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ABSTRACT

Numerous studies have shown that respirable particles contribute to adverse
human health outcomes including discomfort in irritated airways, increased asthma
attacks, irregular heartbeat, non-fatal heart attacks, and even death. Particle emissions
from diesel vehicles are a major source of airborne particles in urban areas. In response to
energy security and global climate regulations, the use of biodiesel as an alternative fuel
for petrodiesel has significantly increased in recent years. Particle emissions from diesel
engines are highly dependent on fuel composition and, as such, the increased use of
biodiesel in diesel vehicles may potentially change the concentration, size, and
composition of particles in respirable air. One indicator used to evaluate the potential
health risk of these particles to humans is particle diameter (Dp). Ultrafine particles
(UFPs, Dy,<100nm) are of health concern because their increased mobility relative to
larger particles allows penetration into the alveolar region of the human lung where they
may subsequently pass directly into the cardiovascular system.

Current research in automotive emissions primarily focuses on particle emissions
measured on a total particle mass (PM) basis from heavy-duty diesel vehicles. The
nation’s light-duty diesel fleet is, however, increasing; and because the mass of a UFP is
much less than that of larger particles, the total PM metric is not sufficient for
characterization of UFP emissions. As such, this research focuses on light-duty diesel
engine transient UFP emissions, measured by particle number (PN), from petrodiesel,
biodiesel, and blends thereof. The research objectives were to determine: 1) the
difference in UFP emissions between petrodiesel and blends of waste vegetable oil-based
biodiesel (WVO), 2) the differences between UFP emissions from blends of WVO and
soybean oil-based biodiesel (SOY), and 3) the feasibility of using genetic programming
(GP) to select the primary engine operating parameters needed to predict UFP emissions
from different blends of biodiesel.

The results of this research are significant in that: 1) Total UFP number emission
rates (ERs) exhibited a non-monotonic increasing trend relative to biodiesel content of
the fuel for both WVO and SOY that is contrary to the majority of prior studies and
suggests that certain intermediate biodiesel bends may produce lower UFP emissions
than lower and higher blends, 2) The data collected corroborate reports in the literature
that fuel consumption of diesel engines equipped with pump-line-nozzle fuel injection
systems can increase with biodiesel content of the fuel without operational changes, 3)
WVO biodiesel blends reduced the overall mean diameter of the particle distribution
relative to petrodiesel more so than SOY biodiesel blends, and 4) Feature selection using
genetic programming (GP) suggests that the primary model inputs needed to predict total
UFP emissions are exhaust manifold temperature, intake manifold air temperature, mass
air flow, and the percentage of biodiesel in the fuel; These are different than inputs
typically used for emissions modeling such as engine speed, throttle position, and torque
suggesting that UFP emissions modeling could be improved by using other commonly
measured engine operating parameters.



ACKNOWLEDGEMENTS

This research would not have been possible without my advisor, Dr. Britt
Holmén and the help of Jim Dunshee, Karen Sentoff, John Kasumba, Dave Wheeler,
Daryl Deprey, Tom Davidson, John Nummy, and Brad Haire — all current or former
members of the Holmén Group. Additionally, | would like to thank my defense
committee, Dr. Robert Jenkins, Dr. Donna Rizzo, and Dr. Ruth Mickey for their

support through this endeavor.

Thanks also to Dr. Richard Parnas and Iman Noshadi from The University of

Connecticut for processing the biodiesel used for this research.

I’d also like to thank Earnie Cook, from Moeller Marine Products, who
supplied fuel system components necessary for testing multiple blends of biodiesel

to this project.

Funding for this research came from the U.S. Department of Transportation
through the University Transportation Centers Program at the University of Vermont

Transportation Research Center.

Finally, I’d like to thank my son, Tristan Feralio, who was three months old
when | started, for putting up with all the hardships associated with having a parent

getting their PhD.



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ..ottt bbbt i
LIST OF TABLES ... .ottt bbb viii
LIST OF FIGURES ..ottt sttt sne b ane s X
CHAPTER 1: INTRODUCTION ....cooiiiiiiitiiisiteeeieie ettt e e sneas 1
I Y/ o (Y= L1 o] PSP PP 1
1.2, BIOGIESEI ...t bbb 2
1.3. RESEAICN ODJECTIVES. .....couiiiiiiieiieie e 4
CHAPTER 2: VARYING EFFECT OF WASTE VEGETABLE OIL-BASED
BIODIESEL BLENDS ON TOTAL ULTRAFINE PARTICLE EMISSIONS
FROM A DIESEL ENGINE.......cccotiiiiiiiieie sttt e 5
N I N 03 1 ot OSSPSR RRSPR 5
2.2, INTFOTUCTION. ... .eceiiiieee ettt et e e e e nreeneeeneenseenneas 6
2.2.1. MOTIVALION. ...ttt ettt bbb e e ens 6
2.2.2. Particle Emissions - Background............cccueiuiiieiieie e 6
2.2.3. Biodiesel and Particle EMISSIONS..........ccoiveieiieiieiesieseese e see e ee e sieeeens 9
2.2.4. STUAY ODJECTIVES ..ot 12
PG T |V 1= 1 g oo (o] [o o | 2SSOSR 13
2.3.1. Engine and Fuel SPecifiCations ............ccccceiiiiiiie i 13
2.3.2. DIV CYCIB ..t 15
2.3.3. Measurement Methodology .........ccooviiiiniriie e 18
2.4. RESUILS aNd DISCUSSION ......eeiiiiiiiiieieeiesiie ettt sttt 21
2.4.1. Experimental Control...........ccov i 21



2.4.2. Total Ultrafine Particle EMISSION RaALE ......covveeeeeeeeeeeeeeeeeeeeeeee e 24

2.4.3. Particle Number Distribution (PND) .......ccccceiiiiiiiieiecie e 26
2.4.4, FUBH INJECHION ...ttt 30
2.4.5. Combustion and Particle GroWth............ooooiiieeeeee et e e 34
2.5 CONCIUSTON <. et e ettt e e e e e e e e et eeeaeenaaaa 36

CHAPTER 3: DIFFERENCES IN TOTAL ULTRAFINE PARTICLE
EMISSIONS FROM WASTE VEGETABLE OIL-BASED BIODIESEL AND

SOYBEAN OIL-BASED BIODIESEL FROM A DIESEL ENGINE............cccveeneen. 38
3L ADSIIACT. ..ottt bbbttt bbb are s 38
3.2, INEPOTUCTION. ...ttt se e bbb renneas 39

3.2.1. BACKGIOUNT ...ttt 39
3.2.2. THE DIESEI FIEEL......c.ee e 40
3.2.3. Variation in Biodiesel Properties.........cccoovvieiieieiieie e 40
3.2.4. Fuel Properties and EMISSIONS..........ccccviieiiciicie e 42
3.2.5. ODJECLIVES ...ttt bbb e 44
3.3, MEthOTOIOGY ... e bbb 45
3.3.1. ENgine SPeCITiCAtIONS .......ccveiiiiieieiiccie e 45
3.3.2. FUEl SPECIfICAtIONS........ccueiieiieie et 46
3.3.3. DIV CYCIB .. 49
3.3.4. Measurement Methodology ..........cooviiiiiiiiiee e 50
3.4, RESUILS @Nd DISCUSSION ....eevveuviieiiesiieiieiieiiesie ettt sttt e e sbe st snesneeneas 52
3.4.1. ENQINE OPEIAtiON .....oeiviiiieie ettt sttt sre e ane e 52
3.4.2. AMDIENT CONAITIONS ... ..oivieiiiieie et eas 54
3.4.3. Engine Exhaust Particle Sizer Blank Verification...........c.ccocceveniieniniinnnnns 55
3.4.4. TUFP EMISSION RALE ....c.viiiiiiiiiiiieie ettt 55
3.4.5. Particle Number DiStribDUTION........c.ooiiiiiiiiee s 59



CHAPTER 4: DETERMINING THE PRIMARY ENGINE OPERATING
PARAMETERS NEEDED TO MODEL TRANSIENT ULTRAFINE PARTICLE
EMISSIONS IN REAL-TIME FROM A DIESEL ENGINE RUNNING ON

BLENDS OF BIODIESEL .......coviiiiiieiese sttt 68
I N o1 - Uod SO OSPRRTSPS 68
o 1) (o To 1 od o] PSSO PRTRPR 69
G T 1=1 1 o To SRS 72

G TNt D - | - W SRR 72
4.3.2. EUIEOA SELUD ...vveeiiiieiiie ettt ettt sttt ettt e e s e e nnne e s nnneean 75
4.3.3. FEAtUre SEIECLION .......ccveeiiecic e e 76
4.4, ReSUILS aNd DISCUSSION ...cvviiierieiiiesiieiesie st see et e e nee e steeeesreesseenneas 77
4.4.1. Tournament Selection Approach ReSUILS ...........ccoceviiiiiniiniiieeec e 77
4.4.2. Single GP Setup Approach RESUILS .........cccccveiieiiiiiicieeeceseee e 83
4.4.3. Feature Selection Approach COmpPariSON ..........ccceeveeieereeieesieenesie e se e 88

CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATIONS .................. 92
T8 ] 1 101 01 o] o PSSP 92
5.2. Future ReCOMMENALIONS .......ccveiieiiieieiiie et 94

5.2.1. Measurement EQUIPIMENT .........cocvoiiiiieiicie et 94
5.2.2. Measurement MethOdS. ..........ccoiveiiieieee e 95
5.2.3  FUBL ottt ere s 96
5.2.4. MOUEIING ..ot 97

REFERENCES CITED.......ciiii ittt 99

APPENDICES ...ttt sttt re e a ettt renreeneene e 111
ASTM FUEE TESHING ..ttt sneene s 111
ANLIOXIAANt Data SNEEL..........coiiiiece e 113



Fuel Blending and ANAIYSIS.........ccvieiieiiiie e 114

Drive CYCle CONLIOl.........oooiiiieiice e 115
ENGINE Ol 115
DIHULION SYSTEIM ...t 116
Absolute Humidity CalCulation .............ccooiieiiiiiiie e 117
Engine Exhaust Particle Sizer Bin Data ..........cccccveveiieiiiie i 119
Temporal ANGNMENT........oiiiiii e 120
Engine Exhaust Particle Sizer Data POSt Processing...........ccoouuvevvererencieneseniennns 121

Engine Exhaust Particle Sizer Blank Verification............c.cccccovevviieicciccc e, 121

PN Data and Blank COITECTION .........ccviiiiiieieieie e 123

Raw Exhaust PN Concentration Calculation (DR Correction)..........cccccocevvrvreene. 124

Emission Rate CalCUIAtiON...........cccueiieiiiieciee e 124

Exhaust Flow Rate Estimation Using Mass Air Flow (MAF).......c.cccccccevveieinenen. 125
Percent Load CalCUlatioN..........c.oviiiiiiiiiiiiceeeeee e 127
Determining Consistency 0f OPEration ...........ccccoeierererininesieeeeee s 128
(] (U AT o - £ [ SRR 129
AMDIENT CONUITIONS. ... ettt sbe e enes 130
TUFP CONCENrAtioN (/CM3) ... eee e 138
TPN EMISSION RAE (F/SEC)...ccueiuieiiieiie it 139
TUFP/ TPN SUMMArY TabIe ....c.ooiiiieeee e 140
Average Particle Number Distribution (PND) Emission Rate (Linear Scale) ......... 141

Vi



Mean Diameter CalCUIALION ...t 143

Dy, = EEPS D, midpoint for bin i (nm) (Engine Exhaust Particle Sizer Bin Data .. 143

Average Particle Number Distributions by Run, Phase, and Fuel............................ 144
Particle Number Distribution Modal Diameter Summary Table..............c.ccceeeie. 149
Fuel Consumption Summary Table (From Scale Data) ..........cccccocevvvevvivciicrieeenn, 150
Genetic Programming Summary Table ..........coeiieii i 151
Injector PUMP OPEIratiON..........coviiiiiieieiesiesee e 152
Drive Cycle DeVEIOPMENT .........ooiiiiieiiieree e 154
MAELAD COUE ... et re s 158
Code_1 Raw_Processing_28JUL2014.M .....ccccccveieiieiicieseese e see e 160
CODE_2_BIlank_CoOrTeCtION.M......ccuiiieiieieiiesieeiesieesieeiesee e enee e sieeeesreesseeneens 171
CODE_3_Time_Alignment_12JUNZ2014.M .....ccoviiieiieiesiesieeie e seeee e sieaeens 175
CODE_4_26JUNZ20L4.M ..ottt ettt 186

vii



LIST OF TABLES

Table Page
Table 1.1: Select Properties of Typical No. 2 Ultra-Low Sulfur Diesel and Biodiesel

U T=T 3 ) PR 3
Table 2.1: Engine and Dynamometer SpecCifiCations...........cccccveveveeiieieiieve e 13

Table 2.2: Modal Diameter (Dwo; nm) and Mode Emission Rate Ratio relative to
petrodiesel (B0). Dmo/( ERsxx/ERgo) — Highlighted values indicate a reduction in ER

(] E- YR (o I = 1O O TRRRRPR 28
Table 2.3: Mean Diameter (nm) by Blend and Phase. A = MDgxx-MDgg.......ccvrvvvernnenne. 29
Table 3.1: Engine and Dynamometer SPecCifiCations............ccocoverirerieienenese s 45

Table 3.2: Ratio of Biodiesel Blend TUFP emissions to that of the Baseline

PEEIIOTIESEL. ... 58
Table 3.3: Mean Diameter (nm) by Blend and Phase. A = MDgxx-MDgg ......cccocvrvirirnnns 64
TabIE 4.1: PATQMETEIS. ....ccuiiiiiiieieeiiee ettt bbbt ene s 73
Table 4.2: Operators used to initialize EUreqa .........cccceevveiveiiciie i 76

Table 4.3: List of all possible features at time t and those derivatives that were
selected at least once. Features selected by each Eurega simulation indicated by an

) USSR 79
Table 4.4: Features selected from the single GP setup approach presented with all

POSSIDIE TNPULS ...ttt bbbt 84
Table AL: ReSUItS OF ASTM tESTING........oiiiiiiiiiieieee e 112
Table A2: IROX-D test results for WVO and SOY SEqUENCES. .......cceevvveverreeireeiesieene 115

Table A3: Dilution system components. Numbers correspond to those in Figure Al ... 116
Table A4: Engine Exhaust Particle Sizer Bin Designations [97] ........cccccocevvveiieiiieennn. 119

Table A5: Run TUFP/ TPN Summary Table. Values are emission rates (x1e10) and
rounded to 3 SIgNIFICANT FIQUIES. ...ooovviiiii e 140

viii


file://///fs1.cems.uvm.edu/tferalio/MyPapers/Dissertation/2015_08_13_TFeralio_Dissertation_Final.docx%23_Toc427221746
file://///fs1.cems.uvm.edu/tferalio/MyPapers/Dissertation/2015_08_13_TFeralio_Dissertation_Final.docx%23_Toc427221746

Table A6: Particle number distribution mode Dy, ER, and ratio of blend emission

rate to petrodiesel emission rate (ERgxx/ ERB0). ....ccovvvvviiiiiiiiiiciccce, 149
Table A7: Fuel Consumption Summary Table (From Scale Data)...........ccccccevvrrivrnnnne. 150
Table A8: Genetic program run SUMIMAIY .........ccverveieerueereeseesessieseesreeeeseessessseseesees 151


file://///fs1.cems.uvm.edu/tferalio/MyPapers/Dissertation/2015_08_13_TFeralio_Dissertation_Final.docx%23_Toc427221748
file://///fs1.cems.uvm.edu/tferalio/MyPapers/Dissertation/2015_08_13_TFeralio_Dissertation_Final.docx%23_Toc427221749

LIST OF FIGURES

Figure Page

Figure 1.1: U.S. Biodiesel Production, Consumption, and Export. Generated from
data in Table 10.4 of the EIA May 2015 Monthly Energy Review [8] .......ccccccevcvvieinnnnnns 2

Figure 2.1: Drive cycle used for data collection. Transient and steady-state phases
are indicated by vertical lines and phase numbers 3,5, 7, and 9. ........cccocovevivinvienccnenn 17

Figure 2.2: WVO biodiesel emissions by run phase and blend percentage. Left Axis

= Mean TUFP ER (5.6nm < D, < 99.7nm). Right Axis = Ratio of biodiesel TUFP
emissions rate to that of neat petrodiesel (B00). Each column represents the mean of
combined triplicate data for each fuel blend and error bars represent + 1 standard
deviation. N = 3600x3 for P3 and 600x3 for P5, P7, and P9. Note: Y-axes are scaled
differently from plot 10 PIOL. .....oouiiiiiice e 25

Figure 2.3: Average EEPS particle number distributions (PNDs) for each fuel blend..... 27

Figure 2.4: Average and standard deviation of fuel consumption rate by blend and

phase from the fuel tank scale. Fuel consumption rate determined from each

replicate. Average and standard deviation are of the three replicates: A) Fuel
Consumption (mg/min); B) Fuel Consumption (L/min). (N=3).....cccccvveviveieiieiierieen, 31

Figure 2.5: Average and standard deviation of scantool fueling properties by blend
and phase: A) Fuel Injection QTY (mg/Stroke) B) Fuel Temperature (°C); C) Start
of Injection (°BTDC). (n=3550 for 3 and n=600 for P5, P7, and P9) ..........cccccevverurrrnnne. 32

Figure 3.1: Percent composition of FAMEs for UVM WVO and UVM SOY
(determined by PhD student, John Kasumba, [79] through GC-MS analysis)
compared to those in Hoekman et al. [75]. .....ccooveiiiiiiece e 47

Figure 3.2: Distribution of n-alkanes in the petrodiesel fuel used to prepare the WVO

and SOY biodiesel blends. Error bars refer to one standard deviation. n = 2,

Determined by PhD student, John Kasumba, and found as Figure 3.12 in his

dissertation [79]. Data from a Schauer et al. (1999) removed because they were
UNNECESSAIY NEIE. ..ttt b bbbttt nb bbb 48

Figure 3.3: Concentration of n-alkanes (pg/gal) in diesel (B00) and biodiesel fuel
blends from both feedstocks. Determined by PhD student, John Kasumba, and found
as Figure 3.14 in his dissertation [79].......ccveiiiiiieiieecie e 49



Figure 3.4: Mean TUFP ER (5.6nm < D, < 99.7nm) by run phase and biodiesel

blend percentage. Each column represents the mean of combined triplicate data for

each fuel blend and feedstock. Error bars represent + 1 standard deviation. N =

3600x3 for P3 and 600x3 for P5, P7, and P9. Note: Y-axes are scaled differently

FrOM PIOE O PIOL. ... 56

Figure 3.5: (A) Fuel Temperature, (B) Gravimetric fuel consumption, (C)
Volumetric FUel ConSUMPLION.........oiiiiiiiiiiieee e 57

Figure 3.6: Average particle number distributions by biodiesel blend and drive cycle
PRASE. LOG = LOG. .ttt bbb 61

Figure 3.7: ERgxx/ ERgo ratio averaged over all phases by biodiesel blend and mode
size (SM = Small Mode; MM = Middle Mode; LM = Large Mode).........cccccevvririrnnnnns 63

Figure 4.1: Bracket depicting the tournament selection approach to feature selection.

The left side of shows the results of each of the three replicate simulations for each

of the individual fuels. The right side shows the results of the three replicate

simulations that used all of the data (all fuels combined)...........ccccovviiiiiiiniis 78

Figure 4.2: Results from replicate 1 of the tournament approach. Note: the model
with a complexity of 30 at the Pareto point selected the same features as the model
with a complexity of 45. The model with a complexity of 45 had an R? of 0.74. ............ 81

Figure 4.3: Results from replicate 2 of the tournament approach. Note: the model
with a complexity of 30 at the Pareto point selected the same features as the model
with a complexity of 54. The model with a complexity of 54 had an R? of 0.73.............. 82

Figure 4.4: Results from replicate 3 of the tournament approach. Note: the Pareto
point was not reached. The model with a complexity of 31 had an R? of 0.72. ............... 83

Figure 4.5: Results from replicate 1 of the single model approach. Note: the model
with a complexity of 32 at the Pareto point selected the same features as the model

with a complexity of 45. The model with a complexity of 45 had an R? of 0.74............. 86
Figure 4.6: Results from replicate 2 of the single model approach. Note: the Pareto
point was not reached. The model with a complexity of 44 had an R? of 0.75. ............... 87
Figure 4.7: Results from replicate 3 of the single model approach. Note: the Pareto
point was not reached. The model with a complexity of 35 had an R? of 0.67. ............... 88
Figure Al: Engine Exhaust Dilution System SchematicC............cccccoovveviiiiiciic i, 117

Xi



Figure A2: A) Average instrument blank measurements by feedstock. B) Average

tunnel blank measurements by feedstock. Error bars represent + 1 StDev .................... 123
Figure A3: Pitot flow overlaid with temperature corrected MAF ... 127
Figure A4: Volkswagen 1.9L SDi Torque Curve with polynomial trend lines.............. 128
Figure A5: Overlaid cumulative distribution functions from all 30 runs for a) engine

torque, b) engine speed, and ¢) throttle poSItioN..........cccccveve e 129
Figure AG: Dilution Ratio DY RUN ...t 130
Figure A7: Ambient condition box plots BY run..........ccocveiiiic i 131

Figure A8: Scatter plots by WVO blend and phase of ambient temperature versus
TUFP emissions. Blue lines represent a linear regression of the scatterplot data. ......... 132

Figure A9: Scatter plots by SOY blend and phase of ambient temperature versus
TUFP emissions. Blue lines represent a linear regression of the scatterplot data. ......... 133

Figure A10: Scatter plots by WVO blend and phase of ambient pressure versus
TUFP emissions. Blue lines represent a linear regression of the scatterplot data. ......... 134

Figure A11: Scatter plots by SOY blend and phase of ambient pressure versus TUFP
emissions. Blue lines represent a linear regression of the scatterplot data. .................... 135

Figure A12: Scatter plots by WVO blend and phase of ambient absolute humidity
versus TUFP emissions. Blue lines represent a linear regression of the scatterplot
0 = U USRS 136

Figure A13: Scatter plots by SOY blend and phase of ambient absolute humidity
versus TUFP emissions. Blue lines represent a linear regression of the scatterplot
0 L OSSR 137

Figure A14: Mean TUFP concentration (5.6nm < D, < 100nm) by run phase and
biodiesel blend percentage. Each column represents the mean of combined triplicate

data for each fuel blend and feedstock. Error bars represent + 1 standard deviation. N

= 3600x3 for P3 and 600x3 for P5, P7, and P9. Note: Y-axes are scaled differently

FrOM PIOT 0 PIOL. ... 138

Figure A15: Mean TPN emission rates (5.6nm < Dp < 560nm) by run phase,

biodiesel blend percentage, and biodiesel feedstock. Each column represents the

mean of combined triplicate data for each fuel blend and error bars represent + 1

standard deviation. N = 3600x3 for Phase 3 and 600x3 for Phases 5, 7, and 9. Note:
Y-axes are scaled differently from plot to plot...........ccoooviieiiiii e 139

xii



Figure A16: Average WVO particle number distributions by biodiesel blend and
drive cycle phase. Log — Linear. Y-Scale limits are different on from plot to plot on
the left side while the Y-Scale limits are the same from plot to plot on the right side... 141

Figure A17: Average SOY particle number distributions by biodiesel blend and
drive cycle phase. Log — Linear. Y-Scale limits are different on from plot to plot on
the left side while the Y-Scale limits are the same from plot to plot on the right side. .. 142

Figure A18: BO run average particle number distributions. Top 4 panels are Log-

Log; bottom 4 are LOQ-LINEar........ccociueiieicie et 144
Figure A19: B10 run average particle number distributions. Top 4 panels are Log-

Log; bottom 4 are LOG-LINEar........ccociueiiieiecic et 145
Figure A20: B20 run average particle number distributions. Top 4 panels are Log-

Log; bottom 4 are LOg-LINEar........ccccoveiiiiiicic et 146
Figure A21: B50 run average particle number distributions. Top 4 panels are Log-

Log; bottom 4 are LOg-LINEar........ccccoveiiiiiicic et 147
Figure A22: B100 run average particle number distributions. Top 4 panels are Log-

Log; bottom 4 are LOg-LINEar........ccccoveiiiiiicic et 148
Figure A23: Description of injector pump operation from Bosch manual [98] ............. 153

Figure A24: Comparison of PID controlled Brake Setting and intermediate step of

118 AQJUSTMENT. ...t nb e 155
Figure A25: Connecting peaks to idle events. Endpoints of the red lines represent the

points identified WIth G-INPUL. ..o s 156
Figure A26: Brake Settings with complete idle event adjustment..............c..cccovverveenen. 157
Figure A27: Comparison of desired RPM to measured RPM ..........cccooeiiiiiiiinninnnnns 157

Xiii



CHAPTER 1: INTRODUCTION
1.1. Motivation

Particle emissions from combustion processes are a major source of airborne
particles in urban areas [1,2]. Numerous studies have shown that airborne particulate
matter contributes to adverse human and environmental health outcomes around the
world [3-5]. Exposure to high levels of airborne particles can lead to a number of
respiratory and cardiovascular problems including discomfort in irritated airways,
increased asthma attacks, irregular heartbeat, non-fatal heart attacks, and even death [6].

