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Abstract

Populations of cells live in uncertain environments, where they encounter large variations
in nutrients, oxygen and toxic compounds. In the fluctuating environment, cells can sense
their surroundings and express proteins to protect themselves against harmful substances.
However, if the stressor appears infrequently or abruptly, sensing can be too costly or too
slow, and cells cannot rely solely on it. To hedge against the sudden appearance of a
stressor, cell populations can also rely on phenotypic diversification through bet-hedging.
In bet-hedging, cells exploit noise in gene expression or use multistable genetic networks
to produce an heterogeneous distribution of resistance-conferring protein levels. In this
thesis, we analyze novel roles of noise in biological systems. Through a combination of
modeling and stochastic simulations, we find that noise can coordinate multi-component
stress response mechanisms in a subset of the population with no extra cost. In addition,
we use evolutionary algorithms to analyze the conditions where the benefits provided by
noise in gene expression are equivalent to those of a more complicated, bistable distribution
of protein levels. Our results show that for cells living in noisy fluctuating environments,
both noise in gene expression and bistability show similar growth rates, meaning that noise
in gene expression can be an effective bet-hedging strategy.
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Chapter 1

Introduction

“Everything may evaporate at any instant. Everything!” I said with surprising

vehemence. “You, me, the most rocklike personality since Calvin Coolidge;

death, destruction, despair may strike. To live your life assuming otherwise is

insanity.”

— Luke Rhinehart, The Dice Man.

Through our history, human beings have been surrounded by microorganisms. Microbial

infections have killed millions of people, with relatively high mortality rates until the

discovery of antibiotics and vaccination– although increasing antibiotic resistance may

change this (1). However, microorganisms have also been the base of many beneficial

products, such as vinegar, cheese, bread and beer for more than 6000 years (2). Today,

we have expanded the positive role that microbes play in our lives to include medical

and industrial products, including aminoacids, vitamins, antibiotics, probiotics, biocontrol

agents, pesticides, enzymes, biofuels and many others (2). From the point of view
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CHAPTER 1. INTRODUCTION

of the microorganism, the environment is always changing, with stressors appearing

suddenly. For example, bacteria get exposed to antibiotics as the result of its use in

medicine and livestock. Similarly, the fungi Penicillium and lactic acid bacteria, used

in the cheese industry, face continuous changes in temperature and sugar availability

(3, 4). Understanding the mechanisms that microorganims use to survive in uncertain

environments has applications in both medicine and industry.

In an environment where many toxins are present, microbes have mechanisms to protect

themselves against general stresses. For example, they express pumps to export toxins,

block pores to stop the influx of the stressor, and produce reductases to detoxify the

environment (5). In addition, many bacteria can enter growth arrest or sporulate to avoid

damage (6–8). However, these general mechanisms are very taxing for the cells (9).

Microorganisms use two main strategies to balance growth in basal, un-stressed conditions,

with high survival rates in the presence of a stressor. First, cells can sense and adapt to the

environment. Nevertheless, the population of cells faces complete annihilation if action of

the stressor is faster than the time required to adapt to it. In addition, sensory mechanisms

have also an associated cost, which can be larger than the damage of the stressor if this

is only encountered rarely. Thus, cells cannot rely solely on sensory mechanisms if the

stressor appears suddenly or infrequently. A second strategy consists on diversifying the

isogenic population to hedge against future stresses, where part of the population is in

charge of growing in the absence of stress and part of the population produces the costly

stress resistance mechanisms (10). To allow for variability within one single genotype,

switching between phenotypic states may be driven by noise, although it can be coupled

with sensing mechanisms (10). Population diversification is a common strategy in vivo.

In Saccharomyces cerevisiae, many stress response genes contain a TATA-box in their
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CHAPTER 1. INTRODUCTION

promoter region, which has been shown to increase gene expression variability and protect

against the appearance of future stresses (11). Similarly, variability in Escherichia coli has

also been associated with stress survival (7).

Networks with interlinked fast positive and slow negative feedbacks are often associated

with variability in gene expression (12). One of such networks, the multiple antibiotic

resistance (mar) operon, is an important stress response mechanism in E. coli (13). The

mar operon is composed of three genes. The activator, MarA, is translated rapidly and

induces the operon, as well as more than 40 genes implicated in general stress response

(13, 14). The repressor and sensor MarR, is translated slowly and represses the operon

(14). MarR is inactivated by many toxic compounds, allowing for the production of

MarA and the initialization of the response (13). The third gene, marB, has recently

been found to be an indirect repressor of the operon (15). In a previous study by Garcia-

Bernardo and Dunlop (16), we developed a stochastic model of the mar operon. We showed

that the combination of slow negative and fast positive feedbacks can produce stochastic

pulses in the expression of MarA when no stressor is present, increasing resistance to the

sudden appearance of a stressor. Moreover, our computational model shows the response

is tunable, and variability is decreased when MarA is induced (via MarR repression),

ensuring low variability and a large, reliable response in the presence of a stressor. We

further showed that the parameter regime of the system balances low cost to the cell, since

resistance mechanisms are expressed in pulses, and elevated resistant to antibiotics via

phenotypic variability. Finally, we accounted for the cost of expressing stress response

mechanisms and the benefit of surviving the sudden appearance of a stressor to calculate

the growth rate in fluctuating environments. Our results showed that variability can increase

the fitness of the population in a a fluctuating environment, but not in a fixed one.
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CHAPTER 1. INTRODUCTION

In our previous study, the resistance to the stressor was calculated directly from the level

of MarA. Therefore, we showed that noise can increase the survivable concentration of a

stressor when the resistance is controlled by one gene. Similar results have been observed

in vivo. For example, yeast strains with increased heterogeneity in the expression of

Ura3p, a gene that converts 5-fluoroorotic acid into a toxic compound, survive higher

concentrations of the acid (17). However, general stress resistance is often composed of

many complementary genes regulated by one or a few regulators (18). Even when noise can

be transmitted (19), transmission only occurs infrequently, and it is not clear if noise or low-

level fluctuations in the level of the regulator can coordinate multi-component resistance

mechanisms. To test this, we used a stochastic model to simulate the transmission of noise

and dynamics from a regulator to its downstream genes (Section 2.1, (20)). We compared

several upstream regulator dynamics, including constant expression, low-level pulsatile

dynamics and noisy expression. We found that both low-level pulses and noisy expression

are able to coordinate expression of multiple downstream genes in a small fraction of

the population. For example, the low-level pulsatile dynamics of MarA in unstressed

conditions are able to coordinate its 40 downstream genes. Moreover, this coordination

increases the survival concentration of a stressor without an increase in energy expenditure

in the population. Therefore, noise may increase growth rates in fluctuating environments

both when the resistance mechanism is composed of one gene and when it is composed of

many genes controlled by an upstream regulator.

When noise is used to diversify the population, the distribution of protein levels in the

population is usually unimodal. Another survival strategy in fluctuating environments

consists of diversifying the population into a finite number of phenotypes (10). In this case,

the distribution of resistance levels in the population is multimodal. Several examples of
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CHAPTER 1. INTRODUCTION

multimodal systems have been found in vivo. In many pathogenic bacteria, such as the ones

causing tuberculosis, Mycobacterium tuberculosis, or staph infections, Staphylococcus

aureus; a small portion of the population remains in a non-growing, resistant state

called persistance (6, 21). Since many stressors are only effective when cells are

metabolically active, this population can survive sudden fluctuations in the concentration of

a stressor. Other pathogenic bacteria, such as the agents causing pneumonia, Streptococcus

pneumoniae, or gonorrhea, Neisseria gonorrhoeae, enter competence under nutrient

limitation. Competence is a state of cell growth arrest where cells have the ability to

uptake extracellular DNA (22). Some others, such as the microbes causing botulism,

tetanus and colitis, from the genre Clostridum, are able to form spores during starvation,

which are non-growing cells that are highly resistant cells to stresses (22). In addition,

several mathematical analyses have been shown the benefit of bimodality in systems with

two environmental states and two phenotypes (23–28). Finally, bacteria such as E. coli,

Lactococcus lactis and S. aureus that grow in a mix of primary carbon-sources (such a

glucose) and secondary carbon-sources (such as lactose, arabinose or cellobiose) express

genes to uptake the secondary sugars in a small fraction of the population. In bacteria,

the strigent response is activated if the primary sugar is depleted before the cells are able

to adapt to the secondary sugar, resulting in growth arrest until a primary sugar becomes

available (29). Producing the transporters in a subset of the popultion allows the population

to continue growing even if the primary carbon-source never becomes available (29).

However, the apparent benefits of multistability contrast with the fact that the expression of

more than 99% of E. coli genes is well described by gamma distributions of protein (30), as

the expected fothe result of noisy gene expression (31). To bring insight into the conditions

where multistability is benefitial, we created a model of a population of cells growing in

5
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an environment that fluctuates between low and high stress conditions. We represented the

population by the distribution of concentrations of a protein conferring stress resistance.

Growth rate was determined by the cost of expressing the resistance protein in the absence

of stress and the benefit of expressing the machinery in the presence of a stress. We

then used evolutionary algorithms to find optimal or near-optimal distributions of proteins

in fluctuating environments, where growth rate was the measure of fitness driving the

evolution process. To allow for a comparison between unimodal (modeling noise in gene

expression) and bimodal distributions, we restricted the evolved distribution to be a gamma

distribution (unimodal) or the weighted sum of two gamma distributions (bimodal). We

systematically varied the time spent in the presence of low and high concentrations of

a strong stressor, i.e. a compound that kills the cells that do not express enough stress

response protein. In these conditions, bimodality was favoured when the population spends

large times in low stress, and unimodal distributions adapted to high stress conditions were

evolved otherwise. We further allowed the cells to sense and adapt to the environment.

Sensing populations can afford large cell loses the first time they encounter a stressor, since

they then adapt to the stress and can regenerate. Consequently, we found that sensing

increases the parameter region where bimodality is favoured. Importantly, for both sensing

and no sensing cases, we found that the benefit of bimodality decreases as the noise or the

number of environments is increased. Therefore, unimodal distributions can be optimal

bet-hedging strategies under realistic fluctuating environments.

Through a combination of modeling, stochastic simulations and evolutionary algorithms,

we find that noise in gene expression can be an effective bet-hedging strategy. When stress

response depends on multiple genes, noise in an upstream regulator can coordinate the

response in a small fraction of the population, increasing stress survival without an increase

6



CHAPTER 1. INTRODUCTION

in metabolic cost. Furthermore, when the stress level in the environment is variable, noise

in downstream gene expression, which creates unimodal distribution of protein levels,

provides the same benefit than a more complicated, bimodal strategy.
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Noise and Low-Level Dynamics Can Coordinate Multicomponent Bet
Hedging Mechanisms

Javier Garcia-Bernardo1 and Mary J. Dunlop2,*
1Department of Computer Science and 2School of Engineering, University of Vermont, Burlington, Vermont

ABSTRACT To counter future uncertainty, cells can stochastically express stress response mechanisms to diversify their pop-
ulation and hedge against stress. This approach allows a small subset of the population to survive without the prohibitive cost of
constantly expressing resistance machinery at the population level. However, expression of multiple genes in concert is often
needed to ensure survival, requiring coordination of infrequent events across many downstream targets. This raises the ques-
tion of how cells orchestrate the timing of multiple rare events without adding cost. To investigate this, we used a stochastic
model to study regulation of downstream target genes by a transcription factor. We compared several upstream regulator pro-
files, including constant expression, pulsatile dynamics, and noisy expression. We found that pulsatile dynamics and noise are
sufficient to coordinate expression of multiple downstream genes. Notably, this is true even when fluctuations in the upstream
regulator are far below the dissociation constants of the regulated genes, as with infrequently activated genes. As an example,
we simulated the dynamics of the multiple antibiotic resistance activator (MarA) and 40 diverse downstream genes it regulates,
determining that low-level dynamics in MarA are sufficient to coordinate expression of resistance mechanisms. We also demon-
strated that noise can play a similar coordinating role. Importantly, we found that these benefits are present without a corre-
sponding increase in the population-level cost. Therefore, our model suggests that low-level dynamics or noise in a
transcription factor can coordinate expression of multiple stress response mechanisms by engaging them simultaneously
without adding to the overall cost.

