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                                                          ABSTRACT 

This research will investigate the problem on the propagation of electromagnetic 

wave through a specific nanomaterial. The nanomaterial analyzed is a material 

consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a 

substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an 

electron beam emitted by a TEM (Transmission electron microscopy). A wave 

disturbance has been observed. A video taken within the chamber shows a wave with a 

speed in the scale of um/s (10−6𝑚/𝑠), which is 14 orders of magnitude lower than 

speed of light in free space (approximate  3 × 108m/s ).  A physical and mathematical 

model is developed to explain this phenomenon. Due to the process of fabrication, the 

geometry of the decorated Pt nanorod field is assumed to be approximately periodic. 

The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, 

shows dispersive behaviours that is different from those ones of a perfect or good 

conductors.  A FDTD algorithm is implemented to calculate the band diagram of the 

nanomaterials.  To explore the dispersive properties of the Pt nanorod field, the FDTD 

algorithm is corrected with a Drude Model. The analysis of the corrected band diagram 

illustrates that the group velocity of the wave packet propagating through the 

nanomaterial can be positive, negative or zero. The possible zero-group velocity is 

therefore used to explain the extremely low velocity of wave (wave envelope) detected 

in the TEM. 
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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

The propagation of electromagnetic waves through material has one way or 

another been at the center of a majority of scientific investigation performed throughout 

the modern science. Maxwell’s equations provide a basic theory to help understand this 

behavior. The rapid development of nanotechnology in recent years has given birth to 

various kinds of new nanomaterials [1]. Many new experimental and theoretical methods 

have been invented to study the electromagnetic properties of these nanomaterials [2, 3]. 

These studies form the basis for a new academic discipline called Nanophotonics or 

Nano-optics [4]. It focuses on the behavior of electromagnetic radiation on a nanometer 

scale, and the interaction of nanometer-scale objects with an EM wave. Among all this 

research, metallic nanomaterials are often involved, and usually the metallic components 

are used to generate surface plasmon polaritons[5] so that EM waves are transported and 

focused. As an artificial material, structures of the nanomaterial can be designed. In all 

possible morphology of the nanomaterial, a particular kind of structure, periodic 

structures, attracts the greatest attention from scientists and engineers in Nanophotonics. 

The periodicity of these structures gives the material properties similar to that of a crystal 

which is formed by periodically located and bonded atoms. Photonic crystal is the name 

of these materials with a periodic optical nanostructure [6]. On the other hand, metals are 

dispersive materials. The behavior of a metal at high frequency (ultraviolet or higher) 

deviates from a good conductor dramatically. Plasmonic devices, with or without 

periodic structures, explore the possibility of taking advantages of these dispersive 
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properties of metals. The intersection between these two disciplines, photonic crystal and 

plasmonic material, can be used to describe periodic metallic nanostructures and to 

exploit the dispersive properties of metals.  Even though these metallic nanostructures are 

on the order of nanometers, a description and analysis of their behavior can be made 

without resorting to Quantum Mechanics. The electron energy levels of a metal are still 

dense enough that the spacings between them are negligible compared to 𝐾𝐵𝑇, which is 

the thermal excitations energy at room temperature, The optics of these metallic 

nanostructures can still be described using classical Electromagnetic theory[7]. 

 

1.2. Material Structure 

In this investigation, Pt nanorod decorated/RuO2 square nanorods have been 

grown on an aluminized Si substrate surface [8] via a reactive co-sputtering process in an 

electron cyclotron resonance (ECR) plasma reactor [9]. 

The TEM pictures of the material are showed in Figure 1 and Figure 2 
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Figure 1:TEM images of RuO2 nanoro detached from the surface. All films were grown 

on Al/Si with a total deposition time of 30 min. Shown in (a) are 62 nm wide RuO2 

nanorods with no Pt, (b) 84 nm wide RuO2 nanorods with Pt co-sputtered for the last 15 

min of the deposition time, (c) 81 nm wide RuO2 nanorods with Pt co-sputtered for the 

last 20 min of the deposition time, and (d) 89 nm wide RuO2 nanorods with Pt co-

sputtered for the last 25 min of the deposition time [8]. 

 

Figure 2:TEM image of an individual nanorod, showing Pt nanorods bending as the bulk 

RuO2 nanorods continues to grow. The Pt was co-sputtered for the final 20 min of the 30 

min of total deposition [8]. 
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To further analyze the material, a geometrical model is required to represent the 

material, to further assisting the analysis with mathematical model, especially reducing 

the computational resources to make the simulations and analysis acceptable, 

simplification for the geometrical model is required. Here are three sets of representations 

and simplifications of the morphology of the nanomaterial. 

 

                                      (a)                                                                        (b) 

Figure 3: Pt nanorods (smaller ones on the surface) surrounded by RuO2 (above the 

surface and around the Pt nanorods) on the surface of an aluminized Si substrate in 

different views (a) and (b) 

    

In Y direction, the model is periodic, while in X or Z directions, it is not periodic, 

it is only rotationally symmetrical. Mathematically, it requires a complete 3D model to be 

built to perform the simulation (using FDTD algorithm in this investigation). That would 

require a substantial amount of computational resources. So even though this model is the 

most accurate, simplifications are required.  
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In XOZ plane, the pt nanorods forms a circle and they are not parallel to each 

other. However, if we assume Pt nanorods are close enough, and considering their 

dimension is much smaller compared to that of the substrate, then in a limited area, the Pt 

nanorods can be assumed to be parallel to each other. A vivid analogy is that people stand 

on the earth surface which could be treated as flat in a limited area and people are 

“parallel” to each other. In reality, since the aluminized substrate is cuboid before co-

sputtering [18]. The cross section of the substrate after sputtering is more likely to be 

bouffant rectangular. This makes the assumption that the Pt nanorods are parallel more 

realistic.   

Under the assumption that the Pt nanorods are parallel, the model can be 

simplified to a 3D model that is periodic in 2 dimension (x and y). In other words, it is 

two dimensional periodic structure. Figure 4 shows the 2D periodic model in 3D view 

and from above 

  

(a)                                                                        (b) 

Figure 4:(a)2D periodic structure, periodicity along both X and Y directions. (b) top view 

of 2D periodic  structure 
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Since in XOZ plane the Pt nanorods are only rotationally symmetrical. If we 

assume the adjacent nanorods in x directions are completely isolated from each other, 

then the nanorods are only periodic along Y directions.  However, this assumption will 

make this model the least accurate, since even though the adjacent nanorods are not 

periodic in x direction, they still interact with each other strongly due to the small spacing 

between them.  

       

 

                                                                   (a) 

 

                                                                   (b) 

Figure 5: (a) 1D periodic structure, periodicity only in the Y direction. (b) Top view of 

the structure 

The second model in figure 4 and third model in figure 5 can both be simulated by 

implementing a 2D model instead of a 3D one. It will reduce the computational resource 

required to perform the analysis dramatically.  
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1.3 Process of Videos 

This investigation originated from two videos taken within the chamber of a 

TEM. Several different frames extracted from videos (original color and fake color) are 

presented for comparison. Since in black and white pictures the wave is weak compared 

to the background, fake color was implemented to enhance these frames. 
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(a)  (b) 

Figure 6: Frames extracted from first video in original color (a) corresponding frames 

after fake color enhancement (b) 

Figure 6 are the frames from the fist video used in the velocity calculation, two 

frames from another video and the corresponding fake-color frames are showed as 

follow: 

          

(a) (b) 

Figure 7: Frames extracted from second video in original color (a) frames after fake 

color enhancement (b) 

 

The analysis of the wave front frame by frame suggests that the velocity of the 

wave is 0.75um/s or 0.75 × 10−6𝑚/𝑠, which is a very small number. Here is a 

comparison of this velocity with some common velocities in Electromagnetism and solid 
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physics: The speed of light is in the order of 108m/s, the thermal velocity of the 

electrons is in the order of 105𝑚/𝑠. One of them is 100 trillion times (14 orders of 

magnitude) faster, the other is 100 billion times (11 orders of magnitude) faster.  

The velocity of the wave is so low. In all theories and concepts related to velocity 

of waves, group velocity provides a possible explanation to this extremely low velocity. 

In next chapter, the theories and concepts related to group velocity are briefly reviewed.  
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CHAPTER 2: PHASE VELOCITY AND GROUP VELOCITY 

2.1. Phase Velocity 

Phase velocity and group velocity are closely related, usually they are explained 

together. Before explain them, some fundamental concepts of wave propagation should 

be reviewed in advance. 

For a pure sinusoidal monochromatic wave that travels in the positive x direction, 

its mathematical representation is as follow:  

s(𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥) 

Where   ω = 2𝜋 𝑇 = 2𝜋𝑓⁄   is the angular frequency, k = 2𝜋 𝜆⁄  is the wave 

number, λ and  f are the wavelength and frequency. 

The phase velocity of a wave is the velocity with which phase fronts propagate in 

a medium. It is related to the wavenumber and the angular frequency as follow:  

𝑣𝑝ℎ =
𝜔

𝑘
 

The phase velocity is defined as giving the phase difference between the 

vibrations observed at two different points in a free plane [10]. 

 

2.2. Group Velocity 

General formulation of group velocity can be found in [11, 12]. For ease of 

reference, we quote the major results in this section. 
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Group velocity is the velocity of wave envelop or modulation of the wave that 

propagates through space. Consider two sinusoidal signals: 𝐴0cos(𝜔1𝑡 − 𝑘1𝑥)  and   

𝐴0 cos(𝜔2𝑡 − 𝑘2𝑥), the angular frequencies 𝜔1 and 𝜔2 are slightly different.          

   𝑆(𝑥, 𝑡) = 𝐴0cos(𝜔1𝑡 − 𝑘1𝑥) + 𝐴0 cos(𝜔2𝑡 − 𝑘2𝑥)  

                = 2𝐴0 cos(𝜔1−𝜔2
2

𝑡 − 𝑘1−𝑘2
2

𝑥) cos(𝜔1+𝜔2
2

𝑡 − 𝑘1+𝑘2
2

𝑥) 

Since 𝜔1 and 𝜔2 are only slightly different, so 
𝜔1+𝜔2

2
 is close to 𝜔1  or   𝜔2, while 

𝜔1−𝜔2
2

 is a small number which represents a much lower frequency, so that 

cos(𝜔1−𝜔2
2

𝑡 − 𝑘1−𝑘2
2

𝑥)  modulates the amplitude of the overall signal.  

   ∆ω = 𝜔1 − 𝜔2 

   ∆k = 𝑘1 − 𝑘2 

The velocity of the modulation is 
∆𝜔

∆𝑘
,  consider the limit ∆k → 0 

  𝜈𝑔𝑟 = 𝜕𝜔 𝜕𝑘⁄  

This eqution defines the group velocity .  
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Figure 8:The signals of first and second row plots, with slightly different frequencies are 

added generating the bottom plot signal [11] 

 

2.3. Dispersion Relationship 

In optics, dispersion is the phenomenon by which the group velocity of light in 

transparent medium is related to the optical frequency or wavelength [12]. 