Particle diameter (Dy) is an indicator used to evaluate the potential health risk of
particles to humans. Particle mobility increases as D, decreases, increasing the potential
for deposition deeper within the human respiratory system. Ultrafine particles (UFP)
(Dp<100nm) are of particular concern because of their increased mobility relative to
larger particles. This allows them to penetrate into the alveolar region of the human lung,
the interface between the respiratory and cardiovascular systems, where they may
subsequently pass directly into the cardiovascular system [3,6].

The transportation sector currently runs on the process of combustion. As such, it
IS @ major sink for petroleum-based fuels and a leading contributor to particle emissions
in urban areas (>65% of particle emissions in some cities [2]) that effect both health and
climate. Due to the political consequences associated with importing petroleum,
legislation mandating the use of renewable fuels that can be produced domestically has

come to fruition [7]. While this push has led to a surge in the use of new fuels to power



the fleet, relatively little is known about how the transition from conventional fuels to
alternative fuels will affect emissions profiles and ambient air quality.
1.2. Biodiesel

Biodiesel is a drop-in renewable fuel for diesel engines that is increasingly used
as an alternative to petroleum-based diesel fuel, hereinafter denoted as petrodiesel. In
2013, the U.S. biodiesel consumption was approximately 137 times that of 2001 (Figure
1.1) [8].

U.S. Biodiesel Production, Exports, and Consumption
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Figure 1.1: U.S. Biodiesel Production, Consumption, and Export. Generated from data in Table 10.4
of the EIA May 2015 Monthly Energy Review [8]

Biodiesel can be processed from a number of natural lipids such as plant oils,
animal fats, or combinations thereof. The process used to generate biodiesel from a lipid
is transesterification. This process entails a chemical reaction between the lipid and an
alcohol in the presence of a base catalyst. Biodiesel currently being processed

commercially in the U.S. is typically a mixture of fatty acid methyl esters (FAMES)



meaning that the alcohol used in the transesterification process was methanol (CH,O) [9].
Biodiesel can also be processed with ethanol (C,HgO), in which case it would be
considered a mixture of fatty acid ethyl ester (FAEE). Typical catalysts used for the
transesterification process are sodium hydroxide (NaOH) or potassium hydroxide (KOH).
The regulations controlling the quality of neat biodiesel are EN14214 in Europe and
ASTM D6751 in the U.S. [9]. A comparison between typical number 2 ultra-low sulfur

diesel and pure biodiesel fuel properties are provided in Table 1.1.

Table 1.1: Select Properties of Typical No. 2 Ultra-Low Sulfur Diesel and Biodiesel Fuels [9]

Fuel Property Diesel Biodiesel

Fuel Standard ASTM D975 ASTM D6751
Higher Heating Value, Btu/gal ~137,640 ~127,042
Lower Heating Value, Btu/gal ~129,050 ~118,170
Kinematic Viscosity, @ 40°C (104°F) 1.3-41 4.0-6.0
Specific Gravity kg/l @ 15.5°C (60°F) 0.85 0.88
Density, Ib/gal @ 15.5°C (60°F) 7.1 7.3
Carbon, wt % 87 77
Hydrogen, wt % 13 12

Oxygen, by dif. wt % 0 11

Sulfur, wt % 0.0015 max 0.0-0.0024
Boiling Point, °C (°F) 180-340 (356-644) 315-350 (599-662)
Flash Point, °C (°F) 60-80 (140-176) 100-170 (212-338)
Cloud Point, °C (°F) -3510 5 (-31 to 41) -3 10 15 (26 to 59)
Pour Point, °C (°F) -35t0-15(-31 t0 5) -5 10 10 (23 to 50)
Cetane Number 40-55 48-65

The differences in fuel properties between petrodiesel and biodiesel affect engine

emissions through changes in both the fuel injection and combustion processes. As a



result, UFP emissions from a diesel engine fueled by petrodiesel are different than that
fueled by biodiesel.
1.3. Research Objectives

The research discussed here set out with three objectives. Chapter 2 addresses the
first research objective — determine the difference in UFP emissions from petrodiesel and
blends of waste vegetable oil-based biodiesel. This Chapter will be submitted to SAE
International Journal of Fuels and Lubricants for publication in the coming months.

Chapter 3 addresses the second research objective — determine the differences
between UFP emissions from blends of waste vegetable oil-based biodiesel and soybean
oil-based biodiesel. This chapter will also be submitted to SAE International Journal of
Fuels and Lubricants for publication in the coming months.

Chapter 4 addresses the third research objective — determine the feasibility of
using genetic programming to select engine operating parameters that are primary
indicators of UFP emissions for emissions modeling. This chapter will be developed

further and submitted for publication in the SAE International Journal of Engines.



CHAPTER 2: VARYING EFFECT OF WASTE VEGETABLE OIL-BASED
BIODIESEL BLENDS ON TOTAL ULTRAFINE PARTICLE

EMISSIONS FROM A DIESEL ENGINE

2.1. Abstract

To determine the effect of biodiesel fuel blends on engine-out particle emissions,
a naturally aspirated, diesel engine with a pump-line-nozzle fuel injection system was
fueled with neat ultra-low sulfur on-road diesel (B0), neat waste vegetable oil-based
biodiesel (B100), and B10, B20, and B50 blends thereof (where XX in BXX refers to the
percentage of biodiesel v/v in the blend). Particle number concentrations (#/cm®) were
collected at 1Hz with a TSI 3090 Engine Exhaust Particle Sizer (EEPS; 32 channels from
5.6-560nm) while the engine followed a transient drive cycle developed from on-road
vehicle operation. Total ultrafine particle (TUFP; Dp<100nm) number emission rates
(ERs; #/sec) exhibited a non-monotonic increasing trend relative to biodiesel content of
the fuel that is contrary to the majority of prior studies. The ratios of transient TUFP ERs
from B10, B20, B50, and B100 relative to BO were 2.2, 0.9, 2.0, and 3.2, respectively.
Additionally, although there were no statistically significant differences in throttle
position, engine speed, and torque from test to test, fuel consumption increased with the
percentage of biodiesel in the fuel. Other factors that may have contributed to the non-
monotonic trend observed in TUFP ERs but that weren’t measured here include: 1)
advanced start of combustion (SOC) due to increased oxygen content and cetane number
of biodiesel relative to petrodiesel, 2) a possible reduction of premixed combustion

relative to diffusion combustion due to advanced SOC, and 3) an increase in particle
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nucleation relative to condensation and adsorption, due to the increased oxygen content

and decreased volatility of biodiesel relative to petrodiesel.

2.2. Introduction

2.2.1. Motivation
Particle emissions from combustion processes, specifically those from diesel on-

road vehicles, are a major source of airborne particles in urban areas [1,2]. Numerous
studies have shown that airborne particulate matter contributes to adverse human and
environmental health outcomes worldwide [3-5]. Exposure to high levels of airborne
particles can lead to a number of respiratory and cardiovascular problems including
discomfort in irritated airways, increased asthma attacks, irregular heartbeat, non-fatal
heart attacks, and even death [6].
2.2.2. Particle Emissions - Background

One indicator used to evaluate the potential health risk of particles to humans is
particle diameter (D,). As D, decreases, particle mobility increases, increasing the
potential for deposition deeper within the human respiratory system. Diesel engine
exhaust particle size distributions (PSD) are defined by three distinct modes; the nuclei,
accumulation, and coarse modes [10]. The D, ranges of these modes are typically
5<D,<50nm, 50<D,<1000nm, and D,>1000nm, respectively [10]. The smaller a particle
is, the more mobile it is giving it the ability to bypass a humans natural defenses and
deposit deep within the lung. Kittelson et al. [10] showed that ultrafine particles (UFP)
(Dp<100nm) have the highest potential to deposit within the alveolar region of the lung

where they may subsequently pass directly into the cardiovascular system [3,6].



Emissions from light-duty automobiles in the U.S. are currently regulated by the Tier 2
emissions standards, which limit tailpipe particulate emissions on a total particle mass
(PM) per distance basis (g/mi) [11]. Measuring total particle mass, however, does not
adequately characterize UFP emissions because the mass of a UFP is essentially
negligible relative to larger particles. A more effective measurement used to characterize
UFP emissions is particle number (PN) concentration, the number of particles per volume
of air which is why PN emission regulations have been introduced for automotive
emissions in the E.U. [10,12-15].

Particle emissions from diesel vehicles are highly dependent on fuel composition
[16,17], which, has been continually evolving on a national scale in response to
environmental and energy security regulations [7,18]. Between 2006 and 2010, on-road
diesel fuel transitioned from low sulfur diesel (LSD; S content < 500ppm) to ultra-low
sulfur diesel (ULSD; S content < 15ppm) [18,19] and was shown to reduce PM emissions
by approximately 23% by reducing the concentration of particle across the entire PND
range with the largest reductions below 30nm (within the UFP range) [20]. Concurrently,
interest in energy independence and security led to legislation which mandates domestic
use of renewable fuels [7]. Biodiesel is currently the primary renewable fuel used as a
‘drop-in’ alternative for petrodiesel [9]. Between 2012 and 2013 there was a 28%
increase in the required production of biomass-based diesel (primarily biodiesel) in the
U.S., adding it to the fuel supply available for use by the nation’s fleet [21]. Biodiesel can
be processed from a variety of lipid feedstocks, such as plant oils, animal fats, or a

combination thereof including recycled waste oils, resulting in variability in composition



within the biodiesel supply itself [9]. Furthermore, although it is possible to use neat
biodiesel as an alternative for petrodiesel, it is typically blended with petrodiesel for use
at levels <B20 (20% biodiesel; 80% petrodiesel v/v) because, among other reasons,
higher blends of biodiesel can void vehicle warranties, can act as a solvent causing the
fuel system of vehicles that primarily run on petrodiesel to clog, and can gel at warmer
temperatures [9].

In concert with an evolving fuel supply, the diesel vehicle fleet has continually
been changing in response to tightening tailpipe emission regulations and increased fuel
costs. In 2007, after the adoption of ULSD and the EPA’s introduction of more stringent
exhaust emissions standards for diesel engines [11], the so called ‘green diesel’ vehicles
became available, many of which were light-duty diesel (LDD) vehicles. These vehicles
boasted not only superior fuel economy relative to their gasoline-powered counterparts,
but much cleaner tailpipe emissions relative to their predecessors. The advances in
tailpipe emissions were due, in part, to the utilization of ULSD which enable diesel
particulate filter (PDF) control of particulate emissions, and selective catalyst reduction
(SCR) to control NOy emissions, among other technological advances [19,22,23]. The
number of diesel passenger car and sport utility vehicle models available in the U.S. has
increased from 3 to 22 between the years 2000 and 2014 [24]. This, and the fact that U.S.
registration for these vehicles rose by 24% between 2010 and 2012 [25], indicates an

increased demand among U.S. consumers for LDD vehicles.



2.2.3. Biodiesel and Particle Emissions
Although biodiesel emissions relative to petrodiesel emissions have been studied,

the results are somewhat ambiguous. The overall trend shows a reduction in PM
emissions when running biodiesel compared to petrodiesel [9,17,20,26-33]; however,
some studies report the opposite [16,34,35]. Of the relatively fewer studies that report
particle emissions on a PN basis, most report that the use of biodiesel increases nuclei
mode particles (5 - 50nm) and decreases accumulation mode particles (50 — 1000nm)
[16,17,27,28,36-38], although some studies found otherwise [35,39]. Additionally,
studies have shown that total PN (TPN) can either increase [16,40] or decrease
[27,30,32,39,40] with the use of biodiesel.

There are two main mechanisms through which biodiesel fuel affects engine
emissions: 1) hydraulic — the differences in the way biodiesel behaves as a fluid relative
to petrodiesel, and 2) chemical — the differences in the way biodiesel oxidizes (combusts)
relative to petrodiesel. Hydraulically, biodiesel has a higher viscosity, density, and bulk
modulus [9,41,42] than petrodiesel. These properties can all affect the performance of the
fuel delivery system. For pump-line-nozzle type fuel injection systems, the injector pump
is lubricated by the fuel. As such, tolerances between internal components of the pump
allow some ‘leakage’ of the fuel for adequate lubrication (Figure A23). Because the
viscosity of biodiesel (4.0-6.0 cSt) is higher than that of petrodiesel (1.3-4.1 cSt) [9] , less
biodiesel fuel ‘leaks’ through the components of the injector pump resulting in a sharper,
higher peak pressure at the injector pump outlet [27]. The speed of the pressure pulse in
the fuel line between the injector pump and the fuel injector is also increased because

biodiesel has a higher bulk modulus [30,41,42]. These two factors result in the
9



mechanical fuel injector ‘seeing’ a higher pressure sooner from biodiesel as compared to
petrodiesel and can result in different fuel injection characteristics. First, because less fuel
‘leaks’ through the injection pump, more biodiesel fuel is available for injection into the
combustion chamber. Second, because the pressure pulse reaches the injector faster, it is
possible for the biodiesel start of injection (SOI) to be advanced relative to top dead
center (TDC) of the piston [27]. Third, the injection duration and/or injection rate over
the injection event can be different between the two fuels because of the difference in
shape of the pressure pulse between the two fuels. Additionally, due to the differences in
fuel density and viscosity, the fuel sprayed into the combustion chamber by the fuel
injector may atomize differently, possibly changing the distribution of fuel into the
combustion chamber and subsequently altering local stoichiometric conditions [43].
These effects are typically reported to increase with respect to blend level, showing the
largest difference relative to petrodiesel when neat biodiesel is used. Because more recent
common rail fuel injection systems (MY>2008 for VW North America) utilize a fuel rail
at constant pressure and electronically controlled fuel injectors, tailpipe emissions from
more modern engines are less susceptible to differences in the hydraulic properties of the
fuel. Additionally, some of the newest control technologies utilize in-cylinder pressure
sensors to provide the engine control unit (ECU) with the feedback necessary to directly
adjust SOC in an effort to more accurately control exhaust emissions [44].

Chemically, neat biodiesel is an oxygenated fuel containing ~11% oxygen by
mass while the oxygen content of neat petrodiesel is negligible [9]. Because most engines

are typically not modified to run on blends of biodiesel, there is an increase in excess
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oxygen (more fuel-lean) in the combustion chamber when running on biodiesel compared
to petrodiesel given the same amount of fuel injected into the combustion chamber. It has
been shown that, in many cases, this leads to faster combustion rates and more complete
combustion, especially in fuel-rich zones of the combustion chamber where fuel-borne
oxygen is available [27]. Typically, biodiesel also has a higher cetane number than
petrodiesel which can result in a reduction of ignition delay, the finite amount of time
between start of injection (SOI) and start of combustion (SOC) [27]. Changes in ignition
delay can affect pre-ignition charge mixing and, therefore, the ratio of premixed
combustion to diffusion combustion which affects both particle and NOx emissions
[27,45]. Additionally, with a boiling point between 599 and 662°C, the volatility of
biodiesel can be less than that of petrodiesel (boiling point between 356 and 644°C) [9]
making biodiesel atomization in the cylinder more difficult [43]. The unburned
hydrocarbons in biodiesel exhaust may also have a lower volatility than those of
petrodiesel exhaust causing them to more readily condense into the liquid phase, and
increase particle emissions from biodiesel [46]. Biodiesel also has a lower heating value
than petrodiesel which typically results in the need for more fuel to be consumed in order
to generate an equivalent amount of power as from petrodiesel [9].

That being said, variables other than fuel composition can affect engine emissions
such as: 1) engine technology (light-duty vs. heavy-duty; new technology vs. old) [23], 2)
drive cycle [16,30] (steady-state vs. transient, degree of transient nature), and 3) dilution
conditions [47,48] (dilution temperatures and residence times). Because these variables

are not consistent between studies, reported results are often contradictory. Comparison
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of biodiesel emissions studies must, therefore, take into account engine technology
(specifically the type of fuel injection system employed), the properties of the baseline
petrodiesel, the feedstock oil used to process the biodiesel, the biodiesel/ petrodiesel
blend, and the dilution conditions used for the study because each of these factors has the
potential to affect the particle number distribution (PND — number weighted PSD) and
particle composition to some degree.
2.2.4. Study Objectives

The majority of prior studies on biodiesel vehicle/engine particle emissions
examined heavy-duty diesel (HDD) engines, reported only PM emissions, and were
executed with baseline petrodiesel fuels that had a higher sulfur content than ULSD. It is,
however, important to recognize that the 1) LDD fleet is expanding [24,25], 2) UFP
emissions measured on a PN basis are more relevant to human health than total PM
emissions, and 3) transition to ULSD fuel reduced PN emissions considerably and,
therefore, may have altered the way in which blending biodiesel with petrodiesel affects
particle emissions. The objective of this study was to quantify the changes in transient
engine-out UFP emissions from a LDD engine running on multiple blends of waste
vegetable oil-based biodiesel (WVO) and ULSD. As such, this research was conducted
with a transient drive cycle that simulated light-duty vehicle operation in an urban setting,

where particle emissions are of particular concern.
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2.3. Methodology

2.3.1. Engine and Fuel Specifications
The apparatus used to collect particle emissions consisted of a naturally aspirated,

four cylinder Volkswagen 1.9L SDi engine with a pump-line-nozzle fuel injection system
coupled to an Industrias Zelu, S.L. K-40 power absorber unit (eddy -current
dynamometer) (Table 2.1). Sold for industrial use, the engine conforms to emission
certification EC 97/68 Stage IlIA; however, mechanically, the engine is similar to those
in EURO Il Volkswagen LDD automobiles. The engine was not equipped with an
exhaust gas recirculation system or any exhaust aftertreatment devices — the emissions

data reported are engine-out.

Table 2.1: Engine and Dynamometer Specifications

Manufacturer: Volkswagen
Identification Code: | ARD

Charge Air: Naturally Aspirated
Capacity: 1896cm®
Cylinders: 4

Bore: 79.5mm

Stroke: 95.5mm

Compression Ratio: | 19.5:1
Nominal Output: 44 kW @ 3600 RPM

Max Torque: 130Nm @ 2000 - 2400 RPM
Minimum CN: 49

Control System: Bosch EDC

Fuel Injection: Bosch VE injection pump
EGR: None

Manufacturer: Zelu/ Klam

Model Number: K-40 PAU

Max Power: 60kW

Max Torque: 145Nm
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The fuels used for this study were one lot of BO (neat ULSD, Trono Fuels,
Burlington, VT) and one lot of B100 (neat biodiesel, University of Connecticut BioFuel
Consortium processed from waste vegetable oil using the methods documented in
Pomykala et al. and Boucher et al. [49,50] ), and B10, B20, and B50 blends thereof. B10
and B20 were selected because they are within the range of biodiesel blends typically
sold for on-road use. B50 and B100 were also tested to provide data across the range as it
is possible to use blends up to B100. The neat biodiesel was treated with an antioxidant
(Chemtura Naugalube® 403; see ‘Antioxidant Data Sheet’ section in the Appendix for
more detail) at 2000ppm (w/w). Testing performed by the University of Connecticut
BioFuels Center for Environmental Sciences and Engineering confirmed that the B100
conformed to ASTM-6751-11b except for cold soak filtration and combined sodium and
potassium (Table Al).

To ensure accuracy in blending, the density of each parent fuel (BO and B100)
was measured both physically and with a density meter. The masses associated with the
correct volume of BO and B100 needed for blending were calculated and subsequently
measured using a laboratory scale. The BOO and B100 were then combined in a tank,
mechanically mixed, and finally sealed in fuel containers (UN certified 5 gallon buckets
from Letica Corp. with unvented lids) with nitrogen headspace to minimize fuel
oxidation during storage. The fuel was stored in an environmental chamber at 13°C to
simulate underground storage.

Blend ratios (vol % biodiesel) were confirmed using an IROX Diesel (IROX-D)

Analyzer from Grabner Instruments (Vienna, Austria), a mid-FTIR analyzer dedicated to
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diesel analysis. The IROX-D also measured fuel density with a built-in high accuracy
density meter [51] (Table A2). The IROX-D analyzer is, however, only capable of
measuring biodiesel blends only in the range of BO — B40, therefore direct measurements
of fuel blends based on FTIR methods were only accurate for the BO, B10, and B20
blends tested here. To verify the blend ratio of the B5S0 used, the ‘as blended’ sample was
diluted with hexane. The resulting IROX-D BXX measurement was then used along with
the known dilution ratio to back calculate the ‘as blended” BXX value. The IROX-D
results for all ‘as blended” WVO samples (BO, B10, and B20) were within 0.2% of the
expected value. The back calculated BXX value for the WVO B50 was within 0.8% of
the expected value (Table A2). Because the IROX-D measures density with a density
meter and not through FTIR, the density measurements are valid for all fuel blends.

