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ABSTRACT 
 
 
A fundamental challenge faced by all organisms is the risk of infection by pathogens that 
can significantly reduce their fitness. The evolutionary dynamic between hosts and 
pathogens is expected to be a coevolutionary cycle, as pathogens evolve by increasing 
their level of virulence and hosts respond by increasing their level of resistance. The 
factors that influence the dynamics of adaptation by pathogen and host in response to one 
another are not well understood. Social insects live in dense colonies in high-pathogen 
soil environments, making them an ideal model system to study the factors influencing 
the evolution of pathogen resistance. In this thesis work, I investigated several alternative 
hypotheses to explain patterns of host resistance to entomopathogenic fungi in the 
harvester ant genus Pogonomyrmex: that high resistance is associated with high 
environmental pathogen loads, that local adaptation leads to increased resistance to 
coevolved pathogen populations, that life history tradeoffs increase allocation to 
resistance in harsher environments, and that increased genetic diversity caused by 
interspecific hybridization enhances inherent resistance.  First, I characterized patterns of 
spatial variation in abundance and diversity of fungal pathogens among habitats of 
Pogonomyrmex species. I found 17 genera of fungi in the soil, six of which were 
entomopathogenic. Lower precipitation habitats, where P. rugosus occurs, had the lowest 
diversity, while the highest was experienced by the H lineage, one of two hybrid 
populations. When actual infection rates of field-caught workers were compared, the 
mesic-habitat P. barbatus was infected significantly more often. These results suggest that 
habitat does plays a role in fungal diversity, and that species are exposed to more 
entomopathogens may be more likely to get infected. Second, I tested experimentally 
whether hybridization and or habitat differences play a role in pathogen resistance by 
testing the effect of soil type and species identity on infection rates in pupae of the two 
species and their hybrids. This experiment showed P. rugosus ants had the highest 
inherent resistance to infection, supporting the life history tradeoff hypothesis. This 
suggest that Pogonomyrmex ants species are allocating their resources differently 
according to their environment, with more stressful environment leading to less 
investment in reproduction and more in protection against pathogens. Overall our study 
shows that environment plays a role in differences in infection risk, while genetic effects 
such as hybridization may not play a role in pathogen resistance.  
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CHAPTER 1 

 COMPREHENSIVE LITERATURE REVIEW 

Host-pathogen coevolution 

Pathogens and their hosts are constantly evolving in response to one another, 

similar to the arms race scenario of the Red Queen hypothesis. Coevolution of host and 

pathogen should drive molecular evolution through continual natural selection and 

counter adaptation (Van Valen, 1973; Hughes and Boosma, 2004). In the case of 

pathogens, interaction with its host plays an important role in their evolutionary 

trajectory. There are a few common host-parasite interaction models used in the Red 

Queen hypothesis. One is the matching allele model, which occurs when the host can 

detect and eliminate parasites carrying alleles that differ from its own (Luijckx et al., 

2013). The second is the inverse matching alleles model, in which the host’s alleles have 

the ability to recognize a particular allele in a parasite. Lastly, the gene-for-gene model 

suggests that a host can resist a parasite only if the host expresses a resistance allele, A , 

and the parasite expresses a noninfectious (avirulent) allele, A  (Sasaki, 2000; Agrawal 

and Otto, 2006). 

Pathogens adapt by increasing their level of virulence, which imposes selection on 

hosts to increase their resistance. This coevolutionary process can lead to strong 

differences in pathogen impact among individuals and populations, as pathogens adapted 

to infect one genotype in particular may not be able to infect other genotypes (Hughes 

and Boomsma, 2004). Similarly, hosts may vary in their resistance to infection when 

faced with local or novel pathogens. This hypothesis assumes that parasites genotypes 
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adapt to host when they become locally common (Jaenike, 1978). There are some costs, 

however, associated to the evolution of both virulence and resistance.  When you have a 

highly virulent pathogen it can harm itself by reducing the population size of available 

hosts, therefore it might limit the transmission of the pathogen by limiting the movement 

of the host (Mosquera and Andler, 1998). Similarly, a highly resistant organism, 

especially one with many immune genes such as in some plants, can impact their 

reproductive fitness (Burdon and Thrall, 2003). 

Selection for resistance may be particularly important for species that are highly 

social, because infectious diseases can potentially spread more easily between group 

members (Schmid-Hempel, 1994, 1998; Hughes and Boomsma, 2004; Cremer et al., 

2007). A great model system to understand disease transmission in societies is the social 

insects. Eusocial insect colonies are made up of highly related individuals that live in 

close proximity in the environment, and living in close proximity can facilitate the spread 

of infectious diseases like pathogens and parasites. Their cooperation also increases the 

efficiency in predation defenses. Social insect colonies can be infected by a great 

diversity of parasites and pathogens, including arthropods, helmith worms, fungi, 

bacteria, viruses and protozoa (Cremer et al., 2007). 

 

Pathogenic Fungi 

Pathogenic fungi have a broad geographical distribution; however, their specific 

habitat type confines them. Habitat types are known to be important criteria for 

identification of insect-pathogenic fungal strains (Bidochka et al., 1998; Bidochka et al., 
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2002; Devi et al., 2006). There are approximately 56 fungi genera known to be 

entomopathogenic (Tanada and Kaya, 1993). Entomopathogenic fungi are capable of 

infecting a wide range of hosts. For example, the entomopathogenic fungus Beauveria 

bassiana and Metarhizium anisopliae are known to infect over 200 species of insects but 

isolates of these two species have a higher degree of specificity (Maurer et al., 1997; 

Devi et al., 2006). Sanchez-Peña (2007) showed specificity of isolates when he used 

different isolates of Beauveria bassiana and was able to infect different insect pests: a 

greenhouse whitefly, a fall armyworm, and a potato psyllid.  

Insects are usually infected by fungal propagules like spores or conidia, zoospores 

(motile asexual reproductive cells) and plantos or ascospores (Tanada and Kaya, 1993; 

Schmid-Hempel, 1998). Fungi can reproduce sexually and asexually. During asexual 

reproduction conidiophores release a conidium that lands on the cuticle of the host. Once 

the conidium gets in contact with the insects’ surface, it can produce a secondary 

conidiophore, also known as the capilliconidium, which can become the source of the 

infection (Figure 1.1). 

Once a conidium has encountered an insect host, there are three basic steps to 

fungal infection in insects. First, the formation of the infection structure occurs, and 

during this step the fungal spore penetrates the insect through the exoskeleton or cuticle. 

In some species of fungi they may also infect the insect through the tracheal opening such 

as in Beauveria sp. Fungal spore has to go through two layers, the outer epicuticle and 

procuticle.  The conidium adheres to the surface of the insect, germinates, and often 

differentiates into an appresorium.  Second, the fungi penetrate the cuticle, which 
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involves enzymatic degradation (chitinases and proteases) of the epicuticle and 

mechanical pressure (growing fungal tip) applied during the penetration of the procuticle. 

Lastly, the fungi penetrate the epidermis and enter the hemocoel where the hyphal body 

differentiates into blastospores; this helps with the dispersion and colonization of the 

haemocoel. Here fungi produce toxins that may cause death to the insect and it is attacked 

by the immune system and hemocyste, in defense fungi may or may not phagocytose and 

encapsulate itself (Hajek and St. Leger, 1994; Clarkson and Charnley, 1996; Castrillo et 

al., 2005). Once a fungus kills the host, it continues to grow saprophytically and produces 

reproductive spores that are dispersed.  

 
Figure 1.1. Typical life cycle of an fungus. The endostroma in the insect host produces 
conidiospores. A primary, secondary and tertiary conidium is formed when no further 
host are available. Capilliconidia are the major infective units. After successful infection, 
hyphal bodies are formed and that develop into mycelia and stroma, which also produce 
resting spores (Tanada and Kaya, 2003). 
 
 
Study organism 

The genus Pogonomyrmex is one of the most abundant genera of harvester ants 

located in semiarid regions of North America. The closely related species 
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Figure 2: Typical life cycle of an fungus. The endostroma in the insect host produces 

conidiospores. A primary, secondary and tertiary conidium is formed when no further host are 

available. Capilliconidia are the major infective units. After successful infection, hyphal bodies 

are formed and that develop into mycelia and stroma, which also produce resting spores (Tanada 

& Kaya, 2003). 
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Pogonomyrmex barbatus and Pogonomyrmex rugosus are the largest harvester ants found 

in the southwestern United States (Whitford et al., 1975; Hölldobler, 1976). 

Hybridization between these two species of harvester ants has given rise to multiple 

hybrid populations (“G”, “F”, “H” and “J”) that are highly ecologically successful 

(Helms Cahan and Keller, 2003; Anderson, 2006a,b; Schwander et al., 2007a). 

Schwander and colleagues (2007a) found that F, G, and H lineages are derived from a 

single origin, while J lineage originated separately. F, G, and H individuals are similar in 

appearance to P. rugosus, while J individuals are more similar in appearance to P. 

barbatus (Anderson, 2006). 

One population that shows a consistently high level of heterozygosity, especially 

when compared to closely related parental species, is the hybridizing harvester ants. Each 

population is composed of two genetically distinct lineages (H1 and H2 & J1 and J2) 

(Helms Cahan and Keller, 2003; Schwander et al., 2007a). In contrast with the parental 

species, reproductive caste is genetically determined; mating with males of the same 

lineage produces daughter queens, while workers are only produced from mating with 

males of the opposite lineage. As a result, workers in the colony are significantly more 

heterozygous in relation to queens and males (Helms Cahan and Keller, 2003; Helms 

Cahan and Keller, 2004; Anderson et al., 2006a,b; Schwander et al., 2007a,b) (Figure 

1.2). This system is specifically important to test whether the increased heterozygosity 

increases resistance in the hybridizing population. 
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Figure 1.2. Schematic showing the genetic caste determination in hybridizing lineages. 
Each number represents the lineage of the individual. The crowns represent queens and 
workers are represented by the horns.  
 

