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ABSTRACT 

 

Aerosols play important roles in atmospheric and environmental processes.   Not 

only do they impact human health, they also affect visibility and climate.  Despite recent 

advances made to understand their sources and fate, there remains a limited understanding 

of the mechanisms that lead to the formation of aerosols and their ultimate fate in the 

atmosphere. These knowledge gaps provide the crux of the research reported herein, which 

has focused on identifying novel sources of atmospheric aerosol, characterizing its physical 

and optical properties, and rationalizing these properties using an in-depth knowledge of 

the molecular level mechanisms that led to its formation.    

Upon mowing, turfgrasses emit large amounts of green leaf volatiles which can 

then be oxidized by ozone to form secondary organic aerosol (SOA).  Overall, the mowing 

of lawns has the potential to contribute nearly 50 µg SOA per m2 of lawn mowed.  This 

SOA contribution is on the same order of magnitude as other predominant SOA sources 

(isoprene, monoterpenes, sesquiterpenes).  

Turfgrasses represent an interesting and potentially meaningful SOA source 

because they contribute to SOA and also because they cover large land areas in close 

proximity to oxidant sources.  Another related SOA precursor is sugarcane, which is in the 

same family as turfgrass and is among the largest agricultural crops worldwide.  Globally, 

the ozonolysis of sugarcane has the potential to contribute 16 Mg SOA to the atmosphere, 

compared to global estimates of SOA loading that range from 12-70 Tg SOA.   

In order to fully understand the role of atmospheric SOA on the radiative budget 

(and therefore climate), it is also important to understand its optical properties; its ability 

to absorb vs scatter light.  Turfgrass and sugarcane produced SOA that was weakly 

absorbing while its scatter efficiency was wavelength and size-dependent.  Interestingly, 

SOA formed under both dry (10% RH) and wet (70% RH) conditions had the same bulk 

chemical properties, yet significantly different optical properties, which was attributed to 

differences in molecular-level composition. 

The work presented herein represents a unique, inclusive study of SOA precursors.  

A complete understanding of the chemistry leading to SOA formation is used to understand 

its physical and optical properties and evaluate these large-scale effects of SOA from these 

precursors.  
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CHAPTER 1. BACKGROUND AND OUTLINE OF DISSERTATION 

1.1 A Brief Rationale for the Research  

Aerosols are ubiquitous in the atmosphere and play important roles in atmospheric 

and environmental processes.  Aerosol particles participate in heterogeneous chemical 

reactions in the atmosphere, affecting the distribution, abundance and transport of trace 

gases.1, 2  Aerosols also influence the Earth’s radiative budget by absorbing and scattering 

radiation (the direct effect) and by acting as nuclei for clouds (the indirect effect), which 

themselves absorb/scatter radiation and also contribute to local weather phenomena.  It has 

been well accepted that atmospheric aerosols play a major role in the Earth’s climate,3 yet 

there remain significant gaps in our understanding of the formation, ageing, physical and 

chemical properties, and removal of atmospheric aerosols.   These knowledge gaps provide 

the crux of the research completed towards this dissertation, as I’m sure they will continue 

to do as atmospheric science grows. 

Organic aerosols (OAs), aerosols that consist primarily of carbon, oxygen, 

hydrogen, sulfur, nitrogen and phosphorus, contribute 20-90% of total aerosol mass.4 

Primary OA (POA) is emitted directly into the atmosphere as particles in processes like 

combustion and cooking.  Secondary organic aerosol (SOA) is produced by gas-phase 

oxidation of volatile organic compounds (VOCs), which can be anthropogenic (AVOCs) 

or biogenic (BVOCs) in nature.  In fact, the majority of SOA is derived from the oxidation 

of BVOCs.  Despite improvements made to understand SOA, many of the basic processes 

governing its formation, growth, chemical and physical properties are still poorly 

understood.  In fact, recent estimates of global SOA production rates have indicated that 
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there could be significant missing SOA precursors and/or a still poor understanding of the 

chemical processes that lead to SOA formation. 5-7 

Therefore, the main objective of this work was to identify potential sources of 

BVOC SOA precursors and to characterize the optical and physical properties of the 

resultant SOA.  This work also included studies of structure-activity relationships to better 

understand, on a molecular level, the potential for VOCs to contribute to atmospheric 

aerosol.  The fine level of understanding afforded by these studies will allow some 

generalizations to be made about specific functional groups in BVOCs and their influence 

on the kinetics of ozonolysis.  

1.2 Specific Research Questions Addressed in this Dissertation 

1. Do lawns and other leafy plants, such as sugarcane, represent a potential SOA 

source? 

a. What are the predominant emissions of these grasses and are they SOA 

precursors? 

2. How does SOA from these sources interact with light (absorbance vs scatter)?  

3. What molecular-level subtleties of these classes of BVOCs drive SOA yield? 

In the nature of scientific research, and much like a ‘write your own adventure’ story, the 

experiments and questions asked in this work evolved organically, building from each 

other.  For your enjoyment, I hope to recreate this story in the chapters to follow. 

1.3 Thesis Outline 

The overall structure of this thesis is organized in nine chapters.  Chapter 1 

introduces the general background of the study, objective and significance of the work.  

Chapter 2 provides a more in-depth review of the current literature, providing pertinent 
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history of the field and further identifying the need for the work completed herein.  Chapter 

3 provides a general overview of the instruments and experimental protocols used 

throughout this work.  In Chapter 4, I present and discuss results from an experimental 

campaign to establish the contribution of lawn mowing in atmospheric SOA loadings, 

which turns out to be minimal but significant.     In order to fully understand the role of 

these lawn mowing induced SOA on climate, however, it’s also important to understand 

their optical properties (whether they absorb or scatter light), which are presented in 

Chapter 5.  In both Chapters 4 and 5, I present evidence suggesting that the molecular level 

composition of both VOC precursor and the resultant SOA itself have important roles in 

its atmospheric fate.  Chapters 6 and 7 present a look into the molecular level nuances of 

ozonolysis reactions, including how the structure of parent VOC affects SOA yield 

(Chapter 6) and the nuanced behavior of chamber studies (Chapter 7).  Chapter 8 revisits 

the goal of identifying novel sources of SOA and presents recent advances to understand 

the role of sugarcane horticulture on atmospheric SOA.   Throughout this document, 

several important questions are addressed, yet in the true nature of research, more are 

posed.  These additional questions and thoughts for future work are posed in Chapter 9, 

which also summarizes some key take-home messages of this work. 

1.4 References 

(1) Haywood, J.; Boucher, O. Rev Geophys 2000, 38, 513. 

(2) Andreae, M. O.; Crutzen, P. J. Science 1997, 276, 1052. 

(3) Boucher, O.; Randall, D.; rtaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; 

Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; Rasch, P.; Satheesh, S. K.; 

Stevens, B.; Zhang, X. Y. The Physical Science Basis. Contribution of Working Group I 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. 
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(4) Kanakidou, M.; Seinfeld, J. H.; Pandis, S. N.; Barnes, I.; Dentener, F. J.; Facchini, 

M. C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C. J.; Swietlicki, E.; Putaud, J. 

P.; Balkanski, Y.; Fuzzi, S.; Horth, J.; Moortgat, G. K.; Winterhalter, R.; Myhre, C. E. L.; 

Tsigaridis, K.; Vignati, E.; Stephanou, E. G.; Wilson, J. Atmos. Chem. Phys. 2005, 5, 

1053. 

(5) Goldstein, A. H.; Galbally, I. E. Environ Sci Technol 2007, 41, 1514. 

(6) Carlton, A. G.; Wiedinmyer, C.; Kroll, J. H. Atmos. Chem. Phys. 2009, 9, 4987. 

(7) Shilling, J. E.; Zaveri, R. A.; Fast, J. D.; Kleinman, L.; Alexander, M. L.; 

Canagaratna, M. R.; Fortner, E.; Hubbe, J. M.; Jayne, J. T.; Sedlacek, A.; Setyan, A.; 

Springston, S.; Worsnop, D. R.; Zhang, Q. Atmos. Chem. Phys. 2013, 13, 2091. 
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CHAPTER 2. REVIEW OF THE CURRENT LITERATURE 

There is growing evidence that the Earth's climate is changing.  According to the 

International Panel on Climate Control’s (IPCC) 2014 report, human activities have shifted 

the global loading and distribution of atmospheric greenhouse gases, clouds, and aerosol.1  

This shift can significantly modify the Earth’s energy balance resulting in a warming or 

cooling of the climate system and dramatic changes in weather.  

Despite our realization that anthropogenic activities have shifted the Earth’s energy 

balance, there remains significant uncertainty in our understanding of the environmental 

impact of atmospheric aerosol, owing to a still-limited knowledge of its sources, 

composition, properties, and the mechanisms that lead to its formation and ageing.2-4   In 

fact, recent estimates of global SOA production rates largely under-predict measured 

loadings, indicating that there could be significant missing SOA precursors and/or a still 

poor understanding of the chemical processes that lead to SOA formation. 2,4,5  Therefore, 

identifying the sources, interactions and reactivity of VOCs is integral to understanding 

their impact on the formation of SOA and, consequently, on regional air quality and climate 

patterns, and is among the primary foci of the work reported herein.   

2.1 Atmospheric Aerosols 

Atmospheric aerosol is a mixture of liquid or solid particles (or particulate matter) 

suspended in the air.  These particles have both anthropogenic (biomass burning, fossil fuel 

combustion/exhaust, food cooking) and natural (sea spray, gas-to-particle conversion, 

mineral dust) sources and can be inorganic or organic in composition.  Aerosol sizes range 
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from about 0.01 µm to 10 µm.  The wide range in sizes and chemical composition of 

aerosols make them an interesting and challenging system to study. 

Organic aerosol (OA) contributes 20-90% of the total mass of fine atmospheric 

aerosol6,7 and 70-90% of OA is secondary in nature (SOA), being formed by the oxidation 

of volatile organic compounds (VOCs) in the atmosphere.8  The remaining fraction of OA 

consists of primary OA (POA), which is emitted directly to the atmosphere as particles and 

of a smaller subset of compounds that are emitted as gases, that then condense to form 

particles (without reacting).   

2.2 SOA Precursors 

The VOCs that lead to SOA originate from both anthropogenic (AVOC) and 

biogenic (BVOC) sources.   Isoprene (Figure 2.1) is the most dominant non-methane 

BVOC, accounting for about half of all BVOC emissions (estimated global emissions range 

between 250 and 750 Tg C y−1, about half of which is from tropical broadleaf trees and the 

remainder primarily from shrubs). 9,10 The oxidation of isoprene yields relatively little SOA 

(on a mass basis, only about 1% of oxidized isoprene is converted to SOA: the SOA yield 

is 1%) yet has such a large global source strength that its global SOA contribution is 

significant, corresponding to ~2-6 Tg y-1 SOA2 compared to global estimates of OA 

ranging between 12-70 Tg y-1 7.   
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Monoterpenes and sesquiterpenes are plant emissions defined by the number of 

isoprene units they contain, where monoterpenes contain two isoprene units and have the 

general formula C10H16, and sesquiterpenes contain 3 isoprene units with the general 

formula C15H24.    Monoterpenes and sesquiterpenes also contribute to global SOA 

loadings, not because they are emitted in large quantities (global emission rates estimated 

 

Figure 2.1 Molecular structures of some of the most commonly studied BVOCs, which 

include isoprene (C5H8), monoterpenes (C10H16) and sesquiterpenes (C15H24) 
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at ~130 Tg C y−1),11 but because they have considerably larger aerosol yields (average of 

about 15% but up to 100% for some sesquiterpenes). 12  These VOC emissions rates, 

aerosol yield measurements and an understanding of the chemical mechanisms leading to 

SOA formation are then coupled in atmospheric models to achieve global SOA loading 

estimates. As indicated above, though, current models largely under-predict the measured 

SOA loadings in the atmosphere, suggesting that there are missing SOA precursors and/or 

a still poor understanding of the chemical processes that lead to SOA formation. 2,4,5   

Green leaf volatiles (GLVs) represent another potentially important SOA precursor.  

These C5 and C6 oxygenated BVOCs are emitted by leafy green plants and grasses, where 

their main role is as protective antioxidants.13,14 Upon wounding (mechanical or chemical), 

however, these emissions are enhanced and participate in interesting plant-plant and plant-

insect communication channels.13,15  The mowing of turfgrasses stimulates enhanced 

emission of GLVs from turfgrasses, contributing to the “freshly mowed lawn” smell that 

many of us are familiar with. 14-22  The most documented GLVs include the compounds 

cis-3-hexenal, cis-3-hexenol (HXL), cis-3-hexenyl acetate (CHA), and trans-2-hexenal. 

More recently, cis-2-penten-1-ol and 1-penten-3-ol have also been identified in the wound-

induced emissions of plants.15,17,23  Not only do these compounds have interesting roles in 

plant protection and plant–plant/plant–animal communication, GLVs also actively take 

part in atmospheric chemistry. 3,24-26   

The contribution of GLV-derived SOA to bulk atmospheric loadings may be 

especially impactful at the urban–suburban interface (so-called peri-urban region), where 

urban hubs provide a source of anthropogenic oxidants and SOA, while suburban 
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neighborhoods have the potential to emit large quantities of reactive, mow-induced GLVs.  

Hamilton et al. (2007, 2009)3,24 established the importance of GLV oxidation to global 

SOA using single-component systems, with one oxidant being introduced to each GLV 

separately; however, these GLVs do not exist in isolation.  In fact, recent work by Shilling 

et al. (2013)4 in the CARES campaign indicates that VOC mixtures have a significant 

impact on SOA formation.  Briefly, Shilling et al. (2013)4 found that the oxidation of a 

mixture of anthropogenic and biogenic VOCs produced more OA than the components 

alone,4 highlighting the importance of understanding mixed VOC systems.   

Therefore, this work will extend our understanding of the role of GLVs in 

atmospheric chemistry by representing the multi-component system experienced in the 

environment.  This approach provides a unique opportunity to study aerosol formation in 

a multi-component system and at a regionally relevant scale.15,22,27-29 

2.3 Oxidation Mechanisms 

The reactivity of most BVOCs stems from the fact that they contain one or more 

double bonds.  These electron rich regions are highly reactive with electron seeking 

atmospheric oxidants, including the hydroxyl radical (OH), NOx and O3.
30    These 

reactions have been reviewed extensively by Calvert et al., (2000) and by the Petrucci 

Group (2007)30,31  and ultimately result in the formation of low volatility products that 

subsequently condense (either onto seed particles or homogeneously) to form SOA and 

also contribute to the self-propagation of oxidants (O3 and OH radicals) in the atmosphere.   
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2.3.1 Oxidation of Alkenes by OH  

The OH radical is a major oxidant for alkenes in the atmosphere, largely due to its 

ubiquitous nature and because OH oxidation reactions are very fast (rate constants on the 

order of 10-10 cm3 molecule-1 s-1). 32  Photolysis of ozone by ultraviolet light in the presence 

of water is the main source of OH yet it is also produced as a side product in the ozonolysis 

of VOCs.  Due to its high reaction rates, atmospheric OH is difficult to measure but 

concentrations in pristine environments are on the order of 0.04 pptv and those in polluted 

regions are closer to 0.4 pptv 32-34 

 The primary reaction pathway for OH oxidation of an alkene proceeds via the 

addition of OH to the double bond to form an intermediate that either decomposes back to 

the reactants (a very minor pathway, only becoming significant for very small alkenes) or 

stabilizes and continues to react. 32  Specifically, the new C-OH bond is formed via charge 

transfer from the π-bond of the alkene to the OH radical, with the position of the OH moiety 

favoring the less substituted carbon.  The remaining unpaired π-bond electron becomes 

localized on the adjacent carbon atom, forming a radical.  In an oxygen-rich environment, 

the radicals formed in OH addition readily react with O2 to form peroxy radicals, which 

themselves continue to react in the atmosphere to form several different oxidized products 

that may (or may not) condense to form SOA. 30 

This work does not include experiments with strictly OH-driven oxidation of 

VOCs, but OH radicals are coproduced by the ozonolysis of VOCs and are then available 

to participate in the oxidation.  OH scrubbers (cyclohexane and butanol) can be used to 

scavenge OH radicals, but were seldom used in this work. 
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2.3.2 Oxidation of Alkenes by NOx 

Oxides of nitrogen (NO2, NO, collectively termed NOx) play important roles in 

atmospheric chemistry.35  Not only do they contribute to acid rain, but NOx enhances the 

SOA yield of other oxidation reactions, particularly photooxidation reactions (which are 

OH driven).36-38  In the presence of NOx peroxy radicals formed via the photooxidation of 

VOCs react virtually entirely with NO, leading to the formation of large alkoxy radicals 

that isomerize (rather than fragment) to yield large, multifunctional products with low 

volatility, enhancing SOA yield. 38 

The pathways leading to NOx in the atmosphere are varied and complex, with many 

feedback loops with O3, O2 and OH and a detailed discussion is beyond the scope of this 

project.  Overall, however, anthropogenic sources (including cars, power plants, and 

incinerators) contribute about 90% of NOx in the atmosphere.  Biogenic sources include 

lightning, forest/grass fires, and yeasts.39  NOx is rapidly photolysed, resulting in lifetimes 

on the order of 5 s and making its role in daytime chemistry relatively minor. 40  Night time 

NOx chemistry, however, is particularly important (and interesting).  Of course, under 

highly polluted conditions it is possible for NOx to persist during the day.40  

This work does not include oxidation via NOx, but standard operating procedures 

to generate NOx in the laboratory were developed and could be implemented in future 

work.  The specifics of this method can be found in Appendix 1.   

 

2.3.3 Oxidation of Alkenes by O3 

Ozone is a naturally occurring gas that can be found throughout the atmosphere.  

While stratospheric ozone shields us from ultraviolet radiation, tropospheric ozone is often 
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considered “bad” ozone due to its negative impacts on human health and plants.  

Tropospheric ozone is produced in situ by photochemical reactions between NOx and 

VOCs, methane, or CO.41 These O3 precursors originate from natural sources including 

wildfires, biogenic hydrocarbon and NOx emissions, and lightning but also from 

anthropogenic fossil fuel and biofuel combustion, or crop burning.42  In rural areas, ozone 

concentrations typically range between 20 and 80 ppbv, while in urban areas ozone 

concentrations range between 40 and 120 ppbv, with maxima usually occurring on warm, 

sunny days during rush hour (due to photolysis reactions).42 

 

The mechanism for the ozonolysis of a general alkene is given in Scheme 2.1.  

Briefly, the reaction proceeds by electrophyllic addition of O3 across the C-C double bond, 

 

Scheme 2.1.  The ozonolysis of alkenes can take several different reaction pathways, 

leading to a complex product profile.  These products may condense to form SOA or 

remain in the gas phase.   
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leading to an energy-rich 1,2,3,-trioxolane adduct, also called the primary ozonide (POZ).  

The POZ then rapidly decomposes, cleaving the C-C bond and one of the O-O bonds 

(shown in Scheme 2.1 as the a-c cleavage, but a-b cleavage is also possible) to form energy 

rich carbonyl and carbonyl oxide biradical products, also known as the Creigee 

Intermediates (CI) that can rearrange to form low-volatility carboxylic acids and/or 

participate in multigenerational chemistry.  These reactions have been studied extensively; 

Calvert et al. (2000) provides a comprehensive review of their mechanisms and kinetics. 30  

The take-away, however, is that they can result in the formation of product molecules with 

sufficiently low vapor pressures that they condense (homogeneously or onto existing 

particulate matter) to form SOA.    

2.4 Secondary Organic Aerosols 

The oxidation mechanisms described above can lead to the formation of products 

with sufficiently low vapor pressures that they condense to form a particle.  These particles 

can coagulate, forming larger, mixed-system particles, undergo additional oxidation 

reactions in the atmosphere (chemical ageing), transport across landscapes or throughout 

the atmosphere or be deposited onto surfaces.  Depending on the type of air mass (urban, 

marine, free troposphere, remote) and its size, the time a particle spends in each of these 

modes can vary significantly, ranging from just a few hours to several weeks.32   

Organic aerosols (OAs), including SOA, are a major component of fine aerosols 

and influence climate through direct and indirect effects, although there is an expressed 

high degree of uncertainty about the magnitude of these effects.43,44  The direct effect of 

SOA includes its ability to absorb or scatter radiation (either from the sun or from the Earth 
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itself), which ultimately affects the Earth’s radiative budget.  Much like a dark sweater on 

a sunny day warming your body, atmospheric particles that are efficient light absorbers 

contribute to positive radiative effect, warming the planet.   Most SOA particles are 

efficient scatterers of visible light, though, and generally have a net negative radiative 

effect, helping to keep the planet cool, at least initially.  As SOA undergoes secondary 

reactions in the atmosphere (is chemically aged), it can become more oxidized, and thereby 

contribute to light absorption.  These secondary reactions, then, become very important 

when considering the direct effect of SOA.  Incidentally, SOA is a major component of 

fine aerosol and has a long atmospheric lifetime, giving it ample opportunity to participate 

in secondary chemistry and interact with light.  The impact of SOA, therefore has the 

potential to have a greater impact on atmospheric chemistry and climate forcing than other 

particulate matter.   

The indirect effect of SOA includes its ability to act as cloud condensation nuclei 

(CCN) and/or ice nuclei (IN), which contribute to cloud formation throughout the 

atmosphere.  Clouds play an important role in climate through absorption of terrestrial 

infrared radiation and reflection of solar radiation (albedo).  Depending on the type of cloud 

and where it is found in the atmosphere, cloud water can be in the form of liquid droplets, 

solid ice crystals, or a mix of the two.  The phase, composition, size and shape of cloud 

water play important roles in determining the clouds’ effect on climate.4 Liquid clouds are 

found in the lower troposphere and have a predominantly cooling effect due to their ability 

to reflect shortwave solar radiation off their bright tops and into space.5 Ice clouds are 

found in the upper troposphere and also contribute to cooling by reflecting solar radiation 
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into space.  Additionally, however, ice clouds trap longwave radiation emitted by the Earth 

back towards its surface, contributing a warming effect.  The CCN or IN activity of SOA 

depends largely on its size, phase (liquid or solid) and chemical composition. 

SOA also impacts local weather patterns and has been associated with deleterious 

impacts on human health, though this is well outside the scope of this project.45,46  

Currently, there remains significant uncertainty in our understanding of the 

environmental impact of SOA, owing to a still limited knowledge of its sources, 

composition, properties, and the mechanisms that lead to its formation.4,47,48  Herein, results 

from several different, yet related, experimental campaigns designed to fill these 

knowledge gaps will be presented and discussed.  This work focuses primarily on 

identifying novel SOA precursors and characterizing the chemical, physical and optical 

properties of the resultant SOA.  This work contributes significantly to an enhanced 

understanding of the molecular-level dynamics involved in the formation of atmospheric 

aerosol.   
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CHAPTER 3. INSTRUMENTAL INFRASTRUCTURE 

The following instrumental infrastructure was used to characterize and understand 

the yield and properties of SOA generated via the ozonolysis of GLVs.  A schematic 

representation of the general operating mode is given in Figure 3.1 with more detailed 

descriptions of experimental protocols in subsequent chapters. 

 

 

Figure 3.1 General schematic for experimental chambers used herein. 
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All experiments were performed at ambient pressure and temperature (~23oC) in 

Teflon chambers.  A summary of the chamber characteristics can be found in Table 3.1.  

Between experiments, chambers were passivated overnight with 1-2 ppm O3 and flushed 

with particle, VOC and oxidant-free air (zero air) to attain background aerosol mass 

loadings < 0.1 μg m-3.  

 

Standards (all >95% ) were purchased from suppliers and used without further 

purification. A complete list of all standards used can be found in Table 3.2 below.  

Standards were introduced to the experimental chambers via a heated bulb under steady 

flow of dry, zero air, which was produced by passing compressed air sequentially through 

silica, activated carbon and HEPA filters.   

 Zero air was also used to generate ozone using a commercial corona 

discharge ozone generator (OLSOA/DLS OzoneLab), which was injected into 

reaction chambers as a quick burst and was then monitored with an American 

Ecotech Serinus O3 Monitor (model E020010).   

Aerosol particle size distributions, as well as total aerosol mass loadings were 

measured continuously with a scanning mobility particle sizer (SMPS, model 3080, TSI 

Inc., Shoreview, MN).  A multi stage electrical low pressure impactor (ELPI+, Dekati 

Table 3.1 Characteristics of reaction chambers used in this work. 

 UVM Pillow 

Reactor 

UVM 

Environmental 

Chamber (UVMEC) 

Harvard Environmental 

Chamber (HEC) 

Material Teflon Teflon Teflon 

Operation Mode Batch Batch Continuous Flow 

Volume 775 L 8000 L 4700 L 
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Kangasala, Finland) was also used to measure particle size distributions and to measure 

particle Bounce Factor (BF) in accordance with Jain et al. 2015.1 

 

  

3.1 VOC Analysis 

3.1.1 Thermal Desorption GC/MS 

Thermal desorption gas chromatography mass spectrometry (TD-GC/MS, Perkin 

Elmer Turbomatrix TD coupled with a Perkin Elmer Clarus 600 GC and a Perken Elmer 

Clarus 600 T mass spectrometer) was used to monitor VOC concentrations.  Briefly, air 

samples are drawn through a TD tube packed with a (or several) sorbent bed, where VOCs 

are trapped.  Samples are then transferred from the sorbent tubes by thermal two-step 

desorption directly onto the analytical column (Stabilwax 30 m 0.32 mm i.d., Restek) of a 

 

Figure 3.2 Molecules studied in this work.  Cyclopentene and 3-heptene were purchased 

from Alfa Aesar while all standards were purchased form Sigma Aldrich.  The purity of 

all standards was >95% and thus used without additional purification.  All standards were 

stored with a headspace of N2.  
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gas chromatograph, effectively concentrating the sample.  Prior to desorption, an internal 

standard (fluorobenzene) was automatically injected onto the TD tubes by the Turbomatrix 

TD.  Calibration of the TD-GC/MS was done by injecting a known mass of pure VOC 

standard directly into the reaction chamber to reach a known concentration (since the 

chamber volume was known).   Samples were then collected at a known flow rate and 

duration, allowing for a volume and thereby a theoretical mass of standard to be calculated.  

The signal of this known mass was then quantified via peak area in single ion monitoring 

mode and repeated for a range of different masses.  Representative calibration curves for 

GLVs are given in Figure 3.3.  

New calibration curves were used each day to limit errors due to instrument drift.  

Ozone was then injected into the reaction chamber as a brief burst and sampling continued. 

Standard experiments were carried out at a 1:1 and 1:2 GLV to O3 molar ratio to determine 

aerosol yields and measure reaction products.  High GLV mass loadings were used to 

ensure sufficient SOA mass and volatile product evolution for analysis.   

 

 

Figure 3.3 Calibration curve for VOCs collected using TD GC/MS.  Signal is the single 

ion peak area of each VOC normalized to the internal standard, fluorobenzene.  Mass 

was calculated using the known concentration in the reaction chamber, the sample 

duration and flow rate.   
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3.1.2 Solid Phase Microextraction GC/MS 

One of the most common methods used to measure the VOC emission profile of 

plants is solid phase microextraction (SPME) coupled with gas chromatography mass 

spectrometry (GC/MS).2-5 SPME consists of a small polymer-coated fiber to which, in the 

presence of a gas sample, VOCs adsorb.  After a suitable period of time, the fiber is 

extracted from the sample gas and injected directly into a GC/MS for analysis.2,5,6  One 

advantage of this method is that analytes can be quantified without the need for calibration 

curves (critically important if the analyte is not available commercially in pure form). 

