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ABSTRACT 

This thesis develops an alternative sensor fusion approach for object orientation 

using low-cost MEMS inertial sensors.  The alternative approach focuses on the unique 

challenges of small UAVs.  Such challenges include the vibrational induced noise onto 

the accelerometer and bias offset errors of the rate gyroscope.  To overcome these 

challenges, a sensor fusion algorithm combines the measured data from the accelerometer 

and rate gyroscope to achieve a single output free from vibrational noise and bias offset 

errors.   

One of the most prevalent sensor fusion algorithms used for orientation estimation 

is the Extended Kalman filter (EKF).  The EKF filter performs the fusion process by first 

creating the process model using the nonlinear equations of motion and then establishing 

a measurement model.  With the process and measurement models established, the filter 

operates by propagating the mean and covariance of the states through time.   

The success of EKF relies on the ability to establish a representative process and 

measurement model of the system.  In most applications, the EKF measurement model 

utilizes the accelerometer and GPS-derived accelerations to determine an estimate of the 

orientation.  However, if the GPS-derived accelerations are not available then the 

measurement model becomes less reliable when subjected to harsh vibrational 

environments.  This situation led to the alternative approach, which focuses on the 

correlation between the rate gyroscope and accelerometer-derived angle.  The correlation 

between the two sensors then determines how much the algorithm will use one sensor 

over the other.  The result is a measurement that does not suffer from the vibrational 

noise or from bias offset errors. 
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CHAPTER 1  

    INTRODUCTION 

 

1.1 MOTIVATION 

The availability of low-cost, commercially available, sensors developed using the micro-

electromechanical systems (MEMS) manufacturing process, enables advances in inertial 

sensing.  Two of the most prevalent MEMS sensors are the accelerometer and rate 

gyroscope.  The accelerometer measures the specific force (units in of g-force) relative to 

free fall [1].  The rate gyroscope measures the angular velocity through the Coriolis 

Effect.  The ideal rate gyroscope determines the orientation of an object by integrating 

the angular rates starting from a known position.  Together, the accelerometer provides 

information needed for the initial starting position while the rate gyroscope updates the 

orientation by integrating the angular rates.   

Current research in object orientation using MEMS inertial sensors addresses the 

challenges of non-ideal rate gyroscopes.  Non-ideal gyroscopes have a non-zero offset 

term that becomes part of the integration cycle.  Since the offset can vary during typical 

operation, it becomes difficult to compensate.   

The work of [4] implements the highly successful Extended Kalman Filter (EKF) 

state estimator in a manner that combines the rate gyroscope with the accelerometer and 

GPS-derived accelerations.  The conclusion of their work demonstrated the importance of 
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accurate sensor data from the MEMS sensors and was evident when trying to compensate 

the accelerometer to reflect only the effects of gravity and not acceleration due to turning.   

The significance for the accelerometer to reflect only the effects of gravity come 

from a technique developed to help stabilize the rate gyroscope.  Since the majority of 

small UAV’s remain relatively close to the earth’s surface, the gravitational force 

becomes a constant vector quantity.  Typically, in level flight, and at a steady cruising 

speed, the net forces equal that of gravity.  This provides a stable reference for the rate 

gyroscope (as they tend to drift with time).  However, when the net acceleration is not 

equal to the force of gravity, it becomes more difficult to track the gravitational force; 

leading to gyroscopic drift.  These difficulties (tracking gravitational force) led to the 

development of my alternative approach.  The approach I created also relies on the force 

of gravity as a measurement input, but does not compute the orientation based on that 

vector to correct rate gyroscope drift.  Instead, I start by assuming that the net 

acceleration is equal to the gravitational vector and then calculate an equivalent angle.  

However, instead of trying to compensate for external forces, I take the derivative of the 

equivalent angular.  This produces an angular rate estimate to be compared with the rate 

gyroscope’s data.   

The idea behind this method is to determine a correlation between the 

accelerometer and the rate gyroscope and produces one of three outcomes.  The first is 

when the accelerometer undergoes linear acceleration not associated with any rotations.  

The correlation between the accelerometer and rate gyroscope will be weak signifying no 

change in orientation.  The second is when the accelerometer measures both rotational 
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and linear accelerations.  This produces a relatively strong correlation between the 

accelerometer and rate gyroscope (allowing for more deterministic orientation 

estimations).  The last is when the accelerometer measures a net force equal to the 

gravitational force vector while the rate gyroscope measures small rotational rates.  In 

this condition, the accelerometer and rate gyroscope will produce a weak correlation 

indicating gyroscopic drift.     

The final step of my accelerometer and rate gyroscope correlation calculation is 

the “weighting” factor.  The weighting factor is what allows the orientation estimation 

portion of the algorithm to rely on either the accelerometer, rate gyroscope, or both.  The 

result is a method, by which the accelerometer is used to: 

a) Significantly reduce the effects of gyroscope drift during periods of stable non-

rotating flight. 

b) Increase the accuracy of rotational measurements. 

c) Significantly reduce accelerometer measurement errors caused by vibrational/ 

turbulent forces.  

 

1.2 GOAL OF THE THESIS 

The goal of this thesis is to introduce an alternative method of acquiring more accurate 

data fusion results from an accelerometer and rate gyroscope.  In this thesis, I will also 

address the basic building blocks for object orientation estimation by use of MEMS 

sensors, rotation matrices, and the Kalman filter through a series of laboratory 

experiments.   
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The first experiment provides an intuitive illustration of matrix rotations using 

Euler angles.  At first, this experiment performs a simple single rotation, then transitions 

to include a mathematical formulation for continuous rotations using the small angle 

approximation and integration technique.  Finally, the matrix rotation experiment ends by 

providing a means for “Gimbal Lock” prevention. 

The second experiment introduces the fundamental concepts of the Kalman filter.  

The experiment, due to its complexity, was broken down into three main parts.  The first 

part provides the mathematical structure for modeling the dynamics of a simple linear 

system (or linearized system).  The second part builds onto the first by converting a 

discrete time differential equation into the necessary state-space format used by the 

Kalman filter algorithm.  The final part of the experiment introduces the mathematical 

formulation of the Kalman filter and applies it to the state-space equation of the linear 

system from the second exercise.   

 

1.3 STRUCTURE OF THE THESIS 

This thesis introduces the concepts necessary for object orientation.  When applying these 

concepts to small UAV’s, unique challenges arise.  One of the challenges is the use of 

MEMS based sensors, such as accelerometers and rate gyroscopes.  Although these 

sensors are ideal due to their low-cost and small package size, neither the accelerometer, 

or rate gyroscope, can be used independently when determining orientation.  This is 

where the concept of sensor fusion is introduced.   
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The concepts of object orientation and MEMS sensor fusion are introduced as 

follows: 

 Chapter 2 describes the small UAV and the adaptation from simple line-of-sight 

radio control, to advance flight capabilities using systems such as the wireless on-

screen-display and navigation system. It then goes on to introduce basic autopilot 

systems and concepts of estimation theory used for object orientation. 

 Chapter 3 introduces the MEMS based accelerometer and rate gyroscope 

sensors.  First, a theory of operation is described for each sensor, followed by the 

conversion process needed to convert the analog signals into digital signals.  Next, 

an introduction to rotation matrices using Euler angles.  The last section is a lab 

exercise developed to apply the concepts discussed throughout the chapter.    

 Chapter 4 is the core of this thesis.  It starts with an introduction to sensor fusion 

and follows with the derivation of the Kalman filter.  Although there are many 

ways to derive the Kalman filter equations, this chapter uses the derivation of the 

linear recursive estimator for its foundation.  The chapter then ends with a lab 

exercise developed to introduce the basic linear Kalman filter using Matlab.   

 Chapter 5 is the alternative sensor fusion approach being proposed by this thesis.  

The alternative sensor fusion approach was based on observations made while 

working with MEMS accelerometers and rate gyroscopes.  The goal of the 

alternative approach is to fuse the accelerometer and rate gyroscope’s data prior to 

the use of Kalman filtering.  The last section is a lab exercise, which is performed 

using real hardware using MEMS sensors to capture measurement data.  The data 

is then analyzed using the algorithms introduced to obtain the orientation 

estimates.     
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CHAPTER 2  

   UNMANNED AERIAL VEHICLE (UAV) 

 

2.1 INTRODUCTION 

An Unmanned Aerial Vehicle (UAV) is any aircraft flown without an actual person on 

board.  For the purpose of the thesis, we will focus our attention on small electric 

powered, propeller driven aircraft, with a fixed wingspan of less than 2 meters.  This 

particular aircraft can be hand launched and operates from a ground controller within 

visual range.  The payload portion of a UAV includes a variety of systems, such as a 

radio transceiver, servo actuation controller, and a flight stabilization / autopilot system.  

The flight stabilization / autopilot systems are further divide down into two primary 

functions: the inertial navigation sensors (accelerometer, rate gyroscope, magnetometer 

and global positioning system (GPS)), the main processing unit, and pressure sensors for 

wind speed and altitude measurements.   

 Small UAV’s may appear to be a modern technical advancement in aerospace 

science, but actually the early pioneers of these radio controlled (RC) aircraft date back to 

the late 1940’s and early 1950’s [5].  Today there are numerous types of radio controlled 

UAV’s on the market, ranging from electric to jet powered in ready-to-fly (RTF) and 

almost ready-to-fly (ARTF) kits.   

 RTF and ARTF UAV’s can be easily assembled and essentially comprise the 

same components, except for the fact that the ARTF kits do not include any radio 

electronics.  Both RTF and ARTF aircraft are typically constructed using expanded 
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polyolefin (EPO) or expanded Polypropylene (EEP) injection molding, and are reinforced 

using carbon fiber rods for the spars of the wing.  This type of construction is very robust, 

and often referred to as “crash proof” when compared to traditional aircraft made of balsa 

wood.  One of the most popular RTF/ ARTF aircraft utilizing EEP is the Multiplex 

electric powered “Easy Star.”  This aircraft is constructed using proprietary EEP foam 

called ELAPOR®, which is high-tech particle foam ideal for injection-molded RC 

components, such as the fuselage and wings [6].  The Easy Star is a very popular UAV 

due to its unique design, having a pusher prop mounted just behind the main wing.  The 

following picture is the Easy Star aircraft modified with a wireless camera and landing 

gear. 

 

Figure 1  Multiplex “Easy Star” with wireless camera system 

 

 A wireless camera system installed in the front of the aircraft allows the pilot to 

see through the “eyes” of the aircraft instead of watching it from the ground, creating a 

first person view (FPV).  Controlling a UAV in this way provides a more natural feel 

(similar to an aircraft flight simulator).  Pilots looking for this realistic experience can 

also incorporate an on-screen display (OSD) camera system designed to provide 
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information such as navigation, altitude, reference horizon, flight time, and battery life 

(Figure 2).  One of the key benefits to having a FPV OSD system is the ability to fly 

higher and farther, freeing the aircraft from being within direct line of sight to the person 

controlling the aircraft.  

 

Figure 2 Example of an OSD Camera System 

 

 With the ability to fly higher and farther, the next evolutionary step is to employ 

an autopilot system.  The first autopilot systems were developed to assist pilots in 

maintaining level flight while traveling long distances.  These systems were limited to 

using mechanical directional gyroscopes and altitude indicator to control the elevator and 

rudder in level flight.  Today, autopilot systems are capable of more than level flight such 

as coordinated turns and flight path tracking.  In essence, a modern autopilot system can 

perform all aspects of flight from the moment the aircraft lifts off the runway until the 

aircraft touches back down onto the runway.   

 The autopilot system is considered to have two independent systems connected 

together to work as one [7].  The first system is the attitude heading and reference system 
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(AHRS) with the second being the global positioning system (GPS).  The AHRS system 

provides information relating the orientation of the aircraft to the inertial frame while the 

GPS relates the aircraft’s position relative to Earth.  The information generated from the 

two inputs feed into the flight director (FD) which has the navigational waypoints stored 

into memory.  The FD is responsible for processing the input data, relating the input data 

to the desired course, and then calculates the control outputs necessary to achieve a 

certain heading.  The outputs of the autopilot system are control signals, which move the 

control surfaces and throttle controls as necessary.  Deflection of the control surfaces will 

cause a change in the orientation, speed, or both.   

 Since small UAV’s lack the payload capacity for heavier mechanical sensors, 

lightweight low-cost MEMS sensors provide a great alternative solution.  However, by 

using low-cost MEMS sensor there is a significant increase in the complexity of the 

AHRS system because each sensor lacks the ability to output reliable data for orientation 

estimation.  For instance, a low cost MEMS gyroscope will suffer from gyro bias errors, 

which, if not dealt with, will cause integration errors to build over time.  The errors can 

be severe enough to cause the aircraft to rotate about its axis several degrees per second.  

MEMS based accelerometers used on small aircraft can suffer from high noise levels due 

to vibrational forces caused by the propeller.   

 Estimation theory is a form of statistical analysis used to estimate the value of a 

parameter (assuming the measurement data has normally distributed error sources).   The 

use of estimation has many advantages over digital low-pass filtering.  For instance, 

depending on the sample size, a low pass filter can respond quickly to changes in input 
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signals or respond very slowly (several seconds).  Sensors with large sensitivity to noise 

typically result in low pass filters with relatively large sample sizes, and thus slow output 

responses. 

 The significant impact of time delays in the loop response of a system can be 

demonstrated through a cruise control example.  To begin, let us assume that a cruise 

control system is designed to maintain a constant speed for all input conditions.  One 

method is to apply a low-pass filter using a large sample size.  In this case, small changes 

in the road will not immediately affect the output response of the cruise control.  Instead, 

the input response will be averaged out over a given amount of time.  The drawback to 

this system is apparent if the car begins to travel up a long hill.  Instead of maintaining a 

constant speed, the car will begin slowing down until the engine starts increasing speed.  

The engine will continue increasing speed as the time along the hill increases.  However, 

when the car starts traveling downhill, the engine will continue averaging data from when 

it was going uphill resulting in a continued increase in speed.  At this point, the car will 

be racing downhill until the averaged sample size catches up, slowing the engine speed.  

Now, let us assume that the cruise control has a small sample size and can make quick 

changes to the output.  This will provide a more appropriate response for the road 

environment but may become excessive in some situations.   

 In the above cruise control example, we see how excessive time delays can affect 

the response of the engine’s speed to changes in road conditions.  If we instead used 

estimation theory, we would first describe the state of the car using the classic equations 

of motion and then predict where the car might be during the next time step.  Since the 
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car will travel on various road conditions, we can use a sensor to monitor the acceleration 

of the car as it travels down the road along with a global positioning system (GPS), 

helping us determine the car’s location.  The sensor data from the acceleration will be 

used to update the equations of motion to reflect changes as the car travels and the data 

from the GPS will be used to compare against the predicted location.  The errors from the 

predicted location and the location of the GPS will be used to update the new predictions 

for the next data sample.  The above process of predicting the location, and updating with 

the GPS, is then repeated continuously as the car travels down the road.  The benefit of 

this process is the ability to perform quick output changes with long-term accuracy.   

 

2.2 SUMMARY 

In this chapter, we defined a small UAV as being an electrically powered, propeller 

driven aircraft, with a fixed wingspan of less than 2 meters.  This particular aircraft can 

be hand launched and operates from a ground controller within visual range.  The 

payload portion of a UAV includes a variety of systems, such as a radio transceiver, 

servo actuation controller, and a flight stabilization / autopilot system.  One particular 

aspect of the flight stabilization / autopilot system that we will focus our attention on is 

the inertial sensors and the orientation estimation algorithms.   

