30% (v/v) Tween 80 in mineral oil was added followed by the slow addition of 5 mL of 

2 M calcium chloride (CaCl2) solution. The emulsion was mixed for 30 minutes, 3 mL 

of isopropanol was added, and then the emulsion was centrifuged at 4000 rpm for 5 

minutes. ABNs were washed sequentially with isopropanol (x2) and DI water (x2). The 

size and zeta-potential of ABNs were determined using dynamic light scattering (DLS, 

Zetasizer Nano ZSP, Malvern) in PBS at pH = 7.4, room temperature. ABNs were flash 

frozen in liquid N2, lyophilized, and characterized by scanning electronic microscopy 

(SEM, JEOL 600); samples were sputter coated with 45 nm of gold/palladium (Au/Pd). 

 

FGF-2 Encapsulation and In Vitro FGF-2 Release Assay 

Lyophilized FGF-2-loaded ABNs were dissolved in 3% (w/v) sodium citrate 

solution.[37] The FGF-2 concentration was measured using a BioLegend ELISA 

Development Kit as per manufacturer’s instructions. 

 

4.2.3. Cellular uptake of ABNs 

Cellular Uptake 

 

A549 cells and HBEs were seeded in 6 well plates at 3x105 per well and 

cultured until they reached 80% confluence.6,38 A549 cell culture medium contained 

DMEM/F12, 10% FBS, and 1% penicillin/streptomycin. HBE culture medium 
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contained DMEM/F12, cholera toxin (10 ng/mL), epidermal growth factor (10 ng/mL), 

transferrin (5 μg/mL), BPE (15 μg/mL) and BSA (0.5 mg/mL). ABN were labeled with 

AlexaFluor 647 via carbodiimide chemistry and added to cells at 100 µg/mL (n=3). 

After 24 hours of co-culture, medium was removed and the adherent cells were 

thoroughly rinsed with PBS. Cells were trypsinized and centrifuged at 200 x g for 10 

minutes, and then re-suspended and fixed in 1 mL of 4% PFA in PBS for 10 minutes. 

After fixation, cells were centrifuged to remove excess PFA, and thoroughly rinsed 

with 1 x PBS. Cells were re-suspended in sterile PBS and transferred to 5 mL 

polystyrene round-bottom tubes for flow cytometry to determine the percentage of the 

cell population that internalized ABN (BD LSRII Flow Cytometer). Alexa 647-positive 

cell population percentages were gated with non-treated cells and those treated with 

non-labeled ABN.  

Route of Internalization and Intracellular Transportation 

Blank ABN were labeled with AlexaFluor 647 via carbodiimide chemistry, and 

suspended in medium with various blockers of endocytosis– 1) chlorpromazine 

hydrochloride (CH) to inhibit clathrin-mediated endocytosis[38] (10 mg/mL); 2) 

nyastin (NY) to inhibit caveolar-mediated endocytosis[39] (25 µg/mL); 3) colchicine 

(CO) to inhibit macropinocytosis[40] (40 µg/mL); and 4) dynasore (DY) to inhibit 

dynamin[41, 42] (80 µM).[43] A549 cells were seeded in 6-well plates at 3x105 per 

well and cultured until they reached 80% confluence. Cells were incubated in the 

presence of blank AlexaFluor 647-labeled ABN (n=3) at 100 µg/mL, 37°C and 5% 
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CO2. After 30 minutes, culture medium was removed and adherent cells were 

thoroughly rinsed with sterile PBS to remove non-internalized ABN. Cell samples were 

prepared for flow cytometry (vida supra). A Tukey test was performed to compare the 

difference of the percentage of cells with ABN between non-blocked groups and 

blocked groups. To verify that fluorescent signals were coming from internalized ABN, 

and not membrane-bound ABN, the same cell samples were imaged using confocal 

laser scanning microscopy (CLSM, Zeiss LSM 510 META). Z-stack images were 

obtained with AimImage Software. 

To track ABN internalization, A549 cells were incubated with AlexaFluor 647-

labeled ABN (100 µg/mL) and rhodamine-labeled dextran (12.5 mg/mL) for 10 and 30 

minutes, and 3 and 24 hours.[44, 45] Cells with non-labeled dextran, and without any 

treatments, were prepared as controls. At different time points, medium was removed 

and adherent cells were thoroughly-rinsed with PBS. Cells were prepared for CLSM 

(vida supra) and z-stack images were obtained.  

A549 cells were seeded on sterile Nunc™ Thermanox™ Coverslips in 6-well 

plates overnight in preparation for transmission electron microscopy (TEM). ABN (100 

µg/mL) were added to the medium and co-cultured for 10 and 30 minutes, and 1, 4, 8, 

12, 24 and 48 hours. At each time point, medium was removed and cells were 

thoroughly-rinsed with PBS. Cells were fixed for 30 minutes in Karnovsky’s fixative 

(2.5% glutaraldehyde, 1% PFA in 0.1 M PBS) at 4°C, rinsed with Millonig’s phosphate 

buffer, and post-fixed in 1% osmium tetroxide (OsO4) in 0.1 M cacodylate buffer at 
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4°C for 30 minutes. Samples were dehydrated in a graded series of ethanol, through 

propylene oxide, and infiltrated and embedded in Spurr's resin. Ultra-thin sections were 

cut with a diamond knife, placed onto 200 mesh nickel thin-bar grids, and contrasted 

with alcoholic uranyl acetate and lead citrate. Grids were viewed with a TEM (JEOL 

1400 USA, Inc.) operating at 60 or 80 kV, and digital images were acquired with an 

AMT-XR611 11 megapixel ccd camera.[46, 47] A customized Matlab code was written 

to measure particle diameters using TEM images, providing an image-based average 

size of internalized ABNs.[48, 49] 

 

4.2.4. Bioactivity of Cells after 24 treatment of FGF-2 Intracellularly 

Mitochondrial Activity Assay 

A549 cells and HBE cells were seeded in 24 well plates at 5*104 per well and 

cultured until reaching 80% confluent. ABNs with or without FGF were added to cell 

seeded plates at concentration of 100 µg/ml were added to each well and co-culturing 

for 24h with n=3 replicates. Extracellular FGF-2 (20 ng/ml) and ABNs with BSE (100 

μg/ml) were also added to cells serving as controls. After 24h co-culturing, medium 

with ABNs were removed and fresh full medium without ABNs was added to culture 

for another 24h. Finally, fresh medium was washed with PBS for three times. then 

analyzed using a MTT-based In Vitro Toxicology Assay Kit following the 

manufacturer's protocol. The optical density was measured at 570 nm using a BioTek 

plate reader. Background absorbance at 690 nm was subtracted from the measured 
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absorbance. Absorbance values for the experimental and control samples were 

normalized to non-modified TCPS controls[50]. 

 

Western Blot 

The production of ERK1/2 proteins in A549 cells and HBEs, after treatment 

with ABN, was determined by immunoblotting.[23] Six control and experimental 

groups were prepared – 1) cells without any treatment; 2) cells with FGF-2-loaded 

ABNs; 3) cells with extracellular FGF-2 (20 ng/ml); 4) cells with blank ABNs; 5) cells 

treated with 2 μg/mL anti-FGF for 30 minutes, and FGF-2-loaded ABNs; and 6) cells 

treated with 2 μg/mL IgG for 30 minutes, and with FGF-2-loaded ABNs. Cells were 

plated and cultured until 80% confluence, and the different treatments were added to 

the cultures for 24 hours. For whole cell protein analysis, cells were lysed using 200 μL 

of 1x western solubilization lysis buffer (1% Triton X-100, 50 mM HEPES, 250 mM 

NaCl, 10% glycerol, 1.5 mM MgCl, 1 mM PMSF, 1 mM EGTA, 2 mM Na3VO4, 10 

μg/mL aprotinin, 10 μg/mL leupeptin), pH 7.4, per well. For cellular fraction protein 

analysis, protein samples from membrane/cytosol and nuclei fractions were obtained 

using a subcellular protein fractionation kit based on the manufacturer’s protocols. 

Equal amounts of protein (20-25 μg; determined using BCA protein assay) were 

separated on Novex 10% Tris-Glycine gels, transferred to nitrocellulose membranes, 

and blotted using antibodies against pERK-1/2 (#4370; 1:1000; Cell Signaling) and 

Erk1/2 (#4695; 1:1000; Cell Signaling).[43, 51] 
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4.3. Results  

4.3.1. ABN Fabrication and Characterization 

Blank and FGF-2-loaded ABNs were fabricated using a water/oil emulsion 

based on our previous reports.[52]  SEM images of lyophilized ABNs depicted a 

textured surface and spherical morphology (Fig.4-1A,B). To quantify ABN properties, 

we used dynamic light scattering (DLS) on suspended ABNs at physiological 

conditions. Indeed, the greatest population of particles were <100 nm and the average 

hydrodynamic diameter of FGF-2-loaded ABN was 84 nm (Fig.4-1C). ABN were 

slightly negative and the average surface charge of ABN was -8 mV (Fig.4-1D). This 

was expected, since alginate is an anionic molecule.[33] Furthermore, with only 10% 

PEGylation, ABN should retain some electronegativity.[35] The encapsulation 

efficiency (i.e. amount of drug retained) of FGF-2 after loading and ABN fabrication 

was 60%, an appreciably high value; however, in the future, it may be possible to 

optimize the ABN fabrication to improve upon this value. Using the encapsulation 

efficiency, FGF-2 release in buffered saline at 37˚C was quantified over the course of 2 

weeks. FGF-2 diffusion occurred for 14 days, although the rate of release leveled -off 

after 8 days, and a FGF-2 concentration around 10 ng/mL was maintained (Fig.4-1E). 

While the data demonstrate that FGF-2 was loaded and subsequently released from the 

ABNs, it is critical that FGF-2 remain within ABN until cellular uptake occurs. 

Although only ~30% of the drug was released within the first day, our data suggest that 

further optimization could help to limit the extracellular release of FGF-2 from ABNs. 
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Figure 4-1. Scanning electron micrographs depicting spherical ABNs with (A) scale bar 

= 1 µm and (B) scale bar = 500 nm. (C) Hydrodynamic diameter distribution of FGF-2-

loaded ABNs, measured in PBS, pH 7.4, 37˚C, and reported as number-average mean (84 

nm). (D) Hydrodynamic zeta-potential distribution was measured in PBS, pH 7.4, and 

reported as number-average mean (-8 mV). (E) Cumulative FGF-2 release from 5 mg 
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ABNs over 14 days; FGF-2 concentration (ng/mL) was measured with an ELISA; FGF-2 

encapsulation efficiency was 60%. 

4.3.2. ABN Internalization 

Logarithmic plots of non-treated cells (Fig.4-2A,E), and cells treated with non-

labeled ABNs (Fig.4-2B,F), were prepared as controls (with positive cell populations 

<1.3%) and used to establish gates for AlexaFluor 647-labeled ABN experimental 

groups. Further flow cytometry analysis demonstrated that >40% of A549 cells (Fig.4-

2C) and >15% of HBEs (Fig.4-2G) internalized AlexaFluor 647-labeled ABNs after 24 

hours of culture. Histograms (Fig.4-2D,H) demonstrate clear shifts in fluorescent 

intensities between control and experimental groups for each cell type, demonstrating 

successful internalization and more efficient uptake of ABNs cultured with cancer cells 

compared to healthy cells. The median fluorescence intensity (MFI) for non-treated 

A549 cells and for A549 cells treated with non-labeled ABN were 355 and 375, 

respectively, whereas the MFI for AlexaFluor 647-labeled ABNs notably increased to 

1155 (Fig.4-2D). The MFI for non-treated HBEs and HBEs treated with non-labeled 

ABN were only 361 and 328, respectively, whereas the MFI for AlexaFluor 647-

labeled ABNs increased to 838 (Fig.4-2H). 
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Figure 4-2. Flow cytometry and quantification of the cell population (%) that internalized 

ABN after 12 hours of co-culture at concentration of 100 µg/ml: A549 cells (top panel) 

and HBEs (bottom panel). (A,E) Non-treated cell controls; (B,F) cells treated with non-

labeled ABNs; (C,G) cells with treated with AlexaFluor 647-labeled ABNs; and (D,H) 
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cell count curves plotted on a log scale showing representative mean fluorescent 

intensities (MFI) for each control and experimental group. 

 

Endocytosis Assay 

We explored the endocytic pathways used by A549 cells to internalize ABN in 

order to further understand the cellular mechanism mediating the process. The 

inhibition of clathrin-mediated endocytosis significantly reduced the ABN-positive cell 

population more than other blockers and decreased ABN uptake by 41% (Fig.4-3A), 

suggesting that endocytosis played a key role in transport of ABN across the cell 

membrane. The inhibition of macropinocytosis had the least effect on ABN uptake, 

reducing internalization by 24%. Indeed, compared with the control group (without any 

blockers), all four blockers significantly decreased ABN uptake, suggesting that a 

combination of multiple pathways may be involved.[53, 54] In addition, viability of 

A549 cells was not significantly affected by the inhibition of endocytosis during the 30 

minutes of culture (Fig.4-3B). To verify that ABN were indeed inside cells, CLSM was 

performed following flow cytometry. Z-stack merged images confirmed AlexaFluor 

647-labeled ABN (red) were located inside the cytoplasm rather than adhered to the 

cell surface (Fig.4-3C, D, E, F).  
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Figure 4-3 Endocytosis-dependent ABN uptake by A549s. Results are presented as a 

percentage of the ABN-positive A549 cell population after treatment with various 

blockers and normalized to the control. (ANOVA, *p < 0.01 versus ABN control, n=3). 

Clathrin-inhibitors demonstrated the greatest reduction in ABN-positive cell populations. 

(B) The effect of ABN exposure and inhibition of endocytosis on mitochondrial activity 

in A549 cells after 30 minutes of culture was not significant. (C) CLSM merged images 

of A549 cells verified ABN internalization (red). 

 

4.3.3. Intracellular Trafficking of ABNs  

Internalization by A549 cells and vesicle-mediated intracellular transport of 
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AlexaFluor 647-labeled ABN (red) was confirmed by culturing with rhodamine-labeled 

dextran (green), which is enclosed in membrane-bound vesicles during intracellular 

transport (e.g., endosomes and lysosomes). After culturing for 10 minutes, fluorescent 

signals for both ABN (red) and dextran (green) were visible, and merged images 

verified co-localization (yellow) of ABN within dextran-labeled vesicles (Fig.4-4A). 

