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Abstract

Geothermal energy has become a focal point of the renewable energy revolution. Both
shallow and deep types of geothermal energy have the potential to offset carbon emissions,
reduce energy costs, and stimulate the economy. Before widespread geothermal exploration
and exploitation can occur, both shallow and deep technologies require improvement by
theoretical and experimental investigations. This thesis investigated one aspect of both
shallow and deep geothermal energy technologies. First, a group of shallow geothermal en-
ergy piles was modeled numerically. The model was constructed, calibrated, and validated
using available data collected from full-scale in-situ experimental energy piles. Following
calibration, the model was parameterized to demonstrate the impact of construction spec-
ifications on energy pile performance and cross-sectional thermal stress distribution. The
model confirmed the role of evenly spaced heat exchangers in optimal pile performance.
Second, experimental methods were used to demonstrate the evolution of a fractured gran-
ite permeability as a function of mineral dissolution. Steady-state flow-through experiments
were performed on artificially fractured granite cores constrained by 5 MPa pore pressure,
30 MPa confining pressure, and a 120oC temperature. Upstream pore pressures, effluent
mineral concentrations, and X-Ray tomography confirmed the hypothesis that fracture as-
perities dissolve during the flow through experiment, resulting in fracture closure.
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Chapter 1

Introduction

The finite availability and environmental concerns associated with fossil fuels have ushered

in an array of renewable energy alternatives in recent decades. Geothermal energy repre-

sents one of the more dependable and versatile renewable alternatives due to the ubiquitous

availability, low operating costs, and low carbon emissions. Not only can geothermal energy

lessen residential heating/cooling bills (shallow geothermal energy), but it can also gener-

ate baseload power for the electrical grid (deep geothermal energy). Both products, climate

control and electricity, are unarguably beneficial, however the sustainability of these prod-

ucts depends on the methods and technologies used to extract geothermal energy. At the

time of this writing, the uncertainty associated with deep geothermal energy extraction sus-

tainability remains too high for a commercialized industry to emerge. On the other hand,

shallow geothermal energy extraction is well proven and generally successful. However,

shallow geothermal energy applications continue to grow in size and demand and require

additional research to increase performance and efficiency.

This introduction provides the reader with a basic understanding of shallow and deep

geothermal energies. In the context of this thesis, the introduction introduces both shallow

and deep geothermal energies and then identifies and extrapolates upon specific methods
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1.1. SHALLOW GEOTHERMAL ENERGY

and terms necessary to support the core of the thesis presented.

1.1 Shallow Geothermal Energy

Thermal energy stored between 0 - 50 m below the Earth’s surface is considered "shal-

low geothermal energy". Although seasonal temperature fluctuations influence the amount

of thermal energy stored subterraneously between 0 and 5 m (15 ft), a near constant

subsurface temperature between 10-15 oC can be observed below this depth. Given the

overwhelming amount of thermal energy stored at these depths, the subsurface can be con-

sidered a source or a sink for all heat pump intents and purposes.

1.1.1 The Role of the Heat Pump

Heat pump technology is well established, and continues to refrigerate food (refrigerator)

and even cool/heat homes (air source heat pump). The general concept of the heat pump

involves three closed fluid circulation loops (Fig. 1.1) . The first heat exchange loop extracts

heat from a low density heat source. The fluid carries the heat to a second loop where fluid

absorbs the low density heat and electrical power compresses the heat. A third loop, called

the distribution loop, then absorbs the high density heat from the second loop and delivers

it to an environment that is fully separated from the first loop. In the case of a Ground

Source Heat Pump (GSHP), the first loop is embedded in soil and the distribution loop is

installed in a building (Fig. 1.1).

2



1.1. SHALLOW GEOTHERMAL ENERGY

Figure 1.1: Ground Source Heat Pump Schematic
Source: Mott MacDonald Engineering

1.1.2 Advantages and Disadvantages of the GSHP

The benefits associated with the GSHP system generally outweigh any disadvantages. An

incredible 300% efficiency dwarfs that of traditional oil/gas boilers and results in 30-50%

reduced operational and maintenance costs (Mustafa Omer, 2008). In contrast to conven-

tional indoor heating and cooling systems, the GSHP requires electrical input, linking it

with a strong resistance to oil price fluctuations. Another advantage of the GSHP is the

cleanliness of the heat distribution. Conventional systems rely on air ducts for convective

forced hot air, while the GSHP system delivers "clean" heat via radiant floor or baseboard

heating. Another commonly overlooked benefit is the versatility of the GSHP. A properly

installed GSHP has the ability to not only heat, but also cool a home or building. The final

invaluable benefit associated with a GSHP system is the lack of carbon dioxide emissions.

3



1.1. SHALLOW GEOTHERMAL ENERGY

If the GSHP is coupled with solar energy (common configuration) it generates zero carbon

emissions. GSHP systems are unarguably a genuine renewable alternative to traditional

climate control systems, but they are associated with some disadvantages.

Many disadvantages associated with GSHP systems can be mitigated or justified rather

easily. The installation cost of a GSHP system remains the main barrier between many

homeowners and green climate control. This cost can reach $20,000 for a closed-loop ground

source system. Although this initial cost is steep, the annual operational costs can be half

as expensive as operational costs for a conventional system (Mustafa Omer, 2008). The

majority of the initial cost lies in the borehole drilling and installation of the heat exchange

tubes. Many commercial buildings mitigate this problem by embedding the heat exchanger

tubes in the load bearing concrete foundation piles (Fig. 2.1). Accordingly, drilling costs

are avoided and installation costs are sharply decreased. Furthermore, concrete foundation

piles are not the only foundational structures available to be outfit with heat exchangers.

Concrete retaining walls, slabs, and abutments are all energy geo-structures suited to be

outfit with heat exchangers at a low cost for a high benefit (Laloui and Di Donna, 2013).

These "geo-structures" combine the existing need to direct building loads into the ground

with energy supply.

1.1.3 The Role of Energy Piles

Concrete energy piles are a natural fit for the efficient use of geothermal energy. Heat ex-

changers embedded within the energy piles facilitate heat transfer between the working fluid

and the subsurface. Since concrete foundation piles can range in length (depth) from 10-50

m (Brandl, 2006), they provide access to the constant subsurface temperatures necessary

for an efficient GSHP system. Another inherent benefit is the high thermal conductivity of

4



1.2. DEEP GEOTHERMAL ENERGY

concrete. This results in quick transfer of heat between the embedded heat exchangers and

the surrounding soil. Finally, the concrete protects the heat exchangers from weathering

deterioration and ground shifting.

Heat exchanger configurations vary for energy piles. The most common types are re-

ferred to as U-shape and W-shape. U-shape heat exchangers form a U within the energy

pile, and accordingly the W-shape describes a W-shaped heat exchanger (Fig. 1.2).

Figure 1.2: Comparison between W-shape and U-shape heat exchangers

1.2 Deep Geothermal Energy

1.2.1 Overview of Deep Geothermal Energy

Thermal energy stored between 2-10 km below the Earth’s surface is considered "Deep

Geothermal Energy". Deep Geothermal Energies are generally categorized by their hy-

drogeological characteristics. Liquid dominated geothermal reservoirs are characterized by

hot water (100-200oC) stored in the Earth’s crust slowly escaping via surface anomalies

(geysers, hot springs, etc.). Most geothermal operations extract hot water from liquid dom-

inated reservoirs by pumping water out of the reservoir. Following extraction, the hot water

5



1.2. DEEP GEOTHERMAL ENERGY

is used to turn a turbine and generate electricity. The Nesjavallir Geothermal Power sta-

tion in Iceland is a successful demonstration of geothermal energy extraction from a liquid

dominated reservoir. Contrary to liquid dominated reservoirs, vapor dominated reservoirs

store hot water vapor. These reservoirs do not require pumping for hot fluids, which results

in increased efficiency. The Geysers of Northern California is a successful demonstration

of geothermal energy extraction from a vapor dominated reservoir. The third type of deep

geothermal energy is referred to as an Enhanced Geothermal System (EGS). These systems

rely on hot (150-250 oC) dry rock at depths of 3-5 km. Currently there are few EGS oper-

ations, however the operations that are ongoing are exhibiting great progress (Habanero -

Cooper Basin, AU; Newberry Volcano - Bend, Oregon, USA; Soultz FR).

1.2.2 Enhanced Geothermal Systems

An EGS truly is an engineered system (Fig. 1.3). The system accesses thermal energy

stored deep within the Earth’s crust (3-5 km). This is accomplished by drilling an injection

well and a production well ≈3 km deep and 10-800 m apart (MIT Report, 2006). The

space between the wells requires pressurized stimulation to open up existing fractures in

the hot rock matrix. Once both wells are connected by fractures, water that is colder than

the surrounding rock matrix (80-100oC) is pumped into the injection well and hot water

(150-250 oC) is extracted from the production well. The hot water is then used to drive

a turbine and generate power. This process can be considered an engineered liquid domi-

nated reservoir. As one might expect, the engineering challenges are associated with great

uncertainty. However, according to MIT Report (2006), EGS has the potential to generate

100,000 MWe of baseload power to the United States electric grid alone.

Several hurdles stand between a potential EGS and a fully operational power plant. The
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1.2. DEEP GEOTHERMAL ENERGY

Figure 1.3: Enhanced Geothermal System diagram
Source: Raya Group

first hurdle is the estimation of a subsurface temperature gradient in the area of interest.

Temperature gradients vary drastically throughout the Earth’s crust making estimation dif-

ficult in regions where oil/gas drilling records are unavailable. In general, it is desirable to

encounter temperatures of 200oC between 3-4 km depth. These temperatures are achiev-

able in regions of moderate to high crustal heat flow. For example, the western region of

the United States exhibits high crustal heat flow which may be suitable for EGS.

After the wells are drilled (which is an engineering feat in itself), the next hurdle is

reservoir characterization. First, existing fractures are identified using boring-logs, bore-

hole imaging, geophysical logs, cores, and existing oil/gas drilling records. Following the

identification of existing fractures, the in-situ stresses are estimated. Minimum and maxi-

mum horizontal stresses are estimated using various theoretical methods (Evans et al., 1999;

MIT Report, 2006; Ghassemi, 2012). These stresses play an important role in understand-

ing potential seismicity, drilling feasibility, reservoir stimulation, and permeability evolution.
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1.2. DEEP GEOTHERMAL ENERGY

Additionally, these stresses aid in stimulation design (i.e. the prediction of required pore

pressure magnitude and the resulting propagation extent and direction of fractures.)

