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ABSTRACT 

 

Nuclear Factor kappaB (NF-κB) is a transcription factor whose activation is 

increased in settings of allergic asthma.  At least two parallel NF-κB pathways exist: the 

classical pathway, which plays a role in inflammation and cell survival, and the 

alternative pathway, which regulates lymphoid cell development and organogenesis.  The 

classical NF-κB pathway regulates inflammatory responses derived from lung epithelial 

cells; however, the role of the alternative pathway in lung epithelial cells remains unclear.  

We demonstrate that both classical and alternative NF-κB are activated in lung epithelial 

cells in response to multiple pro-inflammatory agonists, and siRNA-mediated knockdown 

of alternative NF-κB proteins largely attenuates pro-inflammatory cytokine production.  

Furthermore, simultaneous activation of both pathways leads to cooperative increases in 

pro-inflammatory responses, indicating a potential role for both classical and alternative 

NF-κB in the regulation of epithelial-derived pro-inflammatory responses.   

NF-κB activation in the epithelium modulates allergic inflammation in mouse 

models of allergic airway disease, however, its role in the context of an allergen relevant 

to human asthma remains unknown.  In order to address the impact of inhibition of NF-

κB in the epithelium in vivo, we utilized a House Dust Mite (HDM)-induced model of 

allergic airway disease.  We demonstrate that HDM exposure activates classical and 

alternative NF-κB in both murine lung epithelium and human bronchial epithelial cells.  

Furthermore, following exposure to HDM, airway hyperresponsiveness, neutrophilic 

inflammation, and remodeling are attenuated in transgenic CC10-NF-κBSR (airway 

epithelial specific inhibitor of classical and alternative NF-κB) mice in comparison to 

wild type mice.  Our data also demonstrate that specific knockdown of the alternative 

NF-κB protein, RelB, in the lung partially protects against HDM-induced pro-

inflammatory responses, indicating that both classical and alternative NF-κB are 

important in HDM-induced responses.    

NF-κB proteins are modified by the redox-dependent post-translational 

modification, S-glutathionylation, under conditions of oxidative stress.  S-

glutathionylation of IKKβ, an upstream kinase in the NF-κB pathway, is known to 

decrease its catalytic activity; however, it is unknown how S-glutathionylation of IKKβ 

occurs.  GSTP is an enzyme that catalyzes protein S-glutathionylation under conditions 

of oxidative stress and has been associated with the development of allergic asthma.  We 

aimed to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of 

IKKβ, and pro-inflammatory cytokine production.  We demonstrate that siRNA-mediated 

knockdown of GSTP modulates NF-κB activation, NF-κB transcriptional activity, and 

pro-inflammatory cytokine production in response to LPS, a component of a bacterial cell 

wall.  Furthermore, we demonstrate that GSTP associates with IKKβ in response to 

agonist stimulation and dampens IKKβ-induced pro-inflammatory cytokine production, 

surprisingly, independent of its catalytic activity.   We also show that GSTP associates 

with other proteins of the NF-κB pathway, indicating a potential dual mechanism for 

repression of NF-κB-induced signaling.   These studies collectively demonstrate that 

classical and alternative NF-κB contribute to epithelial-derived inflammatory responses, 

and GSTP may be a novel target by which NF-κB can be regulated. 
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Chapter 1 

Comprehensive Literature Review 

Asthma 

Overview: 

Asthma is a heterogeneous pulmonary disorder that affects approximately 300 

million people worldwide.  The pathogenesis of asthma is characterized by chronic 

inflammation, bronchoconstriction, smooth muscle hypertrophy, mucus metaplasia, and 

remodeling of the airways, all of which lead to breathlessness, tightening of the chest, 

and wheezing.  Multiple endotypes of asthma exist, including atopic (allergic), non-

atopic, and exercise-induced asthma.  A wide variety of asthma triggers have been 

identified, such as allergens, exercise, cold air, cleaning solutions, pollutants, and others.  

While a genetic component is thought to contribute to the development of asthma, 

environmental impacts can increase the incidence of this disease.  Children living in cities 

have a higher chance of developing asthma, which is hypothesized to be a result of 

increased air pollution and cockroach, mouse, and rat allergens in urban settings (Byrd & 

Joad, 2006).  Conversely, children living on a farm have been shown to be protected from 

the development of atopic asthma (Braun-Fahrlander et al., 1999).  In the latter case, the 

protective effects have been attributed to exposure to bacterial products, which lead to 

tolerance and decreased sensitization to allergens.  As will be documented below, 

multiple therapeutics are effective in treating symptoms of asthma, yet still no effective 

cure for the disease exists.  Therefore, substantial research has been conducted in order to 

understand the underlying mechanisms of asthma. 
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Characteristics and Treatments of Allergic Asthma: 

Allergic asthma is frequently accompanied by chronic inflammatory processes.  

Inflammation is characterized by redness, heat, swelling, and pain, and is associated with 

pulmonary infiltration of leukocytes, or white blood cells. These cells include mast cells, 

lymphocytes, eosinophils, and neutrophils, all of which will be discussed in further detail 

later in this review (Lambrecht & Hammad, 2013; Lloyd & Hessel, 2010).  Eosinophils 

have been identified as classic mediators of allergic asthma, while neutrophils have been 

associated with resistance to conventional therapies.  Small signaling molecules 

(cytokines) are also associated with allergic inflammation and contribute to the 

recruitment of the aforementioned inflammatory cells.  Another prominent feature of 

allergic airway disease is bronchoconstriction, which is characterized by mucus release, 

closure of small airways, smooth muscle constriction, and airway thickening (Dowell, 

Lavoie, Solway, & Krishnan, 2014).  Bronchoconstriction is diagnosed via the exposure 

of a subject to the acetylcholine receptor agonist, methacholine, which leads to smooth 

muscle contraction.  Following methacholine challenge, Forced Expiratory Volume in 

one Second (FEV1) measurements are taken.  Although the pathogenesis of 

bronchoconstriction is not fully understood, multiple molecules have been identified as 

contributing factors.  Histamine, an organic nitrogenous compound secreted by mast 

cells, was demonstrated to be important in potentiating bronchoconstriction in a murine 

model of allergic airway disease (De Bie et al., 1998).  Additionally, leukotriene D4, a 

lipid mediator secreted mostly by leukocytes, has also been shown to initiate airway 

smooth muscle contractions (Dahlen, Hedqvist, Hammarstrom, & Samuelsson, 1980).  
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Mucus metaplasia, which is a change in mucosal membranes accompanied by the 

secretion of mucus, has also been shown to be a contributing factor to the pathogenesis of 

allergic asthma.  Mucus is produced by goblet cells and functions to lubricate the 

epithelium and trap inhaled particles, pollutants, and other agents which damage the 

airway.  During bacterial or viral infections, these responses are instrumental in clearing 

the infection; however, in allergic responses, mucus metaplasia can be detrimental as a 

result of airway obstructions, which leads to wheezing and coughing (James & Carroll, 

1995).  Furthermore, significant airway remodeling can occur in conjunction with smooth 

muscle hypertrophy and collagen deposition (Johnson et al., 2004; Roche, Beasley, 

Williams, & Holgate, 1989).  Following repeated injury, both the lung epithelium and 

smooth muscle can increase in size, decreasing the caliber of the airways, which leads to 

a decrease in airflow.   

No effective cure for asthma exists, however, several treatment options are 

available to alleviate symptoms associated with the disease.  Glucocorticoids, which have 

been shown to decrease inflammation through a variety of mechanisms, including 

suppression of pro-inflammatory signaling cascades, are commonly utilized as a 

treatment modality for asthmatic patients to control the inflammatory process.  

Leukotriene receptor inhibitors are also used as therapeutics, although glucocorticoids 

have been shown to be more effective in alleviating asthma symptoms (Chauhan & 

Ducharme, 2012).  Alternatives to steroids, such as cromolyn, a compound that stabilizes 

mast cells by inhibiting the release of histamine, and theophylline, a xanthine drug which 

inhibits leukotriene synthesis, have also been effective in alleviating symptoms (Kabra & 
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Lodha, 2003).  Beta-adrenergic receptor agonists activate the enzyme, adenylate cyclase, 

which then leads to smooth muscle relaxation and serves to alleviate symptoms.  In a 

population of severe asthmatics, a combination of glucocorticoids and long acting beta 

agonists was shown to be the only treatment that controlled symptoms (Currie, Lee, & 

Wilson, 2005).  These compounds, while effective at alleviating symptoms, do not have 

an impact on the underlying biological mechanisms that drive allergic airway disease, 

and therefore do not represent effective “cures”.     

Immunological Mechanisms in Allergic Asthma 

 The airway epithelium provides a physical barrier between inhaled air and lung 

tissue.  It plays a major role in allergic airway immunological processes, such as allergic 

asthma, and therefore will be a main focus of this review.  The epithelium consists of 

both proximal and distal airways, both of which have different structure and functions.  

The trachea, which is located past the vocal cord, consists of a ciliated pseudostratified 

columnar epithelium.  Adjacent to the trachea, the airway bisects into primary and 

secondary bronchi, which remain ciliated and pseudostratified.  As the airways narrow 

into bronchioles, the airway epithelium consists of both ciliated and cuboidal cell types.  

In its most distal regions, the airway epithelium is comprised of thin, squamous cells in 

the alveoli, which allow for efficient gas exchange (Crystal, Randell, Engelhardt, 

Voynow, & Sunday, 2008).  The different regions of the epithelium not only have 

different structure, but also different cell types and functions.  The tracheal epithelium 

consists primarily of ciliated cells, which facilitate the removal of debris and particulates 

from the lung.  Additionally, goblet cells, columnar cells that produce mucus, are also 
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prominent in the trachea and larger bronchi and also assist in the removal of inhaled 

debris.  Basal cells are also present in the upper airway and it is thought that they 

repopulate epithelial cells following injury or aging events.  Basal cell populations appear 

to be less prominent in distal regions of the lung, such as the small bronchioles.  

Bronchioles are primarily comprised of cuboidal ciliated cells as well as a population of 

nonciliated secretory endocrine cells, known as Club (previously Clara) cells.  Club cells 

have been shown to secrete mucus and Club Cell Secretory Protein (CCSP), as well as 

having a role in surfactant production and metabolism of xenobiotics.  In the alveoli, two 

main groups of cells exist; type I and type II cells.  Type I cells are important in gas 

exchange and comprise up to 95% of the alveolar surface.  Type II epithelial cells play a 

major role in surfactant production, and have been shown to have the capacity to 

repopulate injured lungs (Crystal et al., 2008; Franks et al., 2008). The epithelium plays a 

major role in defense against inhaled, potentially harmful, agents; however, it also plays a 

unique role in regulatory immune responses as will be described next.  

 The airway epithelium is crucial in the activation and potentiation of both innate 

and adaptive immune responses originating in the lung.  Epithelial cells express Toll-Like 

Receptors, (TLRs) which are stimulated in response to Danger Associated Molecular 

Patterns (DAMPs) or Microbe Associated Molecular Patterns (MAMPs) and trigger 

innate host defense, leading to the expression of key mediators that regulate 

inflammatory immune responses.  For example, TLR4, which recognizes the gram 

negative bacterial cell wall product, lipopolysaccharide (LPS), becomes activated upon 

stimulation and initiates activation of cell signaling cascades important for pro-
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inflammatory and anti-bacterial responses (Becker, Mundandhara, Devlin, & Madden, 

2005).  TLR4 also recognizes the cleavage product, fibrin, as a result of the activity of 

allergen-derived proteinases.  Fibrinogen, an antifungal protein, was found to be cleaved 

by fungal derived proteinases into fibrin, which facilitated sensitization to allergens 

(Millien et al., 2013).  Following stimulation and activation, epithelial cells secrete 

mediators which are crucial to the recruitment of neutrophils, eosinophils, and 

lymphocytes into the lung (Perros, Lambrecht, & Hammad, 2011).  Additionally, 

epithelial activation has been shown to be important in “alerting” cells of the immune 

system to inhaled agonists and is the first crucial step in activating adaptive immune 

responses.  

It is commonly believed that the pathogenesis of allergic airway disease is 

regulated by the interplay between the lung epithelium and immune cells.  The airway 

epithelium is crucial in activating both the innate and adaptive immunological responses 

which drive allergic airway disease.  Upon activation of the epithelium with an adjuvant, 

epithelial cells release pro-inflammatory mediators which activate multiple cells of the 

immune system.  Epithelial-derived signals are specifically crucial to the activation and 

maturation of dendritic cells which controls processing of antigens.  Following 

stimulation by an allergen/agonist, such as House dust mite (HDM), epithelial cells 

secrete TSLP and CCL20, which then activate dendritic cells to engulf antigen (HDM) 

and migrate to the draining lymph nodes and present antigen to naïve T cells (B. Zhou et 

al., 2005).  Another epithelial-derived cytokine demonstrated to be important in the 

activation of dendritic cells and have a role in allergic airway disease is GM-CSF.  
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Previous studies have implicated GM-CSF as an adjuvant in immunological responses 

(Disis et al., 1996).  GM-CSF was also shown to activate bone marrow-derived 

macrophages to synthesize MCH class II molecules and increase antigen presentation and 

to be a critical component for dendritic cell proliferation (Sallusto & Lanzavecchia, 

1994).  Therefore, based upon its impact on immune cells and adjuvant activities, the role 

of GM-CSF was investigated in mouse models of allergic airway disease.  Following 

GM-CSF overexpression in the airway prior to airway exposure with the antigen, OVA, a 

marked increase in the eosinophilic infiltration of the airways following OVA challenge 

was observed (Stampfli et al., 1998).  Furthermore, overexpression of GM-CSF also led 

to increases in overall macrophage and dendritic cell activation in the lung, indicating 

that GM-CSF expression is important for antigen presentation (Stampfli et al., 1998).  In 

a model of HDM-induced allergic airway disease, GM-CSF was also shown to be crucial 

for allergic inflammation (Cates et al., 2004).  Therefore, it can be concluded from these 

studies that epithelial derived cytokines, particularly GM-CSF, are important in 

promoting sensitization to an antigen in the development of allergic airway disease.  

Other epithelial-derived cytokines that have been shown to be important in the activation 

of immune processes are IL-6, IL-1α, IL-33, and members of the IL-17 family, some of 

which will be discussed in greater detail later in this review.  

As previously indicated, dendritic cells engulf antigen and migrate to the draining 

lymph nodes.  They then present antigen and release CC-chemokine ligand 17 

(TARC/CCL17) and MDC/CCL22, which activate T Helper (TH)2 cells via the CCR4 

receptor (Imai et al., 1999) (Figure 1).  This process primes the immune system to 
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recognize and respond to antigens to which a tissue is subsequently exposed.  T 

lymphocytes have been shown to play a large role in the development of allergic disease 

in experimental models; however, different subtypes exhibit varying functions in the 

pathogenesis of the disease.  Specific signaling events occur which polarize naïve CD4
+
 

T cells to specific lineages, including TH1, TH2, and TH17, among others, each 

depending on specific transcription factors.  GATA3 is a transcription factor which is 

critical in the development of TH2 cells and is activated more in asthmatic subjects 

versus normal subjects (Nakamura et al., 1999).  Whereas TH2 cell activation has been 

implicated in driving the pathogenesis of asthma, TH1 differentiation has been 

demonstrated to be antagonistic towards TH2 differentiation.  During TH1 development, 

the transcription factor, T-bet, is phosphorylated, and can inhibit GATA3-induced gene 

transcription.  Not surprisingly, decreases in T-bet expression have been found in 

asthmatics in comparison to healthy controls (Finotto et al., 2002).  Conversely, the 

primary function of TH1 cells is to secrete the cytokine, INFγ, which has been linked to 

more severe asthma and inflammation.  A third lineage of T cell effector cells, the TH17 

cell, has also been implicated in the pathogenesis of asthma.  A main product of TH17 

cells, IL-17A, has been found elevated in the sputum of asthmatic patients in comparison 

to healthy controls (Molet et al., 2001; Y. C. Sun, Zhou, & Yao, 2005).  IL-17A presence 

has also been linked to more severe phenotypes of asthma in association with increases in 

neutrophilia and steroid resistance (Y. C. Sun et al., 2005).  Additionally, an anti-

inflammatory T cell subtype exists, the regulatory T cell (T Reg), which counteracts the 

pro-inflammatory nature of TH1, TH2, and TH17 cells via the secretion of the anti-
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inflammatory cytokine, Interleukin 10 (IL-10).  CD4
+
 T cells have been typically thought 

to contribute to and regulate adaptive immune responses.  However, a distinct 

subpopulation exists, which are Innate Lymphoid Cells (ILCs).  ILCs have been shown to 

become activated by epithelial-derived IL-25 and IL-33 in the settings of viral and 

bacterial infections and recent studies have implicated a role for ILCs in allergic asthma 

via the secretion of IL-5 and IL-13, cytokines important in potentiating the TH2 response, 

which will be discussed in further detail later in this review (Hung et al., 2013; Klein 

Wolterink et al., 2012). While it is known that multiple T cell lineages contribute to the 

pathogenesis of allergic airway disease, the extent and degree to which these cells 

orchestrate the respective phenotype of human asthma remains unknown. 

In addition to T cell polarizing events described above, other mechanisms initiate 

and activate TH2 cell production.  IL-33 is a cytokine that plays a prominent role in the 

pathogenesis of allergic airway disease and plays a crucial role in TH2 processes.  IL-33 

is a member of the IL-1 cytokine family, which signals through the Toll-like receptor-IL-

1 receptor (TLR-IL-1R) superfamily.  IL-33 was first identified as a potential ligand for 

the IL-1 receptor, ST2, and activator of the NF-κB, ERK and JNK signaling pathways in 

mast cells (Schmitz et al., 2005).  IL-33 is produced in a precursor form, which is then 

cleaved by caspase 1.  The precursor form, Pro-IL-33, has also been demonstrated to 

associate with chromatin via a transcription factor-like mechanism (Carriere et al., 2007), 

illustrating both signaling and gene regulatory mechanisms for IL-33.  Upon original 

identification of IL-33 as an IL-1 member and binding partner of ST2, numerous studies 

have been performed to delineate the mechanistic and biological effects of IL-33.  The 



10 

 

IL-1 family has important functions in host defense, inflammation, and immune 

regulation.  Therefore, the role of IL-33 was hypothesized to have roles in these 

biological processes as well.  Early studies demonstrated that epithelial-derived IL-33 

activated mast cells and also stimulated the production of IL-4, IL-5, and IL-13 from TH2 

polarized cells in vitro (Schmitz et al., 2005).  Additionally, IL-33 administration 

intraperitoneally in mice resulted in increased eosinophils, mononuclear cells, and plasma 

cell infiltration into the spleen, as well as increases in IgE and IgA in the serum (Schmitz 

et al., 2005).  IL-33 was found highly expressed in the airway epithelium and 

macrophages of mice with OVA-induced inflammation (Kurowska-Stolarska et al., 2008) 

and it was elevated in the serum and lungs of asthmatic patients (Sakashita et al., 2008).  

Furthermore, IL-33 was demonstrated to stimulate eosinophil differentiation from 

CD117+ hematopoietic stem cells and had the ability to exacerbate eosinophil-mediated 

inflammation in a model of OVA-induced allergic airway disease (Stolarski, Kurowska-

Stolarska, Kewin, Xu, & Liew, 2010).  Therefore, mechanisms of transcriptional 

regulation, release, and activation of IL-33 in allergic airway disease remain a critical 

area of study. 

In addition to the prominent role of CD4
+
 T lymphocytes in the pathogenesis of 

allergic asthma, B lymphocytes also significantly contribute to the disease.  Following 

maturation in the bone marrow and subsequent activation with antigen, B lymphocytes 

interact with activated TH2 cells.  TH2 cells then release IL-4, which initiates antibody 

class switching to IgE in the B cell (Vercelli, Jabara, Arai, & Geha, 1989).  Subsequently, 

upon activation, B cells secrete IgE, which bind to mast cells and stimulate the release of 
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histamine, prostaglandin D2, and leukotrienes; all of which lead to increases in smooth 

muscle constriction and potentiate airway hyperresponsiveness (Reuter, Stassen, & 

Taube, 2010).  Therefore, the interaction and cooperation between T and B lymphocytes 

in allergic asthma is crucial to the progression of the disease.   

Another function of TH2 cells is the release of Interleukin-5 (IL-5), which is 

essential in the recruitment and maturation of eosinophils.  Additionally, eotaxin, a 

cytokine secreted by the airway epithelium, is also important in the recruitment of 

eosinophils (Griffiths-Johnson, Collins, Rossi, Jose, & Williams, 1993).  Eosinophils are 

an important component of the inflammatory response, as they degranulate and release 

cytokines, enzymes, and growth factors (Rosenberg, Dyer, & Foster, 2013), all of which 

contribute to asthma pathogenesis.  Additionally, in response to cytokines, eosinophils 

undergo piecemeal degranulation, a method by which granule content is released into the 

extracellular space while the eosinophils remain intact and viable (Melo & Weller, 2010).  

Because of the substantial role for IL-5 in recruiting and activating eosinophils, 

considerable effort into targeting IL-5 has taken place.  Mepolizumab and reslizumab, 

both of which are antagonists to IL-5Ra, have been developed as potential therapies for 

asthma.  Mepolizumab decreased eosinophilia in mild atopic asthmatics by 50% in 

conjunction with a decrease in TGFβ1, which is a pro-fibrotic cytokine (Flood-Page et 

al., 2003).  Furthermore, Mepolizumab suppressed eosinophil maturation in the bone 

marrow and decreased the amount of eosinophil progenitors in the lungs of asthmatic 

patients in comparison to healthy controls (Menzies-Gow et al., 2003).  Additionally, 

following administration of Mepolizumab to patients with persistent sputum eosinophilia, 
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patients were able to decrease their dependence on steroids (Nair et al., 2009).  These 

studies confirmed that IL-5 is important in eosinophil activation and recruitment, and that 

blocking IL-5 can hold therapeutic potential for asthmatics with persistent eosinophilia.   

While eosinophils are a prominent feature of allergic airway disease, reports also 

indicate significant increases in neutrophils and IL-8 (KC in the mouse) in the airways of 

asthmatics (Douwes, Gibson, Pekkanen, & Pearce, 2002). Activation of epithelial cells 

with lipopolysaccharide (LPS), a common adjuvant, leads to the release of IL-8, and 

subsequent recruitment/activation of neutrophils, whose early pulmonary infiltration is an 

important mechanism in the development of allergic airway disease (Monteseirin, 2009).   

Neutrophils are polymorphonuclear leukocytes that are important in the defense against 

bacterial and fungal infections.    Their main functions include the release of enzymes, 

reactive oxygen species, and other cytotoxic agents; however, it is not specifically known 

how these functions contribute to the pathogenesis of allergic airway disease.  

Neutrophils classically were thought to contribute primarily to the innate immune 

response, however, their presence in the lungs of atopic asthmatics following allergen 

challenge and their ability to become activated by an IgE dependent mechanism (Vega et 

al., 2007) has led to substantial research investigating their role in allergic responses.  It is 

hypothesized that a major function of neutrophils is to release matrix metalloproteinase-9 

(MMP-9), which is elevated in both BAL and induced sputum in patients with asthma 

and these findings correlated positively with disease severity and resistance to 

glucocorticoids (Cundall et al., 2003).  MMP-9 is believed to decrease pulmonary 

function via its role in promoting the movement of eosinophils to the lumen of the lung 
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(Wenzel, Balzar, Cundall, & Chu, 2003).  Genetic ablation of MMP-9 in mouse models 

prevented allergic airway disease (Cataldo et al., 2002).  Another mediator produced by 

neutrophils that was demonstrated to contribute to asthma pathogenesis is neutrophil 

elastase, which has been implicated in epithelial damage, vascularization, bronchial 

hyperresponsiveness, and other features of allergic disease.  Furthermore, elastase has 

been shown to induce eosinophil cationic protein (ECP) release from eosinophils isolated 

from atopic asthmatics (H. Liu, Lazarus, Caughey, & Fahy, 1999).  In addition to the 

production of pro-inflammatory, pro-injurious mediators, neutrophils have been 

associated with an increase in both TH17 and IL-17A responses in asthmatics (Cosmi, 

Liotta, Maggi, Romagnani, & Annunziato, 2011), which implicates multiple distinct 

pathways of allergic airway disease, in addition to aforementioned TH2-dependent 

mechanisms.  Therefore, it appears critical to consider the phenotype of the underlying 

immunological process when treating allergic asthma.   

IL-17A has emerged recently as an important molecule in the pathogenesis of 

allergic airway disease.  IL-17A levels in the airways are associated with increased 

neutrophilia in severe asthmatic patients (Linden, 2001).  IL-17A is a cytokine primarily 

produced by αβTCR
+
TH17 cells; however, other cell types are known to produce IL-

17A, such as γδTCR
+
TH17 cells.  IL-17A was originally hypothesized to be involved in 

the pathogenesis of allergic airway disease, as αβTCR
+
TH17 cells are increased in the 

airways of asthmatics (Molet et al., 2001).  Moreover, a recent study showed that IL-17A 

produced by αβTCR
+
TH17 contributed to AHR in mice exposed to both OVA and HDM 

(Kudo et al., 2012).  However, recent studies have suggested other roles for IL-17A in 
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allergic airway disease.  In a model of OVA/RSV-induced allergic airway disease (viral-

induced allergic airway exacerbation), it was demonstrated that IL-17A knockout mice 

exhibited increased AHR and eosinophilic inflammation in comparison to WT littermate 

controls (Newcomb et al., 2012).  Furthermore, it was shown that IL-13 can 

downregulate IL-17A production in an IL-10-dependent manner (Newcomb et al., 2012).  

Alternatively, mice that were instilled with recombinant IL-13 and IL-17A exhibited less 

AHR and inflammation compared to IL-13 alone, indicating that IL-17A inhibits the 

TH2-mediated allergic response (Kinyanjui, Shan, Nakada, Qureshi, & Fixman, 2013).  

These studies indicate that IL-17A may have a role in dampening classic TH2-mediated 

allergic airway disease.  However, other mechanisms may exist by which IL-17A can 

modulate allergic airway disease.  For example, IL-17A has been implicated in neutrophil 

recruitment, as it stimulates production of KC.  IL-17A also has been shown to play a 

crucial role in pulmonary fibrosis (Y. Chen et al., 2013), suggesting a putative role for 

IL-17A in fibrotic airway remodeling observed in severe asthma.     