Thus, the CLSM data complemented our previous flow cytometry data, demonstrating 

that ABN are internalized in membrane-bound vesicles. Next, we examined cultures 

after 24 hours to determine if ABN were escaping endo/lysosomes. Indeed, there 

appeared to be less overlay between dextran-labeled lysosomes and ABN, indicating 

that ABN were escaping lysosomes (Fig.4-4B). We hypothesize that the mechanism is 

via ABN swelling , or the proton sponge effect in the relatively low-pH lysosomes, 

thereby causing vesicles to burst and release their contents within the cytoplasm.[55] 

Notably, however, this concept will need to be investigated further.  
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Figure 4-4. CLSM images of A549 cells cultured with AlexaFluor 647-labeled ABN 

(red) and rhodamine-labeled dextran (green) after (A) 10 minutes and (B) 24 hours of 

incubation. PC = phase contrast.   

CLSM was followed by transmission electron microscopy (TEM). Compared to 

images of non-treated (control) cells, in images of treated cells, the ABN were clearly 

distinguishable from intracellular compartments and organelles due to their dark 

contrast and spherical shape (Fig.4-5A). In TEM images of A549 cells exposed to ABN, 

extension of the cell membrane and endocytosis were seen within 30 minutes’ post-

incubation (Fig.4-5B). At 4 hours’ post-incubation, higher concentrations of ABNs 

were seen within the cell, close to the cell membrane (Fig.4-5C). ABN located at the 

edge of the cell membrane were still detectable at later time points, and we 

hypothesized that cellular endocytosis and exocytosis were occurring continuously. At 

8 hours’ post-incubation, the density of ABN decreased in the cytoplasm, however, the 

ABN that remained in the cell localized closer to the nucleus (Fig.4-5D). At later time 

points, ABN located at the edge of the cell membrane were still detectable, indicating 

that cellular endocytosis and exocytosis had continued. At 24 and 48 hours post-

incubation, ABNs localized to the nucleus and appeared to interact with the nuclear 

membrane (Fig.4-5E,F). Using a custom-written MATLAB code, we performed a 

numerical analysis of the internalized ABN in the TEM micrographs, and determined 

the average size of ABN internalized by the cells was 297 nm (diameter). This value 

differed from that detected by DLS since it could only measure ABN inside cells. Both 
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the CLS and TEM photos confirmed the destination/fate of endocytosed nanoparticles, 

namely that they surrounded cell nuclei while releasing bioactive ABN contents. Of 

interest, our analysis indicated that intracellular trafficking of nanoparticles should 

likely be considered as important as particulate design and characterized whenever new 

particulate types are being developed.   

 

Figure 4-5.  TEM images of A549 cells without exposure to ABN (A) or with exposed to 

ABN for (B) 30 minutes, (C) 4 hours, (D) 8 hours, (E) 24 hours, and (F) 48 hours. Two 

images at different magnifications are shown for each time point, scale bar = 2 µM. 
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Yellow arrows indicate the location of ABN. 

4.3.4. Bioactivity of FGF-2 Intracellular Delivery 

ABN (e.g. blank and FGF-2-loaded) cytotoxicity and the effects on healthy and 

diseased cell ERK1/2 activation were used to determine the bioactivity of FGF-2 and 

the effectiveness of our delivery system. After 24 hours of exposure, our results 

indicated that FGF-2-loaded ABN significantly decreased MTT activity in A549 cells, 

while the exogenous (i.e. free) FGF-2 significantly increased MTT activity (Fig.4-6A). 

Notably, no significant effect was seen in HBEs after exposure to FGF-2 loaded ABN 

indicating these effects may be selective for cancer cells; however, mitochondrial 

activity slightly increased due to exposure to exogenous FGF-2 (Fig.4-6B). As 

expected, blank ABN had no significant effect on either cell type.  

To determine further whether or not the cytotoxic effects correlated with 

changes in ERK1/2 activation, we first examined whole cellular protein lysates and 

observed no significant difference between treatment groups, in either cell type 

(Supplemental Information). Therefore, we quantified ERK1/2 activation in different 

cellular fractions (membrane/cytosol and nucleus). Immunoblotted protein bands for 

phosphorylated ERK (pERK1/2) and total ERK (tERK1/2) are shown in Fig.4-6C,D. 

Nuclear ERK1/2 activation in A549 cells treated with FGF-2-loaded ABN was the 

highest compared with that of control or other treatment groups (Fig.4-6E). The second 

highest amount of activated nuclear ERK1/2 was associated with exogenous FGF-2, 

however, values were approximately 50% that of the FGF-2-loaded ABN treatment 
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group. Most notably, compared with levels in control cells and those for the other 

treatment groups, the level of nuclear ERK1/2 activation in HBEs decreased (Fig.4-

6F). Thus, we found that the distribution of ERK1/2 was governed by the stimulus 

concentration, the route of stimulation (paracrine vs. intracrine), and the duration of 

stimulation.  

Reports in the literature suggest that upregulation of nuclear ERK1/2 may lead 

to apoptosis and cell death,[56] which supports the cumulative bioactivity data for 

FGF-2-loaded ABNs  (summarized in Fig.4-7). Nuclear activation of ERK1/2 

upregulates p53 expression, which is a pro-apoptotic protein known to induce 

chromatin compaction and cell death.[57, 58] Conversely, cytosolic ERK1/2 activation 

can inhibit nuclear ERK1/2 activation, inducing cell proliferation.[57] In addition, the 

ERK/p53 signal transduction pathway is also involved in various chemotherapeutic-

induced cell apoptotic events.[56, 57, 59] In agreement with our observations, Ma et al. 

suggested that mitochondrial engagement plays an important role in inducing chromatin 

compaction and cell death.[22]  
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Figure 4-6. In vitro MTT test result of different treatments (non-treated control group, 

empty ASNs, extracellular FGF-2, and FGF-2 loaded ABNs) with HBE cells and A549 

cells. (C, F) western blot photos of both membrane cytosol ERK1/2 activation and 

nuclear ERk1/2 activation for HBE cells and A549 cells. (B, E) OD reading ratio of 

pERK/ERK of western blot bands in both membrane/cytosol fraction and nuclear fraction 

for HBE cells and A549 cells. 
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Figure 4-7. Schematic representation of proposed internalization and intracellular 

activity of FGF-2-loaded ABNs.   

4.4 Conclusions 

This study is the first to report on the toxic effects of ABN-mediated FGF-2 

delivery on cancer cells. We demonstrated successful cellular uptake using flow 

cytometry and electron microscopy, and our data suggest ABN are internalized through 

non-specific endocytosis. Healthy cells did not respond significantly when dosed with 

FGF-2 loaded ABNs. However, when delivered to cancer cells, intracellular delivery of 

FGF-2 via ABN produced significantly higher cytotoxic effects that correlated to 

significantly higher activated-ERK1/2 nuclear content. Notably, the growth-inhibitory 

effects of intracellular FGF-2 may be broadly applicable to various cancers of the lung 

transformed epithelial cells in general, and perhaps those of other tissues/organs. 

Moving forward, we are excited to now determine the efficacy of FGF-2 loaded ABNs 

to treat animal models of tumorigenesis and metastasis. 
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4.5 Supplemental Materials  

DLS Result for ABNs 

Size distribution by number 

 
Size distribution by intensity 

 
Size distribution by Volume 
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Zeta potential by number 

 
 

Total Protein ERK1/2 western blot 
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CHAPTER 5: TARGETED IMMUNOTHERAPY VIA ALGINATE AVIDIN 

NANOPARTICLES 

The goal of this study was to design and fabricate an alginate-graft-avidin 

nanoparticles, which are able to conjugate with any biotinylated antibody of cell 

surface marker (i.e. anti-CD 11b or anti-CD8) to target interacts with desire cell types. 

 

5.1. Introduction 

Targeted drug delivery is an innovative method of delivering medications to 

patients in a manner that increases the concentration of the medication in desired 

disease locations relative to other body parts. Recent research focused on three fronts: 

finding the proper target for a particular disease state; finding a drug that effectively 

treats this disease; and finding a means of carrying the drug in a stable form to specific 

sites while avoiding the immunogenic and nonspecific interactions that efficiently clear 

foreign material from the body[1]. Nanoparticles encompass a variety of submicron (<1 

µm) colloidal nanosystems, able to pass through certain biological barriers and 

encapsulate high density of therapeutic agents. With a large variety of chemical and 

preparation methods, nanoparticles can be engineered to yield different properties and 

release characteristics for the entrapped agent with different surface functionalities, 

such as targeting ligands for interaction with specific cells or tissue[1], which is 

required in p38 inhibitor delivery for MS treatment. Targeting moieties are classified as 

proteins (antibodies and fragments), peptides, nucleic acids (aptamers), small 
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molecules, or others molecules (vitamins or carbohydrates)[2]. Monoclonal antibodies 

are clinically and commercially-established therapeutics[3-5]. The full sequence of an 

antibody provides an accurate and efficient targeting effect compared to other types of 

moieties.  

Alginate, a naturally occurring non-toxic biopolymer, has been used as a matrix 

for the entrapment and/or delivery of a variety of biological agents [18-20]. Alginate 

sub-microspheres have attracted much attention for the development of controlled and 

sustained-release drug delivery for proteins[6], cytokines[7, 8], and cells[9]. Our group 

has previously reported on utilizing alginate sub-microspheres for promoting 

osteogenic differentiation of human mesenchymal stem cells. However, the reported 

targeting moieties was only a tri-peptide arginine-glycine-aspartic acid (RGD). To 

increase the targeting efficiency, we herein report on utilizing the streptavidin 

(SA)/biotin interaction to conjugate biotinylated antibodies, specific to macrophages 

(anti-CD11b) or CD 8+ T cells, onto the SA surface modified alginate nanoparticles. 

The high affinity of the noncovalent interaction between biotin and avidin has been 

widely applied in research, which relies on the formation of an irreversible and specific 

linkage between biological macromolecules[10]. The capture of the small molecule 

biotin (vitamin H/vitamin B7) by the bacterial protein SA is both a powerful tool in 

biology and a model system for the study of high-affinity protein–ligand 

interactions[11]. Therefore, our SA surface modified alginate sub-microparticles will 

serve as a general drug delivery platform for targeting drug delivery. 
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5.2. Materials and Methods 

5.2.1. Materials 

Sodium alginate (MW = 65–75 kg/mol, 60–70% guluronic acid residues) was 

generously donated by FMC BioPolymer. N-ethyl-N′(3-dimethylaminopropyl) 

carbodiimide hydrochloric acid (EDC), N-hydroxysuccinimide (NHS), 2,2′-

dithiodipyridine, methanol (MeOH, anhydrous, 99.8%), biology-grade mineral oil, 

Span 80, bovine serum albumin (BSA) were purchased from Sigma-Aldrich. Sodium 

citrate, isopropanol, calcium chloride (CaCl2), Alexa Fluor® 647 Cadaverine, 4% 

Formaldehyde (PFA) Solution in PBS, BupH™ MES Buffered Saline Packs and 20 × 

phosphate buffered saline (PBS), Alexa 647 Cadaverine, FTIC avidin, alexa 647 avidin 

were purchased from Fisher Scientific. Fetal bovine serum (FBS) was purchased from 

Atlanta Biologics and screened for a lot that best supported growth of human cells. 

Dulbecco's Modification of Eagle's Medium/Ham's F-12 Mix and 1X DMEM medium, 

penicillin, streptomycin and Trypsin EDTA were purchased from Corning Cellgro. Rat 

anti-CD11b antibody and anti-CD8+ were purchased from BioLegend.  

 

5.2.2. Alginate Sub-Microsphere (ASM) Fabrication 

ASMs were fabricated using a 1% (w/v) polymer solution. One milliliter of 

alginate-graft-poly(ethylene glycol) solution was slowly added to 6.72 mL of 

biological-grade mineral oil containing 5% (v/v) Spam 80 while mixing at 1200 rpm 

for 5 min at room temperature. Next, 400 µL of 30% (v/v) Tween 80 was added and the 
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emulsion will be mixed for an additional 5 min. Then, 5 mL of 2 M calcium chloride 

(CaCl2) solution was added slowly. After 30 min of mixing, 3 mL of isopropanol was 

added to the emulsion and allowed to mix for 5 min, then was centrifuged at 400 rpm 

for 5 min to precipitate ASMs. ASMs were washed sequentially with isopropanol (x2) 

and DI water (x2), respectively, and centrifuged after each wash. Microspheres were 

flash frozen in liquid N2 and lyophilized into powder for long term storage. The size 

and zeta-potential of the sub-microspheres were determined using dynamic light 

scattering (DLS, Zetasizer Nano ZSP, Malvern) in PBS at pH = 7.4 at room 

temperature. 

 

5.5.3. ASM Surface Coating 

The surface modification of ASMs with FTIC/Alexa 647 labeled avidin was 

achieved via carbodiimide chemistry catalyzed with EDC and NHS. Twenty milligrams 

of lyophilized ASMs were added to 3 mL of 0.1M MES buffer at pH 5 with the 

addition of EDC and NHS, and stirred at room temperature to activate the carboxyl 

groups on alginate. The COOH:EDC:NHS molar remained consistent at 1:8:3.2 during 

the reaction, where COOH refers to the moles of alginate carboxyl groups. After 1 h of 

vigorous stirring, 200 µg FTIC or Alexa 647 labeled avidin or Alexa 647®Cadaverine 

(labeling control group) in 200 µL DI water were added to the reaction system and 

reacted for 48 h at room temperature protected from light. The reaction suspensions 

were centrifuged for 3 min at 4000 rpm to precipitate ASMs. ASMs were washed 

sequentially with DI water (X2) respectively, and centrifuged after each wash. ASMs 
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were flash-frozen in liquid N2 and lyophilized for long term storage. The size and zeta-

potential of ASMs were determined using dynamic light scattering (DLS, Zetasizer 

Nano ZSP, Malvern) in PBS at pH = 7.4 at room temperature. 

 

5.2.4. ASM Antibody Conjugation 

Two milligrams of ASMs were mixed with 50 µg anti-CD11b, anti-CD8 or 

isotype control IgG (BioLegend Cat# 101204, 100704 and 400604 respectively) in a 

total volume of 100 µL PBS with 10% FBS and allowed to conjugate for 60 min at 

room temperature. A separate reaction with no antibody served as an additional control. 

After the reaction, ASMs were centrifuged for 5 min at maximum speed to pellet 

antibody-coated ASMs. ASMs were washed sequentially with PBS (X2) respectively, 

and re-suspended in 100 µL PBS.  

 

5.2.5. Animals 

C57BL/6J mice were purchased from The Jackson Laboratory and were 

maintained in the animal facility at the University of Vermont. The experimental 

procedures used in this study were approved by the Animal Care and Use Committee of 

the University of Vermont. 