One limitation of SPME is its poor trapping efficiency for high volatility 

compounds (SPME is more efficient at sampling semi-VOCs).4  TD-GC/MS, however has 

shown great utility to measure plant volatiles7-10 and compliments SPME in its ability to 

efficiently sample very volatile compounds. The combination of these two sampling 

methods is important to sampling VOCs with a wide range of volatilities. Furthermore, the 

ability of both methods to pre-concentrate samples greatly enhances the sensitivity of the 

analysis. 

As mentioned above, one advantage to using SPME for VOC emission analysis is 

that it is a “calibration-free” method.  This feature stems from the fact that sampling is an 

equilibrium process, where analytes establish equilibrium between the fiber and the 

surrounding matrix. If the fiber is exposed to the sample until an equilibrium point is 

reached, then the extracted analyte is proportional to the initial concentration in the matrix.  

This equilibrium can be expressed using the equilibrium constant K, which is the ratio of 

the concentration of a given analyte in the gas phase (Cg) and on the fiber (Cf): 
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𝐾 =  
𝐶𝑓

𝐶𝑔
     (3.1) 

K is a constant for a given analyte and a given fiber phase and, once determined, can be 

used to estimate the concentration of analyte in a gas without performing calibrations.   

We determined K for HXL, CHA, and 1-octene-3-ol.  First, the signal response 

from the GC/MS (peak area) was calibrated using standards in cyclohexane (1 µL 

injections).  Figure 3.4 shows a calibration curve for HXL in cyclohexane.  Triplicate 

measurements were made at each concentration, giving a linear response with a good R2 

value of 0.999.   

 
 

We then needed to determine the equilibration time, or how long the fiber needed 

to be exposed to the matrix in order to ensure equilibrium was reached.  In separate 

experiments, single analyte solutions of HXL and CHA in cyclohexane were injected into 

the 775 L Teflon Pillow Chamber to reach a final gaseous concentration of 5.5 x 10-4 ng/µL 

HXL and 5.8 x 10-4 ng/µL CHA.  Samples were then collected for varying amounts of time 

until the analyte signal no longer increased as a function of sampling time.  As shown in 

Figure 3.5, the signal for HXL plateaued after only 20 min of sampling time, indicating 

 

Figure 3.4 Signal calibration of SPME for HXL in cyclohexane.   
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that HXL reaches equilibrium with SPME fiber and gas phase in that amount of time.  Even 

after 60 min of sampling, however, gaseous CHA did not reach equilibration with the 

SPME fiber.  In fact, CHA signal increased with sample time up to 1 hour of sample time, 

shown in Figure 3.5. 

  

For logistical reasons, a 60 + minute sampling time was not feasible for this 

research.  Instead, we took advantage of the fact that, before equilibrium is reached, the 

mass of analyte adsorbed onto the fiber is linearly proportional to the sampling time and 

the mass of analyte in the sample gas.11  So by determining K for a specific sampling time, 

and then maintaining that sampling time in experiments, gaseous concentrations could be 

determined.  

Therefore, SPME samples were collected for 40 (± 0.25) min and analyzed via 

 

Figure 3.5 Determination of equilibration time for HXL and CHA.  The HXL signal 

did not increase after 20 min sample time, indicating that equilibration is reached within 

20 min.  CHA however, did not equilibrate with the fiber, even after 60 min, and in fact 

appears to have a logarithmic trend.  
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GC/MS.  Signal response was converted to mass using instrument calibrations (Fig 3.4).  

K was then determined using Equation 3.1, where Cf was determined by dividing the 

average mass of HXL in the fiber by the SPME fiber volume (Vf), which was given by the 

manufacturer to be 0.418 µL: 

𝐶𝑓 =  
𝐻𝑋𝐿 𝑚𝑎𝑠𝑠 (𝑛𝑔)

𝑉𝑓 (𝜇𝐿)
      (3.2) 

Cg (Equation 3.1) was known in these experiments, as a known mass of VOC was injected 

into the reaction chamber with a known volume.   The K-values for the GLVs studied are 

given in Table 3.2 

  

To validate this methodology, we used these K-values to accurately predict gas-

phase concentrations of HXL in a “blind experiment,” where a known mass of HXL was 

injected into the reaction chamber and then the concentration was measured using SPME 

and the K-values determined experimentally.  As shown in Figure 3.6, the measured HXL 

concentration for each sample was within 15% of the theoretically calculated value.  

Averaged across all seven samples, the measured HXL concentration was within 3% of the 

expected theoretical value and the variation between measurements was 11%, confirming 

that this method for determining gas-phase concentration of VOCs is both accurate and 

precise.   

Table 3.2 K-values for GLVs 

GLV Sample 

Time 

(min) 

Mass on 

Fiber 

(ng) 

K Log(K) 

HXL 40 297 1.29 x 106 6.11 

CHA 40 173 7.16 x 105 5.85 

1-octene-3-ol 40 80 3.51 x 105 5.54 
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3.2 Wall Loss of VOCs  

Gaseous wall-loss of standards was determined by monitoring VOC concentration 

using TD-GC/MS within the 775-L reaction chamber for six hours (Figure 3.7).  A 3-µL 

aliquot of an equimolar mix of GLVs was injected into the reaction chamber and monitored 

for 3 hours.  The absence of any downward trend in GLV signal indicates that no GLVs 

partitioned onto the chamber walls and there was little or no gaseous wall loss for any of 

the species within this time frame.   

At time 14:40 (as indicated by a black line in Figure 3.7), an additional ~175 mL 

of zero air was added to dilute the chamber air and the GLVs were monitored for an 

additional 3 hours to investigate if any observed wall loss was reversible.  If a GLV had 

shown loss to the reaction chamber walls within the first 3 hours (as evidenced by a 

decrease in concentration), then remained constant or increased in concentration after the 

 

Figure 3.6 HXL Blind experiment.  Each measured HXL concentration was within 15% 

of the true value.  The average measured HXL concentration had a variance of 11% and 

was within 3% of the true value, demonstrating the accuracy and precision of this 

method. 
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dilution step, it would demonstrate reversible wall losses as described by Loza et al. 

(2010)12  However, as stated above, we saw no evidence of wall loss of our gaseous GLVs, 

and therefore no reversible wall loss either.   

Despite being injected at an equimolar ratio, the measured concentration for CHA 

and HXL was less than that for 1-penten-3-ol.  The disparity may be a result of the 

incomplete transfer of GLV into the reaction chamber (sorption to tubing from bulb to 

reaction chamber), or differences in sampling efficiency by the TD, although these would 

be expected to have occurred in calibration measurements as well, which would have 

accounted for losses.  The reason for the difference in signal is not clear, but is 

inconsequential to conclusions that can be made from this experiment.  

 

 

Figure 3.7 Loss of GLVs to chamber walls was measured and found to be negligible, 

confirming that the loss of GLV was due to oxidation 
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3.3 Wall Loss of SOA  

The partitioning of particles to chamber walls is a significant loss mechanism for 

SOA in these chamber studies, and results in erroneously low SOA concentrations as 

measured by SMPS.    To account for this loss, the decay of SOA signal as a function of 

time in GLV ozonolysis experiments was monitored and extrapolated back to time zero, 

the time at which ozone was injected into the chamber.  For example, a HXL ozonolysis 

experiment gave the SOA profile in Figure 3.8.  The HXL-derived SOA decay fits the 

exponential equation: 

y = 49.915e-1E-04x    (3.3) 

Extrapolation to time zero yields a SOAmax of 49.9 μg/m3, which represents the wall loss-

corrected maximum SOA concentration, as compared to the maximum SOA measured; 

29.4 μg/m3.    These plots and analyses were used for each experiment herein to report the 

“wall loss corrected SOA” mass concentration. 

 

 

Figure 3.8 HXL-derived SOA wall loss as a function of time yields an exponential 

curve whose y-intercept (when t=0) gives the wall loss corrected SOA. 
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3.4 Determining the Optical Properties of SOA 

 SOA was collected on to quartz filters and absorbance was measured via integrating 

sphere UV-Vis spectroscopy from 200 nm to 900 nm at 1-nm resolution (IS-UV-Vis, 

Shimadzu UV-2450 with ISR 2200) (Figure 3.9).  Filters with collected SOA are 

placed at the inlet of the IS.  A detector measures the percent transmitted light 

through the sample and determines absorbance by the sample (correcting for 

absorbance by a clean quartz filter).  A more detailed sampling protocol is described 

in Chapter 5.0. 

 

A three-wavelength integrating nephelometer (Aurora 3000, Ecotech) was used to 

measure the scatter of light by particles (forward and backward) at 450 nm, 525 nm and 

635 nm.  An extensive review of integrating nephelometers has been given by 

Heintzenberg and Charlson (1996),13 and a review of the performance of the Aurora 3000 

specifically is given by Muller et al. (2011).14   Briefly, integrating nephelometers are 

          

Figure 3.9 An IS-UV/Vis was used to measure the absorbance of light (200-900 nm) 

by SOA particles collected on a quartz filters. 
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widely used to measure the light scattering coefficient of both ambient and laboratory-

generated particles. They can be calibrated with gases of known scattering coefficients, 

require no assumptions about particle composition, size or shape and the Aurora 3000 has 

detection limits on the order of 0.1 Mm-1 and uncertainties on the order of 5-10%.14  

Nephelometer measurements do however, introduce truncation errors that influence the 

measured scatter values.15  For particles with diameters greater than 1 µm, these errors can 

be as large 20%-50%.  For accumulation-mode particles (diameters between 200 and 400 

nm), however, truncation errors are limited to ~10%.15   Since the particles being studied 

in this work are in the accumulation-mode, truncation errors represent a lower bound of 

measurement errors in this work and thus no attempts to quantify and/or correct this error 

were made 

3.5 Determination of SOA Yield 

The aerosol yield (Y) quantifies the conversion efficiency with which a VOC 

produces SOA on a mass basis.  Y for GLVs were calculated according to equation (3.4) 

where ∆[SOA] is the maximum SOA concentration (µg/mL, assuming a particle density of 

1.2 μg/m3) and ∆[GLV] is the total amount of GLV consumed (µg/mL) at that SOA 

maximum. 16  

   𝑌 =  
Δ[𝑆𝑂𝐴]

Δ [𝐺𝐿𝑉]
 ×  100%      (3.4) 

Aerosol yield scales with VOC loading, where higher loadings result in greater yield.   

The aerosol yields used herein were determined at VOC loadings of 1000 ppb.   
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3.6 Determination of Ozonolysis Rate Constant (k) 

Reaction rate constants (k) for the ozonolysis of VOCs were determined using the 

experimental protocol described elsewhere.17,18  Briefly, pseudo-first-order reaction 

conditions were induced, whereby the VOC was present in at least a 10 times excess of 

ozone.  Ozone was injected as a quick burst and monitored throughout the reaction, while 

the GLV was monitored periodically to ensure pseudo-first order conditions were 

maintained (Figure 3.10).  

A plot of ln([O3]0/[O3]t), where [O3]0 is the initial ozone concentration and [O3]t is 

the ozone concentration at time (t), against time (seconds) yields a straight line, confirming 

that pseudo-first order reaction conditions were met (Figure 3.11).  The slope of this line 

is the observed rate constant (kobs)(sec-1). The rate constant is then found using the rate 

expression of the reaction, k = kobserved/[VOC]t0,  where [VOC]0 is the initial concentration 

of the VOC  in units of molecules cm-3
, which gives k in units of cm3sec-1molecule-1. 

 

 

Figure 3.10 Reaction profile for the ozonolysis of 3-heptene under pseudo-first order 

conditions, where the VOC concertation is at least 10x the ozone concertation.  Note 

the ozone concentration is plotted on the secondary y-axis.   
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reaction.   

 

y = 0.0012x - 0.0106

R² = 0.9928

0.00

0.50

1.00

1.50

0 200 400 600 800 1000 1200

ln
 (

[O
3
] 0

/[
O

3
] t

)

Time Elapsed (sec)



34 

 

(11) Bouvier-Brown, N. C.; Holzinger, R.; Palitzsch, K.; Goldstein, A. H. J 

Chromatogr A 2007, 1161, 113. 

(12) Loza, C. L.; Chan, A. W. H.; Galloway, M. M.; Keutsch, F. N.; Flagan, R. C.; 

Seinfeld, J. H. Environ Sci Technol 2010, 44, 5074. 

(13) Heintzenberg, J.; Charlson, R. J. J Atmos Ocean Tech 1996, 13, 987. 

(14) Müller, T.; Laborde, M.; Kassell, G.; Wiedensohler, A. Atmos. Meas. Tech. 2011, 

4, 1291. 

(15) Moosmüller, H.; Arnott, W. P. Review of Scientific Instruments 2003, 74, 3492. 

(16) Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. 

H. Environ. Sci. Technol. 1996, 30, 2580. 

(17) Grosjean, D.; Grosjean, E.; Williams, E. L. Int J Chem Kinet 1993, 25, 783. 

(18) Grosjean, E.; Grosjean, D. Int J Chem Kinet 1994, 26, 1185. 

 

 

 

 

 

  



35 

 

CHAPTER 4. ESTABLISHING THE CONTRIBUTION OF LAWN MOWING TO 

ATMOSPHERIC AEROSOL LEVELS IN AMERICAN SUBURBS 

 

The following is an expansion upon a manuscript, submitted and accepted for publication 

in Atmospheric Physics and Chemistry.   The full reference follows and a reprint of the 

published manuscript can be found in the Appendix.  

 

Harvey, R. M.; Zahardis, J.; Petrucci, G. A., Establishing the contribution of lawn mowing 

to atmospheric aerosol levels in American suburbs. Atmos. Chem. Phys. 2014, 14 (2), 797-

812. 

 

4.1 Introduction 

 Volatile organic compounds (VOCs) are emitted by both biogenic (BVOCs) and 

anthropogenic (AVOCs) sources and play an important role in the chemistry of the 

atmosphere.  The photooxidation of VOCs can lead to the formation of ozone, with which 

other VOCs can react (along with other atmospheric oxidants) to produce secondary 

organic aerosol (SOA).1,2  Organic aerosols, including SOA are a major component of fine 

aerosols and influence climate through direct and indirect effects, although there is an 

expressed high degree of uncertainty about the magnitude of these effects.3,4 SOA also 

impacts local weather patterns and has been associated with deleterious impacts on human 

health.5,6 Currently, there remains significant uncertainty in our understanding of the 

environmental impact of SOA, owing to a still limited knowledge of its sources, 

composition, properties, and the mechanisms that lead to its formation.7-9  Identifying the 
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sources, interactions and reactivity of VOCs is integral to understanding their impact on 

the formation of SOA and consequently on regional air quality and climate patterns.   

 Globally, biogenic SOA (BSOA) predominates over anthropogenic SOA (ASOA).1  

Though our understanding of the mechanisms that lead to SOA formation has improved, 

significant gaps exist in our understanding of SOA formation and ageing, namely our 

understanding of systems with competing reactive pathways.  Several recent studies have 

stressed the potential importance of interactions between AVOCs, BVOCs and oxidants in 

SOA formation and ageing, and yet these interactions remain largely uncharacterized. 9-13 

Of special interest to our group is SOA production and ageing at the interface of urban and 

suburban/rural landscapes.  This interface offers the unique opportunity to study 

atmospherically relevant mixtures of anthropogenic and biogenic VOCs and SOA, as will 

be discussed. 

 Characterized by a ‘freshly mowed lawn’ smell, the cutting of turfgrass enhances 

emission of a complex mixture of C5 and C6 BVOCs, along with other low molecular 

weight oxygenated BVOCs. 14-22 Together these BVOCs are termed green leaf volatiles 

(GLVs).23  The most documented GLVs include the C6 compounds cis-3-hexenal, cis-3-

hexenol (HXL), cis-3-hexenyl acetate (CHA), and trans-2-hexenal.  More recently, C5 

compounds (cis-2-penten-1-ol and 1-penten-3-ol) have also been identified in the wound-

induced emissions of plants. 21,23,24  Not only do these compounds have interesting roles in 

plant protection and plant-plant/plant-animal communication, GLVs also actively take part 

in atmospheric chemistry. 19,25,26 
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 Though individual VOCs differ greatly in their reactivity and consequently their 

SOA-forming potential, many grass-GLVs contain unsaturated double bonds, which are 

readily oxidized by ozone, hydroxyl radicals and nitrate radicals, providing important 

potential pathways to the generation of photochemical smog and SOA. 7,20,24,27-30 Brilli et 

al. 19 estimate that grassland ecosystems emit up to 130 Mg C m-2 GLVs annually.  Several 

other studies have reported GLV emission rates on the same order of magnitude for mowed 

grasses. 14,22,31  Lawn coverage in the US is estimated at 10-16 million ha, which 

corresponds to a total of ~13-21 Gg C yr-1 of GLVs emitted by lawns in the US alone. 32  

Omitting methanol and other low molecular weight GLVs, which account for ~70% of total 

GLV emissions and are not readily oxidized in the atmosphere, reactive lawn-GLV 

emissions can be estimated at between 3.9 and 6.3 Gg C annually.  Annual non-methane 

VOCs in North America are estimated at 84 Tg C.  19,20,33,34   

 The role reactive GLVs play in global SOA levels, however is not straightforward.  

Reports of GLV aerosol yields are varied.  CHA is reported to have 8.5-24% aerosol yield 

from ozonolysis and less than 1% aerosol yield from photooxidation, while HXL has been 

reported to have 9.6% and 3.1% aerosol yield from ozonolysis and photooxidation, 

respectively. 7,28,35 Based on GLV emission rates and SOA yield efficiencies, lawns in the 

US alone therefore have the potential to contribute ~1.5 Gg C of SOA to the atmosphere 

annually.   Hamilton et al.7 estimated that photooxidation of the predominant C6 GLVs 

HXL and CHA contribute as much as 1-5 Tg C yr-1 SOA to global emissions, which current 

models estimate to be between 25-300 Tg C yr-1. 1,7,36,37  Photooxidation of these two GLVs 

alone could contribute a significant fraction of global SOA.  The ozonolysis of GLVs, 
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however, having greater aerosol yields than photooxidation, is likely to be an additional, 

significant SOA source to the atmosphere with important contributions to climate forcing 

and air quality at the airshed.   

 Hamilton et al. 7 established the importance of GLV oxidation to global SOA using 

single-component systems, with one oxidant being introduced to each GLV separately.  We 

extend this work by representing the multi-component system experienced in the 

environment, especially at the urban/suburban interface.  At this interface, traffic and 

industry located in urban hubs provide a source of anthropogenic oxidants and ASOA, 

while suburban neighborhoods, with their sprawling monocultural lawns and recreational 

fields, have the potential to emit large quantities of mow-induced GLVs and BSOA. This 

scenario provides a unique opportunity to study aerosol formation in a multi-component 

system and at a regionally relevant scale. 22,23,38-42  Since grass mowing typically occurs on 

hot sunny days in a regionally, seasonally and sometimes temporally coordinated fashion, 

emission of reactive GLVs is expected to occur in large-scale bursts.  Simultaneously, 

tropospheric ozone is present at elevated concentrations on hot sunny days. 42  In urban and 

suburban environments, GLV bursts into oxidizing atmospheric conditions therefore, 

provide an opportunity for concerted bursts of SOA into an airshed. 20,23 The interface 

between urban and suburban landscapes provides the opportunity to study SOA formation 

in a multi-component system at a small spatial and temporal scale, where ASOA can 

exceed BSOA and where processes leading to SOA formation could be different from those 

in largely forested regions. 10,42-45    
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 Although the GLV-emission profile of several grass and clover species has been 

characterized 14,15,19,20,22,23,31,34,46 and the SOA yields of several individual GLVs have been 

estimated, 7,27,28,30 to the best of our knowledge there is no reported work on GLV mixtures 

with respect to their aerosol yields or the characterization of the resultant SOA.   In this 

work, a holistic approach to understanding GLV oxidation and SOA evolution has been 

used to characterize the contribution of lawn mowing to local SOA levels.  Thermal 

desorption gas chromatography mass spectrometry (TD-GC/MS) was used to characterize 

the VOC profile of mowed grass.  TD-GC/MS was also used to monitor the consumption 

of GLVs upon ozonolysis and the subsequent evolution of gas phase products, while 

aerosol size distributions and mass loadings were continuously measured using a scanning 

mobility particle sizer.   

 We show that the mow-induced GLV emission profile from turfgrass in a suburban 

neighborhood in Vermont, USA is dominated by CHA and HXL, which readily undergo 

oxidation by ozone to form SOA.  Aerosol yields were determined for each GLV 

individually and used to predict SOA evolution for simple, atmospherically relevant 

mixtures of HXL and CHA and for grass clippings collected from the field.  An apparent 

disparity between predicted and measured SOA production, along with the volatile product 

profile of each chemical system are discussed herein, highlighting the need to understand 

more fully the dynamic chemical interactions posed at the urban/suburban interface.   

4.2 Experimental 

Cis-3-hexenyl acetate (> 98%) and cis-3-hexenol (99%) were purchased from 

Sigma Aldrich and were used without further purification.  Dry, zero air was produced by 
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passing compressed air sequentially through silica, activated carbon and HEPA filters.  

This zero air was also used to generate ozone using a commercially available corona 

discharge ozone generator (OLSOA/DLS OzoneLab). Ozone concentrations were 

monitored with an American Ecotech Serinus O3 Monitor (model E020010).   

All experiments were performed in a 775-L Teflon chamber at ambient temperature 

(~ 23°C) and atmospheric pressure.  Between experiments, the chamber was passivated 

with O3 at high concentrations (1-2 ppm) and flushed with zero air to attain background 

aerosol mass loadings below 0.1 μg/m3.   

Air samples were collected from the reaction chamber onto AirToxics glass 

sorption tubes (Perkin Elmer N9307008) that had been previously conditioned at 310°C 

for 20 min and stored with Swagelok caps.   Air was drawn through the sorption tubes 

using a personal sampler pump (SKC Airchek Sampler, model 224-44XR) at a constant 

rate of approximately 100 ml min-1 (actual flow rate monitored by a F&J Specialty Products 

mini calibrator, model MC-500cc) for a known duration of time, allowing the total volume 

of air sampled to be determined. Typical sample volumes ranged between 0.6 L and 3.6 L.  

Ozone scrubbers were not used because some have been shown to retain ozonolysis 

products. 47,48 

 Air samples were then transferred from the sorbent tubes by thermal two-step 

desorption (TurboMatrix TD 350, Perkin Elmer) to a gas chromatograph (Clarus 600, 

Perkin Elmer) equipped with a mass spectrometer (Clarus 600 T Perkin Elmer) detector.   

Prior to desorption, an internal standard of fluorobenzene (AirLiquide) was injected by the 

Turbomatrix TD directly onto the sorption tubes.  During the first step of desorption, the 
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sorbent tubes were heated to 330°C for 8 min to desorb and cryo-focus GLVs onto a 

AirMonitoring trap held at -10°C.  The trap was then heated at a rate of 40oCs-1 to a final 

temperature of 310°C, where it was held for 8 min. The GLVs were transferred to a GC 

analytical column (Stabilwax 30 m, 0.32 mm i.d., Restek) via a heated transfer line 

(250°C). The GC oven was programmed as follows: held at 35°C for 4 min, increasing 

10°C min-1 to a final temperature of 220°C. The total run time per sample was 22.5 min.   

The head pressure of the helium carrier gas was 1.8 psi, which resulted in a flow rate of 

1.52 ml/min.  Electron impact ionization (70 eV) was used and masses were scanned from 

15 to 300 m/z.  Chromatographic peaks were identified by comparison of retention times 

to those of known standards and by spectral matching with the NIST 2005 mass spectral 

library.  Compounds were quantified on an area basis using single ion monitoring. 

Aerosol particle number and mass size distributions, as well as total aerosol mass 

loadings, were measured continuously with a scanning mobility particle sizer (SMPS, 

model SMPS 3080, TSI Inc., Shoreview, MN).   

The vapor pressure of several organic ozonolysis products was estimated using 

structure based estimators courtesy of the Dortmund Data Bank found in the online 

database by Clegg et al. 49,50  Estimates were made at 298K and are reported as an average 

of three estimates determined using methods described in references 51-55.  

4.2.1 Grass Experiments 

The grass collection site chosen was located in a residential neighborhood in Essex 

Junction, VT (44.487653, -73.09365), approximately 10 miles east of Burlington, VT 

(Figure 4.1).   A geospatial analysis of the study site was performed using ArcGIS 9.0 

software.  Aerial photographs taken in 2004 were obtained from the Vermont Center for 
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Geographic Information. 56  The resolution of these photos was sufficient to visually 

identify residential turfgrass, ArcGIS software was used to quantify the area of turfgrass 

(36 acres) along with the total site area (131 acres).   

 

A section of representative turfgrass comprised predominantly of genera Festuca, 

Lolium and Poa was mowed using a commercially available, residential lawn mower.  

Clippings were collected and transported in sealed paper bags to the University of 

Vermont, Burlington VT for analysis.  Total time elapsed between mowing and sampling 

 

Figure 4.1  Turfgrass (green) in a suburban neighborhood in Essex, VT, USA 

comprises 28 % of the total landcover (131 acres), the mowing of which has the 

potential to contribute up 82 g/m3 SOA to the airshed annually.  Study site 

(44.487653”, -73.09365”) denoted by yellow circle. 
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in the Teflon chamber was between 60 – 90 min. Samples were collected from nine mowing 

events between September and November of 2012 and one event in May of 2013. 

 In grass “clipping” experiments, approximately 0.5 kg of grass clippings (wet 

weight) were placed directly inside the experimental chamber, which was then filled with 

zero air.  Ozone was injected as a brief burst directly into the chamber. A representative 

reaction profile is given in Figure 4.2.   

Grass clipping experiments were designed to represent environmentally relevant 

conditions, where ozone was allowed to interact with volatile species in the gas phase along 

with any reactive species contained within or on the blades of grass themselves.  Whereas 

in “headspace” experiments, only volatile species within the headspace of grass clippings 

were flushed into the reaction chamber, to which ozone was then introduced.  For the 

headspace experiments, approximately 150 grams of grass clippings (wet weight) were 

placed in a 0.4 L conical flask.  Zero air was flushed through the conical flask for ~20 min 

into the reaction chamber, carrying the GLVs with it.  Headspace experiments represented 

a simplified version of the chemical system of interest, where only the volatile species 

emitted by cut grass were oxidized by ozone.  In general, initial CHA and HXL 

concentrations were greater in headspace experiments than in clipping experiments.  This 

difference is likely due to experimental design; grass clippings were allowed to equilibrate 

in the experimental chamber for 20-30 minutes before ozone was injected while grass 

headspace was allowed to build up in the paper sampling bag for up to two hours before 

being flushed into the chamber.  Grass clippings, however, continuously emitted CHA and 

HXL.   
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4.2.2 GLV Standard Experiments 

GLV standards experiments were designed to further simplify headspace 

experiments and were used to determine whether SOA produced as the result of grass 

ozonolysis could be modeled by a single GLV or a two-component mixture of GLVs.  

