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Abstract 

The long-term success of wildlife conservation depends on maximizing the 

benefits of limited funds and data in pursuit of population and habitat objectives. The 

ultimate currency for wildlife management is progress toward long-term preservation of 

ample, wild, free wildlife populations and to this end, funds must be wisely spent and 

maximal use made from limited data.  

Through simulation-based analyses, I evaluated the efficacy of various models for 

estimating population abundance from harvest data. Because managers have different 

estimators to choose from and can also elect to collect additional data, I compared the 

statistical performance of different estimation strategies (estimator + dataset) relative to 

the financial cost of data collection. I also performed a value of information analysis to 

measure the impact that different strategies have on a representative harvest management 

decision. The latter analysis is not based on the cost of data, but rather on the 

management benefit derived from basing decisions on different datasets.  

Finally, I developed a hybrid modeling framework for mapping habitat quality or 

suitability. This framework makes efficient use of expert opinion and empirical validation 

data in a single, updateable statistical structure. I illustrate this method by applying it 

across an entire state.  
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Chapter 1 Introduction and Literature Review 

This dissertation explores advanced analytical methods for mapping wildlife 

habitat and evaluating the efficacy of competing approaches to population estimation and 

analysis of harvested species. I use the American black bear as a study species because 

resurgent populations and changing human attitudes toward bears have ushered in a new 

era of management for this species. The species’ ecology and its potential to harm 

humans make its management a sensitive topic. My research is framed in the decisions 

facing black bear managers in choosing population monitoring programs and evaluating 

habitat when hard data are sparse and often prohibitively expensive to collect.   

Study species 

American black bears (Ursus americanus) once ranged across all of sub-arctic 

North America that had tree cover, but were extirpated across much of their range 

through bounties, unregulated hunting, and predator control measures (Miller 1990). In 

the past century, black bear populations have been afforded a number of legal protections 

and their populations have generally rebounded to the point that we are witnessing a new 

era in black bear management in North America. The current generation of managers 

grew up under a “recovery” regime where harvest pressure and human interference were 

limited in favor of natural increase. Today, recovery appears to have been successful 

enough in many regions that management must shift to a “maintain” regime more akin to 

how deer and other game species have been managed (Miller 1990).  
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Black bears are large-bodied, generalist omnivores that eat mostly of vegetation 

and hibernate in winter (Tøien et al. 2011). Adequate nutrition must be consumed in the 

warmer months to survive hibernation and to support reproduction (Elowe and Dodge 

1989). Late summer and fall are the critical feeding periods and bears can gain up to a 

kilogram of mass per day when food is abundant (Jonkel and Cowan 1971).  

Distribution of food and heavy cover providing refuge from human activity are 

the primary components of prime bear habitat (Rogers and Allen 1987, Clark et al. 1993, 

Mitchell et al. 2002, Pelton 2003). Wherever Black Bears are allowed to do so, they 

readily habituate to living alongside humans to access anthropogenic food sources such 

as garbage that meet the bears’ need for high protein- and fat-content foods (Pelton 

2003). Despite the nutritional benefits, close proximity to humans increases mortality 

risks to bears through legal, illegal, and accidental means (Rogers and Allen 1987, 

Rogers 1989, Mattson 1990). The long-term conservation of viable bear populations in 

the face of continued spatial expansion of humans depends on humans accepting higher 

risks from habituated bears and/or ensuring the existence of adequate undeveloped 

refugia (Mattson 1990).  

Bears, especially males, may move often and range widely in search of food 

during late summer and fall, contributing to the greater vulnerability of male than female 

bears to fall hunting (Pelton 2003). Females are also less vulnerable to fall harvests 

because they den first, followed by sub-adults, and finally adult males (Jonkel and Cowan 

1971, Johnson and Pelton 1980, Schooley et al. 1994). Winter denning typically begins 

between September and January and ends between March and May, depending on 
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latitude, with shortest periods of dormancy at the southern extent of the range (Lariviere 

2001). 

Black bear populations are stable or growing throughout their current North 

American range (Hristienko and McDonald 2007). In most jurisdictions, black bears are a 

managed game animal with hunting seasons typically in the fall, but also in the spring in 

some locales. Black bear hunting tactics include shooting over bait, calling, spot-and-

stalk, stand-hunting, and pursuit with hounds. Black bears are biologically much different 

than deer, so their management is also different. Black bears are long-lived with low 

reproductive rates due to delayed female primiparity, small litters, and biennial 

reproduction (Pelton 2003). If subject to over-harvest, black bear populations are 

expected to recover less quickly than populations of other game species such as deer 

(Miller 1990). 

Also unlike deer, black bears have greater potential to cause direct harm to 

humans and their property. In the past, bears mingling with human settlements might 

have been readily shot. Today, hunting and poaching are rarer and so bears can be 

afforded great latitude in exploiting human sources of food. The increasing abundances 

of bears, their ability to live in close among people, and the danger that they can pose in 

bad circumstances all counsel for management that limits their growth and proximity. On 

the other hand, people value knowing that bears are nearby and seeing them. This and the 

down-side risk of over-reducing their populations and setting back recovery 

unnecessarily counsels for optimality in management.  
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Habitat modeling 

Habitat models are valuable for anticipating and assessing the impacts of 

environmental changes and human development on wildlife habitat (Guisan and 

Zimmermann 2000, Nielsen et al. 2010, Bird et al. 2011, Jackson et al. 2011). Habitat 

loss and degradation are leading threats to the persistence of wildlife species worldwide 

(Wilcove et al. 1998, Brashares et al. 2001, Schipper et al. 2008). Proper management 

and conservation depends on proper valuation of affected habitat, however, in many 

situations, adequate species-habitat data for statistical modeling do not exist.  

In most cases, empirical location data can only be collected for a given species 

within a small geographic extent. Where these data do exist, statistical models can be fit 

to the data to estimate the influence of different environmental characteristics. The 

models, commonly called species distribution models (SDMs), include a variety of linear, 

nonlinear, and other forms (Elith and Graham 2009) that typically exploit locations of 

species detections, without or without accounting for imperfect observability (e.g., 

MacKenzie et al. 2003, Phillips et al. 2006). Increasingly, researchers and 

conservationists are taking account of spatial-autocorrelation (Fortin and Dale 2009, 

Fotheringham 2009) and using spatially-explicit models for analyzing species 

distributions (Augustin et al. 1996, Lichstein et al. 2002, Dormann et al. 2007, Fortin and 

Dale 2009, Carroll et al. 2010). All of these methods require empirical location data and 

are therefore, usually limited to application in relatively small, disparate locations. 
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Habitat suitability index models 

Habitat Suitability Index (HSI) models (USFWS 1980, 1981) are theoretical, 

deductive models designed to model habitat when no adequate empirical data are 

available. HSI models consist of input variables (e.g., distance to roads, percent of habitat 

in the surrounding area), suitability functions (e.g., linear equations) that specify the 

change in suitability as input variable changes, and an aggregating scheme for combining 

the individual suitability indices into a single HSI value per spatial unit. Identification of 

each of these components depends on published literature and expert opinion.  

HSI modeling requires expert judgment to identify variables and create suitability 

functions. In some cases, these functions are estimated, but this requires some amount of 

empirical location data (e.g., Powell et al. 1997). More commonly, suitability functions 

are “built by hand” through an iterative process of educated guessing and visual and 

mensurative calibration with independent data (Brooks 1997). Sometimes individuals 

build the functions and sometimes groups. In a group model, discrepancy between 

experts’ judgments (between-expert uncertainty) can be the dominant source of 

uncertainty in the model (Czembor et al. 2011). Forced consensus is prone to social and 

cognitive biases, particularly over-confidence (Clemen and Winkler 1999, Kahneman et 

al. 1999, Burgman 2005). By extension, different individuals are expected to build their 

models differently as well. Attempts to characterize the uncertainty of deductive models 

involve Monte Carlo simulations (Bender et al. 1996, Frey and Rhodes 1996), but such 

exhaustive treatments ignore experience and prior knowledge and will be a practical 

impossibility in many cases (Ferson 1996).  
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The steps of building an HSI model include calibration, verification and 

validation (Brooks 1997). Calibration and verification include referring to external 

information to test that components of the model are behaving as intended. A common 

means of calibration is applying a new model to a familiar landscape to see that the 

results conform to reasonable expectation and that the modeled HSIs span the reasonable 

range of values, allowing for relevant distinction between sites. Verification consists of a 

more general assessment of model construction including how well the modeled HSI 

tracks other putative measures of quality—that “good” areas have higher HSIs than “bad” 

areas.  

Validation is the final, critical step before one should use an HSI for its intended 

purpose (Brooks 1997, Roloff and Kernohan 1999). Validation requires comparison of 

the HSI output to some independent data representing the ecological process of interest, 

such as location, reproductive, or abundance data (Kilgo et al. 2002, Mitchell et al. 2002, 

Tirpak et al. 2009, Jones-Farrand et al. 2011). The information gleaned from the 

comparison of the HSI model to this other information is the basis of confidence in its 

use. However, no rigorous method exists for integrating the new knowledge into the 

existing model form and any alterations to the HSI model must be ad hoc (McLaughlin 

1999, Mitchell et al. 2002).  

My research attempts to streamline model-building by formulating expert opinion 

in a manner that is amenable to the same statistical models that we use for empirical 

location data. This offers several advantages in terms of simplified model formulation, 

rigorous validation with automatic updating of model parameters, and a generalizable 

structure that can be used and adapted across broad regions.  



7 

 

 

Population estimation 

A wildlife manager’s choice of estimator must take into consideration data 

collection costs, particularly where additional data may make a viable choice of an 

otherwise unsuitable estimator. Examples of datasets that may accompany the age-at-

harvest data include tag sales, the hunter participation rate (the proportion of hunters who 

actively hunt, given a tag was purchased), and the hours spent actively hunting per 

participant. Additionally, mark-recapture datasets permit estimation of harvest and 

survival rates.  

From the manager’s perspective, the choice of which estimator is optimal likely 

depends on three critical objectives: minimizing the bias (the difference between the 

estimated abundance and true abundance), maximizing precision (shrinking the 

confidence interval of the estimate), and minimizing cost (the cost of the data needed for 

population estimation). New analytical methods are continually being developed (Skalski 

et al. 2005), presenting managers with an ever-increasing number of options for 

estimating the size or trend of a harvested population.  

I examined three different population estimators in the course of my research, the 

Downing population reconstruction (Downing 1980), the Paloheimo-Fraser successive 

sex ratio estimator (Paloheimo and Fraser 1981), and statistical population reconstruction 

(e.g., Gove et al. 2002, Gast 2012). The first two techniques are commonly used in the 

management of black bears and the latter has been applied to black bear populations in 

the literature (Conn et al. 2008) and offers promise for managers. 
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Population reconstruction 

Population reconstruction methods were first developed for use in fisheries where 

samples (e.g. commercial net captures) included large numbers of individuals that could 

be sorted into age classes according to length. These methods are variously known as 

stock assessments, virtual population analysis, cohort analysis, and, particularly in 

terrestrial species, population reconstruction. Population reconstruction generally aims to 

estimate the pre-harvest abundance in a given year. The annual cycle is characterized by 

a period where all mortality is a function of the harvest and a second period in which all 

mortality is from natural causes. The post-harvest abundance P, is  

𝑃𝑡 = 𝑁𝑡 − 𝐻𝑡,  

𝐻𝑡 = 𝑁𝑡 ∗ ℎ𝑡 . 

where the post-harvest abundance is the pre-harvest abundance (Nt) less the number of 

animals harvested, Ht, which is the product of Nt and the harvest rate, ht. The estimate of 

the pre-harvest abundance in the following year is then  

𝑁𝑡+1 = 𝑃𝑡 ∗  𝑠𝑡, 

the post-harvest abundance discounted by the rate of survival, st, from time t to t+1. A 

single, simplified formula for this is 

𝑁𝑡+1 = 𝑠𝑡(𝑁𝑡 − 𝐻𝑡), 

which can be re-arranged to the essential reconstruction equation 

𝑁𝑡 = 
𝑁𝑡+1
𝑠𝑡

+ 𝐻𝑡.  
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If harvest and natural mortality are not differentiated, then the survival rate from time t to 

t+1 is presumed to include all harvest mortality, so the equation simplifies to 

𝑁𝑡 = 
𝑁𝑡+1
𝑠𝑡
.  

Population reconstruction is often referred to as “backwards accounting” because 

the information about abundance in time t+1 is used to calculate that of time t. The 

differences among reconstruction methods largely depend on the means of estimating the 

st, or more commonly the mortality rate, 1-st.   

The Downing reconstruction (1980) is one of the simplest methods, and it is also 

one of the most commonly-used for terrestrial wildlife management. In Downing’s 

seminal application, he used the data published by Robinette et al. (1977) from an 

intensive study of a deer herd living on a 137 km
2
 study area. Those authors accounted as 

well as possible for all sources of mortality, so the data used by Downing are more likely 

to approach an accurate estimate of abundance than a table based solely on harvest data, 

which will be negatively biased because not all mortality will be included in the 

calculations.   

Reconstruction calculations work backwards through a cohort (a group of animals 

born in the same year). One of the issues with population reconstruction is the difference 

between ‘complete’ and ‘incomplete’ cohorts. A cohort is ‘complete’ when it is entirely 

represented in the mortality data. That is, if the terminal age is 15 years, then a complete 

cohort is one that has mortality counts for all ages up to and including 15 (the final age 

class is considered terminal, meaning no individuals survive beyond it). Backwards 
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reconstructions cannot be made for incomplete cohorts, so for long-lived animals, this 

means that mortality counts must be collected for many, many years in order to get 

sufficient complete cohorts to make meaningful reconstructions.  

Another way to solve this problem is to use “terminal age-class pooling” and 

Downing has been shown to be robust to this practice (Davis et al. 2007; Rinehart, 

unpublished data). Terminal age-class pooling simply means that for the population with 

a terminal age of 15, we can pool ages 10-15 (for example), into a new terminal class 

called “10+”. Such pooling does not alter the reconstruction of the completed cohorts, 

and it makes more completed cohorts out of the same dataset, as any cohort having 

attained at least 10 years of age in the dataset is now “complete”. The only limitation is 

that the final 2 age classes, the “plus” class and the one preceding it (e.g. age classes 9 

and 10+) must contain adults with equal mortality rates. This equal rates assumption is 

the key to Downing’s method. 