INTRODUCTION

Cells can use stochastic gene expression (noise) and dy-
namics to diversify isogenic populations to hedge against
stress (1). For example, in bacterial persistence, a small frac-
tion of cells stochastically enters a dormant, drug-resistant
state, allowing the population to insure against the sudden
appearance of an antibiotic (2,3). An excitable gene circuit
in Bacillus subtilis drives the temporary transition to compe-
tence under nutrient limitation (4,5). These are infrequent
events: <1% of Pseudomonas aeruginosa, Staphylococcus
aureus, and Escherichia coli cells are in the persistence state,
and 3% of B. subtilis cells initiate competence under nutrient
limitation (4–6). However, stress responsemechanisms often
require expression of many genes simultaneously, and single
regulators may control many downstream targets. These ob-
servations raise the question of how multiple rare events are
coordinated. A key principle of bet hedging is that the cost to
the overall population is low, because only a small subset of
cells initiates a response. We extended this idea by asking
whether coordinated expression of downstream genes could
further mitigate overall cost.

Single-cell resolution measurements have revealed that
cellular processes involved in stress response and environ-

mental change have high levels of phenotypic variability.
For example, systematic noise measurements across the
Saccharomyces cerevisiae proteome have demonstrated
that noise levels are high for proteins involved in stress
response, amino acid synthesis, and heat shock (7). TATA-
box-containing genes associated with stress response in
S. cerevisiae exhibit fluctuations that protect against future
environmental changes (8). Variability can come from noise
sources that are intrinsic or extrinsic, where intrinsic noise is
unique to individual genes and variability is produced by
random events in transcription, translation, and degradation.
Extrinsic noise is produced by variability in processes that
affect many genes in the same way; for instance, differences
in growth or numbers of ribosomes in a cell can produce
correlated expression of many genes (9–12). Diversity can
also be driven by dynamic changes in gene expression as
a result of the regulatory architecture. For instance, regula-
tory proteins can exhibit repetitive pulses in expression even
in the absence of external inputs that drive this behavior
(13,14). Examples of pulsing include the yeast regulator
Msn2 under glucose, osmotic, and oxidative stress (15,16);
Crz1 in response to calcium stress (17); and KatG in Myco-
bacterium to control persistence (18). Specific networks,
such as coherent feed-forward loops, have been shown to
increase population heterogeneity, enhancing drug resis-
tance (19). Phenotypic diversity of stress-response mecha-
nisms, derived from stochastic gene expression or other
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dynamics, plays an important role in protecting against
future uncertainty.

Interestingly, many stress response mechanisms are mem-
bers of single-input or multi-input modules, where one or a
few regulatory proteins control the expression of many
downstream genes (20). This regulatory motif is overrepre-
sented in genetic networks that respond to exogenous condi-
tions such as diauxic shift and DNA damage (21). In
response to stress, Msn2 from S. cerevisiae regulates hun-
dreds of target genes (15). Crz1 exhibits pulses that activate
>40 genes (17). The alternative sigma factor sB in
B. subtilis exhibits noise-driven pulses, regulating >100
genes (22). The multiple antibiotic resistance activator
MarA in E. coli controls >40 downstream genes involved
in resistance to antibiotics (23,24). Therefore, understand-
ing how noise or dynamics in an upstream regulator influ-
ences expression of diverse downstream genes is of great
interest in understanding stress response. An upstream regu-
lator could potentially achieve the concentration necessary
to activate the simultaneous expression of multiple down-
stream genes. However, achieving infrequent coordination
in a small subset of the total population would require com-
plex regulation or long-term memory. The alternative strat-
egy presented here is to rely on low-level fluctuations in the
activator to coordinate multiple rare events.

Whether a signal is propagated depends upon whether the
downstream promoter can decode the variability in the tran-
scription factor, as determined by the promoter and the prop-
erties of the signal (15,25–28). If the dynamics of the
downstreampromoter are fast, that is, the binding andunbind-
ing rates are faster than degradation, cell division, and
changes in the upstream input, then the output will follow
the input (25). If they are slow, then most of the input dy-
namics will be filtered (16). For example, input pulses that
are high in amplitude or duration will activate the promoter
(16), but small pulses andnoise that do notmeet these require-
ments will rarely activate downstream promoters. Although
activation is infrequent, the downstream genes will still be
activated a small fraction of the time due to the stochastic na-
ture of gene expression; these rare events produce long tails in
the mRNA and protein distributions (29–31).

There is a cost associated with the expression of stress-
response genes. In general, cells allocate their resources to
optimize growth, but the expression of genes not immedi-
ately related to growth can provide a potential benefit if
the environment changes. This cost-benefit relationship
has been observed in vivo: for lactose intake, populations
of E. coli are able to grow fastest in the presence of lactose
if the lac operon is expressed moderately, but not if expres-
sion is high (32). For antibiotic resistance, cells are able to
grow in higher concentrations of antibiotic if themar operon
is moderately induced (33,34). Therefore, there is a tradeoff
between the burden imposed by the expression of these
genes and the benefits they can provide in an uncertain
environment.

To understand how noise and dynamics in a stress
response regulator are propagated to downstream target
genes, we performed stochastic simulations using three
types of inputs: constant expression, pulsatile dynamics,
and intrinsic/extrinsic noise. The regulators control the
expression of several downstream genes, creating a single-
input module similar to those observed in natural networks.
We found that downstream genes regulated by all types of
inputs have noisy expression profiles; however, fluctuating
inputs (due to pulsatile dynamics or intrinsic/extrinsic
noise) can coordinate the temporal pattern of downstream
gene expression. This effect becomes pronounced when
there are several downstream genes, because the probability
of multiple genes being coordinated is higher when a dy-
namic input can orchestrate the response. The fidelity with
which the input is propagated to the downstream genes de-
pends upon the characteristics of the downstream promoter
and the input signal. Notably, even low-level fluctuations in
an upstream regulator can serve to hedge against stressors
without adding to the overall cost. Coordination of down-
stream genes may allow cells to hedge against future uncer-
tainty in the environment without an excessive burden to the
population.

MATERIALS AND METHODS

Stochastic model

All downstream genes in all simulations are subject to intrinsic noise. To

simulate this, we used a stochastic model based on the processes described

below, for which the reaction rates are given in Table S1 in the Supporting

Material and shown in Fig. S1. Exact stochastic simulations were conducted

using the Gillespie algorithm (35).

Binding and unbinding of the regulator to the promoter of the down-

stream gene are modeled by

Pþ A/
KON

P0

P0/
KOFF

Pþ A;

where P represents the promoter in the unbound state, A is a transcription

factor, and P0 is the promoter in the bound state.

Transcription and translation are modeled using

P/
a

PþM

P0/
a0

P0 þM

M/
b

M þ D;

where M is the mRNA for the downstream gene and D is the protein en-

coded by the downstream gene. Presence of the transcription factor in-

creases the transcription rate (a0 > a). The translation rate, b, includes

both translation and folding events.

mRNA and protein degradation are modeled by
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M/
lM

[

D/
lD

[;

where the rates lM and lD model mRNA and protein degradation and dilu-

tion due to cell growth.

We considered constant and pulsing inputs for the transcription factor

profiles. For the constant case, the activator level is set to 250 molecules

for all time. To define the activator levels, the pulsing input case uses the

function

A ¼
8<
:

500
�
1þ sin

� t

6p
� p

2

��
; 0<t%120

0; 120<t<240

:

The signal is repeated every 240 min, creating periodic pulses of the regu-

lator. The mean of the pulsing signal is 250 molecules, identical to the mean

of the constant activator. We used an arbitrary periodic waveform repre-

sented by a sine wave followed by a period with no activator, so that signal

properties including amplitude, pulse duration, and frequency could be

adjusted explicitly.

Cross correlation

The cross correlation measures the correlation between two time series, f(t)

and g(t), when a lag, t, is applied to one of the two signals. We used the

unbiased estimate of the cross correlation:

Rf ;gðtÞ ¼

8>><
>>:

1

N � jtj
XN�jtj�1

t¼ 0

f ðt þ tÞgðtÞ; tR0

Rg;f ð�tÞ; t<0

:

Here, f(t) and g(t) are the time series for the transcriptional regulator and a

downstream protein. Both signals are mean subtracted and normalized by

dividing by the standard deviation. N is the number of time points.

Amplitude response plots

For three different dissociation constant (KD) values (100, 1000, and 10,000

molecules), we varied the amplitude of the pulses from 10�2 KD to 102 KD,

and ran a simulation keeping all other parameters constant. The resulting

time series for the protein levels of the activator and downstream genes

were used to calculate the maximum cross correlation.

Cost functions

We developed functions describing the cost and benefit of expressing a

downstream gene. The cost term has two parts: a term c1 that quantifies

the burden of expressing proteins that are not needed for growth under base-

line, nonstressed conditions, and a second term, c2, which quantifies how

cells are impacted in an environment with a stressor present. The total

cost is assumed to be Bliss-independent (36) and is given by

cðD; SÞ ¼ c1 þ c2 � c1 � c2;

where the cost is a function of the downstream protein levels, D, and the

stressor, S.

The burden of protein expression is modeled as in Dekel and Alon (32):

c1ðDÞ ¼ n0D

1� D
M

;

where M is the maximal capacity for nonessential proteins, D is

the concentration of the downstream protein, and n0 is a normalization

constant.

The impact of a stressor is modeled as in studies byWood and Cluzel (33)

and Greco et al. (37):

c2
�
Seff

� ¼ Sneff
kn þ Sneff

;

where Seff is the effective concentration of the stressor, k is the half-inhibi-

tion constant, and n is the Hill coefficient.

Following the formulation from Wood and Cluzel (33), the benefit is

measured as a decrease in c2. By decreasing the intracellular concentration

of toxic compound, the relation between the extracellular concentration of

the stressor, S, and the effective concentration, Seff, is

Seff ¼ S

1þ B
;

where B is the benefit of expressing the stress response machinery, given by

BðDÞ ¼ bmaxD

kb þ D
:

Here, bmax is the maximum benefit of expressing the machinery and kb is the

concentration of protein that gives the half-maximal response.

We used the following parameter values in the cost and benefit equations:

M ¼ 15,000 molecules, n0 ¼ 1 � 10�5, k ¼ 1 mM, n ¼ 2, bmax ¼ 10, and

kb ¼ 15,000 molecules. M and n0 were set such that c1(D) falls between

0 and 1. k sets the maximum concentration of stressor that the cells

can survive when no resistance mechanisms are expressed, and n deter-

mines the steepness of c2(Seff), whereas bmax and kb together set the

maximum concentration that cells can survive when the resistance mecha-

nisms are present. The results are not specific to the values used. We

also tested another cost function, which depends linearly on the levels

of D, c1ðDÞ ¼ D=M (Fig. S2), and observed similar benefits with

coordination.

Maximum survivable concentration of stressor
and cost without stressor

To quantify the maximum concentration of stressor that a population of

cells can survive, we calculated the cost for each cell with the stressor

(recall that the benefit of expressing resistance genes reduces the cost)

and determined which cells survived. To determine survival, we imposed

an arbitrary threshold of 0.95. Cells that exceed this threshold are dead

and those with costs below it survive. We increased the concentration of

the stressor until only 0.1% of cells in a simulated population of 106 cells

survived. We define the concentration at which this occurs as the maximum

survivable concentration. Our findings are not sensitive to the exact

threshold values selected.

We performed these calculations by simulating long time courses

(107 min) to generate distributions of downstream protein levels. Using

this distribution, we calculated the cost for each point in the distribution.

We verified that distributions of downstream protein levels generated using

this approach are equivalent to those generated by running many shorter

simulations and extracting data associated with the final time point (see

Supporting Materials and Methods and Fig. S3).
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The cost of growing without a stressor was calculated as the average of

the costs for each of 107 cells in the simulation.

Multiple antibiotic resistance operon in E. coli

We simulated expression of genes in the mar operon, as in Garcia-Bernardo

and Dunlop (38), using the Gillespie algorithm to obtain values of MarA as

a function of time. Experimental data is available for the KD values of nine

downstream genes (39). We simulated 40 downstream genes by including

multiple instances of each of the known values. The specific KD values,

assuming a cell volume of 10�15 L, are 7,830 (4), 10,239 (4), 15,058 (8),

18,069 (20), and 24,092 (4) molecules, where the number of instances of

each gene included is shown in parentheses.