Standards of CHA or HXL were introduced to the experimental chamber by evaporation 

via injection into a 3-neck flask over a warm water bath.  A zero air carrier flow was flushed 

through the flask and into the reaction chamber for at least 15 minutes.  Gaseous wall-loss 

of GLV standards was determined by monitoring GLV concentration within the reaction 

 

Figure 4.2 Reaction profile for grass clipping experiment.  Approximately 0.5 kg of 

clippings were placed in the reaction chamber and GLV emissions were measured 

(CHA in green triangles and HXL in orange squares, lines were added to aid the eye).  

Ozone (blue trace) was then injected, consuming GLVs and stimulating the formation 

of SOA (red trace).   
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chamber for six hours.  GLV concentration did not decrease over the course of this 

experiment, however and gaseous wall-loss was found to be insignificant (Section S2 

material).  Calibration was completed by collecting a known volume and thereby known 

mass of GLV standards from the experimental chamber onto TD tubes.  Ozone was then 

injected as a brief burst and sampling continued. Standard experiments were carried out at 

a 1:1 and 1:2 GLV to O3 molar ratio to determine aerosol yields and measure reaction 

products.  High GLV mass loadings were used to ensure sufficient SOA mass and volatile 

product evolution for analysis.   

Reaction rate constants (k) for the ozonolysis of CHA and HXL were determined 

using the experimental protocol described elsewhere. 57,58  Briefly, pseudo-first-order 

reaction conditions were induced, whereby the GLV was present in excess of ozone, which 

was monitored throughout the reaction.  A plot of ln([Ozone]t0/[Ozone]t) vs time yields a 

straight line with slope kobserved.  From the rate expression of the reaction, k = 

kobserved/[GLV]t0. 

4.3 Results 

4.3.1 Grass Emissions 

The total ion chromatogram (TIC) of GLVs emitted by cut grass (Figure 4.3a) shows 

a relatively complex mixture of volatile organics, dominated by CHA, 1-penten-3-ol and 

2-pentanone (peaks 5, 4 and 3, respectively). Also present is a significant amount of HXL 

(peak 6), which, along with CHA, is a SOA precursor when subjected to ozone (Scheme 

1). This reactivity is clearly demonstrated by the TIC of the GLV mixture post-ozonolysis 

(Figure 4.3b).  2-pentanone contains no chemical unsaturations and is therefore nonreactive 
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with ozone.  1-penten-3-ol, despite its double bond, does not appear to be highly reactive 

with ozone either.  This interesting observation is the crux of Chapter 6, which focuses on 

the control of ozonolysis kinetics and aerosol yield by nuances in the molecular structure 

of parent volatile organic compounds. 

4.3.2 Ozonolysis of Individual GLVs  

To better understand the ozonolysis mechanisms for CHA and HXL, each system 

was studied individually using standards.  The ozonolysis of CHA (Scheme 4.1b) is 

predicted to produce 3-oxopropyl acetate and propanal, along with two stabilized Criegee 

intermediates (CI-3 and CI-4) that produce propanoic acid and 3-acetoxy propanoic acid, 

respectively upon isomerization and hydration. 35,59 Upon ozonolysis of CHA, we observed 

the evolution of propanal and propanoic acid using TD GC/MS, but not 3-oxopropyl 

acetate or 3-acetoxy propanoic acid.  The estimated vapor pressure of 3-acetoxy propanoic 

acid (4 x 10-5 atm) is sufficiently low as to indicate that it is non-volatile and would exist 

primarily in the particle phase.  The relatively high vapor pressure of 3-oxopropyl acetate 

(5 x 10-3 atm), however, is on the same order of magnitude as that of propanal and 

propanoic acid (0.4 atm and 4 x10-3 atm, respectively), suggesting that it should be found 

in the gas phase. Nonetheless, it was not observed in this work and experimental 

identification of 3-oxopropyl acetate by others has been tentative at best. 35,60,61  
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 According to Scheme 4.1a, propanal, propanoic acid, 3-hydroxypropanal and 3-

hydroxypropanoic acid are expected products of the ozonolysis of HXL, of which we 

observed the evolution of both propanal and propanoic acid in the gas phase.  3-

hydroxypropanal and 3-hydroxypropanoic were not observed.  In accord with the estimated 

vapor pressures of these species (1 x 10-7 atm and 2 x 10-5 atm, respectively), these species 

would likely contribute to SOA in the particle phase.   

In addition to the predicted ozonolysis products, we also observed the evolution of 

2-propenal and propenoic acid from both CHA and HXL.  We also observed the production 

of acetic acid from CHA and acetaldehyde from HXL.  Considerable work has been done 

by Hamilton et al.7 to identify the oxidation products of CHA and HXL, and though they 

identify acetic acid, it is attributed to fragmentation of other species during their mass 

 

Figure 4.3 Chromatogram of volatile organic compounds emitted by (a) grass 

clippings and (b) as a result of the ozonolysis of grass clippings.  
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spectrometry ionization process.  To our knowledge, this is the first known observation of 

these species as CHA and/or HXL ozonolysis products, however a full understanding of 

the mechanism leading to their formation is not clear and warrants additional work.  Albeit, 

Scheme 4.1 is a simple representation of the ozonolysis via the Criegee mechanism and 

does not take into account the many competing reaction pathways likely occurring 

simultaneously, however these alternative reaction pathways are discussed elsewhere yet 

still do not account for these products. 7,61  

The evolution of volatile ozonolysis products occurred as a concerted burst in both 

GLV systems, after which the signal for most products remained steady.  In the ozonolysis 

of CHA, however, the propanal signal decreased over the course of ~25 min before peaking 

again 30 minutes post ozonolysis (Figure 4.4).   This valley/peaked response suggests the 

presence of secondary reactions resulting in the consumption/production of propanal in the 

CHA system.  While propanal was also measured as a product of HXL ozonolysis, the 

valley/peaked response was not observed for that system (Figure 4.5).  Hamilton et al. 7 

propose a mechanism for the uptake of propanal by 3-hydroxypropanal, (product of HXL 

ozonolysis).  Although we did not see evidence to support the uptake of propanal by HXL, 

the mechanism proposed by Hamilton et al. 7 could apply to the CHA system, where the 

valley/peak response in propanal provides evidence for its reactive uptake.  In the CHA 

system, the aldehyde in 3-oxopropyl acetate could react with propanal to produce 2-(1,3-

dioxan-2-yl)ethyl acetate (Scheme 4.2), which based on its estimated vapor pressure (5 x 

10-7 atm) would likely exist in the particle phase. 29 This secondary reaction may also 

explain why 3-oxopropyl acetate was not observed in CHA ozonolysis experiments.  
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Scheme 4.1 The ozonolysis of HXL (a) is predicted to produce hydroxyl acetic-acid and 

propanal along with the stablilized Creigee Intermediates CI-1 and CI-2, which produce 

propanoic acid and hydroxypropanal respectively upon isomerization and hydration. 

The ozonolysis of CHA (b) is predicted to produce 3-oxopropyl acetate and propanal, 

along with two stabilized Criegee intermediates (CI-3 and CI-4) that produce propanoic 

acid and 3-acetoxy propanoic acid, respectively.   
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Figure 4.4 Reaction profile for the ozonolysis of CHA. At time zero, 800 ppb ozone 

was introduced to 5.7 (±0.1) x10- 3 µg/mL of CHA, which resulted in an initial burst 

in SOA and the evolution of volatile products. Lines between data points drawn to aid 

the eye. 

 

Figure 4.5 Reaction profile for the ozonolysis of HXL. At time zero, 900 ppb ozone 

was introduced to 2.6 (±0.2) x10-3 μg/mL HXL, resulting in the evolution of SOA and 

volatile products.  Lines between data points drawn to aid the eye. 
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In the general mechanism shown in Scheme 4.1, propanoic acid is produced by 

ozonolysis of CHA.  According to Li et al. 61, the evolution of propanoic acid is a result of 

the α-addition of water to CI-3 to form 1-hydroperoxypropan-1-ol, which further 

decomposes to produce propanoic acid.  Li et al. 61 also performed a kinetic investigation 

of the mechanism for CHA ozonolysis that confirmed that formation of 1-

hydroperoxypropan-1-ol is the favored reaction pathway for CI-3.61  However, they found 

that the subsequent decomposition of 1-hydroperoxypropan-1-ol to propanoic acid and 

water has an energy barrier of 45.57 kcal mol-1 and is, therefore, not likely. 61   

Nevertheless, we observed propanoic acid as a product of CHA ozonolysis (Figure 4.4) 

and this is the only proposed pathway leading to its formation.   The oxidizing environment 

in which these reactions were performed could lead to further oxidation of propanal, which 

was observed as a major ozonolysis product of both GLVs, to produce propanoic acid.  

However, we saw no evidence of the consumption of propanal coinciding with the 

production of propanoic acid in the reaction profile of CHA or HXL.  Additionally, 

separate experiments showed that a propanal standard did not oxidize to form propanoic 

acid when injected into the experimental chamber in the presence of high ozone (Figure 

 

Scheme 4.2 Upon hydration, the aldehyde functionality of 3-oxypropyl acetate could 

react with propanal, both predicted products of CHA ozonolysis (Scheme 4.1), to 

produce 2-(1,3-dioxan-2-yl) ethyl acetate (VP 5 x 10-7 atm) 
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4.6).  The decomposition pathway leading to the formation of propanoic acid, therefore, 

appears relevant, despite being energetically disfavored.    

 

During the ozonolysis of each GLV, SOA evolution began immediately upon 

introduction of ozone and reached a maximum concentration in ~60-90 minutes before 

decreasing slowly, likely due to particle loss to the chamber walls.  Aerosol yields, Y, for 

CHA and HXL were calculated according to Equation 3.4 in Chapter 3. 

Ozonolysis of CHA and HXL individually resulted in measured aerosol yields of 

0.5 (± 0.4) % and 0.3 (± 0.2) %, respectively.  Particle loss to chamber walls was estimated 

according to Presto et al. 63 and proved to be significant, with an average wall deposition 

 

Figure 4.6 5 µL of pure propanal was injected to the reaction chamber, resulting in a 

final concentration of 5.2 x 10-3 µg/mL.  The signal from propanal remained relatively 

constant (within 20% as indicated by 20% error bars) throughout the experiment.  

Between Samples 7 and 8, 800 ppb ozone was injected into the chamber.  The average 

signal from propanal is not significantly different pre- and post-ozone injection (95% 

confidence level), suggesting it is not reactive with ozone.  Although its signal varied 

by 50% over the course of the experiment (50% error bars), at the 95% confidence 

level the average signal from propanoic acid is not significantly different pre- and post-

ozone injection.  Lines between data points were drawn to aid the eye. 
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rate of 5.76 x10-4 μgm-3sec-1, which is greater than that reported for experimental chambers 

used by others (2.5 x 10-5 and 1.0 x10-4). 63-66  Given the large surface-to-volume ratio of 

our chamber, however (5.3 m-1), compared to that of others (2.12 m-1 to 2.8 m-1), a greater 

deposition rate is expected.63,67  Unless otherwise noted, all subsequent reports of 

‘measured’ or ‘observed’ SOA concentrations account for wall-losses. 

Our wall-loss coefficient was used to correct aerosol yield from GLV standard 

experiments. The corrected aerosol yields from ozonolysis of CHA and HXL were 1.2 (± 

1.1) % and 3.3 (± 3.1) % respectively.  The error associated with these yields is due to the 

variability in the amount SOA formed in experiments. Our aerosol yield values are lower 

than the wall-loss-corrected aerosol yields reported by Hamilton et al., which were on the 

order of magnitude of prevalent monoterpenes; 9.5 – 24 % for CHA and 8.6 % for HXL.7,35 

The ozonolysis of the endocyclic double bond of monoterpenes, as is the case in α-pinene, 

terpinolene and limonene, however, results in the formation of oxygenated species with 

higher molecular weights than the parent hydrocarbon that likely partition into the particle 

phase and contribute to SOA, resulting in relatively high aerosol yields.  Alternatively, 

CHA and HXL are linear alkenes that, upon oxidative cleavage via ozonolysis, produce 

species with relatively low molecular weight and, thereby, high volatility, likely 

contributing to the gaseous phase and, subsequently, should result in a lower aerosol yield 

than their cyclic counterparts.   

4.3.3 Two GLV Component Mixtures 

As stated above, we measured several different, potentially reactive compounds in 

the complex mixture of GLVs emitted by grass clippings.  Recent work by Shilling et al. 9 

in the CARES campaign indicates that VOC mixtures have a significant impact on SOA 
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formation.  With the goal of better understanding SOA formation and yield under 

environmentally relevant conditions (where VOCs exist as a mixture), we performed two-

component ozonolysis experiments with CHA and HXL.  In one experiment, ozone was 

introduced to a GLV mixture containing a 1:1 (mole ratio) mix of the two components, 

while a second experiment was designed to represent the ozonolysis of environmentally 

relevant GLV mixtures, containing a 1:5 mole ratio of HXL to CHA, analogous to that 

measured from real grass clippings.    

The reaction profile for the ozonolysis of the 1:1 GLV mixture (Figure 4.7) shows 

that the majority of both CHA and HXL is consumed within the first five minutes of the 

reaction.   SOA and volatile product evolution occurred immediately, reaching maxima 

less than 20 min into the reaction.  SOA and volatile product concentrations remained 

relatively constant post-maxima; propanal did not exhibit the peak/valley trend observed 

in the CHA-only ozonolysis experiments.  Qualitatively, the 1:1 GLV mix reaction profile 

bears a strong semblance to that of the HXL-only ozonolysis profile (Figure 4.5), 

suggesting HXL in an equimolar concentration, is more reactive to ozonolysis than CHA.  

The reaction rate constants we calculated also indicate that HXL (k = 6.7 x 10-17 cm3 sec-1 

molecule-1) is more reactive to ozone than CHA (3.6 x 10-17 cm3 sec-1 molecule-1) (Section 

S6).  These reaction rates agree well with those found by Kirstine et al. 20 (5.4 x 10-17 cm3 

sec-1 molecule-1 for CHA and 6.4 x 10-17 cm3 sec-1 molecule-1 for HXL ), who used the 

relative reaction rate method and also found that HXL was more reactive to ozonolysis.  

Using the aerosol yields measured in this work and the initial mass of GLVs injected into 
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Figure 4.7 Ozonolysis reaction profile of the ozonolysis of a 1:1 mix of CHA and HXL. 

 

 

Figure 4.8 Ozonolysis reaction profile of 1:5 GLV mix, a representative ratio of 

turfgrass emissions.  
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the chamber, total SOA production for the 1:1 mix was expected to reach 125 (± 85) μg/m3.  

However, the maximum observed SOA concentration was 9.8 μg/m3.  

The ozonolysis of 1:5 GLV mix also resulted in the rapid consumption of GLVs 

and the immediate evolution of SOA and volatile products (Figure 4.8).  This reaction 

profile more closely approximates the CHA-only reaction profile (Figure 4.5), with both 

propanal and acetic acid exhibiting the valley/peak trend, which suggests the occurrence 

of the same secondary reactions observed in the CHA-only system.  Wall-loss corrected 

aerosol yields predicted the formation of 50 (±17) μg/m3 SOA, much more than the SOA 

maximum observed; 5.3 μg/m3. 

The disparity between the measured and predicted SOA concentrations in mixture 

experiments could suggest the presence of secondary chemistry that resulted in the 

consumption of GLVs without the production of SOA, which may have also been the case 

in grass clipping experiments.   

  Figures 4.9 and 4.10 show reaction profiles for the ozonolysis of grass headspace.  

Again, in these experiments, zero air was passed through the grass clippings and into the 

reaction chamber, carrying emissions with it.  Maximum concentrations of CHA and HXL 

(12 (±1) x10-4 µg/mL and 2.05 (± 0.01) x10-4 µg/mL, respectively) were measured post 

ozonolysis, which we believe was due to incomplete mixing within the experimental 

chamber before ozone injection.  At time zero, ~470 ppb ozone was injected (indicated by 

the vertical line) and within 20 minutes the HXL concentration dropped below the 

instrument detection limit while SOA reached its maximum wall-loss corrected 

concentration (15.7 µg/m3).  CHA remained relatively constant after the first 20 minutes 
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Figure 4.9 Consumption of GLVs and subsequent evolution of SOA in grass 

headspace ozonolysis experiments.  

  

Figure 4.10 In addition to the evolution of SOA, the ozonolysis of grass headspace 

resulted in the evolution of several volatile products, many of which have not 

previously been reported as products of CHA or HXL ozonolysis.  Lines between 

data points drawn to aid the eye. 
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of the reaction (0.74 (± 0.05) x10-3 µg/mL) and was never completely consumed.  SOA 

evolution begins immediately post ozonolysis and reaches a wall-loss corrected maximum 

of 15.7 μg/m3 within 20 minutes before beginning to decrease, which coincides with the 

complete consumption of HXL, supporting our hypothesis that HXL has an important role 

in SOA formation in the mixture.  CHA also decreases throughout the reaction but is never 

completely consumed and there is no corresponding SOA growth even with continued 

consumption of the CHA, suggesting that CHA plays a minor role in the evolution of SOA 

in the mixture, as compared to HXL, but is being consumed to produce more volatile 

compounds.   

In addition to the evolution of SOA, the ozonolysis of grass headspace resulted in 

the evolution of several volatile products (Figure 4.10), including propanal, propenal, 

propenoic acid, acetic acid, propanoic acid, acetaldehyde, several of which have not 

previously been reported as products of CHA or HXL ozonolysis.   

4.3.4 Grass Ozonolysis  

As stated above, although grass clippings emitted several volatile species, the GLV 

profile was dominated by CHA, HXL and 1-penten-3-ol (PTL), all of which are unsaturated 

and thereby have the potential to undergo oxidation by ozone as predicted by Scheme 4.1.  

Despite its unsaturation, however, PTL showed limited reactivity with ozone.  To further 

characterize the ozonolysis kinetics and aerosol yield of PTL, we performed ozonolysis 

reactions with standards (Figure 4.11). 2.5 μL of PTL was injected into the experimental 

chamber resulting in an initial concentration of 2.6 x 10-3 μg mL-1.  At time zero, 400 ppb 

ozone was injected.   Initial aerosol concentration was about 0.15 μg m-3 and, though it 
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showed an increasing trend over the course of the experiment (final concentration of about 

0.25 μg m-3), it never exceeded 0.3 μg m-3.   

 

At a 95% confidence level, the average PTL concentration pre- and post-ozonolysis 

(2.6 x10-3 and 2.2x10-3 μg/mL, respectively) are statistically different, about 50% lower 

post ozonolysis.  However, upon injection of ozone, 1-penten-3-ol concentration did not 

show a dramatic drop in concentration, suggesting that any reactivity with ozone is very 

slow, or that ozonolysis is not the loss mechanism for PTL.  Ozone concentration fell to 

about from 400 ppb to 225 ppb by the end of the experiment, but did not show the second 

order consumption (exponential decrease) that is indicative of the alkene-ozone reaction.  

In a separate experiment, 250 pbb ozone was injected into the reaction chamber alone and 

 

Figure 4.11 Reaction profile for 1-penten-3-ol ozonolysis.  2.5 μL of 1-penten-3-ol was 

injected into the experimental chamber resulting in an initial concentration of 2.6 x 10-

3 μg/mL.  At time zero, 400 ppb ozone was injected.  Lines were drawn to aid the eye.   
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remained constant (251 ± 0.5% ppb) for over 5 hours, which suggests some degree of 

chemical reactivity for ozone in the PTL ozonolysis experiment.  

According to Scheme 4.3, the predominant ozonolysis products of PTL include 2-

hydroxybutanal, 2-hydroxybutanoic acid, formaldehyde and formic acid.  These products 

were not observed using TD-GC/MS, supporting our hypothesis that PTL has limited (no) 

reactivity with ozone.  These products, however may need derivatization for detection by 

GC/MS.  It is, therefore, unclear what the loss mechanism for PTL is in this experiment. 

Though, as described in Chapter 3 Section 2, loss of VOCs to the chamber walls is expected 

to be negligible.  These interesting observations stimulated a series of questions regarding 

the molecular level control of ozonolysis kinetics and aerosols yield.  For example, why 

did CHA and HXL show considerable reactivity with ozone and produce SOA, while PTL, 

which has a similar molecular structure, show no (or limited) reactivity with ozone?  

Chapter 6 focuses on addressing this questions. 

Revisiting the more well-behaved GLVs, the initial CHA, HXL, and ozone 

concentrations for several grass clipping and headspace experiments are listed in Table 4.2 

and are on the same order of magnitude and mole ratio as the ‘1:5 standard mixture’ 

experiment above (Figure 4.7).  In the ozonolysis of both grass headspace and grass 

clippings, these GLVs decreased in signal, while that of their corresponding gas-phase 

oxidation products, propanal, propanoic acid, and acetic acid increased.  As in the GLV 

standard reactions, we also observed the evolution of propenal, propenoic acid, acetic acid 
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and acetaldehyde, which have not previously been observed as products of grass 

ozonolysis. 

 A typical reaction profile for the ozonolysis of grass clippings is shown in Figures 

4.13 and 4.14. Several of these experiments were completed, where approximately 0.5 kg 

of grass clippings were placed in the experimental chamber, which was then filled with 

zero air (Figure 4.12 is a photograph from a different but analogous emissions experiment 

done in the UVMEC).  Initial concentrations of CHA and HXL were monitored before 

ozone (~800 ppb) was injected, resulting in an initial burst of SOA.  High ozone loadings 

were used to ensure a complete oxidation of all GLVs and to model GLV standard 

ozonolysis experiments (Table 4.2), but do not represent atmospherically relevant 

conditions, as discussed below. In several headspace and grass clipping experiments, the 

 

 

Scheme 4.3 Predominant products from the ozonolysis of PTL were not observed in 

the gas phase.   
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resultant SOA concentration increased to maxima (~50 μg m-3 and ~215 μg m-3 in 

headspace and clipping experiments, respectively) approximately 20-30 minutes post-

ozonolysis before decreasing rapidly to background levels. We also observed a SOA 

concentration drop in grass headspace experiments (i.e., no grass clippings in the reaction 

chamber), suggesting that the rapid decrease in SOA concentration in clipping experiments 

is not due to sorption to the grass clippings.  The mechanism for SOA loss in grass clipping 

and headspace experiments is not understood but may involve secondary reactions that 

increase the volatility of SOA as it ages (ie additional oxidation by hydroxyl radicals).  

These loss mechanisms may have important roles in determining the atmospheric lifetime 

of GLV-SOA, therefore understanding these dynamics warrants additional work. 

 

Figure 4.12 Grass emission profiles were measured by placing grass clippings directly 

inside the reaction chamber and filling with zero air.  Here, ~6.5 kg of clippings were 

placed inside UVMEC. 
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 Figure 4.13 GLV consumption and SOA evolution during grass clipping ozonolysis 

experiment. Lines between data points drawn to aid the eye. 

 

Figure 4.14 Evolution of volatile products and SOA during grass clipping ozonolysis 

experiment. Lines between data points drawn to aid the eye. 
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In both headspace and clipping experiments, volatile products increased as a 

concerted burst within the first 10 minutes post ozone injection (Figure 4.10 and Figure 

4.13, respectively).  In the first 40 minutes of headspace experiments, 50% of CHA, and 

HXL was consumed, while more than 90% of the ozone was consumed.  CHA 

concentration decreased then remained constant once ozone had been depleted.  Propenal 

and acetaldehyde increased steadily post ozonolysis.  Propanal increased, but exhibited a 

peak-valley behavior similar to that in GLV standards experiments.  All other VOC 

products decreased post ozonolysis.   

In grass clipping experiments, CHA and HXL were completely consumed within 

the first 10 minutes of the reaction, while ozone concentration fell to background levels 35 

minutes post ozonolysis.  GLV concentrations were lower in grass clipping experiments 

than in headspace experiments, but this may have been a result of experimental design, as 

grass clippings were not allowed to equilibrate in the reaction chamber for more than a few 

minutes before ozone was injected.  Acetic acid, propanoic acid and propenoic acid signal 

fell after an initial burst, while propanal remained steady after its post-ozonolysis increase 

(similar to HXL standard experiments).   

Applying the calculated aerosol yields above to the measured GLV emission rates 

in both headspace and clipping experiments, theoretical SOA production could be 

estimated (Table 4.2).  The observed SOA production in grass headspace experiments was 

less than that predicted by aerosol yields with a -120% difference.  This difference was 

similar to the degree of disparity in the 1:1 mix ozonolysis experiment (-115% difference), 

suggesting the 1:1 mix may model SOA production from grass headspace to some degree.   
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The observed SOA production in grass clipping experiments was much greater than 

what aerosol yields predicted (+170%).   The ozonolysis of neither the 1:1 mix nor the 1:5 

GLV mix resulted in the over-production of SOA, as was seen in grass clippings.  In fact, 

based on the corrected SOA yields, HXL and CHA account for only a small fraction of 

observed SOA (15(±13)%), suggesting that neither accurately models grass clippings.  

Because GLVs are continuously emitted by grass clippings, they likely represent a 

continuous source of SOA, rather than a one-time burst, which may contribute to the 

observed disparity between predicted and measured SOA.  This disparity may also suggest 

that other, potentially important, processes are contributing to SOA evolution by the 

mowing and subsequent oxidation of grass, as will be discussed below.   

As demonstrated by the disparity between predicted and actual SOA production, 

the ozonolysis of HXL or CHA alone does not accurately represent SOA from the 

ozonolysis of grass clippings or grass headspace.  Mixtures of the two dominant reactive 

GLVs are more representative of the grass headspace system than the grass clippings, and 

produce similar trends in SOA growth and volatile product evolution.  Therefore, 

predictions of atmospheric SOA mass loading using even these two predominant GLVs 

underestimate actual SOA loading resulting from lawn mowing.   
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4.4 Contribution of Lawn Mowing to Atmospheric SOA 

The site area chosen for this study was a residential, suburban neighborhood in 

close proximity to an industrial, urban landscape.  A geospatial analysis of the 131-acre 

area around the study site showed that lawns and turfgrass comprise 27.5% of the total 

landcover in this suburban neighborhood (36 acres).  Remaining landcover was comprised 

of wooded lots, scrub-brush and impervious surfaces such as roads, driveways and 

rooftops.  Lawn mowing has been estimated to produce ~1.3 x 103 gdw/m2/yr of clippings 

(where gdw is grams dry weight).67   Stevenson 68 estimated that New England homeowners 

mow their lawn 20 times annually, and so we predict that approximately 66 

gdw/m2/mowing of grass clippings are produced by New England lawns.  We estimate that 

lawns in this typical suburban neighborhood have the capacity to emit 8.66 (±0.08) μg/m2 

CHA and 1.21 (±0.06) μg/m2 HXL as a concerted burst upon mowing.  Based on our 

corrected aerosol yields, these GLVs have the capacity, therefore, to contribute 177 mg 

SOA to the neighborhood airshed, annually. 

However, as shown above, the actual SOA measured due to the ozonolysis of grass 

clippings is much greater than predicted by our yields, so the estimate above is not truly 

representative of the potential contribution of lawn mowing to SOA levels.  Based on the 

measured SOA as a function of the area of lawn mowed, each mowing event could 

contribute 27.5 μg/m3 SOA per m2 of lawn or 425 μg/m2 annually.  Based on their reported 

emissions from forested landscapes and the fraction of forested landscape in the region of 

the study area, isoprene and monoterpenes are estimated to contribute 2,500 and 2,000 

μg/m2 annually, respectively. 69,70 Lawn mowing, therefore, has the potential to emit a 
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significant amount of SOA, comparable to the two predominant SOA sources, as a 

concerted burst to the local airshed.  