 

5.2.6. Mixed Mice Spleen Culture 

Single-cell suspensions of splenocytes were prepared and the red blood cells 

were lysed with ammonium chloride. Total numbers of cells were counted using the 

Trypan blue live dead staining. These cultures typically consist of a mixture B cells 
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(CD19+), T cells (CD3+), macrophages (CD11b+, CD3-, CD19-), and other cells 

(negative for all 4 markers). The cells were incubated overnight with 100, 10, 1, 0.1 and 

0.01 µg/mL of ASM particles labeled with FITC or A647 and conjugated with CD11b, 

CD8 or IgG isotype control. Labeled beads with no antibody conjugation served as an 

additional control. For flow cytometric analysis, the cells were washed twice and 

incubated for 30 min on ice with the desired fluorochrome-conjugated mAbs or isotype 

control immunoglobulin at 0.5 µg/106 cells. The antibodies being used in the 

experimental design includes anti-CD19 for B cells, anti-TCR for T cells, anti-CD4 and 

anti-CD8 for individual T cell populations, anti-CD11b and anti F4/80 for 

macrophages. All antibodies were purchased from BioLegend. As a parallel approach, 

we will conjugate specific antibodies to ABNs that will direct them to our cells of 

interest. There are many commercially available antibodies that will bind to surface 

markers of macrophages (CD11b) and conventional DCs (CD11c). 

 

5.3. Results and Discussion 

5.3.1. Alexa 647 Labeled ASMs Uptake by Mixed Culture Splenocytes 

 
Figure 5-1. Flow Cytometry result of Alexa 647 labeled ASMs 
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The surface coating of avidin-Alexa 647 was verified through flow cytometry. 

ASMs were coated with Avidin-Alexa 647 and then conjugated with anti-CD11b 

(target to macrophages) and anti-CD8. IgG was also conjugated to ASMs avidin-Alexa 

647 as control group. ASMs without avidin coating were labeled with Alexa Fluor 

®647 cadaverine to obtain fluorescent labeled ASMs in order to be detected through 

flow cytometry. ASMs without avidin or antibody coating were not internalized until 

concentrations reached 10 µg/mL. At higher doses (100 µg/mL), >70% of the B cells 

and >40% of the macrophages contained ASMs whereas <10% of CD8+ T cells and 

CD4+ T cells internalized the ASMs. Similar results were also evident in isotype 

controls (IgG), where 40% of B cells and 10% of macrophages were ASM positive and 

all other type of cells were less than 5% positive at 100 µg/mL. Both non-avidin coated 

groups and IgG coated groups presented nearly no uptake at concentrations less than 1 

µg/mL; however, non-specific uptake occurred at concentrations equal to 100 µg/mL. 

Using both groups as standard gates, we hereby analyzed antiCD11b groups, which 

were hypothesized to target macrophages. The results indicated a nearly 100% of 

uptake of macrophages at 10 µg/mL, whereas other types of cells’ uptake activity were 

almost zero, indicating the successful targeting effect to macrophages. To back up our 

targeting efficacy, we also coated anti-CD8 to ASMs. In our control experiments, T 

Cells did not internalize ASMs at a concentration of 10 µg/mL. With the anti-CD8 

coating, 80% of CD8+ cells were ASM positive at 1 µg/mL, while other cells did not 

internalize ASMs.  
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The above in vitro mixed culture proved the efficacy of using antibody-coated 

avidin-ASMs for targeting specific cell populations. Avidin-Alexa647 ASMs are an 

efficient drug delivery platform with multiple advantages: 1) they can be stored at -20 

ºC long term after lyophilization; 2) they are traceable with Alexa 647 dye and can be 

used to semi-quantitatively track cell specific uptake in vitro; 3) the targeting efficiency 

was significantly effective at concentrations as low as 1 µg/mL[12]. 
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Figure 5-2 Alexa 647 labeled ASMs uptake by mixed culture plenocytes. 

 

5.4. Conclusion 
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SA surface modified ASMs will serve as a general drug delivery platform for 

targeting drug delivery with different antibodies.  
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CHAPTER 6: SELF-HEALING AND THERMO-RESPONSIVE DUAL 

CROSSLINKED ALGINATE HYDROGELS BASED ON SUPRAMOLECULAR 

INCLUSION COMPLEXES 

β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer 

surface, interacts with a large variety of non-polar guest molecules to form non-

covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form 

stiff, physically-crosslinked hydrogel networks upon mixing with a guest molecule. 

Herein describes the development and characterization of self-healing, thermo-

responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-

β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-

poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were 

contingent on the polymer concentration, and the host-guest molar ratio. Transient and 

reversible physical crosslinking between host and guest polymers governed self-

assembly, allowing flow under shear stress, and facilitating complete recovery of the 

material properties within a few seconds of unloading. The mechanical properties of the 

dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at 

body temperature, which make it a potential candidate for biomedical applications such 

as drug delivery and cell transplantation. 

6.1. Introduction 

Polymeric hydrogels are porous, 3-D networks of crosslinked macromolecules, 

able to retain large amounts of water.[1] Injectable polymeric hydrogels, which are 
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crosslinked and solidify in situ,[2] are advantageous for drug and cell delivery, and 

tissue engineering applications.[2-4] Many existing injectable hydrogel systems 

polymerize to form covalent crosslinks, through the use of photo-initiated systems, 

autonomous redox reactions, or Michael Addition chemistries,[5] which can affect 

cytocompatibility[6] and protein bioactivity.[7] Furthermore, covalently crosslinked 

hydrogels are unable to undergo reversible solid-liquid transitions.[8] In contrast, the 

dynamic and reversible nature of non-covalent interactions, such as physical crosslinks, 

demonstrate variable mechanical properties and stimuli responses which lead to unique 

and programmable modifications in the network structure.[9]  

Indeed, physically-crosslinked hydrogels avoid the limitations associated with 

permanently crosslinked hydrogel networks.[10] Gelation conditions are relatively 

mild, and reversible physical crosslinks allow hydrogels to re-assemble, or self-heal, 

after deformation or a disruption in the network.[11-13] In addition, physically-

crosslinked hydrogels offer a new route toward innocuous, stable materials and 

components in vivo.[14] Recently, the utilization of supramolecular polymer chemistry, 

specifically host-guest chemistry, has enabled the design of more sophisticated multi-

functional materials.[15-18],[5, 10, 19, 20] Such hydrogels, which mimic strain and 

stress-responsive tissues, are now being considered for biomedical applications.[21]  

Several macrocyclic host-guest inclusion complexes are reported in the 

literature, including crown ethers, cyclophanes, ctananes, and cavitands (such as 

cyclodextrins, calix[n]arenes and cucurbit[n]urils).[1] Of particular interest is β-
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cyclodextrin (β-CD), which is easily grafted onto polymer chains, exhibits negligible 

cytotoxic effects, and is an important attribute in the pharmaceutical and food 

industries.[22] The covalent conjugation of β-CD onto large biomacromolecules, such 

as alginate, increases the functionality of the large polymer.[23-25] Alginate is a plant-

derived polysaccharide, and alginate hydrogels have served as scaffolds for tissue 

engineering, drug delivery vehicles, and models of extracellular matrices for biological 

studies.[26-29] Alginate hydrogel properties, including stiffness, swelling, degradation, 

cell attachment, and binding or release of bioactive molecules, can be optimized 

through the chemical or physical modification of the polysaccharide itself or the 

inclusion of alginate into a hydrogel network.[30, 31]  

β-CD, with a lipophilic inner cavity and hydrophilic outer surface, interacts with 

a large variety of non-polar guest molecules to form physical inclusion complexes.[22, 

32] The hydrophobic guest molecule is held within the cavity of β-CD and the main 

driving force of complex formation is the release of enthalpy-rich water molecules from 

the cavity.[22, 32] The binding activities between host and guest molecules are not 

fixed, but rather self-assemble in a dynamic manner.[22] Several guest molecules are 

reported for β-CD, including adamantine,[5, 33, 34] cholesterol,[35] and other custom-

designed molecular recognition compounds.[36] Macromolecules such as 

poly(propylene glycol), PPG, have also been investigated as guest molecules for β-

CD.[15, 37-40] Difunctional block copolymers, such as PEG-b-PPG-b-PEG (i.e., 

Pluronic® F108), are utilized in drug delivery systems and cell culture due to low 
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cytotoxicity and innate thermo-responsive propoerties.[41-48] The inclusion of 

hydrophobic PPG chain segments into the inner cavity of β-CD affords a high binding 

affinity to form a hydrogel network, while mobile PEG end-blocks entrap water 

molecules and provide an innocuous environment for cells.[49-52] In addition, the 

thermo-responsive property of Pluronic® F108 is advantageous for in vivo applications 

due to the presence of PPG in the block copolymer - PPG is water-soluble at low 

temperatures and reverts into an insoluble form at higher temperatures.[45, 53, 54] This 

behavior is similar to poly(N-isopropyl acrylamide) (PNIPAAm), a commonly 

synthesized thermo-responsive polymer.[16, 53, 55] However, the non-biodegradability 

and relatively weak mechanical properties limit the wide application of PNIPAAm.[56] 

The goal of this study was to create a host biomacromolecule, alginate-graft-β-

CD, and incorporate a difunctional guest molecule, Pluronic® F108, to create 

physically-crosslinked, moderately stiff hydrogels. We hypothesized that the supra The 

hydrophobic guest molecule is held within the cavity of β-CD and the main driving 

force of complex formation is the release of enthalpy-rich water molecules from the 

cavity.[22, 32] molecular inclusion complex formation between alginate-graft-β-CD 

and Pluronic® F108 would generate non-cytotoxic, dual-crosslinked, multi-stimuli 

responsive hydrogels with physiologically relevant mechanical properties for 

biomedical applications.[56] 

 

6.2. Experimental Section 
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Materials: Sodium alginate (PROTANAL® LF200 FTS, Mv 67-142 kg/mol was 

generously donated by FMC BioPolymer.  Beta-cyclodextrin (β-CD), ρ-toluenesulfonyl 

chloride (TosCl), acetonitrile, acetone, 1,6-hexanediamine (HDA), diethyl ether, 

dimethylformamide (DMF), (benzotriazol-1-yloxy)tris-(dimethylamino) phophonium 

hexafluorophosphate (BOP), dimethyl sulfoxide (DMSO), ethylenediamine (EDA),  

and deuterium oxide (D2O) were purchased from Acros Organics. Sodium hydroxide, 

ammonium chloride, hydrogen chloride (HCl), ethanol, tetrabuylammonium fluoride 

(TBAF), phosphate buffered saline (PBS), 2-morpholinoethanesulfonic acid (MES) 

buffer,  alpha-modified eagle medium (α-MEM, Hyclone), and bovine serum albumin 

(BSA) were purchased from Thermo Fisher Scientific. Human mesenchymal stem cell-

screened fetal bovine serum (FBS) was purchased from Atlanta Biologics. Penicillin, 

streptomycin, and trypsin ethylenediaminetetraacetic acid (EDTA) were purchased 

from Corning Cellgro. Tetrabutylammonium hydroxide (TBAOH), N-ethyl-N’(3-

dimethylaminopropyl) carbodiimide hydrochloric acid (EDC), N-hydroxysuccinimide 

(NHS), Pluronic® F108 (Mn ≈ 14,600 g/mol), and an In Vitro Toxicology Assay Kit (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, i.e., MTT-based) were 

purchased from Sigma Aldrich. BCA® Protein Assay Kit was purchased from Life 

Technologies Inc. 

Alginate-Tetrabutylammonium (Alg-TBA) Synthesis: Sodium alginate (Na-Alg, 

2 g) was added to a mixture of HCl (0.6 N, 30 mL) and ethanol (30 mL) and stirred 

overnight at 4 ºC. After filtering under vacuum with filter paper and washing with 
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ethanol and acetone, pure alginic acid was obtained and dried overnight. The dried 

powder was dispersed in DI water (100 mL). Aqueous TBAOH was added slowly 

under continuous stirring and the pH was adjusted to between 7.0 and 10.0. The 

solution was dialyzed and lyophilized to yield white Alg-TBA powder.[57-61]  

β-CD-TosCl Synthesis: β-CD (20 g, 17.62 mM, 1 molar equivalent) was 

suspended in 125 mL ice DI water, and TosCl (4.2 g) was dissolved in minimum 

acetonitrile (~10 mL) and added drop wise to the aqueous phase. The reaction was 

stirred vigorously for 2 h at room temperature. Sodium hydroxide (2.18 g) was 

dissolved in DI water (~10 mL) and added drop wise. After 30 min of stirring at room 

temperature, solid ammonium chloride was added to adjust the pH to 8.5 and the 

solution was cooled on ice to collect precipitants. The product was washed with cold DI 

water and acetone 3 times respectively and dried under vacuum; 6-ο-monotosyl-6-

deoxy-β-CD was obtained (~25%).[5, 62, 63] 

β-CD-HDA Synthesis: β-CD-TosCl (5 g) was dissolved in DMF (25 mL) with 

1,6-hexanediamine (20 g) and stirred under nitrogen at 80 ºC for 24 h using a 

condenser. The product was precipitated out of solution using cold acetone (5 x 500 

mL), washed with cold diethyl ether (2 x 100 mL), and dried under vacuum to afford 

the final product mono-6-deoxy-6-aminohexaneamino-β-CD).[5, 64]  

β-CD-EDA Synthesis: 6-(6-aminohyxyl)amino-6-deoxy-β-cyclodextrin (1.5 g) 

was added to EDA (5 mL). The reaction was performed at 60 ºC for 24 h and cooled to 

room temperature. The precipitant was collected from a large amount of ethanol and 
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dried under vacuum to afford the final product (mono-6-deoxy-6-aminoethylamino-β-

CD).[65] 

Alginate-graft-C6-Cyclodextrin (Alg-C6) Synthesis: TBAF (10 g) was dissolved 

in DMSO (100 mL) to afford a 10% (w/v) solution. Alg-TBA (2 g, 1 molar equivalent) 

and β-CD-HDA (2.96 g, 0.5 molar equivalent) were added to the mixture and stirred at 

room temperature under nitrogen flow until a clear solution was obtained.[58]  BOP 

(1.06 g, 0.5 molar equivalent) was dissolved in minimal DMSO (5 mL) and added via 

syringe. The reaction was carried out at room temperature under vigorous mixing for 24 

h and then dialyzed against DI water (x 3), followed by 0.05 M sodium phosphate 

dibasic solution until fully dissolved in water, and finally DI water (x 2). The final 

product was frozen and lyophilized. The theoretical modification was 50%.[5]   

Alginate-graft-C2-Cyclodextrin (Alg-C2) Synthesis: Sodium alginate (2.73 g) 

was dissolved in 0.1 M MES buffer (pH 5.6, 150 mL) to which EDC (2 g) and NHS 

(1.2 g) were added. After mixing for 30 min at room temperature, β-CD-EDA (4.5 g) 

was added under vigorous mixing at room temperature for 1 day. The alginate solution 

was dialyzed against DI water for 3 days, frozen, and lyophilized to afford dry 

polymer.[65]  

1H-NMR Spectroscopy: To qualitatively verify the successful synthesis of Alg-

C6 and Alg-C2, lyophilized polymer was dissolved in D2O and the result was 

confirmed via 1H-NMR (Bruker AVANCE III 500 MHz high-field NMR 

spectrometer). In addition to standard 1H-NMR, solvent (water) suppression 1H-NMR, 
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as well as diffusion edited 1H-NMR at 95% strength (programmed in Bruker NMR 

spectrometer), were also performed for alginate, Alg-C2, and Alg-C6, to confirm the 

covalent conjugation of β-CD onto alginate. The detailed 1H-NMR spectra are provided 

in the supplemental data. 