Extrinsic and intrinsic noise in the activator

To model extrinsic noise, we allowed KON to vary with time (as in Shahre-

zaei et al. (40)) in the activator and downstream genes. We used an exact

numerical solution of an Ornstein-Uhlenbeck process. Extrinsic noise was

simulated using the method of Gillespie (41), with code from http://www.

mathworks.se/matlabcentral/fileexchange/

30184-exact-numerical-simulation-of-the-ornstein-uhlenbeck-process. The

code generates a time series for a source of extrinsic noise ε(t), with zero

mean and standard deviation equal to

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c � T

2

r
:

The relaxation time, T, was set to 40 min (42), and the diffusion constant, c,

was set to 0.006 (low noise), 0.02 (medium noise), 0.05 (high noise), where

the parameters used in Shahrezaei et al. (40) fall between our medium and

high noise cases. Following methods of Shahrezaei et al. (40) and Fox et al.

(43), we replaced the parameter KON with

KON � eeðtÞ

heeðtÞi;

which generates a lognormal distribution, suitable to model fluctuations due

to extrinsic noise (26,40,42).

We modeled intrinsic noise in the activator using the Gillespie algorithm

(35). Reactions and rates are the same as those for the downstream genes

given in Table S1, with the following modifications: KOFF ¼ 0.1 min�1,

KON ¼ 1 (molecules min)�1, a0 ¼ 1 min�1, lM ¼ 0.1 min�1, b ¼
1 min�1, and lD ¼ 0.02 min�1.

Although mean activator expression is identical for the three noise levels,

the mean of the downstream gene will depend upon the noise levels. To

correct for this, we adjusted KON for the downstream genes, as indicated

in Table S2.

Based on the method of Shahrezaei et al. (40), we handled time-depen-

dent propensities, a(t), in the Gillespie algorithm by approximatingR tþt

t aðtÞdt with aðtÞt. This approximating is valid when changes in a(t)

are slow compared with the reaction times (i.e., the difference between

a(t) and a(t þ t) is small), as is the case in this study.

Coordination of n downstream genes

To calculate the fraction of cells in a population with n downstream genes

expressed in a coordinated fashion we ran simulations of n downstream

genes for 107 minutes, each using the same activator profile as input. For

each time point, we checked how many cells had all downstream genes co-

ordinated simultaneously. To measure this, we set a threshold of 1000 mol-

ecules and counted the number of downstream genes that exceeded the

threshold. The fraction of cells with coordination in n genes is determined

by dividing the number of cells where all n downstream genes exceeded the

threshold by the number of cells where this was not achieved. Our results

are not sensitive to the exact threshold values selected.

RESULTS AND DISCUSSION

Input dynamics can coordinate rare events

To study how expression of multiple downstream genes is
impacted by the dynamics of a single input, we developed
a stochastic model in which the promoter of a downstream
gene can be in one of two states (44–46). In the active pro-
moter state, a transcriptional activator is bound, leading to
elevated levels of transcription relative to the inactive state,
where the activator is not bound. The model includes reac-
tions for transcription, translation, and degradation of
mRNA and proteins (Methods). Many transcriptional regu-
lators are expressed at basal levels and activated in the pres-
ence of stress, such as heat, nutrient limitation, or other
environmental factors. Under unstressed conditions, having
a small subset of the population express these genes can act
as an insurance policy against future uncertainty. Further-
more, transcription factors operate on diverse downstream
genes with a range of dissociation constants (KD). This in-
cludes transcription factors with KD values well above the
physiological levels of the activator (see examples in the
literature (16,39,47,48)). This allows a single transcription
factor to differentially activate each of its downstream target
genes. Therefore, we focused on downstream target genes
with promoters that have KD values well above the mean
of the input (Fig. 1). By doing this, we are looking at rare
events, as would be expected in bet hedging.

Initially, we compared two alternative upstream regulator
dynamics and their impact on the expression of downstream
genes. In the first case, the activator is held constant. In the
second case, we considered a transcription factor that ex-
hibits pulsatile expression, with a pulse followed by a
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FIGURE 1 Input dynamics for a downstream gene. Activation curve for a

downstream gene with a dissociation constant (KD) of 10,000 molecules.

The range of three activator dynamics is displayed above the figure: con-

stant, pulsing, and intrinsic/extrinsic noise. In each case, the mean of the

activator signal (gray dashed line) is identical. To see this figure in color,

go online.

Biophysical Journal 108(1) 184–193

Coordinated Multicomponent Bet Hedging 187

CHAPTER 2. JOURNAL PAPERS

12



constant off state. We use the term pulsing here to describe
time-varying signals, ranging from periodic oscillations to
stochastic fluctuations in protein levels (13). For simplicity
of analysis, we initially used a periodic input signal with
uniform pulses followed by periods of low activator levels
(Materials and Methods). However, as discussed later, our
results do not require that the expression of the transcription
factor be periodic or the pulse sizes uniform. We set the
mean expression of the two transcription factors (constant
and pulsing) to be identical to allow for a controlled compar-
ison between the two types of input dynamics.

Even with a constant input, intrinsic noise due to stochas-
tic events causes noise in expression of downstream genes
(Fig. 2 A). Similar dynamics were observed in the pulsing
case, but the transcription events are associated with the
input pulse (Fig. 2 B). Because the fluctuations in the input
are low compared with the KD of the downstream gene, the
transcription factor only intermittently turns on downstream
gene expression and most variation is due to intrinsic noise.
Although not every pulse in the input initiates expression of
the output, when transcription is initiated, it is coordinated
with the input pulse. When averaged over many downstream
genes, fluctuations from the constant-input case average out,
whereas fluctuations from the pulsed-input case follow the
input (Fig. 2, A and B). Importantly, the distributions of
downstream proteins are very similar for constant and puls-
ing inputs and have similar tails (Fig. 2 C), indicating that
the frequency with which the downstream genes are in an

elevated state of expression is similar for genes under both
types of control. These results suggest that it is important
to consider the timing of when genes are expressed and
not just static expression data.

We next asked how propagation of input dynamics de-
pends on the dissociation constant of the promoter for the
downstream gene. We calculated cross correlations between
the input signal and the downstream proteins. The cross cor-
relation measures the similarity of two signals as a function
of time (Materials and Methods). Because expression of the
downstream gene follows the input pulse, there is a lag in
the cross correlation, with the maximum cross correlation
indicating how well the two signals are correlated after
the signal is transmitted. As expected given the lack of input
dynamics, there is no correlation between the input and
downstream protein levels in the constant case, regardless
of KD (Fig. 2 D). In contrast, the pulsing input produces cor-
relations between the input signal and the downstream pro-
tein. The highest correlations are from cases where the KD is
near or below the mean of the input, as expected, since it is
easy to activate expression of downstream genes whose pro-
moter has high affinity for the activator. As the KD increases,
the correlation goes down. Notably, the correlation persists
for KD values two orders of magnitude above the mean of
the activator. Therefore, even infrequent activation events
show correlation with the input signals, despite being far
from the dynamic range of the downstream gene. This result
is important because it suggests that even genes that appear

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10000
A B

D E

KD = 102

KD = 103

KD = 104

Pulsing
Constant

10 10 10
K

0.0

0.2

0.4

0.6

0.8

M
ax

im
um

cr
os

sc
or

re
la

tio
n

10 10 10 10 10
Amplitude / KD

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

cr
os

sc
or

re
la

tio
n

C

0 1000 2000 3000 4000 5000 6000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 × 10

Fr
eq

ue
nc

y

Protein levels (# of molecules)

Pulsing
Constant

Time (hours)

Pulsing

P
ro

te
in

le
ve

ls
(#

 o
f m

ol
ec

ul
es

)

Time (hours)

Constant

P
ro

te
in

le
ve

ls
(#

 o
f m

ol
ec

ul
es

)
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the KD ratio. The ratio used in the simulations in A–C is indicated with an arrow. To see this figure in color, go online.
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not to be activated in population studies may be initiated
rarely but in a coordinated fashion, providing an organized
response, as might be necessary for bet hedging.

We also asked what impact the amplitude of the pulsing
input has on the maximum cross correlation. When normal-
ized by the KD, the maximum cross-correlation curves are
equivalent for all amplitudes (Fig. 2 E). Therefore, the
important quantity is the ratio of the pulse amplitude to
the KD, with fluctuations well below the KD still resulting
in measurable levels of correlation between input and output
signals. These results are consistent with those of previous
studies showing that pulses in gene expression can be prop-
agated: in Msn2 in yeast (15), NF-kB in mice (49,50), and
the stress sigma factor sB in B. subtilis (22), pulses in the
input are highly correlated with pulses in their respective
downstream genes.

To test the generality of our results, we examined a sys-
tem with fast promoter binding dynamics. In this case, tran-
scription-factor binding and unbinding at the promoter is
rapid, such that expression of the downstream gene is initi-
ated more frequently, but the duration of each burst of
expression is shorter (Supporting Materials and Methods).
Again, we observed correlation between the pulsed input
and the downstream output for KD values well above the
mean of the pulsed input (Fig. S4 A). We also asked whether
our results were resistant to the inclusion of explicit cellular
growth and partitioning and found that those processes have
only minor contributions to the correlation observed be-
tween activator and downstream gene, as well as between
two downstream genes (Supporting Materials and Methods
and Fig. S5).

Coordination is achieved without added cost

We next asked what role the correlation between pulses in
the input and initiation of expression of the downstream
genes had on the regulation of multiple genes. As a model
for a single input module, we simulated expression of 10
downstream genes, all regulated by a single transcription
factor. We conducted numerical experiments with
increasing concentrations of stressor, quantifying the
maximum concentration of stressor that a population can
survive (Materials and Methods). In addition, we calculated
the population-level cost of expressing stress resistance
genes using a cost function that we derived from previously
published studies (Materials and Methods). When the input
regulates a single downstream gene, both the maximum con-
centration of stressor that the population can survive and the
population-level cost are similar for constant and pulsing in-
puts (Fig. 3 A). This result is expected, since the distribution
of downstream proteins is equivalent for the two types of
input (Fig. 2 C). However, when multiple genes are regu-
lated together, populations with pulsing inputs are able to
coordinate their response and survive higher concentrations
of a toxic compound while maintaining equal costs (Fig. 3

B). Even modest benefits can provide a selective advantage,
because they come with no added cost. Results for fast pro-
moter binding dynamics (Fig. S4, B and C) and an alterna-
tive cost function (Fig. S2) are similar. Our results are
consistent over a broad range of conditions, cost functions,
and model parameters, indicating the generality of our find-
ings. By coordinating downstream genes so that multiple
stress-response mechanisms are engaged simultaneously, a
pulsing input can achieve higher stress tolerance without
added cost.

We note that the downstream genes modeled here all have
high dissociation constants. This represents a conservative
scenario; genes with lower KD values or a mixture of down-
stream genes will exhibit greater benefits from coordination.
We verified that downstream genes with higher affinity for
the activator (lower KD) achieve benefits from coordination
(Fig. S6). In this case, the cost associated with input dy-
namics is lower due to the nonlinear nature of the activation
curve. Therefore, input dynamics provide two benefits:
frequently activated genes can enhance stress tolerance
and also maintain a lower overall cost.

Nonperiodic pulsatile dynamics and extrinsic
noise can coordinate downstream genes

Although we initially examined well-defined pulsatile sig-
nals to carefully control for pulse properties, we next asked
whether our results could be generalized to other types of
time-varying input. To test this, we used a model of the
E. colimultiple antibiotic resistance activator (MarA) devel-
oped previously by our group (38). The multiple antibiotic
resistance network is involved in protection against many
stresses, including antibiotics, solvents, and other antimicro-
bial compounds (39,51). In this network, genes for the acti-
vator MarA and the repressor MarR are encoded in a single
operon, which is regulated by both MarA and MarR, result-
ing in both positive and negative feedback controlling
expression of the operon. Rapid increases in the level of
MarA, followed by delayed inhibition by MarR may cause
stochastic pulses in the expression of MarA (38). Once ex-
pressed, the regulator MarA activates over 40 genes with
diverse KD values, all of which exceed the mean concentra-
tion of the activator by at least an order of magnitude
(39,52). We used this signal as an input to 40 representative
downstream genes, selecting genes with a range of dissoci-
ation constants to match those measured in the literature
(39) (Materials and Methods). We measured the maximum
survivable concentration of an antibiotic stressor for a single
gene and the suite of diverse downstream genes (Fig. 3, C
and D). In each case, we compared the results to a model
with a constant MarA input with a mean identical to that
in the dynamic case. Consistent with our results using a
well-defined pulse as an input, we found that stochastic
pulses enable survival in higher concentrations of antibiotic
stressors while maintaining similar or lower cost profiles.
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These results suggest that our findings on pulsatile inputs
can be generalized to other dynamic regulators that control
many downstream genes.