2.3.2. Drive Cycle

To simulate real-world urban driving, a transient drive cycle was developed with
OBD-I1 engine speed and throttle position data collected from a 2003 Volkswagen TDi
Jetta sedan (ALH engine code) with an automatic transmission as it drove a predefined
route through downtown Burlington, VT [52]. The TDi engine in this on-road vehicle is
essentially a turbocharged version of the SDi test engine.

The decision to develop a new drive cycle was made for multiple reasons. First,
all federally mandated engine dynamometer tests were designed for HDD engines where
the prescribed parameters are typically % of rated revolutions per minute (RPM) and %
of rated torque. These tests, however, are not equivalent to typical light-duty vehicle

drive cycles performed on chassis dynamometers using vehicle speed-time traces. On-
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road studies have shown that the majority of real-world driving occurs at less than ~40%
load for a modern passenger car [52]. Because legislated engine dynamometer test cycles
were designed for HDD engines, they simulate the operation of HDD vehicles such as
city and municipal vehicles that operate much differently and regularly exceed 40% load.
Second, between 1982 and 2004 the power output of the average passenger car has
increased by ~4hp/year [22,53], which means the % torque required to power the vehicle
on the road under normal driving conditions would decrease with newer model year.
Testing based on % torque, therefore, would not be comparable between engines of
different model years. Generation of a new drive cycle using on-road data from a modern
vehicle was necessary to ensure a realistic loading profile for the engine being tested.

The developed drive cycle (Figure 2.1) contained a 60-minute transient portion
(developed with the on-road VW Jetta data) and three 10-minute steady-state portions
(defined by RPM). These are referred to as Phases 3, 5, 7, and 9 (P3, P5, P7, and P9) and
have average nominal percent loads of 12, 5, 36, and 50% (while fueled with neat ULSD;
calculated with the torque curve supplied by Volkswagen; see the ‘Percent Load
Calculation’ section of the Appendix for more detail), respectively. P3 commenced after
warming the engine up by running it at 3000RPM and 60% throttle until the coolant

temperature stabilized at 92+2°C.
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Figure 2.1: Drive cycle used for data collection. Transient and steady-state phases are indicated by
vertical lines and phase numbers 3, 5, 7, and 9.

The ideal engine operation control for testing such as that performed is through
specification of engine torque and engine speed as a function of time. Due to control
software limitations, however, the control of the engine during the transient portion of the
cycle was accomplished by specifying throttle position and dynamometer voltage supply,
a surrogate for dynamometer load. For the steady-state portions of the cycle, a
proportional-integral-derivative (P1D) controller automatically adjusted the dynamometer
supply voltage to maintain a set point engine speed while throttle position was held
constant.

Prior to collecting data, the engine was run at 3300RPM and 85% throttle for two
10 minute periods to elevate exhaust temperatures enough to volatize any contaminants

within the exhaust system. The engine oil was then changed to ensure that it did not
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contaminate the emissions data. Data collection proceeded in order of increasing
biodiesel blend volume to minimize biodiesel contamination of the engine oil. Triplicate

tests were performed for each fuel blend.

2.3.3. Measurement Methodology

2.3.3.1. Exhaust Dilution
Dilution of the raw exhaust was necessary to simulate atmospheric dilution and

for particle instrumentation measurement. A modified Dekati (Kangasala, Finland)
ejector diluter designed to provide a constant dilution ratio (DR) of ~80 was used.
Dilution air and exhaust sample temperatures were maintained at 30°C and 110°C,
respectively, as they entered the ejector diluter. Table A3 lists the components of the
dilution system shown in Figure Al, a schematic of the dilution system. More detail
regarding the dilution system can be found in Holmén et al. [54].
2.3.3.2. Data Acquisition

Engine operating conditions, dilution conditions, and PN emissions were
measured and recorded simultaneously at a sampling rate of >1 Hz. Engine conditions
were recorded via a Ross-Tech VCDS scantool (ver. 11.11.6) from the engine control
unit (ECU) and the engine/ dynamometer control software, Armfield ArmSoft (ver. 1.43),
from auxiliary sensors. Additional engine and dilution system conditions were logged
with a National Instruments data acquisition system (LabView, ver. 8.6.1). PN
concentration (#/cm®) data were collected at 1 Hz with a TSI Inc. (Shoreview, MN, USA)

3090 Engine Exhaust Particle Sizer (EEPS; 32 channels from 5.6-560nm).
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To make sure all instruments were synchronous, all computers used for logging
were connected to a local area network with one computer designated as a time server.
The remaining computers synchronized their clocks with the time server every 16
seconds to minimize any asynchrony.

For data analysis, the data from all instruments were post-processed by applying
calibration equations to raw data, where necessary, and by interpolating data logged at
high frequencies to 1Hz as described in Holmén et al. [54]. The particle emissions data
were also time aligned with the operational data to take into account the time needed for
the exhaust sample to get from the sample port in the exhaust system to the measurement
instrument (see the ‘Temporal Alignment’ section of the Appendix for more detail) . The
post-processed data from each instrument were then concatenated into one file.
2.3.3.2.1. Particle Number Measurements

PN concentration (#/cm®) data were collected at 1 Hz with a TSI Inc. (Shoreview,
MN, USA) 3090 Engine Exhaust Particle Sizer (EEPS; 32 channels from 5.6-560nm).
The serial number of the specific instrument used was 3001, it was operating with
firmware version MCU:3.10,DSP:3.02, used the ‘Default’ inversion matrix, was pulling 9
LPM of aerosol sample, and was equipped with a 10LPM, 1um cut inlet cyclone during
data collection. The EEPS bins PN emissions data by D,. The bounds and midpoint for
each bin can be found in Table A4.

To verify that the EEPS was measuring correctly throughout the data collection
sequence, both instrument and tunnel blanks were analyzed. The instrument blanks

comprised 10 minutes of EEPS 1Hz data collected before each run with a HEPA filter
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attached to the aerosol inlet. The tunnel blanks contained the same amount of data
collected with the dilution system connected to the EEPS without the engine running. The
average particle concentration for both the instrument blank and the tunnel brank were
calculated for each EEPS bin and plotted against TSI’s stated minimum detection limit
(Figure A2). To account for differences in ambient particle concentrations from run to
run, the EEPS concentration data (#/cm®) were corrected with the tunnel blank data
during post processing (see the ‘PN Data and Blank Correction’ section of the Appendix
for more detail).

Because it took the aerosol sample a finite amount of time to travel from the
sampling port in the exhaust pipe, through the dilution system, and to the EEPS, there
was sampling lag associated with the EEPS data. The EEPS data were lag aligned to
operational data during data post processing (see the ‘Temporal Alignment’ section of the
Appendix for detail). Once lag aligned, raw exhaust particle concentrations were back
calculated using the DR calculated on a second-by-second basis. Finally, the raw exhaust
emissions rate (ER) was calculated from the raw exhaust particle concentration and
exhaust flowrate. Although exhaust flowrate was directly measured with a pitot tube in
the exhaust pipe, exhaust flowrate was modeled using exhaust temperature at the pitot
tube and mass air flow (MAF) data. This was necessary because the pressure pluses
within the exhaust system of this naturally aspirated engine caused excessive noise in the
pitot data. EQ 2.1 was used to calculate exhaust flowrate from the exhaust temperature

and MAF and EQ 2.2 was used to calculate ER. More information regarding these
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calculations can be found in the ‘Engine Exhaust Particle Sizer Post Processing’ section

of the Appendix.

_ (Qint)(Texh) 2 1
Qe = 293.15
Where:

Qexh = Volumetric exhaust flowrate (LPM)

Qint= MAF (SLPM — assumed to be approximately volumetric flowrate at
ambient conditions)

Texn = Exhaust temperature at the pitot tube (°C) (close to the sample port)

1min y 1000cm?®

ER, = PN g % X
P con X Qe 60 sec 1L

2.2

Where:
ERp = particle emission rate (#/sec)

PNcon = Dilution ratio corrected particle number concentration (#/cm®)
Qexh = Volumetric exhaust flowrate (LPM)

2.4. Results and Discussion
2.4.1. Experimental Control

2.4.1.1. Engine Operation
Cumulative distribution functions of torque, throttle position, and engine speed

data from the transient portion of the drive cycle for all runs showed that all sampling
events from test to test were comparable from an operational viewpoint (Figure A5). Both
torque and throttle position were consistent from run to run, as expected for control
variables. There was slight variation in engine speed, as expected for a response variable.
Triplicate data for each fuel blend appear to group in the engine speed plot between
~1300 and 2500 RPM, with the BOO data on the upper portion of the curve and with B100

blends on the lower portion of the curve. Although this is an indication of a slight fuel
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blend effect on engine speed, two-sample Kolmogorov—Smirnov (KS) tests between all
15 individual WVO runs failed to reject the null hypothesis that the curves being
compared were from the same continuous distribution (Figure A5 — WVO runs only).
The highest coefficient of variance (CV) value associated with non-idle engine speeds
(Engine Speed > 1134 RPM) was 10.3% suggesting that engine speed was consistent
between run.
2.4.1.2. Dilution Conditions

Although the DR was relatively constant during individual runs, there was an
average drop of 4.4% in exhaust transfer line (tailpipe to diluter) flow rate from run to
run; other measured dilution system parameters were constant. Across all runs and
phases, the mean + standard deviation of exhaust inlet temperature, dilution air inlet
temperature, dilution air flow rate, and dilution air pressure were 107.7+0.44°C, 26.7+1.2
°C, 85.9+1.4 SLPM, and 29.75+0.39 PSIG, respectively. The measured exhaust inlet
temperature and dilution air inlet temperature are ~3°C below the setpoint temperatures
of 110°C and 30°C, respectively, because in both cases the thermocouple supplying
temperature feedback to the temperature controller was different than the thermocouple
providing temperature data to the data acquisition system. The reduction in exhaust
transfer line flow rate was due to fouling of the flow control orifice within the transfer
line. Rather than disassembling the transfer line to clear the control orifice and risk
modifying the system’s flow characteristics upon reassembly, the only de-fouling method
used was to reverse the flow through the orifice to clear the accumulated particles.

Although this helped de-foul the orifice, it did not prevent it completely. Thus, a
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continually increasing DR was observed, starting at a low mean value of ~72 for the BO
data collection to a high of ~115 for the B100 data collection (Figure A6). The literature
shows that nucleation mode (geometric number median diameter, DGN, in the 7-30nm
range) concentrations can be sensitive to changes in DR below a DR of 40, while the
accumulation mode (DGN 50-80nm range) remains relatively constant [48]. Above a DR
of approximately 50, however, the saturation ratio of condensable hydrocarbons
decreases substantially, suggesting that PNDs are less sensitive to variations in DR>50
[10]. Because the DR for this research was consistently >50 and the PN data were
corrected with second-by-second DR, it was assumed that the effect of the ~60% change
in DR on the raw exhaust PN concentration over all the WVO runs was minimal.
2.4.1.3. Ambient Conditions

Variation in ambient conditions, including ambient temperature, pressure, and
absolute (ABS) humidity were examined to determine their effect, if any, on total UFP
(TUFP) emissions (defined as the sum of the first 20 EEPS bins; 5.6<D,<99.7nm). Their
mean + standard deviations across all runs were 23.5£3.9°C, 991.2+4 mbar, and 11.9+4.6
mQguzo/Literair, respectively. With CV values across all WVO runs of less than 20%,
ambient temperature and pressure were considered consistent. The maximum CV value
for ambient absolute humidity across all WVO runs was, however, 38.9%. A scatter plot
matrix of absolute humidity vs. TUFP ER by fuel blend and phase (Figure A12) showed
that TUFP ERs decreased slightly as absolute humidity increased; however, variability in
absolute humidity over the full WVO test sequence was not sufficient to determine a

significant relationship between absolute humidity and TUFP emissions.
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To examine whether there was a statistical difference in TUFP between replicate
engine tests, the Tukey-Kramer method was employed (JMP Pro 10.0.2). As one might
expect, given the power associated with large sample numbers (n=3600 for P3 and n=600
for P5, P7, and P9), the majority of the replicates were found to be statistically different
(0=0.05) from one another [55]. The only replicates not found to be statistically different
were runs 1 and 3 for B10 in P9, runs 2 and 3 for B20 in P3, and runs 1 and 2 for B20 in
P9. Percent differences between the average TUFP ER of all three replicates and the
average of each individual replicate were also calculated. The maximum percent
difference across all blends and all Phases was 59.2% (for the third B50 run during P7).
The average percent difference across all fuel blends and Phases was 24.0%.

Considering the relative consistency of the operational and dilution conditions,
and the minimal, if any, effect of ambient conditions, it was determined that,
operationally, all replicates could be fairly compared between all fuel blends. The
triplicate PN data for each fuel blend were averaged for further analysis.

2.4.2. Total Ultrafine Particle Emission Rate

Figure 2.2 shows that the trend of mean TUFP emissions relative to biodiesel
blend across all phases was non-monotonic; increasing relative to BO for B10, decreasing
for B20, and increasing again for B50 and B100. The same trend was seen for TPN
emissions (summation of all EEPS bins - 5.6-560nm — Figure A15). The average TUFP
ERs (and TUFP concentrations; Figure Al4) during P3 were lower than those of P5, P7,
and P9 possibly because the engine speeds associated with P5, P7, and P9 (2700, 2000,

and 3000RPM, respectively) were higher than the average engine speed of P3
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(1500RPM). As engine speed increases, the finite amount of time available for
combustion decreases, likely increasing emissions of unburnt and partially burnt
hydrocarbons, subsequently increasing particle concentrations. Additionally, as engine
speed increases, so does exhaust flowrate, increasing ERs at high engine speed more so

than at low engine speeds.

x 10" Phase 3 )X 10" Phase 5
5 °f ° la
@ 41 5 15 o
¥ 4 + 38
o o M
Es T 43 1r =]
E_I'Iz’ ] 12 jr {‘2%
o i 1 05 7 e
=Rl 1 T T 1
1 N S 2 X O
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90100
x 10 Phase 7 x 10'2 Phase 9
10r 15 47
G 13
©
o 14
(9] 3
ES 8
@ % 13 721200
T 5t 2t e
g % l2 i 2
T - T fU
g | | Rk m 1 e
et I
L r’{l—‘l 1 1 1 r r r 1 0 0 1 1 1 r L L r r 1 1 1
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 80 70 80 90100
Biodiesel Blend % Biodiesel Blend %

Figure 2.2: WVO biodiesel emissions by run phase and blend percentage. Left Axis = Mean TUFP
ER (5.6nm < D, <99.7nm). Right Axis = Ratio of biodiesel TUFP emissions rate to that of neat
petrodiesel (B00). Each column represents the mean of combined triplicate data for each fuel blend
and error bars represent + 1 standard deviation. N = 3600x3 for P3 and 600x3 for P5, P7, and P9.
Note: Y-axes are scaled differently from plot to plot.

Although the majority of previous studies did not report specifically on TUFP
emissions, many reported an increase in nuclei mode particle concentrations and a
decrease in accumulation mode particle concentration suggesting that TUFP emissions

could either increase or decrease depending on the proportion of change within the UFP
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D, range [16,17,27,28,30,36-38]. The majority of studies suggest a decrease in TUFP
[27,30,32,39,40], while others suggest an increase [16,17,37,56] as the content of
biodiesel in the fuel increases.

2.4.3. Particle Number Distribution (PND)

To further examine the non-monotonic trend in TUFP emissions relative to
biodiesel blend reported here, the average PND for each set of triplicate data were
compared (Figure 2.3). By convention, the plots depicted are log-log, which somewhat
obscures the differences discussed. These differences are more apparent on log-linear
plots (Figure A16).

The PNDs measured here (Figure 2.3 and Figure A16), were trimodal.
Henceforth, these modes will be described in terms of modal diameter (Do) as the small,
middle, and large mode. These modes changed by fuel and phase in terms of both Dy,
(along the X axis) and in terms of ER (along the Y axis). The small mode Dy,
consistently fell in the 10.8nm EEPS bin (9.98 — 11.52nm) across all fuels and phases
while the middle mode was always within 3 consecutive EEPS bins spanning 15.36 —
23.65nm. Both small and middle modes were consistently within the nuclei mode D,
range defined by Kittelson et al. (5<Dp<50nm). The large mode was always within 5
consecutive EEPS bins from 27.31 — 56.09nm and tended to be smaller than the defined

minimum D, of the accumulation mode (50<D,<1000nm) [10].
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Figure 2.3: Average EEPS particle number distributions (PNDs) for each fuel blend.

Table 2.2 tabulates EEPS bin midpoint Dy, by biodiesel blend and phase. For P3,
the middle mode Dy, fell within the 16.5nm EEPS bin for all fuels except for B100
where the Dy, fell within the 22.1nm EEPS bin. For P5, P7, and P9, the middle mode
Dwmo most often fell within the 19.1nm EEPS bin, decreasing to 16.5nm EEPS bin for B10
(P7) and B50 (P9) and increasing to 22.1nm EEPS bin for B100 (P7). The 16.5, 19.1, and
22.1nm midpoint EEPS bins are consecutive bins, therefore the middle mode Dy, change
may have been just outside of the bounds of the 19.1nm EEPS bin (17.74 — 20.48nm).
The large mode Dy, was the most variable, shifting to a smaller Dy, as the percentage of

biodiesel increased. The only exception to this was in P9, the high load steady-state
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phase, when the largest Dy, increased by 2 EEPS bins (increasing from the 34nm EEPS

bin to the 45.3nm EEPS bin, skipping the 32.9nm EEPS bin) for B10 relative to BO.

Table 2.2: Modal Diameter (Dy,; Nm) and Mode Emission Rate Ratio relative to petrodiesel (B0).
Dwmo/( ERexx/ERgo) — Highlighted values indicate a reduction in ER relative to BO.

BXX BO B10 B20 B50 B100

© Small [108 / 1[108 / 23[108 / 11108 / 28[108 / 35
% Middle [165 / 1]165 / 2 |165 / 089|165 / 24221 | 44
& Large |453 / 1|453 / 24(392 / 08294 / 16|294 / 3.7
w Small [108 / 1|108 / 56(108 / 14[108 / 6 [108 / 58
¢ Middle [19.1 / 1]191 / 3.6|191 / 04191 / 17191 / 22
T Large | 34 / 1| 34 / 25| 34 / 04]294 / 1 |294 / 1.3
~ Small [108 / 1|108 / 35|108 / 06]108 / 35[108 / 46
¢ Middle [19.1 / 1]165 / 31191 / 05|191 / 35|191 / 7.7
& Large |523 / 1|523 / 27|523 / 06]294 / 15|294 / 3.6
o Smal [108 / 1[108 / 13]108 / 08108 / 13|108 / 29
S Middle 191 / 1]191 / 13191 / 08165 / 1.2|191 / 32
& large | 34 / 1453 / 191|294 / 07294 / 09| 34 / 18
& Small [108 / 1]108 / 32|108 / 1[108 / 34[108 / 42
§ Middle| 185 / 1|17.8 / 25|185 / 07 |178 / 22|199 / 44
< lLarge (414 /| 1442 | 24387 / 06|294 / 13306 / 26

Table 2.2 also tabulates the ratio of BXX ER (ERgxx) to BO ER (ERgo) showing
how the different blends increased or decreased the peak ER of the small, middle, and
large modes relative to that of BO. Generally, B10, B50, and B100 increased peak modal
ERs of all modes and phases relative to petrodiesel while B20 decreased them. Peak
modal ERs for B10 were on average greater than 2 times those of BO, while B20 ERs
were, on average, less than or equal to those of B0, consistent with the non-monotonic

trend seen in the TUFP data.
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The shifts observed in Dy, and ER of the small, middle, and large modes resulted
in a reduction in the mean diameter (MD) of the PND of up to 15.5 nm as the percent of
biodiesel in the fuel increased (Table 2.3; for detail on calculation, see the ‘Mean
Diameter Calculation’ section of the Appendix for more detail). This agrees with the
literature which typically reports reductions in MD as the biodiesel content of the fuel
increases [46,57]. It has been suggested that the reduction in MD is a result of the
increased oxygen content (~11% O2 m/m for B100) of biodiesel blends relative to BO
[16]. Because diesel engines run fuel-lean, the primary path through which an oxygenated
fuel, such as a biodiesel blend, affects emissions is by providing oxygen to fuel-rich
zones within the combustion chamber. As a result, the number of solid particles
generated from fuel-rich combustion, mainly in the accumulation mode, is reduced
through soot particle oxidation [16,57-59]. As the number of solid particles generated in
the combustion chamber decreases, so does the surface area available for subsequent
adsorption and condensation of volatile gases within the exhaust, which, in turn promotes
nucleation of particles, ultimately decreasing the overall MD of the PND [16]. This
explanation, however, indicates that, typically, the ER of the large, or accumulation

mode, would decrease as the percentage of biodiesel increased.

Table 2.3: Mean Diameter (nm) by Blend and Phase. A = MDgxx-MDgg

BO A|B10 A B20 A B50 A B100 A
P3(389 0381 -0802 | 35 -392 [ 29 -997 | 29.7 -9.29

g P5(357 0317 -406 |352 -0489 | 27 -877 | 278 -79
< P7|453 0422 -31 |464 107 |322 -132 | 301 -153
P9[358 0406 481 |313 -447 | 30 -579 | 246 -11.2
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Although a reduction in the overall MD of the PND was observed here, the only
fuel blend that generated a notable decrease in the large mode ER to BO across all phases
was B20 (Table 2.2 & Figure Al6). The fact that the overall MD of the PND decreased
while there was little loss in large mode particle ER for B50 and B100, coupled with the
non-monotonic trend observed in TUFP emissions, suggest that there were both hydraulic
and chemical mechanisms altering particle emissions as the biodiesel content of the fuel
increased.