 The inertial sensors we are interested is a MEMS based accelerometer and rate 

gyroscope.  The two sensors are used together through a sensor fusion process in an effort 

to overcome each sensors weakness.  The method used by most is the Extended Kalman 

Filter (nonlinear version of the Kalman filter) which is further discussed in Chapter 4.  
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CHAPTER 3   

  AN INTRODUCTION TO MEMS INERTIAL SENSORS 

 

3.1 THE ACCELEROMETER 

An accelerometer is a sensor used to measure the specific force (in units of g force) of an 

object relative to free fall.  The accelerometer accomplishes this by measuring a force 

proportional to the rate of acceleration as provided by Isaac Newton’s second law of 

motion, “𝐹 = 𝑚𝑎.”  Referencing [9], the most intuitive model used to measure a force 

proportional to acceleration is to analyze the spring-mass-damper system shown below 

(Figure 3).  This system is often chosen because the acceleration can be solved in terms 

of the spring constant and displacement.   

 

Figure 3  Accelerometer Diagram, After [9] 

 

For the system to work we must be able to measure the relative position between a 

movable mass and a fixed frame.  By doing this we can define the displacement x, 
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relative to the frame, as being equal to (z-y).  This now gives us the ability to define a 

dynamic equation as follows, 

 𝑘(𝑧 − 𝑦) + 𝑏(�̇� − �̇�) + 𝑚�̈� = 0 (3.1) 

Realizing that (𝑧 − 𝑦) = 𝑥 we come up with, 

 �̈� +
𝑏

𝑚
�̇� +

𝑘

𝑚
𝑥 = −�̈� = −𝑎(𝑡) (3.2) 

In this representation, a force in the positive “x” direction will cause the dampener to 

produce a force in the negative “x” direction equal to the product of the dampener 

constant, and the rate of change denoted as “𝑏�̇�", where �̇� represents velocity.  A second 

force is also created in the negative “x” direction equal to the product of the spring 

constant and the displacement of the spring denoted by “𝑘𝑥".   

Since we want to express the acceleration in terms of the spring constant and 

displacement, we need to further simplify the equation by analyzing the frequency 

response characteristics of the system [8].  To find the frequency response we’ll solve for 

the transfer function by taking the Laplace transform of x(t) and a(t) and then evaluate 

(
𝐿𝑥(𝑠)

𝐿𝑎(𝑠)
). 

 𝑠2𝑋(𝑠) − 𝑠𝑥(0) − �̇�(0) +
𝑏

𝑚
𝑠𝑋(𝑠) − 𝑥(0) +

𝑘

𝑚
𝑋(𝑠) = −𝐴(𝑠) (3.3) 

Here we will set the initial conditions to zero, (�̇�(0) = 0 and 𝑥(0) = 0) yielding the 

following simplified equation. 
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 𝑠2𝑋(𝑠) +
𝑏

𝑚
𝑠𝑋(𝑠) +

𝑘

𝑚
𝑋(𝑠) = −𝐴(𝑠) (3.4) 

 
𝐻(𝑠) =

𝑋(𝑠)

𝐴(𝑠)
= −

1

𝑠2 +
𝑏
𝑚 𝑠 +

𝑘
𝑚

 
(3.5) 

 

An example for the frequency response of the mass-spring-damper system is shown in 

Figure 4. 

 

Figure 4  Amplitude of a mechanical 2
nd

 order system with varying damping  

coefficient B [8] 

 

The frequency response is characteristic to that of a low-pass filter where a 

resonance is depicted by a sudden rise of the gain at the cut-off frequency.  To avoid 

resonance, an accelerometer is designed to operate in the flat region to the left of the 

resonant frequency.  If we call the knee of the frequency response 𝜔𝑛, and then constrain 
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the system such that 𝜔𝑜 ≪ 𝜔𝑛 then the system’s magnitude will not have any frequency 

dependence.  Therefore, the system can be simplified to;  

 
𝐻(0) ≈ 𝐻(𝑠) = −

1

0 + 0 +
𝑘
𝑚

= −
𝑚

𝑘
 

(3.6) 

At this point, we can now transform the equation back into the time domain resulting in 

the desired form where the acceleration is a function of the mass, spring constant, and 

displacement. 

 𝑎(𝑡) = −
𝑚

𝑘
𝑥(𝑡) (3.7) 

Now that the accelerometer is a simplified function of displacement x(t), we need 

to find a way to measure that displacement.  In most low-cost MEMs accelerometers, the 

capacitive sensing approach is used due to a simpler manufactured design.  In this 

topology, the geometry of the capacitor plate changes when undergoing acceleration.  

The equation for the parallel-plate capacitor is presented as; 

 𝐶0 = 𝜖𝑜𝜖
𝐴

𝑥
= 𝜖𝑟

𝐴

𝑥
 (3.8) 

where ϵr = ϵ0ϵ is the relative permittivity of the dielectric, “A” is the area of the 

electrode and “x” is the distance between the two plates.  As the proof mass undergoes 

acceleration, the mass will move relative to the frame, causing a change in displacement 

and therefore a change in capacitance. 
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Figure 5  Parallel Plate Capacitance Sensing [9] 

 

The capacitance for the parallel plate sensing topology (Figure 5) is calculated by; 

 
𝐶1 = 휀𝑟

𝐴

𝑥𝑜 + 𝑥
= 휀𝑟

𝐴

𝑥𝑜(1 +
𝑥
𝑥𝑜

)
=

𝐶0

1 + 𝛿
 

(3.9) 

 
𝐶2 = 휀𝑟

𝐴

𝑥𝑜 − 𝑥
= 휀𝑟

𝐴

𝑥𝑜(1 −
𝑥
𝑥𝑜

)
=

𝐶0

1 − 𝛿
 

(3.10) 

where 𝛿 =
𝑥

𝑥𝑜
, 

For this example, the Wheatstone bridge circuit is used to represent the parallel 

plate sensing topology.  Referencing the diagram below (Figure 6), we will set 𝐶1 as 𝑅1, 

𝐶2 as 𝑅3, and both 𝑅2 and 𝑅4 as 𝐶0.  In this example, we assume that the circuit is 

balanced when no forces are present.   
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Figure 6  Wheatstone Bridge [27] 

 

If we set 𝛿 ≪ 1, then the input to output equation becomes; 

 𝑉𝑜𝑢𝑡 =
1

2
𝛿𝑉𝑖𝑛 (3.11) 

The equation for the acceleration now becomes a function of voltage as shown below; 

 𝑎(𝑡) = −
𝑚

𝑘
𝑥𝑜𝛿 (3.12) 

 𝑎(𝑡) = −
𝑚

𝑘
𝑥𝑜 (2

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) = −2𝑥𝑜

𝑚

𝑘
𝐴 (3.13) 

where “A” is the voltage gain (
Vout

Vin
).   

This equation represents the acceleration as a function of time, equal to the displacement 

given as a function of voltage.   

Other capacitive sensing topologies, such as those incorporated into the ADXL05 

by Analog Devices, use an oscillator circuit and demodulator to measure capacitance.  
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The oscillator’s function is to excite the capacitors where a change in capacitance is 

detected by the demodulator.  The output of the demodulator results in an output voltage 

proportional to the change in capacitance (Figure 7).  

 

Figure 7  Capacitance Measurement Block Diagram [28] 

 

3.1.1 ACCELEROMETER SENSOR MEASUREMENTS 

Accelerometers are manufactured by a variety of vendors such as InvenSense, Analog 

Devices, and STMicroelectronics (Figure 8).  These sensors are constructed on silicon 

wafers and then wire bonded to the signal conditioning circuitry producing a single 

sensor package solution.   

    

Figure 8 MEMS Accelerometer Sensors 
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The Analog Devices’ ADXL335 accelerometer was chosen for this thesis because 

the output signals are a ratio metric analog voltage proportional to the measured 

acceleration.  The analog signals were desired over the digital output version (Serial 

Communication Interface) due to the lack of SCI channels.  In addition, this sensor was 

available with an adapter board allowing for instant experimentation.  Table 1 (below) 

lists the functional characteristics of the ADXL335 accelerometer [24]. 

Table 1 ADXL335 Accelerometer Datasheet [24] 

 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1

2𝜋 ∙ 32𝑘𝛺 ∙ 𝐶
 

 

Experimentation with the ADXL335 sensor was performed using the Nanocore12 

microcontroller (MCU) developed by Technological Arts [23].   This particular MCU 

was chosen due to its small size, low cost, and easy to use Integrated Development 

Environment (IDE) software.   
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Figure 9 NanoCore12 Evaluation Kit [23] 

 

The circuit interface diagram for the NanoCore12 and ADXL335 is shown in Figure 10. 

 

 

Figure 10 Circuit Interface Diagram 

 

3.1.2 ADC CONVERSION OVERVIEW 

The output of the accelerometer’s analog signal is measured in units of mV/g, while the 

digital output signal from the MCU is in units of g’s (one times the force of gravity).  In 

order to convert the analog signal into a digital signal, an analog-to-digital converter 
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(ADC) is used.  The ADC’s function is to sample the voltage at specific intervals to 

produce a digital representation of the change in sensor output. To begin, we start with an 

ADC conversion equation, which converts the ADC result into units of volts.  

 𝐴𝑛𝑎𝑙𝑜𝑔 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  
𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑠(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)

𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 (3.14) 

Next, we remove any bias offset errors from the sensor data.   

𝐴𝑛𝑎𝑙𝑜𝑔 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  
𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑠(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)

𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
− (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠) (3.15) 

Lastly, we convert to the digital representation of the output signal into the desired units 

of force.  The result is then divided by the sensitivity parameter outlined in the datasheet. 

𝐹𝑜𝑟𝑐𝑒 =  
(
𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑠(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)

𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
    (𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑔′) (3.16) 

Since we are typically interested in more than one accelerometer measurement, we can 

repeat the ADC conversion for each input signal. 

 

𝐴𝑐𝑐𝑒𝑙𝑋 =
(
𝐴𝐷𝐶𝑅𝑋

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 

 

𝐴𝑐𝑐𝑒𝑙𝑌 =
(
𝐴𝐷𝐶𝑅𝑌

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 

 

𝐴𝑐𝑐𝑒𝑙𝑍 =
(
𝐴𝐷𝐶𝑅𝑍

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 
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Example:   

Determine the force acting on the accelerometer when the input ADC converted voltage 

signal is 508 (decimal) given the following parameters:  ADC = 10-bit resolution, VADC 

= Vs = 3V, Zero g Bias Level = 1.35V, Sensitivity = 300mV/g. 

𝐹𝑜𝑟𝑐𝑒 =  
(
508 (3.0𝑣)

1023 ) − (1.35𝑣)

0.300 
𝑔

𝑣⁄
= 0.96𝑔′𝑠 

 

3.1.3 COMPUTING ANGLES FROM ACCELEROMETERS 

Accelerometers are designed with their sensing elements “modes” positioned orthogonal 

to one another.  This arrangement allows measurements to be taken along the X, Y, and Z 

sensing axis to determine the orientation of the accelerometer.   To standardize 

components produced by different manufacturers, the typical convention is to have the Z-

axis point upward as shown in Figure 11. 

 

Figure 11 Accelerometer Axis Definition [2] 

 

 When placed on a level surface, the Z-axis produces a +1g measurement while the 

X and Y-axis produce a 0g measurement.  Now, if the accelerometer were to rotate 90 

degrees about the Y-axis, then the Y and Z-axis will produce a 0g measurement and the 



 

23 

X-axis will output a ±1g measurement.  Similarly, a rotation about the X-axis will cause 

the X and Z-axis to produce a 0g measurement while the Y-axis will have a ±1g 

measurement.  If we were to look at just a two axis accelerometer (no Z-axis) and rotate 

the sensor about either one of the sensing axes by 180 degrees, then the sensors would 

output 0g measurements even though the sensor package is upside-down.  Therefore, a 

dual axis accelerometer is not suitable for orientation applications.   

 Although two-dimensional accelerometers are not well suited for orientation 

measurements, we can still use them to determine tilt angles as shown in Figure 12.   

 

Figure 12 Accelerometer Tilt Angles After [2] 

 

Now, imagine the accelerometer positioned such that the Y-axis was pointing upwards 

with the X-axis pointing to the right.  If a counter clockwise (CCW) rotation was about 

the Z-axis by an angle of 𝜃 degrees then the measurement vectors of the accelerometer 

will also result in an angle of 𝜃 as shown in Figure 12 drawing No. 2.  The angle theta (𝜃) 

can then be determined using the simple trigonometric equation, 

 𝜃 = 𝑡𝑎𝑛−1 (
𝐴𝑦

𝐴𝑥
) (3.17) 

 

𝜃 

g 

𝜃’ 

R 

R 

1 2 3 4 
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where, 

𝐴𝑦 = 𝑌 𝐴𝑥𝑖𝑠 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

𝐴𝑥 = 𝑋 𝐴𝑥𝑖𝑠 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

 

 Following the work provided in [2], a three dimensional orientation follows the 

same principle by utilizing Pythagoras’ theorem:  

 𝐶 = √𝑥2 + 𝑦2  

 
𝑍 = 𝑍  

 

∴  𝜃𝑧 = 𝑡𝑎𝑛−1 (
√𝐴𝑥

2+𝐴𝑦
2

𝐴𝑧
)                                        (Radians) (3.18) 

The Pythagorean Theorem can be expressed graphically as shown in Figure 13. 

 

Figure 13 Pythagorean Theorem in Graphical Form 

 
 
 
 
 

C 

Z 
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Following the same mathematical process yields the angles for the remaining two axes. 

Note:  The two remaining angles may not be obvious; however, if you flip the 

paper on its side you may be able to better visualize those angles.  

 𝜃𝑥 = 𝑡𝑎𝑛−1 (
𝐴𝑥,𝑜𝑢𝑡

√𝐴2
𝑦,𝑜𝑢𝑡+𝐴2

𝑧,𝑜𝑢𝑡

)                                     (Radians) (3.19) 

 𝜃𝑦 = 𝑡𝑎𝑛−1 (
𝐴𝑦,𝑜𝑢𝑡

√𝐴2
𝑥,𝑜𝑢𝑡+𝐴2

𝑧,𝑜𝑢𝑡

)                                     (Radians) (3.20) 

At this point it’s important to note that the atan2 function may instead be used in 

place of the arctangent function allowing the angle 𝜃 to span the interval (-π, π].  The 

angle can then be found using the atan2 with two input arguments (Y and X instead of 

Y/X) as follows,  

 

𝜃𝑥 = 𝑎𝑡𝑎𝑛2(−𝐴𝑧 , 𝐴𝑥)  (Radians) 

 

𝜃𝑦 = 𝑎𝑡𝑎𝑛2(−𝐴𝑧 , 𝐴𝑦)  (Radians) 

 

 

The relationship below defines the criteria for the atan2 function: 

 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) =

{
 
 
 
 
 

 
 
 
 
 𝑎𝑐𝑟𝑡𝑎𝑛 (

𝑦

𝑥
)                     𝑥 > 0             

𝑎𝑐𝑟𝑡𝑎𝑛 (
𝑦

𝑥
) + 𝜋            𝑦 ≥ 0, 𝑥 < 0

𝑎𝑐𝑟𝑡𝑎𝑛 (
𝑦

𝑥
) − 𝜋            𝑦 ≥ 0, 𝑥 < 0

+
𝜋

2
                                 𝑦 > 0, 𝑥 = 0

−
𝜋

2
                                 𝑦 < 0, 𝑥 = 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                     𝑦 = 0, 𝑥 = 0  

 (3.21) 
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Note:  Since the accelerometer measure a positive 1g that actually points down, we need 

to set the 𝐴𝑧 terms to a positive quantity.  Ex: 𝜃𝑥 = 𝑎𝑡𝑎𝑛2(𝐴𝑧𝐴𝑐𝑐𝑒𝑙
, 𝐴𝑥) and 𝜃𝑦 =

𝑎𝑡𝑎𝑛2(𝐴𝑧𝐴𝑐𝑐𝑒𝑙
, 𝐴𝑦). 

 

3.2 THE RATE GYROSCOPE 

A traditional gyroscope is a mechanical disk designed to rotate at a high angular velocity.  

The properties of rotational inertia and angular momentum are utilized to maintain 

rigidity in the inertial frame.  We can apply this concept to a rotating disk mounted on 

gimbals such that it can freely rotate about any of the three principle axes.  By doing so, 

the disk is allowed to remain fixed in space due to the conservation of angular 

momentum.  The gimbaled frame is then mounted to the instrument platform as shown in 

Figure 14. 