As stated above, ozone was introduced to the experimental chamber as a one-time 

burst that resulted in concentrations of about 800 ppb, which is much greater than average 

ozone levels in Chittenden County, VT (~60 ppb). 71  800 ppb ozone was used in 

preliminary grass clipping experiments to ensure a sufficient concentration to result in SOA 

growth and was used in subsequent GLV standard and grass experiments for the sake of 

consistency.  Though ambient ozone concentrations are lower than the experimental ones 

used herein, they are expected to be elevated on warm, sunny days, the same time lawn 

mowing is expected to occur.  Additionally, ozone plumes can be transported several 

hundred kilometers from industrial or urban sources to rural sites where they can interact 

with BVOCs. 72-74 For example, plumes originating in New York City, NY can extend 600 

km and contain up to 160 ppb ozone. 75  The prevailing winds in Essex Junction, VT are 

from the west, putting the study site five miles downwind from the City of Burlington, VT 

and many industrial areas, which may introduce an additional source of ozone.  Therefore, 

it is possible that local ozone levels in rural landscapes could be elevated during mowing 

events.  Additionally, in the field, any consumed ozone is expected to be replenished by 

other sources that are prevalent in the atmosphere, whereas in our experiments ozone was 

injected as a single burst. 42   Exposure to a concerted burst of 800 ppb ozone is admittedly 

different than an exposure to 100 ppb over the course of 8 hours, which would be a more 

representative exposure scenario, but such exposures will require use of a continuous flow 

reaction chamber.   
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Though our aerosol yields under-estimate the actual SOA produced by the 

ozonolysis of grass clippings and atmospheric ozone levels are less than those used in this 

study, our work demonstrates that mowing of lawns in this neighborhood could contribute 

a localized burst of up to 27.5 μg m-3m-2 SOA to the atmosphere per mowing event, whereas 

the ambient particulate matter concentration in this region is ~6 μg m-3.76  During any given 

mowing event, PM2.5 (particulate matter with diameter less than 2.5 μm, the average 

diameter of SOA produced by the ozonolysis of grass clippings and headspace is 0.125 

μm) levels in suburban neighborhoods could approach or exceed the suggested guideline 

value for annual mean and 24-hour mean guidelines (10 μg m-3 and 25 μg m-3, respectively) 

set by the World Health Organizations and the PM2.5 standard set by the US Environmental 

Protection Agency (12 μg m-3), representing an episode of acute exposure to potentially 

harmful PM.77,78   

Despite our efforts to model real world conditions in our experiments, the 

atmosphere offers additional complexities that may lead to additional SOA evolution as a 

result of lawn mowing. Work done by Kirstine et al., 20 Orlando et al., 24 and Papagani et 

al. 79 have shown that grass GLVs have considerable reactivity with nitrate and hydroxyl 

radicals, on the same order of magnitude as common anthropogenic VOCs.  Hamilton et 

al. predicted aerosol yields of 3.1% and 0.9% from the photooxidation of HXL and CHA, 

respectively.7  Given the established reactivity of GLVs with other atmospheric oxidants, 

additional work should be done to characterize the volatile products and SOA produced 

from the photooxidation of GLVs.   
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This work focused on the interaction of two predominant GLVs and their roles in 

SOA formation, however there is also growing evidence to indicate that the presence of 

anthropogenic organic aerosol and AVOC in conjunction with BVOC synergistically 

enhances the production of SOA.9,10,80  The relatively large ratio of landcover encompassed 

by lawns in suburban neighborhoods represent a source of BVOCs, which, by definition 

are in close proximity to urban and industrial sources of BVOCs and BSOA, as well as 

elevated concentrations of oxidants.  There are several sources of A/BVOCs and A/BSOA 

at the urban/suburban interface that provides ample opportunity for interaction.  For 

example, the emissions of lawn mowers themselves have been found to contribute as much 

as 4 μg m-3 aerosol during a mowing event, likely from unspent fuel emissions and agitated 

plant debris and soil.81   Additional work is needed to determine whether an anthropogenic 

enhancement effect drives additional SOA production from the ozonolysis of grass 

clippings, not seen in headspace or GLV standard experiments. These experiments should 

include the ozonolysis of GLVs in the presence of seed aerosols, which would serve as a 

proxy to ambient atmospheric particulate matter or primary organic aerosols and should 

also involve GLV oxidation in the presence of AVOCs and oxidants.   

4.5 Conclusions 

Though many volatile species are emitted by grass clippings, the profile is 

dominated by CHA and HXL, which are easily oxidized by ozone to produce significant 

amounts of SOA, in addition to a suite of oxygenated volatile products.  Herein we report 

the first known observation of propenal and propenoic acid as ozonolysis products of both 

CHA and HXL, as well as support other products previously reported in the literature.7,27-
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29,61   We found that the mowing of lawns has the potential to contribute up to 27.5 μg m-3 

m-2 SOA, which cannot be modeled solely by the ozonolysis of CHA or HXL.  While these 

two GLVs were found to produce SOA upon ozonolysis, they each largely under-predict 

SOA mass loading from ozonolysis of grass clippings or simple binary mixtures of the two.  

The disparity between measured and predicted SOA mass loading may be rectified by 

incorporating additional oxidation sources, BVOCs, AVOCs and ASOA, which may 

contribute to an anthropogenic enhancement effect in grass clipping oxidation.   

The ozonolysis of two-component mixtures of CHA and HXL begins to suggest 

that the chemical processes leading to SOA formation could be better modeled by mixtures, 

than by single-component systems.  However, the chemical processes involved are not well 

understood and warrant additional work. 
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CHAPTER 5. OPTICAL PROPERTIES OF SECONDARY ORGANIC 

AEROSOL FROM CIS-3-HEXENOL AND CIS-3-HEXENYL ACETATE: 

EFFECT OF CHEMICAL COMPOSITION, HUMIDITY AND PHASE  

 

The following is an expansion upon a manuscript, submitted (Feb, 2016) and under review 

for publication in Environmental Science and Policy.   The full reference is as follows: 

 

Harvey, R. M.; Bateman, A. P.; Jain, S.; Li, Y. J.; Petrucci, G. A.; Martin, S. T.. The optical 

properties of GLV-Derived SOA: Effect of chemical composition, humidity and phase. . 

Environ Sci Technol (under review). 

 

5.1 Introduction 

The absorption and scatter of light by atmospheric aerosols plays an important role 

in Earth’s radiative balance.  However, the magnitude of absorption and scatter has proven 

difficult to pin down, largely due to challenges associated with measuring aerosol optical 

properties, which are size, composition and wavelength dependent.  Organic aerosol (OA) 

contributes 20-90% of the total mass of atmospheric aerosol1,2 and 70-90% of OA is 

secondary in nature (SOA), being formed by the oxidation of volatile organic compounds 

(VOCs) in the atmosphere.3  There is growing evidence to suggest that SOA contributes to 

light attenuation (by both absorbance and scatter) in the atmosphere and may play an 

important role in the radiative budget.4-12  Green leaf volatiles (GLVs) are a class of wound-

induced VOCs emitted by several plant species.  The most dominant and ozone-reactive 

GLVs include cis-3-hexenyl acetate (CHA) and cis-3-hexenol (HXL), which have been 
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shown to react with ozone to produce SOA at comparable levels to predominant biogenic 

SOA sources, yet the optical properties of these SOA are not understood.13   

The optical properties of SOA can be characterized by the extinction coefficient 

(σext), which describes total light attenuation; the mass absorbance/scatter coefficient 

(MAC, MSC), which describe the mass-normalized contribution of light 

absorbance/scatter to the total extinction; and the Angstrom Scatter Exponent (ASE), 

which describes the wavelength dependence of scatter.7,14-17 These optical properties are 

closely related to particle size, phase and chemical composition, which are themselves 

dependent on the parent VOC, type of oxidation (by ozone, NOx, OH etc.) and 

environmental conditions (i.e., temperature, humidity).  Over long time scales, particle-

phase reactions and chemical aging also contribute to optical properties.18  Bulk chemical 

properties such as the oxygen-to-carbon ratio (O:C) of SOA have been used to predict or 

rationalize SOA optical properties.2,4,9,18-22  For example, a greater O:C has been shown to 

correlate to greater light absorption.17,23,24  However, recent studies have also shown no 

correlation between O:C and optical properties, or even the opposite trend. 18,25  

 In this work, we measure the optical properties and phase state of SOA as a function 

of chemical system (CHA vs HXL) and environmental conditions (relative humidity, RH).  

We further demonstrate that a molecular-level understanding of SOA chemical 

composition is important to understand its optical properties and predict its role in radiative 

forcing.   
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5.2 Experimental 

All experiments were performed in the Harvard Environmental Chamber (HEC) 

operated in continuous-flow mode.26,27  The HEC consists of a 4.7-m3 PFA Teflon bag 

housed in a temperature and humidity-controlled room.  Dry, clean, hydrocarbon-free air 

was produced with a pure air generator (Aadco 737).  A syringe pump was used to 

continuously introduce standards of CHA or HXL (both >98 %, Sigma-Aldrich) into a 

secondary chamber. A constant flow of zero air was used to sweep volatilized compounds 

from the secondary chamber into the HEC.  Neither seed particles nor OH scavengers were 

used in these experiments.  Ozone was produced by passing air around an ultraviolet lamp 

(Jelight 600) and then monitored in the chamber using a Teledyne 400 E.   Humidity was 

controlled by passing zero air through a water bubbler (18 MΩ cm) followed by a HEPA 

filter and into the chamber, where it was monitored with a Rotronics humidity sensor 

(Hygroclip SC05).  Bulk chemical properties (O:C, H:C) were measured using an 

Aerodyne high-resolution time of flight mass spectrometer (HR-ToF-AMS),28,29 according 

to Chen et al. (2011).30 Molecular level chemical analysis of SOA was performed using 

Near-IR Laser Desorption/Ionization Aerosol Mass Spectrometry (NIR-LDI AMS).31,32   

An integrating sphere UV-Vis spectrometer (IS-UV-Vis, Shimadzu UV-2450 with 

ISR 2200) was used to measure the wavelength-dependent light absorption of SOA.9  SOA 

was collected on 25 mm diameter quartz filters (Pall Tissuquartz PN 7200) at 4.95 ± 0.05 

L min-1 for a known duration of time (See Table 5.1).  Filters were individually wrapped 

in aluminum foil and stored in a desiccator at room temperature until analysis (<2 weeks). 

The volume-normalized absorption coefficient (bv, m
-1) was determined by measuring the 

absorbance (Abs) of SOA on a filter according to: 
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 𝑏𝑣 =  
𝐴

𝑉
×  𝐴𝑏𝑠 × ln (10)   (5.1) 

where A is filter area (m2) and V is the volume of air sampled (m3).  All samples were blank 

corrected using clean filters.  To compare the absorption coefficients of SOA from different 

precursors, the mass normalized absorption coefficient (MAC, m2g-1) was calculated by: 

 𝑀𝐴𝐶 =  
𝑏𝑣

𝑀𝑣
    (5.2) 

where Mv is the average SOA mass concentration (g m-3), which was measured using a 

multi stage electrical low pressure impactor (ELPI+, Dekati).  Size distribution was also 

measured using a scanning mobility particle sizer (SMPS) and condensation particle 

counter (CPC).  Typical SOA mass loading on filters was approximately 50 µg.  Where 

SOA mass concentrations were sufficiently high, the collection of several filters was 

possible, in which case MAC values are reported as the average ± 1 standard deviation.   

 

Table 5.1 Experimental conditions for GLV ozonolysis experiment in HEC. 

Experiment HXL 1 HXL 2 CHA 1 

Date 11/3/2015 11/4/2015 11/12/2015 

[HXL] (ppb) 500 500 0 

[CHA] (ppb) 0 0 500 

[Ozone] (ppb) 200 200 200 

RH % 10 70 10 

SOA Mass Conc. (µg m-3) 80 30 15 

Filter 1 Sample Volume (L) 440 300 630 

Filter 2 Sample Volume (L) 325 330 550 

Filter 3 Sample Volume (L) 330 530 n/a 

Filter 4 Sample Volume (L) n/a 540 n/a 

Approximate Reaction Time (hr)* 4 7.25 2.5 

* reaction time corresponds to time over which experimental conditions were stable 

(SOA mass concentration, RH, [O3], and [VOC].  
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The scattering coefficient (σscat) of the bulk aerosol was measured directly using a 

three-wavelength integrating nephelometer (Aurora 3000, Ecotech), which was then used 

to determine the mass scattering coefficient (MSC, m2g-1) by normalizing to the average 

SOA mass concentration (Mv, g m-3): 

 𝑀𝑆𝐶 =  
𝜎𝑠𝑐𝑎𝑡

𝑀𝑣
    (5.3) 

Nephelometer measurements introduce truncation errors that influence the 

measured scatter values.33  For particles with diameters greater than 1 µm, these errors can 

be as large 20%-50%.  For accumulation mode particles (diameter between 200 and 400 

nm), however, truncation errors are limited to ~10%.33  Truncation errors represent a lower 

bound of measurement errors in this work and, thus, we did not attempt to quantify and/or 

correct for this error.   

 The ozonolysis of CHA was performed under dry conditions only (at 10% RH) 

while that of HXL was performed under both dry and wet conditions (10% RH and 70% 

RH, respectively).  Upon completion of dry HXL ozonolysis experiments (i.e. experiment 

“HXL 1” in Table 5.1), RH was slowly increased from 10% to 70% over the course of 13 

hours.  Recall that the HEC was operated in continuous flow mode, where VOC and 

oxidant were continuously injected into the chamber as RH was increased.  During this 

period, σscat was continuously monitored, allowing for the determination of f(RH), the 

scatter enhancement coefficient: 

𝑓(𝑅𝐻) =
𝑀𝑆𝐶 (𝑅𝐻,𝜆)

𝑀𝑆𝐶 (𝑅𝐻𝑑𝑟𝑦,𝜆)
   (5.4) 

where MSC(RH,λ) and MSC (RHdry,λ) are the mass normalized scattering coefficients at 

wavelength (λ ) for a given RH and under dry conditions (10% RH), respectively.34   
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Particle bounce factor (BF) was measured using the ELPI+ operating with either 

smooth or sintered impaction plates.35   Briefly, the method assumes that solid particles 

bounce from upper stages of the smooth impaction plates (where they should be counted) 

to lower levels designed to count smaller particles, shifting the particle size distribution 

compared to that measured using sintered plates, which measures the true size distribution 

(i.e., no bounce).  The BF is calculated by comparing the raw current measured on each 

stage of the smooth/sintered plates for the same bulk aerosol: 

𝐵𝐹 =  
 𝐼𝐹𝑖𝑙𝑡𝑒𝑟(𝑠𝑚𝑜𝑜𝑡ℎ)

(𝑏𝑜𝑢𝑛𝑐𝑒)
− 𝐼

𝐹𝑖𝑙𝑡𝑒𝑟 (𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑)

(𝑛𝑜 𝑏𝑜𝑢𝑛𝑐𝑒)

∑ 𝐼
𝑖𝑚𝑝𝑎𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑔𝑒 >𝑓𝑖𝑙𝑡𝑒𝑟

(𝑛𝑜 𝑏𝑜𝑢𝑛𝑐𝑒)
   (5.5) 

where  𝐼𝐹𝑖𝑙𝑡𝑒𝑟(𝑠𝑚𝑜𝑜𝑡ℎ)
(𝑏𝑜𝑢𝑛𝑐𝑒)

 and, 𝐼
𝐹𝑖𝑙𝑡𝑒𝑟 (𝑠𝑖𝑛𝑡𝑒𝑟𝑒𝑑)

(𝑛𝑜 𝑏𝑜𝑢𝑛𝑐𝑒)
 are the raw currents measured at the smallest 

diameter channel of the smooth and sintered plates (the filter), respectively. 

∑ 𝐼
𝑖𝑚𝑝𝑎𝑐𝑡𝑜𝑟 𝑠𝑡𝑎𝑔𝑒 >𝑓𝑖𝑙𝑡𝑒𝑟

(𝑛𝑜 𝑏𝑜𝑢𝑛𝑐𝑒)
 is the sum of the raw currents obtained from all stages of the 

sintered plates except the smallest, filter stage. By this method, liquid particles result in BF 

= 0.  

5.3 Results and Discussion 

5.3.1 Absorbance of CHA- vs HXL- SOA 

Integrating spheres (by design) are prone to over-estimating aerosol absorption 

relative to the same particles in suspension; scattering by the filter allows for multiple 

opportunities for absorption.  The magnitude of this error depends on the filter type and 

method of sample deposition.22 There is some evidence to suggest that the use of 

nucleopore filters may limit this error,36 yet does not eliminate it completely.37  We used 
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quartz filters, which are commonly used by others in the field9 in order to maintain internal 

consistency of the measurements and to allow for comparison with existing literature 

reports. No corrections for multiple scatter events were made herein, but the measured 

MAC values are internally consistent and allow for a discussion of the different chemical 

systems studied.    

 

Both CHA- and HXL-SOA show negligible MAC values at wavelengths greater 

than ~ 350 nm (< 0.2 m2 g-1, which is within one standard deviation of zero in our 

measurements) (Figure 5.1).  At wavelengths shorter than 350 nm, MAC increases with 

decreasing wavelength to a maximum of 50 m2g-1 and 20 m2g-1
 at 200 nm for CHA-SOA 

 

Figure 5.1 MAC values of GLV-SOA samples as function of wavelength and RH.  

Error in the measurement (±1 standard deviation) is shown by the gray shading.   MAC 

increases with decreasing wavelength for all systems.  There is no significant 

absorbance above ~325 nm.   
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and HXL-SOA, respectively.  Both CHA and HXL have broad absorption bands at ~ 275 

nm and ~ 225 nm, but CHA-SOA shows more distinct spectral features and greater overall 

MAC, suggesting it contains a greater relative amount of absorbing species.  Only a small 

fraction of actinic light overlaps with the absorption by GLV-SOA, which may limit its 

overall impact in radiative forcing. However, when absorbing species exist at a high 

enough concentration, small MAC values can translate to significant light attenuation, 

effectively impacting the Earth’s radiative budget.38  For example, humic-like substances 

(HULIS) have much lower MAC values in the visible region than GLVs (~ 0.03 m2g-1), 

yet HULIS accounts for roughly 8.5-11.5 % of light attenuation between 300-700 nm and 

between 6.4-8.6% across the entire tropospherically relevant solar spectrum, largely due to 

their ubiquitous nature.38  HULIS mass concentrations of about 15 µg m-3 were used to 

estimate this light attenuation.38 Analogously, the mowing of lawns alone has the capacity 

to release enough GLVs to yield roughly 50 µg of SOA per square meter of grass as a 

concerted burst. 13 At GLV-derived SOA levels this high, the MAC values we measured 

could result in significant light attenuation.  

5.3.2 Assignment of Spectral Features to Molecular Moieties 

GLV-SOA contains significant amounts of non-conjugated carbonyl, carboxylic 

acid and hydroxyl substituted products,39-41 for which the n π* absorption occurs in the 

region 280-300 nm,9,15,42 as confirmed in our lab for several oxygenated standards (ketone, 

carboxylic acid, alcohol) on filters (Figure 5.2).  Analogous to GLV-derived SOA, the 

ketone (2-pentanone) showed broad absorbance bands at both 275 nm and 230 nm, while 

the carboxylic acid moiety (1-hexanoic acid) showed absorbance bands at 275 nm and at 

215 nm.15 The alcohol standard we measured (1-hexanol) showed no distinct spectral 
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features but did increase in absorbance at wavelengths less than ~250 nm, echoing the trend 

we see in CHA and HXL-derived SOA and those seen for SOA known to contain hydroxyl 

groups.43 

 

The relative intensities of these bands in the two GLV-SOA systems suggest that 

CHA-SOA contains a greater fraction of carbonyl moieties than HXL-SOA. Using NIR-

LDI AMS,31,32 the relative abundance of these species was compared between chemical 

systems.  By summing the area of each spectral peak corresponding to carbonyl-containing 

species (as identified by Jain et al. (2014)41) and normalizing to the total area of the mass 

spectrum, the ‘carbonyl contribution’ to CHA-SOA (3.7 ± 0.8 %) was found to be 

statistically greater than that of HXL-SOA (2.1 ± 0.5 %) (Table 5.2). These estimates are 

in keeping with recent observations that, upon ozonolysis, HXL readily undergoes 

oligomerization reactions to yield high molecular-weight products containing 

predominantly alcohol moieties.41 Alternatively, the acetate functionality in CHA limits 

 

Figure 5.2 Absorbance spectrum of several oxygenated standards as measured using 

filters doped with the standard and analyzed by IS-UV/VIS. 

 

0

0.5

1

1.5

2

2.5

200 250 300 350 400

A
b
s 

(a
.u

.)

Wavelength (nm)

hexanoic acid

pentanone

hexane dione

1-hexanol



85 

 

oligomerization and the dominant pathway in CHA-ozonolysis is the hydroperoxide 

channel, yielding predominantly carbonyl functionalities.39-41   

 

The O:C ratio measured for HXL-SOA (0.68 ± 0.05) was greater than that for CHA-

SOA (0.55 ± 0.06). In some cases, the degree of oxidative ageing (for which the O:C ratio 

serves as proxy) of SOA has been directly correlated to light absorption of 

SOA.4,6,9,15,18,23,44,45  Despite being more oxygenated (having a greater O:C), however, 

Table 5.2 Physical and chemical properties of GLV-derived SOA 

Experiment HXL 1 HXL 2 CHA 1 

Average bv (Mm-1) (450 nm) 39.1 14.5 1.8 

Average bv (Mm-1) (525 nm) 36.9 16.5 6.0 

Average bv (Mm-1) (635 nm) 34.6 13.8 8.4 

Carbonyl Contribution (%) 2.1 ± 0.5 1.2 ± 0.2 3.7 ± 0.8 

Bounce Factor (BF) 0.15 ± 0.08 0.02 ± 0.01 n/a 

O:C 0.68 ± 0.05 0.70 ± 0.02 0.55 ± 0.06 

Mass Extinction Coefficient 

(MEC, m2g-1) (450 nm) 
0.73 0.83 3.9 

Mass Extinction Coefficient 

(MEC, m2g-1 ) (525 nm) 
1.1 0.95 2.4 

Mass Extinction Coefficient 

(MEC, m2g-1 ) (635 nm) 
0.9 1.58 2.0 

Relative Contribution of MSC to MEC * 

(450 nm) 
64% 79% 86% 

Relative Contribution of MSC to MEC * 

(525 nm) 
77% 80% 70% 

Relative Contribution of MSC to MEC * 

(635 nm) 
84% 85% 68% 

* Relative contribution of MSC to MEC = MSC/MEC x 100% 
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HXL-SOA was less absorbing than CHA-SOA, which we attributed to a smaller fraction 

of carbonyl functionalities. To determine and explain the optical properties of SOA, 

therefore, it is important to know not only the O:C ratio, but also the oxidation state of the 

oxygen (i.e., its chemical form), highlighting the need for a molecular-level understanding 

of SOA composition. 

5.3.3 Effect of Humidity on the MAC of HXL SOA 

For the HXL system, low RH (10%) produced SOA with a greater MAC than high 

RH (70%) (Figure 5.1).  The absorbance features at ~280 nm and ~230 nm are present in 

both cases, however, suggesting the same general classes of chemical products are present 

but are at higher concentrations under the dry environment (assuming the absorbance 

follows Beer’s Law). The impact of excess water on product distribution has been shown 

previously for the case of aqueous phase versus gas phase oxidation of several VOCs.46-50 

We ascertain that as RH increases, and water becomes more available, aqueous phase 

ozonolysis mechanisms may start to occur/become prevalent for reactions in the particle 

phase.  While the mass spectra for HXL-SOA formed under dry (Figure 5.3a) and wet 

(Figure 5.3b) conditions generally show the same dominant product peaks (73 m/z, 89 m/z, 

103 m/z), their relative intensities differ, suggesting different relative product yields.  For 

example, peaks at 103 m/z and 89 m/z dominate the spectrum for dry HXL-SOA, but the 

peak at 133 m/z becomes major for wet HXL-SOA.  We also found that the carbonyl 

contribution in SOA formed by HXL ozonolysis at 70% RH (1.2 ± 0.2 %) was less than 

that formed at 10% RH (2.1 ± 0.5 %) (Table 5.2), which agrees with our observed trend of 

enhanced MAC value at low RH.  Interestingly, the O:C ratio for HXL-SOA was found to 

be independent of RH within experimental error (0.68 ± 0.05 at 10% RH and 0.70 ± 0.02 
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at 70% RH), which would suggest the same MAC values for the two systems. However, 

we measured significantly different MAC values (Figure 5.1), further reinforcing the need 

for molecular-level characterization of SOA in order to understand its contribution to light 

absorption.   

HXL-SOA readily undergoes oligomerization via several mechanisms, many of 

which are affected by ambient water (i.e., esterification and aldol condensation) to produce 

or consume carbonyl-containing chromophores.39-41,51  Several of these oligomerization 

reaction pathways are acid catalyzed, (i.e., aldol condensation), and can be particularly 

sensitive to changes in RH.  As RH increases, water dilutes the SOA, decreasing particle 

‘acidity’ and inhibiting the production of chromophores.  This phenomenon was also 

observed by Nguyen et al. (2012),52 where high RH conditions resulted in reduced light 

absorbance by limonene-SOA.   Song et al. (2013)53 found similar results for SOA 

generated from α-pinene in the presence of acidic seed aerosol; the MAC of this SOA at 

RH > ~30% was negligible, as compared to 2% RH, where MAC increased significantly.  

It is possible that the presence of excess water effectively dilutes the particle acidity, 

limiting acid-catalyzed reactions that produce chromophores, and resulting in reduced 

MAC.   The absence of acidic seed particles in our work suggests also that RH would play 

a correspondingly bigger role on the total acidity of the SOA produced.  

As described above, the mass spectrum of HXL-SOA formed under wet conditions 

presents a prominent peak at 133 m/z, whereas it is only a minor feature in the spectrum 

recorded under dry conditions (Figure 5.3).   
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Figure 5.3. Mass spectra of HXL-SOA formed under dry (a, 10 % RH) and wet (b, 

70% RH) conditions show a very similar product profile, with the same predominant 

peaks at 73 m/z, 89 m/z and 103 m/z.  The main differences are the relative intensity 

of each peak in the two spectra and the intensity of the peak at 133 m/z. 
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Ozonolysis mechanisms for HXL39-41,54 have not yet accounted for a product of this molar 

mass, although Hamilton et al.(2009)40 tentatively assigned this mass peak to 3-(2-

hydroxyethoxy)-propanoic acid.  Herein, we propose a different structure and 

accompanying mechanism for this product that rationalizes its observed RH-driven 

enhancement (Scheme 5.1).  