Noise in an upstream regulator has the potential to play a
coordinating role if it is propagated to or affects all down-
stream genes in the same way (26,27). We considered
both intrinsic and extrinsic noise sources in the input, where
all genes are affected by unique intrinsic noise and identical
extrinsic noise signals (12,26). We modeled extrinsic noise
using an Ornstein-Uhlenbeck process and introduced fluctu-
ations in the transcription-factor binding rate for all genes
simultaneously, as in Shahrezaei et al. (40) (Materials and
Methods). We calculated the maximum survivable stressor
and the associated cost under increasing extrinsic noise.
For regulation of a single downstream gene, adding extrinsic
noise does not increase the maximum survivable stressor
concentration (Fig. 3 E). However, when extrinsic noise af-
fects multiple downstream genes, the coordination effect is
visible (Fig. 3 F). In all cases, the cost is not highly
impacted, so these gains are effectively free. Since extrinsic
noise affects all genes simultaneously, it serves as a coordi-
nating factor, which is combined with the noise dynamics
introduced by the common upstream regulator; both
contribute to the coordination of downstream genes (Fig. 3
F). This finding is consistent with experimental data on co-
ordination in the yeast stress-responsive transcription fac-

tors Msn2/4 (11). Fluctuations in an upstream regulator
provide a tunable mechanism to control coordinated stress
response, and noise sources extrinsic to the stress-response
pathway can add to this effect.

The timescale over which downstream genes remain co-
ordinated is also important, as it determines whether benefi-
cial effects will be passed on to daughter cells (53). To test
this, we calculated the cross correlation between expression
of downstream genes and found positive correlations that
persisted well beyond the length of the cell cycle
(Fig. S7). This timescale is sufficient for the activation of
other resistance mechanisms that rely on sensing of the envi-
ronment. Thus, input fluctuations can produce correlated
expression of downstream genes over a timescale sufficient
to produce resistant populations.

Dynamic inputs always outperform constant
inputs in achieving coordination

We next asked what impact the number of stress response
genes has on survival in the context of bet hedging. In cases
where stress-response mechanisms are composed of several
genes that work together to protect the cell, if these mecha-
nisms are initiated by random events, then as the number of
resistance genes goes up, the chances that they are coordi-
nated at any given time goes down. We measured the
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fraction of cells in a fixed size population that exhibit coor-
dinated expression of downstream genes given different
types of input (Fig. 4). For a single downstream gene, con-
stant, pulsing, and noisy inputs are equally good, because
there is no coordinating effect, but as the number of down-
stream genes increases, the benefit of input dynamics
becomes apparent. Dynamics in the input play a coordi-
nating role when there are multiple downstream genes, lead-
ing to a larger fraction of the population that can survive the
sudden appearance of a stressor. If the promoters for down-
stream genes have higher affinity for the activator (lower
KD), a pulse in the input will frequently activate expression,
resulting in cells with many coordinated downstream genes
(Fig. S6 D). Therefore, the results for the high-KD case
shown in Fig. 4 are a conservative example of the benefits
of input dynamics. Our findings are further supported by a
simple mathematical model of input dynamics (Supporting
Material).

CONCLUSIONS

The analysis presented here reveals an important role for
noise and dynamics in inputs that control several infre-
quently activated downstream targets. Initiating expression
of suites of stress-response genes in response to environ-
mental signals might be too slow to deal with sudden
catastrophic events. Diversifying phenotypes within a popu-
lation before the crisis strikes can help ensure survival of a
subset of the population (54). Such an approach is advanta-
geous when the appearance of a stressor is rare and expres-
sion of stress-response machinery is costly.

Here, we asked about the scenario where stress response
requires the coordinated action of several genes expressed
simultaneously in a small fraction of the population. Exam-

ples where multiple mechanisms work in concert are
common. Using a stochastic computational model, we exam-
ined the single-input-module regulatory motif, where one
transcription factor regulates several downstream targets.
In all cases, intrinsic noise in expression of the downstream
genes leads to diversity within the population. However, if
the upstream regulator is dynamic, for example, due to pul-
satile expression or noise, it can drive coordination of diverse
downstream target genes. Importantly, we found that even
minor fluctuations in a transcription factor that regulates
several target genes are sufficient to orchestrate coordination
within a small subset of the population. Even for KD values
two orders of magnitude above the mean of the input, there
is a measurable correlation with the dynamic input. We
found that the overall cost with dynamic inputs is the same
as or lower than that with constant inputs, and the maximum
survivable concentration of stressor is the same or higher.
Therefore, the benefits of coordination are in effect free.
Because our findings test for rare events, only a small num-
ber of cells need to achieve coordination.

In contrast to strategies where two subpopulations of cells
exist, as with bacterial persistence, coordination can allow
for a graded response within the population. Because the
activation of downstream gene expression is stochastic,
there will be a distribution of stress-response phenotypes
within the population, as opposed to an all-or-none
response. In the future, it will be interesting to contrast the
conditions under which distinct subpopulations and distri-
butions each perform well and to compare these effects to
sensory responses without stochastic effects (55).

The coordination of multiple downstream genes repre-
sents an alternative view on bet hedging to counter future
environmental uncertainty. When the mean of the input is
well below the dissociation constant of downstream genes,
these genes are activated rarely. Most changes in input are
filtered, but dynamic inputs ensure that when a downstream
gene does turn on, it does so at a time when other genes may
also be on. Here, we considered rare events, but we note that
when the mean of the input is close to the dissociation con-
stant of a downstream gene, fluctuations in the input are
likely to be transmitted, resulting in well-coordinated out-
puts. Therefore, our simulations represent a conservative
scenario for coordination. Regulators that control diverse
suites of downstream genes will see benefits from coordina-
tion of multiple types of downstream genes. Overall, we
found that dynamic and noise-driven coordination can
play a bet-hedging role when multiple genes or stress-
response mechanisms need to be coordinated without add-
ing to the overall cost.

SUPPORTING MATERIAL

Supporting Materials and Methods, Supporting Results, seven figures, and

two tables are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(14)01233-8.
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Abstract

Populations of cells need to express proteins to survive the sudden appearance of stressors.

However, these mechanisms may be taxing, restricting how frequently they can be used.

To survive in changing environments, organisms can devote part of the population towards

expressing these proteins, allowing individual cells to stochastically switch between

fast-growing and stress-tolerant states. One way to diversify the population is to use

genetic networks coupled with noise to generate bimodal distributions with two distinct

subpopulations, each adapted to a stress condition. Another survival strategy is to rely on

random fluctuation in gene expression to produce continuous, unimodal distributions of

the stress response protein. In both cases, some fraction of the population must always

express high enough levels of protein to hedge against the sudden appearance of a stressor.

To quantify the environmental conditions where bimodal versus unimodal expression

is beneficial, we used an evolutionary algorithm to evolve optimal or near-optimal

distributions of stress response proteins given environments with sudden fluctuations
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between low and high stress. We found that bimodality is evolved for a large range

of environmental conditions. When cells can sense and adapt to the environment, the

parameter region where bimodal expression is favored increases further. However, we

asked whether these findings were an artifact of considering stress environments with two

well-defined conditions (low and high stress). We found that as noise in the environment

increases, or when the cells must cope with an intermediate environment (medium stress),

the benefits of bimodality decrease. Overall, our results indicate that although bimodal

distributions of proteins can be beneficial when there are two clearly defined stress

states, under realistic conditions with noise in the environment or multiple stress levels, a

continuum of resistance phenotypes generated through a unimodal distribution is sufficient

to ensure survival without a high cost to the population.

Introduction

Populations of cells that live in fluctuating environments must cope with a wide range of

conditions and sudden changes in their surroundings. Cells can sense their environment

and respond to changes. However, if the time required to initiate a response is longer

than the time the stressor takes to act, cells need alternative strategies to ensure that the

entire population is not killed off due to the sudden appearance of a stressor. Furthermore,

initiating stress response mechanisms in all cells within a population may be costly. When

sensing the environment is too slow or too costly, populations can rely on genetic and

phenotypic variation to balance survival and growth. For example, they may sacrifice

growth in low stress conditions to increase fitness in other environments (1–3). In the

past decade bet hedging, a type of non-genetic variation between individuals, has gained
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attention for its role in multiple biological processes (1, 3). For instance, the presence of

subpopulations of non-growing persister cells allows bacterial populations to survive high

concentration of antibiotics that target cell growth (4). This persistent population has been

found in numerous pathogenic microbes, and has been shown to be an important contributor

to antibiotic resistance (5). Similarly, under nutrient limitation, Bacillus subtilis generates

phenotypic diversity resulting in normally growing cells, cells that sporulate, and those

that become competent (6, 7). Maintaining different phenotypes within the same genotype

allows populations of cells to ensure variability at every generation, reducing differences

in the population growth rate across environments and ensuring survival under a variety of

conditions (8).

In this paper, we focus on how a population of cells grows in the presence of a time-

varying stressor. Cells can express genes to tolerate high concentrations of a stressor, such

as genes encoding efflux pumps, reductases, and DNA repair systems (9). However, these

stress response mechanisms can have a high metabolic cost (10). Thus, populations may

use phenotypic diversity so that not all cells have the burden of expressing them. Two

approaches include: (i) The generation of two distinct phenotypic states optimized for each

environment, which we refer to as a bimodal distribution. Establishing two well-defined

phenotypes and stochastically switching between them can be advantageous in some

conditions. For instance, in bacterial persistence populations are bimodal, maintaining a

small subpopulation of dormant cells in addition to normally growing cells (11). This type

of bet-hedging has been evolved in Pseudomonas fluorescens in the presence of alternating

stresses (12, 13). (ii) An alternative approach is to generate a continuum of stress resistance

levels within a population, which we refer to as a unimodal distribution. In this case, cells

have a similar phenotype with variations about the mean levels. In contrast to the bimodal
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case, there are not distinct phenotypic states. An example of unimodal distributions

comes from TATA box-containing genes associated with stress response in Saccharomyces

cerevisiae, which exhibit large levels of variability that protect against future environmental

changes (14). Similarly, increased population heterogeneity has been shown to enhance

survival of stress in S. cerevisiae (15). A broad, continuous distribution of phenotypes has

also been evolved in Escherichia coli in a periodic selection and mutation experiment (16).

Phenotypic diversity, in the form of bimodal or unimodal distributions of phenotypes, plays

an important role in increasing fitness in uncertain environments.

The mathematical analysis of fluctuating environments dates back to work by Levins, who

showed that environmental fluctuations hinder adaptation to a single phenotype (17). Since

then, many studies have examined the relationship between time-varying environments and

cellular phenotypes. Generally, cells are modeled as growing exponentially, with each

phenotype having a distinct growth rate for each environment and a rate of switching

to other phenotypes (18–23). Given the large number of parameters present, numerical

and analytical studies have primarily focused on the case with two environments and

two phenotypes, with the following general conclusions: Two different optimal strategies

can be found, where the optimum depends on the frequency at which the environment

changes. A unimodal population is best for very rapid or very slow environmental changes,

and a bimodal population where cells stochastically switch between two phenotypes is

best for intermediate ranges of environmental switching (24). Furthermore, the unimodal

population can be either adapted to the current environment if the changes are slow,

i.e. cells can sense and adapt to the extracellular conditions; or adapted to the mean

environment if the changes are rapid (24). When cells do not explicitly sense their

environment, bimodal strategies with stochastic switching between the two states are
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favored (20). Even in conditions where cells do sense their environment, bimodality can

still be used to prevent complete extinction of the population if sensing is too slow (25, 26)

In general, in a periodic environment, the optimal switching rate between phenotypes in a

bimodal population is proportional to the asymmetry of the stress environment (25) and the

transition rate between environmental states (18, 27). These results have provided insight

into the cases where bimodal populations are favored, showing that bimodality coupled

with stochastic switching between states is advantageous for a large range of conditions.

Although these studies have demonstrated the theoretical benefit of bimodality, more than

99% of E. coli genes show unimodal distributions in their protein levels (28). There are

select examples of bimodal gene expression in E. coli, but relatively few cases exist; other

bacterial species appear to be similar (29). Thus, we were motivated to understand the

conditions where bimodal distributions of proteins increase the growth rate of a population

with respect to a unimodal distribution. To achieve this, we developed a computational

model and used a differential evolution algorithm (30) to evolve optimal or near-optimal

distributions of phenotypes for a population growing in the presence of a time-varying

stressor. When we restricted the concentration of the stressor to two levels (low and high),

we were able to reproduce the benefits of bimodality previously reported. However, this

benefit disappeared when variability in the concentration of the stressor was increased.

