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ABSTRACT

This thesis develops an alternative sensor fusion approach for object orientation
using low-cost MEMS inertial sensors. The alternative approach focuses on the unique
challenges of small UAVs. Such challenges include the vibrational induced noise onto
the accelerometer and bias offset errors of the rate gyroscope. To overcome these
challenges, a sensor fusion algorithm combines the measured data from the accelerometer
and rate gyroscope to achieve a single output free from vibrational noise and bias offset
errors.

One of the most prevalent sensor fusion algorithms used for orientation estimation
is the Extended Kalman filter (EKF). The EKEF filter performs the fusion process by first
creating the process model using the nonlinear equations of motion and then establishing
a measurement model. With the process and measurement models established, the filter
operates by propagating the mean and covariance of the states through time.

The success of EKF relies on the ability to establish a representative process and
measurement model of the system. In most applications, the EKF measurement model
utilizes the accelerometer and GPS-derived accelerations to determine an estimate of the
orientation. However, if the GPS-derived accelerations are not available then the
measurement model becomes less reliable when subjected to harsh vibrational
environments. This situation led to the alternative approach, which focuses on the
correlation between the rate gyroscope and accelerometer-derived angle. The correlation
between the two sensors then determines how much the algorithm will use one sensor
over the other. The result is a measurement that does not suffer from the vibrational
noise or from bias offset errors.



ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Stephen Titcomb, Ph.D. As my
advisor, you have offered a tremendous amount of help, support, and encouragement.

Without you, this thesis would not have been possible... Thank you!

| would like to thank my committee members, Walter Varhue, Ph.D. and Tian Xia, Ph.D.

for your time, interest, and patience.

To my parents, Alan and Priscilla Bouffard, thank you for all your love and support.
Your emphasis on educational excellence and self-improvement gave me the confidence
to pursue my Master’s degree in engineering at UVM. Your life lessons have proven

invaluable, and I truly appreciate all you have done and continue to do for me.

To Alanna Bouffard, thank you for your love and patience. You have been an invaluable
resource for guidance and support. The numerous sacrifices you made allowing me the
time and energy to complete this work were incredible, and I thank you for every one of

them. | am blessed to have you in my life as my wife and best friend...I love you!

To my son Isaac, thank you for the sleepless nights and extra motivation to complete this
thesis. You have changed my life forever, and | hope to return the favor one day of

giving you all the love and motivation to pursue your dreams.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt bbb bbb i
LIST OF TABLES ... bbbttt %
LIST OF FIGURES ..ottt sttt s Vi
Chapter 1 INtrOAUCTION .......eeiiiie ettt sre e sneesreene s 1
1.1 IMIOTIVALION ..ottt bbbttt e b bbb ene s 1
1.2 GOAal OF the TRESIS ...veeiieiieiiiecieeie ettt sre e 3
1.3 Structure Of the THESIS.....ceiiiiiiiiiise e 4
Chapter 2 Unmanned Aerial Vehicle (UAV) ..o 6
220 A | 1 oo L1 T 4 o] o PSSRSO 6
A 111 111 -1 YR PPRPPR 11
Chapter 3 An Introduction to MEMS Inertial SENSOrS........ccccccvevveiiiieiecceee e 12
TN A I ¢ Lo N ool [T o] 4[] =] SR 12
3.1.1  Accelerometer SENSOr MeasUremMeNtS.........ccvruereriereneseerieniesie e siesreseeens 18
3.1.2  ADC CONVErSION OVEIVIEW .....ccuviiiiiieiierieiesie e sie st siessesseeeeseesieseesiessesseens 20
3.1.3  Computing Angles from Accelerometers ...........ccocvvveiiieneic s 22

3.2 The RAE GYIOSCOPE ...cuviivieiietiectee st ete st te ettt e re et e steete s e e sreeneenee s 26
3.2.1  Rate Gyroscope MEMS SENSOI .......ccuveiiiiiiiiiie e siee s 35
3.2.2  ADC CoNVErsSioN OVEIVIEW ......cceeueiueerirariesieenieaeesseeseeeseesseessessessseessesseenns 37

3.3 Euler Angles & Elementary ROtationS...........cccccvevieiiciieie e 37
3.3.1  NUMeErical COMreCIONS .......ccveiviiiieieiiieeeie et e 43
3.3.2  Euler Angle Computation and Singularity Avoidance ...........c.cccccovrvriene. 44

TR U1 11 - YT PPR 47
3.5 LD EXEICISE .. oottt 49
351 P A et 49
352 PAM B o 51
353 PA C o ettt enes 53
Chapter 4 An Introduction t0 SENSOr FUSION...........cuiiiiiiieie e 54
g R 111 £ [N od A o] o SRR ORT 54
4.2 Sensor Fusion IMplementation............ccceieeiieiie e 55
4.3 The Kalman FIIEr ......ccovooiieieee e 57



4.3.1  Kalman Filter SUMMAIY........cooiiiiiiiieiieie e 67

A4 LAD EXEICISE ..ueiieieeite ittt ettt 70
A4 L1 PAIT A ettt 71
4.4.2 PaIt B oo 74
A.4.3  PANT C oo ettt 76

Chapter 5 An Alternative Sensor FUsion ApPpProach..........cccccevevveieiieiieene e 81

T8 A {01 oo (1 T 4 o] o USSR 81

5.2 RElAted WOTK. ... .o 83

5.3  Proposed AIQOrithm ........ccoviiiicece e 84
5.3.1  Development of the AIGOrithm ... 86

5.4  Lab Exercise & Experimental ReSUItS ...........cccooveiiiiiiccicccece e 91
54.1  Lab Exercise Part 1 — Programming the MCU ............c.cccevvviiie e, 94
5.4.2  Lab Exercise Part 2 — Data ColleCtion..........cccccvvviveienienieic e 97
5.4.3  Lab Exercise Part 3 — Data ANalysiS........ccccovveiieiiiiieiieic e 99
5.4.4  Experimental TeSt RESUILS ........ccceeviiiiiieiicie e 105

5.5 SUMMEAIY .ot 107

5.6 FULUIE WOTK ..ot 108

BIBLIOGRAPHY ..ottt bbbttt bbb eneas 109



LIST OF

TABLES

Table 1 ADXL335 Accelerometer Datasheet [24] .........cocevveveiieiieiiiee e

Table 2 InvenSense IDG-500 Datasheet [25]



LIST OF FIGURES

Figure 1 Multiplex “Easy Star” with wireless camera sysStem.........c.ccvvvvivieiiieeiiieesiinennns 7
Figure 2 Example of an OSD Camera SYSIEM.........ccoiiiiiiiininise e 8
Figure 3 Accelerometer Diagram, After [9] ..o 12
Figure 4 Amplitude of a mechanical 2" order system with varying damping............... 14
Figure 5 Parallel Plate Capacitance Sensing [9] .......cccovvevviiiiiecie i 16
Figure 6 Wheatstone Bridge [27]......cccooeiiiiriiiiieieeiese e 17
Figure 7 Capacitance Measurement Block Diagram [28].........c.ccoovveinienencnenincnienn 18
Figure 8 MEMS ACCEIErOMELEr SENSOIS ......ccvveiveeiiiieiieeieesee et 18
Figure 9 NanoCorel2 Evaluation Kit [23]........ccccoviiieiieieiicce e 20
Figure 10 Circuit Interface DIAgram ..........cooeiiririeieieiesie e 20
Figure 11 Accelerometer AXiS Definition [2].......ccccoeieiiiiiiniiieeee e 22
Figure 12 Accelerometer Tilt Angles AFter [2] ....ccovovveiveie i 23
Figure 13 Pythagorean Theorem in Graphical FOrm ..........ccccoveiiiiiiicce e, 24
Figure 14 Mechanical GyrosCopPe [30] ......coovriririiriiiieiese s 26
Figure 15 Spinning “top” Precession Example [29] .......cccooeiiiiiiiiiiiiiiiiiceece 27
Figure 16 Gyroscope PreCcession [31] ...ccvcceiieieerieiieiieiie et 29
Figure 17 Artificial Horizon Indicator [32] ......ccccoviieiieieciccece e 30
Figure 18 Coriolis Effect of the Earth...........cccoooviiiiiiiie 31
Figure 19 Coriolis Effect Diagram [12]........cccooririmiiiiieseseseeeeeee s 31
Figure 20 Force caused by the Coriolis Effect...........cccoovoiiiiiiicii e 34
Figure 21 Coriolis force Right Hand Rule............ccooiiiiiii e 35
Figure 22 IDG-500 Functional Block Diagram [25] ........cccocererireiiniiienesc e 36
Figure 23 Euler Elementary ROTATIONS..........ccoviiiiiiiieiesc e 38
Figure 24 Prediction and Measurement Distributions [16] .........cccccovvvvviineninenincnene 56
Figure 25 New Position EStIMate [16].........cccveiivieiiiiiieiie e 56
Figure 26 Kalman Filter Process [18].......ccciieiiiiiiiiii et 68
Figure 27 Accelerometer Derivative & Angular Rate ...........ccocovvviiininienenc e 85

Vi



Figure 28 YZ-Accelerometer Derivative vs. Rate GYroSCOPE.........ccevvverrveveieeriesrvnsenens 89

Figure 29 NanoCorel2 module MCU..........cccooiiiiiieiiecc e 92
Figure 30 SparkFun 5 DOF IMU .........cociiiiiiiiiieeee e 93
Figure 31 MCU and IMU Connection DIiagram ..........ccoceoerereninenieeiieieseesie e 93
Figure 32 Accelerometer YZ-Angle Derivative vs. Rate GYrosCope.......c.cccoevverveennnnn. 106
Figure 33 SeNSOr FUSION RESUILS .......ccvciiiieiecie e 106

Vii



CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The availability of low-cost, commercially available, sensors developed using the micro-
electromechanical systems (MEMS) manufacturing process, enables advances in inertial
sensing. Two of the most prevalent MEMS sensors are the accelerometer and rate
gyroscope. The accelerometer measures the specific force (units in of g-force) relative to
free fall [1]. The rate gyroscope measures the angular velocity through the Coriolis
Effect. The ideal rate gyroscope determines the orientation of an object by integrating
the angular rates starting from a known position. Together, the accelerometer provides
information needed for the initial starting position while the rate gyroscope updates the
orientation by integrating the angular rates.

Current research in object orientation using MEMS inertial sensors addresses the
challenges of non-ideal rate gyroscopes. Non-ideal gyroscopes have a non-zero offset
term that becomes part of the integration cycle. Since the offset can vary during typical
operation, it becomes difficult to compensate.

The work of [4] implements the highly successful Extended Kalman Filter (EKF)
state estimator in a manner that combines the rate gyroscope with the accelerometer and

GPS-derived accelerations. The conclusion of their work demonstrated the importance of



accurate sensor data from the MEMS sensors and was evident when trying to compensate
the accelerometer to reflect only the effects of gravity and not acceleration due to turning.

The significance for the accelerometer to reflect only the effects of gravity come
from a technique developed to help stabilize the rate gyroscope. Since the majority of
small UAV’s remain relatively close to the earth’s surface, the gravitational force
becomes a constant vector quantity. Typically, in level flight, and at a steady cruising
speed, the net forces equal that of gravity. This provides a stable reference for the rate
gyroscope (as they tend to drift with time). However, when the net acceleration is not
equal to the force of gravity, it becomes more difficult to track the gravitational force;
leading to gyroscopic drift. These difficulties (tracking gravitational force) led to the
development of my alternative approach. The approach | created also relies on the force
of gravity as a measurement input, but does not compute the orientation based on that
vector to correct rate gyroscope drift. Instead, | start by assuming that the net
acceleration is equal to the gravitational vector and then calculate an equivalent angle.
However, instead of trying to compensate for external forces, | take the derivative of the
equivalent angular. This produces an angular rate estimate to be compared with the rate
gyroscope’s data.

The idea behind this method is to determine a correlation between the
accelerometer and the rate gyroscope and produces one of three outcomes. The first is
when the accelerometer undergoes linear acceleration not associated with any rotations.
The correlation between the accelerometer and rate gyroscope will be weak signifying no

change in orientation. The second is when the accelerometer measures both rotational



and linear accelerations. This produces a relatively strong correlation between the
accelerometer and rate gyroscope (allowing for more deterministic orientation
estimations). The last is when the accelerometer measures a net force equal to the
gravitational force vector while the rate gyroscope measures small rotational rates. In
this condition, the accelerometer and rate gyroscope will produce a weak correlation
indicating gyroscopic drift.

The final step of my accelerometer and rate gyroscope correlation calculation is
the “weighting” factor. The weighting factor is what allows the orientation estimation
portion of the algorithm to rely on either the accelerometer, rate gyroscope, or both. The
result is a method, by which the accelerometer is used to:

a) Significantly reduce the effects of gyroscope drift during periods of stable non-
rotating flight.

b) Increase the accuracy of rotational measurements.

c) Significantly reduce accelerometer measurement errors caused by vibrational/

turbulent forces.

1.2 GOAL OF THE THESIS

The goal of this thesis is to introduce an alternative method of acquiring more accurate
data fusion results from an accelerometer and rate gyroscope. In this thesis, I will also
address the basic building blocks for object orientation estimation by use of MEMS
sensors, rotation matrices, and the Kalman filter through a series of laboratory

experiments.



The first experiment provides an intuitive illustration of matrix rotations using
Euler angles. At first, this experiment performs a simple single rotation, then transitions
to include a mathematical formulation for continuous rotations using the small angle
approximation and integration technique. Finally, the matrix rotation experiment ends by
providing a means for “Gimbal Lock” prevention.

The second experiment introduces the fundamental concepts of the Kalman filter.
The experiment, due to its complexity, was broken down into three main parts. The first
part provides the mathematical structure for modeling the dynamics of a simple linear
system (or linearized system). The second part builds onto the first by converting a
discrete time differential equation into the necessary state-space format used by the
Kalman filter algorithm. The final part of the experiment introduces the mathematical
formulation of the Kalman filter and applies it to the state-space equation of the linear

system from the second exercise.

1.3 STRUCTURE OF THE THESIS

This thesis introduces the concepts necessary for object orientation. When applying these
concepts to small UAV’s, unique challenges arise. One of the challenges is the use of
MEMS based sensors, such as accelerometers and rate gyroscopes. Although these
sensors are ideal due to their low-cost and small package size, neither the accelerometer,
or rate gyroscope, can be used independently when determining orientation. This is

where the concept of sensor fusion is introduced.



The concepts of object orientation and MEMS sensor fusion are introduced as

follows:

Chapter 2 describes the small UAV and the adaptation from simple line-of-sight
radio control, to advance flight capabilities using systems such as the wireless on-
screen-display and navigation system. It then goes on to introduce basic autopilot
systems and concepts of estimation theory used for object orientation.

Chapter 3 introduces the MEMS based accelerometer and rate gyroscope
sensors. First, a theory of operation is described for each sensor, followed by the
conversion process needed to convert the analog signals into digital signals. Next,
an introduction to rotation matrices using Euler angles. The last section is a lab
exercise developed to apply the concepts discussed throughout the chapter.
Chapter 4 is the core of this thesis. It starts with an introduction to sensor fusion
and follows with the derivation of the Kalman filter. Although there are many
ways to derive the Kalman filter equations, this chapter uses the derivation of the
linear recursive estimator for its foundation. The chapter then ends with a lab
exercise developed to introduce the basic linear Kalman filter using Matlab.

Chapter 5 is the alternative sensor fusion approach being proposed by this thesis.
The alternative sensor fusion approach was based on observations made while
working with MEMS accelerometers and rate gyroscopes. The goal of the
alternative approach is to fuse the accelerometer and rate gyroscope’s data prior to
the use of Kalman filtering. The last section is a lab exercise, which is performed
using real hardware using MEMS sensors to capture measurement data. The data
is then analyzed using the algorithms introduced to obtain the orientation

estimates.



CHAPTER 2

UNMANNED AERIAL VEHICLE (UAV)

2.1 INTRODUCTION

An Unmanned Aerial Vehicle (UAV) is any aircraft flown without an actual person on
board. For the purpose of the thesis, we will focus our attention on small electric
powered, propeller driven aircraft, with a fixed wingspan of less than 2 meters. This
particular aircraft can be hand launched and operates from a ground controller within
visual range. The payload portion of a UAV includes a variety of systems, such as a
radio transceiver, servo actuation controller, and a flight stabilization / autopilot system.
The flight stabilization / autopilot systems are further divide down into two primary
functions: the inertial navigation sensors (accelerometer, rate gyroscope, magnetometer
and global positioning system (GPS)), the main processing unit, and pressure sensors for
wind speed and altitude measurements.