Briefly, nucleophilic attack by ozone on HXL produces 3-hydroxy propanal (3-

HPA, I), propionaldehyde (II) and two stabilized Criegee Intermediates, which, through 

further reaction, yield 3-hydroxypropanoic acid (III, 89 m/z) and propionic acid (IV, 73 

m/z).   3-HPA undergoes keto-enol tautomerization to form prop-1-ene-1,3-diol (V, 73 

m/z), which then reacts with III40 to yield 3-((3-hydroxyprop-1-en-1-yl)oxy)propanoic acid 

(VI, 145 m/z).  Further oxidation of VI by ozone yields 3-(formyloxy)propanoic acid (VII 

117 m/z), 2-hydroxyacetic acid (VIII, 75 m/z), 2-hydroxyacetaldehyde (IX, 59 m/z) and 

the molecule of interest, 3-(carboxyoxy)propanoic acid (X, 133 m/z).  This reaction 

pathway could also occur at low RH, as evidenced by the presence of the 133 m/z peak in 

Figure 5.3a.  However, it has been shown that, in the presence of excess water, organic 

acids like 3-HPA (I), are found predominantly in their enol form (V in this case),55 which 

would promote the formation of VI, VII, IX and X under high RH while decreasing the 

signal from III and V, as they are consumed.  We see clear enhancement of X at high RH 

(nearly 2-fold increase in signal).  The peaks at 73 m/z (IV) and 89 m/z (III) do not, 

however, decrease at high RH as anticipated. This, however, could be due to production of 

isobaric products,41 two of which we propose in this discussion (I and IV).  



90 

 

 

 

Scheme 5.1 Abbreviated mechanism for the ozonolysis of HXL in the presence of 

excess water, resulting in a distinct product at 133 m/z.   
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5.3.4 Light Scatter by GLV-SOA 

The scatter of light by particles plays a crucial role in both climate forcing and 

visibility.  Scatter efficiency depends on the competitive effect of aerosol mass 

concentration, chemical composition, size/shape and RH.56,57  The mass scattering 

coefficient, (MSC) for CHA-SOA and HXL-SOA show a strong and unique wavelength 

dependence (Figure 5.3).  CHA-SOA is a more efficient scatterer at 450 nm, while an 

inversion is observed between 525 nm and 635 nm, where HXL-SOA becomes the more 

efficient scatterer.  The wavelength dependence of scatter is generally represented by the 

Angstrom Scatter Exponent (ASE): 

𝐴𝑆𝐸 =  
ln (𝜎 (𝜆1)−ln (𝜎 (𝜆2)

ln(𝜆1)−ln(𝜆2)
           (5.6) 

 

Figure 5.3. The average mass scatter coefficient (MSC) of GLV-SOA at 450 nm, 525 

nm and 635 nm. Light scatter by CHA-SOA formed at 10 % RH (CHA 10%) is shown 

in blue while that for HXL-SOA formed at 10% RH and 70% RH is sown in red and 

green, respectively.  The error bars represent ±1 standard deviation.  Also given is the 

mean particle diameter (Dp ±1 standard deviation, nm) of the SOA formed in each 

system.   
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where σ (λ1) and σ (λ2) are the scatter coefficients (in Mm-1) measured at two different 

wavelengths (λ1 and λ2).  The MSC increases at a greater rate for HXL-SOA than CHA-

SOA, suggesting a stronger spectral dependency in scatter by HXL-SOA, which is also 

shown in as a greater ASE (Figure 5.4).  ASE is inversely dependent on particle size.58  

Therefore, since HXL-SOA was smaller (Dp = 294 ± 16 nm) than CHA-SOA (Dp = 435 ± 

44 nm), it follows that HXL-SOA should have a greater ASE than CHA, in agreement with 

our results.    

 

5.3.5 Scatter Enhancement and RH 

Aerosol light scatter is also dependent on RH, due to the hygroscopic growth of 

particles controlled by RH, which enhances scatter efficiency.19,34,56,59-63 Again, we see a 

wavelength dependency in the MSC of HXL-SOA formed under both wet and dry 

conditions (Figure 5.3), where scatter increases with increasing wavelength.  Despite 

originating from the same VOC, however, light scatter by “wet HXL-SOA” (formed at 

 
Figure 5.4 Average Angstrom Scatter Exponent (ASE) of GLV-SOA shows that the 

scatter of light by HXL-SOA has a stronger spectral dependence than CHA-SOA.   

Error bars are ±1 standard deviation.  The table inset shows the mean particle diameter 

(Dp ±1 standard deviation, nm) of the SOA formed in each system.   
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70% RH) and “dry HXL-SOA” (formed at 10% RH) have different wavelength 

dependencies.  As discussed above, ASE is inversely related to particle size.   Therefore, 

the wet HXL-SOA measured herein (with its smaller diameter) is expected to have a greater 

ASE than dry HXL-SOA.  However, the ASE for wet HXL-SOA is considerably less than 

that for dry HXL-SOA (Figure 5.4).  The reason for this discrepancy is unclear but may be 

related to the fact that the experimental design used herein results in the formation of SOA 

with distinct chemical properties under the two RH regimes (additional discussion in 

Section 5.4).  This change in chemical composition may be driving trends in ASE, rather 

than particle size.  It should also be noted that RH within the SMPS (where particle size 

distributions were measured) was not known during these particle size measurements but 

was probably less than 70% RH.  This lower RH could have caused water within the wet 

HXL-SOA particles to evaporate, thereby reducing their apparent size.   

The scattering enhancement factor (f(RH)) describes the effect of RH on the light 

scattering efficiency of SOA.  Also called the ‘optical growth factor,’64 f(RH) is similar to 

the growth factor (g(RH)) in that it can be related to a change in particle size as a function 

of RH, and can thus shed light on particles’ hygroscopic properties and can be used to infer 

its potential role in cloud formation.64,65   Whereas g(RH) describes the behavior of one 

given particle (or size regime of particle), f(RH) describes bulk aerosol properties. 

Figure 5.5 is a plot of f(RH) (according to Equation 5.4) versus RH for HXL-SOA. 

For the 450 nm light, we observed a very small change in scatter from 10% to about 65% 

RH followed by a sharp increase at 70% RH, indicative of deliquescence.62  At 

deliquescence RH, a particle undergoes phase transformation from a solid particle to a 
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semi-solid or liquid droplet, causing the distinct enhancement in light scatter.34,66  We saw 

the same trend for f(RH) at 525 nm and 635 nm, however deliquescence appeared to occur 

at ~65% RH at 525 nm and 60% RH at 635 nm.   Recall that different wavelengths of light 

interact more efficiently with different size regimes (450 nm with fine and ultrafine, 525 

nm with accumulation mode, 635 nm with large, coarse mode PM).  Since f(RH) is a bulk 

measurement, it is possible that the different deliquescence RH that we observed for 

different wavelengths of light may be a result of different sized particles having different 

affinities for water and thus deliquescing at different RH values.67   

 

Ultimately, the size dependency of particle hygroscopicity is related to differences 

in chemical composition, where smaller particles may be enriched with oxygenated 

products as compared to larger particles.67  The enhanced oxidation state of these smaller 

particles enhances their hygroscopicity, contributing to the greater deliquesence RH 

observed at 450 nm.  Understanding the hygroscopic behavior and deliquescence RH of 

 

Figure 5.5 Scatter enhancement (f(RH)) for HXL-SOA at 450 nm, 525 nm and 635 

nm.  A sharp increase in f(RH) suggests deliquescence between 60-70% RH. 
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particles is important in understanding their roles as cloud condensation nuclei and ice 

nuclei, which have important roles in indirect climate forcing. 68  Although these indirect 

climate effects were not among the foci of this work, f(RH) represents an interesting 

characteristic that warrants additional research.   

5.3.6 Bounce Factor of GLV SOA 

To confirm whether these particles experience a phase change at elevated RH, we 

measured the bulk bounce factor (BF, Equation 5.6) of GLV-SOA. All other factors being 

equal, BF should scale with particle viscosity, particles with a BF near 1 are assumed to be 

solid whereas those with BF of 0 are considered liquid, with a range of viscosities between.   

We measured the BF for dry HXL-SOA and wet HXL-SOA to be 0.15 ± 0.08 and 0.02 ± 

0.01, respectively (Table 5.2). For comparison, the BF of ammonium sulfate, a model solid 

particle, is 0.5 (using this method) while oleic acid, a model liquid particle, has no 

significant bounce (BF = 0).35   We observe a significantly greater BF for dry HXL-SOA 

as compared to wet HXL-SOA, supporting a change in viscosity and chemistry of HXL-

SOA as a function of RH at particle genesis.   

5.4 Future Implications: 

The chemical, physical and optical properties of GLV-SOA (O:C, molecular level 

composition, MAC, MSC, f(RH), BF, etc.) vary as a function of chemical system (CHA vs 

HXL) and environmental conditions (RH).  To our knowledge, this is the first extensive 

and inclusive study of these properties for GLV-SOA.  Although the total extinction of 

HXL- and CHA-SOA is relatively small (MEC values between 0.7-4 m2g-1, Table 5.2), 

GLV-SOA can exist in concentrations great enough to contribute to the Earth’s radiative 
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budget.  Since the scatter of light plays a more significant role than absorbance for GLV-

SOA (accounting for 70-90% of total extinction at 450nm, 525nm and 635nm Table 5.2) 

it is likely that these systems contribute a net negative impact on climate, at least initially.   

We have found that SOA formed under different RH conditions can have different 

chemical, optical and physical properties.  This observation is particularly important as we 

compare the numerous studies on the hygroscopic properties of SOA and their role in 

radiative forcing.  Several studies involve the formation of particles under dry conditions, 

followed by particle wetting via the introduction of humid air.64,69-72  Upon wetting via this 

method, particles increase in size (driving scatter enhancement) and/or may undergo a 

phase transition.   This conventional method mimics the formation of a particle in a dry 

atmosphere, which is then transported into a damp body of air.  Our methodology involves 

particle genesis under varying RH conditions and paints an equally relevant picture that 

has received little attention73 yet should be explored further.  For example, we observed 

that particles generated under elevated RH had unique chemical and physical properties.  

We ascertain that water molecules play an important role in the chemical mechanisms 

leading to SOA growth, resulting in unique physical properties.  To our knowledge, there 

has not been a comprehensive assessment of the impact of water during particle formation 

on optical and physical properties.     

We have also demonstrated the importance of understanding the molecular-level 

composition of SOA to accurately predict its role in climate forcing.  SOA with the same 

apparent bulk properties can have different optical properties and thereby elicit different 

impacts on the Earth’s radiative budget.  This observation suggests that bulk chemical 
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properties may be insufficient to fully describe/predict the optical properties of SOA and 

also provides an interesting launching point for future research designed to understand the 

fundamental chemical processes leading to SOA with unique physical properties.   
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CHAPTER 6. SUBTLETIES IN MOLECULAR-LEVEL DYNAMICS; VOC 

STRUCTURE, OZONOLYSIS KINETICS AND SOA YIELD 

 

The following is an expansion upon a manuscript that has been submitted and accepted for 

publication in Atmospheric Environment.   The full reference follows and a reprint of the 

published manuscript can be found in the Appendix.  

Harvey, R. M.; Petrucci, G. A., Control of ozonolysis kinetics and aerosol yield by nuances 

in the molecular structure of volatile organic compounds. Atmos Environ 2015, 122, 188-

195. 

 

6.1 Introduction  

It has been well established that SOA plays integral roles in climate and human 

health, yet there remains a limited understanding of the mechanisms that lead to its 

formation and ultimate fate, as evidenced by a disparity between modelled atmospheric 

SOA loadings and field measurements.  This disparity highlights the need for a more 

accurate representation of the molecular-level interactions between SOA sources and 

oxidative pathways.  Due to the paucity of detailed chemical data for most SOA precursors 

of atmospheric relevance, models generally predict SOA loadings using structure activity 

relationships generalized to classes of SOA precursors.  However, the kinetics and SOA-

forming potential of molecules are nuanced by seemingly minor structural differences in 

parent molecules that are currently be neglected in models.   

In Chapter 5, I point to the role that environmental conditions (namely RH) on the 

chemical and optical properties of SOA, but the following experiments were designed to 
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increase our understanding of how nuances in the molecular structure of VOCs control 

ozonolysis kinetics and aerosol yield.  This work was also driven by observations made 

during turfgrass ozonolysis experiments (Chapter 4, see Section 4.3.2), where VOCs with 

similar molecular structure gave significantly different (and unexpected) SOA yields.  

Ultimately, the goal of the work presented in this chapter is to stimulate conversation to 

establish which seemingly minor chemical nuances drive the chemistry of SOA formation 

and warrant inclusion in atmospheric models. 

As reviewed in Chapter 2, organic aerosol (OA) is a ubiquitous component of 

atmospheric particulate matter that influences both human health and global climate. A 

large fraction of OA is secondary in nature (SOA), being produced by the oxidation of 

anthropogenic or biogenic VOCs (A/BVOCs).  Despite the integral role of SOA in 

atmospheric processes, there remains a limited understanding of its formation and fate in 

the atmosphere.  This challenge is rooted not only in identifying the sources of SOA but 

also in understanding the fundamental chemical processes that lead to SOA formation and 

transformation.    

In spite of the breadth of atmospheric A/BVOCs, an extensive amount of work has 

focused primarily on biogenically emitted terpenes and monoterpenes.1-3  Despite efforts 

to characterize the roles of these prevalent BVOCs, atmospheric models largely under-

predict SOA mass as compared to field measurements,1,4-7  due in part to uncertainties in 

measured VOC emissions, omission of key VOCs, missing chemical and physical 

processes that contribute to SOA, errors associated with extrapolating laboratory-derived 

data to the atmosphere and uncertainties in ambient OA measurements.8  Herein, I propose 



104 

 

that another contributor to the disparity between field measurements and atmospheric 

models may lie in the coarse level of chemical assumptions and approximations that must 

be made by modelers due to a lack of chemical data for the majority of compounds of 

interest.  I highlight this recognized need for a more complete understanding of VOC 

reactivity and SOA formation at the molecular level by examining the ozonolysis rates and 

SOA formation yields for a number of compound classes of atmospheric relevance, 

demonstrating the dramatic impact of small nuances in molecular structure on these 

chemical parameters.   

 Reaction rate constants and SOA yield data for input to atmospheric models have 

been measured experimentally for a number of key VOCs,9-18 yet the list of studied 

compounds is far from exhaustive.  In order to circumvent the paucity of kinetic data, 

structure activity relationships (SARs) have been developed to estimate oxidation rate 

constants based on the molecular structure of parent compounds.  In some cases, SARs 

have been shown to follow experimental data well,19,20 but there is still considerable error 

associated with data calculated using this approach.21-23  In addition to SARs, which marry 

structure and (re)activity, several studies have demonstrated correlations between VOC 

structure and SOA mass yield, although this discussion has been predominantly limited to 

alkanes 13,14,24-26 and alkyl-substituted alkenes.9,10,19  SARs and SOA yield correlations 

have, by necessity, been used in lieu of experimental data in atmospheric models to predict 

large scale air quality and climate trends.  Inaccuracies or incompleteness in 

SARs/yield correlations will be reflected in model outputs.   
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 The omission of many VOCs from atmospheric models may also prove to 

be an important source of error.  Semi-volatile organic compounds (SVOCs) and 

other reactive VOCs (ORVOCs) have received growing attention as potential SOA 

precursors. 5  In Chapter 4 and in its accompanying manuscript (Harvey et al., 2013) 

I demonstrated that lawn mowing results in the emission of ORVOCs (HXL, CHA, 

and PTL) that, upon ozonolysis, contribute to SOA formation at levels approaching 

those of predominant terpenes. 27  Interestingly, despite having similar molecular 

backbones consisting of 3-hexene, the SOA-forming potential of HXL was found to 

be much greater than CHA, even though HXL was emitted at a 5x lower rate. This 

disparity was attributed to the molecular structure of each ORVOC.27,28  Similarly, 

although PTL has a similar molecular structure to HXL (oxygenated internal 

alkene), it was found to have limited reactivity to ozone and a negligible SOA yield.  

These observations led us to posit that the chemical processes leading to SOA 

formation from the oxidation of VOCs are quite nuanced; that a seemingly small 

change in molecular structure can have a profound impact on the molecule’s 

atmospheric behavior.   

Several recent studies have expanded our understanding of SARs by 

describing mechanisms by which certain molecular features impact reaction kinetics 

and/or SOA forming potential.12,19,20,29-34  The discussion thus far has focused on 

unsaturated hydrocarbons, with little work reported with regard to oxygenated 

species, which contribute a significant fraction of atmospheric reactive VOCs.  A 

more complete understanding of the chemical basis of SARs in oxygenated alkenes 
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may allow for the development of more accurate atmospheric models.  In the present 

work, rate constants for the ozonolysis of a series of cyclic and linear C5-C7 

unsaturated methyl esters and alcohols are measured and discussed with respect to 

molecular structure.  This work adds to the discussion of SARs of VOCs by focusing 

on the effect of oxygenated substituents.   

6.2 Experimental 

All experiments were performed at ambient pressure and temperature 

(~23oC) in a 775-L Teflon chamber (Figure 3.1, Chapter 3).  Between experiments, 

the chamber was passivated overnight with 1-2 ppm O3 and flushed with zero air to 

attain background aerosol mass loadings < 0.1 μg m-3.  VOCs were injected via a 

heated bulb under a steady flow of zero air and mixed by gentle rocking.  Once VOC 

concentrations were stable (15 min), ozone was injected as a short burst and 

monitored along with particle mass distributions throughout experiments.   

1-pentene, 1-pentene-3-ol (PTL), 2-pentene, 1-hexene, cis-3-hexenyl acetate 

(CHA), cis-3-hexenol (HXL), cyclohexene, 3-hexene-2,5-diol (HXNDL), 3-heptene 

(racemic), and cycloheptene were purchased from Sigma Aldrich. Cyclopentene and 

cis-3-hexene were purchased from Alfa Aesar.  Reagents (all > 95%) were used 

without further purification.  Dry, zero air was produced by passing compressed air 

sequentially through silica, activated carbon and HEPA filters.  This zero air was 

also used to generate ozone using a commercial corona discharge ozone generator 

(OLSOA/DLS OzoneLab).  
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 Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) 

was used to monitor VOC consumption.  Air samples were collected from the 

reaction chamber onto AirToxics glass sorption tubes (Perkin Elmer N9307008) that 

had been previously conditioned at 310°C for 20 min and stored with Swagelok 

caps.  Air was drawn through the sorption tubes using a personal sampler pump 

(SKC Airchek Sampler, model 224-44XR) at a rate of approximately 100 mL min-1 

(actual flow rate monitored by a F&J Specialty Products mini calibrator, model MC-

500cc) for a known duration of time, allowing the total volume of air sampled to be 

determined. Typical sample volumes ranged between 0.6 L and 3.6 L.   

Air samples were transferred from the sorbent tubes by thermal two-step 

desorption (TurboMatrix TD 350, Perkin Elmer) to a gas chromatograph (Clarus 

600, Perkin Elmer) equipped with a mass spectrometer (Clarus 600 T Perkin Elmer) 

detector. Prior to desorption, an internal standard of fluorobenzene (AirLiquide) was 

automatically injected by the Turbomatrix TD directly onto the sorption tubes.  

During the first step of desorption, the sorbent tubes were heated to 330 °C for 8 min 

to desorb and cryofocus VOCs onto an Air Monitoring trap held at -10°C.  The trap 

was then heated at a rate of 40 °C s-1 to a final temperature of 310 °C, where it was 

held for 8 min. The VOCs were transferred to a GC analytical column (Stabilwax 

30 m, 0.32 mm i.d., Restek) via a heated transfer line (250 °C) and a split ratio of 

1:48. The GC oven was programmed as follows: held at 35 °C for 4 min, increasing 

10 °C min-1 to a final temperature of 220 °C. The total run time per sample was 22.5 

min.   The helium carrier gas flow rate was 1.52 mL/min.  Electron impact ionization 
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(70 eV) was used and masses were scanned from 15 to 300 m/z.  Chromatographic 

peaks for VOC standards were confirmed by spectral matching with the NIST 2005 

mass spectral library.  Compounds were quantified on area basis using single ion 

monitoring.  

Aerosol particle size distributions, as well as total aerosol mass loadings 

were measured continuously with a scanning mobility particle sizer (SMPS, model 

3080, TSI Inc., Shoreview, MN).  A sheath flow rate of 0.3 L min-1 and sample 

flow of 3.0 L min-1 were used.  The vapor pressure of predicted ozonolysis products 

was estimated using structure based estimators courtesy of the US EPA Estimation 

Programs Interface Suite.35 

Reaction rate constants (k) for the ozonolysis of VOCs were determined 

using experimental protocol described by Grosjean et al.36 (and references therein).  

Briefly, the rate of ozone decay was measured in the presence of at least a 10-fold 

initial molar excess of VOC (to ensure pseudo-first order conditions).  VOCs were 

added to the chamber first followed by ozone, which was added as a quick burst 

(less than 45 seconds).  Initial reaction conditions are summarized in Table 6.1. All 

experiments were performed at ambient pressure and temperature (~23°C) and at 

low relative humidity (< 10 %). 

 Ozone concentrations were monitored at 5-second intervals.  A plot of 

ln([O3]0/[O3]t), where [O3]0 and [O3]t are the ozone concentrations at time zero and 

t, respectively, versus time (t, seconds) yields a straight line with slope k’ (sec-1).  

From the rate expression of the reaction, k = k’/[VOC]0, where [VOC]0 is the VOC 
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concentration at time zero, we were able to determine k (cm3 sec-1 molecule-1).  The 

loss of ozone, as well as the VOC, to chamber walls was measured and found to be 

negligible over the time scale of the kinetic experiments,27 confirming that reaction 

with VOCs was the only significant removal process for ozone.  

Separate experiments were used to calculate SOA yields, Y, according to 

Equation 3.4, as discussed in Chapter 3.  Particle loss (to chamber walls, due to 

secondary reactions and/or phase transitions) was estimated by extrapolating decay 

trends in SOA mass loadings back to time zero of the reaction (i.e., at time of ozone 

injection), as discussed in Section 3.2 of Chapter 3.  We report the average yield (± 

standard deviation) from at least three experiments for each VOC.  Student’s T-

tests were used to determine if averages were statistically different for different 

VOCs, at given confidence intervals, which are indicated with alpha-(α) values as 

they are discussed.   
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[ozone]i 

(ppb) 

[VOC]i  

(ppb) 

k   

(cm3 sec-1 molecule-1) 

Standard 

Error 

1-pentene 195 2375 1.66 x 10-17 9.97  x 10-20 

1-pentene 320 3300 8.09 x 10-18 2.19  x 10-19 

1-pentene 240 3100 1.16  x 10-17 1.27  X 10-19 

2-pentene 120 2968 1.16  x 10-16 7.29  X 10-18 

2-pentene 270 2140 7.92 x 10-17 9.86 x 10-19 

2-pentene 10 3400 2.44 x 10-17 1.02 x 10-18 

2-pentene 30 3000 1.11 x 10-17 1.21 x 10-19 

cyclopentene 16 3540 1.99 x 10-17 7.52 x 10-19 

cyclopentene 450 3540 3.23 x 10-16 6.31 x 10-17 

cyclopentene 500 3540 1.63 x 10-16 2.52 x 10-17 

PTL 145 3162 1.60 x 10-17 9.66 x 10-20 

PTL 130 3800 1.80 x 10-17 7.80 x 10-20 

PTL 130 3200 1.87 x 10-17 1.08 x 10-19 

1-HXN 170 2600 1.19 x 10-17 5.82 x 10-20 

1-HXN 100 2600 1.75 x 10-17 7.21 x 10-20 

1-HXN 110 2600 1.30 x 10-17 4.95 x 10-20 

3-HXN 190 3100 9.95 x 10-17 3.90 x 10-18 

3-HXN 110 2240 1.07 x 10-16 1.01 x 10-17 

3-HXN 250 2600 1.19 x 10-17 2.54 x 10-20 

cyclohexene 100 3000 7.18 x 10-17 2.45 x 10-18 

cyclohexene 80 2540 8.11 x 10-17 2.85 x 10-18 

cyclohexene 80 3400 5.72 x 10-17 3.63 x 10-18 

cyclohexene 200 2800 6.38 x 10-17 3.01 x 10-18 

HXL 110 1010 5.79 x 10-17 6.02 x 10-19 

HXL 150 1010 9.75 x 10-17 1.28 x 10-19 

HXL 65 1170 9.25 x 10-17 8.20 x 10-19 

HXL 85 2750 4.41 x 10-17 1.46 x 10-14 

CHA 230 966 4.58 x 10-17 3.58 x 10-19 

CHA 255 1071 2.79 x 10-17 2.23 x 10-19 

CHA 145 2140 6.02 x 10-17 5.35 x 10-19 

CHA 120 1270 6.89 x 10-17 3.86 x 10-19 

 

Table 6.1 Initial experimental conditions. All experiments were performed 

at ambient pressure and temperature (~23°C) and at low relative humidity 

(< 10 %). 
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6.3 Results 

6.3.1 SOA Yield of Cyclic vs. Linear Alkenes. 

Relationships between VOC molecular structure and SOA yield have been 

reported for a number of chemical systems. Some studies identify surrogates for 

naturally occurring VOCs,10,38 some catalog the SOA yield of several 

compounds,9,13,37,39 while others identify key molecular structures that influence 

SOA yield.10,14,24-26,40  Most studies to date have focused on linear, branched and 

cyclic alkanes or cycloalkenes.  In the case of alkanes, it has been shown that SOA 

yield increases with carbon number and, given two compounds with the same 

number of carbon atoms, follows the trend of cyclic alkanes > linear alkanes > 

branched alkanes and decreases further with degree of branching.  SOA yield in 

alkanes also increases if the oxidation results in oligomerization.24,26   

 

[ozone]i 

(ppb) 

[VOC]i  

(ppb) 

k   

(cm3 sec-1 molecule-1) 

Standard 

Error 

HXNDL 180 2760 1.83 x 10-17 3.05 x 10-19 

HXNDL 235 2760 6.60 x 10-18 6.97 x 10-20 

HXNDL 215 2760 3.02 x 10-18 2.82 x 10-20 

3-heptene 130 2300 8.95 x 10-17 2.54 x 10-18 

3-heptene 130 1590 1.00 x 10-16 3.33 x 10-18 

3-heptene 23 2300 4.16 x 10-17 4.25 x 10-19 

3-heptene 17 2300 3.31 x 10-17 2.73 x 10-19 

cycloheptene 50 2300 1.23 x 10-16 1.18 x 10-17 

cycloheptene 140 1880 1.53 x 10-16 1.23 x 10-17 

cycloheptene 150 1400 1.45 x 10-16 1.27 x 10-18 

cycloheptene 30 2600 5.13 x 10-17 7.78 x 10-19 

 

Table 6.1 Continued 
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SOA yield for linear alkenes is also expected to increase with carbon 

number.10  For the series of linear VOCs studied in this work, we generally observed 

SOA yields increasing in the order of pentene < hexene < heptene.  The position of 

the double bond, however, also plays an important role in the SOA yield, with the 

1-alkene generally producing a greater SOA yield than the internally bonded analog.  

For example, 1-pentene resulted in a SOA yield of 1.8 (± 0.2) %, which was greater 

(α = 0.05) than that of 2-pentene (0.80 (± 0.6) %).   

