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Abstract

It is well known that some driven systems undergo transitions when a system param-
eter is changed adiabatically around a critical value. This transition can be the result
of a fundamental change in the structure of the phase space, called a bifurcation.
Most of these transitions are well classified in the theory of bifurcations. Among the
driven systems, spatiotemporally periodic (STP) potentials are noteworthy due to
the intimate coupling between their time and spatial components. A paradigmatic
example of such a system is the Kapitza pendulum, which is a pendulum with an
oscillating suspension point. The Kapitza pendulum has the strange property that
it will stand stably in the inverted position for certain driving frequencies and am-
plitudes. A particularly interesting and useful STP system is an array of parallel
electrodes driven with an AC electrical potential such that adjacent electrodes are
180 degrees out of phase. Such an electrode array embedded in a surface is called
an Electric Curtain (EC). As we will show, by using two ECs and a quadrupole trap
it is posible to produce an electric potential simular in form to that of the Kapitza
pendulum.

Here I will present the results of four related pieces of work, each focused on
understanding the behaviors STP systems, long-range interacting particles, and long-
range interacting particles in STP systems. I will begin with a discussion on the
experimental results of the EC as applied to the cleaning of solar panels in extrater-
restrial environments, and as a way to produce a novel one-dimensional multiparticle
STP potential. Then I will present a numerical investigation and dynamical sys-
tems analysis of the dynamics that may be possible in an EC. Moving to a simpler
model in order to explore the rudimentary physics of coulomb interactions in a STP
potential, I will show that the tools of statistical mechanics may be important to
the study of such systems to understand transitions that fall outside of bifurcation
theory. Though the Coulomb and, similarly, gravitational interactions of particles
are prevalent in nature, these long-range interactions are not well understood from
a statistical mechanics perspective because they are not extensive or additive. Fi-
nally, I will present a simple model for understanding long-range interacting pendula,
finding interesting non-equilibrium behavior of the pendula angles. Namely, that a
quasistationary clustered state can exist when the angles are initially ordered by their
index.
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Chapter 1

Motivation

1.1 Spatiotemporally Periodic Driven Sys-

tems

Studies of nonlinear periodically driven systems are important to understanding the

fundamental physics of many useful and interesting phenomena in applications of

lasers (1), driven ratchets (2), hydrophilic particles on the surface of water waves (3;

4; 5), driven Josephson junctions (6), and a variety of other interesting systems. At

a more fundamental level, driving a system can change its properties through effects

like dynamical stabilization, e.g. high frequency electromagnetic driving increasing

the stability of electron orbitals (7; 8; 9; 10). If bodies moving in periodically-driven

systems are allowed to interact, they can display a wealth of interesting physical

phenomena associated with complex systems (11; 12; 13). Studies of the interaction

among oscillators, particles, nodes (in network), etc., in periodic systems, and of how

the behaviors of such systems collectively react, can also be valuable in a variety of

1



1.1. SPATIOTEMPORALLY PERIODIC DRIVEN SYSTEMS

fields from neuroscience (14) to driven Josephson junction arrays (15), to increasing

the critical temperature of superconductors (16).

In this work we are interested in forms of driving that depend both on the time

and the location of particles in the system, specifically cases where the spatial and

temporal dependence of the driving is periodic. We classify forms of driving that are

periodic in space and time as “spatiotemporally periodic” (STP), though this type of

driving may also be referred to as “Kapitza like”, or the Kapitza class of driving (17).

STP driven systems are sometimes also categorized as parametrically driven, though

this is a nonspecific classification insofar as the spatial periodicity. We believe the

distinction is necessary because STP driven systems have several interesting features

that are not necessarily intrinsic to the more general class of parametrically driven

systems. Primarily, in multiple particle systems, when a spatially periodic potential

is present the dynamics will depend heavily on the concentration of the particles,

as we will show in chapter 5. The concentration referred to here is the number of

particles per spatial period of the potential.

The particle interactions in which we are interested are long-range. In the most

conventional sense, long-range interactions are ones that decay as 1/rα, where α ≤ d,

d being the dimension of the space in which the system is embedded. When con-

sidering long-range driven systems in a general context, it is possible to imagine

interactions that depend on position in a more exotic way than 1/rα; however, these

more exotic cases are beyond the scope of this work. For some time, the primary

motivation behind the study of long-range interactions was to understand galaxies,

galaxy clusters and the general thermodynamic properties of self-gravitating systems.

Aside from mean field models, interest has further built since the observation of mod-
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ified scattering lengths in Bose-Einstein Condensates (BEC) through the use of Fes-

hbach resonances (18). Using Feshbach resonances, a BEC can be made to be almost

non-interacting by tuning the scattering length to zero. One could even tune the scat-

tering length to a negative value, making the BEC collapse. More recently, O’dell et

al. (19) has shown that it may be possible to produce an attractive 1/r potential be-

tween atoms in a BEC by applying an “extremely off resonant” electromagnetic field.

This has opened the possibility of creating table-top experiments which physically

model aspects of cosmological behavior on a laboratory scale, as well as the possible

development of entirely new dynamics in BEC. Also, these studies suggest that a

particularly interesting playground for STP driven long-range interacting systems is

going to be cold atoms in optical lattices.

We illustrate the possible unique behaviors of a STP driven system with long-

range interactions using a simple example. Imagine a two-dimensional static egg crate

potential with two particles per valley of the potential, i.e. a concentration of two. If

particles have kinetic energies that are small compared to the height of the periodic

potential and their interactions are attractive, with interaction strengths that are also

small compared to the height of the periodic potential, then they will likely settle into

paired orbits in the valleys of the egg crate. Now, imagine slowly inverting the egg

crate potential so that the peaks become valleys and the valleys become peaks. If the

paired particle orbits are somewhat symmetric about the lowest points in the valleys,

then as the potential inverts they might break their pairings and form new pairs with

particles previously located one spatial period away. This cycle can continue to repeat

itself as the egg crate potential periodically inverts itself. Depending on the frequency

of the egg crate inversions, the particle pairings could be random or occur in a regular
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and predictable way. The continuous re-paring of particles occurs because of both the

periodic time dependence and the spatial periodicity of the potential. By modulating

the spacial periodicity one can tune the concentration, and by modulating the driving

frequency one can tune the duration and regularity interacting groups of particles. If

the particles are long-range interacting one might find that they couple to collective

oscillations is the system leading to interesting nonequilibrium behaviors.

Let’s consider in more detail long-range interacting particles in our toy example

but choose the physical realization of the system to be an optical lattice of cold atoms.

In chapter 2, section 3, we discuss the interesting properties of long-range interacting

systems in more detail, but for now let us simply state that these interactions can

produce what is known as a “core-halo” distribution in phase space. The core con-

tinues to cool as the halo becomes hotter, sapping energy from the core by coupling

to its collective oscillations. By tuning the scattering of a BEC to produce effective

long-range interactions using the application off resonant fields (19), we speculate

that evaporative cooling could be highly accelerated.

It is possible to go into great depth about the history of driven systems since they

span a variety of fields, like the ones mentioned in the first paragraph. As the focus

of this work is only on a particular type of driving, we will share a brief overview

of the nucleation of interest in STP driven systems. We mentioned that STP driven

systems are also classified as the Kapitza class of driving. Let us now introduce the

Kapitza pendulum and its significance to this work. In 1951 Kapitza published two

papers (20; 21) on a planar pendulum with an oscillating suspension point. The

most interesting feature of this simple system is that under certain conditions, the

pendulum stands stably in the inverted position. The change in stability of the
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inverted position through the oscillation of the suspension point is an example of

dynamic stabilization, in which an inherently unstable system or unstable point in

a system can be stabilized by periodic forcing. The Kapitza pendulum will play

a central role in the following work since it is the most paradigmatic STP system.

Dynamical stabilization was known about on some level since we discovered that

flailing your arms can help you keep your balance, but the Kapitza pendulum was

a notable development in the fascination with dynamical stabilization because of its

simplicity and strangeness.

It is well known that a static electric potential can not contain even a single

ion, but a time dependent field can do this through dynamical stabilization. It was

only two years after Kapitza’s publications that the quadrupole ion (Paul) trap was

patented (22). This is not to say that Kapitza’s papers directly motivated the Paul

trap, as this was not the case. The quadrupole trap is an arguably more important

application of dynamic stabilization but it does not contain the spacial periodicity

we have chosen to focused on. We will discuss both the introductory theory of the

Kapitza pendulum and the quadrupole trap in chapter 2. In chapter 3 we will show

how a quadrupol trap with a periodic array of electrodes on either side can be used

to create a longitudinal standing wave along the axis of the trap, a system which is

STP.

An important system to the study of classical long-range interacting particles

under STP driving involves charged particles driven by a device known as the electric

curtain (EC). The electric curtain will be introduced in more detail in chapter 2,

section 2.4, but in its simplest form it is an array of electrodes each being driven by

an AC potential. The particles interact through their charges which, to first order,
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is the Coulomb interaction; a long-range interaction. Due to the simplicity of the

EC and the numerous possible configurations and dynamics, it has been proposed as

a method of particle control and mitigation in a variety of applications, especially

in cleaning applications, where a particles charge can make for a large electrostatic

sticking force. The larger the charge on a particle, the larger the interaction with

an EC, making it a convenient candidate for cleaning charged particles from surfaces

(23).

1.2 Objectives

Using the above brief motivation, we can outline the main objectives of our work on

STP driven systems and long-range interactions. To attack such a large problem,

we strive to understand it from several different fronts. First, we will present an

experimental study on the dynamics and statistical properties of charged particles

in an EC field. This work was originally motivated by NASA to improve the EC

as a technology for cleaning solar panels in extraterrestrial environments. Since the

work done under this original motivation we have also found its value as a tunable

source of STP driving and in helping to understand the general class of STP systems.

Second, we present a numerical study of the single particle dynamics in a model EC

field. The purpose of this numerical investigation was to fill in some of the gaps in

understanding the dynamics that we found experimentally. The numerical study also

served as a way to quickly search for new dynamical features of particles driven by an

EC. Third, we present a numerical study of the multiple particle dynamics and kinetic

energy fluctuations in an exemplary STP field. This numerical study is the heart of
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this work as it is based on one of the simplest and most fundamental long-range

interacting STP models. Fourth, we develop a deeper understanding of long-range

interactions and the behaviors of long-range interacting pedulua. In this body of the

work, we do not consider any driving but simply push to broaden comprehension

of long-range interactions for a relevant system; multiple pendula with interacting

bobs, which if driven correctly would be multiple interacting Kapitza pendula. We

analytically examine the long-range interacting pendula in equilibrium by solving for

the canonical partition function, and study the nonequilibrium behaviors numerically.
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Chapter 2

Review of Pertinent Systems and

Literature

2.1 Important Models

2.1.1 The Parametrically Driven Harmonic Os-

cillator

The motion of a single particle in a STP potential, e.g. the motion of the Kapitza pen-

dulum, may be solved analytically around certain angles. In the case of the Kapitza

pendulum the most obvious approximation would be the small angle approximation.

For a one-dimensional STP potential, with spacial coordinate (angle) x, if we work

at positions where the potential can be expressed as a harmonic oscillator potential

then the equations of motion can be solved using Floquet theory (24). This type of

driven harmonic oscillator is known as the parametric harmonic oscillator, and it is a

8
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prevalent model in the literature of driven systems. The Hill equation is the equaiton

of motion for the parametric harmonic oscillator with arbitrary driving, and can be

written as ẍ + g(t)x = 0, where g(t) is periodic in t. If g(t) = cos(ωt), the Hill

equation reduces to the Mathieu equation (25). Both the Hill and Mathieu equations

have been studied extensively due to their interesting properties, their many applica-

tions to different systems, and straight-forward analytical treatment. Their solutions

apply to the approximation of the Kapitza pendulum, the quantum pendulum (26),

ion traps (27), and oscillations of a floating mass in a liquid (28). Through a simple

mapping which we will discuss in chapter 4 subsection 4.4.1, one can even include

dissipation in the Mathieu equation.

The solutions to the parametrically driven harmonic oscillator were originally

found in an altogether different physical context. In 1868 Mathieu worked to solve

for the leading terms in the series solution of the vibration modes of an elliptically

vibrating drum head (29). To do this he developed the special functions now known

as the elliptic cosine and sine functions. By taking a linear combination of the elliptic

cosine and sine functions, the vibrational modes of an elliptical membrane can be

described. A good discussion of the solutions to the Mathieu equation is by Gutierrez

et al. (30), who also show nice graphical representations of the solutions.

The canonical form of the Mathieu equation is

d2x

dt2
+ [a− 2q cos (2t)]x = 0. (2.1)

Mclachlan (25) has written a book on the Mathieu equation, the various forms of its

solutions, and a variety of its applications. One particularly convenient form of the
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solution discussed by Mclachlan (25) is

x(t) = Aeµt
∞∑

n=−∞
C2ne

i2nt +Be−µt
∞∑

n=−∞
C2ne

−i2nt, (2.2)

where A and B are constants that are chosen to satisfy the appropriate boundary

conditions and µ can be any complex number. The µ is sometimes referred to as the

characteristic exponent since it determines the stability of x(t). Stability is defined

in the following way: x(t) is unstable if

lim
t→∞

x(t) = ±∞, (2.3)

and stable if x(t) remains bounded for all t. The term bounded does not necessarily

imply periodic. If a solution is periodic it is a special case of the stable solution and

is sometimes called “neutral”.

Let’s investigate a couple of particular cases for the solutions shown in Eq. 2.2

for different µ. If µ is real and positive (negative) then the first (second) term in

Eq. 2.2 goes to∞ as t→∞. Clearly µ must be imaginary if we are looking for stable

solutions. Let’s say µ = iβ, where β is real. We can choose to write β as a fraction

of two numbers, call them p and s, that are prime to each other (sharing no common

factors besides 1), so β = p/s. If p/s is a rational fraction then β is a rational number

and each term on the RHS of Eq. 2.2 is periodic with period 2sπ. In the irrational

case, the solution is not periodic but it is bounded.

After setting µ = iβ we can take Eq. 2.2 and insert it back into the Mathieu

equation (Eq. 2.1) in order to find a recursion relation between the coefficients C2n,

10



2.1. IMPORTANT MODELS

C2n+2, and C2n−2. If we define

D2n ≡ [a− (2n+ β)2]/q, (2.4)

then we can write the recursion relation as

C2n+2 −D2nC2n + C2n−2 = 0. (2.5)

The recursion relation is useful since it only takes a little algebra to write any C2n as

a continued fraction of D2n.

C2n+2 =
C2n

D2n −
1

D2n+2 −
1
. . .

, (2.6)

and

C2n =
C2n−2

D2n −
1

D2n−2 −
1
. . .

. (2.7)

With this expression we can find the coefficients to arbitrary precision by truncating

the continued fraction when the desired precision is reached. With boundary condi-

tions and the above expressions of the coefficients C2n, one obtains the solution to

the Mathieu equation (to arbitrary precision).

Some applications of the Mathieu equation are also covered by Mclachlan (25),
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but another more concise review of the Mathieu equation, its solutions, and applica-

tions is given by Lawrenc Ruby (28). Since driven systems exhibit the property of

dynamical stabilization, it is not surprising that one of the primary applications of

driven systems is in the trapping of ions which cannot be contained in a static field

in three dimensions. The lack of a static minima in three dimensions is easy to see if

we define a three dimensional static electric potential

Φ(x, y, z) = 1
2(ax2 + by2 + cz2), (2.8)

and using the Laplace equation ∇2Φ = 0 show that a + b + c = 0. Clearly no

minimum in three dimensions is possible because a, b, c cannot all have the same sign

and satisfy the Laplace equation. By introducing time dependence to the potential,

we can produce an effective three-dimensional minima at the x = 0, y = 0, z = 0

point. We will discuss a detailed version of dynamic stabilization which creates an

effective potential minima for the case of the Kapitza pendulum.

2.1.2 The Kapitza Pendulum

Due to the importance of the Kapitza Pendulum to this work, we will now describe

it and dynamical stabilization in more detail. The Kapitza pendulum is one with a

vertically oscillating suspension point, oscillating parallel to the force of gravity. The

gravitational field is perpendicular to the horizontal axis. We will call the horizontal

axis the x-axis, and the vertical axes the y-axis as shown in Fig. 2.1. The Lagrangian
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a
l
x

y

Figure 2.1: A cartoon of the Kapitza pendulum. The amplitude of the oscillation of the
suspension point is a. The length of the pendulum is `. The angle from vertical is θ
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of the system can be written as

L = T − U = m

2
(
ẋ2 + ẏ2

)
−mgy. (2.9)

We can replace x and y with the following relationships

x = ` sin θ (2.10)

y = a sinωt− ` cos θ, (2.11)

resulting in

L = m

2
(
`2θ̇2 cos2 θ + a2ω2 cos2 (ωt) + `2θ̇2 sin2 θ − 2a`ωθ̇ cosωt sin θ

)
−mg(a sinωt−` cos θ).

(2.12)

Collecting the squared cosine and sine terms we get

L = m

2 `
2θ̇2 +m

2 a
2ω2 cos2 (ωt)−ma`ωθ̇ cosωt sin θ−mga sin (ωt)+mg` cos θ, (2.13)

but we can throw away the terms having no θ or θ̇ dependence since they do not

appear in the equations of motion. We are left with

L = m

2 `
2θ̇2 −ma`ωθ̇ cos (ωt) sin θ +mg` cos θ. (2.14)

The equations of motion follow from the Euler-Lagrange equation,

m`2θ̈ = ma`ω2 cosωt sin θ − `mg sin θ. (2.15)
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It is easiest to jump to the Hamiltonian by imagining a stationary pendulum,

about which a rotating field produces the force that generates the equations of motion

shown in Eq. 2.15. The potential

V = m`aω2 cosωt cos θ −mg` cos θ (2.16)

produces the same equations of motion and allows us to write the Hamiltonian in the

simplest possible form with the kinetic energy term p2/2m`2 plus V . The Hamiltonian

is

H = p2

2m`2 +m`aω2 cosωt cos θ −mg` cos θ. (2.17)

Now that we have a nice expression for the Hamiltonian of the Kapitza pendulum,

we are going to use a powerful tool known as the Magnus expansion to show that

the pendulum becomes stable in the inverted position. Originally, the Magnus Ex-

pansion was developed as a way to approximate a non-autonomous linear first-order

differential equation, but it is now often used in a clever way to produce the effective

Hamiltonian of a driven system. The usefulness of the expansion resides in several

different properties. At the most superficial level, it is useful because each order of

the expansion often exhibits some qualitative behavior of the actual system. For ex-

ample, the stabilization of the inverted position of the Kapitza pendulum is evident

in the form of approximated Hamiltonian. At a deeper level the approximation of

any operator found through the Magnus expansion will belong to the same Lie alge-

bra of the original operator at any order of the expansion. For a detailed review of

the Magnus expansion and confrontation of some of the known issues surrounding it,

including issues of existence and convergence, see Blanes et al. (31).
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The use of the Magnus expansion is most convenient in the quantum language.

Imagine preparing the system in some initial state |ψ〉 which evolves under the peri-

odic Hamiltonian of interest, having period T . This evolution from some time t0 to

some later time t can be achieved by U(t, t0)|ψ〉 where U(t, t0) is the time dependent

evolution operator

U(t, t0) = T e
i
~

∫ t
t0
dt′H(t′)

, (2.18)

and T is the time ordering operator. To evolve by one period, |ψ(nT )〉 = U(T )n|ψ0〉,

we can write U(t, t0) as

U(T ) = T e
i
~

∫ T
0 dtH(t), (2.19)

so that U(T ) evolves the system by one period. Since U is known to be unitary it

can be written as the exponential of a Hermitian operator which we will call Heff , or

the effective Hamiltonian. In this way we write

U(T ) = e−iHeffT/~. (2.20)

We can now solve

T e−
i
~

∫ T
0 H(t)dt = eiHeffT/~ (2.21)

for Heff resulting in

Heff = i~
T

log
(
T e−

i
~

∫ T
0 H(t)dt

)
. (2.22)

For most Hamiltonians of interest the above expression for Heff cannot be exactly

solved, which is why we have called the LHS an effective Hamiltonian. The Magnus

expansion is the short period (high temperature) expansion of the RHS of Eq. 2.22.

We will omit the details of finding the standard expression of the expansion and
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simply state the first three terms, which will suffice for our discussion.

H1
eff = 1

T

∫ T

0
dtH(t) (2.23)

(2.24)

H2
eff = 1

2T (i~)

∫ T

0
dt1

∫ t1

0
dt2 [H(t1), H(t2)] (2.25)

(2.26)

H3
eff = 1

6T (i~)2

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) .

(2.27)

Evaluating the commutators and the integrals results in

H1
eff = p2

2m −mω
2
0 cos θ (2.28)

H2
eff = 0 (2.29)

H3
eff = a

4m`
(
p2 cos θ + 2p cos θp+ cos θp2

)
+
(
ma2ω2

4`2 − aω0

`
sin2 θ

)
. (2.30)

Up to third-order the classical solution can be found by simply replacing the op-

erators with the classical variables (32). This is not generally true, but it can be

shown that the quantum corrections to replacing the quantum commutators with

the Poisson brackets are small when considering this third order Magnus expansion.

Proving that the quantum corrections are small is done by using the Moyal Bracket of

Weyl symbols of the relevant operators. For a discussion on the details of the phase

space representation of quantum dynamics see Polkovnikov (33) and D’Alessio et al.

Appendix A. (32).
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Now we can consider the classical effective Hamiltonian

Heff = p2

2m −mω
2
0 cos θ + a

m`

(
p2 cos θ

)
+
(
ma2ω2

4`2 − aω0

`
sin2 θ

)
. (2.31)

Looking at the terms that only depend on θ, we can extract an effective external

potential

Veff ext = m

((
a2ω2

4`2 −
aω2

0
`

)
sin2 θ − ω2

0 cos θ
)
. (2.32)

Differentiating twice, we find that the condition for a minima to be located at θ = π

is

2
(
a2ω2

4`2 −
aω2

0
`

)
> ω2

0, (2.33)

which is the condition for stability of the pendulum in the inverted position.

We have now a clear mathematical picture of how the Kapitza pendulum can

stand in the inverted position. With fast driving one can satisfy the condition in

Eq. 2.33 (large ω), which is the same condition for the use of the Magnus expansion

to begin with. Driving the pivot of the pendulum creates an effective potential which

changes depending on the parameters of the system. One other way that the stability

of the inverted position can be shown is by separating out the fast and slow degrees of

freedom and making the assumption that the fast degrees of freedom are irrelevant.

In some sense the Magnus Expansion can give you the effective Hamiltonian without

having to debate the importance of the fast or slow degrees of freedom. This particular

tuning of the effective potential is know as dynamic stabilization.
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2.1.3 The Kicked Rotator and the Standard Map

Here we introduce an important model known as the kicked rotor model. This model

is of significance in physics for many reasons, one of these reasons being that the kicked

rotator is one of the simplest Hamiltonians that exhibits chaotic dynamics. Arguably,

the most important feature of this model is that it is integrable, the solution is the

well known (Chirikov) standard map. The standard map approximately describes

the dynamics of a system near a sepratrix of a nonlinear resonance, an incredibly

prevalent feature in many driven nonlinear systems.