Animal Models: 

Animal models are instrumental in understanding the mechanisms that contribute 

to the pathogenesis of allergic asthma.  Numerous species are utilized for asthma 

research; however, murine models will be the focus of this review.  Substantial research 

has been performed in order to develop mouse models of allergic airway disease, which 

have likewise been instrumental in drug target discovery.  A commonly used model is the 

aluminum hydroxide/ovalbumin (OVA) method of allergic airway disease.  Aluminum 

salts were originally utilized as adjuvants in the preparation of vaccines based on their 
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ability to enhance antibody responses (Marrack, McKee, & Munks, 2009).  Additionally, 

insoluble aluminum salts have been shown to activate innate immune cells, which then 

lead to T helper 2 (TH2) cell responses (Grun & Maurer, 1989).  Recent studies have also 

shown a crucial role for uric acid following activation with aluminum salts, which has 

been hypothesized to activate the NLRP3 inflammasome and initiate innate immune 

responses (Kool et al., 2011).  Following injection with aluminum hydroxide and chicken 

ovalbumin, mice are subsequently exposed to aerosolized ovalbumin via the airways.  

Common experimental results of the Alum/OVA method include eosinophilic and 

lymphocytic infiltration into the airways and the lung tissue, hyperresponsiveness to 

methacholine, and mucus metaplasia, which are all major hallmarks of allergic airway 

disease in humans (Kung et al., 1994).  The OVA model has facilitated significant 

research on allergic airway disease; however, controversy regarding the physiological 

relevance of the method exists.  The route of sensitization of the animal to ovalbumin is 

via intraperitoneal injection, whereas, an asthmatic patient is believed to be sensitized via 

the airway.  Therefore, alternative models have been developed which have utilized more 

relevant adjuvants and sensitization methods.   

As previously mentioned, airway epithelial cells are the first cells in contact with 

an inhaled allergen/adjuvant and are crucial in initiating activation of innate and adaptive 

immune responses. LPS is commonly found in allergens and is responsible for activating 

toll like receptor 4 (TLR4) on airway epithelial cells (Poltorak et al., 1998) and initiating 

downstream signaling of alveolar NF-κB (Haddad & Land, 2001), p38, and c-Jun-N-

terminal kinase (Jeyaseelan et al., 2005).  Therefore, LPS has been utilized as an adjuvant 



16 

 

for current mouse models of allergic airway disease.  Mice exposed to LPS and 

ovalbumin via the airways and challenged with aerosolized ovalbumin were shown to be 

hyperresponsive to methacholine, developed mucus metaplasia, and had increased 

eosinophils, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid (BALF) 

(Wilson et al., 2009).  In another model, mice exposed to flagellin, a TLR5 agonist, in 

conjunction with ovalbumin, had an even more robust response upon ovalbumin 

challenge in regards to these parameters (Wilson et al., 2012).  Therefore, the strength 

and nature of responses to antigen challenge are strongly influenced by the methods 

which mice are sensitized.   

In addition to models whereby specific adjuvant/antigen approaches are utilized, 

allergens themselves are also used as mouse models of allergic airway disease.  As 

mentioned earlier, ovalbumin is an antigen utilized to induce allergic airway disease in 

mice, but it is not an allergen to which most asthmatics are allergic.  In contrast, house 

dust mite (HDM) is a multifaceted allergen to which 50-85% of asthmatics are allergic 

(Gregory & Lloyd, 2011).  HDM extract contains many components, including fecal 

matter, LPS, chitin (glucose derivative), and proteins, such as Derp1, all of which are 

hypothesized to be involved in the allergic response.  Previous studies performed with 

HDM extract administration via the airway demonstrated strong hyperresponsiveness to 

methacholine, inflammation, mucus metaplasia, and fibrotic remodeling in the mouse 

lung (Johnson et al., 2004).  Additionally, HDM induced allergic airway disease in mice 

via TLR4 triggering of airway structural cells, as well as production of pro-inflammatory 

cytokines TSLP, GM-CSF, IL-25, and IL-33 (Hammad et al., 2009).  Utilization of the 



17 

 

HDM model has enabled the discovery of crucial early innate immune responses in the 

lung which lead to the development of allergic airway disease.   

The Airway Epithelium in Asthma: 

As stated earlier, the airway epithelium not only provides a protective physical 

barrier, but also is crucial in the control of innate and adaptive immune responses.  

Epithelial cells from allergic asthmatics, however, have been shown to exhibit 

characteristics that contribute to allergic asthma.  As described below, the majority of the 

human population is exposed to “allergens” throughout their lives, however, specific 

features of the asthmatic epithelium provide an environment in which allergic asthma can 

develop and persist.  Physical characteristics of the asthmatic lung epithelium include 

airway thickening, increased mucus secretion, and loss of barrier function (C. Xiao et al., 

2011).  The latter may facilitate the exposure of allergens to cells within the interstitial 

lung, including dendritic cells, which facilitates antigen presentation and adaptive 

immune responses.  Another characteristic of asthmatics is the inability to clear viral 

infections efficiently, a feature that can be attributed to the asthmatic epithelium.  

Following rhinovirus infection, for example, the epithelium releases IFNγ to clear the 

virus, however, in the asthmatic epithelium, this response is defective (Hackett et al., 

2011).  The structure and characteristics of the airway epithelium are crucial to 

maintaining normal lung function and the deregulation of these processes in asthmatics 

ma therefore contribute to disease pathogenesis. 

Numerous cell signaling pathways have been shown to be deregulated in the 

asthmatic lung epithelium.  As previously mentioned, mucus metaplasia is a common 
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feature of allergic asthma and contributes to disease pathogenesis. Polymorphisms of IL-

13, a cytokine which stimulates epithelial cells to produce mucus, has been linked to 

atopy (Howard et al., 2001).  Polymorphisms of its receptor, IL-13R, and downstream 

signaling component, STAT6, have also been linked to deregulation in asthmatic 

epithelium (Hoffjan, Nicolae, & Ober, 2003; Wills-Karp, 2000).  Additionally, the 

developmental transcription factor, p63, has been linked to the development of allergic 

asthma.  It has been reported that more asthmatic basal epithelial cells expressed p63 in 

comparison to healthy controls (Hackett et al., 2008) and these changes in expression 

have been linked to impaired wound repair and barrier function (Warner et al., 2013).  

Another prominent signaling pathway linked to the asthmatic epithelium is Nuclear 

Factor-kappaB (NF-κB), which has roles in inflammation, survival, and proliferation, as 

will be further described below.  Due to the prominent features of inflammation in 

asthma and the role of NF-κB in inflammation, investigators have sought to examine the 

potential link between asthmatic epithelium and NF-κB.  A more than two-fold increase 

in NF-κB transcription factor, RelA, content in the nucleus (indicative of NF-κB 

activation) of bronchial cells from asthmatics versus healthy controls was detected and a 

44% increase of NF-κB DNA binding was observed (Hart, Krishnan, Adcock, Barnes, & 

Chung, 1998).  Furthermore, Derp1, a component of the allergen, house dust mite, was 

shown to activate NF-κB more pronounced in asthmatic bronchial epithelial cells in 

comparison to normal bronchial epithelial cells (Stacey et al., 1997).  Due to the strong 

evidence that NF-κB signaling is prominent in the asthmatic epithelium, its links to 

inflammation, and the prominent role for the epithelium in regulating allergic asthma, a 
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major focus of this review pertains to NF-κB signaling in the epithelium and how it 

contributes to allergic asthma.   

 

Nuclear Factor kappaB 

Introduction: 

Nuclear Factor kappaB (NF-κB) is a transcription factor that contributes to and 

regulates multiple biological processes, including inflammation, proliferation, and cell 

survival.  NF-κB has been causally linked to the development of many diseases, such as 

cancer, COPD, and asthma and therefore considerable research has been performed to 

understand the mechanisms of its signaling and regulation.  At least two main NF-κB 

pathways have been described: the classical and the alternative pathway, also referred to 

as canonical and noncanonical NF-κB (Figure 2).  The pathway that leads to activation of 

NF-κB consists of adaptor proteins which interact with receptors, and the Inhibitor of 

kappaB kinase (IKK) signalsome.  Transcription factor/inhibitor complexes are important 

in the modulation of NF-κB dependent transcription.  Upon stimulation, adaptor 

complexes are recruited to the receptors and phosphorylate IKK.  In turn, IKK 

phosphorylates the inhibitor of NF-κB, which constitutively sequesters NF-κB 

transcription factors in the cytoplasm.  Upon phosphorylation, the inhibitor becomes 

ubiquitinated and subsequently degraded by the 26S proteasome, thus facilitating the 

nuclear translocation of transcription factors (mainly RelA and RelB) (Gilmore, 2006).  

This event, in addition to other post-translational modifications and associations with 
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cofactors, leads to NF-κB-dependent transcription of genes involved in lymphoid 

organogenesis, inflammation, proliferation, and cell survival.  

NF-κB family members: 

 The NF-κB family is comprised of three major groups of proteins: NF-κB 

proteins, IκB proteins, and IKK proteins.  The NF-κB proteins, consisting of RelA, RelB, 

cRel, p105/p50, and p100/p52, contain Rel homology domains (RHD) which facilitate 

DNA binding as well as protein-protein interactions with each other.  The RHD is 

typically comprised of two beta barrels which facilitate the aforementioned associations.  

The IκB group consists of IκBα, IκBβ, IκBε, IκBζ, and BCL3; all contain ankyrin repeat 

domains, which are comprised of two alpha helices.  The alpha helix domain also 

contributes to protein-protein interactions.  In addition to the above mentioned IκB 

proteins, p105/p50 and p100/p52 are also considered to be inhibitors of NF-κB in 

addition to being members of the NF-κB family, due to the presence of both ankyrin 

repeat domains and rel homology domains.  IKK proteins, consisting of IKKα, IKKβ, and 

IKKγ, comprise the IKK signalsome, whose formation is necessary for activation of NF-

κB.  IKKα and IKKβ contain catalytically active kinase domains which are important in 

phosphorylating the inhibitor of kappa B (IκB) proteins.  IKKγ (also known as NEMO), 

which does not contain a catalytically active domain, is crucial for the formation and 

aggregation of the IKK signalsome via associations with IKKα and IKKβ (Ghosh & 

Hayden, 2008).  The three families of proteins are all critical in the activation and 

signaling of NF-κB, and their roles in these processes will be discussed in more detail in 

the next section.   
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Classical NF-κB: 

 The IKK signalsome, which consists of IKKα, IKKβ, and IKKγ, is a critical 

component for activation of the classical pathway.  Upon stimulation with an agonist, 

such as Lipopolysaccharide (LPS), adaptor proteins, IRAK, TRAF6, and TRAF2 

associate and initiate phosphorylation of TAK1 (Deng et al., 2000).  IKKγ, binds TRAF6 

and assembles the IKK signalsome, whose complex is essential for classical signaling.  

Following phosphorylation of TAK1, IKKβ is phosphorylated, which then in turn 

phosphorylates the Inhibitor of kappaB alpha (IκBα) (Takaesu et al., 2003).  IκBα, which 

sequesters p65 (RelA) in the cytosol, is subsequently ubiquitinated and degraded by the 

26S proteasome.  This event facilitates the nuclear translocation of RelA, which can 

initiate transcription of target genes.  Classical NF-κB signaling has been causally linked 

to innate inflammation and proliferation, and its role in the epithelium has been crucial in 

regulating these processes (Pasparakis, 2009).   Classical NF-κB has been shown to 

contribute to diverse functions in many different cell types, organs, and diseases.  

Classical NF-κB has been extensively studied, and its deregulation has been shown to 

play a role in cancers, inflammatory disorders, and diseases of the immune system.  Over 

100 known target genes of NF-κB have been identified, many of which are involved in 

inflammation, immunity, proliferation, and cell survival.  RelA
-/-

 mice are embryonic 

lethal at day 15-16 gestation and have severe deficiencies in liver function (Beg, Sha, 

Bronson, Ghosh, & Baltimore, 1995).  Additionally, mice deficient in for IKKβ in 

myeloid cells demonstrated enhanced susceptibility to endotoxin shock, suggesting a 

putative role for NF-κB in defense against pathogens (Greten et al., 2007).  Given the 
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importance of NF-κB in regulating inflammation and its upregulation in the lung 

epithelium of asthmatics, the next section will discuss studies that have addressed the role 

of epithelial NF-κB in mouse models of allergic airway disease.   

 NF-κB in the lung epithelium: 

Initial observations demonstrated that NF-κB was elevated in the lungs of 

asthmatic patients and that this activity primarily occurred in the airway epithelium (Hart 

et al., 1998). To fully elucidate the complex role of airway epithelial NF-κB, transgenic 

murine models whereby epithelial NF-κB was either inhibited or activated in settings of 

inflammatory airways disease were utilized.  Initial studies employed the use of a 

transgenic model whereby a mutant of the inhibitor of NF-κB, IκBα, was constitutively 

overexpressed in CC10 expressing cells (CC10-NF-κBSR), thus preventing the activation 

of NF-κB.  Using the alum/OVA model, the CC10-NF-κBSR transgenic mouse 

demonstrated reduced eosinophilia, mucus metaplasia, and inflammatory cytokines in 

comparison to wild type mice.  However, no observed difference in AHR was detected, 

indicating that epithelial NF-κB impacted many, but not all facets of Alum/OVA-induced 

allergic airway disease (Poynter et al., 2004).   

To further unravel the complexities of epithelial NF-κB activation in asthma 

models, a transgenic mouse was created in which IKKβ was inducibly deleted from the 

airway epithelium using a floxp flanked allele of IKKβ via the doxycycline/CC10-tet/op-

cre system.  Epithelial inhibition of IKKβ, and thus NF-κB, during the sensitisation phase 

of the ovalbumin model resulted in marked decreases in structural remodelling, mucus 

metaplasia, eosinophilia and AHR (Broide et al., 2005).  Additional studies utilized a 
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mouse in which a phosphomimetic mutant of IKKβ (CA-IKKβ), which is constitutively 

active, was conditionally expressed under the CC10 promoter, facilitating increased 

activation of NF-κB in the non-ciliated epithelium.  Expression of the CA-IKKβ 

transgene alone in the lung epithelium was sufficient to drive airway neutrophilia and 

airway hyperresponsiveness (Pantano et al., 2008).  Following sensitization to ovalbumin, 

activation of NF-κB in the epithelium during subsequent re-exposure resulted in 

enhanced AHR, neutrophilia, eosinophilia, and airway smooth muscle 

hyperplasia/hypertrophy (Pantano et al., 2008).  Furthermore, NF-κB activation within 

the epithelium during the initial exposure of ovalbumin was sufficient to cause 

sensitization to OVA in the absence of other adjuvants as well as a mixed TH2/TH17 

immune response (Ather, Hodgkins, Janssen-Heininger, & Poynter, 2011). Together 

these findings, elicited through the comprehensive use of murine transgenic models, 

suggest an important role of NF-κB activation in the airway epithelium in both 

sensitization and challenge to an antigen.    

Alternative NF-κB: 

 Alternative NF-κB has been implicated in a variety of biological processes, 

many distinct from classical NF-κB.  Alternative NF-κB activation results following 

stimulation with a variety of agonists, including of B cell activating factor (BAFF), CD-

40 ligand, and Lymphotoxin-β.  Upon stimulation, TRAF3, which constitutively 

ubiquitinates and degrades NF-κB-inducing kinase (NIK), is ubiquitinated and degraded, 

thus allowing for accumulation of NIK.  NIK accumulation is sufficient to phosphorylate 

a distinct pool of IKKα (separate from the IKK signalsome), which then initiates IKKα to 
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phosphorylate p100.  P100 is a member of the inhibitor of kappaB family that has been 

shown to bind and sequester RelB in the cytosol in unstimulated cells.  Upon 

phosphorylation of p100, it is ubiquitinated and partially processed into p52, which then 

facilitates RelB translocation into the nucleus.  This event triggers transcription of 

alternative NF-κB-dependent genes (S. C. Sun, 2011) (Figure 2).   

 In addition to the classical pathway, the alternative NF-κB pathway has been 

shown to be important in a variety of different biological processes, including the 

development of peripheral lymphoid organs, and B and T cell maturation.  NIK, IKKα, 

p100/p52, and RelB, all major components of the alternative pathway, have been shown 

to regulate both in normal biological processes and disease.  In addition to its role in B 

and T cell development, alternative NF-κB has been implicated in hyperglycemia, 

oxidative muscle metabolism, lymphoma, and diabetes-associated renal inflammation (G. 

Xiao, Rabson, Young, Qing, & Qu, 2006).  Studies have also indicated a role for 

alternative NF-κB in immune cells, such as dendritic cells and macrophages, whereby it 

appeared to play both pro and anti-inflammatory roles.  RelB has been shown to play a 

role in tolerance to endotoxin in monocytes as well as providing protection against 

cigarette smoke-induced inflammation (McMillan et al., 2011; Yoza, Hu, Cousart, 

Forrest, & McCall, 2006).  Additionally, it was demonstrated that RelB played an anti-

inflammatory role in lung fibroblasts (Baglole et al., 2008; Xia, Pauza, Feng, & Lo, 

1997).  IKKα, however, has been shown to enhance classical NF-κB signaling via 

initiating phosphorylation of histones, thus enhancing classical NF-κB-dependent gene 

transcription (Yamamoto, Verma, Prajapati, Kwak, & Gaynor, 2003).  However, in direct 
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contrast to these findings, IKKα phosphorylates TAX1BP1, which then negatively 

regulates classical NF-κB signaling in fibroblasts (Shembade, Pujari, Harhaj, Abbott, & 

Harhaj, 2011).  The overall role of the alternative NF-κB pathway differs among cell 

types and disease models, and its role in lung epithelial cells remains to be elucidated.   

 Despite the apparent differences in the roles of classical and alternative NF-κB, 

numerous studies demonstrating cross talk between the two pathways have been 

described.  It has been shown previously that a variety of stimuli, including LPS and 

TNFα, have the ability to activate both pathways simultaneously (Sasaki, Ghosh, & 

Longo, 2011; Souvannavong, Saidji, & Chaby, 2007).  IKKα, the dominant kinase in the 

alternative pathway, is critical for prolonged classical NF-κB-induced gene transcription 

via the phosphorylation of Histone H3 and enhanced transcription of NF-κB dependent 

genes in mouse embryonic fibroblasts (Anest et al., 2003) through interactions with 

CREB binding protein (Yamamoto et al., 2003).  In contrast, IKKα accelerates the 

removal of RelA and c-Rel from target gene promoters and dampens pro-inflammatory 

phenotypes in macrophages (Lawrence, Bebien, Liu, Nizet, & Karin, 2005) and IKKα 

also limits classical NF-κB activation by phosphorylating TAX1BP1, a regulatory 

molecule which controls classical NF-κB activation (Shembade et al., 2011).  

Additionally, it was shown in macrophages that following stimulation with LPS, RelA 

occupation with the IL-12p40 promoter was associated with enhanced transcription of IL-

12p40 mRNA.  Conversely, RelB was shown to associate with the same promoter after 

RelA; however, its occupancy was associated with decreased expression of the IL-12p40 

mRNA (Saccani, Pantano, & Natoli, 2003).  However, RelB recruitment to the GM-CSF 
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promoter was shown to enhance RelA-dependent gene transcription (Sasaki et al., 2011).  

RelA and RelB protein-protein interactions have been reported as well, which were 

associated with decreased gene transcription (Smale, 2012). The role of classical NF-κB 

in regulating pro-inflammatory responses in lung epithelial cells has been demonstrated, 

however, given the controversial role of alternative NF-κB in other cell types and 

crosstalk with classical NF-κB, it is plausible that the alternative NF-κB pathway also 

plays a role in orchestrating inflammatory responses from lung epithelial cells. 

Regulation of NF-κB 

 NF-κB plays a crucial role in many cells and organs, and as such, mechanisms 

exist to tightly regulate its function.  Phosphorylation, or the reversible conjugation of a 

phosphate group to a reactive hydroxyl group, has a major role in the activation of NF-

κB.  Upon activation by a variety of agonists, multiple proteins, such as IKKβ, and IKKα 

are phosphorylated at Serines 177/181 and 176/180, respectively, thus enhancing 

signaling (Carter, Geyer, Xie, Acevedo-Suarez, & Ballard, 2001; Y. Wang, Xiang, 

Kourouma, & Umar, 2006).  Mutations of the aforementioned serine residues of IKKα 

and IKKβ to glutamic acid residues was demonstrated to render the kinases constitutively 

active, and expression of IKKβ-S177/181E in the lung was demonstrated to be sufficient 

to induce airway neutrophilia (Sadikot et al., 2003).  In addition to phosphorylation of 

IKKβ, a highly specific and conserved mechanism of regulation of NF-κB is exerted via 

the phosphorylation of IκBα.  Following phosphorylation at serines 32 and 36, lysines 21 

and 22 of IκBα become ubiquitinated via K48-linked polyubiquitin chains (Rodriguez et 

al., 1996).  The mechanisms regulating these reactions are highly specific and conserved 
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among species.  Following phosphorylation at serines 32 and 36, a specific E3 ubiquitin 

ligase enzyme, identified as E3RS
IκB

, specifically recognizes the 6 amino acid peptide 

sequence of IκB (Yaron et al., 1998).  Therefore, the E3 ligase only associates with 

phosphorylated IκBα, thereby catalyzing K48-linked ubiquitination at lysines 21 and 22. 

Mutation of IκBα serines 32/36 to alanines renders IκBα resistant to degradation and 

prevents activation of the NF-κB pathway.  This observation was used to create the 

CC10-NF-κBSR mouse model described earlier.   

In addition to the specific regulation of IκBα in the classical pathway, a similar 

mechanism exists in the activation of the alternative NF-κB pathway.  P100 sequesters 

RelB via masking the nuclear localization domain, thus rendering the alternative pathway 

inactive in an unstimulated cell.  Following stimulation, NIK content accumulates and 

phosphorylates IKKα, which then in turn phosphorylates p100 at serines 866 and 870 (G. 

Xiao, Fong, & Sun, 2004).  This event, as with phosphorylation of IκBα, is required for 

the ubiquitination and degradation of p100.  However, unlike IκBα, p100 contains a 

processing inhibitor domain in its C-terminus, and therefore, rather than complete 

degradation of the protein, p100 is partially processed into p52.  P52, the binding partner 

of RelB, then facilitates nuclear accumulation of RelB and DNA binding.  In addition to 

activation, K48-linked ubiquitination also plays a role in limiting alternative NF-κB 

activation.  The E3 ubiquitin ligase, TRAF3, has been demonstrated to constitutively 

ubiquitinate, and, thus degrades, NIK. However, upon stimulation, TRAF3 itself is 

degraded, thus stabilizing NIK, and promoting the activation of the alternative pathway 

(Liao, Zhang, Harhaj, & Sun, 2004).  Therefore, in addition to the phosphorylation events 
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that are required to activate kinases, phosphorylation is also required for ubiquitination 

and degradation of multiple inhibitors of NF-κB.   

 Phosphorylation has been shown to activate NF-κB associated kinases; however, 

mechanisms also exist in which phosphorylation can inhibit the kinase activity of 

numerous proteins.  Autophosphorylation of both IKKα and IKKβ in their C-terminal 

regions acts as a mechanism to shut down their kinase activity.  Previous studies 

demonstrated that in IKKβ mutants whereby 10 serines in the C-terminal tail were 

mutated to alanines, a fourfold prolonged signaling capacity of IKKβ following 

stimulation with TNF-α was detected (Delhase, Hayakawa, Chen, & Karin, 1999).  In 

contrast, replacement of these serines with glutamic acid, whose negative charge mimics 

phosphoserine, renders IKKβ inactive, leading to greatly reduced TNF-α-induced IKK 

activity (Delhase et al., 1999).  It is hypothesized that hyperphosphorylation of the C-

terminus of IKK, which contains the helix-loop-helix domain, results in a conformational 

change that impairs its kinase activity.  Another hypothesis is that this conformational 

change facilitates the recruitment of a phosphatase to remove the phosphate group from 

Serines 177 and 181.  A phosphatase, PP2A, has been identified as a protein which has 

been shown to associate with IKKβ, however, its impact on activity of IKKβ has 

remained controversial (DiDonato, Hayakawa, Rothwarf, Zandi, & Karin, 1997).  In 

addition to phosphorylation negatively regulating IKKβ, phosphorylation also affects the 

alternative NF-κB pathway through interactions between IKKα and NIK.  Following 

NIK-induced activation and phosphorylation of IKKα, IKKα in turn phosphorylates NIK, 

thus destabilizing it (Razani et al., 2010).  Therefore, the phosphorylation events that 
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govern the magnitude of both classical and alternative NF-κB pathways are highly 

specific and context dependent.   

 Phosphorylation of transcription factor, RelA, is a key event in mediating its 

transcriptional activity.  Following phosphorylation of RelA at serine 276 after LPS 

stimulation, RelA interacts with coactivator, CBP/300, and transcriptional activity of 

RelA becomes enhanced (Zhong, SuYang, Erdjument-Bromage, Tempst, & Ghosh, 

1997).   Additionally, stimulation with TNF-α has been shown to increase 

phosphorylation of RelA at serine 529 (D. Wang & Baldwin, 1998).  However, the best 

described phosphorylation of RelA occurs at serine 536, which has been shown to be 

initiated by IKK itself in response to a variety of stimuli (Sakurai et al., 2003; F. Yang, 

Tang, Guan, & Wang, 2003).  In contrast, RelB phosphorylation has also been 

documented in settings in which it facilitates ubiquitination and degradation of RelB of 

itself.  In both immortalized and primary T cells, it has been shown that RelB is 

phosphorylated by GSK3β, an enzyme which regulates other facets of NF-κB signaling.  

It was demonstrated that GSK3β phosphorylated RelB on threonine 84 and serine 552 

and that these events were important for degradation of RelB (Neumann et al., 2011). 

 K48-linked ubiquitination has been shown to be an important process by which 

proteins are marked for degradation by the 26S proteasome, however, other types of 

ubiquitination exist that are important in biological processes.  For example, K63 and 

linear ubiquitination have been shown to be important mechanisms by which NF-κB is 

activated.  IKKγ, or NEMO, contains ubiquitin binding domains which facilitate binding 

of NEMO, IKKα, and IKKβ to upstream adaptors proteins whose interactions are crucial 
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for NF-κB activation.  K63-linked ubiquitination has been shown to be critical for the 

congregation of the IKK signalsome as well as the activation of the IKKβ kinase (Z. J. 

Chen, 2012).  Multiple receptors and pathways activate NF-κB via ubiquitination, 

however, for the purpose of clarity; this review will emphasize IL-1R/TLR signaling.  

Following stimulation, the IL-1R/TLR receptor rapidly recruits adaptor proteins IRAK1/4 

and MyD88, which in turn recruits the E3 ligase, TRAF6. Following its recruitment, 

TRAF6, in conjunction with E2 enzymes Ubc13 and Uev1a, catalyze K63-linked 

ubiquitination of IRAK1, NEMO, and TRAF6 itself (Z. J. Chen, 2012).  A complex 

containing the proteins TAB2/3 and TAK1 is then recruited and via ubiquitin binding 

domains on TAB2/3, associates with the adaptor complex.  Additionally, NEMO, which 

also contains a ubiquitin binding domain, associates with K63-linked ubiquitin chains on 

proteins, such as TRAF6 and IRAK1, which facilitates the congregation of the TAB and 

IKK complexes.  Following these recruitment events, IKKβ can then be phosphorylated 

by TAK1 (member of the TAB complex) and thus potentiate NF-κB signaling.  