Small UAV’s may appear to be a modern technical advancement in aerospace
science, but actually the early pioneers of these radio controlled (RC) aircraft date back to
the late 1940’s and early 1950’s [5]. Today there are numerous types of radio controlled
UAV’s on the market, ranging from electric to jet powered in ready-to-fly (RTF) and
almost ready-to-fly (ARTF) Kits.

RTF and ARTF UAV’s can be easily assembled and essentially comprise the
same components, except for the fact that the ARTF kits do not include any radio

electronics. Both RTF and ARTF aircraft are typically constructed using expanded



polyolefin (EPO) or expanded Polypropylene (EEP) injection molding, and are reinforced
using carbon fiber rods for the spars of the wing. This type of construction is very robust,
and often referred to as “crash proof” when compared to traditional aircraft made of balsa
wood. One of the most popular RTF/ ARTF aircraft utilizing EEP is the Multiplex
electric powered “Easy Star.” This aircraft is constructed using proprietary EEP foam
called ELAPOR®, which is high-tech particle foam ideal for injection-molded RC
components, such as the fuselage and wings [6]. The Easy Star is a very popular UAV
due to its unique design, having a pusher prop mounted just behind the main wing. The
following picture is the Easy Star aircraft modified with a wireless camera and landing

gear.

Figure 1 Multiplex “Easy Star” with wireless camera system

A wireless camera system installed in the front of the aircraft allows the pilot to
see through the “eyes” of the aircraft instead of watching it from the ground, creating a
first person view (FPV). Controlling a UAV in this way provides a more natural feel
(similar to an aircraft flight simulator). Pilots looking for this realistic experience can

also incorporate an on-screen display (OSD) camera system designed to provide



information such as navigation, altitude, reference horizon, flight time, and battery life
(Figure 2). One of the key benefits to having a FPV OSD system is the ability to fly
higher and farther, freeing the aircraft from being within direct line of sight to the person

controlling the aircraft.

Figure 2 Example of an OSD Camera System

With the ability to fly higher and farther, the next evolutionary step is to employ
an autopilot system. The first autopilot systems were developed to assist pilots in
maintaining level flight while traveling long distances. These systems were limited to
using mechanical directional gyroscopes and altitude indicator to control the elevator and
rudder in level flight. Today, autopilot systems are capable of more than level flight such
as coordinated turns and flight path tracking. In essence, a modern autopilot system can
perform all aspects of flight from the moment the aircraft lifts off the runway until the
aircraft touches back down onto the runway.

The autopilot system is considered to have two independent systems connected

together to work as one [7]. The first system is the attitude heading and reference system



(AHRS) with the second being the global positioning system (GPS). The AHRS system
provides information relating the orientation of the aircraft to the inertial frame while the
GPS relates the aircraft’s position relative to Earth. The information generated from the
two inputs feed into the flight director (FD) which has the navigational waypoints stored
into memory. The FD is responsible for processing the input data, relating the input data
to the desired course, and then calculates the control outputs necessary to achieve a
certain heading. The outputs of the autopilot system are control signals, which move the
control surfaces and throttle controls as necessary. Deflection of the control surfaces will
cause a change in the orientation, speed, or both.

Since small UAV’s lack the payload capacity for heavier mechanical sensors,
lightweight low-cost MEMS sensors provide a great alternative solution. However, by
using low-cost MEMS sensor there is a significant increase in the complexity of the
AHRS system because each sensor lacks the ability to output reliable data for orientation
estimation. For instance, a low cost MEMS gyroscope will suffer from gyro bias errors,
which, if not dealt with, will cause integration errors to build over time. The errors can
be severe enough to cause the aircraft to rotate about its axis several degrees per second.
MEMS based accelerometers used on small aircraft can suffer from high noise levels due
to vibrational forces caused by the propeller.

Estimation theory is a form of statistical analysis used to estimate the value of a
parameter (assuming the measurement data has normally distributed error sources). The
use of estimation has many advantages over digital low-pass filtering. For instance,

depending on the sample size, a low pass filter can respond quickly to changes in input



signals or respond very slowly (several seconds). Sensors with large sensitivity to noise
typically result in low pass filters with relatively large sample sizes, and thus slow output
responses.

The significant impact of time delays in the loop response of a system can be
demonstrated through a cruise control example. To begin, let us assume that a cruise
control system is designed to maintain a constant speed for all input conditions. One
method is to apply a low-pass filter using a large sample size. In this case, small changes
in the road will not immediately affect the output response of the cruise control. Instead,
the input response will be averaged out over a given amount of time. The drawback to
this system is apparent if the car begins to travel up a long hill. Instead of maintaining a
constant speed, the car will begin slowing down until the engine starts increasing speed.
The engine will continue increasing speed as the time along the hill increases. However,
when the car starts traveling downhill, the engine will continue averaging data from when
it was going uphill resulting in a continued increase in speed. At this point, the car will
be racing downhill until the averaged sample size catches up, slowing the engine speed.
Now, let us assume that the cruise control has a small sample size and can make quick
changes to the output. This will provide a more appropriate response for the road
environment but may become excessive in some situations.

In the above cruise control example, we see how excessive time delays can affect
the response of the engine’s speed to changes in road conditions. If we instead used
estimation theory, we would first describe the state of the car using the classic equations

of motion and then predict where the car might be during the next time step. Since the

10



car will travel on various road conditions, we can use a sensor to monitor the acceleration
of the car as it travels down the road along with a global positioning system (GPS),
helping us determine the car’s location. The sensor data from the acceleration will be
used to update the equations of motion to reflect changes as the car travels and the data
from the GPS will be used to compare against the predicted location. The errors from the
predicted location and the location of the GPS will be used to update the new predictions
for the next data sample. The above process of predicting the location, and updating with
the GPS, is then repeated continuously as the car travels down the road. The benefit of

this process is the ability to perform quick output changes with long-term accuracy.

2.2 SUMMARY

In this chapter, we defined a small UAV as being an electrically powered, propeller
driven aircraft, with a fixed wingspan of less than 2 meters. This particular aircraft can
be hand launched and operates from a ground controller within visual range. The
payload portion of a UAV includes a variety of systems, such as a radio transceiver,
servo actuation controller, and a flight stabilization / autopilot system. One particular
aspect of the flight stabilization / autopilot system that we will focus our attention on is
the inertial sensors and the orientation estimation algorithms.

The inertial sensors we are interested is a MEMS based accelerometer and rate
gyroscope. The two sensors are used together through a sensor fusion process in an effort
to overcome each sensors weakness. The method used by most is the Extended Kalman

Filter (nonlinear version of the Kalman filter) which is further discussed in Chapter 4.
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CHAPTER 3

AN INTRODUCTION TO MEMS INERTIAL SENSORS

3.1 THE ACCELEROMETER

An accelerometer is a sensor used to measure the specific force (in units of g force) of an
object relative to free fall. The accelerometer accomplishes this by measuring a force
proportional to the rate of acceleration as provided by Isaac Newton’s second law of
motion, “F = ma.” Referencing [9], the most intuitive model used to measure a force
proportional to acceleration is to analyze the spring-mass-damper system shown below
(Figure 3). This system is often chosen because the acceleration can be solved in terms

of the spring constant and displacement.

b
I || Direction of Force
AVAVAVAV/ m ’
k
Inertial Referlence Frame 1%
External Reference Frame 'y

Figure 3 Accelerometer Diagram, After [9]

For the system to work we must be able to measure the relative position between a

movable mass and a fixed frame. By doing this we can define the displacement X,

12



relative to the frame, as being equal to (z-y). This now gives us the ability to define a

dynamic equation as follows,
kz—y)+b(EZ—-y)+mZ=0 (3.1)

Realizing that (z — y) = x we come up with,
bk
itk x=-y= a(t) (3.2)

In this representation, a force in the positive “x” direction will cause the dampener to
produce a force in the negative “x” direction equal to the product of the dampener
constant, and the rate of change denoted as “bx", where x represents velocity. A second
force is also created in the negative “x” direction equal to the product of the spring
constant and the displacement of the spring denoted by “kx".

Since we want to express the acceleration in terms of the spring constant and
displacement, we need to further simplify the equation by analyzing the frequency
response characteristics of the system [8]. To find the frequency response we’ll solve for

the transfer function by taking the Laplace transform of x(t) and a(t) and then evaluate
Lx(s)
(&)
_ b k
s2X(s) — sx(0) — x(0) + —sX(s) — x(0) + —X(s) = —A(s) (3.3)
m m

Here we will set the initial conditions to zero, (x(0) = 0 and x(0) = 0) yielding the

following simplified equation.

13



s2X(s) + BSX(S) + EX(s) = —A(s) (3.4)
m m

X(s) 1

A bk (3.5)

H(s) =

An example for the frequency response of the mass-spring-damper system is shown in

Figure 4.
The magnitude Bode plot
-40 y T " T
n
A
i
g0t P y
s
AN
[ \
F0 4
o
=
<
= -0t 1
2
R
B0F ——pB1 =600 kgfs, overdamped 7
B2 = 200 kafs, crtical damped
— B3 = 100 kg/s, underdamped
G0F ———B3=60 kg/s, underdamped 7
===B3 =30 kg/s, underdamped
===B3=15 ky/s, underdamped
-100 e e :
10" 10" 10’ 10°

w [rad/s)

Figure 4 Amplitude of a mechanical 2™ order system with varying damping

coefficient B [8]

The frequency response is characteristic to that of a low-pass filter where a
resonance is depicted by a sudden rise of the gain at the cut-off frequency. To avoid
resonance, an accelerometer is designed to operate in the flat region to the left of the

resonant frequency. If we call the knee of the frequency response w,,, and then constrain
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the system such that w, < w,, then the system’s magnitude will not have any frequency

dependence. Therefore, the system can be simplified to;

1 m
HO ~H(s) =——=——
0+0+% k (3.6)

At this point, we can now transform the equation back into the time domain resulting in
the desired form where the acceleration is a function of the mass, spring constant, and

displacement.

m
a(t) = —x®) (3.7)

Now that the accelerometer is a simplified function of displacement x(t), we need
to find a way to measure that displacement. In most low-cost MEMs accelerometers, the
capacitive sensing approach is used due to a simpler manufactured design. In this
topology, the geometry of the capacitor plate changes when undergoing acceleration.

The equation for the parallel-plate capacitor is presented as;

A A

Co = €02 = €r (3.8)

where €. = €€ is the relative permittivity of the dielectric, “A” is the area of the
electrode and “x” is the distance between the two plates. As the proof mass undergoes
acceleration, the mass will move relative to the frame, causing a change in displacement

and therefore a change in capacitance.

15



spring RENTINNERSSY
A RN AR
LLLLLL ey SONNNONNORNANN LU
\\\\\Ea\\\\\
T, P
S, SN
Q%‘Q&QE‘«:‘Q&R‘
— —j'fl'l‘fl'p';'ﬁ'- T l'l";'p't‘n'u*q.’t
RN,
B s )
EII C
ra Y
v
Ca Cg out
{E?

[T
]

Tho common plato i connocted to the voltage supply
through the mass and the spring

Figure 5 Parallel Plate Capacitance Sensing [9]

The capacitance for the parallel plate sensing topology (Figure 5) is calculated by;

Y A G
L& T x grxo(1+x1)_1+5 (3.9)
o
Y A G
Z_ETxo—x_erxo(l_xi)_1—5 (3.10)
o
where § = =,
Xo

For this example, the Wheatstone bridge circuit is used to represent the parallel
plate sensing topology. Referencing the diagram below (Figure 6), we will set C; as R4,
C, as R5, and both R, and R, as C,. In this example, we assume that the circuit is

balanced when no forces are present.
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Figure 6 Wheatstone Bridge [27]
If we set § « 1, then the input to output equation becomes;

1
Vout = ESVin (3.11)

The equation for the acceleration now becomes a function of voltage as shown below;

a(t) = —%%5 (3.12)

_om Vour) m
a(t) = _Ex" (2 v ) = _ZXOEA (3.13)

in

Where “A” is the voltage gain (%)

This equation represents the acceleration as a function of time, equal to the displacement
given as a function of voltage.
Other capacitive sensing topologies, such as those incorporated into the ADXLO05

by Analog Devices, use an oscillator circuit and demodulator to measure capacitance.
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The oscillator’s function is to excite the capacitors where a change in capacitance is
detected by the demodulator. The output of the demodulator results in an output voltage

proportional to the change in capacitance (Figure 7).

0 TR H— ,
G ; buffer ! ; _
a) IMHz oscillator % S Vou~AC
c = demodulator f———
150° 1 4FR—T ’

—+¥

-1 —T>
~+Y

1

Figure 7 Capacitance Measurement Block Diagram [28]

3.1.1 ACCELEROMETER SENSOR MEASUREMENTS

Accelerometers are manufactured by a variety of vendors such as InvenSense, Analog
Devices, and STMicroelectronics (Figure 8). These sensors are constructed on silicon
wafers and then wire bonded to the signal conditioning circuitry producing a single

sensor package solution.

LIS331x

3-axis
accelerometer

Figure 8 MEMS Accelerometer Sensors
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The Analog Devices’ ADXL335 accelerometer was chosen for this thesis because

the output signals are a ratio metric analog voltage proportional to the measured

acceleration. The analog signals were desired over the digital output version (Serial

Communication Interface) due to the lack of SCI channels. In addition, this sensor was

available with an adapter board allowing for instant experimentation. Table 1 (below)

lists the functional characteristics of the ADXL335 accelerometer [24].

Table 1 ADXL335 Accelerometer Datasheet [24]

Parameter Conditions Min Typ Max Unit
SENSOR INPUT Each axis

Measurement Range +3 +3.6 g

Nonlinearity % of full scale 0.3 %

Package Alignment Error +1 Degrees

Interaxis Alignment Error +0.1 Degrees

Cross-Axis Sensitivity’ +1 %
SENSITIVITY (RATIOMETRIC)? Each axis

Sensiti\rity at XQL', YQJ', Lot V:=3V 270 300 330 ng

Sensitivity Change Due to Temperature? Vi=3V +0.01 %/"C
ZERO g BIAS LEVEL (RATIOMETRIC)

0 gVoltage at Xour, Your Vi=3V 1.35 15 1.65 v

0 gVoltage at Zour Vi=3V 1.2 15 18 v

0 g Offset vs. Temperature +1 mg/°C
NOISE PERFORMANCE

Noise Density Xour, Your 150 ug/VHz rms

Noise Density Zour 300 ug/VHz rms
FREQUENCY RESPONSE*

Bandwidth Xour, Your® No external filter 1600 Hz

Bandwidth Zour® Mo external filter 550 Hz

Reur Tolerance 32+15% k1

Sensor Resonant Frequency 5.5 kHz

Bandwidth =

2m - 32k - C

Experimentation with the ADXL335 sensor was performed using the Nanocorel2

microcontroller (MCU) developed by Technological Arts [23]. This particular MCU

was chosen due to its small size, low cost, and easy to use Integrated Development

Environment (IDE) software.



Figure 9 NanoCorel2 Evaluation Kit [23]

The circuit interface diagram for the NanoCorel2 and ADXL335 is shown in Figure 10.

3.3V

@ 33V

@ GND

. @ XRate Auto Zero

— @ Y-Rate AZ @

@ Z-Rate  PTAT@ I>
@ VRef VA5 @ —|
@ ST X5 @
® -Acc
@ Y-Acc

® xac MU

Tmin=2us
Tmax=1500us

G—

SCl

JumperforVce=3.3V
Mo Jumper for Vec=5V

Figure 10 Circuit Interface Diagram

3.1.2 ADC CONVERSION OVERVIEW
The output of the accelerometer’s analog signal is measured in units of mV/g, while the
digital output signal from the MCU is in units of g’s (one times the force of gravity). In

order to convert the analog signal into a digital signal, an analog-to-digital converter
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(ADC) is used. The ADC’s function is to sample the voltage at specific intervals to
produce a digital representation of the change in sensor output. To begin, we start with an

ADC conversion equation, which converts the ADC result into units of volts.

ADCResuls (ADCVoltage Scale)
ADCResolution

Analog Voltage Measured = (3.14)

Next, we remove any bias offset errors from the sensor data.