Given consistent mortality across the final two age classes, the first step in the 

Downing reconstruction is to estimate the adult mortality rate (the following calculations 

are summarized in Table 1.1). For an illustrative example, let us assume that the 2 adult 

classes are 2.5 year olds and 3.5+ year olds. The first step is to find the average annual 

mortality for each of the final age classes. In order to begin the reconstruction with the 

existing data, Downing uses “average” values to project information into a hypothetical 

“final+1” year of data, a point from which to reconstruct backwards into the final year of 

the actual data.  In our example, the average mortality in the final 2 classes is 108.2 and 

74.7, respectively. Now we can reason that any animals that die as 3.5+ must have 

survived being 2.5. Similarly, any animals that die as 2.5 must have previously been 
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alive. Therefore, a rough estimate of adult survival rate is the ratio of the average 3.5+ 

class mortality to the 2.5 class mortality. We can construe this as a mortality rate by 

taking 1 minus this ratio: 

𝑚 = 1 − 
𝐶3.5+

(𝐶2.5+𝐶3.5+)
, 

where m is the mortality rate for adult age classes and Ci is the mortality count for age 

class a. In our example, the mortality rate, figured for the average counts, is 0.59 (1 – 

74.7/108.2). Given the preceding assumption of constant mortality rate across these two 

age classes, we can then use this one rate to reconstruct an estimate of the abundance in 

the final year of the data. The reconstructed abundance for a given adult age class is 

found as  

𝑅𝑎,𝑡+1 = 
𝐶𝑎,𝑡
𝑚𝑡
,  

where Ra,t+1 is the reconstructed abundance for age class a and time t+1. Applying the 

mortality rate of 0.59 to mortality counts of 108 and 73 leads to abundance estimates of 

183 and 126, for the 2.5 and 3.5+ classes, respectively.  

The values calculated above are the “final+1” year estimates of abundance for the 

adult classes. With these in place, we can employ a similar practice to reconstruct 

abundance for the adult classes in all years of data. Now, the adult survival rate is 

computed as the sum of mortality counts for the last two classes in a given year plus the 

3.5+ abundance in the following year 
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𝑚𝑡 = 1 − 
𝑅3.5+,𝑡+1

(𝐶2.5,𝑡+𝐶3.5+,𝑡 + 𝑅3.5+,𝑡+1)
. 

This formula shows that our estimate of survival rate is the number of adults surviving 

time t divided by all the adult animals that had to have been alive that time. The 

reconstructed abundance of older adults in time t+1 includes all adult survivors of time t. 

To this we add all those that died in time t to get the total that must have been alive. 

When working on the final year of mortality data, we make use of the hypothetical data 

for time “final+1” that we generated above. By employing the formula above in the basic 

reconstruction formula (R = C/m), the abundances for the final two age classes can be 

reconstructed for all years of data. Of course, 1 minus the survival rate yields the 

mortality rate. 

Once the adult classes are reconstructed, the younger age classes for all cells can 

be reconstructed by simple back-wards addition, within a cohort, of harvest counts with 

the reconstructed abundance in the following year 

𝑅𝑖−1,𝑡 = 𝑅𝑖,𝑡+1 + 𝐶𝑖−1 

where the subscript i takes a maximum value equal to the younger of the two adult age 

classes.   

Annual abundance estimates are the sum of the age-specific reconstructed 

abundances for each year. Reconstruction is performed separately for the sexes and then 

the results are combined to arrive at total population estimates. The final years of data 

include incomplete cohorts for which the reconstructions are merely backwards addition 

of harvest counts and are strongly negatively biased. The number of years with 
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incomplete cohorts is a function of the number of age classes used. Recall that adult 

classes can be pooled to just 2 classes to minimize the impact of incomplete cohorts.  

The Downing method has been subject to several performance assessments (Davis 

et al. 2007, Fieberg et al. 2010) and is known to be a negatively-biased abundance 

estimator. This negative bias is accentuated when only harvest counts are used instead of 

total mortality counts. The assumptions of the Downing reconstruction as typically 

applied to harvest counts are that the ratio of harvest mortality to total mortality is 

constant across cohorts, that the mortality rates of the terminal 2 adult age classes are 

equal, and that age distributions in the reported mortalities are unbiased samples of the 

population age distribution.   

Davis et al. recorded a 10-20% negative bias in abundance estimates, but the 

degree of bias will be a function of the number of animals dying without record. When 

natural mortality is low, (e.g. adult black bears), the bias will be low. Davis et al. 

assumed low natural mortality rates (e.g. ~10%). These rates are consistent with research 

on adults (Bunnell and Tait 1985, Beston 2011), but research also shows sub-adult and 

yearling black bears can have natural mortality rates up to 30% (Beston 2011). Higher 

natural mortality among age classes that can be abundant in the harvest counts would be 

expected to contribute to even greater negative bias to abundance estimates. 

Statistical population reconstruction 

The primary difference between various versions of population reconstruction is 

the means by which mortality rates are estimated. In the simplest methods, the mortality 

estimate is just the ratio of reported mortality to the back-calculated abundance for a 



14 

 

given age and year (Fry 1949). Downing constructs the two terminal age classes as 

having constant rates and estimates mortality using a similar ratio of mortality count over 

a sum of mortalities and reconstructed abundances (Downing 1980). More sophisticated 

methods suppose that the ratio of harvest to abundance is a non-linear function of 

instantaneous harvest and mortality rates (Gulland 1965 and Pope 1972, c.f. Skalski et al 

2005). These non-linear reconstructions are more realistic in their modeling of harvest 

processes, but they require initial estimates of harvest rate of the terminal (oldest) age 

class and the annual instantaneous natural mortality rate. Another means of generating 

plausible estimates of harvest mortality rates is to use auxiliary information for guidance. 

Fryxell et al. (1988) estimate harvest rates as a function of hunter effort. Statistical 

population reconstruction is the logical extension of this practice: using auxiliary 

information to support statistical estimation of the rates used to reconstruct abundance.  

Statistical population reconstruction (SPR) is a class of population estimators that 

are similar to classic population reconstruction techniques, but use auxiliary data to 

estimate nuisance parameters that cannot be estimated from harvest data alone. The 

fundamental feature of SPR is the marriage of age-at-harvest data and auxiliary data 

within a statistical model to jointly estimate the required quantities. This has the benefit 

of relaxing the assumptions that are required for non-statistical reconstruction as well as 

allowing rigorous estimates of uncertainty. The auxiliary data used for published 

examples of SPR include hunter effort data (Skalski et al. 2007, Fieberg et al. 2010, 

Skalski et al. 2011), vegetation impact data to index deer abundance (Skalski et al. 2007), 

wildlife food availability (Fieberg et al. 2010), wildlife sighting rates (Gast 2012), and 

recoveries of tagged animals (Gove et al. 2002, Conn et al. 2008, Broms et al. 2010, 
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Fieberg et al. 2010). SPR methods can also include models for errors associated with data 

such as age classifications (Conn et al. 2008).   

The abundance of a given age class of animals in a given year is modeled as the 

abundance in the previous year and age-class (i.e., within the cohort) less those 

individuals harvested or dying of natural causes. Harvest and non-harvest mortality are 

confounded in normal reconstruction, but if one models survival using another dataset, 

then the identification and estimation of these rates is possible. Gast (2012, 2013) 

assessed the statistical performance of various forms of SPR, including some with and 

without random effects and recruitment functions. The best-performer in his study, which 

Gast called the Horvitz-Thompson-type estimator, estimated only harvest vulnerability 

and survival (Gast et al. 2013). This model was so-named because it does not estimate 

abundance directly, but does so indirectly as 

�̂�𝑖 = 
∑ 𝐶𝑖𝑗
𝐴
𝑗=1

ℎ̂𝑖
, 

which states that the estimated abundance (�̂�𝑖) for year i is the sum of the harvest counts 

for that year divided by estimated annual harvest rate. This formula, which we have also 

used above, mimics the Horvitz-Thompson estimator (Horvitz and Thompson 1952), 

except it uses an estimated rate in the denominator rather than a known one, hence Gast’s 

use of the modifier “-type”. Gast’s Horvitz-Thompson-type estimator follows the form 

shown below for a 3 age-class example. The likelihood of being harvested in a given year 

is constructed as being conditional upon being harvested at all, hence the likelihood of 

the harvest and survival rates, h and s given the harvest counts for cohort A is 
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 𝐿 (ℎ, 𝑠 |
𝐶𝐴
→ ) = (

∑ 𝐶𝑖𝑖
𝑖

𝐶11𝐶22…𝐶𝑖𝑗

)(
ℎ1
ℎ𝑒
)
𝐶11

(
(1 − ℎ1)𝑠1ℎ2

ℎ𝑒
)
𝐶22

(
(1 − ℎ1)(1 − ℎ2)𝑠2ℎ3

ℎ𝑒
)
𝐶33

 

where Cij are the harvest counts at age i in year j and he, the probability of ever being 

harvested, is   

ℎ𝑒 = ℎ1 + (1 − ℎ1)𝑠1ℎ2 + (1 − ℎ1)(1 − ℎ2)𝑠2ℎ3. 

Supposing that the auxiliary data consist of counts of tagged animals, the auxiliary 

likelihood for harvest and survival rates could take the form 

𝐿(ℎ, 𝑠 | 𝑟, 𝑡, 𝑑) =∏(
𝑟𝑖
𝑡𝑖, 𝑑𝑖

)

𝑌

𝑖=1

ℎ𝑖
𝑡𝑖[(1 − ℎ𝑖)(1 − 𝑠𝑖)]

𝑑𝑖[(1 − ℎ𝑖)𝑠𝑖]
𝑟𝑖−𝑡𝑖−𝑑𝑖 

where ri is the number of tagged animals at risk, ti is the number of tagged animals that 

were harvested, and di is those tagged animals that died of non-harvest causes in year i. 

Then the joint likelihood is 

𝐿𝑗𝑜𝑖𝑛𝑡(ℎ, 𝑠 |𝐶, 𝑟, 𝑡, 𝑑) = 𝐿𝑎𝑔𝑒−𝑠𝑒𝑥 𝑎𝑡 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 ∗  𝐿𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 

Estimation of the model can be performed in several ways including Maximum 

likelihood and Bayesian formulations. Harvest rates are often modeled as  

ℎ𝑖 = 1 − 𝑒
−𝑣∗𝑓𝑖 

where v is the vulnerability of the species to harvest and f is the annual hunter effort. This 

model form is common in other population estimation methods and is particularly useful 

when auxiliary data on hunter effort are available. Logistic functions are commonly used 

for rates, but are not recommended for SPR (Skalski et al. 2012). If rates (e.g. survival) 
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are modeled without link functions, then estimation outside of reasonable bounds 

provides information about structural model-fitting problems. Diagnostics based on 

consultation of Anscombe residuals and subsetting of the data are also recommended to 

evaluate model fit (Skalski et al. 2012). As with traditional reconstruction methods, the 

analysis is performed on each sex separately and the results are added together. 

Successive sex ratio estimator 

In wildlife populations, it is common for one sex to be more vulnerable to harvest 

than the other. When this situation occurs, then the expected sex ratio in the harvest will 

shift over time as the more vulnerable sex is depleted from the population. Paloheimo and 

Fraser (1981) and Fraser et al (1982) exploited this relationship to estimate sex-specific 

harvest rates which would be used to reconstruct the population abundance as the harvest 

count divided by the harvest rate. Given a dataset that shows the count of males and 

females of all age classes harvested in a given year, there exists a harvest sex ratio for 

every age class. The basis of the Paloheimo-Fraser (PF) model is a non-linear regression 

of the natural logarithm of sex ratio onto the age classes. With harvest counts and effort 

data from a cohort over all the years they are in the harvest, one can regress the harvest 

sex ratio on the age classes to estimate the per-effort harvest vulnerability over time. 

The PF regression model is parameterized such that the harvest count for each sex 

is a function of the effort expended during the hunting season. In order to estimate 

harvest rates for both sexes as independent quantities, they estimate two vulnerability 

parameters, p and u. The per-effort vulnerability, v, is given by p-u for females and p+u 

for males, with the harvest rate 
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ℎ𝑠,𝑖 = 1 − 𝑒
−𝑣𝑠∗𝑓𝑖 

where hs,i is the harvest rate for sex s in year i, e is the base of the natural logarithm, vs is 

the sex-specific vulnerability coefficient, and fi is the hunting effort in year i. The 

expected harvest sex ratio in year i is 

𝐸 [
𝐻𝑚,𝑖
𝐻𝑓,𝑖

] =  𝑅0 ∗
ℎ𝑚 ∗  𝑒

−𝑣𝑚∗𝑔𝑖

ℎ𝑓 ∗ 𝑒
−𝑣𝑓∗𝑔𝑖

 

where R0 is the sex ratio at birth and gi is the cumulative hunter effort since the cohort 

was first part of the harvest. Therefore, the harvest sex ratio is a function of the initial sex 

ratio and the progressive depletions over time. If the birth sex ratio can be assumed to be 

1:1, then that term can be dropped from the equation. In practice, weighted non-linear 

least squares is used to fit a regression model to the natural logarithm of the sex ratios 

using an appropriate rearrangement of the formula above. 

The PF model requires the assumptions that 1) harvests are an unbiased sample of 

sex ratios, 2) the vulnerabilities of each sex are constant over time and age classes, 3) 

fluctuations in harvest mortality are solely a function of effort, 4) annual harvest effort is 

known, 5) natural survival is equal across the sexes, and 6) the population is 

demographically closed. Although originally proposed for analysis of harvest counts of 

an individual cohort over time, with the additional assumption of stable and stationary 

population, the method can be applied to the harvest counts across ages in a single year.  

Harris and Metzgar (1987) analyzed of the performance of the Paloheimo-Fraser 

method under violations of the method’s key assumptions: Both sexes equally abundant 

in the age class prior to the youngest age class in the harvest (or that sex ratios are 
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empirically known); no systematic changes in sex-specific vulnerability occur with 

increasing age; and differential vulnerability to harvest as the only factor influencing sex 

ratios. They found the models sensitive to violations of each of the assumptions and 

strongly cautioned users of these methods, but this estimator requires only harvest data 

and effort data, so it is an attractive option for many situations. 

The PF method is used to estimate black bear populations in several jurisdictions, 

including Vermont and New Hampshire. In these two states, which typically have low 

inter-annual variability in effort, hunter effort data are replaced with a constant value that 

represents an estimate of the average effort in a given year. (pers. comm. K. Gustafson, 

NH Fish and Game). The results appear sensible and consistent with interpretation of 

other information, but I know of no rigorous examination of the effect of this adaptation 

on the functioning of the model. 

Evaluating population estimators 

A manager’s choice of population estimator is generally seen as being determined 

by the available data. This same situation can also be seen in a decision context as 

representing the choice between current data and applicable methods or the collection of 

additional data that may support a different set of estimators. Any choice of estimator 

should consider the costs and benefits of additional data. To that end, my research 

examined this question directly by incorporating cost estimates for various datasets and 

analyzing them using the above methods. The result allows managers to examine 

statistical gain relative to financial costs. I further employed value of information analysis 
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to identify the value of each estimator and various datasets in terms of the harvest 

management decisions that they are intended to serve.  

Wildlife and conservation managers, in particular, are often faced with the two 

jobs of monitoring and managing for conservation. Monitoring can be difficult and 

costly, and any dollars spent on monitoring cannot be spent on any other activities, 

despite the fact that monitoring does not accomplish conservation. Increasingly, 

researchers are focusing on the relative benefits of monitoring expenditures (e.g., Field et 

al. 2005). Generally, monitoring is most valuable when existing information is highly 

uncertain and influential to decision outcomes (Hauser et al. 2006, Mäntyniemi et al. 

2009). Explicit, up-front costs of monitoring (“information-gathering”) can alter 

management plans when included in management planning (Moore and McCarthy 2010). 