Stimulation of the reservoir may be the most important step to developing a successful

EGS. Water is pumped into the wells at high pressures, which lowers the effective stress

of the rock and opens existing fractures perpendicular to the minimum horizontal stress

in the reservoir. This process is, however, more complicated than previously thought. In

addition to in-situ stress states, thermoporoelastic effects play an important role in fracture

initiation and propagation (Tarasovs and Ghassemi, 2012). Furthermore, fractures may

occur due to tensile fracturing and shear-slip fracturing in addition to conventional prop-

agation fracturing (Ghassemi and Zhang, 2004). In an effort to manage these variables,

micro-seismic waves released from the fractured rock are observed and triangulated dur-

ing stimulation. These triangulated measurements are used to map the size and extent of

stimulated fractures between wells. In this way, the observations can be used to modify

stimulation techniques by identifying well depths that may encourage fracture propagation

in the desired direction (toward the coupled production/injection well).

Reservoir mapping plays an important role in stimulation, operation, maintenance, and

safety of an EGS. Fracture-cloud mapping technologies have been adopted from the shale

gas industry. A combination of tracers, microseismic monitoring, and advanced tomography

modeling techniques are all used to map the fracture-cloud and detect fracture connectivi-

ty/permeability (Ghassemi, 2012). These techniques provide crucial feedback to EGS oper-

ators. First, operators can use feedback to monitor induced seismicity within the reservoir.

Induced seismicity occurs when stored energy is released from prestressed rock at depth.

Records show that induced seismicity can cause upwards of 2.5 ML on the Richter scale

(Basal, Switzerland - minor damage caused to buildings). Although seismicity of this mag-

8



1.2. DEEP GEOTHERMAL ENERGY

nitude is rare and easily avoided (Basal sits on a locked fault, and seismicity was expected),

it is important for operators to avoid possible inconveniences to surrounding towns. Second,

operators can use feedback to properly schedule zone isolated re-stimulations throughout

the lifecycle of the EGS. These re-stimulations maintain production flow rates and tempera-

tures. Although the mapping tools mentioned here are great for understanding the response

of an EGS, they do not directly address the reduced permeability associated with reduced

productivity.

Once the reservoir is fully mapped and the coupled injection/production wells are suffi-

ciently connected, an energy conversion system must be selected and installed. Generally,

the production fluid flow rate and temperature dictate the selection of the conversion system.

For lower flow rates and temperatures (19.5 kg/s and 150-200oC), a basic binary energy

conversion system is most appropriate. Higher flow rates and temperatures (425 kg/s and

250oC) require a flash system (Li and Lior, 2014). These systems are distinguished by the

indirect (binary) and direct (flash) use of the geofluid extracted from the reservoir, however,

both systems employ a turbine for the power generation.

Several problems manifest following normal operation of an EGS power plant. The

first issue encountered is well-bore scaling. Scaling occurs due to pressure and tempera-

ture changes associated with producing geo-fluids from 3-5 km depth. These pressure and

temperature changes result in precipitation and deposition of calcium carbonate and silica

scale. The scaling clogs the wells and corrodes surface equipment resulting in lowered flow

rates and maintenance down times. Although calcium carbonate is easily managed using

polymaleic acids, silica scale is much more difficult to deal with. Another problem associ-

ated with normal EGS operation is the reduction of reservoir permeability. As working fluids

dissolve the rock and redeposit mineral mass from the matrix to the well bore and surface

9



1.3. RESEARCH OBJECTIVE

equipment, the fractures close due to what is hypothesized as fracture surface asperity dis-

solution and fracture face skin (‘weathered’ fracture surface resulting in lower conduction

of water to the rock matrix). Another potential problem that arises with normal operation

is the creation of highly conductive conduits within larger fractures. These conduits attract

more water and tend to grow with time. The result is referred to as a "short-circuit" and

results in increased production flow rate, but sharply decreased production temperatures

as a result of reduced fluid residence time (and heat transferred).

Enhanced Geothermal Systems are an incredible feat of systems engineering. Starting

with geological exploration, moving to drilling through several kilometers of dense rock,

continuing to the engineered fractured system at depth, and finishing with the installation

of an energy conversion system. The process is riddled with uncertainty and potential

setbacks. One of the main sources of uncertainty is associated with permeability evolution.

Therefore, the research presented in Chapter 3 attempts to experimentally investigate this

uncertainty.

1.3 Research Objective

The objective of this research is to improve the state of knowledge for shallow and deep

geothermal energy technologies. Shallow and deep geothermal energy technologies suffer

from the same shortcoming: long-term sustainability. Research is ongoing to improve mod-

ern technologies, but remains insufficient. Further investigation of rock-water interactions

under coupled physiochemical processes in EGS should be conducted to better understand

permeability decreases over time. Additional field and numerical research needs to be com-

pleted on energy piles to better define the relationships between construction specifications

and performance. Although many ongoing and past studies have attempted to address

these shortcomings, they have failed to fully capture the complex relationships described
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above. Once these relationships are fully defined, long-term deep and shallow geothermal

sustainability will be regarded with increased certainty.

Shallow geothermal energy pile applications are increasing in size and demand, while

the relationship between simple design specifications and performance remains undeveloped.

The research presented within this thesis employs numerical modeling techniques to gain

insight into the role of construction specifications on energy pile performance and thermal

stress distribution. Concrete cover, shank distance, and pile spacing can be optimized for

maximum heat extracted/rejected. Chapter 2 details the methods and results used to sup-

port this hypothesis.

Like geothermal energy pile applications, existing EGS have not operated long enough

to observe long-term rock-water behaviors. However, even short-term observations indicate

a strong reduction in production temperatures and flow rates (MIT, 2006). The research

presented within this thesis uses a novel experimental procedure to demonstrate the dis-

solution of fracture surface asperities and the associated fracture aperture decrease. As

these asperities dissolve, the fractures close, and flow rate is reduced. Chapter 3 details the

methods and results used to evaluate this hypothesis.
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Journal Paper - Parameterization of a
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1 University of Vermont, Department of Civil and Environmental Engineering
2 University of California, San Diego, Department of Structural Engineering

2.1 abstract

This paper describes the calibration and parameterization of a numerical model for con-
ductive heat transfer from a group of geothermal energy piles into the soil surrounding the
piles. Calibration was performed using Thermal Response Test (TRT) data collected from a
group of full-scale in-situ geothermal energy piles in Colorado Springs, CO. The calibration
of the three dimensional model incorporated field data to represent boundary conditions
including inlet temperature, atmospheric temperature, and subsurface temperatures at dif-
ferent locations within the pile group. Following calibration, the model was parameterized
to understand the role of heat exchanger configuration with a given energy pile as well as
the role of pile spacing in an energy pile group. Parametric combinations were compared
using heat transfer per unit length of the energy pile (W/m). The results of the parametric
study indicate that heat transfer from energy piles increases by up to 8% for an even heat
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exchanger layout compared to an uneven layout. These results also provide useful insight
into the cross-sectional temperature distribution of an energy pile. Energy pile temperature
was observed to vary by up to 20% across the core of the pile during heating for various
heat exchanger layouts. This uneven temperature distribution may have implications on
the estimation of in-situ energy pile thermal axial stresses; strain gage measurements at the
reinforcing cage may underestimate thermal axial stress during heating.

keywords: Geothermal Energy, Energy Pile, Numerical Modeling, COMSOL , Calibra-
tion, Thermo-active foundation

2.2 Introduction

Indoor climate control accounts for almost 50% of America’s residential energy consump-

tion (EIA, 2011). As energy prices rise with increased demand and short supply, global

communities will need clean renewable alternatives to heat/cool residential and commer-

cial buildings. Although ground source heat pumps are a well-established energy efficiency

technology, their coupling to building foundations provides a new way to transfer heat to

or from the ground for lower installation costs. Heat is transferred by circulating heated

or cooled fluid through closed-loop heat exchangers embedded in the foundations. In this

way, geothermal energy piles serve two purposes, first to transfer building loads into the

subsurface, but also to extract thermal energy from surrounding soils.

Concrete energy piles are a natural fit for geothermal energy. Since concrete foundation

piles are generally longer than 6 m (Brandl, 2006), they provide access to the constant sub-

surface temperatures necessary for an efficient ground source heat pump (GSHP) system.

Another benefit is the reduced heat exchanger installation cost compared to traditional

vertical borehole heat exchangers. Since the installation of foundation piles requires drilling

equipment, heat exchangers do not require additional installation (drilling) cost. Also,

geothermal energy piles are easily coupled with solar panels to provide grid-independent

climate control. Finally, the concrete protects the heat exchangers from damage and re-
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Figure 2.1: Image and sketch showing heat exchanger pipes embedded in concrete energy piles with
geometry details relevant to thermal performance

strains potential ground water pollution (Brandl, 2006).

Geothermal energy piles need to remain operational for the lifespan of the building

they are supporting. Therefore, the initial design must accommodate for maximizing ther-

mal performance and characterizing the thermal stresses associated with the thermal soil-

structure interaction (Bourne-Webb et al., 2014). The cross-sectional temperature distri-

butions within energy piles not only reflect the transient heat transfer characteristics of the

geothermal energy pile, but may also have an important impact on the in-situ thermal axial

stress within the energy pile (Murphy and McCartney, 2015). The objective of this study

is to employ numerical modeling techniques to better understand the role of construction

specifications on the thermal and thermo-mechanical performance of energy piles, as well

as on their cross-sectional temperature distributions. Concrete cover, shank distance, and

pile spacing contribute to both the amount of heat transferred from an energy pile into sur-

rounding soils, as well as the cross-sectional temperature/thermal axial stress distribution.

In the context of this study, concrete cover is defined as the minimum distance between the

heat exchanger and the outer edge of the concrete pile and shank distance is defined as the

width of the downward U loop heat exchangers as shown in Fig. 2.1.
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In an attempt to provide insight into geothermal energy pile behavior, the present study

details the calibration, validation, and parameterization of a model followed by a discussion

of results and concluding remarks. COMSOL Multi-physics software and high-performance

computing (HPC) enabled the construction of the full-scale three-dimensional finite ele-

ment model. The model was calibrated with respect to an experimental field investigation

conducted at the United States Air Force Academy (USAFA) in Colorado Springs, CO

(Murphy et al., 2015). Accordingly, all geometries within the model reflect full-scale, in-

situ geometries of the experimental energy piles and surrounding soil strata. The full-scale

model coupled conductive heat transfer and non-isothermal pipe flow physics to estimate

temperatures at any time/location within the model. Calibration was performed by compar-

ing these model temperatures to field temperatures. Following calibration, the model was

parameterized to understand the roles of concrete cover, shank distance, and pile spacing

on heat transfer from energy piles into surrounding soils. The heat transfer performance of

the energy pile group was evaluated, and relationships between construction specifications

and performance were quantified. These relationships verified the model. The model was

also used to investigate the evolution of the cross-sectional temperature distribution within

the energy pile and examine the implications of strain gage location on in-situ thermal

axial stress estimation. Most importantly, this study exhibits the variation of energy pile

performance with respect to construction specifications and the evolution of cross-sectional

temperature distribution, which is key to the improvement of geothermal energy piles. This

study also demonstrates the strength and flexibility of the finite element based model and

the capabilities of COMSOL coupled with HPC.
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2.3 Background

Evaluating heat transfer between geothermal energy piles and surrounding soils remains

a key area of research numerically [Gao et al. (2008);Wood et al. (2009);Suryatriyastuti

et al. (2012);Park et al. (2013);Abdelaziz et al. (2014); Gashti et al. (2014);Wang et al.