The Hamiltonian of the kicked rotor can be written as

H = L2

2I −K cos (θ)δ(t− nT ) (2.34)

where L is the angular momentum of the rotor, I is its moment of inertia, K is the

kicking amplitude, θ its angular position, T is the period of the kicking, and n is an

integer. We can find the equations of motion by using Hamilton’s equations, resulting

in

L̇ = −∂H
∂θ

= p/m, (2.35)

and

θ̇ = ∂H

∂L
= −K sin (θ)δ(t− nT ). (2.36)

These are integrable over the periods of time between kicks and therefore a simple

recursion relation can describe the dynamics. This recursion relation is known as a

discrete map, and this particular one is known as the standard (Chirikov) map. The
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recursion relations are

θn+1 = θn + TLn+1 (2.37)

Ln+1 = Ln −K sin (θn) (2.38)

Which give us the angles and positions at any point in time because between kicks

we know that θn(t) = θn + (t mod (T ))Ln/m.

In order to develop our intuitive understanding of the standard map (its behavior

may not be completely transparent in the form of the recursion relation) we will look

at the model under a couple of limits. We follow the pedagogical discussion of the

standard map by Anatoli Polkovnikov in his notes (34). First we choose a unit mass

and period (m = T = 1) through the rescaling of K and time. Second we choose

to look in the limit of K � 1 and p0 � 1, where p0 is the initial momentum. This

allows us to take the continuum limit with respect to the period. Now we have the

approximate relationships

∂θ

∂n
≈ p,

∂p

∂n
≈ −K sin (θ), (2.39)

or in the form of a second order differential equation

∂2θ

∂n2 ≈ K sin θ. (2.40)

We see that Eq. 2.40 is just the equation of motion for a pendulum.

Just as in the case of fast driving for the Kapitza pendulum, we find that under

certain limits of the system parameters the equations of motion can take on a new

form. Part of the point in discussing the details of the kicked rotor and the Kapitza
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pendulum is that the STP driving can be used to renormalise the potential of a given

system. One can imagine the usefulness of being able to tune a system’s properties

simply by adjusting the frequency or amplitude of the driving. These models are

important to a decent foundation in understanding STP systems.

2.2 Nonlinear Dynamics of Driven Sys-

tems

One might begin discussion of nonlinear dynamics at many different points in time,

although a convenient starting point might be Newton’s dynamics of celestial bod-

ies, coinciding as it does with the beginning of calculus, and therefore is one of the

first applications of the differential equations that we use to mathematically repre-

sent many physical systems. From this foundation, the understanding of nonlinear

dynamics grew significantly out of Poincaré’s work in the qualitative, aka geomet-

ric, understanding of differential equations. This is not only a wonderful way to

understand the possible behaviors of a nonlinear differential equation, but it is ped-

agogically valuable due to its simple elegance. Poincaré’s work also started one of

the most important and fundamental ideas in nonlinear systems, which is a way to

classify them via the topological structure of their phase space (35)

If we are interested in time-dependent systems, we can restrict ourselves to solving

sets of first-order ordinary differential equations. In general, one can always express a

system of differential equations of arbitrary order with a set of first-order differential

equations. We can understand the flow of any first-order equation ẋ = f(x), by using

Poincaré’s qualitative method. This method consists of sketching ẋ = f(x) and using
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the sketch to draw a vector field, where the vector field describes the flow on the x

axis. Let’s take a simple example to understand this concept in more detail. Consider

the function f(x) = x2− 1, for which we can plot the velocity ẋ as a function of x as

shown in Fig. 2.2. Fixed points of a flow along x will be the solutions to f(x) = 0,

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x

2.0

1.5

1.0

0.5

0.0

0.5
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1.5

2.0

ẋ

Figure 2.2: A phase portrait of ẋ = x2 − 1. The filled circle represents a stable fixed point
and the unfilled circle represents the unstable fixed point.

call them xfp1 and xfp2. The stability of the fixed point will be given by f ′(x)|xfpn ,

xfpn being the nth fixed point.

2.2.1 Bifurcations

By including a little more flexibility in our example function f(x), we can change

the phase portrait. Let’s make the height of our parabola adjustable by including a
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parameter h, so f(x) = x2 − h. When h = 1, we have the phase portrait shown in

Fig. 2.2. Let’s say now that we set h < 0, so that now there are no more fixed points

and the flow along x is fundamentally different. If we tune h from a negative value,

to a positive value we cross between these two regimes. The fundamental transition

between the two types of flows is known as a bifurcation, and this particular type

of bifurcation is called a saddle node bifurcation, which can be thought of as two

fixed points annihilating one another (h going from negative to positive) or as two

fixed points being spontaneously created about the origin (h going from positive to

negative). This is also sometimes called the blue sky bifurcation because the fixed

points seem to appear out of nowhere.

In our simple example, no periodic trajectories are possible. There is clearly no

room for them in the phase space. They either zoom off to infinity or sink into an

attractive fixed point. We need to move to a higher dimensional phase space to see

periodic and chaotic trajectories. As we saw in the one dimensional case f ′(x = xfpn)

told us the stability of the fixed point. We can generalize this to higher dimensions

by taking the Jacobian of a system of n equations

ẋ1 = f1(x1, x2, . . . , xn) (2.41)

ẋ2 = f2(x1, x2, . . . , xn) (2.42)
... (2.43)

ẋn = fn(x1, x2, . . . , xn), (2.44)
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where each fn(x1, x2, . . . , xn) is an arbitrary function, resulting in

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

... ... . . . ...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


. (2.45)

In the case of a discrete map (like the Chirkov map), the eigenvalues of the map

evaluated at a fixed point are called the Lyapunov spectrum or the stability multi-

pliers, which tell you the stability of a trajectory along the directions given by the

eigenvectors of the Jacobian, a.k.a. the stable/unstable manifolds. For equations of

motion which require numerical solutions, the Jacobian at any given point still tells

you about the stability but a more careful treatment is required to extract the sta-

bility multipliers. Observing the stability of the fixed points as one varies a control

parameter, such as K in the standard map, can tell you the type of bifurcation that

occurs. Depending on the system there are many different types of bifurcations. A

good discussion of stability and bifurcations can be found in Thompson and Stewart’s

book (36), which lists some of the common bifurcations and shows what happens to

the stability multipliers as specific bifurcations occurs.

2.2.2 Floquet Stability Analysis

Here we explicitly discuss the details of analyzing the stability of periodic trajectories

which require numerical solutions. This is a more complicated process than the case

of a discrete map because we can no longer simply find the eigenvalues of the Jacobian

at a given location to determine the stability of a trajectory that periodically passes
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through it.

In the dynamical systems jargon, periodic trajectories are often called limit cycles,

henceforth we will refer to them in this way. We expect the limit cycles to be periodic

with a period that is either the frequency of the driving or some sub-harmonic of the

driving frequency. If the period of the driving is T , then the period of a limit cycle

can be written as pT , where p is a positive integer. Here, we must also define some

additional notation. Let T be the time map which advances the operand by the

period T . The time map is the same concept as the time evolution operator discussed

in subsection 2.1.2 and, as we have defined it, produces a stroboscopic picture of the

system. We will show later that the stroboscopic picture is equivalent to a specific,

and popular, choice of Poincaré section.

Let us assume we are working only with two first-order equations, which could

also be the first-order representation of a second-order differential equation of a single

variable. Generally we write

ẋ1 = f(x1, x2) (2.46)

ẋ2 = g(x1, x2). (2.47)

The extension to more degrees of freedom is simple if one understands this example.

We will define the location of a fixed point in the 2D phase space to be rfp =

(xfp1, xfp2), where x1 and x2 might correspond to the positions and velocities of some

particle, respectively.

In order to quantify the stability of a period-p limit cycle we use the Floquet

stability analysis (37). A period-p fixed point under the time map T located at
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rfp remains invariant under T p. For the rest of this discussion, we work with the

non-autonomous expressions of the equations of motion and therefore we will refer

to {rfp} as rfp(t), so that we remember its explicit dependence on the independent

variable t.

We want to find the linearized mapping under which the trajectory is invariant,

which is defined as the linearized-map matrixDT p. Explicitly, it acts on the period-p

fixed point rfp in the expected way i.e. DT prfp = rfp. If we can obtain the linearized

mapping then the stability of rfp is found by finding the eigenvalues of DT p.

To find DT p we must integrate the linearized differential equations of motion for

a trajectory close to rfp(t). Call the perturbation of rfp(t), α(t) ≡ (xα1, xα2). An

infinitesimal perturbation to the initial conditions of rfp results in a slightly perturbed

trajectory which we call α(t). In practice, α(t) is all we have access to because the

numerical solution is, in most cases, only an approximation of the true trajectory.

The time-dependent equations of motion for α(t) may be expressed as

(
ẋ1α

ẋ2α

)
= J

(
x1α

x2α

)
, (2.48)

where we remind the reader that J(t) is the Jacobean matrix for rfp(t)

In general the solution to α(t) may be expressed as

(
x1α(t)
x2α(t)

)
= x1α(0)w1(t) + x2α(0)w2(t), (2.49)

wherew1(t) andw2(t) are the two linearly independent solutions which can be written

together as
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W (t) =

w1
1(t) w1

2(t)

w2
1(t) w2

2(t)

 . (2.50)

The matrixW (t) is called the solution matrix because is allows us to express express

Eq. (2.49) as

(
x1α(t)
x2α(t)

)
= W (t)

(
x1α(0)
x2α(0)

)
, (2.51)

whereW (0) is necessarily the identity matrix. Now we see thatW (t) is the linearized

flow DT t and by substituting Eq. (2.51) into Eq. (2.48) we obtain the initial value

problem

Ẇ (t) = J(t)W (t), (2.52)

which we can solve for W (t). For the desired period-p, namely the one associated

with rfp(t), we numerically integrate Eq. (2.52) from t = 0 to 2πp. This integration

gives us the linearized map matrix DT p from which it is easy to find the eigenvalues,

or the Floquet stability multipliers of rfp(t) under the time map (Poincaré map).

2.3 Long-Range Interactions

2.3.1 Extensivity and Additivity

Systems with long-range interactions are a source of unique problems in the field of

statistical mechanics and thermodynamics. This is due to several properties of long-

range systems which fall outside of the conditions normally needing to be satisfied
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when applying the methodologies of thermodynamics. Simply from the words “long-

range” the first infringement can be deduced, that long-range systems are not additive.

If two systems with short-range interactions are brought together to form a larger

system, then the energy difference between the conglomerate system and the sum of

its constituents is the new potential energy from the boundary between them. In

the thermodynamic limit, the potential energy of the boundary is small compared to

the bulk and can be neglected, making short-range systems additive. In the case of

long-range interactions, one particle will feel a significant potential created by every

other particle, so the additional potential energy of two systems added together does

not scale as the boundary but in a more complicated way that depends on the specific

nature of the interactions (38). Directly related to the lack of additivity is the fact that

systems with long-range interactions are not extensive because their energy diverges

in the thermodynamic limit (39). Although these characteristics compel cautious use

of the usual tools of statistical mechanics, they are also the source of many interesting

dynamical and statistical features. Depending on the system of interest, such features

include canonical and microcanonical ensemble inequivalence and relatedly negative

specific heat (40), quasistationary states (different than metastable states which lie on

local extrema of equilibrium potentials) whose lifetimes increase with the number of

particles (41), and spontaneous creation of macroscopic structures in nonequilibrium

states (42). In some cases, long-range interactions can greatly simplify problems.

For instance, mean field models depend on one of two premises: (i) interactions are

short-range but the system is embedded in a space of infinite dimension so that all

bodies in the system are nearest neighbors, or (ii) interactions are infinitely long.
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2.3.2 The Kac Prescription and the Core-Halo

Distribution

Extensivity in a model with long-range interactions can be ensured by scaling the

potential energy between two particles by factor of 1/N , where N is the number of

particles in the system. This scaling is referred to as the Kac prescription (43), and

it lacks any physical justification aside from the prevention of a diverging energy in

the thermodynamic limit. Though the Kac prescription solves (brushes aside) the

problem of extensivity, it also reduces the pairwise interactions between particles to a

vanishing value for large systems. Therefore, in the thermodynamic limit a particle’s

dynamics will primarily depend on its interaction with the collective excitations of

the system (mean field). Teles et al. state that the phase diagrams for long-range

systems, calculated using Boltzmann-Gibbs statistics, are not always equivalent in the

microcanonical and canonical ensembles and that “The inapplicability of BG statistics

to systems with long-range forces in the thermodynamic limit is a consequence of the

ergodicity breaking” (44). The ergodicity breaking can be inferred simply through

the nature of the Kac prescription. Infinitesimal interparticle interactions mean very

small correlations (vanishing in thermodynamic limit) between particles, therefore the

process of equilibration is quite far form the collisional process usually responsible for

equilibrating systems with short-range interactions (obeying BG statistics). (44; 45).

Depending on the initial configuration of a long-range system, collective oscilla-

tions can develop. These collective oscillations often end up transferring energy to

some particles which are located at the opportune points in the phase space to absorb

the energy from them. As these particular particles absorb energy, becoming hot, the
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rest of the system is cooled, resulting in a state that is fundamentally non-ergodic.

Ergodicity is broken because as the collective oscillations die out in the heating of a

subset of the system. The cold and hot regions can no longer couple to one another

creating a divide in the phase space. A phase space in which particles are divided

is not ergodic. A cold particle cannot enter the hot region of the phase space and

the hot particles cannot enter the cool region of the phase space. These hot and cold

regions form what is known as the “core halo” distribution. The increase of entropy

remains satisfied though. The system can continuously increase its entropy through

the spreading of the halo (hot region), but to do so as an isolated system the core

must indefinitely collapse to conserve energy (46).

2.3.3 The Vlasov Equation

For short-range interactions the Boltzam equation describes the evolution of a distri-

bution of particles in the phase space. Given that the correlations between particles

in a long-range interacting system are vanishing in the thermodynamic limit, the col-

lision term in the Boltzman equation would go to zero in the thermodynamic limit.

The collisionless Boltzman equation is also known as the Vlasov equation. The famous

Maxwell-Boltzmann distribution is the stationary solution to the Boltzman equation,

but the Vlasov equation has an infinite number of stationary solutions depending on

the initial distribution of particles in the phase space. In spite of the infinite number

of solutions to the Vlasov equation, it is used to describe a variety of long-range inter-

acting models (47; 48; 49). An additional issue in working with the Vlasov equation

is that a solution is usually quite complicated. Between the difficulty in finding a

solution and knowing that each initial distribution gives rise to a different stationary
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solution one might be inclined to think that its study does not give rise to universal

insights. However, Teles et al. have made great progress regarding these concerns

(50). They work with the gravitational sheet model (1D self gravitation model). By

proposing an ansatz solution to the Vlasov equation which is based on the physical

limitations of the collapsing core (of the core-halo) in the phase space, they restrict

the collapse of the core to a fully degenerate Fermi gas. Using the ansatz distribution

function, they find the phase space density function and plug it into Poisson’s equa-

tion. In this case, they must solve Poisson’s equation numerically. With an expression

for the (pseudo) static potential as a function of time, their ansatz solution to the

Vlasov equation, and the constraints of conserved mass and energy, they find the full

solution to the one-particle distribution function. They compare these findings to

results for numerical simulations of the model and the fit is remarkable. We believe

this is an extremely important step to understanding long-range systems especially

through the use of the Valsov equation.

2.4 The Electric Curtain

The electric curtain (EC) is a device consisting of a series of parallel electrodes em-

bedded in a dielectric surface. Alternating electric potentials are applied to these

electrodes such that neighboring electrodes have a prescribed phase difference. An

illustration of a two-phase EC is shown in Fig. 2.3. Different EC geometry and

control parameters make it possible to create a variety of electric fields, which can

generate a wealth of physical phenomena for charged particles. An EC configuration

whose adjacent electrodes are driven by electric potentials with less than 180 degrees
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Figure 2.3: Transparent view of a 2-phase EC with our choice of axes are super imposed.
The dashed lines represent the electric field lines in the positive y plane. The 2-phase EC
is periodic over the set of electrodes marked as the “unit cell”.

of phase difference will produce a traveling-wave electric field above the surface. Par-

ticle motions in these types of fields have been found to have several different modes

of transport, which are commonly fited into three categories; surfing mode, hopping

mode, and curtain mode (51). In the surfing mode, particles travel synchronously

with the wave front, whereas in the hopping mode particles will stick to the sur-

face and hop stochastically when freed by a sufficiently strong electrostatic force or

collision with another particle. In the curtain mode, high frequency electric field
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oscillations drive particles to be levitated above the electrode surface and travel in

a spiraling trajectory with considerably slower average speed than the propagation

velocity of the traveling wave.

Due to the variety of possible dynamics in an EC it has been proposed for ma-

nipulation and control of particles in many different applications. Patented in 1974

by Senichi Masuda, the EC was originally invented for particle control in an electro-

static powder-painting booth (52). Other proposed applications include separation

of cells in the aqueous solution (53), separation of by-products from agricultural pro-

cesses (54), transport of toner particles in photocopying machines (55), mitigation

of charged dust build-up for extra-terrestrial exploration of dusty planets and moons

(23), and separation of charged particles with different charge-to-mass ratios (56).

Despite those proposed applications of ECs, few commercial applications are re-

ported. This may be in part due to the fact that particle dynamics induced by an EC

are complex and still not well understood. The motion of particles in EC fields has

been studied both experimentally and computationally by a number of investigators

(57; 58; 59; 60; 61; 51; 62; 63). These investigations have shown a variety of dif-

ferent propagating and stationary modes, including the recent report of intermittent

changes of many-body particle motion discovered by Chesnutt and Marshall (64) in

a discrete-element simulation of transport on inclined ECs. In this work, we will con-

tribute to the understanding of the complicated behaviors found for charged particles

driven by a EC though an experimental investigation of the particle dynamics and

statistics, as well as an in-depth dynamical systems study of a simple model system.
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Chapter 3

Experimental Study of the Elec-

tric Curtain

3.1 Electric Curtain Experiments Rel-

evant to the NASA Dust Mitigation

Project

Lunar and Martin exploration and habitation is a long-term project for NASA (65).

Its success requires availability of in situ reliable renewable sources of electrical power.

As it stands, solar power is one of the few sources of energy available off planet and

keeping solar panels clean is necessary in keeping them efficient. Fine lunar and Mar-

tian particles (66) on the solar panel surface can make the solar panel dysfunctional,

therefore periodic cleaning of the surface is necessary. Limited power and payload

restrictions require surface cleaning devices to be as light weight as possible. It has

34



3.1. ELECTRIC CURTAIN EXPERIMENTS RELEVANT TO THE NASA
DUST MITIGATION PROJECT

been shown that the electric curtain (EC) is an excellent candidate for dislodging

fine particles from a solar panel surface. The electrodes can be made to be translu-

cent and only cover a small percentage of the solar panels entire surface area. The

goal of the work presented in this section of chapter 3 is to understand the physical

principles of this promising contrivance and refine its characteristics to satisfy future

NASA applications.

One problem with microscopic regolith is that removing it from a surface can

be surprisingly difficult due to the strong van der Waals adhesion and electrostatic

force. Dust particles in the extremely dry Martian environment are often electrically

charged and they may maintain an acquired charge for a long time. Simple removal

techniques such as rubbing or wiping can abrade the surface. Even small amounts of

abrasion on a solar panel will diffuse and disperse the incident light decreasing the

power output. The EC may be able to remove most if not all the dust efficiently

without any abrasion to the surface.

In order to better understand the use of an electric curtain (EC) for dust mitigation

applications in extraterrestrial environments, we investigate the motion of charged

Martian regolith simulant (JSC Mars-1A) in an EC field. An important aspect of this

work was the method with which we charged the regolith simulant. In the next section,

we will discuss this method and the details of charging and measuring the charge of

many fine particulates. After the discussion of charging the regolith, we present

our study of particles in the EC field, which consists of velocity distributions for

different EC driving frequencies and different particle charges. We had two primary

objectives in measuring the velocities of particles in an EC field. (i) To determine

if there was “resonance” with the EC field in which particles, on average, developed
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comparatively large velocities. (ii) To determine if charging particles influenced the

interactions with the EC field in normal atmospheric conditions, or if the EC charged

the particles sufficiently, making additional charging procedures extraneous.

3.1.1 Experimental Setup

Charging Dust

There are several difficulties in creating and confining even a small number of small

(approximately 500µm diameter) particles with large electrostatic charges. The most

ubiquitous issue is the coulomb repulsion between like charges, which can make a

non-neutral cluster of particles difficult to contain. The second challenge is the elec-

trostatic sticking of particles to a container’s surface. Once you have succeeded in

confining them, getting them back out of the container in a controlled fashion is likely

the next obstacle. Also, the interaction of charged particles with the container will

change the particles charge to some degree. The charge transfer between the container

and the particles can be partially controlled though the choice of container material.

For the experiments described in section 3.1, we worked exclusively with the Mar-

tin regolith simulant, JSC Mars-1A. Through the use of a sieve, we restricted particle

sizes to diameters less than 53µm. In practice, some of the complications involving

electrostatic interactions of the particles with each other and the container can be

lessened with simple procedures, making it possible to charge and collect relatively

consistent charge-to-mass ratio samples. We have found that the most important

tool, when facing the challenges of herding charged particles, is having a container

of the appropriate material. Aside from the requirement that it must be insulat-
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ing, the determination of this material will largely depend on the electrochemical

potential of the particles. The triboelectric series can be used to loosely predict

the electrostatic charges of different materials coming in contact with one another,

but the reality is that the understanding of the electrostatic charging of insulators,

and the charge transfer between them, is still under some debate (67). Recently

Zhang et al. (67) provided convincing evidence that small amounts of water on

the surface of the insulators plays a critical role in these issues. We found that

even with an understanding of the tribo-charging mechanisms, experimentation is

required to find a suitable container for charged martin regolith, especially since the

regolith consists of a mixture of different materials. Detailed information on the

regolith simulant, including composition, grain size, etc., can be found at http:

//www.orbitec.com/store/JSC_Mars_1_Characterization.pdf. Through sev-

eral trials we found that a plastic box found in the lab had the smallest interaction

with the charged regolith.

We will now describe the method of particle charging used with the martin regolith

simulant. It consisted of an air stream into which a sample of dust was injected, which

carried the particulates over a sharp electrode to which a large electric potential was

applied. To measure the charge of a dust sample, we used a Faraday cup. The charging

setup that we have described is a piece of electrostatic powder coating equipment. We

used an electrostatic powder coater made by Nihon Parkerizing co. ltd. (Subdivision:

Parker Ionics Cx355Z, model GX7000S). The large electric potential applied to the

aforementioned electrode and its sharp curvature creates a strong electric field, so that

the particles become charged as they pass over it. Through some experimentation,

we found the equipment parameters that consistently produced samples of similar
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charge-to-mass ratios. The consistency of the method allowed us to predict a sample’s

charge by measuring its mass, an important capability since measuring the charge with

the Faraday cup required putting the dust in contact with a conductor, drastically

reducing the charge on the sample.

It is also important to discuss the charging of particles by the EC field. The

EC’s effect on the charge of particles makes it very challenging to know charge-to-

mass ratios during an experiment. We need to distinguish between the samples that

are charged only from the EC field and those that we charged using the electrostatic

powder coating method and the EC field. We will refer to “uncharged dust” as regolith

simulant which was not deliberately charged with the electrostatic powder coating

equipment, and “charged dust” as the simulant which was deliberately charged with

the equipment. Not only can the large electric field of the EC charge the particles,

but so can interparticle collisions and collisions of particles with the surface of the

EC. The question of whether or not the dust charged with the charging equipment is

more charged during an experiment will be discussed in the results section.