ADCResuls (ADCVoltage Scale)
ADCResolution

Analog Voltage Measured = — (Zerog Bias)  (3.15)

Lastly, we convert to the digital representation of the output signal into the desired units

of force. The result is then divided by the sensitivity parameter outlined in the datasheet.

(ADCResuls (ADCVoltage Scale)

ADCResolution
Device Sensitivity

) — (Zerogy Bias)

Force = (unitsin g") (3.16)

Since we are typically interested in more than one accelerometer measurement, we can

repeat the ADC conversion for each input signal.

(ADCRX (ADCVoltage Scale)

ADCresotution ) h (Zerog Bias)

Accely = + Null
e Device Sensitivity Offset
(ADCRY (ADCVoltage Scale)) _ (Zero Bias)
Accel, = ADCResolution 9 + Null
Y Device Sensitivity Offset
(ADCRZ (ADCVoltage Scale)) _ (Zero Bias)
ADC ; g
ACCQlZ — Resolution + Nulloffset

Device Sensitivity
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Example:
Determine the force acting on the accelerometer when the input ADC converted voltage
signal is 508 (decimal) given the following parameters: ADC = 10-bit resolution, VADC

= Vs = 3V, Zero g Bias Level = 1.35V, Sensitivity = 300mV/g.

(508 (3.017)) — (1.35v)
1023 ,
Force = g = 0.96g's
0.300 9/,

3.1.3 COMPUTING ANGLES FROM ACCELEROMETERS

Accelerometers are designed with their sensing elements “modes” positioned orthogonal
to one another. This arrangement allows measurements to be taken along the X, Y, and Z
sensing axis to determine the orientation of the accelerometer. To standardize
components produced by different manufacturers, the typical convention is to have the Z-

axis point upward as shown in Figure 11.

X

Figure 11 Accelerometer Axis Definition [2]

When placed on a level surface, the Z-axis produces a +1g measurement while the
X and Y-axis produce a 0g measurement. Now, if the accelerometer were to rotate 90

degrees about the Y-axis, then the Y and Z-axis will produce a 0g measurement and the
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X-axis will output a £1g measurement. Similarly, a rotation about the X-axis will cause
the X and Z-axis to produce a 0g measurement while the Y-axis will have a +1g
measurement. If we were to look at just a two axis accelerometer (no Z-axis) and rotate
the sensor about either one of the sensing axes by 180 degrees, then the sensors would
output Og measurements even though the sensor package is upside-down. Therefore, a
dual axis accelerometer is not suitable for orientation applications.

Although two-dimensional accelerometers are not well suited for orientation
measurements, we can still use them to determine tilt angles as shown in Figure 12.

Al
ANIWAV

1 2 3 4

Figure 12 Accelerometer Tilt Angles After [2]

Now, imagine the accelerometer positioned such that the Y-axis was pointing upwards
with the X-axis pointing to the right. If a counter clockwise (CCW) rotation was about
the Z-axis by an angle of 8 degrees then the measurement vectors of the accelerometer
will also result in an angle of 8 as shown in Figure 12 drawing No. 2. The angle theta (6)

can then be determined using the simple trigonometric equation,

1 (AY
0 = tan™?! (E) (3.17)
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where,
Ay =Y Axis Accelerometer Output

Ax = X Axis Accelerometer Output

Following the work provided in [2], a three dimensional orientation follows the

same principle by utilizing Pythagoras’ theorem:

C=+x*+y?

Z=17

/sz +Ay°
1 > (Radians)

0, =tan”
Z AZ

(3.18)

The Pythagorean Theorem can be expressed graphically as shown in Figure 13.

2

Figure 13 Pythagorean Theorem in Graphical Form
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Following the same mathematical process yields the angles for the remaining two axes.
Note: The two remaining angles may not be obvious; however, if you flip the

paper on its side you may be able to better visualize those angles.

0, = tan™! | —Zxom___ (Radians) (3.19)

Azy,out"‘Azz,out

6, = tan™t | —22 (Radians) (3.20)

A2y out+A?z0ut

At this point it’s important to note that the atan2 function may instead be used in
place of the arctangent function allowing the angle 6 to span the interval (-x, ©]. The

angle can then be found using the atan2 with two input arguments (Y and X instead of

Y/X) as follows,

0, = atan2(—A,, A,) (Radians)

0, = atan2(—A, A,) (Radians)

The relationship below defines the criteria for the atan2 function:

( acrtan (X) x>0
X
y
acrtan (;) +n y=>0,x<0
y
) - >
atan2(y,x) = < acrtan (x) & y=0x<0 (3.21)
T
+E y>0,x=0
T
_E y<0,x=0
\undefined y=0x=0
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Note: Since the accelerometer measure a positive 1g that actually points down, we need

to set the A, terms to a positive quantity. Ex: 8, = atan2(A Ay)and 6, =

ZAccel’

atan? (AZAccel’ AJ’)'

3.2 THERATE GYROSCOPE

A traditional gyroscope is a mechanical disk designed to rotate at a high angular velocity.
The properties of rotational inertia and angular momentum are utilized to maintain
rigidity in the inertial frame. We can apply this concept to a rotating disk mounted on
gimbals such that it can freely rotate about any of the three principle axes. By doing so,
the disk is allowed to remain fixed in space due to the conservation of angular
momentum. The gimbaled frame is then mounted to the instrument platform as shown in

Figure 14.

Vertical PR
2 QO
axis O

spring

rate gyro

Figure 14 Mechanical Gyroscope [30]
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When the gyroscope is rotated about its vertical axis, a torque occurs causing the
disk to rotate about its longitudinal axis. This is called “precession torque” and is directly
proportional to the applied rotational velocity.

Gyroscopic precession described best by analyzing the behavior of a “top”
spinning on a flat surface. If the top experiences an external force, such as the force of

gravity, it will begin to rotate about the vertical axis as shown in Figure 15.

Figure 15 Spinning “top” Precession Example [29]

Using Figure 15 as our reference, we can derive the equation for precession angular
velocity in terms of the force of gravity (Mg), the length of the rod (D), and angular

momentum (L) [11]. First, we need to find the equation for torque as follows,

dL
T = i (Mg)Dsin6é (3.22)
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Next, we will want to define precession angular velocity as;

d
w, = d_‘f (3.23)
where dg is;
dL
do = 3.24
¢ Lsin@ ( )

If we substitute the value for d¢ into w, we get the equation for torque divided by Lsinf.
Further simplification yields the desired result in terms of force, distance, and angular

momentum.

_de dL T (Mg)Dsin6 B (Mg)D

= = = = = 3.25
“r = dr dt(Lsinf) Lsiné Lsin® lw (3:25)

The precession torque acts as a force rotating the gyroscope about its longitudinal
axis. Using Figure 16 as a reference, if torque is applied to the spinning disk causing it to
rotate about the vertical (DE) axis (in the direction shown by ®), then the precession

torque vector P will act orthogonal to the angular momentum vector (BA).
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Figure 16 Gyroscope Precession [31]

The mechanical gyroscope is found in many avionic instruments, such as the
gyrocompass and turn coordinator. The precession torque of the gyroscope is used either
to dampen fluctuations (typically associated in magnetic compasses) or to indicate the
rate-of-turn for the aircraft. Other instruments, such as the artificial horizon, have a gyro
mounted on gimbals so that it can rotate freely about any axis. This configuration takes
advantage of the conservation of angular momentum, which causes the gyro to remain

fixed within the inertial reference frame.
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Bank Index Gimbal
Horizon Rotation

Reference
Arm ﬂ

\ o\

Pitch Roll
Gyro Gimbal Gimbal

Figure 17 Artificial Horizon Indicator [32]

An alternative to the classic mechanical gyroscope is a MEMS rate gyroscope,
which is based on the Coriolis Effect. The Coriolis Effect is considered a fictitious force
arising from the choice of a rotating framework of reference. For example, a small
commuter airplane leaving Burlington Vermont, heading to Orlando Florida, will take-off
leaving the Earth’s reference frame. Assuming a perfectly straight flight path, the

airplane will drift off course and eventually end up somewhere over the Gulf of Mexico.
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Figure 18 Coriolis Effect of the Earth

Keeping the Coriolis Effect in mind, the reason for ending up over the Gulf is that as the
airplane traveled south in the inertial frame, the earth continued to spin relative to the
inertial frame. Using Figure 19, to explain the Coriolis Effect more thoroughly, we can
represent the earth using the coordinates X’, Y’ and Z’ and the airplane as x, y and z.

The vector “R” shows the airplane as it travels relative to a fixed reference point on earth.

Z,

x’

Figure 19 Coriolis Effect Diagram [12]
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The equation to describe the force due to the Coriolis Effect is determined by applying
rotational kinematics and the vector cross product [12]. To begin we first define a vector

CGR” aS,
R=ix+jy+kz (3.26)

Next we taking the derivative of each component with respect to time,

dR (Adx_l_ Ady_H;dZ) N di +dj +dfc
—=\l—=+]—+k— —X+—y+—2z
ac  \at ac T ar) T\at Ta T a 207
Rate of c.hange relative Rate of change of the ( ' )
to the fixed reference fixed reference relative
point on earth to the earth's center
Using the notation,
. dx dy .dz
R (1 ) 326
TP T (3.28)

R is set equal to the rate of change relative to a fixed reference point on earth. The term

(Z—:x + Z—Z y+ %z) represents the rate of change of the fixed reference frame relative to

the earth’s center. This can be expressed more compactly as Q X R. Note: Q X R is
another way of saying that the linear velocity due to rotation is simply the radius

multiplied by angular velocity. Substituting in R and Q x R yields;

dR .
(-) = Rparen + (@ X R) (3.29)
dt Space

Next, we would like to determine an expression for the observed acceleration and

the acceleration due to the rotation of the earth. Let us define the operator:
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d()

7=(')+rz><() (3.30)
Plugging (‘;—f)space into the parentheses results in the following,
- (yrax0
di(dE)Space R + (2 X R)) +0x (R + (0 % R))
di( ) (R+(@xR)+(2xR))+ (2 xR) +[2x (2 xR)]
di(%)z(R'+(r’z><R)+(an))+(an)+[Qx(QxR)] o

This equation can then be re-arranged into the following representation;

ASpace = Qgqrth + 2(-(2 X anrth) + [-Q X (-Q X R)] + (d X R)

Coriolis Term Centripital Term Change in (3-32)
Rotation Rate

Since we are trying to solve for the Coriolis force acting on an object, the
acceleration of the earth, centripetal acceleration, and the change in rotation rate terms

can be ignored. Therefore, the force equation simplifies to;

F, Space

ASpace = M =2(02 x anrth) (3.33)

FSpace = 2M(2 X anrth) (3.34)

To a better understand Coriolis Effect; imagine a ball at the center of a spinning
disk (Figure 20). As the disk spins, the ball moves from its original center position

towards the outer edge. If you look at the ball from the inertial reference frame, as shown
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in picture A, it will appear as though the ball travels in a straight line. If, on the other
hand, you were to look at the ball from the disk’s reference frame, the ball would travel

in a curved trajectory as shown in picture B.

2l

Feoriotis ;,/ Ej]
v
"A" "B n

v
Figure 20 Force caused by the Coriolis Effect

The force cause by the Coriolis Effect appears to move the ball along the curved
trajectory and is the essential operating principle of the MEMS vibrating structure rate
gyroscope. Another way to look at Coriolis force would be to use the right hand rule.
Referencing Figure 21, if you point your thumb in the direction of the spin axis, your
index finger in the direction of the drive mode (velocity) then your middle finger will be

pointing in the direction opposite the Coriolis force.
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X Sense mode (28.5 kHz) —2M(Q X v)

(b\; Sense mode (29.1 kHz)

Figure 21 Coriolis force Right Hand Rule

3.21 RATE GYROSCOPE MEMS SENSOR

The rate gyroscope used for this thesis was the InvenSense IDG-500 [25]. This specific
rate gyro uses a proprietary MEMS technology with vertically driven dual-mass bulk
silicon configurations that sense the rate of rotation about the X- and Y-axis (in-plane
sensing). The benefit of this dual-axis gyro is the guaranteed-by-design vibration

rejection and high cross-axis isolation.
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Figure 22 IDG-500 Functional Block Diagram [25]

Performance Summary:

Table 2 InvenSense IDG-500 Datasheet [25]
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SPECIFICATIONS
All parameters specified are @ VYOO = 3.0V and Ta = 25°C. External LPF @ 2kHz. All specifications apply to both axes.
PARAMETER CONDITIONS MIN ™P MAX UNITS
SENSITIVITY
Full-5cale Range At X-0UT and Y-OUT +500 i
At X4.50ut and Y4.50ut +110 s
Sensitivity At X-0UT and ¥-OUT 20 mviFfs
At X4 .5Cut and Y4 .50ut 9.1 mvi*fs
Initial Calibration Tolerance At X-0UT and Y-OUT 5 %
COwer Specified Temperature At X-0UT and Y-OUT +10 %
MNonlinearity At X-0UT and ¥-OUT, Best Fit Straight Line <1 % of FS
Cross-axis Sensifivity 1 %
REFERENCE
Voltage (WVREF) 135 W
Tolerance +50 my
Load Drive 100 A
Capacitive Load Drive Load directly connected 1o VREF 100 pF
Power Supply Rejection VDD=2.7V10 3.3V 1 mviv
Over Specified Temperature 5 my
ZERO-RATE OUTPUT
Static Output (Bias) Factory Set 1.35 W
” N ) With Auto Zero 20
Initial Calibration Tolerance Relative to VREF | |y
Without Auto Zero +250
Over Specified Temperature Relative to VREF Without Auto Zero 50 my
Power Supply Sensifivity @50 Hz 10 “lsechV



3.2.2 ADC CONVERSION OVERVIEW

The output of the rate gyro is an analog signal measured in units of mV/°/s.
However, we need to convert the signal into units of °/s. The analog to digital conversion
used for the rate gyroscope is the same method used for the accelerometer seen earlier in

Sec. 3.1.2 (ADC Conversion Overview).

(ADCResuls (ADCVoltage Scale)

ADCResolution
Device Sensitivity

) — (Zero, Bias) (3.35)

Angular Rate =

Example:

Determine the force acting on the accelerometer when the input ADC converted voltage
signal is 508 (decimal) given the following parameters: 10-bit ADC, VADC = Vdd = 3V,
Zero Rate Output Level = 1.35V, Sensitivity = 9.1 mV/°/s.

(—50%3'30”)) — (1.35v)

=15.35 /
0.0091 Y/, sec
//S€C

Result =

3.3 EULER ANGLES & ELEMENTARY ROTATIONS

The orientation of an object can be described using a sequence of three elementary
rotations (one about each principle axis). The body is fixed to one coordinate system,
which is defined as Xgody, YBody: ZBody, With each elementary rotation occurring about the
body’s axis. Initially, the body is aligned with the fixed reference frame. It then
modifies its orientation after each elemental rotation; these are referred to as “intrinsic”

rotations [13]. The sequence of the elementary rotations is shown using Figure 23.
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ZFixed

ZFixed
Yaw () Rotation about 25,4, axis
ZBody
Body
8 Zgody
A A\ “Body
¢
Pitch ()
5 [V s
> & VEwed — Vrixed
Roll YEody Xpody 4
Xpody / VBoay
Xrived XFived
ZFixed ZFixed
Rotation about ygag, axis Rotation about xg,4, axis
' x"
z Body Body
I
* Body (—\ Cp / "
z .
Body
Vrixea VEixea
—"
9 "
y Body
V'5oay
XFixed <+ Body XFixed

Figure 23 Euler Elementary Rotations

The rotation of an object with respect to a fixed or “global” reference frame is
expressed mathematically with an orthogonal matrix with the determinant equal to one.
In a 3-dimensional space, rotations about the z, y, and x axes (yaw-pitch-roll) are

achieved using the following rotation matrices:

cosy siny O
Ry () =| —sinyp cosyp 0 (3.36)
0 0 1
cosf8 0 —sinf
RY@)=( 0 1 0 (3.37)
sinf@ 0 cos@
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1 0 0
R (¢) = (0 cos¢  sin ¢> (3.38)
0 —sing coso

Any rotation can be expressed as the product of the above three matrices. It is
very important to note the specific order in which the rotations are applied, since the
rotations are non-commutative. For UAV’s, the typical convention is to first rotate about
the z-axis (Yaw), then the y-axis (Pitch), and finally the x-axis (Roll). This rotation
sequence is represented as the matrix product;

R =R, () Ry 2(6) * Ry (9) (3.39)
The complete rotation from the body frame to the fixed reference frame is represented as;

cosyPcosB cosyPsingsind —cospsiny singsiny + cos P cospsin
R =|cosOsiny cos¢pcosyp+singsinysind cos¢sinypsingd —cospsing (3.40)
—sinf cos0sing cos ¢ cosB

The rotation matrix “R” can now be used to map a vector quantity vy, (defined in

the body frame) to the fixed “global” frame v,.