Dispersion relations are most commonly expressed in terms of angular frequency 

ω = 2πf and wavenumber k = 2𝜋 𝜆⁄ 。  

ω(k) = ν(k) ∙ k 

As showed in figure 9, on the dispersion curve, the phase velocity 𝜈𝑝ℎat point P is 

the slope of the line connecting point P and the origin O.  The group velocity 𝜈𝑔𝑟 at point 

P is the slope of the tangent line that runs through point P. 
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Figure 9: Dispersion relationship, phase velocity and group velocity 
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CHAPTER 3: PHOTONIC CRYSTAL 

3.1. Introduction to Photonic Crystal 

Photonic crystals are electromagnetic media with periodic structures. This 

periodicity in structure is analogous to a crystal lattice. The wave function of the electron 

is modulated by the atomic lattice resulting in a band of allowed and forbidden energy 

levels. The phenomenon of electron energies in a crystal are routinely studied in solid 

state physics and the results are widely applied to the semiconductor industry [14].  The 

analysis of bandgap in the solid physics is achieved generally by applying the Bloch’s 

description of periodic potential to the solution of Schrodinger’s equation [13]. It is 

Schrodinger’ equation that governs the behavior of electrons. By analogy, the Bloch’s 

theorem can also be applied to describe the periodically structured photonic crystals, and 

Maxwell’s equations, which describe the behavior of photons, are mathematically similar 

to the Schrodinger’s equation.  Hence the bandgap of the photons in photonic crystal is 

predicted by the theory and can be observed in the lab [6].  

The propagation of electromagnetic wave through periodic structure was first 

studied by Lord Rayleigh in 1887[15]. His study focused on the one-dimensional 

photonic crystal, which is a periodic multi-layer thin films with different dielectric 

constants. He pointed out that for a certain range of frequency, the light propagation is 

prohibited.  This forbidden band corresponds to a bandgap. A bragg reflector is a 

classical one-dimensional photonic crystal. It produces different colors which vary with 

the angle of incidence. A similar phenomena can be observed on certain butterfly wings. 
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Intensive research has been conducted on one-dimensional periodic thin films in the last 

century. Many products have resulted from the application of this technology

In 1987, Yablonovitch[16] and John[17] extended the periodicity from one 

dimension to two dimension and three dimension. Their principles, combined the 

analytical tools in electromagnetism and solid physics, finally giving the devices the 

name photonic crystal. After 1987, the research related to photonic crystals has advanced 

dramatically, not only confined to theory, but also in fabrication and methods of analysis, 

especially numerical ones.  

 

3.2. Maxwell’s Equations in Periodic Media 

The propagation of wave through three-dimensionally periodic media was studied 

by Felix Bloch in 1828. His theory unknowingly advanced the study of Gaston Floquet in 

1883[18, 19] from one-dimension to three-dimension. According to Bloch’s research, 

waves can propagate through periodic structure without scattering, the overall wave can 

be expressed as a periodic envelope function multiplied by a plane wave. Bloch proved 

this theory in the context of quantum mechanics governed by Schrodinger’s equation. 

Due to similarities between Schrodinger’s equation and Maxwell’s equations. A theory 

for wave propagation in periodic media can be given. This technique is further applied to 

Maxwell’s equations [6].  
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Assume there is no free electric or magnetic charges in the material, also assume 

the field is time dependent 𝑒−𝑖𝜔𝑡, and 𝜇𝑟 ≡ 1 , hence the Faraday’s and Ampere’s 

equations are， 

∇ × 𝐸⃗ = −𝜇0

𝜕𝐻⃗⃗ 

𝜕𝑡
= −𝑖𝜔𝜇0𝐻⃗⃗  

∇ × 𝐻⃗⃗ = 𝜀0𝜀𝑟

𝜕𝐸⃗ 

𝜕𝑡
= 𝑖𝜔𝜀0𝜀𝑟𝐸⃗  

Applying curl to the second equation yields: 

∇ × (
1

𝜀𝑟
∇ × 𝐻⃗⃗ ) = 𝑖𝜔𝜀0(∇ × 𝐸⃗ ) = −𝜀0𝜇0(𝑖𝜔)2𝐻⃗⃗ = 𝜀0𝜇0𝜔

2𝐻⃗⃗ = (
𝜔

𝑐
)2𝐻⃗⃗  

  

∇ × (
1

𝜀𝑟
∇ × 𝐻⃗⃗ ) = (

𝜔

𝑐
)2𝐻⃗⃗  

This is the master equation

∇ ×
 1

𝜀𝑟
∇ × 𝐻⃗⃗   is an Eigen-operator [16], 𝐻⃗⃗  is the Eigen-state, (

𝜔

𝑐
)2 is the eigen-value.  For 

real (lossless)  𝜀𝑟 , the Eigen-operator is Hermitian. The solution of the equation is now 

an Eigen-value problem, and via linear algebra, there are several properties: ω is real 

(lossless), Eigen-states are orthogonal, Eigen-states are complete [6, 20].According to the 

the Bloch-Floquet theorem, if the Eigen-operator is periodic, the solution takes the form: 

𝐻⃗⃗ (𝑥 , 𝑡) = 𝑒𝑖(𝑘⃗ ∙𝑥 −𝜔𝑡)𝐻⃗⃗ 𝑘⃗ (𝑥 ) 
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𝑒𝑖(𝑘⃗ ∙𝑥 −𝜔𝑡) is the classic expression for a plane wave, and the 𝐻⃗⃗ 𝑘⃗ (𝑥 )  is the 

envelop that is periodic. Its periodicity is defined in the reciprocal vector space, which is 

mapped from the primitive vector space [6, 13]. To further explain the reciprocal vector 

that is used to describe the periodicity of the solutions and the relationship between 

reciprocal vector space and primitive vector space, a brief review of the concepts related 

to periodic structures is presented below. 

 

3.3 Mathematical Descriptions of Periodic Structures 

Periodic structures are most widely studied in solid state physics and 

crystallography to describe the structure of crystals. Many of the basic mathematical 

definitions and tools possess names associated with crystal, but the theories and 

techniques can be applied to periodic structures in a photonic crystal.  The general 

formulation of periodic structures can be found in [13, 21, 38]. For ease of reference, the 

major results are conveyed in section 3.3.1, 3.3.2, 3.3.3.  

3.3.1. Classification of periodic structures 

There are an infinite number of ways that structures can be periodic. We classify 

periodic structures into: 230 space groups, 32 point groups, 14 Bravais lattices, 7 crystal 

systems. These classifications are done by apply different, but closely related 

mathematical criteria like symmetry, rotational invariance, fixation of origin and so on. 

Among these two concepts are of most concern in this investigation.   

Bravais Lattices  
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– Set of all possible ways a lattice can be periodic if composed of identical spheres 

placed at the lattice points. – 14 Bravais lattices  

Crystal Systems 

 – Set of all Bravais lattices that have the same holohedry (shape of the conventional 

unit cell) – 7 crystal systems 
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Table 1: The relationship between three-dimensional crystal families, crystal 

systems, and lattice systems is shown in the following table [21]: 

Crystal 

family 

Crystal 

system 

Required symmetries 

of point group 

Point 

groups 

Space 

groups 

Bravais 

lattices 

Lattice 

system  

Triclinic None 2 2 1 Triclinic 

Monoclinic 

1 twofold axis of 

rotation or 1 mirror plane 
3 13 2 Monoclinic 

Orthorhombic 

3 twofold axes of 

rotation or 1 twofold axis 

of rotation and two 

mirror planes. 

3 59 4 Orthorhombic 

Tetragonal 1 fourfold axis of rotation 7 68 2 Tetragonal 

Hexagonal  

Trigonal 

1 threefold axis of 

rotation 
5 

7 1 Rhombohedral 

18 

1 Hexagonal  

Hexagonal  1 sixfold axis of rotation 7 27 

Cubic 

4 threefold axes of 

rotation 
5 36 3 Cubic 

Total: 6 7  32 230 14 7 

https://en.wikipedia.org/wiki/Crystal_family
https://en.wikipedia.org/wiki/Crystal_family
https://en.wikipedia.org/wiki/Crystallographic_point_group
https://en.wikipedia.org/wiki/Crystallographic_point_group
https://en.wikipedia.org/wiki/Space_group
https://en.wikipedia.org/wiki/Space_group
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Lattice_system
https://en.wikipedia.org/wiki/Lattice_system
https://en.wikipedia.org/wiki/Triclinic
https://en.wikipedia.org/wiki/Triclinic
https://en.wikipedia.org/wiki/Monoclinic
https://en.wikipedia.org/wiki/Rotational_symmetry
https://en.wikipedia.org/wiki/Rotational_symmetry
https://en.wikipedia.org/wiki/Reflection_symmetry
https://en.wikipedia.org/wiki/Monoclinic
https://en.wikipedia.org/wiki/Orthorhombic
https://en.wikipedia.org/wiki/Orthorhombic
https://en.wikipedia.org/wiki/Tetragonal
https://en.wikipedia.org/wiki/Tetragonal
https://en.wikipedia.org/wiki/Hexagonal_crystal_family
https://en.wikipedia.org/wiki/Trigonal
https://en.wikipedia.org/wiki/Rhombohedral_lattice_system
https://en.wikipedia.org/wiki/Hexagonal_lattice_system
https://en.wikipedia.org/wiki/Hexagonal_crystal_system
https://en.wikipedia.org/wiki/Cubic_crystal_system
https://en.wikipedia.org/wiki/Cubic_crystal_system
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            Bravais lattice in two dimensions are showed as follow: 

 

Figure 10: The five fundamental two-dimensional Bravais lattices: 1 – oblique, 2 

– rectangular, 3 – centered rectangular, 4 – hexagonal (rhombic), and 5 – square [22]. 

 

3.3.2. Primitive Lattice Vector and Reciprocal Lattice Vector 

The lattice in three dimensions can be defined by three translation vectors: 𝑡 1, 𝑡 2, 

𝑡 3, such that the arrangement of the atoms in the crystal looks the same when viewed 

from point 𝑟  translated by an integral multiple of the 𝑡 ′𝑠 [13].                      

        𝑡 𝑝𝑞𝑟 = 𝑝𝑡 1 + 𝑞𝑡 2 + 𝑟𝑡 3    
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Here p, q and r are arbitrary integrals.       

Translation vectors connect adjacent points in the lattice and can uniquely describe all 14 

Bravais lattices. Primitive translation vectors are the smallest possible translation vectors 

that still describe the unit cell.   

The primitive translation vectors are often chosen as primitive axis vectors (not 

always), the Primitive Lattice vector are also referred as primitive translation vectors. 

Since the primitive lattice vector describes the lattice existing in the real space, so the 

lattice it describes is also called a direct lattice, the volume of the primitive lattice cell is 

V = |𝑡 1 · 𝑡 2 × 𝑡 3 |.  