We think it is necessary to inform readers about a particular strategy which can be

used to measure the charge-to-mass ratio of dust as it comes off of the EC. Though

we did not implement this method in the present experiments, it should be dis-

cussed because of its usefulness to anyone interested in continuing these experiments.

Kawamoto (57) developed a method which consists of a box having parallel conduct-

ing plates on two of the inside surfaces, and a slit in the covered top. The slit is

made to be only marginally wider than the average size of a particle. The box is

placed so that its top surface is in the same plane as the EC’s surface. The slit on

top of the box restricts the entry point of particles coming off the EC into the box,
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making the initial position of an entering particle known to the accuracy of the width

of the slit. An electric potential difference between the conducting walls is applied

so that as a particle falls its trajectory is governed by the electric field between the

conducting plates and the particle’s charge to mass ratio. By measuring the location

and diameters of the particles on the bottom of the box, it is possible to determine

their charge-to-mass ratios at the time they came off the EC.

Electric Curtain and Data Collection Setup

As mentioned in section section 2.4, ECs can be relatively easy to manufacture. One

of the simplest ways to make one is by chemically etching a printed circuit board.

A variety of electrode geometries and EC phases can be made this way. We used

this method to make a 2-phase EC with flat rectangular electrodes of width 1mm

and spacings of 1mm. We define the axis that is in the plane of the electrodes (but

running perpendicular to them) to be the x-axis, the axis that is perpendicular to the

plane of the electrodes to be the y-axis, and the axis in the plane of the electrodes

and running parallel to them as the z-axis, as shown in Fig. 2.3. In the following

experiments, we use an EC with length 18cm and width 9cm, measured in the x and

z directions, respectively. The surface of the electric curtain was spray-coated with a

dielectric material having a large breakdown voltage.

Alternating electrodes are attached to the AC power source such that adjacent

electrodes are driven with a phase difference of π radians between them, creating

a standing wave EC field, the potential of which is shown in Fig. 3.1 for a time

when the field is non-zero. The peak-to-peak voltage, Vpp, applied to the electrodes

was predetermined primarily by the maximum applied voltage before a discharge
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Figure 3.1: An approximation of the of the electric potential over two spacial periods of
an EC for a time when the field is non-zero. The x-axis has been scaled so that spacial
periodicity of x is 2π.
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would occur. Though the dielectric had a large breakdown voltage, moisture on

the surface of the EC could act as a conductor, effectively shortening the distance

between electrodes. For humid conditions, the dielectric could not withstand more

than Vpp = 2000, so we used Vpp = 1500 to be cautious. If a discharge occurred, the

EC had to be resurfaced or even remade in some situations.

A single particle in an EC field will travel in the x − y plane unless a source

different from the EC pushes it in the z direction. Electrostatic interactions and

collisions with other particles and the surface can do just that, producing non-trivial

three-dimensional motion. Though in a dilute system, with a strong EC field the

particle trajectories are relatively constrained to a small x− y section of the volume

above the EC. In order to observe particle motion in a narrow x− y plane, we sent a

laser through a cylindrical lens who’s axis was parallel to the z-axis. This created an

illuminating plane coincident with a particular chosen x− y plane. The diameter of

the laser beam was 2.3mm but by the time the beam passed thought the optical setup

the width of the illuminating plane ended up being about 4mm. A high speed camera

was then placed so that its line of sight was parallel to the z axis, perpendicular to

the illuminated plane, to record the particle motions.

3.1.2 Results

Charging Dust

In Fig. 3.2 we show the charge and mass measurements of martin regolith simulant

samples that were charged using a variety of settings on the electrostatic powder

coater described in section 3.1.1. For each choice of settings, six different samples
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were charged. Then their charge and mass were measured in that order. The variation

of the equipment settings consisted primarily of tuning the air flow and the potential

across the electrode of the charging device. Though the temperature and the humidity

also played a role in the results, we had little control over them in these experiments.

The different settings are delineated with the acronym MCMR and then a number,

where MCMR stands for Mass-to-Charge Measure Ratio. The specifics, including

the humidity temperature, and settings of the electrostatic powder coater, of each

measurement can be found in table 3.1.

Table 3.1: Charging Equipment Parameters

Settings MCMR3 day1 MCMR3 day2 MCMR4 MCMR5
Velectrode (KV) 80 80 80 80

Temperature (◦F) 78 70 69 69
Humidity (%) 34.0 32.5 32.5 32.5
sub air (MPa) 0.1 0.1 0.1 0.1
main air (MPa) 0.4 0.4 0.2 0.1

Settings MCMR6 MCMR7 MCMR8
Velectrode (KV) 100 100 80

Temperature (◦F) 68 69 69
Humidity (%) 40 45 45
sub air (MPa) 0.1 0.1 0.1
main air (MPa) 0.4 0.1 0.8

By examining Fig. 3.2, we see that the most linear relationship between a sample’s

charge and its mass comes from method MCMR7. From here on, when we refer to a

sample as “charged” we mean that it was charged using the MCMR7 method since it

produced the most consistent charge-to-mass ratios.
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Figure 3.2: Charge of dust sample vs. the samples mass. The charge was measured with a
Faraday cup. See table 3.1 for the details of each dust measurement method (MCMR).

Particle Velocities in an EC Field

We remind the reader of our two primary objectives in measuring the velocities of

particles in an EC field. (i) To determine if there are certain system parameters

with which the particles, on average, developed large velocities. (ii) To determine if

charging particles influenced the interactions with the EC field in normal atmospheric

conditions, or if the EC itself determined the charge of the particles while it was active.

Objective (i), stated in terms of the current application, involves finding the op-

timal driving frequency at which a certain size distribution of particles would clear

from the area of the EC by measuring the velocity distributions. This approach relies

on the assumption that large velocities are associated with good clearing efficiency. In

some cases this is not true, for instance small particles in a large 2-phase EC field may
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oscillate very quickly by following the field lines but not traversing the EC because

they are stuck at a node of the field. By observing the particle trajectories, we have

qualitatively confirmed that the driving frequencies in the experiment presented here

are sufficiently small such that these types of trajectory are avoided.

Objective (ii) was originally thought to serve as a simple comparison but it turned

out that objective (i) could only be studied with the charged dust. We found very few

statistically significant differences in the average velocities of the uncharged dust for

different driving parameters. Prior to the work that we present here, it was unclear

whether the charging methods described above were necessary for experimenting in

normal atmospheric conditions. Comparing the charged and uncharged particle veloc-

ities helped us determine the impact of this additional step in performing mitigation

experiments.

In Fig. 3.3 we show the average velocity of the particles as a function of the

driving frequency. For a given driving frequency, the average velocity of the particles

was calculated using the following steps:

• Take a high speed video of the particles in the illuminated plane.

• Using a computer, track the particles in the video.

• With the particle tracks and the known frame rate of the camera, find the

velocities of the particles from frame to frame.

• Find the average velocity of each individual particle that was tracked.

• Plot the average of the set of average particle velocities. We define this to be

〈‖~v‖〉, with a standard deviation s. The quantity s is the standard deviation of

the mean values of trajectories velocity.
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• Assuming each particle’s average velocity is not correlated to the others and

belongs to some unknown distribution, the error in the mean velocity, σv, is

known to be approximated by σv ≈ s/
√
N , where N is the number of particles

tracked (68)

20 25 30 35 40 45 50 55 60 65

Driving Frequency (Hz)

0.1

0.2

0.3

0.4

0.5

〈 |� v|
〉

Figure 3.3: Each data point is the average of the mean particle velocity for a given driving
frequency.

In Fig. 3.3 the uncharged data (blue) does not show any clear frequency depen-

dence since the peaks and valleys of the curve are not larger than the error. The dip

at 50Hz might warrant further investigation, but with the current data nothing can

be said about it definitively. In the charged particle case, however, there is a clear

peak at 45Hz. The average particle velocity of the charged particles goes from a small

value, comparable to the uncharged case at 40 Hz, to a definitively larger value at

45Hz before slowly shrinking back down as the frequency is changed from 45Hz to
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55Hz and again from 55Hz to 65Hz. Fig. 3.3 also shows that there are clear differences

between the charged and uncharged data for certain values of the frequency. These

frequencies are 30Hz, 45Hz, and 55Hz, which might be promising driving frequencies

for charged dust mitigation applications.

3.1.3 Conclusions

In conclusion we have determined a simple procedure to charge martin regolith simu-

lant for experimentation in an EC field. By using an electrostatic powder coater con-

figured with the settings described in method MCMR7 in table 3.1, we can produce

a relatively consistent charge-to-mass ratio on any given regolith sample containing

particles with diameters less than 53µm.

Using the charged martin regoloth simulant in a 2-phase EC field, we have shown

a clear peak in the average particle velocity at the driving frequency 45Hz, shown

in Fig. 3.3. This peak might be useful when trying to improve the mitigation of

small particles which are generally the most difficult to clear because of their large

electrostatic adhesion to some surfaces. The proclaimed usefulness of our velocity

measurements assumes that a large average velocity corresponds to good clearing

efficiencies. We believe that this is a reasonable assumption since the frequency

range and field strength under investigation do not promote trajectories that oscillate

quickly about one location. The Kapitza pendulum helps us understand that too high

a driving frequency can lead to dynamical stabilization and that with too low a driving

frequency the driving imparts little energy to the particles. If there is dissipation from

air resistance or inelastic collisions, a driving frequency must be found that increases

the average kinetic energy faster than the rate energy is leaving through dissipation.
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It is reasonable to assume there should be a driving frequency where the field most

productivity increases the kinetic energy of the system which we think is the peak

found at 45Hz for our experimental setup.

3.2 One Dimensional Electric Curtain

The one-dimensional (1D) EC is a very simple to way to create a novel 1D electric

field, one which is a longitudinal pseudostatic standing wave. Charged particles in a

one-dimensional EC experience a time dependent potential that is very similar to the

potential experienced by the bob of a Kapitza pendulum if the plane of rotation was

perpendicular to the force of gravity. As discussed in section subsection 2.1.2, much

work has been done on understanding the Kapitza pendulum from experimental,

analytical, and numerical fronts; however, the 1D EC offerers a way to study these

phenomena with interacting particles confined to the same STP potential. Here we

will discuss the design of the 1D EC as well as some of the single and multiple particle

dynamics that we have experimentally investigated.

3.2.1 Experimental Setup

To confine particles to one dimensional motion, a quadrapole trap is used. The

quadrapole trap was made with 4 cylinders of length 21.5cm and diameter 2.5mm.

Their central axes sit on a square of edge length 6.4mm. Each cylinder of the trap

was driven with with an AC power source so that cylinders at opposite corers of

the square are in phase, while neighboring cylinders are π radians out of phase. See

Fig. 3.4 for a diagram of the quadrapole and EC setup. With Fig. 3.4 as a reference,

47



3.2. ONE DIMENSIONAL ELECTRIC CURTAIN

Figure 3.4: A high frequency quadrapole trap confines particles to one dimensional motion
along the axis. The electrode arrays (2-phase ECs) on either side create a longitudinal
standing wave for particles in the quadrapole trap.

we define the following coordinate frame: the x-axis is parallel to the quadrapole axis,

the y-axis is parallel to the EC electrodes (vertical), the z-axis is perpendicular to

the quadrapole axes and the faces of the ECs.

With the particles confined to the quadrapole, the two ECs on either side were

configured so that their fields perpendicular to the axis of the quadrapole canceled

as nearly as possible. This required careful positioning of the two EC so that their

electrodes were at the same points on the x-axis making the system symmetric about

the vertical plane running parallel to, and through, the quadrapole axis. To achieve

this symmetry, one EC was mounted on a platform which could be adjusted in the

x direction and the other EC was mounted on a platform which could be adjusted

in the z direction. By removing the quadrapole trap, the EC adjustable in the z

direction could be pushed directly up against the one that was adjustable in the x
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direction. Then, by adjusting the appropriate EC in the x direction, the electrodes

of the two could be carefully aligned. When the desired symmetry was achieved the

space between them could be opened and the quadrapole placed back in its original

position, resulting in the configuration shown in Fig. 3.4.

The specifications of the two ECs are as follows.

• Electrode diameter: 0.5mm

• Electrode spacing: 5.0mm

• Electrode length: 7.8cm

• Electrode material: Copper

The two electric curtains were then driven with a square wave, making the potential

roughly Φ(x, t) = cos(kx)f(t), where f(t) is a square wave with frequency ω. For our

configuration k = 2π/5.0mm−1.

These experiments were performed with glass beads having an advertised mean di-

ameter of 35µm. We show a histogram of the diameters as measured by us in Fig. 3.5.

The glass beads were a desirable material because their geometries were relatively

spherical and they also picked up a large enough static charge in the quadrapole trap

to be captured by it. A bead’s charge was also sufficiently large to feel the field

created the ECs as well.
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Figure 3.5: A histogram of the diameter of the glass beads used in the 1D EC experiments.

3.2.2 Results

Single Particle Dynamics

Due to the similarity between the form of the potential experienced by a particle

in the one-dimensional electric curtain and the form of the potential experienced

by the bob of a horizontal Kapitza pendulum, we set out to experimentally find a

series of bifurcations as the driving amplitude of the ECs was tuned. See chapter 5

for numerical results of a similar STP driving. By observing the phase space of a

single glass bead, we did not find the expected bifurcation sequence, but we did find

interesting transitions in the particle dynamics as the field strength was increased.

The phase space for a single bead is shown in Fig. 3.6 as the twin EC driving
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amplitude, A, was increased from 0 − 2KVpp. For A = 0KVpp the bead, initially

Figure 3.6: The phase plane of a 35µm glass bead in the one-dimensional EC (x vs ẋ)
plotted for different values of driving amplitude, A.

placed near the location of an electrode in x (the antinode of the electric field),

is stationary in x. As A is increased to 0.01KVpp the particle remains stationary

because the frequency of the driving is fast compared to the frequency of the natural

oscillations. In this case, the natural oscillation frequency is the undamped particle

oscillation frequency at the minimum of the static potential with amplitude A. In this

regime (particle is stationary for non-zero field), the time-average force describes the

dynamics. This is similar to the Bjerknes force in acoustics which pushes a particle

to the nodes or antinodes (depending on the density of the particle) of a standing

wave acoustic field.

Between A = 0.01KVpp and A = 0.04KVpp a bifurcation occurs changing the
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previously stable stationary particle at the location of the electric field’s antinode to a

limit cycle. This behavior, and the increasing size of the limit cycle as A is increased

from 0.04KVpp to 1.00KVpp, is predicted by numerics, which will be discussed in

chapter 5. At some point in the range 0.04KVpp ≥ A ≤ 1.00KVpp, the experimental

behaviors diverge from the numerical ones. We find no period-doubling bifurcations,

and at A = 1.00KVpp the limit cycle is covering one full spatial period of the EC. The

only time a particle covers and entire spatial period of the system in the numerics is

in a chaotic regime or in a propagating state.

The second major transition in the dynamics occurs when A is increased from

1.00KVpp to 1.20KVpp. At A = 1.20KVpp, the particle dynamics change from oscil-

lating about an electrode to hopping between three different electrodes. To clarify

what we mean by “hopping” we use an example. Start the particle at an antinode of

the field which occurs at the x positions of the electrodes. Call the node at which the

particle is initially located E0, and call the electrodes in the positive and negative x

directions from E0, E1 and E−1 respectively. With the square wave driving applied to

the electrodes, the particle feels attracted to the point E0 (given the proper choice of

phase) for the first half of the driving period. After a half period of driving, the sign

of the potential on the electrodes flips and the particle is repulsed from E0; simul-

taneously attracted to E1 and E−1. If the particle is located a small distance in the

positive (negative) direction from E0, then during the next half period it will travel

to E1 (E−1). Shortly after it reaches E±1, the sign of the potential changes again.

Unless A is sufficiently large (around 1.50KVpp), the particle does not ever move past

E±1 and simply moves back to E0 when it becomes attractive. On average, it appears

to overshoot E0 by a small amount, so that if the particle was at E±1, a temporal
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period later it is at E∓1.

Given the dynamics described above for 1.20KVpp ≥ A < 1.50KVpp, it is safe to

assume there is some spatial asymmetry in the setup. Otherwise, the particle would do

one of two things, either randomly hop from antinode to antinode of the electric field

as it changes sign, or enter a propagating trajectory where it consistently overshoots

the antinode it is attracted to before that electrode becomes repulsive. The repetition

of the described process resulted in the particle’s propagation. The localization to E0

implies asymmetry within the experimental set-up. As one might expect, when A is

increased past some critical value between 1.20KVpp and 1.50KVpp, we find that the

particle now hops relatively randomly between three different electrodes.

Multiple Particle Dynamics

We were also able to place multiple glass beads into the one-dimensional EC. In most

cases all of the glass beads developed a positive charge and appeared to interact

though a repulsive coulomb-like interaction. The choice of words “coulomb-like” is

because the beads were clearly repulsive at short distances, but they would only

separate finite distances in the quadrapole trap, indicating the possibility of higher-

order moments in their interactions.

Under most choices of the driving frequency and amplitude, the interactions of

multiple particles would cause them to spread out so that they were separated by at

least several spatial periods of the potential. At these spacings, the interactions of the

particles were not qualitatively noticeable and each particle would appear to undergo

single particle motion. We did observe one particularly interesting case though, where

the interactions played a critical role in the dynamics. What we found was that the

53



3.2. ONE DIMENSIONAL ELECTRIC CURTAIN

particles would pair up at the antinodes of the field while they were attractive, then

when the antinode became repulsive the particle pairs would split. As each particle

fell into the potential valley created by the newly attractive antinode, it would meet

its new pair coming from the other side. This is exactly like the example we used

in the introduction to illustrate possible STP behaviors. This pairing process would

repeat itself so that a chain of particles would oscillate. Every particle would be π

radians out of phase with its neighbors. We show the two different pairings that each

particle experiences in a period of the driving in Fig. 3.7.

Figure 3.7: Five particles at two different points in their oscillations shown in parts a) and
b) respectively. Parts a) and b) are separated in time by half a driving period.
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3.2.3 Conclusions

Our primary results are threefold. Fist, we have shown that by using an electro-

static powder coater it is possible to charge martin dust simulant with consistent

charge-to-mass ratios (See MCMR7 table 3.1). Second, we have shown that using the

charged dust simulant and the method described in 3.1.1, it is possible to determine

statistically significant peaks in the average velocity of the particles in an EC field.

These results are relevant to the dust mitigation applications which use a 2-phase

EC because the peaks correspond to driving frequency that the EC field maximally

increases the kinetic energy of the particles. Third, we have shown that by using a

quadrapole and two electric curtains, it is possible to create a one-dimensional STP

electric potential where the particles experience a novel longitudinal electric field. We

have also shown interesting results of the single and multiple particle dynamics in this

one-dimensional STP potential.
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Chapter 4

Nonlinear Dynamics of Single Par-

ticle in Electric Curtain Field

4.1 Introduction

In this chapter we discuss particles nonlinear motion in an electric field generated by

a 2-phase EC. The 2-phase EC is also called a “standing wave” (52; 23) EC and for

some time it was believed that this type of EC would have poor transport properties

(52; 23). However, recently both experiments (69; 70) and numerical computations

(59) have demonstrated that 2-phase ECs can be very effective at transporting par-

ticles, and in fact may exhibit two very distinct modes of transport under different

conditions. The relative simplicity of the 2-phase EC makes it an attractive candidate

for many of the proposed applications (see chapter 3).

A significant amount of work has been reported on ECs, but the nonlinear dynam-

ics of the particles within an EC field have not been studied in detail from a dynamical

systems point of view. Using simple mathematical models we have discovered a rich
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variety of behaviors of charged particles in a two-phase oscillating EC electric field.

A detailed understanding of the rudimentary particle motions might help us better

interpret the complex phenomenon often observed in real EC experiments.

To simplify the mathematical presentation, we have only considered 1D and 2D

motion of a single charged particle. While this is a very simple system, it is neverthe-

less sufficient to exhibit a interesting dynamical behaviors. Using a similar method

to that outlined by Masuda and Kamimura (71) for 3-phase ECs, an approximate

analytical equation has been derived for the motion of a charged particle in the 2-

phase EC electric field. In general, motion of a single charged particle in the field of

the 2-phase EC is two-dimensional, provided that no initial motion in the direction

along the electrodes is introduced. However, a special case of one-dimensional particle

motion, in which the electric field magnitude is insufficient to lift a particle initially

located on the dielectric surface of the EC, is found to generate interesting particle

behavior.

The equations of motion contain a time-dependent potential quite similar to the

Kapitza pendulum as previously discussed (72; 73; 74). Our derived equations of

motion are solved numerically and the behaviors of the particle motions induced by

the oscillating electric field are examined. We obtain limit cycles which are fixed

points in the appropriate Poincaré sections of the phase space, and bifurcations of

these fixed points that lead to chaotic motions for a range of “interaction amplitude”

values (a dimensionless parameter containing the amplitude of electrode linear charge

density and the charge carried by a particle). Linear stability for very small interaction

amplitude can be analyzed using a special case of the Mathieu equation (75; 28;

76; 25). As we increase the interaction amplitude, we show a variety of interesting
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trajectory types in the 1D case and several predominant trajectories for the 2D cases.

4.2 Methods

4.2.1 Model Equations

Our model uses the so-called centerline charge approximation, in which a set of paral-

lel electrodes in the x, z plane of the Cartesian axes are considered to be line filaments

of infinite length oriented along the z-direction (71).The x-y plane is chosen to be

orthogonal to the electrode axes (z-axis) as shown in fig. 2.3, where the x and y-axes

are parallel and perpendicular to the dielectric surface, respectively. To find the elec-

tric potential and electric field above the plane of the electrodes produced by the set

of equally spaced 2-phase electrodes, we adopt the conformal transformation used by

Masuda and Kamimura (71):

e(−y+ix)2π/λ = u+ iv. (4.1)

This transformation maps the x, y (y > 0) half-plane containing infinite numbers of

periodic electrodes into a unit circle in the u, v complex plane containing just two

electrodes. Therefore, the electric potential can be easily computed in the u, v plane.

The inverse conformal transform is then performed to map the expression back to

x − y coordinates. The detailed derivation is given in Appendix A. Based on the

derivation, the electric potential can be simply expressed as:

Φ(x, y) = −Q4πε0
cosωt ln cosh ky + cos kx

cosh ky − cos kx
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.

Using E = −∇Φ the electric field in the x and y directions is found to be

E ′x = kQ

2πε0
sin (kx′) cos (ωt′) cosh (ky′)

cosh2 (ky′)− cos2 (kx′)
, (4.2)

E ′y = kQ

2πε0
sinh (ky′) cos (ωt′) cos (kx′)

cosh2 (ky′)− cos2 (kx′)
, (4.3)

where Q is the linear charge density amplitude of an electrode, m and q are the

mass and electric charge carried by a particle, respectively, k is the wave number,

and ω is the angular driving frequency of the driving electric fields. It is noted that

we use the primed variables here to save unprimed variables for their dimensionless

counterparts, which are defined below. For the centerline charge approximation to

be valid it is required that the dielectric surface be located a minimal distance above

the electrodes (71). However, if the surface is far from the electrodes, the cosh-term

on the right-hand side of Eq. (4.2) and Eq. (4.3) diminishes as 1/ cosh y′ ∼ e−y
′ and

consequently the electric field magnitude rapidly approaches zero.