 

Figure 14  Mechanical Gyroscope [30] 
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When the gyroscope is rotated about its vertical axis, a torque occurs causing the 

disk to rotate about its longitudinal axis.  This is called “precession torque” and is directly 

proportional to the applied rotational velocity. 

Gyroscopic precession described best by analyzing the behavior of a “top” 

spinning on a flat surface.  If the top experiences an external force, such as the force of 

gravity, it will begin to rotate about the vertical axis as shown in Figure 15.   

 

Figure 15  Spinning “top” Precession Example [29] 

 

Using Figure 15 as our reference, we can derive the equation for precession angular 

velocity in terms of the force of gravity (Mg), the length of the rod (D), and angular 

momentum (L) [11].  First, we need to find the equation for torque as follows,   

 𝜏 =
𝑑𝐿

𝑑𝑡
= (𝑀𝑔)𝐷𝑠𝑖𝑛𝜃 (3.22) 
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Next, we will want to define precession angular velocity as; 

 𝜔𝑝 =
𝑑𝜑

𝑑𝑡
 (3.23) 

where 𝑑𝜑 is; 

 𝑑𝜑 =
𝑑𝐿

𝐿𝑠𝑖𝑛𝜃
 (3.24) 

If we substitute the value for 𝑑𝜑 into 𝜔𝑝 we get the equation for torque divided by 𝐿𝑠𝑖𝑛𝜃.  

Further simplification yields the desired result in terms of force, distance, and angular 

momentum.   

 𝜔𝑝 =
𝑑𝜑

𝑑𝑡
=

𝑑𝐿

𝑑𝑡(𝐿𝑠𝑖𝑛𝜃)
=

𝜏

𝐿𝑠𝑖𝑛𝜃
=

(𝑀𝑔)𝐷𝑠𝑖𝑛𝜃

𝐿𝑠𝑖𝑛𝜃
=

(𝑀𝑔)𝐷

𝐼𝜔
 (3.25) 

The precession torque acts as a force rotating the gyroscope about its longitudinal 

axis.  Using Figure 16 as a reference, if torque is applied to the spinning disk causing it to 

rotate about the vertical (DE) axis (in the direction shown by ω), then the precession 

torque vector P will act orthogonal to the angular momentum vector (BA). 
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Figure 16  Gyroscope Precession [31] 

 

The mechanical gyroscope is found in many avionic instruments, such as the 

gyrocompass and turn coordinator.  The precession torque of the gyroscope is used either 

to dampen fluctuations (typically associated in magnetic compasses) or to indicate the 

rate-of-turn for the aircraft.  Other instruments, such as the artificial horizon, have a gyro 

mounted on gimbals so that it can rotate freely about any axis.  This configuration takes 

advantage of the conservation of angular momentum, which causes the gyro to remain 

fixed within the inertial reference frame.   
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Figure 17  Artificial Horizon Indicator [32] 

 

An alternative to the classic mechanical gyroscope is a MEMS rate gyroscope, 

which is based on the Coriolis Effect.  The Coriolis Effect is considered a fictitious force 

arising from the choice of a rotating framework of reference.  For example, a small 

commuter airplane leaving Burlington Vermont, heading to Orlando Florida, will take-off 

leaving the Earth’s reference frame.  Assuming a perfectly straight flight path, the 

airplane will drift off course and eventually end up somewhere over the Gulf of Mexico.    
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Figure 18  Coriolis Effect of the Earth 

 

Keeping the Coriolis Effect in mind, the reason for ending up over the Gulf is that as the 

airplane traveled south in the inertial frame, the earth continued to spin relative to the 

inertial frame.  Using Figure 19, to explain the Coriolis Effect more thoroughly, we can 

represent the earth using the coordinates X’, Y’ and Z’ and the airplane as x, y and z.  

The vector “R” shows the airplane as it travels relative to a fixed reference point on earth. 

 

Figure 19  Coriolis Effect Diagram [12] 
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The equation to describe the force due to the Coriolis Effect is determined by applying 

rotational kinematics and the vector cross product [12].  To begin we first define a vector 

“R” as; 

 𝑅 = 𝑖̂𝑥 + 𝑗̂𝑦 + �̂�𝑧 (3.26) 

Next we taking the derivative of each component with respect to time, 

 

𝑑𝑅

𝑑𝑡
= (𝑖̂

𝑑𝑥

𝑑𝑡
+ 𝑗̂

𝑑𝑦

𝑑𝑡
+ �̂�

𝑑𝑧

𝑑𝑡
)

⏟            
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑒𝑎𝑟𝑡ℎ

+ (
𝑑𝑖̂

𝑑𝑡
𝑥 +

𝑑𝑗̂

𝑑𝑡
𝑦 +

𝑑�̂�

𝑑𝑡
𝑧)

⏟              
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 

𝑓𝑖𝑥𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

𝑡𝑜 𝑡ℎ𝑒 𝑒𝑎𝑟𝑡ℎ′𝑠 𝑐𝑒𝑛𝑡𝑒𝑟

 
(3.27) 

Using the notation, 

 �̇� = (𝑖̂
𝑑𝑥

𝑑𝑡
+ 𝑗̂

𝑑𝑦

𝑑𝑡
+ �̂�

𝑑𝑧

𝑑𝑡
) (3.28) 

�̇� is set equal to the rate of change relative to a fixed reference point on earth.  The term 

(
𝑑�̂�

𝑑𝑡
𝑥 +

𝑑�̂�

𝑑𝑡
𝑦 +

𝑑�̂�

𝑑𝑡
𝑧) represents the rate of change of the fixed reference frame relative to 

the earth’s center.  This can be expressed more compactly as Ω × R.  Note: Ω × R is 

another way of saying that the linear velocity due to rotation is simply the radius 

multiplied by angular velocity.  Substituting in �̇� and Ω × R yields; 

 (
𝑑𝑅

𝑑𝑡
)

𝑆𝑝𝑎𝑐𝑒
= �̇�𝐸𝑎𝑟𝑡ℎ + (𝛺 × 𝑅) (3.29) 

Next, we would like to determine an expression for the observed acceleration and 

the acceleration due to the rotation of the earth.  Let us define the operator: 
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𝑑(  )

𝑑𝑡
= (  )̇ + 𝛺 × (  ) (3.30) 

Plugging (
𝑑𝑅

𝑑𝑡
)

𝑆𝑝𝑎𝑐𝑒
 into the parentheses results in the following, 

 𝑑(  )

𝑑𝑡
= (  )̇ + 𝛺 × (  ) 

 

 𝑑

𝑑𝑡
(

𝑅

𝑑𝑡
)

𝑆𝑝𝑎𝑐𝑒
= (�̇� + (𝛺 × 𝑅))

̇
+ 𝛺 × (�̇� + (𝛺 × 𝑅)) 

 

 𝑑

𝑑𝑡
(

𝑅

𝑑𝑡
) = (�̈� + (�̇� × 𝑅) + (𝛺 × �̇�)) + (𝛺 × �̇�) + [𝛺 × (𝛺 × 𝑅)] 

 

 𝑑

𝑑𝑡
(

𝑅

𝑑𝑡
) = (�̈� + (�̇� × 𝑅) + (𝛺 × �̇�)) + (𝛺 × �̇�) + [𝛺 × (𝛺 × 𝑅)] 

(3.31) 

This equation can then be re-arranged into the following representation; 

 
𝐴𝑆𝑝𝑎𝑐𝑒 = 𝑎𝐸𝑎𝑟𝑡ℎ + 2(𝛺 × 𝑣𝐸𝑎𝑟𝑡ℎ)⏟        

𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝑇𝑒𝑟𝑚

+ [𝛺 × (𝛺 × 𝑅)]⏟        
𝐶𝑒𝑛𝑡𝑟𝑖𝑝𝑖𝑡𝑎𝑙 𝑇𝑒𝑟𝑚

+ (�̇� × 𝑅)⏟    
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

 
(3.32) 

Since we are trying to solve for the Coriolis force acting on an object, the 

acceleration of the earth, centripetal acceleration, and the change in rotation rate terms 

can be ignored.  Therefore, the force equation simplifies to;  

 𝐴𝑆𝑝𝑎𝑐𝑒 =
𝐹𝑆𝑝𝑎𝑐𝑒

𝑀
= 2(𝛺 × 𝑣𝐸𝑎𝑟𝑡ℎ) (3.33) 

 𝐹𝑆𝑝𝑎𝑐𝑒 = 2𝑀(𝛺 × 𝑣𝐸𝑎𝑟𝑡ℎ) (3.34) 

To a better understand Coriolis Effect; imagine a ball at the center of a spinning 

disk (Figure 20).  As the disk spins, the ball moves from its original center position 

towards the outer edge.  If you look at the ball from the inertial reference frame, as shown 
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in picture A, it will appear as though the ball travels in a straight line.  If, on the other 

hand, you were to look at the ball from the disk’s reference frame, the ball would travel 

in a curved trajectory as shown in picture B. 

 

Figure 20 Force caused by the Coriolis Effect 

 

The force cause by the Coriolis Effect appears to move the ball along the curved 

trajectory and is the essential operating principle of the MEMS vibrating structure rate 

gyroscope.  Another way to look at Coriolis force would be to use the right hand rule.  

Referencing Figure 21, if you point your thumb in the direction of the spin axis, your 

index finger in the direction of the drive mode (velocity) then your middle finger will be 

pointing in the direction opposite the Coriolis force.   

 

𝐹𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 
𝑣  

 

Ω    

𝑣  

 

 

"𝐴" "𝐵" 
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Figure 21 Coriolis force Right Hand Rule 

 
 

3.2.1 RATE GYROSCOPE MEMS SENSOR 

The rate gyroscope used for this thesis was the InvenSense IDG-500 [25].  This specific 

rate gyro uses a proprietary MEMS technology with vertically driven dual-mass bulk 

silicon configurations that sense the rate of rotation about the X- and Y-axis (in-plane 

sensing).  The benefit of this dual-axis gyro is the guaranteed-by-design vibration 

rejection and high cross-axis isolation.  

 



 

36 

 
Figure 22  IDG-500 Functional Block Diagram [25] 

 

Performance Summary:  

 

Table 2 InvenSense IDG-500 Datasheet [25] 
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3.2.2 ADC CONVERSION OVERVIEW 

The output of the rate gyro is an analog signal measured in units of mV/°/s.  

However, we need to convert the signal into units of °/s.  The analog to digital conversion 

used for the rate gyroscope is the same method used for the accelerometer seen earlier in 

Sec. 3.1.2 (ADC Conversion Overview).  

 
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒 =  

(
𝐴𝐷𝐶𝑅𝑒𝑠𝑢𝑙𝑠(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)

𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

(3.35) 

Example:   

Determine the force acting on the accelerometer when the input ADC converted voltage 

signal is 508 (decimal) given the following parameters:  10-bit ADC, VADC = Vdd = 3V, 

Zero Rate Output Level = 1.35V, Sensitivity = 9.1 mV/°/s. 

𝑅𝑒𝑠𝑢𝑙𝑡 =  
(
508 (3.0𝑣)

1023 ) − (1.35𝑣)

0.0091 𝑣 °
𝑠𝑒𝑐⁄⁄

= 15.35 ° 𝑠𝑒𝑐⁄  

 

3.3 EULER ANGLES & ELEMENTARY ROTATIONS 

The orientation of an object can be described using a sequence of three elementary 

rotations (one about each principle axis).  The body is fixed to one coordinate system, 

which is defined as xBody, yBody, zBody, with each elementary rotation occurring about the 

body’s axis.  Initially, the body is aligned with the fixed reference frame.  It then 

modifies its orientation after each elemental rotation; these are referred to as “intrinsic” 

rotations [13].  The sequence of the elementary rotations is shown using Figure 23. 
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Figure 23 Euler Elementary Rotations 

 

The rotation of an object with respect to a fixed or “global” reference frame is 

expressed mathematically with an orthogonal matrix with the determinant equal to one.  

In a 3-dimensional space, rotations about the z, y, and x axes (yaw-pitch-roll) are 

achieved using the following rotation matrices: 

 𝑅𝑧𝑔
𝑣1(𝜓) = (

𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

) (3.36) 

 𝑅𝑦𝑣1

𝑣2(𝜃) = (
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

) (3.37) 
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 𝑅𝑥𝑣2
𝑏 (𝜙) = (

1 0 0
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙
0 −𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

) (3.38) 

 

Any rotation can be expressed as the product of the above three matrices.  It is 

very important to note the specific order in which the rotations are applied, since the 

rotations are non-commutative.  For UAV’s, the typical convention is to first rotate about 

the z-axis (Yaw), then the y-axis (Pitch), and finally the x-axis (Roll).  This rotation 

sequence is represented as the matrix product; 

 𝑅 = 𝑅𝑧𝑔
𝑣1(𝜓) ∙ 𝑅𝑦𝑣1

𝑣2(𝜃) ∙ 𝑅𝑥𝑣2
𝑏 (𝜙) (3.39) 

The complete rotation from the body frame to the fixed reference frame is represented as; 

𝑅 = [

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 − 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙

−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃
] (3.40) 

The rotation matrix “R” can now be used to map a vector quantity vb (defined in 

the body frame) to the fixed “global” frame vg.   

 𝑣𝑔 = 𝑅𝑣𝑏 (3.41) 

Similarly, the inverse transformation is given by the matrix transpose. 

 𝑣𝑏 = 𝑅𝑇𝑣𝑔 (3.42) 
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To track the orientation of an object through time we start with the rotation matrix 

at time “t” and then track the rate of change at time “δt”.  The expression for the 

derivative of the matrix R is written as, 

 �̇� = 𝑙𝑖𝑚
𝛿𝑡→0

𝑅(𝑡 + 𝛿𝑡) − 𝑅(𝑡)

𝛿𝑡
 (3.43) 

Following the mathematical work of [14], R(t + δt) can be written as the product of two 

matrices; 

 𝑅(𝑡 + 𝛿𝑡) = 𝑅(𝑡)𝐴(𝑡) (3.44) 

where A(t) is the rotation matrix which relates the body frame at time “t” to the body 

frame at time “t+δt.”  Now if we assume that the data measurement sample rate of the 

MEMS rate gyroscope fast enough, then we can apply the small angle approximation 

such that sin(ϕ) → ϕ, sin(θ) → θ, sin(ψ) → ψ, and the cosines of ϕ, θ, and ψ become 

one.  By ignoring the products of angles, the “R” matrix becomes; 

 𝛹 = (

1 −𝜓 𝜃
𝜓 1 −𝜙

−𝜃 𝜙 1
) (3.45) 

Therefore, A(t) can be written as, 

 𝐴(𝑡) = 𝐼 + 𝛿𝛹 (3.46) 

where, 

 
𝛿𝛹 = (

0 −𝛿𝜓 𝛿𝜃
𝛿𝜓 0 −𝛿𝜙

−𝛿𝜃 𝛿𝜙 0
) (3.47) 
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We can now substitute equation (3.46) into equation (3.43) to give, 

 �̇� = 𝑙𝑖𝑚
𝛿𝑡→0

𝑅(𝑡 + 𝛿𝑡) − 𝑅(𝑡)

𝛿𝑡
  

 = 𝑙𝑖𝑚
𝛿𝑡→0

𝑅(𝑡)(𝐼 + 𝛿𝛹) − 𝑅(𝑡)

𝛿𝑡
  

 = 𝑙𝑖𝑚
𝛿𝑡→0

𝑅(𝑡) + 𝑅(𝑡)𝛿𝛹 − 𝑅(𝑡)

𝛿𝑡
  

 = 𝑅(𝑡) ∙ 𝑙𝑖𝑚
𝛿𝑡→0

𝛿𝛹

𝛿𝑡
 (3.48) 

For the limit 𝛿𝑡 → 0, the small angle approximation is valid and equation (3.48) 

becomes, 

 �̇� = 𝑅(𝑡) ∙ 𝛺(𝑡) (3.49) 

where, 

 𝛺(𝑡) = (

0 −𝜔𝑏𝑧(𝑡) 𝜔𝑏𝑦(𝑡)

𝜔𝑏𝑧(𝑡) 0 −𝜔𝑏𝑥(𝑡)
−𝜔𝑏𝑦(𝑡) 𝜔𝑏𝑥(𝑡) 0

) (3.50) 

which is the skew symmetric form of the angular matrix 𝜔𝑏(𝑡).  Since the attitude 

determination algorithm provides samples of the angular velocity, we can solve the 

differential equation �̇� for a single period [𝑡, 𝑡 + 𝛿𝑡]. 