There is evidence that some of the subpopulations of the harvester ants have 

different levels of heterozygosity. This allows us to test for correlation in pathogen 

resistance among these hybrid populations. Nuclear markers suggest P. rugosus has a 

higher contribution to the lineages H1 and J1 than P. barbatus. P. barbatus exclusively 

contributes to H2 and J2 (Helms Cahan and Keller, 2003) (Figure 1.3). The cox1 

mitochondrial haplotypes show J lineage as a paraphyletic group, where J1 is more 

closely related to P. rugosus and J2 is more closely related to P. barbatus (Helms Cahan 

and Keller, 2003). Schwander and colleagues (2007a) looked at the distribution of the 

lineages and suggested that the genetic caste determination might have originated in 

eastern New Mexico or west Texas, and small founder populations radiated west (H and 

G lineage pair diverge from F pair) where the lineages’ genetic caste determination 

evolved by introgressive hybridization between P. barbatus and P. rugosus (Schwander et 

al., 2007b). As a result of these small founder populations, there was a loss of genetic 

variation in these populations. Both phenotype and genotypes are distinctively different 

from the parental populations. 
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Figure 1.3. Maximum-likelihood consensus tree. Nuclear markers show the 
relationship between parental species and hybrids. Each interbreeding lineage is derived 
from a different parent species. Red branches represent P. rugosus species, yellow 
branches represent J1/J1 lineages, purple branches represent H1/H2 lineages and blue 
represents P. barbatus species. Tree constructed by Andrew Nguyen. 
 

Project Goals 

My thesis work aims to assess the role of hybridization on pathogen resistance in 

the ant genus Pogonomyrmex: (1) determine abundance and diversity of fungi among 

habitats of P. barbatus, P. rugosus, and two lineages of hybrid origin and (2) test 

experimentally whether hybridization and/or habitat differences play a role in pathogen 

resistance; To accomplish Objective 1, I characterized entomopathogenic fungi in 

Pogonomyrmex species and compare abundance and diversity of pathogenic fungi 

between habitats. To be able to make better predictions on the effects of pathogens on our 

species we first need a survey of the different fungal pathogens they encounter in their 

natural habitats. To accomplish Objective 2, I exposed ant pupae to their different soil 

habitats and compare the infection frequency of fungi for each species and hybrid 

lineage. 
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  CHAPTER 2 

DETERMINING ABUNDANCE, DIVERSITY AND COMPOSITION OF FUNGI IN 

POGONOMY RMEX 

Abstract 

Fungi are important pathogens of insects that are ubiquitous in soil environments. In 
social insects, especially ants, little is known on fungal diversity and composition in their 
environment. In this I study wanted to characterize and identify fungal diversity and 
composition across the Pogonomyrmex barbatus complex of harvester ants, which 
includes two species whose ranges differ in precipitation and soil moisture and two 
populations of hybrid origin that occupy a climatically intermediate zone. I hypothesized 
that precipitation is a driver of fungal diversity and composition, where higher 
precipitation habitats support a higher diversity and abundance than lower precipitation 
habitats. Using soil, ant and queen samples collected in the field, I isolated fungi and 
identified cultured colonies to genus. Diversity, abundance, composition and infection 
frequency were determined for each of the species/lineages. A total of 17 genera were 
found, which six were entomopathogenic. Abundance and richness did not differ 
significantly across the species’ ranges, but Simpson’s index of diversity did reveal some 
differences in the expected direction, where the desert-occupying P. rugosus had the 
lowest diversity relative to the other taxa, although regression of diversity against 
putative environmental variables did not indicate a significant relationship.  For infection 
frequency, P. barbatus workers were more likely to be infected than P. rugosus, while H 
lineage, one of the two hybrid populations, had the lowest fungal spores in workers. Our 
results showed that habitat does plays a role in fungal composition but precipitation may 
not be a reliable predictor of abundance and diversity of fungi. 
 
 
Introduction 

Eusocial insect colonies are composed of highly related individuals that live in 

close proximity in the same environment.  Living in groups increases the efficiency of 

brood care, foraging, and predation defenses; however, it also poses a tradeoff as 

infectious diseases can potentially spread more easily between individuals (Cremer et al., 

2007; Schmid-Hempel, 1994, 1998; Hughes and Boomsma, 2004). Because they nest 

predominantly in microbially-rich environments such as soil, ants are particularly likely 
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to face the challenge of living with a high density of pathogens. Indeed, the shift to a 

subterranean lifestyle in ants is hypothesized to have been facilitated by the evolution of 

the metapleural glands, paired structures situated at the posterolateral corners of the 

mesosoma that secrete chemical compounds that act as antimicrobial agents (Schild-

Knecht and Koob, 1970, 1971; Do Nascimento et al., 1996). 

One important class of pathogens that can infect ants is the entomopathogenic 

fungi.  Fungi are ubiquitous in the soil environment, and many opportunistically or 

obligately infect juvenile and adult insects (Branco, 2011). Insects are usually infected by 

fungal spores or conidia (Tanada and Kaya, 1993; Schmid-Hempel, 1998), which are 

most commonly found in soil but can also disperse through cadavers and wind currents 

(Meyling and Eilenberg, 2007). There are 700 species of entomopathogenic fungi known, 

although very few have been studied in any detail (Hajek and St. Leger, 1994). Just two 

of these, Beauveria bassiana and Metarhizium anisopliae, are known to infect over 200 

species of insects, although specific isolates can have a higher degree of specificity 

(Maurer et al., 1997; Devi et al., 2005). Once a conidium has encountered an insect host, 

it forms an infection structure with which it penetrates the insect through the exoskeleton 

or tracheal opening through a combination of enzymatic degradation and mechanical 

pressure. In most insect orders, the nymphal or larval stages are infected more often than 

the egg, pupal and adult stages (Naug and Camazine, 2002). Even within the larval stage, 

resistance to fungal infection may vary over time. In the potato beetle, Leptinotarsa 

decemlineata, younger larval instars are more susceptible to infection with B. bassiana 

(Scheffenberg, 1957), while for the corn earworm, Helico verpazea, larvae are more 
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susceptible to Nomuraea rileyi in the third and fifth instar (Mohamed et al., 1985).  

Enhanced resistance to fungal disease in the pupal stage may be associated with the 

development of the waxy epicuticular layer compared to larval stages, which are forming 

integuments and gut epithelium, exposing them to fungal penetration (Tanada, 1955). 

The abundance, composition and virulence of entomopathogenic soil fungi vary 

as a function of climatic factors and land-use patterns (Barker and Barker 1998, Bidochka 

et al., 1998; Bidochka et al., 2002; Devi et al., 2006; Zimmerman and Vitousek, 2012). 

Globally, fungal diversity declines with increasing latitude (Meiser et al., 2014).  At a 

more local scale, humidity, temperature, soil pH, light and soil content, including 

nitrogen and carbon mineralization, are important factors influencing community 

composition (Rydin et al., 1997; Fiere et al., 2003; Setala and McLean, 2004; Rousk, 

2010; Hawkes et al., 2011; Branco, 2011). Humidity and temperature are directly 

associated with spore germination and infection of pathogenic fungi (Tanada and Kaya, 

1993); > 90% relative humidity is essential for fungal sporulation and cuticle penetration, 

but release of conidia is stimulated by low humidity, darkness and vibration (Tanada and 

Kaya, 1993). Temperature requirements vary between fungal species and ecological 

niches.  The optimum temperature for development, survival and pathogenicity is 

generally between 20 to 30°C (Lipa, 1975; Samson et al., 1988; McCoy, 1981; McCoy et 

al., 1988), but species found in tropical and subtropical usually germinate in temperatures 

above 25°C, while species from temperate areas have a lower optimal temperature. A 

poor nutritional environment can also significantly reduce fungal germination (Samson et 

al., 1988; Tanada and Kaya, 1993). Soil acidity can also affect fungal growth; growth 
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tends to be highest at a pH of 4.5 and can decrease growth by a factor of more than 5 

toward a high pH (Rousk, 2010). The pH can also affect fungal species diversity, with a 

weak positive relationship to pH and diversity (Rousk et al., 2010). Thus, insect species 

that inhabit a broad ecological range may be expected to experience pronounced spatial 

variation in identity and abundance of fungal pathogens.   

The genus Pogonomyrmex is one of the most abundant genera of harvester ants in 

semiarid regions of North America. The closely related species Pogonomyrmex rugosus 

and P. barbatus are the largest harvester ants found in the southwestern United States 

(Whitford et al., 1976; Hölldobler, 1976; Figure 2.1). Pogonomyrmex rugosus occurs 

from southern California to Southern New Mexico where habitat is more arid, with a 

mean annual precipitation across their range of approximately 5 cm, while P. barbatus is 

found in much more mesic habitats in northern Mexico and across the southern half of 

Texas that can receive an order of magnitude more precipitation annually (~50 cm, 

Anderson, 2006; www.nws.noaa.gov). Hybridization between these two species has 

given rise to two hybrid populations (“H” and “J”) occurring across a wide range in an 

intermediate climate zone from southeastern Arizona to southwestern Texas (Helms 

Cahan and Keller, 2003; Anderson, 2006a,b; Schwander et al., 2007a).  This climate 

gradient from west to east suggests that the two species and their hybrids may encounter 

very different fungal environments in terms of overall abundance, diversity and 

community composition. 

In this study, I characterized fungal environments and natural infection 

frequencies in workers and queens across the range of P. barbatus, P. rugosus, and their 
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hybrids.  I hypothesized that the higher precipitation habitats occupied by P. barbatus 

support a higher diversity and abundance of fungi, including entomopathogens. In 

addition, I hypothesized that hybridization may confer increased pathogen resistance 

(Jackson and Tinsley, 2003), which would be manifested in lower infection incidence 

along with higher environmental fungal prevalence in the hybrids' geographic range 

relative to their parent species. To test these hypotheses, I determined abundance and 

diversity of fungi by culturing fungi from soil samples at multiple sites within the ranges 

of P. barbatus, P. rugosus, and the hybrid lineages compare them across their habitat. To 

evaluate natural infection frequencies, I paired the soil survey with fungal culturing of 

internal tissue from field-collected workers and founding queens. 