Additionally, deubiquitinases exist, such as CYLD1 and A20, which then can act to 

remove the K63-linked ubiquitin chains, thereby shutting down NF-κB signaling (Z. J. 

Chen, 2012).  As previously mentioned, this mechanism is central to the activation of 

NF-κB and serves as a dynamic regulatory mechanism.   

 Linear ubiquitination is another type of regulatory process that is essential for 

NF-κB activation.  The linear ubiquitin chain, in which the C-terminal glycine of 

ubiquitin is conjugated to the α-amino group of the amino-terminal methionine of another 

ubiquitin, is a complex created by the ubiquitin ligase complex, known as LUBAC.  
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LUBAC, which is comprised of two proteins, HOIL-1L and HOIP, has been shown to be 

important in NF-κB signaling via direct binding to NEMO following stimulation with 

agonists, such as TNFα (Tokunaga et al., 2009).  LUBAC-catalyzed linear ubiquitination 

of NEMO occurs at lysine 285 and 309 has been hypothesized to impact NF-κB signaling 

via a few different mechanisms (Niu, Shi, Iwai, & Wu, 2011).  It is possible that 

ubiquitinated NEMO can bind other NEMO molecules and facilitates trans-

autophosphorylation of IKKα and IKKβ.  Alternatively, it is also possible that linear 

ubiquitinated NEMO may allow for the recruitment of an unidentified kinase that 

activates the IKKs.  Whether these putative scenarios occur remains to be determined, 

however, it has become clear that linear ubiquitination of NEMO is crucial for NF-κB 

activity.  The posttranslational modifications phosphorylation and ubiquitination are 

critical in maintaining proper activity and regulation of NF-κB.  However, other redox 

dependent posttranslational modifications that affect cysteines, such as protein S-

glutathionylation and S-nitrosylation, are critical regulatory mechanisms that strongly 

impact NF-κB signaling.  The role of oxidants in lung biology, the role of S-

glutathionylation in regulating NF-κB signaling, and key enzymes in these processes will 

be discussed in the next section of this review.   

 

Redox Biology  

Oxidants and lung biology: 

 Asthma and other chronic inflammatory diseases have been associated with 

elevated levels of oxidants, such as nitric oxide and hydrogen peroxide, which have been 
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detected in the exhaled breath condensates from patients with asthma in comparison to 

healthy controls (Antczak et al., 1997; Emelyanov et al., 2001; Horvath et al., 1998; 

Kharitonov & Barnes, 1996).  Oxidants are molecules that accept electrons from other 

molecules or compounds, and in doing so, become reduced themselves.  Hydrogen 

peroxide and superoxide are common examples of oxidants.  Oxidants can be produced 

endogenously, for example, by the electron transport chain in mitochondria, the major 

cellular source of ATP generation (Rigoulet, Yoboue, & Devin, 2011).  In addition, 

enzymes, such as NADPH oxidase and nitric oxide synthase, can generate oxidants 

(Dikalov, 2011).   “Oxidative stress” is a generic term that refers to an imbalance of 

oxidants/antioxidants that can potentially be damaging to a cell or surrounding tissue.  

Lungs are susceptible to both exogenous-derived oxidants, such as inhaled particles, 

cigarette smoke, pollen, nitrogen dioxide, and oxidant gases, and endogenous-derived 

oxidants, which are in part produced from inflammatory cells recruited to the 

lungs(Ciencewicki, Trivedi, & Kleeberger, 2008).  Two common sources of ROS in the 

setting of pulmonary inflammation are eosinophils and neutrophils, whose pulmonary 

infiltration have been demonstrated to be prominent in allergic airway disease, infections, 

and lung injury, and have the potential to play diverse functions in multiple settings of 

pulmonary diseases.  Under normal physiological conditions, neutrophils are protective 

against invading pathogens via a mechanism known as a respiratory burst, or the rapid 

release of ROS, such as superoxide radicals and hydrogen peroxide (Grommes & 

Soehnlein, 2011).  Neutrophils generate ROS, whose release is critical in the clearance of 

infection, from the NADPH oxidase complex.  One main defense mechanism against 
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bacterial infection consists of the release of HOCl, which is an oxidant that reacts with 

sulfhydrals and promotes disulfide bonds.  However, while neutrophil-derived ROS are 

crucial in the defense against pathogens, they can also be damaging to the lung.  

Additionally, eosinophils contribute to the increase in ROS observed in the lungs of 

asthmatics.  Eosinophils generate the enzyme, eosinophil peroxidase (EPO), which exists 

primarily in the granules of the eosinophil and is not released until degranulation of the 

eosinophil occurs.  Following eosinophil activation, EPO is released and amplifies the 

oxidizing potential of hydrogen peroxide by producing highly reactive oxidants, 

including HOBr (Andreadis, Hazen, Comhair, & Erzurum, 2003), in addition to several 

other pro-oxidant enzymes.  In addition to neutrophils and eosinophils, other 

inflammatory cells have been shown to contribute to ROS production in asthma, such as 

mast cells; however, they will not be discussed in further detail in this review.   

 Oxidants are also produced by structural cells of the lung, such as endothelial 

and epithelial cells (Barnes, 1995).  Environmental agents relevant to human asthma, 

such as pollen, cigarette smoke, and nitrogen dioxide, whose exposure has been 

associated with asthmatic exacerbations, also contribute to oxidative stress in the lung.  

Antioxidants, which prevent or reverse the oxidation of other molecules, have been 

shown to protect against oxidant-induced damage.  For example, mice with targeted 

deletion of the antioxidant enzyme, glutathione peroxidase 2, display enhanced 

susceptibility to allergic airway disease (Dittrich et al., 2010).  It has also been shown that 

antioxidant enzymes, such as catalase, are inactivated and levels of glutathione, an 

antioxidant tripeptide consisting of glutamic acid, alanine, and cysteine, are diminished in 
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lungs of asthmatic patients (Ghosh et al., 2006).  It is known that the presence of oxidants 

correlates with asthma and disease severity (Saleh, Ernst, Lim, Barnes, & Giaid, 1998); 

however, their functional contribution to the disease is unknown.  An emerging field, 

coined “redox biology”, investigates the functional contribution of oxidants to the 

regulation of multiple biological processes.  Subtle changes in the redox environment 

have been shown to impact biological processes, such as protein function, which 

consequently can affect signaling pathways.  The mechanisms that regulate these 

processes will be discussed in further detail in this review. 

Cysteine Modifications: 

 The amino acid, cysteine, contains a thiol group, and can be susceptible to 

oxidant-induced post-translational modifications.  Nitric oxide and hydrogen peroxide 

have both been shown to catalyze post-translational modifications on selective cysteines 

(Spadaro et al., 2010).  Due to a negatively charged environment, select cysteines have a 

low pKa, typically exist as thiolates, the deprotonated S
- 
form, and are readily susceptible 

to oxidative modifications.  Nitric oxide, capable of conjugating to a reactive cysteine in 

a process known as S-nitrosylation through the formation of S-nitrosothiol, can impact 

the function and properties of target proteins as well as giving rise to other redox-based 

post-translational modifications, such as Protein S-glutathionylation (PSSG).  Hydrogen 

peroxide also has been shown to react with target cysteines and facilitate the formation of 

sulfenic acid (SOH), which is an unstable intermediate, and subsequent PSSG.  PSSG, 

the conjugation of a glutathione moiety to a reactive cysteine of a protein, is another 

common oxidant-induced post-translational modification associated with lung disease 
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(Janssen-Heininger et al., 2009).  PSSG can modify the function of a target protein by 

changing its size, charge, and conformation and protects against further oxidation.  The 

sulfenic acid intermediate can also be further oxidized to sulfinic (SO2H) and sulfonic 

(SO3H) acids (Klomsiri, Karplus, & Poole, 2011).  The latter modifications are 

considered to be irreversible in most circumstances, affecting the integrity of the protein 

and leading to its degradation; however, PSSG has the ability to protect target proteins 

from these irreversible oxidations and PSSG can be reduced to the original sulfhydral 

group, restoring the protein. 

Redox regulation of NF-κB: 

Substantial research has been conducted in order to elucidate the contributions of 

oxidants in regulating NF-κB signaling, and to date, multiple studies have implicated a 

role for oxidants in modulating NF-κB signaling.  Following exposure to TNF-α, a pro-

inflammatory cytokine, IKKβ activity increased (Reynaert et al., 2004); however, upon 

addition of S-nitrosothiols, IKKβ activity decreased, in association with increased S-

nitrosylation.  Following mutation of IKKβ Cysteine 179 to Alanine, S-nitrosylation was 

no longer detected and inhibition of kinase activity no longer occurred following addition 

of S-nitrosothiols (Reynaert et al., 2004).  P50, a binding partner of RelA, is also S-

nitrosylated at cysteine 62, which has been associated with inhibition of NF-κB function 

(Marshall & Stamler, 2001).  Nitric oxide is also known to facilitate S-nitrosylation of 

RelA, which leads to a decrease in its DNA binding and NF-κB dependent gene 

transcription (Kelleher, Matsumoto, Stamler, & Marshall, 2007).  Indeed, a conserved 

cysteine within the rel homology domain of Rel proteins exists, suggesting that S-
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nitrosylation of that motif also can affect other Rel proteins (Kelleher et al., 2007).  

Depletion of arginase, a competitor of nitric oxide synthase, enhances nitric oxide 

production and S-nitrosylation in conjunction with decreased in NF-κB DNA binding 

(Ckless, van der Vliet, & Janssen-Heininger, 2007).  These data indicate that enhanced 

oxidant production has the ability to repress NF-κB signaling via the nitric oxide-

depended S-nitrosylation of IKKβ at cysteine 179 as well as S-nitrosylation of RelA and 

p50.  

Hydrogen peroxide has been extensively studied for its role in modulating NF-κB.  

Hydrogen peroxide inhibits TNF-α induced IKK activity and DNA binding, and this 

impact was attributed directly to oxidation of the IKK complex (Korn, Wouters, Vos, & 

Janssen-Heininger, 2001).  Notably, inactivation of the IKK signalsome by hydrogen 

peroxide was due to S-glutathionylation of IKKβ at Cysteine 179, the same targeted for 

S-nitrosylation (Reynaert et al., 2006).  IKKα, the dominant kinase in the alternative NF-

κB pathway, is glutathionylated in response to cigarette smoke stimulation, which leads 

to increased association with chromatin (Chung, Sundar, Yao, Ho, & Rahman, 2010). 

Glutathionylation of RelA and p50 also occurs in response to hypoxia and oxidative 

stress, respectively, which correlates with inactivation of NF-κB and decreased DNA 

binding (Pineda-Molina et al., 2001; Qanungo, Starke, Pai, Mieyal, & Nieminen, 2007).  

IκBα, the inhibitor of NF-κB, can also be S-glutathionylated, an event which has also 

been associated with decreased NF-κB activation (Kil, Kim, & Park, 2008; Seidel et al., 

2011).  In contrast to aforementioned findings, which demonstrated direct oxidation of 

NF-κB inhibit signaling, a wealth of studies have shown that oxidants can positively 
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regulate NF-κB activity in a context dependent manner, contributing to the concept that 

NF-κB is a prototypic redox-sensitive transcription factor.  As an example, one study 

demonstrated that hydrogen peroxide inhibited TNF-α induced nuclear translocation of 

NF-κB and subsequent gene transcription, while hydrogen peroxide exposure alone 

increased IKK activity (Jaspers, Zhang, Fraser, Samet, & Reed, 2001).  In another study, 

hydrogen peroxide was administered either prior to or post exposure of lung epithelial 

cells with TNF-α.  Pre-exposure with hydrogen peroxide inhibited TNF-α induced 

activation of NF-κB; however, administration of hydrogen peroxide following TNF-α 

stimulation prolonged NF-κB activation and IKK phosphorylation, in conjunction with 

inhibition of PP2A, hypothesized to be a phosphatase for IKK (Loukili et al., 2010).  

Furthermore, hydrogen peroxide can inhibit the ability of Cezanne, a deubiquitinating 

cysteine protease, to stabilize IκBα content, thereby facilitating its degradation and NF-

κB activation (Enesa et al., 2008).  Collectively, these studies demonstrated that oxidants 

strongly impact NF-κB signaling via multiple mechanisms, however, in a context specific 

manner. 

Glutaredoxin and NF-κB activation: 

Oxidant-induced post-translational modifications have been shown to strongly 

influence NF-κB signaling.  Key enzymes have evolved to control the extent of cysteine 

oxidation.  Thioredoxins, sulfiredoxins, and glutaredoxins are enzymes commonly 

classified as oxidoreductases, which catalyze deglutathionylation reactions and reduce 

disulfide bridges in target proteins.  Under physiological conditions, glutaredoxins have 

been shown to be primarily responsible for deglutathionylation of target proteins.  Four 
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isoforms of glutaredoxin have been described in mammals: Grx 1, 2, 3, and 5, and Grx1 

has been most extensively described and characterized.  Grx1 catalyzes the reversible 

reduction of protein-glutathionyl mixed disulfides back to the protein’s free sulfydryl 

state.  During this reaction, Grx1 is itself glutathionylated at Cysteine 22 and is 

subsequently reduced by glutathione disulfide reductase (Y. Yang et al., 1998).  Grx1 is 

primarily expressed in the trachea, bronchiolar epithelial cells, alveolar macrophages, and 

the alveolar epithelium (Aesif et al., 2009; M. Peltoniemi et al., 2004).  Alterations in 

Grx1 content have been associated with inflammatory diseases of the lung, such as 

COPD and asthma (Kuipers et al., 2013; M. J. Peltoniemi et al., 2006).  Additionally, 

Grx1 content and mRNA are increased in mouse models of allergic airway disease 

(Reynaert, Wouters, & Janssen-Heininger, 2007).  The association of Grx1 with allergic 

airway disease and its ability to deglutathionylate proteins warrants further research to 

delineate the role of Grx1 in regulating allergic inflammation and the NF-κB pathway.  

As previously mentioned, NF-κB is a redox sensitive pathway that is modulated 

by oxidant-induced post-translational modifications.  Specifically, S-nitrosylation and S-

glutathionylation of IKKβ at Cysteine 179 have been shown to decrease its catalytic 

activity and downstream NF-κB activation.  To date, very little is known about the role of 

enzymes in catalyzing glutathionylation or deglutathionylation of target NF-κB proteins, 

specifically IKKβ.  Grx1 deglutathionylates IKKβ and restores catalytic activity of IKKβ, 

as well as downstream NF-κB activity (Figure 3).  Furthermore, in Grx1
-/-

 primary mouse 

tracheal epithelial cells exposed to TNF-α, reduced RelA nuclear translocation and NF-

κB dependent gene transcription were observed (Reynaert et al., 2006).  Additionally, 
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following Grx1 overexpression in alveolar epithelial cells, increases in NF-κB activation 

and NF-κB-dependent pro-inflammatory cytokine production was observed (Aesif, 

Kuipers, et al., 2011).  The role of Grx1 in models of inflammatory diseases of the airway 

has also been explored.  Following acute exposure to LPS, Grx1
-/-

 mice displayed 

reduced inflammation and alveolar macrophage NF-κB activation in comparison to WT 

mice (Aesif, Anathy, et al., 2011).  In response to sensitization and challenge with OVA, 

to model allergic airway disease, Grx
-/-

 mice displayed reduced eosinophilc inflammation 

and mucus metaplasia in association with enhanced resolution of airway 

hyperresponsiveness to methacholine and increased overall protein S-glutathionylation 

levels in the lung in comparison to WT mice (Hoffman et al., 2012).  Therefore, Grx1 

potentially plays a pro-inflammatory role in the settings of allergic airway disease via the 

regulation of NF-κB.   

Glutathione S-transferases: 

Glutathione S-transferases (GST’s) are a family of enzymes known for their 

ability to catalyze the conjugation reduced GSH to xenobiotic substrates for the purpose 

of detoxification.  Numerous GST’s exist, including GST alpha (GSTA), omega (GSTO), 

theta (GSTT), mu (GSTM), and pi (GSTP).  GSTs have been implicated in a variety of 

diseases, including cancer, Parkinson’s, and diabetes; however their functional 

contributions to these diseases remain unknown.  Interestingly, GST expression and 

polymorphisms correlate to incidence and severity of allergic asthma.  GSTA and GSTP 

expression is increased in the sputum of asthmatics compared to healthy controls (Sohn et 
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al., 2013), and GSTM deletion polymorphisms are associated with increases in 

inflammatory lung diseases (W. Wu, Peden, & Diaz-Sanchez, 2012).   

The GST member, Glutathione s-transferase pi (GSTP) was recently 

demonstrated to catalyze S-glutathionylation reactions (Townsend et al., 2009), and at 

least two domains have been characterized that describe the major functions of GSTP: the 

catalytic domain in the N-terminus and the ligandin domain in the C-terminus.  GSTP 

exists in many forms, such as monomers, catalytically active dimers, and can form 

heterodimers with other proteins.  GSTP contains a tyrosine at amino acid 7, which 

enhances the nucleophilicity of a bound GSH molecule by abstraction of a proton and 

enables a thioether linkage on electrophilic substrates (Dirr, Reinemer, & Huber, 1994; 

Townsend et al., 2009).  Within the C-terminus, a domain exists which facilitates binding 

of GSTP to hydrophobic substrates.  GSTP can associate with numerous protein targets, 

such as c-JUN N-terminal kinase (JNK) and TRAF2, leading to their inhibition (Y. J. 

Kim et al., 2006; Y. Wu et al., 2006).  The catalytic domain of GSTP, however, is not 

required for associations with target proteins.   

GSTP is a known biomarker of many types of cancers, including lung and 

esophageal and polymorphic variants of GSTP have been linked to the susceptibility of 

disease (Vasieva, 2011).  Additionally, the GSTP gene maps to the chromosome 11q3, a 

locus linked to the development of asthma.  Therefore, studies have been performed in 

order to elucidate the relationship between GSTP and allergic asthma.  Multiple 

polymorphic variants of GSTP have been identified, and the substitution of Valine 105 

with Isoleucine 105 was shown to confer a 6-fold higher association with bronchial 
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hyperresponsiveness and atopy (Spiteri, Bianco, Strange, & Fryer, 2000).  In contrast, 

asthmatics with GSTP Val
105

/Val
105

 compared with asthmatics with Val
105

/Ile
105

 or 

Ile
105

/Ile
105

 had greater acute inflammatory cytokine production and IgE levels after 

allergen challenge, however no differences existed between the groups in 

hyperresponsiveness to methacholine (Hoskins, Wu, Reiss, & Dworski, 2013).  GSTP
-/-

 

mice subjected to the Alum/OVA model of allergic airway disease elucidated an anti-

inflammatory role for GSTP (J. Zhou et al., 2008), and downregulation of GSTP in 

models of allergic airway disease was shown to be associated with increased levels of 

oxidative stress (Schroer et al., 2011).  Furthermore, GSTP mRNA levels were increased 

in the lungs of mice exposed to Ova and induced sputum from asthmatics (Sohn et al., 

2013).  However, while studies have been shown to correlate GSTP content and 

haplotype with asthma, the functional contribution remains to be elucidated.   

Despite the known role for classical NF-κB signaling in lung epithelial cells and 

the emerging function for alternative NF-κB in inflammatory processes, virtually no 

studies have been performed in order to elucidate alternative NF-κB signaling in lung 

epithelial cells.  Furthermore, despite the observed increases in the activation of classical 

NF-κB in the lung epithelial cells of asthmatic patients in response to HDM, the role of 

NF-κB in the epithelium in response to HDM in in vivo models of allergic airway disease 

remains to be determined.  Finally, given the critical role for NF-κB signaling in diverse 

biological processes, it has been reported that the oxidant-induced post-translational 

modification, PSSG, inhibits the kinase activity of IKKβ.   Despite the significant impact 

of PSSG on IKKβ activity, mechanisms that catalyze PSSG of IKKβ are still unknown.   
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Statement of Hypothesis and Scope of Thesis 

 As mentioned in the literature review, activation of NF-κB in the lung 

epithelium is crucial in regulating pro-inflammatory responses in models of allergic 

airway disease and stimulation of cells with pro-inflammatory mediators in vitro.  The 

term “NF-κB” is typically interchangeable with the “classical NF-κB pathway”; however, 

emerging studies have revealed an important role for the alternative NF-κB pathway.  

Studies have also demonstrated crosstalk between the classical and alternative NF-κB 

pathways, indicating that they are not as distinct as previously thought.  Virtually no 

studies exist which have investigated the role of alternative NF-κB in the lung epithelium 

in the context of inflammatory stimuli either in vitro or in vivo.  Furthermore, it is known 

that the redox status of a cell can have a strong influence on NF-κB, via tightly regulated 

oxidative modifications of target proteins.  The mechanisms of these signaling events and 

functional implications remain to be fully elucidated.  Therefore, the hypothesis of this 

thesis is that: classical and alternative NF-κB pathways collectively contribute to the 

inflammatory phenotype of lung epithelial cells in both in vitro and in vivo models and 

that these pathways can be regulated by GSTP-catalyzed S-glutathionylation of NF-κB 

proteins.   

 The goal of chapter 2 in this thesis was to evaluate the potential role of both 

classical and alternative NF-κB in lung epithelial cells following pro-inflammatory 

stimuli in vitro.  We investigated activation of both classical and alternative NF-κB 

pathways, as well as their functional contribution via siRNA-mediated knockdown of 
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specific target proteins.  Finally, we explored the impact of simultaneous activation of 

both classical and alternative NF-κB on the production of lung epithelial-derived pro-

inflammatory cytokines.   

 The goal of chapter 3 in this thesis was to evaluate the role of epithelial NF-κB 

in vivo utilizing a transgenic model whereby both classical and alternative NF-κB 

signaling is inhibited.  We utilized a house dust mite- induced mouse model of allergic 

airway disease in order to test the role of epithelial NF-κB inhibition in both acute and 

repeated house dust mite induced inflammation, airway hyperresponsiveness, mucus 

metaplasia, and airway remodeling.  We also evaluated activation of classical and 

alternative NF-κB in response to house dust mite utilizing human bronchial and nasal 

epithelial cells in order to strengthen the notion of the importance of these pathways to 

human disease.   

The goal in chapter 4 of this thesis was to explore the role of GSTP in regulating 

both classical and alternative NF-κB activation via S-gluthionylation of components of 

the NF-κB pathway.  The prior demonstration that GSTP has the ability to glutathionylate 

and is associated with allergic asthma, in addition to the fact that NF-κB, can be inhibited 

by S-glutathionylation, indicates a potential relationship between NF-κB and GSTP; to 

date, these putative links have yet to be explored.  Therefore, a focus of this dissertation 

is to elucidate potential mechanisms by which GSTP may regulate NF-κB in the 

epithelium in settings of pulmonary inflammation.  We utilized siRNA targeted to GSTP 

as well as plasmids expressing either wild type or catalytically inactive GSTP and 

assessed activation and S-glutathionylation of both NF-κB pathways.   
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 Finally, the goal of chapter 5 in this thesis was to discuss the potential role of the 

importance of not only classical NF-κB in the lung epithelium, but also alternative, in the 

context of regulation of inflammatory responses.  Furthermore, we discuss the role of 

redox perturbations, specifically through the modification of GSTP in influencing 

aforementioned pathways and how these concepts contribute to the study of allergic 

asthma.  Finally, we propose future directions of this research and potential studies that 

could unravel further the role of redox regulation of NF-κB in the lung epithelium.   
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Figure Legends 

Figure 1: Schematic depicting role of lung epithelium in allergic airway disease.  

Upon stimulation by agonists, such as allergens or pollutants, NF-κB becomes activated 

in the airway epithelium.  The epithelium then releases cytokines important in dendritic 

cell maturation and subsequent T cell polarization, leading to the allergic inflammatory 

response. 

Figure 2: Schematic depicting classical and alternative NF-κB pathways. 

Following stimulation by a variety of stimulii, IKKβ is phosphorylated, which then in 

turn phosphorylates the Inhibitor of kappaB alpha (IκBα).  IκBα, which sequesters p65 

(RelA) in the cytosol, is subsequently ubiquitinated and degraded by the 26S proteasome.  

This event facilitates the nuclear translocation of RelA, which can initiate transcription of 

target genes. In the alternative NF-κB pathway, NIK accumulation phosphorylates a 

distinct pool of IKKα (separate from the IKK signalsome), which then initiates IKKα to 

phosphorylate p100.  Upon phosphorylation of p100, it is ubiquitinated and partially 

processed into p52, which then facilitates RelB translocation into the nucleus.  This event 

triggers transcription of alternative NF-κB-dependent genes. 

Figure 3: Schematic depicting structure of NF-κB proteins.  Three main groups of 

NF-κB proteins have been described: the NF-κB proteins, inhibitor proteins, and kinase 

proteins.  NF-κB proteins consist of RelA, RelB, c-Rel, p105/p50 and p100/p52, all of 

which contain a rel homology domain.  Furthermore, p105/p50 and p100/p52 contain 

ankyrin repeat domains, which mark proteins for partial processing and degradation.  The 

inhibitor proteins, consisting of IκBα, IκBβ, IκBε, and BCL-3, all contain ankyrin repeat 
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domains.  The kinase proteins, IKKα and IKKβ each contain a kinase domain, helix loop 

helix, and nemo binding domains, which assist in the congregation of the IKK 

signalsome.  IKKγ, the scaffolding protein, contains domains crucial in protein binding, 

but lacks the kinase domains of the other IKK’s.   

Figure 4: Schematic depicting redox regulation of NF-κB pathway.  Following 

stimulation with a variety of stimuli, IKKβ is phosphorylated and NF-κB is activated.  