 𝑅(𝑡 + 𝛿𝑡) = 𝑅(𝑡) ∙ 𝑒𝑥𝑝 ∫ 𝛺(𝑡)𝑑𝑡
𝑡+𝛿𝑡

𝑡

 (3.51) 

Since we’re integrating over a small change in “t,” we can approximate the integral using 

the rectangular rule. 
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Rule 𝐼𝑅 = 𝑓(𝑥) ∙ (𝑏 − 𝑎) (3.52) 

 𝐵 = ∫ 𝛺(𝑡)𝑑𝑡
𝑡+𝛿𝑡

𝑡

= 𝛺(𝑡) ∙ (𝑡 − 𝑡 + 𝛿𝑡)  

 𝐵 = 𝛺(𝑡)𝛿𝑡 (3.53) 

We can now solve the differential equation by using Taylor’s series expansion.  Let 

𝜎 = |𝜔𝑏𝛿𝑡|, where 𝜔𝑏 = [𝜔𝑏𝑥 𝜔𝑏𝑦 𝜔𝑏𝑧]𝑇 and apply the trigonometric functions for 

sin(𝑥) and cos(𝑥). 

 𝑅(𝑡 + 𝛿𝑡) = 𝑅(𝑡) ∙ 𝑒𝑥𝑝(𝐵)  

 =  𝑅(𝑡) ∙ (𝑰 + 𝑩 +
𝑩𝟐

2!
+

𝑩𝟑

3!
+

𝑩𝟒

4!
+ ⋯ )  

 =  𝑅(𝑡) ∙ (𝑰 + 𝑩 +
𝑩𝟐

2!
−

𝜎2𝑩

3!
−

𝜎3𝑩𝟐

4!
+ ⋯ )  

 =  𝑅(𝑡) ∙ (𝑰 + (1 −
𝜎2

3!
+

𝜎4

5!
⋯ ) 𝑩 + (

1

2!
−

𝜎2

4!
+

𝜎4

6!
⋯ ) 𝑩𝟐)  

 =  𝑅(𝑡) ∙ (𝐼 +
𝑠𝑖𝑛 𝜎

𝜎
𝐵 +

1 − 𝑐𝑜𝑠 𝜎

𝜎
𝐵2) (3.54) 

Since we’re using the small angle approximation, sin(𝜎) → 𝜎 and cos(𝜎) → 1 resulting 

in the final solution 

 𝑅(𝑡 + 𝛿𝑡) =  𝑅(𝑡) ∙ (𝐼 + 𝐵) (3.55) 
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3.3.1 NUMERICAL CORRECTIONS 

As mentioned in the previous section, the rotation matrix can be expressed 

mathematically with an orthogonal matrix whose determinant is equal to one.  This 

means that any pair of columns (or rows) of the matrix are perpendicular, and that the 

sum of squares of the elements in each column (or row) is equal to one.  However, 

numerical errors can accumulate over time due to sensor measurement errors.  This 

accumulation of errors can cause the determinant to become greater than, or less than, 

one.  In addition, the elements in each column (or row) can violate the perpendicularity 

property of the matrix.   

To maintain the orthogonality property of the matrix, we first express the rotation 

matrix as a general matrix “R” with “r” elements.  We can then compute the dot product 

of the 𝑅1 and 𝑅2 rows of the matrix, which should be zero.   

 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] (3.56) 

 𝑅1 = [

𝑟11

𝑟12

𝑟13

] (3.57) 

 𝑅2 = [

𝑟21

𝑟22

𝑟23

] (3.58) 

The dot product is used to compute the error term; 

 𝐸𝑟𝑟𝑜𝑟 = 𝑅1
𝑇 ∙ 𝑅2 = [𝑟11 𝑟12 𝑟13] [

𝑟21

𝑟22

𝑟23

] (3.59) 
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Now the error term is used to re-calculate the 𝑅1 and 𝑅2 rows; 

 𝑅1
′ = 𝑅1 − (

𝐸𝑟𝑟𝑜𝑟

2
) 𝑅2 (3.60) 

 𝑅2
′ = 𝑅2 − (

𝐸𝑟𝑟𝑜𝑟

2
) 𝑅1 (3.61) 

The next step is to adjust the 𝑅3 row to be orthogonal to 𝑅1 and 𝑅2 by taking the cross 

product of 𝑅1
′  and 𝑅2

′ . 

 𝑅3
′ = 𝑅1

′ × 𝑅2
′  (3.62) 

Now that rows 𝑅1, 𝑅2 and 𝑅3 are orthogonal, we need to re-normalize the rows 

such that the magnitude is equal to one.  This can be accomplished by computing the 

Taylor’s series expansion, as described in [3]. 

 𝑅1,𝑛𝑜𝑟𝑚 =
1

2
(3 − 𝑅1

′ ∙ 𝑅1
′ )𝑅1

′  (3.63) 

 𝑅2,𝑛𝑜𝑟𝑚 =
1

2
(3 − 𝑅2

′ ∙ 𝑅2
′ )𝑅2

′  (3.64) 

 𝑅3,𝑛𝑜𝑟𝑚 =
1

2
(3 − 𝑅3

′ ∙ 𝑅3
′ )𝑅3

′  (3.65) 

 

 

3.3.2 EULER ANGLE COMPUTATION AND SINGULARITY AVOIDANCE 

This section will solve for the angles θ, ϕ, and ψ , which correspond to the pitch, roll, and 

yaw angles respectively.  Solving for the Euler angles is achieved using the rotation 

matrix “R” along with the generalized matrix as shown below. 
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𝑅 = [

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓

−𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃
] (3.66) 

 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] (3.67) 

Determining the angle for 𝜽: 

The angle for 𝜃 is most easily solved using 𝑟31. 

 𝑟31 = −𝑠𝑖𝑛 𝜃 (3.68) 

Inverting the equation yields, 

 𝜃 = −𝑠𝑖𝑛−1(𝑟31) (3.69) 

Determining the angle for 𝜙: 

The angle for 𝜙 can be solved using 𝑟32 and  𝑟33. 

 𝑟32 = 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑟32 = 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 (3.70) 

 
𝑟32

𝑟33
=

𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃

𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃
= 𝑡𝑎𝑛 𝜙 (3.71) 

Note that when determining ϕ there are two possibilities for the above equation.  If 

cos θ > 0, then ϕ = atan(+r32/+r33).  However, if cos θ < 0, then ϕ = atan(−r32/

−r33) producing the same result as atan(+r32/+r33).  One simple way to handle this is 

to use the atan2 function;  

 𝜙 = 𝑎𝑡𝑎𝑛2(𝑟32, 𝑟33) (3.72) 
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Determining the angle for 𝝍: 

The angle for 𝜓 can be solved using 𝑟11 and  𝑟21. 

 𝑟21 = 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑟11 = 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 (3.73) 

 
𝑟21

𝑟11
=

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓
= 𝑡𝑎𝑛 𝜓 (3.74) 

The atan2 function can then be used to solve for 𝜓 as, 

 𝜓 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) (3.75) 

Singularity Avoidance 

Up to this point we have developed a way to solve for θ when θ ≠ 0.  So what happens 

when cos θ = 0?  In this condition (corresponding to θ = ± π
2⁄  ) the elements 

r11, r21, r32 and r33 become zero and the following results; 

 𝜙 = 𝑎𝑡𝑎𝑛2(0,0) (3.76) 

 𝜓 = 𝑎𝑡𝑎𝑛2(0,0) (3.77) 

For this situation, the elements r11, r21, r32 and r33, are not able to determine the values 

of ϕ and ψ.  One way to solve this is to use the remaining elements of “R.”  

For the case when θ = − π
2⁄   we can solve the remaining elements using; 

 

𝑟12 = − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 = −𝑠𝑖𝑛(𝜙 + 𝜓) 

𝑟13 = −𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 = −𝑐𝑜𝑠(𝜙 + 𝜓) 

𝑟22 = −𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 = 𝑐𝑜𝑠(𝜙 + 𝜓) = −𝑟13 

(3.78) 
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𝑟23 = 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓 = −𝑠𝑖𝑛(𝜙 + 𝜓) = 𝑟12 

Using the equations for 𝑟12 and 𝑟13, we can solve for 𝜙 as [15], 

 (𝜙 − 𝜓) = 𝑎𝑡𝑎𝑛2(𝑟12, 𝑟13)  

 𝜙 = 𝜓 + 𝑎𝑡𝑎𝑛2(𝑟12, 𝑟13) (3.79) 

Now consider the case when θ = π
2⁄ .  After applying the sum and difference 

angle identity, the remaining elements become; 

 

𝑟12 = 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 = 𝑠𝑖𝑛(𝜙 − 𝜓) 

𝑟13 = 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 = 𝑐𝑜𝑠(𝜙 − 𝜓) 

𝑟22 = 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 = 𝑐𝑜𝑠(𝜙 − 𝜓) = 𝑟13 

𝑟23 = 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓 = −𝑠𝑖𝑛(𝜙 − 𝜓) = −𝑟12 

(3.80) 

Using the equation for 𝑟12 and 𝑟13, we can solve for 𝜙 as [22]; 

 (𝜙 + 𝜓) = 𝑎𝑡𝑎𝑛2(−𝑟12, −𝑟13)  

 𝜙 = −𝜓 + 𝑎𝑡𝑎𝑛2(−𝑟12, −𝑟13) (3.81) 

 

3.4 SUMMARY 

This chapter introduced the mathematical concepts for object orientation.  The first 

section introduced the MEMS accelerometer and how it can be used for basic tilt angle 

calculations.  The second section introduced the MEMS rate gyroscope based on the 

Coriolis Effect.  Both sensors are developed using capacitive sensing technology and 
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provide analog output signals.  The analog signals are then converted into digital form 

using the same conversion process.   

 The second half of this chapter introduced a rotation matrix used to map a vector 

in the body frame to the global frame.  Using intrinsic rotations, we performed rotations 

by first rotating about the yaw axis, then about the pitch axis and finally about the roll 

axis.  Once we could relate rotations about the body axis to the global frame, we were 

able to discuss a method to avoid the singularity problem.  The singularity problem 

happens when angles reach ±90° causing θ to be zero.  We have now developed the 

concepts necessary to perform basic object orientation using the accelerometer and rate 

gyroscope MEMS sensors.  In addition, we developed the mathematical equations to 

track the orientation through time.  This chapter concludes with a lab exercise that will 

apply the fundamental concepts of object orientation.  
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3.5 LAB EXERCISE 

The objective of this lab exercise is to introduce the Euler angle rotation matrix.  

The lab will begin by asking the student to create three matrices representing the rotations 

about each of the principle axes.  The students are then asked to rotate the body axis, 

using two different rotation sequences, to observe how the final orientation changes.  The 

second exercise will introduce the student to object tracking by using the small angle 

approximation of the rotational rate.  The final exercise will build on the object tracking 

process to include singularity avoidance.  At the end, the student will need to demonstrate 

the code for angles exceeding 90° of rotation (about any axis). 

Lab Environment 

To perform this lab, the student will need a computer with MATLAB software. 

Layout 

a) The first exercise will require the student to generate the code necessary to 

perform a single rotation. 

b) The second exercise will elaborate on the first by performing successive rotations 

based on data generated by a rate gyroscope. 

c) The third exercise will implement a singularity avoidance technique. 

 

3.5.1 PART A 

a) Open a new ‘.m’ file 

b) Write a script that will produce a rotation matrix based on the Euler angle 

parameters 𝑅𝑥(𝜙), 𝑅𝑦(𝜃), and 𝑅𝑧(𝜓).   

c) Determine an arbitrary rotation sequence for; 

a. Yaw-Pitch-Roll (𝜓, 𝜃, 𝜙) 
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Example 

 

%Create variables for the Cosine and Sine terms to simplify the math 

    Cr = cos(roll);       Sr = sin(roll);   

    Cp = cos(pitch);   Sp = sin(pitch); 

    Cy = cos(yaw);     Sy = sin(yaw); 

 

Rx = [1      0                    0; 

          0     cos(pitch)     sin(pitch); 

          0    -sin(pitch)     cos(pitch)]; 

 

Ry = [cos(roll)    0     -sin(roll); 

          0                1      0; 

         sin(roll)      0     cos(roll)]; 

 

Rz = [cos(yaw)     sin(yaw)       0; 

        -sin(yaw)      cos(yaw)      0; 

         0                   0                    1]; 

 

Rotation_matrix = Rz*Rx*Ry 

 

d) Using two other rotation sequences, determine the angles needed to produce the 

same final orientation.   

 

Questions: 

1) Explain the method used to determine the angles needed. 

 

(Optional) Creating Plots: 

You can create plots as a visual reference by using the MATLAB “quiver3” function. 

 

Example 

%First define the unit vectors in the vehicle’s frame of reference 

x_v = [1;0;0]; 

y_v = [0;1;0]; 

z_v = [0;0;1]; 

o_v = [x_v';y_v';z_v'];  %Convert to quiver3 compliant form 
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%Create the initial plot 

figure(1) 

quiver3(zeros(3,1),zeros(3,1),zeros(3,1),o_v(:,1),o_v(:,2),o_v(:,3)) %Draw 

the frame 

 

%Enter in any initial conditions here 

%Note that units must be converted to radians 

yaw = 40*pi/180; 

pitch = -10*pi/180; 

roll = 10*pi/180; 

 

%Perform the rotation using the rotation matrix 

x_v1 = XYZ_2Rotation_Matix (yaw,pitch,roll)*x_v; 

y_v1 = XYZ_2Rotation_Matix (yaw,pitch,roll)*y_v; 

z_v1 = XYZ_2Rotation_Matix (yaw,pitch,roll)*z_v; 

o_v1 = [x_v1';y_v1';z_v1']; 

 

%Plot the response 

figure(3) 

quiver3(zeros(3,1),zeros(3,1),zeros(3,1),o_v1(:,1),o_v1(:,2),o_v1(:,3)) 

 

 

3.5.2 PART B 

a) Open a new “.m” file 

b) Write a script to perform the following tasks; 

a. Initialize the orientation of the body using the yaw-pitch-roll sequence 

used for “Part A.” 

b. Rotate the body using a constant angular velocity about a single axis.  The 

student must make use of the small angle approximation and must rotate 

the body at least 10° about the rotating axis.   

 

Example 

I = [1  0  0; 

     0  1  0; 

     0  0  1]; 

 

yaw = 0*pi/180; 
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pitch = 0*pi/180; 

roll = 0*pi/180; 

 

Cr = cos(roll);  Sr = sin(roll);   

Cp = cos(pitch); Sp = sin(pitch); 

Cy = cos(yaw);   Sy = sin(yaw); 

 

R = [Cr*Cy+Sr*Sp*Sy  Cp*Sy  -Sr*Cy+Cr*Sp*Sy; 

    -Cr*Sy+Sr*Sp*Cy  Cp*Cy   Sr*Sy+Cr*Sp*Cy; 

     Sr*Cp          -Sp      Cr*Cp]; 

 

Wx = 0.07;  %Gyro Readings (rad/sec) /Pitch 

Wy = 0.035;  %Gyro Readings (rad/sec) /Roll 

Wz = 0;  %Gyro Readings (rad/sec) /Yaw   

 

Omega = [0   Wz -Wy; 

        -Wz  0  -Wx; 

         Wy  Wx  0]; 

 

dt = 0.5; %Update Rate (50Hz) 

 

i = 0; 

while i < 20 

    dR = I + Omega*dt; 

    R = R*dR;     

 

    %Numerical Corrections 

    R1 = R(:,1); 

    R2 = R(:,2); 

    Error = R1'*R2; 

     

    R1_prime = R1 - (Error/2)*R2; 

    R2_prime = R2 - (Error/2)*R1; 

    R3_prime = cross(R1_prime,R2_prime); 

     

    %Re-Normalize 

    R(:,1) = 0.5*(3-(R1_prime'*R1_prime))*R1_prime; 

    R(:,2) = 0.5*(3-(R2_prime'*R2_prime))*R2_prime; 

    R(:,3) = 0.5*(3-(R3_prime'*R3_prime))*R3_prime; 

    

    i = i+1; 

end 

 

%Euler Angles 
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Pitch = (asin(R(3,2))*180)/pi 

Roll = (atan2(R(3,1),R(3,3))*180)/pi 

Yaw = (atan2(R(1,2),R(2,2))*180)/pi 

 

c) Rotate the body using two constant velocities about two axes.   