Vg = Rvp (3.41)

Similarly, the inverse transformation is given by the matrix transpose.

vp = Ry, (3.42)
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To track the orientation of an object through time we start with the rotation matrix
at time “t” and then track the rate of change at time “6t”. The expression for the

derivative of the matrix R is written as,

2 = lim R(t + 6t) — R(t)

5t—0 ot (343)

Following the mathematical work of [14], R(t + &t) can be written as the product of two

matrices;

R(t + 6t) = R(DA(D) (3.44)
where A(t) is the rotation matrix which relates the body frame at time “t” to the body
frame at time “t+ot.” Now if we assume that the data measurement sample rate of the
MEMS rate gyroscope fast enough, then we can apply the small angle approximation
such that sin(¢) — ¢, sin(6) — 0, sin({r) — P, and the cosines of ¢, 6, and y become
one. By ignoring the products of angles, the “R” matrix becomes;

1 -y 6
¥ = < yoo 1 —¢>> (3.45)
-6 ¢ 1

Therefore, A(t) can be written as,

A(t) =1+ 6¥ (3.46)
where,
0 —&Y 66
W = ( s 0 —5¢> (3.47)
-850 8¢ 0
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We can now substitute equation (3.46) into equation (3.43) to give,

) . R(t+6t) —R(t)
R = lim
85t—0 ot
~ R(®)(I+8%)—R(t)
lim
5t—0 ot

~ R(t) + R(t)6¥ — R(t)
= lim
5t—0 ot

¥

= R() " lim — (3.48)

For the limit 6t — 0, the small angle approximation is valid and equation (3.48)

becomes,
R =R(t)-Q(t) (3.49)
where,
0 —wp, (1) wpy(t)
Q) = wp,(t) 0 —Wpy(t) (3.50)
—wpy(t)  wpx(t) 0

which is the skew symmetric form of the angular matrix w;,(t). Since the attitude
determination algorithm provides samples of the angular velocity, we can solve the

differential equation R for a single period [t, t + &t].

t+68t
R(t + 6t) = R(t) - expj N(t)dt (3.51)

t

Since we’re integrating over a small change in “t,” we can approximate the integral using

the rectangular rule.
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Rule Ip=f)-(b—-a) (3.52)
t+46t
B=f N(t)dt = 2(t) - (t —t + 6t)

B = 0(t)st (3.53)

We can now solve the differential equation by using Taylor’s series expansion. Let
o = |wp6t|, where w, = [@bx Wby @bz]T and apply the trigonometric functions for

sin(x) and cos(x).

R(t + 6t) = R(t) - exp(B)

BZ 3 B4-
R(t).<I+B+j+§+Z+M>

B B?> 0°B o3B?
= R(t)- I+B+j_?_ 4l
B o ot 1 % ot )
= R(t)-(I+ 1—§+§--- B + ?‘ZJ’E B
RO <I+sin0B+1—cosaB2>
= p pn (3.54)

Since we’re using the small angle approximation, sin(¢) — ¢ and cos(a) — 1 resulting

in the final solution

R(t+6t) = R(t)- (I + B) (3.55)
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3.3.1 NUMERICAL CORRECTIONS

As mentioned in the previous section, the rotation matrix can be expressed

mathematically with an orthogonal matrix whose determinant is equal to one. This

means that any pair of columns (or rows) of the matrix are perpendicular, and that the

sum of squares of the elements in each column (or row) is equal to one. However,

numerical errors can accumulate over time due to sensor measurement errors. This

accumulation of errors can cause the determinant to become greater than, or less than,

one. In addition, the elements in each column (or row) can violate the perpendicularity

property of the matrix.

To maintain the orthogonality property of the matrix, we first express the rotation

matrix as a general matrix “R” with “r” elements. We can then compute the dot product

of the R, and R, rows of the matrix, which should be zero.

"1 T2
R =11 T2

31 T32

R1:

R2=

The dot product is used to compute the error term;

711

T2

[ 713

Error = RT - R, = [r11

43

713
23
T33

T2

|

i3] [

21
22
23

|

(3.56)

(3.57)

(3.58)

(3.59)



Now the error term is used to re-calculate the R, and R, rows;

, Error

Ri =Ry — ( > )Rz (3.60)
, Error

R; =R; — ( > >R1 (3.61)

The next step is to adjust the R; row to be orthogonal to R, and R, by taking the cross

product of R and R;.
R3 =Ry X R; (3.62)
Now that rows R;, R, and R5 are orthogonal, we need to re-normalize the rows

such that the magnitude is equal to one. This can be accomplished by computing the

Taylor’s series expansion, as described in [3].

1

Rinorm = 2 (B3 —Ri-RDR; (3.63)
1 ! ! !

Ry norm = 2 (3 —R3 " R2R; (3.64)
1 ! ! !

R3norm = 2 (3 —R3 " R3)R3 (3.65)

3.3.2 EULER ANGLE COMPUTATION AND SINGULARITY AVOIDANCE
This section will solve for the angles 6, ¢, and {r, which correspond to the pitch, roll, and
yaw angles respectively. Solving for the Euler angles is achieved using the rotation

matrix “R” along with the generalized matrix as shown below.
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cosOcosy singsinfcosyP —cospsiny cos¢psinlcosyp + singsiny
R =|cosOsiny sin¢sindsiny +cospcosy cos¢sinfsiny —singcosyp (3.66)
—sin@ sin¢g cos 0 cos ¢ cos B

1 T2 T3
R=|T21 T2z T23 (3.67)
31 T32 T33

Determining the angle for 6:

The angle for 8 is most easily solved using r3;.
r3; = —sinf (3.68)
Inverting the equation yields,
0 = —sin~1(r3,) (3.69)

Determining the angle for ¢:

The angle for ¢ can be solved using r3, and 735.

T35 = sin¢ cos 6 T35 = €0S ¢ cos O (3.70)

T3, Singcos@

T33  C€OS @ cos B = tang (3.71)

Note that when determining ¢ there are two possibilities for the above equation. If
cos 0 > 0, then ¢ = atan(+r3,/+r33). However, if cos® < 0, then ¢ = atan(—r3,/
—r33) producing the same result as atan(+r;,/+r33). One simple way to handle this is

to use the atan2 function;

¢ = atan2(rsy, 133) (3.72)
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Determining the angle for y:

The angle for y can be solved using r;; and 1,;.

Ty, = cos @ siny 711 = cosBcosy (3.73)

11 cos@siny . (374)
r, cos@cosy any '

The atan2 function can then be used to solve for v as,
Y = atan2(ryq,711) (3.75)

Singularity Avoidance
Up to this point we have developed a way to solve for 8 when 6 # 0. So what happens

when cos 6 = 0? In this condition (corresponding to 6 = i“/z ) the elements

ri1,T21, 32 and ry; become zero and the following results;

¢ = atan2(0,0) (3.76)

Y = atan2(0,0) (3.77)

For this situation, the elements ry4, 54, ', and r33, are not able to determine the values
of ¢ and Y. One way to solve this is to use the remaining elements of “R.”

For the case when 6 = — 1T/2 we can solve the remaining elements using;

T, = —sing cosyp —cos p siny = —sin(¢p + )
T3 = —coSs ¢ cosP + sin¢p siny = —cos(¢p + ) (3.78)

Ty = —sin¢ siny + cos ¢ cos P =cos(¢p +YP) = —1y3
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Ty3 = coS ¢ siny — sing cosP = —sin(¢p +YP) =1y,

Using the equations for 1y, and r;3, we can solve for ¢ as [15],

(¢ —¥) = atan2(ry,,713)

¢ =Y + atan2(ry,,113) (3.79)

Now consider the case when 6 = 1T/2. After applying the sum and difference

angle identity, the remaining elements become;
T, = Sing cosy — cos ¢ siny = sin(¢p — P)

T3 = cos ¢ cosyP + sinp siny = cos(¢p — Y)

(3.80)
Ty = sing siny + cos ¢ cos P =cos(¢p —YP) =13
Ty3 = coS ¢ siny — sin¢ cosyP = —sin(p —P) = -1y,
Using the equation for r;, and r; 3, we can solve for ¢ as [22];
(¢ + ) = atan2(—1y, —113)
¢ = -y + atan2(—ry5, —113) (3.81)

34 SUMMARY

This chapter introduced the mathematical concepts for object orientation. The first
section introduced the MEMS accelerometer and how it can be used for basic tilt angle
calculations. The second section introduced the MEMS rate gyroscope based on the

Coriolis Effect. Both sensors are developed using capacitive sensing technology and
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provide analog output signals. The analog signals are then converted into digital form
using the same conversion process.

The second half of this chapter introduced a rotation matrix used to map a vector
in the body frame to the global frame. Using intrinsic rotations, we performed rotations
by first rotating about the yaw axis, then about the pitch axis and finally about the roll
axis. Once we could relate rotations about the body axis to the global frame, we were
able to discuss a method to avoid the singularity problem. The singularity problem
happens when angles reach £90° causing 0 to be zero. We have now developed the
concepts necessary to perform basic object orientation using the accelerometer and rate
gyroscope MEMS sensors. In addition, we developed the mathematical equations to
track the orientation through time. This chapter concludes with a lab exercise that will

apply the fundamental concepts of object orientation.
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3.5 LAB EXERCISE

The objective of this lab exercise is to introduce the Euler angle rotation matrix.
The lab will begin by asking the student to create three matrices representing the rotations
about each of the principle axes. The students are then asked to rotate the body axis,
using two different rotation sequences, to observe how the final orientation changes. The
second exercise will introduce the student to object tracking by using the small angle
approximation of the rotational rate. The final exercise will build on the object tracking
process to include singularity avoidance. At the end, the student will need to demonstrate
the code for angles exceeding 90° of rotation (about any axis).

Lab Environment

To perform this lab, the student will need a computer with MATLAB software.

Layout
a) The first exercise will require the student to generate the code necessary to
perform a single rotation.
b) The second exercise will elaborate on the first by performing successive rotations
based on data generated by a rate gyroscope.

c) The third exercise will implement a singularity avoidance technique.

351 PARTA

a) Open anew “.m’ file
b) Write a script that will produce a rotation matrix based on the Euler angle
parameters R, (¢), R, (8), and R, ().
c) Determine an arbitrary rotation sequence for;
a. Yaw-Pitch-Roll (y, 6, ¢)
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Example

%Create variables for the Cosine and Sine terms to simplify the math
Cr=cos(roll);  Sr=sin(roll);
Cp = cos(pitch); Sp = sin(pitch);
Cy = cos(yaw); Sy =sin(yaw);

Rx=[1 O 0;
0 cos(pitch) sin(pitch);
0 -sin(pitch)  cos(pitch)];

Ry =[cos(roll) 0 -sin(roll);
0 1 0
sin(roll) 0  cos(roll)];

Rz = [cos(yaw) sin(yaw)  O;
-sin(yaw)  cos(yaw) O;
0 0 1];

Rotation_matrix = RzZ*Rx*Ry

d) Using two other rotation sequences, determine the angles needed to produce the

same final orientation.

Questions:

1) Explain the method used to determine the angles needed.

(Optional) Creating Plots:

You can create plots as a visual reference by using the MATLAB “quiver3” function.

Example

%PFirst define the unit vectors in the vehicle’s frame of reference

x_v =[1;0;0];
y_v=[0;1;0];
z_ v =1[0;0;1];

o_Vv =[x Vviy vz V]; %Convert to quiver3 compliant form
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%(Create the initial plot

figure(1)
quiver3(zeros(3,1),zeros(3,1),zeros(3,1),0_v(:,1),0_v(:,2),0_v(:,3)) %Draw
the frame

%Enter in any initial conditions here

%Note that units must be converted to radians
yaw = 40*pi/180;

pitch = -10*pi/180;

roll = 10*pi/180;

%Perform the rotation using the rotation matrix
x_v1 = XYZ_2Rotation_Matix (yaw,pitch,roll)*x_v;
y_v1 = XYZ 2Rotation_Matix (yaw,pitch,roll)*y v;
z_v1 = XYZ_2Rotation_Matix (yaw,pitch,roll)*z_v;
o vl=[xvliy vliz v1T;

%Plot the response
figure(3)
quiver3(zeros(3,1),zeros(3,1),zeros(3,1),0_v1(:,1),0 v1(;,2),0_v1(:;,3))

3.5.2 PARTB

a) Openanew “.m” file

b) Write a script to perform the following tasks;

Example

a.

Initialize the orientation of the body using the yaw-pitch-roll sequence
used for “Part A.”

Rotate the body using a constant angular velocity about a single axis. The
student must make use of the small angle approximation and must rotate

the body at least 10° about the rotating axis.

=[1
01 o,
00 1J;

yaw = 0*pi/180;
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pitch = 0*pi/180;
roll = 0*pi/180;

Cr = cos(roll); Sr =sin(roll);
Cp = cos(pitch); Sp = sin(pitch);
Cy = cos(yaw); Sy = sin(yaw);

R = [Cr*Cy+Sr*Sp*Sy Cp*Sy -Sr*Cy+Cr*Sp*Sy;
-Cr*Sy+Sr*Sp*Cy Cp*Cy Sr*Sy+Cr*Sp*Cy;
Sr*Cp -Sp  Cr*Cp];

Wx = 0.07; %Gyro Readings (rad/sec) /Pitch
Wy = 0.035; %Gyro Readings (rad/sec) /Roll
Wz =0; %Gyro Readings (rad/sec) /Yaw

Omega=[0 Wz -Wy;
-Wz 0 -WX;
Wy Wx 0];

dt = 0.5; %Update Rate (50Hz)

i=0;

while i < 20
dR = I + Omega*dt;
R = R*dR;

%Numerical Corrections
R1=R(,1);

R2 =R(:,2);

Error = R1*R2;

R1 prime = R1 - (Error/2)*R2;

R2_prime = R2 - (Error/2)*R1,

R3_prime = cross(R1_prime,R2_prime);
%Re-Normalize

R(:,1) = 0.5*(3-(R1_prime™R1_prime))*R1_prime;
R(:,2) = 0.5*(3-(R2_prime*R2_prime))*R2_prime;
R(:,3) = 0.5*(3-(R3_prime™*R3_prime))*R3_prime;

i=i+1;
end

%Euler Angles
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Pitch = (asin(R(3,2))*180)/pi
Roll = (atan2(R(3,1),R(3,3))*180)/pi
Yaw = (atan2(R(1,2),R(2,2))*180)/pi

c) Rotate the body using two constant velocities about two axes.

Questions:

1) Explain the result of the two rotations.

2) If you were to keep the body axis rotation, what would the rotations look like?

3) Using all possible combinations of constant angular velocities, describe (and
sketch) four possible continuous rotations. Hint: Think of typical aircraft

maneuvers.

353 PARTC

a) Copy the code from “Part B” into a new “.m” file

b) Verify the singularity problem by rotating the body axis y-axis (pitch) to an angle
to 90°

c) Modify the script to avoid the singularity problem

d) Verify the script changes by repeating step “b”

Analysis Questions:
1) From what we have learned in this chapter, describe a scenario where it is
appropriate to use only an accelerometer for determining orientation.
2) Under what conditions will the accelerometer not work?
3) Is it possible to use only the rate gyroscope for determining the orientation of an
object? Describe why, or why not.
4) Using the accelerometer and rate gyroscope, is it possible to track accurately the

position of an object over an extended period? Describe why, or why not.