Following this phosphorylation event, IKKβ is then S-glutathionylated by an as yet 

unknown mechanim, and NF-κB signaling is inhibited.  Subsequently, Grx1 catalyzes the 

deglutathionylation of IKKβ and restores is kinase activity, and thus NF-κB. 
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List of Abbreviations: 

TSLP: Thymic Stromal Lymphopoietin 

CCL20: Chemokine (C-C motif) ligand 20 

GM-CSF: Granulocyte Macrophage-Colony Stimulating Factor 

MHC: Major Histocompatibility Complex 

OVA: Ovalbumin 

IL-6: Interleukin-6 

IL-1β: Interleukin-1β 

IL-33: Interleukin-33 

IL-17: Interleukin-17 

TH1: T helper Type 1  

TH2: T helper Type 2 

TH17: T helper Type 17 

GATA3: Trans-acting T-cell-specific transcription factor 

T-bet: T box transcription factor 

INFγ: Interferon-γ 

T Reg: Regulatory T cell 

IL-25: Interleukin-25 

IL-5: Interleukin-5 

IL-13: Interleukin-13 

NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells 

ERK: Extracellular signal-regulated kinase 
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JNK: c-Jun N-terminal kinase 

IgM: Immunoglobulin M 

IgD: Immunoglobulin D 

IgE: Immunoglobulin E 

TGFβ1: Transforming Growth Factor β1 

IL-8: Interleukin-8 

KC: Keratinocyte Chemokine 

RSV: Respiratory Syncytial Virus 

COPD: Chronic Obstructive Pulmonary Disease 

IκBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 

IκBβ: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta 

IκBε: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon 

IκBζ: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 

BCL3: B-cell lymphoma 3-encoded protein 

IKKα: Inhibitor of nuclear factor kappa-B kinase subunit alpha 

IKKβ: Inhibitor of nuclear factor kappa-B kinase subunit beta 

IKKγ: Inhibitor of nuclear factor kappa-B kinase subunit gamma 

IRAK: Interleukin-1 receptor-associated kinase 

TRAF6: TNF receptor associated factor 6 

TRAF2: TNF receptor associated factor 2 

TAK1: TGFβ1-activated kinase 

AHR: Airway hyperresponsiveness 
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TRAF3: TNF receptor associated factor 3 

TAX1BP1: human T-cell leukemia virus type I binding protein 1 

CBP/300: Binding protein 300/CREB binding protein 

GSK3β: Glycogen synthase kinase 3 beta 

Ubc13: Ubiquitin-conjugating enzyme E2 N 

Uev1a: Ubiquitin-conjugating Enzyme Variant 1a 

CYLD1: Cylindromatosis1 

LUBAC: linear ubiquitin chain assembly complex 

HOIL-1L: Heme-oxidized IRP2 ubiquitin ligase 1 

HOIP: HOIL-1L interacting protein 

TNFα: Tumor Necrosis Factor alpha 

NADPH: nicotinamide adenine dinucleotide phosphate 

PP2A: Protein Phosphatase 2A 
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Chapter 2 

Cooperation between classical and alternative NF-κB pathways regulates pro-

inflammatory responses in epithelial cells 

Abstract 

The transcription factor, Nuclear Factor kappa B, (NF-κB) has been causally 

linked to inflammatory lung diseases. Recent studies have unraveled the complexity of 

NF-κB activation by identifying two parallel activation pathways; the classical NF-κB 

pathway, which is controlled by IKKβ and RelA/p50, and the alternative pathway, which 

is controlled by IKKα and RelB/p52. The alternative pathway regulates adaptive immune 

responses and lymphoid development, yet its role in the regulation of innate immune 

responses remains largely unknown. In this study we determined the relevance of the 

alternative NF-κB pathway in pro-inflammatory responses in lung epithelial cells. 

Exposure of C10 mouse alveolar lung epithelial cells to diverse stimuli, or primary mouse 

tracheal epithelial cells to lipopolysaccharide (LPS) resulted in activation of both NF-κB 

pathways, based upon nuclear translocation of RelA, p50, RelB, and p52. Increases in 

nuclear content of RelA occurred rapidly, but transiently, while in contrast, increases in 

nuclear RelB content were protracted. SiRNA-mediated knockdown of IKKα, RelA, or 

RelB resulted in decreases in multiple LPS-induced pro-inflammatory cytokines. 

Surprisingly, siRNA ablation of IKKα or RelB led to marked increases in production of 

IL-6 in response to LPS. Simultaneous expression of CA-IKKα and CA-IKKβ caused 

synergistic increases in pro-inflammatory mediators. Lastly, disruption of the IKK 

signalsome inhibited activation of both NF-κB pathways. These results demonstrate that 
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coordinate activation of both NF-κB pathways regulates the magnitude and nature of pro-

inflammatory responses in lung epithelial cells.  
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Introduction 

Nuclear Factor-kappa B (NF-κB) is a transcription factor that plays a cardinal role 

in multiple cellular processes, including survival, proliferation, and inflammation.  In 

unstimulated cells, NF-κB dimers RelA and p50 are sequestered in the cytosol by the 

inhibitor of kappa B (IκBα).  The IκB kinase complex (IKK) consists of two catalytic 

subunits, IKKβ and IKKα, and the regulatory protein, IKKγ (also known as NF-κB 

essential modulator).  Upon ligation by a variety of stimuli, such as tumor necrosis factor-

α, or toll like receptor agonists, IKKβ is phosphorylated and in turn phosphorylates IκBα, 

leading to its subsequent ubiquitination and degradation by the 26S proteasome (Hayden 

& Ghosh, 2004; Scheidereit, 2006).  The processing of IκBα promotes nuclear 

translocation of RelA/p50, leading to transcriptional activation of NF-κB-dependent 

genes.  NF-κB activates transcription of many pro-inflammatory cytokine and chemokine 

genes which initiate and propagate innate immune responses (Hayden & Ghosh, 2004; 

Scheidereit, 2006).   

The airway epithelium, classically regarded as the first line of defense against 

inhaled agents, toxic factors, and physical trauma, is now recognized as a key component 

of the innate immune system, and plays an active role in the orchestration of acute 

inflammatory and adaptive immune responses (Fahy & Locksley, 2011; Swamy, Jamora, 

Havran, & Hayday, 2010).  Upon stimulation, epithelial cells secrete pro-inflammatory 

mediators such as interleukin-6 (IL-6), keratinocyte-derived chemokine (KC), regulated 

on activation normal T cells expressed and secreted (RANTES), granulocyte monocyte-
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colony stimulating factor (GM-CSF), CCL20, and many others, all of which have been 

implicated in the pathogenesis of inflammatory disorders via interactions with dendritic 

cells, macrophages, T cells, and B cells (Swamy et al., 2010).  NF-κB activation in lung 

epithelial cells has been shown to be crucial in regulating these pro-inflammatory 

responses (Ather et al., 2011; Broide et al., 2005; Pantano et al., 2008; Poynter et al., 

2004; Poynter, Irvin, & Janssen-Heininger, 2003).   

In addition to the classical NF-κB pathway, a parallel, alternative NF-κB 

activation pathway has been identified.  The alternative NF-κB pathway is activated by 

distinct ligands, such as CD40 ligand and B cell activating factor (BAFF) via NF-κB 

inducing kinase (NIK)-induced phosphorylation of IKKα. IKKα in turn phosphorylates 

the IκB domain of p100, leading to its partial processing and release of RelB and p52 into 

the nucleus, and transcriptional activation of unique subsets of NF-κB-dependent genes 

important in the adaptive immune response (Oeckinghaus, Hayden, & Ghosh, 2011; 

Senftleben et al., 2001). Classically, the alternative pathway has been described to be 

important for B and T lymphocyte development and formation of peripheral lymphoid 

organs (G. Xiao et al., 2006), however, its role in orchestrating pro-inflammatory 

responses in lung epithelial cells remains largely unknown.   

Given the importance of the classical NF-κB pathway in driving expression of 

pro-inflammatory mediators in epithelial cells, and recent reports demonstrating cross 

talk between both NF-κB activation pathways (Anest et al., 2003; Lawrence et al., 2005; 

Shembade et al., 2011; Yamamoto et al., 2003), we sought to determine whether the 

alternative NF-κB pathway is activated in lung epithelial cells upon stimulation with a 
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variety of agonists.  Furthermore, we evaluated the functional importance of classical and 

alternative NF-κB pathway activation in LPS-induced pro-inflammatory responses, and 

whether crosstalk between activation of both NF-κB activation pathways exists in lung 

epithelial cells.  

 

Materials and Methods  

Cell Culture: Primary mouse tracheal epithelial cells (MTEC) were isolated and 

cultured according to previously described methods (Alcorn et al., 2008; R. Wu & Smith, 

1982).  MTEC were infected with constitutively active adeno IKKα at 1x10
5
 virions per 

transwell and harvested at the indicated times.  A spontaneously transformed type II 

mouse lung alveolar epithelial cell line(Malkinson, Dwyer-Nield, Rice, & Dinsdale, 

1997) (C10) was cultured, as described previously (Alcorn et al., 2008). 16 h before 

treatment, cells were starved in medium containing 0.5% FBS. Cells were exposed to 

1µg/mL Lipopolysacharide (LPS, List Biological Laboratories, Inc), 50ng/mL Interleukin 

17A (IL-17A, R&D Systems), 1µg/mL mouse Tumor Necrosis Factor- α (TNF-α, 

Sigma), 100ng/ml CD-40 ligand (CD-40L, eBioscience), 10 µg/mL polyinosinic acid 

(poly IC, Calbiochem) and 1µg/mL lipoteichoic acid (LTA, Sigma) for indicated times. 

Cells were exposed to 10µM NEMO binding domain (NBD) peptides (Calbiochem) or 

scrambled peptide controls 2 h prior to indicated treatments. 

Mice: C57Bl/6 mice were anesthetized and given 5µg LPS oropharyngeally 

(List Biological Laboratories, Inc., Campbell, CA) and 24 h later, euthanized by a lethal 

pentobarbital injection. The right lobe was flash frozen in liquid nitrogen and pulverized 
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and the left lobe was inflated with 4% paraformaldehyde. 5µm sections were used to 

assess localization of RelB in situ via immunofluorescence, according to previously 

described methods (Poynter et al., 2004). RelB was detected in nuclear extracts prepared 

from whole lung according to previously published procedures (Chung et al., 2010).  All 

studies were approved by the institutional Animal Care and Use Committee at the 

University of Vermont. 

Western Blot Analysis: Cells were washed with cold PBS before harvest.  

Protein concentration was determined by the Bio-Rad DC Protein Assay kit (Bio-Rad, 

Hercules, CA), and 20 µg protein was used for Western Blotting.  RelA, RelB, p50, and 

β-Actin antibodies were from Santa Cruz biotechnology, Santa Cruz, CA.  Antibodies 

p100/p52, IκBα, IKKβ, phosphoserine RelA 536, tubulin, and Histone H3 were from Cell 

Signaling Technology, Danvers, MA.  The IKKα antibody was purchased from Upstate.  

Cytosolic and nuclear extracts were prepared as previously described (van der Velden, 

Schols, Willems, Kelders, & Langen, 2008).   

RelA, RelB, and IKKα siRNA:  C10 cells were incubated with Dharmacon 

SMARTpool control non-targeting small interfering (si)RNA or Dharmacon SMARTpool 

siRNA against RelA, RelB, and IKKα (all 100nM) (Dharmacon, Lafayette, CO) and 

subsequently harvested and analyzed as indicated.   

Transfections and Plasmids: Plasmid transfections were performed with 

Nanofectin (PAA, Pasching, Austria).  CA-IKKβ containing serine 177/181 to glutamic 

acid mutations and CA-IKKα containing serine 176/180 to glutamic acid mutations were 

cloned into pcDNA3.1 and pRc β-actin plasmids, respectively. 
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Enzyme-Linked Immunosorbent Assays (ELISA): C10 cells were treated, and 

medium was assessed for MIP-2, KC, RANTES, CCL-20, IL-6, and GM-CSF cytokines 

by R & D Systems, Minneapolis, MN according to manufacturer’s instructions.   

Gene Expression: Total RNA was isolated from C10 cells using the RNeasy kit 

(Qiagen, Valencia, CA) and reverse transcribed for taqman gene analysis using SYBR 

green (Bio-Rad, Hercules, CA).  

Primers: Primers for quantitative reverse transcriptase polymerase chain 

reaction are provided in the online supplement. 

Statistical Analysis: Data were evaluated by GraphPad Prism 5 Software using 

one-way analysis of variance (ANOVA) with Bonferroni to adjust for multiple 

comparisons. Results with p<0.05 or smaller were considered statistically significant. 

 

Results 

 

Activation of classical and alternative NF-κB signaling in response to diverse 

agonists in lung epithelial cells: Previous work in our laboratory has demonstrated the 

importance of classical NF-κB signaling in lung epithelium in acute inflammatory and 

allergic disease (Ather et al., 2011; Poynter et al., 2004; Poynter et al., 2003). To date, no 

studies exist to determine whether activation of alternative NF-κB signaling occurs in 

lung epithelial cells. We therefore analyzed activation of both classical and alternative 

NF-κB signaling after stimulation with a variety of agonists. C10 cells were exposed to 

Toll-like receptor (TLR) 4 agonist, lipopolyssacharide (LPS), for varying times prior to 

evaluation of the nuclear content of RelA, RelB, p50, and p52. Results in Fig. 1 

demonstrate rapid increases in nuclear content of RelA, and p50, components of the 
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classical NF-κB pathway, which decreased by 2 h. Increases in nuclear content of 

RelB/p52, components of the alternative NF-κB pathway also were observed in response 

to LPS. Increases in RelB occurred gradually, and were still apparent 8 h following LPS 

exposure. In order to determine whether increases in RelB/p52 are unique to LPS, we 

exposed C10 lung epithelial cells to the TLR2 agonist, lipoteichoic acid (LTA), the TLR3 

agonist,  Polyinosinic acid (PolyIC), Tumor Necrosis Factor-α (TNF-α), and interleukin-

17A (IL-17A). Results in Fig. 1 demonstrate similar patterns of NF-κB activation in 

response to all agonists. Densitometric evaluation of RelA or RelB nuclear content, 

normalized to histone H3, demonstated that in response to all stimuli, early increases in 

nuclear content of RelA were apparent, while increases in nuclear RelB tended to be 

protracted (Fig. 1A and 1B). Comparative evaluation of nuclear p50 and p52 

demonstrated more variable increases with apparent biphasic fluctuations in response to 

all agonists (Fig. 1A and 1C). Upon stimulating cells with CD-40 ligand, a molecule 

known to activate the alternative pathway in myeloid cells (Ramakrishnan, Wang, & 

Wallach, 2004), increases in nuclear content of RelA/p50 and RelB/p52 occurred (Fig. 

1A-C), demonstrating that an agonist implicated in activation of the alternative NF-κB 

pathway, in fact, induces both NF-κB pathways in epithelial cells.   

Lipopolyssacharide activates classical and alternative NF-κB signaling in 

primary mouse lung epithelial cells and in the mouse lung: Given that LPS resulted in 

increases in both RelA/p50 and RelB/p52, and that TLR4 signaling is important in acute 

and allergic inflammation (Hammad et al., 2009; Wilson et al., 2009), we sought to 

further characterize the relevance of coordinate activation of both NF-κB pathways in 
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lung epithelial cells in response to LPS. We first determined the timing and duration of 

increases in RelA/p50 and RelB/p52 content in response to LPS with further detail. 

Results in Fig. 2A demonstrate that increases in nuclear RelA/p50 content occurred 

robustly by 30 min and strongly decreased toward control levels by 2 h post LPS 

administration.  Increases in nuclear RelB also occurred by 30 min, albeit somewhat less 

robustly as RelA, but increases in nuclear RelB were sustained at least for 48 h post LPS 

exposure. Increases in p52 nuclear content were observed rapidly in response to LPS, and 

decreased 16 h post exposure. In order to determine whether similar patterns of activation 

of classical and alternative NF-κB pathways exist in primary epithelial cells, mouse 

tracheal epithelial cells (MTEC) were exposed to LPS. Results in Fig. 2B demonstrate 

increases in nuclear RelA and p50 content 15 min or 30 min, respectively, following 

stimulation of MTEC with LPS, with peak increases apparent by 1 h, and decreases by 4 

h. Nuclear content of RelB and p52 increased following 1 h of exposure to LPS, and 

remained elevated by 4 h. Phosphorylation of RelA at Ser536, reflective of activation of 

IKK, was apparent by 15 min, and decreased by 2h, while degradation of IκBα occurred 

between 30 min and 1 h post stimulation of cells with LPS. While in control cells p100 

was undetectable, increases in overall p100 content occurred by 1 h and were sustained 

for at least 4 h following LPS. Overall, these findings demonstrate that in response to a 

TLR-4 agonist, activation of both classical and alternative NF-κB pathways occur in lung 

epithelial cells, based upon increases in nuclear content. Increases in RelA/p50 were 

transient, while notably, increases in RelB and p52 occurred in a protracted manner in 

response to LPS. 
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It has been shown previously that LPS activates classical NF-κB signaling in lung 

tissue (Poynter et al., 2003).  In order to confirm whether increases in nuclear RelB 

occurred in lung tissue in response to LPS, C57Bl/6 mice were given 5 µg LPS 

oropharyngeally and harvested 24 h later. Compared to PBS controls following exposure 

to LPS, increases in nuclear RelB were apparent (Fig. 2C). Assessment of RelB in lung 

tissue via confocal laser scanning microscopy, demonstrated that in control mice RelB 

(red) was predominantly localized in the cytoplasm of bronchiolar epithelial cells. 24 h 

after LPS administration, RelB immunoreactivity (red) was markedly enhanced in the 

bronchiolar epithelium, and strong co-localization with the DNA stain, Sytox Green was 

observed, reflected by the yellow color, indicative of nuclear localization of RelB in the 

bronchiolar epithelium. In mice exposed to LPS, select cells in the parenchyma, that 

require further identification, also started to express detectable RelB.  

Impact of classical and alternative NF-κB signaling on cytokine production in 

response to LPS:  In order to determine the relative contribution of RelA and RelB for the 

regulation of LPS-induced pro-inflammatory responses, we utilized siRNA mediated 

knockdown of RelA or RelB, and assessed the content of NF-κB dependent pro-

inflammatory mediators in supernatants. RelA siRNA decreased RelA content in C10 

lung epithelial cells, albeit not completely (Fig. 3A). As expected, LPS-induced increases 

in CCL-20, RANTES, KC, and IL-6 in the medium were significantly attenuated in cells 

transfected with RelA siRNA, compared to scrambled control (Fig. 3B). SiRNA-

mediated knock-down of RelB (Fig. 4A) also resulted in marked decreases in LPS-

induced production of the pro-inflammatory mediators, CCL-20, RANTES, and KC 
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compared to scrambled siRNA controls (Fig. 4B). Surprisingly, knockdown of RelB led 

to a significant increase in LPS-induced IL-6 content in comparison to scrambled siRNA 

controls at all time points. In order to determine whether IKKα, which activates 

alternative NF-κB signaling, had a similar impact on LPS-induced pro-inflammatory 

mediators as RelB, we next ablated IKKα with siRNA (Fig. 5A). Results in Fig. 5B 

demonstrate decreases in LPS-induced CCL-20 and RANTES content following ablation 

of IKKα, and no effect on KC. Conversely, siRNA mediated knock-down of IKKα led to 

increases in basal and LPS- stimulated production of IL-6, similar to the effects of RelB 

siRNA. In aggregate, these findings demonstrate that both the classical and alternative 

NF-κB pathways contribute to LPS-induced production of diverse pro-inflammatory 

cytokines that include CCL-20 and RANTES, but that IKKα and RelB repress the 

production of IL-6. 

Impact of constitutively active IKKα and IKKβ on expression of pro-inflammatory 

mediators in lung epithelial cells: In order to evaluate the role of activation of IKKα and 

IKKβ directly, C10 lung epithelial cells were transfected with 1µg constitutively active 

(CA) variants of IKKα or IKKβ. Results in Fig. 6A demonstrate that expression of IKKα 

or IKKβ individually led to increases in nuclear content of RelA, p50, RelB, and p52. 

Expression of CA-IKKα or CA-IKKβ individually led to increases in mRNA expression 

and production of CCL-20, MIP-2, RANTES, and GM-CSF in C10 lung epithelial cells 

(Fig. 6B). In contrast, no clear increases in content of IL-6 and KC were observed under 

these conditions (data not shown). Co-transfection of C10 cells with 0.5 µg of IKKα and 

IKKβ together led to increases in nuclear RelA and RelB, which were not observed in 
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response to transfection of individual constructs at these lower concentrations (Fig. 6C). 

Dual expression of 0.25 or 0.5 µg CA-IKKα and CA-IKKβ each resulted in striking 

increases in production of CCL-20, MIP-2, GM-CSF, and RANTES which were not 

observed in cells transfected with individual constructs (Fig. 6D) at these lower 

concentrations, in contrast to earlier experiments with 1µg of plasmid (Fig. 6B). These 

findings demonstrate clear cooperation between both kinases in eliciting pro-

inflammatory responses in lung epithelial cells. In order to determine the role of RelA 

and RelB in CA-IKKα or CA-IKKβ-dependent pro-inflammatory responses, we knocked 

down either RelA or RelB with siRNA prior to transfection of epithelial cells with CA-

IKKα or CA-IKKβ. Results in Fig. 6E demonstrate that the ability of CA-IKKα or CA-

IKKβ to induce expression of pro-inflammatory mediators depended partially on both 

RelA and RelB, dependent upon the individual pro-inflammatory mediator. RelA and 

RelB each contributed to CA-IKKα or CA-IKKβ-mediated increases in CCL-20, 

RANTES, and GM-CSF. In contrast RelA, but not RelB contributed to CA-IKKα or CA-

IKKβ-induced expression of MIP-2, as the content of this cytokine was unchanged after 

RelB siRNA (Fig 6E). These findings demonstrate that both RelA and RelB are 

functionally important in driving expression of CA-IKKα or CA-IKKβ-induced pro-

inflammatory genes, and that the exact contribution of these NF-κB subunits depends on 

the target gene.  

In order to confirm that CA-IKKα elicits pro-inflammatory responses in primary 

lung epithelial cells, we infected MTEC with adenovirus expressing CA-IKKα for 48 and 

72 hours in comparison to control virus (Fig. 6F). Transduction of CA-IKKα led to 
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increases in production of diverse pro-inflammatory mediators, including KC, MIP-2, 

CCL-20, and GM-CSF, compared to control virus (Fig. 6G). All together these findings 

demonstrate that both IKKα and IKKβ are capable to elicit pro-inflammatory responses 

in lung epithelial cells, and that cooperation between both kinases exists. 

Requirement of IKKγ for activation of classical and alternative NF-κB pathways 

in lung epithelial cells: We next sought to further explore the mechanism that underlies 

activation of classical and alternative NF-κB pathways in epithelial cells exposed to LPS. 

The mechanism of activation of IKKα in response to diverse ligands is not fully known. 

Although IKKα has been shown to be part of the classical NF-κB signalsome, consisting 

of IKKα, IKKβ and IKKγ (DiDonato et al., 1997), during activation of the alternative 

pathway IKKα is activated via NF-κB inducing kinase (NIK) in an IKKγ-independent 

manner (Oeckinghaus et al., 2011). In order to determine whether increases in nuclear 

content of RelB/p52 in response to LPS occur in an IKKγ (NEMO)-dependent manner, 

we incubated epithelial cells with NEMO binding domain peptide which disrupts the 

classical NF-κB signalsome (May et al., 2000), and determined the impact for LPS-

induced nuclear accumulation of RelA/p50, and RelB/p52. Results in Fig. 7A 

demonstrate that disruption of the IKK signalsome with NBD peptide not only attenuated 

LPS-induced nuclear accumulation of RelA/p50, but also blocked increases in nuclear 

RelB/p52, demonstrating that activation of the alternative pathway by LPS in lung 

epithelial relies, at least in part, on the classical IKK signalsome containing IKKγ (Fig. 

7B).  
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Discussion 

The transcription factor, NF-κB, has been shown to play a crucial role in the 

orchestration of pro-inflammatory responses in the lung. Previous work performed in our 

laboratory demonstrated nuclear presence of RelA in acute models of LPS-induced 

inflammation (Poynter et al., 2003) and in the ovalbumin-model of allergic airways 

disease (Poynter, Irvin, & Janssen-Heininger, 2002). Furthermore, transgenic mice 

expressing a dominant negative version of IκBα in bronchial epithelial cells to inhibit the 

classical NF-κB pathway, exhibited marked protection from inflammation associated 

with those agents (Poynter et al., 2004; Poynter et al., 2003). Conversely, in multiple 

independently generated transgenic lines, inducible activation of the IKKβ transgene in 

bronchiolar epithelial cells resulted in marked neutrophilic inflammation (Cheng et al., 

2007; Pantano et al., 2008), enhanced sensitization to and inflammatory responses to 

ovalbumin (Ather et al., 2011; Pantano et al., 2008; Sheller et al., 2009), and 

carcinogenesis (Zaynagetdinov et al., 2011),  demonstrating the functional significance of 

activation of the classical NF-κB pathway in lung epithelial cells. Despite this 

knowledge, little information is available about the functional requirement for activation 

of the alternative NF-κB pathway in regulating transcription of pro-inflammatory genes 

in lung epithelial cells.  

 Results from the present study demonstrate that classical and alternative NF-κB 

activation pathways are coordinately activated in lung epithelial cells in response to 

diverse stimuli, as evidenced by increases in nuclear content of RelA, p50, RelB, and 

p52. Notably, increases in RelA tended to occur rapidly, while RelB increased more 
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gradually, but in a protracted manner. Although we did not detect p100 protein in lung 

epithelial cells under basal conditions, in response to LPS, p100 content increased in 

primary tracheal epithelial cells, with corresponding increases in nuclear p52. Since p100 

is an NF-κB dependent gene (Liptay, Schmid, Nabel, & Nabel, 1994), it is plausible that 

activation of classical NF-κB leads to induction of p100, which is subsequently processed 

by IKKα, leading to alternative NF-κB signaling. Validation of this possible scenario will 

require additional studies. The functional significance of the differential timing of 

activation of classical and alternative NF-κB signaling in lung epithelial cells remains 

unknown and requires additional assessment of presence of NF-κB components bound to 

regulatory regions of target genes, and correlations with transcriptional activation.  

In C10 epithelial cells stimulated with LPS, RelA, RelB, and IKKα all were 

demonstrated to play a role in controlling the strength and nature of pro-inflammatory 

cytokine production.  Additionally, we demonstrate here that cooperation exists between 

both pathways, indicated by the synergistic increases in cytokine production upon co-

expression of IKKα and IKKβ, illuminating an important role for both NF-κB signaling 

pathways in dictating pro-inflammatory responses in lung epithelial cells. Recent work 

has shown activation of NIK and IKKα in A549 lung epithelial cells in response to 

respiratory syncytial virus, and demonstrated a causal role for this pathway in the 

activation of RANTES (Choudhary, Boldogh, Garofalo, Jamaluddin, & Brasier, 2005). 

Our findings demonstrating that LPS can activate both classical and alternative 

NF-κB pathways in both primary lung epithelial cells and in lung tissue are supported by 

previous work demonstrating activation of both classical and alternative NF-κB pathways 
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by LPS in B lymphocytes (Souvannavong et al., 2007).  Similarly, TNFα, an agonist of 

the classical NF-κB pathway, has been shown to activate the alternative NF-κB pathway 

in mouse embryonic fibroblasts (Adli, Merkhofer, Cogswell, & Baldwin, 2010; J. Y. Kim 

et al., 2011). These findings demonstrate that multiple ligands previously considered as 

unique activators of either classical or alternative NF-κB indeed can activate both 

pathways. Results from the present study show simultaneous activation of both NF-κB 

pathways in lung epithelial cells in response to diverse stimuli, and demonstrate the 

functional relevance of both pathways in regulating pro-inflammatory signals activated 

by LPS. 

