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ABSTRACT

Societies where workers sacrifice their own reproduction and cooperatively
nurture the offspring of a reproductive queen caste have originated repeatedly
across the Tree of Life. The attainment of such reproductive division of labor
enabled the evolution of remarkable diversity in development, behavior, and
social organization in the Hymenoptera (ants, bees, and wasps). Wasps of the
family Vespidae exhibit a gamut of social levels, ranging from solitary to highly
social behavior. The highly social yellowjackets and hornets (Vespinae) have well
developed differences in form and function between queens and workers, large
colony sizes, and intricate nest architecture. Moreover, certain socially parasitic
species in the Vespinae have secondarily lost the worker caste and rely entirely
on the workers of a host species to ensure the survival of parasitic offspring.
Understanding the evolution of behavioral traits in the Vespinae over long
periods of time would be greatly enhanced by a robust hypothesis of historical
relationships.

In this study, I analyze targeted genes and transcriptomes to address three goals.
First, infer phylogenetic relationships within yellowjackets (Vespula and
Dolichovespula) and hornets (Vespa and Provespa). Second, test the hypothesis that
social parasites are more closely related to their hosts than to any other species
(Emery’s rule). Third, test the protein evolution hypothesis, which states that
accelerated evolution of protein coding genes and positive selection operated in
the transition to highly eusocial behavior. The findings of this study challenge
the predominant understanding of evolutionary relationships in the Vespinae. I
show that yellowjacket genera are not sister lineages, instead recovering
Dolichovespula as more closely related to the hornets, and placing Vespula as sister
to all other vespine genera. This implies that traits such as large colony size and
high paternity are mostly restricted to a particular evolutionary trajectory
(Vespula) from an early split in the Vespinae. I demonstrate that obligate and
facultative social parasites do not share immediate common ancestry with their
hosts, indicating that socially parasitic behavior likely evolved independently of
host species. Moreover, obligate social parasites share a unique evolutionary
history, suggesting that their parasitic behavior might have a genetic component.
Lastly, I analyze transcriptomic data to infer a phylogeny of vespid wasps and
use this phylogeny to discover lineage-specific signatures of positive selection. I
identify more than two hundred genes showing signatures of positive selection
on the branch leading to the highly eusocial yellowjackets and hornets. These
positively selected genes involve functions related mainly to carbohydrate
metabolism and mitochondrial activity, in agreement with insights from studies
of bees and ants. Parallels of functional categories for genes under positive
selection suggests that at the molecular level the evolution of highly eusocial
behavior across the Hymenoptera might have followed similar and narrow
paths.
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CHAPTER 1: INTRODUCTION

Cooperative behavior and self-sacrificing altruism evolved repeatedly in
insects (Wilson 1971; Anderson 1984). In the social Hymenoptera (ants as well as
certain bees and wasps), colony members belong to castes that perform specific
tasks. The reproductive caste includes queens and males, whereas the mostly
sterile workers raise offspring, forage, and guard the colony (Wilson 1971;
Bourke and Franks 1995). Moreover, workers usually switch from nest activities
to foraging through their lifespan; that is, workers exhibit temporal polyethisms
(Wilson 1976; Seeley 1982; Jeanne 1991). This division of labor is considered a
hallmark in the ecological success of hymenopteran societies (Wilson 1985). The
Vespidae is a lineage of wasps that transitioned from solitary to social behavior
once (Carpenter 1982; Pickett and Carpenter 2010). Within vespids, the paper
wasp genus Polistes, yellowjackets (Vespula and Dolichovespula), and hornets
(Vespa and Provespa) are among the most well-studied and all belong to eusocial
subfamilies with reproductive division of labor, cooperative care of brood, and
overlapping generations. Their social complexity, however, varies. In contrast to
the primitively eusocial Polistes, colonies of the highly eusocial yellowjackets and
hornets typically comprise hundreds to thousands of workers and have
morphologically distinct castes (Evans and West-Eberhard 1970). These
morphological differences between castes indicate a “point of no return” to a
solitary or primitively eusocial condition (Wilson and Holldobler 2005; Wilson
2008).

The Vespinae have been the focus of numerous evolutionary studies due
to the diversity of their natural history and behavioral traits (e.g., Foster et al.

1999, 2000, 2001; Foster and Ratnieks 2001a,b; Wenseleers et al. 2005a, b;
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Helantera et al. 2006; Goodisman et al. 2007a, b; Bonckaert et al. 2008; Kovacs et
al. 2010; Loope et al. 2014; Oi et al. 2015). Vespine wasps occur throughout the
oriental tropics and temperate regions in the Northern Hemisphere (Spradbery
1973). Across this geographic range, yellowjackets and hornets establish aerial or
subterranean nests consisting of layers of paper that enclose combs (horizontal
sections) suspended from one another (Evans and West-Eberhard 1970; Akre and
Davis 1978). Vespine wasps have small- and large-colony species (Akre et al.
1981), and such variation in colony size correlates with patterns of reproduction
and conflict in accordance with kin selection predictions (Foster and Ratnieks
2001b; Loope et al. 2014). Kin selection theory states that relatedness among
individuals influences selection, and that an indirect fitness component received
from effects on the reproduction of others favors the evolution of altruistic traits
(Hamilton 1964a,b; Queller and Strassmann 2002; Foster et al. 2006; Strassmann
et al. 2011). Kin selection has been particularly emphasized in the study of
altruism in the social Hymenoptera because of their haplodiploid sex
determination. In haplodiploid species, females developed from fertilized eggs,
whereas males develop from haploid eggs. As a result, full sisters share more
genes with each other (75%) than they would with their own offspring (50%).
Workers, therefore, should invest in the survival of their sisters, rather than in
the production of their own female offspring. Moreover, when queens mate only
once, workers are more related to nephews (sons of workers) than to their
brothers (queen’s sons), and thus worker production of males is expected. On the
contrary, multiple paternity results in little reproduction by workers (Ratnieks
1988). Among vespine wasps, large-colony species of Vespula exhibit high

paternity, few workers with activated ovaries, and absence of worker
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reproduction (Akre et al. 1976; Ross 1985, 1986; Foster and Ratnieks 2001b). Lack
of worker reproduction in large-colony yellowjackets usually results from
worker policing, where workers remove or eat worker-laid eggs to preserve the
reproductive dominance of the queen (Foster and Ratnieks 2000, 2001a;
Bonckaert et al. 2008). In contrast to large-colony species of Vespula, species of
Dolichovespula have small colonies with low paternity and exhibit conflict
between queens and workers over the production of males (Foster et al. 2001).
Reproductive conflict in the Vespinae may occur between species, too. Vespine
nests typically have a single founding queen devoted exclusively to reproduction
for most of her lifespan. The growth of vespine colonies, however, may be
interrupted by social parasites (MacDonald and Matthews 1975; Jeanne 1977).
These socially parasitic species have secondarily lost the worker caste and rely on
the workers of a host species to raise parasitic offspring. Altogether, the Vespinae
show considerable variation in behavioral traits, and elucidating the origins of
such traits over deep evolutionary time will benefit from a robust hypothesis of
phylogenetic relationships.

The work I present here investigates the phylogenetic relationships of
yellowjackets and hornets. The predominant hypothesis of vespine phylogeny
was proposed by Carpenter (1987), who analyzed morphological characters and
found that yellowjackets were monophyletic and sister to Provespa, and
recovered Vespa as the sister group of the remaining Vespinae. Another
phylogenetic study, however, reported that yellowjackets were more closely
related to a hornet clade (Vespa and Provespa) (Pickett and Carpenter 2010). More
recently, and subsequent to published findings from the first half of this

dissertation, Perrard et al. (2015) analyzed morphological and molecular data
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and found that yellowjackets were monophyletic and sister to Vespa, but also
reported considerable lack of support for genus-level relationships. In Chapter
One, I analyze nine targeted genes and evaluate the relationships of
yellowjackets and hornets. In Chapter Two, I use a phylogenetic approach to test
Emery’s rule, which indicates that social parasites are more closely related to
their hosts than to any other species.

Although the natural history of several vespid species is well known
(Spradbery 1973; Ross and Matthews 1991; Hunt 2007), comprehensive genetic
analyses of social wasps have burgeoned only in recent years, particularly
focused on caste differences within Polistes (Toth et al. 2007; Berens et al. 2015a;
Patalano et al. 2015). Caste determination has been thought to occur
predominantly as a response to environmental factors, such as nutrition of larvae
or rearing temperature, rather than due to genetic differences (Wilson 1976, 1985;
O’Donnell 1998; Holldobler and Wilson 2008). But division of labor also has a
genetic component that varies in strength and is widespread across social insects
(Anderson et al. 2008; Goodisman et al. 2008; Robinson et al. 2008; Smith et al.
2008; Schwander et al. 2010; Bloch and Grozinger 2011; Lattorff and Moritz 2013).
Recently, queen-worker and worker—worker differences in form and function
have been associated with patterns of gene expression, which originate from the
interaction of genotype and environment during development (Evans and
Wheeler 2001; Ben-Shahar et al. 2002; Whitfield et al. 2003, 2006; Ingram et al.
2005; Pereboom et al. 2005; Drapeau et al. 2006; Griff et al. 2007; Grozinger et al.
2007). The study of a model species such as the honey bee has delivered
tremendous genomic resources and enabled the identification of various genes

underlying division of labor (Whitfield et al. 2003; Weinstock et al. 2006; Smith et
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al. 2008), which is a prime endeavor of sociogenomics (Robinson et al. 2005;
Rehan and Toth 2015; Kapheim 2016). Moreover, the advent of high-throughput
RNA sequencing (RNA-Seq) or transcriptomics (Morozova et al. 2009; Wang et
al. 2009; Cahais et al. 2012), availability of assembled genomes from bees, ants,
and Polistes (Gadau et al. 2012; Simola et al. 2013; Oxley et al. 2014; Kapheim et al.
2015; Patalano et al. 2015; Sadd et al. 2015; Smith et al. 2015a), and novel findings
of genes linked to caste-specific behavior (Hoffman and Goodisman 2007; Toth et
al. 2007, 2010; Cardoen et al. 2011b; Ferreira et al. 2013; Feldmeyer et al. 2014;
Woodard et al. 2014) now serve as impetus for elucidating broad molecular
patterns in other social insects, such as the vespine wasps. A hypothesis of
particular interest indicates that accelerated evolution of specific protein coding
genes or gene families contributed to the origin of highly eusocial behavior
(Fischman et al. 2011; Woodard et al. 2011; Simola et al. 2013). In Chapter Three, I
analyze a transcriptomic data set of vespine wasps to reassess the phylogenetic
relationships of vespine genera. In Chapter Four, I use single-copy genes to test
the protein evolution hypothesis for the origin of highly eusocial behavior in the

Vespinae.



CHAPTER 2: PHYLOGENETIC RELATIONSHIPS OF YELLOWJACKETS

INFERRED FROM NINE GENES (HYMENOPTERA: VESPIDAE, VESPINAE,
VESPULA AND DOLICHOVESPULA)
2.1. Introduction
Social wasps of the genera Vespula and Dolichovespula, or yellowjackets,

have similar life history characteristics, but also exhibit considerable diversity in
their social behavior (Greene, 1991). Throughout latitudes of the Northern
Hemisphere, yellowjacket queens initiate colonies alone, and their elaborate
nests, which might be aerial or subterranean, consist of levels or combs enclosed
in layers of paper (Akre et al., 1981). Queens are larger than workers and both
castes also differ in shape, physiology, and behavior (Akre and Davis, 1978;
Jeanne, 1980). Larvae and adults frequently engage in mouth-to-mouth feeding
(i.e., trophallaxis), a prominent behavior of most advanced wasp societies
(Roskens et al., 2010; Spradbery, 1973). Their colonial life also displays
considerable conflict and diversity in reproductive behavior (Foster and
Ratnieks, 2001b). Conflict over male parentage among the queen and
reproductive workers is commonly resolved by forceful prevention of worker
reproduction, or policing (Ratnieks and Visscher, 1989; Wenseleers et al., 2004).
The queen or workers can enforce policing by physical aggression toward egg-
laying workers or by eating worker-laid eggs, maintaining the reproductive
primacy of the queen (Bonckaert et al., 2011, 2008; Foster and Ratnieks, 2000;
Freiburger et al., 2004; Goodisman et al., 2002; Helantera et al., 2006; Wenseleers
et al., 2005a,b). Furthermore, queens of obligate social parasite species, or

inquilines, which lack the worker caste, instigate interspecific conflict by entering
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the nest of a host species, killing the resident queen, and enslaving the host
workers (Jeanne, 1977; Reed and Akre, 1983b). In contrast, facultative social
parasites such as Vespula squamosa can produce their own workers, but
frequently usurp colonies of other species (Hoffman et al., 2008; MacDonald and
Matthews, 1975).

Given this wealth of sophisticated behavioral traits present in a relatively
small number of species (about 48 species of yellowjackets are currently
recognized), a robust phylogeny inferred from different sources of evidence is a
high priority. However, only two formal studies have addressed the
evolutionary history of yellowjackets. First, Carpenter (1987) conducted a
cladistic analysis of the genera of the subfamily Vespinae, including Vespa
(hornets) and Provespa (nocturnal hornets) in addition to Vespula and
Dolichovespula. Using morphological and behavioral characters (including data of
Yamane (1976) and Matsuura and Yamane (1984)), Carpenter’s (1987) analysis
supported yellowjackets as a clade sister to Provespa, placing Vespa sister to the
remaining vespine genera (Fig. 2.1a). Second, Carpenter and Perera (2006), again
using morphological and behavioral characters, also found that Vespula and
Dolichovespula are monophyletic and presented relatively well-resolved
relationships within each genus. Greene (1979) discussed yellowjacket
relationships on the basis of behavioral characters, but his arguments were non-
cladistic.

In contrast, the use of molecular characters to elucidate the evolutionary
history of yellowjackets has been limited and, for the most part, peripheral. For
example, Collins and Gardner (2001) analyzed a fragment of cytochrome b from

six species of bees and wasps, including one hornet and two yellowjacket
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species, which were recovered as sister taxa in their results. As part of a study of
allergen characterization of paper wasp venom, Pantera et al. (2003) used amino
acid sequences of antigen 5 and provided a neighbor-joining dendrogram,
showing Vespula as closer to Vespa than to Dolichovespula. Hines et al. (2007)
analyzed sequence data from four nuclear genes including three vespine wasps.
Their results showed Vespula squamosa as more closely related to Dolichovespula
maculata than to Vespula maculifrons. As part of a new species description,
Landolt et al. (2010) performed parsimony and neighbor-joining analyses of 905
bp of mitochondrial DNA from seven yellowjacket species and found two sister
clades corresponding to the Vespula vulgaris and V. rufa species groups. Pickett
and Carpenter (2010) conducted a direct optimization (Wheeler, 1996) analysis of
four loci, combined with morphology and behavior, to elucidate the phylogeny
of the family Vespidae. Pickett and Carpenter’s (2010) study included nine
vespine species and found that Vespa is sister to Provespa and these two genera
are sister to Vespula and Dolichovespula (Fig. 2.1b). More recently, Saito and
Kojima (2011) investigated the relationships among species of Provespa using
information from three loci and phenotypic data. The two yellowjacket species
included in this study were sister taxa and more closely related to Provespa than
to Vespa.

Here, we perform a phylogenetic analysis of yellowjackets on the basis of
a new, comprehensive molecular data set. We generate 5.5 kb of DNA sequence
from five mitochondrial and four nuclear loci, including both protein-coding and
ribosomal fragments. The standard markers we chose have variable rates of

evolution that are expected to provide resolution at different hierarchical levels.



Our taxon sampling encompasses part of the diversity of yellowjackets
across their north temperate distribution. Using a strategy of marker
concatenating and partitioning, we test the monophyly of Vespula and
Dolichovespula and their sister relationship as yellowjackets. Furthermore, we
infer the relationships within each yellowjacket genus and among species
groups. Finally, we discuss the implications of the new phylogeny for the

evolution of behavior and morphological features.

Vespa
Vespa
— ———— Provespa
Dolichovespula Provespa
Vespula vulgaris group —_—
Vespula koreensis group — Dolichovespula
Vespula rufa group
Vespula

Vespula squamosa group

Figure 2.1: Previous hypotheses of generic and species-group relationships within Vespinae:
(a) Carpenter’s (1987) phylogeny in which Vespula and Dolichovespula are sister genera and
both more closely related to Provespa; (b) Pickett and Carpenter’s (2010) hypothesis also shows
that Vespula and Dolichovespula are sister genera but more closely related to a clade that
includes Provespa and Vespa.



2.2. Materials and methods
2.2.1. Taxon sampling

Five Holarctic species were recognized in the world checklist of Vespinae
(Carpenter and Kojima, 1997). Recent taxonomic studies, however, have found
diagnostic differences between the Old and New World forms of species
previously considered Holarctic (Carpenter and Glare, 2010; Carpenter et al.,
2011; Kimsey and Carpenter, 2012). These changes in the taxonomy of
yellowjackets are adopted here, and thus Holarctic species are not recognized,
with the exception of the European Vespula germanica, which is widely
introduced. Sequences were obtained for a total of 28 species. Following the
comprehensive analysis of Pickett and Carpenter (2010), four outgroup species
were chosen from the Polistinae, the putative sister subfamily of Vespinae. Six
more vespine outgroup species from Provespa and Vespa were included.
Currently, there are 48 recognized species of yellowjackets (21 Dolichovespula and
27 Vespula), of which 18 were included in this analysis. Our analysis increases
taxon sampling from five to 18 yellowjacket species in comparison to Pickett and
Carpenter (2010). Moreover, the ingroup taxa in this study represent six species
groups. These are the Vespula rufa, V. vulgaris, V. squamosa, Dolichovespula
maculata, D. norwegica, and D. sylvestris groups (Archer 1999; Carpenter, 1987;

Carpenter and Perera 2006).

2.2.2. DNA extraction, amplification, and sequencing
One leg and one antenna were removed from absolute ethanol-preserved
specimens and the rest of each specimen was kept as a voucher. Legs and

antennae were macerated with sterile plastic pestles and genomic DNA was
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extracted using the DNeasy Blood & Tissue Kit (Qiagen) with an incubation
period of 48 hours at 55°C in lysis buffer and Proteinase K, and in other respects
following the manufacturer’s instructions. Loci from mitochondrial and nuclear
genomes were selected for their variability and resolving power at different
levels. The genes used in this study are 12S ribosomal DNA (12S), 16S ribosomal
DNA (16S), cytochrome oxidase I (COI), cytochrome oxidase II (COII),
cytochrome b (Cytb), 28S ribosomal DNA D2-D3 expansion regions (28S),
elongation factor 1 a F2 copy (EF1a), RNA polymerase II (Pol II), and wingless
(wg).

Fragments of these genes were amplified using the Polymerase Chain
Reaction (PCR) on an Eppendorf Mastercycler Thermal Cycler and employing
the primers listed on Table 2.1. Each PCR consisted of 22uL of nuclease-free
dH.O, 1uL of 10uM forward primer, 1uL of 10uM reverse primer, and 1uL of
genomic DNA extract. The 25uL total volume was added to PuReTaq Ready-To-
Go PCR beads (GE Healthcare). A typical PCR program started with 4 minutes of
initial denaturation at 94 °C, followed by 35-40 cycles of 30 seconds at 94 °C, 45
seconds of annealing at 43-58 °C, and 45 seconds of elongation at 72 °C, and
ended with a six minute period of final elongation at 72 °C. PCR products were
verified on 1% agarose/ TBE electrophoresis gels. PCR product purification and
standard Sanger sequencing were outsourced to Beckman Coulter Genomics and
Macrogen USA. Sequencing was conducted with the same primers used for PCR
amplification. Contigs were assembled from forward and reverse ABI
chromatograms and trimmed of low-quality ends using Geneious 6 (Biomatters
Ltd.). Upon inspection of agarose gels, chromatograms, and descriptive sequence

statistics, no obvious symptoms of nuclear copies of mitochondrial genes (numts)
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were found (e.g., PCR ghost bands, in-frame stop codons, unconstrained
variability across codon positions (Bensasson et al., 2001; Calvignac et al., 2011)).
All edited sequences were submitted to BLAST searches to screen for

contamination.
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Table 2.1: List of primer sequences (and their respective annealing temperatures) used for PCR
amplification of yellowjackets and outgroups. The same primers were used for sequencing,.