 Every direct lattice is associated with a unique reciprocal lattice, they are 

connected to each other by a Fourier Transformation. The direct lattice describes the 

periodic structure. The reciprocal lattice determines how the periodic structure interacts 

with waves.  

Reciprocal lattice vectors,𝐾⃗⃗ , are defined by the following condition: 

𝑒𝑖𝐾⃗⃗ 𝑅⃗ = 1 

Where 𝑅⃗  is a real space lattice vector. Any real lattice vector may be expressed in 

terms of the lattice basis vectors, 𝑡 1, 𝑡 2, 𝑡 3 . 

𝑅⃗  = 𝑐1𝑡 1 + 𝑐2𝑡 2 + 𝑐3𝑡 3 

in which the ,  𝑐1, 𝑐2, 𝑐3 are integers. The condition on the reciprocal lattice  
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vectors may also be expressed as 

𝐾⃗⃗ · 𝑅⃗  = 2𝜋𝑛 

Where n is an integer. This expression can be satisfied if 𝐾⃗⃗  is expressed in terms 

of the reciprocal lattice basis vectors 𝑏⃗ 𝑖, which are defined as 

𝑏⃗ 1 =
2𝜋𝑡 2 × 𝑡 3

𝑡 1 · 𝑡 2 × 𝑡 3
 

𝑏⃗ 2 =
2𝜋𝑡 3 × 𝑡 1

𝑡 1 · 𝑡 2 × 𝑡 3
 

𝑏⃗ 3 =
2𝜋𝑡 1 × 𝑡 2

𝑡 1 · 𝑡 2 × 𝑡 3
 

Note that 𝑏⃗ 2 and 𝑏⃗ 3 are given by cyclic permutations of the expression for 𝑏⃗ 3. 

From this expression it may be seen that the real lattice basis vectors and the reciprocal 

lattice basis vectors satisfy the following relation: 

𝑏⃗ 𝑖 · 𝑡 𝑗 = 2𝜋𝛿𝑖𝑗 

Where 𝛿𝑖𝑗 is the Kronecker delta, which takes the value 1 when i is equal to j, and 

0 otherwise. Any reciprocal lattice vector may then be expressed as a linear sum of these 

reciprocal basis vectors:                                                    

𝐾⃗⃗ = ℎ𝑏⃗ 1 + 𝑘𝑏⃗ 2 + 𝑙𝑏⃗ 3 

In which h, k and l are integers. The set of all 𝐾⃗⃗ vectors defines the reciprocal 

lattice. The space the reciprocal lattice exists is called reciprocal space. Besides, the 
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corresponding primitive lattice and reciprocal lattice are naturally Fourier Transformation 

of each other [13].  

The properties of 𝐾⃗⃗  can be summarized as follow: 

𝐾⃗⃗  has a unit of 1/length. Similar to the wave-vector k in the plane wave 

expression 𝑒𝑖𝑘𝑟 

𝐾⃗⃗  has a meaning in Fourier transform, k-space, or momentum space.  

It defines a set of lattice points in the k-space. 

 

3.3.3. Brillouin Zone and Irreducible Brillouin Zone (IBZ) 

The Brillouin zone is a Wigner-Seitz cell of the reciprocal lattice, which is the 

Fourier transform of the Bravais lattice and the construction of a Brillouin Zone of a 2D 

square lattice, and can be found at [31]. 

 The first Brillouin Zone after construction is showed as below 

 

Figure 11: First Brillouin Zone 
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The smallest region within the Brillouin zone are not related by symmetry 

(rotations, reflections, and inversions) is called the irreducible Brillouin zone (IBZ). 

Knowing the solution inside the IBZ is equivalent to knowing the all solutions inside the 

Reciprocal lattice, (By applying rotation and reflections and inversions).  

 

Figure 12: A Square Real lattice, the corresponding Brillouin Zone and 

Irreducible Brillouin Zone (IBZ). 

     

3.3.5. Bloch-Floquet Theorem 

The field inside a periodic structure takes on the same symmetry and periodicity 

of that structure. It is called Bloch-Floquent Theorem.The mode of a three-dimensional 

periodic system are Bloch states that can be labelled by a Bloch wave vector 𝐾⃗⃗ = ℎ𝑏⃗ 1 +

𝑘𝑏⃗ 2 + 𝑙𝑏⃗ 3  where 𝐾⃗⃗  lies in the Brillouin zone. 

𝐻⃗⃗ 𝑘(𝑟 ) = 𝑒𝑖𝐾⃗⃗ 𝑟 𝑢𝑘(𝑟 ) 
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Where 𝑢𝑘(𝑟 ) is a periodic function on the lattice: 𝑢𝑘(𝑟 ) = 𝑢𝑘(𝑟 + 𝑅⃗ ) from all 

lattice vector 𝑅⃗ = 𝑎𝑡 1 + 𝑏𝑡 2 + 𝑐𝑡 3 in primitive lattice vectors. The Bloch wave vector 𝐾⃗⃗  

here is indeed the reciprocal lattice in the reciprocal space mapped from the primitive 

lattice defined by the direct lattice vector basis 𝑡 1, 𝑡 2, 𝑡 3. 
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CHAPTER 4:  DRUDE MODEL ASSISTED FDTD ALGORITHM IN 

CALCULATION OF BAND DIAGRAM 

4.1 Brief introduction to FDTD algorithm 

 Many numerical methods have been invented to simulate the electromagnetic 

environment, such as FDTD, FEM, PWE and so on [41,42]. In this investigation, FDTD 

is chosen to be implemented to solve the band diagram (i.e. dispersion relations) of our 

periodic nano structure.  

FDTD (Finite-difference time-domain), also known as Yee’s method is a 

numerical analysis technique proposed by Kane S. Yee in 1966 for modelling 

computational electromagnetics[23]. The FDTD applied discretization to Maxwell’s 

equations in Partial differential form. More specifically, the space and time partial 

derivatives in Maxwell’s equations are discretized by central-difference approximations. 

The FDTD method is arguably the simplest, both conceptually and in terms of 

implementation, of the full-wave techniques used to solve problems in electromagnetics 

[24]. This simplicity broadens the applications of this technique dramatically, while 

making the computation more complicated and requiring a heavy amount of 

computational resources when solving complex problems.  

Figure 13 shows the spatial arrangement of the Electric and magnetic fields: 
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Figure 13: 3D Yee’s grid 

In time domain gap equal to half of is set between the time step electric fields and 

the magnetic fields. In other words, arrange 𝐸⃗⃗  ⃗ ( 𝐷⃗⃗  ⃗) and  H⃗⃗  ⃗ in different time so that  𝐸⃗⃗  ⃗ ( 𝐷⃗⃗  ⃗) 

exists at integer time steps (0, t, 2t,∙∙∙ ) while 𝐻⃗⃗  exists at half time steps (t/2, t+t/2, 

2t+t/2,∙∙∙). After the discretization in both temporal and spatial domain. An updating 

loop can be formed to simulate the Electromagnetic environment. Figure 14 shows 

general H-E updating sequence. The underlying assumption is that the material is linear, 

isotopic and non-dispersive.   

 

Figure 14: H-E updating sequence     
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4.2 Brief Introduction to Drude Model 

Over all the frequency dependent model used to describe the optical properties of 

metal. The Drude model, or a plasma model is one of the most widely used models. It 

was proposed by Paul Drude in 1900 [34, 35]. Its underlying assumption is that the 

positive charge ions inside the material (especially metals) can be treated immobile while 

a ‘sea’ of restless electrons were detached from these heavier cores. This assumption is 

the natural result of applying kinetic theory on electrons and ion cores. In Drude model 

interactions between electrons or between electrons and ions are simplified so that any 

long range effect was neglected. Instantaneous collision between electrons and the ions 

cores and the Coulomb force between them [36]. The Drude model can be furtherly 

extended as Drude–Lorentz model and  Drude–Sommerfeld model.  The classic form of 

Drude model for dielectric constant are expressed as follow: 

 

𝜀𝑟̃(𝜔) = 1 −
𝜔𝑝

2

𝜔2 − 𝑗𝜔𝛤
 

𝜔𝑝 =
𝑁𝑞2

𝜀0𝑚𝑒
 

τ =
1

𝛤
 

 𝜔𝑝 is the plasma frequency, q is the electric charge of electron, 𝑚𝑒 is the effective 

mass of the electron, N is the number of electrons per unit volume, τ is mean collision rate 

or the momentum scattering time 

https://en.wikipedia.org/wiki/Free_electron_model
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Note that the Drude model itself already considers the effect of the conductivity 

𝜀̃ = 𝜀0𝜀𝑟̃ = 𝜀0 (1 −
𝜔𝑝

2

𝜔2 − 𝑗𝜔𝛤
) = ε(ω) −

𝜎(𝜔)

𝑖𝜔
  

ε(ω) ≡ 𝜀0 

σ(ω) =
𝑖𝜔𝜀0𝜔𝑝

2

𝜔2 − 𝑖𝜔𝛤
 

Besides, 𝜀𝑟̃(𝜔) = 1 + 𝜒(𝜔) 

So the susceptibility is given by 

𝜒(𝜔) = −
𝜔𝑝

2

𝜔2 − 𝑗𝜔𝛤
 

With the Drude model, Pt can be simulated as a dispersive material, which is more 

realistic at optical frequencies [7]. 

 

4.3 FDTD Algorithm Incorporating Drude Model  

The H-E updating sequence cannot be used any more since its underlying 

assumption is compromised by the Drude model. Instead an H-D-E method is 

implemented. In this method the constitutive relationship between D and E is isolated 

from the Ampere’s law and the Drude model is then incorporated into the relationship. 
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Figure 15: H-D-E updating sequence 

The numerical formulation of Constitutive relationship used in this investigation 

are showed in Appendix A. 

  

4.4 Other Auxiliary Algorithms Incorporated in FDTD 

4.4.1 Brief Introduction to Perfect Matched Layer 

A perfect matched layer (PML) is an artificial layer that locates at the boundary of 

the simulation area. It is used to absorb the outgoing waves. Theoretically, for an open 

boundary system the electromagnetic waves can propagate to infinity, the simulation area 

will increase dramatically to infinity at last if every point the wave front go through is 

simulated.  However, the computational resource is always limited.  The PML is invented 

to tackle this conflict. The incident waves from all angles will be absorbed by the PML so 

that no reflection exists at the surface of the PML. Hence the wave propagated on the PML 
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can still be regarded as outgoing while the simulation area is confined within the external 

boundary of PML.  Figure 16 below is a presentation of a 2D PML. 