(2014);Jalaluddin and Miyara (2014);Ozudogru et al. (2014)] and in the field [Laloui et al.

(2006); Hamada et al. (2007); Bourne-Webb et al. (2009);Loveridge and Powrie (2012);Ol-

gun et al. (2012);Murphy et al. (2015) ;McCartney et al. (2015); Abdelaziz et al. (2015)].

Field experiments performed by Hamada et al. (2007) and Gao et al. (2008) were designed

to evaluate the most efficient heat exchanger layout within energy piles. With respect to

thermo-mechanical processes, Bourne-Webb et al. (2009) used an experimental pile embed-

ded in London Clay to investigate energy pile behavior during cyclic heating. More recently,

Murphy et al. (2015) and Murphy and McCartney (2015) detailed the thermo-mechanical

response of in-situ energy piles in different soil profiles. The interest in energy pile behavior

has motivated the development of energy pile design guidelines.

A state of practice paper by Bourne-Webb et al. (2014) emphasized the current need for

advanced finite element models in addition to field studies to improve existing design guide-

lines for geothermal energy piles. Existing energy pile design guidelines are contained within

GSHPA (2012), however these guidelines focus on sizing and installation “best practices".

In an attempt to move towards energy pile design guidelines that incorporate the thermally

influenced pile-soil interface, Mimouni and Laloui (2014) conducted a combined numerical-

experimental study. The study demonstrated the dynamic loading, expansion/contraction,

and associated friction mobilization inherent to energy piles. Another key numerical study

relating to the design of energy piles was performed by Cecinato and Loveridge (2015). The

study investigated the influences of design parameters on energy pile efficiency using an
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analytically-validated numerical model and parametric statistical methods. These methods

enabled the quantified contribution of several key design parameters including pile length,

number of heat exchangers, and concrete cover. Cecinato and Loveridge (2015) expressed

the importance of increasing the number of heat exchanger tubes to maximize efficiency.

Different from the study of Cecinato and Loveridge (2015), this study incorporates full soil

and foundation material calibration with the investigation of the role of design parameters

on the cross-sectional temperature distribution for energy piles with W-shaped heat ex-

changer layouts.

Several other studies have focused on numerically and analytically modeling heat ex-

changers embedded within grout and concrete foundation piles. Abdelaziz et al. (2014)

used a multilayer finite line source model of an energy pile to address ground stratification

and thermally induced moisture migration. The study stressed the importance of incor-

porating multiple soil layers into any energy pile model. Ozudogru et al. (2014) validated

a three dimensional COMSOL model with a finite line source analytical model and con-

cluded that this methodology can successfully simulate the operation of heat exchangers

embedded within soil. Gashti et al. (2014) investigated thermal regimes within steel energy

piles using a three dimensional numerical analysis in COMSOL. The study yielded insight

into the performance of U-tube configurations (1 vs 2 U-tubes) and a range of flow rates,

however the main conclusion was that the thermal behavior within energy piles is inher-

ently complex and requires three dimensional analysis (i.e. the assumption of a constant

temperature along the length of an energy pile is insufficient to fully understand energy pile

behavior). Another numerical study conducted by Kaltreider et al. (2015) investigated the

design parameters of an energy foundation using a three dimensional numerical approach

coupled with an experimental validation. The study focused on a U-shaped heat exchanger

and concluded that flow rate, soil properties, and foundation depth contribute significantly
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to the heat flux from the floor slab to the building. Collectively, the aforementioned ex-

periments and numerical/analytical investigations demonstrate the existing interest in heat

exchanger layouts and the demand for a better understanding of the relationships between

construction specifications and energy pile behavior/performance.

Many of the past and current energy pile field studies investigated the development of

thermal axial strain and associated stresses within field piles using strain gages embedded

within the piles (e.g. Murphy et al. (2015)). Murphy and McCartney (2015) observed that

there may be issues in calculating the thermal axial stress in energy piles from strain gage

measurements due to nonhomogenous cross-sectional temperatures within the energy piles.

Specifically the strain within an energy pile is likely governed by the average cross-sectional

temperature; however, the gage temperature may be up to 4oC different than the average

cross-sectional temperature (Loveridge and Powrie, 2013; Murphy and McCartney, 2015).

Because the equation of the thermal axial stress requires knowledge of the change in average

temperature of the pile (Murphy et al., 2015), this observation implies that using the tem-

perature measured at a point to characterize the thermal axial stress may lead to errors in

the stress calculation. This source of error was identified by Murphy and McCartney (2015),

where the thermal axial strains during foundation heating were slightly greater than the free

expansion thermal axial strains calculated using the temperature at a point. This means

that the calculated thermal axial stress would be in tension, which does not make sense

physically. Accordingly, a better understanding of temperature distribution may improve

estimates of the changes in thermal axial stress in energy piles.
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2.4 Governing equations

The use of the commercial COMSOL Multi-physics finite element software package enabled

the three dimensional modeling of coupled interactions between heat exchangers embedded

within concrete energy piles and stratified soils. Non-isothermal pipe flow and basic conduc-

tive heat transfer physics interacted within these three distinct domains (heat exchangers,

concrete energy pile, soil). Several key parameters were accounted for to approximate the

differential equations presented below (Ghasemi-Fare and Basu, 2013). Thermal conductiv-

ity, k, specific heat capacity, Cp, and density, ρ, of the soils, concrete piles, and embedded

heat exchangers contributed to the rate and amount of heat transferred within the system.

Heat transfer within the concrete energy pile and the surrounding soils was computed using

the aforementioned material properties with the conservation of energy equation, assuming

no internal heat generation:

ρCp
∂T

∂t
= ∇ · (k∇T ), (2.1)

where ρ is density [kg/m3] and Cp is heat capacity at constant pressure [J/(kg ∗K)]. The

right-hand side of the equation is the net rate of heat conduction into the material; k is the

thermal conductivity [W/(mK)] and T is the temperature of the material [K].

Equivalent (ρCp)e and ke values were used with Eq. 2.1 to compute heat transfer through

porous media (Darcy porous medium):

(ρCp)e = θpρpCp + (1− θp)ρsoilCp, (2.2)

ke = θpρp + (1− θp)ksoil, (2.3)
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where (ρCp)e and ke are the overall heat capacity and thermal conductivity per unit vol-

ume. The density and thermal conductivity of the pore fluid (in this case air) represented

by ρp and kp. Thus, (1 − θp) is the ratio of the area occupied by the solids to the total

cross-sectional area of the soil.

In order to model the multi-physics problem presented by the energy piles, heat ex-

changer fluid flow must be incorporated (Gashti et al., 2014). The study presented here

used one-dimensional pipe elements to represent the heat exchangers. This simplified pipe

flow approximation was accomplished using the conservation of momentum and continuity

equations (Barnard et al., 1966):

ρ
∂u

∂t
= −∇tp · et −

1
2fd

ρ

dh
|u|u, (2.4)

∂Aρ

∂t
+ ∇t · (Aρuet) = 0, (2.5)

where p is the pressure in the heat exchanger [N/m2], et is the tangential unit vector along

the edge of the pipe, fd is the darcy friction factor, ρ is the density of the fluid [kg/m3], dh

is the hydraulic diameter of the pipe [m], and u is the velocity of the pipe flow [m/s], and

A is the cross-sectional area of the pipe [m2].

Heat transfer within the heat exchangers was computed using the conservation of energy

for incompressible fluids within a pipe:

ρACpuet ·∇tT = ∇t · (Ak∇tT ) + 1
2fd

ρ

dh
|u|u2 +Qwall, (2.6)

where T is the temperature of the entire pipe cross section [K].
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Finally, Qwall within Eq. 2.6 accounts for the heat exchange through the HDPE tube

with the concrete [W/m]:

Qwall = heff (Text − T ), (2.7)

heff = 2π
1

r0hint
+ 1

r1hext
+

ln( r1
r0

)
kHDP E

, (2.8)

where Text is the exterior temperature [K], r0 is the inner radius of the heat exchanger

tube [m], r1 is the outer radius of the tube wall [m], kHDP E is the thermal conductivity

of the HDPE heat exchanger tube, and hint and hext are the film heat transfer coefficients

determined by the Nusselt number of the flow (which depends on the Reynolds number,

Prandtl number, and fd ).

Parametric combinations were compared by quantifying heat rejected (heat transferred)

(W/m) (Eq. 2.9). This quantification of performance encourages a practical understanding

of the parameter-operation relationship.

Qrejected = cwρwqin
(Tinlet − Toutlet)

Lpile
, (2.9)

where cw is the specific heat capacity of the working fluid [J/(kg ∗K)], ρw is the density

of the working fluid [kg/m3], qin is the flow rate [m3/s], and Lpile is the length of the energy

pile [m].

2.5 Summary of test site

The calibration of the model was performed using temperature data collected by (Mur-

phy et al., 2015) from a group of energy piles installed beneath a 1-story building on the
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USAFA campus in Colorado Springs, CO. Specifically, the spatial and temporal variations

in foundation and subsurface temperatures were used to calibrate the heat transfer model

implemented in COMSOL and presented in this paper. Each cylindrical energy pile had a

diameter of 0.61 m (meters), a length of 15.2 m, and contained a W-shaped heat exchanger

with one inlet and one outlet (Fig. 2.2b). The inlet and outlet were placed 90o apart and

the heat exchangers were attached to the inside of the rebar cage - approximately 0.46 m in

diameter. These heat exchangers were 19 mm diameter HDPE tubes with 3 mm wall thick-

nesses. The installed energy piles included embedded instrumentation to infer the change

in temperature and thermal axial strain at several depths. Further, the soil surrounding the

energy piles included an array of thermistors at different depths and radial locations. These

thermistors had a precision of 0.1oC and were used to infer the heat transfer away from the

energy piles. A layout of the energy pile group supporting the 1-story building, as well as

the surrounding array of observational equipment is shown in Fig. 2.3b. The network of

strain and temperature monitors collected data at five-minute intervals during a Thermal

Response Test (TRT) carried out during the summer of 2013. Murphy et al. (2015) used

these observations experimentally to characterize thermo-mechanical response within the

energy piles. The current study used the field-collected data to construct, calibrate, and

validate a numerical model. Following calibration/validation, the model was used to gain

insight into energy pile performance with respect to construction specifications (concrete

cover, shank distance, pile spacing).