The mechanisms leading to SOA formation from the ozonolysis of alkenes 

has been reviewed extensively. 1,8,41,42  Following the very simplified ozonolysis 

mechanism in Scheme 6.1, 1-pentene is expected to produce C1 and C4 carboxylic 

acids and aldehydes, while 2-pentene is expected to result in the production of C2 

and C3 carboxylic acids and aldehydes.  These species are relatively volatile, and 

will not nucleate to form SOA directly.  Therefore, secondary oligomerization 

and/or condensation mechanisms are the likely route to SOA formation for these 

systems.  In fact, secondary reactions of ozonolysis products, including 

oligomerization of stabilized Criegee Intermediates (CIs), are predominant drivers 

of SOA formation in the alkene-ozonolysis system.43 44  Oligomerization (and SOA 

yield) can be directly related to the fraction of CIs that exist in a peroxy-radical 

stabilized form, where a lower “stability fraction” results in lower SOA yields.45-47  

It is possible that the enhanced stability of the C1 and C4 CIs in 1-pentene ozonolysis 

system allow it to undergo secondary oligomerization reactions more readily as 
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compared to the less stable C2 and C3 CIs found in 2-pentene system, resulting in an 

enhanced SOA yield for 1-pentene. 45-47  

Based on observations made for 1- and 2- pentene, we would anticipate 1-

hexene to have a greater SOA yield than 3-hexene, yet both species gave the SOA 

yield, within experimental error (3.0 (± 1.0)% for 1-hexene and 2.2 (± 1.6)% for 3-

hexene).  Reaction kinetics will be discussed in depth in the following sections, but 

it is worth noting that in addition to having an enhanced SOA yield, 3-hexene also 

has a much greater rate constant (k) than 1-hexene.  It is possible that the kinetics of 

the 3-hexene ozonolysis reaction favor a pathway that leads to a greater degree of 

oligomerization and/or lower volatility products, ultimately leading to a greater SOA 

yield. 

 

 
Scheme 6.1. Abbreviated ozonolysis mechanism for cyclic and linear C6 alkenes, 

showing the formation of higher volatility products in the linear case, which leads to 

lower SOA yields, especially for internal, linear alkenes. 
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In the case of cycloalkenes, it has been shown that SOA yield increases with 

carbon number, with the number of endocyclic double bonds and with the presence 

of alkyl substitution at the double bond.9,10 One important trend that has not been 

explicitly reported in the literature is that of increasing SOA yield for cyclic alkenes 

as compared to their linear analogues.  As shown in the abbreviated Scheme 6.1, the 

oxidative cleavage of linear alkenes produces several low molecular weight species 

that are expected to be found in the gas phase.  The ozonolysis of cyclic alkenes, on 

the other hand, produces molecules with greater molecular weight and lower vapour 

pressure, likely contributing to SOA more readily. Indeed, we observed an enhanced 

SOA yield for cyclopentene, cyclohexene and cycloheptene as compared to their 

linear analogs (Figure 6.1 and Table 6.2).   

 

 

Figure 6.1. SOA Yield of C5-C7 linear and cyclic alkenes.  In all cases, the cycloalkene 

has a greater SOA yield than its linear analog.  Terminally unsaturated alkenes showed 

an enhanced SOA yield over internal, linear alkenes.  
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 For unsubstituted C5 – C7 cyclic VOCs, we measured a SOA yield trend of 

cyclohexene < cyclopentene ≤ cycloheptene in contrast to the results of Keywood et 

al.,10 who found that SOA yield increased with carbon number for C5-C8 

cycloalkenes.  Although Keywood et al. 10 worked at lower VOC concentrations and 

used ammonium sulfate seed particles, our yields for cyclohexene and cycloheptene 

are in good agreement with theirs.  Our cyclopentene yield (19 ± 2.5%) however, 

was about twice that reported by Keywood et al. 10  Again, it is worth noting that 

cyclopentene has the greatest rate constant (k) of these cyclic systems (See Table 

6.3 and Section 6.3.2).  It is possible that the enhanced k for cyclopentene contributes 

to its greater SOA yield.  The reasons for the disparity between our measurements 

 

Chemical System 

 SOA % Yield 

(average ± standard 

deviation) 

1-pentene 1.77 ± 0.22  

2-pentene 0.79 ± 0.57  

PTL 3.28 ± 0.7  

cyclopentene 19 ± 2.5  

3-hexene 2.17 ± 1.6 

1-hexene 3.0 ± 1.0  

cyclohexene 15.7 ± 0.8 

CHA 3.9 ± 2.4 

HXL 6.5 ± 2.6 

HXNDL 9.3 ± 0.4 

3-heptene 3.9 ± 1.6 

cycloheptene 22.4 ± 5.4 

 

Table 6.2.  SOA yield of linear, cyclic and oxygenated alkenes.  Initial concentrations of 

the parent hydrocarbon and ozone in each experiment were 1000 ± 100 ppbv. N=3 for all 

reported values. 
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and those of Keywood et al. 10 and for our deviation from the trend of increasing 

SOA yield with increasing carbon number are unclear.   

   Autoxidation reactions may also result in enhanced SOA yield.   

Autoxidation involves the incorporation of molecular oxygen into product structure 

after the initial oxidation by ozone and results in highly oxidized multifunction 

molecules (HOM) that contribute to SOA. 48-53  It has been shown that cyclic alkenes 

undergo autoxidation more readily than their linear analogs,53 which may contribute 

to the enhanced SOA yield we observed for cyclic vs linear alkenes.  Autoxidation 

processes require available hydrogen atoms for H-shift rearrangements and is thus 

limited to ozonolysis intermediates with three or more carbon atoms,53 which may 

contribute to our observation of equivalent yields for 1-hexene and 3-hexene. The 

ozonolysis of 1-hexene yields only one product that could undergo autoxidation 

while 3-hexene yields two. Without molecular-level characterization of resultant 

SOA, however, we cannot comment on the amount of HOM formed or the role of 

autoxidation in the formation of SOA herein.  This additional analysis would be a 

logical next step in this research. 

6.3.2 Ozonolysis rate constants (k) for linear and cyclic alkenes 

Rate constants (k) for the ozonolysis of VOCs have been a predominant focus 

in the recent literature, especially with regard to the impact of VOC molecular 

structure.12,19,20,22,23,54,55  It is important, however, to distinguish between SOA yield 

(%Y) and reactivity (k), which are not necessarily related.  For example, a VOC 

may be highly reactive to atmospheric oxidants, yet contribute very little SOA or 

vice versa.    
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A representative reaction profile for experiments to determine k for the ozonolysis 

of HXL is given in Figure 6.2.  As described above, VOCs were added to the 

chamber first followed by ozone, which was added as a quick burst (less than 45 

seconds).  Ozone decay was then measured at 5-second intervals and a plot of 

ln([O3]0/[O3]t), where [O3]0 and [O3]t are the ozone concentrations at time zero and 

t, respectively, versus time (t, seconds) yields a straight line with slope k’ (sec-1).  

This plot is shown in Figure 6.3 for several of the VOCs studied, which all show 

good linearity with very little scatter, indicating that pseudo-first order reaction 

conditions were met. The rate constant k (cm3 sec-1 molecule-1) is then found from 

the rate expression of the reaction: 

 
Figure 6.2. A representative reaction profile for the ozonolysis of HXL used to 

determine the rate constant k.  Although SOA mass distribution was monitored, 

these experiments were not used to determine SOA yield because they 

contained such a large excess of VOC.   
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       𝑘 =  
𝑘’

[𝑉𝑂𝐶]0
      (6.1) 

where [VOC]0 is the initial VOC concentration (see Table 6.1). 

For linear alkenes, our results (Table 6.3) support previous observations that 

terminal alkenes have a reduced k compared to internal alkenes.20,22,54   This trend 

may be explained by the inductive effect, wherein substituents near the double bond 

increase electron density at the reaction center, promoting electrophilic addition of 

ozone across the double bond. Terminal alkenes, which contain alkyl substituents 

on only one side of the double bond, experience a lower inductive effect and a 

correspondingly reduced k as compared to internal alkenes, which are substituted on 

both sides. Steric effects also impact the kinetics of the ozonolysis of internal vs 

terminal alkenes, whereby the approaching ozone molecule has easier access to the 

terminal species, which would enhance k over the internally double bonded analog.  

However, the marked increase in k that we observe for 3-hexene compared to 1-

hexene indicates that, overall, the steric hindrance encountered in 3-hexene is 

outweighed by the enhancement of k due to the inductive effect (at least for these 

relatively small alkenes).   

The interplay between the inductive effect and steric hindrance can be better 

appreciated with the Arrhenius equation,  

    𝑘 =  𝐴𝑒
−𝐸𝑎

𝑅𝑇       (6.2) 

The pre-exponential factor, A, is inversely related to steric effects and thus directly  



119 

 

proportional to k. Activation energy, Ea, is inversely related to both the inductive 

effect and to k. 19,20,56-58  An increase in chain length from C3 to C6 results in a 

decrease in both Ea and A56 and ultimately results in an increase in k for ozonolysis.  

Lengthening the carbon backbone also increases steric hindrance, but not enough to 

overcome inductive effects or to limit k.   McGillen et al.20 experimentally confirmed 

that k increases with carbon number for 1-hexene and 1-pentene, yet their SAR-

predicted rate constants were identical for1-heptene, 1-hexene and 1-pentene.   

 
 

 
VOC Linear regression R2 

3-hexene y = 0.0086x – 0.8199 0.98 

cyclohexene y = 0.0052x – 0.822 0.98 

HXL y = 0.0019x + 0.0343 0.99 

HXNDL y = 0.0012x + 0.1047 0.99 

CHA y = 0.001x + 0.15 0.99 

1-hexene y = 0.0007x - 0.0387 0.99 

 

Figure 6.3.  Plots of ln([O3]0/[O3]t) vs time yielded a linear decay, confirming 

reactions were pseudo-first order for the VOC.  k’ (sec-1) for the ozonolysis of 

each alkene was found from the slope of the linear regression, given in the table. 
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Our measured rate constants for 1-hexene and 1-pentene were equal within error, 

confirming the modelled behaviour predicted by McGillen et al., 20 but not 

experimental data as reported by their group or by others.56  The reasons for the 

discrepancy are not clear, but the inconsistencies between modelled and measured k 

further support our supposition that additional, unknown nuances in molecular 

structure may exist that result in profound impacts on atmospheric SOA formation 

and reactivity.  As shown in Table 6.3, we measured k values on the same order of 

magnitude as those reported by others, with the exception of 2-pentene, which was 

VOC k Reference VOC k Reference 

1-pentene-3-ol 

(PTL) 
1.7 ± 0.1 This work 

3-hexene 
5.9 ± 0.5 This work  

 1.64 12  15.0 36 

 1.79 36  14.4 20 

1-pentene 1.2 ± 0.4 This work  12.2 20* 

0.92 56 cyclohexene 6.8 ± 0.1 This work  

0.99 58 7.00 62 

1.20 35 8.50 57 

0.753 20* 7.90 41 

2-pentene 1.7 ± 0.9 This work cis-3-hexenol 

(HXL) 

5.8 ± 0.9 This work 

cis-2-pentene 
13.0 35 10.5 36 

20.9 20 6.14 15 

trans-2-pentene 20.0 35 6.47 63 

31.6 20 cis-3-hexenyl 

acetate (CHA) 
5.8 ± 0.1 This work  

cyclopentene 24 ± 11 This work 5.40 15 

20.0 35 5.90 62 

61.0 62 
hex-3-ene-2,5-

diol (HXNDL) 
0.9 ± 0.8 This work  

67 41 3-heptene 6.6 ± 0.3 This work  

1-hexene 
1.4 ± 0.3 This work 

cycloheptene 12.8 ± 

4.6 
This work 

1.42 58 22.6 62 

1.01 20 23.7 57 
 

Table 6.3 Ozonolysis rate constants (k, x 10-17 cm3 sec-1 molecule-1) of alkenes are 

reported ± the standard deviation of replicate experiments.  Individual experimental 

conditions can be found in Table 6.1. * indicates a predicted/modelled value and N = 3 for 

all reported values. 
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approximately one order of magnitude smaller than that measured and predicted by 

McGillen et al. 20,35  The methods they used to measure k were analogous to those 

used herein, so the reason for this disparity is not clear.   

   We found no correlation between k and ring size.  However, our observed 

order of cyclohexene < cycloheptene < cyclopentene, was in accord with previously 

reported data.57,59  These variations in k-values for cycloalkenes could be related to 

differences in ring strain energies60 wherein the oxidative cleavage of an endocyclic 

double bond relieves ring strain in cyclic molecules.  In cyclopentene, the transition 

between cycloalkene to ozonoide alleviates a considerable amount of ring strain, 

strongly favoring the reaction, whereas cyclohexene contains relatively little strain 

energy, resulting in a moderate k.61   Cycloheptene has been shown to experience a 

similar ring strain as cyclopentene,61 which could rationalize the enhanced k for 

cycloheptene over cyclohexene.   

  Both cyclopentene and cycloheptene had a greater k than their linear 

(internal/terminal) analogs, further supporting the theory that ring strain is a 

significant driver in these reactions.  However, we measured the same k (within 

experimental error) for cyclohexene and 3-hexene.  This observation suggests that 

ring strain in cyclohexene is not sufficient to enhance ozonolysis kinetics.  

Cyclohexene did, however, show a much greater k than 1-hexene, pointing back to 

the importance of the inductive effect; cyclohexene is more substituted at the double 

bond (two effective alkyl substituents) than 1-hexene (1 alkyl substituent), 

increasing the inductive effect and the overall k.  
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6.3.3 SOA Yield for Oxygenated Linear Alkenes 

Despite extensive research to establish the SARs for ozonolysis of alkyl 

substituted linear alkenes, there has been a limited effort to understand the 

relationship between reactivity (k) or SOA yield and oxygenated substituents or their 

proximity to the double bond. To shed light on this knowledge gap, we measured 

the SOA yields and ozonolysis reaction rates of a series of C5-C7 linear, oxygenated 

alkenes (Table 6.2).  

The SOA yield for 1-penten-3-ol (PTL) (3.3 ± 0.7 %) was greater than that 

measured for its non-oxygenated analog, 1-pentene (1.7 ± 0.2 %) (α = 0.05).  The 

ozonolysis of 1-pentene is expected to produce C1 and C4 products, which can 

undergo secondary oligomerization reactions (including hemi-acetal, aldol and ester 

condensation reactions) to form SOA.  The ozonolysis of 1-PTL will produce the 

same C1 products but its C4 products will also contain an additional hydroxyl 

functionality, which (in addition to lowering the overall vapor pressure of the 

products) can undergo additional secondary reactions that are known to form SOA28.  

Analogously, HXL (6.5 ± 2.6%) and HXNDL (9.3 ± 0.4%) have greater SOA yield 

than 3-hexene (2.2 ± 1.6%). CHA was found to have the same SOA yield as HXL 

(3.9 ± 2.4%) despite the fact that its methyl ester substituent shuts down the 

additional oligomerization pathway. 28  The reasons for this deviation from expected 

trends are unclear, but the large error associated with these measurements may be 

masking a general trend for HXL having a greater yield than CHA.   
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6.3.4 Ozonolysis Kinetics for Oxygenated Linear Alkenes 

As stated above, electron donating substituents at the site of a double bond 

can promote the electrophilic addition of ozone, enhancing reactivity through the 

inductive effect.12,19,20,22,54  Hydroxyl groups are strongly electron donating and may 

therefore be predicted to enhance reactivity to an even greater degree than alkyl 

substituents.  However, as we observed, HXNDL and HXL had lower reaction rates 

than their unsubstituted analogs.  The hydroxyl substitution(s) at the beta (HXNDL) 

or gamma (HXL) position may be too distant from the double bond to enhance 

reactivity via the inductive effect, and actually seem to inhibit reactivity, likely due 

to steric interference.  This interference is particularly strong for HXNDL, which 

has two hydroxyl groups in very close proximity to the double bond.   

Analogous to the case of non-oxygenated alkenes, the reactivity of 

oxygenated molecules is a trade-off between both steric hindrance and inductive 

enhancement.19,20,22,54  Though it may seem intuitive, it has been well established 

that the steric effect diminishes with increasing distance from the reactive 

site.19,20,22,54,64  Aschmann and Atkinson23 measured the steric effect for methyl-

substituted alkenes and found no difference between that measured for 1-hexene and 

5-methyl-1-hexene, yet as the methyl substituent moved closer to the double bond, 

steric effects increased, and the (NO3) oxidation rate constant decreased, though the 

trend was not statistically significant.  Since steric effects are expected to be more 

pronounced in ozone-alkene reactions than in corresponding NO3-alkene 

reactions,23 the trend in ozonolysis rate constant is expected to follow to a more 

significant degree.  Based on these results, it appears that the steric hindrance 
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provided by the hydroxyl substituents in HXL and HXNDL out-competes any 

reactivity enhancement they may contribute via the inductive effect, resulting in a 

lower ozonolysis rate constant as compared to 3-hexene.    

Alternatively, a slight enhancement was observed in the ozonolysis rate 

constant for PTL as compared to 1-pentene, echoing results from O’Dwyer et al.,12 

and suggesting that the terminal position of the double bond in PTL offers sufficient 

room for an approaching ozone molecule so the inductive effect associated with the 

hydroxyl substituent enhances reactivity overall.  3-methyl-1-pentene was found to 

have a diminished k compared to 1-pentene, suggesting that the methyl substituent 

provides significant steric hindrance to ozone to overcome any inductive 

enhancement it may also provide.  3-methyl-1-pentene has slightly less steric 

hindrance than PTL, suggesting that (if steric effects alone were considered) the 

methylated 1-pentene might have a greater k than PTL. 19,20    However, a much 

greater k was measured for PTL than what has been reported for 3-methyl-1-

pentene. 19,20 Although steric hindrance due to the hydroxyl group is large for PTL, 

it enhances k overall as compared to the methylated analog due to the inductive 

effect.   

 Acetate esters are also electron donating, although not as strongly as 

hydroxyl groups, and would therefore be expected to enhance k. In fact, ester groups 

β to the alkene are predicted to enhance the inductive effect over unsubstitued 

alkenes by about 1.5 times.19  However, CHA has a slightly (albeit not significantly) 

smaller rate constant than the 3-hexene. I would also expect CHA to have a smaller 
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rate constant than HXL, since β-hydroxyl groups are estimated to increase the 

inductive effect over β-esters by a factor of about three,19  and that methyl esters 

would provide more steric hindrance than hydroxyl groups, which would also result 

in a smaller k.  However, CHA had a slightly greater k than HXL.  Transition state 

theory could be used to shed further light on the factors affecting these systems.  

Nonetheless, our data clearly demonstrate that the presence, position and identity of 

substituents are all key to predicting ozonolysis reaction kinetics. 

6.4 Atmospheric Implications 

The marked disparity between predicted SOA mass loadings and those 

measured in the field highlights the need for more accurate representation of the 

molecular level interactions between VOCs and oxidants.  Some SARs have been 

shown to match chamber studies well, 19,20,54 but chamber studies rarely match 

atmospheric conditions (with chamber studies working at unrealistically high VOC 

concentrations and mass loadings) and experimental results are often irreproducible 

between (and even within) laboratories. 10,65  In Chapter 4, I reported the SOA yield 

of several green leaf volatiles using an experimental design analogous to that used 

by Hamilton et al.,66 yet gave very different results (and also a high degree of 

uncertainty).27  Keywood et al.10 also demonstrated the large degree of variability 

in making SOA yield measurements, reporting yields ranging from 0% to 19% for 

a single VOC in a single laboratory.  Herein, I also report rather large ranges in 

SOA yield for replicate experiments (between 5% and 75% relative error).  The 

reasons for the disparity in yield measurements made for the same chemical 
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systems under the same nominal conditions are unclear, but there is growing 

evidence to suggest that inconsistencies in the instrumental parameters used by 

different laboratories play a role.67   For a laboratory where instrumental parameters 

are not variable, like ours for example, differences in SOA mass measurements may 

suggest a degree of chaos during the initial reaction steps that have yet to be 

understood, making them all but impossible to predict or model.      

The mechanisms and product yields of VOC oxidation are impacted by 

subtleties in molecular structure.  Due to computational costs and limited kinetic 

data available, these relationships are not always incorporated into atmospheric 

models.  I have shown, however, that both the aerosol yield and the rate constant of 

structural isomers (cyclic vs linear, internally unsaturated vs terminally unsaturated 

and presence, type and position of substituents) vary significantly.  It is in these 

seemingly minor (and rarely considered) molecular variations where error can be 

born, which can then be extrapolated in models and may result in the large 

disparities between modelled and measured atmospheric aerosol levels and 

properties.  Ultimately, advances in computing power and our state of knowledge 

will permit models to evolve to incorporate much of this nuanced chemistry. Until 

such time, I offer this glimpse of the dramatic impact of seemingly small variations 

in molecular structure on reactivity and SOA formation. These initial steps will 

serve to further inform the atmospheric chemistry community on considerations 

that must be taken in order to harmonize laboratory findings with field studies and 

model outputs.  
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CHAPTER 7. SUBTLETIES IN MOLECULAR-LEVEL DYNAMICS: 

ORDER OF INTRODUCTION 

As described in the preceding chapters, atmospheric models largely under-predict 

SOA mass as compared to field measurements1-5 due in part to uncertainties in ambient 

OA and VOC measurements, omission of key VOCs, missing chemical and physical 

processes that contribute to SOA, and errors associated with extrapolating laboratory-

derived data to the atmosphere.6  Much of the work reported in this dissertation has focused 

on identifying BVOCs and understanding their contribution to atmospheric SOA on a 

molecular level.  In Chapter 6, I discussed how nuances in BVOC molecular structure 

influence their SOA-forming potential.  However, I have also found that chamber studies 

themselves are quite nuanced.  In this chapter, I will discuss chamber experiments that 

differ subtly in their procedure, yet yield very different results, suggesting very different 

chemistry.  This work was used to develop the standard operation procedure for chamber 

studies used in the preceding chapters, yet also offers a unique opportunity to discuss one 

of the aforementioned challenges in atmospheric science: the errors associated with 

extrapolating laboratory-derived data to the atmosphere.6   

7.0 Introduction 

Environmental chambers have been used to study atmospheric chemistry for 

decades. 7-10  While their design, material and advantages vary, the primary goal of chamber 

studies is to study relevant chemical systems that emulate atmospheric conditions.   

Unfortunately, as alluded to in Chapter 6, chamber studies rarely match atmospheric 

conditions (with chamber studies working at unrealistically high VOC concentrations and 



132 

 

mass loadings and also being conducted with a single VOC and single oxidant) and 

experimental results are often irreproducible between (and even within) laboratories. 11, 12  

For example, in Chapter 4 the SOA Yield of several GLVs was reported.  The experimental 

design used for those experiments was analogous to that used by others,13 yet gave very 

different SOA Yield measurements (and also with a high degree of uncertainty).14  In 

Chapters 4 and 6, I report rather large ranges in SOA yield values for replicate experiments 

(between 5% and 75% relative error).  Others have also demonstrated the large degree of 

variability in making SOA yield measurements, reporting values ranging from 0% to 19% 

for a single VOC in a single laboratory under nominally analogous conditions.11  Various 

studies, have also shown that the chemical composition and properties of aerosols formed 

in chambers differ from those of real atmospheric particles. The reasons for the disparity 

in SOA measurements for the same chemical systems under the same conditions are 

unclear,15 but suggest that extrapolation of results derived from chamber-based studies may 

be inappropriate for modeling the atmospheric production of aerosols.  There is growing 

evidence to suggest that disparities in intra-laboratory measurements may stem from 

inconsistencies in the instrumental parameters used by different laboratories.15   However, 

for a laboratory where instrumental parameters are not variable, like ours for example, 

differences in SOA mass measurements may suggest a degree of chaos during the initial 

reaction steps that have yet to be understood.   

In this chapter, I will explore one particular operating procedure that may contribute 

to intra-laboratory disparities.   What began as perhaps a naïve question led to anecdotal 

observations that continue to pose an interesting question with respect to the development 
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and implementation of chamber studies: “which goes first, the VOC or oxidant?”  It turns 

out, that it makes a difference. 

7.1 Experimental  

In a series of experiments, limonene and ozone were added to a 775 L Teflon 

reaction chamber in alternating order.  Initial reaction conditions are given in Table 7.1.  In 

all experiments, 1 µL of limonene was injected, resulting in a concentration of 390 ppb.  

Ozone was injected as a brief burst at initial concentrations between 260-300 ppb, 

representing an approximately 1:1 ratio of VOC and oxidant.  The consumption of 

limonene was monitored using TD-GC/MS while SOA mass was measured with an SMPS.  

The initial ozone concentration was measured using a commercial ozone monitor, but was 

taken offline after initial conditions were established to minimize sample consumption (the 

ozone monitor samples at 2 L min-1, which would quickly deplete the 775-L reaction 

chamber). 

 

7.2 Data Treatment 

The limonene signal was not mass-calibrated but, instead, is given as a normalized 

peak area from the GC/MS, where the peak area was normalized to the volume of the 

sample collected, which varied between 0.6 and 1.8 L.   

Date [Limonene]i (ppb) [Ozone]i (ppb) Added First 

2/2/2012 390 300 limonene 

2/9/2012 390 200 ozone 

2/11/2012 390 260 limonene 

2/16/2012 a 390 300 ozone 

2/16/2012 b 390 300 ozone 
 

Table 7.1 Initial conditions for introduction order experiments 
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The change in limonene peak area from time zero was used as a proxy for limonene 

consumption and was plotted against the total aerosol produced from time zero, where time 

zero was the time at which the second reagent was added to chamber.  This plot yields the 

time dependent growth curve, which shows the mass of aerosol produced as a function of 

VOC consumed for a given experiment.16, 17 

7.3 Results and Discussion 

As shown in Figure 7.1 (time dependent growth curves for limonene as a function 

of order of introduction) there is a clear distinction between the two groups of data based 

on the shapes of the growth curves.  When limonene is added to the chamber first, there is 

a large amount of limonene consumed before SOA growth begins, resulting in a ‘hooked’ 

growth curve.  Alternatively, when ozone is added to the chamber first, there is limited 

VOC consumption per unit SOA generated and no ‘hooked’ shape.   Both conditions yield 

approximately the same total aerosol mass, between 4 and 6 µg m-3 SOA, except for the 

2/9/2012 experiment, which yielded ~10 µg m-3 SOA.   
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Ng et al. (2006)17 observed similar ‘hooked’ behavior in their time dependent 

growth curve for SOA generated by the ozonolysis of several different terpenes (myrcene, 

α-humulene, α-terpinene, terpinolene and β-caryophyllene).  In their case, the terpene was 

always added to the chamber first, which agrees with our observations.  A hooked growth 

curve ultimately stems from a delay in aerosol production, which could be due to either a 

very slow partitioning of condensable products into the aerosol phase or due to the 

formation of condensable products from the further oxidation of first-generation products, 

and that this second oxidation step determines the rate of SOA formation.   Note that the 

terpenes studied by Ng et al. (2006) had more than one double bond, so the first generation 

ozonolysis products are still unsaturated and can react further (with ozone or OH) to yield 

more oxidized products that more readily condense to form particles.  Limonene, too, has 

 

Figure 7.1 Time dependent growth curve of limonene derived SOA as a function of order of 

introduction.  Lines between data points were added to aid the eye. 
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multiple double bonds, which could explain why we observe the hooked behavior.  If the 

hook is due to further oxidation of first-generation products, then the excess ozone in 

“limonene second” reactions must preferentially react with the second double bond in 

limonene ozonolysis products over any ‘unreacted’ limonene as it is injected.   