Alginate Hydrogel Formation and Erosion: Alg-C2 and Alg-C6 hydrogels were 

prepared from solutions of the individual polymers in PBS at desired concentrations. 4 

and 6% (w/v) Alg-C2 and Alg-C6 solutions were prepared in 10 mL syringes. 

Pluronic® F108 crystals were dissolved in DI water (10% w/v), frozen at -80 ºC, and 

lyophilized to obtain a white powder, which was added to the Alg-g-CD solutions at 

Pluronic® F108:β-CD ratios of 1:4 and 1:2, respectively. Hydrogels and single host and 

guest polymer solutions were injected into glass vials; the glass vials were stored at 

either 25 or 37 ˚C. Optical images were taken at each time point after the injection to 

analyze hydrogel stability. To qualitatively analyze hydrolytic erosion of the hydrogels, 

images were taken of the hydrogels after adding a known amount of PBS on top of each 

hydrogel to qualitatively visualize hydrogel surface erosion over a period of 14 days at 

37 ˚C under gentle agitation in a shaking incubator (see additional Supplemental 

Materials). Samples were sealed with parafilm to eliminate water evaporation. 

Rheological Characterization: All experiments were performed using an 

AR2000 stress-controlled rheometer (TA Instruments) fitted with a 40 mm diameter 

1°59’47’’ steel cone geometry and 27 µm gap at 37 °C, however, the temperature 

sweep study included a temperature range. Oscillatory time sweeps for single polymer 
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constituents (e.g., 4% (w/v) Alg-g-CD, 10% Pluronic® F108) and hydrogels were 

deformed at 1% strain and 10 Hz over 250 s. Oscillatory frequency sweeps were 

performed at 0.5% strain with increasing frequency from 0.1 to 100 Hz. Continuous 

flow experiments used a shear rate linearly ramped from 0 to 1 s-1. Oscillatory strain 

sweeps were performed at 10 Hz with increasing radial strain from 0.01 to 500%. 

Dynamic shear strain tests were performed at high (250%) and low (0.5%) strains at 1 

Hz and 37 °C for certain lengths of time and the cycles were repeated three times to test 

the self-healing and recovery properties of the hydrogels. Temperature sweeps were 

performed at 1 Hz and 1% strain, with a heating rate of 0.5 °C*min-1 from 25 to 37 °C. 

In Vitro Cytotoxicity Assay: Materials for the in vitro cell study were lyophilized 

and exposed to UV light overnight. The hydrogels and polymer solutions were prepared 

with sterile PBS using similar protocols stated above. Primary human mesenchymal 

stem cells (MSCs) were purchased from Rooster Bio. MSCs (passage 4) were seeded in 

48-well tissue culture polystyrene (TCPS) plates at a density of 20,000 cells/well in 

500 μL/well of standard MSC growth medium (α-MEM, 10% FBS, 100 U mL-1 

penicillin, 100 μg mL-1 streptomycin) and allowed to adhere for 24 h. Cells were 

incubated in the presence of Alg-C6 hydrogels with ratios of 1:4 and 1:2 and Alg-C2 

hydrogels with ratios of 1:4 and 1:2. In addition, cells were incubated without 

hydrogels under the same culture conditions as control group. After 24 h of incubation, 

media containing the hydrogel and polymer solutions was removed, and cells were 

rinsed two times in sterile PBS then analyzed using a MTT-based In Vitro Toxicology 
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Assay Kit following the manufacturer's protocol. The optical density was measured at 

570 nm using a BioTek plate reader. Background absorbance at 690 nm was subtracted 

from the measured absorbance. Absorbance values for the experimental and control 

samples were normalized to non-modified TCPS controls.[66] 

In Vitro BSA Release: BSA (10 mg) was added to 1 mL of different hydrogel 

solutions (prepared as stated above) and injected into 24-well plates. The plates were 

incubated at 37 ºC overnight to ensure gelation complete. One mL of PBS was added to 

each well and the plate was gently agitated at 37 ºC in a shaker incubator. At each time 

point, 100 µL sample aliquots were removed and replaced with 100 µL fresh PBS. The 

protein concentration was determined using a BCA Protein Assay Kit according to the 

manufacture’s protocol. The optical density was measured at 562 nm using a BioTek 

plate reader. Background absorbance of non-modified TCPS controls was subtracted 

from the measured absorbance; absorbance values for the experimental, blank (i.e., 

containing no BSA), and control samples were reported. 

Statistical Methods: All experiments were performed in triplicate; results are 

reported as mean ± standard deviation. Statistical analysis was performed on the 

storage moduli for 25 and 37 °C between each of the treatment groups and in vitro 

cytotoxicity data respectively, using one-way ANOVA with Tukey multiple 

comparisons (α = 0.05) via the SAS statistics program in the GLM procedure as the 

post-test to compare all of the groups. P < 0.05 was considered significantly different. 
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6.3. Results and Discussion 

6.3.1. Dual Strategies for Synthesizing Alginate-graft Cyclodextrin (Alg-g-CD) 

Two strategies were employed to synthesize Alg-g-CD (i.e., host 

macromolecules) using a short-chain methylene group to conjugate β-CD onto the 

alginate backbone, providing mobility and thus crosslinking efficiency. While one 

reaction was performed in an organic solvent with six methylene groups (-CH2-) 

connecting the alginate backbone to β-CD (Alg-C6),[12] the other reaction was 

performed in aqueous solution with two methylene groups (-CH2-) connecting the 

alginate backbone to β-CD (Alg-C2).[65] The detailed chemical synthesis for both 

reactions are presented in Figure 6-1 A. Briefly, β-CD was first reacted with TosCl to 

obtain β-CD-TosCl. In one reaction scheme, β-CD-TosCl was reacted with HDA in 

DMF at 80 °C for 18 h. Amine groups reacted with carboxyl groups (pre-neutralized 

with TBA salt) on alginate in DMSO in the presence of BOP. Alternatively, in the 

aqueous solution method, β-CD-TosCl was reacted with EDA at 60 °C for 12 h to 

obtain β-CD-EDA. The standard 1H-NMR spectra for the final products, Alg-C6 and 

Alg-C2, are provided in 6.7 supplemental materials (chapter 6.5).  

In addition to standard 1H-NMR, solvent suppression (water) 1H-NMR as well 

as diffusion edited 1H-NMR at 95% strength for alginate, Alg-C2 and Alg-C6, were 

performed to confirm the covalent conjugation of β-CD onto alginate. The detailed 1H-

NMR spectra are provided in the supplemental data. The spectra indicated that β-CD 

was covalently conjugated onto alginate in both Alg-C2 and Alg-C6. By comparing 
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alginate, Alg-C2 and Alg-C6 spectra, peaks between 1 – 3 ppm were only presented in 

the final product of Alg-C2 and Alg-C6 rather than alginate, suggesting the covalent 

conjugation of methylene groups, as linker between β-CD and alginate. The degree of 

β-CD modification, i.e., β-CD density, may generate an effect on the hydrogel physical 

and mechanical properties.[12] The theoretical reaction ratio of β-CD to alginate repeat 

units (C6H7NaO6)n was 50%. However, by calculating the ratio of hydrogen integration 

of sugar units (both on alginate backbone repeat units and on β-CD repeat units), and 

hydrogen integration of the methylene groups on the linker between the backbone and 

β-CD,[65] the actual β-CD modification for both reaction methods was 28% and 30%, 

respectively for Alg-C2 and Alg-C6, indicating no significant differences in alginate 

modification for the different Alg-g-CD reaction schemes. There are limitations with 

using 1H-NMR to calculate the β-CD degree of modification due to the high molecular 

weight and polydispersity of the alginate (Mv 67-142 kg/mol) starting material; 

however, using either standard 1H-NMR or diffusion edited 1H-NMR is common in this 

type of polymer chemistry characterization.[5, 12, 48]  
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Figure 6-1 A) Schematic of Alg-g-CD synthesis using organic solvents or aqueous-based 

solutions. Alg-C6 was the product of the organic synthesis (top), and Alg-C2 was the 

product of the aqueous synthesis (bottom). B) Schematic of physical crosslinking 

between Alg-g-CD macromolecules and Pluronic® F108, and the effect of Pluronic® 

F108 on the thermo-response of hydrogel network; Pluronic® F108 forms micelles and 

self-crosslinks at body temperature due to the triblock structure of PEG-b-PPG-b-PEG. β-

CD conjugated onto the alginate backbone served as the host (Alg-g-CD), which formed 

a physically-crosslinked supramolecular inclusion complex with the guest, the PPG 

component (green) of Pluronic® F108.  
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6.3.2. Hydrogel Formation and Rheological Analysis 

A self-assembled hydrogel network formed almost immediately upon mixing 

Alg-g-CD and Pluronic® F108 solutions (quantity based on constituent molar ratios). 

The formation of a pseudo-plastic hydrogel occurred through the complexation of host-

guest moieties, i.e., β-CD conjugated alginate (Alg-g-CD) and PPG, as part of the 

Pluronic® F108 structure. In addition to the supramolecular inclusion complex 

formation between Alg-g-CD and Pluronic® F108, a dual-crosslinked hydrogel was 

created via the innate thermo-response of Pluronic® F108. Such dual-crosslinking 

capabilities significantly increased the storage moduli compared to a single physical 

crosslinking technique based on host-guest chemistry alone (Figure 6-1 B). 

The formation and physical integrity of the supramolecular inclusion complex 

hydrogels were quantified using rheometry. Hydrogels and their pre-curser solutions 

were exposed to varying shear forces to examine steady-state shear moduli with time, 

the effect of frequency on shear moduli, and the effect of shear rate on the shear stress 

and viscosity of hydrogel pre-curser solutions. To examine the hydrogels in their least 

compliant states, experiments were performed at 37 °C. In Figure 6-2 A, the shear rate 

was linearly ramped from 0 to 1 s-1 to investigate the effect of shear rate on viscosity 

and resultant shear stress; the Alg-C2 group generated an increase in shear stress from 

approximately 40 Pa to 400 Pa while shear rates increased from 0 to 0.3 s-1 and then 

plateaued until 1 s-1. The viscosity decreased from near 3500 to 300 Pa*s while shear 

rates increased from 0 to 0.7 s-1. For the Alg-C6 hydrogels (Figure 6-2 B), the shear 



 

· 

159 

stress increased from approximately 5 to 50 Pa for 4% (w/v) Alg-C6 hydrogels and 

from 100 to 400 Pa for 6% and 8% Alg-C6 hydrogels. While maintaining the same 

molar ratio between Alg-g-CD and Pluronic® F108, a more distinct concentration-

dependent behavior was seen in the Alg-C6 groups compared to the Alg-C2 groups. 

This may be due to the self-crosslinking of the Alg-C2 polymers, as the material 

properties were less dependent on polymer concentration, as the β-CD conjugation for 

both materials was ~30%.[65] 

Shear storage and loss moduli were measured to both verify and quantify the 

formation of the supramolecular inclusion complex hydrogel from independent 

measurements of pre-curser solutions. Oscillatory rheology confirmed that the 

individual Pluronic® F108 and Alg-g-CD pre-cursers were solutions at high frequencies 

and that an increase in moduli of several orders of magnitude occurred immediately 

upon mixing of the two components. While the individual polymer solutions (i.e., 

hydrogel constituents) displayed viscous behaviors associated with intermolecular 

entanglement in solution, the formed supramolecular inclusion complex hydrogel was 

stable during a qualitative inversion test. Pluronic® F108 remained unstable and free 

flowing at room temperature and formed small micelles (size ~20nm) at body 

temperature.[67, 68] The micelles were inter-connected with each other and therefore, 

higher concentrations of Pluronic® F108 formed a soft network in solution, also shown 

by the slight increase in viscosity. For the Alg-C2, the G′ increased from 300 Pa to 12 

kPa (Figure 2C). The multi-arm structure of EDA on β-CD may also react with various 
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carboxyl groups on neighboring alginate molecules, to create an intramolecular-

crosslinked network beyond the host-guest interaction. Previous literature has shown 

the concept that such crosslinking will increase the stiffness of the hydrogel, although 

only slightly.[32] For Alg-C6, the G′ increased from 300 Pa for the polymer solution, to 

near 10 kPa for the Pluronic® F108:Alg-g-CD hydrogel (1:2), and G″ increased from 50 

Pa for the polymer solution to 10 kPa for the Pluronic® F108:Alg-g-CD hydrogel. The 

large increase in shear moduli that occurred after mixing the two polymer constituents 

verified that an interaction took place to form a more permanent network, compared to 

polymer solutions alone; the formation of the supramolecular inclusion complex 

resulted in the 100-fold increase in shear moduli (Figure 6-2 C,D). Thus, the bulk 

material response indicated that the chemical modification of alginate was successful, 

through the formation of a stiff hydrogel network upon mixing with Pluronic® F108. 

Shear storage and loss moduli were also measured to determine effect of 

frequency during dynamic shear application. Oscillatory frequency sweeps were 

performed on 4% Alg-C6 and Alg-C2 hydrogels with a ratio Pluronic® F108:Alg-g-CD 

1:4 at 0.5% radial strain and 37 °C. The hydrogel exhibited steady-state behavior up to 

10 Hz, after which the moduli increased in response to the increasing shear rate. The 

effect followed an exponential trend for frequencies greater than 10 Hz for the Alg-C2 

hydrogels (Figure 6-2 E). In addition, the hydrogels were considered to be stable at 

lower frequencies and not responsive to frequency as an input parameter. The Alg-C6 

hydrogels displayed noisy data, which suggested a less stable network, especially at 



 

· 

161 

increasing frequencies (Figure 2F).  