Primer Sequence (5" to 3') PCR Source
temp °C
125 43
125 ai AAA CTA GGA TTA GAT ACCCTATTAT Simon et al. (1994)
12S bi AAG AGC GAC GGG CGA TGT GT Simon et al. (1994)
16S 46
16S ar CGCCTGTTIT ATC AAA AACAT Simon et al. (1994)
16S br CTC CGG TTT GAA CTC AGA TCA Simon et al. (1994)
COI 45
LCO1490 GGT CAA CAA ATC ATA AAGATATTGG Folmer et al. (1994)
HCO2198 TAA ACT TCA GGG TGA CCA AAA AAT CA Folmer et al. (1994)
HCOoutout | GTA AAT ATA TGR TGD GCT C Prendini et al. (2005)
Jerry CAACATTTATITTGA TTT TTT GG Simon et al. (1994)
COI-5 AAT TGC AAATACTGC ACCTATTGA Saito and Kojima (2011)
COII 45
E2 GGC AGA ATA AGT GCATTG Garnery et al. (1992)
COII1-2 ATT TTA TAC CAC AAATIT CTG AACATTG Saito and Kojima (2011)
Cytb 46
CB1 TAT GTA CTA CCA TGA GGA CAA ATATC Jermiin and Crozier
1994
CB2 ATT ACA CCT CCT AAT TTA TTA GGA AT }ermign and Crozier
(1994)
28S 48-52
For28SVesp | AGA GAG AGT TCA AGA GTA CGT G Hines et al. (2007)
Rev28SVesp | GGA ACC AGC TAC TAG ATG G Hines et al. (2007)
EFla 57
F2-557F GAA CGT GAA CGT GGT ATY ACS AT Brady et al. (2006)
F2-1118R TTA CCT GAA GGG GAA GACGRAG Brady et al. (2006)
HaF2Forl GGG YAA AGGWTC CTT CAA RTA TGC Danforth et al. (1999)
F2-revl AAT CAG CAG CACCTTTAG GTG G Danforth et al. (1999)
Pol 11 52
polfor2a AAY AAR CCV GTY ATG GGT ATT GTR CA Danforth et al. (2006)
polrev2a AGR TAN GARTTC TCR ACG AAT CCTCT Danforth et al. (2006)
wg
beewgFor TGC CAN GTS AAG ACC TGY TGG ATG AG 58 Danforth et al. (2004)
Lepwg2a ACT CGC ARC ACC ART GGA ATG TRC A Danforth et al. (2004)
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2.2.3. Sequence alignment, data partitioning, and model selection

Each gene was aligned independently using MAFFT v.7 (Katoh, 2002;
Katoh and Standley, 2013) with a gap opening penalty (--op) value of 1.53, an
offset cost equal to 0.123, and automatic strategy selection. The data were
partitioned corresponding to mitochondrial (“mtDNA": 12S, 16S, COI, COII, and
Cytb) and nuclear (“nuDNA": 28S, EFla, Pol II, wg) genes and combined into a
single matrix (“AllData”). These matrices were assembled using SequenceMatrix
(Vaidya et al., 2011). Vespula flaviceps was excluded from nuDNA because it was
not possible to obtain nuclear, protein-coding sequences for this species.
Considering that third codon positions are prone to substitution saturation
(Swofford et al. 1996; see, however, Kilersjo et al. 1999), we separated all (both
mitochondrial and nuclear) protein-coding genes into subsets including first and
second codon positions on one hand (“Pos1&2”) and third positions on the other
(“Pos3”). Codon-position matrices were created using Mesquite 2.75 (Maddison
and Maddison, 2011). To assess the influence of another potentially confounding
factor in phylogenetic inference (Sanderson and Shaffer, 2002), nucleotide
composition was evaluated for genes and partitions by conducting Chi-square
tests of homogeneity of base frequencies across taxa using PAUP* 4.0b10
(Swofford, 2002). High AT bias was found in the mtDNA (AT 75.86% p < 0.001),
Pos3 (AT 78.38% p < 0.001), and AllData (AT 65.47% p < 0.001) partitions (Table
2.2). In contrast, the null hypothesis of homogeneity in base composition was not
rejected for the nuDNA (AT 52.05%, p = 0.99) and Pos1&2 (AT 60%, p = 0.89)
partitions (Table 2.2). It is worth mentioning that nucleotide composition did not
vary greatly from taxon to taxon, and thus any possible confounding effects of

high AT content should be less drastic (Simon et al., 1994).
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Highest AT content in Pos3 is in accordance with the prevailing use of
codons ending in A and T in hymenopteran genomes (Behura and Severson,
2012). Likewise, other studies have found that AT composition bias in
mitochondrial genes, either protein coding or ribosomal, is widespread in the
Hymenoptera (Dowton and Austin, 1995, 1997). Moreover, in a recent
phylogenetic analysis of hymenopteran superfamilies, Heraty et al. (2011)
reported AT bias in the third codon position of EFla and, to a much greater
extent, COI (AT 90.3%). Base composition heterogeneity in part of our data
motivated one more partition composed of first and second codon positions and
nuclear rDNA (“Pos1&2+28S”); that is, excluding mitochondrial rDNA and third
codon positions of nuclear and mitochondrial protein-coding genes. Pos1&2+285
showed homogeneous base frequencies (AT 56.27%, p = 0.71, Table 2.2). Lastly,
the complete data set was also analyzed in a statistical framework (see below)
partitioning by gene and codon position; that is, defining four partitions
corresponding to three rDNA genes (125, 16S, 28S) and 21bp of tRNALeu
adjacent to COII, and 18 partitions in which each codon position of every
protein-coding gene formed a partition. This last partitioning scheme is referred
to as “AllData22” hereafter.

Models of nucleotide substitution were selected among 56 candidate
models using jModelTest 2 (Darriba et al., 2012; Guindon and Gascuel, 2003)
according to the Akaike Information Criterion corrected for sample size (AICc).
The best-fit substitution models for mitochondrial genes were HKY + 1 + I and
GTR + I+ T (Table 2.2). The use of I + ', however, has been criticized due to
strong correlation between the proportion of invariant sites and the gamma

distribution, hence causing unreliable parameter estimation (Yang, 2006, p. 113-
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114; see also Sullivan et al., 1999 and Stamatakis, 2006, RAXML 7.0.4 manual,
section 6). In most analyses the simpler I' model was preferred (that is, the
proportion of invariant sites was excluded), since a gamma distribution with «
smaller than one already accounts for sites with very low rates (Yang, 2006).
Nonetheless, AllData and mtDNA were also analyzed using I + I to explore the
influence of the I + I mixture on topology and clade posterior probabilities. None

of the best-fit models chosen for nuclear genes included I + I" (Table 2.2).

2.2.4. Phylogenetic inference

Parsimony analyses were performed using TNT (Goloboff et al., 2008)
treating gaps as missing data (nstates nogaps). The heuristic search strategy
consisted of 5000 random addition sequences with TBR branch swapping
followed by ratchet (Nixon, 1999) saving two trees per replication (mult 5000
=tbr ratchet hold 2). Group support was calculated using 10000 replications of
symmetric resampling (resample sym replic 10000) with default search settings
and the results summarized as GC (Group present/Contradicted) values, which
show the difference in frequency between a given group and the most frequent
group that contradicts it (Goloboff et al., 2003). Parsimony analyses were
conducted for single- and multi-gene matrices.

For model-based inference of phylogeny, the program MrBayes 3.2
(Ronquist et al., 2012) was accessed through the CIPRES Science Gateway (Miller
et al., 2010) to run Bayesian analyses of each gene matrix, data subsets, and all
genes combined. All analyses were run for 50M generations with sampling every

1000 generations, the number of runs was 4, and the default number of chains
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was used (nruns=4 nchains=4). Likelihood models were set according to the
AICc criterion, specifying the number of substitution types and model for
among-site rate variation, and allowing MrBayes to estimate base frequencies,
the substitution rates (GTR model) or transition/transversion ratio (HKY model),
and the gamma distribution shape parameter. In the Bayesian analyses of
mtDNA, nuDNA, and AllData, each gene formed a partition, models were
specified for each gene, and parameters were unlinked across partitions (e.g.,
revmat, statefreq, and shape); in the analyses that included I + I the proportion
of invariant sites (pinvar) was also unlinked. In the individual analyses of
Pos1&2, Pos3, and Pos1&2+28S, each data set formed a single partition. For
AllData22 each codon position of every protein-coding gene formed a partition
and individual rDNA genes formed the remaining partitions. Stationarity of
Markov chains was assessed by examining MrBayes’ parameter output files in
Tracer v1.5 (Rambaut and Drummond, 2007) as well as the Potential Scale
Reduction Factor convergence diagnostic ~1.0 and average standard deviation of
split frequencies <0.001. Moreover, the ‘compare’ command in AWTY (Nylander
et al., 2008) was used to evaluate convergence of the posterior probabilities of all
splits for paired MCMC runs. The default burn-in of 25% used in all analyses
was adequate to discard samples before reaching convergence (usually within
2M to 4M generations). A maximum likelihood analysis on the complete
concatenated data set performed in GARLI 2.0 (Zwick], 2006) gave essentially the
same results as the parsimony analysis of AllData and the Bayesian analysis of

mtDNA, and therefore will not be discussed further.
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2.3. Results
2.3.1. Sequence alignment and model selection

Out of the 252 possible DNA sequences, 242 (96%) were successfully
amplified and sequenced. We deposited all sequences in GenBank under the
following accession numbers: KJ147175 - KJ147201 (12S), KJ147202 - KJ147228
(16S), KJ147229 - KJ147256 (COI), KJ147257 - KJ147284 (COII), KJ147285 -
KJ147312 (Cytb), KF981692 - KF981717 (28S), KF955639 - KF955665 (wg),
KF981641 - KF981665 (Pol II), and KF981666 - KF981691 (EF1a). The protein
coding COI, COII, Cytb, EFla, Pol II, and wg aligned unambiguously without
internal indels. For the 12S and 16S rDNA markers, differences in sequence
length among species were generally small (8-32 bp) and alignments were thus
unambiguous. The best-fit substitution models for individual genes were those
with six substitution types and among-site rate variation (e.g., GTR + G), except
for 12S and wg where the best fit models were HKY + G and K80 + G,
respectively (Table 2.2). Simple models, with a single type of substitution and
equal rates, characterized most first and second positions of nuclear, protein-
coding genes (e.g., JC or F81), whereas the first and second codon positions of

mitochondrial genes had more complex models (Table 2.2).

2.3.2. Inferred phylogeny
The single most-parsimonious tree (MPT) found for all nine genes
combined (AllData) is presented in Fig. 2.2. According to this molecular “total
evidence” hypothesis, yellowjackets (Vespula + Dolichovespula) form a natural
group that is sister to the hornets (Vespa). Moreover, within Vespula two major

clades correspond to species groups: the rufa group (with the squamosa group as
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its sister) and the vulgaris group. Within Dolichovespula, the maculata group is a
clade, while the sylvestris group (one species) is sister to the norwegica group.
Simultaneous analyses generated fewer trees in comparison to single-gene
analyses (Table 2.3). The same single MPT found for all concatenated genes (Fig.
2.2) was recovered independently for mtDNA and nuDNA. Symmetric-
resampling support trees for mtDNA, nuDNA, and AllData are presented in Fig.
2.3; Fig. 2.3c summarizes the results of parsimony analyses for single genes and
all data subsets. The three main analyses of concatenated data (Fig. 2.3a-c)
provide strong support for the monophyly of each vespine genus, but
relationships among genera are unresolved or poorly supported. In the support
tree for all mitochondrial genes (Fig. 2.3a) Vespula and Dolichovespula are part of a
trichotomy, and for nuclear genes (Fig. 2.3b) and all genes concatenated (Fig.
2.3c) the monophyly of Vespula + Dolichovespula is weakly supported. Similarly,
individual genes also support the monophyly of each vespine genus, but do not
provide clear resolution to the relationships among genera (Fig. 2.3¢). For
example, the COII gene tree was the only marker supporting the Vespula +
Dolichovespula clade. In the gene tree for 28S (strict consensus of six equally
parsimonious trees), Vespa, Vespula and Dolichovespula were found monophyletic,
yet all were part of a polytomy and therefore the yellowjackets are unresolved
for 28S (Fig. 2.3¢).

Bayesian inference (BI) resulted in conflicting inferences between
mtDNA and nuDNA (Fig. 2.4a,b), particularly in the resolution of supraspecific
relationships. The Bayesian analysis of all mitochondrial genes supports Vespula
and Dolichovespula as sister genera together sister to Provespa + Vespa. However,

BI of the nuclear data set indicated that Dolichovespula is more closely related to
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Provespa + Vespa than to Vespula. Likewise, BI of AllData (in which each gene
formed a partition) depicted the ((Provespa + Vespa), Dolichovespula) clade (Fig.
2.4c), and with higher posterior probability (PP) in comparison to the Bayesian
topology for nuDNA. Using only the I' rate variation model did not cause any
striking changes in comparison to using I" + I. The Bayesian consensus trees
found using I' and T + I were the same for AllData and mtDNA, differing slightly
in support values for relationships among genera.

The result of the most heavily partitioned Bayesian analysis, AllData22
(in which each codon position of every protein-coding gene formed a partition),
is presented in Fig. 2.5. This majority consensus tree also shows Dolichovespula as
more closely related to (Provespa + Vespa), although with much lower support
(PP = 60) in comparison to partitioning only by gene (Fig 2.4c). There are some
concerns about the analysis of AllData22 (Fig. 2.5), however, specifically related
to estimation of the shape parameter of the gamma distribution for three
partitions. After visually scrutinizing the estimates of all parameters from
multiple runs of AllData22 using Tracer v1.5, considerably high mean values and
large-scale fluctuations in the trace (suggesting poor mixing) were found for the
gamma shape of partitions corresponding to the third codon position of EFlg,
Pol I and wg; although the corresponding ESS values did not indicate problems.
These findings suggest problems with ‘over partitioning’ the data (Brown and
Lemmon, 2007; Leavitt et al., 2013; Rota and Wahlberg, 2012). Additional
analyses were conducted altering various default settings in MrBayes for the
problematic partitions (e.g., increasing the effort to update the gamma shape
parameter (propset), augmenting the number of gamma categories, changing the

starting values (startvals), placing a shorter uniform prior (shapepr)), but these
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modifications did not improve the mixing behavior. Every other parameter in the
analysis of AllData22 (and all other Bayesian analyses) reached convergence
rapidly, showed adequate mixing, good ESS values, and plausible estimates (e.g.,
partition rate multipliers m higher for third positions than first or second
positions). Furthermore, the AWTY “compare’ plots indicated convergence of
posterior probabilities of all splits for AllData22. Because of this behavior of
certain parameters in the AllData22 partitioning scheme, we prefer the results

from BI partitioning only by gene.
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Table 2.2: Summary statistics for genes and data subsets and their corresponding models of
nucleotide substitution. Empirical base frequencies estimated in PAUP* (Swofford, 2002).
Models of nucleotide substitution chosen according to the sample-size corrected Akaike
Information Criterion as implemented in jModelTest 2 (Darriba et al., 2012).

Data set Aligned | A (%) | C(%) | G(%) T (%) # Parsimony | AICc best-fit
sites informative | model
sites
12S 378 43.18 | 3.95 12.39 40.48 152 HKY+I+G
16S 532 39.68 | 7.52 14.10 38.70 153 GTR+I+G
COI 1096 31.47 | 1522 | 12.81 40.50 405 GTR+I+G
COI Pos 1 365 33.70 | 14.87 | 22.23 29.20 95 GTRA+I+G
COI Pos 2 365 16.65 | 23.50 | 15.26 44.59 23 TVM+I
COI Pos 3 366 44.03 | 7.32 0.96 47.69 287 HKY+I+G
tRNA-Leu + 21 +582 | 36.37 | 14.88 | 7.84 40.91 253 GTRA+I+G
coIn
COII Pos 1 194 40.00 | 16.96 | 14.67 28.37 69 TrN+G
COII Pos 2 194 27.54 | 2145 | 9.07 41.94 28 F81+G
COII Pos 3 194 42,19 | 7.38 0.52 49.91 146 HKY+I+G
Cytb 433 32.16 | 15.80 | 9.40 42.64 186 GTR+I+G
Cytb Pos 1 144 33.85 | 16.62 | 17.16 32.37 46 TPM1uf+I+G
Cytb Pos 2 144 23.93 |20.91 | 10.39 44.77 17 TrN+I
Cytb Pos 3 145 38.64 |9.93 0.69 50.74 123 HKY+G
285 750 20.03 | 27.77 | 32.61 19.59 66 GTR+I
EFla 517 29.14 | 21.92 | 23.43 25.51 109 TrN+G
EFla Pos 1 172 31.33 | 15.18 | 36.56 16.93 7 F81
EFla Pos 2 172 31.46 | 26.23 | 15.10 27.21 3 JC
EFla Pos 3 173 24.67 | 24.34 | 18.65 32.34 99 HKY+G
Pol II 798 36.24 | 15.01 | 19.96 28.79 107 TrN+G
Pol Il Pos 1 266 37.50 | 15.27 | 28.97 18.26 6 TrN
Pol IT Pos 2 266 33.88 | 19.50 | 16.52 30.10 0 F81
Pol II Pos 3 266 37.35 | 10.26 | 14.38 38.01 101 TrN+G
wg 406 25.54 | 25.78 | 28.00 20.68 89 K80+G
wg Pos 1 135 27.13 | 24.21 | 32.55 16.11 13 JC
wg Pos 2 135 33.68 | 17.26 | 26.65 22.41 6 JC
wg Pos 3 136 15.86 | 35.81 | 24.83 23.50 70 K80+G
mtDNA 3042 35.26 | 12.68 | 11.46 40.6 1149 GTRA+I+G
nuDNA 2471 28.08 | 22.12 | 25.83 23.97 371 GTR+I+G
Pos1&2 2552 30.36 | 19.15 | 19.89 30.60 313 GTRA+I+G
Pos3 1280 36.36 | 13.39 | 8.23 42.02 826 GTR+G
Pos1&2+28S 3302 28.09 | 21.04 | 22.69 28.18 379 GTRA+I+G
AllData 5513 32.10 | 16.80 | 17.73 33.37 1520 GTRA+I+G
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Table 2.3: Summary of parsimony and Bayesian analyses of single genes, major data subsets
and all data. MPT = Most Parsimonious Tree(s), CI = Consistency Index, RI = Retention Index.
CI and RI calculated for strict consensus trees when multiple equally parsimonious trees were
found.