IKKα has been demonstrated to play diverse roles, both in regulation of activation 

of NF-κB in the cytosol, as well as remodeling of chromatin, and previous studies have 

demonstrated both positive and negative roles of IKKα in the classical NF-κB pathway. 

For example, the requirement of IKKα for activation of NF-κB responsive genes, such as 

IL-8 and IκBα, was demonstrated in response to TNF-α (Yamamoto et al., 2003) or 

cigarette smoke (S. R. Yang et al., 2008), in association with increased phosphorylation 

of histone H3. Conversely, IKKα also has been shown to shut down the classical NF-κB 

pathway, via phosphorylation of Tax1bp1 (Shembade et al., 2011), or Protein Inhibitor of 

Activated STAT1 (PIAS) (B. Liu et al., 2007). Loss of IKKα has been shown to prolong 

the activity of IKKβ and to promote inflammation (Lawrence et al., 2005). Additionally, 

accelerated removal of RelA/p50 NF-κB subunits from pro-inflammatory gene promoters 

by IKKα has been demonstrated to limit activation of NF-κB (Yamamoto et al., 2003). 

Furthermore, IKKα can inhibit the alternative pathway NF-κB via the phosphorylation 
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and subsequent degradation of NIK (Razani et al., 2010). Lastly, IKKα also can mediate 

transcriptional activation of genes independently of NF-κB (Oeckinghaus et al., 2011). In 

aggregate, these reports demonstrate the multifaceted roles of IKKα in regulating the 

transcriptional output and duration of NF-κB activation in diverse cell types exposed to a 

variety of agonists. Our present results, demonstrating that siRNA-mediated ablation of 

IKKα paradoxically leads to increases in IL-6 content, but decreases in RANTES and 

CCL-20, indicate that the functional contribution of IKKα not only depends on stimulus 

and cell type, but also on the actual target genes. Additional studies will be required to 

formally assess the impact of IKKα on the transcriptional activation potential of 

individual NF-κB-regulated genes in lung epithelial cells. 

Our present results demonstrate that ablation of RelB with siRNA affected 

production of pro-inflammatory mediators in response to LPS in a similar manner as 

siRNA-mediated ablation of IKKα, suggesting that IKKα may exert its effects in lung 

epithelial cells via the regulation of RelB. Numerous studies have demonstrated anti-

inflammatory roles for RelB. For example, RelB knockout animals develop spontaneous 

inflammation in multiple organs, including the lung (Weih et al., 1995), which were 

further exacerbated by concomitant loss of p50 (Weih et al., 1997). Aryl hydrocarbon 

receptor-deficient fibroblasts exposed to cigarette smoke showed increased expression of 

cyclooxygenase-2 and prostaglandins, in association with a loss of RelB (Baglole et al., 

2008). Indeed, an anti-inflammatory role for RelB in cigarette smoke-induced 

inflammation was recently demonstrated, evidenced by decreased neutrophilic 

infiltration, and diminished content of pro-inflammatory mediators following adenovirus-
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mediated transduction of RelB (McMillan et al., 2011). In response to LPS, RelB
-/-

 

fibroblasts showed prolonged increases in pro-inflammatory cytokines compared to WT 

controls, findings that suggest a role for RelB in the resolution of inflammatory responses 

(Xia et al., 1997). Lastly, RelB also has been shown to promote tolerance to LPS, and 

diminish pro-inflammatory responses in macrophages (El Gazzar, Liu, Yoza, & McCall, 

2010; Yoza et al., 2006). These previous findings contrast with the results of the present 

study, demonstrating that siRNA mediated knockdown of RelB diminishes LPS-induced 

production of KC, CCL-20, and RANTES. However, RelB knockdown resulted in a 

significant increase in IL-6 production in response to LPS, illustrating a dynamic and 

highly specific role for RelB in controlling gene expression in epithelial cells exposed to 

LPS. 

While previous reports have demonstrated cross-regulation between classical and 

alternative NF-κB pathway activation (Oeckinghaus et al., 2011), it is unknown whether 

inducible activation of both pathways can cooperatively enhance production of NF-κB-

dependent cytokines. Results in the present study demonstrate that co-expression of the 

constitutively active kinases, IKKα and IKKβ, in the absence of any other ligands, lead to 

a cooperative increase in expression of pro-inflammatory cytokines, which correspond to 

increases in nuclear RelA and RelB.  Additionally, we showed in the present study that 

nuclear translocation of RelA, RelB, p50, and p52 all are, in part, regulated by the IKKγ-

containing signalsome complex, indicating at least one common regulatory mechanism 

whereby IKKα and IKKβ facilitate NF-κB-dependent gene activation.  
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Interactions between RelA and RelB have been described previously, and have 

been shown to regulate transcription.  In response to priming of cells with TNF-α, and 

lymphotoxin beta, both RelA and RelB were recruited to the GM-CSF promoter, in 

association with increased transcription (Sasaki et al., 2011). However, RelB has also 

been shown to replace RelA at the IL-12p35 promoter, shutting down transcription 

(Saccani et al., 2003). In response to stimulation of dectin-1, Raf-1-induced 

phosphorylation of RelA was shown to lead to inactive RelA-RelB dimers that inhibit 

transcription (Gringhuis et al., 2009), and similar inhibitory effects of RelA on RelB-

mediated transcription following phosphorylation of RelA were reported in response to 

TNFα (Jacque, Tchenio, Piton, Romeo, & Baud, 2005). Future studies are needed to 

determine whether enhanced association between RelA and RelB contribute to gene 

specific stimulatory (CCL-20, RANTES, KC) or inhibitory effects (IL-6) observed in the 

present study.  

Convincing studies exist to demonstrate the contribution of classical NF-κB to 

lung inflammation. However, the role of the alternative NF-κB activation pathway in the 

regulation of pulmonary inflammation is only emerging. Adenovirus expressing phospho-

mimetic, and hence constitutively IKKα (CA-IKKα) introduced into airways, was 

sufficient to induce neutrophilic infiltration, and increased mRNA expression of a variety 

of pro-inflammatory genes, similar to adenovirus expressing CA-IKKβ (Sadikot et al., 

2003).  In support of those findings, the present study demonstrates similar pro-

inflammatory effects of CA-IKKα in primary tracheal epithelial cells. In support of a 

contribution of both IKKα and IKKβ to pulmonary inflammation, a recent study showed 
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increased activity of IKKβ and IKKα in both healthy smokers and COPD patients 

(Gagliardo et al., 2011). SiRNA-mediated knockdown of IKKα in peripheral blood 

mononuclear cells isolated from these patients resulted in decreases in IL-8 production, 

illustrating a pro-inflammatory role for IKKα. Based upon those findings, results from 

the present study, and recent reports that have illuminated the cardinal role of epithelial 

cells in orchestration of inflammation (Swamy et al., 2010), additional studies that further 

unravel the mechanisms whereby IKKα and RelB facilitate and/ or repress inflammatory 

signaling in lung epithelial cells are well warranted. 

 

Figure Legends 

 

Figure 1: Activation of classical and alternative NF-κB signaling in response to 

diverse agonists in lung epithelial cells. (A) Western blot analysis of nuclear extracts 

from mouse type II alveolar lung epithelial (C10) cells stimulated with LPS (1 µg/ml), 

lipoteichoic acid (LTA 1µg/ml), Polyinosinic acid (PolyIC, 10 µg/mL), TNF-α (1µg/ml), 

CD-40L (100ng/ml), or IL-17A (50ng/ml) for the indicated times. 20µg nuclear protein 

was separated by SDS-PAGE and analyzed for RelA, RelB, p50, p52 or Histone H3 (H3, 

nuclear loading control).  Densitometric evaluation of nuclear RelA and RelB (B), p50 

and p52 (C). Data shown are normalized to Histone H3. Values on the left y-axis 

correspond to RelA/H3 (B) or p50/H3 (C) and values on the right y-axis correspond to 

RelB/H3 (B) or p52/H3 (C), and reflect arbitrary units.  

Figure 2: Lipopolyssacharide activates the classical and alternative NF-κB 

pathways in C10 lung epithelial cells, primary mouse tracheal epithelial cells, and lung 
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tissue.  (A) Western blot analysis of nuclear extracts from C10 cells treated with LPS for 

the indicated times. Blots were evaluated for content of RelA, RelB, p50, p52, and β-

Actin is shown as a loading control, due to changes in Histone H3 content over time in 

culture. Right panel: Confirmation of cellular fractionation into nuclear and cytosolic 

fractions, by analysis of tubulin (cytosol) and Histone H3 (nuclear). β-Actin: loading 

control. (B) Western blot analysis of nuclear and cytosolic extracts prepared from 

primary mouse tracheal epithelial cells (MTEC) treated with 10µg/ml LPS for the 

indicated times. Nuclear extracts were evaluated for content of RelA, RelB, p50, p52, and 

Histone H3, as a loading control. Cytosolic extracts were assayed for content of p100, 

phosphorylated RelA (serine 536 P), IκBα, and β-Actin as a loading control.  (C)  

Western blot of nuclear extracts (20µg protein per lane) prepared from lung homogenates 

of C57Bl/6 mice (n=3/group) oropharyngeally instilled with 5µg LPS or sterile PBS as a 

control for 24 h. Blots were analyzed for nuclear content of RelB and Histone H3 

(nuclear loading control). Note that samples were run on the same gel, and blotted onto 

the same membrane, and that lanes were reassembled for consistency. Data are 

representative of at least 2 separate experiments.  (D) Immunofluorescence analysis of 

nuclear RelB, 24 h after oropharyngeal instillation of LPS. De-paraffinized lung sections 

were stained for RelB (red), and nuclei were counterstained with Sytox Green. Images 

were captured by laser scanning confocal microscopy, using identical instrument settings. 

Images are representative results of three independent experiments. IgG control: As a 

negative control, primary antibody was omitted. RelB, red; DNA, green; Nuclear RelB, 

yellow 
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Figure 3:  LPS-induced production of pro-inflammatory mediators is dependent 

on RelA. (A) Verification of RelA knockdown in C10 cells.  Whole cell lysates were 

prepared from cells transfected with either scrambled siRNA or RelA siRNA.  20µg 

protein was separated by SDS-PAGE, and Western blotting, for evaluation of content of 

RelA protein by Western blotting.  β-Actin served as a loading control. (B) Enzyme-

Linked Immunosorbent assay (ELISA) performed on cell supernatants from C10 cells 

transfected with either scrambled (sc) siRNA or RelA siRNA. Cells were treated with 

LPS for the indicated times, and evaluated for content of IL-6, CCL-20, RANTES, and 

KC. * p< 0.05 (ANOVA), compared to untreated controls: † p<0.05 (ANOVA) compared 

to scrambled siRNA groups at the same timepoint. Results are representative of at least 3 

independent experiments.   

Figure 4:  Impact of RelB of LPS-induced production of pro-inflammatory 

mediators. (A) Verification of RelB knockdown in C10 cells.  Whole cell lysates were 

prepared from cells transfected with either scrambled siRNA or RelB siRNA.  20µg 

protein was separated by SDS-PAGE, and Western blotting, for evaluation of content of 

RelB protein by Western blotting.  β-Actin served as a loading control. (B) Enzyme-

Linked Immunosorbent assay (ELISA) performed on cell supernatant from C10 cells 

transfected with either scrambled (sc) siRNA or RelB siRNA, treated with LPS for the 

indicated times, and evaluated for content of IL-6, CCL-20, RANTES, and KC.  * p< 

0.05 (ANOVA), compared to untreated controls: †  p<0.05 (ANOVA) compared to 

scrambled siRNA groups at the same timepoint. Results are representative of at least 3 

independent experiments.   
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Figure 5:  Impact of IKKα for LPS-induced production of pro-inflammatory 

mediators. (A) Verification of IKKα knockdown in C10 cells.  Whole cell lysates were 

prepared from cells transfected with either scrambled siRNA or IKKα siRNA.  20µg 

protein was separated by SDS-PAGE, and Western blotting, for evaluation of content of 

IKKα protein by Western blotting.  β-Actin served as a loading control.  (B) Enzyme-

Linked Immunosorbent assay (ELISA) performed on cell supernatant from C10 cells 

transfected with either scrambled (sc) siRNA or IKKα siRNA, treated with LPS for the 

indicated times, and evaluated for content of IL-6, CCL-20, RANTES, and KC.  * p< 

0.05 (ANOVA), compared to untreated controls: †  p<0.05 (ANOVA) compared to 

scrambled siRNA groups at the same timepoint. Results are representative of at least 3 

independent experiments.   

Figure 6: Expression of constitutively active (CA) IKKα and IKKβ in lung 

epithelial cells increases production of pro-inflammatory mediators in a cooperative 

manner.  (A) Confirmation of expression of CA-IKKα and CA-IKKβ in C10 lung 

epithelial cells. C10 cells were transfected with either1µg pcDNA3, CA-IKKα, or CA-

IKKβ. 24 h later, cytosolic extracts were prepared and 20 µg protein was evaluated via 

Western Blot analysis for content of IKKα and IKKβ. β-Actin: loading control. Lower 

panels: Assessment of nuclear content of RelA, RelB, p50, and p52 following expression 

of CA-IKKα, or CA-IKKβ. Histone H3: loading control. (B) Assessment of mRNA 

expression (left) and overall content (right) of CCL-20, MIP-2, RANTES and GM-CSF 

in C10 cells 24 h after transfection with pcDNA3, CA-IKKα, or CA-IKKβ, as described 

in A. mRNA expression was determined via real time PCR analysis, while chemokine 
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content was evaluated by Enzyme-Linked Immunosorbent assay (ELISA) performed on 

cell supernatants. * p< 0.05 (ANOVA), compared to pcDNA3-transfected controls. (C) 

Western blot of C10 cells transfected with indicated amounts of CA-IKKα and/or CA-

IKKβ, or pcDNA3 as a control. All transfections were equalized to 1 µg DNA/dish with 

pcDNA3.  24 h later cytosolic extracts were prepared for analysis of IKKα and IKKβ to 

confirm enhanced expression. β-Actin: loading control. Lower Panels: Evaluation of 

content of RelA, RelB, p50 and p52 in nuclear extracts. Histone H3: Loading control. (D) 

ELISA analysis to assess content of CCL-20, MIP-2, RANTES, and GM-CSF in cell 

supernatants from transfection conditions indicated in (C). * p< 0.05 (ANOVA), 

compared to pcDNA3 transfected controls. (E)  Assessment of overall content of CCL-

20, MIP-2, RANTES, and GM-CSF in C10 cells transfected with CA-IKKα or CA-IKKβ 

following ablation of RelA or RelB with siRNA.  Chemokine content was assessed by 

ELISA. * p< 0.05 (ANOVA), compared to respective pcDNA3-transfected controls, † 

p<0.05 (ANOVA), compared to CA-IKKα or CA-IKKβ, and scrambled siRNA-

transfected conditions. (F) Primary mouse tracheal epithelial cells were infected with 

either adeno-null (control) vector or adenovirus expressing CA-IKKα. After 48 or 72 h 

whole cell lysates were prepared to confirm increased expression of Hemeagglutinin-

tagged constitutively active IKKα. (G) Assessment of content of KC, GM-CSF, MIP-2, 

and CCL-20 in supernatants from cells transduced with adenovirus expressing CA-IKKα 

or control virus as described in (F).  All data are representative of at least 3 independent 

experiments.  * p< 0.05 (ANOVA), compared to control vector. 
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Figure 7: LPS-mediated activation of classical and alternative NF-κB pathways 

is mediated via IKKγ.  (A) C10 cells were exposed to NEMO binding domain peptide 

(NBD) or mutant peptide as a control. 2 h later, cells were exposed to LPS for 30 min or 

4 h.  Nuclear extracts were prepared for evaluation of IκBα, nuclear RelA, RelB, p52 and 

p50. Histone H3: loading control. (B) Schematic summarizing the coordinate requirement 

of classical and alternative NF-κB pathways, controlled by IKKβ/RelA, and IKKα/RelB, 

respectively in regulating pro-inflammatory signaling in lung epithelial cells.  
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Figure 1: Classical and alternative NF-κB activation 
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Figure 1 cont: Classical and alternative NF-κB activation 
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Figure 1 cont: Classical and alternative NF-κB activation 
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Figure 2: LPS-induced activation of Classical and alternative NF-κB 
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Figure 2 cont: LPS-induced activation of Classical and alternative NF-κB 
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Figure 3: RelA-induced pro-inflammatory cytokine production 
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Figure 4: RelB-induced pro-inflammatory cytokine production  
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Figure 5: IKKα-induced pro-inflammatory cytokine production 
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Figure 6: Classical and alternative NF-κB cooperatively enhance pro-inflammatory 

cytokines  
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Figure 6: Classical and alternative NF-κB cooperatively enhance pro-inflammatory 

cytokines 
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Figure 6 cont: Classical and alternative NF-κB cooperatively enhance pro-inflammatory 

cytokines  
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Figure 6 cont: Classical and alternative NF-κB cooperatively enhance pro-inflammatory 

cytokines  
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Figure 6 cont: Classical and alternative NF-κB cooperatively enhance pro-inflammatory 

cytokines  
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Figure 7: IKK signalsome regulation of classical and alternative NF-κB  
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Chapter 3 

Epithelial Nuclear Factor- kappa B orchestrates house dust mite-induced airway 

inflammation, hyperresponsiveness, and fibrotic remodeling 

Abstract 

NF-κB activation within the epithelium has been implicated in the pathogenesis of 

asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and 

airway remodeling remains unclear. In the present study, we utilized an intranasal House 

Dust Mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate 

inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway 

remodeling.  We utilized CC10-IκBαSR transgenic mice to evaluate the functional 

importance of epithelial NF-κB in response to HDM.  After a single exposure of HDM, 

mRNA expression of pro-inflammatory mediators was significantly elevated in lung 

tissue of WT mice, in association with increases in nuclear RelA and RelB, components 

of the classical and alternative NF-κB pathway, respectively, in the bronchiolar 

epithelium. In contrast, CC10-IκBαSR mice displayed marked decreases in nuclear RelA 

and RelB and mRNA expression of pro-inflammatory mediators compared to WT mice.  

After 15 challenges with HDM, WT mice exhibited increases in inflammation, airway 

hyperresponsiveness, mucus metaplasia and peri-bronchiolar fibrosis. CC10-IκBαSR 

transgenic mice displayed marked decreases in neutrophilic infiltration, tissue damping, 

and elastance parameters, in association will less peri-bronchiolar fibrosis and decreases 

in nuclear RelB in lung tissue.  However, central airway resistance and mucus metaplasia 

remained elevated in CC10-IκBαSR transgenic mice, in association with continued 
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presence of lymphocytes, and partial decreases in eosinophils and IL-13. The current 

study demonstrates that following airway exposure with an asthma-relevant allergen, 

activation of classical and alternative NF-κB pathways occur within the airway 

epithelium and may coordinately contribute to allergic inflammation, AHR and fibrotic 

airway remodeling.  
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Introduction 

The NF-κB pathway is a critical regulator of both innate and adaptive immune 

responses in a wide variety of cell types.  Upon stimulation, the I kappa B kinase (IKK) 

signalsome, consisting of IKKβ, IKKα, and IKKγ, is activated, leading to IKKβ-mediated 

phosphorylation of IκBα.  Phosphorylation of IκBα in turn leads to its subsequent 

ubiquitination and degradation by the 26S proteasome, thus allowing for transcription 

factor, RelA, to translocate to the nucleus. This event results in RelA-dependent 

transcription of genes important in cell survival, proliferation, and inflammation (Hayden 

& Ghosh, 2004; Scheidereit, 2006).  A wide variety of agonists can activate the classical 

NF-κB pathway in lung epithelial cells and the resultant release of pro-inflammatory 

mediators crucial in the recruitment and activation of dendritic cells, lymphocytes, 

neutrophils, and many other cells in the lung (Swamy et al., 2010).  Additionally, an 

alternative NF-κB pathway exists, which requires activation of NF-κB inducing kinase 

(NIK) and subsequent phosphorylation of IKKα. IKKα in turn phosphorylates p100, 

leading to its partial processing to p52. This allows subsequent nuclear translocation of 

RelB/p52 and transcriptional activation of a subset of NF-κB dependent genes 

(Oeckinghaus et al., 2011; Senftleben et al., 2001). It was originally thought that the 

alternative NF-κB pathway played a predominant role in lymphocyte activation and 

lymphoid organ development (G. Xiao et al., 2006). However, recent work from our 

laboratory demonstrated that both classical and alternative NF-κB pathways are activated 

in lung epithelial cells in response to diverse pro-inflammatory stimuli and that both 

pathways coordinately regulate pro- inflammatory responses (Tully et al., 2012). 
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Activation of the classical NF-κB pathway within the airway epithelium has been 

demonstrated to play a critical role in acute inflammation and allergic airways disease. 

CC10-IκBαSR transgenic mice, which are refractory to IκBα degradation and NF-κB 

activation in the lung epithelium, were demonstrated to be strongly protected from airway 

inflammation induced by lipopolysaccharide (Poynter et al., 2003). Following 

intraperitoneal sensitization and challenge with ovalbumin (Ova), CC10-IκBαSR 

transgenic mice showed a marked diminution of airway inflammation compared to WT 

littermate controls, although Ova-induced airways hyperresponsiveness (AHR) was 

unaffected in CC10-IκBαSR transgenic mice compared to controls (Poynter et al., 2004). 

A similar protection against Ova-induced allergic inflammation and peri-bronchiolar 

fibrosis has been observed in mice following epithelial-specific ablation of IKKβ (Broide 

et al., 2005).  

It remains unclear to date whether activation of NF-κB within epithelial cells 

plays a role in the orchestration of inflammatory responses in vivo to an asthma-relevant 

allergen following sensitization via the airways. It also remains unknown whether both 

NF-κB pathways are activated following exposure to an antigen. House dust mite (HDM) 

is a multifaceted allergen to which up to 85% of asthmatics are allergic (Gregory & 

Lloyd, 2011).  HDM has been shown to signal through the classical NF-κB pathway in 

human bronchial epithelial cells in vitro (Osterlund et al., 2009). Therefore, the goal of 

the present study was to determine the activation of classical and alternative NF-κB in 

epithelial cells in vivo in response to HDM, and to address its effect on HDM-triggered 

airway inflammation, remodeling, mucus, and AHR.  Our results demonstrate the 
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functional importance of epithelial NF-κB in HDM-induced acute inflammatory 

responses, AHR, and airway remodeling. We also demonstrate activation of both 

classical and alternative NF-κB pathways in response to HDM.  These findings illustrate 

the complexity of activation of the NF-κB pathways in settings of allergic airways 

disease and suggest a broader role for epithelial NF-κB in lung disease pathogenesis.   

 

Materials and Methods 

Animal Studies: CC10-IκBαSR mice were generated as previously described 

(Poynter et al., 2003) and backcrossed onto the BALB/cJ (N=10) (The Jackson 

Laboratories, Bar Harbor, ME) background.  Transgene-negative littermates were used as 

a control.  All experiments were approved by the University of Vermont Institutional 

Animal Care and Use Committee.   

Cell Culture: A human bronchial epithelial cell line (HBE) was kindly provided 

by Dr. Albert van der Vliet and cultured as described previously (Olson et al., 2009; R. 

Wu, Zhao, & Chang, 1997) and primary human nasal epithelial cells were cultured as 

described previously (Jaspers et al., 2005). Human cell lines were exposed to either PBS 

or 25μg HDM (Greer, Lenoir, NC). All protocols that utilize primary human nasal 

epithelial cells were approved by the Institutional Review Board. 

HDM exposure: BALB/cJ mice (Jackson Laboratories, Bar Harbor, ME) were 

subjected to daily intranasal instillation with 50µg HDM (35 endotoxin units/mg) extract 

resuspended in PBS, or PBS alone as a vehicle control. Briefly, mice were instilled with 

either 1 dose of HDM and euthanized: 2 h, 6 h, or 24 h later or instilled with 3 doses of 
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HDM on 3 consecutive days and euthanized 24 h thereafter. In addition, mice were 

exposed to HDM 5 days/week for 1, 2 or 3 weeks, (5, 10 or 15 instillations, respectively), 

and harvested 72 h after the final exposure (Fig. 1A).   

Assessment of AHR: Mice subjected to 5, 10, or 15 administrations of HDM 

were anesthetized with an intraperitoneal injection of pentobarbital sodium (90mg/kg), 

tracheotomised, and mechanically ventilated at 200 breaths/minute and assessed in 

response to increasing doses of methacholine (0, 3.125mg, 12.5mg, and 25mg).  

Respiratory mechanics were assessed with a forced oscillation technique on a computer 

controlled small animal ventilator (Flexi-vent™, SCIREQ, QC, Canada), as previously 

described (Pantano et al., 2008; Riesenfeld et al., 2012), and the parameters Newtonian 

resistance (Rn), tissue damping (G), and elastance (H) were calculated.  

Serum IgG1 and IgE: Following euthanization, blood was collected by heart 

puncture and immediately spun through a microtainer and serum was separated. Analysis 

of serum IgG1 and IgE was performed via enzyme-linked immunosorbent assay (ELISA) 

methods, using 1µg/ml HDM to coat the 96 well plates.   