 

Figure 16: Uniaxial perfect matched layer [25] 

 

PML is first introduced by Berenger[27], after that several equivalent realizations 

of PML have been developed. The original Berenger’s realization is classified as split-filed 

PML, since in his work every field component is split into two new artificial parts. Other 

than splitting field, coordinate stretching [28, 29] are most widely used. Besides, several 

specialized PML realizations truncated for advanced individual FDTD algorithms have 

also been developed [30, 31]. In this research, I implement Uniaxial PML (UPML) for its 

straightforwardness and efficiency. It can be treated as a special case of more generalized 

complex coordinate stretching method [32]. UPML can be derived by analysing scenario 

of incident wave with arbitrary angles and polarization and then solving the conditions in 

which there is no reflections. An artificial anisotropic absorbing layer is constructed at the 
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boundary of the simulation area [33].    PML will be used in the simulation of 1D periodic 

structure in this investigation [25, 39]. 

4.4.2 Bloch Periodic Boundary Conditions  

Recall Chapter 3, according to Bloch theorem, the field inside a periodic structure 

should satisfy:           

𝐴 𝑘(𝑟 ) = 𝑒𝑖𝐾⃗⃗ 𝑟 𝑢𝑘(𝑟 ) 

Where 𝑢𝑘(𝑟 ) is a periodic function on the lattice: 𝑢𝑘(𝑟 ) = 𝑢𝑘(𝑟 + 𝑅⃗ ) from all 

lattice vector 𝑅⃗ = 𝑎𝑡 1 + 𝑏𝑡 2 + 𝑐𝑡 3 in primitive lattice vectors. The Bloch wave vector 𝐾⃗⃗  

here is indeed the reciprocal lattice in the reciprocal space mapped from the primitive 

lattice defined by the direct lattice vector basis 𝑡 1, 𝑡 2, 𝑡 3.  

Then                         𝐴 𝑘(𝑟 + 𝑅⃗ ) = 𝑒𝑖𝐾⃗⃗ (𝑟 +𝑅⃗ )𝑢𝑘(𝑟 + 𝑅⃗ ) 

                 = [𝑒𝑖𝐾⃗⃗ 𝑟 𝑢𝑘(𝑟 )] 𝑒
𝑖𝐾⃗⃗ 𝑅⃗  

       = 𝐴 𝑘(𝑟 )𝑒
𝑖𝐾⃗⃗ 𝑅⃗    

If we set 𝑅⃗ = 𝑡 1 + 𝑡 2 + 𝑡 3 as lattice vector for primitive unit cell. Then any field 

at the boundary of the unit cell can be expressed as the field across the unite cell 

multiplied by a plane wave with Bloch wave vector as its wave number. This is the exact 

Bloch periodic Boundary conditions. The detailed implementation of periodic boundary 

condition can be found [25, 39].  

                                                                               



 
 

33 
 

                                                                     

4.5 General Procedure of Band Diagram Calculation 

The detailed procedure of band diagram calculation can be found at [25, 40]. Here 

is a summary of the general procedure:  

1 create the primitive lattice (primitive unit cell) with or without PML boundary.  

2 apply periodic boundary conditions to the primitive lattice with specific Bloch 

wave vector. 

3 generate multiple dipole sources in the primitive lattice. The locations of the 

dipole sources are randomly chosen, they should not be obviously symmetric. The 

polarization of the dipole sources should also be random. These setup is implemented to 

excite all the possible modes. 

4 choose multiple randomly distributed points to record the field components 

throughout the simulation time.  

5 Fourier transform (FFT) the recorded fields to calculate the poser spectral density 

(PSD) respectively, then sum up the all the results.  

PS𝐷𝑝(𝜔) = │𝐹𝐹𝑇{𝐸𝑧
𝑝(𝑡)}│2 

 PSD(𝜔) = ∑ PS𝐷𝑝(𝜔)

𝑝

 

6 the eigen-frequencies of the Bloch modes are identified as sharp peaks in overall 

PSD, 
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7 Repeat step 2 to step 6 for all the Bloch vectors interested. 

 

8 plot the eigen-frequencies as a function of the Bloch wave vectors.  

As for the choice of the Bloch vectors, vectors along the edge of the Irreducible 

Brillouin Zone are the set of vectors mostly commonly used. 

In this chapter, only general introduciton to the algorithm is made, the 

implementation of the algorithm require more details, espeically the structure of the 

algorithm and the detailed update equations. In this investigation, knowledge from 

references [24,25,26] are most heavily used, please refer to these references for more 

comprehensive and detailed information.  
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 2D Band Diagram (Dispersion Relations) 

Here is the 2D periodic model being simulated. It has been showed in Chapter 1, 

we copied it here to assist the understanding the procedure of calculating direct lattice, 

reciprocal lattice and Bloch Wave vector.  

 

(a)                                                    (b) 

(a) 2D periodic model in 3D view, periodic in both x and y directions and 

infinitely long in z direction (b) plane 2D view, from above 

The choice of direct lattice, calculation of reciprocal lattice and irreducible 

Brillouin zone (IBZ) are showed in figure 17, and in Figure 18, the choice of the Bloch 

wave vector was presented, they are chosen along the edges of the IBZ 
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Figure 17: Direct Lattice, Reciprocal lattice, Irreducible Brillouin Zone for 2D periodic 

square lattice [25] 

 

       

 

𝛃 =
𝝅

𝒂
[
𝟎 𝟎. 𝟏𝟎𝟒𝟕 … 𝟑. 𝟏𝟒𝟏𝟔 𝟑. 𝟏𝟒𝟏𝟔 … 𝟑. 𝟏𝟒𝟏𝟔 𝟑. 𝟎𝟕𝟏𝟖 … 𝟎. 𝟏𝟑𝟗𝟔 𝟎
𝟎 𝟎 … 𝟎 𝟎. 𝟏𝟎𝟒𝟕 … 𝟑. 𝟏𝟒𝟏𝟔 𝟑. 𝟎𝟕𝟏𝟖 … 𝟎. 𝟏𝟑𝟗𝟔 𝟎

] 

Figure 18: Illustration of choice of Bloch Wave Vectors (origin of the vectors 

is 𝛤, and the end is along the edge of the IBZ) 

The radius of thee platinum cylinders is set as r = 1.5 × 10−8𝑚, and the period is 

a = 3.0 × 10−8𝑚 . The plasma frequency of platinum is 𝑓𝑝 = 1.244 × 1015𝐻𝑧, 𝜔𝑝 =

2π𝑣𝑝 = 7.812 × 1015𝑟𝑎𝑑/𝑠  . The collision frequency of Pt in Drude model is γ =

16.73 × 1012𝐻𝑧 [43].  The FDTD cell size is ∆x = ∆y = 3 × 10−10𝑚 .The time step, to 

meet the requirement of the Courant stability criterion, which is ∆t = ∆x/(2c), where c is 

the speed of light in free space. This criterion is stricter than the original one: ∆t =

∆x/(√2c). The overall time steps are chosen to be 215 = 32768. 

 The dipole sources chosen are varied by modes, In T𝑀𝑧mode, it is an electric line 

source, In T𝑀𝑧 mode it is an magnetic line source. The locations are chose in the free- 

Γ X M Γ 
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space region of the 2D simulation domain. The source is chosen as Gaussian pulse within 

the frequency range of interest. The frequency is normalized by the factor of 𝑎/(2𝜋𝑐),  𝑓̅ =

𝜔𝑎/(2𝜋𝑐) ∈ [0 ~ 0.5], the expression for the Gaussian dipole is : 

g(t) = 𝑒−(
𝑡−𝑡0

𝜏
)2

 

Where  𝑡0 is the initial time delay, τ controls of the pulse width, the exact pulse 

width is B =
1

𝜋𝜏
 (from DC to B), usuallyτ ≌

1

2𝐵
,  𝑡0 ≥ 6𝜏.     

Dielectric constant of the Ru𝑂2 is set to be 5 and 10 respectively. This assumption 

results from the procedure of manufacture. The Metal Ru and Pt were co-sputtered to the 

substrate. The structure of the Ru𝑂2 is amorphous. The conductivity of Ru𝑂2 therefore is 

neglected. However, the dielectric constant of the Ru𝑂2 is still uncertain. So the dielectric 

constant of Ru𝑂2 is treated as variable and a parameter sweep is conducted between 5 and 

10. 

            𝐓𝑴𝒛  Mode (Ez, Hx, Hy) 

Figure 19 showed the electric and magnetic field components in 𝐓𝑴𝒛  Mode 

 

Figure 19: Components of electric and magnetic fields in 𝑇𝑀𝑧  Mode 
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The band diagram in 𝐓𝑴𝒛  Mode with dielectric constant of Ru𝑂2 equal to 5 are 

presented in figure 20. To make the picture clearly, the lower half of (a) is enlarged and 

presented in (b) 

 

                                           (a)  
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                                                                         (b) 

Figure 20: 2D T𝑀𝑧  mode band diagram (𝜀𝑟_𝑅𝑢𝑂2
=5)(a) full light cone (b) partial 

light cone 

 

Figure 21 shows the band diagram in 𝐓𝑴𝒛  Mode with dielectric constant of 

Ru𝑂2 equal to 10 
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Figure 21: 2D T𝑀𝑧 mode band diagram (𝜀𝑟_𝑅𝑢𝑂2
=10) 

According to figure 21, the x axis is the Bloch wave vector, which is also the 

wave vectors of the photons, the y axis is the frequency of the photons. So this band 

diagram is dispersion curve for the photons. According to Chapter 1, the slope of the 

tangent line of any point on the despersion curve is the group velocity of the the wave 

envelope. There are mutiple dots on the curve where the slope are zero, as pointed in the 

Figure. As for the points correspond to 7.5× 10−6𝑚/𝑠,  their slopes should be equal to 

7.5× 10−6 . Since this value is extremely small, the points should be very close to point 

with zero group velocity. Actually, the FDTD algrithm we impemented has minimum 

freqeuency resolution, and like every numerical alogrithm, it has numerical errors, too. 

The differnces between points corresponding to 7.5× 10−6m/s and the ones 

correspoding to zero group velocity are within the errors of the algrithm and hence are 

Zero group velocity 
Zero group velocity 
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indistinguishable. However, the errors of the algorithm are not large enough to contradict 

the existence of the zero group velocity points, so that the zero group velocity points are 

equivelant to the points with 7.5× 10−6m/s group velocity. By now we’ve found mutiple 

points corresponding to zero group velocity, So we have proven that it is possible that a 

wave envelope with group velocity of 7.5× 10−6m/s could propagate through the 

structure. It could correspond to any points we’ve identified on the figure.  

 

  T𝐸𝑧  Mode (Hz, Ex, Ey fields only) 

Figure 22 shows the electric and magnetic field components in 𝐓𝑬𝒛  Mode

 

Figure 22: Components of electric and magnetic fields in 𝑇𝐸𝑧  Mode 
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(a) 

                                    

(b) 

Figure 23: 2D T𝐸𝑧 mode band diagram (𝜀𝑟_𝑅𝑢𝑂2
=5 (a),  𝜀𝑟_𝑅𝑢𝑂2

=10 (b)) 
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Like figure 21, we could identify multiple zero group velocity points on the 

dispersion curve where dielectric constant of 𝑅𝑢𝑂2 is set to be 10. This suggest the 

existence of conditions that will generate a wave envelope with group velocity 

corresponding to 7.5× 10−6m/s.  