This was the case when there was noise in the environment, or when there were more than

two distinct environmental conditions. Given realistic conditions, unimodal distribution

of proteins may be a straightforward bet hedging approach for surviving in fluctuating

environments.
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Results

Protein expression model and environmental variables To study how populations of

cells optimize growth in the presence of fluctuations in the concentration of a stressor in

the environment, we developed a model where a protein controls the level of resistance to

the stressor. For example, this could be a regulatory protein that controls expression of a

suite of downstream genes involved in stress response, or it could provide stress resistance

directly; examples include efflux pumps or proteins that induce growth arrest to evade

antibiotics. In the model, increased protein expression allows for survival in high stress

environments, but impacts growth in low stress environments since expression places a

burden on the cell. We used an evolutionary algorithm to find optimal or near-optimal

distributions of protein levels in the population given a fluctuating environment as an

input. Because we evolve the distributions directly, we do not explicitly model switching

or specify the method by which the distributions are generated. Initially, we restricted

the distribution of proteins to be the weighted sum of two gamma distributions, which

can represent either unimodal or bimodal expression of proteins, depending on weighting

values (Fig. 2.5A). We later relaxed this restriction and obtained similar results, as

discussed below. A gamma distribution arises from a two-state model of gene expression,

where the promoter can be ON or OFF and the protein is expressed in bursts (31). We

used the evolutionary algorithm to select the shape and rate parameters of the distributions

(Methods). It is possible for the evolutionary algorithm to evolve tight distributions, where

there is very little variation in protein levels or broad distributions, where there is wide

variation. We chose the upper and lower limits of the gamma distribution parameters

to match in vivo values measured in bacteria (28). Importantly, we note that it is
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possible to evolve parameters such that the two gamma distributions collapse to a unimodal

distribution. For example, if the weight of the second gamma distribution is zero, there will

be only a single, unimodal population. Thus, the weighted sum of two gamma distributions

allows a flexible representation where both unimodal and bimodal protein distributions with

broad or narrow distributions can be evolved.

We also compared the ability of cells to sense environmental changes. In the case where

cells cannot sense stress levels (Fig. 2.5B), a bimodal population of cells grows well in

the low stress environment, with cells in the low protein expression state growing faster

than those in the high protein expression state. Individual cells within the population

stochastically switch between the two states. When the environment changes and cells

enter the high stress conditions, all the cells in the low expression state die off, but those

with high expression survive. Because the cells do not sense their environment they

continue to stochastically switch between phenotypic states. When this happens in the high

stress environment, the cells that enter the low protein phenotype die. When conditions

switch back to the low stress environment, the population can regrow, again with stochastic

switching between the two phenotypic states. The sensing case is similar (Fig. 2.5C), but

once cells are in the high stress environment they sense their conditions and do not switch

to the low protein phenotype. The underlying protein distributions are shown in Figs. 2.5B–

C. In low stress conditions, the population exhibits a bimodal distribution with stochastic

switching regardless of whether there is sensing or not. This is required, even with sensing,

because we assume that the time required to sense and respond to a stress is long enough

that any cells in the low protein phenotype will be killed by the stressor. The difference

between the no sensing and sensing cases appears in the high stress conditions, where cells

that can sense have no reason to switch to the low protein phenotype.
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We also tested a broad range of environmental transition properties. We modified the ratio

between the time spent in high and low stress (Fig. 2.5D) and the environmental transition

rate (Fig. 2.5E). See Methods for a full description of the model and parameters.
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Figure 2.5: P2. Population and environmental variables tested. (A) The distribution
of protein levels in the population was initially restricted to be a weighted sum of two
gamma distributions. (B) Environments vary between low and high stress. Without sensing,
the population always maintains cells with low and high levels of protein expression
(histograms), where cells switch stochastically between these two phenotypic states. Under
low stress, cells with low protein expression (blue) grow well, while cells with high protein
expression (red) grow slowly due to the burden of expressing the stress response protein.
Under high stress, cells with low protein expression are killed (yellow x’s), while cells
with high protein expression survive. Note that the histograms are colored as blue and red
to distinguish cells with low and high expression, however all cells are part of the same
bimodal distribution. (C) With sensing, populations maintain diversity as a bet hedging
strategy when stress levels are low. When stress levels are high, all surviving cells remain
in the high protein state. (D) Cartoon showing ratio between the time spent in high and low
stress. (E) Cartoon showing the environmental transition rate. Note that the ratio of high to
low stress is identical for both transition rates shown.

Bimodality is evolved for a wide range of environmental conditions Initially, we tested

different environmental conditions, varying both the ratio of high to low stress and the
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rate of transition between environmental states. For each pair of values, we used the

evolutionary algorithm to optimize the distribution of protein levels. We then recorded

the relative sizes of the two evolved gamma distributions, comparing the ratio of cells

exhibiting the high protein expression phenotype to the low protein phenotype. We found

that two strategies were evolved: either the entire population was adapted to the high

stress condition (darkest purple in Figs. 2.6A–B) or a bimodal population with a resistant

subpopulation appeared (light purple). A unimodal population with low protein expression

(white) was never evolved, since resistant cells are required to survive the transition from

low to high stress. With no sensing, bimodal distributions are evolved in the cases where the

ratio of high to low stress is small because most of the time cells are in low stress conditions

with rare excursions to the high stress environment (Fig. 2.6A). The fraction of resistant

cells depends only on the ratio of the stresses, and not on the environmental transition rate.

This is because the growth rate of a population without sensing is constant for each stress

condition, in contrast with the sensing case, where the growth rate changes during the time

in high stress conditions as the cells adapt (Fig. 2.6B). With sensing, the population can

afford to lose a higher fraction of cells due to the sudden appearance of the stressor, since

the remaining cells will adapt to the stress. Thus, with sensing a higher fraction of the

population can be devoted towards growing well in low stress, and bimodality is evolved

under most environmental conditions.

To quantify the benefit of sensing, we measured the growth rate for populations of cells

that were allowed to sense the environment, and for populations where sensing was

prohibited. In all cases, sensing outperformed no sensing. However, the degree to

which there was a benefit to sensing depended upon the ratio of high to low stress in
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Figure 2.6: P2. Bimodality is evolved in many environmental conditions. (A, B) The
ratio of cells with high to low protein expression is plotted as a function the ratio of high
to low stress and the environmental transition rate. Representative protein histograms
show unimodal (dark purple) and bimodal (light purple) distributions. (A) For populations
with no sensing, bimodality is evolved when the ratio of high to low stress is small. (B)
For populations with sensing, bimodality is evolved for a large region of environmental
parameters and depends on both the ratio of stress conditions and the environmental
transition rate. (C) The benefit of sensing is plotted as a function of the ratio of high to
low stress, reaching its maximum for moderately asymmetric environments. The benefit is
measured as the difference in growth rate between the sensing and no sensing populations
(Supporting Text and Fig. B.1). These simulations use an environmental transition rate of
10.

the environment (Fig. 2.6C). In the extreme cases where cells are mostly in stressed or

unstressed environments, there is little advantage to sensing since conditions are well

known. In contrast, when the time spent in each environment is symmetric, sensing has

a distinct advantage. The highest benefit to sensing is achieved for moderately asymmetric

environments, where the optimal strategy for the no sensing population is a unimodal

distribution with high protein levels, while the sensing population can rely on a bimodal

distribution of phenotypes. The metric we use here to measure the benefit of sensing can

be translated into the amount of time it would take a population with sensing to overtake

a population without sensing in a competitive growth experiment (Supporting Text and

Fig. B.1).

28



CHAPTER 2. JOURNAL PAPERS

We next relaxed our requirement that the protein distribution be the weighted sum of

two gamma distributions. We allowed the evolution of any type of distribution with no

restrictions, finding equivalent results to the two gamma distribution case (Fig. B.2). For

the case of two well-defined environments, we found that bimodality is evolved for a large

range of fluctuating environments.

In our initial tests, we assumed that the stressor was strong enough that it killed off all

cells with low protein expression. We next asked whether our results were dependent on

whether the stressor was weak or strong. We define a weak stressor as a toxin that inhibits

cell growth for cells that do not have high levels of protein expression, in contrast to a

strong stressor that kills these cells (Supporting Text). When they target bacteria, weak

stressors are known as bacteriostatic and strong stressors are bacteriocidal. Our results

with weak stressors show that with no sensing, the evolved strategy is unimodal for nearly

all environmental conditions (Fig. B.1). Populations have low protein expression for all

but the largest ratio of high to low stress. This corresponds to the case where the cells stay

latent until the stressor has passed. A unimodal distribution with high protein expression

is evolved only when the time spent in high stress conditions is large. Between these two

survival strategies, i.e. unimodal adapted to low stress and unimodal adapted to high stress,

bimodality is evolved for a very small region of the environmental parameter space. For the

case with sensing, the optimal strategy is always to stay latent until the stressor is sensed.

This is expected since the stressor only inhibits growth, and thus it is possible to adapt to

it even if the toxin appears abruptly. Because the growth rate in high stress conditions is

very small even when the population is perfectly adapted, staying latent is almost as good

as adapting to the stress. Therefore the benefit of sensing is lower than in the case with

a strong stressor, where cells die off if they do not adapt to the stress conditions. The
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evolved distributions with no restriction have equivalent results. Consistent with previous

findings (32), our results show that bimodality is primarily beneficial when the strength of

the stressor is strong.

Bimodality is beneficial for populations of cells growing in two well-defined stress

conditions We next asked under what environmental conditions bimodal populations

outperform unimodal populations. To do this, we evolved distributions by restricting

protein levels to follow either two weighted gamma distributions as before (we refer to

this as 2γ), or one gamma distribution (1γ), as shown in Fig. 2.7A. We evolved the optimal

distributions for 1γ and 2γ given identical stress environments. Since it is possible for

the 2γ distribution to recover a single gamma distribution, the 2γ case is always better

than or equal to the 1γ case. We calculated the growth rate for the evolved strategies

with the 1γ and 2γ restrictions as a function of the ratio of high to low stress and the

environmental transition rate. For the no sensing case, the optimal strategy depends only

on the ratio of the stresses. When the ratio of high to low stress is large, the optimal

strategy for both the 1γ and 2γ cases is a unimodal distribution adapted to high stress, so

there is no benefit to bimodality. As the stress ratio decreases, there is a sudden transition

where the 2γ distribution switches from a unimodal population to a bimodal population

containing a subpopulation of cells with high protein expression while most cells have

low expression. In order for the 1γ case to maintain a sufficient number of cells in the

high protein phenotype under the same environmental conditions, many cells must express

intermediate protein levels. Cells with intermediate protein expression provide no benefit

to the population because they are not capable of surviving sudden stress, but also impose

a modest burden on the growth of the population. As the stress ratio is further reduced,
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the difference between the two distributions diminishes as fewer cells need to maintain a

high protein phenotype. This phenomenon is visible in the examples of evolved histograms

(Fig. 2.7B).
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Figure 2.7: P2. Bimodality provides higher fitness than unimodality when the
environment has two alternating states. (A) We compared conditions where we restricted
protein levels to be either the weighted sum of two gamma distributions (2γ) or a single
gamma distribution (1γ). (B, C) The benefit of bimodality is plotted as a function of the
ratio of high to low stress and the environmental transition rate. (B) For populations with
no sensing, there is a benefit to bimodality when the ratio of high to low stress is small,
which is reflected in differences in the evolved distributions. (C) For populations with
sensing, the benefit of bimodality depends on both the ratio of high to low stress and the
environmental transition rate. The benefit is measured as the difference in growth rate
between the strategies evolved with 2γ and 1γ restrictions (Supporting Text and Fig. B.1).

For the sensing case, bimodality is beneficial in environments with relatively symmetric

levels of high and low stress (Fig. 2.7C). Since the population is able to adapt to high stress

conditions, the evolved distribution depends now on the time spent in low stress conditions

and the number of transition events. Therefore, the benefit depends on both the ratio of

stresses and the environmental transition rate. In Fig. 2.6, we show that sensing increases

the parameter region where bimodality is evolved. However, when the population is able to

sense the environment, the growth in high stress conditions is equal for both the unimodal
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and bimodal cases, since they adapt to the stress in an identical way. Therefore, the benefit

of bimodality is generally lower, though still positive, for sensing populations than for

populations without sensing.