2.6 Model details

COMSOL model geometry (Fig. 2.2a) matches the experimental group of piles shown in

Fig. 2.3 and described in Sec. 2.5. The soil block surrounding the piles measured 40 m x 21

m x 22.5 mm and ensured 15 m between the pile and any subsurface boundary conditions,
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thus avoiding unnecessary boundary condition interaction.

The model geometry was constructed within COMSOL software. COMSOL encourages

parameterization by allowing the user to build geometry based on variables (e.g. concrete

cover, shank distance, pile diameter, pile length, etc.). In this way, multiple simulations

can be run for a specific variable.

2.7 Material Properties

Material properties were assigned to their respective domains to simulate reality as closely

as possible. Properties of the stratified soil block, concrete piles, HDPE heat exchanger

tubes, glycol-water working fluid, and atmospheric air are detailed in Table 2.1. Material

densities reported by Murphy et al. (2015) were assigned to respective materials within the

model, while remaining properties required for the heat transfer model were adjusted during

calibration, as detailed in Section 2.10. These properties included thermal conductivity,

specific heat capacity, and porosity.

2.8 Boundary conditions

All boundary conditions were imposed on the model using data collected from the field

experiment detailed by Murphy et al. (2015). These observation based boundary conditions

were applied as variable interpolation functions.

Atmospheric temperature observations (Fig. 2.4) were applied to the top surface of the

model (representing the ground surface) with a transient Dirichlet temperature boundary

condition. A thin layer of insulating air (50 mm) was used as a buffer between the temper-

ature boundary condition and the soil/concrete slab. This buffer more accurately reflected
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reality and avoided error resulting from direct application of atmospheric temperature to

soil surface.

Subsurface temperature gradient measurements were applied to the boundaries of the

soil block with a variable (with depth) Dirichlet temperature boundary condition. Two

additional Dirichlet boundary conditions were applied to the inlet of the heat exchanger

tubes: transient temperature and flow. Inlet temperatures collected from the field (Fig.

2.5) were directly applied to the boundary condition within the model. The flow conditions

within the heat exchangers were variable with time, operating at 106 ml/s for the first 500

hours, followed by 1,200 hours of 0 ml/s.

Finally, an adiabatic symmetric boundary condition was used to model only two of the

four piles active during the TRT (Fig. 2.2b). The adiabatic boundary condition decreased

the computational cost and resulted in a higher density mesh.

2.9 Convergence study

Careful attention was paid to building the equilateral triangular finite-element mesh for the

numerical USAFA energy pile model. The distribution of elements was optimized using a

convergence study that ensured a sufficient level of accuracy while minimizing computational

time and resources. The global domain encompassing the 19,000 m3 stratified soil block,

two 15.2 m long x 0.61 m diameter concrete energy piles, a 50 mm thick concrete slab, and

a 50 mm-thick layer of air was partitioned into four respective subdomains. A convergence

study was first performed on the concrete pile subdomain. Maximum pile temperature was

selected as the characteristic output parameter. It was clear that these piles required a high

density of elements to closely approximate temperature distribution. Minimum element
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size, growth rate, and resolution were manipulated until the output parameter reached

∆Tmax < 0.1oC (corresponding to a 0.33% change in oC) between mesh refinement steps.

Following the conclusion of the concrete pile mesh refinement, the soil block mesh was

studied. Again, maximum soil block temperature was used as the characteristic output

parameter. Element growth rate and minimum element size were manipulated until the

output parameter reached ∆Tmax < 0.1oC. Lastly, the air and concrete slab domains were

not considered during the mesh refinement study, because the purpose of these domains was

strictly for insulation. Therefore, these meshes were reduced to the minimum number of

elements necessary to achieve the observed insulating characteristics during the calibration

phase. The final average equilateral element quality for the global domain was 0.81 for ≈

600, 000 elements, which ensured that the elements were distributed in a way that captured

the heat transfer in the most efficient manner possible without sacrificing solution accuracy.

The refined mesh is shown in Fig. 2.6.

2.10 Calibration and validation

The preliminary calibration of the model was detailed in Caulk et al. (2014). The final

calibration presented here yields a model with improved accuracy compared to the prelimi-

nary calibration due primarily to the improved mesh (described in Section 2.9) and further

discretization of soil porosities. Prior to full calibration, model heat exchanger outlet fluid

temperatures were compared to field outlet temperatures. These values matched very well,

leading to a full calibration (Fig. 2.5). Temperature field data stamped with time and

location (x,y,z) were collected at five minute intervals along the length of the in-situ en-

ergy piles and nearby boreholes for a duration of 1,700 hours (71 days) (exact locations are

shown in Fig. 2.3). First, for 500 hrs of active energy pile heat rejection, followed by 1,200

hrs of cooling observation. Calibration was performed using in-situ temperatures during

active heat rejection (time=214 and 500 hours). Validation was performed using the in-situ
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temperatures following cooling (time=1,700 hours).

Field data along the length of Foundation 4, Borehole 4 (BH4), and Borehole 6 (BH6)

were compared to temperature data output by the COMSOL model as shown in Fig. 2.7.

BH4 & BH6 were selected due to diversity of distance from Foundation 4 and exposure/non-

exposure to atmospheric conditions. BH4 represents several depths of observation beneath

the concrete slab close to Foundation 4 (1.22m), while BH6 represents several depths of

observation exposed to atmospheric conditions and further from Foundation 4 (2.44m).

The comparison of field data to model output at the aforementioned locations during

active heat rejection dictated the calibration of thermal conductivities, heat capacities, and

porosities of individual soil layers. These values were adjusted to minimize the differences

between the model temperature output and the field temperature observations. Soil and

rock densities were not altered from those reported by Murphy et al. (2015). Model output

compared to field measurements at the end of cooling were then used for model validation.

Final calibrated properties agree with values published in Murphy et al. (2015) (see Table

2.1) and generally accepted heat capacity (Eppelbaum et al., 2014) and porosity values for

sandy soil and sandstone rock.

The final calibrated and validated model results are shown in Fig. 2.7 and Fig. 2.8. The

calibrated model matched the experimental data well; the RMSE for Foundation 4, BH4,

and BH6 were 0.97, 0.67, and 0.82oC, respectively. Model output error was calculated

between the model predicted and measured temperatures as follows (see Tables 2.2, 2.3,

and 2.4):

error = abs(((measured− predicted)/measured))X100% (2.10)
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Greater error was observed at the shallow depths of 0.6-1.8 m and the long duration of

1700 hours. These higher errors at shallow depths may be a result of surface phenomena that

was not accounted for within this model (e.g. rain, wind, solar radiation). In comparison,

BH4 remained protected by a concrete slab throughout the duration of the experiment and

exhibited higher accuracy temperature predictions after 500 hrs at the surface compared to

BH6, which was exposed to the atmosphere for the duration of the TRT. Error associated

with the validated long duration of 1,700 hours can be attributed to model propagated error.

2.11 Results and discussion

2.11.1 Effects of concrete cover and shank distance

Concrete cover and shank distance are both construction specifications that affect the per-

formance of an energy pile (Caulk and Ghazanfari, 2015). Concrete cover is defined as the

minimum distance between the heat exchanger tube and the outer edge of the concrete pile

(Fig. 2.1). This construction/design specification is generally controlled by the necessity

to protect reinforcing steel, provide thermal insulation, and maintain stresses. Energy pile

design should consider concrete cover as an important piece of the design since heat ex-

changers are fixed to the inside of the reinforcing steel cage.

Similar to concrete cover, shank distance is a construction specification that is easily

modified. Shank distance describes the width of the downwards U of a heat exchanger

as shown in Figures 2.1 and 2.9. These simple specifications can impact the performance

of an energy pile. Therefore, this study used a calibrated numerical model of a group of

energy piles to investigate the impact of concrete cover and shank distance on energy pile

performance.
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Table 2.1: Calibrated material properties of COMSOL model

Property
Material Thermal

Conductivity
[W/(m ∗K)]

Specific Heat
Capacity
[J/(kg ∗K)]

Density
[kg/m3]

Porosity

Sandy Fill (0-1 m) 1.1 860 1875 0.2
Dense Sand (1-2 m) 0.75 935 1957 0.15
Sandstone (2-12.5 m) 1.7 900 2200 0.1
Dense Sandstone 1.8 910 2300 0.05(12.5-22.5 m)
Concrete 1.4 960 2400 -
Glycol/water 0.58 3267 1.008 -
Air 0.023 1 1.2 -
HDPE 0.48 - - -

Table 2.2: Foundation 4 model error with respect to field measurements for calibration and validation
(three time periods and eight depths)

%Error Depth (m) Average
Foundation 4 0.8 2.6 5.9 7.6 9.1 10.9 12.9 14.6

Time 214 (calib.) 3.8 0.33 3.75 4.57 0.30 0.95 0.87 3.04 2.20
(hours) 500 (calib.) 0.85 1.52 1.19 1.98 2.28 1.12 1.43 1.20 1.45

1,700 (valid.) 20.62 8.58 1.89 3.02 3.58 4.81 4.65 3.46 6.32
Average 8.43 3.48 2.28 3.19 2.06 2.30 2.32 2.57

Table 2.3: Borehole 4 model error with respect to field measurements for calibration and validation
(three time periods and six depths)

%Error Depth (m) Average
BH 4 0.6 1.8 3.7 7.3 9.8 14.6

Time 214 (calib.) 3.15 2.97 1.81 2.83 0.02 7.15 2.99
(hours) 500 (calib.) 0.79 1.12 4.27 0.07 4.36 3.33 2.33

1,700 (valid.) 6.97 8.48 6.67 1.52 3.52 3.14 5.05
Average 3.64 4.19 4.25 1.47 2.63 4.54

Table 2.4: Borehole 6 model output error with respect to field measurements for calibration and
validation (three time periods and six depths)

%Error Depth (m) Average
BH 6 0.6 1.8 3.7 7.3 9.8 14.6

Time 214 (calib.) 5.87 3.69 2.7 0.18 0.52 1.10 2.34
(hours) 500 (calib.) 12.13 9.94 1.51 0.53 0.46 3.59 4.70

1,700 (valid.) 7.75 10.17 6.02 1.22 3.56 3.50 5.37
Average 8.58 7.94 3.41 0.65 1.52 2.73
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It would be expected that these specifications are optimized upon even distribution

throughout the pile (i.e. the tubes are equidistant from their direct neighbors)(Fig. 2.9).