 

Materials and Methods 

Sampling procedure 

Samples were collected from Arizona, New Mexico, and Texas during July 2011. 

Soil and worker samples were collected from 3 locations for each species and hybrid 

population (Figure 2.2). I also collected 50-60 newly mated queens from 1-2 sites per 

species (Figure 2.1). Sampling locations for each species were separated from 

neighboring sites by at least 100 kilometers to minimize spatial autocorrelation. At each 

location, colonies were haphazardly selected with a minimum distance of 10 meters 

between colonies. At each colony, one soil sample was taken one meter from the entrance 

of the colony at 360° degrees (due north). Using a hand trowel sterilized with 70% 

ethanol, soil samples were collected at a depth of 5 to 10 cm after removing surface litter. 
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Each soil sample was sealed in a sterile plastic bag (4½”W x 7”L) and refrigerated.  Ten 

workers were also collected from each colony; when possible, I collected workers on the 

nest surface; on occasions where the colony was not active, the entrance was lightly 

excavated and exiting workers were collected. Each worker was placed in an individual 

1.5 mL centrifuge tube and refrigerated. We also collected 50-60 newly mated queens 

from each species, this were collected during the nuptial flights. Nuptial flights occur a 

day after heavy monsoon rainstorms. The flight starts in the afternoon but time varies 

between species and lineage. For J lineage they start leaving the colony approximately 

15:30 PST; H lineage flights starts approximately 16:00-17:15 PST. For parental species, 

P. rugosus mating start approximately 16-30-18:00 PST and P. barbatus 15:30-17:00 

PST. Once they start flight, we followed them to their mating swarm. Flight last about 

one hour, once queens mated they where picked off the ground and place in a tube with 

cotton.  

 
 

Isolation of Fungi from soil, ant and queen samples 
 

To determine the fungal diversity present at each site, fungi were cultured from 

each of the three soil samples collected per site. To standardize the dry mass of soil 

analyzed, soil moisture was measured for five 1g subsamples from each colony soil 

sample using an OMNIMARK moisture analyzer (Sartorius Corporation) at 100°C for 10 

minutes. Depending on the soil moisture content per colony sample, a soil suspension 

was created by adding 5-10g of soil in 20 mL of water solution with Silwet-L77 (0.02%) 

for 5 minutes with approximately 20 solid soda lime glass beads (3½ mm).  Ten mL of 
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each suspension was poured through a cheesecloth filter, resuspended by vortexing, and a 

subsample diluted to 1/10 and 1/100 dilutions.  

 To isolate fungi from internal ant tissue, I used 2 ant workers per colony. To 

minimize external microbial contamination, individuals were washed with 75% ethanol 

for 5 seconds, and then rinsed in sterile distilled water. Insects were surface sterilized in 

sodium hypochlorite (2.5%) for 30 seconds and rinsed in three changes of sterile distilled 

water.  

 Fungal infections in queens were surveyed only for those queens that died in the 

laboratory during the colony-founding period.  Newly mated queens were placed in 

individual test-tubes containing a water reservoir stoppered with cotton at one end and 

reared in constant darkness at 30°C and 60% humidity Sanyo incubator at 30 for 60 days. 

Queens do not feed during this period.  Queens were censused every two days and any 

dead queens were removed. Queens were surface sterilized in the same manner as 

workers. 

Three different media were used for the inoculation of soil and ant suspensions: 

potato dextrose agar with antibiotics to suppress bacterial growth, a selective medium for 

isolation of Beauveria bassiana, and a selective medium for Metarhizium anisopliae. 

Beauveria bassiana was prepared with 10 g of neopepton, 40 g of dextrose, 10 g of yeast 

extract, 15 g of agar, 1.1 g of syllit (fungicide), 0.1 g of rose Bengal (color dye), 1 mL of 

stock solution of penicillin G and 2.5 mL of stock solution of streptomycin for a total of 

one Liter. Metarhizium anisopliae medium was prepared with 72.5 g of oatmeal agar, 1 g 

of syllit, 4 mL of stock solution of benlate, 4 mL stock solution of crystal violet (color 
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dye), 1 mL of stock solution of penicillin G and 2.5 mL of stock solution of streptomycin 

for a total of one Liter (Goettel and Inglis, 1997). All media were solidified in 9 cm 

diameter petri dishes. 

Soil samples were cultured in three replicates of 20 µl for each dilution level.  

Worker ant and queen tissue was cultured with two methods.  Each individual ant was 

bisected, and one half was left intact and placed in the center of the medium, and the 

other was homogenized and streaked across the plate. Inoculated plates were incubated at 

22 ± 20C, and after 14 days the numbers of fungal colonies (CFU) were recorded under a 

dissecting microscope at 40X power.  

 

Identification of Fungi 
 
 To identify the CFUs, each fungal colony was identified to morphotype and a 

single representative of each fungal morphotype was inoculated onto a new plate with a 

sterilized needle. Identification was based on conidium development, morphology, and 

conidiogenesis. I prepared whole mount slides by staining a small piece of fungal hyphal 

tissue with methylene blue and placing it in the center of a microscope slide. All slides 

were observed under a microscope at 100X power. Fungi were classified as pathogenic if 

one or more members of the genus are known to infect insects, and non-pathogenic if 

they were antagonistic, plant pathogens (phytopathogenic) or saprophytic.  

For CFUs that could not be unambiguously identified morphologically, I 

confirmed their identity genetically. DNA extractions were made using a Plant Tissue 

DNA extraction kit (Mini Protocol from Qiagen). After extractions were performed, a 
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portion of the Internal transcribed spacer (ITS) gene region (~500 bp) was amplified 

(Viaud et al., 2000; Anderson and Cairney, 2004; Schoch et al., 2012). Polymerase chain 

reaction (PCR) was conducted in 30-µl reactions using the fungus-specific forward 

primer ITS-5 F (5’ GGAAGTAAAAGTCGTAACAAGG 3’) and the reverse primer ITS-

4 (5’ TCCTCCGCTTATTGATATGC 3’), manufactured by Invitrogen Custom Primers 

(Carlsbad, CA). PCR was carried out using the following amplification conditions: initial 

denaturation at 94°C for 2 mins, followed by 40 cycles of denaturation at 95°C for 30 s, 

annealing at 52°C for 30 s, extension at 72°C for 30 s, and a final extension at 72°C for 

10 min. The PCR product was examined on a 2% agarose gel and successful 

amplifications were sent for bi-directional Sanger sequencing.  Geneious version Pro 

5.6.5 was used to annotate and align the sequences. We conducted a Blast search of each 

sequence against the NCBI nr database to identify the best-hit fungal species; only 

matches with a maximum E-value threshold of 0.1 were retained.  

 

Statistical Analyses  

Analysis of A lpha-Diversity 

Fungal abundance and diversity were calculated for both the complete set of fungi 

(pathogenic and non-pathogenic).  The total abundance per soil sample was calculated by 

counting the total number of colonies per gram of soil between the three colonies. To 

determine alpha-diversity, I used generic richness and the Simpson’s Index. Richness was 

determined by the number of genera found per site, corrected by the sample size. Generic 

Richness, also known as Gtotal or is the total number of genera in the community, was 
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calculated with the following equation: 

𝐺!"!#$ = 𝐺!"#$%&$' +
𝑎!

2𝑏  

Where Gobserved is the total number of genera identified. The variable a is the 

number of genera represented by exactly one individual (“singletons”), and b is the 

number of genera represented by exactly 2 individuals (“doubletons”). To calculate 

diversity, I used the Simpson’s Index with the following equation: 

𝐷 =
1
𝑝!!

 

Where pi is the proportion of individuals belonging to genus i.  

To test whether alpha-diversity measures varied among sites and species range, I 

conducted nested ANOVAs with site nested within species in the program JMP Pro 10 

(SAS Institute Inc., 2007).  

 

Analysis of Beta-Diversity 

To visualize and test for variation in fungal composition, I performed a 

multidimensional scaling (MDS) analysis using the vegan package in R. Differences at 

the species and site level were tested with a permutation ANOVA with 999 permutations.  

 

Environmental predictors of fungal community metrics 

To test whether environmental factors drive patterns of fungal diversity and 

infection frequency, I regressed each community metric against three principal 

components derived from four environmental predictor variables (elevation, observed 
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mean soil moisture from collected soil samples, mean annual temperature and mean 

annual precipitation) using a multiple regression design in JMP. Mean annual 

temperature and precipitation were extracted from the Bioclim database 

(http://worldclim.org/bioclim).  

 

Results 
 
Characterization of Fungal Community 

 A total of 17 fungal genera were found when summed over all sample types and 

across the entire range of the two species and their hybrids, of which two were classified 

as antagonistic, four were phytopathogens, five were saprophytic and six were 

entomopathogenic (Table 2.2).  

 The soil and ant tissue surveys differed significantly in both the number and 

identities of fungi found (X2 = 21.955, df = 8, p < 0.005*; Figure 2.3). Soil samples had a 

total of 15 genera (Figure 2.3a), with the highest colony forming units (CFUs) being 

Aspergillus (35.7%), Penicillium (30.5%), and Paecilomyces (16.4%). The remaining the 

genera had fewer than 10 CFUs.  Of the total, four genera were classified as 

entomopathogenic: Paecilomyces (16.4%), Fusarium (6.7%), Metarhizium (0.2%), and 

Lecanicillium (0.2%). Worker internal tissue contained a total of seven fungal genera, 

where Beauveria had the highest number of CFUs with 61%, followed by Penicillium at 

18% and Alternaria with 10% of CFUs (Figure 2.3b). Two genera were 

entomopathogenic, with the majority from the genus Beauveria (61%) and the remainder 

from Paecilomyces (2%). Queen samples also had a total of seven fungal genera (Figure 
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2.3c), where Aspergillus was the most abundant (89.3%). Of the three entomopathogens 

in queens, Beauveria had the highest percentage (9.44%), followed by Fusarium (0.26%) 

and Lecanicillium (0.07%). 