Increased variability in the environment decreases the benefit of bimodality

Although we found that bimodal distributions outperform unimodal distributions for a

wide range of environmental conditions, we wondered whether this effect was due to the

binary nature of the stresses (either low or high). We hypothesized that variability in the

environment would decrease the benefit of bimodality. To test this, we introduced noise

in the two stress levels (Methods, Fig. 2.8A) and recalculated the benefit of bimodality,

quantifying the difference in growth rates between the evolved distributions with the 2γ

and 1γ restrictions. As noise increases, strategies with more cells in the elevated protein

expression state are favored because less time is spent in the complete absence of a

stressor. For the highest levels of noise, both 1γ and 2γ cases evolve unimodal distributions

(Fig. B.4). Consequently, we found that for both no sensing and sensing populations

(Figs. 2.8B–C), the benefit of bimodality decreased as noise in the environment increased.

We also asked whether considering only two stress environments was leading to the

observed benefits in bimodality. To test this, we increased the number of environmental

states by adding an environment with medium stress and measured the benefit of bimodality

as a function of the time spent in this intermediate environment (Fig. 2.8D). Similar

to simulations with increasing levels of noise, we found that for both no sensing and

sensing populations (Figs. 2.8E–F), the benefit of bimodality decreased as the time in

the intermediate environment increased. Two factors contribute to this decrease: First,

if the cells are not able to sense their surroundings, both 1γ and 2γ cases evolve identical
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Figure 2.8: P2. The benefit of bimodality is reduced when environmental variation
increases. (A) Cartoon showing increasing noise in the stress levels. (B, C) The benefit
of bimodality is reduced for both (B) no sensing and (C) sensing populations as noise
increases. Dots correspond to the replicate with highest evolved growth rate out of three
independent simulations (Methods). (D) Cartoon showing the presence of an intermediate,
medium stress environment. (E, F) The benefit of bimodality is reduced for both (E) no
sensing and (F) sensing populations as the time in the intermediate environment increases.
In (B) and (E), the benefit results for stress ratios 10−1 to 101 are all zero, and thus are
hidden behind the 101 line.

unimodal distributions when the time in the medium stress environment is large (Fig. B.4).

Second, if the cells are able to sense and adapt to the environment, the growth rate in

medium stress conditions is identical for both the 1γ and 2γ cases since cells adapt

perfectly to the medium stress condition, therefore the evolved distribution does not

33



CHAPTER 2. JOURNAL PAPERS

depend on the time spent in the medium stress environment. Thus, we find that under

realistic scenarios, such as environments with noise or more than two discrete stress levels,

unimodal distributions perform just as well as bimodal distributions.

We finally asked whether using the 2γ distribution was limiting how well the evolved

strategies could perform in the intermediate environment. In principle, a trimodal

distribution could provide the optimal conditions for three environments. To test this,

we removed the 2γ restriction and allowed the distribution to evolve freely without any

requirements on its shape. Even under these non-restrictive conditions, the populations

evolved only unimodal or bimodal distributions (Fig. B.5). This is because the intermediate

environment acts as a weak stressor, where bimodality is only evolved for a small range of

parameters (Fig. B.1). In fluctuating environments the advantage of bimodality comes from

the ability to survive the sudden transition from low to high stress, which is not necessary

for an intermediate stress state. Therefore, even with more than two distinct stress levels,

it is only necessary to evolve two levels of protein expression: one that ensures survival in

the highest level of stress and a second that optimizes growth in low stress.

Conclusions

Populations of cells live in the presence of intermittent, time-varying stressors. Cells have

mechanisms to survive the appearance of a stressor, however the cost associated with stress

resistance can be high. Thus, cells need to balance high growth rates in the absence of

the stressor with high survival rates when a stressor appears abruptly in the environment.

A possible strategy is to diversify the population, allowing some cells to grow well when

no stress is present, while some have high enough protein expression that they can survive
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stress, hedging against the sudden appearance of a stressor. Phenotypic diversity within the

population can be achieved through multimodal distributions of protein levels, or through

a broad, continuous distribution of proteins.

Here, we compared bimodal and unimodal distributions that can result from diversity

in gene expression, asking under what conditions bimodality is beneficial. We used

an evolutionary algorithm to evolve optimal or near-optimal distributions of proteins for

different environmental conditions. We varied the time spent in high and low stress, the

environmental transition rate, the sensing capabilities of the cells, noise in the concentration

of the stressor, and the number of stress levels. Since protein expression typically follows

a gamma distribution in vivo, we initially restricted the evolved distributions to be either a

single gamma distribution or the weighted sum of two gamma distributions. We used the

difference in growth rate between the two alternatives to assess the benefit of bimodality,

finding that while bimodality is evolved for a wide range of conditions if the environment

has only two well-defined states, this benefit disappeared in the presence of noise or when

the time spent in an intermediate environmental state increased.

Our results raise the question of what benefits are provided by bimodality, given realistic

environmental conditions. One benefit may be longer autocorrelation times in the protein

levels that bimodality can provide. Unimodal distributions in stress resistance levels can be

the result of random fluctuations in gene expression (31). The half-life of these fluctuations

is typically one to three generations (33, 34). On the contrary, the time spent in each

phenotypic state with a bimodal system can be large, extending for many generations (35).

An example of bimodal protein expression in E. coli is persistence, where fewer than 1% of

cells in the population are in a resistant, non-growing state that is tolerant to antibiotics (4).

The switch between the growing and latent states is stochastic, and cells can stay in each
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state for many generations (36, 37). The advantage of bimodality in this case may come

from the extended time the cells spend in the resistant state. One alternative to bimodality

that could achieve longer stress resistance times would be to couple a unimodal distribution

with sensing. In this case, cells could use noisy gene expression to survive a sudden stress

shock, and then adapt to it. However, maintaing the sensing machinery may be costly if the

stressor is only rarely encountered.

In this study, we evolved distributions of protein levels, however our results do not specify

how these distributions are achieved. Bimodality can be generated by genetic networks,

such as through the use of positive feedback networks (35). The presence of these

additional genetic control elements can add evolutionary and maintenance costs, which

we have not included in our model. Unimodal distributions are more straightforward to

generate, as noise in gene expression is sufficient to produce a continuum of resistance

levels (35). In general, if the cost of maintaining the architecture required to generate

bimodal distributions is higher than the benefit acquired, bimodality will not be evolved.

In the future it will be interesting to link the regulatory architecture required to generate

protein distributions to the results presented here.

We conclude that bimodal protein expression patterns can be beneficial under certain

conditions, such as when environmental states are well-defined and the number of states

is small. However, under realistic environmental conditions with noise and uncertainty in

stress levels, unimodal protein distributions are often sufficient to provide diversity within

the population that can ensure survival.
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Methods

Distribution of protein levels In the context of general stress response, some proteins

confer resistance to a broad range of chemicals, either by regulating expression of suites of

genes or by directly providing stress resistance. Therefore, we represented the phenotype

of a cell, P , as the concentration of a hypothetical protein involved in response to stress.

To study populations of cells growing in fluctuating environments, we developed a model

that assigns fitness values (growth rates) to a distribution of protein levels in a series

of environments. We evolved the probability distribution of the protein under the basal

conditions, where no stressor was present. This distribution is encoded by a n-dimensional

vector, where the dimension corresponds to different protein levels in the population, and

the n values correspond to the probability of expressing the phenotypes, p(P ). The values

of P were set to n bins: {0− 100, 100− 200, ..., 9900− 10000} molecules, to represent a

typical range of protein numbers that can be found in both bacteria and yeast (38).

Gamma distributions The n values in vector p(P ), were extracted from a gamma

distribution in the 1γ case, the weighted sum of two gamma distributions in the 2γ case, or

evolved directly in the case with no restrictions.

For the 1γ case

p(P ) =
ba

Γ(a)
P a−1e−bP , (2.1)

where the values a (shape parameter) and b (rate parameter) define the distribution. The 1γ

case has two parameters that are evolved in the differential evolution algorithm: a and b.
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For the 2γ case

p(P ) = w1
ba11

Γ(a1)
P a1−1e−b1P + w2

ba22
Γ(a2)

P a2−1e−b2P , (2.2)

where w1 and w2 set the relative weights of the two gamma distributions. The 2γ case has

six parameters that are evolved: a1, b1, w1, a2, b2, and w2.

For the free case p(P ) is evolved directly, so there are n parameters evolved.

For each of the three cases, the distributions are normalized such that
∑

P p(P ) = 1, where

P corresponds to the protein levels {0− 100, 100− 200, ..., 9900− 10000} molecules.

Environmental parameters The concentration of the stressor, S, and the time spent

in the different stress levels characterize the environment. For the case with two

environmental states, the concentrations of the stressor were set to 0mM (low stress) and

10mM (high stress). The time spent in the two environments, measured in generations, is

shown in Table 2.1.

Environmental Transition Rate

1 3 10 30 100

101 1,000:100 333:33 100:10 33:3 10:1
100 1,000:1,000 333:333 100:100 33:33 10:10
10−1 1,000:10,000 333:3,333 100:1,000 33:333 10:100
10−2 1,000:100,000 333:33,333 100:10,000 33:3333 10:1,000

R
at

io
H

ig
h:

L
ow

10−3 1,000:1,000,000 333:333,333 100:100,000 33:33,333 10:10,000

Table 2.1: Time spent in low and high stress conditions. For each ratio of high to low
stress and environmental transition rate, the number of generations spent in each state is
shown. The format of the table entries is time in high:low stress.
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Cost and benefit We used the cost-benefit function described in (39), which is based

on (10, 40). Briefly, the growth rate of a cell, λP,S , is defined in terms of c(P, S), where

c(P, S) = c1(P ) + c2(P, S)− c1(P )c2(P, S). (2.3)

c(P, S) is the cost of growing when the concentration of stressor in the environment is S

and the intracellular number of proteins is P . c1(P ) corresponds to the cost of expressing

the stress resistance machinery at a level P , while c2(P, S) is the cost of growing in the

presence of a concentration of stressor S given a stress resistance level P .

c1(P ) =
n0P

1− P/M
(2.4)

c2(P, S) =
Sneff

kn + Sneff
(2.5)

Seff =
S

1 +B
(2.6)

B =
bmaxP

kb + P
, (2.7)

where M = 15, 000 molecules, n0 = 10−5, k = 1mM, n = 2, bmax = 10, and kb = 15, 000

molecules. See (39) for a complete description of the equations and parameters.

Using the cost, we defined the growth rate as

λP,S =


cth−c(P,S)

cth
if c(P, S) < cth

−1 if c(P, S) ≥ cth.

(2.8)

Note that λP,S is normalized to maintain growth rates between 0 and 1 when the cost is

under the threshold cth. λP,S = 1 is the maximal growth rate; positive values less than this
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indicate slow growth. λP,S = −1 corresponds to the cell dying in one generation. We set

cth = 0.9, however the results are not specific to the exact value used.

Fitness function The fitness of a population with a distribution of protein levels is

measured by the overall growth rate. We assumed that in a given environmental condition,

the distribution of protein levels is at equilibrium (20) (Supporting Text). At equilibrium,

the growth of a population depends on the fraction of cells at each protein level. The ratio

of final to initial number of cells in one generation is

N1/N0 =
∑
P

xP2λP,S , (2.9)

where N0 and N1 are the initial number of cells and the number of cells after one

generation (41). xP is the fraction of the population in the protein state P and λP,S is the

growth rate of cells in the protein state P and stress level S. The values of P correspond to

the protein levels {0−100, 100−200, ..., 9900−10000}molecules. Because the population

stays in equilibrium, the total growth is

Nt/N0 =

(∑
P

xP2λP,S

)t

, (2.10)

where t is the time spent in equilibrium conditions measured in generations. Note that the

population grows if the value of the sum is greater than 1.

For the case with two environments, the ratio of final to initial cells is determined by

Nt/N0 =

(∑
P

xP2λP,Sl

)tl

·

(∑
P

xP2λP,Sh

)th

, (2.11)
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where tl and th are the times spent in low and high stress conditions. Sl and Sh are the

low and high stress conditions. Instead of calculating the product of ratios, we record the

logarithm of the products of ratios

log (Nt/N0) = tl log

(∑
P

xP2λP,Sl

)
+ th log

(∑
P

xP2λP,Sh

)
. (2.12)

As the fitness function in our evolutionary algorithm, we use

R =
log (Nt/N0)

tl + th
, (2.13)

which corresponds to the geometric growth rate. In the special case where no cells survive

(λP,Sh
= −1 for all values of P), we set R to −1. When some cells survive, R evaluates to

a number between 0 and 1, where 0 indicates that the population is not growing at all and

1 indicates that it is growing optimally.

