
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2016

Phylogenetics And Molecular Evolution Of Highly
Eusocial Wasps
Federico Lopez-Osorio
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Biology Commons

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for
inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Lopez-Osorio, Federico, "Phylogenetics And Molecular Evolution Of Highly Eusocial Wasps" (2016). Graduate College Dissertations
and Theses. 569.
https://scholarworks.uvm.edu/graddis/569

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/569?utm_source=scholarworks.uvm.edu%2Fgraddis%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu


 
 
 
 

PHYLOGENETICS AND MOLECULAR EVOLUTION OF HIGHLY EUSOCIAL 
WASPS. 

 
 
 
 
 

A Dissertation Presented 
 
 

by 
 

Federico Lopez-Osorio 
 

to 
 

The Faculty of the Graduate College 
 

of 
 

The University of Vermont 
 
 
 
 
 

In Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

Specializing in Biology 
 

May, 2016 
 

 
 

Defense Date:  March 22, 2016 
Dissertation Examination Committee: 

 
Ingi Agnarsson, Ph.D., Advisor 

Stephen R. Keller, Ph.D., Chairperson 
Bryan A. Ballif, Ph.D. 

Sara Helms Cahan, Ph.D. 
Cynthia J. Forehand, Ph.D., Dean of the Graduate College 

 
 



ABSTRACT 
 

Societies where workers sacrifice their own reproduction and cooperatively 
nurture the offspring of a reproductive queen caste have originated repeatedly 
across the Tree of Life. The attainment of such reproductive division of labor 
enabled the evolution of remarkable diversity in development, behavior, and 
social organization in the Hymenoptera (ants, bees, and wasps). Wasps of the 
family Vespidae exhibit a gamut of social levels, ranging from solitary to highly 
social behavior. The highly social yellowjackets and hornets (Vespinae) have well 
developed differences in form and function between queens and workers, large 
colony sizes, and intricate nest architecture. Moreover, certain socially parasitic 
species in the Vespinae have secondarily lost the worker caste and rely entirely 
on the workers of a host species to ensure the survival of parasitic offspring. 
Understanding the evolution of behavioral traits in the Vespinae over long 
periods of time would be greatly enhanced by a robust hypothesis of historical 
relationships.  
 
In this study, I analyze targeted genes and transcriptomes to address three goals. 
First, infer phylogenetic relationships within yellowjackets (Vespula and 
Dolichovespula) and hornets (Vespa and Provespa). Second, test the hypothesis that 
social parasites are more closely related to their hosts than to any other species 
(Emery’s rule). Third, test the protein evolution hypothesis, which states that 
accelerated evolution of protein coding genes and positive selection operated in 
the transition to highly eusocial behavior. The findings of this study challenge 
the predominant understanding of evolutionary relationships in the Vespinae. I 
show that yellowjacket genera are not sister lineages, instead recovering 
Dolichovespula as more closely related to the hornets, and placing Vespula as sister 
to all other vespine genera. This implies that traits such as large colony size and 
high paternity are mostly restricted to a particular evolutionary trajectory 
(Vespula) from an early split in the Vespinae. I demonstrate that obligate and 
facultative social parasites do not share immediate common ancestry with their 
hosts, indicating that socially parasitic behavior likely evolved independently of 
host species. Moreover, obligate social parasites share a unique evolutionary 
history, suggesting that their parasitic behavior might have a genetic component. 
Lastly, I analyze transcriptomic data to infer a phylogeny of vespid wasps and 
use this phylogeny to discover lineage-specific signatures of positive selection. I 
identify more than two hundred genes showing signatures of positive selection 
on the branch leading to the highly eusocial yellowjackets and hornets. These 
positively selected genes involve functions related mainly to carbohydrate 
metabolism and mitochondrial activity, in agreement with insights from studies 
of bees and ants. Parallels of functional categories for genes under positive 
selection suggests that at the molecular level the evolution of highly eusocial 
behavior across the Hymenoptera might have followed similar and narrow 
paths. 
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CHAPTER 1: INTRODUCTION 

Cooperative behavior and self-sacrificing altruism evolved repeatedly in 

insects (Wilson 1971; Anderson 1984). In the social Hymenoptera (ants as well as 

certain bees and wasps), colony members belong to castes that perform specific 

tasks. The reproductive caste includes queens and males, whereas the mostly 

sterile workers raise offspring, forage, and guard the colony (Wilson 1971; 

Bourke and Franks 1995). Moreover, workers usually switch from nest activities 

to foraging through their lifespan; that is, workers exhibit temporal polyethisms 

(Wilson 1976; Seeley 1982; Jeanne 1991). This division of labor is considered a 

hallmark in the ecological success of hymenopteran societies (Wilson 1985). The 

Vespidae is a lineage of wasps that transitioned from solitary to social behavior 

once (Carpenter 1982; Pickett and Carpenter 2010). Within vespids, the paper 

wasp genus Polistes, yellowjackets (Vespula and Dolichovespula), and hornets 

(Vespa and Provespa) are among the most well-studied and all belong to eusocial 

subfamilies with reproductive division of labor, cooperative care of brood, and 

overlapping generations. Their social complexity, however, varies. In contrast to 

the primitively eusocial Polistes, colonies of the highly eusocial yellowjackets and 

hornets typically comprise hundreds to thousands of workers and have 

morphologically distinct castes (Evans and West-Eberhard 1970). These 

morphological differences between castes indicate a “point of no return” to a 

solitary or primitively eusocial condition (Wilson and Holldobler 2005; Wilson 

2008).  

The Vespinae have been the focus of numerous evolutionary studies due 

to the diversity of their natural history and behavioral traits (e.g., Foster et al. 

1999, 2000, 2001; Foster and Ratnieks 2001a,b; Wenseleers et al. 2005a, b; 
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Helanterä et al. 2006; Goodisman et al. 2007a, b; Bonckaert et al. 2008; Kovacs et 

al. 2010; Loope et al. 2014; Oi et al. 2015). Vespine wasps occur throughout the 

oriental tropics and temperate regions in the Northern Hemisphere (Spradbery 

1973). Across this geographic range, yellowjackets and hornets establish aerial or 

subterranean nests consisting of layers of paper that enclose combs (horizontal 

sections) suspended from one another (Evans and West-Eberhard 1970; Akre and 

Davis 1978). Vespine wasps have small- and large-colony species (Akre et al. 

1981), and such variation in colony size correlates with patterns of reproduction 

and conflict in accordance with kin selection predictions (Foster and Ratnieks 

2001b; Loope et al. 2014). Kin selection theory states that relatedness among 

individuals influences selection, and that an indirect fitness component received 

from effects on the reproduction of others favors the evolution of altruistic traits 

(Hamilton 1964a,b; Queller and Strassmann 2002; Foster et al. 2006; Strassmann 

et al. 2011). Kin selection has been particularly emphasized in the study of 

altruism in the social Hymenoptera because of their haplodiploid sex 

determination. In haplodiploid species, females developed from fertilized eggs, 

whereas males develop from haploid eggs. As a result, full sisters share more 

genes with each other (75%) than they would with their own offspring (50%). 

Workers, therefore, should invest in the survival of their sisters, rather than in 

the production of their own female offspring. Moreover, when queens mate only 

once, workers are more related to nephews (sons of workers) than to their 

brothers (queen’s sons), and thus worker production of males is expected. On the 

contrary, multiple paternity results in little reproduction by workers (Ratnieks 

1988). Among vespine wasps, large-colony species of Vespula exhibit high 

paternity, few workers with activated ovaries, and absence of worker 
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reproduction (Akre et al. 1976; Ross 1985, 1986; Foster and Ratnieks 2001b). Lack 

of worker reproduction in large-colony yellowjackets usually results from 

worker policing, where workers remove or eat worker-laid eggs to preserve the 

reproductive dominance of the queen (Foster and Ratnieks 2000, 2001a; 

Bonckaert et al. 2008). In contrast to large-colony species of Vespula, species of 

Dolichovespula have small colonies with low paternity and exhibit conflict 

between queens and workers over the production of males (Foster et al. 2001). 

Reproductive conflict in the Vespinae may occur between species, too. Vespine 

nests typically have a single founding queen devoted exclusively to reproduction 

for most of her lifespan. The growth of vespine colonies, however, may be 

interrupted by social parasites (MacDonald and Matthews 1975; Jeanne 1977). 

These socially parasitic species have secondarily lost the worker caste and rely on 

the workers of a host species to raise parasitic offspring. Altogether, the Vespinae 

show considerable variation in behavioral traits, and elucidating the origins of 

such traits over deep evolutionary time will benefit from a robust hypothesis of 

phylogenetic relationships. 

The work I present here investigates the phylogenetic relationships of 

yellowjackets and hornets. The predominant hypothesis of vespine phylogeny 

was proposed by Carpenter (1987), who analyzed morphological characters and 

found that yellowjackets were monophyletic and sister to Provespa, and 

recovered Vespa as the sister group of the remaining Vespinae. Another 

phylogenetic study, however, reported that yellowjackets were more closely 

related to a hornet clade (Vespa and Provespa) (Pickett and Carpenter 2010). More 

recently, and subsequent to published findings from the first half of this 

dissertation, Perrard et al. (2015) analyzed morphological and molecular data 
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and found that yellowjackets were monophyletic and sister to Vespa, but also 

reported considerable lack of support for genus-level relationships. In Chapter 

One, I analyze nine targeted genes and evaluate the relationships of 

yellowjackets and hornets. In Chapter Two, I use a phylogenetic approach to test 

Emery’s rule, which indicates that social parasites are more closely related to 

their hosts than to any other species. 

Although the natural history of several vespid species is well known 

(Spradbery 1973; Ross and Matthews 1991; Hunt 2007), comprehensive genetic 

analyses of social wasps have burgeoned only in recent years, particularly 

focused on caste differences within Polistes (Toth et al. 2007; Berens et al. 2015a; 

Patalano et al. 2015). Caste determination has been thought to occur 

predominantly as a response to environmental factors, such as nutrition of larvae 

or rearing temperature, rather than due to genetic differences (Wilson 1976, 1985; 

O’Donnell 1998; Hölldobler and Wilson 2008). But division of labor also has a 

genetic component that varies in strength and is widespread across social insects 

(Anderson et al. 2008; Goodisman et al. 2008; Robinson et al. 2008; Smith et al. 

2008; Schwander et al. 2010; Bloch and Grozinger 2011; Lattorff and Moritz 2013). 

Recently, queen–worker and worker–worker differences in form and function 

have been associated with patterns of gene expression, which originate from the 

interaction of genotype and environment during development (Evans and 

Wheeler 2001; Ben-Shahar et al. 2002; Whitfield et al. 2003, 2006; Ingram et al. 

2005; Pereboom et al. 2005; Drapeau et al. 2006; Gräff et al. 2007; Grozinger et al. 

2007). The study of a model species such as the honey bee has delivered 

tremendous genomic resources and enabled the identification of various genes 

underlying division of labor (Whitfield et al. 2003; Weinstock et al. 2006; Smith et 
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al. 2008), which is a prime endeavor of sociogenomics (Robinson et al. 2005; 

Rehan and Toth 2015; Kapheim 2016). Moreover, the advent of high-throughput 

RNA sequencing (RNA-Seq) or transcriptomics (Morozova et al. 2009; Wang et 

al. 2009; Cahais et al. 2012), availability of assembled genomes from bees, ants, 

and Polistes (Gadau et al. 2012; Simola et al. 2013; Oxley et al. 2014; Kapheim et al. 

2015; Patalano et al. 2015; Sadd et al. 2015; Smith et al. 2015a), and novel findings 

of genes linked to caste-specific behavior (Hoffman and Goodisman 2007; Toth et 

al. 2007, 2010; Cardoen et al. 2011b; Ferreira et al. 2013; Feldmeyer et al. 2014; 

Woodard et al. 2014) now serve as impetus for elucidating broad molecular 

patterns in other social insects, such as the vespine wasps. A hypothesis of 

particular interest indicates that accelerated evolution of specific protein coding 

genes or gene families contributed to the origin of highly eusocial behavior 

(Fischman et al. 2011; Woodard et al. 2011; Simola et al. 2013). In Chapter Three, I 

analyze a transcriptomic data set of vespine wasps to reassess the phylogenetic 

relationships of vespine genera. In Chapter Four, I use single-copy genes to test 

the protein evolution hypothesis for the origin of highly eusocial behavior in the 

Vespinae. 
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 CHAPTER 2: PHYLOGENETIC RELATIONSHIPS OF YELLOWJACKETS 

INFERRED FROM NINE GENES (HYMENOPTERA: VESPIDAE, VESPINAE, 

VESPULA AND DOLICHOVESPULA) 

2.1. Introduction 

Social wasps of the genera Vespula and Dolichovespula, or yellowjackets, 

have similar life history characteristics, but also exhibit considerable diversity in 

their social behavior (Greene, 1991). Throughout latitudes of the Northern 

Hemisphere, yellowjacket queens initiate colonies alone, and their elaborate 

nests, which might be aerial or subterranean, consist of levels or combs enclosed 

in layers of paper (Akre et al., 1981). Queens are larger than workers and both 

castes also differ in shape, physiology, and behavior (Akre and Davis, 1978; 

Jeanne, 1980). Larvae and adults frequently engage in mouth-to-mouth feeding 

(i.e., trophallaxis), a prominent behavior of most advanced wasp societies 

(Roskens et al., 2010; Spradbery, 1973). Their colonial life also displays 

considerable conflict and diversity in reproductive behavior (Foster and 

Ratnieks, 2001b). Conflict over male parentage among the queen and 

reproductive workers is commonly resolved by forceful prevention of worker 

reproduction, or policing (Ratnieks and Visscher, 1989; Wenseleers et al., 2004). 

The queen or workers can enforce policing by physical aggression toward egg-

laying workers or by eating worker-laid eggs, maintaining the reproductive 

primacy of the queen (Bonckaert et al., 2011, 2008; Foster and Ratnieks, 2000; 

Freiburger et al., 2004; Goodisman et al., 2002; Helanterä et al., 2006; Wenseleers 

et al., 2005a,b). Furthermore, queens of obligate social parasite species, or 

inquilines, which lack the worker caste, instigate interspecific conflict by entering 
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the nest of a host species, killing the resident queen, and enslaving the host 

workers (Jeanne, 1977; Reed and Akre, 1983b). In contrast, facultative social 

parasites such as Vespula squamosa can produce their own workers, but 

frequently usurp colonies of other species (Hoffman et al., 2008; MacDonald and 

Matthews, 1975).  

Given this wealth of sophisticated behavioral traits present in a relatively 

small number of species (about 48 species of yellowjackets are currently 

recognized), a robust phylogeny inferred from different sources of evidence is a 

high priority. However, only two formal studies have addressed the 

evolutionary history of yellowjackets. First, Carpenter (1987) conducted a 

cladistic analysis of the genera of the subfamily Vespinae, including Vespa 

(hornets) and Provespa (nocturnal hornets) in addition to Vespula and 

Dolichovespula. Using morphological and behavioral characters (including data of 

Yamane (1976) and Matsuura and Yamane (1984)), Carpenter’s (1987) analysis 

supported yellowjackets as a clade sister to Provespa, placing Vespa sister to the 

remaining vespine genera (Fig. 2.1a). Second, Carpenter and Perera (2006), again 

using morphological and behavioral characters, also found that Vespula and 

Dolichovespula are monophyletic and presented relatively well-resolved 

relationships within each genus. Greene (1979) discussed yellowjacket 

relationships on the basis of behavioral characters, but his arguments were non-

cladistic. 

In contrast, the use of molecular characters to elucidate the evolutionary 

history of yellowjackets has been limited and, for the most part, peripheral. For 

example, Collins and Gardner (2001) analyzed a fragment of cytochrome b from 

six species of bees and wasps, including one hornet and two yellowjacket 
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species, which were recovered as sister taxa in their results. As part of a study of 

allergen characterization of paper wasp venom, Pantera et al. (2003) used amino 

acid sequences of antigen 5 and provided a neighbor-joining dendrogram, 

showing Vespula as closer to Vespa than to Dolichovespula. Hines et al. (2007) 

analyzed sequence data from four nuclear genes including three vespine wasps. 

Their results showed Vespula squamosa as more closely related to Dolichovespula 

maculata than to Vespula maculifrons. As part of a new species description, 

Landolt et al. (2010) performed parsimony and neighbor-joining analyses of 905 

bp of mitochondrial DNA from seven yellowjacket species and found two sister 

clades corresponding to the Vespula vulgaris and V. rufa species groups. Pickett 

and Carpenter (2010) conducted a direct optimization (Wheeler, 1996) analysis of 

four loci, combined with morphology and behavior, to elucidate the phylogeny 

of the family Vespidae. Pickett and Carpenter’s (2010) study included nine 

vespine species and found that Vespa is sister to Provespa and these two genera 

are sister to Vespula and Dolichovespula (Fig. 2.1b). More recently, Saito and 

Kojima (2011) investigated the relationships among species of Provespa using 

information from three loci and phenotypic data. The two yellowjacket species 

included in this study were sister taxa and more closely related to Provespa than 

to Vespa. 

Here, we perform a phylogenetic analysis of yellowjackets on the basis of 

a new, comprehensive molecular data set. We generate 5.5 kb of DNA sequence 

from five mitochondrial and four nuclear loci, including both protein-coding and 

ribosomal fragments. The standard markers we chose have variable rates of 

evolution that are expected to provide resolution at different hierarchical levels. 
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Our taxon sampling encompasses part of the diversity of yellowjackets 

across their north temperate distribution. Using a strategy of marker 

concatenating and partitioning, we test the monophyly of Vespula and 

Dolichovespula and their sister relationship as yellowjackets. Furthermore, we 

infer the relationships within each yellowjacket genus and among species 

groups. Finally, we discuss the implications of the new phylogeny for the 

evolution of behavior and morphological features. 

 

 

Figure 2.1: Previous hypotheses of generic and species-group relationships within Vespinae: 
(a) Carpenter’s (1987) phylogeny in which Vespula and Dolichovespula are sister genera and 
both more closely related to Provespa; (b) Pickett and Carpenter’s (2010) hypothesis also shows 
that Vespula and Dolichovespula are sister genera but more closely related to a clade that 
includes Provespa and Vespa.  
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2.2. Materials and methods 

2.2.1. Taxon sampling 

Five Holarctic species were recognized in the world checklist of Vespinae 

(Carpenter and Kojima, 1997).  Recent taxonomic studies, however, have found 

diagnostic differences between the Old and New World forms of species 

previously considered Holarctic (Carpenter and Glare, 2010; Carpenter et al., 

2011; Kimsey and Carpenter, 2012). These changes in the taxonomy of 

yellowjackets are adopted here, and thus Holarctic species are not recognized, 

with the exception of the European Vespula germanica, which is widely 

introduced. Sequences were obtained for a total of 28 species. Following the 

comprehensive analysis of Pickett and Carpenter (2010), four outgroup species 

were chosen from the Polistinae, the putative sister subfamily of Vespinae. Six 

more vespine outgroup species from Provespa and Vespa were included. 

Currently, there are 48 recognized species of yellowjackets (21 Dolichovespula and 

27 Vespula), of which 18 were included in this analysis. Our analysis increases 

taxon sampling from five to 18 yellowjacket species in comparison to Pickett and 

Carpenter (2010). Moreover, the ingroup taxa in this study represent six species 

groups. These are the Vespula rufa, V. vulgaris, V. squamosa, Dolichovespula 

maculata, D. norwegica, and D. sylvestris groups (Archer 1999; Carpenter, 1987; 

Carpenter and Perera 2006). 

 

2.2.2. DNA extraction, amplification, and sequencing 

One leg and one antenna were removed from absolute ethanol-preserved 

specimens and the rest of each specimen was kept as a voucher. Legs and 

antennae were macerated with sterile plastic pestles and genomic DNA was 
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extracted using the DNeasy Blood & Tissue Kit (Qiagen) with an incubation 

period of 48 hours at 55ºC in lysis buffer and Proteinase K, and in other respects 

following the manufacturer’s instructions. Loci from mitochondrial and nuclear 

genomes were selected for their variability and resolving power at different 

levels. The genes used in this study are 12S ribosomal DNA (12S), 16S ribosomal 

DNA (16S), cytochrome oxidase I (COI), cytochrome oxidase II (COII), 

cytochrome b (Cytb), 28S ribosomal DNA D2-D3 expansion regions (28S), 

elongation factor 1 α F2 copy (EF1α), RNA polymerase II (Pol II), and wingless 

(wg). 