Data set CI RI # MPT(s) | Length |-LnL

125 0.519 0.686 8 520 2752.69
16S 0.452 0.650 32 574 3267.196
COI 0.351 0.476 3 1805 8889.506
COII 0.380 0.527 7 1105 5420.516
Cytb 0.295 0.325 1 884 4159.107
28S 0.836 0.929 6 107 1691.682
EFla 0.740 0.889 6 212 1811.12
Pol II 0.763 0917 |2 168 2046.669
wg 0.781 0.886 3 186 1559.394
mtDNA 0.345 0.445 1 4952 24636.411
nuDNA 0.554 0.734 1 681 7078.413
Pos1&2 0.476 0.672 2 1018 8799.368
Pos3 0.397 | 0.555 2 3337 14939.359
Pos1&2+28S | 0.507 | 0.701 4 1136 10682.508
AllData 0.374 0.500 1 5646 31962.13
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Figure 2.2: Single most-parsimonious tree found using a concatenated matrix of all data.
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2.4. Discussion
2.4.1. Vespine phylogeny

Our molecular data and analyses strongly support the monophyly of the
genera Vespula and Dolichovespula but either reject or weakly support a
yellowjacket clade. The most parsimonious tree inferred using the entire data
indicate that yellowjackets, Vespula + Dolichovespula, are monophyletic (Fig. 2.2).
This grouping, however, is poorly supported and rarely recovered in the
parsimony analyses of individual genes (Fig. 2.3c). The Vespula + Dolichovespula
clade was also found in the Bayesian analysis of mtDNA, but this relationship is
not recovered by Bl based on nuclear genes and it erodes in partitioned Bayesian
analyses of the entire data (Fig. 2.4c and Fig. 2.5). Incongruence between single-
and multigene trees is expected, for single genes evolve under unique sets of
characteristics and functional constraints (Miyamoto and Fitch, 1995). Although
the simultaneous parsimony analysis of the entire data yielded a single, fully
resolved MPT, poor support for the sister group relationship of Vespula and
Dolichovespula suggest either conflicting character interactions (Ramirez, 2005), or
lack of evidence. Whether poor group support from our molecular data set
forecasts that the Vespula + Dolichovespula clade will be contradicted in
subsequent studies of vespine phylogeny can only be answered by analyzing
more sequences and other sources of evidence (e.g., morphology, behavior).
Nevertheless, given the molecular data at hand here, we argue that the
monophyly of Vespula + Dolichovespula requires further examination.

Partitioned Bayesian analyses of all genes indicate that Dolichovespula is
sister to the hornets, Provespa + Vespa. Even though our data includes more

mitochondprial than nuclear characters (Table 2.3), in Bayesian analyses the signal
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of mitochondrial characters is overturned by a stronger signal from fewer
nuclear characters. That is, nuclear genes contribute more to the resolution of
deeper nodes, which seems to be a broad pattern in simultaneous phylogenetic
analysis of mtDNA and nuDNA (Fisher-Reid and Wiens, 2011). This is not
surprising given that mitochondrial genes evolve in concert and can be
characterized as a single data partition, while the evolution of nuclear genes is
more decoupled. Nonetheless, mtDNA alone provides valuable characters for
inferring phylogenetic relationships. In our simultaneous analyses of mtDNA
using different methods (Fig. 2.3a and Fig. 2.4a), the current classification of four
vespine genera (Carpenter, 1987) is recovered with very strong support for the
monophyly of each genus and well-resolved species-level relationships.

The sister group relationship between Dolichovespula and the hornets is
novel for DNA sequence-based studies of vespine phylogeny (Fig. 2.3c). A sister
relationship between Dolichovespula and Vespa was suggested by Greene (1979)
based on behavioral traits and by Schmitz and Moritz (1990) using RFLP
patterns, but their analyses had substantial drawbacks (Carpenter, 1987, 1992).
Greene (1979) argued that Dolichovespula is more closely related to Vespa due to
their shared, primitive social organization. According to Greene (1979), a closer
relationship between Dolichovespula and Vespa seems plausible because both
genera display low degree of queen-worker dimorphism, smaller
worker:reproductive output ratios, frequent cell wall scraping by larvae, and a
royal court of workers surrounding the queen. However, as stated by Greene
(1979) himself, the characters he is using to support the arrangement of
Dolichovespula + Vespa are symplesiomorphies in Vespinae, and therefore

uninformative as evidence of kinship within the subfamily; shared primitive
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traits do not inform on relationships (Hennig, 1965). Moreover, Carpenter (1987,
pp- 416-421; see also Matsuura and Yamane 1984) did not find a closer
relationship between Dolichovespula and Vespa in his phylogenetic study, which
included colony size, royal court, and larval hunger signal (i.e., cell wall
scraping) as binary characters, among other behavioral and morphological data.
The sister group relationship between Dolichovespula and Provespa + Vespa
recovered in our Bayesian analyses based on nuDNA and all genes (Fig. 2.4)
disagrees with the vespine clade of Pickett and Carpenter (2010). In their total-
evidence analysis, Pickett and Carpenter (2010) found support for yellowjacket
monophyly (Dolichovespula + Vespula). The closer placement of Dolichovespula to
hornets is moderately supported when the entire data is partitioned by gene (PP
=91) and poorly supported when partitioned by codon position (PP = 60) (Fig.
2.4c and Fig. 2.5).

The monophyly of genera Vespula and Dolichovespula and species-level
relationships within each yellowjacket genus (Fig. 2.3c and Fig. 2.4¢) are in
agreement with the results of Carpenter (1987) and Carpenter and Perera (2006),
and show improved resolution in comparison to the latter study. Furthermore,
relationships within each genus are largely concordant between parsimony and
BI. In the study of Carpenter and Perera (2006), the relationships within the rufa
group (sister taxa of V. squamosa) were unresolved, but our results depict the
following resolution: (V. vidua (V. acadica (V. consobrina + V. intermedia))). These
relationships are well supported given our taxon sampling (Fig. 2.3c and Fig.
2.4c). Our results agree with Carpenter (1987) in the placement of the facultative
social parasite V. squamosa as sister to the rufa group (Fig. 2.3c and Fig. 2.4¢).

Thus, our findings further contradict the hypothesis of MacDonald and
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Matthews (1975, 1984) that V. squamosa is more closely related to the vulgaris
group on the basis of nest architecture and behavioral characters. Carpenter
(1987) showed that the features described by MacDonald and Matthews (1975,
1984) to support their hypothesis were either plesiomorphic in Vespinae or
autapomorphic, and therefore phylogenetically uninformative. Relationships
within the vulgaris group in our results are less clear, with differences in
resolution between methods (Fig. 2.3c and Fig. 2.4c). Our results agree with
Carpenter and Perera (2006) in that V. flavopilosa, V. alascensis, and V. maculifrons
form a clade, but contradict their placement of V. flaviceps within the same group.
Carpenter and Glare (2010) likewise found V. flavopilosa, V. alascensis and V.
maculifrons forming a clade, together with V. vulgaris. The relationships within
Dolichovespula are congruent between parsimony and BI and concordant with the
results of Carpenter and Perera (2006), who found two subgeneric clades: the
maculata group, which also includes D. media, and another group composed of
the remaining species (Fig. 2.3c and Fig. 2.4c).

Our results from partitioned Bayesian analyses of all genes showed that
increasing the number of partitions may lead to considerable changes in clade
support, a phenomenon that has also been reported for other taxa (Castoe et al.,
2004; Castoe and Parkinson, 2006; Dowton et al., 2009; Li et al., 2008; Nylander et
al., 2004; Mueller et al., 2004; Powell et al., 2013). Along these lines, incrementing
the number of partitions caused convergence and mixing problems for certain
parameters in our most heavily partitioned Bayesian analysis (AllData22). But
the influence of increasing the number of partitions on phylogeny was minimal,
since most relationships found with nine and 22 partitions were the same, except

for the resolution within Vespa (Fig. 2.4¢, Fig. 2.5). Rota and Wahlberg (2012)
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reported similar issues with convergence and mixing related to a priori

partitioning in their phylogenetic study of metalmark moths.

2.4.2. Species groups

Within the Dolichovespula clade, two species groups can be recognized:
the maculata and norwegica groups (Fig. 2.3 and Fig. 2.4). The maculata group,
maculata + media, was recovered in gene trees as well as with multigene data sets,
regardless of phylogeny inference method (Fig. 2.3 and Fig. 2.4). In the results of
Carpenter and Perera (2006) (see also Carpenter, 1987) three synapomorphies are
attributed to the maculata group: pronotal striae, emarginate apex of the seventh
metasomal sternum in males, and aedeagal medial lobes. The other clade within
Dolichovespula corresponds, for the most part, to the norwegica group sensu Archer
(1999, 2006), although D. pacifica, which Archer (1999, 2006) places in a separate
group, is also nested within the norwegica group (Fig. 2.3 and Fig. 2.4). Moreover,
this Dolichovespula clade also includes the sylvestris group, as its sister. Archer
(1999) indicated that females having a long oculo-malar space and lateroanterior
clypeal angles with less prominent semicircular projections characterize the
norwegica group. Within Vespula, the rufa and vulgaris groups are concordant
between parsimony and BI based on mtDNA, nuDNA, and the entire data (Fig.
2.3 and Fig. 2.4). The rufa and squamosa groups are supported by four
synapomorphies according to Carpenter and Perera (2006): dorsum of metasomal
tergum I with slight depression behind anterior edge, shortened volsella, slender
and fingerlike digitus, and dark hairs in metasomal tergum I. The vulgaris group

shares at least nine derived characters, such as volsella with dorsal lobe,
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aedeagus with subcircular apex, and “large” colony size (3,500 cells and 500

workers or more) (Carpenter and Perera, 2006).

2.4.3. Evolution of behavior

Variation in body or group size has important consequences on life
history, physiology, and behavior across taxa (Bell and Mooers, 1997; Blueweiss
et al., 1978; Bonner, 1988, 2004; Dornhaus et al., 2011; Karsai and Wenzel, 1998;
McShea, 1996). For example, size tends to be positively related to organismal
complexity, which refers to the number or functional specialization of parts (Bell
and Mooers, 1997; Carroll, 2001; McShea, 1996). The relationship between size
and complexity is analogous in both social insects and multicellular organisms,
in which task specialization evolved from solitary or unicellular ancestors and
covaries with size (Bell and Mooers, 1997; Bonner, 2004; Holbrook et al., 2011;
Jeanson et al., 2007; Ratcliff et al., 2012; Simpson, 2012; Strassmann and Queller,
2007). For example, individual cells form colonies such as Volvox, comprising
thousands of tightly linked cells, a small number of which specialize in
reproduction; that is, Volvox colonies have some degree of division of labor. The
cells forming the Volvox colony are interdependent to an extent that cells die in
isolation and the organism cannot survive if the colony is disrupted. Similarly,
among social insects, colony members subdivide labor, so that queens specialize
in reproduction and workers carry out other duties, and the differentiation
between both castes is more striking in larger colonies (Bourke 1999; but see
Wenzel 1992).

Although their colonies can contain hundreds of thousands of

individuals (Pickett et al., 2001 and references therein), yellowjackets have been
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traditionally divided into two categories of colony size (Akre et al., 1981; Greene,
1991, p. 269). First, a small-colony category of mature nests with fewer than 2,500
cells and 75-400 workers encompasses most species of Dolichovespula and all
species in the rufa group (Akre and Davis, 1978). Most species in the small-colony
category are characterized by rearing of workers on a single comb, short colony
life span, and larval nutrition strictly based on live arthropod prey (Akre et al.,
1981; Greene, 1991; Reed and Akre, 1983a; see also Carpenter 1989). In contrast,
the large-colony category includes the V. vulgaris group and V. squamosa (Greene,
1991, p. 270). Yellowjackets in the large-colony category build nests containing
more than 2,500 cells and have population sizes of 500 to 5,000 workers or more
(Akre and Davis, 1978; Spradbery, 1971). Moreover, large-colony yellowjackets
build several worker-cell combs, have longer colony duration, and feed their
brood with various food sources including live prey, fruit, and, perhaps more
distinctively, carrion (Akre and Davis, 1978; Akre et al., 1981; Greene, 1991).
Colony size is a key trait in the evolution of social hymenopterans because it
explains a large amount of social complexity, including high degree of caste
dimorphism and task specialization, lack of queen-worker conflict over
reproduction, and reduced potential for worker reproduction (Bourke, 1999;
Anderson and McShea, 2001).

However, colony size is not the only key determinant of social
complexity, since kin structure is equally important. In vespine wasps, kin
structure can be described by a single variable: effective paternity, which is
defined by queen mating frequency and distribution of sperm (Foster and
Ratnieks, 2001b; hereafter we use ‘paternity’ as shorthand for effective paternity).

In colonies of Dolichovespula and Vespula rufa (and perhaps other species in the
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rufa group), low paternity (< 2) is the norm, whereas colonies of species in the V.
vulgaris and squamosa groups are characterized by high paternity (> 2) (Foster
and Ratnieks, 2001c; Wenseleers et al., 2005a). High paternity in eusocial
Hymenoptera is a prominent derived trait that lowers relatedness among
workers and is associated with exclusive production of males by queens, lack of
active ovaries in workers, and worker policing (Akre et al., 1976; Bonckaert et al.,
2008; Boomsma and Ratnieks, 1996; Foster et al., 1999; Foster and Ratnieks, 2001a;
Goodisman et al., 2002; Helantera et al., 2006; Kovacs and Goodisman, 2007;
Ratnieks, 1988; Ross, 1985; Strassmann, 2001). Moreover, high paternity promotes
colony productivity (Cole, 1999; Goodisman et al., 2007; Mattila and Seeley, 2007)
and induces workers to rear their brothers (queen’s sons) rather than their
nephews (workers’ sons) (Foster and Ratnieks, 2001b; Ratnieks, 1988). Large
colony size and high mating frequency (paternity > 2) in yellowjackets might be
convergent traits that have evolved in the branch leading to the vulgaris group
and in V. squamosa (Fig. 2.3 and Fig. 2.4). Alternatively, both traits might have
evolved in the most common recent ancestor of all Vespula species and lost or
suppressed in the rufa group. The positive association between colony size and
paternity seems to hold across all social Hymenoptera when controlling for
phylogeny (Jaffe et al., 2012). Bourke (1999) proposes the following feedback
between colony size and low reproductive potential of workers, the latter being
an outcome of high paternity. To begin with, in large colonies worker policing is
common and workers have a low chance of reproducing. It follows that workers
engage exclusively in tasks beneficial to the colony instead of attempting to
reproduce, thus increasing colony performance (Ratnieks, 1988). Rising

productivity then favors selection for worker policing. Consequently, queen
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specialization in reproduction is enhanced and greater worker productivity

allows the rearing of more individuals, eventually leading to larger colonies.

2.5. Future research

In general, our analyses provide moderate support for the monophyly of
Dolichovespula and Vespula and suggest that the sister relationship between both
genera warrants further examination. A thorough evaluation of the possible close
relationship of Dolichovespula to the hornets should be addressed including more
species of Vespa, which in the present study might have been an
underrepresented outgroup. Recently, Perrard et al. (2013) have analyzed the
phylogeny of the genus Vespa in considerable detail. Since some of the molecular
markers employed by Perrard et al. (2013) are shared with our study, merging
and analyzing characters from both studies may be a new starting point for
further investigations of vespine phylogeny. Ideally, new studies should
increasingly focus on nuclear markers, since these seem to provide more
resolution of deeper nodes and thus should help the inference of generic
relationships within the Vespinae. In pilot work, we found that 18S is easily
amplified but uninformative within Vespinae and long-wavelength rhodopsin is
difficult to amplify and sequence in some taxa. Among genes commonly used in
hymenopteran phylogenetics, CAD (rudimentary) seems to be particularly
reliable and informative, and therefore a good candidate for new phylogenetic
studies of yellowjackets. Regarding the evolution of behavior, colony size is an
interesting trait that has been phylogenetically analyzed as a discrete, binary
character based on ad hoc character states. However, a more powerful approach

would be to analyze colony size as well as paternity as continuous variables, thus
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giving greater emphasis to the trait values of each species. This is possible using
parsimony (Goloboff et al., 2006) or statistical comparative methods (Harvey and

Pagel, 1991; O'Meara, 2012).
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CHAPTER 3: PHYLOGENETIC TESTS REJECT EMERY’S RULE IN THE
EVOLUTION OF SOCIAL PARASITISM IN YELLOWJACKETS AND
HORNETS (HYMENOPTERA: VESPIDAE, VESPINAE)
3.1. Introduction
Division of labor and elaborate brood care are hallmarks of insect

societies (Wilson 1971, 1985). Societies of ants, bees, and wasps typically
comprise a reproductive queen, sterile (or less reproductive) workers and males.
The worker caste specializes in provisioning the larvae and foraging, among
other tasks (Oster and Wilson 1978). Cooperative brood care underlies the
success of social hymenopterans, but is also vulnerable to exploitation. For
example, lycaenid butterfly larvae employ chemical and sound mimicry to dupe
worker ants into carrying them into the brood chambers of the ant nests, where
the workers feed the caterpillars (Akino et al. 1999; Als et al. 2004; Barbero et al.
2009). This type of exploitation may be more easily enabled between close
relatives because of their compatible communication systems and kin recognition
cues. In an intriguing offshoot of sociality, socially parasitic hymenopterans have
evolved a variety of strategies to deceive other species into caring for their young
(Wheeler 1919; Buschinger 1986, 1990, 2009; Wcislo 1987; Davies et al. 1989;
Holldobler and Wilson 1990; Bourke and Franks 1991; Lenoir et al. 2001; Brandt
et al. 2005; Cervo 2006; Huang and Dornhaus 2008; Kilner and Langmore 2011).
Queens of facultative social parasites generally usurp established nests, kill the
resident queen and produce workers to gradually replace the host worker force.
In contrast, most obligate social parasites, or inquilines, lack the worker caste

altogether. Inquiline queens, unable to found their own colonies, invade the nests
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of other species and trick the conquered occupants into raising the parasitic
brood, which develops into queens and males.

The evolution of social parasitism has been linked with close
phylogenetic relationships. Motivated by the observed morphological affinities
between parasitic species and their hosts, Emery (1909) conjectured that socially
parasitic ants are more closely related to their hosts than to any other species.
This generalization, which has since become known as Emery’s rule, has been
explained according to two evolutionary scenarios. On the one hand, the
intraspecific or sympatric speciation hypothesis proposes that social parasites
may originate directly from their hosts (West-Eberhard 1986; Buschinger 1990;
Bourke and Franks 1991). Alternatively, the interspecific or social deception
hypothesis claims that two species may evolve from geographically isolated
populations (i.e., allopatrically) and parasitic habits develop when the
populations come back together (Wilson 1971; Ward 1989; Holldobler and
Wilson 1990). In testing these two hypotheses, finding that social parasites and
their hosts are sister taxa would be a necessary condition for invoking sympatric
speciation. Moreover, lack of immediate common ancestry between social
parasites and their hosts would be sufficient to rule out sympatric speciation. The
validity of the sympatric speciation model of social parasitism remains
contentious, with studies of certain ants favoring the model (Savolainen and
Vepsildinen 2003; Jansen et al. 2010; Rabeling et al. 2014), and absence of support
for Emery’s rule in other social Hymenoptera (Ward 1996, 1989; Carpenter et al.
1993; Agosti 1994; Choudhary et al. 1994; Carpenter 1997,Sumner et al. 2004a;

Carpenter and Perera 2006; Hines and Cameron 2010; Gibbs et al. 2012; Smith et
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al. 2013). Some of the latter studies, however, support a relaxed version of
Emery’s rule, that is, parasites and hosts are close relatives, but not sister taxa.