Comparing the two dispersion relationships, we could conclude that the general 

shapes of the dispersion relations are quite similar, and the Bloch wave vectors 

corresponding to the points of interest are the same while the frequencies are shrink with 

increasing dielectric constants.  

Figure 24 and figure 25 are comparison of the dispersion relationships in different 

modes with the same dielectric constant of 𝑅𝑢𝑂2. 

 

Figure 24: Comparison between different Modes (𝜀𝑟_𝑅𝑢𝑂2
=5) 

By comparing different modes with the same the dielectric constant of 𝑅𝑢𝑂2, we 

could find out that the general shapes are different due to different modes, however, the 

wave vectors of the zero group velocity points are mostly concentrated around M and K. 
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Similar conclusion can be drawn  for the case where dielectric constant of 𝑅𝑢𝑂2 is 10 in 

figure 25. 

 

Figure 25: Comparison between different Modes (𝜀𝑟_𝑅𝑢𝑂2
=10) 

 

5.2 1-D Band Diagram (Dispersion Diagram) 

First of all, we presented the 1D periodic model which has been showed in 

Chapter 1. We copied it here for easy explanation about the procedure how the unite cell 

is chosen and constructed, what is the Bloch wave vectors chosen at last.    

 

              (a)                                                    (b) 

 (a) 1D periodic model in 3D view, periodic in x direction and infinitely long in z 

direction (b) plane 2D view, from above 
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Figure 26 shows the primitive unit cell constructed in FDTD algorithm.  

 

Figure 26: Primitive unit cell constructed in FDTD algorithm 

This is a periodical array of Platinum (Pt) cylinder rods along the y direction. The 

nanorods are si treated as infinitely long in z direction. Since the array is only periodic 

along the y-direction, PML is applied in the x direcion to absorb outgoing waves, which 

means the next nano-cylinder is  

infinetely far away in the x direction while Bloch periodic boundary conditon is applied in 

the y direction. The space between the Platinum nanrods and PML is at least a quarter 

wavelength of interest.  

The primitive unit cell of 1D photonic crystal is a line, so is its Brillouin Zone. In 

Figure 27, The IBZ is from Γ to M. The examples of chosen Bloch vectors are also listed: 

 

y 

x 
x 

y 
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𝛃 =
𝝅

𝒂
[𝟎 𝟎. 𝟏𝟎𝟒𝟕 … 𝟑. 𝟎𝟕𝟏𝟖 𝟑. 𝟏𝟒𝟏𝟔 𝟑. 𝟎𝟕𝟏𝟖 … 𝟎. 𝟏𝟎𝟒𝟕 𝟎] 

Figure 27: Illustration of choice of Bloch Wave Vectors 

 

 𝐓𝑴𝒛  Mode (Ez, Hx, Hy)  

The band diagrams of 1D periodic structure in T𝑀𝑧  mode with different 

dielectric constants are showed in figure 28 

                                      

                                                                          (a)       

Γ  M Γ 

Possible zero 

group velocity 

point 
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                                                                          (b)    

Figure 28: 2D T𝑀𝑧  mode band diagram (𝜀𝑟_𝑅𝑢𝑂2
=5(a) 𝜀𝑟_𝑅𝑢𝑂2

=10(b)) 

From Figure 28 (a), we can conclude that the zero group velocity points on the the 

dispersion curves are achieved by setting Bloch Wave vectors to 
𝜋

𝑎
, and  can only be 

achieved on the first dispersion curve which is very close to the second one. For higher 

mode of dispersion curves, the lines intersects at 
𝜋

𝑎
 with an angle, mathematically, there 

are no gradients at these points. Since the limits the from left side of the curve and right 

side of the curve don’t converge. A similar conclusion can  be draw from Figure 28 (b). 
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  T𝐸𝑧  Mode (Hz, Ex, Ey fields) 

The band diagram of 1D periodic structure in T𝐸𝑧  mode with different dielectric 

constants are showed in figure 29: 

 

 

(a)                                    

Zero group 

velocity points 
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                                                        (b) 

Figure 29: 2D T𝐸𝑧 mode band diagram (𝜀𝑟_𝑅𝑢𝑂2
=5 (a) 𝜀𝑟_𝑅𝑢𝑂2

=10 (b)) 

The zero group velocity points are labeled in fig 29 (a), most of them are with 

wave vectors equal to 
𝜋

𝑎
 , there are two exclusions, on the fifth order of the curve, the zero 

group velocity points are identified with wave vector roughly equal to  
𝜋

2𝑎
. For the figure 

29 (b), zero group velocity points are identified with wave vector equal to 
𝜋

𝑎
 . The higher 

order of dispersion relationships are close to each other and cannot be clearly 

distinguished from each other. 

Here are comparisons between dispersion relations with that same dielectric 

constant, respectively 5 and 10 in figure 30 and 31 
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Figure 30: Comparison between different Modes (𝜀𝑟_𝑅𝑢𝑂2
=5) 

 

 

Figure 31: Comparison between different Modes (𝜀𝑟_𝑅𝑢𝑂2
=10) 

The comparison between different modes with the same dielectric constant of 

RuO2 shows that the T𝐸𝑧   mode has more zero group velocity points than the T𝑀𝑧 in 

higher modes, and the wave vectors of zero group velocity points in T𝐸𝑧 modes are not 

restricted to  
𝝅

𝒂
. 

Conclusion: By simplifying the real structure of the device and creating two 

geometrical models, we reduce the computational resources required to calculate the  
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dispersion curve dramatically. After analyzing the dispersion relations in all models and 

all dielectric constants, it has been found that the conditions sufficient to make group 

velocity of wave envelope   to be zero are abundant, in other words, there are multiple 

combinations of wave vectors and frequencies to make the group velocity equal to zero. 

This abundance is much more apparent in the 2D periodic structures in both 

T𝑀𝑧 and T𝐸𝑧 modes. This suggests that the structure will allow a wave envelope with 

group velocity of 7.5× 10−6m/s to propagate through, and the possiblity that it could 

happen is high.  

 

5.3 Further Discussion 

1: The accuracy of the model or in other words, could we identify which point in 

the set of zero group velocity points would correspond to the wave we observed? The 

answer is no, we couldn’t. To solve this question we would need information that is 

beyond the videos.  

2: Which geometrical and mathmatical model is more accurate, the 2D periodic 

model or the 1D periodic model? The answer is that the 2D periodic model is more 

accurate. The substrate is not a cylinder strictly, it is a cuboid before the co-sputterring of 

Ru and Pt. So more likely the Pt nano rods are on a bouffant cuboid (bouffant rectangular 

in cross section) whose surfaces are flatter than a cylinder. So this will strengthen the 

underlying assumption for the 2D periodic model and make the 2D periodic model more 

realistic.  
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3: How acurrate is the assumption the Pt nanorods are periodic and if the 

assumption doesn’t hold, what will this thesis prove? The periodicy of the pt nanorods is 

clear in certain regions of the device as highlightened in figure 32. However, the structure 

is not strictly periodic. The periodicy is an assumption based on the observation of the 

TEM pictures, the Pt nanorods likely deviate from the assumed periodic locations 

assigned in the mathmatical model. The severity of the deviation is unkown. If the overall 

deviation is slight, The distortion of the dispersion relationship could be treated as a 

perturbation and hence neglected. If the overall deviation becomes higher, the severely 

deviated Pt nanorods could be treated as defects in periodic structures. Many researches 

have done analysis in the effects of defects in Photonic crystal [6,37], the dispersion 

relationship will be distorted locally somewhere on the curve. The analysis could only be 

done on a case-by-case basis. Since we have identified mutiple zero group velocity points 

on the frequency range on both lower and higher modes in 2D case, the complete 

disappearance of zero group velocity points would be difficult. If the severity of the 

deviation is so strong that even the least deviated pt nanorods should be teated as defects, 

then what we are talking about is a totally new structure that my thesis won’t explain it. 

Here is the picuture where a region with clear periodicy is highlightened:  
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Figure 32: Periodic structures 

4  The electron beam will generete electromagnetic wave when it colides with  

metals, this phenomenon is called Bremsstrahlung radiation, or breaking radiation. 

The radiation is usually within X-ray range. Many dots we’ve identified are within the X-

ray radiation. So the Bremsstrahlung radiation generated by the electron beam in TEM 

may be the source of the electromagnetic wave that is dispersed through the structure and 

forms the wave we’ve identified in the videos. 
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Appendix A 

The constitutive relation between normalized 𝐷̃ 𝑎𝑛𝑑 𝐸̃ is given by:  

𝐷̃(ω) = 𝜀𝑟̃(𝜔) · 𝐸̃(𝜔) = (1 −
𝜔𝑝

2

𝜔2 − 𝑗𝜔𝛤
) 𝐸̃(𝜔) = (1 +

𝜔𝑝
2

𝑗𝜔𝛤 + (𝑗𝜔)2
) 𝐸̃(𝜔)  

Where the normalization is done by:    𝐸⃗̃ =
1

𝜂0
𝐸⃗       𝜂0 = √

𝜇0

𝜀0
   𝐷⃗⃗̃ =

1

√𝜇0𝜀0
=

1

𝑐0
𝐷⃗⃗  

After the normalization, the constitutive takes the form as above, the ε̃0 is omitted.  