Even heat exchanger distribution yields an evenly heated pile cross-section which leads to

the maximum energy pile performance (Eq. 2.9). This study attempted to verify this

assumption numerically, and quantify the performance increase/decrease with respect to

concrete cover and shank distance.

The model was simulated for 500 hours and was constrained by the same boundary

conditions as described in Sec. 2.8 and Sec. 2.10. Simulations were performed for a range

of concrete covers (0.04-0.145 m) and shank distances (0.10-0.45 m). The final ∆T (500hrs)

was used with Eq. 2.9 to determine the quantity of heat rejected for each parameter com-

bination as shown in Fig. 2.10.

Concrete cover plays an important role in total heat rejected. For a shank distance of

0.35 m, an increase of concrete cover from 0.04 to 0.11 m yielded a 9.7 % decrease in heat

rejected. These results confirm findings in the literature (Cecinato and Loveridge, 2015;

Caulk and Ghazanfari, 2015); as concrete cover is increased, heat rejected is decreased.

Shank distance also contributes to final energy pile performance. For a concrete cover of

0.04 m, shank distance increased pile heat rejected by 8.3 % (0.1-0.325 m shank distance,

where 0.325 m corresponds to an even heat exchanger layout). However, beyond the shank

distance associated with even heat exchanger layout, the amount of heat rejected decreased

due to the redevelopment of an uneven heat exchanger layout.

These results verify the model by proving its sensitivity to small changes in cross-

sectional heat exchanger configuration. Evenly spaced heat exchangers yielded the best
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energy pile performance due to an evenly heated cross-section (Fig. 2.10), while even small

changes to heat exchanger layout reduced the energy pile performance due to an unevenly

heated cross-section. This model verification enabled the investigation of cross-sectional

temperature distribution and its role in the approximation of thermal axial stresses.

2.11.2 Cross-sectional temperature distribution

The cross-sectional temperature distribution of an energy pile plays a key role in thermal

axial stress estimation via strain/temperature gages. The approximation of in-situ thermal

axial stress relies on the temperature and strain at the location of the gage as follows:

σT = E(εT − αc∆T ), (2.11)

where σT is the thermal stress [MPa] as a function of Young’s modulus (E) [MPa], thermal

strain (εT ), coefficient of linear expansion of concrete (αc) [µε/oC], and temperature (∆T )

[oC]. Positive σT and εT values indicate compression as a result of heating expansion, which

means αc must be defined as a negative value to accommodate for positive ∆T values during

heating.

Thermal strains (εT ) reported by Murphy et al. (2015) were computed using the differ-

ence between the fluctuating thermal strain caused by the restrained thermal expansion or

contraction of the concrete (εi) and the initial strain due to the building load (ε0). Ther-

mal axial stresses were then calculated using Eq. 2.11, which relies on εT and ∆T at the

point of the gage. Murphy et al. (2015) extended the study by evaluating the thermal axial

strain as a function of ∆T at several depths, which enabled the estimation of a mobilized

coefficient of thermal expansion, αmob [µε/oC] with depth. Since αmob is a function of ∆T

and depth, the study presented in this paper estimated theoretical thermal axial stresses
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using the following equation:

σT,theo = E((αconc,free − αmob)∆T ) (2.12)

where σT,theo is the theoretically determined thermal axial stress [MPa] and αfree is the

coefficient of free expansion [µε/oC].

Since the cross-sectional temperature distribution can vary by up to 4oC (Loveridge and

Powrie, 2013), εT and ∆T at the location of the gage may contribute to an under/overes-

timated thermal stress. Therefore, this study used a calibrated model of a group of energy

piles to demonstrate the evolution of cross-sectional temperature and stress distribution.

For this analysis, the model was simulated for 500 hours and was constrained by the same

boundary conditions as described in Sec. 2.8 and Sec. 2.10. Probes were used to extract

cross-sectional temperatures within the model (Fig. 2.9). Time and location stamped tem-

peratures were then post-processed to compute theoretical cross-sectional thermal stresses

(Eq. 2.12).

Fig. 2.11 shows the evolution of cross-sectional temperature/thermal axial stress distri-

bution with time for an even heat exchanger layout (Fig. 2.9a) at 7.6m depth. At 10 hours,

the distribution was relatively even, but by 250 hours the core of the pile stabilized to 4oC

above the strain gage. The corresponding thermal axial stress difference between the core

and the strain gage stabilized to 0.88 MPa after 250 hours. This difference corresponds to

a thermal axial stress increase of 20% between the strain gage and the core for the duration

of the TRT.

The temperature distribution with respect to the primary and secondary cross-sections

(Fig. 2.9a) varied depending on the shank distance and concrete cover. As expected, the
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evenly distributed heat exchangers (Fig. 2.9a) yielded the most evenly distributed temper-

ature/thermal axial stress; cross-sectional temperatures and stresses varied by ≈ 0.3oC and

0.06 MPa (Fig. 2.11) around the perimeter, respectively. Conversely, the extreme shank

distances of 0.1 m and 0.45 m (Fig. 2.9b&c) yielded the least evenly distributed temper-

ature/thermal stress; cross-sectional temperatures and stresses varied by ≈ 8oC and 1.71

MPa around the perimeter (Fig. 2.12a and 2.12b). Furthermore, these extreme combina-

tions also exhibited thermal axial stress differences of ≈ 1.15 MPa between the strain gage

and the core.

These results also shed light on energy pile performance. The energy pile performance

corresponding to the parameter combinations used to build Figures 2.11, 2.12a, and 2.12b

are shown in Fig. 2.10. The uneven temperature distributions of Fig. 2.12a & 2.12b

correspond to a decrease of heat rejected by ≈ 8%. Conclusively, the evenly spaced heat

exchanger layout corresponds to higher energy pile performance.

2.11.3 Effect of pile spacing

Pile spacing may be dictated by structural design, geotechnical investigations, or founda-

tion design. Therefore, this design specification may not be as simple to manipulate as

concrete cover or shank distance. However, this study used the calibrated/validated model

to quantify the relationship between pile spacing and energy pile performance. Results from

this exercise were used to support findings in the literature and further verify the model.

The model was simulated for 500 hours and was constrained by the same boundary

conditions as described in Sec. 2.8 and Sec. 2.10. Simulations were performed for a range

of pile spacings (0.5-16 m). For each value of pile spacing, the soil block was adjusted to

maintain the same distance between the pile and the boundary conditions. This boundary
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adjustment isolated the pile spacing as the only parameter that contributed to changes of

heat rejected. The final ∆T (500hrs) was used with Eq. 2.9 to determine the performance

of each pile spacing.

Fig. 2.13 exhibits the performance of the energy piles with respect to pile spacing. As

expected, the heat rejected increases with increased pile spacing. An increase of 4 m (1-5

m) increased heat rejected by 21.7%. As the pile spacing increases, the thermal gradient

between the pile and surrounding soils remains greater for a longer period of time, resulting

in more heat rejected. Conversely, the thermal gradient decreases as the piles approach one

another. This decreased thermal gradient is due to the heated soil nearby the neighboring

pile resulting in a lower thermal gradient, lower heat rejected, and lower pile performance.

These results further verify the model and support findings from the literature. Morino

and Oka (1994) used a validated numerical model to investigate the temperature distri-

bution surrounding a steel pile. The study concluded that the soil temperature remained

undisturbed 3 m from the energy pile. Fig. 2.13 shows that performance plateaus for two

piles spaced ≈6 m, supporting the conclusions drawn by Morino and Oka (1994).

2.12 Conclusions

The calibration, validation, and parameterization of a full-scale geothermal energy pile

model was performed using advanced finite element analysis software and HPC. Final re-

sults from the parametric study verified the model and provided insight into the relationship

between model parameters and energy pile performance. The validated model was also used

to analyze the evolution of the cross-sectional temperature/thermal stress.

33



2.12. CONCLUSIONS

Full calibration of the three-dimensional model required detailed boundary conditions,

discretized soil layers, and extensive field data. All boundary conditions were variable with

time or space, and were imported directly from the field data (atmospheric temperatures,

subsurface temperature gradients, inlet temperatures, etc.) Several layers of soil were used

to calibrate the model output to the field data. Each soil layer was identified by sev-

eral unique material properties, namely, heat capacity, thermal conductivity, and porosity.

These properties were carefully calibrated using time series temperature data at nine depths

within the concrete energy pile and six depths within the surrounding soils.

The amount of heat rejected from an energy pile into surrounding soils with respect

to geometrical parameters was quantified by model parameterization. Energy pile perfor-

mance was evaluated as a function of concrete cover, shank distance, and pile spacing.

This parametric sweep verified the original assumption that the optimal heat exchanger

configuration (combination of concrete cover and shank distance) is the configuration that

maintains equal distances between heat exchanger pipes (in cross-section view). Addition-

ally, this parametric sweep quantified the loss of performance as pipes become less evenly

distributed. A change of heat exchanger configuration can alter performance by up to 9%.

Furthermore, the parametric sweep verified the sensitivity of the model to cross-sectional

temperature distributions.

Upon validation of the model, the evolution of the cross-sectional temperature/thermal

axial stress distribution during a heating cycle was investigated. The result of this inves-

tigation demonstrated the under/over estimation of thermal axial stress reported by field

experiments. In particular, the USAFA experiment used to calibrate the model was reliant

on embedded strain gages to compute thermal stress. These strain gages were attached to

the reinforcing cage at the perimeter of each pile. This study showed that the thermal stress
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computed at the perimeter of the pile versus the core may vary by up to 1.71 MPa. Further-

more, the heat exchanger layout has a significant impact on temperature/stress distribution.

For certain combinations of concrete cover and shank distance, the stress varied by up to

1.15 MPa at different locations around the perimeter of the pile. These results draw sev-

eral conclusions about the approximation of temperature/thermal axial stress distribution

within piles:

1. Cross-sectional thermal axial stress within energy piles is not constant. During heat-

ing, the thermal axial stress may be as much as 20% greater at the core of the pile

than the reinforcing cage. This should be considered for stress analyses on in-situ

energy piles.

2. Evenly distributed heat exchangers distribute temperature and thermal axial stress

evenly around the perimeter of the pile, while uneven heat exchanger layouts exhibit

extreme temperature/thermal axial stress variance across the core and around the

perimeter of the pile.