2.4.4. Fuel Injection

Because the engine used for this test employed a pump-line-nozzle fuel injection
system, the hydraulic properties of the fuel likely affected fuel injection characteristics
from blend to blend, potentially altering the PN emissions. Many researchers have
indicated that, due to the higher viscosity of biodiesel relative to petrodiesel, less fuel
‘leaks’ through the injection pump for lubrication resulting in more fuel being injected
into the combustion chamber [27,41,46,57,60-62]. Additionally, the higher bulk modulus
of biodiesel relative to petrodiesel results in the fuel pressure pulse reaching the
mechanical fuel injector sooner [9,41]. The net result of changes in these fuel properties
indicate that more fuel can be injected into the combustion chamber sooner (SOI
advance) when biodiesel is used relative to petrodiesel, advancing SOC. Biodiesel’s
higher viscosity and lower volatility relative to petrodiesel can also affect fuel spray
duration, geometry, and atomization into the cylinder, potentially affecting combustion

dynamics [43].
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Here, fuel consumption was measured by weighing the fuel tank for the duration
of each run. The scale data indicated that the fuel consumption rate increased with
biodiesel blend in terms of mass (Figure 2.4A, see Table A7 for calculation details).
Additionally, the volumetric fuel consumption rate was calculated using the scale data
and the fuel densities in Table A2, and indicated that the volumetric fuel consumption
rate also increased with biodiesel blend (Figure 2.4B). This, combined with analysis
showing no statistical difference in throttle position, torque, and RPM from run to run,
suggests that the increase in fuel consumption rate and, therefore, overall fuel
consumption, was not the result of a change in operating conditions but likely the result

of a change in fuel viscosity.
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Figure 2.4: Average and standard deviation of fuel consumption rate by blend and phase from the
fuel tank scale. Fuel consumption rate determined from each replicate. Average and standard
deviation are of the three replicates: A) Fuel Consumption (mg/min); B) Fuel Consumption (L/min).
(n=3)

‘Fuel Injection Quantity’ was also logged via the scantool. This parameter,
reported in mg/stroke, is based on an empirical relationship between injection pump
operation and the fluid properties of standard petrodiesel. Figure 2.5A shows the average

and standard deviation reported ‘Fuel Injection Quantity’. These data indicate that,
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according to the ECU, the amount of fuel injected when using biodiesel blends was less
than or equal to that of petrodiesel. The difference between the directly measured scale
data and the empirically reported ECU data further support the finding that fuel
consumption of engines with pump-line-nozzle fuel injection systems can increase
without a change in operation (the ECU actually ‘thinks’ less fuel was being injected in
some instances). This is likely due to the difference in viscosity between biodiesel blends

and neat petrodiesel [27]. See the ‘Injector Pump Operation’ section in the Appendix for

more detail.
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Figure 2.5: Average and standard deviation of scantool fueling properties by blend and phase: A)
Fuel Injection QTY (mg/Stroke) B) Fuel Temperature (°C); C) Start of Injection (°BTDC). (n=3550
for 3 and n=600 for P5, P7, and P9)

Additionally, fuel viscosity is dependent on fuel temperature. As fuel temperature
increases from 45°C to 55°C, the viscosity of petrodiesel would decrease by
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approximately 0.28 c¢St, while the viscosity of neat biodiesel would decrease by
approximately 0.81 cSt [9]. As fuel temperature increases beyond 55°C, the change in
viscosity diminishes [9]. Here, the average fuel temperature measured within the injector
pump via the scantool (Figure 2.5B) indicates that the fuel temperature during the B10
data collection was slightly elevated (<5°C) relative to the other fuels which may have
caused a slight decrease in viscosity. Depending on the sensitivity of the injector pump to
fuel viscosity, this may have allowed more fuel to ‘leak’ through the injector pump
contributing to the reduction in B10 fuel consumption relative to BO (Figure 2.4). The
relationship between the viscosity of B10 and fuel temperature is, however, closer to that
of petrodiesel than neat biodiesel, therefore, the change in viscosity would have been
minimal, suggesting the increase in fuel temperature may not have been the only cause
for the decrease in B10 fuel consumption.

In addition to Injection Quantity and Fuel Temperature, the scantool also
collected SOI data. These data (Figure 2.5C) show that average SOI remained consistent
by phase throughout testing. It is hypothesized that SOI did not change by fuel blend
because the engine used for this study was equipped with a needle lift sensor on the #3
fuel injector giving the ECU a measure of SOI. With the SOI feedback provided by this
sensor, the ECU may have been able to adjust injector pump firing to maintain consistent
SOI regardless of the fuel being used minimizing the effect of advanced SOI on SOC

and, therefore, the effect on TUFP emissions.
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2.4.5. Combustion and Particle Growth
Although the data here do not support an advance in SOC due to an advance in

SOI, SOC may still have been advanced due to the oxygen content and the possible
cetane number increase of the biodiesel blends relative to the baseline petrodiesel [9].
Advanced SOC, along with possible changes in fuel spray duration, geometry, and
atomization, may have altered the proportion of premixed combustion to diffusion
combustion which may have affected the size and number of particles emitted,
contributing to the differences observed in PNDs and TUFP ERs from blend to blend
[27,45].

The increased oxidation of solid particles in the combustion chamber due to the
increased oxygen content of biodiesel is expected to decrease overall solid particle
emissions and the overall MD of the PND relative to BO [16,57-59]. Here, a decrease in
overall MD was generally seen for all biodiesel blends relative to petrodiesel (Table 2.3)
which is similar to other diesel fuel oxygenates [63]; however, a reduction in ERs was not
observed (Table 2.2). The increases in ER was likely due to multiple factors: 1) the
increase in fuel consumption indicates enriched combustion resulting in a larger
proportion of diffusion combustion and, therefore, soot formation (particles typically in
the accumulation mode) [45]; 2) and a possible increase soluble organic fraction (SOF) in
biodiesel exhaust relative to that of petrodiesel that has been shown to results in more
particle formation and potential growth relative to petrodiesel exhaust
[16,30,35,37,58,64-67].

Additionally, solid particles formed in the combustion chamber provide the

surface area needed for condensation and adsorption of gas or liquid phase constituents as
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they travel through the exhaust system. Changes in the solid particle size distribution
entering the exhaust system have the potential to affect the proportion of particle
nucleation to particle growth through condensation and adsorption onto existing particles,
further altering the PND measured at the sampling port.

Out of 12 studies that examined changes in both SOF and PM emissions from
biodiesel relative to BO, all reported increases in SOF; 8 reported decreases in PM
[30,37,58,66-70]; 2 reported PM increases [35,64]; and 2 reported PM decreases or
increases depending on test conditions [16,65].

Fontaras et al. reported increases in both PN and PM resulting from increased
SOF in biodiesel exhaust relative to petrodiesel [16]. The PNDs reported in Fontaras et
al. were similar to those reported here in that biodiesel exhaust particle ERs increased
across the majority of the D, range measured. They, however, only tested BO, B50, and
B100 [16]. Tinaut et al., on the other hand, measured PM emissions from two LDD
vehicles fueled by B0, B5, B10, B20, B50, and B100 and reported a non-monotonic trend
in PM emissions for both vehicles: B5 and B10 increased PM emissions relative to that of
B0, B20, B50, and B100 [71].

In summary, while researchers have reported non-monotonic trends between low
blends of biodiesel for gas-phase emissions, PM emissions, and thermal efficiency
[61,62,71,72], this study is one of few to report non-monotonic trends for TUFP

emissions.
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2.5. Conclusion
On average, WVO B10 increased TUFP ERs to 2 times that of BO while

following a drive cycle that simulated light-duty vehicle urban driving conditions. This
increase in TUFP was due to an increase in 5.61 to 100 nm diameter particles with an
accumulation mode Dy, between the 34 and 52.3nm EEPS bins. The accumulation mode
ER was lower for B20 and shifted to smaller Dy, for B50 and B100 relative to BO
(Figure 2.3 and Figure A16). The TUFP ER decreased slightly relative to BO when using
B20 while the ER observed for B50 and B100 increased to ~2 and 3 times that of BO.
Unlike B10, however, the B50 and B100 TUFP increases were primarily due to increases
in emissions of smaller diameter particles. Additionally, the data show that engine speed,
more so than load, may be a better indicator of particle emission rates given that P5 and
P9 (with load/engine speeds of 5%/2700RPM and 50%/3000RPM, respectively)
generated the highest particle number emission rates of all four phases (Figure 2.2, Figure
Al4, & Figure A16).

The trend in TUFP data observed here is likely due to a combination of factors
including fuel composition, engine type, and dilution conditions. Because there are a
variety of engine designs in use, it is important to perform similar tests on multiple
engines to get a clear view of the effect of biodiesel on fleet emissions. Dilution condition
variation also complicates comparison of results across studies. If a standard dilution
system capable of consistent UFP PND measurements was adopted, comparison across
various studies could be more readily conducted. Particle measurement systems that
conform to the E.U. Particle Measurement Programme (PMP) are a step in the right

direction; however, they only measure solid particles above Dp~23nm [73] whereas
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particles, both solid and liquid, smaller than 23nm may play an important role in human

health.
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CHAPTER 3: DIFFERENCES IN TOTAL ULTRAFINE PARTICLE EMISSIONS
FROM WASTE VEGETABLE OIL-BASED BIODIESEL AND
SOYBEAN OIL-BASED BIODIESEL FROM A DIESEL ENGINE

3.1. Abstract

To determine the effect of biodiesel feedstock on engine-out particle emissions, a
naturally aspirated diesel engine was fueled with neat ultra-low sulfur on-road diesel
(B0O), two neat biodiesels (B100), and B10, B20, and B50 blends thereof (where XX in
BXX refers to the percentage of biodiesel v/v in the blend). The two lots of biodiesel
were neat waste vegetable oil-based biodiesel (WVO) and neat soybean oil-based
biodiesel (SOY). The fatty acid methyl ester composition of the WVO biodiesel suggests
that the waste vegetable oil was primarily used soybean oil. Particle number
concentrations were collected at 1Hz with a TSI 3090 Engine Exhaust Particle Sizer,
while the engine followed a drive cycle consisting of a transient portion developed from
on-road vehicle operation and three steady-state modes. Total ultrafine particle (TUFP;
Dp<100nm) number emission rates (ERs) for both biodiesel fuels exhibited a non-
monotonic increasing trend — increasing relative to BO with B10, decreasing for B20, and
then increasing again for both B50 and B100. The ratios of B10, B20, B50, and B100
ERs to BO during transient operation were 2.2, 0.9, 1.9, and 3.2 for the WVO blends and
1.2, 0.83, 1.1, and 2.5 for the SOY blends, respectively. Additionally, WVO biodiesel
blends increased nucleation mode emissions relative to BO more so than SOY biodiesel
blends resulting in a larger reduction of the overall mean particle diameter for WVO

blends relative to SOY blends. The data collected in this study suggest that the primary
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cause for the differences observed in particle emissions between WVO and SOY was due
to the heat cycling of the feedstock oil prior to biodiesel production and that TUFP
emissions from WVO blends relative to petrodiesel are generally higher than those from
SOY blends. This suggests that emissions from WVO blends may be more detrimental to

human health than that from SOY blends.

3.2. Introduction

3.2.1. Background
In urban areas, motor vehicles account for a significant fraction of particle

emissions [1,2]. Numerous studies have shown that airborne particle emissions contribute
to adverse human and environmental health outcomes worldwide [3-5,74]. Exposure to
high levels of airborne particles can lead to a number of respiratory and cardiovascular
problems including discomfort in irritated airways, increased asthma attacks, irregular
heartbeat, non-fatal heart attacks, and even death [6].

One indicator of a particles potential health threat is particle diameter (D). As
particle size decreases, so does particle mass, resulting in lower inertia and higher
mobility. The particle size distribution (PSD) found in the atmosphere is typically
comprised of three modes: the coarse, accumulation, and nuclei modes [10]. Their modal
diameters generally fall in the Dy>1000nm, 50<D,<1000nm, and 5<D,<50nm ranges,
respectively [10]. Of these particles, those that have the highest potential to deposit in the
alveolar region of the lung where they may subsequently pass directly into the
cardiovascular system are ultrafine particles (UFP; D,<100nm) [3,6,10]. Emissions from
light-duty automobiles in the U.S. are currently regulated by the Tier 2 emissions

standards, which limit tailpipe particulate emissions on a total particle mass (PM) per
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distance basis (g/mi) [11]. Total PM, however, does not adequately characterize UFP
emissions because the mass of a UFP is essentially negligible relative to larger particles.
A more effective measurement used to characterize UFP emissions is particle number
(PN) concentration, the number of particles per volume of air which is why PN emission
regulations have been introduced for automotive emissions in the E.U. [10,12-15].

Research has shown that diesel vehicles are a major source of UFP in urban areas
and that the particulate emissions from them are highly dependent on fuel composition.
Recent interest in energy independence and security has led to legislation that mandates
the use of renewable fuels in the U.S. leading to further expansion of domestic biodiesel
fuel use [7]. This is evident by the 28% increase in the required production of biomass-
based diesel (primarily biodiesel) between 2012 and 2013 [21]. This change in the fuel
composition used by the nation’s fleet potentially affects UFP concentrations in
respirable air.
3.2.2. The Diesel Fleet

Although the U.S. diesel fleet is primarily heavy-duty diesel (HDD), there has
been a surge in light-duty diesel (LDD) sales. Registration for LDD vehicles, including
passenger cars and sport utility vehicles, rose by 24% between 2010 and 2012 [25].
Additionally, the number of diesel passenger car and sport utility vehicle models
available in the U.S. has increased from 3 to 22 between the years 2000 and 2014 [24].
3.2.3. Variation in Biodiesel Properties

Biodiesel can be produced from a variety of lipid feedstocks such as vegetable

oils, animal fats, or combinations thereof, resulting in variation between different
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biodiesels. Biodiesels processed from different lipid feedstocks have different fatty acid
methyl ester (FAME) profiles. The degree of unsaturation of the individual fatty acids is
an indicator of their reactivity — the higher the degree of unsaturation, the more reactive
the fatty acid is. There are 5 fatty acids that typically dominate the FAME profile of
biodiesels derived from vegetable oils or animal fats. In order of increasing degree of
unsaturation, these include palmitic acid, steric acid, oleic acid, linoleic acid, and
linolenic acid [75]. The average unsaturation level of all the fatty acids that make up a
particular biodiesel has been found to be highly correlated to fuel properties such as
viscosity, specific gravity, cetane number, iodine value, and low temperature
performance metrics [75].

Biodiesel can also be produced from fresh or used (heat cycled) lipids that can
result in further variation. When cooking oil is heated, three basic types of reactions
occur: thermolytic, oxidative, and hydrolytic reactions [76,77]. Thermolytic reactions
occur at high temperatures in the absence of oxygen. Normal alkanes, alkenes, lower
molecular weight fatty acids (fewer carbon atoms), symmetric ketones, oxopropyl esters,
CO, and CO; can be produced from triglycerides that contain saturated fatty acids
[76,77]. Dimers and trimers can also form through reactions of different unsaturated fatty
acids [76,77]. Triglycerides that contain unsaturated fatty acids can form compounds
such as dehydrodimers, saturated dimers, and polycyclic compounds [76,77]. Oxidative
reactions occur with unsaturated fatty acids. Hydroperoxides are typically formed as a
primary product of an oxidative reaction [76,77]. Hydroxy or keto derivatives can also be

formed [76,77]. Additionally, free fatty acids, glycerol, monoglycerides, and diglycerides
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are products of the hydrolysis of triglycerides [76,77]. Although feedstock oil is typically
pre-processed prior to transesterification to purify the oil of impurities [50], some of the
products of heat cycling can inevitably affect the properties of the biodiesel produced
from that feedstock.

Finally, although biodiesel can be used as a diesel alternative in its neat form, it is
typically blended with petrodiesel for on-road use at levels of <B20 (20% biodiesel; 80%
petrodiesel, v/v). Given the multitude of fuel parameters that can affect emissions, it has
been suggested that there may be interactions, or synergies, between different emissions
formation mechanisms that result in non-monotonic trends in emissions as the biodiesel
content in the fuel increases [61,62,71,72,78].

3.2.4. Fuel Properties and Emissions

Fuel properties can alter particle emissions by affecting injection, combustion,
and nucleation characteristics. Compared to petrodiesel, biodiesel has a higher viscosity,
density, and bulk modulus [9,41,42]. There is also variation in these fuel properties
between biodiesels from different feedstocks and, of course, between biodiesel blends.
Fuel lubricates the injection pump utilized in pump-line-nozzle fuel injection systems. To
provide adequate lubrication, the tolerances between parts within the pump are designed
to allow some fuel through, diverting it from the fuel injector and back through the pump.
As the viscosity of the fuel increases, less fuel ‘leaks’ through the pump, providing more
fuel to the combustion chamber. This results in a sharper rise in fuel pressure and a
higher ultimate pressure at the outlet of the injector pump [27]. The speed of the pressure

pulse through the fuel line between the injection pump and the injector is then dependent
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on the bulk modulus of the fuel — the higher the bulk modulus, the faster the pressure
pulse [30,41,42]. If a fuel has a higher viscosity and bulk modulus, the resulting injection
event can inject more fuel sooner (advanced start of injection (SOI)) compared to a fuel
with a lower viscosity and bulk modulus [27]. In some cases, engines are equipped with a
sensor that can provide SOI feedback to the ECU which can then alter injection pump
firing to minimize changes in SOI. Additionally, changes in pressure rise and the amount
of fuel injected can alter the duration and rate of fuel injection into the combustion
chamber, potentially changing the stoichiometric profile within the combustion chamber
before and during combustion.

Fuel properties can also affect combustion. Fuels that are more oxygenated than
others can result in leaner combustion for an equivalent injection volume. Even though
diesel engines typically run fuel lean, oxygenated fuels provide fuel-borne oxygen to
areas in the combustion chamber that tend to be locally rich [27]. This can result in faster
combustion rates and more complete combustion. Cetane number, an indicator of ignition
delay — the finite amount of time between SOI and start of combustion (SOC), can also
vary from fuel to fuel. Fuels with a higher cetane number can advance SOC that can
subsequently alter the amount of premixed combustion relative to diffusion combustion
[27,45]. Additionally, atomization of lower volatility fuels (such as biodiesel relative to
petrodiesel) within the combustion chamber can be more difficult, again, affecting the

stoichiometric profile within the combustion chamber [43].
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Low volatility fuels also tend to have low volatility exhaust gases which can
affect emissions by altering the proportion of particle nucleation relative to condensation
and adsorption as the exhaust gases cool within the exhaust pipe [46].

3.2.5. Objectives

Given that the diesel fleet in the U.S. is primarily HDD and that particulate
emissions are currently regulated in terms of PM, the majority of prior studies on
biodiesel vehicle/engine particle emissions examined HDD engines and typically report a
reduction in PM emissions as the biodiesel content of the fuel increases [57]. It is,
however, important to recognize that the 1) LDD fleet is expanding [24,25] 2) UFP
emissions measured on a PN basis are more relevant to human health than total PM
emissions, 3) biodiesel emissions generated from one feedstock may be different than
those generated from another feedstock, and 4) processing of the feedstock, prior to
biodiesel production, may have an effect on subsequent UFP emissions. The objective of
this study was to compare the engine out UFP emissions of an engine similar to those in
LDD vehicles while exercised through a transient drive cycle fueled by multiple biodiesel
blends from two different feedstocks. The biodiesels used were waste vegetable oil-based
biodiesel (WVO) processed from used soybean oil and soybean oil-based biodiesel
(SOY) processed with fresh refined, bleached, and deodorized (RBD) soybean oil, both

blended with ultra-low sulfur diesel (ULSD).
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3.3. Methodology

3.3.1. Engine Specifications
PN emissions data for this study were collected from a 4 cylinder 1.9L

Volkswagen SDi engine coupled to an eddy current dynamometer (Table 3.1). The
engine is similar to those found in EURO Il Volkswagen automobiles. Sold for industrial
purposes, this engine conforms to emissions certification EC 97/68 Stage I1IA. It has no
exhaust gas recirculation, selective catalyst reduction, diesel particulate filter, or catalytic

converter — the emissions data reported are engine out.

Table 3.1: Engine and Dynamometer Specifications

Manufacturer: Volkswagen
Identification Code: | ARD

Charge Air: Naturally Aspirated
Capacity: 1896cm®
Cylinders: 4

Bore: 79.5mm

Stroke: 95.5mm

Compression Ratio: | 19.5:1
Nominal Output: 44 kW @ 3600 RPM

Max Torque: 130Nm @ 2000 - 2400 RPM
Minimum CN: 49

Control System: Bosch EDC

Fuel Injection: Bosch VE injection pump
EGR: None

Manufacturer: Zelu/ Klam

Model Number: K-40 PAU

Max Power: 60kW

Max Torque: 145Nm
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3.3.2. Fuel Specifications
The fuels used for this study were two lots of BO (neat ULSD, Trono Fuel,

Burlington, VT), one lot of WVO B100, and one lot of SOY B100. Both the neat WVO
and neat SOY biodiesels were produced by the University of Connecticut (UCONN)
BioFuel Consortium using the methods documented in Pomykala et al. and Boucher et al.
[49,50]. The WVO was processed from waste vegetable oil from UCONN dining services
and the SOY was processed from edible soybean oil sourced from Catania-Spagna
Corporation. Both neat biodiesels were treated with antioxidant (Chemtura Naugalube®
403, see the ‘Antioxidant Data Sheet’ section of the Appendix for more detail) at
2000ppm (w/w). B10, B20, and B50 were blended from WVO and the first lot of BO and
from SOY and the second lot of BO. B10 and B20 were selected because they are within
the range of biodiesel blends typically sold for on-road use. B50 and B100 were also
tested to provide data across the range as it is possible to use blends up to B100. The
UCONN BioFuels Center for Environmental Sciences and Engineering performed ASTM
testing on all but the first lot of petrodiesel and confirmed that both biodiesels conformed
to the ASTM standards with the exception of cold soak filtration and combined sodium
and potassium of the WVO B100. ASTM test results can be found in Table Al. All fuels
were tested in triplicate (30 tests in total).

An analysis of the FAME profiles of the WVO and SOY biodiesels was
performed (Figure 3.1) [79]. Compared to the FAME compositional profile of the SOY
biodiesel and to those found in Hoekman et al. [75], it was determined that the used
cooking oil employed for production of the WVO biodiesel was likely to primarily be

soybean oil [79].
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Figure 3.1: Percent composition of FAMEs for UVM WVO and UVM SOY (determined by PhD
student, John Kasumba, [79] through GC-MS analysis) compared to those in Hoekman et al. [75].

Chemical analysis of the two lots of petrodiesel was also performed. The results
indicate that, in terms of n-alkanes, the two lots of petrodiesel were nearly identical

(Figure 3.2) [79].
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Distribution of n-alkanes in diesel fuel
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Figure 3.2: Distribution of n-alkanes in the petrodiesel fuel used to prepare the WVO and SOY
biodiesel blends. Error bars refer to one standard deviation. n = 2. Determined by PhD student, John
Kasumba, and found as Figure 3.12 in his dissertation [79]. Data from a Schauer et al. (1999)
removed because they were unnecessary here.

The blended fuels were also analyzed for n-alkanes. Regression equations
generated for total n-alkanes vs. BXX% by feedstock showed little difference between
BXX blends further indicating that, in terms of n-alkane content, the differences between

the two lots of petrodiesel and the different biodiesels were negligible (Figure 3.3) [79].
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Figure 3.3: Concentration of n-alkanes (pg/gal) in diesel (B00) and biodiesel fuel blends from both
feedstocks. Determined by PhD student, John Kasumba, and found as Figure 3.14 in his dissertation
[79].