The dimensionless time, horizontal and vertical positions are defined by t = ωt′,

x = kx′, and y = ky′. A dimensionless interaction amplitude (A), gravitational ac-

celeration (g) and damping coefficient (β) are, respectively, defined by A = k2qQ
4πε0mω2 ,

g = g′k/ω2, and β = β′/mω, where β′ is the damping coefficient, and g′ is the gravi-

tational acceleration. The dimensionless form of the differential equations governing

the particle motion are:

d2x

dt2
+ β

dx

dt
= A sin x cos t 2 cosh y

cosh2 y − cos2 x
, (4.4)
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d2y

dt2
+ β

dy

dt
= A sinh y cos t 2 cosx

cosh2 y − cos2 x
− g. (4.5)

Letting the dimensionless spacing of the distance between neighboring electrodes be

π, the system is periodic over a distance λ = 2π in x. We choose the dielectric surface

to be at y = 1, i.e. y′ = 1/k = λ/2π, for which the centerline charge approximation

holds.

4.2.2 Distinction of One and Two Dimensional

Regimes

Two distinct regimes are considered: (1) A one-dimensional regime where the particle

is constrained to roll or slide back and forth on the dielectric surface; (2) a two-

dimensional regime where the particle moves in the x-y plane, either being levitated

above the surface or bouncing off of it. Dissipative forces are included in the model

for both regimes. For the 1D regime, dissipative forces may arise both from rolling

resistance between the particle and the surface and from the viscous fluid force (Stokes

drag) between the particle and the surrounding air. Both of these dissipative forces

are proportional to the particle velocity (77). In the 2D case, the particle is assumed

to have elastic collisions with the dielectric surface, so the only dissipation is from

fluid drag force. The transition from motion on the surface (1D) to the 2D regime

occurs when the maximum vertical force imposed on a particle immediately above

an electrode exceeds the gravitational force on the particle. For a charged particle

attached to the dielectric surface, the electric field is evaluated at a value of y′ equal to

the particle centroid position. Letting the gravitational force balance the maximum
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electrostatic force, the maximum value of the interaction amplitude A for which the

particle remains on the surface can be obtained by setting the left-hand side of Eq.

(4.5) to zero, giving

A

g
≤ cosh2y − 1

2 sinh y (4.6)

With the location of the surface at y = 1, the critical value of this ratio for which the

1D approximation applies is obtained as A/g ≤ 0.588. In order to further simplify

this system, we neglect the adhesive van der Waals force. This simple system is

used to examine the nonlinear dynamics for small variations over a range of A with

constant values of β.

4.3 Time Maps

We classify different trajectories by the periodicity of their limit cycles in the full

phase space. The interaction amplitude, damping, and initial conditions determine

the periodicity of the particle trajectory. We compare the temporal length of a limit

cycle to the inverse of the driving frequency of the electric field by using time maps.

Time maps are used to represent the advancement of an orbit in phase space by some

amount of time. In general, a particle’s position and velocity determine its position

in phase space, which can be represented as a vector function r(r0, t), where r0 is the

initial position in the phase space. We choose the time maps to be represented in the

form f(r0, t = 2πn). The time mapping gives a stroboscopic view of the parametric

function r when n is a positive integer (Z+). For n ∈ Z+ the time mapping highlights

the relationship between the period of a trajectory and the driving frequency. We
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define an operator T that maps the system forward in time by 2π, so that the function

f(r0, t = 2πn) may be written as T nr.

The 2D EC has five degrees of freedom x, y, ẋ, ẏ, t. The periodicity of the system

in x and t implores the use of a toroidal phase space. We use this notion of a toroidal

phase space to fashion our Poincaré sections. We defer to the 1D EC in order to

visualize the toroidal phase space (fig. 4.1). For the 2D EC we cannot graphically

depict the full phase space but we use the same periodic geometries to fashion Poincaré

sections. A Poincaré section includes any point where a continuous trajectory or flow

transversely intersects a subspace of the space the trajectory occupies(37). Strobing a

periodically driven system will produce Poincaré sections of d−1 dimension, where d

is the dimension of the full phase space. This is equivalent to observing time maps T n

acting on a point in phase space. It becomes apparent that this method of strobing

or time mapping produces Poincaré sections when we look at a particle’s trajectory

as a function of time t passing through a x, ẋ phase plane at a particular time t.

The particles path is always transverse to the x, ẋ plane and therefore a point of

intersection of the trajectory with this plane is a convenient sub space that satisfies

the criterion necessary to be a Poincaré section. It is also true that time maps generate

Poincaré sections for the 2D EC, but in this case the mappings represent intersections

of a trajectory with a non-planar subspace. This is still a Poincaré section because

the flow through the subspace is guarantied to be transverse to it due to the positive

rate of change of time.

By filling a plane in phase space with an array of initial conditions, a large number

of possible trajectories can be obtained for given values of β and A. For instance,

in 1D simulations initial conditions are prescribed in the x − ẋ plane at t = 0. For

62



4.3. TIME MAPS

Figure 4.1: Due to the periodicity of the EC in the x-direction, and the periodic fluctuations
of the electric field with time, it is useful to use toroidal geometry to describe the 1D EC
phase space. We define the t-axis as the line at the major radius when the minor radius is
zero. The position and velocity at a given time may then be represented as a point in the
plane orthogonal to the time axis described by an angle (x) and radius (ẋ). The origin of
this plane is located at the intersection with the t-axis.

2D simulations, initial conditions are prescribed on a planar section of the four-

dimensional phase space at t = 0. Different initial planes are used to explore different

regions of the phase space. We define a region of phase space filled with an array

of initial conditions as a block. A group of positions in the phase space at a given

time is represented by a 2 × N dimensional matrix B, where the first index (2) is

the dimensionality of the block and the second index (N) is the number of different

initial conditions in the block. The advancement of these initial conditions in phase

space by intervals of the driving period can be represented with time maps by T nB.

The different attractors in the system can be found by taking T nB as n → ∞. As

discussed above, a series of time maps can be used to generate a Poincaré sections of

B in the phase space.
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4.4 Results

4.4.1 One Dimensional Regime

For small A and finite β, a particle on the dielectric surface will drift toward the

nearest electrodes. For an electrode located at x = 0, an analytical solution can be

obtained for particles at small distances |x| from the electrode. Using the leading-

order Taylor series approximations sin x ≈ x and cosx ≈ 1, the multiplying factor in

Eq. (4.4) can be approximated as

2 cosh y
cosh2 y − cos2 x

≈ 2 cosh y
cosh2 y − 1

≡ C, (4.7)

where C is a constant for y = 1. The equations of motion then become

d2x

dt2
= ACx cos t− βdx

dt
. (4.8)

Under the transformation x(t) = e(−βt/2)u(t) and t = 2θ it takes the form (25)

d2u

dθ2 = u(a− 2q cos 2θ), (4.9)

where q = AC/8 and a = −β2. Equation (4.9) is the canonical form of the Mathieu

equation. There are infinite sets of alternating stable (periodic) and unstable solutions

for variation of the parameters a, q (78). Here we are only interested in the bound

solutions because unstable trajectories force the consideration of larger |x| for which

this approximation breaks down. The function u(t) may be expressed as a linear

combination of the cosine and sine type elliptic functions. It is well known that the
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stability of the elliptic functions depends on the parameters a and q. The stability

boundary may be expressed as a function q(a). Gunderson et al. (79) derive a

condition for asymptotic stability based the relationship between the two parameters.

The inequality found by Gunderson et al. that needs to be satisfied for asymptotic

stability in the EC takes the form A < 2β2/C. This relationship only holds for

small a and q, but so does the analytical treatment of the EC. We refer the reader

to McLachlan(25) for a thorough description of elliptic functions and their different

representations.

For larger values of A, particles are not necessarily confined above the electrodes.

In order to analyze this system and highlight the dimensionality of the full phase

space, it is convenient to express Eq. (4.4), with y = 1 denoting the dielectric surface,

as a set of first-order autonomous differential equations.

ẋ1 = x2

ẋ2 = A sin x1 cosx3
2 cosh 1

cosh2 1− cos2 x1
− βx2

ẋ3 = 1 (4.10)

The following transformations used in Eq. 4.4 give us Eq. 4.10: x→ x1, ẋ→ x2, and

t → x3. We know from the previous discussion of time maps that a period-p fixed

point in the Poincaré sections, located at rfp in the phase plane x1 x2 is defined by

T pnrfp = rfp, where n ∈ Z+. A period-p orbit (i.e limit cycle) is one which repeats

itself after p driving cycles. All Poincaré sections obtained by sequential time maps

have two fixed points within the toroidal phase space (see fig. 4.1) located at x1 = 0
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and x1 = π. These fixed points are representative of limit cycles of period-1 in the

phase space. These two limit cycles are the only invariant sets in the full parameter

and phase space which exist for all values of A and β. For definiteness, we define

rfp1 to be the x1 = π, x2 = 0 fixed point in the PoincarĂŠ sections. To distinguish

between the fixed point in the Poincaré section and the corresponding limit cycle in

the phase space, we define the full invariant set composing the limit cycle as {rfp1},

where the curly brackets denote a set.

In general, the stability of a fixed point in the Poincaré section can be analyzed

using Floquet theory (24), details of which are provided in Appendix B. By integrat-

ing the linearized equations of motion about a periodic orbit with periodicity p, a

solution for small perturbations of the fixed-point solution lying on the closed orbit

is obtained. A similar approach is illustrated in (72) for Floquet theory applied to

the parametrically driven pendulum which is mathematically similar to the 1D EC.

The eigenvalues (Floquet stability multipliers) λ1, λ2 are generally complex, where

a fixed point in the Poincaré section is unstable when the magnitude of λ1 or λ2 is

greater than unity. In cases where there is no analytical expression for a fixed point

as a function of A, a polynomial curve fit is used to estimate the fixed point as a

function of A.

We initially focus attention on the β = 0.1 case because this value is typical of a

variety of realistic EC configurations. A bifurcation diagram for this case is shown

in fig. 4.2. The points corresponding to each value of A in this bifurcation diagram

are obtained by plotting the positions of a block of 1830 different initial conditions

covering the region 0 ≤ x1 < 2π and −1.5 ≤ x2 ≤ 1.5, plotted after 637 time maps.

This process is repeated for different A values ranging from 0 to 0.4, in steps of
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0.0008. In order to indicate the number of initial conditions corresponding to each

point in this diagram, a hexagonal histogram was formed in which the x1-position is

discretized into 400 bins. The color bar in fig. 4.2 represents the logarithm of the

number of points in the corresponding bin.

I

II

III

IV

V

VI

VII

Figure 4.2: A bifurcation diagram made by taking a two dimensional histogram of the final
Poincaré section of 1830 different initial conditions for 500 different values of A. β is set
to 0.1. Roman numerals denote the individual features focused on in this work; Region I:
With A being close to zero transients take a long time to die out. Region II: A stable fixed
point above the electrode representing a sink where particles are stationary. Region III:
A period-2 orbit oscillating about the electrode. Region IV: Stable propagating trajectories
with comparatively high speeds. Region V: Four fixed points in the digram representing
two period-2 trajectories born out of a cyclic fold bifurcation. Region VI: Period doubling
leads to chaotic motion. Region VII: A period-4 fixed point in the Poincaré sections that
discontinuously appears and disappears over variations of A.

For very small values of A, denoted by region I in fig. 4.2, the x1 position of

the points in this figure are widely dispersed. This scattering occurs because the

transients are very slow to die out for small values of A, and therefore the block

of initial conditions has not yet reached its final state. As we increase A, a single

line is observed in the fig. 4.2, denoted by region II, representing the rfp1 attractor.

For these values of A, this attractor is an asymptotically stable fixed point in the
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Poincaré sections, so that initial conditions in a small neighborhood about rfp1 map

to rfp1. In regimes I and II, the direction of the time-averaged force on the particle

points to locations of constant electrostatic potential. This condition is similar to the

well-known Bjerknes force in acoustics (80), wherein the acoustic radiation force on a

particle points to either the nodes or antinodes of a standing acoustic field. The fixed

point rfp1 remains asymptotically stable for values of A in the interval 0 < A < Ac1,

where Ac1 ≡ 0.20761± .00001.

At A = Ac1, a bifurcation of the rfp1 fixed point is observed, beyond which the

single line splits into two period-2 curves, which are symmetric about the x1 = π

line as indicated in region III in fig. 4.2. The real and imaginary parts of the two

Floquet stability multipliers, λ1 and λ2, for rfp1 including values of A close to Ac1

are shown in fig. 4.3. The discontinuity in fig. 4.3, where the imaginary parts go

to zero, represents the transition of the fixed point from an attracting focus to an

attracting node. The point at which λ2 decreases below −1 in fig. 4.3 corresponds to

the bifurcation, where rfp1 becomes a period-1 saddle. Beyond this bifurcation, the

fixed point becomes linearly unstable in what is called a supercritical flip bifurcation.

The instability of the period-1 saddle creates a stable limit cycle of period-2 about

rfp1. It may be surprising that the first oscillations are not period-1. This is because

period-1 oscillations are not a harmonic of r(t) (73). There are, however, two period-

1 fixed points apparent in fig. 4.2 seen for A > 0.13 (one on either side of x = π)

denoted by region IV which represent propagating trajectories. These propagating

trajectories travel once through the toroidal phase space per driving cycle making

them period-1 fixed points in fig. 4.2 but they are not periodic oscillations because

they are constantly traveling in one direction.
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Figure 4.3: Floquet stability multipliers of the (x = π, ẋ = 0) fixed point for a range of A
in which the first bifurcation occurs. The discontinuity is the transition from an attracting
focus to an attracting node. The supercritical flip bifurcation happens as RE[λ2] becomes
smaller that −1.

We call the uppermost region III curve rfp2. rfp2 is an attracting focus for values

of A ≤ 0.234. Just as in the first bifurcation, the attractor rfp2 transitions to an

attracting node shortly preceding the second bifurcation, which occurs at A = Ac2,

where Ac2 ≡ 0.26077± 0.00001. A close-up view showing this bifurcation is given in

fig. 4.2b. This bifurcation is of the type known as a cyclic fold bifurcation, where

the fixed point becomes unstable and the symmetry of the trajectory corresponding

to the fixed point is broken at the bifurcation point. As A is increased through Ac2

two new possible trajectories are spontaneously created denoted by region V in fig.

4.2. The initial conditions determine which of the new possible trajectories a particle

will settle into. As the particle trajectory is known to be highly sensitive to small

changes in initial condition, this type of bifurcation is known to produce hysteresis

for processes in which A is varied about Ac2 (36). An alternative viewpoint of this

bifurcation sequence is given by plotting projections along the x3 (t) axis of the phase
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space onto the x1, x2 plane for some particular values of A in fig. 4.4a. This figure

shows the fixed point rfp1 bifurcating into a sequence of limit cycles, denoted in the

Poincaré section by rfp2(A), as A is increased past A = Ac1. These curves are point

symmetric about (x1 = π, x2 = 0) in the interval Ac1 < A < Ac2. For A > Ac2, two

families of trajectories are observed, one of which shifts in the positive x-direction

and the other shifts in the negative x-direction, breaking the point symmetry. We

only show one of the two possible trajectories for A > Ac2 in figure 4.4a for clarity.

Sample trajectories for each of these intervals are plotted on the x1, x2 plane in fig.

4.4b to highlight the symmetry breaking. The first bifurcation at A = Ac0 looks

geometrically similar to a Hopf-bifurcation in fig. 4.4a, but this is an artifact of the

projection process along x3, where in fact the {rfp1} set that gives rise to the rfp1

fixed point in fig. 4.4a is a limit cycle rather than an equilibrium point in time.

Table 4.1: Period Doubling Bifurcations

Acn Bifurcation A Period of New Limit Cycle
Ac1 Supercritical Flip 0.20761± 0.00001 2
Ac2 Cyclic Fold 0.26077± 0.00001 2
Ac3 Supercritical Flip 0.26798± 0.00001 4
Ac4 Supercritical Flip 0.26903± 0.00001 8
Ac5 Supercritical Flip 0.26928± 0.00001 16
Ac6 Supercritical Flip 0.269336± 0.000002 32

Following this second bifurcation (region V), a series of period-doubling bifur-

cations occurs, with the first of these bifurcations happening at A = Ac3, where

Ac3 ≡ 0.26798 ± 0.00001. Table 5.1 shows the values of A at which each period-

doubling bifurcation occurs, the period of the limit cycle after the bifurcation and the

type of bifurcation. It can be seen in fig. 4.2 that the period doubling cascade initial

occurs in a very small range of x; in fact, it occurs in a very small volume of the full
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phase space. The density of the higher period trajectories, even after the period-32

bifurcation, make if extremely difficult to distinguish periodicities. Using Ac3, Ac4,

and Ac5 we calculate the Feigenbaum constant δ to be 4.2000. Using Ac4, Ac5, and Ac6

we calculate the Feigenbaum constant to be 4.4643. This progression looks as though

it might lead to the universal value of δ ≈ 4.6692 (81). The Feigenbaum constant δ

s be evaluated with

δ = lim
n→∞

Acn−1 − Acn−2

Acn − Acn−1
. (4.11)

Acn are the values of A for which a period-doubling bifurcation occurs, Acn being

the nth bifurcation. As A is increased, the period-doubling cascade leads to a chaotic

regime, identified by the scattered points denoted by region VI in fig. 4.2. This

chaotic state exhibits a strange attractor, which consists of a region in phase space

with fractal geometry to which particle trajectories approach as t→∞. A Poincaré

section of the strange attractor for this system is plotted in fig. 4.5. As shown in

fig. 4.6f, this chaotic state exists simultaneously with the two stable period-1 limit

cycles (region IV), where the latter have substantial higher velocity magnitude than

the points in the chaotic state. The basins of attraction for the strange attractor and

the stable limit cycles are plotted in fig. 4.6 for A = 0.3, along with plots showing

the evolution of these basins in time as they approach their respective attractors. We

have found the largest Lyapunov exponent for this chaotic attractor to be 0.165 ±

0.001. In general The largest positive Lyapunov exponent is a way of quantifying

the strength of chaos. More specifically it is the measure of the rate with which

two infinitesimally close initial conditions in phase space will separate. We have

calculated the largest Lyapunov exponent by comparing a fiducial trajectory to a
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neighbor placed infinitesimally close. After a small period of time we re-orient the

perturbed trajectory along the vector for which there was maximal separation. By

continuing this process for many iterations and throwing away the transients we find

the maximum separation of the perturbed trajectory from the fiducial trajectory.

With these data it is straight forward to calculate the Lyapunov exponent(36).

The last feature we focus on in fig. 4.2 are the stable limit cycles that appear and

disappear discontinuously for small variations in A. We have chosen one of these limit

cycles (denote as region VII in fig. 4.2a) to analysis the stability in order determine

the nature of its creation and disappearance. In fig. 4.2 four fixed points appear as A

is increased through 0.20182± 0.00001. These fixed points correspond to a period-4

limit cycle shown in fig. 4.7 for A = 0.2086 projected on the x1, x2 plane. This limit

cycle is point-symmetric about (x1 = π, x2 = 0) but as A is increased further the

limit cycle breaks its point symmetry in a cyclic fold bifurcation before undergoing a

period doubling cascade.

A comparative study was performed for this system for different values of the

damping coefficient β. Bifurcation plots showing particle positions in the Poincaré

sections versus the interaction amplitude A are given in fig. 4.8 for β = 0.01, 0.05,

and 0.2, which are indicative of systems with very little damping, moderate damping

and heavy damping, respectively. All of these plots exhibit the region IV stable prop-

agating period-1 limit cycles and initial stability of the rfp1 fixed point at x1 = π.

In the cases of β = 0.05 and 0.2, the rfp1 attractor exhibits a period-doubling bifur-

cation, similar to that discussed above for the β = 0.1 case, followed by a sequence

of bifurcations to a chaotic state. The β = 0.01 case, by contrast, does not appear

to have a clear bifurcation of the rfp1 attractor. The next most evident difference
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between the bifurcation diagrams is the number of trajectories that discontinuously

appear and disappear as A is increased. For β = 0.2 we see fewer of these discon-

nected fixed points, one set being very similar to the fixed points associated with

the limit cycles shown in fig. 4.7. Clearly the bifurcation sequence to the chaotic

attractor, the chaotic state itself, and the higher velocity propagating trajectories are

the dominate features in the larger β phase space.

We briefly continue our investigation past the first chaotic regime. We find that

as we continue to increase A there are alternating arrangements of chaotic and non-

chaotic solutions. In fig. 4.9a we show the next stable regime and its transition to

chaos in a bifurcation diagram. In fig. 4.9b we show the chaotic attractor for A = 1.7

and the largest Lyapunov exponent for this value of the interaction amplitude is found

to be 0.187± .003.

4.4.2 Two Dimensional Regime

In the 2D EC the additional force of gravity in the equations of motion make the

system codimension 3. For the rest of this discussion we set g = 0.1 because for

certain values of A and β it is found to produce results on a convenient dimensionless

timescale that are similar to those discussed in the literature (69; 82; 83; 62; 84; 70;

23). It is worth clarifying this choice of g because it may seem that g = 0.1 and our

choice of A values in the 1D EC section violate the inequality in Eq. (4.6). This

issue is rectified by choosing the appropriate k and ω for the 1D EC where the ratio

k/ω is quadratic in A and linear in g making it possible to balance A/g so that Eq.

(4.6) is satisfied. We focus primarily on particle motion in the x, y plane for ease of

comparison to previous and future experimental work

73



4.4. RESULTS

To begin the study of the two dimensional regime we fix the damping at β = 0.1

and then sweep through the interaction amplitude from A = 0.1 to A = 25. We use

the same methods in making the bifurcation diagrams as those used in making the

1D EC bifurcation diagrams. Even when no bifurcating fixed points are found this

methodology is an informative way to explore the 2D EC dynamics. In fig. 4.10a

the final Poincaré sections used to make the diagram were projected onto the x axis

and in fig. 4.10b the Poincaré sections were projected onto the y axis. In fig. 4.10a

there are two red lines trisecting the diagram in the horizontal direction as well as

a background of scattered points. The two red lines are asymptotically stable fixed

points (attractors) in the Poincaré sections that exist for all A above A ≈ 0.3. These

fixed points in the Poincaré sections are located directly in-between the electrodes. In

fig. 4.10b there is only one red line with the background of scattered points implying

both fixed points are located at the same y for a given A. In fig. 4.10a it is also clear

that the location of these fixed points increases in y as A is increased. The two fixed

points are period-2 limit cycles. They do not contact the surface and they oscillate in

both the x and y directions in an attempt to follow the curved electric field between

two electrodes (field lines can be seen in fig. 2.3). Gravity provides a centripetal force

for the curved oscillations. The particles oscillation height depends on the force of

gravity, the time average force in y, and the inertial force from the particle following

a curved path.

In fig. 4.10b the background of scattered points are seen to be restricted to a

domain of y which depends on A. The scattered points are transient motion that takes

a long time to completely die out for some initial conditions. For these parameters, as

t→∞ all initial conditions are in the basin of attraction for one of the two attractors.
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For β = 0.05 a strange attractor exists, shown for A = 9.0 projected onto the

x and y phase planes in fig. 4.11 respectively. If a stable limit cycle can not exist

because β is too small or A is too large then the only type of motion found is the

strange attractor in fig. 4.11 or a qualitatively similar strange attractor. The strange

attractor is robust for variations in A as it only grows (shrinks) in the y, ẏ directions

when A is increased (decreased). The largest Lyapunov exponent for A = 9.0 is

0.134± 0.003.