Phylogenetic analyses of inquiline wasps and their hosts seldom support
the strict Emery’s rule, instead finding that inquilines are monophyletic
(Carpenter et al. 1993; Choudhary et al. 1994; Carpenter 1997; Carpenter and
Perera 2006). In social wasps, parasitic behavior has been documented in paper
wasps (Polistinae) and yellowjackets and hornets (Vespinae). The subfamily
Vespinae, among its 70 recognized species, includes five species of inquilines and
two facultative social parasites, most of which occur in the yellowjacket genera,
Dolichovespula and Vespula. Two previous studies have assessed the veracity of
Emery’s rule in yellowjackets. First, Varvio-Aho et al. (1984; see also Pamilo et al.
1981) analyzed allozymes from eight species and reported that the inquilines
Vespula austriaca and Dolichovespula omissa were sister to their hosts, therefore
supporting Emery’s rule. Upon reanalysis of Varvio-Aho et al.’s (1984) data,
however, Carpenter (1987) found that the characters were largely uninformative
and D. omissa was not sister to its host. Second, Carpenter and Perera (2006)
performed a cladistic analysis of yellowjackets based on morphological and
behavioral characters and recovered the inquilines Dolichovespula adulterina and
D. omissa as sister taxa, thus rejecting Emery’s rule. Similarly, the obligate and
facultative social parasites of Vespula were not sister to their respective hosts
(Carpenter and Perera 2006).

However, these previous phylogenetic studies of parasites and their
hosts in vespine wasps were based on relatively few data and lacked resolution.
For example, the analysis of Carpenter and Perera (2006) resulted in an inquiline

clade as part of a polytomy with other Dolichovespula species. A well-resolved
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phylogeny is essential for elucidating the evolution of predisposing traits that
may explain why inquilinism occurs primarily in certain taxa. Such traits can be
size of reproductives, nestmate recognition signals (van Wilgenburg et al. 2011),
mating frequency (Sumner et al. 2004b), and sterility-inducing queen
pheromones (Van Oystaeyen et al. 2014), to name a few. Here, we carry out the
first molecular phylogenetic analysis of social parasites and their hosts in
yellowjackets and hornets. Our study includes the inquilines Dolichovespula
adulterina, D. arctica and D. omissa, and the facultative social parasites Vespula
squamosa and Vespa dybowskii. These are five of the seven known social parasites
in the Vespinae. We infer the relationships among these taxa and their hosts
based on the analysis of 12 gene fragments to test two mutually exclusive
hypotheses. First, social parasites evolved sympatrically from their hosts, and
therefore Emery’s rule in its strict sense is applicable in vespine wasps. Second,
inquilinism has evolved only once in Dolichovespula, and thus the three inquiline
species of Dolichovespula are monophyletic. Moreover, we discuss our results in
terms of a ‘relaxed Emery’s rule’ in which for any clade of social parasites the
most closely related outgroup clade includes the host species (Buschinger 1990;

Ward 1996).

3.2. Materials and methods
3.2.1. Taxonomic sampling
We assembled a set of 38 species from all genera in the Vespinae and
spanning the distribution range of the subfamily. We included the following
parasitic species and their hosts, which are enclosed in parentheses: the Palearctic

Dolichovespula adulterina (D. saxonica, D. norwegica; Weyrauch 1937; Dvofdk 2007),
41



D. omissa (D. sylvestris; Weyrauch 1937), and Vespa dybowskii (V. simillima, V.
crabro; Sakagami and Fukushima 1957; Archer 1992), and the Nearctic D. arctica
(D. arenaria, D. alpicola; Wheeler and Taylor 1921; Taylor 1939; Jeanne 1977;
Greene et al. 1978; Wagner 1978) and Vespula squamosa (V. maculifrons, V. vidua,
V. flavopilosa, V. germanica; MacDonald and Matthews 1975, 1984; Matthews and

Matthews 1979; MacDonald et al. 1980; Hoffman et al. 2008).

3.2.2. DNA extraction, amplification, and sequencing

Extraction, amplification and sequencing protocols follow Lopez-Osorio
et al. (2014). Briefly, we extracted genomic DNA using the DNeasy Blood &
Tissue Kit (Qiagen) and conducted PCR amplification using PuReTaq Ready-To-
Go PCR beads (GE Healthcare). We sequenced fragments of seven mitochondrial
genes and five nuclear markers: 12S and 16S ribosomal DNA (125, 16S),
cytochrome oxidase I and II (COI, COII), ATPase subunit 8 and 6 (ATP8, ATP6),
cytochrome b (Cytb), 28S ribosomal DNA D2-D3 expansion regions (28S),
elongation factor 1 alpha F2 copy (EF1), RNA polymerase II (Pol II), wingless
(Wg), and rudimentary (CAD). Three of these genes (CAD, ATP8, ATP6) were not
used in Lopez-Osorio et al. (2014). We amplified CAD with primers CD892F and
CD1491R from Ward et al. (2010) and developed primers C2-]3661 (5" - TTG
GWC AAT GYT CWG AAA TTT GTG G) and A6-N4543 (5" — CCA GCA WTT
ATW TTA GCT GAT AAT CQG) to amplify a region spanning the mitochondrial
genes ATP8 and ATP6 — primers were labeled according to their positions in the
D. yakuba mitogenome (Clary and Wolstenholme 1985). The PCR program for
this primer pair was 35 cycles of 30s at 94°C, 30s at 55°C and 45s at 72°C,

preceded by 4min at 94°C and followed by 6min at 72°C.
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Forward and reverse sequences were assembled into contigs and
trimmed of low-quality ends in Geneious 6.1.7 (Biomatters Ltd). The sequences
generated with the new primer pair were annotated using the MITOS WebServer
(Bernt et al. 2013). Although the region amplified with primers C2-J3661 and A6-
N4543 also spans the trnK and trnD genes, these sequences were not included in
downstream analyses because of their short length and lack of variability. We
aligned sequences with MAFFT v7.017 using the automatic strategy selection
(Katoh and Standley 2013), removed introns of CAD and indel regions of ATP8
and Wg, and concatenated gene matrices using SequenceMatrix (Vaidya et al.
2011). The concatenated alignment used in all analyses contains 418 sequences;
238 of these were previously published (Lopez-Osorio et al. 2014) and the
remaining sequences were generated for this study (GenBank accessions
KT225582-KT225591, KT250513-KT250524, KT257109-KT257164 and KT273417-

KT273481).

3.2.3. Phylogenetic analyses

We performed parsimony analyses of single genes and the concatenated
data using TNT (Goloboff et al. 2008). The search strategy in all cases consisted of
5000 replicates using random sectorial searches, drifting, ratchet and fusing
combined (xmult=rss fuse 5 drift 5 ratchet 10). In all searches gaps were treated
as missing data. Group support was calculated with 5000 replicates of symmetric
resampling and the results were summarized with GC (Group present /
Contradicted) frequencies.

We employed three partitioning strategies in maximum likelihood (ML)

and Bayesian analyses of the concatenated data: 1) assigning each gene to a
43



separate subset; 2) defining each codon position in each protein-coding gene as a
character set, in addition to three blocks of IDNA genes, resulting in 30 subsets;
and 3) submitting these 30 predefined subsets to PartitionFinder v1.0.1 (Lanfear
et al. 2012) to find the best-fit partitioning scheme and choose substitution
models. In the greedy search with PartitionFinder, branch lengths were set to
unlinked, 56 different models were compared for each subset, and models were
selected according to the Akaike Information Criterion corrected for sample size
(AICc). In the former two partitioning methods, substitution models were chosen
with the AICc as implemented in jModeltest v2.1.7 (Darriba et al. 2012). In all
cases, when the model chosen was not compatible with MrBayes, the closest
available model was used.

ML analyses of the concatenated data were carried out using the
OpenMP and MPI versions of GARLI v2.01 (Zwickl 2006). ML analyses consisted
of 100 search replicates with default settings except for topoweight = 0.01 and
brlenweight = 0.002. These two deviations from default settings were also
employed in ML bootstrap analyses, which consisted of 500 pseudoreplicates.

Bayesian analyses of single genes and the concatenated data were
conducted using MrBayes v3.2.3 (Ronquist et al. 2012) on CIPRES (Miller et al.
2010) with nucmodel = 4by4, nruns = 2, nchains = 8, and samplefreq = 1000.
Unconstrained MCMC analyses were run for 40 M generations using the
different partitioning schemes, whereas constrained analyses (see below) were
carried out for 20 M generations employing the character subsets identified by
PartitionFinder. Base frequencies, substitution rates, the gamma shape
parameter, and proportion of invariable sites were unlinked across subsets. We

set a shorter prior on the mean branch length — brlenspr=unconstrained:exp(100)
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— to address the long-tree problem of partitioned analyses in MrBayes (Marshall
2010). We assessed convergence by examining effective sample size (ESS) values
with Tracer v1.6 (Rambaut et al. 2013) and the potential scale reduction factor
(PSRF) for all parameters in MrBayes. In all analyses of the concatenated data,

stationarity was reached in less than four million generations.

3.2.4. Constraint analyses and topology tests

We conducted constraint analyses to quantify the difference in
likelihoods between unconstrained and constrained topologies. Eight constraints
enforcing host-parasite monophyly were evaluated: each social parasite sister to
its primary host in separate topologies, resulting in five constraint trees; all five
parasites sister to their respective hosts; all inquilines sister to their
corresponding hosts; and an unresolved clade of inquilines and hosts. Mean
marginal likelihoods of unconstrained and constrained models were calculated
using stepping-stone sampling (Xie et al. 2011) in MrBayes and employing the
partitioning scheme identified by PartitionFinder. Stepping-stone analyses
consisted of 31 M total cycles, four independent runs of four parallel chains each,
sampling every 1000 generations and using 30 steps to yield 1000 samples within
each step (a=0.4). The first 25% samples of each step were discarded as burn-in.
Log-likelihoods were compared using Bayes factors (Kass and Raftery 1995)
calculated as 2(H, - H.), where H, and H, are the log-likelihoods of the

unconstrained and constrained outcomes, respectively.
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3.3. Results
3.3.1. Phylogenetic relationships

The entire DNA sequence alignment included 6568 sites and 30% of
these were parsimony-informative (Table 3.1). The best-fit partitioning scheme
identified by PartitionFinder consisted of eight subsets (Table 3.2). We found that
phylogenetic relationships were stable across methods of phylogenetic inference
and partitioning strategies, although with varying levels of group support (Fig.
3.1). Regardless of method of analysis or partitioning scheme, Emery’s rule was
rejected in yellowjackets and hornets (Fig. 3.1). Likewise, a loose form of Emery’s
rule in which for any clade of parasites the nearest nonparasitic outgroup is a
clade of host species (Buschinger 1990; Ward 1996) was not supported. Instead,
the hosts of inquilines were scattered within a clade sister to Dolichovespula
maculata and D. media (Fig 3.1). Inquilines were consistently recovered as
monophyletic with strong support — Bayesian posterior probability (PP), ML
bootstrap frequency (BS), and GC = 100 (Fig. 3.1). Moreover, the facultative social
parasites Vespula squamosa and Vespa dybowskii did not share immediate common
ancestry with their respective host species.

In the single most parsimonious tree found with the concatenated data,
D. arenaria is sister to the inquiline clade (Dolichovespula omissa, (D. adulterina, D.
arctica)), but this group was poorly supported (GC = 53; Fig. 3.1a). Using the best-
fit partitioning scheme, the ML analysis of all data recovered the inquiline clade
as sister to a group of three Dolichovespula species (Fig. 3.1b), whereas in the
Bayesian consensus tree the inquilines were part of a polytomy (Fig. 3.1c), which
included D. arenaria and (D. albida, (D. pacifica, D. saxonica)). However, D. arenaria

was also sister to the inquiline clade in the Bayesian consensus trees using gene
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and codon partitions, although this grouping had low support (PP = 87 and 73).
In the case of V. squamosa, this facultative social parasite was sister to a clade of
five species including two of its hosts, V. vidua and V. flavopilosa, but its primary
host, V. maculifrons, was grouped with another species group (Fig. 3.1). Similarly,
the facultative parasite Vespa dybowskii was placed in a clade separate from its
main host, V. simillima; although V. dybowskii was sister to another host species,

V. crabro, in the ML result.

3.3.2. Hypothesis testing
Interpretation of Bayes factors follows Kass and Raftery (1995), and thus
values greater than 150 indicate very strong evidence against the constrained
topologies. Comparisons of likelihoods between the unconstrained topology and
those forcing host-parasite monophyly indicated that the evidence was strongly

against all constrained hypotheses (Table 3.3).
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Table 3.1: Sequence characteristics of the complete data matrix and chosen substitution
models. PI = Parsimony informative.

Gene Number of sites | PI sites | Model
128 384 157 HKY+I+G
16S 532 156 GTR+I+G
28S 750 67 GTR+I
CAD 517 125 TIM1+G
coIl 582 255 TVM+I+G
COI 1096 419 GTR+I+G
Cytb 433 197 GTR+I+G
EF1aF2 | 517 109 TrN+G
Pol II 814 110 TrN+I+G
ATP6 441 206 TVM+I+G
ATPS 111 80 HKY+G
Wg 391 91 K80+G
Total 6568 1972
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Table 3.2: Best-fit partitioning scheme identified by PartitionFinder.

Subset | Best Model | Subset Partitions

1 GTR+I+G | 125, 165

2 GTR+I+G | 285, CAD posl, EF1aF2 posl, Pol2 posl, wg posl, wg pos2
3 TrIN+G CAD pos3, EF1aF2 pos3, Pol2 pos3, wg pos3

4 TrN+I CAD pos2, COI pos2, EF1aF2 pos2, Pol2 pos2

5 GTR+I+G COlII pos1, COI posl, Cytb posl

6 TVM+I+G | COII pos2, Cytb pos2, atp6 pos2

7 TrN+I+G | COII pos3, COI pos3, Cytb pos3, atp6 pos3, atp8 pos3

8 TIM+I+G | atp6 posl, atp8 posl, atp8 pos2
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Table 3.3: Stepping-stone estimates of marginal likelihoods and Bayes factors estimated as 2(H.
— H.), where H, and H. are the log-likelihoods of the unconstrained topology (-44246.01) and an
alternative hypothesis, respectively.

Constraints (H.) InL Bayes
factors
(D. adulterina, D. saxonica) -44688.47 884.92
(D. omissa, D. sylvestris) -44332.11 172.2
(D. arctica, D. arenaria) -44364.99 237.96
(V. dybowskii, V. simillima) -44366.16 240.3
(V. squamosa, V. maculifrons) -44540.12 588.22
(D. adulterina, D. saxonica), (D. omissa, D. sylvestris), (D. arctica, -45202.14 1912.26
D. arenaria), (V. dybowskii, V. simillima), (V. squamosa, V.
maculifrons)
(D. adulterina, D. saxonica), (D. omissa, D. sylvestris), (D. arctica, -44789.44 1086.86
D. arenaria)
(D. adulterina, D. saxonica, D. omissa, D. sylvestris, D. arctica, D. -44538.58 585.14
arenaria)
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on the concatenated data: a) single most parsimonious tree and GC values; b) maximum
likelihood tree and bootstrap frequencies; c¢) Bayesian consensus tree and clade posterior

probabilities. ML and Bayesian results obtained using the best-fit partitioning scheme. Yellow

dots indicate node support equal to 100. Colored and grey solid branches indicate inquiline
species and facultative social parasites, respectively. Dashed branches matching in color

indicate the corresponding hosts.
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3.4. Discussion

This study shows that social parasites among yellowjackets and hornets
are not the closest relatives of their hosts, therefore rejecting Emery’s rule in its
strict form. Furthermore, monophyly of Dolichovespula inquilines, suggesting a
single origin of the parasitic strategy in this genus, is strongly supported by all
our analyses. In contrast to the results of Carpenter and Perera (2006), we find
that the inquiline clade is not sister to D. sylvestris. Instead, Dolichovespula
inquilines may be more closely related to either D. arenaria or a clade
encompassing D. albida, D. pacifica, and D. saxonica (Fig. 3.1). Inquiline
monophyly has also been found in Polistes paper wasps (Choudhary et al. 1994;
Carpenter 1997). Vespine parasites usurp host societies by means of physical
combat and kill the resident queen, whereas paper wasps employ chemical
camouflage and coexist with the host queen (Cervo 2006; Lorenzi 2006; Cini et al.
2011), but these alternative usurpation strategies have resulted in the same
pattern of inquiline monophyly. Our study adds to a growing body of examples
where intraspecific or sympatric speciation has not occurred in the evolution of
social parasitism (e.g., Agosti, 1994; Ward 1996; Choudhary et al. 1994; Carpenter
and Perera 2006; Hines and Cameron 2010; Gibbs et al. 2012). In no case parasite
and host formed a monophyletic group (Fig. 3.1). Thus, our analyses suggest that
speciation occurred independently of the evolution of social parasitism.
Berlocher (Berlocher 2003) argues that observing all possible intermediate forms
of parasitism may be used to test hypotheses of allopatric speciation. These
intermediate forms may be intra- and interspecific usurpation (Taylor 1939). In
vespines, queens usurp nests of the same species as well as different species

(Akre and Davis 1978; Greene 1991), but the latter type of usurpation is much
52



less frequent. Within Dolichovespula, D. arenaria usurps V. vulgaris (O'Rourke and
Kurczewski 1983). Thus, it is possible that inquilinism in Dolichovespula evolved
from facultative, temporary usurpation in D. arenaria (Fig. 3.1).

In addition to lack of phylogenetic support, the characteristics of
yellowjacket societies seem incompatible with a key condition of the sympatric
route to new inquiline species, namely the presence of multiple laying queens
per colony (i.e., polygyny) (Bourke and Franks 1991; Buschinger 2009; Boomsma
and Nash 2014; Rabeling et al. 2014). Certain authors (e.g., Alloway 1980;
Buschinger 1986, 2009) argue that polygyny might be a precursor of social
parasitism because it would provide the opportunity for some queens of the host
species to specialize in producing reproductives, while other queens focus on
producing workers. Furthermore, the adoption of conspecific young queens
resembles the series of events in nest usurpation by socially parasitic queens.
Yellowjacket colonies, however, typically include a single queen and have annual
cycles (Spradbery 1973; Akre and Davis 1978), and polygyny is a rare deviation
restricted to large-colony species of Vespula in warm climates; for example, V.
germanica, V. pensylvanica, V. vulgaris, V. maculifrons (Greene 1991, and references
therein). But the phylogenetic distribution of social parasitism shows that
inquilinism is mostly limited to species of Dolichovespula (Fig. 3.1). If polygyny
enables the sympatric speciation route in the evolution of social parasitism, more
social parasites that follow Emery’s rule would be expected in Vespula.

However, the tolerance of multiple egg-laying queens in large-colony
species of Vespula may be associated with an increased vulnerability to
parasitism by V. squamosa, which usurps several large-colony species. Vespula

squamosa is considered a species crossing the threshold from free-living to
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parasitism (MacDonald and Matthews 1975), capable of exploiting multiple host
species in the V. vulgaris species group rather than in the more closely related
rufa group (Fig. 3.1, see also Carpenter and Perera 2006; Lopez-Osorio et al. 2014).
This suggests that strong phylogenetic affinities may not be imperative to pass
easily through the defenses of host species by V. squamosa. It may be possible that
social parasitism begins as a generalist strategy followed by host specialization. If
facultative social parasitism is a necessary step in the path leading to inquiline
behavior, then inquilines might have evolved from host species in sympatry but
subsequently switched and specialized on a particular host, such that
phylogenetic relationships of extant hosts and parasites would not be sufficient
to reject a speciation model. This illustrates the difficulty in using phylogenetic
analyses to test modes of speciation, as has been noted in studies of bees (Smith
et al. 2007). A factor that has been thought to explain the rampant parasitism
exerted by V. squamosa is its delayed release from diapause and subsequent
spreading into the ranges of potential hosts (Taylor 1939).