 

Geographic variation in fungal alpha-diversity 

 Total abundance in soil samples did not differ among the ranges of the four ant 

taxa (Q = 2.63, df = 3, p = 0.4648) (Figure 2.4). We did see differences in sites within 

soil samples (Q = 3.38, df = 8, p < 0.001*). Generic richness showed a trend toward 

lower richness in P. rugosus, while H lineage soil showed the highest richness and the J 

lineage and P. barbatus were intermediate, respectively, although this trend was 

marginally not statistically significant (p = 0.064) (Figure 2.5). Simpson’s Diversity was 

found to be significant between soil samples (p = 0.0083*). P. rugosus soil samples had 

significantly lower diversity than H lineage (p = 0.0060*). Soils from the ranges of the J 

lineage and P. barbatus were intermediate and not significantly different from P. rugosus 

or the H lineage (Figure 2.6).  

 The most common fungal genera across sites in soil were Aspergillus, 

Paecilomyces, Cladosporium and Penicillium. Seven genera were uniquely found at a 

single site: Trichoderma (J lineage: Sierra Vista, AZ), Scedosporium (J lineage: Willcox, 

AZ), Xylohypha (P. rugosus: Florence Jct, AZ), Alternaria (H lineage: Las Cruces, MN), 

Diaporthe (H lineage: Sierra Vista, AZ), Metarhizium (P. barbatus: Luckenbach Rd., 

TX), and Lecanicillium (P. barbatus: Brady-Eden, TX) (Figure 2.7). Generic composition 

varied significantly among sites (permutation ANOVA, p < 0.05*) but was marginally 



 

  20 

not significantly different among species (p = 0.056; Figures 2.8, 2.9). 

 Soil types also differed in the functional diversity of fungi found, with the J 

lineage and P. barbatus having significantly more functional groups than P. rugosus and 

the H lineage (X2 = 9.348, df = 3, p <0.025*; Figure 2.10). The most abundant functional 

group was saprophytic for all sites except for one J site, Sierra Vista, AZ, with only half 

saprophytic fungi and one P. barbatus site, Brady-Eden, TX, where the most abundant 

functional group was entomopathogenic. Phytopathogenic fungi were only found in 4 

sites, all in J lineage and P. barbatus habitat. Antagonistic fungi were only found in two 

sites, Sierra Vista, AZ and Willcox, AZ, again both in J lineage and P. barbatus habitats. 

Entomopathogenic fungi were found across all soil types, but were similarly most 

abundant in Sierra Vista and Brady-Eden (Nested ANOVA: p = 0.060, lineage effect; p < 

0.05*, site effect).  

 The four taxa varied significantly in infection frequency in internal worker tissue 

(X2 = 14.52, df = 3, p = 0.003*), with the highest frequency in Pogonomyrmex barbatus 

workers and the lowest in P. rugosus and the H lineage (X2 = 7.815, df = 3, p < 0.005*) 

(Figure 2.11). J lineage was intermediate and did not differ from any of the other taxa. 

Queen fatalities associated with fungal infection were low and did not differ significantly 

among species, although there was a trend for higher fungal-associated mortality in P. 

rugosus queens (X2 = 6.66, df = 3, p = 0.08; Figure 2.12). 

 Combining the occurrence of entomopathogenic genera across all three sources 

(soil, workers, queens) revealed variation among entomopathogenic fungi in their 

geographic occurrence, from widespread to highly species-specific (Table 2.3).  
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Comparing the pathogenic fungi, Paecilomyces was found in all regions but primarily in 

soil, within only one occurrence in a worker sample.  Isaria was similarly found in soil 

from all ant species except the J lineage, but not in worker or queen samples. In contrast, 

Metarhizium was exceedingly rare, occurring only in a single P. barbatus soil sample. 

Beauveria was found in only 3 worker samples of P. barbatus, but at high abundance 

when it occurred, with 71 CFUs cultured.  Fusarium was only found in the parental 

species, in both soil and workers. Lecanicillium was found in all species except the H 

lineage, and was the only entomopathogen to be widespread in queens, although absent 

from workers. When considered from the perspective of the hosts, P. barbatus overlapped 

with all the fungal pathogens in their habitat, while P. rugosus overlapped with only four. 

The H lineage overlapped with the least entomopathogens with only two genera, while 

the J lineage overlapped with three entomopathogens.  

 

Environmental predictors of fungal community metrics 

 The first two principal components (PC) for environmental predictors showed that 

there is a positive correlation between MAT and MAP, while MAT was negatively 

correlated to soil moisture and elevation. Elevation was positively correlated to soil 

moisture and negatively correlated to MAT and MAP (Table 2.4; Figure 2.13). PC1 

(56.2%) had a higher loaded value for MAT than MAP. PC2 (24.9%) also showed a 

higher loaded value for MAT than soil moisture, while PC3 (18.2%) showed higher 

loaded values for MAP and soil moisture than for MAT and elevation (Table 2.5). The 

multi regressions did not show any significant effect of environmental variables on any of 
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the diversity measurements (total number of species, abundance, richness and diversity 

index) (Figure 2.14).  

 
 
Discussion 

In this study, I tested whether and how habitat features affect the abundance and 

composition of fungi that Pogonomyrmex harvester ants encounter in their environment, 

and whether exposure to potential pathogens is related to infection frequency. I predicted 

that higher precipitation habitats support a more diverse fungal community and a higher 

abundance of fungal pathogens.  

Our data suggest weak support for the precipitation hypothesis.  I found no 

significant differences in total abundance or generic richness of fungi across the habitats 

of the different ant species. However, one diversity measure that was found to be 

significant was the Simpson’s Index, where the driest region, the range of P. rugosus, was 

significantly less diverse than that of the other taxa.  This suggests that extreme 

environments may inhibit successful fungal growth or transmission and reduce pathogen 

pressure.  Within the more mesic habitats, however, the relationship did not hold, as the 

H lineage, which occupies a relatively dry region, was found to have a higher diversity 

compared to P. barbatus.  

To test for a quantitative relationship, I tested environmental variables that should 

impact the level of available moisture in the soil to see if they were good predictors for 

abundance and diversity. Even though a recent study has shown that distance from 

equator and mean annual precipitation (MAP) can have a strong effect on diversity of 

fungi (Tedersoo et al., 2014), and other studies have found that a combination of both soil 
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moisture and temperature were main factors which determine microbial community 

structure, including effects on the fungal community (Morris and Boerner, 1999; Carletti 

et al., 2009; Brockett et al., 2012), I did not see this effect. There are a number of 

possible explanations for this result.  Our data samples were small compared to other 

studies looking at diversity, while I only used a few samples per habitat some studies use 

metagenomics analysis to obtained diversity measurements. As a result of this, it is 

possible I may not have been able to detect relationships with our sampling scheme. It is 

also possible that the effects of the environmental variables are not additive, such that 

linear regression would not be able to detect the true relationships.  This is suggested by 

the fact that only P. rugosus soils showed significantly reduced alpha-diversity, despite 

the fact that precipitation increases gradually from west to east across the region. 

Alternatively, the relationship may exist but be obscured due to a technical problem with 

the fungal culturing, which delayed the processing of two of the three P. barbatus sites by 

three weeks and may have resulted in lower-than-expected spore germination.  Without 

these two samples, PC1 explained considerably more of the observed variation in both 

abundance and richness than the original model (Abundance, R2 = 0.144; Richness, R2 = 

0.227). Finally, environmental conditions in the year of collection could have had an 

effect on soil moisture, and therefore fungal spore production, across the study range. 

During 2011, the month of July precipitation was the driest ever recorded, with about 

only 30-40% of normal precipitation (NOAA, http://www.srh.noaa.gov/; 

http://www.ncdc.noaa.gov/). The extent of the drought was more sever in the east, in 

direct contrast to the typical precipitation trends.  New Mexico (1.70” for July 2011 and 
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average is 2.34”) and Texas (0.74” for July 2011 and average is 2.3”) were the driest, 

while Arizona was much close to the normal precipitation (1.76” for July 2011 and 

average is 1.80”) and California was little higher than the normal precipitation (0.22” for 

July 2011 and 0.18” is average). These changes in precipitation may explain why I do not 

see higher diversity and richness in P. barbatus compared to P. rugosus habitats.  

The main difference in fungal composition was found between sites of each 

species/lineage. This is consistent with results from other studies; despite their capacity 

for air-borne dispersal, soil fungal communities show high beta-diversity and strong 

distance-decay relationships at both large and small spatial scales (Hibbett et al., 2011; 

Xu et al., 2012).  Studies have found that plants root exudates are able to regulate soil 

fungal community composition (Batten et al., 2006; Broeckling et al., 2008). Our 

species’ habitat varied in the amount of vegetation that surround them; where P. rugosus 

includes creosote bush and saltbush habitats while the hybrids and P. barbatus occur in 

grasslands (Johnson, 1992). Dispersal of fungal spores can be low in these areas. Most of 

the areas are arid and dry in these ants’ habitats so dispersal of fungal spores should not 

be a big factor.  Ant dispersal may also be reduced by spatial patchiness of appropriate 

habitat in canyons and valleys separated by mountain ranges; some studies have showed 

that J lineage queens are unlikely to disperse to other areas colonized by another 

population (Hölldobler, 1974; Gordon and Kulig, 1996; Suni and Gordon, 2010).  

While the soil sample survey showed a high number of total genera, the 

distribution found to have infected the tissues of workers and queens was less diverse and 

more frequently pathogenic.  Our data suggest that source of pathogenic fungi for our 
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ants is most likely soil for 4 genera (Lecanicillium, Fusarium, Metarhizium and 

Paecilomyces) but this is not the same for Beauveria, which was found in high 

percentages in ant workers and queens but was completely absent from soil.  This may be 

because it is present but rare; studies have shown that using standard techniques for soil 

samples usually reveals only the most common fungi in the area (Jeewon and Hyde, 

2007). Fungal diversity in soil was strongly biased toward a few saprophytic fungi, 

belonging to the genera Penicillium and Aspergillus. Alternatively, soil may not be the 

primary source of entomopathogenic infections, but are contracted from direct contact 

with infected nestmates, conspecifics, competitors, or prey.  There are a few studies, 

which have characterized fungal composition in habitats of social insects (Schmid-

Hempel, 1998; Reber and Chapuisat, 2012; Hughes et al., 2004). All these studies, 

however, have isolated fungi from soil samples; not many studies use measures of 

infection to characterize fungal diversity. Soils are great samples to look at fungal 

diversity but the type of survey may provide us with different information about the 

fungal community, which social insects encounter in their habitat. Interestingly, queens 

and workers did not show a similar distribution of fungal infections, which may be due to 

different levels of exposure.  Queens that were collected were newly mated, meaning 

they were collected after only a few hours (2-3) after leaving the parental nest in which 

they had matured, while foraging workers are typically older and the foraging task 

requires recurring exposure to the environment outside of the colony as well as 

potentially infected insect prey and seeds.  