3.3.3. Drive Cycle
A portion of the drive cycle used to collect PN emissions for this study was

developed from on road data collected via scantool from a 2003 Volkswagen TDi Jetta
sedan (ALH engine code) with an automatic transmission along a predefined driving
route through downtown Burlington, VT [52]. The TDi engine in this on-road vehicle
was essentially a turbocharged version of the SDi test engine.

The drive cycle consisted of a 60-minute transient portion (developed with the on-
road VW Jetta data) and three 10-minute steady-state portions (defined by RPM). These

are referred to as Phases 3, 5, 7, and 9 (P3, P5, P7, and P9) and have average nominal %
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loads of 12, 5, 36, and 50% (while fueled with neat ULSD; calculated with the torque
curve supplied by Volkswagen; see the ‘Percent Load Calculation’ section of the
Appendix for more detail), respectively. P3 commenced after warming the engine up by
running it at 3000RPM, 60% throttle until the coolant temperature stabilized at 92+2°C.
Additionally, prior to collecting data for this study and between collection of the
WVO data and SOY data, the engine oil was changed, and the engine was run at
3300RPM and 85% throttle for two ten minute periods in order to volatilize any
contaminants within the exhaust system. Data were then collected in triplicate for WVO
B0, B10, B20, B50, and B100, followed by the same blends of SOY in the same order.
More information regarding the decision to develop a new drive cycle and the drive cycle
itself can be found in Chapter 2 and the ‘Drive Cycle Development’ section of the

Appendix.

3.3.4. Measurement Methodology

3.3.4.1. Exhaust Dilution
A Dekati diluter (Kangasala, Finland) modified to provide a dilution ratio (DR) of

approximately 80 was used to simulate atmospheric dilution and to facilitate sample
measurement for this study. Inlet gas temperatures were maintained at ~30°C (dilution
air) and ~110°C (raw exhaust sample) throughout sampling. Table A3 lists the
components of the dilution system which are numbered to correspond to Figure Al, a
schematic of the dilution system. More detail regarding the dilution system can be found

in Holmén et al. [54].

50



3.3.4.2. Data Acquisition
Engine operating parameters, dilution system data, and PN emissions were

collected simultaneously at a minimum of 1Hz for this study. Engine operating data were
collected via a Ross-Tech VCDS scantool (ver. 11.11.6) from the engine control unit
(ECU) and the engine/ dynamometer control software, Armfield ArmSoft (ver. 1.43)
from auxiliary sensors. A National Instruments data acquisition system (Labview, ver.
8.6.1) collected additional engine operating parameters and dilution system conditions. A
TSI Inc. (Shoreview, MN, USA) 3090 Engine Exhaust Particle Sizer (EEPS; 32 channels
from 5.6-560nm) was used to collect PN concentration (#/cm®) data. All computers used
for data collection updated their clocks to a local time server at 16 second intervals to
ensure all data were recorded relative to the same clock, minimizing the need for time
alignment during post-processing. Data from the individual instruments were post
processed using calibration equations and by interpolation to a common time stamp
where necessary.

To verify the EEPS measurement accuracy throughout the data collection
sequence, both instrument and tunnel blanks were analyzed. The instrument blanks
comprised 10 minutes of EEPS 1Hz data collected before each run with a HEPA filter
attached to the aerosol inlet. The tunnel blanks contained the same amount of data
collected with the dilution system connected to the EEPS without the engine running. The
average particle concentrations for both the instrument blank and the tunnel blank were
calculated for each EEPS bin and plotted against TSI’s stated minimum detection limit.

To account for differences in ambient particle levels from run to run, the EEPS data were
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corrected with the tunnel blank data during data post processing (see the ‘PN Data and
Blank Correction’ section of the Appendix for more detail).

Once blanks were corrected, the EEPS data and the individual files collected by
the other instruments were concatenated into one database. Even though each instrument
logged data relative to the same clock, there was an inherent time lag between the
operational data and the PN data associated with the time necessary for the exhaust
sample to get from the sample port in the exhaust pipe, through the dilution system, and
to the EEPS, where it was measured. To align the PN and operational data, the total PN
(TPN) response measured by the EEPS was compared to the RPM response measured by
ArmSoft at engine on and engine off. The time differences between TPN and RPM for
these two events were measured for each run. The EEPS data for each run was then
shifted by the average of these two measurements to align the data.

Once concatenated and aligned, the PN data were also corrected for DR with the
dilution data collected via LabView. Finally, PN emissions rates (ERs) were calculated as
stated in Chapter 2. More detail regarding data processing can be found in the ‘Engine

Exhaust Particle Sixer Post Processing’ section of the Appendix.

3.4. Results and Discussion

3.4.1. Engine Operation
To verify that, operationally, the engine performed similarly for all 30 tests during

P3, cumulative distribution functions (CDFs) were generated for torque, engine speed,
and throttle position. The resulting CDFs for every run were then plotted on the same
axes for comparison (Figure A5). These plots indicate that throttle position, a directly

controlled parameter, remained consistent from run to run. The other directly controlled
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parameter was % power to the dynamometer, a parameter closely related to torque which
was also nearly equivalent. Lastly, engine speed did show some variability between runs.
Upon further inspection it was apparent that the CDFs clustered by BXX blends with BOO
blends on the upper portion of the curve and with B100 blends on the lower portion of the
curve. This indicates that there may have been slight differences in throttle response
related to fuel type. To determine if the observed variability within these parameters was
statistically significant, two sample Kolmogorov—Smirnov (KS) tests were performed
between all combinations of runs. None of the KS tests rejected the null hypothesis that
the CDFs compared were from the same continuous distribution.
3.4.1.1. Dilution Conditions

Across all runs, including both the WVO and SOY sequences, dilution air
temperature, exhaust sample transfer line temperature, dilution air flow, and dilution air
pressure were consistent with mean * standard deviation values of 26.7+0.93°C (CV =
3.5%), 107.8+£0.47°C (CV = 0.44%), 83.6+x2.7LPM (CV = 3.2%), 29.6+£0.45PSIG (CV =
1.5%), respectively. There was, however, more variation in exhaust sample transfer line
flowrate with a mean of 1.02+0.125LPM (CV = 12.2%). Because DR is sensitive to this
flowrate, its mean across all runs was 84.2+11.3 (CV = 13.4%). DR box plots by run can
be found in Figure A6. Abdul-Khalek et al. [48] found that the nucleation mode
(geometric number median diameter, DGN, in the 7-30nm range) concentrations are
sensitive to changes in DR below 40 while the accumulation mode (DGN 50-80nm
range) remain relatively constant. Additionally, Kittelson et al. [10] found that, above a

DR of approximately 50, the saturation ratio of condensable hydrocarbons decreases
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substantially, suggesting that particle number distributions (PND — number weighted
PSD) are less sensitive to variations in DR>50. Although the DR did vary during the test
sequences, it was consistently >50 for this research and the PN data were corrected with
second-by-second DR. With this in mind, it was assumed that the variation in dilution
ratio had a negligible effect on the TUFP data.
3.4.2. Ambient Conditions

For this study, the engines intake air was ambient air (conditions uncontrolled)
with the mean + standard deviation values for ambient temperature, ambient pressure,
and ambient absolute (ABS) humidity at 19.846.1C, 991+4.3mbar, and
9.9+4.6mQwater/Litery, respectively. These measurements are all within normal
atmospheric conditions so any affects they may have had were indicative of real world
variability. To investigate trends between these parameters and TUFP emissions, scatter
plots of each parameter versus TUFP emissions by BXX blend and feedstock (Figure
A8- Figure A13) were generated. A linear regression line was also included on each
scatter plot to indicate if there was a positive or negative relationship between TUFP
emissions and the parameter in question. The majority of the data show that TUFP ERs
increase with an increase in ambient pressure, a decrease in ambient temperature, or a
decrease in ambient ABS humidity. Some of this data, however, suggest the opposite;
therefore, no definitive trend between these ambient parameters and TUFP emissions was

found with this limited data set.
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3.4.3. Engine Exhaust Particle Sizer Blank Verification
An analysis of the average particle concentration for the instrument blanks

collected before each run indicated that, throughout both the WVO and SOY sequences,
the operation of the EEPS was consistent (Figure A2A). The tunnel blank data, however,
show that background particle concentrations were elevated for the WVO sequence
relative to the SOY sequence (Figure A2B). The difference in background concentration
was accounted for by correcting the EEPS data with the tunnel blank data during data
post processing (see the ‘PN Data and Blank Correction’ section of the Appendix for
more detail).
3.4.4. TUFP Emission Rate

Figure 3.4 shows the TUFP ERs measured for each fuel tested by phase. Here,
TUFP ER refers to the summation of the ERs from the first 20 EEPS bins;
5.6<Dy<99.7nm. All phases show a non-monotonic trend in TUFP ERs relative to
biodiesel blend for both WVO and SOY blends. TUFP ERs measured during the SOY
sequence were higher than those measured during the WVO sequence. This included the
TUFP ERs measured for the baseline petrodiesels, which, in terms of n-alkanes, were
found to be very similar. In Chapter 2, it was suggested that the dependency of fuel
viscosity on fuel temperature may affect fuel consumption and, subsequently, TUFP
emissions. To this end, fuel temperature, as measured by the scantool, and fuel
consumption rate, as measured by LabView via a fuel tank scale, were plotted (Figure
3.5). Although there was, on average, an approximate 10°C difference in BO fuel

temperature from the WVO sequence to the SOY sequence as seen in Figure 3.5A, there
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was not a significant change in fuel consumption rate between the two fuels (Figure 3.5B
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Figure 3.4: Mean TUFP ER (5.6nm < D, < 99.7nm) by run phase and biodiesel blend percentage.
Each column represents the mean of combined triplicate data for each fuel blend and feedstock.
Error bars represent + 1 standard deviation. N = 3600x3 for P3 and 600x3 for P5, P7, and P9. Note:
Y-axes are scaled differently from plot to plot.

Although the data collected from the WVO and SOY sequences show consistency
across fuels, fuel consumption rate, engine and dilution system operation, and ambient
conditions, the difference in TUFP emissions, specifically those between the petrodiesels,
suggest an underlying difference between the test sequences that was not captured in
these measurements. For this reason, TUFP ERs were not directly compared between the

feedstocks. Comparison between feedstocks was done on a ratio basis - the ratio between
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the TUFP ER of each biodiesel blend (B10, B20, B50, and B100) and the TUFP ER of

the associated petrodiesel (B0) (Table 3.2).
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Figure 3.5: (A) Fuel Temperature, (B) Gravimetric fuel consumption, (C) Volumetric Fuel
Consumption

Both Figure 3.4 and Table 3.2 indicate a non-monotonic trend between biodiesel
content in the fuel and TUFP ER for both feedstocks similar to those found by Tinaut et
al. for PM emissions [71] and by Surawski et al. [78] for PN emissions. The Perkins
engine used by Surawski et al. was a 4 cylinder naturally aspirated engine with a pump-
line-nozzle fuel injection system similar to the one used here. The test vehicles in Tinaut
et al. were a Renault Laguna 2 1D and a Renault 19 1.9D. The engines in these vehicles
were likely 4 cylinder engines as well and, given that the paper was published in 2005,

may have also had pump-line-nozzle fuel injection systems and been naturally aspirated.
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The data collected for this study show that the TUFP ER increased for B10 relative to BO,
decreased for B20, and increased for B50 and B100 (Figure 3.4). Similar trends were
found for TPN ERs (summation of all EEPS Data from 5.6-560nm —Figure A15).
Additionally, this pattern was consistent through all 4 drive cycle phases. Table 3.2
shows that the non-monotonic trend was more pronounced for the WVO data in that the
ER ratios relative to BO deviated from one with greater magnitude than the SOY ER

ratios.

Table 3.2: Ratio of Biodiesel Blend TUFP emissions to that of the Baseline Petrodiesel.
BO B10 B20 B50 B100

P3 1 22 09 19 32

o P5 1 29 052 15 17
> P7 1 28 058 18 34
= P9 1 17 073 1 2.1
Average 1 24 07 16 26

P3 1 12 083 11 25

> P5 1 16 13 11 22
8 P7 1 18 11 12 24
P9 1 13 12 1 1.1
Average 1 15 11 11 21

From a phase-to-phase perspective, P5 and P9, the light load and high load
steady-state phases, respectively, produced the highest TUFP ERs (Figure 3.4) and TUFP
concentrations (Figure Al4). This is likely due in part to engine speed. The average
engine speeds P3, P5, P7, and P9 were 1500, 2700, 2000, and 3000RPM, respectively.
Since P5 and P9 had the highest average engine speeds, the finite amount of time
available for the expansion (or power) stroke was, on average, less than that of P3 and P7

(the expansion stroke for P9 was on average ~1/2 that of P3). This likely led to more
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unburnt and partially burnt hydrocarbons (fuel) passing through the combustion chamber.
These hydrocarbons may have led to the formation of particles in the exhaust system as
the gases cooled, increasing particle concentrations and ERs relative to lower engine
speeds.

The majority of the literature reviewed did not specifically report on TUFP
emissions; however, many showed that biodiesel increases nuclei mode particle
emissions and decreases accumulation mode emissions relative to BO
[16,17,27,28,30,36—-38]. This suggests that, depending on the proportion of change within
the UFP range, TUFP emissions could either increase or decrease for biodiesel blends
relative to BO. Most of the studies reviewed suggested that TUFP emissions decreased
relative to BO [27,30,32,39,40], while others suggested an increase with an increase in the
proportion of biodiesel in the fuel [16,17,37,56,78].

3.4.5. Particle Number Distribution

In order to determine if certain particle sizes within the UFP range were causing
the observed differences in TUFP emissions between the two feedstocks, the average
PND for each fuel blend was plotted (n=3). Figure 3.6 depicts the average PNDs for both
the WVO and SOY biodiesel blends by phase. These plots are log — log by convention,
which veils the differences between blends. These differences are more apparent on log —
linear plots (Figure A16 and Figure Al7).

All PNDs reported are trimodal. These modes are described in terms of modal
diameter (Do) as the small, middle, and large mode. These modes change between fuel

blends and phases relative to Dy, (along the X axis) and ER (along the Y axis).
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Throughout all testing, the Dy, for the small mode consistently fell within the 10.8nm
EEPS bin (9.98 — 11.52nm) regardless of fuel. The Dy, of the middle mode ranged from
15.4 — 20.5nm (a span of 2 EEPS bins) for all but WVVO-B100 during Phase 3, which had
a Dy that fell within the 22.1nm EEPS bin (20.5 — 23.7nm). This shift (Table A6) was
more dependent on drive cycle phase than fuel. The Dy, of the large mode ranged from
27.3 — 56.1nm (a span of 5 EEPS bins) for the WVO dataset and from 27.3 — 48.6nm (a
span of 4 EEPS bins) for the SOY dataset (Table A6). As discussed in Chapter 2, the
large mode Dy, for WVO-B0, WVO-B10, and WVO-B20 were typically the same while
the large mode shifted to a smaller Dy, for WVO-B50 and WVO-B100. The SOY PNDs,
however, do not show as significant of a shift to smaller Dy,. For P3, SOY-B0 and SOY-
B10 exhibited a smaller Dy, in the large mode than SOY-B20, SOY-B50, and SOY-
B100. For P5, SOY-BO0 had the highest large mode Dy, in the 39.2nm EEPS bin, which
dropped to the 34nm EEPS bin for B10, down to the 29.4nm EEPS bin for B20, and back
up to the 34nm EEPS bin for B50 and B100. The large mode Dy, for P7 and P9 were
relatively consistent at 34nm except for SOY-B20, which generated a large mode Dy, of

45.3nm in both phases.
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Regarding the ratio of Dy, ERpxxS to their associated ERgo, the WVO ratios
deviate from one more than those of the SOY (Table A6). The individual P3 Dy, ERs for
WVO0-B10, WVO-B50, and WVO-B100 were on average more than 2 times that of
WVO-BO0 (Table A6). In contrast, all of the SOY blend Dy, ERs except SOY-B100 were
within 2 times that of SOY-B0 (Table A6). Additionally, SOY-B10 did not significantly
increase the large mode ER relative to SOY-BO, as was the case for WVO-B10 compared
to WVO-BO (Table A6). The SOY PNDs for P5, P7, and P9 also showed more consistent
shapes than the WVVO PNDs (Figure A16 & Figure Al7). All phases also demonstrate
that SOY-B20 and SOY-B50 emissions were similar in terms of both PND shape and ER
(Figure Al7). Interestingly, Figure A17 shows that, during P9, the large mode ER for
SOY steadily increased with biodiesel blend while the small and middle modes steadily
decreased — the opposite of what has been reported in the literature [16,57-59]. This is
supported by Figure 3.7, which shows the average ERgxx/ ERpgo ratios across all phases
for all three modes and each biodiesel blend. Here (Figure 3.7), one can see that, for the
WVO biodiesel, the small and middle mode ERs increased more than the large mode ERs
as the percentage of biodiesel in the fuel increased. Conversely, the middle and large
mode ERs increased more than the small mode ERs for the SOY biodiesel blends. This
suggests that WVO increased the concentration of nuclei particles relative to BO more

than SOY did.
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Figure 3.7: ERgxx/ ERg, ratio averaged over all phases by biodiesel blend and mode size (SM = Small
Mode; MM = Middle Mode; LM = Large Mode)

The changes in Dy, and peak modal ERs caused the overall mean diameter (MD)
of particles emitted from the biodiesel blends to decrease relative their respective
petrodiesel baseline in most cases which is similar to reports in the literature (Table 3.3)
[46,57]. In general, the overall MD for WVO blends decreased more than that of SOY
blends suggesting that, given that same particle composition, the TUFP emissions
associated with WVO blends could be more detrimental to human health than those from

SOY blends because more particles would be inhaled.
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Table 3.3: Mean Diameter (nm) by Blend and Phase. A = MDgyx-MDg,

BO A | B10 A B20 A B50 A B100 A

P3 (389 0381 -0802 | 35 -392 | 29 -997 | 29.7 -9.29
C>> P5|357 0317 -406 |352 -0489 | 27 -877 | 278 -79
< P7|453 0|422 -31 |464 107 |322 -132 | 301 -153
P9 | 358 0406 481 |31.3 -447 | 30 -579 | 246 -11.2
P3(306 0| 29 -158 (348 416 |328 224 | 298 -0.744

> P5(401 0373 -279 [30.7 -944 | 31 -9.13 33 -71.07
8 P7| 38 0355 -249 396 157 |373 -0.692 | 322 -575
P9 339 0347 0.715 |425 853 |391 511 | 327 ~-1.2

The differences in TUFP emissions between feedstocks are more subtle than the
differences observed between WVO biodiesel and petrodiesel in Chapter 2. The chemical
testing performed on the fuels suggests the two lots of petrodiesel were very similar and
that both the WVO and the SOY biodiesel were made from a soybean oil feedstock. It is
hypothesized that the reactions that can occur during heat cycling of the feedstock oil as
described in Section 3.2.3 may have been a main factor leading to the differences
observed between WVO and SOY TUFP ERs and PNDs relative to their baseline
petrodiesels.

Mittelbach et al. (1999) showed that polymer and polar compounds in rapeseed
oil increased over time as they simulated cooking use by heating at 180°C. As a result,
the content of dimeric fatty acid methyl esters in the biodiesel produced from the heated
rapeseed oil increased [80]. Additionally, the viscosity and Conradson carbon residue (a
test used as an indicator of a fuel’s coke-forming propensity) of the biodiesel increased
and the volatility decreased relative to the amount of time that the rapeseed oil was

heated [80].

64



The neat WVO used for this study had a higher viscosity and carbon residue than
the neat SOY used for this study (4.354 mm?/sec and 0.050% mass compared to 4.166
mm?/sec and 0.033% mass, respectively; Table A1), which is similar to the findings in
Mittelbach et al. The higher carbon residue percentage for the WV O suggests that it had a
higher propensity for generating particles, which could explain why the WVO ERgxx/
ERpgo ratios were, in general, higher than the SOY ERgxx/ ERpo ratios (Table AG6).
Additionally, even if the differences in viscosity between the WVO blends and the SOY
blends were not sufficient enough to cause a change in fuel consumption, it could have
potentially caused a difference in fuel injection dynamics as well as fuel spray
atomization between the two feedstocks [42]. It has been suggested that these changes
can increase particle emissions [81]. Both of these points support the hypothesis that
increase in the TUFP emissions for WVO blends relative to baseline petrodiesel, in
contrast to SOY blends, could have resulted in part due to the heat cycling of the
feedstock oil prior to being processed into biodiesel.

Additionally, it is assumed that the fatty acids in the WVO biodiesel feedstock oil
may have polymerized during heat cycling resulting in higher molecular weight FAMEs
in the WVO biodiesel than in the SOY biodiesel. If this was the case, there could have
been an increase in adsorption and condensation within the WVO exhaust gases relative
to the SOY exhaust gases. This could have been the cause of the higher ERgxxS/ERgo
ratios observed.

It is assumed that the primary mechanisms responsible for the non-monotonic

TUFP ER trends and the differences in PN emissions between the two feedstocks were
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due to changes in the combustion process including, but not limited to, a change in the
SOC, a change in fuel injection spray patterns, and a change in the proportion of
diffusion combustion to premixed combustion. Given that the engine used for this study
was not equipped with combustion diagnostics instrumentation such as an in-cylinder
pressure sensor or a fuel pressure sensor, it is difficult to provide further insight.

The data presented here suggest that TUFP emissions associated with WVO
blends may be more detrimental to human health compared to SOY blends because 1) the
WVO blend ERgxx/ERgy ratios were typically higher than those of the SOY blends and
2) WVO blends tended to reduce the MD of the PND more than the SOY blends.
Additionally, the non-monotonic trends in TUFP emissions observed here suggest that
there may be an optimal blend ratio (in regards to TUFP emissions) between B10 and
B50.