Fragments of these genes were amplified using the Polymerase Chain 

Reaction (PCR) on an Eppendorf Mastercycler Thermal Cycler and employing 

the primers listed on Table 2.1. Each PCR consisted of 22μL of nuclease-free 

dH2O, 1μL of 10μM forward primer, 1μL of 10μM reverse primer, and 1μL of 

genomic DNA extract. The 25μL total volume was added to PuReTaq Ready-To-

Go PCR beads (GE Healthcare). A typical PCR program started with 4 minutes of 

initial denaturation at 94 ºC, followed by 35-40 cycles of 30 seconds at 94 ºC, 45 

seconds of annealing at 43–58 ºC, and 45 seconds of elongation at 72 ºC, and 

ended with a six minute period of final elongation at 72 ºC. PCR products were 

verified on 1% agarose/TBE electrophoresis gels. PCR product purification and 

standard Sanger sequencing were outsourced to Beckman Coulter Genomics and 

Macrogen USA. Sequencing was conducted with the same primers used for PCR 

amplification. Contigs were assembled from forward and reverse ABI 

chromatograms and trimmed of low-quality ends using Geneious 6 (Biomatters 

Ltd.). Upon inspection of agarose gels, chromatograms, and descriptive sequence 

statistics, no obvious symptoms of nuclear copies of mitochondrial genes (numts) 
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were found (e.g., PCR ghost bands, in-frame stop codons, unconstrained 

variability across codon positions (Bensasson et al., 2001; Calvignac et al., 2011)). 

All edited sequences were submitted to BLAST searches to screen for 

contamination. 
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Table 2.1: List of primer sequences (and their respective annealing temperatures) used for PCR 
amplification of yellowjackets and outgroups. The same primers were used for sequencing. 

Primer Sequence (5’ to 3’) PCR 
temp ºC 

Source 

12S  43  
12S ai  AAA CTA GGA TTA GAT ACC CTA TTA T  Simon et al. (1994) 
12S bi  AAG AGC GAC GGG CGA TGT GT  Simon et al. (1994) 
16S  46  
16S ar  CGC CTG TTT ATC AAA AAC AT  Simon et al. (1994) 
16S br  CTC CGG TTT GAA CTC AGA TCA  Simon et al. (1994) 
COI  45  
LCO1490 GGT CAA CAA ATC ATA AAG ATA TTG G  Folmer et al. (1994) 
HCO2198 TAA ACT TCA GGG TGA CCA AAA AAT CA  Folmer et al. (1994) 
HCOoutout GTA AAT ATA TGR TGD GCT C  Prendini et al. (2005) 
Jerry  CAA CAT TTA TTT TGA TTT TTT GG  Simon et al. (1994) 
COI-5 AAT TGC AAA TAC TGC ACC TAT TGA  Saito and Kojima (2011) 
COII  45  
E2 GGC AGA ATA AGT GCA TTG  Garnery et al. (1992) 
COII1-2 ATT TTA TAC CAC AAA TTT CTG AAC ATT G  Saito and Kojima (2011) 
Cytb  46  
CB1 TAT GTA CTA CCA TGA GGA CAA ATA TC  Jermiin and Crozier 

(1994) 
CB2 ATT ACA CCT CCT AAT TTA TTA GGA AT  Jermiin and Crozier 

(1994) 
28S  48-52  
For28SVesp AGA GAG AGT TCA AGA GTA CGT G  Hines et al. (2007) 
Rev28SVesp GGA ACC AGC TAC TAG ATG G  Hines et al. (2007) 
EF1α  57  
F2-557F GAA CGT GAA CGT GGT ATY ACS AT  Brady et al. (2006) 
F2-1118R TTA CCT GAA GGG GAA GAC GRA G  Brady et al. (2006) 
HaF2For1 GGG YAA AGG WTC CTT CAA RTA TGC  Danforth et al. (1999) 
F2-rev1 AAT CAG CAG CAC CTT TAG GTG G  Danforth et al. (1999) 
Pol II  52  
polfor2a AAY AAR CCV GTY ATG GGT ATT GTR CA  Danforth et al. (2006) 
polrev2a AGR TAN GAR TTC TCR ACG AAT CCT CT  Danforth et al. (2006) 
wg    
beewgFor TGC CAN GTS AAG ACC TGY TGG ATG AG 58 Danforth et al. (2004) 
Lepwg2a ACT CGC ARC ACC ART GGA ATG TRC A  Danforth et al. (2004) 
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2.2.3. Sequence alignment, data partitioning, and model selection 

Each gene was aligned independently using MAFFT v.7 (Katoh, 2002; 

Katoh and Standley, 2013) with a gap opening penalty (--op) value of 1.53, an 

offset cost equal to 0.123, and automatic strategy selection. The data were 

partitioned corresponding to mitochondrial (“mtDNA”: 12S, 16S, COI, COII, and 

Cytb) and nuclear (“nuDNA”: 28S, EF1α, Pol II, wg) genes and combined into a 

single matrix (“AllData”). These matrices were assembled using SequenceMatrix 

(Vaidya et al., 2011). Vespula flaviceps was excluded from nuDNA because it was 

not possible to obtain nuclear, protein-coding sequences for this species. 

Considering that third codon positions are prone to substitution saturation 

(Swofford et al. 1996; see, however, Kälersjö et al. 1999), we separated all (both 

mitochondrial and nuclear) protein-coding genes into subsets including first and 

second codon positions on one hand (“Pos1&2”) and third positions on the other 

(“Pos3”). Codon-position matrices were created using Mesquite 2.75 (Maddison 

and Maddison, 2011). To assess the influence of another potentially confounding 

factor in phylogenetic inference (Sanderson and Shaffer, 2002), nucleotide 

composition was evaluated for genes and partitions by conducting Chi-square 

tests of homogeneity of base frequencies across taxa using PAUP* 4.0b10 

(Swofford, 2002). High AT bias was found in the mtDNA (AT 75.86% p < 0.001), 

Pos3 (AT 78.38% p < 0.001), and AllData (AT 65.47% p < 0.001) partitions (Table 

2.2). In contrast, the null hypothesis of homogeneity in base composition was not 

rejected for the nuDNA (AT 52.05%, p = 0.99) and Pos1&2 (AT 60%, p = 0.89) 

partitions (Table 2.2). It is worth mentioning that nucleotide composition did not 

vary greatly from taxon to taxon, and thus any possible confounding effects of 

high AT content should be less drastic (Simon et al., 1994). 
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Highest AT content in Pos3 is in accordance with the prevailing use of 

codons ending in A and T in hymenopteran genomes (Behura and Severson, 

2012). Likewise, other studies have found that AT composition bias in 

mitochondrial genes, either protein coding or ribosomal, is widespread in the 

Hymenoptera (Dowton and Austin, 1995, 1997). Moreover, in a recent 

phylogenetic analysis of hymenopteran superfamilies, Heraty et al. (2011) 

reported AT bias in the third codon position of EF1α and, to a much greater 

extent, COI (AT 90.3%). Base composition heterogeneity in part of our data 

motivated one more partition composed of first and second codon positions and 

nuclear rDNA (“Pos1&2+28S”); that is, excluding mitochondrial rDNA and third 

codon positions of nuclear and mitochondrial protein-coding genes. Pos1&2+28S 

showed homogeneous base frequencies (AT 56.27%, p = 0.71, Table 2.2). Lastly, 

the complete data set was also analyzed in a statistical framework (see below) 

partitioning by gene and codon position; that is, defining four partitions 

corresponding to three rDNA genes (12S, 16S, 28S) and 21bp of tRNALeu 

adjacent to COII, and 18 partitions in which each codon position of every 

protein-coding gene formed a partition. This last partitioning scheme is referred 

to as “AllData22” hereafter. 

Models of nucleotide substitution were selected among 56 candidate 

models using jModelTest 2 (Darriba et al., 2012; Guindon and Gascuel, 2003) 

according to the Akaike Information Criterion corrected for sample size (AICc). 

The best-fit substitution models for mitochondrial genes were HKY + I + Γ and 

GTR + I + Γ (Table 2.2). The use of I + Γ, however, has been criticized due to 

strong correlation between the proportion of invariant sites and the gamma 

distribution, hence causing unreliable parameter estimation (Yang, 2006, p. 113-
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114; see also Sullivan et al., 1999 and Stamatakis, 2006, RAxML 7.0.4 manual, 

section 6). In most analyses the simpler Γ model was preferred (that is, the 

proportion of invariant sites was excluded), since a gamma distribution with α 

smaller than one already accounts for sites with very low rates (Yang, 2006). 

Nonetheless, AllData and mtDNA were also analyzed using I + Γ to explore the 

influence of the I + Γ mixture on topology and clade posterior probabilities. None 

of the best-fit models chosen for nuclear genes included I + Γ (Table 2.2). 

 

2.2.4. Phylogenetic inference 

Parsimony analyses were performed using TNT (Goloboff et al., 2008) 

treating gaps as missing data (nstates nogaps). The heuristic search strategy 

consisted of 5000 random addition sequences with TBR branch swapping 

followed by ratchet (Nixon, 1999) saving two trees per replication (mult 5000 

=tbr ratchet hold 2). Group support was calculated using 10000 replications of 

symmetric resampling (resample sym replic 10000) with default search settings 

and the results summarized as GC (Group present/Contradicted) values, which 

show the difference in frequency between a given group and the most frequent 

group that contradicts it (Goloboff et al., 2003). Parsimony analyses were 

conducted for single- and multi-gene matrices. 

For model-based inference of phylogeny, the program MrBayes 3.2 

(Ronquist et al., 2012) was accessed through the CIPRES Science Gateway (Miller 

et al., 2010) to run Bayesian analyses of each gene matrix, data subsets, and all 

genes combined. All analyses were run for 50M generations with sampling every 

1000 generations, the number of runs was 4, and the default number of chains 
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was used (nruns=4 nchains=4). Likelihood models were set according to the 

AICc criterion, specifying the number of substitution types and model for 

among-site rate variation, and allowing MrBayes to estimate base frequencies, 

the substitution rates (GTR model) or transition/transversion ratio (HKY model), 

and the gamma distribution shape parameter. In the Bayesian analyses of 

mtDNA, nuDNA, and AllData, each gene formed a partition, models were 

specified for each gene, and parameters were unlinked across partitions (e.g., 

revmat, statefreq, and shape); in the analyses that included I + Γ the proportion 

of invariant sites (pinvar) was also unlinked. In the individual analyses of 

Pos1&2, Pos3, and Pos1&2+28S, each data set formed a single partition. For 

AllData22 each codon position of every protein-coding gene formed a partition 

and individual rDNA genes formed the remaining partitions. Stationarity of 

Markov chains was assessed by examining MrBayes’ parameter output files in 

Tracer v1.5 (Rambaut and Drummond, 2007) as well as the Potential Scale 

Reduction Factor convergence diagnostic ∼1.0 and average standard deviation of 

split frequencies <0.001. Moreover, the ‘compare’ command in AWTY (Nylander 

et al., 2008) was used to evaluate convergence of the posterior probabilities of all 

splits for paired MCMC runs. The default burn-in of 25% used in all analyses 

was adequate to discard samples before reaching convergence (usually within 

2M to 4M generations). A maximum likelihood analysis on the complete 

concatenated data set performed in GARLI 2.0 (Zwickl, 2006) gave essentially the 

same results as the parsimony analysis of AllData and the Bayesian analysis of 

mtDNA, and therefore will not be discussed further. 
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2.3. Results 

2.3.1. Sequence alignment and model selection 

Out of the 252 possible DNA sequences, 242 (96%) were successfully 

amplified and sequenced. We deposited all sequences in GenBank under the 

following accession numbers: KJ147175 - KJ147201 (12S), KJ147202 - KJ147228 

(16S), KJ147229 - KJ147256 (COI), KJ147257 - KJ147284 (COII), KJ147285 - 

KJ147312 (Cytb), KF981692 - KF981717 (28S), KF955639 - KF955665 (wg), 

KF981641 - KF981665 (Pol II), and KF981666 - KF981691 (EF1α). The protein 

coding COI, COII, Cytb, EF1α, Pol II, and wg aligned unambiguously without 

internal indels. For the 12S and 16S rDNA markers, differences in sequence 

length among species were generally small (8-32 bp) and alignments were thus 

unambiguous. The best-fit substitution models for individual genes were those 

with six substitution types and among-site rate variation (e.g., GTR + G), except 

for 12S and wg where the best fit models were HKY + G and K80 + G, 

respectively (Table 2.2). Simple models, with a single type of substitution and 

equal rates, characterized most first and second positions of nuclear, protein-

coding genes (e.g., JC or F81), whereas the first and second codon positions of 

mitochondrial genes had more complex models (Table 2.2). 

 

2.3.2. Inferred phylogeny 

The single most-parsimonious tree (MPT) found for all nine genes 

combined (AllData) is presented in Fig. 2.2. According to this molecular “total 

evidence” hypothesis, yellowjackets (Vespula + Dolichovespula) form a natural 

group that is sister to the hornets (Vespa). Moreover, within Vespula two major 

clades correspond to species groups: the rufa group (with the squamosa group as 
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its sister) and the vulgaris group. Within Dolichovespula, the maculata group is a 

clade, while the sylvestris group (one species) is sister to the norwegica group. 

Simultaneous analyses generated fewer trees in comparison to single-gene 

analyses (Table 2.3). The same single MPT found for all concatenated genes (Fig. 

2.2) was recovered independently for mtDNA and nuDNA. Symmetric-

resampling support trees for mtDNA, nuDNA, and AllData are presented in Fig. 

2.3; Fig. 2.3c summarizes the results of parsimony analyses for single genes and 

all data subsets. The three main analyses of concatenated data (Fig. 2.3a-c) 

provide strong support for the monophyly of each vespine genus, but 

relationships among genera are unresolved or poorly supported. In the support 

tree for all mitochondrial genes (Fig. 2.3a) Vespula and Dolichovespula are part of a 

trichotomy, and for nuclear genes (Fig. 2.3b) and all genes concatenated (Fig. 

2.3c) the monophyly of Vespula + Dolichovespula is weakly supported. Similarly, 

individual genes also support the monophyly of each vespine genus, but do not 

provide clear resolution to the relationships among genera (Fig. 2.3c). For 

example, the COII gene tree was the only marker supporting the Vespula + 

Dolichovespula clade. In the gene tree for 28S (strict consensus of six equally 

parsimonious trees), Vespa, Vespula and Dolichovespula were found monophyletic, 

yet all were part of a polytomy and therefore the yellowjackets are unresolved 

for 28S (Fig. 2.3c). 

Bayesian inference (BI) resulted in conflicting inferences between 

mtDNA and nuDNA (Fig. 2.4a,b), particularly in the resolution of supraspecific 

relationships. The Bayesian analysis of all mitochondrial genes supports Vespula 

and Dolichovespula as sister genera together sister to Provespa + Vespa. However, 

BI of the nuclear data set indicated that Dolichovespula is more closely related to 
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Provespa + Vespa than to Vespula. Likewise, BI of AllData (in which each gene 

formed a partition) depicted the ((Provespa + Vespa), Dolichovespula) clade (Fig. 

2.4c), and with higher posterior probability (PP) in comparison to the Bayesian 

topology for nuDNA. Using only the Γ rate variation model did not cause any 

striking changes in comparison to using Γ + I. The Bayesian consensus trees 

found using Γ and Γ + I were the same for AllData and mtDNA, differing slightly 

in support values for relationships among genera. 

The result of the most heavily partitioned Bayesian analysis, AllData22 

(in which each codon position of every protein-coding gene formed a partition), 

is presented in Fig. 2.5. This majority consensus tree also shows Dolichovespula as 

more closely related to (Provespa + Vespa), although with much lower support 

(PP = 60) in comparison to partitioning only by gene (Fig 2.4c). There are some 

concerns about the analysis of AllData22 (Fig. 2.5), however, specifically related 

to estimation of the shape parameter of the gamma distribution for three 

partitions. After visually scrutinizing the estimates of all parameters from 

multiple runs of AllData22 using Tracer v1.5, considerably high mean values and 

large-scale fluctuations in the trace (suggesting poor mixing) were found for the 

gamma shape of partitions corresponding to the third codon position of EF1α, 

Pol II and wg; although the corresponding ESS values did not indicate problems. 

These findings suggest problems with ‘over partitioning’ the data (Brown and 

Lemmon, 2007; Leavitt et al., 2013; Rota and Wahlberg, 2012). Additional 

analyses were conducted altering various default settings in MrBayes for the 

problematic partitions (e.g., increasing the effort to update the gamma shape 

parameter (propset), augmenting the number of gamma categories, changing the 

starting values (startvals), placing a shorter uniform prior (shapepr)), but these 



 

21 

modifications did not improve the mixing behavior. Every other parameter in the 

analysis of AllData22 (and all other Bayesian analyses) reached convergence 

rapidly, showed adequate mixing, good ESS values, and plausible estimates (e.g., 

partition rate multipliers m higher for third positions than first or second 

positions). Furthermore, the AWTY ‘compare’ plots indicated convergence of 

posterior probabilities of all splits for AllData22. Because of this behavior of 

certain parameters in the AllData22 partitioning scheme, we prefer the results 

from BI partitioning only by gene. 
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Table 2.2: Summary statistics for genes and data subsets and their corresponding models of 
nucleotide substitution. Empirical base frequencies estimated in PAUP* (Swofford, 2002). 
Models of nucleotide substitution chosen according to the sample-size corrected Akaike 
Information Criterion as implemented in jModelTest 2 (Darriba et al., 2012). 
Data set Aligned 

sites 
A (%) C (%) G (%) T (%) # Parsimony 

informative 
sites  

AICc best-fit 
model 

12S 378 43.18 3.95 12.39 40.48 152 HKY+I+G 
16S 532 39.68 7.52 14.10 38.70 153 GTR+I+G 
COI 1096 31.47 15.22 12.81 40.50 405 GTR+I+G 
COI Pos 1 365 33.70 14.87 22.23 29.20 95 GTR+I+G 
COI Pos 2 365 16.65 23.50 15.26 44.59 23 TVM+I 
COI Pos 3 366 44.03 7.32 0.96 47.69 287 HKY+I+G 
tRNA-Leu + 
COII 

21 + 582 36.37 14.88 7.84 40.91 253 GTR+I+G  

COII Pos 1 194 40.00 16.96 14.67 28.37 69 TrN+G 
COII Pos 2 194 27.54 21.45 9.07 41.94 28 F81+G 
COII Pos 3 194 42.19 7.38 0.52 49.91 146 HKY+I+G 
Cytb 433 32.16 15.80 9.40 42.64 186 GTR+I+G 
Cytb Pos 1 144 33.85 16.62 17.16 32.37 46 TPM1uf+I+G 
Cytb Pos 2 144 23.93 20.91 10.39 44.77 17 TrN+I 
Cytb Pos 3 145 38.64 9.93 0.69 50.74 123 HKY+G 
28S 750 20.03 27.77 32.61 19.59 66 GTR+I 
EF1α 517 29.14 21.92 23.43 25.51 109 TrN+G 
EF1α Pos 1 172 31.33 15.18 36.56 16.93 7 F81 
EF1α Pos 2 172 31.46 26.23 15.10 27.21 3 JC 
EF1α Pos 3 173 24.67 24.34 18.65 32.34 99 HKY+G 
Pol II 798 36.24 15.01 19.96 28.79 107 TrN+G 
Pol II Pos 1 266 37.50 15.27 28.97 18.26 6 TrN 
Pol II Pos 2 266 33.88 19.50 16.52 30.10 0 F81 
Pol II Pos 3 266 37.35 10.26 14.38 38.01 101 TrN+G 
wg 406 25.54 25.78 28.00 20.68 89 K80+G 
wg Pos 1 135 27.13 24.21 32.55 16.11 13 JC 
wg Pos 2 135 33.68 17.26 26.65 22.41 6 JC 
wg Pos 3 136 15.86 35.81 24.83 23.50 70 K80+G 
mtDNA 3042 35.26 12.68 11.46 40.6 1149 GTR+I+G 
nuDNA 2471 28.08 22.12 25.83 23.97 371 GTR+I+G 
Pos1&2 2552 30.36 19.15 19.89 30.60 313 GTR+I+G 
Pos3 1280 36.36 13.39 8.23 42.02 826 GTR+G 
Pos1&2+28S 3302 28.09 21.04 22.69 28.18 379 GTR+I+G 
AllData 5513 32.10 16.80 17.73 33.37 1520 GTR+I+G 
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Table 2.3: Summary of parsimony and Bayesian analyses of single genes, major data subsets 
and all data. MPT = Most Parsimonious Tree(s), CI = Consistency Index, RI = Retention Index. 
CI and RI calculated for strict consensus trees when multiple equally parsimonious trees were 
found. 