3. The performance of an energy pile depends strongly on its cross sectional temperature

distribution. This study demonstrated that even heat exchanger layouts correspond

to even cross-sectional temperature distributions, which correspond to higher energy

pile performance.
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Chapter 3

Experimental investigation of fracture

aperture evolution under coupled thermo-

hydro-mechanical-chemical processes en-

countered in EGS

3.1 Introduction

3.1.1 Literature Review

The success and sustainability of an EGS depends strongly on the permeability of its fracture

network. If the permeability decreases, so does the flow rate and the associated electricity

generation. Several processes affect the permeability of the system, including thermal, hy-

drological, mechanical and chemical processes (MIT Report, 2006). These processes interact

with one another temporally and contribute to the evolution of permeability within an EGS

reservoir during normal operation. Several studies have shown that heat extraction from

rock results in thermal contraction (Koh et al., 2011; Ghassemi et al., 2008). This thermal

contraction increases aperture width/permeability on the long term and may encourage the
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development of internal stresses (Ghassemi et al., 2005). On the other hand, poroelastic

effects resulting from fluid injection typically lead to a temporarily increased fracture aper-

ture followed by leak off and the aperture reduction on the long term (Xiong et al., 2013).

Numerical simulations that couple thermoporoelastic effects show that thermoelastic effects

dominate poroelastic effects over the course of a reservoir’s lifespan (Ghassemi et al., 2008;

Ghassemi and Zhou, 2011). Thermo-hydro-mechanical processes play important roles in

the permeability evolution within an EGS. However, not many studies have investigated

the evolution of permeability within an EGS with respect to rock-water chemical interac-

tions in combination with thermo-hydro-mechanical processes within an EGS.

Chemical alterations within a fractured reservoir result in alterations to rock matrix

permeability and are strongly coupled to thermal and pressure changes within the system,

in other words, mineral precipitation/dissolution may occur as a result of chemical/ther-

mal/pressure imbalances (Ghassemi, 2012). Numerical studies have shown that when the

temperature and silica content of a rock are higher than the working fluid, dissolution

will increase fracture aperture near the injection well and precipitation decreases fracture

aperture at the production well (Xu et al., 2001). Another numerical study performed by

Ghassemi and Suresh Kumar (2007) showed that the diffusion of silica into and out of a

fracture network decreases the net mass of silica retained within an individual fracture.

The study indicates less aperture change by dissolution/precipitation. An improved under-

standing of the coupled thermo-hydro-mechanical-chemical effects on fracture permeability

will help estimate the response of reservoirs to long-term operation and ultimately increase

reservoir efficiency and sustainability.

The effects of coupled processes on fracture permeability in EGS reservoirs have been

separately investigated to a limited extent (Kohl et al., 1995; Ghassemi and Zhang, 2004,
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2006; Ghassemi et al., 2008; Ghassemi and Zhou, 2011; Xiong et al., 2013; Yasuhara and

Elsworth, 2006) through numerical, analytical, and semi-analytical studies. Very limited

experimental research has, however, been performed to investigate the effects of these pro-

cesses on fracture permeability in EGS reservoirs. Furthermore, these experimental studies

investigated the effect of individual processes rather than coupled processes on fracture

permeability (Brace, 1980; Kranz et al., 1979; Barnabe, 1986; Hakami and Larsson, 1996;

Oda et al., 2002). Other studies which couple thermo-hydro-mechanical-chemical processes,

do so on specimens that do not represent the rock type of EGS (Polak et al., 2004; Sin-

gurindy and Berkowitz, 2005). Many studies have focused on the permeability of intact

and fractured granite at high temperatures and pressures. Brace (1980) used pulse decay

permeametry to measure permeability as a function of effective pressure. They concluded

that Darcy’s law holds for a range of effective pressures, and that rocks subject to high pres-

sures are nearly impermeable. Kranz et al. (1979) investigated the permeability of whole

and jointed Barre Granite using confining pressures up to 200 MPa. They concluded that

cycled pore pressures resulted in hysteresis, but this hysteresis diminished at higher confin-

ing pressures. Barnabe (1986) also investigated permeability hysteresis for Barre Granite

and developed a simple model based on frictional sliding inside the rock. These experi-

ments were performed at pressures greater than those seen in EGS, and temperatures much

lower than EGS. Morrow et al. (2001) investigated permeability reduction in granite under

hydrothermal conditions. These experiments included the flow of deionized water through

crushed/intact granite specimens at EGS temperatures and pressures. They used an SEM

to determine that the surfaces of the fractured specimens showed evidence of dissolution.

One important observation was the lack of precipitated species following the migration

from the heated specimen to the room temperature reservoir. Another geochemistry based

granite flow-through experiment was performed by Savage et al. (1992). Although these

experiments were constrained by lower temperatures (60-100 oC), they employed novel fluid
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compositions (stream water and synthetic analogues). The study concluded rock dissolution

is a heterogenous process; the effluent gained certain minerals and lost others depending

on their reactivity. Another important conclusion was that the most reactive minerals were

calcite, feldspar, biotite and quartz. There is an urgent need to study this coupled effect,

because the potential for EGS to contribute a significant amount of baseload power to the

grid remains untapped until the uncertainty of the resource sustainability is decreased. The

research presented here employs an original experimental approach to improve the limited

understanding of coupled processes in EGS reservoirs.

3.1.2 Objective

The objective of this research was to develop an experimental methodology that can ana-

lyze fracture aperture evolution with respect to coupled thermo-hydro-mechanical-chemical

processes. The motivation for the development of this type of experimental methodology

stems from the lack of published literature regarding fracture aperture evolution at EGS

conditions. As discussed in Sec. 3.1.1, there exists a pressing need for the understanding of

granite-water interactions on fracture permeability at EGS conditions. Specifically, there

remains a gap in the literature addressing the dissolution of minerals within EGS. Fracture

surface asperities initially prop the fracture open (Fig. 3.1), but upon introduction to deion-

ized water, the asperities dissolve and the fracture aperture closes, resulting in decreased

permeability. The methods developed to support this hypothesis are described in Sec. 3.4.

However, the preliminary work required to study fracture aperture evolution within granite

EGS involved intensive specimen characterization, and is therefore covered first in Sec. 3.2.
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Figure 3.1: Diagram of rock fracture measurements
Source: GeoExPro Magazine

3.2 Block selection and geological history

In order to experimentally study the evolution of fracture apertures within granite based

EGS, the specimen must be carefully selected. The ideal specimen would be extracted

from a granite reservoir several kilometers beneath the Earth’s surface. However, the cost

of extracting these rocks is enormous. For this reason, this study investigated alternative

specimens. A local opportunity presented itself at the Rock of Ages Barre Granite Quarry

located in Barre, Vermont, USA. The quarry originated as an intrusive deposit (pluton)

during the Devonian age (≈ 420Mya). This granodiorite pluton was a massive magma

chamber that cooled slowly several kilometers beneath the Earth’s surface. Therefore, for

all intents and purposes of this study, granite specimens extracted from the Barre Granite

quarry are representative of a granite EGS similar to Soultz-sous-Forets in France. Fur-

thermore, the quarry by nature exposes unweathered rock from deep within the formation.

Thus, the specimens extracted from the quarry are also unweathered like the granite within

an EGS.
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3.3 Block Characterization

The block of Barre Granite used for specimen creation was first characterized to identify

proper coring and fracturing orientations. Granite generally exhibits isotropy with respect

to material properties. However, there are three distinct planes that are used to characterize

granite: the rift, the grain, and the hardway (Fitz Osbourne, 1935). The rift is the plane

along which granite will fracture with greatest ease and is typically controlled by foliation

within the rock. Additionally, the rift is characterized by higher permeability than the grain

or the hardway. The grain is oriented at a right angle to the rift and is generally visible

to the naked eye. Finally, the hardway is oriented at right angles to both the rift and the

grain. This plan breaks with greater difficulty and can be identified by a much coarser

mineral distribution.

Nasseri et al. (2010) studied the orientation of micro cracks in a Barre Granite specimen

using ultrasonic velocities. The study found a strong concentration of micro cracks along

the plane of greatest weakness (rift). Since in-situ granite should fracture perpendicular

to the plane of greatest weakness, the study presented here attempted to identify the rift

plane before coring the block and fracturing the experimental specimens. This was further

effort to approximate in-situ EGS conditions.

3.3.1 Microscope Analysis

Upon visual inspection, the block exhibited obvious isotropy (Fig. 3.2), that is, the granite

crystallized deep within the pluton where it may have experienced low flow or no flow at

all resulting in limited foliation. However, a microscope based foliation investigation of the

Barre granite block was performed in order to identify any possible rift, grain, and hardway
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planes. Foliation is an indicator of the alignment of minerals during cooling/crystallization,

and is associated with the plane of greatest weakness due to weak discontinuities (Akesson

et al., 2003). The identification of these planes helps to determine the proper specimen core

orientation. Since the final experiment depends on water flow through the rock, the proper

rock core orientation aligns the high permeability axis with the core axis. Additionally, the

proper rock core orientation would encourage artificial fracture along the axis of the core.

As supported in Sec 3.3, the rift would be most conducive to flow and fracture with greatest

ease.

Figure 3.2: Hand specimens and thin sections for each axis of the granite block

The foliation investigation began with the extraction of three 30-micrometer thin sec-

tions (one orthogonal to each axis of the block (Fig. 3.2)). These thin sections were analyzed

under a petrographic microscope for obvious signs of foliation (minerals exhibiting a pre-

dominant angle). Generally, micas were aligned at angles less than 45o for the Y and Z axes

Fig. 3.4a. Additionally, secondary weathering was observed within biotite angled 45o from

the horizontal (Fig. 3.4b). Although these two observations indicate possible foliation, a

definite foliation/rift could not be determined. Therefore, a visual analysis of interstitial

mica intrusions and an image analysis of the mica/biotite minerals were performed on the

thin sections.
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Upon visual inspection, interstitial mica inclusions were observed within the feldspar

minerals. These may indicate the direction of original foliation. An example of one of these

is shown in Fig. 3.4c. It was quickly observed that these exhibited a common alignment

within the Y and Z planes. Angle observations were collected and averaged, resulting in 5o

in the Y plane and 22o in the Z plane. A lack of interstitial mica was observed in the X plane.

3.3.2 Image Analysis

The image analysis involved scanning the thin sections (Fig. 3.2) and converting them to

8-bit images. A threshold was applied to isolate the mica/biotite minerals (Fig. 3.5 and

a particle analysis/distribution was performed. The ImageJ software determined particle

orientation and output statistics. For this analysis, particle orientations were binned into 20

deg tolerance bins and the mode was considered the most indicative of foliation orientation.