Bronchoalveolar lavage: Following euthanization, bronchoalveolar lavage 

(BAL) was collected using 1ml of PBS. Cell counts were determined (Advia 120 

automated hematology analyser), and differential cells were analysed by the Hema3 kit 

(Fisher Scientific, Kalamazoo, MI) by counting a minimum of 300 cells per mouse as 

previously described (Pantano et al., 2008).   

mRNA/protein analysis: Right lung lobes were flash frozen and pulverized for 

protein and mRNA. Total mRNA was isolated using the RNeasy kit (Qiagen, Valencia, 
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CA). 1 µg of mRNA was used to generate cDNA, followed by quantitative polymerase 

chain reaction (qPCR) using SYBR green (BioRad, Hercules, CA) via in order to assess 

expression of: Muc5ac, KC, MIP-2, GM-CSF, IL-6, CCL20, and IL-33.  Primers were: 

KC (Fwd:5’-GCTGGATTCACCTCAAGAA-3’, Rv:5’-

TGGGGACACCTTTTAGCATC-3’), IL-6 (Fwd:5’-CTGATGCTGGTGACAACCAC-

3’, Rv:5’-CAGAATTGCCATTGCACAAC-3’), CCL20 (Fwd:5’-

AAGACAGATGGCCGATGAAG-3’, Rv:5’-AGCCCTTTTCACCCAGTTCT-3’), 

Muc5ac (Fwd:5’-CAGTGAATTCTGGAGGCCAACAAGGTAGAG-3’, Rv:5’-

AGCTAAGCTTAGATCTGGTTGGGACAGCAGC-3’), MIP-2 (Fwd:5’-

AGTGAACTGCGCTGTCAATG-3’, Rv:5’-TTCAGGGTCAAGGCAAACTT-3’), GM-

CSF (Fwd:5’-GGCCTTGGAAGCATGTAGAGG-3’, Rv:5’- 

GGAGAACTCGTTAGAGACGACTT-3’), and IL-33 (Fwd:5’- 

GCTGCGTCTGTTGACACATT-3’, Rv:5’-GACTTGCAGGACAGGGAGAC-3’).  The 

expression of all genes was normalized to the housekeeping gene, cyclophilin, (Fwd:5’- 

TTCCTCCTTTCACAGAATTATTCCA-3’, Rv:5’-CCGCCAGTGCCATTATGG-3’) 

and calculated via the ddCt method.  Antibodies for Western blot analysis were: RelB 

and NIK (Santa Cruz Biotchnologies, Santa Cruz, CA), Histone H3, p52, and phospho 

RelA536 (Cell Signaling Technology, Danvers, MA) and β-Actin (Sigma-Aldrich, St. 

Louis, MO).  Enzyme-linked Immunosorbent assays (ELISA) were performed according 

to manufacturer’s instructions (R & D Systems, Minneapolis, MN) on either BAL or 

homogenized lung extracts. Protein was equalized before analysis. 
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Histopathology/immunofluorescence/αSMA immunohistochemistry: Following 

euthanization, the left lobe was inflated with 4% paraformaldehyde and mounted in 

paraffin embedded 5µm sections. Hematoxylin and Eosin (H&E) and Periodic Acid 

Schiff (PAS) imaging were all performed with 3 small bronchioles (x20 magnification) 

per animal.  Mucus metaplasia was assessed with a blinded scoring system by two 

independent investigators with the following scale: 0, no reactivity; 1, minimal staining; 

2, moderate staining; and 3, prominent staining.  Scores were averaged according to 

treatment group.  Immunofluorescence was performed as previously described to detect 

nuclear RelA and RelB in situ (Poynter et al., 2002).  RelA and RelB antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Staining for α-SMA was 

performed on lung sections following incubation of slides for 20 minutes in 0.01M 

sodium citrate, pH 6.0 at 95ºC. Slides were then blocked with 2% normal goat serum for 

30 minutes, incubated with monoclonal mouse antibody against α-SMA (1:5000 dilution; 

Sigma Aldrich, St. Louis, MO) overnight at 4ºC, and then incubated in biotinylated anti-

mouse IgG for 30 minutes at room temperature. Subsequently, the slides were incubated 

in avidin-biotin- complex-alkaline phosphatase (Vectastain ABC-AP, Vector 

Laboratories, Burlingame, CA) for another 30 minutes at room temperature. After rinsing 

the sections in PBS, the substrate, Vector Red (Vector Laboratories), was added for 20 

minutes, which reacts with the bound alkaline phosphatase, thus producing an intense red 

color.  The slides were then counterstained in hematoxylin and imaged (x20 

magnification) for analysis. 
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Assessment of collagen content:  Collagen was assessed from the upper right 

lobe of the lung after an overnight digestion with 10mg pepsin in 0.5M acetic acid.  

Quantification was performed by the Sircol Assay according to manufacturer’s 

instructions (Accurate Chemical and Scientific corp, Westbury, NY). Masson’s 

Trichrome reactivity was evaluated in 3 bronchioles (x20 magnification) per animal, and 

analyzed by two blinded investigators with the following scale: 0, no reactivity; 1, 

minimal staining; 2, moderate staining; and 3, prominent staining. 

Statistical Analysis:  All data were evaluated using Graphpad Prism 6 Software 

(Graphpad, Inc, San Diego, CA).  A one-way ANOVA was used with Bonferoni 

corrections to adjust for multiple comparisons and all p-values <0.05 were considered 

statistically significant.  Histopathological/αSMA IHC scores were analyzed using the 

Kruskal-Wallis test and Dunn's multiple comparison post hoc tests. 

 

Results 

Inflammatory response in BALB/c mice exposed to HDM: Because of the well-

known role of NF-κB in the orchestration of inflammation, we first sought to assess the 

extent and kinetics of the HDM-induced inflammatory response through a time-course 

analysis illustrated schematically in Fig. 1A.  Neutrophils in bronchoalveolar lavage fluid 

(BAL) were significantly increased 6 h following a single intranasal challenge with 

HDM, and remained elevated until 24 h post 3 challenges, as compared to PBS controls 

(Fig. 1B).  It is important to note that neutrophils were elevated 24 h following exposure 

to the vehicle PBS, potentially indicative of a non-specific response to the intranasal 
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instillation. Neutrophils were also detectable in BAL 72 h post 5, 10, or 15 challenges, 

with statistically significant increases occurring in response to HDM 72 h post 15 

challenges. Although macrophages in BAL tended to increase in response to HDM, these 

trends were not statistically significant. No eosinophils or lymphocytes were detected in 

BAL up to 24 h post 3 challenges. In contrast, robust increases in eosinophils and 

lymphocytes occurred in BAL 72 h post 10 and 15 challenges with HDM compared to 

PBS controls (Fig. 1B).  Although some fluctuations in the total number of macrophages 

in BAL were observed throughout these time points, these were not statistically 

significant (Fig. 1B). 

Increases in nuclear localization of RelA and RelB in airway epithelium in 

response to HDM: We next evaluated a potential role for epithelial NF-κB in response to 

HDM.  We investigated kinetics of activation of both classical and alternative pathways 

in the bronchiolar epithelium via the assessment of nuclear presence of RelA and RelB. 

Nuclear presence of RelA and RelB (indicated by yellow staining) within the bronchiolar 

epithelium was increased 2 and 6 h following a single challenge with HDM, compared to 

PBS controls in the nuclei (Fig. 2).  Nuclear RelA decreased to control reactivity by 24 h, 

but increased again 24 h post- 3 challenges with HDM, indicative of a bi-modal 

activation pattern (Fig. 2). In contrast, increases in nuclear RelB were apparent 

throughout the time course evaluated here (Fig. 2). No clear evidence for nuclear 

localization of RelA or RelB within the airway epithelium was apparent 72 h after 5, 10 

or 15 challenges with HDM compared to PBS (data not shown). 
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Pro-inflammatory mediator expression following acute HDM exposures: In order 

to investigate the early inflammatory response after HDM exposure, we evaluated mRNA 

expression of Interleukin-33 (IL-33), Keratinocyte Derived Chemokine (KC), 

Granulocyte Macrophage Colony Stimulating-Factor (GM-CSF), Macrophage 

Inflammatory Protein-2 ( MIP-2), Chemokine (C-C motif) ligand 20 (CCL20), 

Interleukin-6 (IL-6), Interleukin-25 (IL-25) and Thymic Stromal Lymphopoietin (TSLP), 

pro-inflammatory mediators shown to be produced by epithelial cells.  Expression levels 

of all genes analyzed were significantly increased following 2 h exposure HDM, with the 

exception of IL-25 and TSLP, whose expression did not change (data not shown).  

mRNA expression of CCL20, GM-CSF, MIP-2, KC, and IL-6  remained elevated 6 h 

after a single administration of HDM, and tended to decrease towards control levels  

thereafter (Fig S1).   

Role of epithelial NF-κB in pro-inflammatory cytokine expression induced by 

HDM:  We next sought to address the role of epithelial NF-κB in HDM-induced pro-

inflammatory responses utilizing CC10-IκBαSR transgenic mice. While nuclear RelA and 

RelB content increased in the bronchiolar epithelium in WT mice in response to HDM, 

these increases were not observed in CC10-IκBαSR mice exposed to HDM (Fig 3A).  

HDM- mediated increases in mRNA expression of CCL20, GM-CSF, MIP-2, KC, IL-33, 

and IL-6 in WT mice were strongly attenuated in CC10-IκBαSR mice (Fig. 3B), 

demonstrating the importance of NF-κB activation in the bronchiolar epithelium in the 

orchestration of the acute pro-inflammatory responses to HDM.  
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Impact of RelB knockdown on HDM-induced pro-inflammatory cytokine 

expression: We demonstrate that classical and alternative NF-κB are both inhibited via 

expression of CC10-IκBαSR transgene; therefore, we aimed to specifically evaluate the 

role of the alternative pathway in HDM-induced inflammation.  BALB/c mice were given 

indicated siRNA oropharyngeally 2 and 4 days prior to 2 h HDM exposure.  

Immunofluorescence analysis demonstrated knockdown of RelB in the bronchiolar 

epithelium (Fig. 4A).  Evaluation of pro-inflammatory cytokine expression showed a 

significant increase in CCL20, GM-CSF, MIP-2, KC, IL-33, and IL-6 in scrambled 

siRNA HDM groups compared to PBS controls (Fig. 4B-G).  Interestingly, in RelB 

siRNA HDM groups, pro-inflammatory gene expression did not increase over PBS 

controls, indicating a strong role for alternative NF-κB in regulating HDM-induced 

inflammatory responses.  

Effects of repeated HDM exposure on AHR, mucus metaplasia, and remodeling:  

We next subjected mice to 5, 10, and 15 challenges of HDM. Serum content of HDM-

specific IgG1 and IgE showed no apparent increases 72 h following 5 days challenge. 

Marked increases in HDM-specific IgG1 and IgE were apparent following 10 and 15 

challenges with HDM, compared to PBS controls, indicative of activation of adaptive 

immune responses (Fig. S2A).  AHR, a feature of allergic airways disease, was assessed 

via forced oscillation mechanics using ascending doses of methacholine.  Newtonian 

resistance (Rn) increased significantly over PBS controls after 10 and 15 challenges with 

HDM, while no changes were apparent in mice subjected to 5 challenges with HDM (Fig 

S2B).  Tissue damping (G), which is indicative of tissue resistance and small airway 
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dysfunction, was increased following 5 challenges HDM, and remained increased 

throughout 10 and 15 challenges.  Elastance (H) was also increased following 5, 10, and 

15 challenges of HDM. Increases in elastance were most prominent after 10 challenges of 

HDM and tended to decrease after 15 challenges (Fig. S2B). Histo-pathological 

evaluation revealed a robust inflammatory response to HDM, with prominent peri-

bronchiolar and perivascular cellular infiltrates being apparent following 10 and 15 

challenges with HDM (Fig. S2C).   Additionally, mucus metaplasia was apparent 

following 5, 10, and 15 challenges HDM, based upon staining with Periodic Acid Shiff 

reagent and Muc5ac expression (Fig. S2C and S2D).  Another hallmark of severe allergic 

airways disease is peri-bronchiolar fibrotic remodeling.  Following 15 challenges with 

HDM, overall collagen content increased in the lung tissue (Fig S2E), consistent with 

increases in peri-bronchiolar collagen deposition evaluated via Masson’s Trichrome 

staining (Fig S2C).  These results collectively demonstrate that the HDM exposure 

regimen used herein induces a number of the hallmark features of allergic airway disease.   

Role of epithelial NF-κB in HDM-induced inflammation:  We next determined the 

role of epithelial NF-κB on the inflammatory response induced following 15 challenges 

of HDM. HDM-mediated increases in total cell counts in BAL observed in WT mice 

were significantly decreased in CC10-IκBαSR mice (Fig. 5A).  BAL eosinophils were 

significantly decreased in CC10-IκBαSR transgenic mice exposed to HDM, while BAL 

lymphocytes remained elevated in HDM exposed CC10-IκBαSR transgenic mice 

compared to WT littermates (Fig. 5B). Total macrophage number in BAL remained 

unchanged in CC10-IκBαSR mice (Fig. 5B).  In contrast HDM-mediated increases in BAL 
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neutrophils in WT mice were completely attenuated in CC10-IκBαSR mice. Consistent 

with these observations, increases in BAL content of the neutrophil chemoattractant, KC, 

in WT mice exposed to HDM were absent in CC10-IκBαSR mice (Fig. 5C).  HDM-

specific IgG1 and IgE levels in serum were decreased slightly in CC10-IκBαSR HDM-

exposed mice, although not significantly, compared to littermate controls, but remained 

elevated over PBS controls (Fig. 5D).  Levels of IFN-γ, IL-13, and IL-17A in 

homogenized lung tissue were significantly decreased in CC10-NF-κBSR mice exposed to 

HDM, compared to WT animals (Fig. 5E), collectively suggesting an attenuation of Th-

mediated responses to HDM following epithelial-specific inhibition of NF-κB. We next 

sought to assess inhibition of nuclear RelA and RelB in lung tissue in CC10-NF-κBSR 

mice exposed to HDM.  After 15 challenges with HDM, no consistent increases in 

nuclear RelA or RelB were detected in the bronchiolar epithelium (data not shown), in 

contrast to earlier time points at which increases in nuclear RelA and RelB were readily 

observed (Fig 3).  Assessment of homogenized lung tissue also showed variable and 

inconsistent patterns of nuclear RelA (data not shown). However, clear increases in 

nuclear RelB content were observed in WT mice, which were absent in the CC10-IκBαSR 

transgenics (Fig. 5F). 

Role of epithelial NF-κB in HDM-induced AHR and remodeling: WT and CC10-

IκBαSR mice subjected to 15 challenges with HDM demonstrated equivalent increases in 

Newtonian resistance (Rn). In contrast, HDM-mediated increases in tissue damping (G) 

and elastance (H) were significantly decreased in CC10-IκBαSR mice compared to 

littermate controls (Fig. 6A).  Consistent with attenuated inflammatory cell profiles in 
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BAL, peri-bronchiolar infiltrates were attenuated CC10-IκBαSR mice compared to 

controls (Fig. 6B). In contrast, mucus metaplasia was not observed to be decreased in 

HDM-exposed CC10-IκBαSR mice, compared to WT animals (Fig. 6B+D). These 

findings are consistent with a lack of attenuation of HDM-induced Muc5AC mRNA (Fig. 

6C) and modest decreases in IL-13 content (Fig. 5E). Biochemical analysis of collagen 

demonstrated that HDM-mediated increases in WT mice were significantly decreased in 

CC10-IκBαSR transgenic mice (Fig.6E), consistent with less peri-bronchiolar collagen 

detected via histopathology (Fig. 6B+F).  Furthermore, α-Smooth Muscle Actin (α-

SMA), a known marker of airway thickening and remodeling, was assessed via 

immunohistochemistry.  Peri-bronchiolar α-SMA staining was significantly increased 

following HDM administration in WT mice, as compared to PBS controls.  In contrast, 

no increases in peri-bronchiolar α-SMA reactivity were detected in CC10-IκBαSR mice 

exposed to HDM, in comparison to PBS controls (Fig. 6G+H). 

HDM-induced activation of the classical and alternative NF-κB pathways in 

human nasal and bronchial epithelial cells: Since we demonstrated increases in nuclear 

RelB in the bronchial epithelium in response to HDM administration, we sought to 

determine whether the alternative NF-κB pathway could be activated directly by HDM in 

human epithelial cells. Results in Fig. 7A demonstrate increased levels of NIK and p52 in 

response to HDM in Primary Human Nasal Epithelial Cells (PHNEC) obtained from two 

independent donors, and similar increases were observed (Fig. 7B) in human bronchial 

epithelial cells (HBEC), albeit less robust, demonstrating activation of the alternative NF-

κB pathway. In addition, phosphorylation of RelA at serine 536, a separate parameter of 
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NF-κB activation, was also increased in response to HDM (Fig. 7A+B), demonstrating 

that in addition to the known ability of HDM to activate the classical NF-κB pathway, it 

also induces activation of the alternative NF-κB pathway in lung epithelial cells.  

 

Discussion 

 NF-κB is a regulator of inflammation and immunity, and its role in the 

pathogenesis in asthma has been suggested based upon evidence of its activation in the 

bronchiolar epithelium from asthmatics (Zhao et al., 2001) and from studies in mouse 

models of allergic airways disease (Poynter et al., 2002).  Notably, studies previously 

performed in our laboratory have revealed a crucial role for lung epithelial NF-κB in the 

Alum/Ova model of allergic airways disease (Poynter et al., 2004).  Moreover, transgenic 

expression of constitutively active IKKβ in lung epithelial cells was sufficient to cause 

neutrophilic inflammation and airways hyperresponsiveness, and enhanced sensitization 

to an inhaled antigen (Ather et al., 2011; Pantano et al., 2008). Despite these prior 

observations, the more generalized importance of epithelial NF-κB in allergic airways 

disease following sensitization/exposure to a relevant allergen via the airways has yet to 

be determined. Results presented herein describe a critical role for non-ciliated airway 

epithelial NF-κB in promoting inflammation, AHR, and fibrotic remodeling following 

extended challenges of HDM, while mucus metaplasia differences did not appear 

affected.   

Results of the present study somewhat contrast our previous work using the 

Alum/Ova model of intraperitoneal sensitization followed by challenges of aerosolized 
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Ova. Notably, CC10-IκBαSR mice subjected to the Alum/Ova protocol were strongly 

protected against the development of eosinophilic inflammation and mucus metaplasia, 

but were not protected against Ova-induced AHR (Poynter et al., 2004). The reasons for 

these discrepant findings remain unclear. It is likely that the route of sensitization of an 

allergen dictates the nature of the subsequent immunological and pathophysiological 

response. In support of the latter is a previous report demonstrating that the IP 

sensitization regimen with Alum/Ova triggers eosinophilic, Th2-driven inflammation 

(Kung et al., 1994). In contrast, sensitization with Ova via the airways, along 

lipopolysaccharide as the adjuvant, led to neutrophilic-dependent AHR and Th17-

associated inflammation (Wilson et al., 2009).  

 In the present study we demonstrated that CC10-IκBαSR mice did not display 

increases in airway neutrophils following 15 challenges with HDM compared to PBS 

controls, while neutrophils were robustly increased in BAL of WT mice. In contrast, 

HDM-induced eosinophilia was only partially attenuated in CC10-IκBαSR mice, while 

BAL lymphocytes were not significantly affected.  IL-5, a potent eosinophil 

chemoattractant in mice and humans, was not detectable at any experimental time points 

(data not shown); however, we did demonstrate a strong decrease in KC (human IL-8) in 

CC10-IκBαSR mice in comparison to WT mice exposed to HDM.  These findings 

demonstrate that following inhibition of epithelial NF-κB in the setting of HDM-induced 

disease, the inflammatory process is not uniformly inhibited, but preferentially affects 

neutrophils. This potential differential effect of NF-κB inhibition on the inflammatory 

process could explain the impact of airway remodeling and AHR. Consistent with the 
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continued presence of eosinophils, HDM-specific IgG1 and IgE, and IL-13 in CC10-

IκBαSR mice exposed to HDM, mucus metaplasia and Muc5AC expression remained 

elevated in these animals. Previous studies demonstrated that IL-13 can activate epithelial 

cells to produce Muc5ac in an NF-κB independent mechanism (Whittaker et al., 2002).  

In light of those observations, the lack of an impact of CC10-I-κBαSR mice in HDM-

induced mucus metaplasia is therefore, perhaps, not surprising.   

 The role of neutrophils in the pathogenesis of asthma remains unclear. HDM 

exposure in mice has been associated with mixed neutrophilic/eosinophilic, Th2/Th17-

linked inflammation, and production of IL-13 and IL-17A (Kudo et al., 2012).  In this 

study, the preferential diminution of neutrophils following inhibition of epithelial NF-κB 

was associated with normalization of tissue damping and elastance parameters towards 

values observed in controls, while in contrast, Newtonian resistance, reflective of the 

central airways, was unaffected. The disparate effects of the CC10-IκBαSR transgene on 

tissue damping and elastance, as compared to Newtonian resistance, are puzzling. 

Previous studies have suggested that inflammation contributed to enhanced leakage of 

fibrin to the airway surface, leading to decreased stability of surfactant proteins and 

increased surface tension, and facilitated contractility of smooth muscle. These 

mechanisms have been linked to increases in the closure of distal airways (Hohlfeld, 

2002; Wagers et al., 2004; Yager, Kamm, & Drazen, 1995).  It is plausible that decreases 

in inflammation, along with decreased α-smooth muscle actin in bronchioles, account for 

decreases in tissue damping and elastance, which were observed in CC10-IκBαSR 

transgenic mice.  This putative explanation would need to be addressed with additional 
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studies.  Our data also demonstrate that KC, a potent neutrophil chemokine, was not 

increased in CC10-IκBαSR HDM-exposed mice in comparison to PBS controls, indicating 

a potential mechanism whereby neutrophils are decreased in CC10-IκBαSR mice.   All 

together, these findings are suggestive of a role for neutrophils in promoting increases in 

peri-bronchiolar collagen deposition and associated changes in tissue damping and 

elastance.  Alternatively, it is also plausible that other mediators control neutrophil 

trafficking to the airways, promote peri-bronchiolar remodeling, and changes in AHR. In 

this regard, IL-17A, which we also demonstrate to be decreased in the tissue of CC10-

IκBαSR mice, has been shown to stimulate production of chemokines important in 

neutrophil recruitment in a KC-dependent manner (Laan et al., 1999) and has been 

implicated in the pathogenesis of pulmonary fibrosis (Hasan et al., 2013), yet its 

functional contribution here remains to be determined. Additionally, eosinophils 

expressing TGF-β1 have been shown to be important in allergen-induced peribronchial 

fibrosis (Cho et al., 2004), and hence it is possible that TGF-β1 also plays a role in peri-

bronchiolar fibrosis downstream of activation of NF-κB. Additional studies will be 

required to formally address these putative scenarios.    

In addition to demonstrating a role for epithelial NF-κB in promoting 

inflammation, AHR, and fibrosis following 15 challenges of HDM, we also established a 

contributing role for epithelial NF-κB in regulating pro-inflammatory gene expression 

following a single exposure of HDM.  Numerous pro-inflammatory mediators have been 

implicated in the development of allergic airways disease (Swamy et al., 2010), and our 

studies demonstrate a putative role for epithelial NF-κB in regulating expression of 
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several of these molecules in response to HDM.  GM-CSF and CCL20 have been shown 

to be important in the recruitment/activation of dendritic cells, which are required for T 

cell activation and recognition of antigens. Notably, exposure of human asthmatic 

bronchial epithelial cells to the HDM component, Derp1, was shown to be important in 

dendritic cell recruitment in a CCL20 dependent manner (Pichavant et al., 2005).  

Additionally, IL-33 has been shown to be important in the activation of a variety of cell 

types crucial to the development of asthma, such as T helper type 2 cells, eosinophils, 

dendritic cells, and mast cells (Borish & Steinke, 2011).  As previously mentioned, the 

activation and infiltration of neutrophils is emerging as a potential phenotype in severe, 

steroid resistant asthma.  Cytokines KC and MIP-2 have both been shown to be important 

in the recruitment of neutrophils and production of HDM-specific IgE (McKinley, Kim, 

Bolgos, Siddiqui, & Remick, 2005). Altogether, our data indicate a likely role for 

epithelial NF-κB in the recruitment/activation of several cell types important for the 

development of HDM-induced asthma.  This suggests a mechanism whereby epithelial 

NF-κB activation is the crucial step between contact with an allergen and downstream 

manifestations of asthma.   

In addition to the role of NF-κB in airway epithelium demonstrated herein, it is 

plausible that activation NF-κB in other cell types contributes to the pathophysiology of 

allergic airways disease. Notably our findings demonstrate increased immunofluorence of 

nuclear RelA and RelB in parenchymal regions following exposure to HDM (Fig. 3). 

Unraveling the cell types in which NF-κB is activated and their functional contribution to 

allergic airways disease would require additional cell specific labeling and targeting 
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strategies, which were beyond the scope of the present study. For example, neutrophil 

elastase-induced secretion of Transforming Growth Factor β-1 from smooth muscle cells  

was shown to be dependent on NF-κB activation (Lee et al., 2006), and the smooth 

muscle contractile force in response to  IL-17A was dependent on NF-κB activation 

(Kudo et al., 2012), suggesting a putative role of NF-κB activation in smooth muscle 

cells in airways hyperresponsiveness and remodeling.  Secretion of eotaxin, a potent 

eosinophil activating factor, by fibroblasts was also shown to be dependent on NF-κB 

activation (Rokudai et al., 2006). One notable finding of the present study is that HDM 

activates both the classical and alternative NF-κB pathway within the bronchiolar 

epithelium, evidenced by the increases in nuclear presence of both RelA as well as RelB 

in mice exposed to HDM. Similar to observations herein, we recently demonstrated 

increases in nuclear RelA and RelB in the parenchymal regions following administration 

of lipopolysaccharide, a component of HDM (Tully et al., 2012), suggesting that TLR4 

activation by HDM may be contributing to the observed increases in RelA and RelB 

observed.  Increases in nuclear RelA and RelB within the epithelium occurred rapidly and 

were sustained at least for 24 h after 3 challenges.  However, 72 h post 5, 10 or 15 

challenges, there was no clear evidence of increased RelA or RelB in the bronchiolar 

epithelium, possibly due to the timing of tissue analysis post the last administration of 

HDM, which was 72 h, a time when NF-κB activation may have resolved. However, we 

did observe sustained increases in nuclear RelB in lung tissue homogenates 72 hr post 15 

challenges with HDM in WT mice, suggestive of NF-κB activation in other cell types. 

Increases in nuclear RelB were attenuated in CC10-IκBαSR mice, suggesting a putative 
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role for RelB in the orchestration of HDM-mediated AHR and fibrotic remodeling. In 

addition to the demonstration that RelB was increased in the bronchiolar epithelium 

following HDM exposure, we also demonstrated that HDM directly activated both NF-

κB pathways in both human bronchial and nasal epithelial cells. Although extensive 

studies have been conducted to unravel the molecular regulation and pathophysiological 

relevance of the classical NF-κB pathway, far less information is available for the 

alternative pathway. The latter pathway was originally thought to play a role in adaptive 

immune responses, development of lymphocytes and lymphoid organs. However, 

emerging studies have pointed to a coordinate function of both classical and alternative 

NF-κB in the orchestration of pro-inflammatory responses. For example, exposure of 

lung epithelial cells with Tumor Necrosis Factor-α, Polyinosinic acid, LPS, IL-17A, 

lipoteichoic acid, and CD40L, agonists that signal through distinct families of receptors, 

led to a coordinate activation of classical and alternative NF-κB pathways and subsequent 

pro-inflammatory responses (Tully et al., 2012). In contrast, adenovirus-mediated 

delivery of RelB afforded protection against cigarette smoke-induced neutrophilic 

inflammation (McMillan et al., 2011), suggesting potentially complex roles of the 

alternative NF-κB pathway in the regulation of pro-inflammatory and immune responses. 