Data set CI RI # MPT(s) Length -Ln L 
12S 0.519 0.686 8 520 2752.69 
16S 0.452 0.650 32 574 3267.196 
COI 0.351 0.476 3 1805 8889.506 
COII 0.380 0.527 7 1105 5420.516 
Cytb 0.295 0.325 1 884 4159.107 
28S 0.836 0.929 6 107 1691.682 
EF1α 0.740 0.889 6 212 1811.12 
Pol II 0.763 0.917 2 168 2046.669 
wg 0.781 0.886 3 186 1559.394 
mtDNA 0.345 0.445 1 4952 24636.411 
nuDNA 0.554 0.734 1 681 7078.413 
Pos1&2 0.476 0.672 2 1018 8799.368 
Pos3 0.397 0.555 2 3337 14939.359 
Pos1&2+28S 0.507 0.701 4 1136 10682.508 
AllData 0.374 0.500 1 5646 31962.13 
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Figure 2.2: Single most-parsimonious tree found using a concatenated matrix of all data.  
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Figure 2.3: Parsimony support trees using symmetric resampling: (a) mtDNA, which includes 
all mitochondrial genes; (b) nuDNA, which includes all nuclear genes; and (c) AllData, in 
which all genes were concatenated into a single matrix. GC frequencies are presented above 
branches in (a) and (b) and below branches in (c). Squares and hexagons above branches in (c) 
are presented for each genus and above-genus level relationships, showing presence of a given 
clade for a particular data subset (e.g., mtDNA) or gene (e.g., 12S), respectively.  
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Figure 2.4: Bayesian majority consensus trees based on gene partitions: (a) mtDNA, which 
includes all mitochondrial characters; (b) nuDNA, which includes all nuclear genes; and (c) 
AllData, which includes the entire data. Values above branches are clade posterior 
probabilities (x 100). Squares and hexagons above branches in (c) are presented for each genus 
and above-genus level relationships, showing presence of a given clade for a particular data 
subset or gene, respectively. 
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Figure 2.5: Bayesian phylogram based on the most heavily partitioned analysis (AllData22). 
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2.4. Discussion 

2.4.1. Vespine phylogeny 

Our molecular data and analyses strongly support the monophyly of the 

genera Vespula and Dolichovespula but either reject or weakly support a 

yellowjacket clade. The most parsimonious tree inferred using the entire data 

indicate that yellowjackets, Vespula + Dolichovespula, are monophyletic (Fig. 2.2). 

This grouping, however, is poorly supported and rarely recovered in the 

parsimony analyses of individual genes (Fig. 2.3c). The Vespula + Dolichovespula 

clade was also found in the Bayesian analysis of mtDNA, but this relationship is 

not recovered by BI based on nuclear genes and it erodes in partitioned Bayesian 

analyses of the entire data (Fig. 2.4c and Fig. 2.5). Incongruence between single- 

and multigene trees is expected, for single genes evolve under unique sets of 

characteristics and functional constraints (Miyamoto and Fitch, 1995). Although 

the simultaneous parsimony analysis of the entire data yielded a single, fully 

resolved MPT, poor support for the sister group relationship of Vespula and 

Dolichovespula suggest either conflicting character interactions (Ramirez, 2005), or 

lack of evidence. Whether poor group support from our molecular data set 

forecasts that the Vespula + Dolichovespula clade will be contradicted in 

subsequent studies of vespine phylogeny can only be answered by analyzing 

more sequences and other sources of evidence (e.g., morphology, behavior). 

Nevertheless, given the molecular data at hand here, we argue that the 

monophyly of Vespula + Dolichovespula requires further examination. 

Partitioned Bayesian analyses of all genes indicate that Dolichovespula is 

sister to the hornets, Provespa + Vespa. Even though our data includes more 

mitochondrial than nuclear characters (Table 2.3), in Bayesian analyses the signal 
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of mitochondrial characters is overturned by a stronger signal from fewer 

nuclear characters. That is, nuclear genes contribute more to the resolution of 

deeper nodes, which seems to be a broad pattern in simultaneous phylogenetic 

analysis of mtDNA and nuDNA (Fisher-Reid and Wiens, 2011). This is not 

surprising given that mitochondrial genes evolve in concert and can be 

characterized as a single data partition, while the evolution of nuclear genes is 

more decoupled. Nonetheless, mtDNA alone provides valuable characters for 

inferring phylogenetic relationships. In our simultaneous analyses of mtDNA 

using different methods (Fig. 2.3a and Fig. 2.4a), the current classification of four 

vespine genera (Carpenter, 1987) is recovered with very strong support for the 

monophyly of each genus and well-resolved species-level relationships. 

The sister group relationship between Dolichovespula and the hornets is 

novel for DNA sequence-based studies of vespine phylogeny (Fig. 2.3c). A sister 

relationship between Dolichovespula and Vespa was suggested by Greene (1979) 

based on behavioral traits and by Schmitz and Moritz (1990) using RFLP 

patterns, but their analyses had substantial drawbacks (Carpenter, 1987, 1992). 

Greene (1979) argued that Dolichovespula is more closely related to Vespa due to 

their shared, primitive social organization. According to Greene (1979), a closer 

relationship between Dolichovespula and Vespa seems plausible because both 

genera display low degree of queen-worker dimorphism, smaller 

worker:reproductive output ratios, frequent cell wall scraping by larvae, and a 

royal court of workers surrounding the queen. However, as stated by Greene 

(1979) himself, the characters he is using to support the arrangement of 

Dolichovespula + Vespa are symplesiomorphies in Vespinae, and therefore 

uninformative as evidence of kinship within the subfamily; shared primitive 
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traits do not inform on relationships (Hennig, 1965). Moreover, Carpenter (1987, 

pp. 416-421; see also Matsuura and Yamane 1984) did not find a closer 

relationship between Dolichovespula and Vespa in his phylogenetic study, which 

included colony size, royal court, and larval hunger signal (i.e., cell wall 

scraping) as binary characters, among other behavioral and morphological data. 

The sister group relationship between Dolichovespula and Provespa + Vespa 

recovered in our Bayesian analyses based on nuDNA and all genes (Fig. 2.4) 

disagrees with the vespine clade of Pickett and Carpenter (2010). In their total-

evidence analysis, Pickett and Carpenter (2010) found support for yellowjacket 

monophyly (Dolichovespula + Vespula). The closer placement of Dolichovespula to 

hornets is moderately supported when the entire data is partitioned by gene (PP 

= 91) and poorly supported when partitioned by codon position (PP = 60) (Fig. 

2.4c and Fig. 2.5).  

The monophyly of genera Vespula and Dolichovespula and species-level 

relationships within each yellowjacket genus (Fig. 2.3c and Fig. 2.4c) are in 

agreement with the results of Carpenter (1987) and Carpenter and Perera (2006), 

and show improved resolution in comparison to the latter study. Furthermore, 

relationships within each genus are largely concordant between parsimony and 

BI. In the study of Carpenter and Perera (2006), the relationships within the rufa 

group (sister taxa of V. squamosa) were unresolved, but our results depict the 

following resolution: (V. vidua (V. acadica (V. consobrina + V. intermedia))). These 

relationships are well supported given our taxon sampling (Fig. 2.3c and Fig. 

2.4c). Our results agree with Carpenter (1987) in the placement of the facultative 

social parasite V. squamosa as sister to the rufa group (Fig. 2.3c and Fig. 2.4c). 

Thus, our findings further contradict the hypothesis of MacDonald and 
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Matthews (1975, 1984) that V. squamosa is more closely related to the vulgaris 

group on the basis of nest architecture and behavioral characters. Carpenter 

(1987) showed that the features described by MacDonald and Matthews (1975, 

1984) to support their hypothesis were either plesiomorphic in Vespinae or 

autapomorphic, and therefore phylogenetically uninformative. Relationships 

within the vulgaris group in our results are less clear, with differences in 

resolution between methods (Fig. 2.3c and Fig. 2.4c). Our results agree with 

Carpenter and Perera (2006) in that V. flavopilosa, V. alascensis, and V. maculifrons 

form a clade, but contradict their placement of V. flaviceps within the same group. 

Carpenter and Glare (2010) likewise found V. flavopilosa, V. alascensis and V. 

maculifrons forming a clade, together with V. vulgaris. The relationships within 

Dolichovespula are congruent between parsimony and BI and concordant with the 

results of Carpenter and Perera (2006), who found two subgeneric clades: the 

maculata group, which also includes D. media, and another group composed of 

the remaining species (Fig. 2.3c and Fig. 2.4c). 

Our results from partitioned Bayesian analyses of all genes showed that 

increasing the number of partitions may lead to considerable changes in clade 

support, a phenomenon that has also been reported for other taxa (Castoe et al., 

2004; Castoe and Parkinson, 2006; Dowton et al., 2009; Li et al., 2008; Nylander et 

al., 2004; Mueller et al., 2004; Powell et al., 2013). Along these lines, incrementing 

the number of partitions caused convergence and mixing problems for certain 

parameters in our most heavily partitioned Bayesian analysis (AllData22). But 

the influence of increasing the number of partitions on phylogeny was minimal, 

since most relationships found with nine and 22 partitions were the same, except 

for the resolution within Vespa (Fig. 2.4c, Fig. 2.5). Rota and Wahlberg (2012) 



 

32 

reported similar issues with convergence and mixing related to a priori 

partitioning in their phylogenetic study of metalmark moths. 

 
2.4.2. Species groups 

Within the Dolichovespula clade, two species groups can be recognized: 

the maculata and norwegica groups (Fig. 2.3 and Fig. 2.4). The maculata group, 

maculata + media, was recovered in gene trees as well as with multigene data sets, 

regardless of phylogeny inference method (Fig. 2.3 and Fig. 2.4). In the results of 

Carpenter and Perera (2006) (see also Carpenter, 1987) three synapomorphies are 

attributed to the maculata group: pronotal striae, emarginate apex of the seventh 

metasomal sternum in males, and aedeagal medial lobes. The other clade within 

Dolichovespula corresponds, for the most part, to the norwegica group sensu Archer 

(1999, 2006), although D. pacifica, which Archer (1999, 2006) places in a separate 

group, is also nested within the norwegica group (Fig. 2.3 and Fig. 2.4). Moreover, 

this Dolichovespula clade also includes the sylvestris group, as its sister. Archer 

(1999) indicated that females having a long oculo-malar space and lateroanterior 

clypeal angles with less prominent semicircular projections characterize the 

norwegica group. Within Vespula, the rufa and vulgaris groups are concordant 

between parsimony and BI based on mtDNA, nuDNA, and the entire data (Fig. 

2.3 and Fig. 2.4). The rufa and squamosa groups are supported by four 

synapomorphies according to Carpenter and Perera (2006): dorsum of metasomal 

tergum I with slight depression behind anterior edge, shortened volsella, slender 

and fingerlike digitus, and dark hairs in metasomal tergum I. The vulgaris group 

shares at least nine derived characters, such as volsella with dorsal lobe, 
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aedeagus with subcircular apex, and “large” colony size (3,500 cells and 500 

workers or more) (Carpenter and Perera, 2006). 

 

2.4.3. Evolution of behavior 

Variation in body or group size has important consequences on life 

history, physiology, and behavior across taxa (Bell and Mooers, 1997; Blueweiss 

et al., 1978; Bonner, 1988, 2004; Dornhaus et al., 2011; Karsai and Wenzel, 1998; 

McShea, 1996). For example, size tends to be positively related to organismal 

complexity, which refers to the number or functional specialization of parts (Bell 

and Mooers, 1997; Carroll, 2001; McShea, 1996). The relationship between size 

and complexity is analogous in both social insects and multicellular organisms, 

in which task specialization evolved from solitary or unicellular ancestors and 

covaries with size (Bell and Mooers, 1997; Bonner, 2004; Holbrook et al., 2011; 

Jeanson et al., 2007; Ratcliff et al., 2012; Simpson, 2012; Strassmann and Queller, 

2007). For example, individual cells form colonies such as Volvox, comprising 

thousands of tightly linked cells, a small number of which specialize in 

reproduction; that is, Volvox colonies have some degree of division of labor. The 

cells forming the Volvox colony are interdependent to an extent that cells die in 

isolation and the organism cannot survive if the colony is disrupted. Similarly, 

among social insects, colony members subdivide labor, so that queens specialize 

in reproduction and workers carry out other duties, and the differentiation 

between both castes is more striking in larger colonies (Bourke 1999; but see 

Wenzel 1992).  

Although their colonies can contain hundreds of thousands of 

individuals (Pickett et al., 2001 and references therein), yellowjackets have been 



 

34 

traditionally divided into two categories of colony size (Akre et al., 1981; Greene, 

1991, p. 269). First, a small-colony category of mature nests with fewer than 2,500 

cells and 75-400 workers encompasses most species of Dolichovespula and all 

species in the rufa group (Akre and Davis, 1978). Most species in the small-colony 

category are characterized by rearing of workers on a single comb, short colony 

life span, and larval nutrition strictly based on live arthropod prey (Akre et al., 

1981; Greene, 1991; Reed and Akre, 1983a; see also Carpenter 1989). In contrast, 

the large-colony category includes the V. vulgaris group and V. squamosa (Greene, 

1991, p. 270). Yellowjackets in the large-colony category build nests containing 

more than 2,500 cells and have population sizes of 500 to 5,000 workers or more 

(Akre and Davis, 1978; Spradbery, 1971). Moreover, large-colony yellowjackets 

build several worker-cell combs, have longer colony duration, and feed their 

brood with various food sources including live prey, fruit, and, perhaps more 

distinctively, carrion (Akre and Davis, 1978; Akre et al., 1981; Greene, 1991). 

Colony size is a key trait in the evolution of social hymenopterans because it 

explains a large amount of social complexity, including high degree of caste 

dimorphism and task specialization, lack of queen-worker conflict over 

reproduction, and reduced potential for worker reproduction (Bourke, 1999; 

Anderson and McShea, 2001). 

However, colony size is not the only key determinant of social 

complexity, since kin structure is equally important. In vespine wasps, kin 

structure can be described by a single variable: effective paternity, which is 

defined by queen mating frequency and distribution of sperm (Foster and 

Ratnieks, 2001b; hereafter we use ‘paternity’ as shorthand for effective paternity). 

In colonies of Dolichovespula and Vespula rufa (and perhaps other species in the 
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rufa group), low paternity (< 2) is the norm, whereas colonies of species in the V. 

vulgaris and squamosa groups are characterized by high paternity (> 2) (Foster 

and Ratnieks, 2001c; Wenseleers et al., 2005a). High paternity in eusocial 

Hymenoptera is a prominent derived trait that lowers relatedness among 

workers and is associated with exclusive production of males by queens, lack of 

active ovaries in workers, and worker policing (Akre et al., 1976; Bonckaert et al., 

2008; Boomsma and Ratnieks, 1996; Foster et al., 1999; Foster and Ratnieks, 2001a; 

Goodisman et al., 2002; Helanterä et al., 2006; Kovacs and Goodisman, 2007; 

Ratnieks, 1988; Ross, 1985; Strassmann, 2001). Moreover, high paternity promotes 

colony productivity (Cole, 1999; Goodisman et al., 2007; Mattila and Seeley, 2007) 

and induces workers to rear their brothers (queen’s sons) rather than their 

nephews (workers’ sons) (Foster and Ratnieks, 2001b; Ratnieks, 1988). Large 

colony size and high mating frequency (paternity > 2) in yellowjackets might be 

convergent traits that have evolved in the branch leading to the vulgaris group 

and in V. squamosa (Fig. 2.3 and Fig. 2.4). Alternatively, both traits might have 

evolved in the most common recent ancestor of all Vespula species and lost or 

suppressed in the rufa group. The positive association between colony size and 

paternity seems to hold across all social Hymenoptera when controlling for 

phylogeny (Jaffe et al., 2012). Bourke (1999) proposes the following feedback 

between colony size and low reproductive potential of workers, the latter being 

an outcome of high paternity. To begin with, in large colonies worker policing is 

common and workers have a low chance of reproducing. It follows that workers 

engage exclusively in tasks beneficial to the colony instead of attempting to 

reproduce, thus increasing colony performance (Ratnieks, 1988). Rising 

productivity then favors selection for worker policing. Consequently, queen 
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specialization in reproduction is enhanced and greater worker productivity 

allows the rearing of more individuals, eventually leading to larger colonies. 

 

2.5. Future research 

In general, our analyses provide moderate support for the monophyly of 

Dolichovespula and Vespula and suggest that the sister relationship between both 

genera warrants further examination. A thorough evaluation of the possible close 

relationship of Dolichovespula to the hornets should be addressed including more 

species of Vespa, which in the present study might have been an 

underrepresented outgroup. Recently, Perrard et al. (2013) have analyzed the 

phylogeny of the genus Vespa in considerable detail. Since some of the molecular 

markers employed by Perrard et al. (2013) are shared with our study, merging 

and analyzing characters from both studies may be a new starting point for 

further investigations of vespine phylogeny. Ideally, new studies should 

increasingly focus on nuclear markers, since these seem to provide more 

resolution of deeper nodes and thus should help the inference of generic 

relationships within the Vespinae. In pilot work, we found that 18S is easily 

amplified but uninformative within Vespinae and long-wavelength rhodopsin is 

difficult to amplify and sequence in some taxa. Among genes commonly used in 

hymenopteran phylogenetics, CAD (rudimentary) seems to be particularly 

reliable and informative, and therefore a good candidate for new phylogenetic 

studies of yellowjackets. Regarding the evolution of behavior, colony size is an 

interesting trait that has been phylogenetically analyzed as a discrete, binary 

character based on ad hoc character states. However, a more powerful approach 

would be to analyze colony size as well as paternity as continuous variables, thus 
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giving greater emphasis to the trait values of each species. This is possible using 

parsimony (Goloboff et al., 2006) or statistical comparative methods (Harvey and 

Pagel, 1991; O’Meara, 2012). 
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CHAPTER 3: PHYLOGENETIC TESTS REJECT EMERY’S RULE IN THE 

EVOLUTION OF SOCIAL PARASITISM IN YELLOWJACKETS AND 

HORNETS (HYMENOPTERA: VESPIDAE, VESPINAE) 

3.1. Introduction 

Division of labor and elaborate brood care are hallmarks of insect 

societies (Wilson 1971, 1985). Societies of ants, bees, and wasps typically 

comprise a reproductive queen, sterile (or less reproductive) workers and males. 

The worker caste specializes in provisioning the larvae and foraging, among 

other tasks (Oster and Wilson 1978). Cooperative brood care underlies the 

success of social hymenopterans, but is also vulnerable to exploitation. For 

example, lycaenid butterfly larvae employ chemical and sound mimicry to dupe 

worker ants into carrying them into the brood chambers of the ant nests, where 

the workers feed the caterpillars (Akino et al. 1999; Als et al. 2004; Barbero et al. 

2009). This type of exploitation may be more easily enabled between close 

relatives because of their compatible communication systems and kin recognition 

cues. In an intriguing offshoot of sociality, socially parasitic hymenopterans have 

evolved a variety of strategies to deceive other species into caring for their young 

(Wheeler 1919; Buschinger 1986, 1990, 2009; Wcislo 1987; Davies et al. 1989; 

Hölldobler and Wilson 1990; Bourke and Franks 1991; Lenoir et al. 2001; Brandt 

et al. 2005; Cervo 2006; Huang and Dornhaus 2008; Kilner and Langmore 2011). 

Queens of facultative social parasites generally usurp established nests, kill the 

resident queen and produce workers to gradually replace the host worker force. 

In contrast, most obligate social parasites, or inquilines, lack the worker caste 

altogether. Inquiline queens, unable to found their own colonies, invade the nests 
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of other species and trick the conquered occupants into raising the parasitic 

brood, which develops into queens and males. 

The evolution of social parasitism has been linked with close 

phylogenetic relationships. Motivated by the observed morphological affinities 

between parasitic species and their hosts, Emery (1909) conjectured that socially 

parasitic ants are more closely related to their hosts than to any other species. 

This generalization, which has since become known as Emery’s rule, has been 

explained according to two evolutionary scenarios. On the one hand, the 

intraspecific or sympatric speciation hypothesis proposes that social parasites 

may originate directly from their hosts (West-Eberhard 1986; Buschinger 1990; 

Bourke and Franks 1991). Alternatively, the interspecific or social deception 

hypothesis claims that two species may evolve from geographically isolated 

populations (i.e., allopatrically) and parasitic habits develop when the 

populations come back together (Wilson 1971; Ward 1989; Hölldobler and 

Wilson 1990). In testing these two hypotheses, finding that social parasites and 

their hosts are sister taxa would be a necessary condition for invoking sympatric 

speciation. Moreover, lack of immediate common ancestry between social 

parasites and their hosts would be sufficient to rule out sympatric speciation. The 

validity of the sympatric speciation model of social parasitism remains 

contentious, with studies of certain ants favoring the model (Savolainen and 

Vepsäläinen 2003; Jansen et al. 2010; Rabeling et al. 2014), and absence of support 

for Emery’s rule in other social Hymenoptera (Ward 1996, 1989; Carpenter et al. 