Although Emery’s rule in its strict form is here rejected for vespines,
relatively close phylogenetic relationships seem to play a key role in the
evolution of social parasitism, particularly for inquilines and their hosts nested
within the same Dolichovespula clade (Fig. 3.1). Social parasitism in the
Hymenoptera involves the exploitation not only of brood care but also the
colony’s intricate social structure. A mixed society thus must have compatible
communication systems and pheromones for nestmate recognition (Buschinger
2009) as well as similar mechanisms of queen control. Cell-construction may be a
trait of particular importance in the evolution of inquilinism in yellowjackets. In

vespines, caste differentiation is physiologically determined, and eggs destined
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to become queens typically develop in large cells. Cell size may function as a cue
for workers to provide more food to certain larvae, which are thus launched on a
queen developmental pathway (Jeanne and Suryanarayanan 2011). For example,
in honeybees, larvae housed in royal cells are maintained on a diet of royal jelly,
and its major active factor, royalactin, induces their development as queens
(Kamakura 2011). If the colony’s queen in part controls the construction of large
cells, the parasitic queen must be able to mimic or circumvent this aspect of the
host queen’s behavior to avoid the production of workers (Greene 1991).

With the exception of D. arctica (Jeanne 1977), social parasites in
Vespinae rely on physical attacks to subdue the host queen and her colony, but
the mechanisms preventing the removal of parasitic eggs are largely unknown.
Acceptance of parasitic eggs may be achieved by means of chemical mimicry,
such as in the ant Polyergus breviceps (Johnson et al. 2004). Alternatively, parasitic
eggs may be tolerated due to lack of cuticular chemicals used for nestmate
recognition or usage of chemical deterrents (Ruano et al. 2005; Lambardi et al.
2007; Martin et al. 2007). To our knowledge, only a single study has investigated
the chemical characteristics of parasitic eggs in vespines. Martin et al. (2008)
identified compounds from the surface of eggs of Vespa dybowskii and suggested
that this species employs a chemical transparency strategy. That is, parasitic eggs
of V. dybowskii contain external chemicals that are either undetected or unused as
recognition cues. Furthermore, these authors found that the chemical profile of
V. dybowskii, including adults, shows more significant differences in comparison
to its main host, V. simillima, than to V. crabro (Martin et al. 2008). Therefore,
chemical mimicry does not seem to be involved in the parasitism of V. simillima

by V. dybowskii. The similarities in chemical profiles in Martin et al. (2008) reflect
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the relationships recovered in our Bayesian analysis (figure 1c), in which V.
crabro is sister to V. dybowskii plus V. orientalis, but V. simillima is in a separate
clade (see also Perrard et al. 2013).

To summarize, Emery’s rule is a broad generalization about the
evolution of a trait regardless of specific preconditions. Evidence from different
groups indicates that the sympatric speciation model is a plausible explanation in
Myrmica and Mycocepurus ants (Savolainen and Vepsildinen 2003; Rabeling et al.
2014), but it is not applicable in bees (Hines and Cameron 2010; Gibbs et al. 2012;
Smith et al. 2013) and social wasps (Choudhary et al. 1994; Carpenter 1997;
Carpenter and Perera 2006). Even if Emery’s rule is rejected in yellowjackets and
hornets, it is clear that relatively close phylogenetic relationships, especially in
inquilines, are important in the evolution of social parasitism (Fig. 3.1).
Moreover, the monophyly of inquilines of Dolichovespula suggests an underlying

genetic basis of parasitic habits.
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CHAPTER 4: PHYLOGENOMIC ANALYSIS OF YELLOWJACKETS AND
HORNETS (HYMENOPTERA: VESPIDAE, VESPINAE)
4.1. Introduction
Eusocial groups consist of overlapping generations of workers
collectively caring for the offspring of the queen caste. Among wasps, eusociality
is thought to have evolved once in the family Vespidae (Carpenter 1982; Pickett
and Carpenter 2010). Within the eusocial vespids, the paper wasp genus Polistes
and the subfamily Vespinae, which includes the yellowjackets (Vespula and
Dolichovespula) and hornets (Vespa and Provespa), are perhaps the most familiar.
Vespine colonies usually comprise a single, morphologically distinct queen; live
in enclosed, sometimes subterranean, nests built from paper-like material;
construct cells used exclusively to raise future queens; and vary considerably in
size (Evans and West-Eberhard 1970). Ranges of colony size (i.e., number of
workers) overlap in many vespine species, but members of the Vespula vulgaris
and V. squamosa species groups typically have the largest societies (more than
2,500 cells and 500 workers; Akre et al. 1981; Loope et al. 2014). Colony size can
be viewed as a determinant of social interactions and life history characteristics
(Bourke 1999; Anderson and McShea 2001). Indeed, in vespine wasps, colony
size correlates with traits such as paternity (single or multiple mating by queens),
reproductive potential of workers, the nature of conflict among colony members,
and degree of caste differentiation (Akre and Davis 1978; Foster and Ratnieks
2001; Loope et al. 2014), among others.
For example, species of Dolichovespula build small colonies with low

paternity and workers that lay eggs in the presence of the queen, thereby

instigating queen-worker conflict over the production of males, which develop
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only from unfertilized eggs (Foster and Ratnieks 2001a; Foster et al. 2001;
Freiburger et al. 2004, Wenseleers et al. 2005c¢). In contrast, the colonies of large-
colony species in the Vespula vulgaris and squamosa groups have the greatest
degree of caste dimorphism (Greene 1979), few workers with functional ovaries
(Ross 1985; Foster and Ratnieks 2001a) and production of males exclusively by
queens (Akre et al. 1976; Ross 1986; Foster and Ratnieks 2001a; Kovacs and
Goodisman 2007). In these large-colony vespines, queen-worker conflict over
male production is typically resolved by means of policing; that is, the removal
of worker-laid eggs that maintains the reproductive control of the queen
(Ratnieks and Visscher 1989; Wenseleers and Ratnieks 2006). Conflict may occur
between species as well. Such is the case of queens of socially parasitic species
that exploit the worker force and colony resources of a host species — a behavior
that, among vespines, has evolved primarily in yellowjackets. These social
parasites, lacking the worker caste, seize the nest of a host species and trick the
resident workers into raising the parasitic offspring (MacDonald and Matthews
1975; Greene et al. 1978; Reed and Akre 1983).

The Vespinae comprises 70 described species classified in four genera
and distributed throughout tropical areas of the Oriental region and northern
temperate latitudes (Akre and Davis 1978; Carpenter and Kojima 1997; Kimsey
and Carpenter 2012). Vespula and Dolichovespula are primarily temperate, Vespa
occurs in both tropical and temperate regions and Provespa is endemic to the
oriental tropics. Southeast Asia has been speculated as the ‘center of origin” of the
Vespinae on the basis of the sister relationship of Vespa to the remaining vespine
genera, the species richness of the genus in that region, and because hornets are

not native to the Western Hemisphere (van der Vecht 1957; Matsuura and
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Yamane 1990 p. 240). A common origin in the northern latitudes, however, has
also been proposed for the subfamily (Bequaert 1932).

Given the phylogenetic distribution of a suite of key behavioral traits,
and the relevance of genus-level relationships to the biogeography of
yellowjackets and hornets, one of the primary goals in vespine phylogeny is
elucidating deep-level relationships, which have been contradictory across
studies (Carpenter 1987b; Pickett and Carpenter 2010; Lopez-Osorio et al. 2014).
Previous analyses have recovered a yellowjacket clade sister to Provespa
(Carpenter 1987b; Saito and Kojima 2011) or Vespa plus Provespa (Pickett and
Carpenter 2010), whereas non-monophyly of yellowjackets, placing
Dolichovespula as sister group of the hornets, has been reported relying
exclusively on molecular data (Lopez-Osorio et al. 2014, 2015). The results of
Lopez-Osorio et al. (2014), however, were discordant between mitochondrial and
nuclear gene fragments. Specifically, Lopez-Osorio et al. (2014) found that
mitochondrial genes support the monophyly of yellowjackets (Vespula +
Dolichovespula), but nuclear genes and the concatenated data indicate a sister
group relationship between Dolichovespula and the hornet clade (Vespa, Provespa).
Furthermore, in the first comprehensive phylogenetic analysis of vespine wasps
based on morphological and DNA sequence data combined, Perrard et al. (2015)
recovered poorly supported relationships among genera.

In this study, we address the genus-level relationships in the Vespinae
and examine the monophyly of yellowjackets using a phylogenomic approach
based on transcriptomic (RNA-seq) data. Our phylogenomic analysis includes a
total of nine transcriptomes, six of which are novel to this study: the solitary

potter wasp Ancistrocerus catskill, the primitively eusocial Polistes dominula, and
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the highly eusocial Vespa crabro, Dolichovespula maculata, D. arenaria, and Vespula
vidua. We conduct de novo transcriptome assemblies, identify putative single-
copy genes and use these candidate orthologs to test the sister-group relationship
between Dolichovespula and Vespula. Our findings challenge previous
phylogenetic hypotheses and provide a robust framework for future comparative

studies on yellowjackets and hornets.

4.2. Materials and methods
4.2.1. Sample collection, RNA isolation, library preparation, and sequencing

We collected specimens of A. catskill, D. arenaria, D. maculata, V. vidua
and P. dominula at localities in the vicinity of Burlington, Vermont, USA, and
specimens of V. crabro in Slovenia; the genus Provespa was not included because
of lack of high-quality source material. Specimens were flash frozen in liquid
nitrogen and stored at -80°C. We isolated total RNA from single, whole
specimens using the TRIzol® reagent (Invitrogen). Quality assessment of RNA
samples, preparation of cDNA libraries, Roche 454 pyrosequencing of A. catskill,
and paired-end 2 x 100 bp Illumina sequencing of the remaining species were
outsourced to Beckman Coulter Genomics (Danvers, MA). We combined our
data with publically available transcriptomes from the cuckoo wasp Argochrysis
armilla, the pollen wasp Pseudomasaris vespoides, and the paper wasp
Mischocyttarus flavitarsis (NCBI SRA accessions SRX262928, SRX262920, and
SRX259759; Johnson et al. 2013). All transcriptomes were processed as described

below.
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4.2.2. Processing of reads, de novo transcriptome assembly, and translation
of transcripts

We cut adapters, trimmed low-quality bases and discarded short reads
from Illumina reads using Trimmomatic v. 0.32 (Lohse et al. 2012; Bolger et al.
2014) with default settings, except for a threshold of 20 for average base quality
within the sliding window. Using the reads remaining after trimming,
transcriptomes were assembled de novo using Trinity v. 2013-11-10 (Grabherr et
al. 2011; Haas et al. 2013). We removed contaminant and rRNA-like transcripts
using the standalone releases of DeconSeq v. 0.4.3 (Schmieder and Edwards
2011) and riboPicker v. 0.4.3 (Schmieder et al. 2012), both of which use a
modified version of the BWA-SW aligner (Li and Durbin 2009). In these two in
silico sanitation steps an identity score of 90 and a coverage value of 15 were
used.

We used TransDecoder r20131110 (Haas et al. 2013) to identify candidate
coding regions within transcript sequences and CD-HIT (Fu et al. 2012) to cluster
redundant peptides using a stringent identity threshold (—c 1.0 -n 5). Translated
vespid transcriptomes were submitted to BLASTP searches against the NCBI
RefSeq database of protein reference sequences. BLASTP results were then used

to remove any previously undetected contaminant transcripts.

4.2.3. Matrix construction, phylogenomic analyses, and hypothesis testing
To identify groups of putative homologous sequences and orthologs, we
followed a procedure based on sequence similarity and phylogenetic analysis

(Yang and Smith 2014). We analyzed two sets of taxa, one including all nine
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species and another excluding the transcriptome of A. catskill due to its
comparatively small size. An all-by-all BLASTP search was conducted with an E
value cutoff of 10 and keeping a maximum of 500 aligned sequences (-
max_target_seqs 500). Sequence ends not covered by any BLASTP hits from
other taxa were removed. BLASTP hits with query coverage greater than 0.4
were used for homology inference. We identified clusters of homologous
sequences using the Markov Clustering Algorithm (MCL v. 14-137; Enright et al.
2002) tool with an E value cutoff of 10° and an inflation value of 2.0. The
sequences of each cluster were aligned and alignments were cleaned using
Phyutility (Smith and Dunn 2008) with a minimum site occupancy threshold of
0.1. Clusters with less than one thousand sequences were aligned with MAFFT v.
7 (Katoh and Standley 2013) using the options ‘genafpair’ and ‘maxiterate 1000’,
whereas larger clusters were aligned with PASTA (Mirarab et al. 2014). We used
RAXML 8 (Stamatakis 2014) to infer an initial maximum likelihood phylogenetic
tree for each aligned cluster of homologous sequences with the model
PROTCATWAG. Terminal branches ten times longer than their sisters or longer
than 0.8 were trimmed. Monophyletic and paraphyletic sequence isoforms from
the same taxon were removed, keeping only the sequence with less ambiguous
characters as the representative. Moreover, internal branches longer than 1.0
were cut to break deep paralogs, thus generating two or more subtrees. This
process of cluster refinement, consisting of sequence alignment, cleaning of
alignments and trimming of spurious branches was then repeated using a cutoff
of 0.6 for tips and 0.7 for internal branches. We then conducted a third round of
alignment and tree inference with 200 fast bootstrap pseudoreplicates to generate

homolog trees used to identify orthologs.
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We used the maximum inclusion method (Dunn et al. 2008; Hejnol et al.
2009) to prune homolog trees into subtrees with no more than one sequence per
taxon. The sequences from each resulting set of orthologs were aligned with
MAFFT and alignments were trimmed using Gblocks v0.91 (Castresana 2000)
with settings -b3=8 -b4=10 and -b5=h. Models of amino acid substitution were
chosen for each ortholog using the RAXML model selection script. We
concatenated ortholog alignments with full taxon sets and number of sites
greater than or equal to 300 in trimmed alignments. We then conducted
partitioned maximum likelihood and rapid bootstrap analyses of
“supermatrices” in RAXML on CIPRES (Miller et al. 2010). We evaluated
uncertainty of edges and conflict between ortholog trees and species trees in two
ways: first, by performing 200 jackknife pseudoreplicates, randomly resampling
30% of the total number of orthologs from each supermatrix; and second, after
extracting ingroup clades from gene trees, we used PhyParts (Smith et al. 2015b)
to examine concordance and conflict with respect to species trees, and to
calculate internode certainty scores on the species tree (ICA; Salichos and Rokas
2013; Salichos et al. 2014) under a bootstrap filter of 50 %. ICA values close to 1
indicate strong certainty in the bipartition of interest, whereas ICA values close
to 0 indicate similar frequency of conflicting bipartitions (Smith et al. 2015b).
Lastly, for the eight- and nine-taxon data sets, we performed species tree
analyses in MP-EST (Liu et al. 2010) with default settings on the STRAW web
server (Shaw et al. 2013).

We evaluated the significance of differences in log-likelihoods between
ML trees and an alternative hypothesis of yellowjacket monophyly using the test

developed by Shimodaira and Hasegawa (1999; hereafter SH test). SH tests were
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performed as implemented in RAXML 8 using the -f H option to re-estimate

parameters for all trees.

4.3. Results
4.3.1. Transcriptome sequencing and de novo assembly

The five newly-sequenced, Illumina transcriptomes had an average of
approx. 207 million passing filter (PF) reads, and the transcriptome of A. catskill
had 1,379,816 Roche 454 reads. After quality trimming of Illumina
transcriptomes, the percentage of surviving read pairs ranged from 80.76% to
91.58%. The six transcriptomes generated in this study had an average of 129,357
transcripts, an N50 of 3,186, and 51,786 potential coding regions (Table 4.1). After
reducing redundancy, the average number of amino acid sequences (excluding

A. catskill) was 14,896 (Table 4.1).

4.3.2. Homology and orthology inferences and phylogenetic analyses

We followed a procedure based on sequence similarity (E values from
BLASTP) and phylogenetic inference to identify groups of putative homologs
and orthologs (Yang and Smith 2014). An all-by-all BLASTP search using amino
acid sequences from all transcriptomes was conducted, and similarity scores
were used to identify clusters of homologous sequences. The sequences of each
cluster were aligned, a phylogeny was inferred, and spurious branches were
trimmed. This process of sequence alignment, phylogeny inference, and
trimming of branches was repeated to obtain groups of refined homologs and
then extract maximum inclusion orthologs. The nine-taxon dataset comprised

1,507 putative orthologs, 933,533 aligned sites, and had 91% amino acid
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completeness. The eight-taxon dataset comprised 3,356 putative orthologs,
2,285,441 aligned sites, and had 94% amino acid occupancy. The two
“supermatrices” had full ortholog coverage. Phylogenetic analyses of the two
“supermatrices” in RAXML resulted in the same fully resolved topology, which
had bootstrap and 30% gene-jackknife support values of 100 for all nodes (Fig.
4.1). Moreover, we found the same topology in the species tree analyses
conducted in MP-EST. In this topology, P. vespoides was sister to the remaining
vespid species, and A. catskill was sister to the monophyletic subfamilies
Polistinae and Vespinae. Within the Vespinae, Vespula vidua was recovered as
sister to a clade including the two species of Dolichovespula, which were
monophyletic, and the hornet Vespa crabro (Fig. 4.1).

Regarding the concordance and conflict between gene trees and species
trees, we found considerable support for the sister relationship between
Dolichovespula and Vespa (Fig. 4.1). The Dolichovespula + Vespa node had 1032
concordant gene trees and an ICA score of 0.82 in the analysis of the nine-taxon
dataset (Table 4.2). In the case of the eight-taxon dataset, the Dolichovespula +
Vespa node had 2383 concordant gene trees and a 0.83 ICA value (Table 4.2).
Lastly, the topology recovered here (Fig. 4.1) was significantly different from the
traditional hypothesis in which Vespula and Dolichovespula are sister groups

(Table 4.3).
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Table 4.1: Characteristics of transcriptome assemblies; descriptive statistics are based on all

transcript contigs.

Total GC % Contig | Average contig ORFs CD-HIT
transcripts N50 length clusters
D. arenaria 130,448 37.50 2,817 1,393.00 38,669 14,489
D. maculata 131,905 34.72 3,775 2,049.22 61,099 13,944
V. crabro 201,718 35.21 4,006 1,862.25 79,625 16,361
V. vidua 146,729 34.40 3,688 2,048.18 65,754 14,919
P. dominula 155,861 32.47 3,396 1,798.09 58,569 14,768
A. catskill 9,481 36.03 1,434 1,247.36 7,002 -
Average 129,357 35.06 3,186 1,733.02 51,786 14,896
sD 64,215.73 1.68 950.90 338.1484879 25,614.52 899.32
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Table 4.2: Number of gene trees concordant and conflicting with vespine clades. Internode
certainty (ICA) scores near 0 indicate maximum conflict and values near 1 indicate strong

certainty.
Clade Concordant Conflicting ICA score
9 taxa
(V. crabro, (D. maculata, D. arenaria)) | 1032 64 0.8238
(V. vidua, (V. crabro, (D. maculata, D. | 625 302 0.4742
arenaria)))
8 taxa
(V. crabro, (D. maculata, D. arenaria) | 2383 137 0.8301
(V. vidua, (V. crabro, (D. maculata, D. | 1425 717 0.4729

arenaria))
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Table 4.3: Results of SH test estimated for a hypothesis of yellowjacket monophyly tested
against the best ML tree, showing the likelihood (LH) of the alternative tree, difference in
likelihood D(LH), and standard deviation (SD) for each test. Asterisks indicate that the

alternative tree is significantly worse (1% level).