Evolutionary algorithm We used the Python differential evolution code (30),

available online at http://www1.icsi.berkeley.edu/˜storn/code.html.

We modified it to use the Python module numpy, which allows for fast operations on

vector objects. Differential evolution finds optimal or near-optimal solutions by iteratively

improving a set of candidate solutions based on their fitness. For example, in the 2γ case,

differential evolution evolves the six parameters a1, b1, w1, a2, b2, and w2.

Initialization of the population

The population was set to 40 trial vectors, following recommendations for good

performance of the differential evolution algorithm from (42).
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For the 1γ distribution, the initial population was set by creating vectors {a, b} in the

range a = [0.5, 100], b = [10, 400]. For the full evolutionary algorithm, we used bounds

[0.5, 100] for a and [10, 4000] for b to allow for parameters in the range of experimentally

derived values from (28). The difference between the initialization ranges and bounds were

empirically found to provide better convergence of the algorithm.

For the 2γ distribution, the initial population was created in the range a1 = [0.5, 2], b1 =

[10, 400], w1 = [0, 1], a2 = [2, 100], b2 = [10, 400], and w2 = [0, 1]; with bounds a1 =

[0.5, 100], b1 = [10, 4000], w1 = [0, 10], a2 = [0.5, 100], b2 = [10, 4000], and w2 = [0, 10].

The difference between the initialization ranges allows the two gamma distributions to

start with proteins distributed between low and high protein expression levels to allow the

evolution of bimodality.

For the case with no restriction on the protein distribution, we evolved the fraction of the

population at each protein level, p(P ), directly with an initialization and bound range [0, 1].

The range has little effect on performance, since the final p(P ) values are normalized to∑
P p(P ) = 1. Given the large number of parameters, we initialized the population with

400 trial vectors, which we found to improve convergence.

Evolution and parameters

For each trial vector xi in the population, a mutant vector vi was created using the

DE/rand/1/bin method (30), which combines three random trial vectors in the population,

xr1 , xr2 , and xr3 , according to

vi = xr1 + F · (xr2 − xr3), (2.14)
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where the multiplier F was chosen randomly from the range [0.5, 2], since these values have

been shown to improve convergence, especially when the fitness function is noisy (42).

If the population had not converged after 50 generations (see termination description

below), the algorithm was switched from DE/rand/1/bin to DE/best/1/bin (30), and the

mutant vector was created as

vi = xbest + F · (xr1 − xr2), (2.15)

where xbest is the trial vector with highest fitness in the population. This change in the

method allows for a more refined search in the latter parts of the evolution.

The mutant vector vi is combined with the ith trial vector, xi, in the population using 90%

of the values in vi and 10% of the values in xi, i.e. the crossover rate is 0.9, as suggested

by Price and Storn in the case of parameter dependence (42). The resulting vector, ui,

substitutes xi for the set of trial vectors if it allows for a higher fitness value than xi.

Termination

The algorithm was allowed to run for 500 generations, or until convergence. Convergence

was defined as being achieved if the difference between the mean fitness of the population

and the fitness of all candidate solutions was within 10−10 fitness units.

Sensing case When the cells are able to sense the environment, they can adapt their

distribution in high stress conditions. The switching rates between protein states are on

the order of the doubling time. Thus, we assumed one generation is required to sense and

adapt to the environment.
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The log of the ratio of final to initial number of cells in this case is calculated as

log (Nt/N0) = tl log

(∑
P

xP2λP,Sl

)
+ log

(∑
P

xP2λP,Sh

)

+(th − 1) log

(∑
P

yP2λP,Sh

)
,

(2.16)

where xP is the fraction of cells in protein level P adapted to the low stress environment

and yP is the fraction of cells adapted to the high stress environment. We obtained the

distribution of yP values by evolving the optimal unimodal distribution in fixed high stress

conditions. The first term in this equation describes the population in low stress, the middle

term describes the population during the one generation after the transition from low to high

stress, and the final term describes the population during the time in high stress.

Addition of noise in the environment We created exponential distributions of noise

with mean noise levels between 0.025 and 0.5mM. A random value from this distribution

was added (subtracted) from the 0mM (10mM) environments. While the noise changes

between evolutionary generations of the algorithm, the noise was identical for all vectors

xi, vi and ui (see “Evolutionary algorithm”) within a generation. When the stress level is

deterministic the fitness can be calculated after visiting the high and low stress conditions

once (Eq. 2.12 or 2.16). For the case with noise, the stress level changes with time. To

reduce the variation in highest obtainable fitness between generations, the growth rate

was calculated after 100 alternative visits to low and high stress conditions. To further

reduce the differences between the simulations in the 1γ and 2γ cases, three independent

simulations were run, and the simulation with the highest fitness was recorded.
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Intermediate environment An intermediate environment was added, with a stressor

concentration of 1.1mM. We selected this value because the optimal concentration of

protein in a fixed 1.1mM environment is half way between the optimal concentration

for 0mM and 10mM due to the nonlinear nature of the growth rate function (Eq. 2.8).

The fitness of a population with a distribution of protein levels was calculated by cycling

between the three stress conditions in the order: low, medium, low, and high stress.
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Chapter 3

Discussion

3.1 Discussion and Future Work

Taken together, our results have contributed to the further understanding of noise in

biological systems. Noise in gene expression has been proposed as a bet-hedging

mechanism (10). In this thesis, we sought to further define the conditions where noise

is beneficial. We created a stochastic model to study the role of variability in a regulator

controlling a suite of downstream genes. Our results show that noise in gene expression

is able to coordinate multi-component stress response mechanisms, increasing the survival

concentration of a stressor with no extra cost for the population. Furthermore, we used

evolutionary algorithms to study how noise in gene expression – which produces unimodal

distribution of proteins – compares to bimodality in an environment fluctuating between

low and high stress conditions. We found that while bimodality is beneficial if the stress
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states are well-defined, unimodal distributions are just as good when the environment is

noisy or composed of many stress states.

Although our findings are computational, we were motivated by experimental result

indicating that noise can coordinate multiple downstream genes. First, noise-driven

quantitative correlations have been shown in S. cerevisiae in the expression of stress-

response genes (60). Second, Hansen et al. (61) have studied the transmission of low-level

fluctuations in S. cerevisiae stress response. They showed that two promoter classes exist:

Promoters with fast dynamics are able to transmit low-level fluctuations in an upstream

regulator, weakly expressing resistance genes. On the contrary, promoters with slow

dynamics filter upstream low-level fluctuations. Nevertheless, careful examination of the

experimental data for slow dynamics promoter reveals strong simultaneous expression of

downstream genes in a small fraction of the population (Fig. 3.1). This is the case even

in the presence of low-level upstream pulsing. A similar experiment could help quantify

the correlation between downstream genes in the presence of a noisy upstream regulator.

For this, two copies of a gene controlled by a regulator could be fused with different

fluorescent proteins. Thus, the two downstream genes, and a regulator controlled by a noisy

genetic network could be transformed into bacteria. To assess the correlation between the

downstream genes, alternative regulators with different levels of noise could be constructed.

The fluorescence of both downstream genes could then be measured simultaneously in

thousands of cells using flow cytometry.

Similarly, microfluidics could be used to assess the benefit of bimodality. For this, we could

transform bacteria with a gene conferring resistance to an antibiotic. Two populations of

bacteria could then be transformed with plasmids containing the gene under the control of
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Figure 3.1: Low-level pulsing coordinates downstream genes. The data plotted in this
figure is from Hansen et al. (2013). The expression (in AU) in a population of S. cerevisiae
cells of two identical copies of the following MNS2 downstream genes is plotted: (A)
SIP18, (B) ALD3 and (C) TKL2. Vertical and horizontal gray lines show 1

3
of the 90th

percentile, dividing the plot into four quarters. The experimental number of cells in each
quarter and the theoretical number of cells assuming independence between downstream
genes are shown. Note that independence is expected if the promoter was able to filter
the low-level dynamics. p-values are based on a Pearson’s χ2 test for independence. Data
corresponds to one, 30 minute, 690 nM 1-NM-PP1 pulse. 1-NM-PP1 induces Mns2, but
the induction time and concentration used produce a small pulse in Mns2, which is filtered
at the population level for the genes displayed.

genetic networks, producing bistable and unimodal distribution of proteins. We could next

use microfluidics for dynamic modification of the antibiotic concentration. The benefit of

bimodality could be measured by quantifying the growth rate of the two constructs under

different fluctuating environments.

Another limitation of our findings is our assumption that populations are in equilibrium.

In the presence of a stress, the cells are assumed to be switching between phenotype states
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maintaining a fixed distribution of protein levels. However, random fluctuations in gene

expression can be maintained for up to three generations (62), and shorter half-lifes can be

produced with degradation tags (63). In addition, bistable networks can maintain protein

levels for even longer times (51). Therefore, the population can tune the switching rate

between phenotypic states to increase growth rates (48). If the high stress conditions last for

long periods of time, a bistable distribution of protein can be beneficial, since they allow for

lower switching rates than unimodal distributions. Further computational and experimental

research is needed to asses how growth rate is affected when the autocorrelation times in

the protein levels are varied.

Our analysis has applications in many fields. In biocontrol, microorganisms are released to

the environment to protect crops from pests (64). Understanding the stress types they may

encounter during the process can allow for the design of more resilient agents. Similarly,

the design of new probiotics can also benefit from more resilient microbes, that can

displace pathogenic bacteria in the intestinal system (65). Finally, although we focus in

microorganisms, our results are applicable to larger organisms, and thus can be applied

to population ecology. For example, partial migration, where a subset of the population

move temporally to another niche, has been found in birds, mammals, amphibians, fish

and shrimp (66). Migration reduces intraspecies competition and allows for higher growth

rates. However, the cost of migration includes increased predation and energetic costs.

Therefore, partial migration may be seen as a bet-hedging strategy (67). Variability in

animal behavior can also increase growth rates in the ever changing nature.
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We conclude that noise can be a straightforward bet-hedging strategy. Noise in an upstream

regulator can effectively coordinate multi-component stress response mechanisms in a

small subset of the population, increasing the survivable concentration of a stressor without

increasing metabolic cost. In addition, for mono-component stress response mechanisms

under realistic environmental conditions with uncertainty in stress levels, noise in gene

expression – corresponding to a unimodal distribution of protein levels – can provide

the same balance of high growth and survival rates than a more complicated, bi-modal

strategy. Our results bring insight into the mechanisms that microorganisms use to survive

in uncertain environments, and provide us with a method to evaluate both the growth of

microorganisms in a fluctuating environment, and the effect of drug administration profiles