Our second hypothesis, that populations of hybrid origin are better able to resist 
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fungal infection, was partially supported. Resistance to pathogens can be affected by 

hybridization in different ways: hybrids might not differ from their parents (Fritz et al., 

1999), show additive or dominance patterns of inheritance, or show transgressive patterns 

of enhanced hybrid susceptibility or resistance (Fritz et al., 1994). This may in turn 

influence the relative ability of hybrids to persist and compete with their parents in 

habitats with high pathogen prevalence (Fritz, 1999).   

     As predicted, the H lineage had the lowest proportion of spores despite the highest 

generic richness and diversity in soils from their collection sites.  However, when only 

known entomopathogens were considered, the ranges of the two hybrid lineages did not 

correspond to regions with higher abundance or diversity, as the two non-hybrid parental 

species overlapped with the highest number of pathogenic taxa (Table 2.3).  Similar to 

our studies, others have examined whether pathogen loads and the susceptibility of 

insects varies when the species have higher genetic diversity (Reber et al., 2008). They 

have found that social insect colonies, which are genetically heterogenous, show a 

reduction of load and pathogen species richness and this was correlated with a lower 

infection frequency by pathogens (Liersch and Schmid-Hempel, 1998; Baer and Schmid-

Hempel, 1999). An experimental approach comparing pathogen resistance between 

hybrid and non-hybrid populations may help to resolve this question (Chapter 3). 
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Table 2.1.  Location, species, elevation and mean annual precipitation (MAP) of 
samples collected.  
 
 

Site 
(Species) 

Coordinates Elevation 
(meters) 

Mean Annual 
Precipitation 

(MAP) (inches) 

San Simon, AZ, USA (H lineage) N 32°16.225', W 109°14.263' 1101 20.70 

Columbus (BF), NM, USA (H lineage) N 31°47.993', W 107°44.905' 1326 11.55 

Las Cruces, NM, USA (H lineage) N 32°24.385’, W 106°39.317’ 1394 9.74 

State Line Rd., AZ, USA (J lineage) N 31°52.286', W 109°2.883' 1254 21.13 

Sierra Vista, AZ, USA (J lineage) N 31°39.999', W 110°20.986' 1336 21.95 

Willcox, AZ, USA (J lineage) N 32°14.233', W 109°49.465' 1268 13.32 

Bowie, AZ, USA (P. rugosus) N 32°18.915', W 109°29.128' 1152 13.32 

Florence Junction, AZ, USA (P. rugosus) N 33°13.775', W 111°20.715' 561 10.31 

Willow Springs Rd., AZ, USA (P. rugosus) N 32°36.127', W 110°52.278' 1149 23.47 

Brady-Eden, TX, USA (P. barbatus) N 31°12.982', W 99°48.560' 631 28.95 

Luckenbach Rd., TX, USA (P. barbatus) N 30°13.036', W 98°44.287' 459 31.69 

Ozona, TX, USA (P. barbatus) N 30°41.098', W 101°16.243' 771 22.70 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

  36 

 
 
 
 
 
 
 
 
 
 
 
Table 2.2.  Summary of fungal genera isolated from soil, queen and ant samples. Type 
indicates the typical functional group of each fungal genus. 
 
 
Fungi Genera Ant 

Samples 
Soil 

Samples 
Queen 

Samples 
Type 

Trichoderma  X  Antagonistic 
Scedosporium  X  Antagonistic 
Bipolaris X X  Phytopathogenic 
Diaporthe  X  Phytopathogenic 
Alternaria X X X Phytopathogenic 
Colletorichum  X  Phytopathogenic 
Chrysosprium or 
Sporotrichum 

X   Saprophytic 

Xylohypha  X  Saprophytic 
Cladosporium X X X Saprophytic 
Aspergillus  X X Saprophytic 
Penicillium X X X Saprophytic 
Fusarium  X X Entomopathogenic 
Lecanicillium  X X Entomopathogenic 
Beauveria X  X Entomopathogenic 
Isaria farinosus  X  Entomopathogenic 
Paecilomyces  X X  Entomopathogenic 
Metarhizium   X  Entomopathogenic 
 
 
 
 
 
 
 
 
 



 

  37 

 
 
 
Table 2.3.  Presence of entomopathogenic fungi in parental species and hybrid lineages. 
An X symbol indicates that the fungus was found, and a dash represents absence of the 
genus. Results for the three sample types (soil, workers, queens) are separated by a 
forward slash. 
 
 

 
 
 
 
 
Table 2.4.  Pairwise correlations among the four environmental predictors. 

 MAT MAP Soil Moisture Elevation 

MAT 1.000 0.2807 -0.1121 -0.8397 
MAP 0.2807 1.000 -0.3007 -0.5935 
Soil Moisture -0.1121 -0.3007 1.000 0.2275 
Elevation -0.8397 -0.5935 0.2275 1.000 

 
 
 
 
Table 2.5.  The amount of environmental variables loaded in each principal component. 
 

 PC1 (56.9%) PC2 (24.9%) PC3 (18.2%) 

MAT 0.8226 0.4371 -0.3173 
MAP 0.7219 -0.3076 0.6134 
Soil Moisture -0.4127 0.8158 0.4052 
Elevation -0.9519 -0.2092 0.0155 
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Figure 2.1.  Geographical distribution of Pogonomyrmex barbatus, Pogonomyrmex 
rugosus and two hybrid lineages (“H” and “J”) across a wider range from southeastern 
Arizona to southernwestern Texas. 
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Figure 2.2. Geographic location of Pogonomyrmex species sites. Circles represent sites 
where soil and ant workers samples were collected. Stars represent where newly mated 
queens were sampled. Aqua color represents P. rugosus sites, pink represents J lineage 
sites, purple represents H lineage sites and green represents P. barbatus sites. 
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Figure 2.3.  Diversity of fungi found in a. soil, b. worker, and c. queen samples. The 
percentages are the proportion of total CFUs. The proportion of ants infected per ant type 
(infected ants/total ants) for queen and ant samples. Highlighted boxes and asterisks on 
the legend show entomopathogenic fungi. Number of genera per sample type is in 
parenthesis.  
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Figure 2.4.  Least-squares means (+/- SE) of total abundance of CFUs found in each 
soil type. Bottom bar with red and blue gradient represent the precipitation gradient of the 
species. Q = 2.63, df = 3, p = 0.4648.   
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Figure 2.5.  Least-squares means (+/- SE) of generic richness found for each soil type. 
Bottom bar with red and blue gradient represent the precipitation gradient of the species. 
Q = 2.63, df = 3, p = 0.064.   
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Figure 2.6.  Least-squares means (+/- SE) of Simpson’s Index diversity index found in 
each soil type. Bar represented by different letters are significantly different. Bottom bar 
with red and blue gradient represent the precipitation gradient of the species. Q = 2.63, df 
= 3, p = 0.0083*.  
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Figure 2.7: Proportion of CFUs of genera across collection sites, grouped by species 
range. Each bar represents the proportion of each genus found in a specific site. 
Permutation test: p = 0.056, lineage effect; p < 0.05*, site effect. 
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Figure 2.8.  Multidimensional scaling analysis showing variation in fungal community 
composition among lineages. Symbols represent the different species, circles represented 
by H lineage, triangles represent J lineages, plus signs represent P. barbatus species and 
time sign represents P.  rugosus. p = 0.056. 
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Figure 2.9.   Multidimensional scaling analysis showing variation in fungal community 
composition across sites. Different colored ellipses indicate six representative sites; each 
ellipse shows where the samples from the same site occur. p <0.05*. 
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Figure 2.10.  Proportion of CFUs of each functional type per site, grouped by species 
range. Each bar represent the proportion of each fungi type found in a specific site. 
Significant differences between functional groups with in sites are mark with an asterisk. 
Nested ANOVA: p = 0.060, lineage effect; p < 0.05*, site effect. 
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Figure 2.11.  Proportion of ants infected with one or more fungi in the four ant taxa. 
Bars represented by different letters are significantly different. Bottom bar with red and 
blue gradient represent the precipitation gradient of the species. X2 = 14.52, df = 3, p = 
0.003*. 
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Figure 2.12.  Proportion of queens that died during colony founding and were found to 
be infected with fungus. Bottom bar with red and blue gradient represent the precipitation 
gradient of the species. X2 = 6.658, df = 3, p = 0.0836. 
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Figure 2.13. Principal component plot showing correlation of the environmental 
predictors. 
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Figure 2.14.  Scatter plots of the relationship between the first three Principal 
Components and diversity measurements. Different shapes in the graph represent species 
and lineages. Diamonds represent H lineage, circles represent J lineages, squares 
represent P. barbatus species and triangles represent P.  rugosus. (N=12, sites) 
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CHAPTER 3 

DO HYBRIDIZATION AND/OR HABITAT DIFFERENCES PLAY A ROLE IN 

PATHOGEN RESISTANCE? 