 

Figure 6-2. Rheological experiments were performed at 37 °C to verify formation and 

physical integrity of the supramolecular alginate network. (A, B) Continuous, increasing 

shear rates allowed for the determination of viscosity and shear stress of formed 
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hydrogels; A) Alg-C2 and B) Alg-C6. The shear stress increased with an increase in 

shear rate from 0 to 1 s-1, demonstrating viscoelastic behavior. (C, D) Oscillatory time 

sweep experiments for hydrogel pre-curser solutions, Alg-g-CD and Pluronic® F108, and 

formed hydrogels at 1% strain, 10 Hz, 37 °C; C) Alg-C2 and D) Alg-C6. The storage 

moduli increased from 100 Pa for single polymer constituents to 10 kPa for 4% (w/v) 

Pluronic® F108:Alg-g-CD hydrogels. (E, F) Oscillatory frequency sweeps were 

performed at 0.5% radial strain; E) Alg-C2 and F) Alg-C6. 

 

6.3.3. Strain Responsive Properties and Self-Healing 

Multi-chain entanglements of macromolecular guest polymers create a unique 

structure upon crosslinking which affords a high modulus hydrogel with shear-thinning 

behaviors. Reversible, dynamic physical crosslinks allow supramolecular inclusion 

complex hydrogels to exhibit flow and recovery characteristics under mechanical radial 

strain. To validate and optimize the shear-shinning properties of the injectable delivery 

systems, hydrogels were tested using oscillatory strain sweeps from 0.01% to 500% 

radial strain at a frequency of 10 Hz. Both Alg-C2 and Alg-C6 (Figure 6-3 A,B) 

groups were more elastic at low strains, with storage moduli (G') greater than the loss 

moduli (G"). At 1% strain, the G' and G" curves for Alg-C2 began to cross over, 

indicating a transition from an elastic solid material to a compliant, viscous liquid. The 

crossover of G' and G" for Alg-C6 hydrogels occurred near 10% strain, suggesting that 

the inter-molecular crosslinking density for Alg-C6 was higher compared to Alg-C2; 
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this may be attributed to a longer amine chain, which may have provided more mobility 

to allow Pluronic® F108 to enter the β-CD cavity. The shear-thinning characteristics 

were also dependent on the de-association of host-guest polymers. Alg-C2 hydrogel 

networks were more easily strained to failure compared to Alg-C6 hydrogels, and the 

Alg-C2 hydrogels exhibited a lower transition strain (%) compared to Alg-C6 

hydrogels. 

The reversibility and repeatability of the self-healing properties of the hydrogels 

were independent of host:guest ratios or polymer concentration. To assess material 

recovery, hydrogels were subjected to cycles of high amplitude oscillatory strain 

(250%) followed by low amplitude oscillatory strain (0.5%) at 1 Hz. Storage moduli 

(G') decreased 1/100 fold with a change from low to high amplitude strain (i.e., each 

time step with strain variation). A decline in moduli was concurrent with the presence 

of solid-liquid transitions during the application of high strain. During transitions from 

high to low strains, the initial mechanical properties were recovered in a short time 

period of 10 s. These results indicate that the novel hydrogels exhibit shear-shinning 

behavior, recovering mechanical properties immediately upon un-loading. Various 

hydrogel formulations demonstrated a variety of strain-induced shear moduli values: D) 

Alg-C6 (1:2) (Figure 6-3 D) and Alg-C2 (1:4) (Figure 6-3 E) hydrogels exhibited a 

change in G' over 3 orders of magnitude, whereas the Alg-C2 (1:2) (Figure 6-3 C) and 

Alg-C6 (1:4) (Figure 6-3 F) exhibited a change in G' by 2 orders of magnitude. Despite 

that the crossover transient points for both Alg-C2 and Alg-C6 upon strain changes in 
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strain were relatively low, the mechanical properties were as high as 10 kPa, indicating 

a dynamic material with a range of achievable moduli. 

 

Figure 6-3 (A, B) Oscillatory strain sweeps were performed at 10 Hz and 37 °C using a 

40 mm 1°59'47" steel cone geometry on F108:Alg-g-CD hydrogels: A) Alg-C2 and B) 

Alg-C6 hydrogels. The storage moduli (G') and loss moduli (G") of the hydrogels crossed 

at higher strains, demonstrating a solid-liquid transition. (C – F) Dynamic shear strain 

testing of hydrogels was performed to demonstrate a self-healing, physically crosslinked 
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network. Dashed gray lines represent the radial strain (%) input parameters and the solid 

black lines represent shear storage moduli (G') results. All of the groups tested 

demonstrated a repeatable ability to deform and re-assemble upon loading and un-

loading, resulting in radial shear deformations. Hydrogels consisting of 4% (w/v) Alg-g-

CD were analyzed at various ratios of Pluronic® F108:Alg-g-CD; C) Alg-C2 (1:2), D) 

Alg-C6 (1:2), E) Alg-C2 (1:4), F) Alg-C6 (1:4). The hydrogels exhibited higher storage 

moduli values at 0.5% strain while exhibiting lower G' values at 250% strain. Compared 

to alginate supramolecular inclusion complexes formed with β-CD, the novel Pluronic® 

F108:Alg-g-CD hydrogels presented here are shear-thinning, and amendable to injectable 

biomaterials applications[25].  

 

6.3.4. Thermo-Responsive Properties 

The alginate-based supramolecular inclusion complex hydrogels are thermo-

responsive and exhibit secondary crosslinking effects with increasing temperature, due 

to the incorporation of Pluronic® F108. To demonstrate the thermo-responsive 

properties of the Alg-g-CD and Pluronic® F108 hydrogels, temperature sweeps were 

performed from 25 to 37 °C at a heating rate of 0.5 °C min-1 (1% strain; 1 Hz). The 

significant transition temperatures occurred near 30 °C. For all hydrogel groups tested, 

the storage moduli (G') increased with increasing temperature (Figure 6-4). The shear 

moduli for all hydrogel samples were statistically different between 25 and 37 °C for 

all samples within the same group (Figure 6-4), with G' values significantly higher at 
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body temperature compared to room temperature. Independent of polymer 

concentration, hydrogels fabricated using Pluronic® F108:Alg-g-CD ratios of 1:2 were 

significantly stiffer compared to ratios of 1:4 at both 25 and 37 °C. The differences in 

G' within the same group at the different temperatures were elevated due to the addition 

of Pluronic® F108 in the hydrogel system, indicating that Pluronic® F108 played a 

significant role in the thermo-response of the host-guest hydrogels. Furthermore, 

considering only hydrogels with a Pluronic® F108:Alg-g-CD ratio of 1:4, 6% (w/v) 

Alg-g-CD hydrogels were significant higher compared to 4% hydrogels, for both Alg-

C2 and Alg-C6 formulations. Alg-C6 (1:2) hydrogels exhibited G' values of near 30 

kPa at 37 °C, which corresponded to a ~3% increase in stiffness compared to hydrogels 

at 25 °C (< 10 kPa). The thermo-transition from room temperature to body temperature 

was markedly higher compared to existing literature,[69] suggesting potential in vivo 

applications of the thermal-responsive hydrogel in  drug delivery and tissue 

engineering. The novel Pluronic® F108:Alg-g-CD hydrogels were strain-responsive, 

i.e., shear-thinning, in addition to exhibiting thermo-responsive behavior, exhibiting 

mechanical and temperature responsive properties. Strain-responsive alginate-based 

supramolecular inclusion complexes presented in the literature do not exhibit thermo-

responsive behavior.[70] Likewise, thermo-responsive alginate hydrogels do not exhibit 

shear-thinning and self-healing behavior.[71-73]  
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Figure 6-4 (A, B) Oscillatory temperature sweeps were performed at 1 Hz and 1% radial 

strain on Alg-g-CD hydrogels: A) Alg-C2 and B) Alg-C6. (C, D) Shear storage moduli 

(G') for Alg-g-CD hydrogels at 25 °C (white bars) and 37 °C (black bars) (n = 3, average 

± standard deviation), specifically C) Alg-C2 and D) Alg-C6. The ratio of Alg-g-CD to 
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Pluronic® F108 was critical to the magnitude of the thermo-responsive properties. The 

greater the ratio of Pluronic® F108, the stiffer the hydrogel and more responsive the 

thermal behavior. Significant differences, of the same hydrogel sample between 25 and 

37 °C, were observed in both Alg-g-CD hydrogel formulations. E) Images of Alg-g-CD 

and Pluronic® F108 solutions, and Alg-g-CD hydrogels formed after mixing the two pre-

cursers and waiting 10 min, 1 day, and 5 days. Images were taken of hydrogels incubated 

at room temperature (RT) and 37 °C, respectively. 

 

6.3.5. Hydrogel Stability 

The physical integrity of the hydrogel network (i.e., supramolecular inclusion 

complex) was visually analyzed by examining hydrogel stability over 5 days at both 

room temperature and 37 °C.  The 4% (w/v) Alg-g-CD hydrogels, with Pluronic® 

F108:Alg-g-CD ratios of 1:4 and 1:2, solidified (i.e., physically crosslinked) quicker 

when exposed to 37 °C compared to those hydrogels exposed to room temperature. For 

4% Alg-C2 (1:4 and 1:2) and 4% Alg-when C6 (1:4) formulations, a solid hydrogel 

was only formed at 37 °C rather than at room temperature, indicating the significant 

impact of the secondary physical crosslinking arising from the micelle formation of 

Pluronic® F108. This effect was evident for hydrogels formed from lower concentration 

solutions (supplemental materials 6.5). For higher concentration solutions, the 

hydrogel formed upon mixing of the pre-curser solutions at room temperature (Figure 

6-4). In summary, hydrogels remained stable for up to 5 days after initial formation of 

the supramolecular inclusion complex, in a non-disturbed, static state. Further 
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observation was performed of Alg-C2 and Alg-C6 hydrogels (see supplemental 

material) at room temperature for over 6 months (sealed with parafilm to eliminate 

water evaporation); optical photographs are shown in supplemental information 9 under 

“day 0”. They remained solid and crosslinked, demonstrating the stability of the 

hydrogels in air. However, in order to assess the stability of the hydrogels under 

physiological conditions, a degradation or erosion experiment must also be performed. 

 

6.3.6. Hydrogel Erosion 

To visualize hydrolytic erosion of Alg-C2 and Alg-C6 supramolecular inclusion 

complex hydrogels, a qualitative surface erosion was performed. Freshly prepared 

hydrogels were injected into glass vials, flowed to take the shape of the container 

before completion of crosslinked, and solidified at 37 ˚C. PBS was added to the vials, 

and the vials were inverted each day 1 – 7, followed by static incubation for an 

additional 7 days. After day 3, the Alg-C2 hydrogels appeared to reach a swollen 

equilibrium state and remained at the bottom of the vial until day 14 (supplemental 

information 9 under newly injected from day 0 with PBS to day 14). The surface 

erosion of 4% and 6% Alg-C6 (1:4) hydrogels was observed as the height of the 

solidified hydrogels getting shorter until day 14, which was different compared to the 

response of the Alg-C2 hydrogels. The 4% (w/v) Alg-C2 hydrogels exhibited decreased 

stability and less resistance to flow after 3 days of culture in PBS during physical 

inversion; however, when the vials were returned to a static state, the hydrogels 
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solidified. Over time hydrogels appeared to continue to crosslink, indicative of self-

healing characteristics, quantified above. Interestingly, the 6% Alg-C6 (1:2) hydrogel 

network swelled and incorporated the PBS into the network, and solidified the solution. 

This was likely due to surface erosion releasing Alg-C6 and Pluronic® F108 polymers 

into the PBS. In addition, the Alg-C6 hydrogels may inherently enabled more flexibility 

to the CD functional group compared to the Alg-C2 due to the longer methylene group. 

This recovery and stability of the Alg-C6 hydrogels was more evident compared to the 

Alg-C2 over the 14-day period.   

 

6.3.7. In Vitro BSA Release 

The inner cavity of β-CD undergoes hydrophobic interactions, not only with 

PPG but with other organic molecules, and such interactions have been extensively 

employed as drug carriers. Specifically, drug release profiles for supramolecular 

inclusion network hydrogels utilizing β-CD as a physical crosslinker are of recent 

interest.[5] For this study, BSA, a moderately sized biomolecule (66.5 kDa) with a 

globular structure, was encapsulated and released from Alg-g-CD hydrogels. BSA 

release was quantified for up to 14 days for both 4% (w/v) and 6% Alg-C6 and Alg-C2 

hydrogels with ratios of 1:2 and 1:4. For each sample, BSA exhibited a sustained 

release over 14 days to afford a release amount of 40% of the encapsulated drug 

(Figure 6-5). A lower amount of BSA was released from hydrogels formulated with a 

Pluronic® F108:Alg-g-CD ratio of 1:4, suggesting that the reduction in Pluronic® F108 
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content created a moderately crosslinked hydrogel, resulting in a greater release of 

BSA. Alg-C2 hydrogels (Figure 6-A) released less BSA compared to Alg-C6 

hydrogels (Figure 6-5) over a period of 14 days, due to a swollen host-guest 

intermolecular network observed in the qualitative surface erosion study (supplemental 

information). As stated above, Alg-C2 hydrogels swelled after the addition of PBS. 

Thus, the hydrogel structure was weakened and compromised, resulting an enhanced 

released compared to Alg-C6 gels, who was degraded gradually from the top surface to 

the bottom of glass vials. 

 

6.3.8. In Vitro Cytotoxicity 

The safety and efficacy of the alginate-based hydrogels for biomedical 

applications was tested using a 24 h mitochondrial activity (i.e., MTT content) based 

assay. 4% (w/v) and 6% Alg-g-CD hydrogels, with Pluronic® F108:Alg-g-CD ratios 

1:2 and 1:4, were co-cultured with primary human MSCs for 24 h. An in vitro 

cytotoxicity assay showed no toxic effects related to the presence of the hydrogels. Alg-

C2 hydrogels were slightly less cytotoxic compared to Alg-C6 hydrogels; however, 

there were no significant differences between experimental groups (Figure 6-5) and the 

control group (non-modified TCPS). 
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Figure 6-5. (A,B) In vitro BSA release from Pluronic® F108:Alg-g-CD hydrogels. 

Experiments were performed at 37 °C under mild agitation in PBS, pH 7.4, investigating 

A) Alg-C2 and B) Alg-C6 hydrogels. Black circles represent 6% (w/v) Alg-g-CD 

solutions, open circles represent 4% Alg-g-CD solutions. Solid lines represent Pluronic® 

F108:Alg-g-CD hydrogels with ratios of 1:2; dashed lines represent hydrogels with ratios 

of 1:4. C) In vitro MTT-based assay results of hydrogels cultured with primary human 

MSCs indicated no toxic effect for the various hydrogels analyzed along with the non-

material treated control group. There were no significant differences between each group.    