in population of cells.
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SUPPLEMENTARY FIGURES 
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Figure S1. Schematic of the chemical reactions in the model. A, activator; P, unbound promoter; 
P’, bound promoter; M, mRNA; D, downstream gene. Reactions and their rates are listed in 
Table S1.  
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Figure S2. Linear cost function. The maximum concentration of stressor that 0.1% of cells in a 
population can survive and the corresponding average cost of growing in the absence of stressor. 
Values were measured for constant and pulsing activator dynamics for (A) one downstream gene 
and (B) ten downstream genes with KD = 10,000 molecules. The cost function is linear 
(Methods). Error bars show standard deviations over three simulations. 
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Figure S3. Histogram of downstream protein levels are equivalent when comparing data 
generated using a single 105 minute simulation (dashed line) and the final data points from 105 
independent simulations (solid line). (A-B) Constant input distributions of downstream proteins 
plotted on (A) linear and (B) log scales. (C-D) Pulsing input distributions on (C) linear and (D) 
log scales. 
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Figure S4. Fast promoter dynamics. (A) Maximum cross correlation as a function of the 
dissociation constant, KD. (B, C) Maximum survivable concentration of stressor and the 
corresponding average cost of growing in the absence of stressor for constant and pulsing 
activator dynamics with (B) one downstream gene and (C) ten downstream genes with KD = 
10,000 molecules. Values from the pulsing dynamics are normalized to the constant input case. 
Error bars show standard deviations over three simulations. 
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Figure S5. Effect of growth and partitioning on coordination. (A) Simulation with cell growth 
and partitioning showing the number of molecules of a downstream genes controlled by a 
pulsing input; KD = 10,000 molecules. (B) Concentration of the downstream protein. In this plot 
the data from (A) is divided by the cell volume, which changes with time. (C) Maximum cross 
correlation between a pulsing activator and downstream protein as a function of KD. The data 
generated using the model with cell division is similar to that without division and growth 
modeled explicitly, especially for large KD values. (D) Pearson correlation between two 
downstream genes with KD = 10,000 under the control of a pulsing input with and without 
growth and partitioning.  (E, F) The maximum concentration of stressor that 0.1% of cells in a 
population can survive and the corresponding average cost of growing in the absence of stressor, 
when the effect of growth and partitioning are included. Values were measured for constant and 
pulsing activator dynamics for (E) one downstream gene and (F) ten downstream genes with KD 
= 10,000 molecules. Error bars show standard deviations over three simulations. 
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Figure S6. Medium dissociation constant (KD = 1000 molecules). (A) Histograms of 
downstream gene expression. Inset shows the same data on a semilogarithmic scale. Note that 
the distributions are not identical due to the nonlinear nature of the activator curve: the pulsatile 
input spends more time at low values on the activation curve than the constant input does, 
resulting in lower mean expression of the downstream gene. (B, C) Maximum survivable 
concentration of stressor and the corresponding average cost of growing in the absence of 
stressor for constant and pulsing activator dynamics with (B) one downstream gene and (C) ten 
downstream genes with KD = 1000 molecules. Values from the pulsing dynamics are normalized 
to the constant input case. Error bars show standard deviations over three simulations. (D) The 
fraction of cells with all downstream genes coordinated as a function of the number of 
downstream genes, n. The three noise data cases are reproduced from Fig. 4 for context and 
show results for infrequently activated downstream genes (KD = 10,000 molecules). The pulsing 
data is for downstream genes with a medium dissociation constant (KD = 1000 molecules). The 
plots do not start at the same point when n = 1 because the probability that a medium KD gene is 
above the threshold for survival is greater than the probability that a high KD gene is above the 
same threshold. 
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Figure S7. Cross correlation between two downstream genes (KD = 10,000 molecules) with a 
noisy activator input. The three noise levels correspond to those shown in Fig. 3E and F. 
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SUPPLEMENTARY TEXT 
 
Probability of coordination from dynamic and constant inputs 
To gain further insight into the effects of coordination, we calculated the probabilities of 
coordinating n downstream genes using a simplified system, comparing a constant input with a 
simple dynamic input modeled by a square wave signal.  

 
 

 
 
Note that, by construction, the two signals have the same mean. We assumed that the probability 
of turning on expression of a downstream gene is linearly related to the input, such that higher 
inputs result in an increased probability of activating the downstream gene. We found this to be a 
reasonable assumption based on empirical fits to our data (Supplementary Methods). The 
probability of coordinating n genes is the probability that all downstream genes are coordinated 
simultaneously 

 
Comparing the two types of inputs, we find 

 

 
 
The ratio of the two probabilities is 

 
Therefore, the probability of coordinating n genes is always higher with pulsing than with a 
constant inputs when n > 1 

 
 
Note that the two probabilities are equal when n = 1, as expected since coordination requires 
more than one gene.  
 
 
 
SUPPLEMENTARY METHODS 
 
Fast dynamics and moderate affinity downstream gene 
Fast dynamics (Fig. S4) were modeled by increasing KON and KOFF, as listed in Table S1, by a 
factor of 10. Note that the dissociation constant KD (=KOFF/KON) stays the same.  
 

APPENDIX A. SUPPORTING INFORMATION

66



 10 

For the moderate affinity downstream gene (Fig. S6) KD = 1000 molecules. 
 
 

 
Coordination of n downstream genes 
In the probability calculations described above we assumed a linear relationship between the 
probability of turning on expression of a downstream gene and the concentration of the activator. 
We determined the linear relationship empirically, finding γ = 3.85x10-4, by using Eureqa (1). 
This relationship holds for the thresholds described above with R2 > 0.99 for the linear 
regression fit. 
 
Modeling growth and partitioning 
We assumed a cell division time of 34.7 minutes (equal to –ln(2)/0.02, the protein degradation 
half-life from Table S1). During growth, cellular volume increased following , 
where t is the time from the previous cell division event and  was set to ln(2) to allow for a 
mean volume of 1. At every cell division event, cellular volume was reset to  and the contents 
of the cell, including all protein, mRNA, and DNA species were partitioned between two 
daughter cells following a negative binomial distribution with probability 0.5. This distribution 
measures the number of molecules that are partitioned between each cell, assuming that every 
molecule is independent and has equal probability of being transmitted to each daughter cell. 
With variable volume, the units of KOFF (Table S1) become Vr/min-1, where Vr is the normalized 
volume, or volume/average volume. The pulsing signal was adjusted to match the dynamics of 
the case with fixed volume. To achieve this, at every time step the number of molecules of the 
activator was divided by the normalized volume.  However, instead of multiplying KOFF by Vr 
and dividing the number of molecules by Vr, KOFF was held constant during the simulation and 
the number of molecules of the activator was varied according to the pulsing signal, and not 
corrected by volume.  
 
Equivalence of long time simulation and many short time simulations 
We verified that distributions of downstream protein levels generated using long simulations are 
equivalent to those generated by running many shorter simulations. This approach reduces the 
computation time required to generate data. For the long time course simulations in Fig. S3, we 
first performed an initialization simulation of 1440 minutes (24 hours) and used the final values 
from these data to set initial conditions. We then ran 105 minute simulations.  For the short time 
simulations (Fig. S3), we used the initialization step and ran 105 simulations of 1440 minutes 
each, where the input activator signal had a random phase drawn from a uniform distribution 
between 0 and 240 minutes (corresponding to the period of the signal) to avoid sampling at the 
same point in the cycle every time. 

 

 
Table S1. Reaction rates 

Reaction 
rate 

Value Reaction Comments 
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KD 10,000 molecules  We set the amplitude of the pulses one order of 
magnitude lower than the KD. One order of 
magnitude between the KD of regulated genes 
has been observed experimentally (2, 3). 

KOFF
 0.1  min-1 APP +→'  Selected based on studies from both yeast and 

bacteria (3-5). 

KON
 

(molecules min)-

1 

'PAP →+  
 

α 0.02 min-1 MPP +→  Basal expression 

α’ 2 min-1 MPP +→ ''  One order of magnitude higher than typical 
transcription rates in both in yeast (6) and E. coli  
(7). Note that these rates are based on only one 
RNA polymerase molecule, and several 
molecules work at the same time, therefore we 
increased the rate by an order of magnitude. The 
results are not sensitive to the exact value of α’. 

λM
 0.1 min-1 Ø→M  Typical degradation rate in E. coli (8) and in the 

feasible range for yeast (9).  

β 10 min-1 
 

 

One order of magnitude higher than typical 
translation rates in E. coli (10), yeast (11), and 
mice (12). Note that these results are based on 
only one ribosome complex per mRNA, and 
several can work at the same time; the typical 
lag between translation initiation is 15 seconds 
in E. coli (13). The results are not sensitive to 
the exact value of β. 

λD 0.02 min-1 

 

 

We used a typical half-life of 34.7 min, which 
corresponds with a stable protein in E. coli or a 
moderately degraded protein in yeast (14, 15). 

 
 
Table S2. KON and noise contributions for different activator profiles. The KON value from Table 
S1 is multiplied by the constants listed here. ηtot

2 = ηint
2 +ηext

2  
 

Activator profile KON 

scaling factor 

Total Noise 

(ηtot) 

Intrinsic Noise 

(ηint) 

Extrinsic Noise 

(ηext) 

Constant expression 1 0 0 0 

Only Intrinsic Noise 1 0.21 0.21 0 

Intrinsic & Low 
Extrinsic Noise 

1.052 0.24 0.21 0.11 
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Intrinsic & Medium 
Extrinsic Noise 

1.266 0.29 0.21 0.20 

Intrinsic & High 
Extrinsic Noise 

1.626 0.34 0.21 0.27 
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Appendix B: Supporting Information

B.1 Phenotypic diversity using bimodal and unimodal

expression of stress response proteins in fluctuating

environments

Supporting Information

Methods and additional information.

Fitness function After a transition time, and while the environment is constant, the

distribution of protein states in a population is at equilibrium (1, 2). The equilibrium

depends on the growth rates λP,S and the switching rates between protein states (2). Here,

we evolve the distribution of protein levels in the population that yields the highest growth

rate. Therefore, we indirectly evolve the switching rates that produce that equilibrium.

Furthermore, we assumed that the switching rates were on the order of the doubling time

of a cell, which produces fast transition times, consistent with memory observed in the
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level of proteins in vivo (3, 4). One concern is that the distribution of protein levels may

change during the time in high stress, i.e. fewer cells may leave the resistant state than

were leaving before the stress appeared. However, this effect is only pronounced when the

switching rates are low compared with the differences in growth rates between cells (2).

For our simulations, the maximum difference in growth rates is one order of magnitude

below the doubling time of the cell, and therefore we assumed that the fraction of cells that

leave the resistant state is constant through the different environmental conditions.

Differences in growth rates and relationship to time for one population to overtake

another Provided the population is growing, the growth rate is normalized to be between

0−1, where the value 1 corresponds to one cell division in the fastest possible cell division

time.

The growth of cells is given by the equation

Nt = N02
R·t,

where Nt is the final number of cells, N0 is the initial number of cells, t is time that the

population has been growing, and R is the growth rate.

The benefit of sensing or bimodality is measured in points, as the difference in growth rate

multiplied by 100, with units (generations)-1. For example, the ratio of cells between two

populations 1 point apart is given by

2(x+0.01)t

2(x)t
= 20.01·t.
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Therefore, the time until the more fit condition represents 90% of the population (in other

words, the ratio of more to less fit cells is 90:10, or 9) corresponds to

9 = 20.01·t

log2(9) = 0.01 · t

t = 317 generations.

For E. coli, a generation corresponds to about 38 minutes in rich media (5), and therefore

317 generations is 8.4 days.
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Figure B.1: Relationship between difference in growth rate and time for population
displacement. The time required for a fast growing population to displace a slow growing
one is plotted as a function of the difference in growth rate between the two populations.
Displacement is defined as achieved when the more fit condition represents 90% of the
population. See Supporting Text for additional discussion.
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Figure B.2: Bimodality is evolved in many conditions, even when there are no
restrictions on the shape of the protein distribution. The distribution of proteins is
allowed to evolve freely, with no restrictions on its shape. Examples of the solutions are
shown in the cartoon on the left. (A, B) The ratio of cells with high protein expression is
plotted as a function of the environmental conditions for the (A) no sensing and (B) sensing
case. Unimodal (dark purple) and bimodal (light purple) distributions are evolved.
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Figure B.3: Bimodality is not generally evolved under weak stressors. (A)
Environments vary between low and high stress. Without sensing, the population can be
composed of cells with low levels of protein expression (histograms). Under low stress, the
population grows well. Under high stress, it stays latent. (B) With sensing, all populations
sense and adapt to the current environment after one generation. (C–D) Simulations use the
2γ restriction. Ratio of cells with high to low protein expression for (C) no sensing and (D)
sensing populations. Dark purple colors indicate unimodal distributions with high protein
expression. Light purple is bimodal. White is a unimodal distribution with low protein
expression. Inset shows the very small region where bimodality is evolved. (E) The benefit
of sensing is plotted as a function of the ratio of high to low stress, reaching its maximum
with symmetric environments. The benefit is measured as the difference in growth rate
between the sensing and no sensing populations (Supporting Text). These simulations use
an environmental transition rate of 10. Corresponding plots to (C–D) are shown in (F-G)
for the case with no restrictions when evolving the protein distribution.
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Figure B.4: The benefit of bimodality decreases as noise or time in the intermediate
environment is increased. Examples of the distributions evolved with the 1γ and 2γ
restrictions are shown (histograms) for increasing levels of noise in the (A) no sensing
and (B) sensing cases. (C, D) The distributions evolved with the 1γ and 2γ cases are
shown for increasing time in the intermediate, medium stress environment for the (C) no
sensing and (D) sensing cases. For the sensing case, the evolved distributions are identical
for all intermediate environment times, but the benefit decreases as the time spent in the
intermediate environment becomes a larger fraction of the whole simulation time.
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Figure B.5: Bimodality, not trimodality, is evolved in the environment with three stress
levels (low, medium, and high). The distribution of protein levels is plotted for solutions
obtained using the (A) 2γ requirement and (B) the case with no restrictions on protein
distribution shape. For all simulations, the time in high and low stress is 10 generations,
while the number of generations in medium stress is listed below each figure panel. Results
for other stress ratios are similar. Note that trimodal distributions are never evolved for any
stress conditions.
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