Even though independent variations of the damping are much more difficult to

achieve experimentally we find that these variations produce slightly more interesting

bifurcation diagrams. In fig. 4.12 we show x and y “bifurcation” diagrams for A = 9.0.

In fig. 4.12a,b we show results for β < 2.0 and in fig. 4.12c,d we show results for

0.25 < β < 2.5. Figure 4.12a starts with a background of scattered points coexisting

with two fixed points between the electrodes which is maintained for 0.0 < β < 0.15.

For β > 0.9 the chaotic trajectory (fig. 4.11) drops out and only the stable fixed

points exist until β ≈ 0.9. For 0.9 < β < 1.1 the fixed points quickly loose their

stability to a brief period of what misleadingly appears as another chaotic regime

(explanation below). For β > 1.1 two new stable fixed points are seen located in x at

the position of the electrodes. In fig. 4.12b we only show the bifurcation diagram for

0.2 < β < 2.0 in order to show the most important features. In this diagram a red

line, representing the two initial stable fixed points at the same value of y, becomes

unstable at β ≈ 0.9. We then see more scattered points which are more localized in y

than in x. Then two new fixed points appear out of the unstable region for β > 1.1.

The two fixed points in y after β ≈ 1.1 show that there are now four fixed points in

the x, y plane. The two new fixed points located over each electrode represent a limit
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cycle that oscillates almost entirely in y with a small x component oscillation as well.

These are stable limit cycles of particles attesting to follow the field lines near the

electrodes. The most notable feature of fig. 4.12b, however, is the apparent reverse

bifurcation cascade beginning at β = .29 which we discuss in more detail at the end

of this section.

The fixed points seen for β < 0.9 in fig. 4.12 are the Poincaré sections of the same

type of stable limit cycle discussed for fig. 4.10. The instabilities arise at β = 0.9

because the particle can no longer maintain large oscillations that following the sharp

curvature of the field directly between the electrodes. As the x component of their

oscillations begins to damp out the time average force in x, which points towards

the direction of constant potential (directly over the electrodes) begins to weaken the

stability of the fixed points between the electrodes. The scattered points we see in

fig. 4.12a for β = 1.0 are the result of the competing stabilities of the fixed points

between the electrodes and the fixed points above the electrodes. This competition

creates a regime where particles will oscillate about any point in x but only about

specific values of y in an attempt to follow the local field oscillation. These fixed

points in the Poincaré sections may be described as being asymptoticly stable in y

and Lyapunov stable in x. Meaning that a particle oscillating at a some x will continue

to oscillate about that location unless there is a small perturbation in x after which

it will oscillate about its new perturbed location. By Contrast small perturbations

in y of an oscillations will push the particle out of equilibrium and it will experience

a restoring force back to its original position. The resulting attractor appears as a

line in the Poincaré sections. As we continue to increase β past 1.0 the time average

force in x begins to dominate particle behavior. The fixed points that become most
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clear for β > 1.1 represents stable oscillations in y above an electrode. The particles

settle at a height above the surface for which the time averaged force in y and g are

balanced.

Figure 4.12c shows the only actual bifurcation sequence found for the 2D EC,

but from fig. 4.12d we see that this is actually behavior for particles constrained to

1D motion in y directly above electrodes. For this range of β the time average force

in x is not prevalent enough to prevent stable oscillations between the electrodes, as

those are apparent in fig. 4.12c,d as well, but it is substantial enough to constrain the

oscillations of particles near electrodes to motion directly above them. It is interesting

to note the existence of such behavior in this model. We do not investigate it in any

detail because observation of any such dynamical behavior in a stable reproducible

way would be extremely difficult experimentally and has never been discussed in the

literature.

4.5 Conclusion

We have studied the dynamics of a single particle in a 2-phase EC. We have separately

considered the case of particle motion constrained to the surface of an EC for small

interaction amplitude (1D EC) and the case of particle motion above the surface when

the interaction amplitude is sufficiently large to lift the particle off of the surface (2D

EC). We find a wide variety of possible stable limit cycles with different periodicities

in the 1D EC and show the bifurcations of fixed points in the Poincaré sections

for variations in A. For limit cycles in the 1D EC we calculate Floquet stability

multipliers in order to analyze the transitions found in the bifurcation diagrams. We
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show that in the 1D system it is possible to have different trajectories coexisting

for the same values of A and β. In particular we find a chaotic trajectory that

coexists with two asymptoticly stable propagating trajectories having ±ẋ velocities

respectively. We also find that in the 1D EC a transition of a limit cycle in or

out of stability can happen discontinuously over small variations in A. In general the

number of these discontinuous trajectories is greater for smaller values of β. We find a

very different picture in the 2D EC. Starting with the well known stable oscillations

between two electrodes(23; 70; 82; 69; 59) we show how the height of this limit

cycle depends on the interaction amplitude. In an interesting transition occurring for

increasing values of β, the limit cycles looses its asymptotic stability in x and a line

attractor in the Poincaré sections briefly describe particle behavior. Further increase

of β leads to the asymptotic stability of 1D limit cycles in y located directly above

the electrodes. In both the 2D and the 1D models, we find chaotic motion of particles

for particular parameter values. However, the transition from stable limit cycles to

chaos is fundamentally different in the two models. In the 1D EC a chaotic trajectory

comes out of a period doubling cascade. In the 2D EC, the surface interferes with

what would otherwise be a stable limit cycle and the result is chaotic motion.

By showing the general structure of particle dynamics for various values of the

dimensionless parameters A and β, we develop a better understanding of how to in-

duce and avoid certain types of particle behavior. We believe that the sensitivity of

limit cycle periodicity on the interaction amplitude may be useful in particle sort-

ing/separation applications. Particles with different charge-to-mass-ratios will fall

into different regimes of the parameter space. Particles with charge-to-mass-ratios

that place them in a regime of non-propagating stable motion (in either the 1D or
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2D EC) will be trapped by the EC. For example, a particle in the 1D EC could be

trapped in the β = 0.1 and 0.0 < A < 0.26 regime. The EC may be configured so

that particles of a slightly different charge-to-mass-ratio exhibit chaotic behavior by

falling into the β = .1, 0.27 < A < 0.33 regime resulting in slow mitigation over time.

The 2-phase EC is an attractive candidate for many particle manipulation and

control applications, especially for dust and particle mitigation(23). We have shown

that there exists two dominate regimes of particle behavior in the 2D EC; one of which

is stable oscillations, the other is chaotic. Therefore for EC mitigation applications

it is necessary to understand the role of the surface as it is the primary instigator of

non-stable particle trajectories. Mitigation efficiencies could be improved by an EC

design in which most of the particles fall into chaotic motion. This can be done by

tuning the EC parameters so that charge-to-mass-ratios of interest will exist in an

area of the parameter space for which no stable motion is possible. For many real

applications, we certainly would face a system of multiple particles. The analysis

provided in this work is useful for a system of dilute particle density, for which the

separation distance between particles is large enough that each particle’s motion can

be considered independent. While these results cannot be directly carried over to

the case of more concentrated particle flows, they nevertheless provide and important

step in understanding the dynamics of the 2-phase EC.
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(a)

1

2

Figure 4.4: (a) projections of the full phase space onto the x1, x2 axes for a range of A that
includes the first two bifurcations. The first being a supercritical flip bifurcation and the
second being a cyclic fold bifurcation. (b) Solid line: Trajectory after supercritical flip but
before cyclic fold. Dashed and doted lines: The two possible trajectories after cyclic fold.
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Figure 4.5: A Poincaré section of the strange attractor found when A = 1.3. The figure
was made by letting a trajectory approach the attractor for a long time and then plotting
successive Poincaré sections when it was assumed to be close if not in the attractor

Figure 4.6: (a) Block B of initial conditions colored red if they are in the basin of attraction
of the strange attractor and blue if they are in the basin of the coexisting fixed points. (b)
B after time map T 1. (c) T 2B. (d) T 3B. (e) T 4B. (f) T 300B.

81



4.5. CONCLUSION

(a)

Figure 4.7: (a) A period-4 trajectory that creates the initial region VII (4.2) fixed points.
(b) The two possible period-4 trajectories after a cyclic fold bifurcation distinguished by the
dashed and doted lines. (c) After the doted line in (b) undergoes a supercritical flip and its
period doubles. (d) The result of more period doubling bifurcations.
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(a) (b)

(c) (d)

Figure 4.8: Bifurcation diagrams computed using the same methods as in fig. 4.2. (a)
β = 0.01. (b) β = 0.05. (c) β = 0.1. (d) β = 0.5.
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1

2
(a)

(b)

Figure 4.9: (a) bifurcation diagram for the second range of stable motion as well as a
transition to a second chaotic regime. (b) The chaotic attractor found for A = 1.7.
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(a)

(b)
A

A

Figure 4.10: Bifurcation diagram for β = 0.1 made with same methods as 4.2 with projec-
tions of the final Poincaré section onto the (a) x axis and (b) the y axis.
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(a)

(b)

Figure 4.11: Poincaré section of the chaotic attractor found in the 2D EC phase space
for A = 9.0 and β = 0.05 plotted onto the (a) x, ẋ plane and (b) y, ẏ plane where we
have mapped Poincaré sections after odd numbered reflections from the surface to below the
surface in order to see the structure of the strange attractor more clearly. Made with same
method as 4.5.
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(a) (b)

(c) (d)

Figure 4.12: Bifurcation diagram for variation in β with A = 9.0. Final Poincaré sections
projected on to (a) x axis 0.0 < β < 1.8, (b) y axis 0.2 < β < 1.8. In (c) (projections onto
x axis) and (d) (projections onto y axis) we show bifurcation diagrams for 0.25 < β < 5 to
highlight the reverse bifurcation sequence.
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Chapter 5

Dynamics of Multiple Particles with

long-range interactions in a STP

5.1 Introduction

The interesting behavior of the Kapita pendulum, the stable inverted position, has

enticed several researchers to study the nonlinear case both experimentally (85; 86;

87) and numerically (88; 89; 72; 90; 91; 92; 86). For systems composed of particles

in a STP potential, only a small number of publications have examined the nonlin-

ear multiple particle dynamics accounting for the multi-particle interactions. Some

examples of papers treating this subject include a study of the motion of hydropho-

bic/hydrophilic particles on the surface of Faraday waves (4; 5), multiple charged

particles in an STP potential generated by an electric curtain (83; 93; 94), and mul-

tiple particles in a periodically forced straining flow (95). These previous studies

have considered very large numbers of particles and they have focused on the overall

particle motion. In the current work, we instead examine the dynamics of a relatively
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small number of particles in a STP potential using a dynamical systems point of view.

Specifically, we seek to relate the nonlinear systems dynamics with multiple particles

to the bifurcations and stability of single particles.

5.2 Methods

The current computational study examines a one-dimensional (1D) system with mul-

tiple particles interacting through a repulsive electrostatic 1/r potential in an external

STP potential field. The STP potential is

Φ = −A cosx cos t, (5.1)

which produces equations of motion analogous to the parametrically driven pendulum

in the horizontal plane. The coefficient A is the potential amplitude, and the distance

coordinate x and time coordinate t are non-dimensionalized using the wavenumber k

and the STP driving frequency ω, respectively.

The driving force (FΦ = −∇Φ) has the form of a standing wave with oscillation

amplitude A. The dimensionless wavelength λ and the oscillation period T are both

equal to 2π. The system is assumed to be periodic over nλ, where n is an integer,

so we can define the concentration σ as N/n where N is the number of particles

in the simulation. For simplicity, all particles are assumed to carry the same charge

and mass, where the non-dimensionalization is performed such that the dimensionless

mass is equal to unity. Damping is proportional to particle velocity with a dimen-

sionless damping coefficient β. In the current work, we focus on the effect of the

parameter A, and therefore maintain constant values of the other dimensionless pa-
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rameters - the damping parameter and the dimensionless particle charge. These latter

two parameters are set equal to β = 0.6 and q = 1 throughout this chapter. These

values for β and q are chosen because they are realistic for systems similar to those

discussed in (83; 93; 94), after being dimensionalized.

The force on a particle located at xi imposed by a particle located at xj, denoted

by Fij, is calculated with periodic boundary conditions. To address the forces imposed

by long range interactions, we consider an infinite sequence of image systems using

Ewald summation method (96), giving

Fij = q2rij
‖rij‖3 + q2

∞∑
ν=0

1
(2πν − rij)2 −

1
(2πν + rij)2 , (5.2)

where rij = xi − xj. The sum in (5.2) is convergent and may be written as a

polygamma function ψm(z) with series expansion

ψ(m)(z) = (−1)m+1m!
∞∑
ν=0

1
(z + ν)m+1 . (5.3)

Using (5.3), we can express Fij as

Fij = q2rij
‖rij‖3 −

(
q2

nλ

)2

×
(
ψ(1)(1 + rij/λ)− ψ(1)(1− rij/λ)

) (5.4)

The equation of motion for the ith particle is given by

ẍi = −βẋi + FΦ +
N∑
j 6=i

Fij (5.5)
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where the second term on the RHS is due to the imposed STP potential field and

the third term on the RHS is the particle interactions. An example of the system

containing seven particles may be found in Fig. 5.1 (multimedia view).

Figure 5.1: Example of the system with N = 7 and A = 2.758, depicted as particles on the
surface of a standing wave (multimedia view).

5.2.1 The Phase Space

For N particles in an autonomous system, the degrees of freedom (or dimension)

of the phase space is 2dN , where d is the dimension of the physical system. In

STP problems, there is an explicit time dependence in the potential and therefore

the system is non-autonomous. Non-autonomous systems may be transformed into

autonomous form by introducing an extra degree of freedom, which in a first-order

system is given by x3 = t. Though this seems to be a trivial representation of time,

this autonomous formulation is necessary when distinguishing types of bifurcations.

This augmented system thus has 2dN + 1 degrees of freedom, which constitutes the

“full phase space”.

91



5.2. METHODS

5.2.2 Poincaré Sections

The standard choice for making Poincaré sections in driven systems is a time map

taken at the system driving period. Time maps are stroboscopic views of a trajectory

expressed as x(t = 2πn) when n is a positive integer. A Poincaré section includes

any point where a continuous trajectory transversely intersects a subspace of the full

phase space (37). Time maps, as defined above, will produce Poincaré sections with

dimension one less than the dimension of the full phase space. In a time map, the

path of a particle is always transverse to the x − ẋ plane, and therefore a point of

intersection of the trajectory with this plane is a convenient sub-space that satisfies

the criterion necessary to be a Poincaré section.

5.2.3 Kinetic Energy Fluctuations

It is well known that as a system approaches a bifurcation point, it may take longer

for transients of the relevant quantity to die out or for the system to recover from

an external perturbation (97). This behavior is known as the critical slowing down

phenomena. Most real systems are subject to some natural perturbations, and these

perturbations can become particularly apparent near the bifurcation points. Mea-

suring the increase of the variance in a physical quantity can therefore be used as a

method to predict the presence of a bifurcation point (97). The model system con-

sidered here has no external perturbations, aside from computer round-off error. In

the limit t → ∞, the damped system would be expected to settle into an attractor,

but the finite time of real simulations ensures the presence of small fluctuations in

“residual” transients. In other words, multiple particle systems have a “large” num-
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ber of degrees of freedom, therefore some small trace of the initial transient behavior

(residual transients) will most likely be detectable. The amount of residual transients

may be found in the kinetic energy fluctuations. It is known that the kinetic energy

fluctuations may contain some information about the “effective number of degrees of

freedom” (98). The more degrees of freedom, the more residual transients will be

present. This correspondence between the effective degrees of freedom and the ki-

netic energy fluctuations is what makes the kinetic energy fluctuations an interesting

quantity to examine.

The square of the deviation of the particle kinetic energy is given by (∆KE)2 ≡

〈KE2〉 − 〈KE〉2,

(∆KE)2 = 1
4

N∑
i,j

(〈v2
i v

2
j 〉 − 〈v2

i 〉〈v2
j 〉), (5.6)

and vi, vj denote the ith and jth particle velocities, respectively. The average is cal-

culated as 〈KE〉2 = 1
4
∑N
i,j〈v2

i 〉〈v2
j 〉. The normalized squared deviation of the kinetic

energy is given by

δKE ≡
∆KE
〈KE〉2

.

5.3 Results

5.3.1 Single Particle Overview

The dynamics of a single particle immersed in the one-dimensional STP potential

Φ, given by (1), are similar to the dynamics of the parametric pendulum. In this
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chapter, we only discuss dynamics for the first bifurcation sequence leading to the

chaotic regime, even though there are many consecutive regimes of stable limit cycles

bifurcating into chaotic trajectories. In Fig. 5.2, the first bifurcation sequence is

shown for an ensemble of initial conditions. Table 5.1 lists the type of bifurcations,

the critical values of A at which each bifurcation occurs, and the period of the limit

cycle following each bifurcation. The table is truncated after the 6th bifurcation due to

numerical resolution limitations for distinguishing bifurcation onset in a small volume

of the phase space. For 0 < A < Ac1, a particle will move toward and equilibrate at

the antinodes of the potential Φ(x, t) (i.e., the maxima of cosx). As A is increased, the

fixed points in the Poincaré section bifurcate in a supercritical flip bifurcation leading

to a period-2 limit cycle for Ac2 < A < Ac3. This transition is not a Hopf bifurcation

because the explicit time dependence in the equations of motion must be considered

as a degree of freedom to the phase space. Consequently, what might appear as a

fixed point in the x − ẋ phase space in a bifurcation diagram is actually a period-1

trajectory in the full phase space. We prove this using Floquet theory, by numerically

calculating the stability multipliers. Both of the two non-trivial stability multipliers

have no imaginary component close to the bifurcation point. At the bifurcation, one

stability multiplier becomes smaller than -1 while the other remains close to zero,

indicating a period-doubling supercritical flip bifurcation. This stability multiplier

passing through -1 is shown in Fig. 5.3a, where it is denoted with a Roman numeral

I. The values of A for which the first six bifurcations occur, shown in Table 5.1,

indicate a period-doubling cascade route to chaos. The computed values yield a

Feigenbaum constant of 4.00 with an upper error bound of 6.00 and a lower bound of

2.89. The accepted value of 4.669 for period-doubling bifurcations (36) is within the
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error bounds. The Feigenbaum constant F is evaluated with

F = lim
n→∞

Acn−1 − Acn−2

Acn − Acn−1
(5.7)

where Acn is the nth critical value of A for which a period-doubling bifurcation occurs.

The two lines coming out of the chaotic region in Fig. 5.2 are each attractors repre-

senting stable propagating trajectories, one with a positive velocity and one with a

negative velocity. These propagating trajectories travel across λ once per period of

the driving potential field.

Table 5.1: Bifurcations

Acn Bifurcation A± 5e− 5 New Period
Ac1 Supercritical Flip 0.75365 2
Ac2 Cyclic Fold 0.91875 2
Ac3 Supercritical Flip 0.94985 4
Ac4 Supercritical Flip 0.95650 8
Ac5 Supercritical Flip 0.95790 16
Ac6 Supercritical Flip 0.95825 32

5.3.2 Kinetic Energy Fluctuations of One Par-

ticle

Before going to the multi-particle case, it is informative to compare the bifurcation

diagram (Fig. 5.2) to the calculation of δKE for a single particle, which is shown

in Fig. 5.3. We also show a Floquet stability analysis of the fixed point at x = π

through Ac1 for comparison. Floquet stability analysis is a powerful tool in analyzing

bifurcations, but it is not easily applied to multiple particle systems. It has been
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Figure 5.2: Bifurcation diagram formed by taking a two-dimensional histogram (300 × 300
bins) of the final Poincaré section of 1830 trajectories with different initial conditions for
300 different values of A. The gray scale (color online) represents the base 10 logarithm of
the number of particles in a bin. The Roman numerals are listed here for comparison with
δKE shown in Fig. 5.3.

applied to coupled Kapitza pendulums by (99). For a description of single particle

stability analyses, we refer the reader to (72) and (100), which are both studies of

similar systems and use the Floquet technique to study bifurcations. In Fig. 5.3a, the

real and imaginary components of the stability multiplier that causes the bifurcation

(one of the two complex Floquet stability multipliers λ1 and λ2) are plotted as A is

increased through Ac1. In Fig. 5.3b, δKE is plotted as A is increased through the full

range shown in the bifurcation diagram in Fig. 5.2.

In Fig. 5.2 and Fig. 5.3, the key regions associated with different system behaviors

have been identified using Roman numerals. For small values of A, Fig. 5.3b shows a

wide range of scattered points. However, the particle exhibits very little motion within

this range of small A values. As A is increased, there exists a peak in the fluctuations

near Ac1, which is a consequence of the critical slowing down phenomenon (region I).
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As A is increased past Ac1, the fluctuation amplitude is relatively constant until A

approaches Ac2, where a kink is observed (region II). When A is in the chaotic and

near-chaotic regimes (regions III,IV,V), the fluctuations increase in amplitude and are

irregular, as shown in the inset in the figure. The two regions where the fluctuation

amplitude decreases markedly in this inset correspond to the two periodic windows

seen in Fig. 5.2. At the end of the chaotic regime, there is a discontinuous jump in the

fluctuations to a comparatively small and relatively constant value (region VI). This

last section shows the transition to propagating trajectories, and we will see that this

feature is present in all cases where this transition occurs. Under closer inspection,

region VI overlaps with region V because, just as in the bifurcation diagram, the

propagating trajectories exist simultaneously with the chaotic regime for a small range

of A.

5.3.3 Integer Concentrations

The bifurcation diagrams for multiple interacting particles, with N = 2, 3, 4, 5, 6, 7,

are shown in Fig. 5.4. The increased degrees of freedom that occur for N > 1 make

it difficult to investigate an ensemble of initial conditions that exhaustively fill the

phase space. We use random positions distributed with even probability across x

(with ẋ(0) = 0) as initial conditions for each run to explore a set of possible initial

conditions. The bifurcation plots are made by taking the last Poincaré section after

150 driving cycles of a simulation, projecting it onto the position axis, and then

plotting the positions against the value of A used in that simulation. For very small

A, the final Poincaré sections are scattered because, for these values, transients die

out very slowly. For larger A, there are clearly defined points in the Poincaré sections
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Figure 5.3: Single particle: (a) One of the two Floquet stability multipliers for the x = π
fixed point as a function of the potential oscillation amplitude as it is increased through the
first bifurcation point. (b) Kinetic energy fluctuations. Roman numerals for comparison
with the bifurcation diagram in Fig. 5.2
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that denote limit cycles in the full phase space. For the rest of the chapter, the stable

limit cycles in the Poincaré sections are referred to more generally as attractors. At

first glance, Fig. 5.4 appears to indicate a larger number of particles for odd values of

N than it does for even values of N . As A is further increased, a bifurcation occurs for

all the cases shown, although it is difficult to see in Fig. 5.4(e). For other values of A,

the diagrams in Fig. 5.4 appear as scattered points, implying either chaotic motion,

high-period trajectories, or motion on a torus (after a Neimark bifurcation). Past this

scattered regime, the system collapses into a new stable regime that is qualitatively

similar to the propagating trajectories that occur after the chaotic regime in the single

particle case.