Best tree LH LH D(LH) SD
9 taxa -4978865.370233 -4981168.490189 -2303.119956** 156.172506
8 taxa -11581322.050153 -11582672.438202 -1350.388049 ** 231.471426
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Figure 4.1: Phylogeny of vespid wasps based on the analysis of 1,507 single-copy genes.
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4.4. Discussion

The deep-level phylogenetic relationships of vespine wasps have been
elusive, as previous studies support alternative genus-level groupings
(Carpenter 1987b; Pickett and Carpenter 2010; Saito and Kojima 2011; Lopez-
Osorio et al. 2014, 2015; Perrard et al. 2015). The lack of consensus regarding the
backbone nodes of the Vespinae phylogeny hampers the use of a comparative
framework in studies of, for example, evolution of behavioral traits and
molecular evolution of sociality (Robinson et al. 2005; Fischman et al. 2011; Rehan
and Toth 2015). In this study, we provide, for the first time, a robust hypothesis
of genus-level relationships of vespine wasps based on transcriptomic data.

Transcriptomic data challenge the relationships among genera found in
previous phylogenetic analyses of vespine wasps (e.g., Carpenter 1987; Pickett
and Carpenter 2010; Perrard et al. 2015). The prevailing hypothesis of vespine
phylogeny indicates that Vespa is the sister group of the remaining Vespinae, and
the monophyletic yellowjackets (Dolichovespula and Vespula) are sister to the
nocturnal hornets (Provespa) (Carpenter 1987b). A recent study, based on
comprehensive taxon sampling and the combined analysis of morphological
characters and nine genes, found a sister-group relationship, albeit poorly
supported, between Vespa and the yellowjackets (Perrard et al. 2015). That is,
most previous studies have recovered yellowjackets as a monophyletic group
(Carpenter 1987b; Pickett and Carpenter 2010; Saito and Kojima 2011; Perrard et
al. 2015). Our transcriptomic data did not recover a yellowjacket clade. Instead,
we found that the hornet genus Vespa is sister to the yellowjacket genus

Dolichovespula (Fig. 4.1). The sister group relationship between Vespa and
70



Dolichovespula was previously reported in phylogenetic analyses including data
from up to eleven gene fragments, although mitochondrial and nuclear genes
had conflicting phylogenetic signals (Lopez-Osorio et al. 2014, 2015). The number
of genes used in this analysis was orders of magnitude higher than in any
previous phylogenetic study of vespine wasps, and these genome-scale data
further support the shared most recent common ancestry between Vespa and
Dolichovespula.

Our analyses revealed that the sister grouping of Vespa and
Dolichovespula remains stable whether the full set of putative orthologs or a
random sample of genes is analyzed, but we also found evidence of topological
incongruence among gene histories. Considering that traditional measures of
support, such as the standard bootstrap (Felsenstein 1985), are less informative
for concatenated genome-scale data sets (Rokas and Carroll 2006; Siddall
2010,Smith et al. 2015b), we applied alternative procedures to evaluate the
robustness and uncertainty of internal edges in both the eight- and nine-taxon
datasets. Jackknife resampling of 30% of the total number of genes resulted in
frequencies of 100 for all nodes. ICA values, however, were lower than 1.0 for
focal nodes (Table 4.2), indicating conflict at the groupings of vespine genera.
Contrary to what may be expected from previous findings (Regier et al. 2008;
Salichos and Rokas 2013), incongruence was higher for the internode subtending
the vespine clade rather than for the shorter branch subtending the Vespa and
Dolichovespula group (Fig. 4.1, Table 4.2). Conflict at the base of the Vespinae
clade suggests that biological processes such as gene duplication and extinction
and incomplete lineage sorting have influenced the origin of these wasps

(Maddison 1997; Jeffroy et al. 2006; Philippe et al. 2011). Moreover, the origin of
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the Vespinae might have been the result of a rapid radiation, where branching
events are characterized by paucity of informative characters (Whitfield and
Lockhart 2007; Whitfield and Kjer 2008). Further work is required on the sources
of phylogenetic conflict in the Vespinae. As more genome-scale data becomes
available, it also remains to be seen whether or not the sister-group relationship
between Vespa and Dolichovespula is influenced by the inclusion of more taxa.
The phylogeny inferred here can lead to different conclusions on the
evolution of behavioral traits in the Vespinae. Large-colony species in the
Vespinae usually have high paternity, which reduces relatedness between
workers and, therefore, workers are predicted to police each other’s reproduction
(Ratnieks 1988). This is the case for large-colony species of the Vespula vulgaris
and squamosa groups (Wenseleers et al. 2005b; Helanter et al. 2006; Bonckaert et
al. 2008; Oi et al. 2015). In contrast, small-colony species of Dolichovespula usually
have low paternity and worker reproduction (Foster and Ratnieks 2001b; Foster
et al. 2001; Wenseleers et al. 2005b; Bonckaert et al. 2011; van Zweden et al. 2013;
Loope et al. 2014). Phylogenetically informed comparative analyses reveal that in
vespine wasps, workers suppress each other’s reproduction more frequently in
species with high paternity, where workers are more related to the queen’s sons
than to sons of workers (Wenseleers and Ratnieks 2006). Moreover, taking
phylogeny into account, colony size predicts average intracolony relatedness and
correlates positively with paternity frequency in vespine wasps (Loope et al.
2014). Colony size is a trait that may be considered both a cause and effect of
reproductive conflict (Bourke 1999). That is, effective policing in Vespula may
have driven the evolution of large colony size or, alternatively, large colony size

may have increased the benefits of worker policing (Foster and Ratnieks 2001b).
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The comparative studies aforementioned, however, relied on a
hypothesis of yellowjacket monophyly. Our results suggest that inferences of
trait evolution in the Vespinae should not be based exclusively on an assumed
position of Vespula as the sister group to the Dolichovespula. The phylogenetic
framework proposed here implies, for example, that the evolution of large
colony size and high paternity may be unique to species in a lineage (Vespula)

distantly related from the remaining Vespinae.
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CHAPTER 5: PATTERNS OF POSITIVE SELECTION IN SOCIAL WASP
TRANSCRIPTOMES (HYMENOPTERA: VESPIDAE, VESPINAE)
5.1. Introduction

Convergent transitions in social evolution enable the discovery of shared
genomic features associated with these transitions (Smith et al. 2008; Fischman et
al. 2011; Simola et al. 2013; Stern 2013; Rehan and Toth 2015). Eusociality, where
female workers cooperatively raise the offspring of the reproductive queen caste,
originated repeatedly in the Hymenoptera — ants, bees, and wasps (Wilson 1971;
Wilson and Holldobler 2005). Various mechanistic hypotheses have been
proposed to explain transitions to eusociality and between alternative social
phenotypes in molecular terms (Robinson et al. 2005; Rehan and Toth 2015). Two
major hypotheses relate the evolution of castes to either changes in gene
expression or changes in genomic sequence, although these mechanisms are not
necessarily mutually exclusive (Rehan and Toth 2015). From the perspective of
gene expression, the genetic toolkit hypothesis, for example, proposes that
regulation of sets of genes with conserved roles underlie the evolution of castes
across taxa (Toth and Robinson 2007; Toth et al. 2010). In the context of changes
in genomic sequence, however, studies of ants and bees suggest that novel (i.e.,
taxonomically restricted) protein-coding genes (Khalturin et al. 2009; Tautz and
Domazet-Loso 2011; Long et al. 2013) have influenced the attainment and
elaboration of eusociality (Johnson and Tsutsui 2011; Simola et al. 2013;
Feldmeyer et al. 2014; Berens et al. 2015a; Jasper et al. 2015). Furthermore, the
protein evolution hypothesis proposes that the origin of social phenotypes is
associated with positive selection acting on genes related to functional categories

such as carbohydrate metabolism, immunity, neurogenesis, and olfaction, among
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others (Fischman et al. 2011; Woodard et al. 2011; Harpur and Zayed 2013;
Harpur et al. 2014; Roux et al. 2014; Kapheim et al. 2015). On a molecular level,
therefore, the history of social insects may have been shaped by the birth of novel
genes and rapid evolution of genes or gene families (Sumner 2014).

Transitions to eusociality likely involved intermediate stages, ranging
from solitary to communal living (Evans and West-Eberhard 1970; West-
Eberhard 1978; Carpenter 1989), with variation in the molecular mechanisms
operating at different transitional stages. For example, primitively eusocial
species of the paper wasp genus Polistes have rudimentary caste differences in
morphology and their workers have the potential to become replacement queens
(West 1967; Reeve 1991; Jandt et al. 2013). Similarly, in Dinoponera ants, where the
distinct queen caste has been secondarily lost, young workers compete for
reproductive primacy (Monnin and Peeters 1998; Lenhart et al. 2013).
Comparative genomics of Polistes canadensis and Dinoponera quadriceps show that
in these species both conserved toolkit genes and novel genes play a similar role
in the reproductive plasticity that characterizes their simple societies (Patalano et
al. 2015). Comparisons spanning other levels of social complexity, therefore,
provide further insights into understanding social evolution in molecular terms.
In particular, lineages that display a full range of lifestyles, and where eusociality
has a relatively recent origin, may provide a more informative view into the
evolution of eusociality and its genomics basis (Danforth 2002; Rehan and Toth
2015).

The Vespidae is a lineage of wasps exhibiting a full spectrum of social
traits, including solitary as well as primitively and advanced eusocial species

(Evans and West-Eberhard 1970; Jeanne 1980; O’'Donnell 1998). Eusociality in the
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Vespidae originated sometime in the mid-Cretaceous, with a minimum age of
approximately 63 Mya (Wenzel 1990), later than in other eusocial groups such as
ants and termites (Cardinal and Danforth 2011). Within vespids, the paper wasp
genus Polistes and yellowjackets (Vespula and Dolichovespula) and hornets (Vespa)
are perhaps the most well known, and all belong to eusocial subfamilies. In
contrast to the primitively eusocial Polistes, the highly or advanced eusocial
colonies of yellowjackets and hornets have morphologically distinct castes and
their colonies comprise hundreds to thousands of workers (Evans and West-
Eberhard 1970). Although the natural history of several vespid species has been
well documented (Richards 1971; Spradbery 1973; Akre and Davis 1978; Ross
and Matthews 1991; Hunt 2007; Gadagkar 2009), sociogenomic analyses have
been conducted only recently (Jandt and Toth 2015).

Previous sociogenomic studies in the Vespidae have focused on
comparisons of gene expression, particularly in paper wasps, whereas tests of
alternative hypotheses and encompassing multiple social levels are wanting. In
Polistes metricus, for example, individuals exhibiting maternal care (workers and
foundresses) have more similar patterns of gene expression in comparison to
individuals that do not (queens and gynes) (Toth et al. 2007). By contrast,
transcriptomic analyses of Polistes canadensis suggest that caste differences derive
from novel genes that are differentially expressed (Ferreira et al. 2013; see,
however, Berens et al. 2015). Although certain insights have been gathered from
studies of Polistes wasps, discovering broad genomic patterns in the Vespidae
requires the inclusion of highly eusocial species such as yellowjackets and
hornets. The ongoing synthesis of sociogenomics (Rehan and Toth 2015;

Kapheim 2016) suggests that protein evolution and positive selection may be the
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primary mechanisms influencing the transition to highly eusocial behavior. This
protein evolution hypothesis has been supported in studies of bees (Woodard et
al. 2011; Harpur et al. 2014; Jasper et al. 2015; Kapheim et al. 2015) and ants
(Simola et al. 2013), but remains unexplored in the highly eusocial social wasps.
Here, we conduct a comparative transcriptomic analysis of vespid wasps to test
the protein evolution hypothesis. Specifically, we perform phylogeny-based
comparisons to identify lineage-specific signatures of positive selection in
transcriptomes of highly eusocial wasps, and compare these results to

primitively eusocial and solitary wasp lineages.

5.2. Materials and methods
5.2.1. Transcriptome assembly

We sampled solitary as well as primitively and advanced eusocial
species of the family Vespidae and extracted total RNA from single, whole
specimens using the TRIzol® reagent (Invitrogen) (Table 5.1). We outsourced the
preparation of cDNA libraries, Roche 454 pyrosequencing of A. catskill, and
paired-end 2 x 100 bp Illumina sequencing of the remaining species to Beckman
Coulter Genomics (Danvers, MA). Our data were analyzed in combination with
published transcriptomes from the solitary cuckoo wasp Argochrysis armilla and
the primitively eusocial vespids Pseudomasaris vespoides and Mischocyttarus
flavitarsis (NCBI SRA accessions SRX262928, SRX262920, and SRX259759; Johnson
et al. 2013). We trimmed adapters and low-quality bases from Illumina reads
using Trimmomatic v. 0.32 (Lohse et al. 2012; Bolger et al. 2014) with a sliding
window threshold for average base quality equal to 20. Transcriptomes were

assembled de novo using Trinity v. 2013-11-10 (Grabherr et al. 2011; Haas et al.
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2013) with default settings. We identified candidate, coding regions using
TransDecoder 120131110 (Haas et al. 2013) and clustered redundant proteins
using CD-HIT (Fu et al. 2012) with an identity threshold of 1.0 (~c 1.0 -n 5).
Amino acid sequences were used for orthology inference and phylogenetic

analysis.

5.2.2. Orthology inference and phylogenetic analysis

We followed a procedure based on sequence similarity and phylogenetic
inference to identify putative orthologs (Yang and Smith 2014). Orthology
inference was conducted for a taxon set including transcriptomes from nine
species, and another set excluding A. catskill. We carried out all-by-all BLASTP
searches with default settings and retained BLASTP hits with query coverage
greater than 0.4. Putative homologs were inferred using Markov clustering (MCL
v. 14-137; Enright et al. 2002) with an E value cutoff of 10 and an inflation value
of 2.0. We aligned clusters using MAFFT v. 7 (Katoh and Standley 2013) and
cleaned alignments using Phyutility (Smith and Dunn 2008) with minimum site
occupancy of 0.1. MAFFT alignments were performed using the options
‘genafpair’ and ‘maxiterate 1000’. Clusters with more than one thousand
sequences were aligned using PASTA (Mirarab et al. 2014). We used RAxML 8
(Stamatakis 2014) to infer a maximum likelihood phylogenetic tree for each
aligned cluster of homologous sequences with the model PROTCATWAG. We
trimmed terminal branches ten times longer than their sisters or longer than 0.8,
removed monophyletic and paraphyletic sequences belonging to the same taxon,
and cut internal branches longer than 1.0. This process of sequence alignment,

cleaning of alignments and trimming of branches was repeated using a cutoff of
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0.6 for tips and 0.7 for internal branches. We then conducted a third round of
alignment and tree inference to generate trees of homologs for orthology
inference. Orthologs were determined using the maximum inclusion criterion
(Dunn et al. 2008; Hejnol et al. 2009). We aligned orthologs using MAFFT and
alignments trimmed with Gblocks v0.91 (Castresana 2000). Models of amino acid
substitution were chosen for each ortholog using the model selection Perl script
provided with RAXML. We concatenated orthologs with complete taxon sets and
at least 300 sites. Partitioned maximum likelihood and rapid bootstrap analyses

were carried out using RAXML on CIPRES (Miller et al. 2010).

5.2.3. Tests of positive selection

We realigned orthologs using PRANK (Loytynoja and Goldman 2005,
2008) to mitigate the influence of alignment errors that mislead branch-specific
tests of positive selection (Fletcher and Yang 2010; Markova-Raina and Petrov
2011). PRANK protein alignments were conducted with default settings. We
converted protein sequence alignments into their corresponding codon-based
DNA alignments using PAL2NAL v14 (Suyama et al. 2006), enabling the option
to remove columns with gaps. Codon alignments with more than 100 sites were
considered for tests of positive selection. We performed tests of positive selection
in CODEML employing branch tests (Yang 1998) to evaluate the a priori
hypothesis that the highly eusocial yellowjackets and hornets have experienced
accelerated evolution relative to primitively- or non-eusocial lineages. We
performed tests on single branches or whole clades to detect signatures of
positive selection on unrooted trees (Fig. 1). The alternative branch model

assumes that branches of interest, or foreground branches, have a ratio of
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synonymous (d,) and nonsynonymous (d,) substitutions (d./d, or w) that is
different from the background ratio. This two-ratio model was contrasted with
the null model of the same d./d. for all branches. We compared alternative and
null models using the likelihood-ratio test (LRT) and calculated p-values using
the base R function pchisq (df = 1). P-values from all LRTs were then used to
estimate g-values, which measure significance in terms of the false discovery rate
(FDR) (Storey 2002; Storey and Tibshirani 2003), using the R package qvalue with
an FDR level equal to 0.05. Considering that the branch test approach is quite
conservative, since positive selection can be detected only when the average d./ d.
over all sites is greater than one, we compared d,/d. values for foreground

branches to find differences suggesting relaxed stabilizing selection.

5.2.4. Annotation of orthologs

Profiles of potential protein function were determined for each ortholog
using InterProScan v5 (Jones et al. 2014), limited to identification of protein
domains (Pfam; Punta et al. 2012) based on searches with HMMER v3.1
(hmmer.org) and prediction of signal peptides (SignalP v4.0; Petersen et al. 2011)
and transmembrane regions (TMHMM v2.0; Krogh et al. 2001). We carried out
BLASTP searches against the NCBI Reference Sequence Database (RefSeq, release
74) with an E value cutoff of 10- and restricted to Hymenoptera and Drosophila
matches (NCBI taxonomy identifiers 7399 and 7215). InterProScan profiles and
the top 20 BLASTP hits for each ortholog were mapped to gene ontology (GO)
terms and annotated using BLAST2GO v3.2 (Conesa and G6tz 2008) under
default settings. Orthologs with d./d, ratios significantly greater than one were

additionally submitted to BLASTP searches against Drosophila melanogaster
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proteins with UniProt (The UniProt Consortium 2015) as the target database. We
performed functional enrichment analyses between all orthologs and subsets of

orthologs with signatures of positive selection using Fisher’s exact test correcting

for multiple comparisons (FDR) in BLAST2GO.

5.3. Results
5.3.1. Orthology inference and phylogenetic analysis

Transcriptomes from six vespid species had an average of 129,357
transcripts and 51,786 potential coding regions (Table 5.1). After reducing
sequence redundancy, the average number of amino acid sequences was 14,896,
excluding A. catskill (Table 5.1). We identified 1,507 (9 taxa) and 3,356 (8 taxa)
putative orthologs with full taxon coverage, 90-93% amino acid occupancy, and
alignment length greater than 300 sites for phylogenetic inference. The
maximum-likelihood phylogeny inferred with each matrix of concatenated
orthologs had 100 bootstrap support values for all nodes. The topology
recovered shows the highly eusocial yellowjackets and hornets (Vespinae) as
monophyletic and sister to the primitively eusocial paper wasps (Polistinae),
and, depending on the taxon set, either the solitary A. catskill or P. vespoides as

sister to the eusocial clade (Fig. 5.1).