1993; Agosti 1994; Choudhary et al. 1994; Carpenter 1997,Sumner et al. 2004a; 

Carpenter and Perera 2006; Hines and Cameron 2010; Gibbs et al. 2012; Smith et 
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al. 2013). Some of the latter studies, however, support a relaxed version of 

Emery’s rule, that is, parasites and hosts are close relatives, but not sister taxa. 

Phylogenetic analyses of inquiline wasps and their hosts seldom support 

the strict Emery’s rule, instead finding that inquilines are monophyletic 

(Carpenter et al. 1993; Choudhary et al. 1994; Carpenter 1997; Carpenter and 

Perera 2006). In social wasps, parasitic behavior has been documented in paper 

wasps (Polistinae) and yellowjackets and hornets (Vespinae). The subfamily 

Vespinae, among its 70 recognized species, includes five species of inquilines and 

two facultative social parasites, most of which occur in the yellowjacket genera, 

Dolichovespula and Vespula. Two previous studies have assessed the veracity of 

Emery’s rule in yellowjackets. First, Varvio-Aho et al. (1984; see also Pamilo et al. 

1981) analyzed allozymes from eight species and reported that the inquilines 

Vespula austriaca and Dolichovespula omissa were sister to their hosts, therefore 

supporting Emery’s rule. Upon reanalysis of Varvio-Aho et al.’s (1984) data, 

however, Carpenter (1987) found that the characters were largely uninformative 

and D. omissa was not sister to its host. Second, Carpenter and Perera (2006) 

performed a cladistic analysis of yellowjackets based on morphological and 

behavioral characters and recovered the inquilines Dolichovespula adulterina and 

D. omissa as sister taxa, thus rejecting Emery’s rule. Similarly, the obligate and 

facultative social parasites of Vespula were not sister to their respective hosts 

(Carpenter and Perera 2006). 

However, these previous phylogenetic studies of parasites and their 

hosts in vespine wasps were based on relatively few data and lacked resolution. 

For example, the analysis of Carpenter and Perera (2006) resulted in an inquiline 

clade as part of a polytomy with other Dolichovespula species. A well-resolved 
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phylogeny is essential for elucidating the evolution of predisposing traits that 

may explain why inquilinism occurs primarily in certain taxa. Such traits can be 

size of reproductives, nestmate recognition signals (van Wilgenburg et al. 2011), 

mating frequency (Sumner et al. 2004b), and sterility-inducing queen 

pheromones (Van Oystaeyen et al. 2014), to name a few. Here, we carry out the 

first molecular phylogenetic analysis of social parasites and their hosts in 

yellowjackets and hornets. Our study includes the inquilines Dolichovespula 

adulterina, D. arctica and D. omissa, and the facultative social parasites Vespula 

squamosa and Vespa dybowskii. These are five of the seven known social parasites 

in the Vespinae. We infer the relationships among these taxa and their hosts 

based on the analysis of 12 gene fragments to test two mutually exclusive 

hypotheses. First, social parasites evolved sympatrically from their hosts, and 

therefore Emery’s rule in its strict sense is applicable in vespine wasps. Second, 

inquilinism has evolved only once in Dolichovespula, and thus the three inquiline 

species of Dolichovespula are monophyletic. Moreover, we discuss our results in 

terms of a ‘relaxed Emery’s rule’ in which for any clade of social parasites the 

most closely related outgroup clade includes the host species (Buschinger 1990; 

Ward 1996). 

 

3.2. Materials and methods 

3.2.1. Taxonomic sampling 

We assembled a set of 38 species from all genera in the Vespinae and 

spanning the distribution range of the subfamily. We included the following 

parasitic species and their hosts, which are enclosed in parentheses: the Palearctic 

Dolichovespula adulterina (D. saxonica, D. norwegica; Weyrauch 1937; Dvořák 2007), 
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D. omissa (D. sylvestris; Weyrauch 1937), and Vespa dybowskii (V. simillima, V. 

crabro; Sakagami and Fukushima 1957; Archer 1992), and the Nearctic D. arctica 

(D. arenaria, D. alpicola; Wheeler and Taylor 1921; Taylor 1939; Jeanne 1977; 

Greene et al. 1978; Wagner 1978) and Vespula squamosa (V. maculifrons, V. vidua, 

V. flavopilosa, V. germanica; MacDonald and Matthews 1975, 1984; Matthews and 

Matthews 1979; MacDonald et al. 1980; Hoffman et al. 2008). 

 

3.2.2. DNA extraction, amplification, and sequencing 

Extraction, amplification and sequencing protocols follow Lopez-Osorio 

et al. (2014). Briefly, we extracted genomic DNA using the DNeasy Blood & 

Tissue Kit (Qiagen) and conducted PCR amplification using PuReTaq Ready-To-

Go PCR beads (GE Healthcare). We sequenced fragments of seven mitochondrial 

genes and five nuclear markers: 12S and 16S ribosomal DNA (12S, 16S), 

cytochrome oxidase I and II (COI, COII), ATPase subunit 8 and 6 (ATP8, ATP6), 

cytochrome b (Cytb), 28S ribosomal DNA D2-D3 expansion regions (28S), 

elongation factor 1 alpha F2 copy (EF1), RNA polymerase II (Pol II), wingless 

(Wg), and rudimentary (CAD). Three of these genes (CAD, ATP8, ATP6) were not 

used in Lopez-Osorio et al. (2014). We amplified CAD with primers CD892F and 

CD1491R from Ward et al. (2010) and developed primers C2-J3661 (5’ – TTG 

GWC AAT GYT CWG AAA TTT GTG G) and A6-N4543 (5’ – CCA GCA WTT 

ATW TTA GCT GAT AAT CG) to amplify a region spanning the mitochondrial 

genes ATP8 and ATP6 – primers were labeled according to their positions in the 

D. yakuba mitogenome (Clary and Wolstenholme 1985). The PCR program for 

this primer pair was 35 cycles of 30s at 94ºC, 30s at 55ºC and 45s at 72ºC, 

preceded by 4min at 94ºC and followed by 6min at 72ºC. 
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Forward and reverse sequences were assembled into contigs and 

trimmed of low-quality ends in Geneious 6.1.7 (Biomatters Ltd). The sequences 

generated with the new primer pair were annotated using the MITOS WebServer 

(Bernt et al. 2013). Although the region amplified with primers C2-J3661 and A6-

N4543 also spans the trnK and trnD genes, these sequences were not included in 

downstream analyses because of their short length and lack of variability. We 

aligned sequences with MAFFT v7.017 using the automatic strategy selection 

(Katoh and Standley 2013), removed introns of CAD and indel regions of ATP8 

and Wg, and concatenated gene matrices using SequenceMatrix (Vaidya et al. 

2011). The concatenated alignment used in all analyses contains 418 sequences; 

238 of these were previously published (Lopez-Osorio et al. 2014) and the 

remaining sequences were generated for this study (GenBank accessions 

KT225582–KT225591, KT250513–KT250524, KT257109–KT257164 and KT273417–

KT273481). 

 

3.2.3. Phylogenetic analyses 

We performed parsimony analyses of single genes and the concatenated 

data using TNT (Goloboff et al. 2008). The search strategy in all cases consisted of 

5000 replicates using random sectorial searches, drifting, ratchet and fusing 

combined (xmult=rss fuse 5 drift 5 ratchet 10). In all searches gaps were treated 

as missing data. Group support was calculated with 5000 replicates of symmetric 

resampling and the results were summarized with GC (Group present / 

Contradicted) frequencies. 

We employed three partitioning strategies in maximum likelihood (ML) 

and Bayesian analyses of the concatenated data: 1) assigning each gene to a 
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separate subset; 2) defining each codon position in each protein-coding gene as a 

character set, in addition to three blocks of rDNA genes, resulting in 30 subsets; 

and 3) submitting these 30 predefined subsets to PartitionFinder v1.0.1 (Lanfear 

et al. 2012) to find the best-fit partitioning scheme and choose substitution 

models. In the greedy search with PartitionFinder, branch lengths were set to 

unlinked, 56 different models were compared for each subset, and models were 

selected according to the Akaike Information Criterion corrected for sample size 

(AICc). In the former two partitioning methods, substitution models were chosen 

with the AICc as implemented in jModeltest v2.1.7 (Darriba et al. 2012). In all 

cases, when the model chosen was not compatible with MrBayes, the closest 

available model was used. 

ML analyses of the concatenated data were carried out using the 

OpenMP and MPI versions of GARLI v2.01 (Zwickl 2006). ML analyses consisted 

of 100 search replicates with default settings except for topoweight = 0.01 and 

brlenweight = 0.002. These two deviations from default settings were also 

employed in ML bootstrap analyses, which consisted of 500 pseudoreplicates. 

Bayesian analyses of single genes and the concatenated data were 

conducted using MrBayes v3.2.3 (Ronquist et al. 2012) on CIPRES (Miller et al. 

2010) with nucmodel = 4by4, nruns = 2, nchains = 8, and samplefreq = 1000. 

Unconstrained MCMC analyses were run for 40 M generations using the 

different partitioning schemes, whereas constrained analyses (see below) were 

carried out for 20 M generations employing the character subsets identified by 

PartitionFinder. Base frequencies, substitution rates, the gamma shape 

parameter, and proportion of invariable sites were unlinked across subsets. We 

set a shorter prior on the mean branch length – brlenspr=unconstrained:exp(100) 
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– to address the long-tree problem of partitioned analyses in MrBayes (Marshall 

2010). We assessed convergence by examining effective sample size (ESS) values 

with Tracer v1.6 (Rambaut et al. 2013) and the potential scale reduction factor 

(PSRF) for all parameters in MrBayes. In all analyses of the concatenated data, 

stationarity was reached in less than four million generations. 

 

3.2.4. Constraint analyses and topology tests 

We conducted constraint analyses to quantify the difference in 

likelihoods between unconstrained and constrained topologies. Eight constraints 

enforcing host-parasite monophyly were evaluated: each social parasite sister to 

its primary host in separate topologies, resulting in five constraint trees; all five 

parasites sister to their respective hosts; all inquilines sister to their 

corresponding hosts; and an unresolved clade of inquilines and hosts. Mean 

marginal likelihoods of unconstrained and constrained models were calculated 

using stepping-stone sampling (Xie et al. 2011) in MrBayes and employing the 

partitioning scheme identified by PartitionFinder. Stepping-stone analyses 

consisted of 31 M total cycles, four independent runs of four parallel chains each, 

sampling every 1000 generations and using 30 steps to yield 1000 samples within 

each step (α=0.4). The first 25% samples of each step were discarded as burn-in. 

Log-likelihoods were compared using Bayes factors (Kass and Raftery 1995) 

calculated as 2(H0 - HA), where H0 and HA are the log-likelihoods of the 

unconstrained and constrained outcomes, respectively. 
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3.3. Results 

3.3.1. Phylogenetic relationships 

The entire DNA sequence alignment included 6568 sites and 30% of 

these were parsimony-informative (Table 3.1). The best-fit partitioning scheme 

identified by PartitionFinder consisted of eight subsets (Table 3.2). We found that 

phylogenetic relationships were stable across methods of phylogenetic inference 

and partitioning strategies, although with varying levels of group support (Fig. 

3.1). Regardless of method of analysis or partitioning scheme, Emery’s rule was 

rejected in yellowjackets and hornets (Fig. 3.1). Likewise, a loose form of Emery’s 

rule in which for any clade of parasites the nearest nonparasitic outgroup is a 

clade of host species (Buschinger 1990; Ward 1996) was not supported. Instead, 

the hosts of inquilines were scattered within a clade sister to Dolichovespula 

maculata and D. media (Fig 3.1). Inquilines were consistently recovered as 

monophyletic with strong support – Bayesian posterior probability (PP), ML 

bootstrap frequency (BS), and GC = 100 (Fig. 3.1). Moreover, the facultative social 

parasites Vespula squamosa and Vespa dybowskii did not share immediate common 

ancestry with their respective host species.  

In the single most parsimonious tree found with the concatenated data, 

D. arenaria is sister to the inquiline clade (Dolichovespula omissa, (D. adulterina, D. 

arctica)), but this group was poorly supported (GC = 53; Fig. 3.1a). Using the best-

fit partitioning scheme, the ML analysis of all data recovered the inquiline clade 

as sister to a group of three Dolichovespula species (Fig. 3.1b), whereas in the 

Bayesian consensus tree the inquilines were part of a polytomy (Fig. 3.1c), which 

included D. arenaria and (D. albida, (D. pacifica, D. saxonica)). However, D. arenaria 

was also sister to the inquiline clade in the Bayesian consensus trees using gene 
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and codon partitions, although this grouping had low support (PP = 87 and 73). 

In the case of V. squamosa, this facultative social parasite was sister to a clade of 

five species including two of its hosts, V. vidua and V. flavopilosa, but its primary 

host, V. maculifrons, was grouped with another species group (Fig. 3.1). Similarly, 

the facultative parasite Vespa dybowskii was placed in a clade separate from its 

main host, V. simillima; although V. dybowskii was sister to another host species, 

V. crabro, in the ML result. 

 

3.3.2. Hypothesis testing 

Interpretation of Bayes factors follows Kass and Raftery (1995), and thus 

values greater than 150 indicate very strong evidence against the constrained 

topologies. Comparisons of likelihoods between the unconstrained topology and 

those forcing host-parasite monophyly indicated that the evidence was strongly 

against all constrained hypotheses (Table 3.3). 
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Table 3.1: Sequence characteristics of the complete data matrix and chosen substitution 
models. PI = Parsimony informative. 

Gene Number of sites PI sites Model 
12S 384 157 HKY+I+G 
16S 532 156 GTR+I+G 
28S 750 67 GTR+I 
CAD 517 125 TIM1+G 
COII 582 255 TVM+I+G 
COI 1096 419 GTR+I+G 
Cytb 433 197 GTR+I+G 
EF1aF2 517 109 TrN+G 
Pol II 814 110 TrN+I+G 
ATP6 441 206 TVM+I+G 
ATP8 111 80 HKY+G 
Wg 391 91 K80+G 
Total 6568 1972  
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Table 3.2: Best-fit partitioning scheme identified by PartitionFinder. 

Subset Best Model Subset Partitions 
1 GTR+I+G 12S, 16S 
2 GTR+I+G 28S, CAD pos1, EF1aF2 pos1, Pol2 pos1, wg pos1, wg pos2 
3 TrN+G CAD pos3, EF1aF2 pos3, Pol2 pos3, wg pos3 
4 TrN+I CAD pos2, COI pos2, EF1aF2 pos2, Pol2 pos2 
5 GTR+I+G COII pos1, COI pos1, Cytb pos1 
6 TVM+I+G COII pos2, Cytb pos2, atp6 pos2 
7 TrN+I+G COII pos3, COI pos3, Cytb pos3, atp6 pos3, atp8 pos3 
8 TIM+I+G atp6 pos1, atp8 pos1, atp8 pos2 
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Table 3.3: Stepping-stone estimates of marginal likelihoods and Bayes factors estimated as 2(H0 
− HA), where H0 and HA are the log-likelihoods of the unconstrained topology (-44246.01) and an 
alternative hypothesis, respectively. 

Constraints (HA) lnL Bayes 
factors 

(D. adulterina, D. saxonica) -44688.47 884.92 
(D. omissa, D. sylvestris) -44332.11 172.2 
(D. arctica, D. arenaria) -44364.99 237.96 
(V. dybowskii, V. simillima) -44366.16 240.3 
(V. squamosa, V. maculifrons) -44540.12 588.22 
(D. adulterina, D. saxonica), (D. omissa, D. sylvestris), (D. arctica, 
D. arenaria), (V. dybowskii, V. simillima), (V. squamosa, V. 
maculifrons) 

-45202.14 1912.26 

(D. adulterina, D. saxonica), (D. omissa, D. sylvestris), (D. arctica, 
D. arenaria) 

-44789.44 1086.86 

(D. adulterina, D. saxonica, D. omissa, D. sylvestris, D. arctica, D. 
arenaria) 

-44538.58 585.14 
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Figure 3.1: Phylogenetic relationships of social parasites, their hosts, and other vespines based 
on the concatenated data: a) single most parsimonious tree and GC values; b) maximum 
likelihood tree and bootstrap frequencies; c) Bayesian consensus tree and clade posterior 
probabilities. ML and Bayesian results obtained using the best-fit partitioning scheme. Yellow 
dots indicate node support equal to 100. Colored and grey solid branches indicate inquiline 
species and facultative social parasites, respectively. Dashed branches matching in color 
indicate the corresponding hosts. 
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3.4. Discussion 

This study shows that social parasites among yellowjackets and hornets 

are not the closest relatives of their hosts, therefore rejecting Emery’s rule in its 

strict form. Furthermore, monophyly of Dolichovespula inquilines, suggesting a 

single origin of the parasitic strategy in this genus, is strongly supported by all 

our analyses. In contrast to the results of Carpenter and Perera (2006), we find 

that the inquiline clade is not sister to D. sylvestris. Instead, Dolichovespula 

inquilines may be more closely related to either D. arenaria or a clade 

encompassing D. albida, D. pacifica, and D. saxonica (Fig. 3.1). Inquiline 

monophyly has also been found in Polistes paper wasps (Choudhary et al. 1994; 

Carpenter 1997). Vespine parasites usurp host societies by means of physical 

combat and kill the resident queen, whereas paper wasps employ chemical 

camouflage and coexist with the host queen (Cervo 2006; Lorenzi 2006; Cini et al. 

2011), but these alternative usurpation strategies have resulted in the same 

pattern of inquiline monophyly. Our study adds to a growing body of examples 

where intraspecific or sympatric speciation has not occurred in the evolution of 

social parasitism (e.g., Agosti, 1994; Ward 1996; Choudhary et al. 1994; Carpenter 

and Perera 2006; Hines and Cameron 2010; Gibbs et al. 2012). In no case parasite 

and host formed a monophyletic group (Fig. 3.1). Thus, our analyses suggest that 

speciation occurred independently of the evolution of social parasitism. 

Berlocher (Berlocher 2003) argues that observing all possible intermediate forms 

of parasitism may be used to test hypotheses of allopatric speciation. These 

intermediate forms may be intra- and interspecific usurpation (Taylor 1939). In 

vespines, queens usurp nests of the same species as well as different species 

(Akre and Davis 1978; Greene 1991), but the latter type of usurpation is much 
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less frequent. Within Dolichovespula, D. arenaria usurps V. vulgaris (O’Rourke and 

Kurczewski 1983). Thus, it is possible that inquilinism in Dolichovespula evolved 

from facultative, temporary usurpation in D. arenaria (Fig. 3.1). 

In addition to lack of phylogenetic support, the characteristics of 

yellowjacket societies seem incompatible with a key condition of the sympatric 

route to new inquiline species, namely the presence of multiple laying queens 

per colony (i.e., polygyny) (Bourke and Franks 1991; Buschinger 2009; Boomsma 

and Nash 2014; Rabeling et al. 2014). Certain authors (e.g., Alloway 1980; 

Buschinger 1986, 2009) argue that polygyny might be a precursor of social 

parasitism because it would provide the opportunity for some queens of the host 

species to specialize in producing reproductives, while other queens focus on 

producing workers. Furthermore, the adoption of conspecific young queens 

resembles the series of events in nest usurpation by socially parasitic queens. 

Yellowjacket colonies, however, typically include a single queen and have annual 

cycles (Spradbery 1973; Akre and Davis 1978), and polygyny is a rare deviation 

restricted to large-colony species of Vespula in warm climates; for example, V. 

germanica, V. pensylvanica, V. vulgaris, V. maculifrons (Greene 1991, and references 

therein). But the phylogenetic distribution of social parasitism shows that 

inquilinism is mostly limited to species of Dolichovespula (Fig. 3.1). If polygyny 

enables the sympatric speciation route in the evolution of social parasitism, more 

social parasites that follow Emery’s rule would be expected in Vespula. 