                                                     

6.4. Conclusions 

In summary, we have developed the first dual-crosslinked, self-healing, and 

strain and thermo-responsive alginate-based hydrogels with moderate mechanical 

properties, based on the supramolecular inclusion complex formation between 

Pluronic® F108 and Alg-g-CD. The intermolecular entanglement of guest polymers 

(e.g., PPG) creates a unique structure upon crosslinking which affords shear-thinning 

behavior. Furthermore, Pluronic® F108 affords a thermo-responsive behavior of the 

injectable hydrogel, generating a dual-crosslinked hydrogel upon increase to body 

temperature. Upon mixing host and guest polymers, the shear storage moduli of the 

hydrogel reached as high as 30 kPa at body temperature, exhibiting biologically-

relevant mechanical properties for biomedical applications.  
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6.5. Supplemental Materials 

1. 1H-NMR spectrum of β-CD-TsCl 
1H-NMR (DMSO-d6) δ = 2.42 (s, 3H), , 4.12−4.40 (m, 6H), 4.77 (s, 2H), 4.83 (s, 5H), 

5.60−6.05 (br s, 14H), 7.43 (d, 2H), 7.75 (d, 2H). 

 
Figure 6-6. 1H-NMR spectrum of β-CD-TsCl in DMSO-d6. The peaks corresponding to δ 

= 7.43 ppm (2H) and δ = 7.75 ppm (2H) identify the hydrogens on the benzene ring of 

the toluenesulfonyl group. The remaining peaks between δ = 7 and 8 ppm refer to non-

purified p-tuluenesulfonyl chloride. The peak corresponding to δ = 2.42 ppm (3H) refers 

to the hydrogens of the methylene group of the toluenesulfonyl group. Peaks between δ = 

4.0 and 5.0 ppm refer to the hydrogens on the β-CD ring.[5] [12] 
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2. 1H-NMR spectrum of β-CD-HAD 

H NMR (DMSO-d6) δ = 1.14−1.61 (m, 12H), 3.48−3.78 (m, 28H), 4.28−4.56 (br s, 6H), 

4.83 (s, 7H), 5.59−5.88 (br s, 14H). 

 
Figure 6-7. 1H-NMR spectrum of β-CD-HDA. The disappearance of peaks between δ = 

7 and 8 ppm indicates that the toluenesulfonyl group was replaced with hexanediamine. 

The peaks corresponding to δ = 1.14-1.16 ppm (12H) refer to hydrogens on the 

hexanediamine group. Peaks between δ = 3 and 5 ppm represent hydrogens on the β-CD 

ring. Peaks between δ = 1.00 and 1.10 ppm (2H) represent hydrogens on the amine group. 

[5, 12] 
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3. 1H-NMR spectrum of β-CD-EDA 
1H NMR (300 MHz, D2O, DSS)  = 2.61 (2H, -NHCH2-), 2.73 (3H, -CH2CH2NH2, -

CH2(H-6’)-N), 2.92 (d, 1H, -CH2(H-6’)-), 3.33 (t, 1H, -CH(H-4’)-), 3.36-3.51 (m, 14H, -

CH(H-2,H-2’)-, -CH(H-5’)-, -CH(H-4)-), 3.73-3.84 (m, 25H, -CH(H-3,H-3’)-, -CH(H-5)-

, -CH2(H-6)-), 4.92 (d, 7H, -CH(H-1, H-1’)-) ppm. 

 
Figure 6-8. 1H-NMR spectrum of β-CD-EDA. The disappearance of peaks between δ = 7 

and 8 ppm indicate that the toluenesulfonyl group was replaced with ethylenediamine. 

The peak at δ = 2.61 ppm (2H) refers to hydrogens on the amine group. The peak at δ = 

2.73 ppm (3H) refers to hydrogens on the methylene chain. Peaks between δ = 3.73 and 

3.84 ppm represent hydrogens on the β-CD ring.[65] 
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4.  

 
Figure 6-9. 1H-NMR spectrum of Alg-C6 with integration 
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Figure 6-10. 1H-NMR spectra of Alg-C6 with standard procedure (brown), water 

suppression procedure (green), and diffusion edit procedure at 95% strength (blue). 
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5.  

 
Figure 6-11. 1H-NMR spectrum of Alg-C2 with integration. 
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Figure 6-12. 1H-NMR spectra of Alg-C6 with standard procedure (brown), water 

suppression procedure (green), and diffusion edit procedure at 95% strength (blue). 
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6.  

 
Figure 6-13. 1H-NMR spectra of alginate with standard procedure (brown), water 

suppression procedure (green), and diffusion edit procedure at 95% strength (blue). 
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7. Stacked 1H-NMR spectra of alginate (brown), Alg-C2 (green and Alg-C6 (brown).  

 
Figure 6-14. 1H-NMR spectra of non-modified alginate (top) compared to Alg-g-CD 

(middle, bottom). Peaks between δ = 7 and 8 ppm represent the hydrogens on the amine 

group. Peaks between δ = 1 and 2 ppm refer to hydrogens on the methylene chain. 

 

 

 

 

 



 

· 

183 

 

8.  

 
 

Figure 6-15. Optical photographs of hydrogel surface erosion in PBS at 37 ˚C over 14 

days. Day 0 images demonstrate that the hydrogels crosslinked in the bottles, taking the 

shape of the container; hydrogels were not exposed to PBS. Day 0 with PBS images 

demonstrate how the hydrogels behaved after the addition of PBS. Day 3, 7 and 14 are 

series photos taken of the same sample at a specific time point. During the 14 day study, 

hydrogels were incubated at 37 ˚C under gentle agitation. 
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The Alg-C2 hydrogel can be conjugate with cell instructive peptide such as RGD. The 

hydrogel containing A549 cells were injected out and cultured for 24h before staining 

with live/dead stain and imaged under CLS. 
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CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS 

The present dissertation has attempted to design and fabricate alginate based 

biomaterials for biomedical applications. Starting with commercially available 

polysaccharide material alginate, I have designed four generations of alginate based 

nanoparticles with different types of polymer chemistry reactions. The first generation 

is basic alginate nanoparticles fabricated through benchtop water/oil emulsion. With the 

addition of poly (ethylene glycol) onto alginate, I was able to create particles with a 

more neutral surface charge, which are favorable for cell uptake compared to cationic 

alginates. This is the second generation of alginate-based nanoparticles. The third 

generation of nanoparticles was created through disulfide bond chemistry, where I 

conjugated short cell signal peptides for targeting delivery. However, the targeting 

efficacy was not as specific compared to full antibody. Therefore, in the latest (forth) 

generation of nanoparticle, I designed the streptavidin coated alginate nanoparticles, 

which can conjugate to commercially available biotinylated antibodies to target cell 

types.  

All four generations of alginate nanoparticles can be readily internalized by 

human mesenchymal stem cells, human cancer cells (A549), human epithelial cells 

(HBE), mice macrophages, T cells and B cells. The application of alginate 

nanoparticles ranges from tissue engineering to promote bone regeneration for treating 

osteoporosis to cancer therapy for deliver chemotherapeutics to lung cancers. With the 

powerful delivery alginate particles, I have been able to elucidate the intracrine 
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mechanism underlying human mesenchymal stem cells and cancer cells, and modulate 

the cell behavior based on the need for different therapies for different diseases.  

However, particulate based drug delivery was just the first goal of this thesis. A 

novel multi-stimuli hydrogel based drug delivery system was also design based on the 

supramolecular interactions between β-cyclodextrin and pluronic®F108. β-cyclodextrin 

(β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a 

large variety of non-polar guest molecules to form non-covalent inclusion complexes. 

Conjugation of β-CD onto alginates can form physically-crosslinked hydrogel networks 

upon mixing with a guest molecule. I have developed and characterized self-healing, 

thermo-responsive hydrogels based on host-guest inclusion complexes between 

alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene 

glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal 

response were contingent on the polymer concentration and the host-guest molar ratio. 

Transient and reversible physical crosslinking between host and guest polymers 

governed self-assembly, allowing flow under shear stress, and facilitating complete 

recovery of the material properties within a few seconds of unloading. The mechanical 

properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as 

high as 30 kPa at body temperature, which make them potential candidates for 

biomedical applications such as drug delivery and cell transplantation. 

In additional to the alginate-based materials discussed in this thesis, I also 

developed theta-gel networks for promoting chondrogenic differentiation. Theta-gels 
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are hydrogels that form during the solidification and phase separation of two dislike 

polymers, in which a low molecular weight polymer behaves as a porogen and is 

removed through dialysis. Interpenetrating polymer network (IPN) hydrogels were 

formed between polyvinyl alcohol (PVA) and gelatin using theta-gel fabrication 

techniques, i.e., in the presence of a porogen. The addition of gelatin to a PVA theta-

gel, formed with a porogen, polyethylene glycol (PEG), created macro-porous 

hydrogels, and increased shear storage moduli and elastic moduli, compared to PVA–

gelatin scaffold controls. A reduction in PVA crystallinity was verified by Fourier 

transform infrared (FTIR) spectroscopy in hydrogels fabricated using a porogen, i.e., 

PVA–PEG–gelatin, compared to PVA, PVA–PEG, or PVA–gelatin hydrogels alone. 

Van Geison staining confirmed the retention of gelatin after dialysis. A range of 

hydrogel moduli was achieved by optimizing PVA concentration, molecular weight, 

and gelatin concentration. PVA–gelatin hydrogels maintained primary human 

mesenchymal stem cell (MSC) viability. Soft (∼10 kPa) and stiff (∼100 kPa) PVA–

gelatin hydrogels containing type II collagen significantly increased glycosaminoglycan 

(GAG) production compared to controls. PVA–gelatin hydrogels, formed using theta-

gel techniques, warrant further investigation as articular cartilage tissue engineering 

scaffolds. 

Alginates have become an important polymer of polysaccharides because of 

their utility in preparing hydrogels at mild pH and temperature conditions, suitable for 

sensitive biomolecules like proteins and nucleic acids, and even for living cells such as 
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islets of Langerhans[1]. These polysaccharides-based biomaterials have been designed 

and modified to meet the different needs of drug delivery and form particulates and 

scaffolds, which may have great potential for various biomedical application.  
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APPENDIX: PHYSICALLY CROSSLINKED POLYVINYL ALCOHOL AND 

GELATIN INTERPENETRATING POLYMER NETWORK THETA-GELS FOR 

CARTILAGE REGENERATION 

Theta-gels are hydrogels that form during the solidification and phase 

separation of two dislike polymers, in which a low molecular weight polymer behaves 

as a porogen and is removed through dialysis. For this study, interpenetrating polymer 

network (IPN) hydrogels were formed between polyvinyl alcohol (PVA) and gelatin 

using theta-gel fabrication techniques, i.e., in the presence of a porogen. The addition of 

gelatin to a PVA theta-gel, formed with a porogen, polyethylene glycol (PEG), created 

macro-porous hydrogels, and increased shear storage moduli and elastic moduli, 

compared to PVA-gelatin scaffold controls. A reduction in PVA crystallinity was 

verified by Fourier transform infrared (FTIR) spectroscopy in hydrogels fabricated 

using a porogen, i.e., PVA-PEG-gelatin, compared to PVA, PVA-PEG, or PVA-gelatin 

hydrogels alone. Van Geison staining confirmed the retention of gelatin after dialysis. 

A range of hydrogel moduli was achieved by optimizing PVA concentration, molecular 

weight, and gelatin concentration. PVA-gelatin hydrogels maintained primary human 

mesenchymal stem cell (MSC) viability. Soft (~10 kPa) and stiff (~ 100  kPa) PVA-

gelatin hydrogels containing type II collagen significantly increased glycosaminoglycan 

(GAG) production compared to controls. PVA-gelatin hydrogels, formed using theta-

gel techniques, warrant further investigation as articular cartilage tissue engineering 

scaffolds. 
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1. Introduction  

Osteoarthritis is a degenerative inflammatory disease that results in irreversible 

degradation of osteochondral tissue, which consists of surface articular cartilage and 

underlying subchondral bone.[1] Recent tissue engineering approaches show promise; 

however, innovative strategies are needed to recapitulate the mechanotransduction 

pathways found in osteochondral tissue for tissue regeneration, and to maintain tissue 

homeostasis.[2] The mechanisms by which cells receive signals from their environment 

can be examined through the manipulation of the structure (e.g., topography and 

porosity), level of bioactivity (e.g., cell adhesion, stem cell differentiation), and the 

dynamic mechanical properties (e.g., stiffness, elasticity, toughness, etc.) of the 

material systems.[3-5] Therefore, it is critical to define each parameter – structure, 

bioactivity, and mechanical properties – independently and collectively to define the 

critical parameters required to regenerate tissue, or treat a disease.[6-9]  

Tissue engineering relies on synthetic or natural-based material systems to 

interact with cells in order to enhance tissue regeneration. Material stiffness,[10] 

porosity,[11] and bioactivity parameters influence the cellular response, in particular, 

cell transcription and stem cell differentiation.[5] Thus, various mechanotransduction 

pathways can be activated to direct stem cell differentiation for specific 

applications.[12-18] Indeed, mesenchymal stem cells (MSCs) cultured on stiff 

substrates favor an osteogenic differentiation pathway,[19, 20] while MSCs cultured on 

soft substrates favor a chondrogenic differentiation pathway.[4] In addition to 
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mechanical cues, MSCs are responsive to biological signals from their physical 

environment. Collagen is an amino acid based protein that is found in the fibrous 

tissues of the human body, including bone and cartilage.[21] Collagen increases cell 

adhesion, migration, and proliferation.[22] Specifically, type II collagen, a component 

of articular cartilage extracellular matrix (ECM), is known to significantly influence 

chondrogenic differentiation and the maintenance of chondrocyte phenotype in vitro 

and in vivo.[23]  

Polyvinyl alcohol (PVA) is a synthetic, biocompatible polymer utilized for soft 

tissue replacements and tissue regeneration.[24-26] PVA hydrogels are formed by the 

crystallization of polymer chains through non-covalent linkages, i.e., physical 

crosslinks.[27],[28, 29]  Specifically, the formation of theta-gels incorporates the use of 

a small molecular weight hydrophilic polymer, such as polyethylene glycol (PEG) as a 

porogen during cooling, or solidification of a PVA solution.[30, 31] During a thermal 

transition, PEG porogens phase separate from PVA, increasing the density of PVA-rich 

regions, thus inducing crystallization. The PVA hydrogel network forms during a large 

thermal transition and the creation of intermolecular hydrogen bonds.[32, 33] PEG is 

removed through dialysis after the thermal transition, which results in large pores in a 

rigid hydrogel network.  

PVA hydrogels lack cell adhesion functionalities, and investigators have 

incorporated biomolecules into the hydrogel network to enhance hydrogel mechanical 

properties and bioactivity.[34] To enhance bioactivity of PVA hydrogels, 
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polysaccharides and proteins have been added during hydrogel crosslinking. Gelatin, a 

non-specific derivative of the protein collagen, contains cell adhesion ligands, which 

provide cell adhesion sites to PVA hydrogels when blended together. While cryo-gels 

of PVA and gelatin blends have been studied, the effect of adding gelatin to PVA theta-

gels, in the presence of PEG, has not been investigated.  