Considerable research has been devoted to “how” best to monitor, but whether and when 

the information is worth it has been studied less. McDonald-Madden et al (2010) present 

a basic framework for managers to evaluate whether dollars spent on monitoring 

contribute efficiently to conservation objectives. In reality, some decisions are robust to 

uncertainty (e.g., Boyce et al. 2012) and the cost of additional information can greatly 

outstrip its value to managers. The costs and benefits of data and analysis are worthy of 

scrutiny, especially when monitoring and management are funded from a common 

resource pool. Within the monitoring-management construct (setting aside consideration 

of “research” pursuits), what matters is the value that the information can deliver in terms 

of the decisions faced by managers.  

Value of information analysis (VOI; Raiffa and Schlaifer 1961) is a technique of 

decision analysis that addresses directly the value to be gained by applying information to 
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the uncertainties in a decision problem. This analysis has been employed widely in fields 

such as risk analysis, economics, industrial production, and medicine (e.g., Yokota et al. 

2004, Yokota and Thompson 2004, Bienstock and Royne 2007, Brennan and Kharroubi 

2007, Chernew et al. 2008, von Winterfeldt et al. 2012, Willan et al. 2012). Felli and 

Hazen (1998) demonstrate the particular strength of VOI (specifically, expected value of 

perfect information, see below for details) in their application to sensitivity analysis. 

Those authors demonstrate that other methods of sensitivity analysis can indicate the 

probability of a decision change as information changes, but only VOI also accounts for 

the marginal benefit of the change. VOI allows the decision-maker to see how much 

better an outcome may be possible and what it will cost to achieve it. Increasingly, these 

methods are being adopted in conservation, a field with chronic uncertainties that impact 

decision-making (e.g., Polasky and Solow 2001, Ritchie et al. 2004, Mäntyniemi et al. 

2009, Williams et al. 2011, Moore and Runge 2012, Johnson et al. 2014).  

The value of information is entwined with expected value decision-making, which 

posits that the expected value of a decision alternative is the probability-weighted sum of 

the possible outcomes. If you could win $100 or lose $50 on the flip of a fair coin, the 

expected value of that event is $25 (25 = 0.5*100 + 0.5*-50). In that case, the 

randomness of the coin determines the outcome, but in other situations, the obstacle is an 

uncertain state, not randomness. If you are invited to join an exciting start-up company, 

the ultimate outcome (payoff) to you depends on whether the company will succeed or 

not. That may not be random, but it will be unknown. The same situation is faced by 

wildlife managers that must choose management actions such as opening or closing 

hunting seasons, transplanting animals, captive breeding, etc. Their successes will depend 
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on many things that will not be purely random and will not be clearly known when the 

decision must be made. In that case, they must do their best to evaluate which option 

offers the maximum expected value, given the uncertainties involved. 

The value of information is captured in how it changes the expected value of the 

decision outcome by reducing relevant uncertainty. In practice, not all uncertainty, if 

resolved, will change a decision outcome. Where multiple uncertainties exist, VOI 

facilitates identification of the most costly uncertainties (Runge et al. 2011) and can aid 

in identifying robust management strategies (Moore and Runge 2012, Johnson et al. 

2014). As a result, VOI can be a helpful tool in designing survey protocols well in 

advance of decision-making (Polasky and Solow 2001, Johnson et al. 2014). Adaptive 

management, a formal program of integrated monitoring and decision-making over time 

intended to jointly pursue management objectives and reduce scientific uncertainty, is 

often prescribed for management of and within ecological systems typified by imperfect 

observability and high structural uncertainty because it offers the benefits of learning 

while managing. Williams, et al (2011) extend the application of VOI to the iterative 

monitoring and managing decisions inherent in adaptive management and recommend 

continued and more focused application of this analysis in the future.  

I applied VOI in my evaluation of the efficiency of various population estimators 

and whether the collection of additional information contributes to better management 

outcomes. The following section introduces key elements of value of information 

analysis and walks through an example of the value of information analysis I employ in a 

later chapter. 
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Consider a simple harvest management decision with the objective of maintaining 

the population near a target abundance level. That target abundance has been identified 

by relating contemporaneous abundance estimates and relevant wildlife management 

objectives such as ample harvest and observation opportunities and acceptable levels of 

wildlife-caused nuisance or damage. The decision alternatives include whether to 

increase (“INCR”), decrease (“DECR”), or maintain (“STAY”) current harvest through 

some defined sets of actions such as changing the number of tags available or the length 

of the hunting season. The states of the population are whether it is above (“trueHI”), at 

(“trueAT”), or below (“trueLO”) the determined target. The payoff value of each 

alternative depends on the true state of the population.  

Payoff values 

Decision analysis requires some means of measuring the value obtained by the 

decision. In economic applications, decisions can be valued as dollars, with some 

alternatives yielding gains (positive values) and others, losses (negative values). When 

natural measures (e.g. dollars) are not available, arbitrary values can be used (e.g., Runge 

et al. 2011). I assigned arbitrary values to the outcomes of the harvest management 

example such that desirable outcomes have positive values of 100 and undesirable 

outcomes take negative values between -25 and -100 (Table 1.2).  

Note that the payoff matrix for this example is asymmetric. The values are scaled 

with a bias against over-reduction of the population. That is, decreasing harvest on an 

overly large population (V[DECR given trueHI] = -50) is less bad than increasing harvest 

on a small population (V[INCR given trueLO] = -100). Both cases might move the 
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population equally far from the target, but these payoff values include additional “loss” 

associated with driving a population down as opposed to up, a potentially meaningful 

distinction in population management.  

Expected value decision-making 

A simple strategy for decision-making in the face of uncertainty is to select the 

alternative that maximizes the expected value of the outcome. The expected value can be 

thought of as the average value you could obtain over many iterations of the decision. 

The calculation requires the state-dependent payoff values of the alternatives and some 

estimate of the probabilities of occurrence of the system states and of the payoffs for each 

alternative given each state. The expected value of a given alternative is 

𝐸𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑎) =  ∑𝑃(𝑠𝑡𝑎𝑡𝑒𝑖) ∗ 𝑉(

𝑆

𝑖=1

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑎|𝑠𝑡𝑎𝑡𝑒𝑖) 

where P(statei) is the probability of occurrence of state i, V(Alternativea | statei) is the 

payoff value of alternative a when state i occurs, and S is the total number of possible 

states. The state probabilities that are used in this calculation are called “prior” 

probabilities because we must know them prior to the analysis. The optimal decision for a 

purely rational, risk-neutral decision-maker is the alternative with the maximum expected 

value: 

𝐸𝑉𝑝𝑟𝑖𝑜𝑟 = max
𝑎
[∑𝑃(𝑠𝑡𝑎𝑡𝑒𝑖) ∗ 𝑉(

𝑆

𝑖=1

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑎|𝑠𝑡𝑎𝑡𝑒𝑖)]. 
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The qualifier “prior” denotes that the decision-maker has no means of reducing 

the state uncertainty and so makes a simple assessment of which alternative will deliver 

the maximum expected value.  

Suppose we have existing information that suggests the following prior state 

probabilities: P(trueHI) = 0.25, P(trueAT) = 0.50, and P(trueLO) = 0.25. Using the payoff 

matrix in Table 1.2, the expected values of the three alternatives are: 

EV(INCR) = 0.25 * 100 + 0. 5 * -50 + 0.25 * -100 = -25 

EV(STAY) = 0.25 * -25 + 0. 5 * 100 + 0.25 * -50 = 31.25 

EV(DECR) = 0.25 * -50 + 0. 5 * -25 + 0.25 * 100 = 0. 

The STAY alternative offers the maximum expected value; it would give the 

maximum average payoff if this decision were made over and over again. Theoretically, 

over many iterations of identical decisions, STAY will earn -25 one quarter of the time, 

100 half of the time, and -50 one quarter of the time. This would lead to average payoff 

per decision of 31.25. Based on the given state probabilities, the optimal decision would 

yield EVprior = 31.25 by choosing STAY.  

If no prior information exists as to the state probabilities, then we could make 

them all equal: P(trueHI) = P(trueAT) = P(trueLO) = 1/3. This is the conventional 

“uninformative prior” probability distribution indicating no belief in one state being more 

likely than another. In this case, the expected values will change to: 

EV(INCR) = 0.33 * 100 + 0. 33 * -50 + 0.33 * -100 = -16.67 

EV(STAY) = 0.33 * -25 + 0. 33 * 100 + 0.33 * -50 = 8.33 
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EV(DECR) = 0.33 * -50 + 0. 33 * -25 + 0.33 * 100 = 8.33. 

Now the expected values of STAY and DECR are equal. A purely rational, risk-

neutral decision-maker would be ambivalent between these two alternatives, both of 

which deliver EVprior = 8.33. Note that in this case of maximum uncertainty about state 

probabilities, the expected values are very low compared to the maximum potential 

payoffs of 100, even lower than in the previous example. The decision-maker is blind to 

the true state, so he must simply choose one alternative to employ and because it “wins” 

sometimes and “loses” sometimes, the high potential payoff values are eroded. 

Expected value of perfect information 

One way to assess how uncertainty erodes decision outcome value is by 

calculating the expected value of perfect information (EVPI), how much additional value 

you could capture if you were able to resolve the state uncertainty. Imagine now that you 

had some perfect “test” of the uncertain population state. The term test is used generically 

to mean some method of inference that serves to classify, identify, or “diagnose” the true 

state of the system; it does not necessarily mean a statistical hypothesis test. In population 

management, that typically means inference of the population state based on some data. 

In the case of perfect information, we can somehow know the population state exactly. If 

the test shows the true state to be above the target, then you would choose the INCR 

alternative, the one that gives the maximum outcome value for that state (V[INCR | 

trueHI] = 100). Likewise, applying a perfect test would allow you to obtain the maximum 

outcome value for any state. The perfect information does not change the variety of the 

states or the distribution of their probabilities, it merely allows the decision-maker to 
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know which state prevails in a given instance so that he can choose the best-suited 

alternative. Using the expected value convention, we can now calculate the expected 

value given perfect information (EV|PI) as the sum of the maximum possible outcomes 

for each state times the probabilities of occurrence of the states: 

𝐸𝑉|𝑃𝐼 =  ∑𝑃(𝑠𝑡𝑎𝑡𝑒𝑖) ∗ 𝑀𝑎𝑥

𝑆

𝑖=1

[𝑉(𝑠𝑡𝑎𝑡𝑒𝑖)], 

where Max[V(statei)] is the maximum payoff value associated with state i, regardless of 

alternative. Consulting the payoff matrix for this example (Table 1.2), we see that the 

payoff values for the state trueHI are 100, -25, and -50, with a maximum of 100. If we 

knew that the state was trueHI, we could choose an alternative (INCR) to obtain a payoff 

of 100. Similarly, the maximum payoffs under the other states (by selecting different 

alternatives) are also 100. Using the uniform state probabilities, EV|PI is 

EV|PI = 0.33 * 100 + 0.33 * 100 + 0.33 * 100 = 100. 

If we could completely remove the state uncertainty, we could expect to earn an 

average payoff of 100. The difference between this value and the EVprior is the expected 

value of perfect information (EVPI), the value that is lost due to state uncertainty. Again 

using the uniform state probabilities, the EVPI is 

EVPI = 100 – 8.33 = 91.67. 

When payoffs are in dollars, EVPI is interpreted as the amount one would be 

willing to pay to reduce the state uncertainty. Although this example is not suited to that 

interpretation, we can see that the state uncertainty accounts fully for the 92% loss of 



28 

 

value from the perfect case to the simple case. Unfortunately, there is no way to truly 

have “perfect” knowledge of uncertain states such as these.  

Sample information 

Although no information will ever be perfectly certain, measures do exist that can 

deliver imperfect knowledge and reduce at least some of the uncertainty impacting the 

decision. In harvest management, perfect information would be instantaneous knowledge 

of all individuals in the population. That is impossible, but we can sample the population 

and derive some knowledge that may help us reduce state uncertainty. The expected 

value of sample information (EVSI; also called expected value of imperfect information, 

EVII) is the measure of how inferences based on a sample can affect our decision 

outcome expectations. With EVSI, we accept that our “test” (e.g. population monitoring) 

will be imperfect, and we account for that probabilistically. In a sense, we want to know 

something about the probability that the test is correct. In a 3-state system, we can’t 

simply ask when the test is correct, because our test can be “wrong” in two different 

ways. The system has three states (trueHI, trueAT, and trueLO) and the test has three 

possible results (testHI, testAT, testLO). We want to know the probability of each test 

result given each of the true states (P(testHI | trueHI), P(testAT | trueHI), etc.), for all 

combinations of the three potential test results and the three system states (Table 

1.3Error! Reference source not found.). These probabilities are discovered through 

research that must be undertaken prior to this analysis. For reasons made clear in the next 

section, this is called “pre-posterior analysis” (Yokota and Thompson 2004). 



29 

 

Bayes’ theorem 

The conditional probabilities described above tell us the probability of a result 

given a state, P(result | state). Knowing the state, we could make a guess as to what result 

we will see from a given test. However, the inability to know that state is exactly the 

problem plaguing the decision-maker. What we really want to know is the probability of 

a state given a test result. Let us look first at just a single test result, testHI. When we 

assess the population and obtain a result of testHI, we can use Bayes’ Theorem to 

compute the probability of the various states: 

𝑃(𝑠𝑡𝑎𝑡𝑒𝑖|𝑡𝑒𝑠𝑡𝐻𝐼) =  
𝑃(𝑡𝑒𝑠𝑡𝐻𝐼|𝑠𝑡𝑎𝑡𝑒𝑖)𝑃(𝑠𝑡𝑎𝑡𝑒𝑖)

∑ 𝑃(𝑡𝑒𝑠𝑡𝐻𝐼|𝑠𝑡𝑎𝑡𝑒𝑗)𝑃(𝑠𝑡𝑎𝑡𝑒𝑗)𝑗
 . 

The left-hand side of the equation is what we want to know, the probability of the 

state given the result. This is the “posterior” state probability, the prior state probability 

“updated” with the sample information. On the right-hand side, the prior probability of 

state i , P(statei), is multiplied by P(testHI|statei), the conditional probability of result 

testHI, given state i . In common terms, this is also referred to as the “likelihood” of 

observing the data under hypothesis i.  The product of these quantities is the joint 

probability of the result and the state co-occurring (Table 1.4). The denominator is the 

sum of the joint probabilities for testHI across all states, which is also equivalent to 

P(testHI), the unconditional probability of the result testHI.  

So for the result testHI, the joint probabilities for each state are (Error! 

Reference source not found.): 

P(test HI & trueHI) = 0.33 * 0.80 = 0.267 
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P(test HI & trueAT) = 0.33 * 0.05 = 0.017 

P(test HI & trueLO) = 0.33 * 0.03 = 0.01. 

The sum of these joint probabilities is the P(testHI), 0.293. This allows us to 

calculate the posterior probabilities (Error! Reference source not found.) of the states 

given the result of testHI: 

P(trueHI | testHI) = 0.267 / 0.293 = 0.91 

P(trueAT | testHI) = 0.017 / 0.293 = 0.06 

P(trueLO | testHI) = 0.01 / 0.293 = 0.03 

Expected value of sample information 

Once we have obtained the posterior probabilities, we can proceed with the 

analysis of how sample information reduces uncertainty and increases the expected value 

of our decision. The conceptual model of EVSI is as follows: before making the decision, 

the decision-maker makes an inference based on sample information. Here we use the 

convention of performing a “test” with three possible results to diagnose the true state. 