The results showed a mode of 11 deg for the Y and Z axes, and a 0 deg orientation for the X

axis. These results generally agree with the conclusions drawn in the analysis of interstitial

mica. Generally, the deeper specimens are taken from rock formations the less foliation is

observed (Fitz Osbourne, 1935). This block was extracted from the Barre granite quarry

and so it is not unreasonable to assume limited foliation.

3.3.3 Foliation conclusion

A final plane of foliation was determined following the microscope and image analysis. The

rift was oriented with the micas in the Y and Z axes. Following this result, the block was

cored accordingly (Fig. 3.3) and the specimens were fractured lengthwise. The ease of

creation of the lengthwise fracture (Fig. 3.6) further validated the decision to orient the

cores as described.
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Figure 3.3: Orientation of the core with respect to the quarried block

Table 3.1: ImageJ Analysis Results

Thin
Section

Mica Count Total Area
(pixels)

Average Size
(pixels)

% Area Mean Mode

X 492 36772 74.74 4.32 4.12 0 (56)
Y 667 74773 112.10 5.57 1.80 11 (99)
Z 555 40381 72.76 4.03 2.27 11 (93)

3.3.4 XRD Analysis

An X-ray Diffraction (XRD) analysis was performed to confirm the constituent minerals

within the granite rock. The results are shown in Table 3.2. The comparison of the XRD

analysis performed for this study and two previous studies shows general rock composition

agreement with slight discrepancies for quartz and albite (Nasseri et al., 2010; Thill et al.,

1973). These discrepancies can be attributed to differences in specimen origin and analysis

methods.

3.3.5 Density and Porosity

The density and porosity of the block were measured using traditional weight-volume rela-

tionships (Crawford, 2013). There are no ASTM standards available for determining bulk
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a) b)

c)

Figure 3.4: Microscope images of Y-axis thin section showing a) micas (4x magnification) b) biotite
(4x magnification) and c) interstitial mica (10x magnification)

density or porosity of a rock core specimen; therefore, special care was taken during the

estimation of these properties.

After cores were prepared according to Sec. 3.4.1, their weights were recorded. Following

weighting, the cores were placed in a drying oven at 150oF . Three weight measurements

were recorded per day per specimen until the weight change was equal to or less than the

precision of the scale (0.005 g) (≈ 72hours). Once the cores were fully dried, the length

and diameter of each specimen was measured using a digital caliper. These measurements

were repeated four times and average dry volume (Vdry) was calculated for each specimen.

In addition to dimensions, the weight measurements were repeated to determine an average
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Table 3.2: Barre granite mineral composition

Mineral Current study
(XRD) (%)

Thill, 1973 (Modal
Analysis) (%)

Nasseri, 2010
(SEM)

Quartz 53 31.9 31
Albite 26 36.5 33.5
Microcline 8.2 17.8 30.5
Biotite 5.2 8.0 5
Muscovite 7.5 5.8 N/A

dry mass (mdry) for each specimen. Dry bulk density was estimated using Eq. 3.1.

ρ = m

V
(3.1)

The saturated density and porosity were estimated using a vacuum saturation method.

The dry cores were submerged in deionized water and placed under vacuum. Weights were

measured once per day per specimen until the weight change was equal to or less than the

precision of the scale (0.005 g) (≈ 9days). Once the cores were fully saturated, the length

and diameter of each specimen was measured using a digital caliper. These measurements

were repeated four times and an average volume (Vsat) was calculated for each specimen.

In addition to dimensions, the weight measurements were repeated to determine an average

saturated mass (msat). Saturated bulk density was estimated using Eq. 3.1.

Porosity was estimated by determining the volume of water present in the saturated

specimens (msat −mdry = mwater). The volume of the water was then estimated using Eq.

3.1. This method assumes the estimated volume of water represents the volume of pores.

The advantages of this method are the simplistic process and non-specialized equipment.

The disadvantage is that it only estimates the connected porosity. For this study, this value

is sufficient.
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Representative dry densities, saturated densities, and porosities for this granite block

were calculated by averaging the values calculated for five specimens. Porosity was mea-

sured as 0.727 %, which matches reported porosity measurements for Barre Granite (0.51%)

(Mariner et al., 2011). Dry and saturated densities were measured as 2.63 and 2.64 g/cc,

which match generally accepted values for granite density.

3.4 Methodology

3.4.1 Specimen Preparation

Specimen diameter and length were both cored and cut to ≈38.5 mm. Following coring, the

specimen ends were lapped parallel within 0.001 inch. Finally, a modified Brazilian test was

used to fracture the specimens. The orientation of the fracture was selected using a mixture

of thin-section image processing and microscopic observation methods detailed in Sec. 3.3.

The resulting artificially fractured core is shown in Fig. 3.6. A negligible amount of rock

matrix was lost during the fracturing process resulting in a perfectly fractured cylindrical

core with parallel ends.

3.4.2 Experimental characteristics

The flow rate was carefully selected for these experiments. Preliminary steady-state exper-

iments were performed on intact granite specimens. These tests showed that the maximum

steady-state flow rate for the confining (30 MPa) and pore pressures (5 MPa) of interest was

0.000351 ml/min. Following these preliminary experiments, PHREEQC was used to model

quartz and feldspar dissolution within a granite rock matrix. Although this model required

broad assumptions for mineral grain size and surface area, it concluded that a low flow rate
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(0.00005 ml/min) was necessary to achieve dissolution for the duration and temperature of

the full-length experiments. A similar study performed by Savage et al. (1992) also sup-

ported the flow rate selected for this experiment (0.001 ml/min). Finally, the duration of

the flow-through experiments was constrained by the volume of the pore pressure intensifier

within the Autolab 1500. The volume of this intensifier is ≈20 ml, therefore, the longest

uninterrupted experiment possible at 0.000351 ml/min was 40 days.

The duration of these experiments was carefully selected, but constrained by time lim-

itations. Many past studies on the dissolution of quartz and feldspar ran experiments for

more than 50 days (Morrow et al., 2001) up to 150 days (Ganor et al., 2005). For this study,

the preliminary experiments were performed for 5 and 10 days, followed by a full-length

experiment of 21 days.

The temperature of this experiment was constrained by limitations of the Autolab 1500.

Ideally, these experiments should be performed at EGS temperatures (150-250oC). The

maximum temperature allowed for this equipment was 120oC.

The confining pressures and pore pressures were carefully selected for these experiments.

In a continued attempt to mimic EGS conditions, the confining pressures and pore pressures

both match conditions present at roughly 3 km depth. Savage et al. (1992) used similar

confining and pore pressures for their experiments on the EGS system in Rosmanowes,

Cornwall, U.K. which lies at ≈ 2.5 km.
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3.4.3 Experimental procedure

The experimental setup relied on consistent care to avoid contamination within the sam-

ple and the triaxial equipment. Prior to experimental initiation, all plumbing, pressure

intensifiers, core holders, and reservoirs associated with the flow-through experiment were

thoroughly washed with alcohol and hot deionized water. This experimental care effectively

isolated the solvent used for the experiment (deionized water). Thus, any concentration of

minerals observed in the ICP-MS analysis following the experiment could be attributed to

mineral dissolution.

To initiate the experiment, the artificially fractured rock core was first saturated in

deionized water under vacuum for 9 days. Following saturation, the core was prepared us-

ing a Viton™ sleeve and steady state core holders. The saturated/prepped core was then

mounted into the hydrostatic vessel as shown in Fig. 3.7. 10 MPa of confining pressure was

applied to the mounted sample before vacuum saturating pore pressure tubes with deionized

water. This step ensured there was no air in the system i.e. the rock fracture and matrix

were fully saturated prior to the initiation of flow.

A steady-state flow-through column-like experiment was performed on the specimen

using the experimental setup shown in Fig. 3.8. The rock specimen was inserted into a

vessel within the Autolab 1500 (Fig. 3.7b) where it was subjected to ≈30 MPa confining

pressure and 5 MPa static internal pore pressure. Temperature of 120 oC was applied to

the entire vessel. After 24 hours of equilibration, the flow of deionized water was initiated

through the artificial fracture at a rate of ≈0.000351 ml/min. Detailed upstream and

downstream pore pressure observations were recorded, and a parallel plate approximation

(Polak et al., 2004) was used to estimate fracture aperture evolution (Eq. 3.2).
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Q = ∆P
12µLb

3W (3.2)

where, Q is flow rate [m3/s], ∆P is differential pressure [Pa], µ is dynamic viscosity of

the fluid [Pa∗s], L is the length of the core [m], W is the diameter of the specimen [m] and

b is the fracture aperture [m]. It is important to note that by maintaining constant fluid

flow rate, Q, and downstream pore pressure, the key proxy for fracture aperture change is

the upstream pore pressure.

3.5 Results

3.5.1 Short Experiments Experiments

Short experiments were performed first to test and improve the proposed methodology. Re-

sulting fracture aperture evolution for two injection flow rates is shown in Figures 3.9 and

3.10. As shown in Fig. 3.9, there is a clear trend of fracture aperture reduction with respect

to time. This can be attributed to the dissolution of asperities on the surface of the frac-

ture, resulting in fracture closing. However, it is clear that the fracture aperture is highly

dependent on pore pressures. The first injection flow rate (0.000351 ml/min) resulted in an

upstream pressure of ≈5.0 MPa. Fracture aperture during this step changed from 0.6 µm

to 0.5 µm. Upon increase of flow rate in the following step (0.00175 ml/min) the upstream

pore pressure increased to ≈5.2 MPa and fracture aperture closed from 0.75 µm to 0.6 µm.
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3.5.2 Full Length Experiment

3.5.3 Aperture evolution as a function of pore pressure

A full 20-day experiment was performed following the completion of the preliminary ex-

periment. This experiment was setup similar to the preliminary experiment; the Barre

Granite specimen was artificially fractured and the working fluid was deionized water. For

this experiment 30 MPa of confining pressure and 5 MPa of pore pressure were applied to

the specimen. The experimental results followed the same trend as the preliminary 214

hour experiment until hour 375; fracture aperture decreased steadily with the presumed

dissolution of fracture surface asperities (Fig. 3.11). However, a decrease of upstream pore

pressure was observed after hour 375. This may be explained by etching (dissolution paths)

on the fracture surface, resulting in more direct routes for water flow and a reduction in

upstream/downstream pressure differential. Polak et al. (2004) observed a similar switch in

permeability during a flow-through experiment on a limestone core (the study named them

“wormholes"). These postulations were further investigated by running ICP-MS tests on

the influent/effluent solutions and CT scanning the core.