 

The aim of this study was to develop and characterize PVA-gelatin hydrogels with 

improved mechanical properties, through the incorporation of PEG porogens. We 

hypothesized that the addition of a porogen would increase the density and interactions of 

PVA and gelation, compared to the solidification of PVA and gelatin alone, to result in 

macro-porous hydrogels with increased shear and compressive moduli. We evaluated the 

potential of PVA-gelatin hydrogels to support chondrogenic MSC differentiation, and 

varied hydrogel stiffness and the addition of type II collagen.  

 

2. Experimental Section 

2.1. Fabrication of PVA-Gelatin Theta-Gels 

PVA-gelatin theta-gels, i.e., hydrogels, were prepared using different molecular 

weights and concentrations of PVA, PEG, and gelatin. PVA (Mw = 145 kg/mol (H) and 

95 kg/mol (L), Sigma Aldrich) was combined with 20% (w/v) PEG (Mw = 400 g/mol, 

Sigma Aldrich) in DI water. PVA concentrations, for both molecular weights, were 18 

and 36% (w/v). Experimental groups contained gelatin (Sigma Aldrich) at 1, 5, and 
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18% (w/v). The control and experimental polymer blend solutions were autoclaved for 

1 hour and the warm, homogenous solutions were transferred to curing molds 

consisting of glass slides and 3.2 mm thick Teflon spacers, preheated to 90 °C. The 

molds containing the polymer solutions were cooled to room temperature and cured for 

24 hours. The hydrogel sheets were removed from the molds and dialyzed in DI water 

for 5 days to remove PEG porogens; dialysis water was changed every 12 hours. 

2.2. Fourier-Transform Infrared (FTIR) Spectroscopy 

All sample hydrogels were prepared prior to performing spectroscopy: 18% 

(w/v) PVA, high molecular weight, and 1% (w/v) gelatin solutions were prepared and 

used as controls, 20% (w/v) PEG was used for all theta-gels. The hydrogels were 

dialyzed for 5 days, to ensure removal of the porogen and air-dried after dialysis and 

cut into small pieces. Then they were tested using Thermo-Nicolet IR200 FTIR 

spectrometer with an attenuated total reflectance (ATR) head for 32 scans. 

 

2.3. Rheological Characterization 

All experiments were performed using an AR2000 stress-controlled rheometer 

(TA Instruments) fitted with a 20 mm diameter steel cone geometry at 25 °C, however, 

the temperature sweep study included a temperature range. All sample solutions were 

prepared prior to performing the temperature sweep: 18% (w/v) PVA, high molecular 

weight, and 1% (w/v) gelatin solutions were prepared and used as controls, 20% (w/v) 

PEG was used for all theta-gels. Temperature sweeps were performed at 1 Hz and 1% 
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strain, with a cooling rate of -5 °C*min-1 from 60 to 20 °C. Oscillatory time sweeps for 

experimental (PVA-PEG-1Gel) and control hydrogels (gelatin, PVA, PVA-1Gel) were 

tested directly after hydrolysis, and were deformed at 1% radial strain and 10 Hz over 

100 s. Oscillatory frequency sweeps were performed at 0.5% radialstrain with 

increasing frequency from 0.1 to 100 Hz.   

 

2.4. Scanning Electron Microscopy 

Hydrogel samples, containing PVA and PEG, with and without gelatin, were 

flash frozen in liquid nitrogen after dialysis in DI water, cryo-fractured, lyophilized, 

and characterized by scanning electronic microscopy (SEM, JEOL 600). Samples were 

sputter coated with 10 nm of Au-Pd prior to imaging. SEM was used to quantify pore 

diameters and characterize the inner structure of PVA-PEG-Gel hydrogel cross-sections 

compared to PVA-PEG controls。 

 

2.5. Van Geison Staining 

To characterize the retention of gelation, hydrated hydrogels were placed in Van 

Geison staining solution (ThermoFisher) for 2 minutes and rinsed in DI water several 

times until the water remained clear. PVA-PEG-Gel hydrogels consisting of 18 and 

36% (w/v) PVA, using low (L, 95 kDa) or high (H, 145 kDa) molecular weight PVA, 

and 18% (w/v) PEG, were fabricated. Hydrogels also varied in gelatin content: 1, 5, and 

18% (w/v). Control groups included PVA-PEG hydrogels with no gelatin content. 
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Samples were dried at room temperature, and color images were taken using a digital 

camera. 

 

2.6. Equilibrium Water Content and Weight Loss 

Cylindrical hydrogel specimens (6 mm x 3 mm) were lyophilized to ensure all 

moisture was alleviated in preparation for equilibrium water content measurements and 

weight loss values. The dehydrated specimens were weighed, then placed in 5 mL PBS, 

pH 7.4, to rehydrate the scaffolds for 48 hours at 37 °C. Each specimen was weighed, 

and the wet weight was recorded. Equilibrium water content was calculated as the 

percentage of wet weight divided by initial dry weight. After each specimen’s wet 

weight was recorded, each specimen was again froze to prepare for lyophilization. Each 

specimen was then lyophilized for 24 hours. A second dry weight was then recorded to 

test for how much weight was lost through the dehydration process. The weight loss 

was calculated as final mass subtracted from the initial mass, divided by the initial 

mass. Dry scaffolds were weight to determine the initial amount of polymer. To 

determine the amount of non-crosslinked polymer, scaffolds were hydrated for 24 hours 

in order to dissociate non-crosslinked PVA and gelatin. Scaffolds were then lyophilized 

and massed. To determine the polymer loss due to hydration and diffusion of non-

crosslinked molecules, the mass of a dry sample after the crosslinking process was 

performed was measured.  
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2.7. Unconfined Compression Testing 

The unconfined compressive moduli of various hydrogel groups were 

determined directly after dialysis. Cylindrical hydrogel specimens (6 mm x 3 mm) were 

tested at 25 ˚C using an AR2000 rheometer (TA Instruments) equipped with a Peltier 

plate and normal force transducer. Specimens were placed on the rheometer and the 

geometry was lowered until a force of 0.01 N was measured, and the force was 

normalized. The gap height was recorded as the original gage length for the modulus 

calculation. A 20% uni-axial compressive strain was applied at a rate of 10 µm/s. Force 

(N) and changes in gap height (μm) were obtained using analytical software (TA 

Universal Analysis) and were subsequently used to calculate elastic strain (ε, %) and 

stress (σ, kPa). The elastic modulus (E) was calculated as the slope of a linear fit 

between 5 and 15% compressive strain within the linear-elastic region. A minimum of 

four replicates from each group were tested.  

 

2.8. Cytotoxicity Assay 

The cytotoxicity of PVA-gelatin hydrogels to primary bone-marrow derived 

human MSCs was assessed as a function of mitochondrial activity in living cells. MSCs 

were seeded in treated 48-well tissue culture polystyrene (TCPS) plates at a density of 

20,000 cells/well in 100 µL/well of standard MSC growth media (alpha minimum 

essential medium (MEM), 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 

µg/mL streptomycin) and allowed to adhere for 24 hours. MSCs were incubated in the 
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presence of various PVA-gelatin hydrogels (n = 4) at 37 °C and 5% CO2. Spherical 

hydrogel specimens were 4 mm wide and 2 mm tall. After 24 hours of incubation, 

media was removed and cells were rinsed two times in sterile PBS. Mitochondrial 

activity was analyzed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide (MTT) based In Vitro Toxicology Assay Kit (Sigma Aldrich) following the 

manufacturer’s protocol with a plate reader (H1 Synergy, BioTek). Absorbance values 

were recorded at 570 nm with background absorbance at 690 nm deducted. Average 

absorbance values for the experimental samples were compared to positive cell control 

values recorded for wells containing media and cells alone. 

 

2.9. Chondrogenic Differentiation 

PVA-gelatin hydrogels selected for cell-seeding were coated with type II 

collagen using the following protocol. After fabrication and dialysis, PVA-gelatin 

hydrogels were formed into cylinders, 3 mm x 2 mm, using a 4mm biopsy punch. The 

hydrogels (soft and stiff scaffold groups) were immersed in type II rat collagen (50 

mg/mL, Sigma-Aldrich) in phosphate buffered saline (PBS), which was pre-filtered to 

obtain cell culture sterile solution, for 1 hour at room temperature.[35] The hydrogel 

samples were removed from the collagen solution, rinsed in sterile PBS, and prepared 

for cell culture. 

Primary bone-marrow derived human MSCs (Lonza), passage 4, were seeded 

onto PVA-gelatin hydrogels with or without type II collagen. 38 µL of 700,000 cells 
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suspended in standard MSC culture media were placed onto cylindrical hydrogel 

scaffolds (3 mm x 2 mm), and the scaffolds were placed in 96-well TCPS plates. Cell-

seeded scaffolds were incubated at 37 ˚C, 5% CO2 for 30 minutes, and then the wells 

were supplemented with 150 µL of chondrogenic media (standard MSC growth media 

supplemented with 10 ng/mL of human transforming growth factor beta one (TGF-β1, 

Peprotech)).[11] 

 

2.10. Dimethylmethylene Blue (DMMB) Assay 

Intracellular sulfated GAG content was quantified using a DMMB assay.[11] 

Cell lysate was collected after 4, 7, and 14 days of culture. Scaffolds were removed 

from tissue culture plates, trypsin-EDTA was added, and the scaffolds were incubated 

for 5 minutes. Equal volumes of standard MSC culture media were added to the cell 

suspensions, cell suspensions were placed in micro-centrifuge tubes, and centrifuged at 

4000 rpm for 2 minutes. The supernatant was collected and 150 µL of cell lytic solution 

was added. Standard chondroitin sulfate solutions with concentrations ranging from 0 

to 30 µg/mL were used to form the standard curve. Using a 96-well plate, 25 µL of cell 

lysate sample or standard was added to each well. Next, 150 µL of DMMB solution 

was added to each well. The absorbance at 525 nm was measured. Controls were MSCs 

cultured in chondrogenic media in 96-well tissue culture treated polystyrene plates.  

GAG production was normalized to the cell population per sample using 

intracellular protein and the Pierce™ Protein Assay Kit (ThermoFisher). Briefly, 
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standard bovine serum albumin (BSA) solutions with concentrations ranging from 20 to 

2000 µg/mL were used to form the standard curve. Using a 96-well plate, 25 µL of cell 

lysate sample or standard was added to each well. Next, 175 µL of working solution 

was added to each well. The absorbance at 562 nm was measured. Controls were MSCs 

cultured in chondrogenic media in 96-well tissue culture treated polystyrene plates. 

 

2.11. In Vitro Mechanical Testing 

MSC-seeded scaffolds were tested in unconfined compression using the same 

methods detailed above. Briefly, cylindrical scaffolds (3 mm x 2 mm) were subjected to 

uni-axial unconfined compressive strain at 10 µm/s to a final strain of 20%. Samples 

were tested after 4, 7, and 14 days of culture with MSCs in chondrogenic media. At day 

14, non-seeded PVA-gelatin hydrogel controls were mechanically tested as degradation 

controls. 

 

2.12. Statistical Analysis 

All experiments were performed in triplicate with results reported as mean ± 

standard deviation. Statistical analysis was performed with a GLM procedure using 

Statistical Analysis System software. A fixed effect multi-factorial (concentration, 

molecular weight, and gelatin concentration, eliminated inside the model if one of the 

factor is not significant relevant) model was generated to study the contribution of each 

factor to PVA-gelatin hydrogels with a range of compressive elastic moduli, swell ratio 
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and weight loss based on ANOVA analysis. The multiple comparisons were performed 

with Tukey adjustment. For analyzing cytotoxicity, similar GLM procedures were 

preformed to obtain one-way ANOVA results. A p < 0.05 was considered significantly 

different for all analysis. GAG assay results were analyzed using a standard student t-

test. 

3. Results and Discussion 

3.1. PVA-Gelatin Theta-Gel Formation 

Bio-synthetic hydrogels were obtained from the physical crosslinking of PVA 

and gelatin, and the diffusion of PEG for pore formation (Figure 8-1). The thermal 

gelation of both PVA and gelatin in the presence of PEG created a macro-porous IPN. 

The short-chain, hydrophilic PEG molecules behaved as porogens, aggregating into 

large domains. After cooling, the PVA-gelatin hydrogel was dialyzed for 5 days, 

allowing the soluble, nucleated PEG molecules to escape the hydrogels, creating a large 

interconnected porous structure.  
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Figure 8-1. Schematic illustrating the formation of a PVA and gelatin theta-gel, through 

the physical crosslinking of PVA (solid black lines) and gelatin (dashed black lines), 

respectively, in the presence and subsequent removal of PEG. Areas of hydrogen bonding 

(i.e., physical crosslinks) between gelatin and PVA are represented by black rectangles. 

Nucleation of PEG porogens (gray lines) during solidification and subsequent removal 

through dialysis resulted in a macro-porous network. 

To demonstrate the formation of an IPN, soft hydrogels with 18% PVA (high molecular 

weight), 1% gelatin and 20% PEG (PVA-PEG-1Gel) were synthesized, in addition to 

control samples including 18% PVA (PVA), 1% gelatin (Gelatin), 18% PVA-1% gelatin 

(PVA-1Gel) and 18% PVA-20% PEG (PVA-PEG). These samples were tested under 
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attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. The 

physical crosslinking of PVA and PVA-1Gel controls occurred due to numerous inter-

chain hydrogen bonds between OH groups, formed during crystallization of the polymer 

and identified as a peak in the FTIR spectra at 1141 cm-1 (Figure 8-2 C,D).[36, 37] The 

intensity of this peak is related to the C-O stretching vibrations of an intramolecular 

hydrogen bond was formed between two neighboring OH groups. The C-O peak had a 

lower intensity for PVA and gelatin hydrogels, which were solidified in the presence of 

PEG porogens – the experimental group PVA-PEG-1Gel (Figure 8-2 B). The control 

groups also formed peaks within 1090 – 1150 cm-1, associated with C-O-C stretching 

vibrations; these peaks also appeared in the PVA-PEG-1Gel spectrum with lower 

intensities. It was hypothesized that crosslinking also occurred due to the increased 

polymer concentration at the solidifying regions containing PVA and gelatin, and the 

subsequent generation of van der Waals interactions between hydrocarbon polymer 

backbones between gelatin and PVA. As a result of introducing PEG into the 

solidification process, the PVA and gelatin interacted with each other differently than 

simply mixing the two polymers together, illustrated in Figure 8-2.   
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Figure 8-2. Top: Chemical structure of PVA; physical crosslinking takes place at OH 

groups between PVA molecules. Bottom: fourier transform infrared spectroscopy (FTIR) 

spectra of (A) gelatin, (B) PVA-PEG-1Gel, (C) PVA-PEG, (D) PVA-1Gel and (E) PVA 

hydrogel films, stretching vibrational bands associated with PVA physical crosslinking 

include C-O and C-O-C. 