Suppose the population test gives a result of testHI. Now we approach the decision as a 

choice among the existing alternatives, each with a state-dependent payoff that will occur 

according to the posterior probabilities of the states given testHI:  

𝐸𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑎|𝑟𝑒𝑠𝑢𝑙𝑡 =  𝑡𝑒𝑠𝑡𝐻𝐼)

=∑𝑃(𝑠𝑡𝑎𝑡𝑒𝑖  | 𝑡𝑒𝑠𝑡𝐻𝐼) ∗ 𝑉(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑎 | 𝑠𝑡𝑎𝑡𝑒𝑖)

𝑆

𝑖=1

 



31 

 

Which, using values from Table 1.2 and Table 1.5, looks like this in our example: 

EV(INCR | testHI) = 0.91 * 100 + 0.06 * -50 + 0.03 * -100 = 84.65 

EV(STAY | testHI) = 0.91 * -25 + 0.06 * 100 + 0.03 * -50 = -18.8 

EV(DECR | testHI) = 0.91 * -50 + 0.06 * -25 + 0.03 * 100 = -43.5. 

Still presuming that the test gave a result of testHI, we would choose the 

alternative with the maximum EV, so the maximum EV when the result is testHI is 84.65 

(EVmax(testHI) = 84.65). The same process is followed for the other test results and we 

end up with an EVmax for each of them. This is the expected payoff of the decision after 

seeing each of the test results. In the foregoing analysis, we determined the probabilities 

of the various test results. Combining these with the EVmax of each result gives the 

expected value given sample information (EV|SI): 

𝐸𝑉|𝑆𝐼 =∑𝑃(𝑟𝑒𝑠𝑢𝑙𝑡𝑟) ∗ 𝐸𝑉𝑚𝑎𝑥(𝑟𝑒𝑠𝑢𝑙𝑡𝑟)

𝑅

𝑟=1

 

Using the probabilities of the test results, P(result), found in Table 1.4: 

EV|SI = 0.293 * 84.65 + 0.373 * 73.89 + 0.333 * 86.25 = 81.17 

The expected value of sample information (EVSI) is the difference of EV|SI and 

EVprior and measures will fall somewhere between the EV of the simple case and EVPI: 

EVSI = EV|SI – EVprior = 81.17 – 8.33 = 72.84. 

In summary, expected value decision analysis uses the notion that a decision can 

be made over and over many times and that the best decision is the one with the greatest 
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average payoff. In a simple decision, using only the prior state probabilities, the decision-

maker selects one alternative to maximize the expected value of the decision. With 

perfect information, the expected value of the decision is the probability-weighted sum of 

the best payoff for every state and the prior state probabilities. In the case of sample 

information, we use the sample to update the prior state probabilities to become the 

posterior state probabilities. The posteriors are used to find the maximum expected value 

of the decision for each possible inference based on the sample information. These are 

then combined into the EV|SI as the probability-weighted sum of the maximum expected 

values for each test result times the probabilities of obtaining those test results. The EV|SI 

is like a weighted average of separate decisions, each based on a certain result of the test.  

Overview of Dissertation 

This dissertation comprises three additional chapters emerging from a research 

initiative on behalf of the Vermont Fish and Wildlife Department to enhance data 

management and analytical capacity, to evaluate current practices, and to develop and 

apply new techniques in support of long-term management and conservation of wildlife. 

Each chapter is intended to stand alone, but they are linked by their intended application 

in improving decision-making for wildlife managers and conservation planners.   

In Chapter 2, I compared the use of various population estimators in reference to 

different datasets to evaluate their statistical performance and the relationship between 

that performance and the dollar cost of the requisite data. I envisioned an estimation 

strategy as an estimator paired with a particular dataset. Using three common harvest-

based estimators and five different datasets, I evaluated 8 alternative strategies. All of the 
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estimators used required age-at-harvest data and some were able to make use of 

additional data such as hunter-effort or marked animal recoveries. The 8 alternatives were 

compared on the basis of their bias and precision and on the expense required to collect 

the datasets. In this chapter, I introduce a new measure, the marginal value of data 

(MVD) to compare the statistical ‘return on investment’ obtained by investing in 

additional data for abundance estimation.  

Chapter 3 is a value of information analysis based on the estimation strategies in 

chapter 2 when applied to a representative state-dependent harvest management decision 

problem. For this analysis, I computed the expected value of a decision made in 

ignorance, the expected value of perfect information (EVPI), and the expected value of 

sample information (EVSI) for each of the estimation strategies. EVPI indicates, in terms 

of the values placed on the decision outcomes, how much value is lost because we must 

choose an alternative (e.g. a management actions) when the true state of the system (e.g. 

population abundance) is uncertain. The EVSI is the gain in value when we can apply 

some sampling and estimation (e.g. abundance estimates) to reduce uncertainty about the 

system state.  

Finally, in chapter 4, I develop a hybrid habitat modeling framework that 

embraces the need for deductive, expert-based models but couches them within a 

statistical framework. I used a novel approach, encoding expert opinion directly as a map 

and fitting a statistical model to that map, to facilitate rigorous revision of the HSI model 

through Bayesian methods analysis of an independent dataset as validation.  
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Taken together, these studies offer rigorous support to critical decisions facing 

wildlife managers today. I analyzed data of black bear in Vermont, but these methods are 

generally applicable to any harvested species and any region and can contribute to the 

decision-centric analytical toolkit of wildlife managers now and in the future.   
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Table 1.1: Example Downing reconstruction for a single sex. The year “Final +1” is the hypothetical year 

constructed from average mortality counts. The mortality counts are on the left side of the table and 

the reconstructed abundances for each age-class and year are on the right side. The reconstructions are 

summed across age classes in column Rt. Abundances are not reconstructed for the final two years due 

to the gross inaccuracies resulting from reconstructing incomplete cohorts. 

 

Table 1.2: The (arbitrary) payoff values for a harvest management decision with three alternatives (INCR, 

STAY, DECR) and three possible system states (trueHI, trueAT, trueLO) describing the current 

population abundance relative to the target abundance. Choosing to increase harvest (INCR) has a 

high payoff value when the population is above the target (trueHI), but has negative payoff when the 

population is at or below the target because that alternative would cause the population to decline and 

move further away from the target. 

 

Year 0.5 1.5 2.5 3.5+ 0.5 1.5 2.5 3.5+ Rt

1 84 250 94 64 0.52 545 454 182 124 1305

2 155 285 134 97 0.66 493 461 204 148 1306

3 83 170 108 74 0.61 423 338 176 121 1058

4 71 180 104 71 0.62 476 340 168 115 1099

5 79 212 83 56 0.52 454 405 160 108 1127

6 77 200 121 81 0.63 452 375 193 129 1149

7 75 194 111 76 0.63 449 375 175 120 1119

8 78 179 97 58 0.54 493 374 181 108 1157

9 84 212 119 82 0.61 461 415 195 134 1206

10 90 195 122 77 0.60 421 377 203 128 1130

11 64 155 96 70 0.53 458 331 182 133 1104

12 108 211 109 92 0.62 295 394 176 149

13 71 187 108 73 0.59 71 187 183 124

Final+1 108 75 0.59 183 126

Mortality Counts ( C )

Adult 

Mortality 

rate (m)
Reconstructed abundances ( R )

trueHI trueAT trueLO

INCR 100 -50 -100

STAY -25 100 -50

DECR -50 -25 100

States
Alternatives
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Table 1.3: Conditional probabilities of test results given true states, P(Result|State). Columns add to one. When 

the true state is above target (trueHI), the test result suggests the population is above target (testHI) 

80% of the time, at target (testAT) 15% of the time, and below target (testLO) 5% of the time. 

 

Table 1.4: A representation and worked example of computing joint probabilities of results and states, P(result 

& state). The symbol “c12” indicates the conditional probability from the first row and second column 

of Table 10 and p1 is the prior probability of state 1 (trueHI). The sum of the rows is the probability of 

the test result (e.g. P(testHI). The prior probabilities for this example all equal 1/3. The posterior 

probability for each state given each result is computed by dividing each joint probability by the sum 

of its row. 

 

Table 1.5: Posterior probabilities of the states given the inferential results. Each cell in this table is the 

corresponding cell in Table 4b (right side), divided by the row totals (P(Result)). 

 

 

 

 

trueHI trueAT trueLO

testHI 0.8 0.05 0.03

testAT 0.15 0.9 0.07

testLO 0.05 0.05 0.9

Results
States

trueHI trueAT trueLO trueHI trueAT trueLO

testHI c11*p1 c12*p2 c13*p3 sum(row1) testHI 0.267 0.017 0.010 0.293

testAT c21*p1 c22*p2 c23*p3 sum(row2) testAT 0.050 0.300 0.023 0.373

testLO c31*p1 c32*p2 c33*p3 sum(row3) testLO 0.017 0.017 0.300 0.333

P(Result)Results
States

P(Result)Results
States

trueHI trueAT trueLO

testHI 0.909 0.057 0.034

testAT 0.134 0.804 0.063

testLO 0.050 0.050 0.900

Results
States
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Chapter 2  The Best That Money Can Buy: Cost-Efficiency of 

Population Estimators 

ABSTRACT Most wildlife management decisions are made in the face of 

uncertainty, often induced by limited data. Population estimates are integral to many 

management decisions, and they present choices about the analytical methods and the 

data to be used. Managers have many choices about how to develop the population 

metrics they need for management, but not all are necessarily worth the expense. In this 

paper, we introduce a marginal value metric to evaluate statistical gains in terms of 

dollars invested in data. We used simulated data on American black bear (Ursus 

americanus) to measure the performance of a suite of different combinations of 

estimators and datasets (“strategies”), including estimated costs of acquiring the datasets. 

The strategies were built around three alternative population estimation methods: 

population reconstruction (Downing 1980), a change-in-sex-ratio estimator (Paloheimo 

and Fraser 1981), and statistical population reconstruction and augmenting harvest data 

with hunter effort surveys and marked animal recoveries. Strategies were evaluated on 

their bias in representing abundance and annual growth rate and in their precision and 

bias relative to the cost of the data. Downing population reconstruction was the least 

biased in tracking growth trend, while statistical population reconstruction was best at 

estimating abundance. Our simple hunter effort survey contributed little to the 

performance of our estimators. This study demonstrates that complex methods and 
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expensive data are not necessarily an antidote to the fundamental uncertainty inherent in 

wildlife management.  

KEY WORDS Abundance estimation, American black bear, cost-benefit, game 

species, harvest management, Ursus americanus. 

 

State and provincial wildlife managers need to make management decisions and 

policy recommendations despite limited data and budgets. Because different analytical 

methods can result in different estimates for a given parameter, choice of analysis can 

lead to different management decisions, ultimately affecting wildlife populations.  

Managers are tasked with setting harvest quotas to meet the objectives of 

sustaining wildlife populations and sustaining a harvest. If the harvest rate is too great, 

game populations can be suppressed to levels from which it may take many years to 

recover (Fryxell et al. 1988, Miller 1990, Taylor et al. 2008). This is a loss of value 

derived from both consumptive and non-consumptive interactions with wildlife by the 

human constituency of management agencies. On the other hand, if the harvest rate is too 

little, game populations may become overabundant and this may contribute to disease 

transmission (Gortazar et al. 2006), property damage and loss (West and Parkhurst 2002, 

Bissonette et al. 2008), human injury (Farrell et al. 1996, Hristienko and McDonald 2007, 

Bissonette et al. 2008), and ecological changes (Cote et al. 2004, McLaren et al. 2004, 

Cote 2005). These risks increase the need for more intensive and expensive management 

tactics (Fagerstone and Clay 1997, Hristienko and McDonald 2007, DeNicola and 

Williams 2008, Ransom et al. 2010).  
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To set harvest quotas that yield the target population size, unbiased and precise 

estimates of current population abundance are needed (hereafter, models used to estimate 

abundance from harvest data will be called “estimators”). Voluminous literature exists 

describing estimators developed to exploit information from harvested animals (Skalski 

et al. 2005). The estimators can be grouped according to their generalized approach. For 

instance, population reconstruction methods track the numbers of harvested individuals 

by age and sex through multiple years; an estimate of the population size at the beginning 

of each cohort can be obtained by tracing the harvest fate of the cohort through time. 

Alternatively, change in sex-ratio estimators (Paloheimo and Fraser 1981, Fraser et al. 

1982, Fraser 1984) are commonly used when males and females experience different 

harvest pressure (Skalski et al. 2005). Finally, statistical population reconstruction 

methods combine auxiliary data (e.g., marked animal studies) to augment age-at-harvest 

data, enabling statistical estimation of survival, harvest, and abundance parameters (Gove 

et al. 2002, White and Lubow 2002, Skalski et al. 2005, Conn 2007, Skalski et al. 2007, 

Conn et al. 2008, Fieberg et al. 2010).  

The manager’s choice of estimator must take into consideration data collection 

costs, particularly where additional data may make a viable choice of an otherwise 

unsuitable estimator. Examples of datasets that may accompany the age-at-harvest data 

include tag sales, the hunter participation rate (the proportion of hunters who actively 

hunt, given a tag was purchased), and the hours spent actively hunting per participant. 

Additionally, mark-recapture datasets permit estimation of harvest and survival rates.  

From the manager’s perspective, the choice of which estimator is optimal likely 

depends on three critical objectives: minimizing the bias (the difference between the 
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estimated abundance and true abundance), maximizing precision (reducing the 

confidence interval of the estimate), and minimizing cost (the cost of the data needed for 

population estimation). New analytical methods are continually being developed (Skalski 

et al. 2005), presenting managers with an ever-increasing number of options for 

estimating the size or trend of a harvested population. Millspaugh et al. (2009) introduced 

the Coefficient of Error (CE), which summarizes the bias and precision of an estimator in 

a single metric. In this paper, we expand on their efforts and develop a Marginal Value of 

Data (MVD) metric, which measures the change in CE per unit cost of additional data.  

We developed a simulation model of black bear population dynamics, harvest, 

and data collection under five scenarios of population growth, (2) estimated abundance of 

the simulated population with 10 alternative estimation strategies (estimator and dataset), 

(3) calculated the bias of each estimator with respect to abundance and population growth 

(), (4) calculated the Coefficient of Error (CE) for each estimator and scenario, and (5) 

estimated the Marginal Value of Data (MVD) for each estimator and scenario. Our 

approach can be applied to a wide variety of estimation methods to aid managers in 

selecting the most appropriate estimators, given budgetary constraints. 

METHODS 

This research was conducted by developing a population and harvest simulation 

model that can be parameterized to reflect a wide variety of game species and harvest 

regimes. Both models were functions within an R (R Core Team 2013) package called 

‘AMharvest’, developed for the Vermont Fish and Wildlife Department, Vermont USA 

(Donovan et al. in prep). We used the function, popMod, to simulate population 
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dynamics through time. popMod is a discrete-time population model built around an 

annual cycle with non-overlapping periods within the annual cycle (Error! Reference 

source not found.). The census occurred in the autumn, followed by an autumn harvest 

season, a post-season survival period (winter-spring), an instantaneous breeding season 

(spring), and pre-hunting season survival (spring/summer). The model requires inputs for 

several key vital rates, including harvest rate, pre-breeding survival, birth rate (offspring 

per breeding female per year) birth sex ratio (the proportion of offspring that are males), 

and post-breeding survival.  