The discrepancy between the number of possible attractors for odd and even

values of N can be explained by considering the relationship between the number

of particles and the number of antinodes in one period of the potential. For the

trajectory (x1(t), ..., x2dN(t)), the number of attractors that are observed for values of

A before the first bifurcation is equal to the number of particles when N is even and

twice the number of particles whenN is odd. In other words, there is one possible final

state configuration of the whole system when N is even and two possible final state

configurations of the system when N is odd. To see why this occurs, we examine in

detail the cases of three and four particles per period. Figs. 5.5(a)(b) and (c)(d) show

cartoons of the final particle configurations for cases N = 4 and N = 3, respectively.

In these cartoons, the particle position in the periodic domain is drawn as an angle, so

that motion of the particle in the x domain corresponds in the figure to rotation about

a circle. The intersection points of the circle with a horizontal bisection line occurs

at the antinodes of the potential Φ. In this figure, at least one particle can always
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Figure 5.4: Multiple particle bifurcation diagrams made by: (1) initializing particles at
random initial positions with ẋ(0) = 0 , (2) projecting the Poincaré section onto the position
axis after 150 cycles and plotting against the value of A, and (3) repeating the process for
400 values of A in the range of interest. The number of particles used in each bifurcation
diagram is (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, (e) N = 6, (f) N = 7. Note that
the range of A values explored differs in each figure.
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be found at the antinode of Φ. From the single particle case, we know the antinodes

can act as attractors, where individual particles remain motionless in the x− ẋ phase

plane. In the case of four particles, shown in Fig. 5.5(a), two particles may occupy

the antinodes of Φ and the other two particles oscillate about the nodes of Φ. One

might imagine that a rotation of this configuration by π/4 (shown in Fig. 5.5(b))

might be a fixed point in the Poincaré section of the full phase space, and indeed it

is, but it is not a stable configuration and, unless perfectly configured, it will collapse

into the configuration shown in Fig. 5.5(a). For three particles, one particle sits at

either antinode and the two remaining particles compete over the other antinode, as

shown in Fig. 5.5(c) and (d). Which antinode a particle is attracted to depends on

the initial conditions. In both the four and three particle cases, the particles at the

antinodes are stationary.

Drawing lines between the adjacent average particle positions in the circular topol-

ogy creates a regular convex polygon inscribing the circle. From our description of

the particle behavior above, at least one vertex of the polygon must be at an antin-

ode. For a regular polygon inscribing the circle with an even number of vertices, each

antinode may touch a vertex and it is symmetric under all rotations obeying this rule.

For a polygon with an odd number of vertices, however, only one vertex can occupy an

antinode so that rotations by π/N flip the symmetry about a line vertically bisecting

the circle. There are always two unique possible stable configurations when N is odd,

but only one when N is even. This picture changes for even values of N when N > 6.

For N > 6, the stable configuration no longer occurs for a pair of particles located

at each antinode, but rather for pairs oscillating on either side of the antinodes much

like what is shown in Fig. 5.5(b) but with an extra particle on the top and bottom
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Figure 5.5: The position along the periodic domain is indicated by an angle around a circle.
The black dots represent average particle positions before the first bifurcation. The line
bisecting the circle passes through the two antinodes of the potential field. Part (a) shows
the N = 4 stable configuration which is an asymptotically stable fixed point in the Poincaré
sections of the full phase space. Part (b) is an N = 4 unstable configuration which is the
unstable fixed point in the Poincaré sections of the full phase space. Parts (c) and (d) show
two different possible stable configurations for N = 3, both of which are stable fixed points
in the Poincaré sections of the full phase space.
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of the circle.

In Fig. 5.6, the value of A at which the first bifurcation occurs is plotted as a

function of N , with separate lines for N even (red squares) and N odd (blue triangles).

A striking characteristic of Fig. 5.6 is that between N = 6 and N = 8, there is a

cross-over point at which the even N line jumps upward and crosses through the odd

N line. This sudden jump in the even N line between N = 6 and N = 8 occurs

due to a change in type of first bifurcation. The first bifurcation when N = 6, as

well as the first bifurcations for all lower even values of N , are Neimark bifurcations

(a.k.a bifurcation to a torus) in which N stability multipliers cross the unit circle

with nonzero imaginary components. Half of those stability multipliers (N/2) that

cross the unit circle have positive imaginary components and the other half have the

complementary negative imaginary components. For N = 8 and all higher even values

of N , the first bifurcation becomes a cyclic fold bifurcation, although the bifurcations

for odd values of N remain supercritical flip bifurcations.

We can qualitatively understand the transition which occurs when N is changed

from six to eight in Fig. 5.6 by observing how the bifurcation diagrams, and therefore

the stable attractors, depend on the particle number. In Fig. 5.4(e), after the first

bifurcation, the particle motions are quenched by the presence of other attractors. For

the sake of discussion we distinguish the two competing sets of attractors based on

whether they are found at the far left or far right edges of the diagrams respectively.

Comparing the cases of N = 2, N = 4 and N = 6 in Fig. 5.4 we see similar rightmost

attractors that appear abruptly at different values of A in each case. As N (even)

increases, the rightmost attractors increasingly impinge on the leftmost attractors.

This impingement is responsible for the crossing of the lines in Fig. 5.6. When
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Figure 5.6: A plot of the value of A at which the system first bifurcates (Ac1) as a function
of the number of particles in simulation (N). Even particle numbers are shown with red
squares and odd particle numbers are shown with blue triangles (color online). A cross-over
between the N odd and N even curves occurs between N = 6 and N = 7, which corresponds
to the first bifurcation for the even value of N changing from a Neimark bifurcation to a
cyclic fold bifurcation. The N odd bifurcations are all supercritical flip bifurcations for the
values of N shown here. The upper (lower) error bound is the value of A which we are
certain is after (before) the bifurcation. The error bounds are seen to be quite small in the
Figure.
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N increases from six to eight, the rightmost attractors extinguishes the left most

attractors and becomes the first available attractors for N ≥ 8 (even). These new

first attractors, previously the rightmost, represents a fundamentally different type of

limit cycle in the full phase space than what was previously first available. Therefore

when this attractor first bifurcates, it falls outside of the original progression, causing

the jump in Ac1 as N is changed from six to eight shown in Fig. 5.6.

For all of the cases shown in Fig. 5.4, the system eventually collapses back into

clearly defined attractors which have the form of “propagating” trajectories, as was

also observed for the single particle case. These attractors display non-zero net par-

ticle motion of one particle when N is odd, but no net motion when N is even. The

particles travel in either the ±x direction before a collision-like event. After the “col-

lision”, they travel in the opposite direction having exchanged some kinetic energy

with the particle with which the collision occurred. When N is odd the transport

of one particle occurs either in the ±x direction depending on the initial conditions.

There is no possible counter-propagating particle pair for one of the particles with N

odd.

In Fig. 5.7, the squared fractional deviation of the kinetic energy δKE is plot-

ted for all of the bifurcation diagrams shown in Fig. 5.4. These plots all exhibit

a discontinuity at the point corresponding to transition to a state with the propa-

gating trajectories. The discontinuity is not as clear in Fig. 5.7(e) because (as can

be observed in the corresponding bifurcation diagram Fig. 5.4(e), the propagating

trajectory begins before the first bifurcation. In Fig. 5.7(e), the curve starting below

and crossing at A ≈ 1.75 indicates the values of δKE for the propagating trajectory.
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Figure 5.7: Kinetic energy fluctuations for various particle counts.

5.3.4 Scaling

When the periodicity of the system is increased (n > 1), two distinctly different

possibilities exist. One possibility is an integer concentration, over a larger periodic

system (e.g. n = 2 and N = 4: σ = 2). The second possibility is a fractional

concentration (e.g. n = 2 and N = 3: σ = 1.5). When considering long-range

particle interactions, it is reasonable to assume that increasing the system size might

change the dynamics even if the concentration is held fixed. The first possibility

above, results in system dynamics very similar to those discussed in this chapter,

whereas the second possibility would result in a completely different symmetry of

the system having very different dynamics. The effect of period number n on the

system dynamics was examined in the current study by running simulations of equal
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concentration over larger system sizes (i.e., large values of n). The system dynamics

in these larger systems is observed to be qualitatively the same as for the smaller

system sizes reported, although the exact values of A for which bifurcations occur

is observed to change slightly. We find that for concentrations larger than two, the

effect of scaling the system size while maintaining the concentration is negligible even

when comparing critical A values.

5.4 Conclusion

We investigate the dynamics of multiple particles with long-range interactions in a

STP system by examining Poincaré sections and fluctuations of the kinetic energy

(δKE) for different numbers of particles. Our results are fundamentally interesting

because of their importance in understanding complexity in time-dependent systems.

The possible dynamics that exist in a wide range of different system configurations

make the problem challenging, but even in the small area of the parameter space

that we discuss, we have found a variety of interesting dynamics. For instance, it is

shown that the particle number N influences the stability and the number of possible

final states in a system having integer concentrations. The possible limit cycles of

the system are shown to be sensitive to whether N is even or odd, and the influence

of theÂ particle number on theÂ type of bifurcation is discussed. The squared frac-

tional deviation kinetic energy is examined as a function of the potential amplitude

(δKE(A)), and it is found to exhibit interesting features at and near transition points.

In particular, discontinuities in d(δKE)
dA

and δKE mark transitions between oscillatory

and propagating modes, respectively. The measure δKE may be useful for future
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experimental investigations of these systems.

Our work has demonstrated interesting and complex behaviors of multiple parti-

cles with the Coulomb interaction in a STP potential. In particular, the dynamics of

the system is sensitive to particle concentration and the dynamics can be described

by the squared fractional deviation of the particle kinetic energies. The latter is

particularly valuable for studying bifurcations in real systems. For example, in the

aforementioned studies of the motions of hydrophobic/hydrophilic particles on the

surface of Faraday waves, the particles will interact due to capillary forces caused by

their distortion of the local surface of the water, rather than through the Coulomb

interaction, which leads to particle clustering (3). It may be convenient to study

this type of behavior using the squared fractional deviation of the systems kinetic

energy because this measure will decrease in the event of clustering as it measures

the effective number of degrees of freedom (98).

Studies of multiple charged particles in a standing-wave electric curtain and in

acoustic waves are also important areas of research for applications of dust-particle

mitigation, e.g., from a solar panel (93). Charged particles interacting in standing-

wave electric curtains and standing-wave acoustic fields exhibit complicated dynamics

that may be illuminated by studying the squared fractional deviation of the particle

kinetic energy. For example, in (101) it was observed that for charged particles in a

standing-wave acoustic field, relative motion of smaller particles is faster than that

of larger particles, so that the large particles act as collectors within some agglomer-

ation volume. Any small particles present in the agglomeration volume are likely to

aggregate to a larger particle, and this aggregation is desirable for applications such

as cleaning particles from surfaces. A sweep of the acoustic driving parameters to
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find the configuration for which maximal aggregations occurs could clearly be found

and described in terms of the minimal squared fractional deviation of the particle

kinetic energies, again due its measure of th effective number of degrees of freedom.

In general, we hope our work may stimulate further research of STP systems with

interacting particles and shed some light on their complicated and exciting dynamics.
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Chapter 6

A Simple Model for Long-Range

Interacting Pendula

6.1 Introduction

The challenges in understanding long-range systems drive the development of solvable

models that could help better explain some of the aforementioned phenomena. Campa

et al. (102) have recently published a collection of important solvable models. One

particularly significant model, which is important to this paper, is the Hamiltonian

Mean Field (HMF) XY spin model (42), often written in the form

H =
N∑
i=1

p2
i

2 + γ

2N

N∑
i,j=1

[1− cos (θi − θj)] , (6.1)

where θi is the angular position of the ith particle (spin) and pi is its conjugate angular

momentum. The HMF model is generally used to describe two different classes of

systems: 1) a mean field XY classical spin model, and 2) a one dimensional periodic
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system of itinerant particles with long-range interactions. Though the connection

between the HMF model and the second class of systems mentioned could be thought

of as contrived given the simplifications under which the model is realized, it has been

shown to produce useful insights into how non-neutral plasmas and self gravitating

systems behave (42).

In this paper, we study the dynamics of an array of N pendulua with long-range

interacting bobs. By considering long pendula with flat bobs undergoing small os-

cillations and having parallel planes of rotation, we produce a model related to the

HMF model through a coordinate transformation. The transformation introduces a

dependence on the indices of the particle labels. A cartoon of the physical picture

is shown in Fig. 6.1. The index dependence in the Hamiltonian that we present will

Figure 6.1: N pendulum system with parallel planes of rotation. The ith pendulum angle at
some time t is θi(t).

be described in detail in the next section but, as a prelude, it is a consequence of

the pendulua pivots being slightly offset from one another and appears as a phase in

the cosine term of the HMF model. It inspires the investigation of non-equilibrium

“repulsive” behavior in the angle coordinate frame where we find an interesting qua-

sistationary state when the angles of the pendula are initially ordered according to
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their indices. We find the clustered positions in the usual HMF coordinate frame (bi-

clusters), but in the angle coordinate frame clustering is only found for the initially

ordered angles and, unlike the biclusters, these are clearly quasistationary states. A

quasistationary state is defined as a dynamical state that can persist for a length of

time which goes to infinity as the thermodynamic limit is approached (102). In ad-

dition to discussing the clustered angle states exhibited by the system, we also solve

for the canonical partition function in the pendulum angle coordinate frame, finding

that in equilibrium with a heat bath, the probability distributions of the angles can

be described by the original HMF model. This finding is similar to the work done by

(103) on a model sometimes called the HMF α-model. In the HMF α model, a 1/rαij
dependence between the classical spins is introduced (102; 104; 105; 106), where rij

is the distance between the ith and jth spins on a lattice. Though the physical mo-

tivations behind studying these various models can be very different, it is interesting

that their equilibrium behavior is the same same or nearly the same. We believe that

the work in this paper further suggests that the HMF model universally describes an

entire class of long-range interacting systems in equilibrium.

6.2 The Model

6.2.1 Coordinates

In Fig. 6.1, we show an array of pendulua rotating in the same plane with bobs that

interact through a long-range potential. If we consider the case where all the pendula

only undergo small oscillations, we may write the horizontal location of the ith particle,
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xi, as xi = id+ `θi, where d is the distance between the pivots of neighboring pendula

and ` is the length of each pendulum. The small θ regime makes the problem one

dimensional in x. We choose periodic boundary conditions and rescale the system by

2π/Nd so that

x→ 2π
Nd

x (6.2)

making the total system length a dimensionless 2π where N is the number of particles

in one period. We will refer to a periodic space with length 2π as a unit circle. The

position of the ith particle (bob) is now

xi = 2πi
N

+ 2π
N

`

d
θi. (6.3)

For reasonable choices of ` and d (`/d << N), the second term on the RHS is suitably

small such that the Hamiltonian can be written with terms that are quadratic in θ.

However, we are primarily interested in a regime where `/d → ∞ as the thermody-

namic limit is approached. Physically this corresponds to the small oscillations of

very long pendula with suspension points that are close together compared to their

lengths. In order to simplify the calculations that follow, we define φi to be the last

term on the RHS of Eq. (6.3), namely φi ≡ 2π`θi/Nd. Given the choice of large `/d,

φi can take any value in the range [0, 2π). This is only true because `/d is large, not

because the θis are. In terms of φi, the positions can be rewritten as

xi = 2πi
N

+ φi. (6.4)
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6.2.2 Density Approximation

We have not yet explicitly stated the physical mechanism through which the bobs

interact. Connecting the interactions with specific physical motivations is needed, but

it should be discussed with some discretion because the development of the model

leaves these motivations up to some interpretation. Imagine that the bobs all carry

some charge. We will not distinguish between particles in any other way than their

indices, so in the case where all carry the same charge, repulsive behavior is expected.

On the other hand one could make the bobs attract one another, which could be

thought of as the self-gravitating case. To be solvable, the model requires some

simplifications. For the sake of brevity we will speak of the particle charge or mass

density as the “density”.

The approximation that we invoke is similar to that used when justifying the HMF

model (Eq. (6.1)) to describe free particles in a one-dimensional ring (42; 45). The

distribution of the bobs is such the mass density, ρ(x), is given by

ρ(x) =
N∑
i=1

δ(x− xi)−
1

2π . (6.5)

The constant 1/2π subtracted from the delta function is necessary to produce a mean-

ingful expression for the potential Φ and corresponds to including a neutralizing (of

opposite sign) homogeneous background density. Restricting the problem further to

that of solving Poisson’s equation for a one-dimensional potential physically amounts

to choosing large and flat bob geometries oriented with their smallest axis parallel to

the x axis. Writing the delta function as a cosine Fourier series, Poisson’s equation
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becomes

∇2Φ(x) = γ

π

N∑
i=1

∞∑
n=1

cos [n(x− xi)]. (6.6)

The parameter γ contains the particle (bob) charge or mass and becomes the inter-

action strength in the Hamiltonian. We can see that the zeroth-order term in the

Fourier series canceled the constant neutralizing background that was superficially

added.

The most important simplification in this paper is truncating the sum of the

Fourier coefficients used to represent the delta function after the n = 1 coefficient.

Antoni et al. defend the truncation by asserting that the “large scale collective

properties” do not greatly change when higher order terms of the sum (including

interactions at the smaller length scales) are included, and discuss the consequences

of the approximation in some detail (42). The simplification also warrants a brief

discussion of the way that it could be physically interpreted. The truncation of the

sum is equivalent to smearing out the density of each particle over the system so that

it is peaked at its given location, xi, but also having a negative density peak on the

opposite side of the unit circle. This could be thought of as doubling the number of

particles and enforcing that each particle has a negative partner that always remains

on the opposing side of the unit circle. After this doubling the masses are dispersed

such that a pair’s density is described by a cosine function with the positive peak

centered at xi.
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6.2.3 Solving Poisson’s Equation

Integrating Poisson’s equation once, we obtain:

∇Φ(x) = γ

π

N∑
i=1
{sin (x− xi) + c1} . (6.7)

In order to determine the constant c1 from the integration, the physical picture should

be examined. A sensible requirement is that when all of the bobs are hanging at their

equilibrium positions, directly below their pivot (all φi = θi = 0), the net force

experienced by any bob is zero. This is a valid requirement if the bobs are attractive

or repulsive, the only difference being that the configuration would be unstable or

stable, respectively. The force that the jth particle experiences when φj and all φi are

zero is given by

−∇Φ (xj) = −γ
π

N∑
i=1

{
sin

[
2π(j − i)

N

]
+ c1

}
. (6.8)

The sum ∑
i sin [2π(j − i)/N ] equals zero for any j, so c1 must be zero. Integrating

once more to obtain the potential yields

Φ(x) = γ

π

N∑
i=1

[
c2 − cos

(
x− 2πi

N
− φi

)]
. (6.9)

To determine c2 we stipulate that if all φi = 0, then Φ(0) = 0. Inserting Eq. (6.3) (or

Eq. (6.4)) for xi yields

Φ(0) = γ

π

N∑
i=1

[
c2 − cos

(2πi
N

)]
. (6.10)
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The sum over the cosine is zero, therefore c2 = 0 and we can now write the potential

energy of the jth particle as

Φ(xj) = −γ
π

N∑
i=1

cos
[

2π(j − i)
N

+ φj − φi
]
. (6.11)

6.2.4 The Hamiltonian

The Hamiltonian can be written as

H = H0 +HI , (6.12)

where H0 is the kinetic energy piece

H0 =
N∑
i=1

p2
i

2 , (6.13)

and

HI = − γ

2N

N∑
i,j=1

cos
[

2π(i− j)
N

+ φi − φj
]

(6.14)

is the interaction piece, so

H =
N∑
i=1

p2
i

2 −
γ

2N

N∑
i,j=1

cos
[

2π(i− j)
N

+ φi − φj
]
. (6.15)

The mass of the bobs has been set to unity, γ is the interaction strength, a factor of

1/2 accounts for the double counting, and the 1/π coefficient in the potential energy

has been absorbed into γ. The factor of 1/N is a rescaling of the potential energy

that ensures that as the thermodynamic limit is approached, the potential energy of
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the system does not diverge. The 1/N scaling is known as the Kac prescription (44).

The Kac serves to keep both the energy and entropy of a system proportional to the

number of particles in the system, an important prerequisite for phase transitions

(102).

6.2.5 Relationship to the HMF model and the

Spin Interpretation

Due to the simple bijective relationship between xi and φi one can simply solve

the equations of motion for the HMF model and find the dynamics for φi via the

coordinate transform xi → φi. Previously it was mentioned that the HMF model is

used to describe free particles on a ring with long-range repulsion or attraction, as

well as describing a classical XY spin model. The θi played the role of either the

position of the ith particle on the ring or the orientation of the ith spin. Therefore, it

is interesting to speculate about the type of spin system the model describes in the

φi picture. Thus far, the rescaled angle φi = 2π`θi/Nd describes the distance of a

pendulum bob from the point directly below its pivot, but it could also be interpreted

as the orientation of spin. In the spin interpretation of Eq. (6.15), the potential energy

of the ith and jth spin pair depend on both their relative orientation as well as the

difference between their indices. In the following discussion it will sometimes be

convenient to speak about φi in the spin language.

We will prove that in the φ picture, the system in equilibrium with a heat bath

is equivalent to the HMF model (the x picture) in equilibrium with a heat bath by

solving the partition function in the φi coordinate frame. In the process of simplifying
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the Hamiltonian to solve for the partition function, we will find expressions of the

form cosφi and sinφi which we talk about as the horizontal and vertical components

of a magnetization ~mi = (cosφi, sinφi). It could easily be stated that in the spin

analogy, the φi are orientations of the spins, but we should make a more concrete

connection between this idea and the original presentation of the model. We would

like to remind the reader that even though the angles θi of the pendula are small, the

long suspensions of the bobs (`) allow φi to cover the entire system which, rescaled,

has dimensionless length 2π. The system is also periodic, so the bobs can be thought

of as moving on a unit circle where the position of the ith bob is xi = 2πi/N + φi.