Generally. ozone preferentially reacts with the endocyclic (endo) double bond of 

limonene (Figure 7.2) due to the fact that it is more substituted than the terminal exocyclic 

(exo) double bond.18  (Recall, that we observed this same trend in Chapter 6, where terminal 

alkenes had a reduced rate constant over internally bonded alkenes.)  In fact, the endo 

double bond in limonene has a rate constant 50 times greater than the exo double bond.18, 

19 So, in a well-mixed system the ozonolysis would first occur at the endo double bond of 

all limonene molecules present before proceeding to the second, forming first-generation 

products with sufficiently low vapor pressures to condense to the particle phase and may 

result in a hooked growth curve.   

Consider the limonene first experiments, where this hooked behavior is observed.   

Because ozone is being added as a quick burst (< 10 sec) into a limonene-rich environment, 

 

Figure 7.2 Limonene has two double bonds.  In a well-mixed system, ozonolysis occurs 

at the endocyclic double bond first, due to the higher degree of substitution followed by 

the exocyclic, terminal double bond. 
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it has ample opportunity to react with unreacted limonene molecules before further 

oxidizing first generation products, stimulating the stepwise oxidation that results in a 

hooked growth curve.  However, in the ozone-first scenario, limonene is injected via a 

heated bulb and takes ~ 10 min to fully transfer.  So the ozone already in the batch reactor 

may react with both double bonds of a single limonene molecule before having the 

opportunity to react with new limonene molecules (because they’re being injected 

relatively slowly).  

7.4 Conclusions  

 The delayed onset of SOA as VOC is consumed (hooked growth curve) suggests 

that secondary oxidation reactions play a dominant role in new particle formation under 

these conditions.  As is the trend in many of the chapters herein, it seems that minor 

subtleties (in this case: order of introduction) play a major role in the molecular level 

dynamics of SOA formation.  Further work to elucidate the dynamics of these reactions 

should be done.  This work could include incorporation of molecular-level analysis of the 

gas and particle phase products under the two conditions.  TD-GC/MS has a temporal 

resolution of 5-10 minutes at these mixing ratios, and could be used for gas phase analysis, 

but since these reactions happen so quickly, real-time Proton Transfer Reaction MS (PTR-

MS) would be better suited to monitor the gas phase dynamics of these reactions.  NIR-

LDI-AMS could provide molecular-level analysis of the particle phase but also requires 

several minutes of sampling before analysis (depending on mass loading).  The Aerodyne 

aerosol mass spectrometer can offer real time analysis of particle chemistry, but at the cost 

of molecular-level analysis.  Despite this limitation, the Aerodyne aerosol mass 
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spectrometer can provide bulk chemical properties (O:C, H:C) that could be used to 

compare degree of oxidation in these different systems. 

In these ozonolysis reactions, the order of introduction of limonene versus ozone 

may seem to be an inconsequential subtlety in operating procedure.  However, as we 

observed in the time dependent growth curve, the order of introduction impacts the onset 

of SOA, which may have implications on overall SOA lifetime and chemistry.  The 

different orders of introduction also represent relevant environmental scenarios.   Imagine 

for instance, the early morning commute at the interface rural/urban landscapes, where 

vehicle emissions result in an ozone-rich environment.  As the sun rises, trees and plants 

emit terpenes into this ozone rich environment.  Our ozone first reactions may more 

accurately represent this scenario than if the VOCs were injected into the chamber first.   

An alternative picture could be painted for the evening commute, where VOCs are already 

present and the evening rush hour results in the emission of ozone into VOC-rich air mass.   

Despite remaining questions and a limited understanding of the molecular level 

dynamics contributing to these different time dependent growth curves, this work 

demonstrates the need for consistency in experimental design and also detailed reporting 

of procedures for inter- and intralaboratory comparisons.   
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CHAPTER 8. DETERMINATION OF THE VOLATILE EMISSIONS OF 

SUGARCANE AND THEIR ROLE IN ATMOSPHERIC CHEMISTRY 

 

8.1 Introduction 

Among the greatest challenges in atmospheric chemistry is the identification of 

VOCs that contribute to SOA.  Our approach to discovering new BVOCs has been to 

identify land uses that cover large areas, characterize VOC emissions from those areas and 

measure and characterize SOA formed from oxidation of these emissions. Using this 

approach, we recently found that, under certain scenarios, lawn mowing can contribute 

over 940 µg SOA per square meter of lawn mowed, analogous to accepted predominant 

SOA sources.1,2   This work demonstrated that GLVs have an important role in atmospheric 

chemistry.  That being said, there is still little known about the sources and total 

contribution of GLVs to atmospheric aerosol.  As a follow-up to this work with GLVs, we 

have recently completed an exploratory project designed to characterize the BVOC 

emissions of and to determine the potential SOA mass loading of sugarcane.   

Interestingly, both grass and sugarcane are C4 plants in the poacea family. 

Therefore, they are likely to have similar emission profiles, dominated by GLVs. 

Additionally, sugarcane covers a vast area of land (70 million acres globally and nearly 1 

million acres in the US alone3) and yet the impacts of sugarcane-derived SOA are largely 

unknown.  The large land area covered by sugarcane and the potential it has to emit reactive 

BVOCs, begs the question “do natural sugarcane emissions contribute to SOA and, if so, 

to what extent?”   

It has been well established that the cultivation of sugarcane emits significant 
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amounts of primary OA (POA),4-8 but its potential contribution to SOA has not been 

evaluated.  In 2005, Chang et al. 9 characterized the emissions of sugarcane extract and 

found that the predominant emissions were isoprene and monoterpenes and that about 30% 

of the emissions were “other VOCs,” which have yet to be characterized and are likely to 

contain additional SOA precursors.  Nonetheless, we still lack a baseline understanding of 

the emissions of the sugarcane plant itself and their potential contribution to SOA.   

In light of this deficiency, we performed emissions and SOA yield experiments 

analogous to those described in Chapter 4 to identify and quantify sugarcane emissions and 

to quantify the SOA-forming potential (or aerosol yield) of identified compounds under 

atmospherically relevant conditions.   

8.2 Experimental  

Sugarcane samples were collected by collaborators at the University of Central 

Florida, Everglades Research and Education Center and stored in plastic oven bags.  

Samples were shipped to the University of Vermont overnight and analysis was performed 

within 24-36 hours of harvest.  Between 100-150 g of sugarcane (wet weight) was freshly 

cut into 2-3 inch pieces and placed in a 775-L Teflon reaction chamber (Figure 8.1).  Plant 

emissions were monitored using solid phase microextraction (SPME) before ozone was 

injected as a quick burst.   

 As described in Chapter 3, the SPME sampling device consists of a small polymer-

coated fiber to which VOCs adsorb.  After a suitable period of time, which was determined 

to be 40 min, as described in Section 3.1.2, the fiber is extracted from the sample gas and 

injected directly into the heated injection port (200 °C) of the gas chromatograph (GC, 
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Clarus 600, Perkin Elmer) equipped with an analytical column (Stabilwax 30 m, 0.32 mm 

i.d., Restek) and a mass spectrometer (MS, Clarus 600 T Perkin Elmer) for analysis.10-12  

The GC oven was programmed as follows: held at 120°C for 4 min, increasing 10°C min-

1 to a final temperature of 220°C. The total run time per sample was 22 min.   The head 

pressure of the helium carrier gas was 1.8 psi, which resulted in a flow rate of 1.52 ml/min.  

Electron impact ionization (70 eV) was used and masses were scanned from 15 to 300 m/z.  

Chromatographic peaks were identified by spectral matching with the NIST 2005 mass 

spectral library and confirmed by comparison of retention times to those of known 

standards, when available.  Compounds were quantified on peak area basis using single ion 

monitoring.  

 

Figure 8.1 Sugarcane in 775-L reaction chamber for emission and SOA yield 

experiments. 
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VOC emissions were monitored for several hours before ozone was injected into 

the reaction chamber.  Once ozone was injected, the consumption of VOC emissions was 

measured along with the evolution of gas phase products and SOA.  A summary of initial 

conditions for all sugarcane experiments can be found in Table 8.1. 

 

8.3 Results 

8.3.1 VOC Emissions 

 Figure 8.2 is a representative chromatogram of sugarcane emissions (a) before and 

after (b) the injection of ozone.  Emissions were identified using the NIST Spectral Much 

like grass clippings, the dominant emissions include CHA and HXL, with lesser amounts 

Table 8.1 Initial Experimental Conditions for sugarcane experiments 

Date 

Sugarcane 

Mass 

(g) 

Ozone 

Injected 

(ppb) 

Max SOA 

Mass 

(µg m-3) 

Comments 

7/21/2015 ~ 150 0 n/a 

Pilot experiment, sugarcane 

mass not measured but 

estimated.  No ozone injected, 

just characterized the gaseous 

emissions as proof of concept 

11/04/2015 130 800 1.6 ± 0.2*  

11/06/2015 200 200 3.8 ± 0.4* 

Sugarcane clippings were 

reused from 11/04/2016 

experiment, so they have 

already been stressed due to 

ozonolysis.  Sample was 

freshly wounded (cut into 1-2 

inch pieces) before analysis. 

12/16/2016 290 80 2.3 ± 0.59  

* Due to instrumental errors, the actual value for SOA mass was not directly measured.  

Instead, the reported values represent estimates and were determined according to 

methods described in Appendix 2. 
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of 1-octene-3-ol (OTL), 2-hexenal, 3-hexenal, 1-heptanal and toluene.  In fact, the signal 

from some of these compounds is so weak that their chromatographic peaks cannot be seen 

on the scale of Figure 8.2 but a summary of their retention times can be found in Table 8.2.  

CHA, HXL and OTL were confirmed with standards.  The entire chromatographic run was 

20 min, but no compounds were found at retention times greater than ~6.5 min, so this 

section is not shown.   

 

Using the SPME K described and reported in Chapter 3, the concentrations of HXL 

and CHA were determined. Figure 8.3 is a plot of CHA and HXL concentration as a 

function of time for the 11/04/2015 experiment.  The sugarcane sample emissions were 

measured for ~150 min before ozone was injected, after which CHA and HXL 

 

Figure 8.2 Chromatograms of sugarcane emissions (a) before ozonolysis, where strong 

signals from CHA, HXL, OTL and 2-hexenal are observed. Post ozonolysis (b), some 

GLVs are readily consumed (HXL) while others are not (2-hexenal).  Several VOC 

products were also measured post-ozonolysis, but their signals were much smaller than 

that of the GLV emissions, and are therefore not visible.  
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concentrations decreased.  In all three experiments, CHA concentrations were greater than 

HXL.  The concentrations of each GLV just before ozone was injected are given in Table 

8.3.  

 

Also in Table 8.3 are the average emission rates of each GLV, which were given 

by the slope of a linear regression of the concentration as a function of time and normalized 

to the mass of sugarcane sample.  In the 11/04 and 11/06 experiments, CHA was emitted 

at a greater rate than HXL.  Recall that the 11/06 experiment used the same sugarcane 

sample as 11/04, which likely explains why the relative amounts of each GLV was the 

same.  The 11/06 experiment had a much lower emission rate and final GLV concentration 

than the 11/04 experiment, however.  The decrease in emissions is likely due to the fact 

that the sample used on 11/06 was aged and had been exposed to ozone in experiments two 

days prior.  In the 12/16 experiment, CHA and GLV were emitted at the same rate as each 

other, resulting in nearly the same concentrations of each GLV (values within ~20%).   

 

Figure 8.3 GLV emissions from sugarcane in the 11/04/2015 experiment. After ~150 

min, 800 ppb ozone was injected, resulting in a decrease in HXL and CHA 

concentration and the evolution of SOA.  Lines between GLV data points are drawn to 

aid the eye.   
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Although K values for 1-octen-3-ol (OTL) were determined and reported in Chapter 

3, the signals measured here were smaller than we could quantitatively measure in the 

aqueous phase.  Therefore, calibrations could not be completed and OTL emissions could 

not be quantified. 

  

 

A typical reaction profile for VOCs other than the GLVs is given in Figure 8.4.  

The raw peak areas for each compound scaled several orders of magnitude, so they were 

each normalized to their respective greatest peak area to allow for easier comparison.  3-

hexenal, OTL, toluene and methyl ester hexanoic acid were initially emitted very quickly 

but then decreased in peak area even before ozone was injected.  2-hexenal was emitted 

and then appeared to plateau until ozone was injected.   

Table 8.2 VOC Emissions from Sugarcane and volatile ozonolysis products 

Emission Retention 

time 

(min) 

Product Retention 

Time 

(min) 

Toluene * 2.3 methyl ester butanoic acid* 2.7 

3-hexenal * 2.8 heptanal 3.1 

2-hexenal  3.5 octanal * 4.0 

CHA 4.2 nonanal 5.10 

HXL 4.8 decanal 6.2 

OTL 5.4   

    

* These compounds were tentatively identified by comparison to the NIST spectral 

library but were not confirmed using known standards. 
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8.3.2 VOCs and SOA Post Ozonolysis  

After emission rates were determined, ozone was injected into the reaction 

chamber.  Ozone levels used are given in Table 8.1.  Post ozonolysis, (Figure 8.3 and 8.4) 

there is a dramatic reduction in signal for HXL, CHA, 3-hexenal, 2-hexenal and OTL, 

 

Figure 8.4 BVOC emissions from sugarcane in the 11/04/2016 experiment. After 

~150 min, 800 ppb ozone was injected, resulting in a decrease in BVOC signal.  Lines 

between GLV data points are drawn to aid the eye.  
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Table 8.3 Pre-ozonolysis concentration (“initial concentration”) and emission rate of 

CHA and HXL from sugarcane samples. 

 Initial CHA 

Concentration 

(ppb) 

CHA Emission 

Rate (ppb/hr/g 

sugarcane) 

Initial HXL 

Concentration 

(ppb) 

HXL Emission 

Rate (ppb/hr/g 

sugarcane) 

11/04/2015 62 0.27 ± 0.04 40 0.18 ± 0.03 

11/06/2015 7.0 0.009 ± 0.006 2.5 0.005 ± 0.002 

12/16/2016 13.5 0.15 ± 0.05 17.0 0.16 ± 0.05 
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while the signal for toluene and methyl ester hexanoic acid did not decrease, and even 

seemed to increase slightly.    

  Ozone is expected to oxidatively cleave double bonds, resulting in the consumption 

of unsaturated parent compounds and evolution of oxygenated products.  This reactivity 

likely explains the disappearance of HXL, CHA, 3-hexenal, 1-octene-3-ol.  Toluene, 

however is expected to react with ozone,13,14 yet only 10% was consumed. Similarly, 2-

hexenal also contains one double bond (in the second position) and is expected to react 

with ozone, yet only ~25% of this VOC was consumed post ozonolysis.  The limited 

reactivity, then, may be a result of complex structure-activity relationships like those 

discussed in Chapter 6.  We measured the ozonolysis rate constant (see method description 

in Chapter 3) of 2-hexenal to be 1.62 ± 0.2 x 10-18 cm3sec-1molecule-1, which agrees well 

with reported values (1.28 ± 0.2 x 10-18 cm3sec-1molecule-1) 15, but is an order of magnitude 

smaller than that measured for CHA, HXL (Table 6.3) and OTL (see discussion below), 

which is likely its signal did not decrease as dramatically as the other sugarcane emissions 

post ozonolysis.  This reduced reactivity may be due to the fact that the aldehyde moiety 

in 2-hexenal is in close proximity to its double bond and may be effectively blocking ozone, 

limiting reactivity via steric effects.   As discussed in Chapter 9, transition state theory 

could be used to shed further light on the factors affecting the kinetics of this system. 

We also observed several volatile products from the ozonolysis of sugarcane 

emissions.  These included methyl ester butanoic acid, heptanal, octanal, nonanal and 

decanal.  The identification of heptanal, nonanal and decanal were confirmed by comparing 

retention times and mass spectra to those of known standards.  Aldehydes and carboxylic 
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acids are among the compounds expected from the ozonolysis of alkenes.  The general 

scheme shown in Scheme 2.1 does not lead directly to these particular molecules from the 

observed sugarcane emissions but a detailed mechanism warrants additional investigation.  

The evolution of SOA was also observed post ozonolysis (Figure 8.3 and Table 

8.1.)  HXL and CHA are known to contribute to SOA1,16-18 and have aerosol yields of 

6.5(±2.4)% and 3.9 (±2.6)%, respectively.18  Recall, however, that aerosol yield scales with 

VOC loading, where higher loadings result in greater yield.  These aerosol yields were 

determined at VOC loadings of 1000 ppb, when GLV emissions from sugarcane were on 

the order of 10-50 ppb (Table 8.3). Based on these yields and the maximum CHA and HXL 

concentrations measured, the predicted GLV-derived SOA loadings grossly exceeded the 

actual, measured SOA loadings on both 11/04 and 12/16 (Table 8.4).   

 

Using more appropriate, yet still high VOC loadings (500 ppb), aerosol yields of 

0.3% and 0.7% were found for CHA and HXL, respectively.  Using these aerosol yields, 

the predicted GLV-derived SOA concentrations were over-predicted on 11/4 but under 

predicted on both 11/6 and 12/16 (Table 8.5).  As discussed in Section 3.3, partitioning to 

chamber walls is a significant loss mechanism for particles in chamber studies, and results 

Table 8.4 Estimated Contribution of HXL and CHA to total sugarcane SOA loadings 

based on their emission rates and reported SOA Yields (for 1000 ppb GLV). 

Experiment HXL Derived 

SOA 

(µg m-3) 

CHA Derived 

SOA 

(µg m-3) 

Total GLV-

Derived SOA 

(µg m-3) 

Max Measured 

SOA 

 

11/04/2015 10 ± 4 14 ± 9 24 ± 10 1.6 ± 0.2 

11/06/2015 0.9 ± 0.3 1.6 ± 1.0 2.5 ± 1.1 3.8 ± 0.4 

12/16/2015 5 ± 2 3 ± 2 8 ± 3 2.3 ± 0.6 
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in an erroneously low SOA mass measurement.  Therefore, an over-prediction in SOA 

loading, like on 11/04, may indicate that there is substantial particle loss to both chamber 

walls and/or to the sugarcane itself 

 

An underestimation in SOA production may result from a still incomplete 

understanding of SOA forming mechanisms and/or the omission of significant SOA 

precursors.  One such precursor may be 1-octene-3-ol (OTL).  As shown in Figure 8.3, 

OTL signal decreased post ozonolysis, suggesting it is reactive with ozone.  There is 

limited data on the role of OTL in atmospheric oxidation reactions 19,20 and I am not aware 

of any studies of its reaction with ozone to produce SOA.  However, as shown in Scheme 

8.1, OTL has one terminal double bond, which likely reacts with ozone to form 2-hydroxy 

heptanoic acid, 2-hydroxyheptanal, formaldehyde and formic acid.  Formaldehyde and 

formic acid are expected to be found in the vapor phase but were not observed as products.  

Given that SPME is efficient at sampling semi-VOCs, though, the high volatility of these 

compounds may have limited our ability to sample and therefore detect/measure them.  2-

hydroxyheptanoic acid and 2-hydroxyheptanal, however, have sufficiently low vapor 

pressures (0.0349 Pa and 4.57 Pa, as calculated by the EPA EPI database), that they are 

Table 8.5 Estimated Contribution of HXL and CHA to total sugarcane SOA loadings 

based on their emission rates and measured SOA Yields (for 500 ppb GLV). 

Experiment HXL Derived 

SOA 

(µg m-3) 

CHA Derived 

SOA 

(µg m-3) 

Total GLV-

Derived SOA 

(µg m-3) 

Max Measured 

SOA 

 

11/04/2015 1.12 1.1 2.2 1.6 ± 0.2 

11/06/2015 0.09 0.12 0.22 3.8 ± 0.4 

12/16/2015 0.55 0.23 0.78 2.3 ± 0.6 
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expected to contribute to SOA.  Additionally, the hydroxyl group in OTL is expected to 

participate in secondary oligomerization reactions that would lead to additional SOA 

mass.21 

To determine the reactivity of OTL with ozone, its ozonolysis rate constant (k) was 

measured as described in section 3.6 22,23  Briefly, pseudo-first-order reaction conditions 

were induced, whereby OTL was present in 10-fold excess of ozone (2125 ppb and 200 

ppb, respectively).  Ozone was injected as a brief burst which was monitored throughout 

the reaction.  A plot of ln([Ozone]t0/[Ozone]t) vs time yields a straight line with slope 

kobserved.  From the rate expression of the reaction, k = kobserved/[OTL]t0. The rate constant 

of OTL was found to be 2.45 ± 0.05 x 10-17 cm3sec-1molecule-1, which is slightly smaller 

but on the same order of magnitude as the ozonolysis rate constants measured for CHA and 

HXL (5.8 ± 0.9 and 5.8 ± 0.1, respectively, Table 6.3). 

To determine the SOA-forming potential of OTL, its aerosol yield (Y) was 

measured using pure standards of OTL in accordance to the method described in Chapters 

3 and used in Chapter 4 and 6.  The aerosol yield for OTL at 1000 ppb was found to be 

2.5%, which is on the same order of magnitude as other GLVs (CHA and HXL).   

During these yield experiments, the production of heptanal from the ozonolysis of 

pure OTL was also observed, suggesting that OTL may be the source of heptanal in 

sugarcane experiments.  The ozonolysis of OTL also resulted in the production of a 

compound that was identified by the NIST database as 4-methyl pentanol and one that was 

identified as n-Caprioc acid vinyl ester or 6,7-dodecanedione.  The exact mechanisms 
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leading to any of these compounds from the ozonolysis of OTL are not clear, but warrant 

additional attention.   

 

 

8.4 Influence of Sugarcane on Global SOA and Further Conclusions 

Recall that the SOA loadings reported for 11/04 and 11/06 experiments were 

estimates, so the SOA mass loading measured experimentally in the 12/16/2015 

experiment was used to estimate the potential global impact of sugarcane on atmospheric 

aerosols.  In the 12/16 experiment, a maximum SOA concentration of 2.3 µg m-3 was 

measured for 290 g of sugarcane, which corresponds to 0.26 µg m-3 per g of sugarcane.  

Accounting for the volume of the reaction chamber (775 L), this SOA concentration 

corresponds to an absolute mass of 6.15 x 10-3 µg per gram of sugarcane.  According to the 

 

Scheme 8.1.  The ozonolysis of OTL is expected to produce several oxygenated compounds, 

none of which were observed herein. 
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Food and Agriculture Organization, in 2014 there was a reported 30 million hectares of 

sugarcane worldwide24 and on average each hectare of sugarcane can produce up to 40 tons 

of sugarcane annually.25  Assuming a uniform SOA contribution, then, sugarcane 

harvesting worldwide has the potential to contribute 16 Mg SOA to the atmosphere.  Recall 

that global estimates of SOA loading range from 12-70 Tg SOA.26  Sugarcane, therefore, 

has the potential to contribute a minimal yet significant amount of atmospheric SOA.      

Sugarcane emits some of the same GLVs as turf grass (CHA and HXL) but in much 

smaller amounts, resulting in a smaller SOA contribution.  On average the CHA emission 

rate was 0.14 ± 0.02 ppb/hr/g sugarcane while that for HXL was 0.15 ±0.02 ppb/hr/g 

sugarcane.  In addition to CHA and HXL, however sugarcane also emits significant 

amounts of OTL, which was not observed in the emission profile of grass clippings.  Either 

turf grass does not emit OTL or we were not able to measure OTL with the thermal 

desorption GC/MS method used in those experiments.  OTL was also found to be reactive 

with ozone to yield SOA (2.5% Y) and some of the same gas phase products that were 

observed in the ozonolysis of sugarcane emissions.   

In order to fully understand the role that a particular source of SOA can play on the 

Earth’s radiative budget, we must also characterize the physical and optical properties of 

the resultant SOA. Considering a significant amount of sugarcane SOA is derived from 

CHA and HXL, it is likely that sugarcane SOA has similar physical and optical properties 

as SOA derived from these pure GLVs, which are discussed in Chapter 6.  The properties 

of OTL-derived SOA, however have not yet been determined.  Since OTL has the potential 
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to contribute a significant fraction of sugarcane derived SOA, it is of interest to determine 

its physical properties and optical properties.   

8.5 GLV SOA and Visibility 

The absorbance and scatter of light by particles determines their direct effect on 

climate, but they both also contribute to the total light extinction by particles, which affects 

visibility.  The impact of particulate matter on visibility is clearly evidenced by the 

presence of smog in urban regions or in rural regions by the changing opacity of close 

versus distant features (Figure 8.5).  The term visibility is rather subjective and refers to 

the clarity with which a distant object can be seen, which as you can imagine relies on an 

individual’s visual acuity and perception.  A more useful and quantitative term is visual 

range (Lv), which gives the distance at which an object is barely discernable and is driven 

by the contrast between an object and its surroundings.27   

Visual range has been identified as a major concern by the US Environmental 

Protection Agency (EPA), and, despite the passage of the 1977 US Clean Air Act,27 has 

decreased from ~ 145 km to less than 30 km in the Eastern US and from 240 km to less 

than 150 km in the Western US, about half of what it would be without anthropogenic 

influence. 28,29   
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Visual range is governed primarily by the extinction of light due to particles, with 

extinction by gaseous air molecules having a minor effect, and is given by Equation 8.2 

below: 

 𝐿𝑣 =
3.9

𝜎𝑒𝑥𝑡
     (8.2) 

 Where total extinction (σex) is the sum of extinction due to scatter (σscat) and 

absorbance (σabs).  In Chapter 5, we report the mass absorbance coefficient (MAC) and 

mass scatter coefficient (MSC) for CHA and HXL derived SOA (also given in Table 8.6), 

the sum of which is mass normalized extinction (MEC).   Recall that the different HXL 

experiments correspond to experiments done under different relative humidity regimes.    

Figure 8.5 The effect of particulate matter on visual range can be seen by my baby, Jade, 

from the summit of Mount Mansfield, VT.   Mountains in the foreground are easily 

distinguished, but more distant mountains grow increasingly opaque in color and less 

clearly defined due in part to light extinction by atmospheric particles. 
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Sugarcane-derived SOA may only contribute a small fraction of the global SOA 

mass, but individual sugarcane farms may have the potential to emit a concerted burst of 

SOA that impacts visual range.  According to the US 2012 Agricultural Census, 50% of 

sugarcane fields in the US are 500 acres or larger (31% actually exceed 1,000 acres).  A 

farm of 500 acres has the potential to emit an absolute mass of 1.12 x10-4 Mg SOA.  

Assuming this SOA is emitted into the air 5 m above the sugarcane, this mass loading 

corresponds to a total concentration of about 11 µg/m3 SOA.  By multiplying the MEC in 

Table 8.6 by this theoretical SOA concentration, we can estimate a theoretical σex due to 

sugarcane harvesting in that air shed, permitting us to estimate Lv.  Figure 8.6 gives the 

visual range at 450 nm, 525 nm, and 635 nm in air containing 11 µg/m3 SOA derived solely 

from CHA or HXL.  HXL-SOA limits the visual range more than CHA-SOA, especially 

under humid conditions, where estimates predict a visual range of about 100 km.  These 

visual ranges assume that CHA or HXL-SOA are the only SOA contributing to visual 

range, when in fact there are countless other sources of SOA that could contribute, 

Table 8.6 Mass extinction coefficients for SOA derived from CHA at 10% RH and 

HXL at 10% RH and 70% RH.  These data were first presented in Chapter 5.   

Experiment HXL 1 HXL 2 CHA 1 

Date 11/3/2015 11/4/2015 11/12/2015 

RH % 10 70 10 

SOA Mass Conc. (µg m-3) 80 30 15 

MEC (m2g-1, 450 nm) 0.45 0.57 3.9 

MEC (m2g-1 , 525 nm) 0.31 0.47 2.4 

MEC (m2g-1, 635 nm) 0.22 0.42 1.8 
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including OTL.  These estimates, therefore represent an upper limit on visual range in air 

above or near sugarcane fields. 