These data in conjunction with the findings of Mittelbach et al.(1999) [80] also
suggest that the differences observed between the emissions of WVO biodiesel blends
and those of SOY biodiesel blends relative to their respective baseline petrodiesels may
have been a result of heat cycling the WVO biodiesel feedstock prior to
transesterification, however, further study is required to evaluate this. Ideally, one lot of
cooking oil and one lot of petrodiesel would be acquired. Half of the cooking oil would
then be used for cooking. The used and unused cooking oils would then be processed into
biodiesel and blended separately with the one lot of petrodiesel. Comparison of the
emissions from the resulting fuels would provide more clarity on the effect of heat

cycling the feedstock oil prior to biodiesel production and combustion. The data acquired
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from such a test could then be used to inform the development of feedstock pretreatment

techniques needed to produce higher quality biodiesels.
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CHAPTER 4: DETERMINING THE PRIMARY ENGINE OPERATING

PARAMETERS NEEDED TO MODEL TRANSIENT ULTRAFINE

PARTICLE EMISSIONS IN REAL-TIME FROM A DIESEL

ENGINE RUNNING ON BLENDS OF BIODIESEL
4.1. Abstract

Mandated increase in the domestic production and use of biodiesel as an

alternative fuel for diesel vehicles, despite limited understanding of its impacts on human
health and the environment, may alter the concentration and composition of particles in
respirable air. To reduce total ultrafine particles (TUFP; particle diameter (Dp) < 100nm)
emissions, better engine and emission control will need to be implemented. To do this, a
model predicting TUFP emissions in real-time could act as a virtual sensor to provide
feedback for control systems. To predict TUFP emissions in real time, the model would
need to be efficient, using the minimum number of inputs to accurately predict TUFP.
Traditional emissions models typically utilize inputs such as engine torque, engine speed,
and throttle position; however, these were likely selected because they are some of the
original engine operating parameters measured by engine control units (ECUs) and are,
therefore, typically available from any ECU or based on the modelers intuition. To select
input parameters from the full suite of engine operating parameters currently available
from a typical ECU in an unbiased manner, this research leverages a genetic
programming (GP) algorithm to perform feature selection for the prediction of TUFP
emissions from a diesel engine running on different blends of petroleum-based diesel

(petrodiesel) and waste vegetable oil (WVO) biodiesel. The feature selection performed
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here suggests that exhaust manifold temperature, intake manifold air temperature, mass
air flow, and the percentage of biodiesel in the fuel are the four primary model inputs
needed to predict transient TUFP emissions. This is significant because it suggests that
typical input parameters may not be as powerful as other commonly measured engine
operating parameters when it comes to predicting TUFP emissions.

4.2. Introduction

Particulate emissions from combustion processes, specifically those from diesel
on-road vehicles, are a major source of particulate emissions in urban areas [1,2].
Numerous studies have shown that airborne particulate matter contribute to adverse
human and environmental health outcomes worldwide [3-5]. Exposure to high levels of
airborne particles can lead to a number of respiratory and cardiovascular problems
including discomfort in irritated airways, increased asthma attacks, irregular heartbeat,
non-fatal heart attacks, and even death [6].

Particulate emissions from diesel vehicles are highly dependent on fuel
composition [16,17]. Interest in energy independence and security led to legislation
which mandates domestic use of renewable fuels resulting in an increased use of
biodiesel as an alternative fuel for diesel vehicles [82]. The use of biodiesel also has the
potential to change the concentration, size, and composition of particle emissions in
respirable air.

In addition to a potential biodiesel effect on particulate emissions, automotive
emissions regulations continue to tighten, requiring that vehicles emit fewer particles. As

time goes on, engine and emission control will have to advance to keep pace with the
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regulations. As such, the systems that control engine operation and active emissions
control devises would benefit from a real-time feedback of the particle emissions being
produced by the engine. This could be accomplished through sensor development and
implementation, or a model that utilizes standard engine operating parameters already
measured by the engine control unit (ECU) that accurately predicts particle emissions in
real-time acting as a virtual sensor as described by Atkinson et al. [83].

Traditional diesel engine emissions models typically use either all parameters
available as model inputs or model inputs selected via intuition [83-88]. Typical input
parameters include engine speed, torque, and throttle position. In the case of biodiesel
emissions modeling the percentage of biodiesel in the fuel is also used. The majority of
these models were developed, however, for steady-state rather than transient operation,
which is not indicative of real-word engine operation. Because many engine-operating
parameters available from a modern ECU are correlated, there is redundancy across these
possible model input parameters. For this reason, it would be ideal to “optimally” select
those input parameters that best predict the desired output. For example, engine speed
and mass airflow are highly correlated parameters so it would be a violation of the
underlying assumptions for most traditional statistical techniques to use both of them.
Rather than determining which parameters are best, one might use principal component
analysis to convert all available inputs into independent principal components that could
subsequently be used in statistical analysis modeling. This, however, would not
necessarily reduce the number of measured parameters needed and could increase

computational time due to the principal component calculation. Multiple models could be
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analyzed, changing one input parameter at a time to determine which is best, but this
would be a time-intensive process. Genetic algorithms, however, have been developed
specifically for feature selection of multi-dimensional, nonlinear problems such as this.
Genetic programming (GP), a genetic algorithm first introduced by John Koza in 1990, is
particularly suited for feature selection of multidimensional, highly non-linear
relationships [89,90]. The GP algorithm is presented with all possible model inputs and a
variety of mathematical operators. The GP algorithm then combines a subset of the
original input parameters and operators, generating an equation, or model that optimizes
some user-defined outcome (or fitness function — i.e., minimizing the mean square error
between the predicted output and the measured output) in the form of a tree structure. It
then determines the fitness of that model using the measured output. The population of
models, represented as tree structures, is evolved utilizing crossover functions (i.e.,
switching branches between models at some user-defined rate) and mutation (i.e.,
randomly altering branches in individual models at some user-defined rate). The fitness
of the ‘new’ models relative to the measured output is evaluated over time as the
algorithm converges to a hopefully “optimally” fit solution. The GP algorithm repeats
this process ‘finding’ models of better fitness while keeping track of the branches
(combination of inputs and operators) that occur more often in models of higher fitness.
A Pareto front is generated by plotting complexity rating (i.e., a number that grows with
the number and complexity of individual operators) against the fitness of each individual

model [91]. The model with sufficient fitness (where sufficiency is pre-defined by the
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user) and a minimal complexity rating is then selected as the best predictor of the
observed output.

Given the applicability of GP to multidimensional, non-linear problems such as
engine emissions modeling, this research utilized Eurega (ver. 1.08.2 Beta (build 7500)),
a software package developed by Nutonian, Inc. (Sommerville, MA) that utilizes a GP
algorithm. The main objective was to find the most important and minimum number of
variables needed to model transient TUFP emissions from a diesel engine running on
different blends of biodiesel. The second objective of this paper was to evaluate two
approaches to feature selection using Eureqa based on computational time, fitness, and

problem insight.

4.3. Method

4.3.1. Data
The 1Hz data collected for this feature selection analysis were from a VVolkswagen

diesel engine as it followed a simulation of transient on-road urban operation fueled with
petrodiesel (B0), waste vegetable oil-based biodiesel (WVO B100), and B10, B20, and
B50 blends thereof. These blends were selected for higher resolution in the range
typically sold for on-road use (BO — B20) and to capture data across the full range of
usable biodiesel blends (BO — B100). Data for each fuel was collected in triplicate for a
total of 15 engine runs of 3600 seconds each. The data are comprised of TUFP emissions,
engine operating data (typical of ECU measurements), and the blend percentage of the
biodiesel being used. Parameters 1 through 16 in Table 4.1 were used as model inputs
while parameter 17 was used as the model output. Parameters 1 through 15 were dynamic

during each engine run while parameter 16 remained static during individual runs.
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Table 4.1: Parameters

Par # Description Acronym Unit MIN MAX
1 Intake Manifold Air Pressure MAP kPa 0.63 2.17
2 Exhaust Manifold Temperature EMT °C 99.6 436.0
3 Torque TOR Nm -1 120
4 Engine Speed RPM RPM 1081 3801
5 Start of Injection SOl °BTDC -0.45 9.56
6 Throttle Position TP % 0 72
7 Injection Quantity INJQ mg/stroke 2.6 23.7
8 Atmospheric Pressure AP mbar 980.3 1000.0
9 Coolant Temperature CT °C 89.8 94.0
10 Intake Manifold Air Temperature | MAT °C 20.6 36.3
11 Fuel Temperature FT °C 39.3 66.8
12 Absolute Humidity ABSH Mguao / Liter,; 5.3 21.5
13 ?gxgzgetz'r’; Exhaust DET °C 77.7 | 2031
14 A Exhaust Temperature AET °C -50.3 288.2
15 | Mass Air Flow MAF SLPM 759 3451
16 | BIO% BIO % 0 100
17 Total UFP Emissions TUFP #/sec 1.7E+10 | 2.3E+12

parameters (1-15 in Table 4.1) and the output parameter (TUFP emissions) to determine
if there was a temporal lag or correlation with any of the input parameters. The cross-
semi-variograms identified up to a 25-second lag between the input and output
parameters suggesting that presenting up to 25 seconds of previous input data to the
model could improve its predictive capability. Adding 25 seconds of prior data for each
dynamic input parameter, however, would have expanded the number of input parameters

from 16 to 391, significantly increasing the computational time needed for convergence.
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In order to include some temporal history for each dynamic input parameter and keep the
computational time within reason, six derivatives (or slopes) associated with parameters 1
through 15 were included. The derivatives covered different time spans (described below)
resulting in a total of 106 possible model inputs.

First, instead of dividing 25 seconds into 6 equal time spans, it was assumed that
temporal history closer to the current time was more important that temporal history
further away in time. With this in mind, the six derivatives chosen were A2, A5, A8, A12,
A17, and A23, seconds which were calculated as shown in EQ 1.

XAn (t)= X(t)_::(t_n) 1

Where:

t = current time step

n = number of seconds prior to the current time step

X = the parameter in question

Xan = the derivative of the parameter in question across the last n seconds

Once the derivatives were added to the data set, all dynamic model inputs were
normalized so that the model would not bias parameters with higher numerical values. To
ensure that data for all fuels were normalized over the same range, normalization was
performed across the entire data set rather than for data pertaining to one fuel at a time.
The values from all of the dynamic input parameters in Table 4.1 associated with time t
were normalized between 0 and 1 as shown in EQ 2. The derivatives, however, were
normalized between -0.5 and 0.5 to retain information regarding whether the value
associated with the parameter was increasing (positive slope) or decreasing (negative
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slope) prior to time t. Normalization of the derivatives was calculated as shown in EQ 3
so that the normalized value for a slope of zero would still be zero and to ensure equal

weighting of all input parameters throughout the feature selection process.

X ()= X(t) - min(X)
" max(X) — min(X) 2
_ Xu®
T O e, D2 ’

Where:
X = the parameter in question
t = time
n = normalized instantaneous parameter
Xn = the derivative in question

X, =normalized derivative

4.3.2. Eureqa Setup
In Eureqga, the user controls the initial set of input and output parameters as well

as the GP operators, error metrics, and how much data to use for training and model

validation. Table 4.2 contains the operators used for this research.
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Table 4.2: Operators used to initialize Eureqa

Operators
Constant Sine
Input Variable | Cosine
Addition Exponential
Subtraction Natural Logarithm
Multiplication | Power
Division Logistic Function

A mean squared error (MSE) metric was selected to compare the results of the
individual models, and 70% of the data were reserved for training and another 30% for
validation. This error metric and the percentage of training data to validation data are
typical for this type of modeling.

4.3.3. Feature Selection

The first feature selection approach was the tournament selection approach. In
this approach, multiple Eurega simulations were performed (Figure 4.1). Eurega was
initialized with all 106 possible inputs parameters and the data associated with each of the
individual fuels for initial feature selection. Three simulations were run for each of the
individual fuels to ensure that Eurega converged similarly. Due to the limitations of using
Eurega, simulation duration was controlled by the number of generations. Simulations
using data for the individual fuels were run for 100,000 generations. The 12 features
selected from the initial 15 individual Eurega simulations plus Biodiesel % (for a total of
13 inputs) were then used to initialize three additional simulations which were presented
with data from all of the fuels combined to perform a set of “overall” feature selection

simulations that used just over 3 million generations each. The 15 initial simulations were
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run fewer generations than the last 3 to prevent minimization of the search space prior to
performing the “overall” feature selection.

The second feature selection approach was the single GP setup approach. Instead
of performing GP simulations for each fuel and then using the resulting data to perform
GP simulations for all of the fuels, 3 replicate Eurega simulations were initialized using
all 106 possible inputs and presented with the data associated with all of the fuels. These
simulations were run for 5 million generations due to the increase in search space. These
two approaches to feature selection were then evaluated and compared based on

computation time, features selected, and modeling insight.

4.4. Results and Discussion

4.4.1. Tournament Selection Approach Results
The tournament approach to feature selection followed the bracket depicted in

Figure 4.1. The minimum MSE metrics as well as the maximum R? values for each
Eurega simulation are noted. A summary of the results for all GP models run is presented
in Table A8. The MSE (R?) values for each of the initial 15 simulations (3 simulations for
each of the fuel blends) ranged between 2.3E-3 (0.60) and 1.4E-4 (0.84). Of the original
106 inputs presented to the initial 15 simulations, features selected for each of the fuel
blends B0, B10, B20, B50, and B100 resulted in 8, 4, 6, 4, and 6 features respectively.
The union of these feature sets resulted in 12 unique features; and these 12 features, plus
the percentage of biodiesel in the fuel (13 features in all), were then used to initialize the

subsequent Eureqga simulations for final feature selection.
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# Features
# Inputs Gen R’ MSE Selected
1.E+05]0.60| 3.9€-04
B0 | 106 4 |1.E+05|0.64]3.56-04] M 8
1.6+05[0.60( 3.9€-04

1.E+05]0.77| 1.5E-03

B10 106 = | 1.E+05]0.79] 1.3E-03| 4 Total #
1.E+05|0.77| 1.5€-03 Features # Features
Selected Inputs Gen R’ MSE Selected
1.E+05]0.80] 1.5E-04 Al 12 Features 3.E+06| 0.74 | 1.5E-03
B20 106 [ | 1.E+05]0.79| 1.6E-04| 6 ™ 12 et Fuels Selected 3.E+06) 0.73 | 1.6E-03 8
1.E+05|0.82| 1.4E-04 + Bio% 3.E+06| 0.72 | 1.6E-03

1.E+05|0.74| 1.1E-03
B50 106 <4 | 1.E+05|0.74| 1.1E-03| 4
1.E+05|0.77| 9.8E-04

1.E+05/0.81 1.9E-03
B100| 106 |- |1.E+05/0.78| 1.5E-03| 6
1.E+05|0.84| 2.3E-03

Figure 4.1: Bracket depicting the tournament selection approach to feature selection. The left side of
shows the results of each of the three replicate simulations for each of the individual fuels. The right
side shows the results of the three replicate simulations that used all of the data (all fuels combined).

Of the 13 inputs used to initialize the final three Eurega simulations that utilized
data from all of the fuels, 8 features were selected. Table 4.3 shows that none of the
Eurega simulations identify the exact same set of features. This suggests that: 1) the
importance of parameters differs by fuel type, and 2) the differences in ambient
conditions from one test to another may have affected the importance of some
parameters. Another interesting thing to note from Table 4.3 is that the parameters
typically used for modeling, such as engine speed, throttle position, and torque, were not
selected suggesting there was enough redundancy between typical modeling inputs
parameters and those selected to effectively characterize the processes that led to TUFP
emissions. For example, none of the fueling parameters were selected implying that the
fueling map (the algorithm used by the engine control unit to determine how much fuel to
inject) designed for this engine was inferred through the parameters that were selected

such as MAF or MAP, indicators of engine speed, and EMT, an indicator of load. It is

78



also interesting to note that only A23 derivatives were selected in some of the initial 15
Eurega simulation while none of the derivatives were selected during the final three
Eurega simulations. Given that one would expect temporal information closer to time t,
this suggests that the cross-semi-variograms may have been picking up the cyclic nature
of the drive cycle itself and not a temporal relationship between the input parameters and

the output parameters.

Table 4.3: List of all possible features at time t and those derivatives that were selected at least once.
Features selected by each Eureqga simulation indicated by an X.

All Features Selected from Individual Simulations
Features

Selected BO B10 B20 B50 B100 All Fuels

MAP X | X X|X| X[ X|X|X X

MAP A23 | X

EMT X X XXX XXX | X|X]|X

TOR

RPM

SOl

TP

INJQ

INJQ A23 X

AP XXX X XX X

CT X X

X | X

MAT X XX | X[ X]|X

X
X

FT

ABSH X| X|X X | X

X | X | X | X

DET X

AET

AET A23 X[ XX

MAF XX X[ X X[ X[ X]|X X X[ X|X[X]|X

BIO XXX

The results for the final three Eurega simulations show that EMT, MAT, MAF,

and BIO were consistently selected indicating they are primary inputs needed to model
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TUFP emissions. The best-fit model resulting from the final three simulations had a MSE
of 0.0015 and an R? of 0.74. The equation generated is EQ 4:

TUFP =

0.115* AP*CT

+0.003*BIO * EMT 4
+0.322* MAF ?

~1.017* MAT

—0.092* MAF *sin(BIO + MAT)

—0.005*BIO * EMT *sin(BIO + MAT)

Figure 4.2 through Figure 4.4 show the predicted TUFP emissions (red) against
observation data (light cyan = training data; dark cyan = validation data) for the three

final simulations used for “overall” feature selection (top) and the Pareto front (bottom).
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Figure 4.2: Results from replicate 1 of the tournament approach. Note: the model with a complexity
of 30 at the Pareto point selected the same features as the model with a complexity of 45. The model
with a complexity of 45 had an R? of 0.74.
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Figure 4.3: Results from replicate 2 of the tournament approach. Note: the model with a complexity
of 30 at the Pareto point selected the same features as the model with a complexity of 54. The model




BO B10 B20 B50 B1Q0
0.8 Replicates | Replicates | Replicates | Replicates | Repligates

0.6

04

(TUFP E-Rate (#/sec))

0.2

0 10000 20000 30000 40000 50000
XAxis: Seconds

Solutions Plotted Accuracy vs Complexity

0.0055 Solutions e
0.005 L
0.0045
0.004

ror
<

& 0.0035
0.003 .
0.0025 o
0.002 B
0.0015

Complexity

Figure 4.4: Results from replicate 3 of the tournament approach. Note: the Pareto point was not
reached. The model with a complexity of 31 had an R? of 0.72.

4.4.2. Single GP Setup Approach Results
The single GP setup approach to feature selection was then performed to

determine whether the tournament selection approach was beneficial. Again, three

Eurega simulations (replicates) were performed to verify convergence. These simulations
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were initialized with all 106 possible input features and presented with all of the data
from all of the fuels. Because of the increased search space, these simulations were run
for 5 million generations. The results for each simulation (Table 4.4) indicate that EMT,
MAT, MAF, and BIO were consistently selected as features in the best-fit models
similarly to the tournament selection approach. The remaining three features selected
with this approach (EMT A23, FT, and DET) were selected in only one of the three

simulations.

Table 4.4: Features selected from the single GP setup approach presented with all possible inputs

Replicate 1 2 3

R? 0.74 0.75 0.67 | Union
MSE 1.5E-03 | 1.5E-03 | 1.9E-03
MAP
EMT X X X X
EMT A23 X X
TOR
RPM
SOl
TP
INJQ
AP
CT
MAT X X X X
FT X X
ABSH
DET X X
AET
MAF X X X X
BIO X X X X
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The best-fit model across all three simulations had a MSE of 0.0015 and an R? of
0.75 which is very close to the best-fit model that came from the tournament approach
that had a MSE of 0.0015 and an R? of 0.74. The resulting equation (EQ 5) is as follows:

TUFP =

0.019

+0.005*BIO * EMT >
+0.861* FT * MAF 2

—0.006*BIO * EMT * MAT

—0.381* FT * MAF *sin(BIO)

—0.824* MAT * FT * MAF 2

Figure 4.5 through Figure 4.7 show the predicted TUFP emissions (red) against
observation data (light cyan = training data; dark cyan = validation data) for the three

simulation replicates of the single GP setup approach (top) and the Pareto front (bottom).
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Figure 4.5: Results from replicate 1 of the single model approach. Note: the model with a complexity
of 32 at the Pareto point selected the same features as the model with a complexity of 45. The model
with a complexity of 45 had an R? of 0.74.
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Figure 4.6: Results from replicate 2 of the single model approach. Note: the Pareto point was not
reached. The model with a complexity of 44 had an R? of 0.75.
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Figure 4.7: Results from replicate 3 of the single model approach. Note: the Pareto point was not
reached. The model with a complexity of 35 had an R? of 0.67.

4.4.3. Feature Selection Approach Comparison
Both the tournament and single GP setup approach to feature selection yielded the

same four primary input features needed for TUFP emissions modeling - EMT, MAT,

MAF, and BIO. The tournament approach took approximately 13.7 hours of computation
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time, while the single model approach took approximately 28.5 hours indicating that the
tournament approach was more efficient regarding convergence of model fitness.
Additionally, by analyzing the individual fuels first and seeing what features GP selected
for the individual fuels, the tournament approach allowed the user to identify parameters
that might be more important for modeling the TUFP emissions from one fuel relative to
those of another.

The tournament and the single GP setup approach yielded MSE/R? values of
(1.5e%/0.74, 1.6e%0.73, 1.6e%0.72) and (1.5¢%0.74, 1.5¢3/0.75, 1.9¢%/0.67)
respectively. Comparison of EQ4 and EQ5 shows that, in addition to the 4 primary
features selected by both approaches, the best-fit equation from the tournament approach
added AP and CT, while that of the single GP setup approach included FT. In addition,
both equations included a term of the form Constant*BIO*EMT. To determine if these
additional parameters are truly important, a sensitivity analysis could be performed by
initializing additional simulations with all possible input parameters other than the
primary parameters selected here. The parameters selected with the additional
simulations would then provide more insight on the underlying physics of TUFP
emissions.

In the literature, particle emissions are typically reported to increase or decrease
monotonically as the percentage of biodiesel in the fuel increases. The data used for this
feature selection process, however, were somewhat unique in that there was a non-
monotonic TUFP emissions trend — increasing relative to BO for B10, decreasing for B20,

and increasing again for B50 and B100. Analysis of the different models generated by the
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GP along the Pareto front suggests that the sin(B1O) term enables the models to capture
the non-monotonic trend in the data used. Although this does not provide insight into the
cause of the non-monotonic trend, it shows the GP is capable of discovering solutions for
this nonlinear relationship.

Additionally, the R? results depicted in Figure 4.1 indicates that models for
smaller fuel ranges may more accurately predict TUFP emissions, suggesting an
advantage to implementing multiple models throughout the range of blends (i.e., one
model for BO to B5, B5 to B10, and so on) rather than a single TUFP model for all fuel
blends (the R? values for the individual models were, in general, higher than those of the
all fuels models). The appropriate model could then be selected using a lookup table
according to what fuel is being used. While the percentage of biodiesel in the fuel is not
typically monitored by a modern ECU, a sensor has been developed to measure it which
could be implemented [92].

Relative to more traditional emissions modeling, neither feature selection
approach employed here selected throttle position, engine speed, or torque as model
inputs. This is significant because it suggests that these parameters may not be as
powerful as other commonly measured engine operating parameters when it comes to
predicting TUFP emissions.