In order to think of φi as the spin orientations, we start by considering each bob as

living on its own individual unit circle. An example of these unit circles is shown

in Fig. 6.2, a visual aid to the following. Imagine stacking horizontal circles in the

vertical direction and rotating each by an angle 2π/N from the one below. The

projection of these circles onto the horizontal plane would be the system viewed in x,

i.e. the HMF model. If we twist the stack so there is no rotation between adjacent

circles and then project onto the horizontal plane it creates the picture viewed in φ,

where the pivot points are all aligned. The reason for this artificial construction of

stacked circles is partly in order to pictorially depict the transformation between x

and φ and partly to show how ~mi (as defined) is just the orientation of the ith spin in

the φ picture. Said differently, each circle in the φ picture represents a spin with an

orientation in the horizontal plane determined by φi; an infinite-range classical mean

field spin model described by Eq. (6.15).
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6.3 Equilibrium

In this section, we solve for the canonical partition function, in the φ coordinate

frame using the Hamiltonian in Eq. (6.15) and show that, in equilibrium, the HMF

model describes the angles of long pendula with long-range interacting bobs. In order

to solve the configurational piece of the partition function the Hamiltonian must be

modified. Using the cosine and sine sum and difference identities twice, the potential

interaction piece of the Hamiltonian HI can be written as

Hi = −γ2N
∑
i,j

 cos
[

2π(i− j)
N

]
[cosφi cosφj + sinφi sinφj]

− sin
[

2π(i− j)
N

]
[sinφi cosφj − cosφi sinφj]

. (6.16)

The coefficients in the Hamiltonian cos [2π(i− j)/N ] and sin [2π(i− j)/N ] should be

thought of as matrices with components Cij and Sij respectively. The Hamiltonian

can now be written in the form

γ

2N
∑
i,j

(cosφiCij cosφj + sinφiCij sinφj

− sinφiSij cosφj + cosφiSij sinφj), (6.17)

which is suggestive because it can be regarded as the matrix equation

120



6.3. EQUILIBRIUM

HI = γ

2N

(cosφ1, cosφ2, ..., cosφN)C



cosφ1

cosφ2

...

cosφN



+ (sinφ1, sinφ2, ..., sinφN)C



sinφ1

sinφ2

...

sinφN



− (sinφ1, sinφ2, ..., sinφN)S



cosφ1

cosφ2

...

cosφN



+ (cosφ1, cosφ2, ..., cosφN)S



sinφ1

sinφ2

...

sinφN



. (6.18)

It is helpful to consider the particles positions on the unit circle with respect to their

pivot (φ) as magnetizations. Defining

~mi ≡ (cosφi, sinφi), (6.19)

and with mT
µ = (m0,µ,m1,µ, ...,mN−1,µ) where µ holds the place of x or y, the Hamil-
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tonian becomes

HI = γ

2N (mT
xCmx +mT

yCmy −mT
y Smx +mT

xSmy). (6.20)

A closer examination of the structure of the coefficient matrices C and S indicates

that they take the special form of circulant matrices, and thus can be simultaneously

diagonalized by a unitary matrix U . A circulant matrix has the form



a1 a2 a3 . . . aN−1 aN

aN a1 a2 . . . aN−2 aN−1

aN−1 aN a1 . . . aN−3 aN−2

... ... ... . . . ... ...

a3 a4 a5 . . . a1 a2

a2 a3 a4 . . . aN a1



, (6.21)

a special kind of Toeplitz matrix, where each subsequent row is a cyclic permutation

of the row above or below it. Any matrix A with elements aij that can be written in

terms of some function f(i− j) is a circulant matrix. Because a circulant matrix is a

normal matrix it can be diagonalized by a unitary matrix. We show that C and S are

simultaneously diagonalizable by showing that they commute, i.e. [C, S] = 0 where

[C, S] = CS − SC. Starting with the second term, −SC = STCT = (CS)T which

is found by arguing that C is symmetric since cosine is an even function and does

not change under the exchange of i and j, whereas S is odd because sine is an odd

function and does change sign under exchange of i and j. The commutation becomes

[C, S] = CS+(CS)T . Also, an odd function multiplied by an even function results in
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an odd function so the entire matrix CS is odd. Therefore (CS)T = −CS bringing

us to the final expression [C, S] = CS − CS = 0. We have shown that C and S can

be simultaneously diagonalized by U . The matrix U is known for circulant matrices

and is called the Fourier Matrix.

The matrices C and S can be rewritten as C = U †DCU and S = U †DSU , where

DC and DS are diagonal matrices with diagonal elements that are the eigenvalues of

C and S, respectively, which we denote as λCi and λSi . From here on we label the

indices i from 0 to N−1. It is worth pointing out that due to S being antisymmetric,

U must be complex. Equation (6.22) becomes

HI = γ

2N

(
mT
xU
†DCUmx +mT

y U
†DCUmy

−mT
y U
†DSUmx +mT

xU
†DSUmy

)
. (6.22)

We will move back to the index notation using the following relations:

DC,S = λC,Si δij, (6.23)

Xj ≡
N∑
k=1

Ujkm
x
k, (6.24)

and

Yj ≡
N∑
k=1

Ujkm
y
k., (6.25)

where X is not to be confused with x. Using the Kronecker delta, we set all i = j

since these are the only nonzero terms. The Hamiltonian is now given by

Hi = −γ2N

N−1∑
j=0

(
‖Xj‖2λCj + ‖Yj‖2λCj − Y ∗j Xjλ

S
j +X∗j Yjλ

S
j

)
, (6.26)
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with ‖X‖ = XX∗ and ‖Y ‖ = Y Y ∗. The inclusion of the eigenvalues λC and λS

simplifies the Hamiltonian further. We will now solve for λC and λS. Looking at

the form of a circulant matrix shown in Eq. (6.21) reminds us that the elements of

a circulant matrix can be defined with a single label. We write the single labeled

elements of the cosine and sine matrices respectively as

cl = cos 2πl
N
, (6.27)

and

sl = sin 2πl
N
, (6.28)

where l = 0, 1, 2, ..., N−1. The eigenvalues, λA, of a N×N circulant matrix A can be

written in terms of the single label elements al. The jth eigenvalue of A is known to be

λAj = ∑N−1
l=0 al exp (2πilj/N), where i is

√
−1 (not an index) and l = 0, 1, 2, ..., N − 1.

Therefore,

λCj =
N−1∑
l=0

cos
(

2πl
N

)
e2πilj/N , (6.29)

and

λSj =
N−1∑
l=0

sin
(

2πl
N

)
e2πilj/N . (6.30)

Writing cosine and sine in their exponential forms gives

λCj = 1
2

N−1∑
l=0

[
ei2πl(j+1)/N + ei2πl(j−1)/N

]
, (6.31)

λSj = −i2

N−1∑
l=0

[
ei2πl(j+1)/N + ei2πl(j−1)/N

]
, (6.32)

The above representations of the eigenvalues show that C and S each have only two
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non-zero eigenvalues corresponding to j = 1, N − 1 given by λC1 = λCN−1 = N/2 and

λS1 = (λSN−1)∗ = iN/2. The Hamiltonian simplifies greatly to

HI = γ

2 −
(
‖X1 + iY1‖2 + ‖XN−1 − iYN−1‖2

)
. (6.33)

The representation of HI in Eq. (6.33) must be further modified before the parti-

tion function can be found. We do this by splitting the Fourier matrix U into its real

and imaginary components, aik and bik, given by

aik ≡
1√
N

cos
(

2πik
N

)
, (6.34)

and

bik ≡
1√
N

sin
(

2πik
N

)
. (6.35)

This was done to write the absolute squares in Eq. (6.33) in terms of the squares

of aik and bik. By noticing that a1k = a(N−1)k and b1k = −b(N−1)k we write the

configurational partition function as

ZI = A
∫
dNφe

βγ
2 (∑k[a1km

x
k−b1km

y
k])

2

e
βγ
2 (∑k[b1km

x
k+a1km

y
k])

2

, (6.36)

where β = 1/kBT .

The Hubbard-Stratonovich transformation is now applied twice, once to each

quadratic quantity in the partition function. The integration variables introduced

through this transformation are z1 and z2 with subscripts for first and second quadratic

125



6.3. EQUILIBRIUM

quantities, respectively. After after switching the order of integration, we find

ZI = A

2πβγ

∫ ∞
−∞

dz1dz2e
−(z2

1+z2
2)/2βγ∏

k

×
∫ π

−π
dφke

(z1a1k+z2b1k) cosφk+(z2a1k−z1b1k) sinφk . (6.37)

The integration can be performed using the identity

∫ π

−π
dφeξ cosφ+η sinφ = 2πI0

(√
ξ2 + η2

)
(6.38)

where

ξ2 + η2 = (z1a1k + z2b1k)2 + (z2a1k − z1b1k)2 (6.39)

which simplifies when a and b are included to

[
z1

1√
N

cos
(

2πk
N

)
+ z2

1√
N

sin
(

2πk
N

)]2

+
[
z2

1√
N

cos
(

2πk
N

)
− z1

1√
N

sin
(

2πk
N

)]2

= 1
N

(z2
1 + z2

2) (6.40)

It is convenient to make a change to polar coordinates by introducing z =
√
z2

1 + z2
2 ,

following which the partition function can be written as

ZI = A

βγ

∫ ∞
−∞

dze−z/2βγ
∏
k

2πI0

( √
z√
N

)
. (6.41)

Equation (6.41) is recognized to be an intermediate step of the solution to the canon-

ical partition function for the HMF model. From here we jump to the main results,

the details of which are included in the HMF literature (42; 45; 102) .
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The integration over z in Eq. (6.41) can be preformed using the saddle point

approximation. The rescaled free energy per particle follows as

− βF = −β2 + inf
z

[
−z2

2β + ln 2πI0(z)
]

(6.42)

The expression above permits a convenient path to finding the phase transition. Solv-

ing for the minimum values of z in order to satisfy the last term in Eq. (6.42) results

in the equation
z

β
− I1(z)
I0(z) = 0, (6.43)

which can be solved self consistently for z and represented graphically for different

values of β as in Fig. 6.3. The reader will see that after β is increased passed the

critical value (β = 2) there are two well-defined solutions.

The Hubbard-Stratonovich transformation decouples spin-spin (squared terms in

the Hamiltonian) contributions to the partition function at the price of needing to

create a linear interaction between each spin with an auxiliary field z (107). Again,

a more detailed procedure can be found in (42; 45; 102) where discussion of the

internal energy in the equilibrium state is followed by non-equilibrium behavior of

the system prepared in microcanonical ensembles. Here we will simply touch on the

most important point of the equilibrium behavior, being that for β < 2 the system

is paramagnetic but for β ≥ 2 a pitchfork bifurcation occurs resulting in two stable

solutions. At this point there is a discontinuity in the free energy, a second order

phase transition occurs and the system can maintain finite magnetization. In this

case, the order parameter is the total magnetization ~M = 1
N

∑N
j=1 ~mi where ~mi was

defined to be (cosφi, sinφi).
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Showing that the canonical partition function in the φ coordinate frame model

and the HMF model are equivalent necessitates a more detailed discussion of the

equilibrum behaviors in the φ frame. Campa et al. (102), in their review of the HMF

model, rigorously show ensemble equivalence between the canonical and microcanoical

ensemble of the HMF model. In light of this fact, a large N microcanonical simulation

should be able to produce equilibrium behavior like the phase transition mentioned

above. The temperature in a numerical simulation of a system with many particles

would be “set” through a choice of the initial momenta distribution. In this type of

simulation, it is common practice to compute the order parameter and free energy (38;

108; 42), begging the question: does a large microcaonical simulation of Eq. (6.15)

approximate the expected equilibrium behavior? Also, since the index-dependent

model in equilibrium with a heat bath can be described by the HMF model, would

the dynamics of such a simulation qualitatively resemble those in the HMF model?

The answer to both of these questions is no if one were to find the equations of motions

in φi for some large N and then compare them to an HMF model or the x coordinate

frame. As stated, this discrepancy may appear to detract from our result. Indeed, it

uncovers a conceptual omission in the model, but it is one whose rectification gives

insight into the models ensemble equivalence property of the model, or lack thereof.

The omission was in the arbitrary scaling of x which we will now rectify.

We introduce the parameter L which generalizes the scaling in Eq. (6.2) to

x→ 2πL
Nd

x, (6.44)
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making the position of the ith particle

xi = 2πLi
N

+ 2πL
N

`

d
θi. (6.45)

and changing the definition of φi to φi ≡ 2πL`θi/Nd. It can be shown that the

introduction of L only changes the final result of the partition function by a constant

factor of L due to the enlarged limits of integration. Numerically, we find is that if

L >> 1, then the simulations in φ closely reproduce the dynamics of HMF model

simulations (dynamics in x). Therefore, for large L the mirocanonical simulations

can approximate equilibrium and the answers to the previous questions - does a

large microcaonical simulation of Eq. (6.15) approximate the expected equilibrium

behavior, and since the index-dependent model in equilibrium with a heat bath can be

described by the HMF model, would the dynamics of such a simulation qualitatively

resemble those in the HMF model? - becomes yes. Alternatively, the coordinate

frame inequivelence is most extreme for small L. These numerical results were found

using initial conditions that are randomly distributed φi about the domain [−Lπ, Lπ).

It should be stated that for the rest of this paper we work with L = 1 becuase we

are inetersed in cases where the φ coordinate frame is markedly differnet than the x

coordinate frame.

6.4 Non-Equilibrium Results

For a system of pendula, it is interesting to study an initial configuration where all

pendula are set to random small displacements from φi = 0. Specifically we initialize

the ith pendulum angle, φi, randomly in the range [−π/N, π/N). In x the indices
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are ordered in x such that x1 < x2 < x3 < ... < xN and the ith bob is randomly

distributed in the range [2πi/N − π/N, 2πi/N + π/N). It is possible to make some

general statements about the dynamics of this configuration in x using the equations

of motion. Expressing the Hamiltonian with terms that are quadratic in φ yields

HI = γ

2N
∑
ij

 sin
[

2π(i− j)
N

]
(φi − φj)

− cos
[

2π(i− j)
N

](
1−

φ2
j

2 −
φ2
i

2 + φiφj

). (6.46)

With this expression, the equations of motion for the ith particle can be written as

φ̈i = ṗi = ∂H

∂φi
, (6.47)

from which we obtain

φ̈i = −γ2N
∑
j

 cos
[

2π(i− j)
N

]
(φj − φi) + sin

[
2π(i− j)

N

]. (6.48)

In the above equation, the last term and the cos [2π(i− j)/N ]φi term sum to zero,

leading to

φ̈i = −γ2N
∑
j

cos
[

2π(i− j)
N

]
φj. (6.49)

Using the difference formula, we write the acceleration as

φ̈i = −γ2

[
cos

(2πi
N

)
〈µ1〉+ sin

(2πi
N

)
〈µ2〉

]
, (6.50)
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where µ1 = φj cos (2πi/N) and µ2 = φj sin (2πi/N). The mass (moment of inertia)

has been set to unity so the above expression is the force as a function of index,

φ̈i = F (i). If 〈µ1〉 and 〈µ2〉 are known, then the initial dynamics of the system are

elucidated by Eq. (6.50), but in the case of randomly initialized φi the 〈µ1〉 and 〈µ2〉

are also random and can be different from one another in both magnitude and sign.

However, a general description of the results can be given without exactly knowing

these coefficients. Equation (6.50) shows that the initial force on a given particle

depends on its position because the indices are ordered in x. In the continuum

(thermodynamic limit), the force takes the form

F (x) ≡ −γ2 (〈µ1〉 cosx+ 〈µ2〉 sin x) . (6.51)

Therefore 〈µ1〉 and 〈µ2〉 partly play the role of the amplitude of this force as a function

of x, but also can shift the cosx + sin x spatial dependence, which is periodic over

the system length. In Fig. 6.4, we show a fit of the force as a function of x using

Eq. (6.51) as well as the actual force calculated for an example set of initial conditions.

The domain in Fig. 6.4 can be split into two pieces (independent of µ)- one where

the particles experience a positive force, the other in which the particles experience

a negative force. As time is increased, the movements of the particles evolve the

coefficients 〈µ1〉 and 〈µ2〉 in such a way that the magnitude of the force decreases to

zero for all particles and then switches sign complementary to the original force. This

results in a standing compression wave of the particles with a wavelength 2π. The

compression wave is not stable and eventually two clusters form about each node.

These two clusters are often referred to as a “bicluster”, or the antiferromagnetic

state in the HMF model, and have been explained by Barré et al. by analysing
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the Vlasov equation. They find that the initial compression wave (referred to by a

different name) creates an effective double-well potential giving rise to the bicluster

(48). The question of the bicluster stability has not yet been definitely answered, but

for a detailed discussion we refer the reader to Leyvraz et al. (109). Given the simple

mapping between the φ and x coordinate frames, we should also be able to show the

initial form of the force in x as well. As presented in Eq. (6.15), the Hamiltonian in

the x coordinate frame only differs from the HMF model by a constant γ/2. In x, HI

is

HI = γ

2N

N∑
i,j=1

cos (xi − xj). (6.52)

Using the difference identity, we find the equations of motion for the ith particle to

be

ẍi
−γ
2N

− sin xi
∑
j

cosxj + cosxi
∑
j

sin xj

 . (6.53)

The sums over cosine and sine of xj play the same role as 〈µ1〉 and 〈µ2〉, and the force

at a given position xi is clearly of the same form as that shown in Eq. (6.50).

Depending on 〈µ1〉 and 〈µ2〉, all φi oscillate about zero with amplitudes and phases

that depend on their location xi as discussed above. As the clustering in x begins,

the φi begin to spread out over the full domain [0, 2π) and continue to do so until

it is covered. The more interesting case in φ is when all φi are initially randomly

distributed in ranges that depend on their index, specifically when φi are chosen in

the ranges. [2πi/N − π/N, 2πi/N + π/N) so that φ1 < φ2 < φ3 < ... < φN . It should

be noted that in this new configuration the dynamics in x are nearly identical to the

configuration previously discussed for ordered xi. The dynamics in φ differ drastically

between the two cases though. In this ordered angle case, we find some interesting
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grouping of the scaled angles.

Initially the bobs oscillate with an amplitude that depends sinusoidally on their

position in φ, similar to the previous discussion in the x picture but with four nodes

where the φi remain relatively stationary. Once again this behavior could be thought

of as a standing compression wave, but in φi it has a wave length of π whereas

in the x picture it had a wavelength of 2π. As the system evolves, all φi slowly

begin to shift towards the nodes of this standing wave until there are four clusters of

the angles. After some time, the angles begin to re-distribute themselves randomly

about the domain. The distribution of φi in these three regimes is summarized in

three histograms shown in Fig. 6.5. Aside from the number of clusters, there are

two primary differences between the clustering in φ and the clustering in x: (i) The

clustering in φ only occurs when the angles are ordered in the method described

above, whereas the dynamics in x look identical regardless of the distribution in x,

presuming it is somewhat homogeneous about the domain. (ii) The clustering in φ

is a quasistationary state whereas the clustering in x exists for much longer times

regardless of the system size. Since the clustering in φ is quasistationary, a properly

prepared system could exist in the clustered angle state for an arbitrarily long time

but only for largeN . We can view the effect of increasingN and therefore the lifetimes

of the clustered states by observing the order of the particle index as a function of

time. In Fig. 6.6(a)-(c), we show that as N is increased, the time it takes for particles

to fully mix increases. This is shown by plotting the indices on a color scale from 0

(blue) to N − 1 (red) along the horizontal axis as time is increased along the vertical

axis. In Fig. 6.6(d), we show how the ordering of the particles changes at the very

beginning of clustering for N = 100. Figure. 6.6 also shows that the compression
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wave is not quasistationary since it quickly reduces to the clustered state regardless

of N .

6.5 Conclusion

Though the application of statistical mechanics and thermodynamics to systems with

long-range interactions may not always be appropriate, we find that the canonical par-

tition function improves our understanding of a system of pendula with long-range

interacting bobs. Solving for the canonical partition function of the Hamiltonian

in Eq. (6.15), we show that the equilibrium behavior in the φ coordinate frame is

equivalent to the x coordinate frame, i.e. the HMF model. As we have argued that

the Hamiltonian in Eq. (6.15) describes the behavior of the angles of repulsive or

attracting pendulum bobs (see Fig. 6.1), then the proven equivalence of the canonical

partition function of Eq. (6.15) and the Hamiltonian mean field model suggests that

the Hamiltonian mean field model sufficiently describes the angles of a system of pen-

dula in equilibrium. Ensemble equivalence between the microcanonical ensemble and

the canonical ensemble is known for the Hamiltonian mean field model model (102)

and because of this, the microcanonical simulations could be used to approximate

equilibrium behavior. We find numerically that in the case of large system lengths,

L, the dynamics of the system in φ resemble the dynamics of the Hamiltonian mean

field model, equivalently the behavior of the system in x. Therefore for large system

sizes of long pendula in equilibrium, the HMF model describes their dynamics and

statistics.

In this paper we also briefly discuss two particular sets of non-equilibrium results.
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In one case, the system is initialized with small φi so that xi are distributed relatively

evenly throughout the x domain. This initial configuration essentially gives rise to the

“repulsive” low temperature HMF model which exhibits interesting non-equilibrium

behavior and is described in great detail by (110; 48). In the second case in which φi

are ordered by index in φ. We show that in the ordered φi case there is a compression

wave in φ, followed by clustering, and finally a mixed index state displaying no appar-

ent order or structure. This is in contrast to the dynamics produced by a randomly

distributed set of initial φi which begins and then remains in a random disordered

state. The clustering that can occur in φ is different than the clustering in x because

it only occurs when the angles are initially ordered and because it is quasistationary;

the lifetime increases with the number of particles in the system.

135



6.5. CONCLUSION

Figure 6.2: Example of a system of N = 8 particles when viewed as individual spins in the
a) x coordinate frame, and b) the φ coordinate frame. a) In the x coordinate frame the
direction of the ith spin given by the angle xi is expressed as xi = 2πi/N+φi. Alternatively,
xi could be thought of as the position of ith particle on the unit circle, shown at the bottom
of the figure as the projection of all positions onto the horizontal plane. The black circles on
the rings in the figure mark the location of the pendulum pivots at 2πi/N in x. b) Twisting
the column of rings in a) such that the pivots are aligned transforms the system into the φi
coordinate frame. In this picture, the direction of the ith spin is just given by the angle φi.
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Figure 6.3: The solid (black) curve is the fraction of modified Bessel functions I1(z)/I0(z),
dashed (green) is z/β for β = 1, solid (red) line is z/β for beta = 2, dotted (blue) is z/β for
β = 4, all as a function of z. (blue) line is z/β for β = 4. The values β = 1, 2, 4 correspond
to the pre-phase transition, critical, and post-phase transition values in that order.
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Figure 6.4: Numerical (blue) and theoretical (red) value of the t = 0 force felt by each
particle as a function of its position. This configuration was made with N = 200 and
γ = 10. The initial φi used for the numerical calculation were chosen randomly in the range
[0, 2π/N) which was restricted to positive values so that the sign of the initial 〈µ1〉 and 〈µ2〉
were known to be positive. This is not significantly different than when the range of φi is
centred about 0. The theoretical curve is fitted using Eq. (6.51) with 〈µ1〉 = 0.0109 and
〈µ2〉 = 0.0163.
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Figure 6.5: These three histograms are made by binning φi of 50 particles over three different
periods of time with γ = 10 . Going from top to bottom each period of time belongs to
the dynamical regime of: standing “compression wave” in φi from initial configuration of
φi ∈ [i− 2π/N, i+ 2π/N), clustered motion about the four initial nodes of the compression
wave, φi disordered final state. Specifically the values of t are: t1 = 0, t2 = 50, t3 = 100,
t4 = 200, t5 = 7, 000, t6 = 7, 200.

Figure 6.6: Each particle is colored from blue, representing the smallest index, to red,
representing the largest index. The order of the particles indices at a given moment in time
is plotted along the horizontal axis. Time increases along the vertical axis.(a) N = 15. (b)
N = 30. (c) N = 60. (d) N = 100, where a smaller range of time is shown in order to see
the mixing of the indices as the angles begin to cluster.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Since we have concluded each separate chapter that contains results individually,

here we will not make any remarks regarding the specific of bodies of work. In-

stead, let us make some general comments on the importance of the systems that

we have studied and what should be done to study them further. After reading the

preceding chapters the reader may be left feeling that more must be done to bridge

the gap between the fields of statistical mechanics and dynamical systems, and the

study of statistical mechanics as applied to long-range interactions. After all, sta-

tistical mechanics has proven to be one of the most successful theories in describing

the macroscopic properties of systems with many interacting bodies. In the case of

deterministic (not Brownian) driven dissipative and long-range interacting systems,

statistical mechanics can fail due to issues with ergodicity. The future work we are

most concerned with therefore involves finding a deeper connection between ergodic-

ity and these troublesome systems, hoping that it might lead to a generalized theory
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of statistical mechanics which can handle them.