53



CHAPTER 4

AN INTRODUCTION TO SENSOR FUSION

4.1 INTRODUCTION

Sensor fusion is a method to combine different sensors in order to produce a better result
than any one individual sensor’s output. For example, a magnetic compass and
directional gyroscope are two different sensors used for navigation. When fused
together, they provide a navigational heading that is more reliable and more accurate than
what either would produce individually. To understand the technique of using sensor
fusion for the magnetic compass and directional gyroscope, one must recognize the
specific properties of each device. The magnetic compass produces an accurate heading
when determining north, but suffers from needle ‘wandering’ and sensitivity to metal
surfaces. The directional gyroscope is used to achieve rigidity in free space (the ability to
maintain a specific orientation while the platform it is mounted to changes in direction
and orientation). However, a drawback of the gyroscope is the property of precession,
which causes the gyroscope to drift slowly over time due to small internal frictional
forces. We can now see how the magnetic compass suffers from short term wandering,
but benefits from long-term directional stability. The gyroscope suffers from long-term
drift, but benefits from short-term stability in free space. Together, the sensors can

produce a result that has both short-term stability and long-term stability.
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4.2 SENSOR FUSION IMPLEMENTATION

One of the most widely implemented sensor fusion techniques used in both robotics and
navigation, is the Kalman filter. The Kalman filter is described as an “optimal estimator”
for linear dynamic systems. Its recursive properties and ability to create predictions of
the system make it an extremely popular mathematical technique. The predictions of the
system are possible when the error covariances are zero mean, Gaussian distributed and
assumed stationary over time.

The Kalman filter’s ability to make predictions can be broken down into two
primary phases; the “Prediction” and “Measurement Update.” The prediction phase uses
the system’s dynamic model and process covariance error to make a prediction of the
system. The measurement update phase, along with the measurement covariance error,
are used to read the system’s state (specific characteristics such as; location, velocity,
acceleration, etc.). If we compare the prediction with the measurement update, we can
determine the changes necessary for adjustment in the next prediction cycle. Let us
assume that a linear system can be modeled using state space equations with some
amount of process noise error (e.g. a car traveling along an imperfect road). The
measurements taken will also have some amount of noise (sensor errors). Let us look at
an example of a car driving down the road. The Kalman filter’s goal is to make the best
possible estimate of the car’s location at each time interval. The estimate uses a
prediction based on the car’s last known position and speed, as well as the current

measurements of position and speed. By describing the prediction and measurement
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errors as having a zero mean Gaussian distribution, we can show the car’s previous

prediction and current measurement as follows [16];

Measurement (Noisy)

Prediction (Estimate)

~

Figure 24 Prediction and Measurement Distributions [16]

To determine the best possible estimate of the current position, we can multiply the two
Gaussian distributions to form a new Gaussian distribution as follows;

New Position Estimate

Measurement (Noisy)

Previous Prediction (Estimate)

Figure 25 New Position Estimate [16]

The above example simply demonstrates the first cycle of the Kalman filter’s recursive
property; a continuous process of making predictions, performing measurement updates,

and establishing a new position estimate.
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43 THE KALMAN FILTER

To understand the Kalman filter more formally, we will follow the work of [17] and [18].
The following equation were developed using a more simplistic approach where the
majority of the derivations are from the Least Squares Estimation section of [17] and later
combined with the derivation process of [18].

The Kalman filter algorithm starts by describing the value of a variable within a

discrete-time system in the form;
Xk = Fr—1Xp—1 + Gp—qUp—1 + W4 (4.1)
Here xy is the state vector of a process at time k, F;_, is the state transition matrix
(equations of motion), G,_4 is the system input matrix, and wy_, is the associated
process noise (assumed to be zero-mean, uncorrelated white noise with known covariance
matrix Q). Note that the expression “k-1"" simply means the previous “state” of the
system. A more familiar version of this equation is;
X = Ax + Bu (4.2)

The observations of the state variable x, are given in the form;

Vi = Hpxp + vy (4.3)

where yy is the actual measurement of xy at time k, Hy is the connection matrix between
the state vector and the measurement vector, and vy is the associated measurement noise

(assumed to be zero-mean, uncorrelated white noise with known covariance matrix Ry).
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For the Kalman filter to be an optimal estimator, it must correctly model the
system and measurement errors using Gaussian distributions. Therefore, the covariances

of the two noise models are given by;

Q = E[w,wy] (4.4)

R = E[v,v]] (4.5)

where the function E[xyx; | is the “Expected” value of x, which is also the center of the

probability distribution. In mathematical terms, given a random variable X with values

X1, X3, X3, ***, X, With probabilities p,, p, ps3, ***, Pn, the expected value of X is given by;
X =x1P1 + Xop2 + X3p3 + -+ XpPy (4.6)

Since the Kalman filter is based on linear recursive least squares estimation, we

can simplify the derivation process by analyzing the linear recursive estimator as follows;

Yk = Hix + vy 4.7)

Xp = X1 + K (v — HeXy—1) (4.8)

where X, is computed based off the previous estimate &,_; and the new measurement yj.
K is the estimator gain matrix ( Kalman gain) and is what we are trying to determine.
Before we compute the gain matrix K, it is worth looking at the mean of the

estimation error of the linear recursive estimator [17]. This can be computed as;

E(exy) = E(xy — %) (4.9
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where E(Gx,k) describes the error between the true value of the system and the estimated
value of the system. To carry out this expression we will substitute &, into E(ex,k) as

follows;

E(exr) = E(x — %)
= E(x — Ri-1 — Kk — HiRio1))
= E (€xp-1 — Ki(Hix + v — Heie_1) )
= E(€xy_1 — KiHi(x — 2_1) — K vy)

= E(Ex,k—1 - Kka(Ex,k—l) - Kkvk)

= (I — KiHy) E(€xp-1) — Kk E(vg) (4.10)

Equation (4.10) shows that if E(v;) = 0 and E(€exx—1) = 0, then E(e,x) = 0.
Therefore, if the measurement error is zero mean and the initial estimate of x is equal to
the expected value of X, then the expected value of x;, will also be equal to x. In other
words, the estimate of X will, on average, is equal to the true value of x. This is why
equation (4.8) is called an unbiased estimator, regardless of the value for K.

At this point we can turn our attention back onto determining the gain matrix Kj.
Since equation (4.8) is considered unbiased, regardless of the value for Ky.. Therefore,

we must choose the optimality criterion (to minimize) as the sum of the variances of the
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estimation errors at time k. This is accomplished using the cost function J, where J is

defined as;

vk

_eTe, (4.11)
We can now substitute (Ex,k) = E(x — X)) into the cost function as;

J = E[(xy — 221+ - + E[(x, — £,)°]

= B2+ - + )

=E(el evr)

= E[Tr(el cexi)]

=TrP, (4.12)

where Py is the estimation-error covariance. Note that the diagonal of the covariance

matrix contains the mean squared errors;

Elex—1ex-1] Elexex—1] Elexs+iek-1]
Puc = | Elex—1ex]  Elexer]  Elexsiek] (4.13)

Elex-1epr1] Elexejiq] Elexi1€fii4]

Since the trace of a matrix is the sum of the diagonal elements, we can see that the trace
of the error covariance matrix is the sum of the mean squared errors. Therefore, the mean
squared error may be minimized by minimizing the trace of Py, which will also result in

minimizing the trace of Py,. We can use a process similar to the one for the cost function
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J to obtain a recursive formula for the calculation of P,. Using the results from above, we

can write Py as;
P, = E(eyrel,) (4.14)
Substituting in the results for E (e, ;) gives;
Py = E{[U — Ky Hy) €x -1 — Kevie] [+ 17}

= (I — K H)E (€xp—165x_1) (I — K H )T —

Ky E(vrex-1)U = KeHi )T — (I — KeH)E (€3 ,-1vi )KiL +

4.15
KxE (v vi) Ky (4.15)

Looking at the equation for P, we note that €, ;_, is independent of v,. In other words,

the measurement noise is uncorrelated with the error of the prior estimate as shown,
E(cxerr-1) = E()E(€xp—1) = 0 (4.16)
A similar result holds for E(ey,_1vy ), since both expected values are zero. Therefore,
the equation for P, simplifies to;
P = (I = KiHi) Py (I — K HO™ + KR Kig (4.17)

where Ry is the covariance of v,. This equation is now the recursive formula for the
covariance of the least squares estimation error.
The last step is to find a value for K, that makes the cost function as small as

possible. We first need to introduce a few properties of Matrix Calculus. Suppose that

61



“A” s am x n matrix and f(x) is a scalar. Then th

respect to the matrix, can be computed as follows

e partial derivative of the scalar, with

G ]
af aAll aAln
—=| : (4.18)
194, Fy
Next, we can show the partial derivative of a dot product to be computed as;
xTy =x1y1t -t X
a(x"y) [o(x"y) - a(x"y)
ax | ox, dxy,
=Y1tt
4.19
_yT (4.19)
The partial derivative of a quadratic with respect to a vector can be computed as;
An A *
xTAx = [%1 Xn]| : : ]
Aml Amn [ Xn
X117
= [Z_xiAil z.xiAin][ :
l l xn_
(4.20)

= Z xixinj

i,j
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With the partial derivative calculation as shown;

d(x"Ax) [0(x"Ax) 0(xTAx)
0x _l Jdxq dx, l

= lz x]Alj + Z'xiAil z X]An] + ElxiAin l
J l J i

= [z XjAgp z _xjAnj] + [2 XAy ElxiAin
] ] i i

— xTAT + xTA (4.21)

It is important to note that if “A” is symmetric, then A = AT and the above expression

simplifies to;

T
W A _oera (4.22)
dx

The last partial derivative needed before deriving Ky, is the partial derivative of

Tr(ABAT) with respect to “A”. To begin we start by first computing ABAT as follows:

All Aln Bll Bln A11 Aml
ABAT = : oo S :
Aml Amn Bnl Bnn Anl Amn
[Z AyBiAy z AlkBijmj]
Ik jk
= ; ; (4.23)
Z' Akaijlj oo Z Akak]Am]
Ik J,k
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We can see that the trace of ABAT is;

Tr(ABA") = Z Ay By jAij (4.24)
i)k

The partial derivative of the Tr(ABAT) with respect to “A” can be computed as;

[0Tr(ABAT) dTr(ABA™)]
oTr(ABAT) _| 94 o
04 OTr(ABAT) OTr(ABAT)
aAml aAmn

D AyBy+ ) AuBu < ) AyBu+ ) AyBu |
j k j k |

s s I
z AmyByj + zkAmk By - z ApyBrj + zkAmk B,mJ
B j ]

ZjAljBlj Z Al} nj]l [ZRA“‘ By - Z Ay Bkn]l
= s I + s . |
z,AijU Z Am]B ]J Z Amik Bia Ami BknJ
L j k k
= AB" + AB (4.25)
If “B” is symmetric then the partial derivative can be simplified to,
oTr(ABAT
% = 2AB if B=BT (4.26)

At this point we can now solve for Ky.. To help simplify the problem, | expanded out the

terms of Py as follows;
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P, = (I — KxHp )Py (I — K Hi )T + K R Ky

= (Py—1 — Px_1 K Hi ) (I — K Hi )™ + K R K

= Puoy — Peo1 KiHy — Py K Hyg + K Hy P Ky Hy, + KR K

4.27
= Py_y — Py_1KxHy — Py_1 K H, + K (H Po—1Hf, + R KR 4.27)

Note that the trace of a matrix is equal to the trace of its transpose. Therefore, the

expression for P, can be written as;

Tr[Pi] = Tr[Pi_1] — Tr[Pi_1KiHy] — Tr[Po_KF HE] + Tr[Ki (H P HY + Ri)KT ]

= Tr[Py-1] — 2T7[Pecs KiHy] + Tr{Ky (H Py HE + ROKT] (4.28)
T
Now take the partial derivative with respect to K, and recall that % =
2AB if B = BT;
aTT[Pk] T T
K. Tr[Pi_1] — 2T7r[KyH Pe_1] + Tr[Ki (Hi Py H + Ri) K ]
k
4.29
= —2[HyP—1]" + 2[Ki(Hi Pr—1 Hi + Ry)] (4.29)
Re-arranging the terms results in;
aTT[Pk] T
oK. 2(I — Ky Hy)Pe—1(—Hy) + 2Ky Ry, (4.30)
k

where (HPy_,)T = P,_HF.
The final step is to find the value of Ky that will also minimize the cost function J,. This

can be accomplished by setting the above derivative equal to zero and then solve for Ky;
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0 = 2(I — KiHy)Pe—1 (—Hj) + 2Ky Ry,

2Ky Ry, = 2(I — Ky Hy)Py_1Hj,

KRy = Py_1Hf, — Ky HyP_1Hy,

Ky HyPe_1Hy + Ki Ry = P_qHy,

Kk (Rx + HyPy_1H}) = Py, Hf,

_ 4.31
Ky = Po_1Hj, (H P H{ + Rp) ™! (4.31)

In this section, we will now describe the state projection property used by the

Kalman filter. Let us describe the state projection of X, using the following;
Rrr = FRy (4.32)

Recall that F is the system transition matrix. Next, we will define an equation to project
the error covariance matrix into the next time interval, k+1. This can be achieved by

forming an expression for the previous error;
€r+1 = Xi+1 — X1 (4.33)
Substituting in the expressions for x;,, and X, Yields;

er+1 = (Fxy +wy) — F2

= F(xp — Xx) + wy
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= Fek + Wi (434)

Extending the estimation error covariance to time k+1 produces the following;

Pry1 = E(Ex,k+1637;,k+1)

= E[(Fey +wi)(Fey +w,)T] (4.35)
Since e, and wy, have zero cross-correlation, the covariance simplifies to;
Ppyy = E[(Fex +wi)(Fep + wy)"]
= E[Fe,(Fe,)T] + E[w,w!]
=FP,FT +Q (4.36)

At this point, we have completed the basic derivation for the recursive Kalman filter.
The next section will provide a summary of the Kalman filter along with the process flow

diagram.

43.1 KALMAN FILTER SUMMARY
Now that we have expressions for the state estimate Xy, the estimation error covariance
Py, the estimator gain Ky, and the state prediction, we are able to summarize the recursive

Kalman filter as follows:

A. Initialize the state estimate and estimation-error covariance;

%, = E(0)
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Py = E[(x — %) (x — %9)"] (4.37)

If no knowledge about X, is given when the first measurement is taken, then P, = ool.
On the other hand, if the exact value of %, is known when the first measurement is taken,

then P, = 0.

B. After the initialization, and when k>0, we perform the following;

a) Obtain the measurement y,, (assuming yj is given by the equation);
Vi = Hex + vy (4.38)
b) Update the estimate of X, and the estimation error covariance P, by

following the process diagram.

Imitial Estimates ———--——-—----——-—-——————

Kalman Gain

Projected Estimates heasuremenis
State Projection Update Estimate
Updated State
Update Covariance Estimates

Figure 26 Kalman Filter Process [18]
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Each box is given by the following equations;

Kalman Gain

Ky = Py_1Hf (HPy—1H + R)™!

Update Estimate

Xy = Xp—1 + K (i — HiXy—1)

Update Covariance

P, = (I — KxHp) Py (I — K H )™ + K R K),

State Projection

Al ~

Xir1 = PXy

Piy1 = ®PPT +Q

Note that the Kalman gain and the update covariance can have alternate forms as

described in [18], and is summarized as follows;

Kalman Gain

Ky = Py H{ (HPy—1Hj, + Rp) ™!

= P Hi R;*

Update Covariance

Py = (I — KpH)Peo (I — K H )™ + K R KY,
= (P2, + HR ' Hy) ™!

= (I — KxHy)Py—q
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44 LAB EXERCISE

This lab exercise is designed to apply the equations of the Kalman filter to a
classic physics problem using Matlab. The lab will start by modeling the classic problem
of a falling body to verify the equations of motion [19, 20]. Next, we will assume that a
sensor is mounted to the falling object that records position. To make the sensor realistic
we will apply random noise to the measurements and then employ the Kalman filter to
provide an estimate of the falling object’s position as it falls. The true state (measured
data and the filtered data) will later be plotted to see how well the Kalman filter tracks the
true state of the system. The last part of the lab will be to adjust different parameters to
see how they affect the performance of the filter.

Lab Environment

To perform this lab exercise the student will need a computer with MATLAB.

Layout
a) The first exercise will be generating the code necessary to model the dynamics of

a falling object.

b) The second exercise will elaborate on the first by converting the discrete time
differential equations into a single state-space format. This will be used later for
the Kalman filter.

c) The third exercise will be to implement the Kalman filter equations.
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441 PARTA
a) Determine the dynamic equation for an object of mass ‘m’ falling in air.