 

Questions: 

1) Explain the result of the two rotations.   

2) If you were to keep the body axis rotation, what would the rotations look like?   

3) Using all possible combinations of constant angular velocities, describe (and 

sketch) four possible continuous rotations.  Hint:  Think of typical aircraft 

maneuvers. 

 

 

3.5.3 PART C 

a) Copy the code from “Part B” into a new “.m” file 

b) Verify the singularity problem by rotating the body axis y-axis (pitch) to an angle 

to 90° 

c) Modify the script to avoid the singularity problem 

d) Verify the script changes by repeating step “b” 

 

Analysis Questions: 

1) From what we have learned in this chapter, describe a scenario where it is 

appropriate to use only an accelerometer for determining orientation.   

2) Under what conditions will the accelerometer not work? 

3) Is it possible to use only the rate gyroscope for determining the orientation of an 

object?  Describe why, or why not. 

4) Using the accelerometer and rate gyroscope, is it possible to track accurately the 

position of an object over an extended period?  Describe why, or why not. 
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CHAPTER 4  

   AN INTRODUCTION TO SENSOR FUSION 

 

4.1 INTRODUCTION 

Sensor fusion is a method to combine different sensors in order to produce a better result 

than any one individual sensor’s output.  For example, a magnetic compass and 

directional gyroscope are two different sensors used for navigation.   When fused 

together, they provide a navigational heading that is more reliable and more accurate than 

what either would produce individually.  To understand the technique of using sensor 

fusion for the magnetic compass and directional gyroscope, one must recognize the 

specific properties of each device.  The magnetic compass produces an accurate heading 

when determining north, but suffers from needle ‘wandering’ and sensitivity to metal 

surfaces.  The directional gyroscope is used to achieve rigidity in free space (the ability to 

maintain a specific orientation while the platform it is mounted to changes in direction 

and orientation).  However, a drawback of the gyroscope is the property of precession, 

which causes the gyroscope to drift slowly over time due to small internal frictional 

forces.  We can now see how the magnetic compass suffers from short term wandering, 

but benefits from long-term directional stability.  The gyroscope suffers from long-term 

drift, but benefits from short-term stability in free space.  Together, the sensors can 

produce a result that has both short-term stability and long-term stability.   
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4.2 SENSOR FUSION IMPLEMENTATION 

One of the most widely implemented sensor fusion techniques used in both robotics and 

navigation, is the Kalman filter.  The Kalman filter is described as an “optimal estimator” 

for linear dynamic systems.  Its recursive properties and ability to create predictions of 

the system make it an extremely popular mathematical technique.  The predictions of the 

system are possible when the error covariances are zero mean, Gaussian distributed and 

assumed stationary over time.   

The Kalman filter’s ability to make predictions can be broken down into two 

primary phases; the “Prediction” and “Measurement Update.”  The prediction phase uses 

the system’s dynamic model and process covariance error to make a prediction of the 

system.  The measurement update phase, along with the measurement covariance error, 

are used to read the system’s state (specific characteristics such as; location, velocity, 

acceleration, etc.).  If we compare the prediction with the measurement update, we can 

determine the changes necessary for adjustment in the next prediction cycle.  Let us 

assume that a linear system can be modeled using state space equations with some 

amount of process noise error (e.g. a car traveling along an imperfect road).  The 

measurements taken will also have some amount of noise (sensor errors).  Let us look at 

an example of a car driving down the road.  The Kalman filter’s goal is to make the best 

possible estimate of the car’s location at each time interval.  The estimate uses a 

prediction based on the car’s last known position and speed, as well as the current 

measurements of position and speed.  By describing the prediction and measurement 
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errors as having a zero mean Gaussian distribution, we can show the car’s previous 

prediction and current measurement as follows [16]; 

 

Figure 24 Prediction and Measurement Distributions [16] 

 

To determine the best possible estimate of the current position, we can multiply the two 

Gaussian distributions to form a new Gaussian distribution as follows; 

 

Figure 25 New Position Estimate [16] 

 

The above example simply demonstrates the first cycle of the Kalman filter’s recursive 

property; a continuous process of making predictions, performing measurement updates, 

and establishing a new position estimate.    
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4.3 THE KALMAN FILTER 

To understand the Kalman filter more formally, we will follow the work of [17] and [18].  

The following equation were developed using a more simplistic approach where the 

majority of the derivations are from the Least Squares Estimation section of [17] and later 

combined with the derivation process of [18].   

The Kalman filter algorithm starts by describing the value of a variable within a 

discrete-time system in the form; 

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (4.1) 

Here xk is the state vector of a process at time k, 𝐹𝑘−1 is the state transition matrix 

(equations of motion), 𝐺𝑘−1 is the system input matrix, and wk−1 is the associated 

process noise (assumed to be zero-mean, uncorrelated white noise with known covariance 

matrix Qk).  Note that the expression “k-1” simply means the previous “state” of the 

system.  A more familiar version of this equation is; 

 �̇� = 𝐴𝑥 + 𝐵𝑢 (4.2) 

The observations of the state variable xk are given in the form; 

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (4.3) 

where yk is the actual measurement of xk at time k, Hk is the connection matrix between 

the state vector and the measurement vector, and vk is the associated measurement noise 

(assumed to be zero-mean, uncorrelated white noise with known covariance matrix Rk).   
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For the Kalman filter to be an optimal estimator, it must correctly model the 

system and measurement errors using Gaussian distributions.  Therefore, the covariances 

of the two noise models are given by; 

 𝑄 = 𝐸[𝑤𝑘𝑤𝑘
𝑇] (4.4) 

 𝑅 = 𝐸[𝑣𝑘𝑣𝑘
𝑇] (4.5) 

where the function E[xyxy
T] is the “Expected” value of x, which is also the center of the 

probability distribution.  In mathematical terms, given a random variable X with values 

x1, x2, x3, ⋯ , xn, with probabilities p1, p2 p3, ⋯ , pn, the expected value of X is given by; 

 𝑋 = 𝑥1𝑝1 + 𝑥2𝑝2 + 𝑥3𝑝3 + ⋯ + 𝑥𝑛𝑝𝑛 (4.6) 

 Since the Kalman filter is based on linear recursive least squares estimation, we 

can simplify the derivation process by analyzing the linear recursive estimator as follows;  

 𝑦𝑘 = 𝐻𝑘𝑥 + 𝑣𝑘 (4.7) 

 �̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘−1) (4.8) 

where x̂k is computed based off the previous estimate x̂k−1 and the new measurement yk.  

𝐾𝑘 is the estimator gain matrix ( Kalman gain) and is what we are trying to determine.   

Before we compute the gain matrix 𝐾𝑘, it is worth looking at the mean of the 

estimation error of the linear recursive estimator [17].  This can be computed as; 

 𝐸(𝜖𝑥,𝑘) = 𝐸(𝑥𝑘 − �̂�𝑘) (4.9) 
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where E(ϵx,k) describes the error between the true value of the system and the estimated 

value of the system.  To carry out this expression we will substitute x̂k into E(ϵx,k) as 

follows;  

 𝐸(𝜖𝑥,𝑘) = 𝐸(𝑥 − �̂�𝑘)  

 
= 𝐸(𝑥 − �̂�𝑘−1 − 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘−1)) 

 

 
= 𝐸 (𝜖𝑥,𝑘−1 − 𝐾𝑘(𝐻𝑘𝑥 + 𝑣𝑘 − 𝐻𝑘�̂�𝑘−1)) 

 

 
= 𝐸(𝜖𝑥,𝑘−1 − 𝐾𝑘𝐻𝑘(𝑥 − �̂�𝑘−1) − 𝐾𝑘𝑣𝑘) 

 

 
= 𝐸(𝜖𝑥,𝑘−1 − 𝐾𝑘𝐻𝑘(𝜖𝑥,𝑘−1) − 𝐾𝑘𝑣𝑘) 

 

 
= (𝐼 − 𝐾𝑘𝐻𝑘) 𝐸(𝜖𝑥,𝑘−1) − 𝐾𝑘𝐸(𝑣𝑘) 

(4.10) 

Equation (4.10) shows that if 𝐸(𝑣𝑘) = 0 and 𝐸(𝜖𝑥,𝑘−1) = 0, then 𝐸(𝜖𝑥,𝑘) = 0.  

Therefore, if the measurement error is zero mean and the initial estimate of x is equal to 

the expected value of x, then the expected value of �̂�𝑘 will also be equal to x.  In other 

words, the estimate of �̂� will, on average, is equal to the true value of x.  This is why 

equation (4.8) is called an unbiased estimator, regardless of the value for Kk. 

At this point we can turn our attention back onto determining the gain matrix Kk.  

Since equation (4.8) is considered unbiased, regardless of the value for Kk.  Therefore, 

we must choose the optimality criterion (to minimize) as the sum of the variances of the 
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estimation errors at time k.  This is accomplished using the cost function J, where J is 

defined as; 

 𝐽 = 𝑒𝑦1
2 + ⋯ + 𝑒𝑦𝑘

2   

 
= 𝑒𝑦

𝑇𝑒𝑦 
(4.11) 

We can now substitute (𝜖𝑥,𝑘) = 𝐸(𝑥 − �̂�𝑘) into the cost function as; 

 𝐽 = 𝐸[(𝑥1 − �̂�1)2] + ⋯ + 𝐸[(𝑥𝑛 − �̂�𝑛)2]  

 
= 𝐸(𝑒𝑥1,𝑘

2 + ⋯ + 𝑒𝑥𝑛,𝑘
2 ) 

 

 
= 𝐸(𝑒𝑥,𝑘

𝑇 𝑒𝑥,𝑘) 
 

 
= 𝐸[𝑇𝑟(𝑒𝑥,𝑘

𝑇 𝑒𝑥,𝑘)] 
 

 
= 𝑇𝑟𝑃𝑘  

(4.12) 

where Pk is the estimation-error covariance.  Note that the diagonal of the covariance 

matrix contains the mean squared errors; 

 𝑃𝑘𝑘 = [

𝐸[𝑒𝑘−1𝑒𝑘−1
𝑇 ] 𝐸[𝑒𝑘𝑒𝑘−1

𝑇 ] 𝐸[𝑒𝑘+1𝑒𝑘−1
𝑇 ]

𝐸[𝑒𝑘−1𝑒𝑘
𝑇] 𝐸[𝑒𝑘𝑒𝑘

𝑇] 𝐸[𝑒𝑘+1𝑒𝑘
𝑇]

𝐸[𝑒𝑘−1𝑒𝑘+1
𝑇 ] 𝐸[𝑒𝑘𝑒𝑘+1

𝑇 ] 𝐸[𝑒𝑘+1𝑒𝑘+1
𝑇 ]

] (4.13) 

Since the trace of a matrix is the sum of the diagonal elements, we can see that the trace 

of the error covariance matrix is the sum of the mean squared errors.  Therefore, the mean 

squared error may be minimized by minimizing the trace of Pk, which will also result in 

minimizing the trace of Pkk.  We can use a process similar to the one for the cost function 
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J to obtain a recursive formula for the calculation of Pk.  Using the results from above, we 

can write Pk as; 

 𝑃𝑘 = 𝐸(𝑒𝑥,𝑘𝑒𝑥,𝑘
𝑇 ) (4.14) 

Substituting in the results for 𝐸(𝜖𝑥,𝑘) gives; 

 𝑃𝑘 = 𝐸{[(𝐼 − 𝐾𝑘𝐻𝑘) 𝜖𝑥,𝑘−1 − 𝐾𝑘𝑣𝑘][⋯ ]𝑇}  

 
= (𝐼 − 𝐾𝑘𝐻𝑘)𝐸(𝜖𝑥,𝑘−1𝜖𝑥,𝑘−1

𝑇 )(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 − 
 

 
𝐾𝑘𝐸(𝑣𝑘𝜖𝑥,𝑘−1

𝑇 )(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 − (𝐼 − 𝐾𝑘𝐻𝑘)𝐸(𝜖𝑥,𝑘−1𝑣𝑘
𝑇)𝐾𝑘

𝑇 + 
 

 
𝐾𝑘𝐸(𝑣𝑘𝑣𝑘

𝑇)𝐾𝑘
𝑇 

(4.15) 

Looking at the equation for 𝑃𝑘, we note that 𝜖𝑥,𝑘−1 is independent of 𝑣𝑘.  In other words, 

the measurement noise is uncorrelated with the error of the prior estimate as shown, 

 𝐸(𝑐𝑘𝜖𝑥,𝑘−1
𝑇 ) = 𝐸(𝑣𝑘)𝐸(𝜖𝑥,𝑘−1) = 0 (4.16) 

A similar result holds for E(ϵx,k−1𝑣k
T), since both expected values are zero.  Therefore, 

the equation for Pk simplifies to; 

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 (4.17) 

where Rk is the covariance of 𝑣k.  This equation is now the recursive formula for the 

covariance of the least squares estimation error.   