Abstract 

Understanding how hosts adapt to pathogens can help elucidate mechanisms of 
coevolution of pathogen and host. I generated four different hypotheses that could 
explain why different populations or species of host might differ in resistance to 
pathogens: pathogen load (high pathogen environments will have higher resistance), 
genetic diversity (outbreeding and hybridization increase genetic diversity, reducing 
probability of disease), local adaptation (individuals in their local environment will have 
higher resistance than individuals in foreign environments), and life history tradeoffs 
(individuals in high-stress environments will allocate resources to defense compared to 
individuals in other environments). The harvester ant species Pogonomyrmex barbatus 
and P. rugosus live along a precipitation gradient in southwestern North America, along 
with two populations of hybrid origin.  The combination of both environmental and 
genetic variation across the group makes this an ideal system to experimentally 
discriminate among these hypotheses.  A fully factorial experiment was conducted using 
soil from their natural environment to test the effects of species identity and soil type on 
the rate of infection of isolated pupae. Pogonomyrmex rugosus was found to have the 
highest resistance to fungal infection, while P. barbatus had the lowest. Our results 
supported the life history tradeoff hypothesis: P. rugosus lives in a harsher environment 
and has a lower growth rate, suggesting they invest more energy in protection from 
pathogens than reproduction because of the stressful environments they live in.  
 

Introduction 

Organisms with opposing fitness interests, such as predators and prey, resource 

competitors, or pathogens and their hosts, are expected to continually evolve adaptations 

to one another, leading to an evolutionary arms race (Van Valen, 1973; Dawkins and 

Kerbs, 1979). In the case of pathogens, interaction with their hosts plays an important 

role in their evolutionary trajectory (Van Valen, 1973; Clay and Kover, 1996; Bert and 

Hamilton, 1996). This co-evolutionary process can lead to strong differences in pathogen 

impact among individuals and populations, as pathogens adapted to infect one genotype 
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in a particular may not be able to infect other genotypes (Halden, 1949; Lively, 1996; 

Hughes and Boomsma, 2004). Similarly, hosts may respond to pathogens by evolving 

specific or generalized resistance to infection via adaptive changes in hygienic behavior, 

morphological defenses and immune system function (Evans et al., 2006; Fernández-

Marín et al., 2006; Ugelvig and Cremer, 2007; Cremer and Sixt, 2009; Schlüns and 

Crozier, 2009; Hamilton et al., 2011; Konrad et al., 2012). 

A number of different ecological and genetic factors may influence the extent to 

which hosts can defend themselves against potential pathogens.  One key environmental 

factor, which can influence host resistance, is pathogen pressure (Horrocks et al., 2011), 

the rate of exposure to pathogens in the environment. Pathogen growth is favored by high 

humidity, moisture and warm temperatures, increasing pathogen pressure in such 

environments (Tanada and Kaya, 1993). Since resistance is costly, organisms should 

match their investment toward defense traits with their expected fitness impact; 

organisms that encounter high pathogen pressure are expected to experience stronger 

selection for resistance to avoid disease despite the costs, shifting their allocation toward 

increased immune function. Studies have showed that when species face high numbers of 

pathogens they increase their level of defense; for example, ants performed more 

hygienic behavior when exposed to more pathogens (Reber et al., 2008).  

 Pathogen resistance may also be influenced by life-history tradeoffs.  When 

organisms have limited resources, allocating more energy to one function comes at the 

expense of another (Stearns, 1989; Zera and Harshman, 2001). Investing in reproduction, 

for example, may reduce energy available for immune function, increasing susceptibility 
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to pathogens (Perlman, 2008; Reavey et al., 2014). Trade-offs between pathogen defense 

and growth and reproduction are likely to be affected by the environment. In a rich 

environment, the possibility of rapid growth and reproduction may reduce the relative 

benefit of investing in costly defense. However, in harsh environments, the increase in 

extrinsic mortality risk selects more strongly for survival mechanisms (including 

pathogen defense) at the expense of growth and reproduction.  For example, snails have 

been shown to vary in life history traits expressed in response to varying degrees in the 

ability of a trematode parasite to infect the snails (Minchella, 1985). 

Host-pathogen arms races can also lead to adaptations that are specific to their 

habitats, through the process of local adaptation. As long as dispersal between 

populations is not high, this process should lead to differentiation in host and pathogen 

traits even if the habitat is identical (Schulte, 2011). Local adaptation can be detected by 

differences in fitness between populations when placed in different habitats compared to 

their own habitat (Lively, 1996: Kawecki and Ebert, 2004). Pathogen resistance that 

evolved in a particular habitat may be ineffective in a different one.  A population from a 

specific location has adapted to particular pathogens from that habitat, but when an 

individual is introduced to a different habitat, the probability of getting infected is higher 

because they have never encountered pathogens from that area (Kaltz and Shykoff, 1998; 

Ebert and Hamilton, 1996; Lively and Dybdhl, 2000).  

Genetic factors can also play an important role in disease resistance. Outbreeding 

introduces unrelated genetic material into a breeding line. This increases genetic diversity 

and reduces the probability of infection of an individual (Thronhill, 1993). An extreme 
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version of outbreeding is interspecific hybridization, which introduces more 

heterozygosity than expected under random mating in a single population (Harrison, 

1993; Dowling and Secor, 1997), and generates mixtures of genes in novel combinations 

to which pathogens may be poorly adapted, leading to lower infection rates. Empirical 

evidence for enhanced hybrid resistance, however, has been mixed (Fritz et al., 1994; 

Fritz, 1999; Carlsson-Granér et al., 1999, Krebs et al., 2011). Some studies have not 

observed any differences between parents and hybrids (Fritz et al., 1994; Fritz et al., 

1998; Jackson and Tinsley, 2003). In a bird hybrid zone system, resistance in hybrids was 

intermediate compared to their parental species but interestingly the prevalence of 

pathogen infection is less in younger individuals and older individuals was found to be 

intermediate prevalence of infection (Wiley et al., 2009). A study of interspecific crosses 

between two mouse species, however, found that hybrid mice had lower parasite loads 

than their parental species (Moulia et al., 1995). 

Harvester ants (genus Pogonomyrmex) are an ideal group with which to test both 

environmental and genetic hypotheses for the evolution of host resistance. Ant colonies 

are made up of highly related individuals that live in close proximity, which can facilitate 

the spread of infectious diseases and parasites (Hölldobler and Wilson, 2009). As soil-

dwelling-insects, ants are exposed to a diverse community of entomopathogens, including 

mites, helminth worms, fungi, bacteria, viruses and protozoa (Cremer et al., 2007). The P. 

barbatus species complex includes two wide-ranging, ecologically dominant species that 

together span a large environmental gradient across the southwestern US; the rough 

harvester ant, P. rugosus, occurs in the Mojave, Sonoran and Chihuahuan deserts from 
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California to New Mexico, where it overlaps with the red harvester ant, P. barbatus, 

which inhabits more mesic habitats from higher-elevation Sky Island mountain ranges in 

southern New Mexico to low coastal plains in southeast Texas (Whitford et al., 1975; 

Hölldobler, 1976). Comparisons of fungal communities in soil as well as worker infection 

rates in the field suggest that P. rugosus encounters lower fungal pathogen pressure 

(Chapter 1).   In addition to environmental variation, historical interspecific hybridization 

between these two species has produced at least two obligately hybridizing species pairs, 

the "H" and "J" lineages, that occur between the ranges of the two parental species 

(Helms Cahan and Keller, 2003; Anderson, 2006a,b; Schwander et al., 2007), whose 

worker progeny are exceedingly heterozygous due to their F1 ancestry (Helms Cahan et 

al., 2002; Helms Cahan and Keller, 2003).  

These characteristics allowed us to generate four contrasting predictions of host 

resistance under the pathogen pressure, life history tradeoff, local adaptation, and genetic 

diversity hypotheses. If pathogen pressure determines investment in resistance, we expect 

a negative relationship between environmental harshness and resistance, reflecting the 

lower pathogen pressure expected in such environments. In contrast, resistance driven by 

life history tradeoffs would produce the opposite pattern, as ants in harsh environments 

should lower investment into growth and reproduction in favor of allocating more energy 

toward pathogen defenses. If resistance to disease is primarily based on local adaptation, 

we predict that for each species, resistance will higher in their local habitat than in a 

foreign habitat. Finally, if genetic diversity is the primary factor which influences 

resistance to disease, then I predict that hybrids should be more resistant to disease than 
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their parental species because of their novel, highly heterozygous genotypes. 

To test these hypotheses, we experimentally tested individual resistance to soil-

borne fungal pathogens sourced from sites across the ranges of the two species and their 

hybrids. We set up a fully factorial experiment, in which we exposed each of the ant 

types (P. barbatus, P. rugosus, H lineage and J lineage) to each of the different soil types 

(P. barbatus, P. rugosus, H lineage and J lineage).   

 
Materials and Methods: 

Sample collection 

 Soil samples were collected from Arizona, New Mexico, and Texas during July 

2012 (Figure 3.1). Soil samples were collected from 10 locations for each species and 

hybrid population. Sampling locations for each species were separated from neighboring 

sites by at least 100 kilometers to minimize spatial autocorrelation. At each location, 

three colonies were haphazardly selected with a minimum distance of 10 meters between 

colonies. At each colony, one soil sample was taken one meter from the entrance of the 

colony at 360° degrees (due north). Using a hand trowel sterilized with 70% ethanol, soil 

samples were collected at a depth of 5 to 10 cm after removing surface litter. Each soil 

sample was sealed in a sterile plastic bag (4½”W x 7”L) and refrigerated.  Pupae were 

obtained from laboratory colonies derived from colony-founding queens collected in 

Summer 2011 during nuptial flights (Sites: Animas, NM (H lineage); Welder, TX (P. 

barbatus); Fredericksburg, TX (P. barbatus); McCartney Rd., AZ (P. rugosus); State Line 

Rd, AZ (J lineage); Santa Cruz, AZ (J lineage)).  Nuptial flights occur a day after heavy 

monsoon rainstorms. The flight starts in the afternoon but time varies by species and 
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lineage. Flying virgin queens and males were followed to the mating swarm, and fully 

mated queens that had removed their wings were picked off the ground and placed in a 

tube with moist cotton. Colonies were maintained in a temperature control room at 28°C 

with two 16 x 150 mm test tubes with a water reservoir stopped with cotton provided as a 

nest.  A mix of seeds (wheat germ, cornmeal and oats) and one mealworm was provided 

weekly. 