However, the tolerance of multiple egg-laying queens in large-colony 

species of Vespula may be associated with an increased vulnerability to 

parasitism by V. squamosa, which usurps several large-colony species. Vespula 

squamosa is considered a species crossing the threshold from free-living to 
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parasitism (MacDonald and Matthews 1975), capable of exploiting multiple host 

species in the V. vulgaris species group rather than in the more closely related 

rufa group (Fig. 3.1, see also Carpenter and Perera 2006; Lopez-Osorio et al. 2014). 

This suggests that strong phylogenetic affinities may not be imperative to pass 

easily through the defenses of host species by V. squamosa. It may be possible that 

social parasitism begins as a generalist strategy followed by host specialization. If 

facultative social parasitism is a necessary step in the path leading to inquiline 

behavior, then inquilines might have evolved from host species in sympatry but 

subsequently switched and specialized on a particular host, such that 

phylogenetic relationships of extant hosts and parasites would not be sufficient 

to reject a speciation model. This illustrates the difficulty in using phylogenetic 

analyses to test modes of speciation, as has been noted in studies of bees (Smith 

et al. 2007). A factor that has been thought to explain the rampant parasitism 

exerted by V. squamosa is its delayed release from diapause and subsequent 

spreading into the ranges of potential hosts (Taylor 1939). 

Although Emery’s rule in its strict form is here rejected for vespines, 

relatively close phylogenetic relationships seem to play a key role in the 

evolution of social parasitism, particularly for inquilines and their hosts nested 

within the same Dolichovespula clade (Fig. 3.1). Social parasitism in the 

Hymenoptera involves the exploitation not only of brood care but also the 

colony’s intricate social structure. A mixed society thus must have compatible 

communication systems and pheromones for nestmate recognition (Buschinger 

2009) as well as similar mechanisms of queen control. Cell-construction may be a 

trait of particular importance in the evolution of inquilinism in yellowjackets. In 

vespines, caste differentiation is physiologically determined, and eggs destined 
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to become queens typically develop in large cells. Cell size may function as a cue 

for workers to provide more food to certain larvae, which are thus launched on a 

queen developmental pathway (Jeanne and Suryanarayanan 2011). For example, 

in honeybees, larvae housed in royal cells are maintained on a diet of royal jelly, 

and its major active factor, royalactin, induces their development as queens 

(Kamakura 2011). If the colony’s queen in part controls the construction of large 

cells, the parasitic queen must be able to mimic or circumvent this aspect of the 

host queen’s behavior to avoid the production of workers (Greene 1991). 

With the exception of D. arctica (Jeanne 1977), social parasites in 

Vespinae rely on physical attacks to subdue the host queen and her colony, but 

the mechanisms preventing the removal of parasitic eggs are largely unknown. 

Acceptance of parasitic eggs may be achieved by means of chemical mimicry, 

such as in the ant Polyergus breviceps (Johnson et al. 2004). Alternatively, parasitic 

eggs may be tolerated due to lack of cuticular chemicals used for nestmate 

recognition or usage of chemical deterrents (Ruano et al. 2005; Lambardi et al. 

2007; Martin et al. 2007). To our knowledge, only a single study has investigated 

the chemical characteristics of parasitic eggs in vespines. Martin et al. (2008) 

identified compounds from the surface of eggs of Vespa dybowskii and suggested 

that this species employs a chemical transparency strategy. That is, parasitic eggs 

of V. dybowskii contain external chemicals that are either undetected or unused as 

recognition cues. Furthermore, these authors found that the chemical profile of 

V. dybowskii, including adults, shows more significant differences in comparison 

to its main host, V. simillima, than to V. crabro (Martin et al. 2008). Therefore, 

chemical mimicry does not seem to be involved in the parasitism of V. simillima 

by V. dybowskii. The similarities in chemical profiles in Martin et al. (2008) reflect 
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the relationships recovered in our Bayesian analysis (figure 1c), in which V. 

crabro is sister to V. dybowskii plus V. orientalis, but V. simillima is in a separate 

clade (see also Perrard et al. 2013). 

To summarize, Emery’s rule is a broad generalization about the 

evolution of a trait regardless of specific preconditions. Evidence from different 

groups indicates that the sympatric speciation model is a plausible explanation in 

Myrmica and Mycocepurus ants (Savolainen and Vepsäläinen 2003; Rabeling et al. 

2014), but it is not applicable in bees (Hines and Cameron 2010; Gibbs et al. 2012; 

Smith et al. 2013) and social wasps (Choudhary et al. 1994; Carpenter 1997; 

Carpenter and Perera 2006). Even if Emery’s rule is rejected in yellowjackets and 

hornets, it is clear that relatively close phylogenetic relationships, especially in 

inquilines, are important in the evolution of social parasitism (Fig. 3.1). 

Moreover, the monophyly of inquilines of Dolichovespula suggests an underlying 

genetic basis of parasitic habits. 
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CHAPTER 4: PHYLOGENOMIC ANALYSIS OF YELLOWJACKETS AND 

HORNETS (HYMENOPTERA: VESPIDAE, VESPINAE) 

4.1. Introduction 

Eusocial groups consist of overlapping generations of workers 

collectively caring for the offspring of the queen caste. Among wasps, eusociality 

is thought to have evolved once in the family Vespidae (Carpenter 1982; Pickett 

and Carpenter 2010). Within the eusocial vespids, the paper wasp genus Polistes 

and the subfamily Vespinae, which includes the yellowjackets (Vespula and 

Dolichovespula) and hornets (Vespa and Provespa), are perhaps the most familiar. 

Vespine colonies usually comprise a single, morphologically distinct queen; live 

in enclosed, sometimes subterranean, nests built from paper-like material; 

construct cells used exclusively to raise future queens; and vary considerably in 

size (Evans and West-Eberhard 1970). Ranges of colony size (i.e., number of 

workers) overlap in many vespine species, but members of the Vespula vulgaris 

and V. squamosa species groups typically have the largest societies (more than 

2,500 cells and 500 workers; Akre et al. 1981; Loope et al. 2014). Colony size can 

be viewed as a determinant of social interactions and life history characteristics 

(Bourke 1999; Anderson and McShea 2001). Indeed, in vespine wasps, colony 

size correlates with traits such as paternity (single or multiple mating by queens), 

reproductive potential of workers, the nature of conflict among colony members, 

and degree of caste differentiation (Akre and Davis 1978; Foster and Ratnieks 

2001; Loope et al. 2014), among others. 

For example, species of Dolichovespula build small colonies with low 

paternity and workers that lay eggs in the presence of the queen, thereby 

instigating queen-worker conflict over the production of males, which develop 
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only from unfertilized eggs (Foster and Ratnieks 2001a; Foster et al. 2001; 

Freiburger et al. 2004, Wenseleers et al. 2005c). In contrast, the colonies of large-

colony species in the Vespula vulgaris and squamosa groups have the greatest 

degree of caste dimorphism (Greene 1979), few workers with functional ovaries 

(Ross 1985; Foster and Ratnieks 2001a) and production of males exclusively by 

queens (Akre et al. 1976; Ross 1986; Foster and Ratnieks 2001a; Kovacs and 

Goodisman 2007). In these large-colony vespines, queen-worker conflict over 

male production is typically resolved by means of policing; that is, the removal 

of worker-laid eggs that maintains the reproductive control of the queen 

(Ratnieks and Visscher 1989; Wenseleers and Ratnieks 2006). Conflict may occur 

between species as well. Such is the case of queens of socially parasitic species 

that exploit the worker force and colony resources of a host species – a behavior 

that, among vespines, has evolved primarily in yellowjackets. These social 

parasites, lacking the worker caste, seize the nest of a host species and trick the 

resident workers into raising the parasitic offspring (MacDonald and Matthews 

1975; Greene et al. 1978; Reed and Akre 1983). 

 The Vespinae comprises 70 described species classified in four genera 

and distributed throughout tropical areas of the Oriental region and northern 

temperate latitudes (Akre and Davis 1978; Carpenter and Kojima 1997; Kimsey 

and Carpenter 2012). Vespula and Dolichovespula are primarily temperate, Vespa 

occurs in both tropical and temperate regions and Provespa is endemic to the 

oriental tropics. Southeast Asia has been speculated as the ‘center of origin’ of the 

Vespinae on the basis of the sister relationship of Vespa to the remaining vespine 

genera, the species richness of the genus in that region, and because hornets are 

not native to the Western Hemisphere (van der Vecht 1957; Matsuura and 
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Yamane 1990 p. 240). A common origin in the northern latitudes, however, has 

also been proposed for the subfamily (Bequaert 1932). 

Given the phylogenetic distribution of a suite of key behavioral traits, 

and the relevance of genus-level relationships to the biogeography of 

yellowjackets and hornets, one of the primary goals in vespine phylogeny is 

elucidating deep-level relationships, which have been contradictory across 

studies (Carpenter 1987b; Pickett and Carpenter 2010; Lopez-Osorio et al. 2014). 

Previous analyses have recovered a yellowjacket clade sister to Provespa 

(Carpenter 1987b; Saito and Kojima 2011) or Vespa plus Provespa (Pickett and 

Carpenter 2010), whereas non-monophyly of yellowjackets, placing 

Dolichovespula as sister group of the hornets, has been reported relying 

exclusively on molecular data (Lopez-Osorio et al. 2014, 2015). The results of 

Lopez-Osorio et al. (2014), however, were discordant between mitochondrial and 

nuclear gene fragments. Specifically, Lopez-Osorio et al. (2014) found that 

mitochondrial genes support the monophyly of yellowjackets (Vespula + 

Dolichovespula), but nuclear genes and the concatenated data indicate a sister 

group relationship between Dolichovespula and the hornet clade (Vespa, Provespa). 

Furthermore, in the first comprehensive phylogenetic analysis of vespine wasps 

based on morphological and DNA sequence data combined, Perrard et al. (2015) 

recovered poorly supported relationships among genera. 

In this study, we address the genus-level relationships in the Vespinae 

and examine the monophyly of yellowjackets using a phylogenomic approach 

based on transcriptomic (RNA-seq) data. Our phylogenomic analysis includes a 

total of nine transcriptomes, six of which are novel to this study: the solitary 

potter wasp Ancistrocerus catskill, the primitively eusocial Polistes dominula, and 
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the highly eusocial Vespa crabro, Dolichovespula maculata, D. arenaria, and Vespula 

vidua. We conduct de novo transcriptome assemblies, identify putative single-

copy genes and use these candidate orthologs to test the sister-group relationship 

between Dolichovespula and Vespula. Our findings challenge previous 

phylogenetic hypotheses and provide a robust framework for future comparative 

studies on yellowjackets and hornets. 

 

4.2. Materials and methods 

4.2.1. Sample collection, RNA isolation, library preparation, and sequencing 

We collected specimens of A. catskill, D. arenaria, D. maculata, V. vidua 

and P. dominula at localities in the vicinity of Burlington, Vermont, USA, and 

specimens of V. crabro in Slovenia; the genus Provespa was not included because 

of lack of high-quality source material. Specimens were flash frozen in liquid 

nitrogen and stored at -80ºC. We isolated total RNA from single, whole 

specimens using the TRIzol® reagent (Invitrogen). Quality assessment of RNA 

samples, preparation of cDNA libraries, Roche 454 pyrosequencing of A. catskill, 

and paired-end 2 x 100 bp Illumina sequencing of the remaining species were 

outsourced to Beckman Coulter Genomics (Danvers, MA). We combined our 

data with publically available transcriptomes from the cuckoo wasp Argochrysis 

armilla, the pollen wasp Pseudomasaris vespoides, and the paper wasp 

Mischocyttarus flavitarsis (NCBI SRA accessions SRX262928, SRX262920, and 

SRX259759; Johnson et al. 2013). All transcriptomes were processed as described 

below. 



 

61 

 

4.2.2. Processing of reads, de novo transcriptome assembly, and translation 

of transcripts 

We cut adapters, trimmed low-quality bases and discarded short reads 

from Illumina reads using Trimmomatic v. 0.32 (Lohse et al. 2012; Bolger et al. 

2014) with default settings, except for a threshold of 20 for average base quality 

within the sliding window. Using the reads remaining after trimming, 

transcriptomes were assembled de novo using Trinity v. 2013-11-10 (Grabherr et 

al. 2011; Haas et al. 2013). We removed contaminant and rRNA-like transcripts 

using the standalone releases of DeconSeq v. 0.4.3 (Schmieder and Edwards 

2011) and riboPicker v. 0.4.3 (Schmieder et al. 2012), both of which use a 

modified version of the BWA-SW aligner (Li and Durbin 2009). In these two in 

silico sanitation steps an identity score of 90 and a coverage value of 15 were 

used. 

We used TransDecoder r20131110 (Haas et al. 2013) to identify candidate 

coding regions within transcript sequences and CD-HIT (Fu et al. 2012) to cluster 

redundant peptides using a stringent identity threshold (–c 1.0 –n 5). Translated 

vespid transcriptomes were submitted to BLASTP searches against the NCBI 

RefSeq database of protein reference sequences. BLASTP results were then used 

to remove any previously undetected contaminant transcripts. 

 

4.2.3. Matrix construction, phylogenomic analyses, and hypothesis testing 

To identify groups of putative homologous sequences and orthologs, we 

followed a procedure based on sequence similarity and phylogenetic analysis 

(Yang and Smith 2014). We analyzed two sets of taxa, one including all nine 
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species and another excluding the transcriptome of A. catskill due to its 

comparatively small size. An all-by-all BLASTP search was conducted with an E 

value cutoff of 10 and keeping a maximum of 500 aligned sequences (-

max_target_seqs 500). Sequence ends not covered by any BLASTP hits from 

other taxa were removed. BLASTP hits with query coverage greater than 0.4 

were used for homology inference. We identified clusters of homologous 

sequences using the Markov Clustering Algorithm (MCL v. 14-137; Enright et al. 

2002) tool with an E value cutoff of 10-5 and an inflation value of 2.0. The 

sequences of each cluster were aligned and alignments were cleaned using 

Phyutility (Smith and Dunn 2008) with a minimum site occupancy threshold of 

0.1. Clusters with less than one thousand sequences were aligned with MAFFT v. 

7 (Katoh and Standley 2013) using the options ‘genafpair’ and ‘maxiterate 1000’, 

whereas larger clusters were aligned with PASTA (Mirarab et al. 2014). We used 

RAxML 8 (Stamatakis 2014) to infer an initial maximum likelihood phylogenetic 

tree for each aligned cluster of homologous sequences with the model 

PROTCATWAG. Terminal branches ten times longer than their sisters or longer 

than 0.8 were trimmed. Monophyletic and paraphyletic sequence isoforms from 

the same taxon were removed, keeping only the sequence with less ambiguous 

characters as the representative. Moreover, internal branches longer than 1.0 

were cut to break deep paralogs, thus generating two or more subtrees. This 

process of cluster refinement, consisting of sequence alignment, cleaning of 

alignments and trimming of spurious branches was then repeated using a cutoff 

of 0.6 for tips and 0.7 for internal branches. We then conducted a third round of 

alignment and tree inference with 200 fast bootstrap pseudoreplicates to generate 

homolog trees used to identify orthologs. 
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We used the maximum inclusion method (Dunn et al. 2008; Hejnol et al. 

2009) to prune homolog trees into subtrees with no more than one sequence per 

taxon. The sequences from each resulting set of orthologs were aligned with 

MAFFT and alignments were trimmed using Gblocks v0.91 (Castresana 2000) 

with settings -b3=8 -b4=10 and -b5=h. Models of amino acid substitution were 

chosen for each ortholog using the RAxML model selection script. We 

concatenated ortholog alignments with full taxon sets and number of sites 

greater than or equal to 300 in trimmed alignments. We then conducted 

partitioned maximum likelihood and rapid bootstrap analyses of 

“supermatrices” in RAxML on CIPRES (Miller et al. 2010). We evaluated 

uncertainty of edges and conflict between ortholog trees and species trees in two 

ways: first, by performing 200 jackknife pseudoreplicates, randomly resampling 

30% of the total number of orthologs from each supermatrix; and second, after 

extracting ingroup clades from gene trees, we used PhyParts (Smith et al. 2015b) 

to examine concordance and conflict with respect to species trees, and to 

calculate internode certainty scores on the species tree (ICA; Salichos and Rokas 

2013; Salichos et al. 2014) under a bootstrap filter of 50 %. ICA values close to 1 

indicate strong certainty in the bipartition of interest, whereas ICA values close 

to 0 indicate similar frequency of conflicting bipartitions (Smith et al. 2015b). 

Lastly, for the eight- and nine-taxon data sets, we performed species tree 

analyses in MP-EST (Liu et al. 2010) with default settings on the STRAW web 

server (Shaw et al. 2013). 

We evaluated the significance of differences in log-likelihoods between 

ML trees and an alternative hypothesis of yellowjacket monophyly using the test 

developed by Shimodaira and Hasegawa (1999; hereafter SH test). SH tests were 
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performed as implemented in RAxML 8 using the -f H option to re-estimate 

parameters for all trees. 

 

4.3. Results 

4.3.1. Transcriptome sequencing and de novo assembly 

The five newly-sequenced, Illumina transcriptomes had an average of 

approx. 207 million passing filter (PF) reads, and the transcriptome of A. catskill 

had 1,379,816 Roche 454 reads. After quality trimming of Illumina 

transcriptomes, the percentage of surviving read pairs ranged from 80.76% to 

91.58%. The six transcriptomes generated in this study had an average of 129,357 

transcripts, an N50 of 3,186, and 51,786 potential coding regions (Table 4.1). After 

reducing redundancy, the average number of amino acid sequences (excluding 

A. catskill) was 14,896 (Table 4.1). 

 

4.3.2. Homology and orthology inferences and phylogenetic analyses 

We followed a procedure based on sequence similarity (E values from 

BLASTP) and phylogenetic inference to identify groups of putative homologs 

and orthologs (Yang and Smith 2014). An all-by-all BLASTP search using amino 

acid sequences from all transcriptomes was conducted, and similarity scores 

were used to identify clusters of homologous sequences. The sequences of each 

cluster were aligned, a phylogeny was inferred, and spurious branches were 

trimmed. This process of sequence alignment, phylogeny inference, and 

trimming of branches was repeated to obtain groups of refined homologs and 

then extract maximum inclusion orthologs. The nine-taxon dataset comprised 

1,507 putative orthologs, 933,533 aligned sites, and had 91% amino acid 
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completeness. The eight-taxon dataset comprised 3,356 putative orthologs, 

2,285,441 aligned sites, and had 94% amino acid occupancy. The two 

“supermatrices” had full ortholog coverage. Phylogenetic analyses of the two 

“supermatrices” in RAxML resulted in the same fully resolved topology, which 

had bootstrap and 30% gene-jackknife support values of 100 for all nodes (Fig. 

4.1). Moreover, we found the same topology in the species tree analyses 

conducted in MP-EST. In this topology, P. vespoides was sister to the remaining 

vespid species, and A. catskill was sister to the monophyletic subfamilies 

Polistinae and Vespinae. Within the Vespinae, Vespula vidua was recovered as 

sister to a clade including the two species of Dolichovespula, which were 

monophyletic, and the hornet Vespa crabro (Fig. 4.1). 

Regarding the concordance and conflict between gene trees and species 

trees, we found considerable support for the sister relationship between 

Dolichovespula and Vespa (Fig. 4.1). The Dolichovespula + Vespa node had 1032 

concordant gene trees and an ICA score of 0.82 in the analysis of the nine-taxon 

dataset (Table 4.2). In the case of the eight-taxon dataset, the Dolichovespula + 

Vespa node had 2383 concordant gene trees and a 0.83 ICA value (Table 4.2). 

Lastly, the topology recovered here (Fig. 4.1) was significantly different from the 

traditional hypothesis in which Vespula and Dolichovespula are sister groups 

(Table 4.3). 
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Table 4.1: Characteristics of transcriptome assemblies; descriptive statistics are based on all 
transcript contigs. 

 Total 
transcripts 

GC % Contig 
N50 

Average contig 
length 

ORFs CD-HIT 
clusters 

D. arenaria 130,448 37.50 2,817 1,393.00 38,669 14,489 
D. maculata 131,905 34.72 3,775 2,049.22 61,099 13,944 
V. crabro 201,718 35.21 4,006 1,862.25 79,625 16,361 
V. vidua 146,729 34.40 3,688 2,048.18 65,754 14,919 
P. dominula 155,861 32.47 3,396 1,798.09 58,569 14,768 
A. catskill 9,481 36.03 1,434 1,247.36 7,002 − 
Average 129,357 35.06 3,186 1,733.02 51,786 14,896 
SD 64,215.73 1.68 950.90 338.1484879 25,614.52 899.32 
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Table 4.2: Number of gene trees concordant and conflicting with vespine clades. Internode 
certainty (ICA) scores near 0 indicate maximum conflict and values near 1 indicate strong 
certainty. 