5.3.2. Patterns of positive selection
After converting protein sequence to codon-based DNA alignments and
filtering by alignment length, 1,391 and 3291 orthologs remained for tests of
positive selection. Estimates of d,/d. using the basic model (one ratio for all

branches) did not show evidence of positive selection. Altogether, comparisons
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between the single and two-ratio models resulted in up to 6.62% (218/3,291)
orthologs displaying significant signals of accelerated evolution (foreground
branch d,/d. > 1, LRT g-value < 0.05). For the two sets of orthologs, the proportion
of positively selected genes varied across the branches tested. We found evidence
of episodic positive selection predominantly on the branch subtending the highly
eusocial yellowjackets and hornets (Table 5.2, branch 1). The branch test specific
to the primitively eusocial lineage (branch 2) had 0.3-2.92% positively selected
orthologs and the branch leading to the clade of eusocial vespids (branch 3) had
up to 1.22% genes with signatures of positive selection (Table 5.2). For the set of
1,391 orthologs, we found an overlap of two positively selected genes between
the highly eusocial lineage (branch 1) and along the branch subtending the
eusocial clade (branch 3), whereas orthologs from the primitively eusocial
lineage were exclusive. By contrast, our analyses of the 3,291 ortholog set
revealed shared genes only between the highly and primitively eusocial lineages;
22 positively selected orthologs in common. The terminal branch leading to the
solitary P. vespoides had no orthologs with signatures of positive selection. The
clade-specific tests (branch labels 5 and 6) resulted in a single gene with a d./d.
ratio significantly greater than one, suggesting that the evolution of levels of
eusociality in the Vespidae might have been episodic.

Comparisons of d./d. estimates smaller than one and from significant
LRTs suggested that relaxed selection might have operated in the evolution of
highly and primitively eusocial lineages, but not along the branch leading to the
eusocial clade (Figure 5.2). Mann-Whitney U tests using foreground and

background branch labels as factors revealed significant differences between
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d./d. ratios for the highly (W = 15179, p-value < 0.00) and primitively (W = 85276,

p-value < 0.00) eusocial lineages.

5.3.3. Functional targets of episodic positive selection

The sets of 1,391 and 3,291 orthologs had 67% (8,412) and 61% (16,138)
sequences annotated, respectively. Orthologs with signatures of positive
selection in the highly eusocial lineage corresponded to GO biological processes
involved in the metabolism of sugars, oxidation of fatty acids, transport of
calcium ions in mitochondria, glycolysis, and protein phosphorylation, among
others (Table 5.3). Positively selected genes in the primitively eusocial lineage
involved processes related to embryonic development, transport of
phospholipids, binding of small nucleolar RNA, oxidation of fatty acids,
phosphorylation of carbohydrates, and neural development (Table 5.4). Genes
with signals of positive selection along the branch leading to the entire eusocial
clade were associated with GO processes such as cellular responses to amino acid
and starvation, biosynthesis of phospholipids, DNA and protein catabolism, and
RNA processing.

We evaluated which GO terms were enriched in those orthologs
showing significant signatures of positive selection. GO terms overrepresented in
the highly eusocial lineage included transferase activity, ATPase complex,
nucleotide-sugar metabolic process, catalytic activity, pyruvate metabolic
process, sodium ion transport, and potassium ion transport (Table 5.5). GO terms
enriched in the primitively eusocial lineage corresponded to functions such as
binding of magnesium ions and DNA and translocation of phospholipids,

cellular components related to ATPase dependent transmembrane transport, and
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processes such as transport of proteins as well as sodium and calcium ions (Table

5.6).
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Table 5.1: Characteristics of transcriptome assemblies.

Behavior Species Total GC % | Contig Average ORFs CD-HIT
transcripts N50 contig length clusters
Highly D. arenaria 130,448 37.50 2,817 1,393.00 38,669 14,489
eusocial
D. maculata 131,905 34.72 3,775 2,049.22 61,099 13,944
V. crabro 201,718 35.21 4,006 1,862.25 79,625 16,361
V. vidua 146,729 34.40 3,688 2,048.18 65,754 14,919
Primitively | P. dominula 155,861 32.47 3,396 1,798.09 58,569 14,768
eusocial
Solitary A. catskill 9,481 36.03 1,434 1,247.36 7,002 -
Average 129,357 35.06 3,186 1,733.02 51,786 14,896
SD 64,215.73 1.68 950.90 338.15 25,614.5 | 899.32
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Table 5.2: Amount of positive selection detected in lineage-specific branch tests. Branch labels
correspond to designations in Fig. 5.1. Number of orthologs with d./d. ratios significantly
greater than 1 (g-value < 0.05) for the 1,391 and 3,291 ortholog sets are separated by slashes.

Branch | Lineage of | Number of orthologs
label interest with w>1
1 Highly 38/218
eusocial
2 Primitively 4/96
eusocial
3 Eusocial 17/7
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Table 5.3: Overview of D. melanogaster matches for orthologs positively selected along the

branch leading to the highly eusocial lineage; genes ranked according to their LRT

significance values. w values of 999 represent cases in which d. equals 0, and therefore w is

undefined. Results based on the set of 3,291 genes.

Rank | Drosophila FlyBase ID UniProt GO biological process g-value | w
melanogaster entry
gene
1 BTB (POZ) FBgn0030228 | Q9W2S3 Adult locomotory behavior; | 1.02E-07 | 1.03
domain- positive regulation of
containing circadian sleep / wake cycle,
protein 9, sleep; regulation of
BTBD9 synaptic transmission,
dopaminergic
2 Trehalase, Treh | FBgn0003748 | A5XCQ7 Trehalose metabolic 1.44E-07 | 3.05
process
4 Isocitrate FBgn0001248 | Q9VSI6 Fatty acid alpha-oxidation; | 2.39E-06 | 3.70
dehydrogenase, isocitrate metabolic process;
Idh tricarboxylic acid cycle
5 Letm1 FBgn0019886 | P91927 Cellular response to 4.70E-06 | 999
hypoxia; mitochondrial
calcium ion transport;
mitochondrion
morphogenesis;
neurotransmitter secretion;
potassium ion
transmembrane transport;
sodium ion transmembrane
transport
7 CG6330 FBgn0039464 | Q9VBAO Gravitaxis; nucleoside 0.0000 999
metabolic process;
nucleotide catabolic process
8 Aldolase, Ald- | FBpp0297612 | F3YDB5 Glycolytic process 2.16E-05 | 3.33
P
9 Glycerol 3 FBgn0001128 | BSRIM9 Carbohydrate metabolic 2.39E-05 | 1.34
phosphate process; glycerol-3-
dehydrogenase, phosphate catabolic process
Gpdh
10 auxilin, aux FBgn0037218 | Q9VMYS Compound eye 2.43E-05 | 999
morphogenesis; negative
regulation of neuron death;
Notch signaling pathway;
protein phosphorylation;
sperm individualization;
synaptic vesicle uncoating
11 Inositol- FBgn0261984 | A8JR46 Compound eye 2.52E-05 | 1.94
requiring photoreceptor cell
enzyme-1, Irel differentiation;
endoplasmic reticulum
unfolded protein response;
Golgi organization; mRNA
catabolic process; mRNA
endonucleolytic cleavage
involved in unfolded
protein response; protein
phosphorylation;
regulation of RNA splicing
13 Myosin 61F, FBgn0010246 | H8F4R0 ATP binding; motor 3.08E-05 | 3.69
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Myo61F-RA activity
14 Vacuolar H+- | FBgn0027779 | Q9V3]1 ATP hydrolysis coupled 3.54E-05 | 999
ATPase SFD proton transport;
subunit, determination of adult
VhaSFD lifespan; dsRNA transport
18 axotactin, axo FBgn0262870 | Q9VZ96 Transmission of nerve 4.26E-05 | 999
impulse
19 gartenzwerg, FBgn0264560 | A1Z8WS8 Cell morphogenesis; 4.85E-05 | 999
garz epithelial cell development;
Golgi organization; lumen
formation, open tracheal
system; phagocytosis;
positive regulation of
GTPase activity
20 Vacuolar FBgn0039335 | Q9VBR1 Endosomal transport; 5.16E-05 | 999
protein sorting imaginal disc-derived wing
33B, Vps33B morphogenesis; immune
response; mitotic spindle
assembly
21 Palmitoyl- FBgn0030057 | Q9W3C7 Determination of adult 5.91E-05 | 999
protein lifespan; endocytosis;
thioesterase 1, macromolecule
Pptl depalmitoylation; neuron
fate specification
23 elF3-510 FBgn0037249 | Q9VN25 Formation of translation 7.66E-05 | 999
preinitiation complex;
mitotic spindle elongation;
mitotic spindle
organization; regulation of
translational initiation;
translational initiation
24 CG5002 FBgn0034275 | Q7K414 Bicarbonate transport; 8.40E-05 | 999
chloride transmembrane
transport; oxalate transport;
regulation of intracellular
pH
30 Sarcosine FBpp0088528 | T2FFPO Oxidation-reduction 0.0002 999
dehydrogenase, process
Sardh-PA
32 Kua FBgn0032850 | Q9V3B5 Oxidation-reduction 0.0002 999
process; protein
ubiquitination
33 CG9674 FBgn0036663 | Q9VVA4 Ammonia assimilation 0.0002 3.83
cycle; glutamate
biosynthetic process
42 Transferrin 2, | FBgn0036299 | Q9VTZ5 Septate junction assembly 0.0004 999
Tsf2
44 Suppressor of | FBgn0003612 | Q5BIG7 Chromosome condensation; | 0.0005 999

variegation 2-
10, Su(var)2-
10

chromosome organization;
compound eye
development; defense
response to Gram-negative
bacterium; hemopoiesis;
imaginal disc growth;
mitotic G2 DNA damage
checkpoint; negative
regulation of JAK-STAT
cascade; neurogenesis;
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positive regulation of
innate immune response

47 B subunit of FBgn0028970 | Q9XZ68 Protein 0.0005 1.98
type I1 geranylgeranylation
geranylgeranyl
transferase,
betaggt-11
57 Malate FBpp0082985 | QI9VEB1 Activation of cysteine-type | 0.0008 1.22
dehydrogenase endopeptidase activity
2, Mdh2-PA involved in apoptotic
process; carbohydrate
metabolic process; larval
midgut cell programmed
cell death; malate metabolic
process; positive regulation
of programmed cell death;
pupal development;
regulation of programmed
cell death; salivary gland
cell autophagic cell death;
salivary gland histolysis
58 Mitochondrial | FBgn0261380 | Q9VGW9 Translation; structural 0.0009 5.54
ribosomal constituent of ribosome
protein L37,
mRpL37
60 UDP-galactose | FBgn0035147 | Q9WOP5 Galactose metabolic 0.0010 999
4’-epimerase, process; larval lymph gland
Gale-PB hemopoiesis
64 uGp FBgn0035978 | A5XCL5 UDP-glucose metabolic 0.0012 999
process
75 Insulin-like FBgn(0283499 | G2J5R2 Transmembrane receptor 0.0018 999
receptor, InR-2 (A. mellifera) | protein tyrosine kinase
signaling pathway; insulin-
activated receptor activity
100 nervana, nrv3 | FBgn0032946 | Q86NM?2 Potassium ion transport; 0.0050 999
response to auditory
stimulus; sensory
perception of sound;
sodium ion transport
105 Vitellogenin, - Q868N5 Lipid transport 0.0058 1.01
vg (A. mellifera)
107 Facilitated FBgn0050035 | A1Z8N1 Glucose import; glucose 0.0062 2.07
trehalose transmembrane transport;
transporter hexose transmembrane
Tretl-1, Tretl- transport; proton transport;
1 trehalose transport
110 Pyruvate FBgn0027580 | QOE9E2 Gluconeogenesis; pyruvate | 0.0067 999
carboxylase, metabolic process
PCB
151 Aminolevulina | FBgn0020764 | 018680 Chitin-based cuticle 0.016 999
te synthase, development;
Alas protoporphyrinogen IX
biosynthetic process
159 GDP-4-keto-6- | FBgn0267823 | QIW1X8 "De novo' GDP-L-fucose 0.0198 999
deoxy-D- biosynthetic process;
mannose 3,5- dsRNA transport; GDP-L-
epimerase/4- fucose biosynthetic process
reductase,
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Gmer

162 nervana, nrov2 FBgn0015777 | A4V0B5 Potassium ion transport; 0.0213 999
sodium ion transport; ATP
hydrolysis coupled
transmembrane transport
168 Rhodopsin 2, FBpp0083111 | 08099 Detection of visible light; G- | 0.0234 999
Rh2-PA protein coupled receptor
signaling pathway;
phototransduction; protein-
chromophore linkage;
visual perception
186 Enolase, Eno FBgn0000579 | P15007 Glycolytic process 0.03 999
187 CG7920 FBgn0039737 | Q9VACI Acetyl-CoA metabolic 0.0303 1.05
process; neurogenesis
211 Inositol 1,4,5- | FBpp0079465 | MIND56 Response to oxidative 0.042 999
triphosphate stress
kinase 1,
IP3K1-PA

90




Table 5.4: Overview of D. melanogaster matches for orthologs positively selected along the
branch leading to the primitively eusocial lineage; orthologs ranked according to their LRT

significance values. Extreme w values of 999 represent cases where there is a lack of

synonymous substitutions along the branch, and therefore w is undefined. Results based on
the set of 3,291 genes.

Rank

Drosophila
melanogaster
gene

FlyBase ID

UniProt
entry

GO biological process

g-value

CG33298

FBgn0032120

Q7KTG6

Golgi organization;
intracellular protein
transport; phospholipid
translocation

3.81E-09

999

CG8064

FBgn0038597

QI9VE98

snoRNA binding

6.17E-08

1.16

Isocitrate
dehydrogenase
, 1dh

FBgn0001248

Q9VSI6

Fatty acid alpha-oxidation;
isocitrate metabolic process;
tricarboxylic acid cycle

9.12E-07

999

13

FI22366p1,
Pptl

FBgn0030057

S5WMX5

Palmitoyl-(protein)
hydrolase activity

2.66E-06

2.01

15

EG:115C2.1

FBgn0025640

077425

Carbohydrate
phosphorylation; D-ribose
metabolic process

4.82E-06

1.67

19

Acyl-CoA
synthetase
long-chain,
Acsl

FBgn0263120

A1Z7H?2

Axon guidance; early
endosome to recycling
endosome transport; long-
chain fatty acid metabolic
process; negative regulation
of BMP signaling pathway;
negative regulation of
synaptic growth at
neuromuscular junction;
nervous system
development; neurogenesis

2.30E-05

999

20

CG7379

FBgn0038546

QI9VEF5

Chromatin modification

3.99E-05

999

23

nervana 3,
nro3

FBgn0032946

Q86NM2

Potassium ion transport;
response to auditory
stimulus; sensory
perception of sound;
sodium ion transport

8.48E-05

999

25

Keapl

FBgn0038475

QI9VENS

Protein ubiquitination
involved in ubiquitin-
dependent protein catabolic
process; response to
oxidative stress

0.0001

999

26

Light, It

FBgn0002566

076248

Autophagosome
maturation; cellular
response to starvation;
determination of adult
lifespan; dsRNA transport;
endocytosis; intracellular
transport; lysosomal
transport; negative
regulation of Notch
signaling pathway; Notch
receptor processing

0.0002

999

31

CG1882

FBgn0033226

Q5U191

Lipid metabolic process;
lipid storage

0.0003

1.06

34

Vacuolar

FBgn0038593

QI9VEA2

Autophagosome

0.0003

2.20
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protein sorting
39, Vps39

maturation; cellular
response to starvation;
intracellular protein
transport; neuron
projection morphogenesis;
regulation of Notch
signaling pathway;
regulation of SNARE
complex assembly

39

CG11665

FBgn0033028

Q7JWI7

Monocarboxylic acid
transport

0.0007

1.40

46

LKRSDH

FBpp0310050

Q6NP53

Oxidation-reduction
process

0.0017

999

48

Gliotactin, Gli

FBgn0001987

QINKS80

Border follicle cell
migration; establishment of
blood-nerve barrier; female
meiosis chromosome
segregation; maintenance of
imaginal disc-derived wing
hair orientation;
modulation of synaptic
transmission; neuron cell-
cell adhesion; postsynaptic
membrane assembly;
presynaptic membrane
assembly; regulation of
tube size, open tracheal
system; septate junction
assembly

0.0021

999

49

Probable
cytochrome
P450 912,

Cyp9f2

FBgn0038037

QIVGSE2

Heme binding; iron ion
binding; monooxygenase
activity; oxidoreductase
activity

0.0022

4.74

50

CG5525

FBgn0032444

QI9VK69

Cytoplasmic microtubule
organization; mitotic
spindle assembly; mitotic
spindle organization;
neurogenesis; protein
folding

0.0023

8.08

55

CG10512-RD

FBgn0037057

QBIPT9

Oxidation-reduction
process

0.0033

999

63

CG8005

FBgn0035854

QIVSF4

Deoxyhypusine
biosynthetic process from
spermidine; peptidyl-lysine
modification to peptidyl-
hypusine

0.0060

1.11

67

Malate
dehydrogenase
1, Mdh1

FBgn0262782

QIVKX2

Carbohydrate metabolic
process; lateral inhibition;
malate metabolic process;
tricarboxylic acid cycle

0.0084

999
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Table 5.5: Top GO categories enriched in genes revealing significant signatures of positive
selection in the highly eusocial wasp lineage (branch test 1). GO categories are molecular
function (F), cell component (C), and biological process (P). Results based on the set of 3,291
genes.

GO-ID Term Category | FDR P-value Test set
GO:0016740 | Transferase activity F 9.12E-19 | 2.75E-22 321
GO:1904949 | ATPase complex C 1.34E-16 | 2.02E-19 16
GO:0098533 | ATPase dependent C 1.34E-16 | 2.02E-19 16
transmembrane transport
complex
GO:0090533 | Cation-transporting ATPase C 1.34E-16 | 2.02E-19 16
complex
GO:0005890 | Sodium:potassium- C 1.34E-16 | 2.02E-19 16
exchanging ATPase complex
GO:1902495 | Transmembrane transporter | C 7.61E-14 | 1.61E-16 16
complex
GO:1990351 | Transporter complex C 7.61E-14 | 1.61E-16 16
GO:0051649 | Establishment of localization | P 2.90E-12 | 7.01E-15 88
in cell
G0O:0009225 | Nucleotide-sugar metabolic P 3.24E-11 | 8.79E-14 16
process
GO:0008318 | Protein prenyltransferase F 3.93E-11 | 1.18E-13 12
activity
GO:0003824 | Catalytic activity F 5.07E-11 | 1.68E-13 638
GO:0051641 | Cellular localization P 5.71E-11 | 2.07E-13 88
GO:0006090 | Pyruvate metabolic process P 1.66E-10 | 6.52E-13 24
GO:0046907 | Intracellular transport P 4.12E-09 | 1.74E-11 72
GO:0006814 | Sodium ion transport P 5.02E-09 | 2.27E-11 16
GO:0006886 | Intracellular protein transport | P 7.36E-09 | 4.00E-11 58
GO:0006813 | Potassium ion transport P 1.91E-08 | 1.37E-10 16
G0:0009451 | RNA modification P 1.91E-08 | 2.25E-10 40
G0O:0034613 | Cellular protein localization P 1.91E-08 | 2.26E-10 58
GO:0034708 | Methyltransferase complex C 1.91E-08 | 4.62E-10 8
Glutamate synthase (NADH)
GO:0016040 | activity F 1.91E-08 | 4.62E-10
GO:0016832 | Aldehyde-lyase activity F 1.91E-08 | 4.62E-10
GDP-L-fucose biosynthetic
GO:0042350 | process P 1.91E-08 | 4.62E-10 8
'De novo' GDP-L-fucose
GO:0042351 | biosynthetic process P 1.91E-08 | 4.62E-10 8
Protein
geranylgeranyltransferase
GO:0004661 | activity F 1.91E-08 | 4.62E-10 8
Rab
geranylgeranyltransferase
GO:0004663 | activity F 1.91E-08 | 4.62E-10 8
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Table 5.6: Top GO categories enriched in genes with significant signatures of positive
selection in the primitively eusocial lineage (branch test 2). GO categories are molecular
function (F), cell component (C), and biological process (P). Results based on the set of 3,291
genes.