 

Soil preparation 

Soil samples from each location were passed through a 2.0 mm sieve and ground 

with a mortar and pestle.  Three soil samples from colonies of ten sites collected for each 

species were pooled and homogenized. The soil was moistened by spraying with sterile 

water until the soil was damp but did not readily clump when compressed. 

Approximately seven grams of moistened soil sample was placed in a 35 x 10mm petri 

dish.  

 

Bait Experiment 

For each petri dish, one Pogonomyrmex pupa was partially embedded in the soil, 

the petri dish lid was replaced and partially sealed with parafilm, and the dish was 

incubated at 30°C for 15 days. For each soil type and ant type there were 30 replicates, 

having a total of 480 plates. As a control, 30 pupae of each species were maintained in 

individual petri dishes with moistened filter paper. Soil samples were examined and 

watered to keep soil moist every two days. When signs of fungal growth were visible or 
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the pupa was dead, identifiable when they turned dark to black, the pupa was removed 

from the petri dish and surface-sterilized by washing with 10% Bleach for 3 minutes 

under a fume hood. After washing with bleach, they were rinsed three times with distilled 

water. To determine whether the ant internal tissue was infected, and to grow sufficient 

fungal tissue for genetic analysis, the pupa was placed in a small petri dish plate with a 

moist filter paper, sealed with parafilm, and incubated at 30°C for an additional 7-15 

days. Samples were examined every 2 days. When signs of fungal growth were visible, 

the fungal tissue was scraped off the surface of the ant pupae and placed in a 

microcentrifuge tube for DNA isolation. 

 

Identification of Fungi 

DNA from the isolated fungal tissue was extracted using the Plant Tissue kit 

(Mini Protocol from Qiagen) according to the manufacturer's specifications. To identify 

fungal species identity, the Internal transcribed Spacer (ITS) gene was amplified.  This 

gene was used because it has the highest probability of identification of a broad range of 

fungi (Viaud et al., 2000; Anderson and Cairney, 2004; Schoch et al., 2012). Polymerase 

chain reaction (PCR) was conducted in 30-µl reactions, containing 16.35 µl of dH2O, 3.0 

µl of 10x Std. Taq Reaction Buffer, 1.5 µl ofdNTP, 1.5 µl of forward primer, 1.5 µl of 

reverse primer, 0.15 µl of Taq and 6 µl of DNA. The primers used were the fungus-

specific forward primer ITS-5 F (5’ GGAAGTAAAAGTCGTAACAAGG 3’) and the 

reverse primer ITS-4 R (5’ TCCTCCGCTTATTGATATGC 3’), manufactured by 

Invitrogen Custom Primers (Carlsbad, CA). PCR was carried out using the following 
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amplification conditions: initial denaturation at 94°C for 2 mins, followed by 40 cycles of 

denaturation at 95°C for 30 s, annealing at 52°C for 30 s, and extension at 72°C for 30 s, 

and a final extension at 72°C for 10 min. Successful amplification was verified using 2% 

agarose gel electrophoresis. Samples were Sanger sequenced in both forward and reverse 

directions and Geneious version Pro 5.6.5 was used to annotate and align the sequences 

(http://www.geneious.com/). We used NCBI’s BLAST nr database to identify the fungi 

to species; the top match was retained if it returned an E-value less than 0.1. All 

sequences were aligned with Geneious and a neighbor-joining tree was constructed; this 

allowed inference of species or generic identity of samples with no significant match 

when nested within identified clades.   

 

Statistical Analysis 

To test the differences between control and treated samples a chi-square test of 

independence was performed. Logistic regression was used to test the effect of ant 

species identity, soil source, and their interaction on the probability that a pupa would 

become infected.  Two logistic regressions were run: in the first, all four ant taxa (P. 

barbatus, H, J, P. rugosus) were treated as separate categories.  In the second, I explicitly 

tested the genetic diversity hypothesis by combining the H and J lineage samples into a 

single "Hybrid" category; because the first analysis indicated a difference between the 

two parent species, these were left as separate taxa.  All statistical analyses were carried 

out in JMP version Pro 10 (SAS Institute Inc., 2007).  
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Results 

Exposure to fresh soil significantly elevated pupal mortality relative to filter paper 

controls (X2 = 65.42, df = 1, p < 0.0001*; Figure 3.2). Fungi isolated from the few pupae 

that had died in the controls were identified as Aspergillus, a cosmopolitan saprophytic 

fungus, and Candida, an opportunistic vertebrate pathogen. In contrast, a total of 16 

fungal genera were reared from pupae in the fresh soil treatment (Figure 3.3).  

Both soil origin and ant species identity significantly affected the likelihood of 

fungal infection, but there was no significant interaction between ant and soil type (Soil 

origin: F3,468 = 3.2241; p = 0.0225*; Ant species: F2,468 = 12.3223; p < 0.001*).  H lineage 

soils had the lowest infection rate, while J lineages soil had the highest (Q = 2.57, df = 3, 

p = 0.0395*) (Figure 3.4). Pogonomyrmex rugosus soil resulted in infections from a total 

of 12 species from 11 genera, while H lineage soil yielded 9 species from 8 genera, J 

lineage soil yielded 13 species from 9 genera, and P. barbatus produced infections of 8 

species from 5 genera (Figure 3.3).  When the distribution of fungal genera across soil 

types for each site was compared to the grand mean across all soil types, J lineage soil 

was the only site that differed significantly in fungal distribution, with an excess of 

Mortierella, Modicella and Lecanicillium and a deficit of Candida infections (Table 3.1). 

Among species, P. rugosus ants were significantly less likely than all other taxa to 

be infected by fungi regardless of soil type (p < 0.0001*, P. barbatus; p < 0.0001*, H 

lineage; p = 0.042*, J lineage). Hybrid lineages ants were significantly different from 

each other (p = 0.0253*). The H and J lineages were generally intermediate and did not 

differ significantly from P. barbatus (p = 0.0610).  To test the hybrid resistance 



 

  62 

hypothesis, we pooled the H and J lineages as hybrids and reanalyzed the infection data, 

with identical results (Figure 3.5).  Infection types across the four ant types were not 

equally distributed (Table 3.2); the H lineage was more infected than expected by 

Modicella, but had fewer than expected Fusarium infections. 

 

Discussion 

Pathogen resistance is expected to be shaped by costs and benefits of investment 

in resistance, the extent of local antagonistic coevolution, and the genetic diversity of 

individuals and populations.  We tested these hypotheses with a factorial design that 

exposed two species of ants and their hybrids to soil-borne fungi from across the range of 

the species complex.  Our results provide support for the Life-History Tradeoff 

hypothesis, as the slow-growing, desert-adapted species P. rugosus was significantly 

more resistant to fungal infection than the other taxa.  In contrast, we found no evidence 

for an effect of pathogen pressure, genetic diversity, or local adaptation on host 

resistance.  

The pathogen load hypothesis predicted that ants living in more productive, mesic 

habitats would experience a higher pathogen load in their environment and therefore 

invest more heavily into pathogen resistance, reducing their infection probability.  Mean 

annual precipitation increases from west to east, and overall infection rates from soil 

showed a similar positive correlation with precipitation level even under uniform 

laboratory conditions, suggesting that the bank of fungal spores present increases as 

conditions became more favorable for fungal growth and reproduction.  However, 
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comparison of ant susceptibility to infection showed the opposite pattern from that 

predicted by the pathogen pressure hypothesis: P. rugosus, which comes from the most 

arid environment of the four taxa, was the most resistant to fungal infection, while the 

most mesic-habitat species, P. barbatus, was among the least resistant. This matches the 

results of a field survey, which found higher prevalence of fungal infection in internal 

tissue of adult P. barbatus workers than in P. rugosus or the hybrid lineages (Chapter 2).   

The genetic diversity hypothesis predicted higher resistance to disease in hybrid 

populations compared to parental species. This hypothesis was not supported because it 

predicted that hybrid would have a higher number of uninfected ants than parental 

species. Previous studies have shown that hybrid species, especially in plants, are not less 

susceptible to pathogens, although but they do show benefits against herbivores (Fritz et 

al., 1994; Fritz et al., 1999).  However in a study of mice results showed that hybrid mice 

had less parasite loads than parental species suggesting hybrids vigor (Moulina et al., 

1995). Although other studies of social insects show increased pathogen resistance 

related to genetic diversity (Liersch and Schmid-Hempel, 1998; Tarpy, 2003; Reber et al., 

2008; Ugelvig et al., 2010; Calleri et al., 2006), our data suggest that hybridization does 

not play a role in pathogen resistance in Pogonomyrmex ants. 

The local adaptation hypothesis stated that ants should have a higher resistance to 

disease in their local habitat than in a foreign habitat. This hypothesis was not supported, 

as the ant species were no more resistant to fungi when exposed to their own soil than 

when exposed to foreign soil. Similar to our study, Zhan and colleagues (2002) did not 

find any global evidence of local adaptation in two species of wheat that had different 
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levels of resistance to one fungal pathogen, Mycosphaerella graminicola, although such 

an effect could be detect for a subset of specific fungal strains tested. There have also 

been studies that have found maladaptation of fungi to their host when a sexually-

reproducing host is infected by a selfing pathogen, limiting the evolutionary potential of 

the pathogen (Kaltz et al., 1999; Gandon and Michalakis, 2002). In contrast, other 

studies have found evidence of coevolution produced by local adaptation in different 

hosts and parasites (Imhoof and Schmid-Hempel, 1998; Thrall et al., 2002; Schulte et 

al., 2011). No evidence for local adaptation was found in this study system, but it should 

be noted that this study looked at all the fungal genera together, and therefore had little 

power to detect species-specific effects.  Testing a single species may provide more 

insight into whether there are patterns of local adaptation.  