Clade Concordant Conflicting ICA score 
9 taxa    
(V. crabro, (D. maculata, D. arenaria)) 1032 64 0.8238 
(V. vidua, (V. crabro, (D. maculata, D. 
arenaria))) 

625 302 0.4742 

8 taxa    
(V. crabro, (D. maculata, D. arenaria) 2383 137 0.8301 
(V. vidua, (V. crabro, (D. maculata, D. 
arenaria)) 

1425 717 0.4729 
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Table 4.3: Results of SH test estimated for a hypothesis of yellowjacket monophyly tested 
against the best ML tree, showing the likelihood (LH) of the alternative tree, difference in 
likelihood D(LH), and standard deviation (SD) for each test. Asterisks indicate that the 
alternative tree is significantly worse (1% level). 

 Best tree LH LH D(LH) SD 
9 taxa -4978865.370233 -4981168.490189 -2303.119956** 156.172506 
8 taxa -11581322.050153 -11582672.438202 -1350.388049 ** 231.471426 
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Figure 4.1: Phylogeny of vespid wasps based on the analysis of 1,507 single-copy genes. 
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4.4. Discussion 

The deep-level phylogenetic relationships of vespine wasps have been 

elusive, as previous studies support alternative genus-level groupings 

(Carpenter 1987b; Pickett and Carpenter 2010; Saito and Kojima 2011; Lopez-

Osorio et al. 2014, 2015; Perrard et al. 2015). The lack of consensus regarding the 

backbone nodes of the Vespinae phylogeny hampers the use of a comparative 

framework in studies of, for example, evolution of behavioral traits and 

molecular evolution of sociality (Robinson et al. 2005; Fischman et al. 2011; Rehan 

and Toth 2015). In this study, we provide, for the first time, a robust hypothesis 

of genus-level relationships of vespine wasps based on transcriptomic data. 

Transcriptomic data challenge the relationships among genera found in 

previous phylogenetic analyses of vespine wasps (e.g., Carpenter 1987; Pickett 

and Carpenter 2010; Perrard et al. 2015). The prevailing hypothesis of vespine 

phylogeny indicates that Vespa is the sister group of the remaining Vespinae, and 

the monophyletic yellowjackets (Dolichovespula and Vespula) are sister to the 

nocturnal hornets (Provespa) (Carpenter 1987b). A recent study, based on 

comprehensive taxon sampling and the combined analysis of morphological 

characters and nine genes, found a sister-group relationship, albeit poorly 

supported, between Vespa and the yellowjackets (Perrard et al. 2015). That is, 

most previous studies have recovered yellowjackets as a monophyletic group 

(Carpenter 1987b; Pickett and Carpenter 2010; Saito and Kojima 2011; Perrard et 

al. 2015). Our transcriptomic data did not recover a yellowjacket clade. Instead, 

we found that the hornet genus Vespa is sister to the yellowjacket genus 

Dolichovespula (Fig. 4.1). The sister group relationship between Vespa and 
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Dolichovespula was previously reported in phylogenetic analyses including data 

from up to eleven gene fragments, although mitochondrial and nuclear genes 

had conflicting phylogenetic signals (Lopez-Osorio et al. 2014, 2015). The number 

of genes used in this analysis was orders of magnitude higher than in any 

previous phylogenetic study of vespine wasps, and these genome-scale data 

further support the shared most recent common ancestry between Vespa and 

Dolichovespula.  

Our analyses revealed that the sister grouping of Vespa and 

Dolichovespula remains stable whether the full set of putative orthologs or a 

random sample of genes is analyzed, but we also found evidence of topological 

incongruence among gene histories. Considering that traditional measures of 

support, such as the standard bootstrap (Felsenstein 1985), are less informative 

for concatenated genome-scale data sets (Rokas and Carroll 2006; Siddall 

2010,Smith et al. 2015b), we applied alternative procedures to evaluate the 

robustness and uncertainty of internal edges in both the eight- and nine-taxon 

datasets. Jackknife resampling of 30% of the total number of genes resulted in 

frequencies of 100 for all nodes. ICA values, however, were lower than 1.0 for 

focal nodes (Table 4.2), indicating conflict at the groupings of vespine genera. 

Contrary to what may be expected from previous findings (Regier et al. 2008; 

Salichos and Rokas 2013), incongruence was higher for the internode subtending 

the vespine clade rather than for the shorter branch subtending the Vespa and 

Dolichovespula group (Fig. 4.1, Table 4.2). Conflict at the base of the Vespinae 

clade suggests that biological processes such as gene duplication and extinction 

and incomplete lineage sorting have influenced the origin of these wasps 

(Maddison 1997; Jeffroy et al. 2006; Philippe et al. 2011). Moreover, the origin of 
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the Vespinae might have been the result of a rapid radiation, where branching 

events are characterized by paucity of informative characters (Whitfield and 

Lockhart 2007; Whitfield and Kjer 2008). Further work is required on the sources 

of phylogenetic conflict in the Vespinae. As more genome-scale data becomes 

available, it also remains to be seen whether or not the sister-group relationship 

between Vespa and Dolichovespula is influenced by the inclusion of more taxa. 

The phylogeny inferred here can lead to different conclusions on the 

evolution of behavioral traits in the Vespinae. Large-colony species in the 

Vespinae usually have high paternity, which reduces relatedness between 

workers and, therefore, workers are predicted to police each other’s reproduction 

(Ratnieks 1988). This is the case for large-colony species of the Vespula vulgaris 

and squamosa groups (Wenseleers et al. 2005b; Helanterä et al. 2006; Bonckaert et 

al. 2008; Oi et al. 2015). In contrast, small-colony species of Dolichovespula usually 

have low paternity and worker reproduction (Foster and Ratnieks 2001b; Foster 

et al. 2001; Wenseleers et al. 2005b; Bonckaert et al. 2011; van Zweden et al. 2013; 

Loope et al. 2014). Phylogenetically informed comparative analyses reveal that in 

vespine wasps, workers suppress each other’s reproduction more frequently in 

species with high paternity, where workers are more related to the queen’s sons 

than to sons of workers (Wenseleers and Ratnieks 2006). Moreover, taking 

phylogeny into account, colony size predicts average intracolony relatedness and 

correlates positively with paternity frequency in vespine wasps (Loope et al. 

2014). Colony size is a trait that may be considered both a cause and effect of 

reproductive conflict (Bourke 1999). That is, effective policing in Vespula may 

have driven the evolution of large colony size or, alternatively, large colony size 

may have increased the benefits of worker policing (Foster and Ratnieks 2001b).  
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The comparative studies aforementioned, however, relied on a 

hypothesis of yellowjacket monophyly. Our results suggest that inferences of 

trait evolution in the Vespinae should not be based exclusively on an assumed 

position of Vespula as the sister group to the Dolichovespula. The phylogenetic 

framework proposed here implies, for example, that the evolution of large 

colony size and high paternity may be unique to species in a lineage (Vespula) 

distantly related from the remaining Vespinae. 
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CHAPTER 5: PATTERNS OF POSITIVE SELECTION IN SOCIAL WASP 

TRANSCRIPTOMES (HYMENOPTERA: VESPIDAE, VESPINAE) 

5.1. Introduction 

Convergent transitions in social evolution enable the discovery of shared 

genomic features associated with these transitions (Smith et al. 2008; Fischman et 

al. 2011; Simola et al. 2013; Stern 2013; Rehan and Toth 2015). Eusociality, where 

female workers cooperatively raise the offspring of the reproductive queen caste, 

originated repeatedly in the Hymenoptera – ants, bees, and wasps (Wilson 1971; 

Wilson and Holldobler 2005). Various mechanistic hypotheses have been 

proposed to explain transitions to eusociality and between alternative social 

phenotypes in molecular terms (Robinson et al. 2005; Rehan and Toth 2015). Two 

major hypotheses relate the evolution of castes to either changes in gene 

expression or changes in genomic sequence, although these mechanisms are not 

necessarily mutually exclusive (Rehan and Toth 2015). From the perspective of 

gene expression, the genetic toolkit hypothesis, for example, proposes that 

regulation of sets of genes with conserved roles underlie the evolution of castes 

across taxa (Toth and Robinson 2007; Toth et al. 2010). In the context of changes 

in genomic sequence, however, studies of ants and bees suggest that novel (i.e., 

taxonomically restricted) protein-coding genes (Khalturin et al. 2009; Tautz and 

Domazet-Loso 2011; Long et al. 2013) have influenced the attainment and 

elaboration of eusociality (Johnson and Tsutsui 2011; Simola et al. 2013; 

Feldmeyer et al. 2014; Berens et al. 2015a; Jasper et al. 2015). Furthermore, the 

protein evolution hypothesis proposes that the origin of social phenotypes is 

associated with positive selection acting on genes related to functional categories 

such as carbohydrate metabolism, immunity, neurogenesis, and olfaction, among 
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others (Fischman et al. 2011; Woodard et al. 2011; Harpur and Zayed 2013; 

Harpur et al. 2014; Roux et al. 2014; Kapheim et al. 2015). On a molecular level, 

therefore, the history of social insects may have been shaped by the birth of novel 

genes and rapid evolution of genes or gene families (Sumner 2014). 

Transitions to eusociality likely involved intermediate stages, ranging 

from solitary to communal living (Evans and West-Eberhard 1970; West-

Eberhard 1978; Carpenter 1989), with variation in the molecular mechanisms 

operating at different transitional stages. For example, primitively eusocial 

species of the paper wasp genus Polistes have rudimentary caste differences in 

morphology and their workers have the potential to become replacement queens 

(West 1967; Reeve 1991; Jandt et al. 2013). Similarly, in Dinoponera ants, where the 

distinct queen caste has been secondarily lost, young workers compete for 

reproductive primacy (Monnin and Peeters 1998; Lenhart et al. 2013). 

Comparative genomics of Polistes canadensis and Dinoponera quadriceps show that 

in these species both conserved toolkit genes and novel genes play a similar role 

in the reproductive plasticity that characterizes their simple societies (Patalano et 

al. 2015). Comparisons spanning other levels of social complexity, therefore, 

provide further insights into understanding social evolution in molecular terms. 

In particular, lineages that display a full range of lifestyles, and where eusociality 

has a relatively recent origin, may provide a more informative view into the 

evolution of eusociality and its genomics basis (Danforth 2002; Rehan and Toth 

2015). 

The Vespidae is a lineage of wasps exhibiting a full spectrum of social 

traits, including solitary as well as primitively and advanced eusocial species 

(Evans and West-Eberhard 1970; Jeanne 1980; O’Donnell 1998). Eusociality in the 
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Vespidae originated sometime in the mid-Cretaceous, with a minimum age of 

approximately 63 Mya (Wenzel 1990), later than in other eusocial groups such as 

ants and termites (Cardinal and Danforth 2011). Within vespids, the paper wasp 

genus Polistes and yellowjackets (Vespula and Dolichovespula) and hornets (Vespa) 

are perhaps the most well known, and all belong to eusocial subfamilies. In 

contrast to the primitively eusocial Polistes, the highly or advanced eusocial 

colonies of yellowjackets and hornets have morphologically distinct castes and 

their colonies comprise hundreds to thousands of workers (Evans and West-

Eberhard 1970). Although the natural history of several vespid species has been 

well documented (Richards 1971; Spradbery 1973; Akre and Davis 1978; Ross 

and Matthews 1991; Hunt 2007; Gadagkar 2009), sociogenomic analyses have 

been conducted only recently (Jandt and Toth 2015). 

Previous sociogenomic studies in the Vespidae have focused on 

comparisons of gene expression, particularly in paper wasps, whereas tests of 

alternative hypotheses and encompassing multiple social levels are wanting. In 

Polistes metricus, for example, individuals exhibiting maternal care (workers and 

foundresses) have more similar patterns of gene expression in comparison to 

individuals that do not (queens and gynes) (Toth et al. 2007). By contrast, 

transcriptomic analyses of Polistes canadensis suggest that caste differences derive 

from novel genes that are differentially expressed (Ferreira et al. 2013; see, 

however, Berens et al. 2015). Although certain insights have been gathered from 

studies of Polistes wasps, discovering broad genomic patterns in the Vespidae 

requires the inclusion of highly eusocial species such as yellowjackets and 

hornets. The ongoing synthesis of sociogenomics (Rehan and Toth 2015; 

Kapheim 2016) suggests that protein evolution and positive selection may be the 
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primary mechanisms influencing the transition to highly eusocial behavior. This 

protein evolution hypothesis has been supported in studies of bees (Woodard et 

al. 2011; Harpur et al. 2014; Jasper et al. 2015; Kapheim et al. 2015) and ants 

(Simola et al. 2013), but remains unexplored in the highly eusocial social wasps. 

Here, we conduct a comparative transcriptomic analysis of vespid wasps to test 

the protein evolution hypothesis. Specifically, we perform phylogeny-based 

comparisons to identify lineage-specific signatures of positive selection in 

transcriptomes of highly eusocial wasps, and compare these results to 

primitively eusocial and solitary wasp lineages. 

 

5.2. Materials and methods 

5.2.1. Transcriptome assembly 

We sampled solitary as well as primitively and advanced eusocial 

species of the family Vespidae and extracted total RNA from single, whole 

specimens using the TRIzol® reagent (Invitrogen) (Table 5.1). We outsourced the 

preparation of cDNA libraries, Roche 454 pyrosequencing of A. catskill, and 

paired-end 2 x 100 bp Illumina sequencing of the remaining species to Beckman 

Coulter Genomics (Danvers, MA). Our data were analyzed in combination with 

published transcriptomes from the solitary cuckoo wasp Argochrysis armilla and 

the primitively eusocial vespids Pseudomasaris vespoides and Mischocyttarus 

flavitarsis (NCBI SRA accessions SRX262928, SRX262920, and SRX259759; Johnson 

et al. 2013). We trimmed adapters and low-quality bases from Illumina reads 

using Trimmomatic v. 0.32 (Lohse et al. 2012; Bolger et al. 2014) with a sliding 

window threshold for average base quality equal to 20. Transcriptomes were 

assembled de novo using Trinity v. 2013-11-10 (Grabherr et al. 2011; Haas et al. 



 

78 

2013) with default settings. We identified candidate, coding regions using 

TransDecoder r20131110 (Haas et al. 2013) and clustered redundant proteins 

using CD-HIT (Fu et al. 2012) with an identity threshold of 1.0 (–c 1.0 –n 5). 

Amino acid sequences were used for orthology inference and phylogenetic 

analysis. 

 

5.2.2. Orthology inference and phylogenetic analysis 

We followed a procedure based on sequence similarity and phylogenetic 

inference to identify putative orthologs (Yang and Smith 2014). Orthology 

inference was conducted for a taxon set including transcriptomes from nine 

species, and another set excluding A. catskill. We carried out all-by-all BLASTP 

searches with default settings and retained BLASTP hits with query coverage 

greater than 0.4. Putative homologs were inferred using Markov clustering (MCL 

v. 14-137; Enright et al. 2002) with an E value cutoff of 10-5 and an inflation value 

of 2.0. We aligned clusters using MAFFT v. 7 (Katoh and Standley 2013) and 

cleaned alignments using Phyutility (Smith and Dunn 2008) with minimum site 

occupancy of 0.1. MAFFT alignments were performed using the options 

‘genafpair’ and ‘maxiterate 1000’. Clusters with more than one thousand 

sequences were aligned using PASTA (Mirarab et al. 2014). We used RAxML 8 

(Stamatakis 2014) to infer a maximum likelihood phylogenetic tree for each 

aligned cluster of homologous sequences with the model PROTCATWAG. We 

trimmed terminal branches ten times longer than their sisters or longer than 0.8, 

removed monophyletic and paraphyletic sequences belonging to the same taxon, 

and cut internal branches longer than 1.0. This process of sequence alignment, 

cleaning of alignments and trimming of branches was repeated using a cutoff of 
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0.6 for tips and 0.7 for internal branches. We then conducted a third round of 

alignment and tree inference to generate trees of homologs for orthology 

inference. Orthologs were determined using the maximum inclusion criterion 

(Dunn et al. 2008; Hejnol et al. 2009). We aligned orthologs using MAFFT and 

alignments trimmed with Gblocks v0.91 (Castresana 2000). Models of amino acid 

substitution were chosen for each ortholog using the model selection Perl script 

provided with RAxML. We concatenated orthologs with complete taxon sets and 

at least 300 sites. Partitioned maximum likelihood and rapid bootstrap analyses 

were carried out using RAxML on CIPRES (Miller et al. 2010). 

 

5.2.3. Tests of positive selection 

We realigned orthologs using PRANK (Löytynoja and Goldman 2005, 

2008) to mitigate the influence of alignment errors that mislead branch-specific 

tests of positive selection (Fletcher and Yang 2010; Markova-Raina and Petrov 

2011). PRANK protein alignments were conducted with default settings. We 

converted protein sequence alignments into their corresponding codon-based 

DNA alignments using PAL2NAL v14 (Suyama et al. 2006), enabling the option 

to remove columns with gaps. Codon alignments with more than 100 sites were 

considered for tests of positive selection. We performed tests of positive selection 

in CODEML employing branch tests (Yang 1998) to evaluate the a priori 

hypothesis that the highly eusocial yellowjackets and hornets have experienced 

accelerated evolution relative to primitively- or non-eusocial lineages. We 

performed tests on single branches or whole clades to detect signatures of 

positive selection on unrooted trees (Fig. 1). The alternative branch model 

assumes that branches of interest, or foreground branches, have a ratio of 



 

80 

synonymous (dS) and nonsynonymous (dN) substitutions (dN/dS or ω) that is 

different from the background ratio. This two-ratio model was contrasted with 

the null model of the same dN/dS for all branches. We compared alternative and 

null models using the likelihood-ratio test (LRT) and calculated p-values using 

the base R function pchisq (df = 1). P-values from all LRTs were then used to 

estimate q-values, which measure significance in terms of the false discovery rate 

(FDR) (Storey 2002; Storey and Tibshirani 2003), using the R package qvalue with 

an FDR level equal to 0.05. Considering that the branch test approach is quite 

conservative, since positive selection can be detected only when the average dN/dS 

over all sites is greater than one, we compared dN/dS values for foreground 

branches to find differences suggesting relaxed stabilizing selection. 

 

5.2.4. Annotation of orthologs 

Profiles of potential protein function were determined for each ortholog 

using InterProScan v5 (Jones et al. 2014), limited to identification of protein 

domains (Pfam; Punta et al. 2012) based on searches with HMMER v3.1 

(hmmer.org) and prediction of signal peptides (SignalP v4.0; Petersen et al. 2011) 

and transmembrane regions (TMHMM v2.0; Krogh et al. 2001). We carried out 

BLASTP searches against the NCBI Reference Sequence Database (RefSeq, release 

74) with an E value cutoff of 10-5 and restricted to Hymenoptera and Drosophila 

matches (NCBI taxonomy identifiers 7399 and 7215). InterProScan profiles and 

the top 20 BLASTP hits for each ortholog were mapped to gene ontology (GO) 

terms and annotated using BLAST2GO v3.2 (Conesa and Götz 2008) under 

default settings. Orthologs with dN/dS ratios significantly greater than one were 

additionally submitted to BLASTP searches against Drosophila melanogaster 
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proteins with UniProt (The UniProt Consortium 2015) as the target database. We 

performed functional enrichment analyses between all orthologs and subsets of 

orthologs with signatures of positive selection using Fisher’s exact test correcting 

for multiple comparisons (FDR) in BLAST2GO. 

 

5.3. Results 

5.3.1. Orthology inference and phylogenetic analysis 

Transcriptomes from six vespid species had an average of 129,357 

transcripts and 51,786 potential coding regions (Table 5.1). After reducing 

sequence redundancy, the average number of amino acid sequences was 14,896, 

excluding A. catskill (Table 5.1). We identified 1,507 (9 taxa) and 3,356 (8 taxa) 

putative orthologs with full taxon coverage, 90-93% amino acid occupancy, and 

alignment length greater than 300 sites for phylogenetic inference. The 

maximum-likelihood phylogeny inferred with each matrix of concatenated 

orthologs had 100 bootstrap support values for all nodes. The topology 

recovered shows the highly eusocial yellowjackets and hornets (Vespinae) as 

monophyletic and sister to the primitively eusocial paper wasps (Polistinae), 

and, depending on the taxon set, either the solitary A. catskill or P. vespoides as 

sister to the eusocial clade (Fig. 5.1). 