 The last step is to find a value for Kk that makes the cost function as small as 

possible.  We first need to introduce a few properties of Matrix Calculus.  Suppose that 
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“A” is a m x n matrix and f(x) is a scalar.  Then the partial derivative of the scalar, with 

respect to the matrix, can be computed as follows; 

 
𝜕𝑓

𝜕𝐴
=

[
 
 
 
 

𝜕𝑓

𝜕𝐴11
⋯

𝜕𝑓

𝜕𝐴1𝑛

⋮ ⋱ ⋮
𝜕𝑓

𝜕𝐴𝑚1
⋯

𝜕𝑓

𝜕𝐴𝑚𝑛]
 
 
 
 

 (4.18) 

Next, we can show the partial derivative of a dot product to be computed as; 

 𝑥𝑇𝑦 = 𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛  

 
𝜕(𝑥𝑇𝑦)

𝜕𝑥
= [

𝜕(𝑥𝑇𝑦)

𝜕𝑥1
+ ⋯ +

𝜕(𝑥𝑇𝑦)

𝜕𝑥𝑛
] 

 

 
= 𝑦1 + ⋯ + 𝑦𝑛 

 

 
= 𝑦𝑇 

(4.19) 

The partial derivative of a quadratic with respect to a vector can be computed as; 

 𝑥𝑇𝐴𝑥 = [𝑥1 ⋯ 𝑥𝑛] [
𝐴11 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮
𝐴𝑚1 ⋯ 𝐴𝑚𝑛

] [

𝑥1

⋮
𝑥𝑛

]  

 

= [∑ 𝑥𝑖𝐴𝑖1
𝑖

⋯ ∑ 𝑥𝑖𝐴𝑖𝑛
𝑖

] [

𝑥1

⋮
𝑥𝑛

] 

 

 
= ∑ 𝑥𝑖𝑥𝑗𝐴𝑖𝑗

𝑖,𝑗

 
(4.20) 
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With the partial derivative calculation as shown; 

 
𝜕(𝑥𝑇𝐴𝑥)

𝜕𝑥
= [

𝜕(𝑥𝑇𝐴𝑥)

𝜕𝑥1
    ⋯    

𝜕(𝑥𝑇𝐴𝑥)

𝜕𝑥𝑛
]  

 
= [∑ 𝑥𝑗𝐴1𝑗 + ∑ 𝑥𝑖𝐴𝑖1

𝑖𝑗
  ⋯   ∑ 𝑥𝑗𝐴𝑛𝑗 + ∑ 𝑥𝑖𝐴𝑖𝑛

𝑖𝑗
 ] 

 
= [∑ 𝑥𝑗𝐴1𝑗

𝑗
⋯ ∑ 𝑥𝑗𝐴𝑛𝑗

𝑗
] + [∑ 𝑥𝑖𝐴𝑖1

𝑖
⋯ ∑ 𝑥𝑖𝐴𝑖𝑛

𝑖
] 

 
= 𝑥𝑇𝐴𝑇 + 𝑥𝑇𝐴 

(4.21) 

It is important to note that if “A” is symmetric, then 𝐴 = 𝐴𝑇 and the above expression 

simplifies to; 

 
𝜕(𝑥𝑇𝐴𝑥)

𝜕𝑥
= 2𝑥𝑇𝐴 (4.22) 

The last partial derivative needed before deriving Kk is the partial derivative of 

Tr(ABAT) with respect to “A”.  To begin we start by first computing ABAT as follows: 

 𝐴𝐵𝐴𝑇 = [
𝐴11 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮
𝐴𝑚1 ⋯ 𝐴𝑚𝑛

] [
𝐵11 ⋯ 𝐵1𝑛

⋮ ⋱ ⋮
𝐵𝑛1 ⋯ 𝐵𝑛𝑛

] [
𝐴11 ⋯ 𝐴𝑚1

⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑚𝑛

]  

 

=

[
 
 
 
 ∑ 𝐴1𝑘𝐵𝑘𝑗𝐴1𝑗

𝑗,𝑘
⋯ ∑ 𝐴1𝑘𝐵𝑘𝑗𝐴𝑚𝑗

𝑗,𝑘

⋮ ⋱ ⋮

∑ 𝐴𝑚𝑘𝐵𝑘𝑗𝐴1𝑗
𝑗,𝑘

⋯ ∑ 𝐴𝑚𝑘𝐵𝑘𝑗𝐴𝑚𝑗
𝑗,𝑘 ]

 
 
 
 

 (4.23) 

 

 



 

64 

We can see that the trace of 𝐴𝐵𝐴𝑇 is; 

 𝑇𝑟(𝐴𝐵𝐴𝑇) = ∑ 𝐴𝑖𝑘𝐵𝑘𝑗𝐴𝑖𝑗
𝑖,𝑗,𝑘

 (4.24) 

The partial derivative of the 𝑇𝑟(𝐴𝐵𝐴𝑇) with respect to “A” can be computed as; 

𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴
=

[
 
 
 
 
 
𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴11
⋯

𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴1𝑛

⋮ ⋱ ⋮
𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴𝑚1
⋯

𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴𝑚𝑛 ]
 
 
 
 
 

 
 

 

=

[
 
 
 
 ∑ 𝐴1𝑗𝐵1𝑗 + ∑ 𝐴1𝑘

𝑘
𝐵𝑘1

𝑗
⋯ ∑ 𝐴1𝑗𝐵𝑛𝑗 + ∑ 𝐴1𝑘

𝑘
𝐵𝑘𝑛

𝑗

⋮ ⋱ ⋮

∑ 𝐴𝑚𝑗𝐵1𝑗 + ∑ 𝐴𝑚𝑘
𝑘

𝐵𝑘1
𝑗

⋯ ∑ 𝐴𝑚𝑗𝐵𝑛𝑗 + ∑ 𝐴𝑚𝑘
𝑘

𝐵𝑘𝑛
𝑗 ]

 
 
 
 

 

 

=

[
 
 
 
 ∑ 𝐴1𝑗𝐵1𝑗

𝑗
⋯ ∑ 𝐴1𝑗𝐵𝑛𝑗

𝑗

⋮ ⋱ ⋮

∑ 𝐴𝑚𝑗𝐵1𝑗
𝑗

⋯ ∑ 𝐴𝑚𝑗𝐵𝑛𝑗
𝑗 ]

 
 
 
 

+

[
 
 
 
 ∑ 𝐴1𝑘

𝑘
𝐵𝑘1 ⋯ ∑ 𝐴1𝑘

𝑘
𝐵𝑘𝑛

⋮ ⋱ ⋮

∑ 𝐴𝑚𝑘
𝑘

𝐵𝑘1 ⋯ ∑ 𝐴𝑚𝑘
𝑘

𝐵𝑘𝑛]
 
 
 
 

 

 = 𝐴𝐵𝑇 + 𝐴𝐵 
(4.25) 

If “B” is symmetric then the partial derivative can be simplified to, 

 
𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴
= 2𝐴𝐵                   𝑖𝑓 𝐵 = 𝐵𝑇 (4.26) 

 

At this point we can now solve for Kk.  To help simplify the problem, I expanded out the 

terms of Pk as follows; 



 

65 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇  

 
= (𝑃𝑘−1 − 𝑃𝑘−1𝐾𝑘𝐻𝑘)(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇 
 

 
= 𝑃𝑘−1 − 𝑃𝑘−1𝐾𝑘𝐻𝑘 − 𝑃𝑘−1𝐾𝑘

𝑇𝐻𝑘
𝑇 + 𝐾𝑘𝐻𝑘𝑃𝑘−1𝐾𝑘

𝑇𝐻𝑘
𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇 
 

 
= 𝑃𝑘−1 − 𝑃𝑘−1𝐾𝑘𝐻𝑘 − 𝑃𝑘−1𝐾𝑘

𝑇𝐻𝑘
𝑇 + 𝐾𝑘(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)𝐾𝑘
𝑇 

(4.27) 

Note that the trace of a matrix is equal to the trace of its transpose.  Therefore, the 

expression for Pk can be written as; 

𝑇𝑟[𝑃𝑘] = 𝑇𝑟[𝑃𝑘−1] − 𝑇𝑟[𝑃𝑘−1𝐾𝑘𝐻𝑘] − 𝑇𝑟[𝑃𝑘−1𝐾𝑘
𝑇𝐻𝑘

𝑇] + 𝑇𝑟[𝐾𝑘(𝐻𝑘𝑃𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘)𝐾𝑘

𝑇] 

= 𝑇𝑟[𝑃𝑘−1] − 2𝑇𝑟[𝑃𝑘−1𝐾𝑘𝐻𝑘] + 𝑇𝑟[𝐾𝑘(𝐻𝑘𝑃𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘)𝐾𝑘

𝑇] 
(4.28) 

Now take the partial derivative with respect to 𝐾𝑘 and recall that 
𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴
=

2𝐴𝐵 𝑖𝑓 𝐵 = 𝐵𝑇; 

𝜕𝑇𝑟[𝑃𝑘]

𝜕𝐾𝑘
= 𝑇𝑟[𝑃𝑘−1] − 2𝑇𝑟[𝐾𝑘𝐻𝑘𝑃𝑘−1] + 𝑇𝑟[𝐾𝑘(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)𝐾𝑘
𝑇] 

 
= −2[𝐻𝑘𝑃𝑘−1]𝑇 + 2[𝐾𝑘(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)] 
(4.29) 

Re-arranging the terms results in; 

 
𝜕𝑇𝑟[𝑃𝑘]

𝜕𝐾𝑘
= 2(𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(−𝐻𝑘

𝑇) + 2𝐾𝑘𝑅𝑘 (4.30) 

where (𝐻𝑘𝑃𝑘−1)𝑇 = 𝑃𝑘−1𝐻𝑘
𝑇. 

The final step is to find the value of Kk that will also minimize the cost function Jk.  This 

can be accomplished by setting the above derivative equal to zero and then solve for Kk; 
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 0 = 2(𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(−𝐻𝑘
𝑇) + 2𝐾𝑘𝑅𝑘  

 
2𝐾𝑘𝑅𝑘 = 2(𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1𝐻𝑘

𝑇 
 

 
𝐾𝑘𝑅𝑘 = 𝑃𝑘−1𝐻𝑘

𝑇 − 𝐾𝑘𝐻𝑘𝑃𝑘−1𝐻𝑘
𝑇 

 

 
𝐾𝑘𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝐾𝑘𝑅𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇 

 

 
𝐾𝑘(𝑅𝑘 + 𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇) = 𝑃𝑘−1𝐻𝑘
𝑇 

 

 
𝐾𝑘 = 𝑃𝑘−1𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘)−1 

(4.31) 

In this section, we will now describe the state projection property used by the 

Kalman filter.  Let us describe the state projection of x̂k using the following; 

 �̂�𝑘+1
′ = 𝐹�̂�𝑘 (4.32) 

Recall that F is the system transition matrix.  Next, we will define an equation to project 

the error covariance matrix into the next time interval, k+1.  This can be achieved by 

forming an expression for the previous error; 

 𝑒𝑘+1
′ = 𝑥𝑘+1 − �̂�𝑘+1 (4.33) 

Substituting in the expressions for 𝑥𝑘+1 and �̂�𝑘+1 yields; 

 𝑒𝑘+1
′ = (𝐹𝑥𝑘 + 𝑤𝑘) − 𝐹�̂�𝑘  

 
= 𝐹(𝑥𝑘 − �̂�𝑘) + 𝑤𝑘 
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= 𝐹𝑒𝑘 + 𝑤𝑘 

(4.34) 

Extending the estimation error covariance to time k+1 produces the following; 

 𝑃𝑘+1
′ = 𝐸(𝜖𝑥,𝑘+1𝜖𝑥,𝑘+1

𝑇 )  

 
= 𝐸[(𝐹𝑒𝑘 + 𝑤𝑘)(𝐹𝑒𝑘 + 𝑤𝑘)𝑇] 

(4.35) 

Since 𝑒𝑘 and 𝑤𝑘 have zero cross-correlation, the covariance simplifies to; 

 𝑃𝑘+1
′ = 𝐸[(𝐹𝑒𝑘 + 𝑤𝑘)(𝐹𝑒𝑘 + 𝑤𝑘)𝑇]  

 
= 𝐸[𝐹𝑒𝑘(𝐹𝑒𝑘)𝑇] + 𝐸[𝑤𝑘𝑤𝑘

𝑇] 
 

 
= 𝐹𝑃𝑘𝐹𝑇 + 𝑄 

(4.36) 

At this point, we have completed the basic derivation for the recursive Kalman filter.  

The next section will provide a summary of the Kalman filter along with the process flow 

diagram. 

 

4.3.1 KALMAN FILTER SUMMARY 

Now that we have expressions for the state estimate x̂k, the estimation error covariance 

Pk, the estimator gain Kk, and the state prediction, we are able to summarize the recursive 

Kalman filter as follows: 

A. Initialize the state estimate and estimation-error covariance; 

 �̂�0 = 𝐸(0)  
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𝑃0 = 𝐸[(𝑥 − �̂�0)(𝑥 − �̂�0)𝑇] 

(4.37) 

If no knowledge about x̂0 is given when the first measurement is taken, then P0 = ∞I.  

On the other hand, if the exact value of x̂0 is known when the first measurement is taken, 

then P0 = 0. 

B. After the initialization, and when k>0, we perform the following; 

a) Obtain the measurement 𝑦𝑘 (assuming 𝑦𝑘 is given by the equation); 

 𝑦𝑘 = 𝐻𝑘𝑥 + 𝑣𝑘 (4.38) 

b) Update the estimate of �̂�𝑘 and the estimation error covariance 𝑃𝑘 by 

following the process diagram. 

 

 

Figure 26 Kalman Filter Process [18] 
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Each box is given by the following equations; 

Kalman Gain  𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1 

Update Estimate �̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘�̂�𝑘−1) 

Update Covariance 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

State Projection 

�̂�𝑘+1
′ = 𝛷�̂�𝑘  

𝑃𝑘+1
′ = 𝛷𝑃𝑘𝛷𝑇 + 𝑄 

Note that the Kalman gain and the update covariance can have alternate forms as 

described in [18], and is summarized as follows; 

Kalman Gain  

𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1 

= 𝑃𝑘𝐻𝑘
𝑇𝑅𝑘

−1 

Update Covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

= (𝑃𝑘−1
−1 + 𝐻𝑘

𝑇𝑅𝑘
−1𝐻𝑘)−1 

= (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1 
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4.4 LAB EXERCISE 

 This lab exercise is designed to apply the equations of the Kalman filter to a 

classic physics problem using Matlab.  The lab will start by modeling the classic problem 

of a falling body to verify the equations of motion [19, 20].  Next, we will assume that a 

sensor is mounted to the falling object that records position.  To make the sensor realistic 

we will apply random noise to the measurements and then employ the Kalman filter to 

provide an estimate of the falling object’s position as it falls.  The true state (measured 

data and the filtered data) will later be plotted to see how well the Kalman filter tracks the 

true state of the system.  The last part of the lab will be to adjust different parameters to 

see how they affect the performance of the filter. 

Lab Environment 

To perform this lab exercise the student will need a computer with MATLAB. 

Layout 

a) The first exercise will be generating the code necessary to model the dynamics of 

a falling object. 

b) The second exercise will elaborate on the first by converting the discrete time 

differential equations into a single state-space format.  This will be used later for 

the Kalman filter. 

c) The third exercise will be to implement the Kalman filter equations. 
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4.4.1 PART A 

a) Determine the dynamic equation for an object of mass ‘m’ falling in air. 

Start with Newton’s second law of motion: 

 𝐹 = 𝑚𝑎 = 𝑚 ∙ (
𝑑𝑣

𝑑𝑡
)  

Now create the free body diagram; 

 

 

Where, 

𝐹𝐷𝑟𝑎𝑔 =
1

2
𝜌𝐶𝐷𝐴𝑣2 

𝐹𝐺𝑟𝑎𝑣𝑖𝑡𝑦 = −𝑔𝑚 

The total forces acting on the object becomes; 

 𝐹𝑇𝑜𝑡𝑎𝑙 = 𝐹𝐷𝑟𝑎𝑔 − 𝐹𝐺𝑟𝑎𝑣𝑖𝑡𝑦  

Since the Kalman filter requires the equations of motion to be linear, we must assume 

that the force of drag is directly proportional to the velocity [20].  Therefore, we will 

simplify the drag equation using the following form; 

 𝐹𝐷𝑟𝑎𝑔 = −𝑘𝑣  

Note:  The negative term comes from the fact that the velocity is negative (falling 

downward). 

The equation of motion now becomes; 

 𝐹𝑇𝑜𝑡𝑎𝑙 = −𝑘𝑣 − 𝑔𝑚  

 
𝐹𝑇𝑜𝑡𝑎𝑙 = 𝑚 ∙ (

𝑑𝑣

𝑑𝑡
) = −𝑘𝑣 − 𝑔𝑚 
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 𝑑𝑣

𝑑𝑡
= −

𝑘

𝑚
𝑣 − 𝑔 

 

Next, we need to create the discrete time differential equations.  To calculate position we 

use; 

 𝑣 =
𝑑𝑥

𝑑𝑡
=

(𝑥𝑡 − 𝑥𝑡−1)

𝑑𝑡
  

 𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1 ∙ 𝑑𝑡  

To calculate velocity we use; 

 𝑎 =
𝑑𝑣

𝑑𝑡
=

(𝑣𝑡 − 𝑣𝑡−1)

𝑑𝑡
  

 (𝑣𝑡 − 𝑣𝑡−1)

𝑑𝑡
= −

𝑘

𝑚
𝑣 − 𝑔 

 

 
𝑣𝑡 = 𝑣𝑡−1 − (

𝑘

𝑚
𝑣𝑡−1 + 𝑔) ∙ 𝑑𝑡 

 

b) Open a new ‘.m’ file 

c) Test the equations of motion by creating a simulation with the following 

parameters 

K = 0.25, m = 10, TMAX = 200, dt = 0.01 

Example 

x0=200;   %initial position 

v0=0;       %initial velocity 

 

TMAX=200;              %Total Time 

dt=0.01;                    %time sample 

time=1:dt:TMAX;    %Number of Iterations  

 

%global g m k 

g=9.8;               %gravitational constant 

m=10;              %mass of the object 

k=0.25;            %Drag equation coefficient 
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X=zeros(1,TMAX);             %Create X History Matrix 

V=zeros(1,TMAX);             % Create Y History Matrix 

X(1)=x0;             %Initialize position with initial position 

V(1)=v0;             %Initialize position with initial velocity 

%Note Matlab does not use ‘0’ indexing 

 

%Create the Simulation by solving the equations of motion 

%and recording the results for each time step ‘dt’. 

for t=2:TMAX 

    X(t)=X(t-1)+(V(t-1))*dt; 

    V(t)=V(t-1)+(-(k/m)*(V(t-1))-g)*dt; 

end 

   

  %Plot the results for position and velocity 

figure(); 

plot(X,'b'); hold on; 

title(['Falling object k/m = ' num2str(k/m)]); 

plot(V,'r') 

legend('x','v'); hold off 

 

d) Change the values for both “k” and “m,” using three different values. 