The life history tradeoffs hypothesis stated that ants that have a higher investment 

in reproduction would have a lower resistance to disease. Studies looking at life history 

tradeoff and host-pathogen interactions have found that species vary in their allocation of 

resources towards resistance versus other tasks such as reproductive effort (Minchell, 

1985; Richner, 1998; Gwynn et al., 2005). In pea aphid, this shift to invest more in 

immunity comes at a cost for fecundity, because individuals carry a secondary symbiont 

associated with parasite resistance leading to fewer offspring (Gwynn et al., 2005). Once 

infected, however, individuals may shift to allocate more towards growth and 

reproduction in order to recoup some fitness in the face of increased mortality risk (Pagán 

et al., 2008).   Our results showed that P. rugosus had the highest resistance in all soil 

types. Helms Cahan and colleagues (2009) looked at the growth rate for both parental 
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species and hybrid lineages and found that P. rugosus has a lower growth rate. They 

suggest that this difference of growth rate it is an adaptation to stressful environments. 

Our results suggest that there is a difference in life history between our species that lead 

to differences in pathogen resistance. 

Identification of fungi for this experiment showed a greater number of non-

pathogenic fungi than expected in our samples. We saw a number of plant pathogens in 

our data as well as endophytic fungi (endosymbionts of plants). Pogonomyrmex are 

granivores and bring a lot of seeds to their colonies; it is possible that spores of these 

fungi were dormant in the soil of the ant colonies. As for Candida, human pathogen, they 

are known to live in endosymbiosis in insect host tissue (Nguyen et al., 2007; Suh et al., 

2008), which could explain the high concentration of these fungi in our sample.  

Alternatively, the types of fungi in the soil environment that can effectively infect 

and invade Pogonomyrmex pupae may be greater than the set of taxa commonly 

considered to be entomopathogens.  Overall low resistance to pathogens in immature 

stages may be expected in eusocial insects such as ants, which are typically cared for by 

adults throughout development.  This study only measured inherent resistance, and did 

not take into consideration any social immunity effects. Having this in mind we might see 

differences in the response to pathogens in our ants. Social insects have a series of 

mechanism at the individual and colony level that helps with resistance towards 

pathogen. Social immunity mechanisms include allogrooming, where one individual ant 

grooms another one removing spores from their bodies (Fernández-Marín et al., 2006; 

Reber et al., 2011). In bumblebees, brood can receive trans-generational immunity via the 
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mother’s egg (Sadd et al., 2005; Sadd and Schmid-Hempel, 2007). By not testing this we 

might have missed some information regarding mechanism of resistance.
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Table 3.1 . Number of fungi genera found between the ant types. Fungi were identified 
by functional groups. A chi-square test of goodness-of-fit was performed to determine 
whether the ant types were equally preferred (X2

(0.050, df=4) = 9.488).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fungi Genera Type P. rugosus H J P. barbatus Total 

Cunninghamella Antagonistic 1 2 1 1 5 

Candida Human pathogen 1 2 1 8 12 

Kodamaea Human pathogen 0 1 0 0 1 

Mortierella Saprophytic 2 4 2 2 10 

Modicella Endophytic 0 7 2 3 12 

Ceratobasidium Saprophytic 0 0 0 1 1 

Aspergillus Saprophytic 0 2 1 2 5 

Preussia Endophytic 0 0 1 0 1 

Cochliobolus Phytopathogenic 0 0 3 0 3 

Curvularia Phytopathogenic 0 2 0 0 2 

Alternaria Phytopathogenic 0 1 0 1 2 

Chaetomium Endophytic 1 0 1 0 2 

Xylariaceae Phytopathogenic 1 0 0 0 1 

Lecanicillium Entomopathogenic 0 0 1 2 3 

Fusarium Entomopathogenic 4 1 9 8 22 

Rhizopus Phytopathogenic 1 0 0 1 2 

Chi-square  2.6060 9.8135* 3.9526 4.6659  

!
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Table 3.2.  Fungal genera found across the soil types. Fungi were identified by 
functional groups. A chi-square test of goodness-of-fit was performed to determine 
whether the distribution of fungal taxa was similar across soil types (X2

(0.025, df=4) = 
11.143). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fungi Genera Type P. rugosus H J P. barbatus Total 

Cunninghamella Antagonistic 1 2 1 0 4 

Candida Human pathogen 3 7 1 1 12 

Kodamaea Human pathogen 0 0 1 0 1 

Mortierella Saprophytic 1 2 6 1 10 

Modicella Endophytic 1 2 9 0 12 

Ceratobasidium Saprophytic 1 0 0 0 1 

Aspergillus Saprophytic 1 4 0 0 5 

Preussia Endophytic 0 0 0 1 1 

Cochliobolus Phytopathogenic 3 0 0 0 3 

Curvularia Phytopathogenic 0 2 0 0 2 

Alternaria Phytopathogenic 1 0 1 0 2 

Chaetomium Endophytic 0 0 1 1 2 

Xylariaceae Phytopathogenic 1 0 0 0 1 

Lecanicillium Entomopathogenic 0 3 0 0 3 

Fusarium Entomopathogenic 2 4 9 7 22 

Rhizopus Phytopathogenic 2 0 0 0 2 

Chi-square  6.5270 6.0042 13.0946** 8.3070  

!
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Figure 3.1. Geographic location of Pogonomyrmex species sites. Circles represent sites 
where soil and ant workers samples were collected. Stars represent where newly mated 
queens were sampled. Aqua color represents P. rugosus sites, pink represents J lineage 
sites, purple represents H lineage sites and green represents P. barbatus sites. 
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Figure 3.2.  Proportion of pupae surviving to adult eclosion in filter paper control and 
fresh soil. Chi-squared test: X2 = 65.42, df = 1, p < 0.0001*
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Figure 3.3.  Neighbor Joining Tree of the ITS gene amplified from fungi recovered in 
the bait experiment. Each branch represents one sample; the name is the fungi species 
followed by the soil sample it was extracted. Different color represents each fungal genus 
and the shades indicate different species within a genus. 
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Figure 3.4.  Proportion of uninfected pupae in soil types.  Ant Species: F2,468; p < 
0.001*. Soil Samples: F3,468; p < 0.0225* 
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Figure 3.5.  Proportion of uninfected pupae in soil types with hybrids together.  Ant 
Species: F2,468; p < 0.001*. Soil Samples: F3,468; p < 0.0225*
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CHAPTER 4 
 
 

FUTURE DIRECTIONS 
 

Future projects on fungal diversity and pathogenicity on harvester ants would 

benefit from more detailed sampling. To gain a better understanding or predictor for 

abundance and diversity of fungi, I would recommend going out in the field and collect 

more samples from the entire range and collect environmental data (pH, temperature and 

soil moisture). Although the use of standard microbiology techniques was useful to 

characterize the fungal community that are present in these ant habitats, these techniques 

tend to overestimate abundance of some fungal species and identify only the most 

common species (Jeewon and Hyde, 2007).  In the future, it would be useful to utilize 

different methods to gain a better understanding of fungal species composition and 

pathogen load in our habitats. Large-scale meta-barcoding using DNA extraction of soil 

samples would allow us to obtain more information on fungal diversity in the soil 

environment. Using this method, we can extract ribosomal DNA and functional genes 

from genomic DNA from the soil samples, sequence it, then identify fungal community 

in the soil samples based on these sequences (Elsas and Boersma, 2011; Prosser, 2002). 

This approach will allow us to obtain more accurate relative abundances of the fungi 

found in the soil. Also, would allow us to capture more diversity and is less biased. 

A clear understanding of pathogen-host dynamics emerges from matching the 

fungal diversity that ants experience in their environment and probability of infection. 

Results from the first chapter showed that there are distinct differences in 

entomopathogenic fungi present in our species, but the source of this variation has not 
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been determined through this work (Table 1.3). Some were found in all of our ants while 

other pathogens were only found in one of the ant species. For example, Beauveria 

bassiana was found in both parental species and one of the hybrid lineages, but not in the 

other lineage tested. Chapter two showed differences in infection frequency among 

species, with P. rugosus ants having the lowest infection frequency. It is possible that 

there are differences in virulence between strains of entomopathogenic fungi among the 

ant species. Beauveria bassiana has been found to have high genetic differentiation 

between isolates. Some studies have shown that genetic differentiation is related to 

differences in virulence against certain insect taxon (Lai et al., 1982; Jones et al., 1996; 

Bidochka et al., 2002; Cruz et al., 2006; Rao et al., 2006). To determine the level of 

virulence in ant hosts, we could experimentally infect ants with the different pathogens 

and measure virulence. Fusarium seems to have the higher abundance in our second 

experiment, suggesting it is an effective pathogen in our ants. We could verify if 

Fusarium is a pathogenic fungi for Pogonomyrmex species. Very little is known about the 

prevalence and diversity of fungal pathogens actually infecting social insects in natural 

conditions (Briano et al., 1995; Pereira, 2004; Rodrigues et al., 2010; Evans et al., 2011).

 One fascinating problem that still remains is how ants defend against fungal 

pathogens. It would also be beneficial to look at what mechanism ants use to defend 

against pathogens. There were no differences between hybrids and parental species in 

terms of resistance towards pathogens. We have observed differences between parental 

species that were unexpected. P. rugosus was found to have the lowest infection 

frequency compared to the other species. It is known that P. rugosus has a lower growth 
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rate and live in stressful environments (Helms Cahan et al., 2009). One possible 

explanation for these differences is that P. rugosus invested more energy in protection 

than in reproduction to cope with disease risk. Specialized social sanitary behaviors, such 

as allogrooming decreases the number of fungal spores on the surface of contaminated 

workers and lower the rates of transmission, supporting the idea that behavioral traits can 

decrease prevalence of fungal infection within a colony (Fernández-Marín et al., 2006; 

Reber et al., 2011). P. rugosus might be investing a significant amount of time in 

allogrooming to avoid infections, therefore lowering their susceptibility to the pathogen. 

Overall this will helps get a better understanding of the fungal composition, 

diversity and abundance that harvester ants experience in their habitats. Especially the 

different species of entomopathogenic fungi that they encounter that can help us look at 

susceptibility of pathogens for these ants. Determining relative pathogenicity and 

virulence can help understand a little more about how these pathogens might affect the 

host and at what level of virulence. Understanding mechanisms that generate virulence 

can give insight on how virulence evolves.  
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