Let us elaborate on the current understanding of ergodicity and where the prob-

lems arise in treating driven dissipative and long-range interacting systems. Ergodic-

ity can be clearly defined. Detailed mathematical definitions may be found in various

places including books devoted to this singular topic (111; 112). However, if you

ask the simple question of whether or not a given system is ergodic, the answer is

determined (or can be in some cases) in a rather crude way. If the time average of a

physical quantity of the system is equivalent to the full phase space average (different

trajectories in phase space) of the same quantity than your system can be said to be

ergodic. Otherwise it is not. If it is not ergodic, then there are additional conserved

quantities that allow you to divide up the phase space.

The method of comparing the time average to the phase average allows one to

determine ergodicity, but does it offer any promising generalizations? Phrased slightly

differently, does the way in which ergodicity is determined give insight into how one

might generalize the tools of statistical mechanics to include some systems that are

not ergodic in the usual definition? We think it should be possible to make such a

generalization for a driven dissipative system with long-range interactions, at least

for the particular case of the chaotic regime after transients have died out.

Some driven dissipative systems are not so different from those which are treated

in standard statistical mechanics text books, except for the fact that the random

(chaotic) motion is restricted to a particular volume of the phase space. This restricted

volume is likely defined by a stranger attractor. A class of dynamical systems known

to satisfy Smale’s axiom A can be approximated with a specific type of stretching and

folding map known as an Anosov map. What does this mean to us? These systems are
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important because Ruelle and Brown (113) have proven an ergodic theorem for strange

attractors which satisfy Smale’s axiom A. Therefore, if one can construct a driven

dissipative system containing a finite number of long-range interacting particles that

satisfies the correct stretching and folding of the phase space. In the thermodynamic

limit, things are more challenging. However, if we are focused on periodic systems we

might be able to dress the interactions of the particles, as we have done in chapter 5

where the coulomb force went to a polygamma function, to treat an infinite system

with a finite number of particles per spatial period.

The discussion of ergodicity for strange attractors that can be approximated by

an Anosov map is extremely mathematical and may not be applicable to many sys-

tems. It is somewhat unfortunate that the properties of strange attractors, such as

the amount of the phase space it occupies and its Lyapunov spectrum, are often de-

termined numerically, even when an approximate analytical treatment exists. The

reason numerics are often the preferred approach in a preliminary study is in part

because they are easier, but it is also partly because it takes time and is not always

possible to determine a systems mathematical class. Since we are not sure if the

proposal in the last paragraph is even possible, we will speculate a little further.

Gilmore and Lefranc (35) have condensed the classification of chaotic systems into

topological groups making an infinite number of dynamical systems classifiable by

discrete quantities relating to the topology of stretching and folding mechanisms. In-

deed topology is an important concept in Axiom A but Gilmore and Lefranc’s book

presents a slightly different prospective. Their classifications are relatively intuitive

and can even determine a topological class from experimental data. Given their el-

egant classifications of chaos, and therefore the phase space “randomness”, it seems
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feasible that understanding a strange attractor’s topological class might be used to

find an ergodic theory for it.

One last point must be addressed. In most cases, a large number of degrees of

freedom makes a system thermalize in a normal way. Driven dissipative or not, with

many particles there might be a natural approach to an ergodic state through col-

lisions. No extra theorizing would be needed. The value in exploring a generalized

theory comes from interactions which are long-range and therefore don’t thermalize

normally, sometimes even spontaneously creating coherent structures (114). Though

Gilmore and Lefrank’s work is primarily on low dimensional systems they also com-

ment on the possibility of discrete classifications in higher dimensions if the system

exhibits specific stretching and folding properties. Even though they often break the

standard definitions of ergodicity, a long-range interacting system could settle into

chaotic motion that is described by a high dimensional strange attractor. In this

case, these ideas could lead to the appropriate generalizations of statistical mechan-

ics. Even if such work could only be done on the simplest “toy” models, it could

produce valuable insight into the physics of these pathological systems.
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Appendix A

Appendicies

A.1 Solving for the Electric Potential

of a 2-Phase Electric Curtain

We can greatly simplify the problem of solving for the potential of an infinite series

of parallel electrodes of infinite long length by rotating our coordinate system onto

the complex plane and then making an appropriate conformal transformation. Here

we use a similar procedure to that used by Masuda and Kamimura (70) to solve for

the electric potential and field of the 2-phase EC.

We start by defining the plane of the electrodes to be the x, z plane. The electrodes

are infinitely long running parallel to the z-axis and are spaced evenly along the x-axis.

The y-axis is perpendicular to the plane of the electrodes. We define the wavelength

to be the space between adjacent electrodes 1 and 3 as shown in fig. A1.1 (a) and label

them from 1-3 respectively. The electric potential applied to the adjacent electrodes

are 180 degrees out of phase so we express the charge per unit length on each electrode
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as

Qn = Q cosωt− (n− 1)π (A.1)

where n denotes the electrode of interest; i.e. n = 1, 2, 3, ...∞. We choose to solve for

the potential in the complex plane u, iv. The mapping is accomplished through the

conformal transformation:

e(y+ix)2π/λ = u+ iv (A.2)

introduced by Masuda and Kamimura (70). In fig. A1.2 we see that we can map an

infinite set of electrodes onto a unit circle containing only 2 points because electrodes

1, 3, 5... map to the same location. It is also true that the electrodes 4, 6, 8... would

map to electrode 2 on u and indeed all electrodes on x map to the two points on the

u-axis. We can now solve for the electric potential in the u, v plane and map our result

back onto the x, y plane. Since the electrodes are infinitely long, we may express a

two dimensional electric potential produced by the two neighboring electrodes as,

Φ(u, v) =
2∑

n=1

−Qn

2πε0
ln rn, (A.3)

where n denotes the nth electrode, Qn is given by Eq. (A.1) and rn is the distance

between the point of interest (u, v) of the field coordinates and the source coordinates

(u′, v′) of the nth electrode:

rn =
√

(u− u′n)2 + (v − v′n)2 (A.4)
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Using Eq. (A.4) we can express u and v in terms of x and y and find the corre-

sponding electric potential in the x, y plane: u = Re[ek(y+ix)], v = Im[ek(y+ix)]. We

find that rn =
√

2eky(cosh ky − cos k(x− x′n)). The potential can now be expressed

in terms of only x, and y as

Φ(x, y) =
2∑

n=1

−Q
4πε0

cos (ωt− (n− 1)π)){ln 2 + ky + ln (cosh ky − cos k(x− x′n))}

(A.5)

We can simplify this equation further by substituting in x′n = (n−1)λ
2 and noticing that∑2

n−1 cos (ωt− (n− 1)π) = 0 and only ln (cosh ky − cos k(x− x′n)) in { } survives,

thus

Φ(x, y) = −Q4πε0
cosωt ln cosh ky + cos kx

cosh ky − cos kx (A.6)

Since ~E = −∇Φ, we obtained Eq. (4.2) and Eq. (4.2).

A.2 Floquet Stability Program
1 import numpy
2 import matplotlib as mpl
3 import os
4 from scipy.integrate import odeint
5

6

7 class One_Particle_Ensble_Sin1D(object):
8 def __init__(self,A,beta,dt):
9 self.A = A

10 print('self.A is: ' + str(self.A))
11 self.beta = beta
12 print('self.beta is: '+str(self.beta))
13 self.num_cell = 1.0
14 # d here is the length of the system

145



A.2. FLOQUET STABILITY PROGRAM

15 self.d = self.num_cell*2.0*np.pi
16 print('slef.d: ' +str(self.d))
17 # right now "As" is only different from "A"
18 # because of different particle "densities". The reason I
19 # have stated it like this is because particles with
20 # different charges would then need the qq
21 # factor to actually be q[i]*q[j].
22 self.As = A
23 self.dt = dt
24 self.sol = np.array([])
25

26 # Define a function that grabs the matrix elements of the Jacobian,
27 # set_sol must have already
28 # been done for this to work
29 def set_sol(self,sol):
30 self.sol=sol
31 # To get the solution at a particular time we need the index
32 # that is associated with that
33 # time. We get this by taking the time value wanted and
34 # dividing by dt. In order for this to work
35 # with single (non array values) of time we need a self.dt.
36

37 # The Jacobian
38 def J(self,which_M,t):
39 x1 = self.sol[int(t/self.dt)-1,2]
40 y = self.sol[int(t/self.dt)-1,3]
41 # define the matrix elements of the time dependent Jacobian
42 M11 = 0.0
43 M12 = 1.0
44 M21 = self.A*np.cos(x1)*np.cos(t)
45 M22 = -self.beta
46

47 if (which_M == "M11"):
48 return M11
49 if (which_M == "M12"):
50 return M12
51 if (which_M == "M21"):
52 return M21
53 if (which_M == "M22"):
54 return M22
55

56 def mw(self,warr,t):
57 dotW11 = warr[2]
58 dotW12 = warr[3]
59 dotW21 = warr[0]*self.J("M21",t)+warr[2]*(-self.beta)
60 dotW22 = warr[1]*self.J("M21",t)+warr[3]*(-self.beta)
61 return [dotW11,dotW12,dotW21,dotW22]
62
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63 # The first order system of equations
64 def f(self,xarr,t):
65 x0dot = self.A*np.sin(xarr[2])*np.cos(t) - self.beta*xarr[0]
66 x1dot = 0.0
67 x2dot = xarr[0]
68 x3dot = 0.0
69 return [x0dot,x1dot,x2dot,x3dot]
70

71 def not_close(first_pnt,curnt_pnt,thresh):
72 """
73 This functions looks to see weather or not the
74 current point is in the threshold radius of the first
75 point. Returns True if NOT in threshold radius.
76 Returns False if we found our guy.
77 """
78 rf = np.array([first_pnt[0] , first_pnt[2]])
79 rs = np.array([curnt_pnt[0] , curnt_pnt[2]])
80 diff = rf-rs
81 r = np.sqrt(diff[0]**2+diff[1]**2)
82 #print("r is: "+str(r))
83

84 if (r>thresh):
85 return True
86 else:
87 return False
88

89

90 def find_one_full_closed(sol,thresh,dt):
91 """
92 This function finds a single loop of the limit cycle.
93 Since the limit cycle might be periodic over more than
94 one period this function returns the solution of
95 just that loop AND the periodicity of the loop.
96 Must pass it the threshold value. If it cant find a
97 trajectory where the beginning and end of the
98 lie within this threshold value than it quits and prints an error.
99 The threshold number "thresh" is a distance in the phase plane.

100 """
101 not_found = False
102 # Work our way backwards from last time value to find last period
103

104 # First find last mod 2*pi position.
105 loc = len(sol[:,2])
106 while ((loc*dt)%(2*np.pi)>dt):
107 loc-=1
108 first_loc = loc
109 first_pnt = sol[first_loc,:]
110 loc-=1
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111 # Now find the next point where the orbit closes (going backward).
112 # Orbits should have trajectories in multiples of 2*pi so only check those
113 while ((loc*dt)%(2*np.pi)>dt):
114 loc-=1
115

116 curnt_pnt = sol[loc,:]
117

118 # for "slow" trajectories the point after the first may be within the
119 # threshold value. This is not bad as it means the time step is
120 # definitely small enough, but is messes up the next loop.
121 # To fix this problem we will subtract more than one from the
122 # "loc" variable. Not to much though, otherwise we risk crossing
123 # some 2*pi barrier...probably not, but be safe. The original
124 # "loc-=1" is commented out for comparison.
125 # loc -= 1
126 # Increase by pi/4 to avoid finding a close point it
127 # time that is in threshold value.
128 loc -= int(np.pi/4.0/dt)
129 while (not_close(first_pnt,curnt_pnt,thresh)):
130 if (loc == 0):
131 not_found = True
132 raise Exception("Point in threshold not found!!")
133 #break
134 while ((loc*dt)%(2*np.pi)>dt):
135 loc-=1
136 curnt_pnt = sol[loc,:]
137 secnd_loc = loc
138 loc-=1
139

140 secnd_pnt = curnt_pnt
141

142 if not_found:
143 final = find_one_full_closed(sol,thresh*2,dt)
144 else:
145 final = sol[secnd_loc:first_loc+1,:]
146

147 return final
148

149 def main():
150 # Set this to true if you want an image of the loops in 3D for different
151 # values of the varied parameter.
152 loops = False
153 # Set this to true if you want to make a movie of the stability
154 # multipliers in the complex plane?
155 mk_stab_mov = True
156

157 # Are we looking for the first bifurcation?
158 first_bif_only = True
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159

160 if loops:
161 fig3d = mpl.figure
162 d3ax = fig.add_subplot(111,projection='3d')
163

164 # Make the directory that will store the loop images.
165 os.mkdir('LoopImgs')
166 # Make a directory for the stability multiplier images
167 # --> this will be a movie as a function of A.
168 if mk_stab_mov: os.mkdir('StabMovie')
169

170 # This variable is required so we don't print the A value of
171 # the bifurcation point more than once.
172 found_bif = False
173

174 # Make a file to store q (periodicity) for different parameter values.
175 q_file = open("qdata.txt","w")
176 # Make a file to store stability multipliers for different parameter values.
177 eig_file = open("data.txt","w")
178 eig_file.write("eig1 eig2 A\n")
179

180 # Time step size. In actuality odeint uses many more time steps but
181 # only returns information in increments of dt.
182 dt = .001
183 # Total number of iterations to perform
184 totIter = 50000
185 totTime = totIter*dt
186 time = np.arange(0.0,totTime,dt)
187

188 beta = .6
189

190 # Whats the periodicity of the system.
191 # x = n*pi/k (n must be an even number). modNum = 2*np.pi/k
192 modNum = 2.0*np.pi
193

194 # initial conditions
195 initx = np.pi
196 inity = 0.0
197 initvx = 0.0
198 initvy = 0.0
199

200 # Initial driving amplitude.
201 A_start = 0.2
202 A = A_start
203 # Final driving amplitude.
204 A_max = .9
205 # Increment to increase driving amplitude in.
206 A_step = .002
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207

208 count = 0
209

210 # Make arrays to keep eigenvalues.
211 # There will be two eigenvalues so lets have two separate
212 # arrays for them
213 eigs1 = np.array([])
214 eigs2 = np.array([])
215

216 # Make the file to write final positions of the particle to
217 final = open("final_position.txt","w")
218 final.write("Last position of orbit, A\n")
219 x0 = np.array([initvx,initvy,initx,inity])
220

221 # Keep track of the previous period of the trajectory so we can compare
222 # and find when the bifurcation occurs.
223 previous_q = 0.0
224 while A < A_max:
225 # Initial conditions vector is x0.
226 # Remember the set up is: [xdot,ydot,x,y]
227

228 apx = One_Particle_Ensble_Sin1D(A,beta,dt)
229 # Find the numerical solution for the setup "apx", initial conditions "x0",
230 # and time array, "time".
231 sol = odeint(apx.f,x0,time)
232 print("x0")
233 print(x0)
234

235 # Impose periodic boundary conditions.
236 sol[:,2]=sol[:,2]%(2*np.pi)
237

238 # "thresh" is distance in the phase place,
239 # specifically the size of a circle that we look in to
240 # determine if a periodic trajectory has gone a full cycle.
241 thresh = .00005
242

243 # Changes depending on whether or not you are looking
244 # for the first bifurcation at x=pi or
245 # other ones. x=pi bifurcation is special
246 # because it is exact and stationary in time.
247 if first_bif_only:
248 loop = np.zeros([int(2.0*np.pi/dt),4])
249 else:
250 loop = find_one_full_closed(sol,thresh,dt)
251

252 loop[:,2]+=np.pi
253

254 if "stop" in loop:
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255 break
256

257 loop_t = np.arange(0.0,(len(loop))*dt,dt)
258

259 if loops :
260 d3ax.plot(np.zeros(len(loop))+A,loop[:,2],loop[:,0],color="Black")
261

262 fig = mpl.figure()
263 ax = fig.add_subplot(111)
264 #ax.scatter([0.0,np.pi,2.0*np.pi],[0.0,0.0,0.0],color="Red")
265 #ax.plot(loop[:,2],loop[:,0],":",color="Black")
266 ax.plot(loop[:,2],loop[:,0],color="Black")
267 ax.set_xlabel("$x_1$",fontsize=25)
268 ax.set_ylabel("$x_2$",fontsize=25)
269 #ax.set_xlim([np.pi-np.pi/3.0,np.pi+np.pi/3.0])
270 #ax.set_ylim([-.3,.3])
271 fig.tight_layout()
272 fig.savefig("LoopImgs/"+str(A)+".png",dpi = 300,transparent=True)
273 #os.system("open LoopImgs/" +str(A)+".png")
274 mpl.close(fig)
275

276 apx.set_sol(loop)
277

278 apx.set_sol(loop)
279

280 # Solution matrix at t=0 (identity matrix).
281 w0 = np.array([1.0,0.0,0.0,1.0])
282 # Integrate to find the linearized map
283 w_of_t = odeint(apx.mw,w0,loop_t,hmax=dt,hmin=dt)
284 #w_of_t = odeint(apx.mw,w0,loop_t)
285

286 # Periodicity of the current limit cycle.
287 current_q = loop_t[-1]/(2.0*np.pi)
288 # Print the period of the orbit we are working on
289 print("q: " + str(current_q))
290 q_file.write(str(loop_t[-1]/(2.0*np.pi))+" "+str(A)+"\n")
291

292 # If the period has changed print the best
293 # guess of the value of A for which it occured
294 if current_q > (previous_q+1.0):
295 print("bifurcation point. A = " +str(A))
296

297 # reset the previous period for a new comparison.
298 previous_q=current_q
299

300 # make the matrix form of w_of_t
301 matrix = w_of_t[-1,:].reshape(2,2)
302
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303 # use linalg to get the eigenvalues of the
304 # W(t=q) (solution matrix at the end of the
305 # trajectories cycle) where q is the period time of the orbit
306 vals,vect = numpy.linalg.eig(matrix)
307

308 if((abs(vals[0])<=1.0) and (not found_bif)):
309 print("this is the bifurcation point (l1)")
310 print(A)
311 found_bif = True
312 if(abs(vals[1])<=1.0 and (not found_bif)):
313 print("this is the bifurcation point (l2)")
314 print(A)
315 found_bif = True
316

317 eigs1 = np.append(eigs1,vals[0])
318 eigs2 = np.append(eigs2,vals[1])
319

320 eig_file.write(str(vals[0])+" "+str(vals[1])+" "+str(A)+"\n")
321

322 # Update everything for next run.
323 count+=1
324 x0 = loop[-1,:]
325 final.write(str(x0)[1:-1]+" "+str(A) +"\n")
326 A += A_step
327 print("A: "+str(A))
328

329 # Arrays for plots
330 theta = np.arange(0,10,.05)
331 A_arr = np.arange(A_start,A,A_step)
332

333 print('we are above')
334 while len(A_arr)>len([k.real for k in eigs1]):
335 A_arr = A_arr[:-1]
336 while len(A_arr)<len([k.real for k in eigs1]):
337 A_arr = np.append(A_arr,A_arr[-1]+A_step)
338 print('we are below')
339

340 fig1 = mpl.figure()
341 ax1 = fig1.add_subplot(111)
342 ax1.plot(np.cos(theta),np.sin(theta))
343 ax1.plot([k.real for k in eigs1],[l.imag for l in eigs1])
344 ax1.set_xlabel("Re[$\lambda_1$]",fontsize=25)
345 ax1.set_ylabel("Im[$\lambda_1$]",fontsize=25)
346 fig1.tight_layout()
347 fig1.savefig("eig1.png")
348 os.system("open eig1.png")
349

350 fig2 = mpl.figure()
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351 ax2 = fig2.add_subplot(111)
352 ax2.plot(np.cos(theta),np.sin(theta))
353 ax2.plot([k.real for k in eigs2],[l.imag for l in eigs2])
354 ax2.set_xlabel("Re[$\lambda_2$]",fontsize=25)
355 ax2.set_ylabel("Im[$\lambda_2$]",fontsize=25)
356 fig2.tight_layout()
357 fig2.savefig("eig2.png")
358 os.system("open eig2.png")
359

360 fig3, ax3 = mpl.subplots(2,sharex=True)
361 ax3[0].plot(A_arr,[k.real for k in eigs1],color='k')
362 ax3[1].plot(A_arr,[k.imag for k in eigs1],color='k')
363 ax3[0].set_ylabel("Re[$\lambda_1$]",fontsize = 25)
364 ax3[1].set_ylabel("Im[$\lambda_1$]",fontsize = 25)
365 ax3[1].set_xlabel("$A$",fontsize = 25)
366 fig3.tight_layout()
367 fig3.savefig("A_vs_eig1.png")
368 os.system("open A_vs_eig1.png")
369

370 fig4, ax4 = mpl.subplots(2,sharex=True)
371 ax4[0].plot(A_arr,[k.real for k in eigs2], color = 'k')
372 ax4[1].plot(A_arr,[k.imag for k in eigs2], color = 'k')
373 ax4[0].set_ylabel("Re[$\lambda_2$]",fontsize = 25)
374 ax4[1].set_ylabel("Im[$\lambda_2$]",fontsize = 25)
375 ax4[1].set_xlabel("$A$",fontsize = 25)
376 fig4.tight_layout()
377 fig4.savefig("A_vs_eig2.png")
378 os.system("open A_vs_eig2.png")
379

380 eig_file.close()
381

382 final.close()
383

384 # Uncomment this if you want a text file with the
385 # information of the system you just did a run
386 # of.
387 ## make text file with all extra information
388 #outFile = open("info.dat","w")
389 #outFile.write("Info \n coefficient: " + str(coef) \
390 # + "\nwave number: " +str(k)\
391 # + "\nomega: " + str(w)\
392 # + "\ndamping: " + str(damp)\
393 # + "\ng: " + str(g)\
394 # + "\ntime step: " + str(dt)\
395 # + "\ntotal time: " + str(dt*totIter)\
396 # + "\ntotal iterations: " + str(totIter)\
397 # + "\nInitial Conditions: \n" +
398 # "initial x: " +str(initx) \
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399 # +"\ninitial y: " +str(inity) \
400 # +"\ninitial vx: " +str(initvx)\
401 # +"\ninitial vy: " +str(initvy) )
402 #outFile.close()
403

404

405 if loops:
406 line = np.arange(start_A-.01,start_A,A_step)
407 pi_line = np.zeros(len(line))+np.pi
408 z_line = np.zeros(len(line))
409 d3ax.plot(line,pi_line,z_line,color="Black")
410 d3ax.set_xlabel("$A$",fontsize=25)
411 d3ax.set_ylabel("$x_1$",fontsize=25)
412 d3ax.set_zlabel("$x_2$",fontsize=25)
413 d3fig.tight_layout()
414 d3fig.savefig("loops.png",dpi=300)
415

416 if mk_stab_mov:
417 for i in range(len(eigs1)):
418 s_fig = mpl.figure()
419 s_ax = s_fig.add_subplot(111)
420 s_ax.plot(np.cos(theta),np.sin(theta))
421 s_ax.scatter(eigs1[i].real,eigs1[i].imag,c='r',s=20)
422 s_ax.scatter(eigs2[i].real,eigs2[i].imag,c='b',s=20)
423 s_ax.set_xlabel("Re[$\lambda$]",fontsize=25)
424 s_ax.set_ylabel("Im[$\lambda$]",fontsize=25)
425 s_fig.tight_layout()
426 s_fig.savefig("%(num)0.5d_stbl.png"%{"num":i})
427 mpl.close(s_fig)
428

429

430

431 if __name__ == '__main__':
432 main()
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