For this study, we patterned the analysis after the American black bear (Ursus 

americanus) with 20 ages. Vital rates were made to fit generally the distributions 

documented by Beston (2011) in her meta-analysis of Black Bear demography, Bunnell 

and Tait (1985), and estimated harvest rates in Northern New England (F. Hammond, VT 

Dept. of Fish and Wildlife, and K. Gustafson, NH Fish and Game, pers. communication). 

Different simulation scenarios were facilitated by different parameterizations (“settings”) 

of age- and sex-specific vital rates (Table 2.1). Settings were chosen to produce 

population scenarios that were described as: stationary (finite rate of increase () ~= 1.0), 

weak growth ( ~= 1.02), strong growth ( ~= 1.03), weak decline ( ~= 0.99), and 

strong decline ( ~= 0.96). These growth rates span the 95% credible interval of 

population growth rates identified for Black Bears in Eastern North America (Beston 

2011).  

popMod calls the function, annualHarvestMod, to simulate the harvest of animals 

on an annual basis. This function inputs the annual pre-harvest population census (from 

popMod) and annual harvest rate parameters for males and females, and outputs the total 
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number of harvested animals by age and sex. For simplicity, we assumed complete 

reporting and no errors in sexing or aging. The harvest rate was modeled as a logistic 

function with parameters for hunter effort, age, age
2
, density, and density

2
 with the 

density covariate being abundance divided by 1000 (Table 2.1). We considered the 

harvest to be completely additive (and set the compensatory proportion of harvest to 0 in 

annualHarvestMod). Cubs were excluded from the harvest by design (to match reality) 

and therefore from all subsequent population estimates and comparisons.  

Hunter effort was a key variable used to generate annual harvest rates for the 

alternative scenarios. Effort was represented in the model as thousands of hunter-days 

expended across an entire season. Conceptually, hunter effort arises from some number 

of hunters that purchase a tag or license, intending to hunt bears. Of these tag-holders, a 

subset will actively pursue bears that season and will do so for some number of days 

each. Hunter effort was simulated by random, normal deviates for thousands of tags 

purchased (mean = 4), participation rate (mean = 0.6), and average days hunted (mean = 

5). These values are roughly similar to those seen in some jurisdictions with inexpensive 

tags. The product of these three random variables yielded the simulated value for 

thousands of hunter days, representing the total, annual effort. This formulation of effort 

allowed us to evaluate different proxies of effort (total number of tags sold vs. estimated 

hunter-days), with different strength of relationship with the simulated harvest rates and 

different costs associated with the requisite data. 

Each of the five population growth scenarios was simulated under 2 different 

harvest scenarios, both of which included a binomial, stochastic harvest process, where 

the binomial trials were the number of animals of each age and sex available to be 
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harvested (the census population), and the probability of success was the harvest rate. 

First, the ‘constant-effort’ scenarios used mean levels of tag sales, participation, and days 

hunted for each year, with no annual variation in any of these components. Thus, total 

effort was tag sales * participation rate * hunter days. Second, the ‘variable-effort’ 

scenario allowed hunter effort covariates to vary from year to year by drawing annual 

values from Normal distributions with the stated means and standard deviations equal to 

10% of each mean value. In either case, the total effort (days) was used as a covariate in 

generating annual harvest rates. Each setting was implemented for 100 iterations of 50 

year simulations starting with previously determined stable age distributions. Initial 

population abundance was chosen so that total abundance in year 24 was approximately 

6000 animals.  

Datasets 

In this study, we estimated the true pre-harvest population size with three 

commonly used estimators: Downing population reconstruction (Downing 1980), the 

change in sex ratio estimator of Paloheimo and Fraser ("Paloheimo-Fraser"; Paloheimo 

and Fraser 1981), and statistical population reconstruction ("SPR"; Skalski et al. 2005, 

Gast 2012), each of which required different datasets as inputs (Table 2.2). The 

fundamental dataset required by all three estimators was the counts of aged and sexed 

harvested animals (“harvest data”). The PF and SPR analysis required effort data, and the 

SPR analysis additionally required telemetry data for estimating harvest and survival 

rates. 
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 In terms of effort data, the simulated tag sales were saved for every year in every 

simulation and made available to estimators as numbers known with certainty. The 

participation rate and hunter day surveys were conceived as having been distributed to 

known bear tag holders after the close of the harvest season. The data consisted of the 

response to the question: “How many days did you hunt for bears last (most recent) 

season?” We simulated 500 responses as a mixture of a Bernoulli distribution with a 

success probability representing the chance an individual hunter participates in an annual 

bear season (i.e., probability of participation = 0.6) and a Poisson distribution with a 

mean representing the mean days afield for participating (active) hunters (5).  

In terms of telemetry data, we simulated two, alternative tag-recovery datasets 

with varying intensities, with average values of 12 (spr12) versus 25 (spr25) animals 

captured annually. Both sexes were deemed equally available to capture, survived at the 

same rates as the larger, simulated population, and were re-sighted without error.  

Representative monetary costs were assigned to the different datasets in order to 

assess information quality relative to expense. The cost functions are merely 

representative and not meant to be rigorous estimates. They capture the relative 

magnitudes of costs among projects of this size. Harvest data and tag sales were 

considered to have costs of zero because the data are collected regardless of estimator 

type. Costs were nominally considered in units of $1,000. The hunter survey was 

assigned a cost of 1 on the assumption that it could be accomplished largely within the 

existing efforts of state biologists (e.g. use questionnaires during check-station duties) 

and the marked animal datasets were assigned 70 and 100 for the small and large 

datasets, respectively. Marked animal dataset costs were estimated roughly using budgets 
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for similar projects. SPR strategies that estimated hunter-days (spr12_hd and spr25_hd) 

carried costs for marked data and the survey (71 and 101).  

Estimators 

Given the age-at-harvest dataset, the effort dataset, and the tag-recovery datasets 

as potential inputs, we then estimated the true population size (pre-harvest) for each 

population growth scenario (stationary, weak growth, strong growth, weak decline, and 

strong decline), and harvest scenario (‘constant-effort’ and ‘variable-effort’) with each of 

the three estimation methods. These estimator functions are named downingEst 

(Downing Population Reconstruction), pfEst (Paloheimo and Fraser), and bsprEst 

(Bayesian Statistical Population Reconstruction), respectively in the AMharvest package 

(Donovan et al. in prep).  

The Downing method of estimating abundance from harvest data is a well-known 

population reconstruction method (Downing 1980); its sole input is the age-at-harvest 

data (Table 2.2). The Downing method has been subject to several performance 

assessments (Davis et al. 2007, Fieberg et al. 2010) and is known to be a negatively-

biased abundance estimator that, when assumptions are satisfied, effectively tracks 

population trend. This method does not estimate vital or harvest rates (except a weak 

proxy of adult mortality) but reconstructs the pre-hunt population by backward-addition 

of known mortality and a minimal assumption of unaccounted-for mortality (Downing 

1980). Downing reconstruction performs best with cohorts that are fully represented in 

the harvest data. The reconstruction is robust to the pooling of adult age classes, and the 
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practice is recommended (Davis et al. 2007). We pooled our data into 6 classes, 5 for 

animals of ages 1 through 5 and a sixth class for animals of age 6 or greater. 

The Paloheimo-Fraser (PF) method estimates sex-specific harvest rates according 

to the assumption that one sex is more vulnerable to harvest (Palaheimo and Fraser, 

1981). Differential vulnerability causes harvest ratios to be skewed toward the more 

vulnerable sex in younger age classes but to reverse in older age classes as the more 

vulnerable sex is depleted from the population. Male black bears, among others, are 

known to be more vulnerable to harvest than females. Fraser (1984) found that one could 

approximate the composite (i.e. average across sexes) harvest rate as the reciprocal of the 

age at which female:male harvest ratio exceeds one (e.g. females first predominate as 10 

year-olds implies composite harvest rate of 0.10). Paloheimo and Fraser (1981) and 

Fraser et al (1982) exploited this relationship to estimate sex-specific harvest rates and 

use them to reconstruct the population abundance as the harvest count divided by the 

harvest rate. We estimated harvest rate for males and females as a function of annual 

hunting effort; thus the main inputs for this method were the age-at-harvest data and 

annual effort data.  

For our Paloheimo-Fraser estimator, we parameterized harvest rate as a Poisson 

catch (Paloheimo and Fraser 1981, Seber 1982): 

1 − exp (−(𝑣𝑠𝑒𝑥) ∗ 𝑒𝑓𝑓𝑜𝑟𝑡𝑖), 

with sex-specific vulnerability parameters (v) that depict the per-unit of effort 

vulnerability to harvest of each sex. When combined with effort from each year (i), this 

results in annually varying harvest rates. For the sake of estimation, the sex-specific 
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vulnerabilities comprise 2 independent parameters, p and u, such that vfemale = p-u and 

vmale = p+u. The parameters p and u are then estimated by weighted non-linear least-

squares regression of the log harvest ratio over age (Paloheimo and Fraser 1981). To 

reduce inter-annual random variation in harvest counts, we used a 3-year rolling average 

of current and 2 prior years’ harvest data for analysis. This meant that the result of 

analysis in year Y was an estimate of abundance in year Y-1, and this adjustment was 

made for all comparisons and visualizations.  

Harris and Metzgar (1987) analyzed of the performance of the Paloheimo-Fraser 

method under violations of the method’s key assumptions: Both sexes equally abundant 

in the age class prior to the youngest age class in the harvest (or that sex ratios are 

empirically known); no systematic changes in sex-specific vulnerability occur with 

increasing age; and differential vulnerability to harvest as the only factor influencing sex 

ratios. They found the models sensitive to violations of each of the assumptions and 

strongly cautioned users of these methods. They also noted that even under appropriate 

conditions, harvest rate estimates can be substantially more variable than the true rates. 

This estimator requires only harvest and effort data, so it is an attractive option for many 

managers and we wished to see how it compared to other options. 

The final estimator we evaluated required age-at-harvest data plus ancillary data 

such as mark-recapture data that is used to estimate both harvest rate (including effort) 

and natural mortality rate (Table 2.2). Statistical population reconstruction (SPR) is a 

term applied to a class of population estimators that are similar to classic population 

reconstruction techniques, but use auxiliary data to support estimation of nuisance 

parameters that cannot be estimated from harvest data alone (Gove et al. 2002, Skalski et 
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al. 2007, Skalski et al. 2011, Gast et al. 2013). SPR is not *an* estimator, but rather a 

type of model for estimation from multiple sources of data and different 

parameterizations are possible. The fundamental feature is that multiple sources of data 

are exploited jointly for parameter estimation. Whereas the Downing method relies on a 

simplistic estimate of adult mortality, derived entirely from the harvest data, SPR affords 

the analyst the opportunity to estimate mortality from both the harvest and auxiliary data 

such as marked animal recoveries. The statistical estimation inherent in SPR allows 

quantification of uncertainty, a glaring absence from traditional reconstruction methods 

(e.g. Downing).  

Statistical population reconstruction operates on harvest data within cohorts in a 

manner similar to traditional reconstruction methods, but uses maximum likelihood 

methods to find the most likely parameter estimates for harvest rates and natural survival 

rates that would generate the observed harvest data and telemetry data. Gast (2012, 2013) 

assessed the statistical performance of various forms of SPR, including some with and 

without random effects and recruitment functions. The best-performer in his study was 

one that estimated only harvest vulnerability and survival (Gast et al. 2013). This 

estimator formulates the likelihood of the harvest and survival rates within a cohort are 

modeled as conditional upon the total harvest of that cohort (p.1261, Gast et al. 2013). 

The estimated harvest and survival rates can then be used to estimate abundance of each 

cohort from the harvest counts. 

We used Gast’s conditional SPR formula (fixed effects only) with harvest rate 

parameterized as a Poisson catch with per-effort vulnerability (v), and natural survival 

rate parameterized as a probability (i.e., identity link). Although other options are 
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possible, given our focus on sparse data, we estimated a single annual natural survival 

rate across all years of the auxiliary dataset. We used this form, with only fixed effects, as 

our basic SPR estimator, which we formulated as a Bayesian model with joint 

multinomial likelihoods for harvest and survival. We used uniform prior distributions for 

survival, harvest vulnerability, and mean days hunted and fit the SPR models with 

WinBUGS (Lunn et al. 2000) from within R using the package R2WinBUGS (Sturtz et 

al. 2005). 

The three estimators and various datasets were compiled into 8 different 

population estimation “strategies” consisting of each method matched to one or more 

suitable datasets (Table 2.2). The Downing method was performed using only harvest 

data (strategy = “dnull”). The Paloheimo-Fraser method was used with 1) only harvest 

data and an assumed, constant level of effort applied across all years (“pfnull”), 2) 

harvest data and tag sales as a proxy of effort (“pftags”), and 3) harvest data and hunter-

days calculated as tag sales times mean days hunted per hunter. The mean days hunted 

was estimated as a simple average of the responses to the simulated hunter effort survey. 

Residual analysis was performed on select iterations of the Paloheimo-Fraser method. No 

evidence suggesting systematic lack of model fit to the data was observed. The SPR 

strategies all used the same SPR model but the data differed in 2 dimensions. First, SPR 

strategies used either the smaller (spr12) or larger (spr25) marked animal datasets, and 

second, they used either tag sales as the index of effort (tags) or hunter-days as the 

measure of effort (hd; Table 2.2). In the latter case, the SPR models estimated mean days 

hunted across all individuals in the effort survey and the product of mean days and tag 

sales was the estimate of hunter-days. Following the model-fitting suggestions of Skalski 
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et al (2012), we calculated Anscombe residuals and plotted them by age and by year for 

select instances of our SPR estimations. The residuals gave no indication of systematic 

lack of fit to our data. We did not attempt to test sensitivity to annual data by dropping 

some years from analysis. This type of sensitivity is likely high and unavoidable in the 

short duration studies we simulated.  

All population estimators were run with custom computer code and were tested 

prior to use. Downing and PF model code successfully reproduced the results from the 

primary literature sources for both estimators. SPR code faithfully estimated simulation 

inputs for small simulation datasets created for model-testing. 

For each of the five population growth scenarios, comparisons among the eight 

alternative strategies were made across the 25
th

 to 45
th

 years of the simulations. Given our 

use of 6 age classes for the Downing reconstruction, the most recent 5 years (years 45-50) 

could not give reasonable reconstruction estimates due to incomplete cohorts in the 

harvest data and were dropped from the comparisons. The Paloheimo-Fraser methods that 

do not assume a constant annual effort (pftags, pfhd), require estimates of the cumulative 

hunting effort to which the oldest animals have been exposed. As 20 years was our 

terminal age, this required 20 years of past effort data to parameterize the model so the 

Paloheimo-Fraser method could only be applied to our simulated data starting in year 21. 