The pore diameters of PVA-gelatin hydrogels (Figure 8-3 D) were approximately ten 

times larger than the control PVA hydrogels (Figure 8-3 B), confirmed through scanning 

electron micrographs. Large pores may also have been the result of non-crosslinked 

gelatin leaving during dialysis, which may result from interference of PVA in the 

formation of intra-molecular crosslinks. Van Geison staining qualitatively verified that 
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gelatin was retained in the hydrogels after dialysis (gelatin samples stained red, PVA 

controls did not; Figure 8-3 E). Qualitatively no differences were seen between groups in 

the stained images.  

 

Figure 8-3. SEM images of lyophilized and cryo-fractured surfaces of 18% PVA 



 

· 

212 

hydrogel samples, fabricated in the presence of PEG alone (A, B) or with the addition of 

5% gelatin (C, D). Magnifications at 250x, scale bar = 100 μm (A, C) and 800x, scale bar 

= 20 μm (B, D). (E) Van Geison staining qualitatively verified gelatin retention in the 

hydrogels, which were fabricated using theta-gel techniques. PVA-gelatin hydrogels 

consisting of 18 and 36% PVA, using low or high molecular weight PVA, were 

fabricated. Hydrogels also varied in gelatin content; top numbers represent weight 

percent of gelatin. Samples containing gelatin displayed a higher intensity of the red 

stain.  

3.2. Physical Characterization and Mechanical Properties 

To demonstrate the formation of an IPN, soft hydrogels with. Rheological 

experiments were performed on experimental samples, 18% PVA (high molecular 

weight), 1% gelatin and 20% PEG (PVA-PEG-1Gel), in addition to control samples 

including 18% PVA (PVA), 1% gelatin (Gelatin), 18% PVA-1% gelatin (PVA-1Gel) 

and 18% PVA-20% PEG (PVA-PEG) to examine the effect of PEG porogens on the 

mechanical response of PVA-gelatin hydrogels. Polymer hydrogel pre-curser solutions 

were autoclaved to dissolve in water and then immediately transferred to a AR2000 

stress-controlled rheometer (TA Instrument). A temperature sweep was performed from 

60 ºC to 20 ºC. For all samples except 1% gelatin, storage modulus increased as 

temperature goes down; the gelatin control remains similar level for the whole tested 

time period. With the addition of gelatin in the PVA hydrogel, storage moduli increased 

from 24 Pa to 71 Pa. However, storage moduli jumped to 1863 Pa after introducing 
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PEG into the PVA hydrogel without gelatin. By having all three components in the 

system, the storage modulus increased to 5266 Pa, indicating the positive effect of PEG 

porogens on the mechanical response of PVA-gelatin hydrogels (Figure 8-4 A). 

After all sample hydrogels were dialyzed against water for one week (the 

gelatin control remained in liquid form and was tested directly without dialyzing), 

oscillatory time sweeps were performed to examine the mechanical properties of the 

hydrogels. PVA and PVA-1Gel exhibited similar mechanical properties overtime 

around 500 Pa. However, those hydrogels fabricated in the presence of PEG had a 

much higher storage modulus around 4000 Pa. Same as the previous temperate sweep 

result, PVA-PEG-1Gel had the highest storage modulus around 6000 Pa. Therefore, 

after dialysis, PEG porogens resulted in large porous structures and stiffer scaffolds 

(Figure 8-4 B). 

Shear storage moduli were also measured to determine the effect of frequency 

during dynamic shear application for various different monomers and hydrogels after 

dialyzing. Oscillatory frequency sweeps were performed at 1% radial strain and 25 ºC. 

The hydrogel exhibited steady-state behavior up to 10 Hz, after which the moduli 

increased in response to the increasing shear rate. PVA and PVA-1Gel control groups 

exhibited similar storage moduli. Similar with the previous two experiments, the PVA-

PEG-1Gel revealed the highest storage modulus compared to all of the other groups 

(Figure 8-4 C). 
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Figure 8-4. Rheological experiments were performed to examine the effect of PEG 

porogens on the mechanical response of PVA-gelatin hydrogels. A) Temperature sweep 

of single macromers, control solutions (PVA-1Gel, PVA-PEG), experimental solutions 
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(PVA-PEG-1Gel); solution from the autoclave was tested from 60 ˚C to 20 ˚C to show 

the gelation process of each sample. B) Oscillatory time sweep experiments for control 

hydrogels (gelatin, PVA, PVA-1Gel, PVA-PEG), and experimental hydrogels (PVA-PEG-

1Gel) were tested after dialysis at 25 ˚C. C) Oscillatory frequency sweeps were 

performed on hydrogels at 1% radial strain from 0.1 to 100 Hz at 25 ˚C.  

PVA hydrogels with and without gelatin swelled > 100% after hydration 

(Figure 8-3 A). The PVA molecular weight influenced water content; lower molecular 

weight PVA-gelatin hydrogels swelled less compared to higher molecular weight PVA-

gelatin hydrogels, likely due to an increase in physical crosslinking. A fixed-effect tri-

factorial model (e.g., PVA concentration, PVA molecular weight, and gelatin 

concentration) was generated to study the contribution of each factor to the hydrogel 

material properties. All three factors contributed significantly to the equilibrium water 

content of the hydrogel. The addition of gelatin increased the overall water content. 

Weight loss was calculated to determine polymer mass lost due to hydrolysis. 

While some material was lost due to non-crosslinked PVA chains and degraded 

polymer during physical crosslinking (< 10%), indicated by the white bars in Figure 8-

3 B, the PVA-gelatin hydrogels, specifically the 18% gelatin samples, black bars in 

Figure 8-3 B, lost more weight (2 – 31%). These results correlate with the FTIR data, 

which indicated that gelatin interrupted PVA crystallization during cooling, thus 

allowing more amorphous species to be lost during hydration (Figure 8-2).   

Unconfined compression tests were performed on hydrogels directly after 
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dialysis. Increasing the gelatin concentration created a stiffer hydrogel up to 5% (w/v); 

concentrations greater than 5% interfered with the formation of a network, resulting in 

a more compliant hydrogel (Figure 8-3 C); PVA control hydrogels, fabricated with 

PEG, without gelatin, were too compliant to collect compressive moduli values thus 

data is not shown. A fixed effect tri-factorial model (e.g., PVA concentration, PVA 

molecular weight, and gelatin concentration) was generated to study the contribution of 

each factor to the IPN hydrogels with a range of compressive elastic moduli. All three 

factors had significant contributions to the resulting moduli, among which PVA 

concentration interacted with PVA molecular weight, and PVA molecular weight 

interacted with gelation concentration: 18%PVA(H) ranged from 17 to 95 kPa, 

36%PVA(H) ranged from 116 to 193 kPa, 18PVA(H) ranged from 26 to 92 kPa, and 

36PVA(L) ranged from 189 to 351 kPa. The three factors were also interacting with 

each other, and contributing of the compressive moduli of the hydrogels. Overall, the 

formation of a crosslinked network of PVA and gelatin, to form a swollen, stiff 

hydrogel, was dependent on the PVA concentration and molecular weight, and the 

concentration of gelatin.  
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Figure 8-5.  The physical and mechanical properties of PVA-gelatin hydrogels, 

developed using theta-gel techniques, are reported. PVA-gelatin hydrogels consisting of 

18 and 36% (w/v) PVA, using low (L, 95 kDa) or high (H, 145 kDa) molecular weight 

PVA, were fabricated. Hydrogels also varied in gelatin content; white = no gelatin, light 

gray = 1% gelatin, dark gray = 5% gelatin, black = 18% gelatin. (A) To evaluate 

hydration, the equilibrium water content of PVA-gelatin hydrogels and PVA controls was 
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calculated; lyophilized hydrogel samples were hydrated in phosphate buffered saline 

(PBS), pH 7.4, for 24 hours at room temperature. (B) Weight loss values were calculated 

after removal of the hydrogel samples from solution. Measurements were used to 

determine the loss of soluble low molecular species and hydrolytic degradation. (C) 

Unconfined compression tests were performed and elastic moduli of PVA-gelatin 

hydrogels were calculated using a linear regression of the stress-strain curve between 5 – 

15% axial compressive strain; average ± standard deviation are reported (n = 4). PVA 

samples were left out of the study due to high compliance. 

 

3.3. In Vitro Chondrogenic Differentiation 

The bioactive properties of the PVA-gelatin hydrogels were investigated for 

cartilage tissue engineering applications. Two different PVA-gelatin hydrogel 

formulations were selected for in vitro cell culture based on the physical 

characterization and mechanical analysis. Hydrogel formulations were chosen to reflect 

differences in elastic moduli, and with or without the addition of a cell-signaling 

molecule, type II collagen. Prior to chondrogenic differentiation, an in vitro MTT-based 

cytotoxicity assay was used to measure the mitochondrial activity of human MSCs after 

24 hours of culture in the presence of PVA-based hydrogels in standard MSC culture 

media. All of the PVA-gelatin groups displayed non-cytotoxic effects and maintained 

mitochondrial activity levels > 75%. There were no significant results among the 

groups; however, the cytotoxicity assay results indicate a dependence on gelatin 

content.  
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Figure 8-6. (A) Mitochondrial activity was determined using an MTT-based cytotoxicity 

assay. The absorbance values for PVA-gelatin and PVA hydrogels were normalized to 

non-modified cell controls cultured on tissue culture polystyrene; ethanol (EtOH) was 

used as a negative control. Confluent human MSCs were cultured with PVA-based 

hydrogels for 24 hours in standard MSC culture medium at 37 ˚C and 5% C02 (n = 4). (B) 

Sulfated GAG production was quantified for MSCs cultured in PVA-gelatin scaffolds 

and in non-modified treated polystyrene culture plates in chondrogenic media. Hydrogel 

experimental groups consisted of: 18PVA(H)-1Gel (soft), 18PVA(H)-1Gel + type II 

collagen (soft + T2), and 36PVA(L)-5Gel + type II collagen (stiff +T2); results are 

reported as average ± standard deviation (n = 4). (* = p < 0.005 compared to control 
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samples at day 14; ** = p < 0.03 compared to day 4 results within the same sample 

group.) Unconfined compression tests were performed and the elastic moduli of human 

MSC-seeded hydrogels and non-seeded hydrogel controls were calculated using a linear 

regression of the stress-strain curve from 5 – 15% axial compressive strain. Hydrogel 

experimental groups consisted of: 18PVA(H)-1Gel (soft), 18PVA(H)-1Gel + type II 

collagen (soft + T2), and 36PVA(L)-5Gel + type II collagen (stiff +T2); results are 

reported as average ± standard deviation (n = 4).  

 

The efficacy of using PVA-gelatin hydrogels, formed using theta-gels 

techniques, to support chondrogenic differentiation was evaluated by measuring initial 

matrix content production. The chondrogenic differentiation of the MSCs was 

measured using a dimethylmethylene blue (DMMB) assay 4, 7, and 14 days post-

seeding onto PVA-gelatin hydrogels. PVA-gelatin hydrogel groups were selected 

according to elastic moduli values and two groups were chosen to reflect high and low 

moduli (soft ~ 10 kPa, stiff ~ 100 kPa). The presence of a cartilage matrix protein, type 

II collagen, was investigated; hydrogel groups varied in bioactivity (with or without 

type II collagen). Reports from the literature suggest that compliant hydrogels promote 

and/or enhance chondrogenic differentiation. Therefore, the effect of the bioactive 

molecule was investigated in the soft hydrogel groups.  

The intracellular sulfated glycosaminoglycan (GAG) content was measured in 

primary human MSCs cultured on PVA-gelatin hydrogel scaffolds in chondrogenic 

media over a period of 14 days. Soft PVA-gelatin hydrogels, without the addition of 
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type II collagen, did not show any significant differences compared to non-modified 

cell controls at all three time points (Figure 8-6 B). However, both soft and stiff 

hydrogels containing type II collagen significantly increased intracellular GAG content 

compared to the controls after 14 days of culture (p < 0.005). In addition, both the soft+ 

T2 and stiff+ T2 hydrogel groups significantly increased intracellular GAG content 

after 14 days compared to 4 days of culture (p < 0.03). The results also suggest that the 

soft + T2 hydrogel samples had a greater influence on intracellular GAG production 

compared to the stiff + T2 hydrogels. Thus, the combination of both a selective moduli 

value and the presence of a bioactive molecule will significantly enhance the ability for 

PVA-gelatin hydrogels to support chondrogenic differentiation, and potentially tissue 

regeneration. While the two-week duration of the in vitro is a limitation of the study, 

the efficacy of using PVA-gelatin hydrogels, which incorporate type II collagen, for 

cartilage tissue engineering applications is supported.  

Unconfined compression tests were conducted on cell-seeded hydrogels to 

determine what effect the cells may have on the mechanical properties of their physical 

environment, i.e., the hydrogel scaffold. PVA-gelatin hydrogel controls were incubated 

in standard MSC culture media until testing. At day 4, 7, and 14 the elastic moduli of 

the MSC-seeded experimental groups were not significantly different compared to the 

controls (Figure 8-5, day 4 = light gray bars, day 7 = striped gray bars, day 14 = dark 

gray bars, hydrogel controls = black bars). However, a trend showing the decrease in 

elastic moduli of cell-seeded hydrogels with time may reflect the cells remodeling the 
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hydrogel scaffold during differentiation. Longer time points may reveal significant 

data, and future work will examine degradation and the dynamic mechanical properties 

of cell-seeded hydrogels. 

 

4. Conclusions 

Cell-instructive PVA-gelatin hydrogels were fabricated in the presence of a 

PEG porogen to enhance network integrity. Theta-gels with macro-porous structures 

formed through the physical interactions of PVA and gelatin, and supported 

chondrogenic differentiation and cartilage matrix deposition. Adding gelatin to PVA 

hydrogels formed in the presence of PEG porogensw significantly increased the 

hydrogel stiffness and pore size.[34] Bio-synthetic IPN hydrogels were formed using 

theta-gel techniques and are promising candidates for cartilage regeneration scaffolds 

due to their large pore diameters (10 – 50 µm), moderately high compressive elastic 

moduli (20 – 400 kPa), and ability to significantly increase chondrogenesis. Future 

work will investigate the role of the gelatin during cell culture and longer in vitro 

culture time points. In addition, the effect of dynamic culture will be investigated. 
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