The classical NF-κB pathway previously has been shown to be important in HDM-

mediated pro-inflammatory responses in human bronchial epithelial cells in vitro 

(Osterlund et al., 2009), and Derp1, a component of HDM, was shown to be important in 

the activation of NF-κB in human asthmatic bronchial epithelial cells (Stacey et al., 

1997).  Patients with allergic asthma demonstrate increased classical NF-κB activation in 
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nasal epithelial cells in response to HDM in comparison to healthy controls (Vroling et 

al., 2008). Intriguingly,  the HDM component, β-glucan, was shown to be crucial for 

activation of allergic rhinitis in nasal epithelial cells via TLR2, in contrast to another 

HDM component, LPS, which is important in promoting allergic airways disease via 

activation of TLR4 in bronchial epithelial cells (Ryu et al., 2013).  Despite these previous 

studies and data presented herein, additional studies are needed to better understand the 

timing and locale of activation of classical and alternative NF-κB pathways, the 

components of HDM that are required to activate either pathway, as well as the relative 

contributions of the classical and alternative NF-κB pathways  in eliciting  HDM- 

triggered allergic airways disease. 

  In summary, we demonstrate in the present study the importance of NF-κB 

activation within the bronchiolar epithelium in HDM-induced inflammation, AHR and 

fibrotic airway remodeling. We also demonstrate that both classical and alternative NF-

κB pathways are activated by HDM.  Data presented herein showed that in the setting of 

HDM-induced allergic airway disease, inhibition of epithelial NF-κB plays a more 

prominent role in attenuating neutrophilia, AHR, and remodeling, in comparison to 

eosinophilia, IgE, and mucus metaplasia. Therefore, it is plausible that therapeutic 

approaches which target NF-κB via interference with degradation of IκBα may have a 

stronger impact on asthmatic patients with predominant neutrophila in contrast to patients 

with predominant eosinophilia. Corticosteroids, the most common therapy for asthma, 

inhibit NF-κB, but have many off target effects.  Current therapies that are being 

developed for asthma are aimed at inhibiting the pro-inflammatory effects of NF-κB 
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signalling in the lung (Edwards et al., 2009), and are focused on inhibition of IKKβ, the 

dominant kinase in the classical NF-κB pathway (Edwards et al., 2009). The small 

molecule IKKβ inhibitor, IMD-0354, attenuated HDM- induced eosinophilia, globlet cell 

hyperplasia, subepithelial fibrosis, smooth muscle cell hypertrophy, and lung resistance 

using an intraperitoneal senstization model (Ogawa et al., 2011). The disparate findings 

of the latter study with the present findings may relate to the different sensitization route, 

mechanism of inhibition of NF-κB, and the cell types wherein NF-κB inhibition 

occurred.  Furthermore, intravenous administration of RelA antisense oligonucleotides 

prior to ovalbumin challenge resulted in dampened responses of inflammation, AHR, and 

TH2 responses in mice (Choi, Kim, Ko, & Lee, 2004).  Based upon these collective 

findings, therapeutics designed to inhibit both facets of the NF-κB pathway may hold 

larger therapeutic potential for allergic asthma and other allergic diseases of the lung. 

 

Figure Legends 

Figure 1: Analysis of cell totals and differentials in BAL of mice exposed to 

HDM.  (A) Schematic depicting the time course of HDM exposure and euthanization.  

Instill:  50µg HDM, or PBS as the vehicle control were administered intranasally once at 

the days indicated via downward arrows. Mice were euthanized 2 h, 6 h or 24 h post a 

single challenge, 24 h after 3 challenges or 72 h after 5, 10, or 15 challenges, indicated by 

the upward arrows. (B) Mice (n=5/group/time point) were exposed to PBS or HDM 

according to the schematic in A, and BAL was assessed for neutrophils, eosinophils, 
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lymphocytes, and macrophages. * p< 0.05 (ANOVA) compared to the PBS group at the 

same time point. 

Figure 2: Assessment of nuclear localization of RelA and RelB in airway 

epithelium in response to HDM: BALB/c mice were exposed to PBS and HDM and 

harvested as indicated. De-paraffinized lung sections were incubated with antibodies 

directed against RelA or RelB, followed by fluorophore-conjugated secondary antibodies, 

and the nuclei were counterstained with Sytox Green. Images were captured by laser 

scanning confocal microscopy using identical instrument settings in all groups. Images 

are representative results of two independent experiments, n=5/group/time. RelA/RelB: 

red, DNA: green, Nuclear RelA/RelB: yellow.  scale bar=50µm. 

Figure 3: Nuclear RelA and RelB, and pro-inflammatory cytokine mRNA 

expression in CC10-NF-κBSR mice following exposure to HDM:  CC10-NF-κBSR mice, or 

WT littermate controls were exposed to PBS or HDM for 2 h. (A) Nuclear localization of 

RelA and RelB was assessed in lung tissues as described in Fig. 2. Images are 

representative results of two independent experiments with 5 mice/group, RelA/RelB, 

red; DNA, green; Nuclear RelA/RelB, yellow, scale bar=50µm.  (B) Assessment of 

mRNA expression for IL-33, GM-CSF, CCL20, KC, MIP-2, and IL-6 in homogenized 

lung tissue.  Data were normalized to cyclophilin and are presented as relative 

expression. Values reflect 6 mice/group/time point. * p< 0.05 (ANOVA) compared to the 

PBS group at the same time point. †  p<0.05 (ANOVA) compared to WT mice exposed 

to HDM 
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Figure 4: Impact of RelB knockdown on pro-inflammatory cytokine expression 

following exposure to HDM: (A) WT BALB/c mice were oropharyngeally instilled with 

either scrambled siRNA or RelB siRNA 2 and 4 days prior to 1 dose HDM and harvested 

2 h post challenge.  RelB content was assessed via immunofluorescence.  (B) mRNA 

expression was analyzed from lung extracts and assessed for  IL-33, GM-CSF, CCL20,  

KC, MIP-2, and IL-6.  Statistical significance between PBS and HDM exposed groups 

were indicated by * and p<0.05 were considered significant.  Statistical significance 

between scrambled siRNA and RelB siRNA HDM exposed groups were indicated by † 

and p<0.05 were considered significant.   

  Figure 5: Assessment of HDM-induced inflammation, immunoglobins, T-cell 

cytokines, and nuclear RelB in WT or CC10-NF-κBSR mice following 15 challenges with 

HDM: Assessment of (A) total cells and differential cell counts (B) and KC levels(C) in 

BAL. (D) Total IgG1 and IgE in serum.  (E) IFNγ, IL-13, and IL-17A in homogenized 

tissue by ELISA.  (F) Nuclear content of RelB in homogenized lung tissue. Histone H3 is 

shown as a loading control. Data represents 8 mice/group/time point. * p< 0.05 

(ANOVA) compared to the PBS group at the same time point. †  p<0.05 (ANOVA) 

compared to WT mice exposed to HDM. 

Figure 6: Assessment of HDM-induced alterations in respiratory mechanics and 

airway remodeling in WT or CC10-NF-κBSR mice following 15 challenges with HDM: 

(A) Evaluation of airway hyperresponsiveness via forced oscillation mechanics in 

response to 3.125, 12.5, and 25 mg methacholine.  Shown are the parameters Newtonian 

resistance (Rn), Tissue damping (G) and Elastance (H) assessed via forced oscillation (B) 
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Histopathological evaluation of tissue inflammation (H&E), mucus metaplasia (PAS) and 

peri-bronchiolar collagen deposition (M.T.). scale bar=50µm. (C)  Analysis of Muc5ac 

mRNA expression in homogenized lung tissue. Data were normalized to cyclophilin and 

are presented as relative expression. (D) Quantification of mucus metaplasia. Bronchioles 

of similar size (n=3) were analyzed/mouse by two blinded scorers, and average scores 

presented as average units.  (E)  Assessment of collagen from the upper right lobe.  (F) 

Quantification of peri-bronchiolar collagen deposition. Bronchioles of similar size (n=3) 

were analyzed/mouse by two blinded scorers, and average scores presented as average 

units.  (G) Assessment of α-SMA immunohistochemistry, red=α-SMA, scale bar=1µm. 

(F) Quantification of α-SMA immunoreactivity. Bronchioles of similar size (n=3/mouse) 

were analyzed by two independent blinded scorers, and average scores presented as 

average units.  Data represent 8 mice/group/time point. * p< 0.05 (ANOVA) compared to 

the PBS group at the same time point. † p<0.05 (ANOVA, Kruskal Wallis) compared to 

WT mice exposed to HDM. 

Figure 7: Assessment of activation of classical and alternative NF-κB pathways 

in human lung epithelial cells exposed to HDM.  (A) Primary human nasal epithelial 

(PHNE) cells or (B) Human bronchial epithelial (HBE) cells were exposed to PBS or 25 

µg HDM once a day for consecutive days and harvested thereafter at either 72 h (PHNE) 

or 48 h (HBE).  Cells were lysed for evaluation of NIK, p52, phospho RelA 536, by 

Western blot analyses. β-Actin (loading control).  Right panels: Densitometric evaluation 

of Western blots shown in (A) PHNE (n=3 patients) or (B) HBE (n=3 experimental 
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repeats). Results are expressed as arbitrary density and were normalized to corresponding 

β-Actin bands.   

Figure S1: BALB/c mice were exposed to a single dose of either PBS or HDM 

and harvested 2, 6, or 24 h following challenge.  Additionally, mice were challenged for 

three consecutive days and harvested 24 h following the 3
rd

 challenge.  mRNA isolated 

from homogenized lung tissue was analyzed for expression of IL-33, GM-CSF, CCL20, 

KC, MIP-2, and IL-6. Data represent 5 mice/group/time point. * p< 0.05 (ANOVA) 

compared to the PBS group at the same time point.  

Figure S2: Effects of Repeated HDM Exposure on HDM-specific IgG1 and IgE, 

AHR and airways remodeling:  BALB/c mice were exposed to HDM and harvested at the 

indicated time points.  (A) Assessment of total IgG1 and IgE in serum.  (B) Assessment 

of airway hyperresponsiveness in response to increasing doses (3.125, 12.5, and 25 mg) 

of methacholine via forced oscillation mechanics. Parameters measured were Newtonian 

Resistance (Rn), Tissue Damping (G) and Tissue Elastance (H). (C)  Histopathological 

analysis of inflammation (H&E), mucus metaplasia (PAS) and peri-bronchiolar collagen 

deposition (M.T.) in mice exposed to HDM for the indicated times. scale bar=50µm.  (D) 

Analysis of Muc5ac mRNA expression in homogenized lung tissue. Data were 

normalized to cyclophilin and are presented as relative expression. (E) Quantification of 

collagen from the upper right lobe.   Data represent 5 mice/group/time point. * p< 0.05 

(ANOVA) compared to the PBS group at the same time point. 
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Figure 1: HDM-induced pulmonary inflammation 
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Figure 2: HDM-induced classical and alternative NF-κB in vivo 
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Figure 3: Impact of epithelial NF-κB inhibition on pro-inflammatory cytokines   
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Figure 4: Impact of RelB knockdown on pro-inflammatory cytokines 
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Figure 5: Impact of epithelial NF-κB inhibition HDM-induced allergic inflammation 
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Figure 6: Impact of epithelial NF-κB inhibition HDM-induced airway 

hyperresponsiveness and remodeling 
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Figure 6 cont: Impact of epithelial NF-κB inhibition HDM-induced airway 

hyperresponsiveness and remodeling 
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Figure 7: HDM-induced classical and alternative NF-κB in human pulmonary epithelial 

cells 
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Figure S1: HDM-induced pro-inflammatory cytokine production   
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Figure S2: HDM-induced allergic airway disease 
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Chapter 4 

Glutathione S-Transferase pi modulates Nuclear Factor-kappaB activation and pro-

inflammatory responses in lung epithelial cells 

Abstract 

Nuclear Factor kappaB (NF-κB) is a transcription factor critical in regulating 

inflammation, proliferation, and cell survival pathways.  The NF-κB pathway is regulated by 

oxidant-induced post-translational modifications, which decrease the activity of numerous NF-

κB proteins.   Protein S-glutathionylation, or the conjugation of the antioxidant molecule, 

glutathione, to reactive cysteines, inhibits the activity of NF-κB kinase, IKKβ.  GSTP is an 

enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of 

oxidative stress.  The present study aimed to determine whether GSTP regulates NF-κB 

signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling.  Results show 

that siRNA-mediated knockdown of GSTP modulates IKKα and IKKβ-SSG, NF-κB activation, 

NF-κB transcriptional activity, and pro-inflammatory cytokine production in response to pro-

inflammatory stimuli.  Both WT GSTP and enzymatically inactive GSTP dampen IKKβ-induced 

pro-inflammatory cytokines.  Our results also show that GSTP associates with the inhibitor of 

NF-κB, IκBα, in unstimulated cells; however, exposure to LPS resulted in the rapid loss of 

association between IκBα and GSTP.  These studies indicate a dual role for GSTP in modulating 

NF-κB, which may involve both the catalytic and ligandin functions of GSTP.  Our results 



159 

 

collectively demonstrate that GSTP modulates NF-κB signaling in lung epithelial cells, which 

may provide a novel target for control of NF-κB.   
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Introduction 

 Nuclear Factor-κB is a family of transcription factors involved in the regulation 

of pro-survival, pro-inflammatory, and immune pathways.  Dysregulation of NF-κB has 

been linked to a variety of chronic inflammatory diseases including cancer, sepsis, and 

asthma.  NF-κB activity is elevated in lung epithelial cells of asthmatic patients in 

comparison to healthy controls (Hart et al., 1998), and activation of classical NF-κB in 

the lung epithelium is not only sufficient, but also necessary to regulate allergic airway 

inflammation in mice (Ather et al., 2011; Pantano et al., 2008; Poynter et al., 2004).  Two 

parallel NF-κB pathways exist: the classical and alternative, both of which contribute to 

inflammatory responses in lung epithelial cells (Tully et al., 2012).  Classical NF-κB is a 

transcription factor complex consisting of RelA and p50, and the Inhibitor of κB kinase, 

IκBα, sequesters RelA and p50 in the cytosol of an unstimulated cell.  Following 

stimulation with a pro-inflammatory agonist, the IKK complex, containing the 

scaffolding protein, IKKγ, and catalytic subunits, IKKα and IKKβ is activated.  IKKβ 

then phosphorylates IκBα, which facilitates its K48-linked ubiquitination and degradation 

by the 26S proteasome.  RelA and p50 translocate to the nucleus following degradation 

of IκBα and initiates transcription of over 100 target genes (Gilmore, 2006).  The 

alternative NF-κB family involves RelB and p100 dimers.  Upon activation, a distinct 

pool of an IKKα homodimer is phosphorylated by NF-κB-inducing kinase (NIK) and 

subsequently phosphorylates p100, leading to its ubiquitination and partial processing to 

p52.  These events facilitate the translocation of RelB and p52 to the nucleus and initiate 

transcription of distinct NF-κB target genes (S. C. Sun, 2011).  
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 NF-κB is a crucial regulator of numerous biological functions, and as such, 

several mechanisms exist which tightly regulate its activation.  Oxidants have been 

implicated in various diseases and can modify select proteins.  Specifically, select 

cysteines with low pKa’s are susceptible to oxidative modifications, such as S-

nitrosylation, sulfenic acid formation, disulfide formation, and S-glutathionylation 

(Janssen-Heininger et al., 2009).  NF-κB is modified via S-glutathionylation, or the 

reversible conjugation of a glutathione molecule to reactive cysteine residues.  S-

glutathionylation of IKKβ inhibits its kinase activity and downstream pro-inflammatory 

responses.  Additionally, S-glutathionylation prevents the ubiquitination and subsequent 

degradation of IκBα, as well as the DNA binding of RelA/p50 dimers (Kil et al., 2008; 

Pineda-Molina et al., 2001; Reynaert et al., 2006; Seidel et al., 2011), and, thus, is a 

crucial regulatory mechanism of NF-κB.     

S-glutathionylation is controlled by enzymes that regulate forward and reverse 

reactions, and under physiological conditions, glutaredoxins can deglutathionylate 

proteins.  Hydrogen peroxide-induced S-glutathionylation of IKKβ can be reversed by the 

oxidoreductase, Glutaredoxin-1 (Grx1) (Reynaert et al., 2006).  Furthermore, 

overexpression of Grx1 enhances LPS-induced IKKβ S-glutathionylation, NF-κB 

activation, and pro-inflammatory cytokine production in lung epithelial cells (Aesif, 

Kuipers, et al., 2011).  While it is known that Grx1 can de-glutathionylate IKKβ under 

physiological conditions, the potential enzymatic mechanisms that catalyze IKKβ S-

glutathionylation have not been determined. Glutathione S-transferase pi 1 (GSTP) is an 

enzyme that was recently identified to be able to catalyze S-glutathionylation of proteins 
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by enhancing the nucleophilicity of bound glutathione moieties (Townsend et al., 2009).  

GSTP, traditionally known for its role in phase II drug metabolism, is located on the 

chromosome locus 11q3, which has been linked to asthma (McCunney, 2005).  GSTP
-/-

 

mice subjected to the Alum/OVA model of allergic airway disease demonstrate increased 

eosinophilia and remodeling (J. Zhou et al., 2008).  GSTP also associates with TRAF2, a 

known regulator of NF-κB (Y. Wu et al., 2006).  Given the putative link between GSTP 

and asthma, the known role for epithelial NF-κB in regulating allergic inflammation and 

the susceptibility of NF-κB to redox regulation, we hypothesized that GSTP regulates the 

activity of NF-κB via S-glutathionylation of IKKβ, leading to decreases in NF-κB-

induced gene transcription and pro-inflammatory cytokine production.  Our studies 

demonstrate that siRNA-mediated knockdown of GSTP increases NF-κB activation, gene 

transcription, and pro-inflammatory responses, and that GSTP inhibits IKKβ-induced 

proinflammatory cytokine production. These studies implicate a novel regulatory 

mechanism for modulation of the NF-κB pathway.   

 

Materials and Methods 

 Cell Culture and reagents:  A spontaneously transformed type II mouse lung 

alveolar epithelial cell line (Malkinson et al., 1997) (C10) was cultured as described 

previously (Alcorn et al., 2008). A C10 cell line stably expressing NF-κB luciferase was 

generated as previously described (Korn et al., 2001).  Briefly, C10 cells were transfected 

with the plasmid, 6 κB-tk-luc, in the presence of the plasmid, PSV-2Neo (Promega), 

conferring a resistance to neomycin.  Following incubation with the antibiotic, geneticin, 
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antibiotic-resistant colonies were propagated.  Luciferase units were corrected for total 

protein concentration.  C10 cells were starved in medium containing 0.5% FBS for 16 

hours prior to exposure of 1µg/mL Lipopolysacharide (LPS, List Biological Laboratories, 

Inc).  

 Plasmids and siRNA: C10 cells were incubated with Dharmacon SMARTpool 

non-targeting small interfering (si)RNA or Dharmacon SMARTpool siRNA against 

murine GSTP1 (100nM) (Dharmacon, Lafayette, CO). Plasmid transfections were 

performed with Lipofectamine (Invitrogen, Carlsbad, CA).  Murine Wild Type GSTP, 

murine GSTP Tyrosine 7 Phenylalanine (Y7F), and human GSTP variants A: Ile(105), 

Ala(114), B: Val(105), Ala(114), C: Val(105), Val(114), and D: Ile(105), Val(114) were 

cloned into PCMV.  WT IKKβ was cloned into pcDNA3.  All transfections utilized a 

total of 1µg DNA/ml unless otherwise indicated.   

 Western Blotting and Antibodies:  Protein concentration was determined by the 

Bio-Rad DC Protein Assay kit (Bio-Rad, Hercules, CA), and 20 µg protein were used for 

Western Blot analysis.  RelA, RelB, and β-Actin antibodies were purchased from Santa 

Cruz biotechnology, Santa Cruz, CA.  Antibodies against phosphoserine IκBα 32/36, 

IκBα, IKKβ, and phosphoserine RelA 536 were from Cell Signaling Technology, 

Danvers, MA.  The IKKα antibody was purchased from Upstate, Lake Placid, NY and 

GSTP was purchased from MBL, Woburn, MA.  Cytosolic and nuclear extracts were 

prepared as previously described (van der Velden et al., 2008).   
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 Enzyme-Linked Immunosorbent Assay (ELISA): C10 cells were treated and/or 

transfected as indicated and medium was assessed for CCL-20 and GM-CSF cytokines by 

R & D Systems, Minneapolis, MN according to manufacturer’s instructions.   

 GSTP activity assay: GSTP activity was determined as previously described 

(Anathy et al., 2012; Townsend et al., 2009).  C10 cells were transfected with either WT-

FLAG-GSTP or Y7F-FLAG-GSTP and harvested in ice cold PBS containing protease 

and phosphatase inhibitors.  Immunoprecipitation for Flag (Sigma, St. Louis, MO) was 

performed in order to isolate exogenously expressed GSTP from lysate, and protein G 

beads (Invitrogen) were utilized for immunoprecipitation.  Immunoprecipitated samples 

were incubated with 10.1mM GSH (Fluka, St. Louis, MO) and 10.1mM 1-Chloro-2,4-

dinitrobenzene (CDNB) (Sigma) and vortexed.  Following 5’ incubation, samples were 

again vortexed and centrifuged 30” 14,000 rpm and supernatant was measured at an 

absorbance of 340 nm in order to detect GSH-conjugated CDNB.  Results are expressed 

as ΔOD/min/ mg of input protein. 

 Detection of protein S-glutathionylation: C10 cell lysates were subjected to 

immunoprecipitation of GSH-bound proteins as previously described (Anathy et al., 

2009).  Briefly, cells were harvested in the presence of 20mM N-ethyl maleimide (NEM) 

(Sigma) and 250µg protein was incubated with 1µg/ml GSH antibody (Virogen, 

Watertown, MA), immunoprecipitated with Protein G agarose beads, and subjected to 

Western Blot analysis.  Prior to immunoprecipitation, select reagent control samples were 

incubated with 50mM DTT for 30’ at 37°C, which was subsequently removed with 
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Microbiospin Chromatography Columns (Biorad) according to manufacturer’s 

instructions.   

 Statistical Analysis: Data were evaluated by GraphPad Prism 5 Software using 

one-way analysis of variance (ANOVA) with Bonferroni to adjust for multiple 

comparisons. Results with p<0.05 or smaller were considered statistically significant. 

 

Results 

 LPS-induced associations of GSTP and NF-κB proteins: In addition to its role in 

phase II drug metabolism, GSTP has been described as a ligandin, whose interactions 

typically inhibit the function of target proteins (Y. J. Kim et al., 2006; Y. Wu et al., 

2006).  We first investigated whether GSTP associated with IKK proteins and whether 

these associations altered in response to LPS.  LPS exposure enhanced GSTP and IKKβ 

interactions at 2h, which increased throughout the 24h exposure period (Figure 1).  We 

were unable to detect associations between GSTP and IKKα in any of the time points 

assessed (Figure 1).  

 Function of GSTP in LPS-induced NF-κB activation, transcriptional activity, 

and pro-inflammatory cytokine production: We next sought to examine a potential role 

for GSTP in regulating NF-κB activation and downstream inflammatory responses.  

Nuclear RelA content increased in C10 cells transfected with GSTP siRNA in 

comparison to control siRNA cells following stimulation with LPS. However, only 

modest increases in RelB were detected (Figure 2A).  NF-κB luciferase, whose induction 

indicates transcriptional activity of NF-κB, increased following LPS exposure in GSTP 
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siRNA-transfected cells as compared to control siRNA transfected cells (Figure 2B).  

Furthermore, CCL-20 and GM-CSF, cytokines transcriptionally controlled by NF-κB in 

epithelial cells, also increased following LPS exposure in lung epithelial cells transfected 

with GSTP siRNA in comparison to control siRNA-treated cells (Figure 2C).  These data 

demonstrate that GSTP plays a role in suppressing LPS-induced NF-κB activation, 

transcriptional activity, and production of the pro-inflammatory mediators, CCL-20 and 

GM-CSF. 

Role of GSTP in modulating IKKα and IKKβ glutathionylation: Given the role for 

GSTP in regulating NF-κB and pro-inflammatory cytokine production, we next 

determined whether S-glutathionylation of NF-κB proteins was also dependent on GSTP.  

Following siRNA-mediated knockdown of GSTP, LPS-induced S-glutathionylation of 

IKKβ decreased in comparison to control siRNA-transfected cells (Figure 3).  Although 

we did not detect an interaction between GSTP and IKKα, S-glutathionylation of IKKα 

increased in response to LPS, and decreased in cells subjected to GSTP siRNA ablation 

(Figure 3).  Decreases in S-glutathionylation of IKKα and IKKβ were associated with 

increases in phospho-RelA and decreases in IκBα content, indicative of protracted 

activation of IKK (Figure 3).   

 The role of GSTP in IKKβ-dependent pro-inflammatory cytokine production: 

Based upon the observed interactions between GSTP and IKKβ and the GSTP-dependent 

S-glutathionylation of IKKβ, we next examined whether GSTP directly regulates IKKβ-

dependent pro-inflammatory responses and whether the catalytic activity of GSTP is 

important for regulation of IKKβ. C10 cells were transfected with WT HA-IKKβ in 
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conjunction with either WT FLAG-GSTP, Y7F FLAG-GSTP (catalytically inactive 

mutant of GSTP), or empty vector (PCMV) control (Figure 4A).  Results in Figure 4B 

confirm that Y7F GSTP is catalytically inactive in comparison to WT GSTP.  Following 

transfection with WT IKKβ, GM-CSF content in the medium was significantly increased 

over PCMV controls 24 and 48h post transfection (Figure 4C), however, these increases 

were no longer observed following co-overexpression with either WT or Y7F FLAG-

GSTP.  These results indicate that GSTP-mediated suppression of IKKβ-induced pro-

inflammatory responses does not strictly require catalytic activity of GSTP.  We therefore 

further investigated the potential ligandin function of GSTP, given that GSTP is known to 

inhibit protein function via protein/protein interactions (Adler et al., 1999). We 

performed co-immunoprecipitation experiments to detect potential interactions between 

FLAG-GSTP and HA-IKKβ.  Following transfection of C10 cells with HA-IKKβ and 

FLAG-GSTP, surprisingly, no interaction between these two proteins was detected, based 

upon immunoprecipitation of HA-IKKβ and subsequent detection of FLAG-GSTP 

(Figure 5A).   These observations suggest that the association observed between 

endogenous GSTP and IKKβ in Figure 1 may not reflect a direct association between 

IKKβ and GSTP, and suggest that other proteins may be required for those associations 

to occur.  We therefore examined whether GSTP interacted with IκBα, as IκBα is a 

substrate of IKKβ in the NF-κB pathway.   In unstimulated cells, GSTP and IκBα protein 

interactions were readily detectable, despite a lack of S-glutathionylation of IκBα (data 

not shown).  Upon stimulation of cells with LPS, the association of GSTP and IκBα was 

no longer detectable over time periods up to 24 hours.  Overall, these findings suggest a 
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potential role of GSTP in repression of the NF-κB pathway by controlling the function of 

IκBα.   