 

5.3.2. Patterns of positive selection 

After converting protein sequence to codon-based DNA alignments and 

filtering by alignment length, 1,391 and 3291 orthologs remained for tests of 

positive selection. Estimates of dN/dS using the basic model (one ratio for all 

branches) did not show evidence of positive selection. Altogether, comparisons 
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between the single and two-ratio models resulted in up to 6.62% (218/3,291) 

orthologs displaying significant signals of accelerated evolution (foreground 

branch dN/dS > 1, LRT q-value < 0.05). For the two sets of orthologs, the proportion 

of positively selected genes varied across the branches tested. We found evidence 

of episodic positive selection predominantly on the branch subtending the highly 

eusocial yellowjackets and hornets (Table 5.2, branch 1). The branch test specific 

to the primitively eusocial lineage (branch 2) had 0.3-2.92% positively selected 

orthologs and the branch leading to the clade of eusocial vespids (branch 3) had 

up to 1.22% genes with signatures of positive selection (Table 5.2). For the set of 

1,391 orthologs, we found an overlap of two positively selected genes between 

the highly eusocial lineage (branch 1) and along the branch subtending the 

eusocial clade (branch 3), whereas orthologs from the primitively eusocial 

lineage were exclusive. By contrast, our analyses of the 3,291 ortholog set 

revealed shared genes only between the highly and primitively eusocial lineages; 

22 positively selected orthologs in common. The terminal branch leading to the 

solitary P. vespoides had no orthologs with signatures of positive selection. The 

clade-specific tests (branch labels 5 and 6) resulted in a single gene with a dN/dS 

ratio significantly greater than one, suggesting that the evolution of levels of 

eusociality in the Vespidae might have been episodic. 

Comparisons of dN/dS estimates smaller than one and from significant 

LRTs suggested that relaxed selection might have operated in the evolution of 

highly and primitively eusocial lineages, but not along the branch leading to the 

eusocial clade (Figure 5.2). Mann-Whitney U tests using foreground and 

background branch labels as factors revealed significant differences between 
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dN/dS ratios for the highly (W = 15179, p-value < 0.00) and primitively (W = 85276, 

p-value < 0.00) eusocial lineages. 

 

5.3.3. Functional targets of episodic positive selection 

The sets of 1,391 and 3,291 orthologs had 67% (8,412) and 61% (16,138) 

sequences annotated, respectively. Orthologs with signatures of positive 

selection in the highly eusocial lineage corresponded to GO biological processes 

involved in the metabolism of sugars, oxidation of fatty acids, transport of 

calcium ions in mitochondria, glycolysis, and protein phosphorylation, among 

others (Table 5.3). Positively selected genes in the primitively eusocial lineage 

involved processes related to embryonic development, transport of 

phospholipids, binding of small nucleolar RNA, oxidation of fatty acids, 

phosphorylation of carbohydrates, and neural development (Table 5.4). Genes 

with signals of positive selection along the branch leading to the entire eusocial 

clade were associated with GO processes such as cellular responses to amino acid 

and starvation, biosynthesis of phospholipids, DNA and protein catabolism, and 

RNA processing. 

We evaluated which GO terms were enriched in those orthologs 

showing significant signatures of positive selection. GO terms overrepresented in 

the highly eusocial lineage included transferase activity, ATPase complex, 

nucleotide-sugar metabolic process, catalytic activity, pyruvate metabolic 

process, sodium ion transport, and potassium ion transport (Table 5.5). GO terms 

enriched in the primitively eusocial lineage corresponded to functions such as 

binding of magnesium ions and DNA and translocation of phospholipids, 

cellular components related to ATPase dependent transmembrane transport, and 
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processes such as transport of proteins as well as sodium and calcium ions (Table 

5.6). 
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Table 5.1: Characteristics of transcriptome assemblies. 

Behavior Species Total 
transcripts 

GC % Contig 
N50 

Average 
contig length 

ORFs CD-HIT 
clusters 

Highly 
eusocial 

D. arenaria 130,448 37.50 2,817 1,393.00 38,669 14,489 

 D. maculata 131,905 34.72 3,775 2,049.22 61,099 13,944 
 V. crabro 201,718 35.21 4,006 1,862.25 79,625 16,361 
 V. vidua 146,729 34.40 3,688 2,048.18 65,754 14,919 
Primitively 
eusocial 

P. dominula 155,861 32.47 3,396 1,798.09 58,569 14,768 

Solitary A. catskill 9,481 36.03 1,434 1,247.36 7,002 − 
Average  129,357 35.06 3,186 1,733.02 51,786 14,896 
SD  64,215.73 1.68 950.90 338.15 25,614.5 899.32 
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Table 5.2: Amount of positive selection detected in lineage-specific branch tests. Branch labels 
correspond to designations in Fig. 5.1. Number of orthologs with dN/dS ratios significantly 
greater than 1 (q-value < 0.05) for the 1,391 and 3,291 ortholog sets are separated by slashes. 

Branch 
label 

Lineage of 
interest 

Number of orthologs 
with ω > 1 

1 Highly 
eusocial 

38/218 

2 Primitively 
eusocial 

4/96 

3 Eusocial 17/7 
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Table 5.3: Overview of D. melanogaster matches for orthologs positively selected along the 
branch leading to the highly eusocial lineage; genes ranked according to their LRT 
significance values. ω values of 999 represent cases in which ds equals 0, and therefore ω is 
undefined. Results based on the set of 3,291 genes. 

Rank Drosophila 
melanogaster 
gene 

FlyBase ID UniProt 
entry 

GO biological process q-value ω 

1 BTB (POZ) 
domain-
containing 
protein 9, 
BTBD9 

FBgn0030228 Q9W2S3 Adult locomotory behavior; 
positive regulation of 
circadian sleep/wake cycle, 
sleep; regulation of 
synaptic transmission, 
dopaminergic 

1.02E-07 1.03 

2    Trehalase, Treh FBgn0003748 A5XCQ7 Trehalose metabolic 
process 

1.44E-07 3.05 

4 Isocitrate 
dehydrogenase, 
Idh 

FBgn0001248 Q9VSI6 Fatty acid alpha-oxidation; 
isocitrate metabolic process; 
tricarboxylic acid cycle  

2.39E-06 3.70 

5 Letm1 FBgn0019886 P91927 Cellular response to 
hypoxia; mitochondrial 
calcium ion transport; 
mitochondrion 
morphogenesis; 
neurotransmitter secretion; 
potassium ion 
transmembrane transport; 
sodium ion transmembrane 
transport 

4.70E-06 999 

7 CG6330 FBgn0039464 Q9VBA0 Gravitaxis; nucleoside 
metabolic process; 
nucleotide catabolic process 

0.0000 999 

8 Aldolase, Ald-
PJ 

FBpp0297612 F3YDB5 Glycolytic process  2.16E-05 3.33 

9 Glycerol 3 
phosphate 
dehydrogenase, 
Gpdh 

FBgn0001128 B5RIM9 Carbohydrate metabolic 
process; glycerol-3-
phosphate catabolic process  

2.39E-05 1.34 

10 auxilin, aux FBgn0037218 Q9VMY8 Compound eye 
morphogenesis; negative 
regulation of neuron death; 
Notch signaling pathway; 
protein phosphorylation; 
sperm individualization; 
synaptic vesicle uncoating 

2.43E-05 999 

11 Inositol-
requiring 
enzyme-1, Ire1 

FBgn0261984 A8JR46 Compound eye 
photoreceptor cell 
differentiation; 
endoplasmic reticulum 
unfolded protein response; 
Golgi organization; mRNA 
catabolic process; mRNA 
endonucleolytic cleavage 
involved in unfolded 
protein response; protein 
phosphorylation; 
regulation of RNA splicing 

2.52E-05 1.94 

13 Myosin 61F, FBgn0010246 H8F4R0 ATP binding; motor 3.08E-05 3.69 
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Myo61F-RA activity 
14 Vacuolar H+-

ATPase SFD 
subunit, 
VhaSFD 

FBgn0027779 Q9V3J1 ATP hydrolysis coupled 
proton transport; 
determination of adult 
lifespan; dsRNA transport  

3.54E-05 999 

18 axotactin, axo FBgn0262870 Q9VZ96 Transmission of nerve 
impulse  

4.26E-05 999 

19 gartenzwerg, 
garz 

FBgn0264560 A1Z8W8 Cell morphogenesis; 
epithelial cell development; 
Golgi organization; lumen 
formation, open tracheal 
system; phagocytosis; 
positive regulation of 
GTPase activity  

4.85E-05 999 

20 Vacuolar 
protein sorting 
33B, Vps33B 

FBgn0039335 Q9VBR1 Endosomal transport; 
imaginal disc-derived wing 
morphogenesis; immune 
response; mitotic spindle 
assembly 

5.16E-05 999 

21 Palmitoyl-
protein 
thioesterase 1, 
Ppt1 

FBgn0030057 Q9W3C7 Determination of adult 
lifespan; endocytosis; 
macromolecule 
depalmitoylation; neuron 
fate specification 

5.91E-05 999 

23 eIF3-S10 FBgn0037249 Q9VN25 Formation of translation 
preinitiation complex; 
mitotic spindle elongation; 
mitotic spindle 
organization; regulation of 
translational initiation; 
translational initiation 

7.66E-05 999 

24 CG5002 FBgn0034275 Q7K4I4 Bicarbonate transport; 
chloride transmembrane 
transport; oxalate transport; 
regulation of intracellular 
pH 

8.40E-05 999 

30 Sarcosine 
dehydrogenase, 
Sardh-PA 

FBpp0088528 T2FFP0 Oxidation-reduction 
process  

0.0002 999 

32 Kua FBgn0032850 Q9V3B5 Oxidation-reduction 
process; protein 
ubiquitination 

0.0002 999 

33 CG9674 FBgn0036663 Q9VVA4 Ammonia assimilation 
cycle; glutamate 
biosynthetic process 

0.0002 3.83 

42 Transferrin 2, 
Tsf2 

FBgn0036299 Q9VTZ5 Septate junction assembly  0.0004 999 

44 Suppressor of 
variegation 2-
10, Su(var)2-
10 

FBgn0003612 Q5BIG7 Chromosome condensation; 
chromosome organization; 
compound eye 
development; defense 
response to Gram-negative 
bacterium; hemopoiesis; 
imaginal disc growth; 
mitotic G2 DNA damage 
checkpoint; negative 
regulation of JAK-STAT 
cascade; neurogenesis; 

0.0005 999 
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positive regulation of 
innate immune response 

47 β subunit of 
type II 
geranylgeranyl 
transferase, 
betaggt-II 

FBgn0028970 Q9XZ68 Protein 
geranylgeranylation 

0.0005 1.98 

57 Malate 
dehydrogenase 
2, Mdh2-PA 

FBpp0082985 Q9VEB1 Activation of cysteine-type 
endopeptidase activity 
involved in apoptotic 
process; carbohydrate 
metabolic process; larval 
midgut cell programmed 
cell death; malate metabolic 
process; positive regulation 
of programmed cell death; 
pupal development; 
regulation of programmed 
cell death; salivary gland 
cell autophagic cell death; 
salivary gland histolysis 

0.0008 1.22 

58 Mitochondrial 
ribosomal 
protein L37, 
mRpL37 

FBgn0261380 Q9VGW9 Translation; structural 
constituent of ribosome 

0.0009 5.54 

60 UDP-galactose 
4'-epimerase, 
Gale-PB 

FBgn0035147 Q9W0P5 Galactose metabolic 
process; larval lymph gland 
hemopoiesis 

0.0010 999 

64 UGP FBgn0035978 A5XCL5 UDP-glucose metabolic 
process 

0.0012 999 

75 Insulin-like 
receptor, InR-2 

FBgn0283499 G2J5R2  
(A. mellifera) 

Transmembrane receptor 
protein tyrosine kinase 
signaling pathway; insulin-
activated receptor activity 

0.0018 999 

100 nervana, nrv3 FBgn0032946 Q86NM2 Potassium ion transport; 
response to auditory 
stimulus; sensory 
perception of sound; 
sodium ion transport 

0.0050 999 

105 Vitellogenin, 
vg 

- Q868N5  
(A. mellifera) 

Lipid transport 0.0058 1.01 

107 Facilitated 
trehalose 
transporter 
Tret1-1, Tret1-
1 

FBgn0050035 A1Z8N1 Glucose import; glucose 
transmembrane transport; 
hexose transmembrane 
transport; proton transport; 
trehalose transport 

0.0062 2.07 

110 Pyruvate 
carboxylase, 
PCB 

FBgn0027580 Q0E9E2 Gluconeogenesis; pyruvate 
metabolic process 

0.0067 999 

151 Aminolevulina
te synthase, 
Alas 

FBgn0020764 O18680 Chitin-based cuticle 
development; 
protoporphyrinogen IX 
biosynthetic process 

0.016 999 

159 GDP-4-keto-6-
deoxy-D-
mannose 3,5-
epimerase/4-
reductase, 

FBgn0267823 Q9W1X8 'De novo' GDP-L-fucose 
biosynthetic process; 
dsRNA transport; GDP-L-
fucose biosynthetic process 

0.0198 999 
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Gmer 
162 nervana, nrv2 FBgn0015777 A4V0B5 Potassium ion transport; 

sodium ion transport; ATP 
hydrolysis coupled 
transmembrane transport 

0.0213 999 

168 Rhodopsin 2, 
Rh2-PA 

FBpp0083111 P08099 Detection of visible light; G-
protein coupled receptor 
signaling pathway; 
phototransduction; protein-
chromophore linkage; 
visual perception 

0.0234 999 

186 Enolase, Eno FBgn0000579 P15007 Glycolytic process 0.03 999 
187 CG7920 FBgn0039737 Q9VAC1 Acetyl-CoA metabolic 

process; neurogenesis 
0.0303 1.05 

211 Inositol 1,4,5-
triphosphate 
kinase 1, 
IP3K1-PA 

FBpp0079465 M9ND56 Response to oxidative 
stress 

0.042 999 
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Table 5.4: Overview of D. melanogaster matches for orthologs positively selected along the 
branch leading to the primitively eusocial lineage; orthologs ranked according to their LRT 
significance values. Extreme ω values of 999 represent cases where there is a lack of 
synonymous substitutions along the branch, and therefore ω is undefined. Results based on 
the set of 3,291 genes. 

Rank Drosophila 
melanogaster 
gene 

FlyBase ID UniProt 
entry 

GO biological process q-value ω 

5 CG33298 FBgn0032120 Q7KTG6 Golgi organization; 
intracellular protein 
transport; phospholipid 
translocation 

3.81E-09 999 

8 CG8064 FBgn0038597 Q9VE98 snoRNA binding 6.17E-08 1.16 
12 Isocitrate 

dehydrogenase
, Idh 

FBgn0001248 Q9VSI6 Fatty acid alpha-oxidation; 
isocitrate metabolic process; 
tricarboxylic acid cycle 

9.12E-07 999 

13 FI22366p1, 
Ppt1 

FBgn0030057 S5WMX5 Palmitoyl-(protein) 
hydrolase activity 

2.66E-06 2.01 

15 EG:115C2.1 FBgn0025640 O77425 Carbohydrate 
phosphorylation; D-ribose 
metabolic process 

4.82E-06 1.67 

19 Acyl-CoA 
synthetase 
long-chain, 
Acsl 

FBgn0263120 A1Z7H2 Axon guidance; early 
endosome to recycling 
endosome transport; long-
chain fatty acid metabolic 
process; negative regulation 
of BMP signaling pathway; 
negative regulation of 
synaptic growth at 
neuromuscular junction; 
nervous system 
development; neurogenesis 

2.30E-05 999 

20 CG7379 FBgn0038546 Q9VEF5 Chromatin modification 3.99E-05 999 
23 nervana 3, 

nrv3 
FBgn0032946 Q86NM2 Potassium ion transport; 

response to auditory 
stimulus; sensory 
perception of sound; 
sodium ion transport 

8.48E-05 999 

25 Keap1 FBgn0038475 Q9VEN5 Protein ubiquitination 
involved in ubiquitin-
dependent protein catabolic 
process; response to 
oxidative stress 

0.0001 999 

26 Light, lt FBgn0002566 O76248 Autophagosome 
maturation; cellular 
response to starvation; 
determination of adult 
lifespan; dsRNA transport; 
endocytosis; intracellular 
transport; lysosomal 
transport; negative 
regulation of Notch 
signaling pathway; Notch 
receptor processing 

0.0002 999 

31 CG1882 FBgn0033226 Q5U191 Lipid metabolic process; 
lipid storage 

0.0003 1.06 

34 Vacuolar FBgn0038593 Q9VEA2 Autophagosome 0.0003 2.20 
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protein sorting 
39, Vps39 

maturation; cellular 
response to starvation; 
intracellular protein 
transport; neuron 
projection morphogenesis; 
regulation of Notch 
signaling pathway; 
regulation of SNARE 
complex assembly 

39 CG11665 FBgn0033028 Q7JWI7 Monocarboxylic acid 
transport 

0.0007 1.40 

46 LKRSDH FBpp0310050 Q6NP53 Oxidation-reduction 
process 

0.0017 999 

48 Gliotactin, Gli FBgn0001987 Q9NK80 Border follicle cell 
migration; establishment of 
blood-nerve barrier; female 
meiosis chromosome 
segregation; maintenance of 
imaginal disc-derived wing 
hair orientation; 
modulation of synaptic 
transmission; neuron cell-
cell adhesion; postsynaptic 
membrane assembly; 
presynaptic membrane 
assembly; regulation of 
tube size, open tracheal 
system; septate junction 
assembly 

0.0021 999 

49 Probable 
cytochrome 
P450 9f2, 
Cyp9f2 

FBgn0038037 Q9VG82 Heme binding; iron ion 
binding; monooxygenase 
activity; oxidoreductase 
activity 

0.0022 4.74 

50 CG5525 FBgn0032444 Q9VK69 Cytoplasmic microtubule 
organization; mitotic 
spindle assembly; mitotic 
spindle organization; 
neurogenesis; protein 
folding 

0.0023 8.08 

55 CG10512-RD FBgn0037057 Q8IPT9 Oxidation-reduction 
process 

0.0033 999 

63 CG8005 FBgn0035854 Q9VSF4 Deoxyhypusine 
biosynthetic process from 
spermidine; peptidyl-lysine 
modification to peptidyl-
hypusine 

0.0060 1.11 

67 Malate 
dehydrogenase 
1, Mdh1 

FBgn0262782 Q9VKX2 Carbohydrate metabolic 
process; lateral inhibition; 
malate metabolic process; 
tricarboxylic acid cycle 

0.0084 999 
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Table 5.5: Top GO categories enriched in genes revealing significant signatures of positive 
selection in the highly eusocial wasp lineage (branch test 1). GO categories are molecular 
function (F), cell component (C), and biological process (P). Results based on the set of 3,291 
genes. 

GO-ID Term Category FDR P-value Test set 
GO:0016740 Transferase activity F 9.12E-19 2.75E-22 321 
GO:1904949 ATPase complex C 1.34E-16 2.02E-19 16 
GO:0098533 ATPase dependent 

transmembrane transport 
complex 

C 1.34E-16 2.02E-19 16 

GO:0090533 Cation-transporting ATPase 
complex 

C 1.34E-16 2.02E-19 16 

GO:0005890 Sodium:potassium-
exchanging ATPase complex 

C 1.34E-16 2.02E-19 16 

GO:1902495 Transmembrane transporter 
complex 

C 7.61E-14 1.61E-16 16 

GO:1990351 Transporter complex C 7.61E-14 1.61E-16 16 
GO:0051649 Establishment of localization 

in cell 
P 2.90E-12 7.01E-15 88 

GO:0009225 Nucleotide-sugar metabolic 
process 

P 3.24E-11 8.79E-14 16 

GO:0008318 Protein prenyltransferase 
activity 

F 3.93E-11 1.18E-13 12 

GO:0003824 Catalytic activity F 5.07E-11 1.68E-13 638 
GO:0051641 Cellular localization P 5.71E-11 2.07E-13 88 
GO:0006090 Pyruvate metabolic process P 1.66E-10 6.52E-13 24 
GO:0046907 Intracellular transport P 4.12E-09 1.74E-11 72 
GO:0006814 Sodium ion transport P 5.02E-09 2.27E-11 16 
GO:0006886 Intracellular protein transport P 7.36E-09 4.00E-11 58 
GO:0006813 Potassium ion transport P 1.91E-08 1.37E-10 16 

GO:0009451 RNA modification P 1.91E-08 2.25E-10 40 
GO:0034613 Cellular protein localization P 1.91E-08 2.26E-10 58 
GO:0034708 Methyltransferase complex C 1.91E-08 4.62E-10 8 

GO:0016040 
Glutamate synthase (NADH) 
activity F 1.91E-08 4.62E-10 8 

GO:0016832 Aldehyde-lyase activity F 1.91E-08 4.62E-10 8 

GO:0042350 
GDP-L-fucose biosynthetic 
process P 1.91E-08 4.62E-10 8 

GO:0042351 
'De novo' GDP-L-fucose 
biosynthetic process P 1.91E-08 4.62E-10 8 

GO:0004661 

Protein 
geranylgeranyltransferase 
activity F 1.91E-08 4.62E-10 8 

GO:0004663 

Rab 
geranylgeranyltransferase 
activity F 1.91E-08 4.62E-10 8 
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Table 5.6: Top GO categories enriched in genes with significant signatures of positive 
selection in the primitively eusocial lineage (branch test 2). GO categories are molecular 
function (F), cell component (C), and biological process (P). Results based on the set of 3,291 
genes. 