Questions: 

1) The equations of motion were calculated assuming that the drag equation is linear.  

Using the standard drag equation (𝐷 =
1

2
𝜌𝐴𝑣2), re-calculate the equations of 

motion.     

2) Using the new equations of motion, solve the ordinary differential equations using 

the MATLAB function “ode45.”   
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4.4.2 PART B 

a) Open a new ‘.m’ file 

b) Part B is an extension of Part A where the same concepts will be applied, but in a 

slightly different format, allowing the Kalman filter to be applied.   

c) The first step is to convert the differential equations used in Part A to their 

equivalent State-Space form. 

Recall that the Kalman filter assumes a discrete time system of the form; 

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 𝑤𝑘−1  

where 𝑥𝑘 is the state vector of the process at time k, 𝛷 is the state transition matrix 

(equations of motion), and 𝑤𝑘−1 is the associate process noise.  The observations of the 

state variable 𝑥𝑘 can be given in the form; 

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  

where 𝑦𝑘 is the actual measurement of 𝑥𝑘 at time k, 𝐻𝑘 is the connection matrix between 

the state vector and the measurement vector, and 𝑣𝑘 is the associated measurement noise.  

Therefore, the discrete time system for the falling object becomes; 

 𝑥𝑡 = [
𝑥𝑡

𝑣𝑡
]  

Giving, 

 𝑥𝑡 = [
𝑥𝑡

𝑣𝑡
] = 𝐴 [

𝑥𝑡−1

𝑣𝑡−1
]  

Where ‘A’ is the state transition matrix. 
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Since, 

 𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1 ∙ 𝑑𝑡  

 

𝑣𝑡 = 𝑣𝑡−1 − (
𝑘

𝑚
𝑣𝑡−1 + 𝑔) ∙ 𝑑𝑡 

 

The state space form becomes; 

 𝑥𝑡 = [
1 𝑑𝑡

0 (1 −
𝑘

𝑚
∙ 𝑑𝑡)

] [
𝑥𝑡−1

𝑣𝑡−1
] + [

1 0
0 −𝑔 ∙ 𝑑𝑡

] [
0
1
]  

d) Verify the state space equation. 

Example 

x0=200;   %initial position 

v0=0;       %initial velocity 

 

TMAX=200;              %Total Time 

dt=0.01;                    %time sample 

time=1:dt:TMAX;    %Number of Iterations  

 

%global g m k 

g=9.8;               %gravitational constant 

m=10;              %mass of the object 

k=0.25;            %Drag equation coefficient 

 

x=zeros(2,TMAX);    %Create x History Matrix 

x(1,1)=x0;                  %initialize position with initial position 

x(2,1)=v0;                  %Initialize position with initial position 

 

u=[0 1]';          %Control Matrix 

 

for t=2:TMAX 

    A = [1       dt     ; 

            0  (1-(k/m)*dt)]; 

    B = [1        0  ;  

            0   -g*dt]; 

   x(:,t) = A*x(:,t-1)+B*u; 
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end 

 

figure(); 

plot(x(1,:),'b'); 

title(['Falling object k/m = ' num2str(k/m)]); 

 

e) Provide a printout of the plot using the three different parameters for ‘k’ and ‘m’ 

from Part A. 

Questions: 

1) Determine the state-space equations for the mass-spring-damper system shown 

below.  The output of the system is the displacement (x). 

 

 

4.4.3 PART C 

a) Open a new ‘.m’ file 

b) Create an object “s” whose members are all the important data structures 

implemented by the Kalman filter. 

a. Create the transition matrix called “s.A” 

 𝑠. 𝐴 = [
1 𝑑𝑡

0 (1 −
𝑘

𝑚
∙ 𝑑𝑡)

]  

b. Create the input control called “s.B” and “s.u” 
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 𝑠. 𝐵 = [
1 0
0 −𝑔 ∙ 𝑑𝑡

]  

 
𝑠. 𝑢 = [

0
1
] 

 

c. Create the variables for the measurement noise variance and standard 

deviation. 

Example 

   MNstd = 12; 

   MNV = MNstd^2; 

d. Create the matrix for the measurement noise error; 

 𝑠. 𝑅 = [
1 0
0 1

] ∙ 𝑀𝑁𝑉;  

Note:  The Matlab function “eye(n)” returns an n x n matrix with 1’s along the diagonal 

and 0’s everywhere else. 

e. Create the variables for the process noise variance and standard 

deviation. 

Example 

PNstd = 0.4; 

PNV = PNstd^2; 

f. Create the matrix for the process noise covariance matrix; 

 𝑠. 𝑄 = [
1 0
0 1

] ∙ 𝑃𝑁𝑉;  

g. Create the matrix for the measurement connection matrix; 
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 𝑠. 𝐻 = [
1 0
0 1

] ;  

h. Initialize the states using the following; 

 𝑠. 𝑥 = [𝑥0 𝑣0];  

 𝑠. 𝑃 = [
1 0
0 1

] ∙ 𝑀𝑁𝑉;  

 𝑠. 𝑑𝑒𝑡𝑃 = det (𝑠. 𝑃);  

 𝑠. 𝑧 = [0 0];  

c) Open a new ‘.m’ file.  This new ‘.m’ file will contain the Kalman filter function. 

a. Create a function for the Kalman filter update equations 

Example 

 Function [s] = Kalman_Filter (s) 

b. Implement the following equations; 

Description  Theory Matlab 

Kalman Gain  𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1 K=(s.P)*(s.H)'*inv((s.H)*(s.P)*(s.H)'+(s.R)); 

Update 

Estimate 

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑘 �̂�𝑘−1) 
s.x = (s.x) + K*((s.z)-(s.H)*(s.x)); 

Update 

Covariance 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)𝑇

+ 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 

s.P = (s.P) - K*(s.H)*(s.P); 

State 

Projection 

�̂�𝑘+1
′ = 𝛷�̂�𝑘 

𝑃𝑘+1
′ = 𝛷𝑃𝑘𝛷𝑇 + 𝑄 

s.P = (s.A)*(s.P)*(s.A)' + (s.Q); 
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d) The simulation can be created by using the following example; 

Example 

for t=2:TMAX 

   %Start simulation process  

   tru(t,:) = s(t-1).A*tru(t-1,:)' + s(t-1).B*s(t-1).u + PNstd*randn(2,1);   %True state + 

noise 

   s(t-1).z = s(t-1).H*tru(t,:)' + MNstd*randn(2,1);                              %Create a 

measurement 

   s(t) = Falling_Object_Kalman_Filter(s(t-1));                                     %Perform a 

Kalman filter iteration 

   detP(t) = s(t).detP;  %Keep track of the "net" uncertainty 

end 

 

e) Plot the results. 

Example 

Measurement = [s.z]'; 

Filter = [s.x]'; 

 

figure(1) 

plot(tru(:,1),'b'); hold on; 

plot(Measurement(:,1),'r'); 

plot(Filter(:,1),'g'); 

title('Falling object Example'); 

grid 

xlabel('time'); 

ylabel('position'); 

legend('Actual Position','Position Measurement','Filtered Data'); hold off; 
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f) Assume that your initial guess was not the actual starting position, such as 185 

instead of 200.  Change the initial state for “s.x” and plot the results. 

 

Conceptual Questions:  

1) Explain how to determine the variance and standard deviation of a measurement.  

Why are these parameters important for the Kalman filter? 

2) Explain how the Kalman gain is calculated. 

3) How does the Kalman gain affect the update estimate? 

4) What does the update covariance matrix do? 

5) Explain what the state projection matrix is doing. 
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CHAPTER 5   

  AN ALTERNATIVE SENSOR FUSION APPROACH 

 

5.1 INTRODUCTION 

In the previous section, the Kalman filter was described as being an “optimal estimator” 

for linear dynamic systems.  When applying the Kalman filter in sensor fusion 

applications, the filter takes each sensor as an input to the dynamics of the system, and 

produces an optimal output for those sensors.  The question that I asked myself was to 

see if the accelerometer and rate gyroscope sensors could be combined prior to applying 

this optimal estimation algorithm.   

 The basis for proposing that the accelerometer and gyroscope be combined prior 

to the Kalman filter stems from my personal observations while characterizing and 

understanding the output responses of the accelerometer and rate gyroscope. 

Observation 1:  Starting with a three axis accelerometer, place it onto a fixed 

level surface (such as a table), such that the X and Y plane is parallel to the surface.  If a 

rotation were to occur about either the X or Y-axis, then the accelerometer would become 

affected by the gravitational force acting against the internal sensing elements.  The result 

is an output measurement proportional to the angle rotated.  Now, if I assume that the 

gravitational force is constant, with no other accelerations acting on the surface, then I 

can extend this observation to a surface traveling at a constant velocity.   

Observation 2:  If an accelerometer is not under free fall, but subjected to 

random accelerations, such that the gravitational force is not easily extractable, then the 
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orientation of the accelerometer is not solvable.  For example, it is not possible to 

determine the sensor’s orientation while applying random accelerations simultaneously 

along all three axes of the device.   

Observation 3:  If a rate gyroscope were mounted to the accelerometer such that 

they share the same X, Y, and Z axes, then there becomes a possibility to separate out the 

gravitational force vector from the applied accelerations (provided that the sensors are not 

in free fall).  Now, if we also limit the accelerations to approximately three times the 

force of gravity (range of accelerometer used), then rotations will cause a change in the 

sensed acceleration. 

Problem Statement:  Using the above observations, I realized that a possibility 

exists to relate the derivative of the accelerometer with the corresponding rate of change 

from the gyroscope.  In other words, if the two sensors are correlated (meaning that the 

behavior of the accelerometer’s derivative is similar to the behavior of the gyroscope), 

then the combination of the two sensor measurements can accurately reflect the change in 

orientation.  However, if the two sensors are weakly correlated (assuming either that a 

constant acceleration occurs with no change from the rate gyroscope or that the 

gyroscope with no corresponding measures a constant rotational rate changes from the 

accelerometer), then the two sensor measurements will not accurately reflect the change 

in orientation.  In this case, the two sensors are compared through a new algorithm, 

resulting in a weighted average of the two sensors.  Where the weight is based on the 

magnitude of error observed. 
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5.2 RELATED WORK 

Most research related to inertial sensor fusion techniques focus on either Euler or 

Quaternion based orientation estimation using the Extended Kalman filter [1, 4, 14, and 

21].  However, the mathematical concepts are complex with most research papers not 

providing any intermediary steps to the computations.  To address the advanced concepts 

used in most papers, [22] had developed an alternative algorithm using basic mathematics 

and trigonometry.  This simplified approach focused on the accelerometer and rate 

gyroscope’s relationship, rather than system dynamics. 

 In his work, [22] used the concept of initializing the orientation of an IMU with 

an accelerometer.  He then produced estimates according to subsequent changes of 

orientation based on a weighted average of the accelerometer and rate gyroscope.  To 

accomplish this task, the algorithm was broken down into three main parts; 

a. Estimate a new orientation by taking the previous estimate and applying 

the integrated result from the rate gyroscope between its last measurement 

and the current measurement. 

b. Using trigonometric relationships, determine the orientation of the IMU 

using the estimate found in part “a.” 

c. Calculate a weighted average of the orientation provided by the 

accelerometer with that from part “b.” 

The final estimate should produce a better result than what the accelerometer or rate 

gyroscope could produce independently.   
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 In contrast to the observations and problem statement provided above, the work of 

[22] assumes that the accelerometer produces results affected by noise and cannot be 

trusted.  In addition, the rate gyroscope is considered the primary sensor.  Therefore, its 

results are heavily weighted when compared to the accelerometer.  Thus, this algorithm is 

primarily aimed at reducing the effects of integration errors due to bias errors of the 

gyroscope.   

 

5.3 PROPOSED ALGORITHM 

The algorithm that I am proposing was developed to “relate the rate of change of 

acceleration from the accelerometer with the corresponding rate of change of the rate 

gyroscope,” as described by the problem statement.   

Prior to developing the full algorithm, I had conducted an initial feasibility study 

to analyze the behavior of the accelerometer’s derivative to that of the rate gyroscope. 

Referencing Figure 27, the results helped me determine that the problem statement could 

be supported.  The data shown represents a test condition where the accelerometer and 

rate gyroscope were mounted on a test board and subject to random motion along the X-

Axis.  This is seen by the large spikes in the accelerometer’s data (showing heavy 

accelerations with very little rotations about the Y-Axis).  However, there were times 

when the test board was subject to rotations about the Y-Axis and data from both the 

accelerometer and rate gyroscope showed strong correlation.   Note that I had 

implemented a 12-point moving average filter to the derivative results of the 

accelerometer.  The rate gyroscope’s results, however, are presented with no filtering.   
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Figure 27 Accelerometer Derivative & Angular Rate 

 

 The result of the feasibility study provided cases where the accelerometer’s 

derivative matched the behavior of the rate gyroscope.  The periods of strong correlation 

represented actual rotation while weakly correlated results represented periods of little 

rotational motion.     
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5.3.1 DEVELOPMENT OF THE ALGORITHM 

The algorithm begins by initializing both the accelerometer and rate gyroscope while 

resting on a flat level surface (local reference frame).  The conversion from the analog-to-

digital converter (ADC) for the accelerometer is a follows; 

 
𝑅𝑋𝐴𝐶𝐶

= 𝑅𝑋 =
(
𝐴𝐷𝐶𝑅𝑋

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (5.1) 

 

𝑅𝑌𝐴𝐶𝐶
= 𝑅𝑌 =

(
𝐴𝐷𝐶𝑅𝑌

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (5.2) 

 

𝑅𝑍𝐴𝐶𝐶
= 𝑅𝑍 =

(
𝐴𝐷𝐶𝑅𝑍

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (5.3) 

Example C-Code Conversion: 

 

 
 

Next, we would like to obtain the angles between the X-Z Axis and the Y-Z Axis as 

follows, 

 𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙
= 𝑎𝑡𝑎𝑛2(𝑧, 𝑥) (Radians) (5.4) 

 
𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

= 𝑎𝑡𝑎𝑛2(𝑧, 𝑦) (Radians) (5.5) 

Note:  The results of ‘atan2’ are in radians and will need to be converted into units of 

degrees. 
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 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 (
180°

𝜋
) (5.6) 

Example C-Code Conversion: 

 

 
 

 
 

Since the accelerometer data may be corrupted by noise cause from mechanical 

vibrations, we can apply a moving average filter as shown; 

 

 𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙𝐴𝑉𝐺
[𝑚] =

1

𝑁
∑ 𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙

[𝑚 − 𝑛]

𝑁−1

𝑛=0

 𝑤ℎ𝑒𝑟𝑒 {𝑁 ≤ 𝑚 (5.7) 

 

𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙𝐴𝑉𝐺
[𝑚] =

1

𝑁
∑ 𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

[𝑚 − 𝑛]

𝑁−1

𝑛=0

 𝑤ℎ𝑒𝑟𝑒 {𝑁 ≤ 𝑚 (5.8) 
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Now that the angles for Axz and Ayz are known, we are going to take the derivative to 

relate the rate of change of the angle between the X-Z and Y-Z Axes.  This can be 

accomplished as follows; 

 
𝑑𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙

𝑑𝑡
[𝑛] =

𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙
[𝑛] − 𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙

[𝑛 − 1]

𝑑𝑡
 (5.9) 

 𝑑𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

𝑑𝑡
[𝑛] =

𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙
[𝑛] − 𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

[𝑛 − 1]

𝑑𝑡
 (5.10) 

 

One important aspect of taking the derivative of the accelerometer-derived angle is the 

magnitude of the noise.  The noise is actually how the algorithm determines if the 

accelerometer data is usable.  In the ideal situation there would be very little to no noise 

after taking the derivative.  This would provide an accurate correlation between the 

accelerometer and the gyroscope.  However, if there were a lot of noise then the rate 

gyroscope would take over, as it is not as sensitive to vibrational noise.   
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Figure 28 YZ-Accelerometer Derivative vs. Rate Gyroscope 

 

The gyroscope readings are converted from ADC values into degrees/second in the same 

way the ADC values for the accelerometer were converted to units of force (only the X 

and Y-Axes are needed). 