Start with Newton’s second law of motion:

Fe _ (dv)
=ma=m Tt

Now create the free body diagram;

I Fprag Where,
T Fprag = EpCDsz
I FGTavir}' FGravity =—gm

The total forces acting on the object becomes;
Frotar = FDrag - FGravity
Since the Kalman filter requires the equations of motion to be linear, we must assume
that the force of drag is directly proportional to the velocity [20]. Therefore, we will
simplify the drag equation using the following form;
Fprag = —kv
Note: The negative term comes from the fact that the velocity is negative (falling
downward).
The equation of motion now becomes;
Frotar = —kv — gm

dv

E) =—kv—gm

FTotalzm'(
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dv_ k
dt v—9g

Next, we need to create the discrete time differential equations. To calculate position we
use;

yo e —x)
dt dt

xt ES xt_l + vt_l ' dt
To calculate velocity we use;

av (Ve — V)

dt dt
(Ve — ve-1) _ —Ev—
dt m g

b) Open anew ‘.m’ file
c) Test the equations of motion by creating a simulation with the following
parameters
K =0.25 m=10, TMAX =200, dt = 0.01

Example
x0=200; %initial position
v0=0;  %initial velocity

TMAX=200; %Total Time
dt=0.01; %time sample
time=1:dt: TMAX; %Number of Iterations

%global g m k

g=9.8; %gravitational constant
m=10; %mass of the object
k=0.25; %Drag equation coefficient
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X=zeros(1,TMAX); %Create X History Matrix

V=zeros(1,TMAX); % Create Y History Matrix
X(1)=x0; %Ilnitialize position with initial position
V(1)=v0; %Initialize position with initial velocity

%Note Matlab does not use ‘0’ indexing

%Create the Simulation by solving the equations of motion

%and recording the results for each time step ‘dt’.

for t=2.TMAX
X(®)=X(t-1)+(V(t-1))*dt;
V([O)=V(t-1)+(-(k/m)*(V(t-1))-g)*dt;

end

%Plot the results for position and velocity

figure();

plot(X,'b"); hold on;

title(J'Falling object k/m =" num2str(k/m)]);

plot(V,'r")

legend('x’,'v"); hold off

d) Change the values for both “k” and “m,” using three different values.
Questions:

1) The equations of motion were calculated assuming that the drag equation is linear.
Using the standard drag equation (D = %psz), re-calculate the equations of

motion.
2) Using the new equations of motion, solve the ordinary differential equations using

the MATLAB function “ode45.”
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442 PARTB
a) Openanew “.m’ file
b) Part B is an extension of Part A where the same concepts will be applied, but in a
slightly different format, allowing the Kalman filter to be applied.
c) The first step is to convert the differential equations used in Part A to their
equivalent State-Space form.

Recall that the Kalman filter assumes a discrete time system of the form;
Xg = Fr—1Xp—1 + G—qUp—1 Wi—1

where x;, is the state vector of the process at time k, @ is the state transition matrix
(equations of motion), and w,,_ is the associate process noise. The observations of the

state variable x;, can be given in the form;
Vi = Hixy + vy

where yy, is the actual measurement of x;, at time k, H,, is the connection matrix between
the state vector and the measurement vector, and v, is the associated measurement noise.

Therefore, the discrete time system for the falling object becomes;
Xt = [Ut]

Giving,

Where ‘A’ is the state transition matrix.
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Since,

xt = xt_l + vt—l - dt

k
Ve = Vg — (avt—l + g) ~dt

The state space form becomes;

o P U A

d) Verify the state space equation.

Example

x0=200; %initial position
v0=0;  %initial velocity

TMAX=200; %Total Time
dt=0.01; %time sample
time=1:dt: TMAX; %Number of Iterations

%global g m k

g=9.8; %gravitational constant
m=10; %mass of the object
k=0.25; %Drag equation coefficient
x=zeros(2,TMAX); %Create x History Matrix
X(1,1)=x0; %initialize position with initial position
x(2,1)=v0; %lnitialize position with initial position
u=[0 1] %Control Matrix
for t=2:TMAX
A=[1 dt ;
0 (1-(k/m)*dt)];
B=[1 0;
0 -g*dt];

X(:,t) = A*X(: t-1)+B*u;
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end
figure();
plot(x(1,:),'0);
title('Falling object k/m =" num2str(k/m)]);
e) Provide a printout of the plot using the three different parameters for ‘k’ and ‘m’
from Part A.
Questions:
1) Determine the state-space equations for the mass-spring-damper system shown
below. The output of the system is the displacement (x).

B

Fit)
-

443 PARTC
a) Openanew “.m’ file
b) Create an object “s” whose members are all the important data structures
implemented by the Kalman filter.

a. Create the transition matrix called “s.A”
1 dt

k
0 (1——-dt>
m

b. Create the input control called “s.B” and “s.u”

S.A=
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1 0

s.B 0 —g-dt]
_ [0
su—[1

c. Create the variables for the measurement noise variance and standard
deviation.
Example
MNstd = 12;
MNV = MNstd"2;

d. Create the matrix for the measurement noise error;
_[1 01, .
S.R = [0 1] MNV;

Note: The Matlab function “eye(n)” returns an n X n matrix with 1’s along the diagonal
and 0’s everywhere else.
e. Create the variables for the process noise variance and standard
deviation.
Example
PNstd = 0.4;
PNV = PNstd"2;

f. Create the matrix for the process noise covariance matrix;
_[1 01. :
5.0 = [0 1] PNV;

g. Create the matrix for the measurement connection matrix;
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S.HZ[é (1);

h. Initialize the states using the following;
s.x = [Xo Vol;

1 0

S.P=[0 1

] - MNV;

s.detP = det(s.P);
s.z=[0 0];
c) Openanew “m’ file. This new ‘.m’ file will contain the Kalman filter function.

a. Create a function for the Kalman filter update equations

Example
Function [s] = Kalman_Filter (s)
b. Implement the following equations;

Description Theory Matlab
Kalman Gain | K, = Py_{HY (H P HI + R;)™?! K=(s.P)*(s.H)"*inv((s.H)*(s.P)*(s.H)'+(s.R));
Update X = Rp-1 + K (Vi — HiRpe—1)

$.X = (8.X) + K*((s.2)-(5.H)*(s.X));
Estimate
Update Pk = (I - KRHR)P}(_]_(I - KRHR)T

S.P = (s.P) - K*(s.H)*(s.P);
Covariance + K Ry KT
State g1 = OXy

S.P = (5.A)*(s.P)*(s.A) + (s.Q);
Projection Py = PP ®T +Q
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d) The simulation can be created by using the following example;
Example

for t=2:TMAX

%Start simulation process

tru(t,’) = s(t-1).A*tru(t-1,:)" + s(t-1).B*s(t-1).u + PNstd*randn(2,1); %True state +
noise

s(t-1).z = s(t-1).H*tru(t,:)' + MNstd*randn(2,1); %Create a
measurement
s(t) = Falling_Object_Kalman_Filter(s(t-1)); %Perform a

Kalman filter iteration
detP(t) = s(t).detP; %Keep track of the "net" uncertainty
end

e) Plot the results.
Example

Measurement = [s.z]";
Filter = [s.x]’;

figure(1)

plot(tru(:,1),'b"); hold on;

plot(Measurement(:,1),'r");

plot(Filter(:,1),'9");

title("Falling object Example’);

grid

xlabel('time’);

ylabel('position’);

legend('Actual Position','Position Measurement','Filtered Data’); hold off;
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f)

Falling object Example
T T T

T T T
Actual Position
Position Measurement
Filtered Data

205 T T T

position
3
R

D
=3

I i i i i i
0 20 40 60 80 100 120 140 160 180 200

Assume that your initial guess was not the actual starting position, such as 185

instead of 200. Change the initial state for “s.x’” and plot the results.

Conceptual Questions:

1)

2)
3)
4)

5)

Explain how to determine the variance and standard deviation of a measurement.
Why are these parameters important for the Kalman filter?

Explain how the Kalman gain is calculated.

How does the Kalman gain affect the update estimate?

What does the update covariance matrix do?

Explain what the state projection matrix is doing.
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CHAPTER S

AN ALTERNATIVE SENSOR FUSION APPROACH

5.1 INTRODUCTION

In the previous section, the Kalman filter was described as being an “optimal estimator”
for linear dynamic systems. When applying the Kalman filter in sensor fusion
applications, the filter takes each sensor as an input to the dynamics of the system, and
produces an optimal output for those sensors. The question that | asked myself was to
see if the accelerometer and rate gyroscope sensors could be combined prior to applying
this optimal estimation algorithm.

The basis for proposing that the accelerometer and gyroscope be combined prior
to the Kalman filter stems from my personal observations while characterizing and
understanding the output responses of the accelerometer and rate gyroscope.

Observation 1: Starting with a three axis accelerometer, place it onto a fixed
level surface (such as a table), such that the X and Y plane is parallel to the surface. If a
rotation were to occur about either the X or Y-axis, then the accelerometer would become
affected by the gravitational force acting against the internal sensing elements. The result
is an output measurement proportional to the angle rotated. Now, if | assume that the
gravitational force is constant, with no other accelerations acting on the surface, then |
can extend this observation to a surface traveling at a constant velocity.

Observation 2: If an accelerometer is not under free fall, but subjected to

random accelerations, such that the gravitational force is not easily extractable, then the
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orientation of the accelerometer is not solvable. For example, it is not possible to
determine the sensor’s orientation while applying random accelerations simultaneously
along all three axes of the device.

Observation 3: If a rate gyroscope were mounted to the accelerometer such that
they share the same X, Y, and Z axes, then there becomes a possibility to separate out the
gravitational force vector from the applied accelerations (provided that the sensors are not
in free fall). Now, if we also limit the accelerations to approximately three times the
force of gravity (range of accelerometer used), then rotations will cause a change in the
sensed acceleration.

Problem Statement: Using the above observations, | realized that a possibility
exists to relate the derivative of the accelerometer with the corresponding rate of change
from the gyroscope. In other words, if the two sensors are correlated (meaning that the
behavior of the accelerometer’s derivative is similar to the behavior of the gyroscope),
then the combination of the two sensor measurements can accurately reflect the change in
orientation. However, if the two sensors are weakly correlated (assuming either that a
constant acceleration occurs with no change from the rate gyroscope or that the
gyroscope with no corresponding measures a constant rotational rate changes from the
accelerometer), then the two sensor measurements will not accurately reflect the change
in orientation. In this case, the two sensors are compared through a new algorithm,
resulting in a weighted average of the two sensors. Where the weight is based on the

magnitude of error observed.
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5.2 RELATED WORK

Most research related to inertial sensor fusion techniques focus on either Euler or
Quaternion based orientation estimation using the Extended Kalman filter [1, 4, 14, and
21]. However, the mathematical concepts are complex with most research papers not
providing any intermediary steps to the computations. To address the advanced concepts
used in most papers, [22] had developed an alternative algorithm using basic mathematics
and trigonometry. This simplified approach focused on the accelerometer and rate
gyroscope’s relationship, rather than system dynamics.

In his work, [22] used the concept of initializing the orientation of an IMU with
an accelerometer. He then produced estimates according to subsequent changes of
orientation based on a weighted average of the accelerometer and rate gyroscope. To
accomplish this task, the algorithm was broken down into three main parts;

a. Estimate a new orientation by taking the previous estimate and applying
the integrated result from the rate gyroscope between its last measurement
and the current measurement.

b. Using trigonometric relationships, determine the orientation of the IMU
using the estimate found in part “a.”

c. Calculate a weighted average of the orientation provided by the
accelerometer with that from part “b.”

The final estimate should produce a better result than what the accelerometer or rate

gyroscope could produce independently.
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In contrast to the observations and problem statement provided above, the work of
[22] assumes that the accelerometer produces results affected by noise and cannot be
trusted. In addition, the rate gyroscope is considered the primary sensor. Therefore, its
results are heavily weighted when compared to the accelerometer. Thus, this algorithm is
primarily aimed at reducing the effects of integration errors due to bias errors of the

gyroscope.

5.3 PROPOSED ALGORITHM

The algorithm that | am proposing was developed to “relate the rate of change of
acceleration from the accelerometer with the corresponding rate of change of the rate
gyroscope,” as described by the problem statement.

Prior to developing the full algorithm, | had conducted an initial feasibility study
to analyze the behavior of the accelerometer’s derivative to that of the rate gyroscope.
Referencing Figure 27, the results helped me determine that the problem statement could
be supported. The data shown represents a test condition where the accelerometer and
rate gyroscope were mounted on a test board and subject to random motion along the X-
Axis. This is seen by the large spikes in the accelerometer’s data (showing heavy
accelerations with very little rotations about the Y-Axis). However, there were times
when the test board was subject to rotations about the Y-Axis and data from both the
accelerometer and rate gyroscope showed strong correlation. Note that I had
implemented a 12-point moving average filter to the derivative results of the

accelerometer. The rate gyroscope’s results, however, are presented with no filtering.
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Derivative of Accelerometer vs. Gyroscope
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Figure 27 Accelerometer Derivative & Angular Rate

The result of the feasibility study provided cases where the accelerometer’s
derivative matched the behavior of the rate gyroscope. The periods of strong correlation
represented actual rotation while weakly correlated results represented periods of little

rotational motion.
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5.3.1 DEVELOPMENT OF THE ALGORITHM
The algorithm begins by initializing both the accelerometer and rate gyroscope while
resting on a flat level surface (local reference frame). The conversion from the analog-to-

digital converter (ADC) for the accelerometer is a follows;

(AD CRX (AD CVoltage scale)

ADCresoution ) B (Zerog Bias)

Rypcc = Rx = + Null (5.1)
Kace =X Device Sensitivity Wosfset
ADCr (ADC
( RZ(DC Volta'ge Scale)) _ (Zerog Bias)
RYACC — RY — Resolution + Nulloffset (5.2)

Device Sensitivity

(ADCRZ (ADCVoltage Scale)) _ (Zero Bias)
g

ADCResolution
Rzpcc =Rz = + Null (5.3)
Zace z Device Sensitivity Utlorfset

Example C-Code Conversion:

float IMU_AIN(Byte Channel){ //(ax, Ay, Az, GxX, Gy)

J/float null_offset[5] = {0, O, 0, 0, 0}; //External!
float Bias_Point[5] = {1.6, 1.6, 2, 1.40, 1.34%;
float sensitivity[5] = {0.33, 0.33, 0.22, -0.092, -0.092%;

return ({({(ADC_Rread(Channel)*3.3),/1023)-Bias_Point[Channel])/sensitivity[Channel])}+Nul1_offset[Channel];

Next, we would like to obtain the angles between the X-Z Axis and the Y-Z Axis as

follows,

AxZpoco = Atan2(z, x) (Radians) (5.4)

Ayzpecn = atan2(z, y) (Radians) (5.5)

Note: The results of ‘atan2’ are in radians and will need to be converted into units of
degrees.
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180°) 65

Degrees = Radians (

Example C-Code Conversion:

void Get_ATAN2_angles(void){
int Index=0;
int Position_variable=0;
int sequence=0;

//shift Data
//Positions = 2 (X & Y)
//Buffer size = 3
for(Position_variable = 0; Position_variable <= 1; Position_variable++){
for (Index=0; Index < (Buffer_size-1); Index++){
ATANZ_Data[Position_variable] [Index]=ATANZ_Data[Position_variable] [Index+1];

}

//update
for(sequence=0; Sequence <= 1; Sequence++){
ATANZ_Data[Sequence] [Buffer_size-1] = atanz(-1¥IMU_Sensor_Data[Z_Axis][Buffer_size-1],IMU_Sensor_Datal[Sequence] [Buffer_size-1]);

//Radians to Degrees

sequence=0;

for(Sequence=0; Sequence <= 1; Sequence++){
Radians_to_Degrees (ATANZ_Data[Sequence] [Buffer_size-1]);

#define M_PI 3.141593

/{---- Convert Radians to Degrees---—-
float radians_to_begrees(float R){
return (R*(180/M_PI));

Since the accelerometer data may be corrupted by noise cause from mechanical

vibrations, we can apply a moving average filter as shown;

N-1
1
AXZAccelAVG [m] = N z AXZAcggl [m - n] where {N <m (57)
n=0

N-1
1
AYZAccelAVG [m] = N z AYZAccel [m - Tl] where {N <m (58)
n=0
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Now that the angles for A,, and Ay, are known, we are going to take the derivative to
relate the rate of change of the angle between the X-Z and Y-Z Axes. This can be

accomplished as follows;

dAXZAccel AXZAccel [Tl] B AXZAccel [TL B 1]

1t [n] = It (5.9)
dAYZAccel AYZAccel [Tl] B AYZAccel [Tl B 1]
TEE [n] = T (5.10)

One important aspect of taking the derivative of the accelerometer-derived angle is the
magnitude of the noise. The noise is actually how the algorithm determines if the
accelerometer data is usable. In the ideal situation there would be very little to no noise
after taking the derivative. This would provide an accurate correlation between the
accelerometer and the gyroscope. However, if there were a lot of noise then the rate

gyroscope would take over, as it is not as sensitive to vibrational noise.
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YZ-Accel Derivative vs. Rate Gyroscope
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Figure 28 YZ-Accelerometer Derivative vs. Rate Gyroscope

The gyroscope readings are converted from ADC values into degrees/second in the same
way the ADC values for the accelerometer were converted to units of force (only the X

and Y-Axes are needed).