Multiple both sides of the equation by (𝑗𝜔𝛤 + (𝑗𝜔)2):  

(𝑗𝜔𝛤 + (𝑗𝜔)2)𝐷̃(ω) = (𝑗𝜔𝛤 + (𝑗𝜔)2)𝐸̃(𝜔) + 𝜔𝑝
2𝐸̃(𝜔) 

𝛤
𝜕𝐷̃(t)

𝜕𝑡
+

𝜕2𝐷̃(t)

𝜕𝑡2
= 𝛤

𝜕𝐸̃(t)

𝜕𝑡
+

𝜕2𝐸̃(t)

𝜕𝑡2
+ 𝜔𝑝

2𝐸̃(𝑡) 

                                                          𝛤
𝜕𝐷̃(t)

𝜕𝑡
                         𝛤

𝐷̃(t)│𝑡+∆𝑡−𝐷̃(t)│𝑡−∆𝑡

2∆𝑡
                

                                                           
𝜕2𝐷̃(t)

𝜕𝑡2                               

(𝐷̃(t)│𝑡+∆𝑡−𝐷̃(t)│𝑡)

∆𝑡
−

(𝐷̃(t)│𝑡−𝐷̃(t)│𝑡−∆𝑡)

∆𝑡

∆𝑡
                 

                                                                                            = 
(𝐷̃(t)│𝑡+∆𝑡−2𝐷̃(t)│𝑡+𝐷̃(t)│𝑡−∆𝑡)

∆𝑡
 

                                                          𝛤
𝜕𝐸̃(t)

𝜕𝑡
                         𝛤

𝐸̃(t)│𝑡+∆𝑡−𝐸̃(t)│𝑡−∆𝑡

2∆𝑡
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𝜕2𝐸̃(t)

𝜕𝑡2                               

(𝐸̃(t)│𝑡+∆𝑡−𝐸̃(t)│𝑡)

∆𝑡
−

(𝐸̃(t)│𝑡−𝐸̃(t)│𝑡−∆𝑡)

∆𝑡

∆𝑡
                 

                                                                                              = 
(𝐸̃(t)│𝑡+∆𝑡−2𝐸̃(t)│𝑡+𝐸̃(t)│𝑡−∆𝑡)

∆𝑡
 

                                                         𝜔𝑝
2𝐸̃(𝑡)                           

𝐸̃(t)│𝑡+∆𝑡+2𝐸̃(t)│𝑡+𝐸̃(t)│𝑡−∆𝑡

4∆𝑡
 

Reorganize the equations, the update coefficients and equations are: 

 𝑚𝐸𝑥0 = 4 + 2𝛤∆𝑡 + 𝜔𝑝
2∆𝑡2 

 𝑚𝐸𝑥1 =
1

𝑚𝐷𝑥0
(4 + 2𝛤∆𝑡) 

 𝑚𝐸𝑥2 = −
8

𝑚𝐷𝑥0
 

 𝑚𝐸𝑥3 =
1

𝑚𝐷𝑥0
(4 − 2𝛤∆𝑡) 

 𝑚𝐸𝑥4 =
1

𝑚𝐷𝑥0
(8 − 2𝜔𝑝

2∆𝑡2) 

 𝑚𝐸𝑥5 =
1

𝑚𝐷𝑥0
(2𝛤∆𝑡 − 4 − 𝜔𝑝

2∆𝑡2) 

𝐸̃𝑥│𝑡+∆𝑡
𝑖,𝑗,𝑘

= (𝑚𝐸𝑥1│
𝑖,𝑗,𝑘)𝐷̃𝑥│𝑡+∆𝑡

𝑖,𝑗,𝑘
+ (𝑚𝐸𝑥2│

𝑖,𝑗,𝑘)𝐷̃𝑥│𝑡
𝑖,𝑗,𝑘

+ (𝑚𝐸𝑥3│
𝑖,𝑗,𝑘)𝐷̃𝑥│𝑡−∆𝑡

𝑖,𝑗,𝑘

+ (𝑚𝐸𝑥4│
𝑖,𝑗,𝑘)𝐸̃𝑥│𝑡

𝑖,𝑗,𝑘
+ (𝑚𝐸𝑥5│

𝑖,𝑗,𝑘)𝐸̃𝑥│𝑡−∆𝑡
𝑖,𝑗,𝑘

 

Since the material we simulated is isotopic, so the update coefficients for 𝐸̃𝑦 𝑎𝑛𝑑 𝐸̃𝑧 are 

identical. Replace the 𝐷̃𝑥 and 𝐸̃𝑥  with corresponding components and will get the updated 

equations for 𝐸̃𝑦│𝑡+∆𝑡
𝑖,𝑗,𝑘

 and 𝐸̃𝑧│𝑡+∆𝑡
𝑖,𝑗,𝑘
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Appendix B 

%TE mode 2D-FDTD algorithm                                        
%isotopic linear dispersive material 
%Drude model incorporated  
%electic field nomalized 
%UPML for two directions 
%Band Diagram calculation  
%Square lattice 

  

  
clear all; 
%**********************************************************************

* 
%     Fundamental constants 
%**********************************************************************

* 

  
cc=2.99792458e8;            %speed of light in free space 
muz=4.0*pi*1.0e-7;          %permeability of free space 
epsz=1.0/(cc*cc*muz);       %permittivity of free space 

  
%**********************************************************************

* 
%     Grid parameters parameters and other parameters 
%**********************************************************************

* 
a=3e-8;                         % Lattice dimension for square lattice 
Nx=100;                         % grid number in x direction 
Ny=100;                         % grid number in y direction 
dx=a/Nx;                        % x increment 
dy=a/Nx;                        % y increment 
fx=cc/a/2;                       
tao=0.1/fx;                     % width of Gaussian wave source 
dt1=tao/10; 
dt2=dx/2/cc;                    % Courant stability criterion 
dt=min(dt1,dt2);                % calculation of time step 
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steps=2^15;                     % How many time will be simulated 
x=linspace(dx,Nx*dx,Nx); 
y=linspace(dy,Ny*dy,Ny);        % initialize x and y coordinate 
WidthPML=10;                    % thickness of PML region 

  

  
num_rod_x=1; 
num_rod_y=1; 
ratio=0.25;                     % paramter used to intialize 
                                % the field matrix 

  
[BEX,BEY,BHZ,DEX,DEY,D]=nanocylinder_2XD_7(Nx,Ny,dx,dy,num_rod_x,num_ro

d_y,ratio); 
                                % call function to initialize the field 
                                % matrix 
%**********************************************************************

* 
%     Compute source 
%**********************************************************************

* 
fmax =1/dt; 
t    =[0:steps-1]*dt;               %time axis 
t0   =5*tao;                        %time delay of Gaussian wave 
Hsrc =10*exp(-((t-t0)/tao).^2);     %H field source 
%**********************************************************************

* 
%     Initialize Material parameters 
%     & Initialize electric and magnetic field 
%     & Initialize curl arrays 
%     & Initialize intergration arrays 
%**********************************************************************

* 

  
Erxx=(ones(Nx,Ny)-BEX)*10+BEX*1;             %array of permittivity 

Erxx 
Eryy=(ones(Nx,Ny)-BEY)*10+BEY*1;             %array of permittivity 

Eryy 
Urzz=ones(Nx,Ny);             %array of permeability Urzz 

  
Hz=zeros(Nx,Ny);              %array Hx Hy Dz and Ez are initialized as 

0 
Ex=zeros(Nx,Ny);        
Ey=zeros(Nx,Ny); 
Dx=zeros(Nx,Ny); 
Dy=zeros(Nx,Ny); 

  
CHx=zeros(Nx,Ny);             %array of curl of E and H initialized as 

0 
CHy=zeros(Nx,Ny); 
CEz=zeros(Nx,Ny); 

  
IHz=zeros(Nx,Ny);             %array of integration  
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ICHx=zeros(Nx,Ny); 
ICHy=zeros(Nx,Ny); 

  
Ex00=zeros(Nx,Ny);            %Electrical field inside the circle 
Ex01=zeros(Nx,Ny);       
Ey00=zeros(Nx,Ny); 
Ey01=zeros(Nx,Ny); 

  
Dxn_1=zeros(Nx,Ny);           %D at the time of n in tne update 

equations  
                              %and Dx,Dy,Dz will represent the D at 

time  
                              %of n+1 in the update equations 
Dxn_2=zeros(Nx,Ny);           %D at the time of n-1 in the update 

equations 
Dyn_1=zeros(Nx,Ny);            
Dyn_2=zeros(Nx,Ny); 

  
Exn_1=zeros(Nx,Ny);            % similar with D 
Exn_2=zeros(Nx,Ny); 
Eyn_1=zeros(Nx,Ny); 
Eyn_2=zeros(Nx,Ny); 

  
%**********************************************************************

* 
%     Compute PML parameters 
%**********************************************************************

* 

  
%compute sigx and sigy on 2*grid 
%compute PML parameters 

  
NPML=[0 0 0 0];         %in sequence are NXLO,NXHI,NYLO,NYHI  

                        %[0 0 0 0] means non-PML situation 

        
Nx2=2*Nx; 
Ny2=2*Ny; 

  
sigx=zeros(Nx2,Ny2); 
for nx=1:2*NPML(1); 
    nx1=2*NPML(1)-nx+1; 
    sigx(nx1,:)=(0.5*epsz/dt)*(nx/2/NPML(1))^3; 
end 
for nx=1:2*NPML(2) 
    nx1=Nx2-2*NPML(2)+nx; 
    sigx(nx1,:)=(0.5*epsz/dt)*(nx/2/NPML(2))^3; 
end 

  
sigy=zeros(Nx2,Ny2); 
for ny=1:2*NPML(3); 
    ny1=2*NPML(3)-ny+1; 
    sigy(:,ny1)=(0.5*epsz/dt)*(ny/2/NPML(3))^3; 
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end 
for ny=1:2*NPML(4); 
    ny1=Ny2-2*NPML(4)+ny; 
    sigy(:,ny1)=(0.5*epsz/dt)*(ny/2/NPML(4))^3; 
end 

  
%sigx=sigx*10; 
%sigy=sigy*10; 

  
%**********************************************************************

* 
%     Compute update efficients for D and H 
%**********************************************************************

* 

  
sigxDx=sigx(2:2:Nx2,1:2:Ny2);          %now sigxDx and sigxDy are 

fictious 
sigyDx=sigy(2:2:Nx2,1:2:Ny2);          %sigma is at the location of Dx 
mDx0=(1/dt)+sigyDx/(2*epsz); 
mDx1=((1/dt)-sigyDx/(2*epsz))./mDx0; 
mDx2=cc./mDx0; 
mDx3=((cc*dt/epsz)*sigxDx)./mDx0; 

  

  
sigxDy=sigx(1:2:Nx2,2:2:Ny2);          %now sigyDx and sigyDy are 

fictious 
sigyDy=sigy(1:2:Nx2,2:2:Ny2);          %sigma is at the location of Dy 
mDy0=(1/dt)+sigxDy/(2*epsz); 
mDy1=((1/dt)-sigxDy/(2*epsz))./mDy0; 
mDy2=cc./mDy0; 
mDy3=((cc*dt/epsz)*sigyDy)./mDy0; 

  

  
sigxHz=sigx(2:2:Nx2,2:2:Ny2);          % sigxHz sigyHz are sigma at the  
sigyHz=sigy(2:2:Nx2,2:2:Ny2);          % the location of Hz 
mHz0=(1/dt)+(sigxHz+sigyHz)/(2*epsz)+sigxHz.*sigyHz*dt/4/(epsz^2); 
mHz1=(1/dt)-(sigxHz+sigyHz)/(2*epsz)-sigxHz.*sigyHz*dt/4/(epsz^2); 
mHz1=mHz1./mHz0; 
mHz2=-1*cc./Urzz./mHz0; 
mHz4=(-1*dt/(epsz^2))*sigxHz.*sigyHz./mHz0; 

  
%**********************************************************************

* 
%     Compute update efficients for E 
%**********************************************************************