Our marked animal studies were simulated for only 6 years so SPR estimates are only 

available for years 25-30. Years 31-45 are therefore missing for SPR and performance of 

SPR strategies is based on only 6 years of data per simulation.  
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Coefficient of Error  

We estimated the performance of each estimator on simulated harvest datasets in 

terms of bias and precision. We measured the relative bias in abundance estimates by 

taking individual annual abundance estimates, subtracting the true abundance and then 

dividing by the true abundance ([�̂� − 𝑁]/𝑁), and then finding the median value across 

the focal years (25-45) and all simulations for a given setting. As an index of the 

dispersion across individual years, we also calculated the standard deviation of all bias 

measures per setting. We calculated median percent bias for growth rate estimates in the 

same manner. First we calculated the annual growth rate (t = Nt+1 / Nt) for true and 

estimated abundances and took the median and standard deviation of the focal years and 

all simulations for each setting.  

We also calculated a single summary of bias and precision for abundance 

estimates using the Millspaugh et al (2009) Coefficient of Error (CE), expressed as a 

percentage: 

𝐶𝐸 = 
√𝑀𝑆�̂�

(
∑ ∑ 𝑁𝑖𝑗

𝑦
𝑗=1

𝑛
𝑖=𝑗

𝑛𝑦
)

 , where 

𝑀𝑆�̂� =  
1

𝑛
∑ [

∑ (�̂�𝑖𝑗− 𝑁𝑖𝑗)
2𝑦

𝑗=1

(𝑦−1)
]𝑛

𝑖=1 ,  

y is the number of years being compared (y = 21), n is the number of simulations 

(n = 100), 𝑁𝑖𝑗 is the true population for simulation i and year j, and �̂�𝑖𝑗 is the associated 

abundance estimate. 
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Marginal Value of Data 

We compared the marginal value of investment in data for a given strategy 

(estimator plus datasets) by first averaging the CEs for each strategy across all five 

simulation settings (strong decline, weak decline, stationary, weak growth, and strong 

growth). The lowest mean CE of the no-cost strategies (dnull, pfnull, pftags) became the 

baseline for comparison. We then computed the gross change in CE (as a percentage) 

relative to the baseline and divided it by the cost of the data required by that strategy to 

the marginal value of data (MVD): 

𝑀𝑉𝐷 = [
(𝐶𝐸̅̅ ̅̅ 𝑖 − 𝐶𝐸̅̅ ̅̅ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐶𝐸̅̅ ̅̅ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
] /𝐶𝑜𝑠𝑡𝑖 

The MVD is the percentage change in CE per unit investment in additional data. 

Because the intent of the manager would be to reduce CE through investment, desirability 

of MVD is inversely proportional to its numeric value. An MVD of -10% is better than -

5%, and so on. A positive MVD indicates that a one unit increase in cost results in a 

positive change, an increase, in CE. 

MVD measures how much you can change the CE of your estimates by buying 

new data, but on a per-unit cost basis. Suppose you currently analyze only harvest data so 

there is no additional data cost and your method has a CE of 0.40. By investing $50,000 

dollars in additional data, you could reduce the CE to 0.25. That is a -37.5% change in 

CE ([25-40]/40 = -0.375). Taking costs in units of $1,000, the MVD would be -0.75% (-

37.5/50), meaning each $1,000 invested in data reduces the CE by 0.75%. Perhaps a third 

alternative cost $100,000 and delivered a gross change in CE of -50%. This strategy 



61 

 

would have an MVD of only -0.5% per $1000 invested in data. The absolute 

improvement is greater, but the marginal improvement is less.  

RESULTS 

The growth rates for the five base population simulations were approximately 

0.96 (strong decline), 0.99 (weak decline), 1.0 (stationary), 1.02 (weak increase), and 

1.03 (strong increase; Figure 2.2, Table 2.1). Effort for all years of variable-effort 

simulations ranged between 2.27 and 5.8 thousand tags (mean = 4, sd = 0.4) and between 

5 and 24 thousand hunter-days (mean = 12, sd = 2). The correlation between tags and 

hunter-days was 0.58. Nominal harvest rates (calculated at the intercept, without 

covariates) varied between 0.05 and 0.08 for females and 0.08 and 0.13 for males. 

Positive age effects result in pre-breeding survival between .90 and 1.0 for adults, and 

post-breeding survival rates between 0.80 and 0.85 for males and 0.85 and 0.88 for 

females. Annual birth rates ranged between 1.03 and 1.22 cubs per breeding-age female 

per year.  

Abundance Bias 

Empirical distributions of bias are shown in Figure 2.3 and summarized in Table 

2.3. The Downing estimator had median relative bias ranging from -33% to -49% across 

all simulations (constant- and variable-effort; “dnull”). Distribution of bias across settings 

was consistent between constant-effort and variable-effort harvest conditions. 

 The Paloheimo-Fraser strategies were consistently negatively-biased across all 

simulations with median values from -20% to -39% (Figure 2.3; “pfnull”, “pftags”, 

“pfhd”). Regardless of whether effort was constant or variable, there was little difference 
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in bias among the various Paloheimo-Fraser strategies. The method that incorporated 

hunter effort surveys to estimate hunter-days (pfhd) was essentially as biased as the 

method assuming constant effort (pfnull), even when the simulated data was generated 

using annually variable hunter effort.  

Across all simulation settings, the SPR strategies were the least biased of all 

strategies, and their bias tended to be positive. The SPR strategies were also the most 

volatile. Median bias for all SPR strategies fell between -6% and 26%. Greater bias was 

seen with smaller datasets and variable-effort simulation settings. Median bias was 

between -5% and 5% for the larger dataset strategies and between 5% and 26% for the 

smaller datasets. Performance of the tags-only strategies relative to the hunter-days 

strategies was mixed. The greatest bias was seen in the small sample, hunter-days 

strategy (spr12_hd), but for many simulation settings, the tags and hunter-days versions 

performed nearly identically.  

Growth Rate Bias  

Bias in growth rate estimation for all three estimators was two orders of 

magnitude lower than that for abundance estimation (Figure 2.4; Table 2.4). Median 

relative bias for growth rate estimated from the Downing method was small and stable 

across all simulation settings, ranging from -0.19% to 0.35% for constant-effort harvest 

settings and from -0.18% and 0.35% for variable-effort harvest settings. Bias was least 

for the stationary population settings and increased as the true growth rate moved away 

from 1, but these differences were negligible.  
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The Paloheimo-Fraser strategies performed well, but with more variability than 

Downing. Median relative bias ranged from -0.46% to 0.51% across all simulations. The 

greatest median bias was 0.51% for pfnull (weak growth scenario, variable-effort setting), 

-0.46% for pftags (weak decline, variable-effort), and 0.29% for pfhd (weak decline, 

constant-effort). The least bias for the 3 strategies were -0.02% for both pfnull and pftags 

(stationary, variable-effort), and 0.06% for pfhd (strong decline, constant-effort).  

The SPR strategies generated slightly more biased growth rate estimates than the 

Downing and Paloheimo-Fraser strategies. Median bias varied between -1.27% and 

0.75% across all strategies for the constant-effort settings. For the variable-effort settings, 

median bias of all strategies ranged between -0.71% and 2.16%. Bias was more variable 

(wider ranges) for strategies using hunter survey data (suffix = “hd”) to estimate hunter-

days than for those using tags as the index of effort (suffix = “tags”).  

Coefficient of Error  

The Coefficient of Error (CE) summarizes bias and precision in a single value 

(Millspaugh et al. 2009), such that a perfect estimator would have a CE of 0. Downing 

reconstruction had the greatest coefficient of error of abundance estimates (mean across 

all settings = 0.43, range = 0.15; Figure 2.5, Table 2.5). The Downing CEs were 

essentially identical across constant-effort and variable-effort harvest settings. The 

Paloheimo-Fraser strategies had slightly better (lower) but more variable performance 

than the Downing. The SPR strategies had the lowest CEs overall. Among the SPR 

strategies, CEs were generally lower and more consistent for 1) tags vs hunter-days, 2) 

constant-effort vs. variable-effort, and 3) larger vs. smaller datasets.  
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The coefficient of error values of the growth rate estimates were substantially 

lower than the CEs of the abundance estimates. The CE for Downing growth rate 

estimates averaged 0.01 (Figure 2.6, Table 2.6), the lowest CE of all strategies (and hence 

the best). The Paloheimo-Fraser strategies were very consistent with one another and had 

the greatest CEs and ranges of all strategies. The SPR strategies had mean CE values 

between 0.03 and 0.04 for constant-effort settings and between 0.06 and 0.08 for 

variable-effort setting.  

Marginal Value of Data 

The baseline strategy for abundance estimation was the Paloheimo-Fraser strategy 

using tags (pftags) and the baseline for growth rate was Downing (dnull). These were the 

two best, no-cost performers in terms of CE for abundance and growth rate estimation, 

respectively. Other strategies of abundance estimation greatly reduced the CE from the 

baseline of pftags. SPR strategies were able to reduce the CE by as much as 85% overall 

(Table 2.7). The smaller sample SPR strategies had lesser gross reduction in CE (from the 

baseline) than the larger dataset strategies, but their MVDs were comparable. Adding 

marked animals to the study improved performance, but on a per-dollar basis, they 

delivered slightly less bang-for-the-buck than the smaller dataset. For every additional 

unit investment in data, our SPR strategies reduced the CE by around 0.8% (Table 2.7). 

None of the MVD values for growth rate estimation were negative, which means that 

none of the investment in data was able to improve upon the Downing (dnull) growth rate 

estimates.  
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DISCUSSION 

Population estimators are typically evaluated on the basis of their statistical 

performance, either under ideal conditions, or with respect to violations of assumptions. 

These are important aspects of understanding wildlife management tools, but they do not 

address all relevant aspects of the decision of which tools to use. The SPR strategies were 

the best for estimating abundance, but the real question for a manager is whether the 

performance justifies the cost.  

The estimation strategies we examined were combinations of population 

estimators and datasets representing different costs and amounts of information. We used 

the MVD statistic as a means of identifying the per-dollar performance improvement 

gained by “buying” a better dataset. By comparing the estimation strategies to a no-cost 

base case, we can evaluate how much improvement is to be gained from investment in 

additional data. What we see is that better estimation strategies may not always offer 

commensurate reward to the dollars invested. The best method of estimating growth rate 

requires no auxiliary data. Any dollars spent pursing better estimates did not result in 

improvement. Better abundance estimates can be achieved with better data. Hunter effort 

survey contributed little improvement to abundance estimates, but auxiliary survival data 

made a big difference and may be worth the investment.  

Our focus was strictly on the question of measuring the benefit of additional data 

on population monitoring information for managers of harvested species. The MVD 

comparison ignores knowledge “thresholds”. If there is some information that is critical 

to management that can only be obtained through a large investment, this is not reflected 

in the MVD which is measuring on the reduction in CE of population abundance or 
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growth rate estimates. Likewise, we did not account for ancillary scientific and other 

benefits to be gained from engaging in more intensive data-collection, nor did we include 

cost-sharing among partner organizations. These considerations can and should also be 

included in a responsible cost-based evaluation. 

The costs we used were used as rough, albeit robust, guides to required 

investment in various datasets. Our intent was to examine the cost of gathering data 

relative to the results of analyzing the additional information.   

Examination of MVD comparisons across a range of reasonable data costs 

achieves results consistent with those reported here (unpublished analysis) as the 

uncertainty in cost of a given strategy is less than the differences among the alternative 

strategies. The costs of generating marked animals datasets are considerable, so there will 

always tend to be a gap between the cost of these and other data such as surveying a 

sample of licensed hunters. Although researchers are not limited to large, discrete steps in 

their intended sample sizes (e.g., 12 or 25 animals), a small difference such as adding 2 

more animals, is not likely to offer improved inference. Some non-trivial “step” up in 

cost is to be expected if one intended to undertake a study that had a substantially better 

chance of delivering reliable inference than some other, smaller option.  

Plausible sample sizes for such studies will depend on the species of interest and 

the location of application. Bears are difficult to capture and collar in large numbers. A 

technique of using chemical traces in broadly-distributed bait is used for marking bears in 

Minnesota (Garshelis and Visser 1997), but attempt to reproduce this technique in 

Vermont have failed (F. Hammond, pers. comm.). Other species may be more amenable 
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to capture in larger numbers (e.g. deer) and lower cost, so cost-effectiveness of methods 

requiring auxiliary data needs to be evaluated on a case-by-case basis. We simulated a 

particular kind of auxiliary data, an expensive one, and it is important to remember that 

SPR need not rely on such datasets for auxiliary information. Other options are available 

depending on the species of interest, but typically, adequate auxiliary data will be 

intensive, and therefore require non-trivial amounts of time and money to collect. The 

SPR strategies we examined differed by the size of the dataset (animals marked) and this 

will always result in substantive differences in cost. Of course, once an initial investment 

in marking is made, small additional amounts can be invested to increase the size and 

value of the dataset incrementally. We also simulated rather optimistic datasets with very 

high capture rates, no damage to the animals, and no malfunction in equipment. In 

practice, such studies are typically less productive than planned, driving up their cost 

relative to the information they can deliver.   

The amount of bias we found in the Downing reconstruction was consistent with 

other published analyses of this reconstruction method. Davis et al (2007) corroborated 

Downing’s assertion that the magnitude of negative bias will be proportional to the 

amount of mortality that is absent from the data. Downing’s original description of the 

technique used data on an intensively-studied deer herd living within a 137 km
2
 study 

area. These deer were the subjects of well-regulated hunting with persistent and intensive 

monitoring of both deer and hunters (Downing 1980). Downing then takes great pains to 

account for all sources of mortality and bases his reconstruction on total mortality, not 

just harvest. Our simulation conditions included natural survival rates were as low as 

80% for some age-, sex-classes. We also parameterized the simulated harvest rates with a 
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quadratic effect of age such that harvest rates peak for sub-adults and animals just 

entering adult-hood, a pattern of high harvest on mobile, inexperienced animals that is 

seen in the field. The combination of natural survival and harvest rates, consistent with 

actual populations, is the likely cause of bias in our Downing analysis.  

The results of the Paloheimo-Fraser method were also strongly negatively-biased. 

Harris and Metzgar (1987), in their performance analysis of the PF method noted that this 

method suffers the same fundamental weakness as the Downing reconstruction.  When 

using only harvest data and estimating harvest rates, non-harvest mortality is ignored and 

therefore the estimation of abundance is negatively-biased. Bias can also result from 

differential non-harvest mortality between sexes, a phenomenon known to occur in black 

bears and present in our simulations. Also, bear harvest data typically begin with 1.5 

year-old animals (cubs are rarely harvested) but it assumes that the population sex ratio is 

1:1 at this time. Differential mortality between males and females from birth to 1.5 years 

can also induce bias. Finally, the Paloheimo-Fraser method is also rather volatile. Our 

results are consistent with those of Harris and Metzgar (1987) who found that the 

coefficient of variation (CV) of estimated harvest rates can be an order of magnitude 

greater than the CV of the actual rates.  