In conclusion, this research indicated that 1) there may be more powerful inputs
available to predict TUFP emissions than those typically used for emissions modeling,

and 2) implementing a tournament approach to feature selection not only reduces the
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convergence time needed to identify features and associated model, but also allows the

analyst to infer modeling differences from one fuel to another during the process.
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CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATIONS
5.1. Conclusion

The research presented here discusses: 1) the differences in TUFP emissions
between petrodiesel (B0) and blends of WVO biodiesel, 2) the differences in TUFP
emissions between blends of WVO biodiesel and blends of SOY biodiesel, and 3) the
feasibility of using GP (specifically Eureqa) as a feature selection tool for modeling
TUFP emissions.

An overall increasing non-monotonic trend in TUFP emissions was observed as
the content of both WVO and SOY biodiesel increased in the fuel. The data collected
suggest that the primary reason for the overall increase in TUFP emissions may have
been due to an observed increase in fuel consumption. Further analysis corroborated
reports in the literature that fuel consumption increases when fueling with biodiesel due
to increased fluid viscosity of biodiesel blends relative to petrodiesel on engines equipped
with pump-line-nozzle fuel injection systems. Newer common rail fuel injection systems
operate with a fuel rail at constant fuel pressure and electronically controlled fuel
injectors that are much less susceptible to this phenomenon.

As noted in Chapters 2 and 3, the WVO biodiesel did not pass the ‘cold soak
filtration’ or ‘sodium and potassium’ tests in the ASTM specification for B100 (ASTM-
D6751). One might question whether these could have caused the non-monotonic trend
observed in the WVO data, however, because the non-monotonic trend was observed in
both the WVO and the SOY data, it is not likely. The fact that both WVO and SOY

blends produced the non-monotonic trend in TUFP emissions, along with data found in
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the literature, suggests that the cause of the non-monotonic trend may have been related
to engine technology (type of fuel injection system and air induction). The main
difference between TUFP emissions from the two feedstocks was a larger decrease in
overall mean diameter (MD) with increasing biodiesel content with WVO blends than
with SOY blends (up to a 12nm MD difference; Table 3.3) which suggests that the
consequences of using WVO biodiesel compared to SOY biodiesel may be greater
relative to human health.

The differences in emission rate observed when comparing TUFP emissions
between biodiesels and the non-monotonic trend in TUFP emissions of both WVO and
SOY biodiesel relative to petrodiesel were likely due to differences in combustion
dynamics related to differences in how the fuels were injected into the combustion
chamber and how they combusted.

The use of Eurega to identify the most important operational parameters in
predicting TUFP emissions proved beneficial in that the models developed here predicted
transient TUFP emissions with an R? of 0.75. Additionally, a tournament selection
approach to feature selection identified similar features for comparable TUFP emissions
modeling as a single GP setup approach to feature selection in approximately half the
time. Although typical model inputs such as engine speed, throttle position, and torque
were presented as potential input parameters, the features selected by both approaches
(i.e., exhaust manifold temperature, intake manifold air temperature, mass air flow, and
biodiesel percentage) did not include these more typical model inputs. All features

selected, with the exception of biodiesel percentage, are commonly accessible through an
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engine control unit. This suggests that the current state of modeling might be improved
through better input selection. Additionally, a sensor that can provide biodiesel
percentage feedback has been developed [92]. If implemented, the resulting data in
conjunction with existing ECU data could be used to model TUFP emissions on-road in
real-time as a virtual sensor. Because TUFP emissions are sensitive to fuel composition,
it may be beneficial to develop different models for specific ranges of biodiesel blends,
and subsequently use a lookup table to select the appropriate model for the fuel being

used.

5.2. Future Recommendations

5.2.1. Measurement Equipment
To improve future research outcomes, some of the data collection equipment

should be updated. First, the engine used for data collection is now relatively old
technology. To collect data more relevant to current automotive technology, a more
modern light-duty diesel automotive engine with common rail fuel injection should be
acquired. Because combustion dynamics play a large role in particle formation, the
engine should be instrumented with combustion diagnostics equipment. This would
include a shaft encoder to know precisely how close the piston is to top dead center, an
in-cylinder pressure sensor to indicate of start of combustion, and a fuel pressure sensor
to give an indication of possible changes in fuel spray.

In addition, a more robust dynamometer control system that can more accurately
simulate real-world driving should be developed. This dynamometer system would
ideally also be capable of motoring the engine (spin the engine without it running). This

would allow simulation of engine braking events (down shifts or coasting) as well as
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provide in-cylinder pressure data without combustion needed as a baseline to analyze in-
cylinder pressure data collected while the engine was running.

Acquiring a particle measurement system that is comparable to the E.U. Particle
Measurement Programmes (PMPs) ‘gold standard’ for particle measurement, such as the
HORIBA MEXA-1000 SPCS, would be beneficial alongside the current particle
measurement system. This would allow clearer comparison to other research that utilizes
PMP approved equipment and provide a check for the particle measurement system
already in place that collects data pertaining to particles with diameters below 23nm
unlike the PMP equipment.

5.2.2. Measurement Methods

The measurement methods used for this research could also be improved with the
instruments already at hand. The Scanning Mobility Particle Sizer (SMPS) is the ‘gold
standard” when it comes to PN measurement; however, it takes too long to measure a full
PND to be used for transient emissions testing. This is why the EEPS, an instrument
capable of 10Hz PND measurements, was utilized for this research. Although the EEPS
operation was verified with the SMPS prior to both the WVO and SOY data collection
sequences, it would be best to do this for each run. In order to ensure that transient EEPS
data is consistent from run to run, both the EEPS and the SMPS should be used to
measure steady-state particle emissions before or after any transient cycle. The steady-
state EEPS data could then be verified against the steady-state SMPS data for every test
and corrected along with the transient EEPS data if need be. Although there may be some

error associated with correcting transient EEPS data with a steady-state EEPS to SMPS
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relationship, it would be consistent for every test and, therefore, provide a more robust
data set.

To determine the amount of SOF in exhaust particles, it would also be beneficial
in the future to collect particles on a filter after a thermodenuder to compare to particles
collected on a filter without a thermodenuder. If a thermodenuder is not available, filter
samples could also be sent to a lab for elemental carbon/ organic carbon analysis to
determine the SOF content of exhaust particles.

Real world engine operating data should also be used to determine steady-state
test points. To do this, histograms of real world transient data should be generated. These
histograms should then be used to determine steady-state operating points that occur
frequently. Those should be the operating points of focus.

5.2.3. Fuel

Although not originally intended, the biodiesels used for this testing were blended
with two different lots of petrodiesel complicating comparison between the two
feedstocks. In the future, it would be beneficial to use one lot of petrodiesel for all fuel
blends. Additionally, both biodiesels used were produced in a small scale reactor
therefore they may not have been representative of commercially available biodiesels.
For this reason, future work should either utilize neat biodiesels sourced from
commercial suppliers or ensure the process used during small-scale production is similar
to that of commercial scale production.

The ASTM testing of the fuel should also be performed prior to blending to

ensure it is within specification. Additionally, due to the non-monotonic trend observed
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in TUFP emissions as the amount of biodiesel in the fuel increased, in the future, it would
be ideal to have all blends used, even BO, tested to the ASTM-D6751, ‘Standard
Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels’ [93],
standard. The baseline petrodiesel should be tested to the ASTM-D975, ‘Standard
Specification for Diesel Fuel Oils’ [94], standards to ensure that it is also representative.
Fuels could also be tested to the ASTM-D7467, ‘Standard Specification for Diesel Fuel
Oil, Biodiesel Blend (B6 to B20)’ [95] standard for additional information. In addition,
the distillation and viscosity curves for all fuels should be tested to better understand their
relative volatilities and injection behaviors. If these tests are performed prior to future
testing, they may help explain differences in the TUFP emissions between the different
blends.
5.2.4. Modeling

The feature selection presented here shows much promise. Since artificial neural
networks (ANNS) are also used for multidimensional nonlinear problem solving and have
been used for engine emissions previously [84,85,87,88], one could be developed using
the features selected in this research and compared against another using more typical
model inputs to determine if the features selected using Eureqga do indeed provide better
insight into TUFP emissions.

The purpose of the modeling presented here was to determine if GP could be used
to select ECU parameters to model TUFP emissions for real-time on-road use. Since
there is no dilution system on-vehicle, dilution system parameters measured during

testing were not presented to the simulations. Similarly, fuel consumption data from the
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fuel tank scale was not presented as it did not have the resolution necessary to be
considered a robust second-by-second measurement. If desired, however, GP could be
used as a quality control tool. If the features selected from a simulation that was
initialized with engine operating and dilution system parameters included dilution system
parameters, it would be an indication that variable dilution system parameters were
affecting the measured TUFP emissions. This would suggest that TUFP measurements

taken at different dilution conditions would not be comparable.
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APPENDICES
ASTM Fuel Testing

The University of Connecticut BioFuels Center for Environmental Sciences and
Engineering performed ASTM testing on all but the first lot of petrodiesel (the
petrodiesel blended with the WVO) and confirmed that the biodiesels tested conformed to
the ASTM standards with the exception of cold soak filtration and combined sodium and
potassium of the WVO B100. Dr. Parnas, the head of the University of Connecticut
BioFuel Consortium, suggested that the quality of the wash water used to process the
WVO B100 was likely the cause of the high sodium and potassium test results. A high
content of sodium and potassium in biodiesel is an indicator of soaps in the fuel which
can also lead to failures in the cold soak filtration test. The ASTM test results can be

found in Table Al.
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Table Al: Results of ASTM testing

ASTM Test Method * Limits Biodiesel / Petrodiesel [\WvO SME Petro

Test Name Biodiesel / Petrodiesel (units) Measurement [Measurement |Measurement®
Cloud Point D2500 Report (°C) -0.15 1.2 NM
Cold Soak Filtration D7501 360/NA MAX (sec) 2058 (F) 86 (P) NA
Flash Point, closed cup D93 93/38 MIN (°C) 175.6 (P) 167.4 (P) 45.6
Glycerin - - - -

1.Free Glycerin D6584 0.020/NA MAX (% mass) 0.003 (P) 0.005 (P) NA

2. total Glycerin D6584 0.240/NA MAX (% mass) 0.049 (P) 0.072 (P) NA
Oxidation Stability (110°C) EN14112 3/NA MIN (hours) 11.49 (P) 6.28 (P) NA
Total Acid Number (5g sample) D664 0.50/NA MAX (mg KOH/g) 0.196 (P) 0.231 (P) 0.040 (P)
Water & Sediment D2709 0.05/0.05 MAX (% vol) 0.00 (P) 0.010 (P) 0.000 (P)
Copper Strip Carrosion (3h/50°C) D130 No. 3/ No. 3 MAX (rating) 1A(P) 1A(P) 1A(P)
Kinematic Viscosity, 40°C D445 1.9-6.0/1.7-4.1 (mm?/sec) |4.354 (P) 4.166 (P) NM
sulfur; S 15 Grade D4294/ D5453° 15/15 MAX (ppm) 2.5(P) <1.0 (P) 1.2 (P)
Phosphorus D4951 0.001/NA (%) <0.001 (P) <0.001 (P) NA
Calcium and Magnesium EN14538 5/ NA (ppm), combined 0.02(P) <0.5 (P) NA
Sodium and Potassium EN14538 5/ NA (ppm), combined 30.1(F) <0.5 (P) NA
Methanol % EN 14110 0.2/ NA (% mass) 0.001 (P) NM NA
Distillation Temperature @ 90% D1160/ D86 360/ 338 MAX (°C) 348.9 (P) 345.3 NM
Carbon residue (100%) D4530/ D524° 0.050/ 0.15 MAX (% mass)  [0.050 (P) 0.033 (P) 0.003 (P)
Cetane Number D613 47/ 40 min. NM 49.9 (P) 46.7 (P)

# ASTM - 6751-11b referenced for biodiesel and ASTM-975-11b referenced for petrodiesel.

# Measurements are from the lot of petrodiesel used for blending with the SME biodiesel which was purchased in MAR 2013. The lot of petrodiesel
used for blending with the WVO biodeisel was purchased from the same supplier in JAN 2013. NM = not measured. NA = not applicable to ASTM-

975-11b

€ ASTM-975-11b calls for a different test methad than ASTM-6751-11b, however, the test was performed using the test method deliniated in ASTM-

6751-11b.
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Fuel Blending and Analysis
To ensure accuracy in blending, the density of each parent fuel (BO and B100)

was measured both physically and with a density meter. The masses associated with the
correct volume of BO and B100 needed for blending were calculated and subsequently
measured using a laboratory scale. The BOO and B100 were then combined in a tank,
mechanically mixed, and finally sealed in fuel containers (UN certified 5 gallon buckets
from Letica Corp. with unvented lids) with nitrogen headspace to minimize fuel
oxidation during storage. The fuel was stored in an environmental chamber at 13°C to
simulate underground storage.

Blend ratios (vol % biodiesel) were confirmed using an IROX Diesel (IROX-D)
Analyzer from Grabner Instruments (Vienna, Austria), a mid-FTIR analyzer dedicated to
diesel analysis with a built in high accuracy density meter [51] (Table A2). The FTIR
based measurements from the IROX-D, however, were only accurate for BO — B40
biodiesel blends, therefore direct measurements of fuel blends based on FTIR methods
were only accurate for the BO, B10, and B20 blends tested here. To verify the blend ratio
of the B50 used, the ‘as blended’ samples were diluted with hexane. The resulting IROX-
D BXX measurements were then used along with the known dilution ratio to back
calculate the ‘as blended” BXX values.

The IROX-D results for all ‘as blended” samples (WVO and SOY B0, B10, and
B20) were within 0.5% of the expected value. The back calculated BXX value for the

WVO and SOY B50 samples were within 5.6% of the expected value (Table A2).
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Table A2: IROX-D test results for WVO and SOY sequences.

Feedstock | Blend %322%’ (5’38/(0 )
BO 0.811 0
B10 0.817 9.8
WVO B20 0.824 19.9
B50 0.843 49.2*
B100 0.876 100**
BO 0.81 0
B10 0.816 10
SOoY B20 0.822 19.5
B50 0.842 44 4%
B100 0.874 100**

* Values were back calculated from the IROX-
D measurements of B50 samples diluted with
hexane.

**Not measured

Drive Cycle Control
The ideal engine operation control for testing such as that performed here is

through specification of engine torque and engine speed as a function of time. Due to
ArmSoft control software limitations, however, the control of the engine during the
transient portion of the cycle was accomplished by specifying throttle position and
dynamometer voltage supply, a surrogate for dynamometer load. For the steady-state
portions of the cycle, a proportional-integral-derivative (PID) controller automatically
adjusted the dynamometer supply voltage to maintain a set point engine speed while
throttle position was held constant.
Engine Oil

The only engine oil used was Castrol® Edge® with SPT (formerly called

Castrol® Syntec®) SAE 5W-40 which is specifically formulated to meet or exceed
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Volkswagen engine oil specifications VW 501 01, VW 502 00, and VW 505 00 which
are the engine oil specifications listed in the VW workshop manual for this engine. The
engine oil was changed prior to both the WVO and SOY data collection sequences.
Dilution System

The components of the dilution system are listed in Table A3 and are numbered

corresponding to the numbered items in Figure A1, a schematic of the dilution system.

Table A3: Dilution system components. Numbers correspond to those in Figure Al

1 Compressor One 13 Critical Orifice (Flow Control)

2 Compressor Two 14 Orifice Flow Meter

3 Pressure Switch 15 Dekati Diluter

4 Coarse Dilution Air Pressure Regulator 16  Dilution Air Thermocouple

5 Condensation Drain Valve 17 Orifice Flow Meter

6 Condenser/ Expansion Tank in Ice Bath 18 Raw Exhaust Sample Thermocouple

7 Precision Air Pressure Regulator 19 Pinhole Orifice (Flow Control)

8 Silica Gel and Activated Carbon 20 Heat Cord (represented by red dots)

9 HEPA Filter 21 Perforated Sampling Probe
10 OMEGA Mass Air Flow Meter 22 Exhaust Temperature Thermocouple
11 Ice Bath 23 Exhaust Pipe Pitot Tube Flow Meter
12 Pressure Sensor
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Figure Al: Engine Exhaust Dilution System Schematic

Absolute Humidity Calculation
Specific humidity (SH; mass water/mass air) was calculated on a second-by-

second basis by plugging the ambient temperature and relative humidity measured in
LabView and the atmospheric pressure measured by the scantool into EQ 4. EQ 4 was
developed from EQ 1, 2, and 3 where EQ 3 is the Clausius-Clapeyron equation. EQ 5
was then developed from the relationship between air density, temperature, and pressure
found in the appendix of Cengel et al. [96] and used to calculate absolute humidity
(ABSH; mass water/ volume air) from SH using EQ 6 which contains the necessary unit

conversions.
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SH =0.6225
P

Where:
SH = Specific Humidity (mass/mass; unitless)
e = vapor pressure (must be the same pressure unit as P)
P = Atmospheric Pressure (must be the same pressure unit as e)
(0.622 is a unitless constant)

e=(RH /100),(T)

Where:
e = vapor pressure (must be the same pressure unit as esx(T))
RH = relative humidity
esat(T) = saturation vapor pressure at temperature T
(must be the same pressure unit as €)

e (T)=(6.11mbar)e{5.423)(103(m115«ij}

sat

Where:
esat(T) = saturation vapor pressure at temperature T (mbar)
T = temperature (K)

O_622[(RH /100{6_119{5'423)(103[ 273115K %)} ]}

P

SH =

Par = 355.42486(T ) *"*(P)

Where:
pair = air density (kg/m?)
T = temperature (K)
P = pressure (atm)

000g | 0.001m’

ABSH = SH(355.42486(T)‘1'00068(P/1013.25))><1 " 3

Where:
ABSH = absolute humidity (g/L)

118

[1]

[2]

[3]

[4]

[5]

[6]



Engine Exhaust Particle Sizer Bin Data

Table A4: Engine Exhaust Particle Sizer Bin Designations [97]

Bin Bin Min Bin Midpoint Bin Max
Number D, (nm) Dp (nm) D, (nm)
B1 5.61 6.04 6.48
B2 6.48 6.98 7.48
B3 7.48 8.06 8.64
B4 8.64 9.31 9.98
B5 9.98 10.75 11.52
B6 11.52 12.41 13.3
B7 13.3 14.33 15.36
B8 15.36 16.55 17.74
B9 17.74 19.11 20.48
B10 20.48 22.07 23.65
B11 23.65 25.48 27.31
B12 27.31 29.43 31.54
B13 31.54 33.98 36.42
B14 36.42 39.24 42.06
B15 42.06 45.32 48.57
B16 48.57 52.33 56.09
B17 56.09 60.43 64.77
B18 64.77 69.78 74.79
B19 74.79 80.58 86.37
B20 86.37 93.06 99.74
B21 99.74 107.46 115.18
B22 115.18 124.09 133
B23 133 143.3 153.59
B24 153.59 165.48 177.37
B25 177.37 191.1 204.82
B26 204.82 220.67 236.52
B27 236.52 254.83 273.13
B28 273.13 294.27 31541
B29 31541 339.82 364.23
B30 364.23 392.42 420.61
B31 420.61 453.16 485.71
B32 485.71 523.3 560.89
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Temporal Alignment
Although the clocks on the computers used for data collection were synchronized,

the time stamps associated with each instrument were not aligned perfectly. The raw data
from Scantool, Armfield, Labview, and EEPS were aligned as follows.

First, because Scantool data were logged at a variable ‘as fast as possible’ rate,
they were interpolated to the same frequency as the Armfield data, logged at 2Hz, using
the Matlab function ‘Interpl’ and the ‘linear’ method. Since the data logged via the
Armfield software did not have timestamps, the Armfield data were aligned to the
Scantool data. This was done by performing Pearson’s correlations between the throttle
position data recorded via Scantool to throttle position data recorded via Armfield that
had been shifted in intervals of one time step from -t seconds to +t seconds (where t is
large enough to obtain a maximum correlation coefficient). The lag associated with the
highest correlation coefficient was recorded and subsequently applied as the Armfield
instrument offset. Once aligned, the Scantool and Armfield data were interpolated to the
frequency of the data collected from the remaining instruments (1Hz).

Next, the Labview data were aligned with the Armfield/ Scantool data by
correlating multiple time shifts of the Labview mass air flow (MAF) parameter to the
Armfield intake air pressure; both measures of intake air flow. Again, the time offset
associated with the highest correlation coefficient was selected and applied to time-align
the Labview data set with Armfield/Scantool.

Because it took the exhaust sample a finite amount of time to travel from the
sample port in the exhaust pipe, through the dilution system, and into the EEPS where it

was measured, the EEPS data lagged the engine data. To account for this, Pearson’s
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correlations were run between the engine RPM and multiple versions of the EEPS TPN
data shifted by consecutive time steps. In theory, the shifted data set with the highest
correlation would be considered to have the correct lag adjustment. Engine speed,
however, is more dynamic than TPN causing the RPM peaks to precede TPN peaks (TPN
can still be increasing when RPM is decreasing). Because the Pearson’s correlation
improves as the TPN peaks center on the RPM peaks, the data set with the highest
correlation actually showed TPN response prior to engine speed change. In order to
ensure that the data reflected correct TPN response to changes in engine speed, engine
start and engine stop RPM and TPN time series data for the individual runs were
overlaid. The observed TPN lag relative to RPM was measured for these events and
averaged for each run. The EEPS data set was then moved forward in time by the average

of the observed start and stop lags to align the data of the associated run.

Engine Exhaust Particle Sizer Data Post Processing

Engine Exhaust Particle Sizer Blank Verification
To ensure consistency in EEPS operation and data collection, the following

procedure was adhered to for each run. 1) While the EEPS was not in use a HEPA filter
was attached to the sample inlet to avoid any contamination. 2) Prior to each run, with the
HEPA filter attached, the EEPS electrometers were zeroed and the resulting offsets were
verified to be within TSI specifications. 3) Ten minutes of EEPS data were recorded with
the HEPA filter in place to provide an instrument blank. 4) With the HEPA filter
removed, and with the sample line connected to the dilute exhaust sampling port, ten

minutes of EEPS data were collected without the engine running to provide tunnel blank
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data. Additionally, at the end of each run, post tunnel and instrument blanks were
recorded in a similar fashion.