 
𝑅𝑋𝐺𝑦𝑟𝑜

= 𝑅𝑋 =
(
𝐴𝐷𝐶𝑅𝑋

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (5.11) 

 

𝑅𝑌𝐺𝑦𝑟𝑜
= 𝑅𝑌 =

(
𝐴𝐷𝐶𝑅𝑌

(𝐴𝐷𝐶𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑐𝑎𝑙𝑒)
𝐴𝐷𝐶𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

) − (𝑍𝑒𝑟𝑜𝑔 𝐵𝑖𝑎𝑠)

𝐷𝑒𝑣𝑖𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝑁𝑢𝑙𝑙𝑂𝑓𝑓𝑠𝑒𝑡 (5.12) 

The presented algorithm uses the direct integrated results from the previous and current 

measurement as follows;   
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 𝐼𝑋𝐺𝑦𝑟𝑜
= (𝑅𝑋𝐺𝑦𝑟𝑜

[𝑛] − 𝑅𝑋𝐺𝑦𝑟𝑜
[𝑛 − 1]) ∙ ∆𝑡 (5.13) 

 
𝐼𝑌𝐺𝑦𝑟𝑜

= (𝑅𝑌𝐺𝑦𝑟𝑜
[𝑛] − 𝑅𝑌𝐺𝑦𝑟𝑜

[𝑛 − 1]) ∙ ∆𝑡 (5.14) 

 The final steps for the algorithm are to relate the rate of change of the X-Z and Y-

Z angles from the accelerometer to the rate of change from the rate gyroscope.  The first 

step is to produce a ratio based on the rate gyroscope’s measurement.  This will 

determine how well the accelerometer angle measurements are correlated.  For instance, 

when the gyroscope readings match that of the accelerometer, the ratio will become one 

half, and the final output will have an equal contribution from both sensors.  If the 

accelerometer readings are much smaller than the gyroscope, then the ratio will become 

one, and the algorithm will rely more heavily on the accelerometer results.  If, however, 

the accelerometer results are much larger than the gyroscope, then the ratio will tend 

towards zero, causing the algorithm to rely more heavily on the gyroscope results.  Note: 

since the Y-Z angle is the angle rotated about the X-axis, the Y-Z angle will be combined 

with the X-axis rate gyroscope reading.  Similarly, the X-Z angle will be combined with 

the Y-axis rate gyroscope reading.  The ratios are calculated as follows; 

 𝐹𝑋𝑅𝑎𝑡𝑖𝑜
=

|𝑅𝑋𝐺𝑦𝑟𝑜
|

|𝑅𝑋𝐺𝑦𝑟𝑜
| + |𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

|
 (5.15) 

 

𝐹𝑌𝑅𝑎𝑡𝑖𝑜
=

|𝑅𝑌𝐺𝑦𝑟𝑜
|

|𝑅𝑌𝐺𝑦𝑟𝑜
| + |𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙

|
 (5.16) 
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The two sensors are now related using; 

 𝐹𝑋[𝑛] = (𝐹𝑋𝑅𝑎𝑡𝑖𝑜
∙ 𝐴𝑌𝑍𝐴𝑐𝑐𝑒𝑙

) + [(1 − 𝐹𝑋𝑅𝑎𝑡𝑖𝑜
) ∙ (𝐹𝑋[𝑛 − 1] + 𝐼𝑋𝐺𝑦𝑟𝑜

)] (5.17) 

 
𝐹𝑌[𝑛] = (𝐹𝑌𝑅𝑎𝑡𝑖𝑜

∙ 𝐴𝑋𝑍𝐴𝑐𝑐𝑒𝑙
) + [(1 − 𝐹𝑌𝑅𝑎𝑡𝑖𝑜

) ∙ (𝐹𝑌[𝑛 − 1] + 𝐼𝑌𝐺𝑦𝑟𝑜
)] (5.18) 

The output will still have some high frequency noise, and should be filtered to represent 

smooth transitions in orientation.  A simple moving average filter can be applied to 

adequately reduce system noise without causing a considerable lag in the system’s 

response.    

 𝐹𝑋[𝑚] =
1

𝑁
∑ 𝐹𝑋[𝑚 − 𝑛]

𝑁−1

𝑛=0

 𝑤ℎ𝑒𝑟𝑒 {𝑁 ≤ 𝑚 (5.19) 

 

𝐹𝑌[𝑚] =
1

𝑁
∑ 𝐹𝑌[𝑚 − 𝑛]

𝑁−1

𝑛=0

 𝑤ℎ𝑒𝑟𝑒 {𝑁 ≤ 𝑚 (5.20) 

 

5.4 LAB EXERCISE & EXPERIMENTAL RESULTS  

The alternative sensor fusion approach described above was based on observations while 

experimenting with the inertial sensors.  This section describes how the experiments were 

created, and how the described algorithm was first implemented.   

 As mentioned in 3.1.1, the hardware used was the Technological Arts 

NanoCore12 module utilizing the Freescale 9S12C microcontroller (MCU) [23].  The 

code developed, was written using the C programming language.  The integrated 

development software used to program the MCU was CodeWarrior. 
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Figure 29  NanoCore12 module MCU 

 

The inertial measurement unit (IMU) used was a five degree-of-freedom (5 DOF) 

breakout board developed from SparkFun Electronics [24].  This board consists of the 

ADXL335 triple axis accelerometer and dual axis IDG500 rate gyroscope.  This specific 

board was particularly useful because the output signals were ratio-metric analog 

voltages and allowed changes to be made to the filtering circuit.  For instance, the first 

IMU used for experimenting had an incorrectly designed filter circuit for the rate 

gyroscope.  The original configuration produces angular rate signals that were very 

difficult to integrate, leading to false assumptions about how the rate gyroscope operated.  

It was not until another IMU was implemented that a clear distinction was made between 

the two rate gyroscopes.  Research of the original IMU’s rate gyroscope revealed a 

design error of the filter circuit.  This explained the differences between the two.  
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Figure 30  SparkFun 5 DOF IMU 

 

The IMU was connected to the MCU’s docking module’s signal extension connector (as 

shown in the diagram below).  With the IMU connected to the MCU, code could then be 

written to test for proper operation of the IMU.  To help determine that the hardware was 

working properly, the MCU was used extensively in a special mode of operation called 

“Real Time Background Debug Mode.”  This allowed the user to step though parts of the 

code and analyze the data result registers. 

 

Figure 31  MCU and IMU Connection Diagram 

 

After the initial functional checks (to ensure that the MCU was able to monitor the IMU) 

the next step is to run the MCU in “Real Time” mode. This allows the MCU to send data 
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along the RS-232 serial communication interface (SCI) to the host computer.  The data is 

then sent continuously to the computer’s hyper-terminal to record information from the 

IMU to be analyzed later.   

 

5.4.1 LAB EXERCISE PART 1 – PROGRAMMING THE MCU 

1. Navigate to the directory with the lab exercise folder. 

2. Click on the “Code Warrior Project” (under the “Type” heading) to launch the 

application. 

Example:  The figure below shows the Code Warrior Project to be “Test_Project.” 

 

3. Once CodeWarrior has opened up the project, click on the “Debug” button to 

program the microcontroller. 
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4. The “True-Time Simulator & Real-Time Debugger” should now be open.  Press 

the “GREEN” arrow to start the program. 

 

True-Time Simulator & Real-Time Debugger 
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Note:  A “Connection…” warning window may appear if the target (MCU) has code to 

re-configure the clock speed and thus is no longer synchronized to the computer.  If this 

occurs simply position the “Load/Run” switch to “RUN” and then press “RESET” on 

the project board. 

 

 

5. Position the “Load/Run” switch to “RUN” and then press “RESET” on the project 

board.   

6. Close out of the “True-Time Simulator & Real-Time Debugger” window.   

7. Open the serial communication program installed on the computer.   

Note:  The Tera Term terminal emulator was used to communicate to the 

serial communication interface port, as Windows 7 doesn’t have a 

HyperTerminal application installed. 

 

8. Configure the Serial Port as follows: 

a. Locate the serial port connected to the project board 

b. Under “Set-Up”, select “Serial Port” and set the following 
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i. Baud Rate: 38400 

ii. Data: 8 bit 

iii. Parity: none 

iv. Stop: 1 bit 

v. Flow control: none 

 

c. Press “OK” 

9. Press “RESET” on the project board to restart communication.  Once the board 

starts communicating, a “Main Menu” dialog should show up similar to the 

screenshot below; 

 

Example Main Menu Dialog 

 

5.4.2 LAB EXERCISE PART 2 – DATA COLLECTION  

1. At this point, the “Main Menu” should be displayed on the serial terminal.  Before 

collecting data, the sensor will need to first be “zeroed” using a fixed level 

surface.   

2. With the IMU sensor positioned on a flat level surface (not subjected to any 

movements), select the option to “Initialize”, “Null”, or “Zero” the Sensors.   

3. Once the sensors have been initialized, select the option “Get RAW Sensor Data.”  

The MCU should immediately start filling the terminal screen with data.  Allow 
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the data to accumulate for approximately 10 seconds.  The data will appear 

similar to the screenshot shown below. 

 

Example Data 

 

4. After the 10 seconds have passed, press “0” to stop updating the sensor values.   

5. Since the data should have all similar values, we would like to record data of the 

IMU performing some kind of motion or rotation.  Clear the screen on the serial 

terminal (typically under the “Edit” option at the top).  Next, click on the option 

“Get RAW Sensor Data.”  After the data begins to update, wait approximately 

one second and then rotate the IMU board along any axis between ±70 degrees of 

rotation.  After about 8 seconds, position the IMU back to the level surface and 

avoid any further movement for an additional 2 seconds.  

6. Press “0” to halt the data. 
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7. Go to “File” and then “Disconnect” to avoid forgetting to disconnect the SCI port 

when re-downloading code onto the microcontroller. 

 

5.4.3 LAB EXERCISE PART 3 – DATA ANALYSIS 

The data analysis portion of the lab experiment originally used Microsoft Excel; 

however, Matlab can instead be used.  For this portion of the lab, we will be using Excel. 

1. Copy the data from the HyperTerminal and paste into MS Excel. 

2. To separate the data into their respective columns, click on the “Data” tab and 

then click on “Text to Columns.”  Follow the instructions using space delimited.   

 

3. Next, space out the columns for equations to be added. 

 

Example 

For the Accelerometer Data, Fusion Data and Rate Gyroscope Data; 
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Note:  The gyroscope data has a column to plot the integral, where the algorithm only 

uses the integration results for each time step. 

4. Apply the equations described in the proposed algorithm section (section 5.3.1). 

 

Example 

a) Convert the ADC Hex number into units of force (Y-Accel and Z-Accel): 
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b) Calculate the angle using ATAN2: 

 

 

c) Convert from radians to degrees: 

 

 

d) Average the accelerometer derived angle: 
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e) Compute the derivative of the data: 

 

 

f) Convert the ADC Hex number into units of angular rate: 

 

 

g) Calculate the integral of the angular rate: 
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h) Calculate the integral of each time step (no accumulation of data): 

 

 

i) Perform the sensor fusion steps by calculating the ratio: 

 

 

j) The accelerometer weight is 1-Ratio: 
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k) Fuse the data: 

 

 

l) Calculate the average of the fused set: 

 

 

5. Plot the following results onto a single graph; 

 Y-Axis (or X-Axis) accelerometer data 

 X-Axis (or Y-Axis) rate gyroscope integration data 

 Y-Axis (or X-Axis) data fusion results 

 

Lab Exercise Questions: 

1) Describe the changes in orientation for the accelerometer and rate gyroscope 

while recording the data on the serial port.  After applying the algorithms of the 
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spreadsheet to your dataset, did the results match the applied orientations?  

Describe your results.   

2)  Apply the spreadsheet equations, from Part 3, to the x-axis (pitch) measurements.  

Plot the results and describe if they match the applied orientations? 

3) Describe how to incorporate the results of the x and y-axis into a rotation matrix?   

4) How would you avoid Euler angle singularity problems? 

5) Describe how accumulation errors from the rate gyroscope are eliminated.  

 

5.4.4 EXPERIMENTAL TEST RESULTS  

Figure 32 and Figure 33 show the results of data gathered while performing the above 

experiment.  The data represents the IMU being rotated about the Y-Axis (pitch axis) 

while mounted to an apparatus.  The apparatus included an unbalanced motor to simulate 

vibrational noise.  These results demonstrate the effectiveness of my alternative proposed 

sensor fusion algorithm.   
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Figure 32 Accelerometer YZ-Angle Derivative vs. Rate Gyroscope 

 

 

Figure 33 Sensor Fusion Results 



 

107 

5.5 SUMMARY 

The proposed alternative sensor fusion method was a way to combine data from both an 

accelerometer and rate gyroscope to produce a single output representative of the actual 

orientation.  This method was based on observations made while experimenting with the 

independent behavior of the accelerometer and rate gyroscope sensors.  The primary 

environment considered was onboard a small UAV where vibrational noise (caused by 

the motor and propeller) can create significant noise errors from the accelerometers. 

 While working with a UAV (similar to that of the Multiplex EasyStar), I had 

observed that the aircraft would reach a steady cruising speed when flying straight and 

level.  In this condition, the net acceleration measured would be the gravitational force 

vector.  This led me to the realization that the accelerometer can be used to correct bias 

offset accumulation errors from the gyroscope.  Similarly, when the aircraft undergoes 

maneuvers, such as coordinated turns or sudden changes in attitude, the accelerometer 

will provide orientation data mixed with translational accelerations.  Since the 

accelerometer cannot differentiate between the two forms of acceleration, the algorithm 

uses the gyroscope to provide reliable orientation information (separating out changes in 

orientation from other external forces).  This characteristic could be beneficial as another 

algorithm can use the information about the external forces to detect other properties 

about flight, such as slipping or skidding through turns.   

 In summary, the fusion properties of the proposed algorithm helped remove noise 

from the accelerometer’s measurements by relying on the noise immunity properties of 
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the rate gyroscope.  In addition, the algorithm helped remove integration errors, caused 

by the rate gyroscope, by relying on the bias stability of the accelerometer.   

 

5.6 FUTURE WORK 

The alternative sensor fusion approach produces output angles representative of the 

orientation.  Since the Kalman filter also provides an output orientation representation, it 

would be a good exercise to compare the results of the two methods with known “true” 

data.  This would provide useful insight into the performance of the alternative approach.  

Once the performance characteristics are known, then the alternative approach could be 

implemented into the Kalman filter.   

 The development of the state transition matrix for the alternative approach will 

most likely be different from what is typically implemented by the Kalman filter.  

Therefore, it may be possible to model the dynamics using standard equations of motion, 

taking into account the dynamics of the aircraft.  By modeling the dynamics of the 

aircraft, the fusion algorithm will lead to results that are more accurate.  Further 

development of the Kalman filter can include other navigational information (such as 

data from a GPS or magnetic compass) leading to the beginning stages of an autopilot 

system.     
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