* 
% Drude model parameters 
Wp_1=7.816e15;             %plasmon frequecy rad/s 
%Wp_1=0;                   %set wp_1=0 when testing non-dispersive 

material 
g_1=1.673e13;              %collision frequecy Hz         
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%g_1=0;                    %set g_1=0 when testing non-dispersive 

material 
wpex=Wp_1*BEX; 
wpey=Wp_1*BEY; 
gex=g_1*BEX;                
gey=g_1*BEY; 

  
mEx0=4*Erxx+2*Erxx.*gex*dt+(wpex.^2)*(dt^2);%epsinf is a matrix size of 

Nx, Ny,Nz 
mEx00=mEx0; 
mEx1=((2*gex*dt+4)./mEx0); 
mEx2=((4-2*gex*dt)./mEx0); 
mEx3=(-8./mEx0); 
mEx4=(-(4*Erxx-2*Erxx.*gex*dt+(wpex.^2)*(dt^2))./mEx0); 
mEx5=((8*Erxx-2*(wpex.^2)*(dt^2))./mEx0); 

  
mEy0=4*Eryy+2*Eryy.*gey*dt+(wpey.^2)*(dt^2);%epsinf is a matrix size of 

Nx, Ny,Nz 
mEy00=mEy0; 
mEy1=((2*gey*dt+4)./mEy0); 
mEy2=((4-2*gey*dt)./mEy0); 
mEy3=(-8./mEy0); 
mEy4=(-(4*Eryy-2*Eryy.*gey*dt+(wpey.^2)*(dt^2))./mEy0); 
mEy5=((8*Eryy-2*(wpey.^2)*(dt^2))./mEy0); 

  

  

  

  
%%*********************************************************************

** 
%     2D FDTD Main Loop with band calculation unit 
%**********************************************************************

* 
dots=106;                               % number of bloch wave vector 
band=6;                                 % number of bands ploted 
DP1=zeros(dots,band);                      
DP2=zeros(dots,band); 
for multi=1:4                           % calculate the same band 

diagram 
                                        % multiple time for comparison 

and 
                                        % elimination of random errors 
%Calculate 100 random recording points  

  
non=find(D);                            %Indices for the free space 
Midindr=randi(length(non),100,1);       %choose 100 points in free 

space 
INDr=non(Midindr);                      %indices of the 100 points in D 

matrix 
sod=[100,120];                          %size  of D matrix 
[Ired,Jred]=ind2sub(sod,INDr);          %subscript of 100 record points 
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% claculate 10 random source points 
Midinds=randi(length(non),10,1);        %choose 10 points in free space 
INDs=non(Midinds);                      %indices of the 100 points in D 

matrix 
sod=[100,120];                          %size  of D matrix 
[Isrc,Jsrc]=ind2sub(sod,INDs);          %subscript of 100 record points 

  

  
dispersion1=zeros(dots,band); 
dispersion2=zeros(dots,band); 

  
f =(1/dt*(0:steps/2-1)/steps); 

  
for s=1:dots 
%**********************************************************************

* 
%     Reinitialize the fields each time to recalculate band diagram 
%**********************************************************************

* 

  
Erxx=(ones(Nx,Ny)-BEX)*10+BEX*1;             %array of permittivity 

Erxx 
Eryy=(ones(Nx,Ny)-BEY)*10+BEY*1;             %array of permittivity 

Eryy 
Urzz=ones(Nx,Ny);             %array of permeability Urzz 

  
Hz=zeros(Nx,Ny);              %array Hx Hy Dz and Ez are initialized as 

0 
Ex=zeros(Nx,Ny);        
Ey=zeros(Nx,Ny); 
Dx=zeros(Nx,Ny); 
Dy=zeros(Nx,Ny); 

  
CHx=zeros(Nx,Ny);             %array of curl of E and H initialized as 

0 
CHy=zeros(Nx,Ny); 
CEz=zeros(Nx,Ny); 

  
IHz=zeros(Nx,Ny);             %array of integration  
ICHx=zeros(Nx,Ny); 
ICHy=zeros(Nx,Ny); 

  
Ex00=zeros(Nx,Ny);            %Electrical field inside the circle 
Ex01=zeros(Nx,Ny);       
Ey00=zeros(Nx,Ny); 
Ey01=zeros(Nx,Ny); 

  
Dxn_1=zeros(Nx,Ny);            
Dxn_2=zeros(Nx,Ny);            
Dyn_1=zeros(Nx,Ny); 
Dyn_2=zeros(Nx,Ny); 
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Exn_1=zeros(Nx,Ny);            % similar as D 
Exn_2=zeros(Nx,Ny); 
Eyn_1=zeros(Nx,Ny); 
Eyn_2=zeros(Nx,Ny); 

  

  
numvx=106; 
numvy=106; 
[Bx,By]=newvector(numvx,numvy); %call function to calculate bloch wave 

vector 

  
Sx=Nx*dx; 
Sy=Ny*dy; 
bx=Bx(s)/Sx; 
by=By(s)/Sy; 
%Calculate Phase Across Grid 
phix=exp(-1i*bx*Sx); 
phiy=exp(-1i*by*Sy); 

  

  

  
%MAIN LOOP 
for T=1:steps 

  
        for o=1:10 
        Hz(Isrc(o),Jsrc(o))=Hz(Isrc(o),Jsrc(o))+Hsrc(T); 
        end 
     %compute CEz 
        for ny=1:Ny-1 
            for nx=1:Nx-1 
                CEz(nx,ny)=(Ey(nx+1,ny)-Ey(nx,ny))/dx... 
                             -(Ex(nx,ny+1)-Ex(nx,ny))/dy;   
            end 
            CEz(Nx,ny)=(phix*Ey(1,ny)-Ey(Nx,ny))/dx... 
                         -(Ex(Nx,ny+1)-Ex(Nx,ny))/dy;  
        end 
        for nx=1:Nx-1 
            CEz(nx,Ny)=(Ey(nx+1,Ny)-Ey(nx,Ny))/dx... 
                         -(phiy*Ex(nx,1)-Ex(nx,Ny))/dy;      
        end 
        CEz(Nx,Ny)=(phix*Ey(1,Ny)-Ey(Nx,Ny))/dx...     
                     -(phiy*Ex(Nx,1)-Ex(Nx,Ny))/dy;  %Bloch periodic   
                                                     %boundary 

conditions 

                                                
    %Update H Integration 

     
    IHz=IHz+Hz; 

     
    %Update H from curl of E 



 
 

66 
 

  
     Hz=mHz1.*Hz+mHz2.*CEz+mHz4.*IHz; 

       

     
    %compute CHx  
    for nx=1:Nx 
        CHx(nx,1)=(Hz(nx,1)-conj(phiy)*Hz(nx,Ny))/dy;         
        for ny=2:Ny 
        CHx(nx,ny)=(Hz(nx,ny)-Hz(nx,ny-1))/dy;   
        end 
    end                                            %Bloch periodic   
                                                   %boundary conditions 

     
    %compute CHy 
    for ny=1:Ny 
        CHy(1,ny)=-(Hz(1,ny)-conj(phix)*Hz(Nx,ny))/dx;       
        for nx=2:Nx 
        CHy(nx,ny)=-(Hz(nx,ny)-Hz(nx-1,ny))/dx;   
        end 
    end                                             %Bloch periodic   
                                                    %boundary 

conditions 

     

  

     
    %Update D Integration 
            ICHx=ICHx+CHx; 
            ICHy=ICHy+CHy; 

     
    %Update Dz 
            Dx=mDx1.*Dx+mDx2.*CHx+mDx3.*ICHx; 
            Dy=mDy1.*Dy+mDy2.*CHy+mDy3.*ICHy; 

     
    %Update E from D 

           
            

Ex=mEx1.*Dx+mEx2.*Dxn_2+mEx3.*Dxn_1+mEx4.*Exn_2+mEx5.*Exn_1;  
            

Ey=mEy1.*Dy+mEy2.*Dyn_2+mEy3.*Dyn_1+mEy4.*Eyn_2+mEy5.*Eyn_1; 

             
            Dxn_2=Dxn_1;                  %update Dn and Dn-1  
            Dxn_1=Dx; 

             
            Dyn_2=Dyn_1; 
            Dyn_1=Dy; 

             
            Exn_2=Exn_1;                 %update En and En-1 
            Exn_1=Ex; 

             
            Eyn_2=Eyn_1; 
            Eyn_1=Ey; 
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            %Update Fourier Transforms 
            for q=1:100 
                rx=Ired(q); 
                ry=Jred(q); 
                Ex_record(q,T)=Ex(rx,ry); 
                Ey_record(q,T)=Ey(rx,ry); 
            end 

             
            Ex_p(1,T)=Ex(Isrc(1),Jsrc(1)+1); 
            Ey_p(1,T)=Ey(Isrc(1),Jsrc(1)+1); 

  
            f1 =log10(fmax*(0:T/2-1)/T); 
            f2 =log10(1/dt*(0:T/2-1)/T); 
            f3 =log10(1/dt*(0:steps/2-1)/steps); 

  

  
%**********************************************************************

* 
%     Plot field, PSD and band diagram 
%**********************************************************************

* 
if mod(T,2^13)==0;      
rsteps=num2str(T); 
                E=Ex_record.*Ex_record+Ey_record.*Ey_record; 
                FFT_record=fft(E,T,2); 
            for q=1:100 
                FFTP=FFT_record(q,:); 
                FFTT=FFTT+FFTP; 
            end  

             
            Ep=Ex_p.*Ex_p+Ey_p.*Ey_p; 
            FFTQ=fft(Ep); 
            Qr=(abs(FFTT(1:T/2))); 
            Qr2=(abs(FFTQ(1:T/2))); 
            Qr3=(abs(fft(Hsrc))); 
            [pks,locs]=findpeaks(Qr,'SortStr','descend'); 
            [pks2,locs2]=findpeaks(Qr2,'SortStr','descend'); 
            %[pks,locs]=findpeaks(Qr); 
            %[pks2,locs2]=findpeaks(Qr2); 

             
figure(21),imagesc(abs(Hz')); 
colorbar; 
%caxis([-0.1,0.1]); 
caxis auto 
axis image; axis xy; 
axis off; 
title(['Hz at time step = ',rsteps]); 
shading interp ; 

  
figure(31) 
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subplot(3,1,1) 
plot(f1,Qr); 
hold on; 
plot(f1(locs),pks+0.05,'k^','markerfacecolor',[1 0 0]); 
hold off; 
title(['Overall PSD at time step = ',rsteps]); 

  
subplot(3,1,2) 
plot(f2,Qr2); 
hold on; 
plot(f2(locs2),pks2+0.05,'k^','markerfacecolor',[1 0 0]); 
hold off; 
title(['One point near source PSD at time step = ',rsteps]); 

  
subplot(3,1,3) 
plot(f3,Qr3(1:steps/2)); 
title(['PSD of source at time step = ',rsteps]); 
FFTT=zeros(1,T+1); 
else 
FFTT=zeros(1,T+1); 
end 

  
end 

  
% identify eigen-frequency 
dispersion1(s,:)=f(locs(1:band)); 
dispersion2(s,:)=f(locs2(1:band)); 
figure(4+multi) 
hold on; 
% plot first few band of band diagram 
plot(ones(1,band)*s,dispersion1(s,1:band),'o','LineWidth',0.01); 

  
end 
% record all the eigen-frequency 
DP1=cat(3,dispersion1,DP1); 
DP2=cat(3,dispersion2,DP2); 

  
clear Hz_record; 
clear Hz_p 
end 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Function called in the previous algorithm for the calculation of field  