In our study, the inclusion of hunter survey data did not improve model 

performance, despite the fact that others have shown variations in the number of hunters 

afield explaining a large part of the year to year variation in bear harvests (Noyce and 

Garshelis 1997). By leaving the survey data out and using only tags, we reduced the total 

uncertainty and improved model performance. Two factors influence the degree to which 

hunter effort data will be helpful in harvest estimation: the strength of the effort effect on 
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annual harvest rates and the inter-annual variability in effort. Other covariates of 

vulnerability to harvest, such as food availability (Noyce and Garshelis 1997) could also 

be helpful in estimating bear vulnerability, but they would need to meet the same 

conditions to constitute an improvement. Ultimately, variation in hunter effort may 

introduce noise into the analysis such that using a simple proxy (e.g. tag sales) can 

actually be preferable, even optimal, relative to other measures. 

We examined the efficacy of small datasets for implementing SPR and found 

them to be potentially adequate. Not surprisingly, larger sample size for the SPR 

auxiliary data improved model performance, but at a cost. The SPR methods have very 

broad credible intervals for bias in abundance and growth rates and this could be due to 

small sample sizes. We saw little improvement in bias reduction when auxiliary datasets 

were simulated for up to 75 new captures annually (unpublished analysis), but precision 

of the estimates did improve. As stated above, our auxiliary datasets unrealistic in terms 

of high capture rates and no “losses” (equipment failure, etc.), so in practice, the SPR 

performance seen here may only be achievable with even greater expense and effort. 

Larger datasets could support age- or class-specific analysis that might better account for 

the harvest and survival processes and further reduce bias.  

Estimator performance was markedly different depending on whether the intent 

was abundance estimation or tracking growth rates. The latter task is apparently easier 

and can be done for no additional investment in data beyond aged and sexed harvest data. 

Although all strategies were effective at tracking growth rates, the volatility of the 

Paloheimo-Fraser method suggests caution in using this approach blindly. Fieberg, et al 

(2010) found SPR-type models superior to Downing. Their study found similar degrees 
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of error for Downing as we did (e.g. MSE = 0.009) while their integrated models 

performed much better (e.g. MSE = 0.00005), but the practical contribution of such 

improvement to management is debatable. Given our focus on small-sample scenarios, 

we found the Downing method to be superior to the other strategies. 

MANAGEMENT IMPLICATIONS  

Our research shows that for game species management, improvements in 

abundance estimation require investment in improved data, while excellent growth rate 

estimates can be had for no investment beyond the collection of harvest data. Simple 

methods for basic data are available, but they require more stringent assumptions than 

more sophisticated methods that require more intensive data. Ideally, funds are invested 

in validating these assumptions, but often, that is not the case.  

SPR can be an excellent tool under the right conditions and can be cost-effective 

relative to launching an intensive population estimation study utilizing capture-recapture 

methodologies. SPR is relatively free from dubious assumptions and performs well at 

estimating abundance and taking advantage of formerly disparate datasets. However, 

where sufficient data do not already exist, the cost of obtaining it likely outweighs the 

value to the manager in terms of harvest and population management decision-making. 

Skalski et al (p. 1315, 2007) point out that the needs of SPR can focus the objectives of 

intensive population studies. While this is undoubtedly true, the ultimate impact of the 

information and analyses should be considered relative to the decisions facing wildlife 

managers.  
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The MVD statistic can provide a rough guide for incremental investments as well 

as the distinct, discrete options we present here. What makes the MVD analysis work is 

the comparison of the costs of data to a clearly articulated benefit or set of benefits, in 

this case, estimation bias and precision. Given those objectives, a cost-benefit comparison 

can be made and the range of options compared. Again, our results are conditioned on 

our framing of the issue as one of monitoring a harvested population (Chapter 3 connects 

these objectives to the ultimate objectives of a harvest manager). Other objectives could 

lead to other conclusions, but our results suggest that the marginal benefit of an 

investment in data could be an important consideration prior to allocating resources.  

The critical deciding factor in our comparison of these estimation strategies is the 

importance of abundance estimate. In choosing a population analysis strategy, managers 

must identify their values relative to estimating abundance and growth rate. There is no 

one-size fits all “answer” to the challenges of population management, but where budgets 

are limiting, management strategy should take a hard look at not just information that 

would be good to know, but information that would change the decisions that are made 

(for more on this, see Chapter 3). When the upper limits of the wildlife population are 

defined primarily by human/social drivers, rather than ecological, the task of providing 

precise and accurate estimates of abundance may be unnecessary year-to-year as 

management will typically be tied to detection of differences in abundance (rates of 

change) rather than attempts to meet some numerical target, per se.  

Consistent, though biased, abundance estimates and precise estimates of growth 

rate may be adequate in many cases, but such methods do expose managed populations to 

some risk. A declining population could still have high, stable harvests which could lead 
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to misdiagnosis of the true population state. For that reason, some checks on the absolute 

abundance of the population are in order, most likely on a periodic, basis. Periodic 

investment in intensive data designed to test assumptions that might also be exploited for 

‘benchmark’ abundance estimates within a regular program of low-cost annual trend-

tracking.  
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FIGURE LEGEND 

Figure 2.1: Annual cycle of events in the simulated population. 

Figure 2.2: Simulated population trajectories across years 20-50 

Figure 2.3: Empirical bias in abundance estimation (gray zone is 95% credible 

interval). 

Figure 2.4: Empirical bias in growth rate estimation (gray zone is 95% credible 

interval). 

Figure 2.5: Distribution of CE values for abundance estimates. 

Figure 2.6: Distributions of CE values for growth rate estimates. 
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Table 2.1: Parameter values used for simulating vital and harvest rates. Sample rates, calculated at the intercept, are displayed. Birth sex ratio was modeled as 

1:1 for all simulation scenarios. 

 

Simulation sub-model strong decline weak decline stationary weak increase strong increase

0.08 0.06 0.05 0.05 0.05

intercept -2.4 -2.7 -2.9 -3 -3

Female Harvest rate age 0.02 0.02 0.02 0.02 0.02

(logistic) age squared -0.002 -0.002 -0.002 -0.002 -0.002

density 0.01 0.01 0.01

effort 0.035 0.035 0.035 0.035 0.035

0.13 0.10 0.10 0.08 0.12

intercept -1.9 -2.2 -2.2 -2.5 -2

Male Harvest rate age 0.02 0.02 0.02 0.02 0.02

(logistic) age squared -0.002 -0.002 -0.002 -0.002 -0.002

density 0.01 0.01 0.01

effort 0.035 0.035 0.035 0.035 0.035

0.85 0.88 0.88 0.88 0.88

intercept 1.7 2 2 2 2

Female Post-breeding survival age 0.2 0.2 0.2 0.2 0.2

(logistic) age squared -0.005 -0.006 -0.005 -0.006 -0.006

density -0.005 -0.05 -0.005 -0.005

0.80 0.85 0.85 0.85 0.85

intercept 1.4 1.7 1.7 1.7 1.7

Male Post-breeding survival age 0.2 0.2 0.2 0.2 0.2

(logistic) age squared -0.005 -0.006 -0.005 -0.006 -0.006

density -0.005 -0.05 -0.005 -0.005

1.03 1.16 1.22 1.22 1.08

Birth rate (cubs/female/year) intercept 0.03 0.15 0.2 0.2 0.08

(Poisson) density -0.008 -0.008

density squared -0.001 -0.005 -0.005 -0.001

value at intercept:

value at intercept:

value at intercept:

value at intercept:

Simulation scenarios

value at intercept:

7
5
 



77 

 

Table 2.2: The 8 alternative estimation strategies. As one moves downward through the table, the strategies 

include increasing sophistication of estimator and intensity of data. The ‘pfnull’ strategy assumes 

constant annual effort, ‘pftags’ uses tag sales as the index of effort, and ‘pfhd’ uses hunter-days, 

calculated as the product of tag sales and the mean days hunted as reported on hunter surveys. The 

statistical population reconstructions differ in 2 dimensions. First, they use either the smaller or larger 

marked animal datasets, and second, they use either tag sales as the index of effort, or mean days 

hunted were estimated jointly with other parameters and used with tag sales to calculate hunter-days 

as the index of effort. 

 

 

 

Table 2.3: Median relative bias for abundance estimates. 

 

Small (12) Large (25)

dnull Downing Reconstruction x

pfnull Paloheimo-Fraser x

pftags Paloheimo-Fraser x x

pfhd Paloheimo-Fraser x x x

spr12_tags Statistical Population Reconstruction x x x

spr25_tags Statistical Population Reconstruction x x x

spr12_hd Statistical Population Reconstruction x x x x

spr25_hd Statistical Population Reconstruction x x x x

Name

Marked Animal DataHarvest 

data
Tag Sales

Hunter 

Effort Estimator 

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

dnull -0.334 -0.422 -0.448 -0.489 -0.394 -0.331 -0.423 -0.446 -0.489 -0.394

pfnull -0.384 -0.348 -0.333 -0.374 -0.197 -0.383 -0.345 -0.335 -0.368 -0.196

pftags -0.384 -0.348 -0.333 -0.374 -0.195 -0.384 -0.345 -0.333 -0.369 -0.196

pfhd -0.385 -0.349 -0.332 -0.372 -0.194 -0.383 -0.342 -0.332 -0.371 -0.194

spr12_tags 0.107 0.043 0.079 0.108 0.102 0.119 0.093 0.155 0.018 0.035

spr25_tags -0.036 -0.036 0.021 -0.048 0.006 -0.020 -0.014 0.002 -0.042 -0.019

spr12_hd 0.096 0.050 0.087 0.104 0.103 0.095 0.093 0.264 0.056 0.029

spr25_hd -0.031 -0.032 0.011 -0.056 0.023 -0.028 0.023 0.001 0.005 -0.027

Constant Effort Variable Effort
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Table 2.4: Median relative bias of growth rate estimates. 

 

 

Table 2.5: Coefficients of error (CE) of abundance estimates. 

 

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

dnull 0.003 0.001 0.000 -0.002 -0.002 0.004 0.001 0.000 -0.001 -0.002

pfnull 0.001 0.003 0.002 -0.002 0.001 -0.001 -0.004 0.000 0.005 0.002

pftags 0.001 0.003 0.002 -0.002 0.001 -0.001 -0.005 0.000 0.003 0.002

pfhd 0.001 0.003 0.002 -0.002 0.001 -0.002 -0.002 -0.001 0.002 0.002

spr12_tags -0.003 -0.002 0.008 -0.002 0.001 0.003 0.001 0.003 0.001 0.010

spr25_tags -0.004 -0.002 0.004 0.002 0.001 0.005 0.001 0.001 -0.002 0.010

spr12_hd -0.004 -0.012 0.004 -0.005 -0.002 0.004 0.021 -0.006 0.010 0.022

spr25_hd -0.004 -0.013 0.006 -0.002 -0.003 0.000 0.007 0.001 -0.008 0.016

Constant Effort Variable Effort

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

dnull 0.35 0.43 0.46 0.51 0.41 0.35 0.43 0.46 0.51 0.41

pfnull 0.42 0.37 0.35 0.39 0.21 0.41 0.37 0.35 0.39 0.21

pftags 0.42 0.37 0.35 0.39 0.21 0.41 0.36 0.34 0.39 0.21

pfhd 0.41 0.37 0.34 0.39 0.21 0.41 0.36 0.34 0.39 0.21

spr12_tags 0.14 0.11 0.13 0.21 0.10 0.31 0.15 0.21 0.14 0.13

spr25_tags 0.08 0.08 0.06 0.05 0.06 0.09 0.09 0.10 0.08 0.09

spr12_hd 0.15 0.11 0.14 0.21 0.10 0.45 0.19 0.27 0.14 0.19

spr25_hd 0.09 0.09 0.07 0.06 0.07 0.13 0.12 0.13 0.10 0.08

Constant Effort Variable Effort
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Table 2.6: Coefficients of error (CE) of growth rate estimates. 

 

 

Table 2.7: Percentage change in CE from the best, no-cost baseline strategy (pftags) and MVD (percentage 

change in CE per unit investment in data) for abundance estimation strategies. Some strategies have 

inferior magnitude of CE reduction, but superior MVD—better bang for the buck. Change sin CE and 

MVD for growth rate estimation are not depicted because no investment in additional data improved 

over the best, no-cost baseline: Downing Reconstruction (dnull). 

 

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

strong 

decline

weak 

decline
stationary

weak 

growth

strong 

growth

dnull 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01

pfnull 0.16 0.16 0.09 0.12 0.06 0.15 0.16 0.09 0.13 0.06

pftags 0.16 0.16 0.09 0.12 0.06 0.15 0.16 0.10 0.13 0.07

pfhd 0.16 0.16 0.09 0.12 0.06 0.16 0.17 0.10 0.13 0.07

spr12_tags 0.03 0.03 0.03 0.03 0.03 0.06 0.07 0.06 0.07 0.06

spr25_tags 0.03 0.03 0.03 0.03 0.03 0.06 0.07 0.06 0.07 0.06

spr12_hd 0.04 0.04 0.05 0.04 0.04 0.09 0.08 0.08 0.08 0.09

spr25_hd 0.04 0.04 0.05 0.04 0.04 0.09 0.08 0.08 0.08 0.09

Constant Effort Variable Effort

Cost 

Gross 

Change in 

CE

MVD

Gross 

Change in 

CE

MVD

dnull 0 - - - -

pfnull 0 - - - -

pftags 0

pfhd 1 -0.1% -0.06% -0.2% -0.17%

spr12_tags 70 -59.7% -0.85% -45.2% -0.65%

spr25_tags 100 -80.1% -0.80% -74.8% -0.75%

spr12_hd 71 -58.6% -0.82% -27.8% -0.39%

spr25_hd 101 -78.5% -0.78% -67.0% -0.66%

Baseline Strategy (CE = 34.5%, 20.4%)

Constant Effort Variable Effort
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Figure 2.1: Annual cycle of events in the simulated population. 
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Figure 2.2: Simulated population trajectories across years 20-50. 
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Figure 2.3: Empirical bias in abundance estimation (gray zone is 95% credible interval). 
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Figure 2.4: Empirical bias in growth rate estimation (gray zone is 95% credible interval). 
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Figure 2.5: Distribution of CE values for abundance estimates. 
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Figure 2.6: Distributions of CE values for growth rate estimates. 

 



 

86 

 

Chapter 3 Expected Value of Sample Information for Harvest 

Management Decisions 

ABSTRACT Most wildlife management decisions are made in the face of 

uncertainty, often induced by limited data. Population estimates are integral to many 

management decisions, and those estimates depend on choices of analytical methods and 

data to be used. Better data costs money and can improve estimates, but the realized 

improvements may not result in different management decisions. In this paper, we used 

simulated data on American black bear (Ursus americanus) and a hypothetical harvest 

management decision scenario to measure the expected value of sample information 

(EVSI) of a suite of different combinations of estimators and datasets (“strategies”). The 

strategies were built around three alternative population estimation methods: population 

reconstruction (Downing 1980), a change-in-sex-ratio estimator (Paloheimo and Fraser 

1981), and statistical population reconstruction (Gast et al. 2013), and augmenting 

harvest data with hunter effort surveys and marked animal recovery data. The 

management decision was to raise, lower, or leave static the harvest intensity to maintain 

abundance within a target range. EVSI was examined across a range of uncertainty about 

the system state upon which decision payoffs depended. The EVSI of all estimation 

strategies was encouragingly large, particularly when uncertainty was greatest and a 

decision with no sample information had an expected value of approximately 0. Downing 

reconstruction had the highest EVSI at all levels of uncertainty about the true population 

state, followed by statistical population reconstructions. There are many reasons to invest 
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funds and time in collecting data, but the uncertainty clouding population management 

decisions can be greatly alleviated with relatively inexpensive monitoring methods.  