(AD CRX (ADCVoltage Scale)

— (Zero, Bias
=R, = ADCResolution ) ( g ) + Null
X Device Sensitivity Offset

(5.11)

(AD CRy (ADCVoltage Scale)

ADCResolution
Device Sensitivity

) — (Zerogy Bias)
+ Nulloffset (512)

RYGyro = RY =

The presented algorithm uses the direct integrated results from the previous and current

measurement as follows;
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IXGyro = (RXGyro [n] - RXGyro [Tl - 1]) ) At (513)

IYGyro = (RYGyro [Tl] - RYGyro [Tl - 1]) - At (514)

The final steps for the algorithm are to relate the rate of change of the X-Z and Y-
Z angles from the accelerometer to the rate of change from the rate gyroscope. The first
step is to produce a ratio based on the rate gyroscope’s measurement. This will
determine how well the accelerometer angle measurements are correlated. For instance,
when the gyroscope readings match that of the accelerometer, the ratio will become one
half, and the final output will have an equal contribution from both sensors. If the
accelerometer readings are much smaller than the gyroscope, then the ratio will become
one, and the algorithm will rely more heavily on the accelerometer results. If, however,
the accelerometer results are much larger than the gyroscope, then the ratio will tend
towards zero, causing the algorithm to rely more heavily on the gyroscope results. Note:
since the Y-Z angle is the angle rotated about the X-axis, the Y-Z angle will be combined
with the X-axis rate gyroscope reading. Similarly, the X-Z angle will be combined with

the Y-axis rate gyroscope reading. The ratios are calculated as follows;

|RXGyro
Fxratio = (5.15)
|RXGyr0 + |AYZAccel|
_ [ 5.16
YRatio — .
" |RYGyro + |AXZAccel| ( )
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The two sensors are now related using;

Fx[n] = (FXRan-o 'AYZAccez) + [(1 - FXRatio) ) (FX[n — 1]+ IXGyTO)] (5.17)

FY[n] = (FYRatio .AXZAccel) + [(1 - FYRatio) ) (FY[n -1+ IYGer)] (5.18)

The output will still have some high frequency noise, and should be filtered to represent
smooth transitions in orientation. A simple moving average filter can be applied to

adequately reduce system noise without causing a considerable lag in the system’s

response.
1 N-1
Fx[m] = Nz Fx[m —n] where {N <m (5.19)
n=0
1 N-1
Fy[m] = Nz Fy[m —n] where {N <m (5.20)
n=0

54 LAB EXERCISE & EXPERIMENTAL RESULTS

The alternative sensor fusion approach described above was based on observations while
experimenting with the inertial sensors. This section describes how the experiments were
created, and how the described algorithm was first implemented.

As mentioned in 3.1.1, the hardware used was the Technological Arts
NanoCorel2 module utilizing the Freescale 9S12C microcontroller (MCU) [23]. The
code developed, was written using the C programming language. The integrated

development software used to program the MCU was CodeWarrior.
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Figure 29 NanoCorel2 module MCU

The inertial measurement unit (IMU) used was a five degree-of-freedom (5 DOF)
breakout board developed from SparkFun Electronics [24]. This board consists of the
ADXL335 triple axis accelerometer and dual axis IDG500 rate gyroscope. This specific
board was particularly useful because the output signals were ratio-metric analog
voltages and allowed changes to be made to the filtering circuit. For instance, the first
IMU used for experimenting had an incorrectly designed filter circuit for the rate
gyroscope. The original configuration produces angular rate signals that were very
difficult to integrate, leading to false assumptions about how the rate gyroscope operated.
It was not until another IMU was implemented that a clear distinction was made between
the two rate gyroscopes. Research of the original IMU’s rate gyroscope revealed a

design error of the filter circuit. This explained the differences between the two.
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Figure 30 SparkFun 5 DOF IMU

The IMU was connected to the MCU’s docking module’s signal extension connector (as
shown in the diagram below). With the IMU connected to the MCU, code could then be
written to test for proper operation of the IMU. To help determine that the hardware was
working properly, the MCU was used extensively in a special mode of operation called

“Real Time Background Debug Mode.” This allowed the user to step though parts of the

code and analyze the data result registers.
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RX @ @] VsS @ GND
oRT |@ @ RSt ® X-Rate Auto Zero
vss @ @ v — ::2;: ‘:;T: L
+7.2V ANO |@ @/ PEO @Rt iz @
AN |@ @) PEL ® T X5 @ 7
= ANZ @ @) PT7 @ z-Acc Tmin=2us
i AN3 @ @ PES ® VA Tmax=1500us
AN: @ @ PES ® xrce MU
.. ANS @ @ PEZ
ANG @ @ PE3
ANT @ @ PE2
SCl NS @ @ PEL
pvz @ @) PED
PM3 @ @) PO
pr2 @ @) P
NC @ @) N
NC @ @ NC
Jumperfor Vee=3.3V NC @ @) NC
No Jumper for Vee=5V ne @ @) ne

Figure 31 MCU and IMU Connection Diagram

After the initial functional checks (to ensure that the MCU was able to monitor the IMU)

the next step is to run the MCU in “Real Time” mode. This allows the MCU to send data
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along the RS-232 serial communication interface (SCI) to the host computer. The data is
then sent continuously to the computer’s hyper-terminal to record information from the

IMU to be analyzed later.

54.1 LAB EXERCISE PART 1-PROGRAMMING THE MCU
1. Navigate to the directory with the lab exercise folder.
2. Click on the “Code Warrior Project” (under the “Type” heading) to launch the
application.

Example: The figure below shows the Code Warrior Project to be “Test Project.”

"

MName Date modified Type Size

J bin 3/20 File folder

J emd f3/20 File folder

J prm f3/20 File folder

| Sources 9/3/2012 1.30 PM File folder

J Test_Project_Data 9/3/20131:30 PM File folder
|| C_Layout.hwl 2/25/2013 822 PM HWL File 1 KB
|| Default.mem 6/15/2004 4:46 PM MEM File LEE
£ | Full_Chip_Simulation 2/25/2013 9:55 PM Configuration settings 2KB
£k HCS12 Serial_Menitor 7/17/2013 8:47 PM Configuration settings 2 KB
Test_Project 7/1/2013 4:25 PM CodeWarrior Project 58 KB

3. Once CodeWarrior has opened up the project, click on the “Debug” button to

program the microcontroller.
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Freescale CodeWarri

File Edit View Search Project ProcessorExpert Device Initialization Window Help
AEEsEso-<xhBAANFEER 3N E R
e
Lab_Excercice_1.mcp I
&~ {} v~ M.~ [~ o~ Pah: |C\User
HC512 Serial Monitor -
I[P, Ji By $ % Minclude <hidef h> e ="
f f #include "derivati .h"
Files |L|nk Drderl Talgetsl N #iﬁglﬁdz "m:f}];‘_fﬁ"lve
- = #include "stdlib. h"
¥ | File | Code | Data |9 [: Finclude "Common h"
W 0 0 s == #include "ADC h"
W 1] 0= = #include "CLK . h"
W u] o« = #include "SCI . h"
w i} 0« = Finclude "RTI . h"
w o 0« = include "PTE. h"
w 1] 0« =
W 1] 0=« =
w a 0« =

4. The “True-Time Simulator & Real-Time Debugger” should now be open. Press

the “GREEN” arrow to start the program.

NN L KRSAED LU

| Real-Tome Uebogger CAU

|Sl@] i|u]e] eie] ~|a||elel~] @
B < o L @Y | B aneviy IR AR )
€\ Userr ol Daoumerti\Thest Lab € emcuer’ L Lee &) —n
. .
void satajveid) (M TO4E JIR CxCOtd |
04D ASDCT 0239
04D B el 1abs = QutOdD
1 CO4Y CIR  €x2034
R TR w0
€088 L Ox00)9 <
FADC_EX ()2 = 3
Serve_Exarle(): B e leTeTa!
Lrablelacerrencar W 7
Bl pracecn farara||® 9 A 9.9 0
— - b 4 o XX °
1] coas pefooes meace or
masn () & s [0 oo [sminine
cCoely -
e PR |
T
wanc Ao St Gobad Aty
@ Main Mesu <)00> arzay(¢] of array(3d) of sigeed char ~ 000040 00 00 00 2005 €O 00 00  sui uas -
Meza Eztzies 0 izt § Jljoccoee o2 co 0o 00 20 00 02 1
S Laser <€ array[€] of »igued char DO0050 00 G0 00 00 00 00 00 %0
B Hal: Messege <200 arsay[l0) of sigoed char - 00008 00 G0 00 02 €O 00 00 O
T —a -
g
.
LI

True-Time Simulator & Real-Time Debugger
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Note: A “Connection...” warning window may appear if the target (MCU) has code to
re-configure the clock speed and thus is no longer synchronized to the computer. If this
occurs simply position the “Load/Run” switch to “RUN” and then press “RESET” on

the project board.

Connection ... @

The target cannot be accessed because the target does not respond to
! % communication requests!

This may have several reasons:

- The target is not powered

- The serial cable is not connected properly

1 - The communication parameters are not set correctly (baud rate)
- The target application:
I - may have been started immediately after reset

- is running with interrupts disabled

- run out of control (e.g. stack overflow)

- changed the settings of the communication port
You need to reset the target to activate the monitor again!

Please press the reset button of your board or cycle power!

5. Position the “Load/Run” switch to “RUN” and then press “RESET” on the project
board.

6. Close out of the “True-Time Simulator & Real-Time Debugger” window.

7. Open the serial communication program installed on the computer.

Note: The Tera Term terminal emulator was used to communicate to the
serial communication interface port, as Windows 7 doesn 't have a

HyperTerminal application installed.

8. Configure the Serial Port as follows:
a. Locate the serial port connected to the project board

b. Under “Set-Up”, select “Serial Port” and set the following
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i. Baud Rate: 38400
ii. Data: 8 bit
iii. Parity: none
iv. Stop: 1 bit

v. Flow control: none

C. Press “OK”
9. Press “RESET” on the project board to restart communication. Once the board
starts communicating, a “Main Menu” dialog should show up similar to the
screenshot below;

"

p— T E—

£ COM3:38400baud - Tera Term VT [0
— . —

IFiIe Edit Setup Control Window Help

MAIN MENU

B. Halt
1. Get RAW Senszor Data

; |

Example Main Menu Dialog

54.2 LAB EXERCISE PART 2-DATA COLLECTION
1. At this point, the “Main Menu” should be displayed on the serial terminal. Before
collecting data, the sensor will need to first be “zeroed” using a fixed level
surface.
2. With the IMU sensor positioned on a flat level surface (not subjected to any
movements), select the option to “Initialize”, “Null”, or “Zero” the Sensors.
3. Once the sensors have been initialized, select the option “Get RAW Sensor Data.”

The MCU should immediately start filling the terminal screen with data. Allow
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the data to accumulate for approximately 10 seconds. The data will appear

similar to the screenshot shown below.

-

¥ COM3:38400baud - Tera Term VT = | = e
File Edit Setup Control Window Help
E-DuE 0o -JnE o -JuE- 3o -JuE o JuE-JuE- 0 JuE-f JuE-30f JuE-Duf JuE-JuE- 0 JuE-f-JuE-Jef-JuE-Dnf-Ju-DuE ool "
MAIN MENU
B. Halt
1. Get RAY Sensor Data
B.1A7 A.A48 —A.BBA —1.595 —12.58
B.887 B.868 B.814 -2.658 -11.87
B.887 B.868 -B.880 —1.595 —12.58
B.0897 B.868 A.814 -1.949 -12.58
B.@%7 A.A58 B.A14 -1.949 —12.58
B.868 B.868 -B.880 —1.94% —12.58
B.187 B.848 -B.680 —1.949 —12.22
B.0887 B.868 B.@814 -2.658 -12.22
B.187 A.A58 B.A14 -1.949 -11.16
B.868 B.868 -B.880 —1.949 —11.16
B.0868 B.868 A.@814 -2.658 -11.87
B.187 B.837 A.814 -1.949 -12.58
B.@87 A.A58 B.@A14 -1.949 —11.52
B.887 B.858 -8.880 —1.94% —12.22
B.@877 B.868 -A.880 —1.595 —12.58
B.@877 B.868 BA.814 -2.658 -12.22
B.B6E B.A68 —A.AAA —1.949 —11.52 i

. .

Example Data

4. After the 10 seconds have passed, press “0” to stop updating the sensor values.

5. Since the data should have all similar values, we would like to record data of the
IMU performing some kind of motion or rotation. Clear the screen on the serial
terminal (typically under the “Edit” option at the top). Next, click on the option
“Get RAW Sensor Data.” After the data begins to update, wait approximately
one second and then rotate the IMU board along any axis between £70 degrees of
rotation. After about 8 seconds, position the IMU back to the level surface and
avoid any further movement for an additional 2 seconds.

6. Press “0” to halt the data.
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7. Go to “File” and then “Disconnect” to avoid forgetting to disconnect the SCI port

when re-downloading code onto the microcontroller.

5.4.3 LAB EXERCISE PART 3 -DATA ANALYSIS
The data analysis portion of the lab experiment originally used Microsoft Excel,
however, Matlab can instead be used. For this portion of the lab, we will be using Excel.
1. Copy the data from the HyperTerminal and paste into MS Excel.
2. To separate the data into their respective columns, click on the “Data” tab and

then click on “Text to Columns.” Follow the instructions using space delimited.

m Home  Inset  Pagelayout  Formulas | Data | Review  View
: T = £ . RIE @rg e
Y iE) 5 A A _gj(onnemons ﬂﬁ { T‘ gg j j g&p ﬂj AJ ﬁJ
@ E] | N e 2l ‘ =5 &40 = B & E T @

From From From FromOther  Existing | Refresh H Sort | Filter 7 Textto | Remove Data  Consolidate Whatdf | Group Ungroup Subtotal
Access Web  Tedt  Sourcesw  Conmetions | All» = 7 Advanced | Colymng Duplicates Validation - Analysis™ | - =
Get Bxternal Data Connedions Sort & Filter Data Tools Outline

3. Next, space out the columns for equations to be added.

Example

For the Accelerometer Data, Fusion Data and Rate Gyroscope Data;

Yace FUSION ate eyro

Data  UnitConversior ATAN?  Rad-Deg  AVG Derivative AVG Integral Acc+Gyro VG Data  Unit Conversion Data  Unit Conversior Integral PW Integral
502 Q0929 00997 57106 -5.7106 0 0 571059 10000 0.0000 -5.71059 -5.71059 622 09286 40 2508960573 -2.50896  7.8853E-07
502 0099 00067 ST S8 0 0 571059 10000 0.0000 -5.71059 -5.71059 622 0.9286 91 179211469 -249319 0.014337706
503 D0BL Q0B 5660 51669 74200 AR 565 00619 (09381 -5.66352 -5.66352 621 09189 Q1 -L792114695 -247742 0014337706
502 0099 Q108 S8 55067330800 330807 SE% 00511 0.0489) -5.65855 -5.68581 620 09091 41 -17921146% -246165 0014337706
502 0099 010072 STAS 57708 306376 30RITEL SN 03677 0.6323) -5.69081 -5.68087 621 09189 41 -1792114695 -2.44587 0014337706
501 D06 0106 61 541673351 335309 S 00311 09689 -5.68635 -5.67481 620 09091 40 -1075268817 -241433 0028674624
502 D099 Q00 SES 58055 173MIN 730054 5 00616 (09384 -5.68578 -5.68037 619 0.8993 Q1 1792114695 -2.39856 0014337706
503 00831 009114 52220 57189 33665753 3366573 5.1 00505 0.0495 56738 55842 620 09091 41 -17921146% -2.38279 0014337706
502 Q0929 00097 57106 57189 -2441956 -24.41956 571059 00684 09316 -5.66356 -5.67739 622 09286 Q1 1792114695 -2.36702 0014337706
503 00831 009114 52220 56578 244195 24419 52202 00684 0.9316 -5.64981 -5.66825 620 09091 41 -17921146% -2.35125 0014337706
502 Q00 000072 STH09 57333 2743671 -27A367L 577094 00613 09387 -5.64147 -5.60707 621 09189 41 -1792114695 -2.33548 0014337706
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Note: The gyroscope data has a column to plot the integral, where the algorithm only
uses the integration results for each time step.