%matrix 

 

function[BEX,BEY,BHZ,DEX,DEY,D]=nanocylinder_2XD_7(Nx,Ny,dx,dy,num_rod_

x,num_rod_y,ratio) 
%calculate the field matrix with 2X grid technique 
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N2X=Nx*2; 
N2Y=Ny*2; 
xa=[0:N2X-1]; 
ya=[0:N2Y-1]; 

  
a2=N2X/num_rod_x; 
r2=a2*ratio; 
center_x2=zeros(1,num_rod_x); 
center_y2=zeros(1,num_rod_y); 

  
for i=1:num_rod_x 
    center_x2(i)=a2/2+(i-1)*a2; 
end 

  
for j=1:num_rod_y 
    center_y2(j)=a2/2+(j-1)*a2; 
end 

  
A=zeros(N2X,N2Y); 
[Y2,X2]=meshgrid(ya,xa); 
B=A; 
for nx=1:num_rod_x 
    for ny=1:num_rod_y 
        A=(((X2-center_x2(nx)).^2+(Y2-center_y2(ny)).^2)<=r2^2); 
        B=B+A; 
    end 
end 

  

  
BEX=B(2:2:N2X,1:2:N2Y); 
BEY=B(1:2:N2X,2:2:N2Y); 
BEZ=B(1:2:N2X,1:2:N2Y); 
BHX=B(1:2:N2X,2:2:N2Y); 
BHY=B(2:2:N2X,1:2:N2Y); 
BHZ=B(2:2:N2X,2:2:N2Y); 

  
%PML region 
xa1=[0:Nx-1]; 
ya1=[0:Ny-1]; 
[Y,X]=meshgrid(ya1,xa1); 
C=zeros(Nx,Ny); 
C=((Y<0)|(Y>=Ny)); 

  
% calculate non-metal space 
TTB=BEX+BEY; 
TB=(TTB>=1); 
DEX=ones(Nx,Ny); 
DEY=ones(Nx,Ny); 
D  =ones(Nx,Ny); 
DEX=DEX-C-BEX; 
DEY=DEY-C-BEY; 
D  =D-C-TB; 
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% plot the device 
figure(1) 
imagesc(ya,xa,B); 
colorbar; 
figure(11) 
subplot(3,1,1) 
imagesc(ya1,xa1,D); 
colorbar; 
axis equal tight; 
subplot(3,1,2) 
imagesc(ya1,xa1,DEX); 
colorbar; 
axis equal tight; 
subplot(3,1,3) 
imagesc(ya1,xa1,DEY); 
colorbar; 
axis equal tight; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Function called in the previous algorithm to get Bloch wave vector 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[Bx,By]=newvector(numvx,numvy) 
pointx =[0    0.1047    0.2094    0.3142    0.4189    0.5236    0.6283    

0.7330... 
    0.8378    0.9425    1.0472    1.1519    1.2566    1.3614    1.4661    

1.5708... 
    1.6755    1.7802    1.8850    1.9897    2.0944    2.1991    2.3038    

2.4086... 
    2.5133    2.6180    2.7227    2.8274    2.9322    3.0369    3.1416    

3.1416... 
    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    

3.1416... 
    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    

3.1416... 
    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    3.1416    

3.1416... 
    3.1416    3.1416    3.1416    3.1416    3.1416    3.0718    3.0020    

2.9322... 
    2.8623    2.7925    2.7227    2.6529    2.5831    2.5133    2.4435    

2.3736... 
    2.3038    2.2340    2.1642    2.0944    2.0246    1.9548    1.8850    

1.8151... 
    1.7453    1.6755    1.6057    1.5359    1.4661    1.3963    1.3265    

1.2566... 
    1.1868    1.1170    1.0472    0.9774    0.9076    0.8378    0.7679    

0.6981... 
    0.6283    0.5585    0.4887    0.4189    0.3491    0.2793    0.2094    

0.1396... 
    0.0698         0]; 
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pointy=[ 0         0         0         0         0         0         0         

0 ... 
         0         0         0         0         0         0         0         

0 ... 
         0         0         0         0         0         0         0         

0 ... 
         0         0         0         0         0         0         0    

0.1047... 
    0.2094    0.3142    0.4189    0.5236    0.6283    0.7330    0.8378    

0.9425... 
    1.0472    1.1519    1.2566    1.3614    1.4661    1.5708    1.6755    

1.7802... 
    1.8850    1.9897    2.0944    2.1991    2.3038    2.4086    2.5133    

2.6180... 
    2.7227    2.8274    2.9322    3.0369    3.1416    3.0718    3.0020    

2.9322... 
    2.8623    2.7925    2.7227    2.6529    2.5831    2.5133    2.4435    

2.3736... 
    2.3038    2.2340    2.1642    2.0944    2.0246    1.9548    1.8850    

1.8151... 
    1.7453    1.6755    1.6057    1.5359    1.4661    1.3963    1.3265    

1.2566... 
    1.1868    1.1170    1.0472    0.9774    0.9076    0.8378    0.7679    

0.6981... 
    0.6283    0.5585    0.4887    0.4189    0.3491    0.2793    0.2094    

0.1396... 
    0.0698         0]; 
Bx=pointx; 
By=pointy; 

 

 

As for the TM-mode FDTD code, the key differences are the 

update coefficients, which can be analogous to TE-Mode, and 

the Bloch Periodic Boundary conditions.  

 

Here we just list these important differences 
%**********************************************************************

* 
%     Compute update efficients for Hx, Hy, Dz 
%**********************************************************************

* 

  
sigHx=sigx(1:2:Nx2,2:2:Ny2);           % now sigHx and sigHy are 

fictitous  
sigHy=sigy(1:2:Nx2,2:2:Ny2);           % sigma pointing to  x and y  
                                       % directions at the location of 

Hx 
mHx0=(1/dt)+sigHy/(2*epsz);             
mHx1=((1/dt)-sigHy/(2*epsz))./mHx0; 
mHx2=-cc./Urxx./mHx0; 
mHx3=-(cc*dt/epsz)*sigHx./Urxx./mHx0; 
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sigHx=sigx(2:2:Nx2,1:2:Ny2);           % now sigHx and sigHy are 

fictitous  
sigHy=sigy(2:2:Nx2,1:2:Ny2);           % sigma pointing to  x and y  
                                       % directions at the location of 

Hy 
mHy0=(1/dt)+sigHx/(2*epsz);             
mHy1=((1/dt)-sigHx/(2*epsz))./mHy0; 
mHy2=-cc./Uryy./mHy0; 
mHy3=-(cc*dt/epsz)*sigHy./Uryy./mHy0; 

  
sigDx=sigx(1:2:Nx2,1:2:Ny2);           % now sigDx and sigDy are 

fictitous  
sigDy=sigy(1:2:Nx2,1:2:Ny2);           % sigma pointing to  x and y  
                                       % directions at the location of 

Dz 
mDz0=(1/dt)+(sigDx+sigDy)/(2*epsz)+sigDx.*sigDy*(dt/4/(epsz^2));             
mDz1=(1/dt)-(sigDx+sigDy)/(2*epsz)-sigDx.*sigDy*(dt/4/(epsz^2)); 
mDz1=mDz1./mDz0; 
mDz2=cc./mDz0; 
mDz4=-(dt/(epsz^2))*sigDx.*sigDy./mDz0; 

 

%% Drude model parameters 
Wp=7.816e15;                          %plasmon frequecy rad/s 
wpez=Wp*BEZ; 
g=1.673e13;                           %collision frequecy rad/s 

  
%%update efficiency for Ez 
mEz0=4*Erzz+2*Erzz*g*dt+(wpez.^2)*(dt^2); 
mEz00=mEz0.*BEZ; 
mEz1=((2*g*dt+4)./mEz0).*BEZ; 
mEz2=((4-2*g*dt)./mEz0).*BEZ; 
mEz3=(-8./mEz0).*BEZ; 
mEz4=(-(4*Erzz-2*Erzz*g*dt+(wpez.^2)*(dt^2))./mEz0).*BEZ; 
mEz5=((8*Erzz-2*(wpez.^2)*(dt^2))./mEz0).*BEZ; 

 

 

%%%%implementation of periodic boundary conditions in TM mode 

 

     %compute CEx  
    for nx=1:Nx 
        for ny=1:Ny-1 
        CEx(nx,ny)=(Ez(nx,ny+1)-Ez(nx,ny))/dy;   
        end 
        CEx(nx,Ny)=(phiy*Ez(nx,1)-Ez(nx,Ny))/dy;             
    end 

         
%compute CEy 
 

for ny=1:Ny 
        for nx=1:Nx-1 
        CEy(nx,ny)=-(Ez(nx+1,ny)-Ez(nx,ny))/dx;   
        end 
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        CEy(Nx,ny)=-(phix*Ez(1,ny)-Ez(Nx,ny))/dx;  
    end 

     
    %Update H Integration 

     
    ICEx=ICEx+CEx; 
    ICEy=ICEy+CEy; 

     
    %Update H from curl of E 

  
     Hx=mHx1.*Hx+mHx2.*CEx+mHx3.*ICEx; 
     Hy=mHy1.*Hy+mHy2.*CEy+mHy3.*ICEy;   

      

      

      
      %compute CHz curl of Hz 
        CHz(1,1)=(Hy(1,1)-conj(phix)*Hy(Nx,1))/dx... 
                -(Hx(1,1)-conj(phiy)*Hx(1,Ny))/dy; 
    for nx=2:Nx 
        CHz(nx,1)=(Hy(nx,1)-Hy(nx-1,1))/dx... 
                -(Hx(nx,1)-conj(phiy)*Hx(nx,Ny))/dy; 
    end 
    for ny=2:Ny 
        CHz(1,ny)=(Hy(1,ny)-conj(phix)*Hy(Nx,ny))/dx... 
                 -(Hx(1,ny)-Hx(1,ny-1))/dy; 
        for nx=2:Nx 
            CHz(nx,ny)=(Hy(nx,ny)-Hy(nx-1,ny))/dx... 
                      -(Hx(nx,ny)-Hx(nx,ny-1))/dy; 
        end 
    end 

     
    %Update D Integration 
            IDz=IDz+Dz; 

     
    %Update Dz 
            Dz=mDz1.*Dz+mDz2.*CHz+mDz4.*IDz; 

 

 

 

 AS for the FDTD code for 1D periodic structures, just 

adjust the thickness of PML layer and change the Bloch wave 

vectors in the code.  
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