GO-ID Term Category FDR P-value Test set 

GO:0000287 Magnesium ion binding F 7.91E-17 2.39E-20 32 

GO:0003690 
Double-stranded DNA 
binding F 1.29E-11 7.76E-15 16 

GO:0004012 
Phospholipid-translocating 
ATPase activity F 4.25E-11 2.57E-13 8 

GO:0045332 Phospholipid translocation P 4.25E-11 2.57E-13 8 

GO:0001012 

RNA polymerase II 
regulatory region DNA 
binding F 4.25E-11 2.57E-13 8 

GO:0031463 
Cul3-RING ubiquitin ligase 
complex C 4.25E-11 2.57E-13 8 

GO:0098599 Palmitoyl hydrolase activity F 4.25E-11 2.57E-13 8 

GO:0004450 
Isocitrate dehydrogenase 
(NADP+) activity F 4.25E-11 2.57E-13 8 

GO:0015914 Phospholipid transport P 4.25E-11 2.57E-13 8 
GO:0034204 Lipid translocation P 4.25E-11 2.57E-13 8 

GO:0000978 

RNA polymerase II core 
promoter proximal region 
sequence-specific DNA 
binding F 4.25E-11 2.57E-13 8 

GO:0000977 

RNA polymerase II 
regulatory region sequence-
specific DNA binding F 4.25E-11 2.57E-13 8 

GO:0000976 

Transcription regulatory 
region sequence-specific 
DNA binding F 4.25E-11 2.57E-13 8 

GO:0000987 

Core promoter proximal 
region sequence-specific 
DNA binding F 4.25E-11 2.57E-13 8 

GO:0000982 

Transcription factor activity, 
RNA polymerase II core 
promoter proximal region 
sequence-specific binding F 4.25E-11 2.57E-13 8 

GO:0097035 
Regulation of membrane lipid 
distribution P 4.25E-11 2.57E-13 8 

GO:0001159 
Core promoter proximal 
region DNA binding F 4.25E-11 2.57E-13 8 

GO:0005548 
Phospholipid transporter 
activity F 4.25E-11 2.57E-13 8 

GO:0015748 
Organophosphate ester 
transport P 4.25E-11 2.57E-13 8 

GO:0006102 Isocitrate metabolic process P 4.25E-11 2.57E-13 8 
GO:0042393 Histone binding F 3.56E-10 2.26E-12 8 

GO:0052855 
ADP-dependent NAD(P)H-
hydrate dehydratase activity F 1.46E-09 9.70E-12 7 

GO:0009060 Aerobic respiration P 8.13E-09 5.89E-11 16 
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GO:0006099 Tricarboxylic acid cycle P 8.13E-09 5.89E-11 16 
GO:0006820 Anion transport P 2.09E-08 1.58E-10 24 

GO:0072350 
Tricarboxylic acid metabolic 
process P 3.75E-08 3.17E-10 16 

GO:0006101 Citrate metabolic process P 3.75E-08 3.17E-10 16 
GO:0004747 Ribokinase activity F 3.91E-08 3.66E-10 6 
GO:0019321 Pentose metabolic process P 3.91E-08 3.66E-10 6 
GO:0006014 D-ribose metabolic process P 3.91E-08 3.66E-10 6 
GO:0045333 Cellular respiration P 3.99E-08 3.85E-10 16 
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Figure 5.1: Phylogeny of vespid wasps showing branches labeled for positive selection 
analyses. Numbers above branches indicate lineage-specific branch tests, whereas numbers 
below branches indicate clade-specific tests. 
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Figure 5.2: Comparison of ω values significantly less than one for background (Bkgd) and 
foreground (Fg) branches across lineage-specific tests. Boxplots of ω values overlaid with the 
actual data points, 'jittered' horizontally. 
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5.1. Discussion 

On a molecular level, various mechanisms operate across transitional 

stages of social evolution (Rehan and Toth 2015). For example, the evolution of 

highly eusocial behavior in bees, and in ants, has been linked to accelerated 

evolution of protein coding genes (Hunt et al. 2010a; Fischman et al. 2011; 

Woodard et al. 2011; Harpur and Zayed 2013; Harpur et al. 2014; Roux et al. 2014; 

Kapheim et al. 2015). In this study, we find that episodic positive selection is 

associated with the origin of highly eusocial behavior in wasps. We identified up 

to 218 genes showing signatures of accelerated evolution in the Vespinae lineage 

(Table 5.3). Fewer genes were positively selected along branches leading to the 

eusocial clade and the primitively eusocial lineage (Table 5.2). Our findings 

suggest that genes involved in metabolism of carbohydrates and functioning in 

mitochondria (Table 5.3, 5.6) have been primary targets of selection in the origin 

of advanced eusociality. Below, we provide possible links between the rapid 

evolution of certain positively selected genes and the transition to advanced 

eusociality. 

Traits defining advanced eusociality include morphologically distinct 

castes in colonies with hundreds to thousands of individuals. The growth of 

these large colonies is partially determined by specialized workers foraging for 

prey to provision larvae and wood pulp to build nests (Greene 1991; Richter 

2000). Accelerated protein evolution in the yellowjackets and hornets might be 

related to worker foraging activity, which likely involved molecular changes in 

the metabolism of energy precursors such as sugars. The sugar trehalose exists in 

abundance in the hemolymph (circulatory fluid) of insects. We found that the 

gene Trehalase had significant signatures of positive selection only in the highly 
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eusocial lineage (Table 5.3), and contributed to the enriched category ‘Catalytic 

activity’ (Table 5.5). The trehalase protein catalyzes the conversion of trehalose 

into glucose, providing energy for the activity of flight muscles (Becker et al. 

1996), as well as playing a crucial role in development, stress recovery, and 

synthesis of chitin in insects (Shukla et al. 2015). Changes in the metabolism of 

sugars might have been particularly important in the social Hymenoptera. For 

example, foraging is metabolically expensive in bees (Harrison and Fewell 2002; 

Schippers et al. 2010), which exclusively use sugars to fuel their flight muscles 

(Blatt and Roces 2001; Suarez et al. 2005) and show variation in flight 

performance depending on worker role and age of foragers (Roberts and 

Elekonich 2005; Vance et al. 2009). Flight muscle activity, therefore, allows 

selection for specialization to act within the worker caste. Moreover, D. 

melanogaster mutants of the enzyme that synthesizes trehalose (Tps1) show severe 

growth defects on a low-protein diet (Matsuda et al. 2015). Trehalose may also be 

involved in cognitive functions, since old honeybee foragers show brain 

overexpression of Tps1 (Whitfield et al. 2003).  

Positive selection acting on genes associated with metabolism and 

transport of trehalose might be related, in particular, to wasp queens entering a 

dormant state and living underground during the winter. In addition to Treh, we 

found evidence of positive selection for the gene Facilitated trehalose transporter 

Tret1-1 (Table 5.3), which regulates levels of trehalose in the hemolymph and its 

incorporation into tissues (Kikawada et al. 2007; Kanamori et al. 2010). 

Accumulation of trehalose provides tolerance to cold and stability of protein 

structure in insects (Sinclair et al. 2003, 2013; Chen and Haddad 2004; Andersen 

et al. 2011; Koštál et al. 2012). Overwintering behavior might have selected for 
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extreme caste dimorphism in the Vespinae (West-Eberhard 1978; O’Donnell 

1998), which are distributed throughout northern temperate regions and have 

queens with large body sizes. Elevated levels of trehalose after exposure to cold 

have been reported in the primitively eusocial Polistes (Strassmann et al. 1984). 

Furthermore, high survival of overwintering queens and queen body size 

correlate positively in the yellowjacket Vespula maculifrons (Kovacs and 

Goodisman 2012) and the paper wasp Polistes gallicus (Dani 1994).  

Other signals of positive selection concerning metabolism of 

carbohydrates were detected for genes in the glycolysis pathway. We found 

accelerated rates of evolution for the glycolytic enzymes Aldolase and Enolase 

(Table 5.3), both contributing to the enriched category ‘Catalytic Activity’ (Table 

5.5), among others. Changes in expression of Enolase relate to caste determination 

in Apis mellifera, where queen-destined larvae show increased levels of enolase 

protein relative to larvae that will become workers (Li et al. 2010). Comparative 

proteomic analyses reveal that foraging bees have higher levels of aldolase in 

comparison to workers performing within-hive activities (Schippers et al. 2006; 

Wolschin and Amdam 2007). Moreover, sterile honeybee workers have higher 

levels of aldolase protein compared to reproductive workers (Cardoen et al. 

2011a). Adult caste differences in the abundance of glycolytic enzymes, therefore, 

likely result from the activity of flight muscles in foragers (Suarez et al. 2005). 

Our findings suggest that in addition to changes in the regulation of these 

glycolytic enzymes, changes in their coding sequences might have influenced the 

origin of advanced eusociality. 

Accelerated evolution of glycolytic enzymes may relate to post-

copulatory physiology. Insects rely largely on glycolysis to power sperm motility 
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(Werner and Simmons 2008). Social insects usually mate only once and maintain 

a lifelong supply of sperm in a specialized storage organ, the spermatheca. 

Aldolase and enolase have been detected in spermathecal fluid (Baer et al. 2009) 

as well as sperm fluid and seminal vesicles (Collins et al. 2006) in A. mellifera. 

Studies of D. melanogaster show that sperm and seminal fluid proteins transferred 

during mating launch females on a series of behavioral and physiological 

changes, such as decreased receptivity to mating and elevated egg laying 

(Wolfner 1997; Chapman 2001; Gillott 2003; McGraw et al. 2004). Furthermore, at 

the molecular level, mated females of D. melanogaster overexpress aldolase in 

their reproductive tract tissues (Mack et al. 2006). Likewise, behavioral and 

physiological post-mating changes in queens of A. mellifera correlate with gene 

expression patterns in brains and ovaries (Kocher et al. 2008). In contrast to ants 

and bees (Gobin et al. 2006; Gotoh et al. 2009), caste differences related to female 

reproductive anatomy seem implausible in the Vespinae, since queens and 

workers of the genus Vespa, for example, have strikingly similar spermathecae 

(Gotoh et al. 2008). Molecular mechanisms involved in post-mating sperm 

selection, storage, and expenditure seem more likely to have fitness 

consequences in social wasps (Boomsma 2013; Beani et al. 2014), as it is expected 

based on insights from ants and bees (Baer et al. 2006; den Boer et al. 2009, 2010; 

Jaffe et al. 2012). Seminal fluids that incapacitate rival sperm, however, provide 

another mechanism for differences in reproductive success in social insects (den 

Boer et al. 2010; Avila et al. 2011). Among yellowjackets, queens of Vespula 

squamosa mate with multiple males and show skewed sperm usage (Hoffman et 

al. 2008; see, however, Ross 1986). Additionally, colony size correlates negatively 

with paternity skew in other yellowjacket species (Loope et al. 2014). Highly 
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variable counts of stored sperm among queens of the yellowjacket Dolichovespula 

maculata suggest that sperm quantity may limit nest growth and affect queen 

fitness (Stein et al. 1996). Perhaps processes involving glycolytic enzymes 

influence the usage of sperm and successful founding of colonies in the 

Vespinae. Although glycolytic enzymes have been identified in sperm of D. 

melanogaster, these lacked signatures of accelerated evolution (Dorus et al. 2006), 

whereas proteins from the male accessory gland showed evidence of positive 

selection (Swanson et al. 2001; Mueller et al. 2005). This test of positive selection 

on glycolytic enzymes, however, was based on pairwise comparisons between 

two species of Drosophila (Dorus et al. 2006). Strong stabilizing selection acting on 

glycolytic enzymes in Drosophila may be expected considering that, for example, 

an Aldolase mutant with a single amino acid change in D. melanogaster shows 

decreased levels of ATP, reduced lifespan, and neurodegeneration (Miller et al. 

2012). Such functional constraints for enzymes involved in glycolysis might have 

been relaxed in other taxa. For example, mammals possess multiple tissue-

specific enolases, and an enolase copy unique to sperm (Edwards and 

Grootegoed 1983; Tracy and Hedges 2000).  

In addition to glycolytic enzymes, we found evidence of accelerated 

evolution for other genes related to energy production. Specifically, we detected 

signals of positive selection for genes involved in metabolism of pyruvate and 

the tricarboxylic acid cycle, such as Pyruvate carboxylase (PCB), Isocitrate 

dehydrogenase (Idh), Malate dehydrogenase 2 (Mdh2), and CG7920 (Table 5.3). These 

findings further implicate the evolution of highly eusocial behavior to changes in 

metabolic function (Hunt et al. 2010b; Woodard et al. 2011; Roux et al. 2014). This 

association may result from different selection pressures experienced by castes; 
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queens are selected for their fecundity and longevity, and the molecular 

machinery underlying these traits, whereas workers are selected for their 

specialized, non-reproductive roles (Strassmann and Queller 2007; Smith et al. 

2008; Bloch and Grozinger 2011; Sumner 2014). Caste differences in energy 

expenditure have been demonstrated in other taxa, such as eusocial mammals. 

Colonies of the Damaraland mole rat, for example, have a caste of infrequent 

workers that specialize in building up body reserves for potential dispersal when 

environmental conditions seem suitable (Scantlebury et al. 2006).  

The origin and elaboration of eusociality likely involved demands in 

sensory and cognitive functions and changes in brain regions related to these 

functions (Chittka and Niven 2009; O’Donnell et al. 2011, 2013; Muscedere et al. 

2014). We found evidence of positive selection for genes related to sound and 

visual perception (Table 5.3). The genes Nervana 2 and 3 (nrv2, nrv3) mediate the 

transport of sodium and potassium ions across membranes and therefore 

influence a variety of processes. In D. melanogaster, where nrv2 and nrv3 show 

expression specific to cell types in the auditory Johnston’s organ, knocking down 

nrv2 causes severe deafness (Roy et al. 2013). Furthermore, Drosophila flies with a 

reduced copy number of nrv3 show increased sensitivity to noise trauma 

(Christie et al. 2013). Vibrations and sounds perceived through Johnston’s organs 

transmit signals of alarm, recruitment, and larval provisioning cues in social 

insects (Kirchner 1997; Hunt and Richard 2013; Leonhardt et al. 2016). Larvae of 

the hornet Vespa orientalis, for example, produce scraping sounds that are 

interpreted by workers as hunger signals (Ishay and Landau 1972). Moreover, 

the phylogenetic distribution of vibrational signaling suggests that this trait 

characterized the hypothetical common ancestor of eusocial wasps (Jeanne and 



 

104 

Suryanarayanan 2011). These signals might have influenced the evolution of 

eusociality in the Vespidae, where larval nutrition underlies female caste 

determination (O’Donnell 1998). For example, larvae of the paper wasp Polistes 

metricus exhibit partial shifts in expression of caste-related genes depending on 

nourishment (Berens et al. 2015b).  

Regarding changes in genes related to visual perception, we found 

evidence of positive selection for the light-sensitive protein encoded by Rhodopsin 

2 and found in photoreceptor cells (Table 5.3). Analyses of neuroanatomical data 

from social hymenopterans suggest that selection for visual acuity probably 

increases in lineages with large-bodied, aboveground foragers (Muscedere et al. 

2014), such as the vespine wasps. Changes related to processing of visual 

information may result from the environmental challenges of foraging (Greiner 

et al. 2007). Another possible link may be recognition of signals of individual 

quality, such as facial markings in Polistes paper wasps (Tibbetts and Dale 2004; 

Tannure-Nascimento et al. 2008; Sheehan and Tibbetts 2011). An additional 

possibility may be the development among social insects of nocturnal foraging 

(Warrant 2008). Among the Vespinae, yellowjackets usually forage during 

daytime, hornets show facultative nocturnal activity, and the genus Provespa 

forage exclusively at night (Matsuura and Yamane 1990; Greene 1991). Although 

Vespa, for example, lack the eye morphology traits associated with nocturnal 

foraging (Kelber et al. 2011), differences in foraging lifestyles might be 

concomitant with molecular changes in photoreception within the worker caste. 

Additional changes related to the visual system were detected in genes 

determining compound eye morphogenesis, such as auxilin (Eun et al. 2008) and 

Inositol-requiring enzyme-1 (Coelho et al. 2013), although these genes are involved 
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in a variety of processes. For example, auxilin plays a general role in the Notch 

signaling pathway (Hagedorn et al. 2006), which controls the fate of cells during 

animal development (Artavanis-Tsakonas et al. 1999; Hori et al. 2013). 

In comparison to genes known to have effects on foraging behavior in 

the social Hymenoptera, we found positively selected orthologs corresponding to 

Insulin-like receptor and vitellogenin (Table 5.3). The reproductive ground plan 

hypothesis for the origin of eusociality states that pathways regulating 

reproduction in solitary insects have been rewired to influence age-related 

changes in the behavior of workers (Amdam et al. 2004, 2006). Insulin-like 

signaling and vitellogenin are two of such pathways, and both have been 

associated with division of labor and queen longevity in bees and ants (Corona et 

al. 2007; Ament et al. 2008; Lu and Pietrantonio 2011; Libbrecht et al. 2013). 

Perhaps the interplay of these pathways has also influenced the evolution of 

division of labor in wasps. Our transcriptomic data also included a cGMP-

dependent kinase matching the putative foraging gene Vvfor (UniProt entry 

A1YTU8) of Vespula vulgaris (Tobback et al. 2008), with BLASTP coverage and 

identity greater than 97% using vespine sequences as queries, and the for genes 

of the bees Bombus terrestris and Apis cerana (UniProt entries C6GBY7 and 

A0A0H3WKE9, respectively), among others. However, the ortholog in our data 

set that matched the foraging gene (Pereira and Sokolowski 1993; Ben-Shahar 

2003) did not show evidence of positive selection.  

Our results are generally in agreement with patterns of positive selection 

in other eusocial insects. Studies of Apis mellifera have found that caste 

differences are associated with expression of proteins that metabolize 

carbohydrates (Sen Sarma et al. 2007; Cardoen et al. 2011b). Comparisons of 
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different levels of sociality in bees show that genes related to carbohydrate 

metabolism were evolving more rapidly in highly eusocial lineages (Woodard et 

al. 2011). In comparison to molecular patterns in bees (Woodard et al. 2011), 

however, gland development and signal transduction were not prominent 

functional categories in our analyses. Positive selection acting on genes 

functioning in mitochondria was particularly important during the evolution of 

ants, and this pattern has been attributed to the increased lifespan of queens 

(Roux et al. 2014). Although we found signals of accelerated evolution for genes 

functioning in mitochondria, queens in vespine wasps lack the extraordinarily 

long lifespans of ant queens. The ‘genetic toolkit’ hypothesis for the origin 

eusociality proposes that social behavior evolved from regulatory changes in 

conserved genes shared with solitary species (Toth and Robinson 2007). A 

revised of version of this hypothesis suggests that a ‘loose toolkit’ of crucial 

pathways rather than specific genes influence the evolution of eusociality (Berens 

et al. 2015a). Overlap of enriched functional categories between our analyses and 

studies of bees and ants seem to support the ‘loose toolkit’ hypothesis at the level 

of genomic sequence. However, we also found specific, positively selected genes 

shared with previous studies. For example, Woodard et al. (2011) and Roux et al. 

(2014) found, respectively, evidence of positive selection for the genes Enolase 

and Mitochondrial ribosomal protein L37, both of which had signatures of positive 

selection in our results (Table 5.3). 

In conclusion, this study provides, for the first time, a test of the protein 

evolution hypothesis for vespid wasps, with emphasis on the molecular changes 

associated with the origin of highly eusocial behavior in yellowjackets and 

hornets. In particular, we found that genes contributing to carbohydrate 
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metabolic pathways and functioning in mitochondria might have been important 

to attain highly eusocial behavior. Our results may serve as a starting point for 

future work focused on finding specific sites under positive selection and 

experimentally investigating their effects on phenotypes. 
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