GO-ID Term Category | FDR P-value Test set
G0O:0000287 | Magnesium ion binding F 791E-17 | 2.39E-20 32
Double-stranded DNA
GO:0003690 | binding F 1.29E-11 | 7.76E-15 16
Phospholipid-translocating
GO:0004012 | ATPase activity F 425E-11 | 2.57E-13
GO0:0045332 | Phospholipid translocation P 425E-11 | 2.57E-13
RNA polymerase II
regulatory region DNA
GO:0001012 | binding F 425E-11 | 2.57E-13 8
Cul3-RING ubiquitin ligase
GO:0031463 | complex C 425E-11 | 2.57E-13
GO:0098599 | Palmitoyl hydrolase activity | F 425E-11 | 2.57E-13
Isocitrate dehydrogenase
GO:0004450 | (NADP+) activity F 425E-11 | 2.57E-13
GO0:0015914 | Phospholipid transport P 425E-11 | 2.57E-13
G0O:0034204 | Lipid translocation P 4.25E-11 | 2.57E-13
RNA polymerase II core
promoter proximal region
sequence-specific DNA
GO:0000978 | binding F 425E-11 | 2.57E-13 8
RNA polymerase II
regulatory region sequence-
G0O:0000977 | specific DNA binding F 425E-11 | 2.57E-13 8
Transcription regulatory
region sequence-specific
GO:0000976 | DNA binding F 425E-11 | 2.57E-13 8
Core promoter proximal
region sequence-specific
GO:0000987 | DNA binding F 425E-11 | 2.57E-13 8
Transcription factor activity,
RNA polymerase II core
promoter proximal region
GO:0000982 | sequence-specific binding F 425E-11 | 2.57E-13 8
Regulation of membrane lipid
GO:0097035 | distribution P 425E-11 | 2.57E-13 8
Core promoter proximal
GO:0001159 | region DNA binding F 425E-11 | 2.57E-13 8
Phospholipid transporter
GO:0005548 | activity F 425E-11 | 2.57E-13 8
Organophosphate ester
GO:0015748 | transport P 425E-11 | 2.57E-13
G0O:0006102 | Isocitrate metabolic process P 425E-11 | 2.57E-13
GO:0042393 | Histone binding F 3.56E-10 | 2.26E-12
ADP-dependent NAD(P)H-
GO:0052855 | hydrate dehydratase activity | F 1.46E-09 | 9.70E-12 7
GO:0009060 | Aerobic respiration P 8.13E-09 | 5.89E-11 16
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GO:0006099 | Tricarboxylic acid cycle P 8.13E-09 | 5.89E-11 16
GO:0006820 | Anion transport P 2.09E-08 | 1.58E-10 24
Tricarboxylic acid metabolic
GO:0072350 | process P 3.75E-08 | 3.17E-10 16
GO:0006101 | Citrate metabolic process P 3.75E-08 | 3.17E-10 16
GO:0004747 | Ribokinase activity F 3.91E-08 | 3.66E-10
G0O:0019321 | Pentose metabolic process P 3.91E-08 | 3.66E-10
GO:0006014 | D-ribose metabolic process P 3.91E-08 | 3.66E-10
G0:0045333 | Cellular respiration P 3.99E-08 | 3.85E-10 16
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Figure 5.1: Phylogeny of vespid wasps showing branches labeled for positive selection
analyses. Numbers above branches indicate lineage-specific branch tests, whereas numbers

below branches indicate clade-specific tests.
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Figure 5.2: Comparison of w values significantly less than one for background (Bkgd) and
foreground (Fg) branches across lineage-specific tests. Boxplots of w values overlaid with the
actual data points, 'jittered' horizontally.
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5.1. Discussion

On a molecular level, various mechanisms operate across transitional
stages of social evolution (Rehan and Toth 2015). For example, the evolution of
highly eusocial behavior in bees, and in ants, has been linked to accelerated
evolution of protein coding genes (Hunt et al. 2010a; Fischman et al. 2011;
Woodard et al. 2011; Harpur and Zayed 2013; Harpur et al. 2014; Roux et al. 2014;
Kapheim et al. 2015). In this study, we find that episodic positive selection is
associated with the origin of highly eusocial behavior in wasps. We identified up
to 218 genes showing signatures of accelerated evolution in the Vespinae lineage
(Table 5.3). Fewer genes were positively selected along branches leading to the
eusocial clade and the primitively eusocial lineage (Table 5.2). Our findings
suggest that genes involved in metabolism of carbohydrates and functioning in
mitochondria (Table 5.3, 5.6) have been primary targets of selection in the origin
of advanced eusociality. Below, we provide possible links between the rapid
evolution of certain positively selected genes and the transition to advanced
eusociality.

Traits defining advanced eusociality include morphologically distinct
castes in colonies with hundreds to thousands of individuals. The growth of
these large colonies is partially determined by specialized workers foraging for
prey to provision larvae and wood pulp to build nests (Greene 1991; Richter
2000). Accelerated protein evolution in the yellowjackets and hornets might be
related to worker foraging activity, which likely involved molecular changes in
the metabolism of energy precursors such as sugars. The sugar trehalose exists in
abundance in the hemolymph (circulatory fluid) of insects. We found that the

gene Trehalase had significant signatures of positive selection only in the highly
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eusocial lineage (Table 5.3), and contributed to the enriched category ‘Catalytic
activity’ (Table 5.5). The trehalase protein catalyzes the conversion of trehalose
into glucose, providing energy for the activity of flight muscles (Becker et al.
1996), as well as playing a crucial role in development, stress recovery, and
synthesis of chitin in insects (Shukla et al. 2015). Changes in the metabolism of
sugars might have been particularly important in the social Hymenoptera. For
example, foraging is metabolically expensive in bees (Harrison and Fewell 2002;
Schippers et al. 2010), which exclusively use sugars to fuel their flight muscles
(Blatt and Roces 2001; Suarez et al. 2005) and show variation in flight
performance depending on worker role and age of foragers (Roberts and
Elekonich 2005; Vance et al. 2009). Flight muscle activity, therefore, allows
selection for specialization to act within the worker caste. Moreover, D.
melanogaster mutants of the enzyme that synthesizes trehalose (Tps1) show severe
growth defects on a low-protein diet (Matsuda et al. 2015). Trehalose may also be
involved in cognitive functions, since old honeybee foragers show brain
overexpression of Tps1 (Whitfield et al. 2003).

Positive selection acting on genes associated with metabolism and
transport of trehalose might be related, in particular, to wasp queens entering a
dormant state and living underground during the winter. In addition to Treh, we
found evidence of positive selection for the gene Facilitated trehalose transporter
Tret1-1 (Table 5.3), which regulates levels of trehalose in the hemolymph and its
incorporation into tissues (Kikawada et al. 2007; Kanamori et al. 2010).
Accumulation of trehalose provides tolerance to cold and stability of protein
structure in insects (Sinclair et al. 2003, 2013; Chen and Haddad 2004; Andersen

et al. 2011; Kostdl et al. 2012). Overwintering behavior might have selected for
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extreme caste dimorphism in the Vespinae (West-Eberhard 1978; O’Donnell
1998), which are distributed throughout northern temperate regions and have
queens with large body sizes. Elevated levels of trehalose after exposure to cold
have been reported in the primitively eusocial Polistes (Strassmann et al. 1984).
Furthermore, high survival of overwintering queens and queen body size
correlate positively in the yellowjacket Vespula maculifrons (Kovacs and
Goodisman 2012) and the paper wasp Polistes gallicus (Dani 1994).

Other signals of positive selection concerning metabolism of
carbohydrates were detected for genes in the glycolysis pathway. We found
accelerated rates of evolution for the glycolytic enzymes Aldolase and Enolase
(Table 5.3), both contributing to the enriched category ‘Catalytic Activity’ (Table
5.5), among others. Changes in expression of Enolase relate to caste determination
in Apis mellifera, where queen-destined larvae show increased levels of enolase
protein relative to larvae that will become workers (Li et al. 2010). Comparative
proteomic analyses reveal that foraging bees have higher levels of aldolase in
comparison to workers performing within-hive activities (Schippers et al. 2006;
Wolschin and Amdam 2007). Moreover, sterile honeybee workers have higher
levels of aldolase protein compared to reproductive workers (Cardoen et al.
2011a). Adult caste differences in the abundance of glycolytic enzymes, therefore,
likely result from the activity of flight muscles in foragers (Suarez et al. 2005).
Our findings suggest that in addition to changes in the regulation of these
glycolytic enzymes, changes in their coding sequences might have influenced the
origin of advanced eusociality.

Accelerated evolution of glycolytic enzymes may relate to post-

copulatory physiology. Insects rely largely on glycolysis to power sperm motility
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(Werner and Simmons 2008). Social insects usually mate only once and maintain
a lifelong supply of sperm in a specialized storage organ, the spermatheca.
Aldolase and enolase have been detected in spermathecal fluid (Baer et al. 2009)
as well as sperm fluid and seminal vesicles (Collins et al. 2006) in A. mellifera.
Studies of D. melanogaster show that sperm and seminal fluid proteins transferred
during mating launch females on a series of behavioral and physiological
changes, such as decreased receptivity to mating and elevated egg laying
(Wolfner 1997; Chapman 2001; Gillott 2003; McGraw et al. 2004). Furthermore, at
the molecular level, mated females of D. melanogaster overexpress aldolase in
their reproductive tract tissues (Mack et al. 2006). Likewise, behavioral and
physiological post-mating changes in queens of A. mellifera correlate with gene
expression patterns in brains and ovaries (Kocher et al. 2008). In contrast to ants
and bees (Gobin et al. 2006; Gotoh et al. 2009), caste differences related to female
reproductive anatomy seem implausible in the Vespinae, since queens and
workers of the genus Vespa, for example, have strikingly similar spermathecae
(Gotoh et al. 2008). Molecular mechanisms involved in post-mating sperm
selection, storage, and expenditure seem more likely to have fitness
consequences in social wasps (Boomsma 2013; Beani et al. 2014), as it is expected
based on insights from ants and bees (Baer et al. 2006; den Boer et al. 2009, 2010;
Jaffe et al. 2012). Seminal fluids that incapacitate rival sperm, however, provide
another mechanism for differences in reproductive success in social insects (den
Boer et al. 2010; Avila et al. 2011). Among yellowjackets, queens of Vespula
squamosa mate with multiple males and show skewed sperm usage (Hoffman et
al. 2008; see, however, Ross 1986). Additionally, colony size correlates negatively

with paternity skew in other yellowjacket species (Loope et al. 2014). Highly
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variable counts of stored sperm among queens of the yellowjacket Dolichovespula
maculata suggest that sperm quantity may limit nest growth and affect queen
fitness (Stein et al. 1996). Perhaps processes involving glycolytic enzymes
influence the usage of sperm and successful founding of colonies in the
Vespinae. Although glycolytic enzymes have been identified in sperm of D.
melanoguaster, these lacked signatures of accelerated evolution (Dorus et al. 2006),
whereas proteins from the male accessory gland showed evidence of positive
selection (Swanson et al. 2001; Mueller et al. 2005). This test of positive selection
on glycolytic enzymes, however, was based on pairwise comparisons between
two species of Drosophila (Dorus et al. 2006). Strong stabilizing selection acting on
glycolytic enzymes in Drosophila may be expected considering that, for example,
an Aldolase mutant with a single amino acid change in D. melanogaster shows
decreased levels of ATP, reduced lifespan, and neurodegeneration (Miller et al.
2012). Such functional constraints for enzymes involved in glycolysis might have
been relaxed in other taxa. For example, mammals possess multiple tissue-
specific enolases, and an enolase copy unique to sperm (Edwards and
Grootegoed 1983; Tracy and Hedges 2000).

In addition to glycolytic enzymes, we found evidence of accelerated
evolution for other genes related to energy production. Specifically, we detected
signals of positive selection for genes involved in metabolism of pyruvate and
the tricarboxylic acid cycle, such as Pyruvate carboxylase (PCB), Isocitrate
dehydrogenase (Idh), Malate dehydrogenase 2 (Mdh2), and CG7920 (Table 5.3). These
findings further implicate the evolution of highly eusocial behavior to changes in
metabolic function (Hunt et al. 2010b; Woodard et al. 2011; Roux et al. 2014). This

association may result from different selection pressures experienced by castes;
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queens are selected for their fecundity and longevity, and the molecular
machinery underlying these traits, whereas workers are selected for their
specialized, non-reproductive roles (Strassmann and Queller 2007; Smith et al.
2008; Bloch and Grozinger 2011; Sumner 2014). Caste differences in energy
expenditure have been demonstrated in other taxa, such as eusocial mammals.
Colonies of the Damaraland mole rat, for example, have a caste of infrequent
workers that specialize in building up body reserves for potential dispersal when
environmental conditions seem suitable (Scantlebury et al. 2006).

The origin and elaboration of eusociality likely involved demands in
sensory and cognitive functions and changes in brain regions related to these
functions (Chittka and Niven 2009; O’Donnell et al. 2011, 2013; Muscedere et al.
2014). We found evidence of positive selection for genes related to sound and
visual perception (Table 5.3). The genes Nervana 2 and 3 (nrv2, nrv3) mediate the
transport of sodium and potassium ions across membranes and therefore
influence a variety of processes. In D. melanogaster, where nrv2 and nrv3 show
expression specific to cell types in the auditory Johnston’s organ, knocking down
nrv2 causes severe deafness (Roy et al. 2013). Furthermore, Drosophila flies with a
reduced copy number of nrv3 show increased sensitivity to noise trauma
(Christie et al. 2013). Vibrations and sounds perceived through Johnston’s organs
transmit signals of alarm, recruitment, and larval provisioning cues in social
insects (Kirchner 1997; Hunt and Richard 2013; Leonhardt et al. 2016). Larvae of
the hornet Vespa orientalis, for example, produce scraping sounds that are
interpreted by workers as hunger signals (Ishay and Landau 1972). Moreover,
the phylogenetic distribution of vibrational signaling suggests that this trait

characterized the hypothetical common ancestor of eusocial wasps (Jeanne and
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Suryanarayanan 2011). These signals might have influenced the evolution of
eusociality in the Vespidae, where larval nutrition underlies female caste
determination (O’Donnell 1998). For example, larvae of the paper wasp Polistes
metricus exhibit partial shifts in expression of caste-related genes depending on
nourishment (Berens et al. 2015b).

Regarding changes in genes related to visual perception, we found
evidence of positive selection for the light-sensitive protein encoded by Rhodopsin
2 and found in photoreceptor cells (Table 5.3). Analyses of neuroanatomical data
from social hymenopterans suggest that selection for visual acuity probably
increases in lineages with large-bodied, aboveground foragers (Muscedere et al.
2014), such as the vespine wasps. Changes related to processing of visual
information may result from the environmental challenges of foraging (Greiner
et al. 2007). Another possible link may be recognition of signals of individual
quality, such as facial markings in Polistes paper wasps (Tibbetts and Dale 2004;
Tannure-Nascimento et al. 2008; Sheehan and Tibbetts 2011). An additional
possibility may be the development among social insects of nocturnal foraging
(Warrant 2008). Among the Vespinae, yellowjackets usually forage during
daytime, hornets show facultative nocturnal activity, and the genus Provespa
forage exclusively at night (Matsuura and Yamane 1990; Greene 1991). Although
Vespa, for example, lack the eye morphology traits associated with nocturnal
foraging (Kelber et al. 2011), differences in foraging lifestyles might be
concomitant with molecular changes in photoreception within the worker caste.
Additional changes related to the visual system were detected in genes
determining compound eye morphogenesis, such as auxilin (Eun et al. 2008) and

Inositol-requiring enzyme-1 (Coelho et al. 2013), although these genes are involved
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in a variety of processes. For example, auxilin plays a general role in the Notch
signaling pathway (Hagedorn et al. 2006), which controls the fate of cells during
animal development (Artavanis-Tsakonas et al. 1999; Hori et al. 2013).

In comparison to genes known to have effects on foraging behavior in
the social Hymenoptera, we found positively selected orthologs corresponding to
Insulin-like receptor and vitellogenin (Table 5.3). The reproductive ground plan
hypothesis for the origin of eusociality states that pathways regulating
reproduction in solitary insects have been rewired to influence age-related
changes in the behavior of workers (Amdam et al. 2004, 2006). Insulin-like
signaling and vitellogenin are two of such pathways, and both have been
associated with division of labor and queen longevity in bees and ants (Corona et
al. 2007; Ament et al. 2008; Lu and Pietrantonio 2011; Libbrecht et al. 2013).
Perhaps the interplay of these pathways has also influenced the evolution of
division of labor in wasps. Our transcriptomic data also included a cGMP-
dependent kinase matching the putative foraging gene Vufor (UniProt entry
A1YTUS) of Vespula vulgaris (Tobback et al. 2008), with BLASTP coverage and
identity greater than 97% using vespine sequences as queries, and the for genes
of the bees Bombus terrestris and Apis cerana (UniProt entries C6GBY7 and
AOAOH3WKED, respectively), among others. However, the ortholog in our data
set that matched the foraging gene (Pereira and Sokolowski 1993; Ben-Shahar
2003) did not show evidence of positive selection.

Our results are generally in agreement with patterns of positive selection
in other eusocial insects. Studies of Apis mellifera have found that caste
differences are associated with expression of proteins that metabolize

carbohydrates (Sen Sarma et al. 2007; Cardoen et al. 2011b). Comparisons of
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different levels of sociality in bees show that genes related to carbohydrate
metabolism were evolving more rapidly in highly eusocial lineages (Woodard et
al. 2011). In comparison to molecular patterns in bees (Woodard et al. 2011),
however, gland development and signal transduction were not prominent
functional categories in our analyses. Positive selection acting on genes
functioning in mitochondria was particularly important during the evolution of
ants, and this pattern has been attributed to the increased lifespan of queens
(Roux et al. 2014). Although we found signals of accelerated evolution for genes
functioning in mitochondria, queens in vespine wasps lack the extraordinarily
long lifespans of ant queens. The “genetic toolkit’ hypothesis for the origin
eusociality proposes that social behavior evolved from regulatory changes in
conserved genes shared with solitary species (Toth and Robinson 2007). A
revised of version of this hypothesis suggests that a ‘loose toolkit’” of crucial
pathways rather than specific genes influence the evolution of eusociality (Berens
et al. 2015a). Overlap of enriched functional categories between our analyses and
studies of bees and ants seem to support the ‘loose toolkit” hypothesis at the level
of genomic sequence. However, we also found specific, positively selected genes
shared with previous studies. For example, Woodard et al. (2011) and Roux et al.
(2014) found, respectively, evidence of positive selection for the genes Enolase
and Mitochondrial ribosomal protein L37, both of which had signatures of positive
selection in our results (Table 5.3).

In conclusion, this study provides, for the first time, a test of the protein
evolution hypothesis for vespid wasps, with emphasis on the molecular changes
associated with the origin of highly eusocial behavior in yellowjackets and

hornets. In particular, we found that genes contributing to carbohydrate
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metabolic pathways and functioning in mitochondria might have been important
to attain highly eusocial behavior. Our results may serve as a starting point for
future work focused on finding specific sites under positive selection and

experimentally investigating their effects on phenotypes.
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