 

8.6 Conclusions 

 Upon wounding, sugarcane emits several GLVs that, upon ozonolysis, form SOA 

in significant amounts.   This wounding could occur in a few different ways: during the 

harvesting of the plant or during sugarcane processing, which involves chopping the plant 

into small pieces before sugar is extracted.  In both cases, there is opportunity for GLVs to 

be released and SOA to form.  Globally, the harvesting of sugarcane has the potential to 

contribute 16 Mg of SOA to the atmosphere, which represents a small, yet significant 

fraction of global SOA loadings.   

 

Figure 8.6 Predicted visual range (in km) at 450 nm, 525 nm and 635 nm in air with 

11 µg/m3 SOA derived solely from CHA or HXL.  10% and 70% denotes the relative 

humidity for these Lv values. The HXL-SOA limits visual range more than CHA-SOA 

at all wavelengths, and HXL SOA formed at 70% RH limits visual range even more.   
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 Sugarcane emits the same primary GLVs as turgrasses, likely because the two 

plants are in the same family.  Sugarcane also emits significant amounts of OTL, which 

was not measured in the emission profile of turfgrasses (Chapter 4).  In fact there is little 

known about the ozonolysis kinetics or SOA forming potential of OTL.  We therefore 

report what we believe are the first measurements of SOA yield and volatile products of 

OTL ozonolysis.   

Based on visual range estimates made herein, it is unlikely that the ozonolysis 

products from sugarcane emissions contribute to reduced visibility at the airshed level.  The 

hand cultivation of sugarcane, however, requires a pre-harvest burn, during which a 

significant amount of primary OA (POA) is emitted.4,5,7,8,30  Interestingly, the combustion 

of sugarcane also emits significant amounts of VOCs that are known to form SOA.6  

Sugarcane harvests, therefore represent a system that has the potential to contribute both 

POA and SOA, simultaneously. There is growing evidence to suggest that mixed systems 

like these form particulate matter with very unique properties that cannot yet be modelled; 

in some cases SOA yield is enhanced, while in others it is suppressed. 31-34  The sugarcane 

system, therefore, offers a prime system to also study the dynamics of a mixed system and 

warrants additional work.  
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

9.1 General Conclusions  

Despite advances made to discern the role of aerosols in atmospheric processes, 

there remains significant uncertainty in our understanding of their broad environmental 

impact, owing to a still-limited knowledge of their sources, composition, properties, and 

the mechanisms that lead to their formation and ageing.1-3   The work presented in the 

preceding chapters was designed to help fill some of these knowledge gaps.  To the end of 

identifying novel SOA sources, I estimated the contribution of turfgrass mowing to the 

global aerosol budget (Chapter 1) and found that, as a concerted burst, the mowing of grass 

has the ability to contribute as much SOA as other, known predominant BVOC sources.  

In conjunction with this work, a sister report 5 has been published that characterizes the 

chemical composition of the resultant grass-derived SOA and proposes relevant oxidation 

mechanisms that would lead to its formation.  This work was limited however, in its 

consideration of all relevant atmospheric oxidants, as it omits oxidation by hydroxyl 

radicals, NOx and photooxidation mechanisms.  Incidentally this limitation provides an 

obvious next step for this work; the incorporation of other atmospherically relevant 

oxidants to further understand the molecular level dynamics leading to SOA.  This will be 

discussed in detail below (Section 9.2) 

 Knowing the SOA mass loading attributed to lawn mowing, however, is not 

sufficient for us to estimate its impact on radiative forcing.  Characterizing the optical 

properties of SOA (its ability to absorb and scatter light) is of prime importance to 

understanding its role in radiative forcing, which is the primary focus of Chapter 5.  I found 
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that both HXL and CHA produced SOA that was weakly absorbing, yet CHA-SOA was a 

more efficient absorber than HXL-SOA.  The scatter efficiency of SOA from both systems 

was wavelength-dependent, as shown by the angstrom scatter exponent (ASE) with the 

stronger dependence exhibited by HXL-SOA, likely due to differences in particle size.  

Interestingly, HXL-SOA formed under both dry (10% RH) and wet (70% RH) conditions 

had the same bulk chemical properties (O:C), yet significantly different optical properties, 

which can be attributed to subtle differences in molecular-level composition. 

 The importance of subtleties in the molecular-level dynamics of SOA formation 

was further demonstrated in Chapter 6.  In this chapter, I reported the SOA yields and rate 

constants for the ozonolysis of several linear, cyclic and oxygenated C5-C7 alkenes whose 

molecular structure vary in the site of unsaturation and/or the presence/position of 

functional groups and that represent atmospherically relevant classes of molecules.  

Essentially, what we found was that not all alkenes are created equally, but that both the 

identity and position of oxygenated functional groups influenced SOA yield and kinetics 

through steric and electronic effects.  This work demonstrates the nuanced behavior of 

ozonolysis reactions, which results from the relationships between parent VOC molecular 

structure and SOA yield and kinetics.   

In Chapter 6, I described that both steric hindrance and electronic effects play 

important roles in determining ozonolysis rate constants, predicting that large bulky groups 

would general impede it, unless they were electron donating, promoting the addition of 

ozone to the alkene.  I also indicate that transition state theory could be used to shed further 

light on the factors affecting these systems.   This approach was not within the scope of 
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this work, but would offer a prime opportunity to use theoretical/computational chemistry 

to explore the mechanisms and kinetics of GLV ozonolysis reactions, on which I will 

elaborate in Section 9.3.   

With the exception of the research presented herein, there has been a limited 

amount of work on the sources of GLVs and their impact on atmospheric chemistry.  To 

further evaluate the large-scale contribution of GLVs, I identified another novel source, 

sugarcane, which is presented in Chapter 8.  Sugarcane, being of the same family as many 

turfgrasses, was found to emit several GLVs upon wounding that that may contribute to 

atmospheric SOA.  As reported in Chapter 5, GLV-derived SOA may also limit visual 

range.  Interestingly, many space centers and airports, whose operations can be highly 

impacted by aspects of visibility, are located in close proximity to sugarcane fields.  As I 

report in Chapter 8, the harvesting of sugarcane may ultimately impact aeronautic research.  

9.2 Expanding Research to Include Other Relevant Oxidants 

Oxidation by hydroxyl radicals (OH) has the potential to impact both mass yields 

and the chemical composition of GLV-derived SOA.  Yet, compared to ozonolysis-driven 

SOA formation, new particle formation solely by the OH oxidation of VOCs has been 

investigated less frequently, due in part to the fact that ozone is formed as a byproduct 

during OH oxidation, making OH-driven chemistry difficult to isolate,6-9 but also because 

OH is difficult to quantitatively generate at atmospherically relevant concentrations (0.4-

0.4 pptv or ~2x106 radicals cm-3)4, 10, 11 in the laboratory, presenting experimental 

challenges.  Those few studies that do report the impact of purely OH oxidation on new 

particle formation (NPF), however often use unrealistically high VOC loading and report 
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contradicting results.  Not only is OH oxidation a much faster reaction than ozonolysis 

(greater rate constants),12 but OH oxidation also follows unique reaction pathways resulting 

in smaller, yet more oxidized, products.  It follows, then, that initial OH oxidation products 

would not condense and contribute to SOA formation directly, but that more oxidized, later 

generation products might.  In fact this was recently found to be the case for the OH 

oxidation of several terpenes under atmospherically relevant conditions; that 

multigenerational OH oxidation products played an important role in new particle 

formation.6    I believe a similar trend would be observed for OH-driven oxidation of GLVs.  

Although the kinetics (rate constants) for the OH-oxidation of some GLVs have been 

reported,13-17 to my knowledge there has not yet been a study of the SOA-forming potential 

of these reactions or chemical characterization of the resultant SOA.  Additionally, the 

instrumental infrastructure at UVM (namely the GC/MS and NIR-LDI-AMS) affords the 

Petrucci Group the unique ability to elucidate the chemical mechanisms leading to SOA 

by OH oxidation.  This integrative approach would allow for the identification of key 

multigenerational products that stimulate NPF, which is of prime importance if we’re to 

understand the molecular-level dynamics of particle genesis.   

NOx also plays an important role in the overall SOA forming potential of alkenes, 

especially during night-time chemistry.  The presence of high levels of NOx has been 

shown to both decrease and increase SOA yield, as a result of competing reaction pathways 

that lead to either high or low volatility products.8  Generally, the deciding factor 

contributing to whether high NOx conditions will increase or decrease SOA yield comes 

down to the size of the parent hydrocarbon.8  Isoprene18 and α-pinene19-21 experience a 
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decreased SOA yield under high NOx conditions, while longifolene and aromadendrene 

see an enhanced SOA yield under high NOx conditions.8  It follows, then that GLVs, which 

are relatively small C6 alkenes, would have a reduced SOA yield under high NOx 

conditions.  Again, confirming this trend at the Petrucci Lab, with the use of our unique 

instrumental infrastructure, would also allow for the characterization of gas and particle 

phase compounds and elucidation of different chemical pathways under varying NOx 

conditions.   

9.3 Mie Theory to Further Characterize Optical Properties 

The scatter of light by particles falls into different regimes based on the size of the 

particles relative to the wavelength of light.  Mie Theory describes the scattering of light 

by particles on the same order as or larger than the wavelength of light.  Since actinic light 

at the Earth’s surface is between ~300-750 nm, Mie Scattering best describes particles of 

the size studied herein (Dp ~ 200-300 nm).  With the help of efficient algorithms and 

powerful computers, Mie Theory has been used to predict the light scattering by numerous 

different atmospheric aerosols, which can then be used to determine its index of refraction. 

22-25 26 The complex index of refraction (m) describes the relative contribution of light 

scatter and absorption of a material.  It takes the form: 

𝑚 = 𝑛 + 𝑖𝑘 

where n is the real part of the refractive index, which is closely tied to the light scattering 

efficiency of the material and k is the imaginary part, closely tied to light absorption.  It 

follows, then that a purely scattering material would have a negligibly small k-term, as 

shown in Table 9.1. 
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 The complex index of refraction can then be used to describe the total light 

attenuation by a particle, which is a model input to predict the overall contribution of a 

particle (or type of particle) to the Earth’s radiative budget.   It is, therefore, a very 

important and powerful tool and warrants additional work in the future.   

9.4 Theoretical Study of Mechanisms and Kinetics of GLV Ozonolysis 

 The ozonolysis mechanisms that are proposed in this work and in complimentary 

work done in the Petrucci Group during my tenure at UVM are based off known reaction 

pathways that have been confirmed experimentally.  For a detailed description, see Jain et 

al. (2014) 5 and references therein, but briefly, product molecules were found with a given 

mass and then reasonable reaction schemes were proposed that lead to products with those 

masses.  Since many of the proposed product molecules are not readily available as 

standards, their identity could not be confirmed.  A theoretical study of the products and 

kinetics of GLV ozonolysis, however may provide additional support for the proposed 

mechanisms.  Li et al. (2014)27 has recently performed such a study on the ozonolysis of 

CHA.  Using density function theory, they were able to confirm key mechanistic steps in 

Table 9.1 The complex index of refraction of several 

atmospheric materials.  Recreated from Ref 4 

Material Index of Refraction (m) 

Air 1.00029 - 0i 

Water Vapor 1.00025 - 0i 

α-pinene 1.465 - 0i 

Oleic Acid 1.46 - 0i 

Carbon 1.59 – 0.66i 

Iron 1.51 – 1.63i 
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the reaction between CHA and ozone that also agree with reported kinetics.27  Although it 

was outside the scope of this work (and the expertise of this group) a thorough theoretical 

study of the ozonolysis mechanisms for GLVs may prove impactful to support the work 

done in both Chapter 6 (structure activity relationships) and Chapter 5 (the impact of 

molecular water on reaction mechanisms), and would also provide an opportunity for 

diversification through meaningful collaborations.  

9.5 Instrument Development 

In Chapter 5, the absorbance of light by particles was measured using an integrating 

sphere coupled to a UV/Vis spectrometer, which allowed for the determination of the mass 

absorption coefficient between 200-900 nm.  The light scattering efficiency was measured 

using a nephelometer, which measures scatter at only three discreet wavelengths (450 nm, 

525 nm and 635 nm) while the angstrom scatter exponent (ASE) is used to interpolate 

scatter data for other wavelengths. 28  In fact, several different methods used to measure 

the scatter of light by particles are limited to certain wavelengths of light. 25, 28, 29  Together, 

these absorbance and scatter data are used to estimate the total light extinction by particles, 

which is then in turn used to estimate the material’s radiative forcing.  So as you may intuit, 

this interpolation may introduce significant error.  Instead, a method that directly measures 

light scatter across a continuum of wavelengths may provide more accurate data.  I suggest 

that IS-UV/Vis could be used to measure light scatter continuously between 200-900 nm.    

 For absorbance measurements, SOA was collected on quartz fibers and analyzed as 

shown in Figure 9.1a, where the filter was placed at the front of IS and the percent 
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transmitted light was measured by the detector in the IS.  The absorbance that is then 

calculated, however, is an overestimation, since light attenuation is also due to back scatter 

by particles doped on the filter.  To limit this error, a center-mounted IS/UV-Vis, as shown 

in Figure 9.1 b, should be used.  In this setup, light attenuation is due only to absorbance 

by the sample.  These center mount IS-UV/Vis instruments are commercially available, 

but to the best of my knowledge, they have neither been used in this field, nor with samples 

collected on filters (as opposed to extracted in solvent).  When analysis is done in both 

transmittance and absorbance modes, one can also determine the ratio of backscattered 

light.  Additionally, when absorbance-mode measurements are compared to those made in 

reflectance mode (Figure 9.1c), the forward scattered light can also be determined.  Not 

only does this one instrument have the potential to measure absorbance and scatter, it 

 

Figure 9.1 Schematic of Integrating sphere in (a) transmittance mode, where light 

attenuation is due to absorbance and back scatter, (b) absorbance mode, where light 

attenuation is due to absorbance only and (c) reflectance mode, where light attenuation 

is due to absorbance and forward scatter. 
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would also make these measurements across a continuum of wavelengths, limiting 

potential errors due to interpolating ASE data.  

9.6 Factors Affecting New Particle Formation- Unanswered Questions Without 

Projected Answers (AKA future members’ PhDs) 

Aerosol yields were a key measurement used to answer several questions about 

GLVs in the atmosphere and are reported in both Chapter 4 and Chapter 6. Despite using 

the same instrumental parameters, the aerosols reported have a high degree of uncertainty 

with relative standard deviations ranging from 5-75%.  We are not alone in these high 

RSDs, though.  In fact it is not uncommon to see aerosol yields for the same system, under 

the same initial conditions in the same laboratory ranging from 0-100%.7, 30-32  This marked 

disparity in SOA yields (within and between laboratories) highlights the need for more 

accurate representation of the molecular level interactions between VOCs and oxidants or 

may suggest a degree of chaos during the initial reaction steps that has yet to be understood, 

making predicting or modelling difficult, if even possible.  Don’t let me convince you that 

‘it can’t be done,” though.  Anecdotal evidence points to seemingly minor differences in 

environmental conditions leading to significantly different SOA mass loading and SOA 

properties. 

As shown in Chapter 7, the order of introduction of VOC and oxidant plays an 

important role in the aerosol yield, where SOA yields seem to be inhibited when VOCs are 

introduced to an oxidant-rich environment.  Intuitively, this makes sense, where the high 

oxidant concentration may effectively chew up product molecules, preventing nucleation 

and particle formation.  Alternatively, second generation chemistry may become 

increasingly important for new particle formation when oxidants are introduced into a 
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VOC-rich chamber.   The molecular-level dynamics of these interactions have yet to be 

investigated but represent an interesting and relevant scenario for future work and may 

shed light on the reasons for such disparate aerosol yield measurements.  

In Chapter 5, we saw the impact of water on particle genesis; we observed a reduced 

SOA mass loading and much smaller sized particles in the presence of water, which may 

be counterintuitive.  We also observed unique chemical and physical properties for SOA 

formed under the two conditions and we were not able to generate ANY SOA at 

intermediate RH conditions (50% RH).  The reasons for these observations are not 

immediately clear but it seems that the presence of water at particle genesis plays an 

important role in NPF.   

9.7 Final Thoughts 

The work presented in the preceding chapters has added significantly to our 

understanding of the role of GLVs in atmospheric chemistry.  But, in the true nature of 

research, it has resulted in additional questions that open doors to new and exciting 

research, some of which are outlined above.  GLVs are emitted by plants in response to 

environmental stressors, so it’s only natural to suspect that the role of GLVs in atmospheric 

chemistry will continue to evolve as our plant ecosystems respond to different stress 

conditions.  These considerations should be taken into account for the future climate 

change scenarios. 
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APPENDIX I: PREPARATION OF HONO/ HIGH NOX EXPERIMENTS 

AI.1 Atmospheric NOx and its Roles in SOA Formation 

NOx is a common anthropogenic oxidant emitted by automobiles, trucks and 

various non-road vehicles (e.g., construction equipment, boats, etc.) as well as industrial 

sources such as power plants, industrial boilers, cement kilns, and turbines. It is a strong 

oxidizing agent and plays a major role in the atmospheric reactions with volatile organic 

compounds (VOC).  Ambient NOx concentrations are lesser for remote regions (~ 25 ppt 

in Alaska, ~ 40 ppb NO2 in Rutland, VT) than for urban regions (~ 70 ppb NO2 in NYC) 

and are usually greater mid-day (vs nighttime).  In 2010, the EPA established primary 

standards for NO2 at 100 ppb (1 hour average).  

Oxidation reactions are sensitive to the presence of NOx, primarily because under 

high NOx conditions, NO and NO2 react with organo-peroxy radicals (RO2) that would 

otherwise react with other peroxy-radicals (other RO2 species and HO2).  Therefore, the 

presence of NOx introduces additional reaction pathways to the oxidation of organic 

compounds that are expected to alter SOA yield (both decreasing and increasing SOA 

yield, depending on mixing ratios and the VOC being studied) and composition (new 

products include organic nitrates (RONO2)). The new pathways can also shift existing 

reaction branching ratios, altering the distribution of common products.  See Figure A1.1, 

which was adapted from Presto et al. (2005).1 
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AI.2 Generation of NOx 

HONO was prepared by dropwise addition of 1% NaNO2 into 10% H2SO4 in a glass 

bulb. The bulb is attached to the chamber and a stream of zero air is passed through the 

bulb into the chamber, carrying HONO with it.   NO and NO2, formed as side products in 

the preparation of HONO, are also introduced into the chamber, and are measured by a 

commercial NOx monitor (American Ecotech EC9841).    

NaSO4 + H2SO4  HONO + NO + NO2 

The concentrations and volumes NaSO4 and H2SO4 used herein and the resulting in NOx 

and NO concentrations in the UVMEC and in the 775 L reaction chamber are summarized 

in Table AI.1. 

 

Figure AI.1 Different reaction pathways are favored under high NOx conditions, 

resulting in different SOA yields and SOA with unique chemical composition. Adapted 

from Presto et al. (2005).1 

 

HO2-dominated 

(low NOx) 

NOx-dominated 

(high NOx) 
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HONO is also a source of hydroxyl radical (OH) and Ozone (O3)  

HONO + hν  OH + NO 

NO2 + hν  NO + O 

O + O2  O3 

 

This method to generate NOx for chamber experiments was developed for the 

Petrucci Group, but was not used in any oxidation reactions, due in part to instrumental 

difficulties and then a shift in project scopes.   The method is reported herein, however so 

that others’ might use it in future works (i.e. addressing item 9.2 in Future Research Ideas). 

 

AI.3 References 

(1) Presto, A. A.; Huff Hartz, K. E.; Donahue, N. M. Environ Sci Technol 2005, 39, 

7046. 

 

 

 

 

Table AI.1 NOx and NO concentrations from HONO 

Volume of 1% NaNO2 (mL) 15  15 

Volume of 10% H2SO4 (mL) 30 30 

Chamber (Volume, L) Pillow Bag (775) UVMEC (8000) 

Injection time 10 min 10 min 

NOx (ppm) 25 ~1  

NO (ppm) 10 ~0.5 
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APPENDIX II: CORRECTIONS FOR ERRONEOUS SMPS 

MEASUREMENTS 

During the 11/4 and 11/6 sugarcane ozonolysis experiments, incorrect flow settings 

were used in the software of the SMPS.  The SMPS is a high resolution nanoparticle sizer 

and is considered standard instrumentation for SOA size characterization. 

A schematic of the SMPS is given in Figure AII.1. In operation, polydisperse, 

submicrometer aerosols are sampled and passed through a radioactive bipolar charger.  

Nearly all particles with diameters of 2 to 300 nm receive a single positive or negative 

charge, though few receive no charge or a double charge.  The particles enter (at a known 

flow rate: the aerosol flow rate) a differential mobility analyzer (DMA) that separates 

particles according to their electrical mobility, which is inversely related to particle size.   

The DMA contains an inner cylinder connected to a negative power supply (0 to 

10,000 VDC) that creates an electric field that, with the help of a flow of sheath air, 

influence the flow trajectory of the charged particles.  Particles with a negative charge 

repelled from the inner rod and deposit on the outer wall. Particles with a positive charge 

move rapidly towards the negatively charged inner rod. Only particles within a narrow 

range of electrical mobility (size range) have the correct trajectory to pass through an open 

slit near the DMA exit.  The process is akin to the Goldilocks scenario; at a given voltage, 

particles that are too large or too small will deposit onto the inner rod or the inside walls 

of the DMA.  Only particles of just the right mobility (size) are allowed to exit the DMA.  

These particles are then counted by a condensation particle counter (CPC).  By adjusting 

the voltage on the inner rod, the user can isolate a single size regime of particles.  By 
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ramping the voltage, the particle size distribution can be measured.  A typical particle 

distribution can be seen in Figure AII.2.  Assuming a spherical partilce and constant 

density, the number density given in Figure AII.2 can be converted to a mass concentration. 

In order to measure the particle size regime we’re interested in, the aerosol flow 

rate is set to 3.0 liters per min (LPM) and the sheath flow rate is set to 0.3 LPM to ensure 

a 10 to 1 ratio of flows, as defined by the manufacturer.  These flow rates are manually set 

in the SMPS and then entered into the instrument software to allow for calculation between 

electrical mobility and size. During the 11/4 and 11/6 experiments, the flow rates were set 

correctly (aerosol flow rate and sheath flow rate were 3.0 LPM and 0.3 LPM, respectively) 

 

Figure AII.1 Schematic of SMPS in operation.  Polydisperse aerosols enter at the top, 

where a charged inner rod (1) attracts positive particles and (2) repels negative particles.  

(3) Uncharged particles exit with excess air while (4) particles with narrow range of 

mobilities (sizes) exit to CPC. 
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but the settings in the software were erroneously set to  3.0 LPM and 1.0 LPM, respectively.   

In order to determine how this incorrect setting would affect the resultant SOA 

mass measurements, standards of 1-octene-3-ol (OTL) were oxidized in the 775 L Teflon 

chamber to form SOA, which was measured alternately with the “correct” vs “incorrect” 

SMPS settings.  Figure AII.3 below is the SOA mass evolution as a function of reaction 

time for the ozonolysis of OTL (Exp Date 02/20/2016).  Initial reaction conditions are in 

Table AII.1.  

 

As shown in Figure AII.3, the incorrect settings yielded SOA concentrations 

significantly less than the correct settings.  Interpolating between the two sets of correct 

settings gives gives an estimate to what the correct settings would have measured between 

 

Figure AII.2 Particle distributions can be measured using the SMPS by scanning the 

voltage on the inner rod, allowing different sized particles to be measured by the CPC. 
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Experiment Date Initial OTL 

(ppb) 

Initial Ozone 

(ppb) 

SOA Correction 

Factor 

02/20/2016 215 150 9.3 ± 11% 

02/22/2016 1000 800 9.5 ± 6% 

 

Table AII.1 Initial reaction conditions for correction factor experiments. 
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80 min and 125 min (when the incorrect settings were used).  By comparing the interpolated 

true SOA concentration to the incorrect SOA concentration (correct SOA/incorrect SOA), 

we see that the incorrect settings yield SOA mass concentrations erroneously low, by a 

factor of 9.3 (± 11 %).  Therefore, multiplying the SOA mass concentrations measured 

using the incorrect settings, by 9.3 we can estimate the true SOA mass concentration within 

11%.  This experiment was repeated at high mass loading (02/22/2016) and yielded the 

same correction factor.  

 

This correction factor collected on 02/20/2016 was applied to SOA mass 

concentrations collected from the ozonolysis of sugarcane on 11/4 and 11/6 to yield 

estimated SOA mass concentrations (Table AII.2).  This correction factor (rather than an 

average) was used because the experimental conditions used to obtain it were in better 

agreement with those used in sugarcane experiments (low mass loading).  This correction 

assumes that SOA formed in sugarcane ozonolysis experiments is well represented by 

 

Figure A2.3 OTL-derived SOA mass concentration monitored with SMPS using correct and 

incorrect settings.   
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OTL, which we believe is a safe assumption considering OTL was emitted by sugarcane 

and likely contributes to its SOA profile.  Additional experiments should be done to 

measure correction factors associated with CHA- and HXL- derived SOA, which are also 

sources of SOA in sugarcane to establish whether this assumption is correct.   

 

The SMPS software accounts for the different charging efficiencies of particles, 

which is size dependent, so another assumption of this correction is that the size 

distributions with both correct and incorrect settings is the same.  Figure AII.4 shows the 

size distribution of SOA measured using correct and incorrect settings for the same parcel 

of SOA (experiment 2/22/2016).  The distributions for correct vs incorrect are paired where 

each distribution was taken within 10 min of its partner.  Although all raw number counts 

Table AII.2 Raw and corrected SOA mass concentrations in sugarcane experiments. 

 

Date Measured SOA 

Concentration  

(incorrect settings) 

(µg m-3) 

Estimated SOA 

Concentration  

(with correction) 

(µg m-3) 

11/4/2015 0.171 1.6 ± 0.2 

11/6/2016 0.412 3.8 ± 0.4 

 

 

Figure AII.4 Size distribution of OTL-derived SOA using correct and incorrect SMPS 

settings are the same. 
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with each setting are different, the distribution is centered on the same diameter regardless 

of the SMPS settings.   This observation confirms that the SMPS measures the same 

distribution regardless of the flow settings and that the correction can be applied to estimate 

SOA mass concentration.  
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APPENDIX III: REPRINT OF “Establishing the Contribution of Lawn 

Mowing to Atmospheric Aerosol Levels in American Suburbs” 

 

Full Citation:  

 

Harvey, R. M.; Zahardis, J.; Petrucci, G. A.. Establishing the contribution of lawn mowing 

to atmospheric aerosol levels in American suburbs. Atmos. Chem. Phys. 2014, 14 (2), 797-

812. 
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APPENDIX IV: REPRINT OF: “Control of ozonolysis kinetics and aerosol 

yield by nuances in the molecular structure of volatile organic compounds” 

 

Full Citation: 

 

Harvey, R. M.; Petrucci, G. A.. Control of ozonolysis kinetics and aerosol yield by nuances 

in the molecular structure of volatile organic compounds. Atmos Environ 2015, 122, 188-

195. 
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