The permeability of the specimen was evaluated using Darcy’s Law (Eq. 3.3). This

enabled the comparison of the experiment presented here with the closely related experi-

ments performed by (Morrow et al., 2001). Permeability as a function of time is displayed

in Fig. 3.12. The permeability decayed linearly with time from 2.1 mD (2.1x10−15m2) to

1.2 mD corresponding to a loss rate of 0.067 days−1 for the first 300 hours. These perme-

abilities compare closely to the ‘150-f’ results (fractured granite at effective pressure of 50

MPa and temperature150 oC) reported by Morrow et al. (2001) (Table 3.3). Morrow et al.

(2001) observed 1x10−18m2 at hour 300 and a permeability loss rate of 0.01 days−1. This

comparison encouraged the methodology used for the experiment presented here.
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Q

A
= k

µ
(dP/dx) (3.3)

where Q is the volumetric flow rate (m3/s), A is the cross-sectional area (m2), k is the

permeability (m2), µ is the dynamic viscosity of water and (dP/dx) is the pressure gradient

along the length of the specimen.

Table 3.3: Permeability comparison

Study Current study Morrow et al. 2010
Temperature oC 120 150
Fracture type Tensile Tensile
Confining Pressure (MPa) 30 150
Pore Pressure (MPa) 5 100
Effective Pressure (MPa) 25 50
Permeability @ hour 300 (m2) 1.2x10−15 7x10−18

Loss rate (days−1) 0.067 0.01

3.5.4 ICP-MS Analysis

The influent and effluent solutions were collected and analyzed for elemental concentrations

using ICP-MS (Table 3.4). ICP-MS results indicate that incongruent feldspar (Albite and

K-feldspar) dissolution is occurring. This conclusion is drawn from the increase in concen-

tration for Si, Na, Ca, and K in the effluent and a minimal amount of Al. This supports

the hypothesis that asperities propping the fracture open dissolve with time resulting in

fracture aperture reduction. Additionally, the dissolution of Albite and K-feldspar supports

the etching hypothesis.

The percent of rock dissolved was calculated using the dissolved mass of each element

(mmol). 8.11x10−5% of the rock dissolved in the form of Si, Ca, Mg, K, and Na. This

percentage corresponds to a volume of 0.036 mm3.
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Table 3.4: ICP-MS analysis results

Element Effluent
Conc.

LOD Influent Conc. LOD Increase Dissolved
mass

(ppm) (mmol)
Si 4.2 0.6 0.85 0.6 3.35 1.222e-3
Al 0.062 0.01 <0.4 0.4 N/A N/A
Ca 5.6 0.2 2.9 1 2.7 6.903e-4
Mg 0.4 0.2 <1 1 N/A N/A
K 3.1 0.2 <1 1 2.2 5.765e-4
Na 7 0.2 5.9 1 1.1 4.903e-4
Fe ND 0.2 <1 1 N/A N/A

3.5.5 Post experiment CT-Scan

The artificially fractured specimen was CT-scanned post-experiment as shown in Fig. 3.13.

Although scans were not taken pre-experiment due to equipment availability, qualitative

conclusions can be drawn using the post-experiment cross-sectional scans. Fig. 3.14 shows

the specimen cross-section at 1/4 and 2/4 along the length of the specimen (where 4/4

would represent the downstream face of the core). These cross-sections show that the frac-

ture faces no longer line up perfectly due to the loss of matter, which might be indicative

of etching dissolution.

Future experiments will employ image analysis techniques for the comparison of pre and

post experimental CT scans at several sections along the length of the core. This will enable

the quantification of matter lost to dissolution.

3.6 Conclusions

A study was performed to improve existing experimental methodology that investigates

the fracture aperture evolution within EGS. The modified experimental method is best de-
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scribed as a steady-state flow-through column-like experiment on a cylindrical artificially

fractured granite core rock. Preliminary experiments were used to develop and improve

the final methodology used for the full-length experiments. Pore-pressure measurements

recorded during the full-length experiment indicate a decreasing fracture aperture and per-

meability. In combination with ICP-MS results and CT scans, these results support the

hypothesis that granite rock fractures are propped open by surface asperities, which will

dissolve and reduce fracture aperture in the presence of deionized water. These findings

emphasize the importance of rock-water interactions on granite rock permeability at high

confining pressures and high temperatures.
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a)

b)

Figure 3.5: Sample images used during ImageJ analysis a) X axis mica distribution b) X axis particle
orientation
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Figure 3.6: Images of core and artificial fracture
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a)

b)

Figure 3.7: a)Prepared core/core holder assembly mounted to base plug of vessel b)Autolab 1500
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Figure 3.8: Schematic of the test cell (AutoLab 1500 vessel)

Figure 3.9: Upstream pore pressure and fracture aperture evolution during preliminary experiment
1 (flow rate = 0.000351 ml/min)
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Figure 3.10: Upstream pore pressure and fracture aperture evolution during preliminary experiment
2 (flow rate = 0.00175 ml/min)
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Figure 3.11: Upstream pore pressure and fracture aperture evolution during full length experiment
(flow rate = 0.000351 ml/min)

Figure 3.12: Permeability evolution during full length experiment (flow rate = 0.000351 ml/min)
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Figure 3.13: Oriented CT scans of specimen post-experiment
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a)

b)

Figure 3.14: Cross-section CT scan showing etching dissolution at a) 1/4 length b) 2/4 length (0/4
= upstream face, 4/4 = downstream face)
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Chapter 4

Conclusion

4.1 Thesis Summary

Geothermal energy represents a viable alternative to traditional fossil fuels. Shallow and

deep geothermal energies have the potential to revolutionize indoor climate control and

large scale electricity production, respectively. The key to both shallow and deep geother-

mal resource sustainability lies in increasing and maintaining performance. For shallow

geothermal applications, this involves deepening our understanding of the thermal inter-

action between energy piles and surrounding soils. For deep geothermal applications, this

involves deepening our understanding of rock-water interactions and permeability/fracture

aperture evolution. This thesis attempted to add to the body of knowledge in the areas of

shallow and deep geothermal energy.

The performance of energy piles with respect to construction specifications was investi-

gated in this research (Chapter 2). The investigation involved the construction, calibration,

and validation of a full-scale model. Construction and calibration of the model were both

performed using available data extracted from an experimental group of energy piles located

in Colorado Springs, CO. The intensive calibration resulted in a model that accurately ap-
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proximated temperatures to within 3.6% of the field data (Sec. 2.10). Following calibration,

the model was parameterized with respect to construction specifications (concrete cover,

shank distance, and pile spacing). A performance metric was used to compare combinations

of parameters (heat rejected - W/m). This allowed the study to quantify the performance

increase/decrease with respect to construction specifications. Ultimately these combina-

tions were optimized (Fig. 2.10). Results from the parameterization exercise validated the

model and enabled the inspection of energy pile cross-sectional temperature/thermal strain

distributions (Sec. 2.11.3). Cross-sectional thermal strain was demonstrated to vary across

the core and around the perimeter of the energy piles. Based on the results from this study,

it is clear that the performance on an energy pile depends strongly on the heat exchanger

layout. An even heat exchanger layout is associated with a more even temperature/thermal

strain distribution and a higher performance, while uneven heat exchanger layouts result in

lower performance and varied cross-sectional thermal strain distribution.

The evolution of granite fracture apertures at EGS conditions was investigated in this

research (Chapter 3). An experimental methodology addressed the combined hydro-thermo-

mechanical-chemical processes that exist within EGS. The developed methodology is best

described as a steady-state flow-through column-like experiment on an artificially fractured

granite rock (Sec. 3.4). After the methodology was tested, modified, and improved, a

full-length experiment was performed. Pore-pressure observations recorded during the full-

length experiment indicated a decreasing fracture aperture and permeability (Sec. 3.5.2).

In combination with ICP-MS results and CT scans, these results support the hypothesis:

fracture surface asperities prop the fracture open and dissolve in the presence of deionized

water resulting in decreased fracture aperture.
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4.2 Future work

This thesis introduced ways to investigate both shallow and deep geothermal energy sus-

tainability. Both studies presented here could be expanded upon in many different ways.

The calibrated model used for the parametric investigation of energy piles could be adapted

for several relevant studies. Similarly, the experimental methodology used for the investiga-

tion of fracture aperture analysis within EGS could be modified to study more sustainable

working fluids.

The calibrated model used for the parametric investigation of energy piles can be mod-

ified for two relevant studies. The study presented within this thesis showed the variable

temperature/strain distribution within an energy pile during a Thermal Response Test

(Chapter 2). Future studies should adapt this model to investigate the evolution of the

cross-sectional strain due to cyclic loadings (between heat rejection and heat extraction).

In order to perform these studies, the model boundary conditions would need to be mod-

ified. Namely, the variable inlet temperature would need to be adjusted to represent true

cyclic loading. These studies may yield additional insight for the estimation of thermal

stress and strain using field measured observations. Another relevant study should inves-

tigate long-term behavior of energy piles (50+ years). In order to accurately investigate

long-term energy pile behavior using the model presented in this thesis, not only would

the model boundary conditions need to be drastically modified, but the mesh and solver

would also require fine tuning. The variable temperature subsurface temperature boundary

condition is currently variable with depth, but for the proposed investigation it would need

to be variable with time as well. The inlet temperature would need to represent a true

energy pile. This means the inlet temperature would need to be a function of the atmo-

spheric temperature. In the case of a functional inlet temperature, the energy pile would
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only be activated when necessary. In order to model this behavior, flow rate would need to

be turned on and off periodically. Time-dependent modeling does not cater to this type of

periodic boundary condition (especially for fluid flow), and thus requires significant com-

putational time and resources. It may be prudent to investigate alternative ways to model

the long-term pile behavior at reduced computational cost. Perhaps adjusting a different

model parameter could achieve the same effect as adjusting fluid flow (e.g. heat exchanger

thermal conductivity may need to be adjusted from 0.2 - 0 W/(m∗k) to ‘turn the pile off’).

Or it may be necessary to build and calibrate a two dimensional model to the model used

for this thesis.

The experimental methodology used for the investigation of fracture aperture analysis

within EGS should first be further validated, and second it should be modified to study more

sustainable working fluids. The results discussed within this thesis provided insight into the

evolution of fracture aperture within Enhanced Geothermal Systems. Although the results

and analyses support the hypothesis, they are not conclusive due to questionable aperture

behavior at extended experimental times (300 hours+). Therefore, a replicate experiment

should be performed to determine whether this behavior is a result of the water-rock in-

teractions (specifically the development of etching on the fracture surface), and not due to

possible experimental error. Following a replicate, the results should support or contradict

the original experiment. At that point, a follow up investigation should be developed to

study the interactions of salts on the dissolution of quartz and feldspar minerals. This study

should stem from existing studies performed on the effect of salt presence on mineral disso-

lution rates and kinetics Dove (1999); Dove and Nix (1994); Gautier et al. (1994); Worley

(1994).
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