4. Apply the equations described in the proposed algorithm section (section 5.3.1).

Example

a) Convert the ADC Hex number into units of force (Y-Accel and Z-Accel):

Clipboard ra Font Alignment
.4 - X « £ || =(((F3223*2.3)/1023)-1.65)/0.33]
E F G H | il [ L Il ]
' aco
Oata Unit Canwersion ATAMNZ  Rad-Oeg  AVS Derivative  &AW5 Integral
1 5051 =((F3223" 3.3 -0.035 -2 1787 -2 1787 u] u] u]
05 -0.034Z -0.0358 -2.2026 -2.20267-0.85422 -0.85d422 -0.024
205 -0.0342  -0.038 -2.2026 -2.20267 u] 0 -0.029
505 -0.03d2  -0038 -2.2026 2 -22026° u] 0o -0.024
S05 -0.0342  -0.035 -2.1553 -z1553" 169009 169003 0.0234
S0 -0.0342 -0.035 -2.1553 -2.1553" u] 0 00234
Font Alignment Number Sty
A R :{{{T3223*3.3)f1[]23)—1.?jf[].33|
K L M N 0 P Q R S T U ')
FUSION Zacc REY
arivative AVG Integral Acc+Gyro AVG Data Unit Conversion Dat
0 0 0 1.0000  0.0000 -2.17868 -2.17868 [ 619)123)-1.7)/0.33
1.8542174 -0.8542174 -0.02392 0.8219 0.1781 -2.20191 -2.20151 618 0.8895
o 0 -0.02392 1.0000 0.0000 -2.2026 -2.2026 613 0.8895
0 0 -0.02392 1.0000 0.0000 -2.2026 -2.19645 618 0.8895
69009075 1.69009075 0.023404 0.8562 0.2438 -2.17154 -2.159466 620 0.9091
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b) Calculate the angle using ATAN2:

- - o @ uear v seler
Font Alignment Number Styles Cells Editing
K :ATANZ(U_’-ZZ},G}ZZS)‘
F G H | ] K L M N (o] P (o] R S T u
Yacc FUSION Zacc
Data Unit Conversion ATAN2  Rad-Deg AVG Derivative AVG Integral Acc+Gyro AVG Data Unit Canversion
508 -0.0342 :ATANZ(L! -2.1787 -2.1787 o 0 ] 1.0000 0.0000 -2.17868 -2.17868 619 0.8993
508 -0.0342 -0.03844 -2.2026 -2.2026 [ -0.8542174 -0.8542174 -0.02392 0.8219 0.1781 -2.20191 -2.20191 618 0.8895
508 -0.0342 -0.03844 -2.2026 -2.2026 I [} 0 -0.02392 1.0000 0.0000 -2.2026 -2.2026 618 0.8835
508 -0.0342 -0.03844 -2.2026 -2.2026 [ [} 0 -0.02392 1.0000 0.0000 -2.2026 -2.13645 618 0.8835
sng -nn2a7 _nnaTen ERLLE _718m271 rannan7s 1 RannanTs N Ar2a04 NRSAY N 2A22 7 1TISA 7 1Q4AR A nanat

c) Convert from radians to degrees:

Joard I Faont Alignment
hd x W J =DEGREES{H3223)
F G H | il k. L [

Yaco

Data Unit Conversion ATANZ  Rad-Deq  AVG Derivative  AVE Inteqral
505 —D.DS42= —D.DSBFDEGF!EEE! -2.1787 1] 1] 0
05 -0.03d2 ~-0.036 -22026 -Z.20267-0.85422 -0.85422  -0.024
508 -0.0342 0038 -22026 -z2026° 1] 0 -0.024
505 -0.0342  -0.038  -zz026  -zzozg” 1] o -0.024
S05 -0.0342 -0.03% -21553 -218537 169009 1.69003 0.0234
e Arman A Ame - e BTy - A A Amma

d) Awverage the accelerometer derived angle:

Clipboard P Font Alignment
4 X ¥4 e :SUF\."'II:|3223:|323i];"121
E F G H I i) K L 5] ]
Y aco
Dlata Urit Corwersion ATANZ  Rad-Deg  8VG Derivative  AVG Irtegral
G082 -0.0342 -0.038 -21v87| -2.1787 a [i] a
508 -0.0342  -0.038| -2z2026| -Z.20267-0.85422 -085d22  -0.024
508 -0.0342 -0.0538 -22026| -220267 1} 0 -0.024
508 -0.034z2 -0.038 -22026| -z20267 a 0 -0.024
508 -0.0342 -0.038| -21553| -215537 163003 163003 0023
508 -0.0342 -0.038 -21553| -215537 1} 0 00234
508 -0.0342  -0.038| -2178T| -2.17577-0.83567 -0.83567 1}
507 -0.0440 -0.049] -2&30| -283107-23.2972 -23.2972 -0652
508 -0.0342 -0.038| -22026| -22026" 22443 22443 -0.02d
508 -0.0342  -0.038] -2z026| -z20z67 1} 0 -0.024
508 -0.0342  -0.038 -21787] 21787 " 065422 085422 1}
508 -0.032  -0.03a -2 a7l -sumnEzz] a ] 1}
508 -0.0342 -0.033 -21853 -2.2372 083587 083537 00234
G082 -0.0342 -0.038 -21787 -2.2352 -0.83587 -0.83537 a
508 -0.0342 -0.033 -21/7  -2.2332 1} 0 1}
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e) Compute the derivative of the data:

4 I =t|156|3—|1659],-"D.DZI
E F G H | 1 K L M M
Yacc

rsion Data Unit Conversior ATAN2  Rad-Deg  AVG Derivative AVG Integral
D635 502 -0.0929  -0.09967 -5.7106 -5.7106 0 0 -5.71059
0538 502 -0.0929 | -0.09957 -5.7106 571067 0 0 -5.71059
0733 503 -0.0831 -0.09018 -5.1669 -5.1EEE|=(IIEED-I1§ 27.182211| -5.16685
0733 502 -0.0929 -0.1018 -5.8326 -5.8326| -33.28074 -33.28074 -5.B3256
0831 502 -0.0929 -0.10072 -5.7709 -5.7708 '3.0813762 3.0813762 -5.77094

m aaamF omm e o m———— e

f) Convert the ADC Hex number into units of angular rate:

W X ¥ Z

Xgyro
Data Unit Conversior Integral PW Integral

» VR :{[i“.“d'1659*3.3]flﬂ23]-1.35]}’-0.0045‘
P Q R 5 T U U
Zacc
AVG Data Unit Conversion
1.0000| -5.71059 | -5.71059 622 0.9286
1.0000| -5.71059 | -5.71059 622 0.9286
19381 -5.66352 | -5.66352 621 0.9189

LT R o Y R T

o

A orna

g) Calculate the integral of the angular rate:

422 -1.508960573 -2.508%6 7.BBO3E-07

4211=(({W1659+3.3)/| -2.49319 0.014337705

421  -1792114685 -2.47741 0.014337706

ana A TARAAACACN . A AFAST A A ANSTTE

Font Alignment Number
¥4 S =Y1558+:}(1559+2.5EIB]*D.I322|
! Q R 5 T u v W X ¥ z
Zacc Xgyro

AN Data Unit Conversion Data Unit Conversior Integral PW Integral
000 -5.71059 -5.71059 622 0.9286 422 -2.5089605731 -2 508961 7 BBS3E-O7
000 -5.71059 -5.71059 622 0.9286 4211 -1.7921146951)°0.022 10.014337706
3381 -5.66352 -5.6G6352 621 09180 421 -1792114695 -2.47742 0014337706
}MB9 -5 65855 -5.68581 620 090931 4721 -1792114695 -2 46165 0014337706

621 09139

3323 | -5.69081 -5.68087
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h) Calculate the integral of each time step (no accumulation of data):

Font Alignment MNumber
£ || ={x1659+2.509)%0.02]
Q R 5 T u v W X ¥ z
Zacc Xoyro

ANVG Data Unit Conversion Data Unit Conversior Integral PW Integral
71059 -5.71059 622 0.9286 422. -Z.SDSBEDSTSI-Z.SDSHE 7.8853E-07
71059 -5.71059 622 09286 4211 -1.?921145951-2.49319':(3{155%2.%"
36352 -5.66352 621 0.9189 421 -1.7921146%85 -2.47742 0.014337706

i) Perform the sensor fusion steps by calculating the ratio:
F rurnt Augrimen mumoer ey ey

X v £ || =(ABS(X1659))/((ABS(X1653))+ABS(L1659))

K L M N 0 P Q R 5 T U v W X ¥ z
FUSION Zacc Xgyro

Derivative AVG Integral Acc+Gyro AVG Data  Unit Conversion Data  Unit Conversior Integral PW Integral
7106 0, 0, -5.71058 10000 0.0000 -5.71059 -5.71059 622 0.9286 422, -2508860573 -2508% 7.8353E-07
7106" DI. 01-5.?1055‘ |L1655‘)) i 0.0000 -5.71059 -5.71059 622 0.9286 421I. -1.7921145951-2.49315‘ 0.014337706
1668777.182211 27182211 -5.16695 0.0619 09381 -5.66352 -5.66352 621 0.0189 4210 -1792114695 247742 0.014337706
8326” -33.28074 -33.28074 -5.83256 0.0511 09489 -5.65855 -5.68581 620 0.9091 421 -1.792114695 -2.46165 0.014337706
770873.0813762 30813762 -5.77004 03677 06323 -5.60081 -5.68087 21 0.9189 421 -1.792114695 -2.44587 0.014337706

r

4416 -33.53319 -33.5331% -6.4416 0.0311 09689 -5.68635 -5.67481 620 0.9091 420 -1.075268817 -241433 0.028674624

PRI S e JEJEYSEY Y [ —— =l - - — —l - m———

J) The accelerometer weight is 1-Ratio:

X « & || =1-01659

K L iyl M 8] P Q R 5 T

FUSION Zacc

Derivative AVG Integral Acc+Gyro AVGE Data
7106 0 0 -5.71059 1.0000  0.0000 -5.71059 -5.71059 G
106" 0 0 -5.71059 I 1.mi=1-0165ﬂ-5.?1059 -5.71059 &.
1669 727.182211 27.182211 -5.16695 0.0619 09381 -5.66352 -5.66352 &
3326:-53.25DT4 -33.2B074 | -5.83256 0.0511  0.9489 -5.65855 -5.6B581 G
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k) Fuse the data:

X v k|| =(01659*)1659)+(P1659*(Q1658+21659))

1 | ] K L M N 0 P Q R S T u v W X ¥ I AA
FUSION Zacc ¥gyro
N2 Rad-Deg  AVG Derivative AVG Integral Acc+Gyro AVG Data Unit Conversion Data Unit Conversior Integral PW Integral
9967 -5 TIDE. -5 TIDE' 0 0| -5.71059 1.0000 _ 0.00001 -5.71059] -5.71059 622 0.9286 422 -2.508960573 -Z.SDEE‘E. 7.8853E-07
9967 -5 TIDEI. -5.71061 0 0| -5.71059 | 1.00001 0.0000171659)) |-5.71059 622 0.9286 421 -1792114695 -2.493]9|. 0. 0143377061
9018 -5.1669 -5.1669"27.182211 27.182211 -5.16695 00619 09381 -5.66352 -5.66352 621 0.9189 421 -1792114695 -247742 0.014337706
1018 -5.8326 -5.83267 -33.28074 -33.28074 -5.83256 00511 09489 -5.65855 -5.68581 620 0.5091 421 -1792114695 -2.46165 0.014337706
0072 -5.7709 -5.7708"3.0813762 3.0813762 -5.77094 0.3677  0.6323 -5.69081 -5.68087 621 0.9189 421 -1792114695 -2.44587 0.014337706
143 -64416  -644167-3353319 -3353319 -6.4416 0.0311 09689 -5.68635 -5.67481 620 0.9091 420 -1075268817 -241433 0.028674624
I) Calculate the average of the fused set:
X v :SUMtQLEES:QLEEL];’4-|
H | J K L il M Q P Q R 5 T u
FUSION Zacc
ATAN2 Rad-Deg AVG Derivative AVG Integral Acc+Gyro AVG Data Unit Car
-0.09967 -5.7106 -5.7106 0 0| -5.71059 10000 0.0000] -5.71059| -5.71059 622
-0.09967 -5.7106 57106 ) 0 -5.71059 10000 0.0000{ -5.71059] -5.71059 622
-0.09018 -5.1668 -5.1669 727182211 27.182211 -5.16695 0.061%  0.93B1| -5.66352| -5.66352 621
-0.1018 -5.8326 -5.3326'-33.230?4 -33.28074 -5.B3256 0.0511) 0.9489] -5.65855 =5UM[Q1I 620
" 0.6323| -5.69081| -5.68087 621

-0.10072 -5.7709 -5.7709 3.0813762 3.0813762| -5.77094 0.3677

5. Plot the following results onto a single graph;

e Y-Axis (or X-Axis) accelerometer data

e X-Axis (or Y-AXis) rate gyroscope integration data

e Y-Axis (or X-Axis) data fusion results

Lab Exercise Questions:

1) Describe the changes in orientation for the accelerometer and rate gyroscope

while recording the data on the serial port. After applying the algorithms of the
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spreadsheet to your dataset, did the results match the applied orientations?
Describe your results.

2) Apply the spreadsheet equations, from Part 3, to the x-axis (pitch) measurements.
Plot the results and describe if they match the applied orientations?

3) Describe how to incorporate the results of the x and y-axis into a rotation matrix?

4) How would you avoid Euler angle singularity problems?

5) Describe how accumulation errors from the rate gyroscope are eliminated.

54.4 EXPERIMENTAL TEST RESULTS

Figure 32 and Figure 33 show the results of data gathered while performing the above
experiment. The data represents the IMU being rotated about the Y-Axis (pitch axis)
while mounted to an apparatus. The apparatus included an unbalanced motor to simulate
vibrational noise. These results demonstrate the effectiveness of my alternative proposed

sensor fusion algorithm.
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55 SUMMARY

The proposed alternative sensor fusion method was a way to combine data from both an
accelerometer and rate gyroscope to produce a single output representative of the actual
orientation. This method was based on observations made while experimenting with the
independent behavior of the accelerometer and rate gyroscope sensors. The primary
environment considered was onboard a small UAV where vibrational noise (caused by
the motor and propeller) can create significant noise errors from the accelerometers.

While working with a UAV (similar to that of the Multiplex EasyStar), | had
observed that the aircraft would reach a steady cruising speed when flying straight and
level. In this condition, the net acceleration measured would be the gravitational force
vector. This led me to the realization that the accelerometer can be used to correct bias
offset accumulation errors from the gyroscope. Similarly, when the aircraft undergoes
maneuvers, such as coordinated turns or sudden changes in attitude, the accelerometer
will provide orientation data mixed with translational accelerations. Since the
accelerometer cannot differentiate between the two forms of acceleration, the algorithm
uses the gyroscope to provide reliable orientation information (separating out changes in
orientation from other external forces). This characteristic could be beneficial as another
algorithm can use the information about the external forces to detect other properties
about flight, such as slipping or skidding through turns.

In summary, the fusion properties of the proposed algorithm helped remove noise

from the accelerometer’s measurements by relying on the noise immunity properties of
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the rate gyroscope. In addition, the algorithm helped remove integration errors, caused

by the rate gyroscope, by relying on the bias stability of the accelerometer.

5.6 FUTURE WORK

The alternative sensor fusion approach produces output angles representative of the
orientation. Since the Kalman filter also provides an output orientation representation, it
would be a good exercise to compare the results of the two methods with known “true”
data. This would provide useful insight into the performance of the alternative approach.
Once the performance characteristics are known, then the alternative approach could be
implemented into the Kalman filter.

The development of the state transition matrix for the alternative approach will
most likely be different from what is typically implemented by the Kalman filter.
Therefore, it may be possible to model the dynamics using standard equations of motion,
taking into account the dynamics of the aircraft. By modeling the dynamics of the
aircraft, the fusion algorithm will lead to results that are more accurate. Further
development of the Kalman filter can include other navigational information (such as
data from a GPS or magnetic compass) leading to the beginning stages of an autopilot

system.
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