Impact of human GSTP variants on IKKβ-induced pro-inflammatory cytokine 

production:  Finally, we examined the role of human GSTP polymorphic variants on 

IKKβ-induced signaling.  The presence of Val (105) (GSTP B and C) has been linked to 

decreases in association with atopic asthma and increases in lung function, and the 

presence of Ile (105) (GSTP A and D) has been associated with an increased enzymatic 

affinity for CDNB, a common substrate of GSTs (Watson, Stewart, Smith, Massey, & 

Bell, 1998).  The presence of Val (114) (GSTP C and D) in comparison to Ala (114) 

(GSTP A and B) has not been strongly associated with changes in susceptibility to 

asthma nor affinity for CDNB, although it is important to note that multiple GST 

substrates exist.  Following overexpression of WT IKKβ (Figure 6A), GM-CSF content 

in the medium increased over EV controls (Figure 6B).  Co-overexpression of variants A 

and D along with IKKβ (Figure 6A) resulted in decreases in WT-IKKβ-induced GM-CSF 

(Figure 6B).  In contrast, GSTP B and C only partially suppressed GM-CSF content 

(Figure 6B). 

 

Discussion 

The airway epithelium plays a crucial role in allergic airway disease, based upon 

its dual roles in barrier function and its interface with cells of the immune system.  GSTP 

is prominently expressed in lung epithelial cells (Reddy, Tu, & Wu, 1995), which is the 

location of NF-κB activity in allergic airway disease (Hart et al., 1998; Pantano et al., 
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2008; Poynter et al., 2002).  S-glutathionylation of NF-κB members is a known negative 

regulatory mechanism of NF-κB; therefore, we aimed to investigate potential enzymes 

that catalyze this process.  Given the prominent expression of GSTP in the epithelium, 

and its ability to catalyze S-glutathionylation, we explored the role of GSTP in regulating 

NF-κB activation, S-glutathionylation, transcriptional activity, and pro-inflammatory 

cytokine production. Our results demonstrate that siRNA-mediated knockdown of GSTP 

enhanced NF-κB activation and transcription, indicating a prominent role for GSTP in 

modulation of NF-κB.  GSTP associated with IKKβ, but not IKKα in response to LPS, 

and played a causal role in the increases of IKKα and IKKβ glutathionylation in response 

to LPS. Both WT GSTP and the catalytically inactive mutant of GSTP suppressed IKKβ-

induced GM-CSF production, suggesting that GSTP may regulate the NF-κB pathway via 

multiple processes.   

 GST expression has been associated with the development of allergic airway 

disease in murine models.  GST omega (GSTO), GST alpha (GSTA) and GSTP transcript 

and protein levels are increased in the lung epithelium of mice exposed to OVA-induced 

allergic airway disease (Dittrich et al., 2010; Sohn et al., 2013).  Additionally, GST mu 

(GSTM) has been shown to have a protective role in epithelial cells exposed to ozone (W. 

Wu et al., 2011).  Due to the unique association between GSTP polymorphisms and 

susceptibility to asthma, studies have been performed in order to address the role of 

GSTP in mouse models of allergic airway disease.  GSTP 
-/-

 mice display enhanced 

eosinophilia, remodeling, goblet cell hyperplasia, and lung resistance in comparison to 

Wild Type mice following subjection to Alum/OVA induced allergic airway disease (J. 
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Zhou et al., 2008).  However, both increases and decreases in GSTP overall content have 

been observed in murine models of allergic airway disease.  In one study, HDM exposure 

decreased GSTP expression, in association with decreased GST activity (Schroer et al., 

2011).  These results are in direct contrast to the aforementioned studies utilizing OVA 

(Sohn et al., 2013).  Data from the present study suggest a protective role for GSTP in 

LPS-induced pro-inflammatory signaling in epithelial cells, and as such, future 

experiments aimed at modulating GSTP content specifically in the lung epithelium 

remain of great interest.   

In addition to its ability to catalyze reduced glutathione to electrophilic substrates, 

GSTP is also a ligandin and can bind various protein targets.  C-Jun N-terminal kinase 

(JNK), a kinase that regulates diverse biological pathways, is negatively regulated by 

GSTP via direct interaction.  Following exposure to either radiation or treatment with 

hydrogen peroxide, GSTP oligomerizes and releases JNK, thus facilitating its activation 

(Adler et al., 1999).  Additionally, GSTP associates with and inhibits the function of the 

adaptor protein, TRAF2. GSTP/TRAF2 associations prevent TRAF2/ASK-induced cell 

death.  The association observed between GSTP and TRAF2 occurred independent of the 

catalytic activity of GSTP, demonstrating that GSTP can regulate cellular responses 

independently of its catalytic activity (Y. Wu et al., 2006). It is therefore plausible that 

GSTP can also physically associate with NF-κB proteins and regulate their function, 

independent of its catalytic activity.  In the present study, associations between 

exogenously expressed FLAG-GSTP and HA-IKKβ were not detected, in contrast to 

results demonstrating an association between endogenous proteins.  These data indicate 
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the lack of a direct association between IKKβ and GSTP, and suggest that observed 

interactions in the immunoprecipitation may include a complex of proteins.  In addition 

to the LPS-induced association between IKKβ and GSTP, we also detected an association 

between GSTP and IκBα in unstimulated cells. This interaction between GSTP and IκBα 

could potentially prevent the phosphorylation and ubiquitination of IκBα, thus preventing 

NF-κB activation. Our data demonstrate that LPS-induced nuclear content of RelA was 

rapidly enhanced in GSTP siRNA cells in comparison to control siRNA transfected cells, 

and suggest a potential acute mechanism of GSTP in the regulation of IκBα 

phosphorylation and/or degradation, independently of S-glutathionylation. As GSTP 

content does not affect IKKβ/α-SSG until 6h post LPS exposure, S-glutathionylation of 

IKK proteins may reflect a catalytic mechanism to attenuate IKK's activity.  This putative 

scenario wherein the ligandin function of GSTP prevents degradation of endogenous 

IκBα and a catalytic mechanism of GSTP-mediated S-glutathionylation to shut down 

IKK reflects a versatile regulatory mechanism of regulation of NF-κB, which will require 

further experiments.  

GSTs catalyze incorporation of reduced glutathione to electrophilic substrates 

through thioether linkages and promote detoxification of oxidizing agents (Armstrong, 

1997), a mechanism that counterbalances oxidative stress.  GST presence has been linked 

to a variety of cancers and GSTP, specifically, is a prevalent protein in tumors, including 

ovarian, non-small cell lung, breast, colon, pancreas, and lymphomas (Tew, 2007).  Due 

to its ability to detoxify chemicals, GST presence has been linked to resistance to 

therapeutics.  In addition to extensive research performed elucidating the roles of GSTs in 
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cancer, GSTs are also hypothesized to contribute to multiple diseases, including allergic 

asthma.  As mentioned, the GSTP gene is located on chromosome 11q13, a known locus 

for asthma-associated genes.  Human polymorphisms of GSTP, particularly at amino acid 

105, have been linked to atopic asthma; however, the functional contributions of 

polymorphic variants to asthma pathogenesis remain unclear. The frequency of GSTP 

Val (105) (GSTP B and C) is significantly lower in asthmatics, and has less of an 

association with asthma susceptibility than GSTP Ile (105) (GSTP A and D) 

(Aynacioglu, Nacak, Filiz, Ekinci, & Roots, 2004; Fryer et al., 2000).  Furthermore, the 

presence of GSTP Val (105) is associated with decreased airway dysfunction(Fryer et al., 

2000).  In contrast to these studies, recent work demonstrated that the presence of the Ile 

(105) haplotype was associated with increased acute phase pro-inflammatory cytokines in 

humans (Hoskins et al., 2013).  Interestingly, the GSTP Val (105) retains lower affinity 

for CDNB, a common substrate of GST’s, in comparison to GSTP Ile (105) (Watson et 

al., 1998).  We hypothesized that GSTP dampens NF-κB activity via catalyzing S-

glutathionylation, and our results demonstrate that GSTP WT Ile (105) (GSTP A) 

suppresses IKKβ-induced GM-CSF induction.  Additionally, we also demonstrate that 

GSTP Val (105) (GSTP C) suppresses IKKβ-induced GM-CSF, although not to the 

extent of GSTP A.  Lastly, we demonstrate that GSTP D, which also contains the Ile 105 

allele, suppresses WT IKKβ-induced GM-CSF nearly to the extent of GSTP A.  Whether 

this suppression occurs through an altered binding capacity of GSTP to proteins that 

regulate NF-κB, catalysis of S-glutathionylation, or both, remains an active area of 

investigation. 



173 

 

 In the present study we demonstrate that GSTP modulates NF-κB activation and 

pro-inflammatory cytokine production in lung epithelial cells.  One potential mechanism 

by which this occurs is via GSTP-catalyzed S-glutathionylation of IKKβ; however, we 

also provide evidence that GSTP associates with NF-κB proteins, notably IKKβ and 

IκBα, and suggests multiple mechanisms by which GSTP regulates NF-κB. Given the 

reported relevance of GSTP polymorphisms in allergic asthma, these studies provide a 

potential mechanism by which GSTP can regulate pro-inflammatory signaling in allergic 

airway disease. 

 

Figure Legends: 

Figure 1: LPS-induced association of GSTP and IKKβ:  (A) C10 lung epithelial 

cells were exposed to LPS for the indicated times and lysates were subjected to 

immunoprecipitation (IP) for GSTP, followed by SDS-PAGE separation, and assessment 

of content of IKKβ, IKKα, and GSTP via Western blot analysis. Whole cell lysates 

(WCL) under the same conditions were assessed for total IKKβ and IκBα.(β-Actin, 

loading control)  

Figure 2: Role of GSTP in LPS-induced NF-κB activation, transcriptional 

activity, ad pro-inflammatory cytokine production. (A) C10 lung epithelial cells were 

transfected with either control siRNA or GSTP siRNA and exposed to LPS for the 

indicated times.  Cytosolic and Nuclear fractions were separated by SDS PAGE.  

Cytosolic fractions were assessed for GSTP; nuclear fractions were assessed for RelA 

and RelB (β-Actin, loading control).  (B)  C10 cells stably transfected with NF-κB 
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luciferase were subjected to either control siRNA or GSTP siRNA, and subsequently 

exposed to LPS for 6 h.  Luciferase measurements were corrected for protein 

concentrations. (C)  C10 cells were treated as in A and exposed to LPS as indicated.  

GM-CSF and CCL-20 content was assessed in the medium by ELISA.  * p< 0.05 

(ANOVA) compared LPS to the respective sham group,  †  p<0.05 (ANOVA) compared 

respective siRNA groups at the same time points. 

Figure 3: Role of GSTP in modulating IKKα and IKKβ glutathionylation and NF-

κB activation:  C10 lung epithelial cells were transfected with either control siRNA or 

GSTP siRNA and exposed to LPS for the indicated times, separated by SDS-PAGE, and 

whole cell lysates (WCL) were analyzed for content of phospho RelA, IκBα, IKKα, 

IKKβ, and GSTP (β-Actin, loading control).  C10 cells were transfected and treated with 

LPS as indicated and subjected to Immunoprecipitation (IP) for GSH.  Lysates were 

separated by SDS-PAGE and analyzed for protein content of IKKβ and IKKα.  +DTT 

indicated sample subjected to treatment with DTT to decrease PSSG prior to GSH IP. 

Figure 4: Role of GSTP in IKKβ-dependent pro-inflammatory cytokine 

production: (A) C10 lung epithelial cells were either transfected with WT HA-IKKβ 

alone or co-overexpressed with either WT FLAG-GSTP or Y7F FLAG-GSTP.  Protein 

content of IKKβ and GSTP were assessed via Western Blot. (B)  Assessment of WT 

FLAG-GSTP or Y7F FLAG-GSTP enzymatic activity was assessed by detection of GSH 

conjugated CDNB.  (C) Amount of GM-CSF content in the medium of C10 cells was 

analyzed by ELISA following either WT HA-IKKβ transfection alone or co-

overexpression of WT HA-IKKβ with either WT FLAG-GSTP or Y7F FLAG-GSTP 24 
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or 48h post transfection.   * p< 0.05 (ANOVA) compared the EV group to the WT HA-

IKKβ-transfected groups,  †  p<0.05 (ANOVA) compared WT HA-IKKβ-transfected 

groups to either WT HA-IKKβ/WT FLAG-GSTP or WT HA-IKKβ/Y7F FLAG-GSTP-

transfected groups. 

Figure 5: GSTP associates with IκBα:  (A) C10 lung epithelial cells were co-

transfected with WT FLAG-GSTP and WT HA-IKKβ and exposed with LPS for times 

indicated.  Lysates were subjected to Immunoprecipitation with HA antibody, followed 

by separation by SDS-PAGE and assessed for HA and FLAG. (B) C10 lung epithelial 

cells were exposed to the indicated times with LPS and lysates were subjected to 

immunoprecipitation (IP) with GSTP antibody, followed by SDS-PAGE separation, and 

assessed content of IκBα and GSTP by Western Blot. IgG controls were subjected to IP 

by mouse IgG (A) or rabbit IgG (B) and assessed as in A or B.  

Figure 6: Impact of human GSTP variants on pro-inflammatory cytokine 

production.  (A) C10 lung epithelial cells were transfected with either PCMV, WT HA-

IKKβ, GSTP human haplotypes: A, B, C, or D or the indicated combinations.  Lysates 

were separated by SDS-PAGE and assessed via Western Blot for analysis of IKKβ, 

GSTP, and β-Actin (loading control).  (B) C10 lung epithelial cells were transfected with 

either PCMV, WT HA-IKKβ alone, or WT HA-IKKβ with either GSTP haplotypes: A, 

B, C, or D and medium was assessed for content of GM-CSF via ELISA.  * p< 0.05 

(ANOVA) compared to the PCMV group (EV),  †  p<0.05 (ANOVA) compared the HA-

IKKβ-transfected groups. 
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Figure 1: LPS-induced GSTP associations with IKK 
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Figure 2: GSTP knockdown enhances LPS-induced NF-κB activation, transcriptional 

activity, and cytokine production 
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Figure 2 cont: GSTP knockdown enhances LPS-induced NF-κB activation, 

transcriptional activity, and cytokine production 
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Figure 3: GSTP knockdown enhances IKKα and IKKβ S-glutathionylation 
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Figure 4: GSTP downregulates IKKβ-induced pro-inflammatory response 
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Figure 5: GSTP associates with IκBα 
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Figure 6: Human polymorphic GSTP variants modulate IKKβ-induced responses 
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Chapter 5 

Concluding Remarks and Future Directions 

Summary of Intents 

 Previous studies from our laboratory demonstrated a role for epithelial NF-κB in 

regulating LPS and allergic-induced pulmonary inflammation.  While activation of the 

classical pathway had been studied extensively in both in vivo and in vitro models of 

inflammation, the role of alternative NF-κB in lung epithelial cells had remained 

unknown.  A primary goal of this thesis, therefore, was to investigate activation of 

alternative NF-κB in lung epithelial cells, as well as establish a potential role for 

alternative NF-κB in regulating epithelial-derived inflammatory responses.  Furthermore, 

we aimed to investigate crosstalk between classical and alternative signaling, and how 

they collectively contribute to epithelial-derived pro-inflammatory phenotypes (Chapter 

2).  Additionally, the role of epithelial NF-κB in orchestrating allergic asthma had not 

been investigated in the context of a model utilizing an allergen relevant to human 

asthma. Therefore, a goal of this thesis was to evaluate the impact of inhibition of NF-κB 

in the lung epithelium following exposure to House Dust Mite, a known asthma trigger in 

mice (Chapter 3).  Finally, our laboratory previously demonstrated that IKKβ kinase 

activity is inhibited through the post-translational modification, S-glutathionylation.  

Given the importance of S-gluatathionylation in the regulation of NF-κB, we aimed to 

investigate the enzyme, GSTP, as a potential regulator of NF-κB, since GSTP was 

recently identified as a catalyst of S-glutathionylation reactions (Chapter 4).   
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Classical and Alternative NF-κB in lung epithelial cells 

 Our results demonstrate that cooperation occurs between classical and 

alternative NF-κB in lung epithelial cells.  In other cell types, such as fibroblasts, 

alternative NF-κB promotes an anti-inflammatory phenotype (Baglole et al., 2008).  

However, we demonstrate herein that co-overexpression of constitutively active IKKα 

and IKKβ cooperatively enhances production of pro-inflammatory cytokine content, in 

association with increases in nuclear content of both RelA and RelB.  Mechanisms that 

govern this phenotype are not clear.  It is possible that RelA/RelB heterodimers on target 

promoter regions may facilitate increased production of pro-inflammatory cytokines.  

Multiple reports have indicated a role for RelB in preventing RelA-induced transcription 

(Saccani et al., 2003), however other reports have contrasted these results.  RelB 

occupancy on the GM-CSF promoter enhances RelA-induced transcription, illustrating a 

potential cooperative impact for RelA and RelB promoter occupancy (Sasaki et al., 

2011).   Future promoter studies investigating co-occupancy of RelA and RelB, in 

association with RNA PolII, would take place in order to test this putative scenario.  

RelA/RelB-modulated promoter regulation may also be unique to each gene being 

evaluated.  To address whether RelB does play a role in enhancing RelA-induced 

transcription, experiments in which NIK, IKKα, and RelB are ablated and RelA promoter 

associations assessed, can be performed. 

 One major aim of Chapter 2 of this thesis was to evaluate the role of the 

alternative NF-κB pathway in lung epithelial cells; however, specific activation of the 

alternative NF-κB pathway without activating classical NF-κB proved challenging.  This 
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observation demonstrates the complexity of interdependence between the two pathways.  

Despite this observation, alternative methods in the future may be employed in order to 

specifically activate alternative NF-κB.  Constitutively active IKKα increased nuclear 

content of RelA and RelB, while WT IKKα and RelB plasmid overexpression had no 

effect on either pathway (data not shown).  Therefore, a future approach may directly 

target NIK, the kinase upstream of IKKα in the alternative pathway.  TRAF3 

constitutively ubiquitinates NIK, leading to its degradation and inactivation of the 

alternative NF-κB pathway.  However, upon degradation of TRAF3, NIK content 

stabilizes and activates alternative NF-κB signaling (Liao et al., 2004).  Recent work has 

demonstrated that a cleavage mutant of NIK, which retains the C terminus region of the 

protein, exhibits kinase activity, but is resistant to TRAF3-mediated degradation 

(Rosebeck et al., 2011).  Potential future studies could utilize this construct in order to 

specifically activate alternative NF-κB in lung epithelial cells and determine its role in 

regulation of inflammatory responses.   

Despite the results obtained in Chapter 2, the role of alternative NF-κB in the lung 

epithelium is not yet clear.  We demonstrated that IL-6 content increased significantly 

following IKKα and RelB siRNA-mediated ablation, in contrast to RelA-mediated 

ablation.  IL-6 is a pro-inflammatory cytokine derived primarily from epithelial cells, and 

is known for its ability to polarize CD4
+
 T cells.  IL-6, in conjunction with TGF-β1, is 

known to promote T cell polarization to a TH17 subtype and also promotes IL-4 release 

from TH2 cells (Dienz & Rincon, 2009).  Interestingly, IL-6 is basally expressed in 

structural cells of the lung, as opposed to immune cells (Neveu et al., 2011).  Therefore, it 
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is possible that the IL-6 derived from lung epithelial cells may have a role in TH17 

polarization, and that this phenotype is mediated by attenuation of alternative NF-κB.  In 

vivo models of allergic inflammation would be required to address these putative 

scenarios.   

 

Epithelial NF-κB in HDM-induced allergic airway disease 

 Our results demonstrate that NF-κB inhibition in the epithelium protects against 

HDM-induced inflammation, hyperresponsiveness, and remodeling.  However, the exact 

mechanism by which this occurs is unknown.  We demonstrate that inhibition of NF-κB 

prevented the expression of IL-33, a cytokine known to promote the pathogenesis of 

asthma, among many other disorders (Borish & Steinke, 2011).  It is still unknown 

whether activation of NF-κB is important during the sensitization phase, challenge phase, 

or both, following HDM exposure, because of the constitutive expression of the 

transgene.  Future studies for this project include elucidating whether the activation of 

NF-κB is important in response to initial exposure of HDM itself, or whether it regulates 

adaptive immune responses following repeated exposure to HDM.  Additional genetic 

models in which the NF-κBSR transgene is expressed conditionally could be developed in 

order to address these questions.    

 Both classical and alternative NF-κB are inhibited in the epithelium following 

expression of the NF-κBSR transgene.  This is not surprising, given the ability of NF-κB 

Rel proteins to bind ankyrin repeat domains on IκB’s.  It does, however, raise the 

question of whether classical, alternative, or both are important in HDM-induced allergic 
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airway disease.  Following HDM administration, we observed activation of both classical 

and alternative NF-κB, leading to the hypothesis that they both may play a role in the 

pathogenesis of disease.  In order to begin to address the role of alternative NF-κB alone, 

we administered RelB siRNA into the mouse lung prior to HDM exposure.  While we 

were able to demonstrate that RelB ablation conveyed a partial protection against HDM-

induced pro-inflammatory cytokine expression, the relevance RelB to HDM-induced 

allergic inflammation, hyperresponsivenss, and remodeling still remains unknown.  These 

studies did not address the role of RelB specifically in the epithelium, as siRNA 

administration may target other resident cells in the lung.  Therefore, in order to address 

the role of alternative NF-κB specifically in the lung epithelium in HDM-induced allergic 

airway disease, additional genetic models should be generated.  Crossing a 

NIK/IKKα/RelB
flox/flox

 mouse with the CC10-rtta tetOP/Cre mouse and exposing to HDM 

would have the potential to answer these questions.   

 

Glutathione S-transferase-mediated regulation of NF-κB 

 We demonstrate that IKKβ-induced GM-CSF is decreased by the GSTP 

haplotypes; however, the mechanisms and overall impact on NF-κB activity remain 

unclear.  In future experiments, we could compare the ability of the different GSTP 

haplotypes to glutathionylate IKKβ and modulate NF-κB transcriptional activity.  To 

date, despite the characterization of their ability to conjugate GSH to different 

electrophilic substrates, such as CDNB (Watson et al., 1998), nothing is known about the 

ability of different human GSTP variants to catalyze S-glutathionylation.  Furthermore, 
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haplotype C is associated with protection against asthma in comparison to haplotype A 

(Aynacioglu et al., 2004).  However, controversy still remains in the literature over this 

observation, as recent work demonstrated that patients with haplotype C demonstrated 

enhanced acute phase cytokine production (Hoskins et al., 2013).  Therefore, 

understanding the molecular mechanisms that govern the ability of GSTP haplotypes to 

modulate NF-κB, both through enzymatic and non-enzymatic mechanisms is crucial to 

understanding the role of GSTP in allergic asthma. 

 Our studies demonstrate that IKKβ-SSG increases are dependent on GSTP 

content following exposure to LPS.  Therefore, we hypothesized that GSTP specifically 

downregulates IKKβ-induced cytokine production, and that this suppression is due to the 

catalytic activity of GSTP.  Surprisingly, we observed that both WT and catalytically 

inactive GSTP equally suppressed IKKβ-induced GM-CSF, indicating a mechanism 

distinct from the ability of GSTP to conjugate GSH to target proteins.  GSTP is also a 

ligandin, whereby its association with a target protein inhibits its function.  GSTP has 

already been reported to associate with TRAF2 and c-JUN N-terminal kinase (Adler et 

al., 1999; Y. J. Kim et al., 2006; Y. Wu et al., 2006), however, it is not known with which 

proteins GSTP may associate in the NF-κB pathway.  We demonstrate a possible 

association between GSTP and IKKβ, as well as IκBα.  However, it is possible that GSTP 

has other binding partners that regulate the NF-κB pathway.  Future directions for this 

study would include mass spectrometry analysis to identify GSTP associated proteins.   

 It is also possible that GSTP associates with the IKK signalsome, given the 

indirect associations observed between IKKβ and GSTP.  Therefore, another future 



192 

 

direction of this project will include disrupting the IKK complex with NEMO binding 

domain peptides and evaluate LPS-induced GSTP associations with IKKβ.  As GSTP can 

also associate with TRAF2, it is additionally plausible that GSTP binds adaptor proteins 

upstream of the signalsome, which in turn leads to enhanced association with the IKK 

complex.   In conjunction with these scenarios, it is also noteworthy that classical and 

alternative NF-κB activation are both controlled through the IKK signalsome (Chapter 2).  

Current NF-κB inhibitors target different components of the classical pathway, including 

IKKβ, IκBα degradation, and nuclear translocation of RelA (Horie, 2013).  It is important 

to understand how these inhibitors effect both classical and alternative NF-κB, as the 

results from this thesis clearly demonstrate that alternative NF-κB also plays a role in 

epithelial-derived pro-inflammatory responses.  Furthermore, indirectly targeting NF-κB 

through known regulatory molecules, such as GSTP, may also impact both classical and 

alternative NF-κB.  Therefore, when considering methods by which to therapeutically 

target NF-κB, one must take into account the potential impact on both classical and 

alternative NF-κB. 
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Figure Legends: 

Figure 1: Schematic depicting simultaneous activation and crosstalk of classical 

and alternative NF-κB.  Following stimulation of pro-inflammatory agonists, such as 

LPS, both classical and alternative NF-κB are activated in lung epithelial cells.  Pro-

inflammatory phenotypes of both IKKα and IKKβ each require the presence of both RelA 

and RelB.  Furthermore, RelA and RelB nuclear translocation is dependent on the IKK 

signalsome.   

Figure 2: Table summarizing differences between Wild Type and NF-κBSR mice 

following HDM administration.  Wild Type and NF-κBSR BALB/c mice were exposed to 

15 challenges (over 3 weeks) of HDM and assessed for the indicated parameters in the 

table.  Arrows in WT column indicate impact of HDM, and arrows in NF-κBSR column 

indicate a comparison to WT mice.    

Figure 3: Schematic depicting GSTP-induced regualtion of NF-κB pathway. 

Following stimulation with LPS, IKK phosphorylates IκBα, thus activating NF-κB.  The 

presence of GSTP associates with IκBα in unstimulated cells, and its release facilitates its 

degradation.  Furthermore, following activation of IKK, GSTP catalyzes S-

glutathionylation of IKK and dampens its kinase activity, thus shutting down NF-κB 

dependent gene transcription.   
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Figures: 

Figure 1: 
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Figure 2: 
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