Analysis of the average particle concentration for the pre-instrument blanks
collected before each run indicated that, throughout both the WVO and SOY sequences,
the operation of the EEPS was consistent and that average measurements from each
EEPS bin were below the minimum detection limit defined by TSI (Figure A2A). In
other words, the measurements taken during the instrument blanks were lower than the
expected noise for each EEPS bin. The pre-tunnel blank data, however, show that
background particle concentrations were elevated for the WVO sequence relative to the
SOY sequence (Figure A2B). The difference in background concentration was accounted
for by correcting the EEPS data with the pre-tunnel blank data during data post

processing.
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Figure A2: A) Average instrument blank measurements by feedstock. B) Average tunnel blank
measurements by feedstock. Error bars represent + 1 StDev

PN Data and Blank Correction
Pre-tunnel blank data were used to background correct the engine test data for

each engine test run, i, for each EEPS size bin, j using Equation [7].
Coackiinf) = Ave(CTB(i.j) )"' 3x StDeV(CTB(i.j)) [7]

Where:
Chack(,jy = background correction for run i EEPS bin j. (#cm®)
Cra(j) = tunnel blank particle concentration for run i EEPS bin j. (#/lcm®)
The average particle concentration of the tunnel blank represents the
concentration of particles in the ambient air while the standard deviation of the tunnel
blank represents the noise in the EEPS signal. Subtracting the run (i) bin (j) background

concentration from the appropriate EEPS size bin (j) accounted for the concentration of

particles in the ambient air. If the result of the subtraction was less than the correction
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factor for that bin, then the concentration was set to the correction factor for that bin to
provide a conservative particle concentration measure.
Raw Exhaust PN Concentration Calculation (DR Correction)

Tailpipe exhaust PN concentration was calculated by multiplying the background
corrected EEPS concentration by the dilution ratio which was calculated on a second-by-

second basis based with second-by-second diluter inlet flow measurements:

_ Qdil,in +Qexh,in [8]
Qexh,in

DR

Where:
DR = dilution ratio
Quitin = dilution air inlet flow
Qexn.in = exhaust sample inlet flow
Second-by-second diluter inlet flow rates were measured with custom inline
orifice flow meters which consisted of Dwyer 605 transmitting Magnehelics® measuring
the pressure difference across inline orifices. Given that the temperature and pressure of
the dilution air and exhaust sample inlet gases were controlled, the recorded data are
measures of mass flow rate.
Emission Rate Calculation

PN emission rate (ER; #/s) was computed by multiplying the DR-corrected PN

concentration (#/cm?) by exhaust flow rate (L/min) (EQ 9).

1min ><1OOOcm3

ER, = PN g\ X X
P con X Qe 60SeC 1L

[9]

Where:
ERp = particle emission rate (#/sec)
PNcon = DR corrected particle number concentration (#/cm?®)
Qexn = Volumetric exhaust flowrate (LPM)
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Exhaust Flow Rate Estimation Using Mass Air Flow (MAF)
Although exhaust flow rate was directly measured with a pitot tube (Dwyer DS-

300 pitot tube connected to a Dwyer 605 transmitting Magnehelic®) in the tailpipe, the
pressure pulses in the exhaust of the naturally aspirated engine generated significant noise
in the pitot data. To provide a more consistent indication of exhaust volumetric flow rate,
it was modeled as follows using mass air flow (MAF; VW/Bosch 037 906 461C/ 0 280
217 117) data measured in the air intake of the engine and temperature data measured at

the pitot tube in the exhaust pipe close to the sample port.

(R)M) _ (R)(V,)
Tl TZ

[10]

Where:
P = pressure
V =volume
T = Temperature
Subscript refers to location, here 1 = intake and 2 = exhaust

Standard conditions:
T =293.15 Kelvin
Pressure = 101325 Pa

Assumptions:
1. Pressure at the intake is the same as the pressure in the exhaust since they are

both open to the atmosphere

2. The ambient conditions being ‘seen’ by the MAF sensor were very close to
standard conditions (293.15K and 101325Pa) making this measure of SLPM (a
mass flow rate) very close to LPM (a volumetric flow rate)

3. The same mass of air that is going into the engine is coming out, therefore,
calculating a change in volume from one location to another is sufficient for
estimating a change in volumetric flow rate.

i_Ve

11
T T, 1]
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Rearrange:

v, = V() _ )(T,) (2]
T, 293.15
Where:
V, = Volume of air in the exhaust
V1 = Volume of air in the intake
T, = temperature at the pitot tube in the exhaust
(close to the sample port)

The equation can then be rewritten and applied to volumetric flowrates:

Qexh — (Qint)(Texh) [13]
293.15
Where:
Qexh = Volumetric exhaust flowrate
Qin:= MAF (assumed to be approximately volumetric flowrate at
ambient conditions)
Texn = Exhaust temperature at the pitot tube (close to the sample port)
The Pitot tube was calibrated at room temperature with the Sierra flow meter from
0 to 4000LPM. A pitot tube functions based on the differential between total pressure
(the pressure developed due to fluid velocity over a specific cross sectional area) and
static pressure (the pressure of the environment without taking into account fluid
velocity. For this reason, it measures volumetric flow rate and has a relatively low
sensitivity to fluid temperature therefore, it does not need to be temperature corrected to
account for the difference between calibration conditions and ‘in use’ conditions.

Figure A3 shows the comparison of the estimated Exhaust flow rate (using the

MAF and exhaust temperature) and the pitot tube exhaust flow rate measure.
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Comparing Temp Corrected MAF and Pitot Data without Temp Carrection
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Figure A3: Pitot flow overlaid with temperature corrected MAF

A scatter plot was generated in Excel between estimated exhaust flow rate (using

MAF and exhaust temp) and exhaust flow rate measured with the Pitot tube. The

resulting linear regression equation was y=0.9503x-256.47. The fact that the slope is so

close to 1 suggests that the estimated exhaust flow rate is close to actual exhaust flow rate

and can be used as a surrogate for the direct measurement of exhaust flow.

Percent Load Calculation

The torque curve provided by Volkswagen for the SDi engine used for this

research and the engine torque and engine speed measured by Armsoft were used to

calculate % load. The torque curve provided by VW was interpolated into a piecewise

function so that ‘maximum torque’ could be calculated across the RPM range (Figure

Ad).
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Volkswagen 1.9L SDi Torque Curve
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Figure A4: Volkswagen 1.9L SDi Torque Curve with polynomial trend lines
Percent load was then calculated by plugging the measured engine torque and the

maximum calculated torque for the associated engine speed into EQ 14.

%Laod = —2 x100 [14]

Tmax

Where:
Tact = Measured engine torque (Nm)
Tmax = Maximum calculated engine torque (Nm)

Determining Consistency of Operation
Cumulative distribution functions (CDFs) were generated for torque, engine

speed, and throttle position for all transient cycle runs of each fuel blend (n=30) (Figure
Ab) to determine if the engine operation was consistent across all runs. Two sample
Kolmogorov—Smirnov (KS) test were then run on all possible combinations of the 30
CDFs. All KS tests failed to reject the null hypothesis that any combination of two of the

30 curves depicted were from the same continuous distribution.
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Figure A5: Overlaid cumulative distribution functions from all 30 runs for a) engine torque, b)
engine speed, and c) throttle position

Dilution Ratio
The 1Hz dilution ratio data box plots are shown in Figure A6 for each individual

run. There is a trend of increasing DR from run to run for the WVO sequence and for the
first portion of the SOY sequence due to fouling of the orifice in the exhaust sample
transfer line. For fear of altering dilution system characteristics, the dilution system was
not disassembled for cleaning during the WVO sequence. Fouling during the SOY
sequence was, however, more aggressive resulting in disassembly of the dilution system
for cleaning before the 3 SOY B20 replicate was run. Although there is inter-run DR
variability, intra-run variability is relatively consistent. High DR outliers are present for

most runs because there was, inevitably, some fouling of the control orifice during the
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end of the drive cycle. Because all PN data was corrected with second-by-second DR, the

effect of the DR variation is assumed to be minimal.
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Figure A6: Dilution Ratio by Run

Ambient Conditions
Ambient conditions (temperature, pressure, and absolute humidity) were variable

throughout testing (Figure A7). They were all, however, within normal atmospheric
conditions so any affects they may have had were indicative of real world variability.
Ambient pressure measured by the scantool had a resolution of approximately
5mbar resulting in the majority of the raw data points consisting of up to about three
values. The reasons for the outliers shown in the ambient pressure plot in Figure A7 are
1) one pressure value was primarily read and 2) interpolation of the raw data to common

time stamps during data post processing resulted in values between those in the raw data.
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Figure A7: Ambient condition box plots by run
To investigate trends between ambient conditions (temperature, pressure, and

absolute humidity) and TUFP emissions, scatter plots of each parameter versus TUFP
emissions by BXX blend and feedstock were generated (Figure A8 — Figure A13).
Additionally, the data in each scatter plot was used to generate a linear regression
between the ambient condition parameter and TUFP emissions (blue line). These linear

regressions indicate that the majority of the data suggest that TUFP ERs increase with an
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increase in ambient pressure, a decrease in ambient temperature, or a decrease in ambient

ABS humidity. Some of these data, however, suggest the opposite; therefore, no

definitive trend between the ambient parameters and TUFP emissions could be found

with this limited data set.
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Figure A8: Scatter plots by WVO blend and phase of ambient temperature versus TUFP emissions.
Blue lines represent a linear regression of the scatterplot data.
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Figure A9: Scatter plots by SOY blend and phase of ambient temperature versus TUFP emissions.
Blue lines represent a linear regression of the scatterplot data.
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Figure A10: Scatter plots by WVO blend and phase of ambient pressure versus TUFP emissions.
Blue lines represent a linear regression of the scatterplot data.

134



« 10 B10 S0Y 10 B20 S0V « 10 Bs0 S0 « 102 B100 SO
10

4
3 o]
2
3 2
= 1
D e
5a0 1000 590 1000 995 990 995
w10 10" w 10" ¥ 10" w 10"
4 5 10 4 10
—_ 3
o D + o+ + *
& E 2 1 A 2 M 0% 5 2 + 5 +
E o + hd hd e
=y . | 1
- * TN EL Y
[ug
T 0 0 i 0
£ 980 990 1000 9A0 5980 580 1000 5980 1000
o
o
= ik w10 ik
o o4 1 4 5
i . 1
£ 3 3 Ry 3
o % 3
1) 2 e 2
1 1 # 1 1
0 0 0 ] 0
990 990 1000 9AD 590 590 1000 995 990 995
w 10"
5 5
4 4
o 3 4 3
= 2 2
o *
1 1
0 0 i 0
980 990 1000 940 990 590 1000 990 1000 @85 990 995

Arnbient Pressure(mbar)

| * Runi ® Run2 = Run3|
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TUFP Concentration (#/cm°)
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Figure Al4: Mean TUFP concentration (5.6nm < D, < 100nm) by run phase and biodiesel blend
percentage. Each column represents the mean of combined triplicate data for each fuel blend and
feedstock. Error bars represent + 1 standard deviation. N = 3600x3 for P3 and 600x3 for P5, P7, and
P9. Note: Y-axes are scaled differently from plot to plot.
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TPN Emission Rate (#/sec)
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Figure A15: Mean TPN emission rates (5.6nm < Dp < 560nm) by run phase, biodiesel blend
percentage, and biodiesel feedstock. Each column represents the mean of combined triplicate data
for each fuel blend and error bars represent + 1 standard deviation. N = 3600x3 for Phase 3 and
600x3 for Phases 5, 7, and 9. Note: Y-axes are scaled differently from plot to plot
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TUFP/ TPN Summary Table
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Average Particle Number Distribution (PND) Emission Rate (Linear Scale)
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Figure A16: Average WVO particle number distributions by biodiesel blend and drive cycle phase.
Log — Linear. Y-Scale limits are different on from plot to plot on the left side while the Y-Scale limits
are the same from plot to plot on the right side.
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Figure A17: Average SOY particle number distributions by biodiesel blend and drive cycle phase.
Log — Linear. Y-Scale limits are different on from plot to plot on the left side while the Y-Scale limits
are the same from plot to plot on the right side.
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Mean Diameter Calculation
The mean diameters (MDs) of particle number distributions were calculated as

follows.

_ 2(D,xER;)
- YER

MD [14]

Where:

MD = mean diameter (nm)

Dy,i = EEPS Dy midpoint for bin i (nm) (Engine Exhaust Particle Sizer Bin
Data

Table A4)
ER; = emission rate for EEPS bin i (#/sec)
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Average Particle Number Distributions by Run, Phase, and Fuel
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Figure A18: BO run average particle number distributions. Top 4 panels are Log-Log; bottom 4 are

Log-Linear.
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Figure A19: B10 run average particle number distributions. Top 4 panels are Log-Log; bottom 4 are

Log-Linear.
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Figure A20: B20 run average particle number distributions. Top 4 panels are Log-Log; bottom 4 are
Log-Linear.
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Figure A21: B50 run average particle number distributions. Top 4 panels are Log-Log; bottom 4 are

Log-Linear.
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Figure A22: B100 run average particle number distributions. Top 4 panels are Log-Log; bottom 4

are Log-Linear.
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Particle Number Distribution Modal Diameter Summary Table

Table A6: Particle number distribution mode Dy, ER, and ratio of blend emission rate to petrodiesel
emission rate (ERgxx/ ERgy).

Small Mode Middle Mode Large Mode

BXX | Dwe ER Eg:oxxl Dwe ER EEE:X’ Dwe ER EEEOXX’
BO 108 009 1.0 165 0.08 1.0 453 010 1.0
® B10 |108 021 23 165 016 20 453 024 24
$ B20 |108 010 1.1 165 0.07 0.9 392 008 08
& B50 |108 025 28 165 019 24 204 016 16
B100 | 10.8 031 35 221 035 4.4 29.4 037 37
BO 108 012 1.0 19.1 043 1.0 34 0.84 1.0
w B10 | 108 067 56 19.1 157 36 34 215 25
3 B20 |108 017 14 191 019 04 34 032 04
& B50 |108 072 6.0 191 075 1.7 29.4 088 1.0
9 B100 |10.8 069 5.8 191 094 22 204 112 13
S BO 108 011 1.0 191 012 1.0 523 031 1.0
~ B10 |108 037 35 165 038 3.1 523 083 27
& B2 |108 006 06 19.1 006 05 523 018 06
o B50 |108 037 35 191 042 35 294 046 15
B100 | 10.8 048 46 191 094 7.7 294 112 36
BO 108 112 10 191 115 10 34 139 1.0
o B10 |108 141 13 19.1 147 13 453 269 19
2 B20 |108 101 09 191 097 08 294 092 07
& B50 |108 142 13 165 142 12 29.4 127 09
B100 |10.8 321 29 19.1 369 3.2 34 250 1.8
BO 108 040 1.0 191 066 10 294 060 10
© B10 |108 058 14 191 073 11 294 063 1.1
2 B20 |108 044 11 165 035 05 392 044 07
& B50 |108 052 13 165 051 0.8 34 064 1.1
B100 | 108 101 25 191  1.43 22 34 1.72 29
BO 108 117 1.0 191 094 10 392 318 1.0
w B10 |108 131 11 191 177 19 34 593 1.9
# B20 |108 1.08 09 191 306 33 204 433 14
& B50 |108 113 1.0 19.1 230 25 34 349 1.1
> B100 | 10.8 123 1.0 19.1 382 41 34 9.00 28
& BO |108 047 1.0 191 091 1.0 34 132 10
~ B10 |108 107 23 191 171 19 34 234 18
& B2 [108 074 16 165 075 08 453 145 11
o B50 |108 073 16 19.1 087 10 34 162 12
B100 | 108 126 27 191 243 27 34 375 28
BO 108 278 10 165 263 10 34 254 1.0
o B10 |108 320 12 165 299 1.1 34 363 14
2 B20 |108 163 06 191 179 07 453 434 17
& B50 |108 142 05 19.1 178 07 39.2 392 15
B100 | 108 181 0.7 191 283 11 34 466 1.8

Note: Dy, is in nmand ER is in (#/sec) x1el2
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Fuel Consumption Summary Table (From Scale Data)
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Genetic Programming Summary Table
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Injector Pump Operation
The VW SDi engine used for this research was equipped with a pump-line-nozzle

fuel injection system that utilized a Bosch VE injection pump. Figure A23 explains how
the injector pump distributes fuel. In panel ‘a’, the high pressure chamber (cavity in
white) is full of fuel when the outlet port opens. Then in panel ‘b’, the plunger is pushed
to the right forcing the fuel into the outlet port and into the fuel line that leads to the
mechanical fuel injector. The timing of when the plunger is pushed relative to TDC of the
piston determines SOI relative to TDC. The amount of fuel injected is controlled by when
the control collar is actuated to allow flow through the transverse cutoff bore in panel ‘c’.
In panel ‘d’, the transverse cutoff bore is again covered by the control collar, the outlet
port is closed, and the plunger moves back to the left to allow the high pressure chamber
to be filled with fuel for the next injection event. The fuel itself is the only lubrication for
the moving parts within the injector pump. As such, the tolerances between the moving
parts allow some fuel to ‘leak’ out of the fuel injection circuit. The amount of fuel that
leaks is dependent on the viscosity of the fuel. This results in more fuel being injected for
higher viscosity fuels (biodiesel blends) than for lower viscosity fuels (petrodiesel). This
supports the data presented in Figure 2.4 and Figure 3.5 which show an increase in fuel

consumption as the amount of biodiesel in the fuel increases.
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Distributor plunger with stroke and delivery phases

a Inlet passage
closes.

At BDC, the metering
slot (1) closes the inlet
passage, and the
distributor slot (2) opens
the outlet port.

b Fuel delivery.

During the plunger

stroke towards TDC
(working stroke),

the plunger pressurizes
the fuel in the high-
pressure chamber (3).
The fuel travels through
the outlet-port passage (4)
to the injection nozzle.

c End of delivery.
Fuel delivery ceases
as soon as the
control collar (5)
opens the transverse
cutoff bore (6).

=

Shortly before TDC,
the inlet passage

is opened. During
the plunger’s return
stroke to BDC,

the high-pressure
chamber is filled with
fuel and the transverse
cutoff bore is closed
again. The outlet-port
passage is also
closed at this point.

d Entry of fuel. uto
i
|
|

aly
4 1
-

OT=TDC
UT =BDC

Figure A23: Description of injector pump operation from Bosch manual [98]
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Drive Cycle Development

cycle.

1.

The following are the steps taken to develop the transient portion of the drive

Generate real world data with an on-road vehicle (includes Vehicle Speed, Engine
Speed, Throttle Position, and Current Gear of Transmission).

Strip real world data of engine braking events using the ‘no-load’ RPM to throttle
position relationship previously obtained from CM12 by mapping engine speed to
throttle position without applying the brake (the dynamometer is only capable of
slowing the engine down. It can’t speed it up.)

Interpolate the ‘corrected’ real world data to a longer time scale so the PID
controller of the CM12 can utilize the RPM and throttle position data gathered on
the road to adjust the brake load accordingly. In this case the time scale was
increased by a factor of 5 and the data was then interpolated to 2Hz.

Generate a RPM/ Throttle position scheduler file with the resulting throttle
position and RPM setpoints.

Run the CM12 using the scheduler file while recording data at a frequency of
2Hz. Since this is a RPM/ Throttle Position scheduler file, PID control of the
brake setting will be utilized (Data recorded during this run includes RPM,
Throttle Position, and Brake Setting).

Using the data collected from the PID controlled run and the ‘corrected’ real
world data, determine idle/ no load events and generate a new brake setting
column for which the brake setting during identified idle/ no load events are 3%

(this is not 0% because, when a vehicle is in gear, the engine is under slight load.
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Only when a vehicle is in neutral or park is the engine not loaded). Here, idle/ no
load events were determined by throttle position; when throttle position is zero,
load is zero, and, therefore, brake setting was changed to 3% (Figure A24). In
actuality, there would be instances when load would be negative (engine braking)
when throttle position is zero, but because the CM12 cannot simulate engine

braking, brake setting was simply set to 3%.

5[] T T T T T T T T T T
— PID controlled Brake Setting
Brake Setting with idle events [}

45

40

35

30

il y R

15

Brake Setting {%)

=
I

10

| | | | | | | | |
100 200 300 400 500 600 7FOO 8OO 900
Time (sec)

o]

Figure A24: Comparison of PID controlled Brake Setting and intermediate step of Idle Adjustment
7. Overlay ‘Brake setting with idle events’ from Figure A24 above with Throttle

Position to get an indication of what the brake setting should be doing. Using g-
input in Matlab, identify start and finish points to connect the peaks in the brake

setting data to the 3% load points (Figure A25).
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Figure A25: Connecting peaks to idle events. Endpoints of the red lines represent the points
identified with g-input.
8. Interpolate between each line endpoint to generate 2Hz brake setting data for the
transitions. Replace the transition sections of the green line in Figure A25 with the

data generated from the red lines (Figure A26).
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Now, to focus on correcting the PID overshoot of the brake setting, overlay the

Fi

gure A26: Brake Settings with complete idle event adjustment

drive cycle (desired) RPM and the measured (actual) RPM.
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; |
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Figure A27: Comparison of desired RPM to measured RPM
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10. Now, calculate the difference from actual RPM to desired RPM for those times
that the brake setting has not already been adjusted — primarily the peaks of the
brake setting data. Find the maximum RPM difference in this range.

11. Develop an algorithm to adjust the brake settings to align measured RPM with
actual RPM. When measured RPM is greater than desired RPM, increase brake
setting and vice versa. In this instance the maximum RPM difference was 1216.
The maximum change in brake setting was set to 10%. The algorithm used was:

RPM
120

Amount to add to brake setting = round ( - 0.01)

12. To apply this algorithm, determine the maximum actual RPM value for the time
steps that have already been adjusted for idle events. Apply this algorithm only to
time steps with RPM values above this value.
13. Generate a new brake setting/ throttle position scheduler file with these modified
brake settings and the original throttle positions and run it on the CM12.
14. Repeat steps 10 — 13 until the measured RPM is sufficiently close to the desired
RPM.
15. Once engine speed match is complete, interpolate drive cycle back to a shorter
time span to better simulate real-world driving.
MatLab Code

The MatLab code for this research was originally written by Tyler Feralio. Some
of the code was subsequently modified by Karen Sentoff to incorporate FTIR data.

‘Code 1 _Raw Processing 28JUL2014.m’ retrieves the raw data from each

instrument one run at a time, applies calibration equations where necessary, concatenates
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blank and run data where necessary, and outputs new files for each instrument in a
common format. ‘CODE_2 Blank_Correction.m’ retrieves the EEPS and FTIR data
generated in Code 1 and performs the blank correction (see ‘PN Data and Blank
Correction” section in the Appendix for more detail). Once blank correction is complete,
the code outputs blank corrected run (engine on) data files associated with both the EEPS
and the FTIR. ‘CODE_3_Time_Alignment_12JUN2014.m’ retrieves the Armfield,
VCDS, and Labview files output from Code 1 and the EEPS and FTIR data output from
Code 2 for time alignment. See the ‘Temporal Alignment’ section of the Appendix for
more detail on how this was performed. Once time alignment was complete, Code 3
generated one new file for each run that contained data from all instruments that share
one time stamp. ‘CODE_4 26JUN2014.m’ retrieves all of the individual run files
generated by Code 3, concatenates them into one large data set, and outputs the

concatenated dataset to one large .txt file.
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