KEY WORDS American black bear, decision analysis, EVSI, expected value of 

sample information, game species, harvest management, Ursus americanus, value of 

information, VOI. 

 

State and provincial wildlife managers need to make management decisions and 

policy recommendations despite limited data and budgets. Because different analytical 

methods can result in different estimates for a given parameter, choice of analytical 

methods can lead to different management decisions, ultimately affecting wildlife 

populations. Considerable research and development has gone into creating and 

understanding different means of estimating wildlife populations (hereafter, "estimators"; 

Skalski et al. 2005). Each estimator exploits some specific kind(s) of data, and a wildlife 

manager chooses an estimator, but may also choose the data to use, including collecting 

additional data.  

The fundamental data for game population analysis is “age-at-harvest data”, 

consisting of counts by age, and typically sex, of some proportion of the harvested 

animals. Downing population reconstruction (Downing 1980) is an example of an 

estimator whose sole input is the age-at-harvest data. Other estimators, such as the 

Paloheimo-Fraser change-in-sex-ratio model (Paloheimo and Fraser 1981), require age-

at-harvest data and can be augmented with data on hunter effort, which can be indexed by 

license or tag sales or estimated from more intensive hunter surveys recording tag-holder 
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participation rate (the proportion of hunters with tags who actively hunt) and the time 

spent actively hunting per participant. Additionally, mark-recapture, hunter effort, and 

other datasets can be used to augment age-at-harvest data in statistical population 

reconstructions (e.g., Skalski et al. 2007, Skalski et al. 2011). The opportunity to pair a 

given estimator with different datasets evokes the notion of an estimation “strategy”, an 

estimator combined with a particular set (or sets) of data. Wildlife managers need not 

only consider estimators for their existing data -- they also have the option of collecting 

additional data to augment that estimator or allow the use of another method. They are, in 

effect, choosing among estimation strategies. 

Investment in intensive hunter effort or mark-recapture datasets is worthwhile if 

the gains from the more expensive strategy deliver benefits exceeding its cost in 

additional data. Often estimation strategies are evaluated in terms of statistical 

performance and robustness. For instance, Millspaugh et al. (2009) used the Coefficient 

of Error (CE), a single metric of relative bias and precision, in their evaluation of the Sex-

Age-Kill harvest-based estimator. Some researchers, such as Buderman et al. (2014), 

account for the financial cost of the data required by their estimation strategy. More 

recently, Rinehart and Donovan (Chapter 2) introduced the Marginal Value of Data, 

which tracks gains in statistical performance (CEs) across strategies on a per-unit-cost 

basis.  

However, in choosing an estimation strategy, what matters most is not statistical 

performance, but how different strategies alter the decisions they are intended to serve. 

The consequences of wildlife management decisions have long-term consequences: If the 

harvest rate is too great, game populations can be suppressed to levels from which it may 
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take many years to recover (Fryxell et al. 1988, Miller 1990, Taylor et al. 2008). This is a 

loss of value derived from both consumptive and non-consumptive interactions with 

wildlife by the human constituency of management agencies. On the other hand, if the 

harvest rate is too little, game populations may become overabundant, contributing to 

disease transmission (Gortazar et al. 2006), property damage and loss (West and 

Parkhurst 2002, Bissonette et al. 2008), human injury (Farrell et al. 1996, Hristienko and 

McDonald 2007, Bissonette et al. 2008), ecological changes (Cote et al. 2004, McLaren 

et al. 2004, Cote 2005), and increasing the need for more intensive and expensive 

management tactics (Fagerstone and Clay 1997, Hristienko and McDonald 2007, 

DeNicola and Williams 2008, Ransom et al. 2010). Management actions based on 

erroneous inference of population size or trend can contribute directly to these negative 

outcomes. The uncertainty of our knowledge can be a major contributor to the chances 

that our chosen actions fail to obtain the value we seek. The value of an estimator, then, 

lays ultimately in the outcomes of the decisions that it supports.  

Value of information (VOI) analysis is a formal means of measuring how 

uncertainty impacts decision outcomes, and the benefits derived from reducing that 

uncertainty. A typical management decision with uncertainty has several management 

alternatives that may be chosen, and several different system “states”. For example, a 

manager may have three management alternatives with respect to harvest rate: increase 

the harvest, decrease the harvest, or maintain the harvest (Table 3.1A). The greatest value 

obtained by each alternative depends on the state of the population relative to a 

management objective, whether the population is above the target, at the target, or below 

the target. The outcome, or payoff, of each alternative is state-dependent. For instance, in 
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Table 3.1A, if the population is above target and the harvest rate is increased (leading to 

population reduction), the payoff is 10 on a hypothetical value scale with higher values 

being more desirable than lower. Similarly, if the population is below target and the 

harvest rate is decreased, the payoff is also 10. However, if the population is below the 

target and the harvest rate is increased, the payoff is 1 because it is undesirable to 

increase harvest on a too-low population, driving it further below the target.  

From the manager’s view, the “best” alternative depends on the state of the 

system, but the state is uncertain at any given moment. In Table 3.1A, the manager 

believes that there is a 0.5 probability that the population is above target, a 0.3 probability 

that the population is at the target, and a 0.2 probability that the population is below 

target. In this case, the only information existing about the system is the probability 

distribution of the states. These “prior” probabilities must come from study or belief that 

exists prior to analyzing the decision. If the decision-maker can formulate such a 

probability distribution for the states, then they can calculate the expected value of each 

alternative as the probability–weighted sum of their payoffs, and choose the alternative 

with the maximum expected value. This approach is known as the expected value given 

prior information (“EVprior”), and in Table 3.1A it is equal to 7.5. 

In theory, a decision-maker who knew the true system state before making a 

decision would always choose the alternative with the greatest possible payoff. This is 

known as the expected value given perfect information (EV|PI), and in Table 3.1A it is 

equal to 10, the sum of the maximum payoff for each state weighted by the prior 

probability of each state. This number is greater than EVprior and the difference between 

the EV|PI and the EVprior is called the expected value of perfect information (EVPI; 2.5 in 
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Table 3.1A). EVPI measures the value that is lost to state uncertainty; a prudent decision 

maker would spend up to the EVPI to know the true state of the system.  

A manager can never know perfectly the abundance state of a wildlife population, 

but through sampling and inferential statistics, they can obtain estimates of abundance 

and “update” their state probabilities; in doing so they can recover lost value. Akin to 

EVPI, the expected value of sample information (EVSI) is the difference between the 

expected value given sample information (EV|SI) and EVprior.  

EV|SI can be thought of as something of a hybrid between EVprior and EV|PI. 

With only prior information, the decision-maker chooses one alternative, based on its 

expected value under the prior probabilities. In the case of EV|PI, the decision-maker 

switches alternatives to match the situation, always choosing the “best” alternative for the 

state that is known with certainty. EV|SI relies on making an inference based on sample 

information. This information is not perfect, but it may be better than nothing. Here, the 

decision-maker can switch alternatives (as with EV|PI) based on the inference about the 

state, but since the information is not perfect, the choice of alternatives given the 

inference is a maximum expected value decision (as with EVprior). The key to the 

inference based on sample information is that it allows the decision-maker to update their 

prior probabilities.  

To calculate EV|SI, one makes use of Bayes’ Theorem to update the prior state 

probabilities to a posterior probability distribution. This requires conditional 

probabilities, or likelihoods, of observing the sample information (i.e., sample-based 



 

92 

 

inference) under each state (Table 3.1B). These conditional probabilities of the data are 

found through a separate analysis of the accuracy of the inferential methods in question.  

If the states are labeled A (above target), B (at target), and C (below target), with 

prior probabilities of P(A), P(B), and P(C), and the sample inference is labeled “data” 

(i.e., the result of the estimation analysis), Bayes’ Theorem can be used to calculate the 

posterior probability as shown: 

𝑃(𝐴|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝐴) ∗ 𝑃(𝐴)

𝑃(𝑑𝑎𝑡𝑎|𝐴) ∗ 𝑃(𝐴) + 𝑃(𝑑𝑎𝑡𝑎|𝐵) ∗ 𝑃(𝐵) + 𝑃(𝑑𝑎𝑡𝑎|𝐶) ∗ 𝑃(𝐶)
 

Here, if P(A) is the prior probability that the population is above target, then the 

posterior probability that the population is above target P (A|data) equals the likelihood of 

observing the data when the population is truly above target times the prior probability 

the population is above target. The denominator accounts for all three states (hypotheses), 

where each term multiplies the likelihood of observing the data under the state multiplied 

by its prior probability. Bayes’ Theorem would similarly be used to calculate the 

posterior probabilities for P(B) and P(C).  

Once the posterior probabilities have been calculated, then EV|SI can be 

calculated. In our example, there are 3 possible inferences about the population: above 

target, at target, or below target (Table 3.1C). If the inference is “above target”, then the 

best alternative is the one that maximizes the expected value of the decision using the 

posterior probabilities that indicate the probability of that the true population is above, at, 

or below the target. This is the expected value of the decision given the inference = 

“above target”. The same method can be applied to the other possible inferences to get 
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the expected value given each possible inference. Note that the alternative that maximizes 

the posterior expected value is not necessarily the same from inference to inference. 

Now, the EV|SI is the sum of these conditional expected values weighted by the 

probability of each inference being observed, which is the denominator of the formula for 

Bayes’ Theorem given above. By incorporating sample information, the decision-maker 

may be closer to knowing the system state. EVSI, the difference between EV|SI and the 

EVprior, is a means of measuring whether that reduction in uncertainty is rewarded with 

increased expected value for the decision overall. In Table 3.1, EV|SI is 8.8 and EVSI is 

1.3. 

EVSI is ideally suited to identifying the value of a given estimation strategy, not 

in terms of dollars or coefficients of variation (Millspaugh et al. 2009), but directly in 

terms of management decision payoffs. Given a choice among several estimation 

strategies, the best one is that which maximizes the EVSI. To quantify and interpret the 

decision-value of different estimation strategies to harvest management, we (1) simulated 

hypothetical black bear population dynamics, harvest, and data collection under five 

scenarios of population growth, (2) estimated abundance from the simulated data with 8 

alternative estimation strategies, (3) calculated the conditional probabilities that a given 

strategy would correctly identify population status relative to a target abundance range 

(e.g., “at target” means within the range), (4) calculated the expected value of sample 

information for each strategy under a variety of different prior information scenarios, and 

(5) examined the sensitivity of our EVSI calculations to variation in key inputs. Our 

simulation-based approach can be applied to a wide variety of estimation methods to aid 

managers in evaluating potential pay-offs to investments in their monitoring systems. 
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METHODS 

For simplicity, we will assume that our harvest management system operates with 

certainty. That is, the “increase harvest” alternative actually increases harvest as 

predicted and therefore reduces the population accordingly. We do this so that the only 

element of the decision that is uncertain is the state of the population at the instant of the 

decision. 

This research was conducted by developing a population and harvest simulation 

model that can be parameterized to reflect a wide variety of game species and harvest 

regimes. Both models were functions within an R (R Core Team 2013) package called 

‘AMharvest’, developed for the Vermont Fish and Wildlife Department, Vermont USA 

(Donovan et al. in prep). We used the function, popMod, to simulate population 

dynamics through time. popMod is a discrete-time population model built around an 

annual cycle of non-overlapping periods (Figure 3.1). The census occurred in the autumn, 

followed by an autumn harvest season, a post-season survival period (winter-spring), an 

instantaneous breeding season (spring), and pre-hunting season survival (spring/summer). 

The model requires inputs for several key vital rates, including harvest rate, pre-breeding 

survival, birth rate (offspring per breeding female per year) birth sex ratio (the proportion 

of offspring that are males), and post-breeding survival. For simplicity, we assumed 

complete reporting and no errors in sexing or aging. 

For this study, we patterned the analysis after the American black bear (Ursus 

americanus) with 20 ages. Vital rates were made to fit generally the distributions 

documented by Beston (2011) in her meta-analysis of Black Bear demography, Bunnell 

and Tait (1985), and estimated harvest rates in Northern New England (F. Hammond, VT 
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Dept. of Fish and Wildlife, and K. Gustafson, NH Fish and Game, pers. communication). 

We considered the harvest to be completely additive and cubs were excluded from the 

harvest by design (to match reality) and therefore from all subsequent population 

estimates and comparisons. Different simulation scenarios were facilitated by different 

parameterizations (“settings”) of age- and sex-specific vital rates (Table 3.2). Settings 

were chosen to produce population scenarios that were described as: stationary (finite rate 

of increase () ~= 1.0), weak growth ( ~= 1.02), strong growth ( ~= 1.03), weak 

decline ( ~= 0.99), and strong decline ( ~= 0.96), which growth rates span the 95% 

credible interval of population growth rates identified for black bears in Eastern North 

America (Beston 2011). Annual harvest rates were modeled as a function of effort. We 

simulated annual tag sales, tag-holder participation rates, and mean days afield per active 

tag-holder to generate an annual count of “hunter-days” of effort that was used to 

generate the harvest rates for each year of simulation. Each of the 5 scenarios was 

simulated with variable effort and a stochastic harvest process (with both effort and the 

harvest process being stochastic) for a total of 10 different simulation scenarios. For each 

simulation, the mean tag sales, participation rates and mean days afield were constant 

across years at their mean values (tags = 4 (in thousands); participation rate = 0.6; days 

afield = 5). To generate an annual harvest rate, annual values of each quantity were 

drawn from normal distributions with a coefficient of variation of 10%. Then, a 

stochastic harvest was implemented with a binomial distribution, where the number of 

trials was the number of individuals available to be harvested and the harvest probability 

was the randomly effort variable. Each scenario was implemented in 100 iterations of 50 
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year simulations starting with previously determined stable age distributions (see Chapter 

2 for fuller description of simulations).  

Estimation strategies 

We analyzed the simulated harvest data (n = 5 scenarios with 100 iterations of 50 

year runs per scenario) with three types of estimation methods, each requiring different 

data inputs: Downing reconstruction (Downing 1980), the Paloheimo-Fraser change-in-

sex-ratio estimator (Paloheimo and Fraser 1981), and statistical population reconstruction 

(Gove et al. 2002, Skalski et al. 2007, Skalski et al. 2011, Gast et al. 2013). SPR is not 

*an* estimator, but rather a type of model for estimation using multiple sources of data to 

jointly estimate harvest and survival parameters and different model forms are possible. 

We used a form in which the likelihood of the harvest and survival rates within a cohort 

are modeled as conditional upon the total harvest of that cohort (p.1261, Gast et al. 2013). 

Each estimation method was married with various datasets into 8 different 

population estimation “strategies” consisting of each method matched to one or more 

suitable datasets (Table 3.3; see Chapter 2 for full details). The Downing method was 

performed using only harvest data (strategy = “dnull”, Table 3.3). The Paloheimo-Fraser 

method was used with 1) only harvest data and an assumed, constant level of effort 

applied across all years (“pfnull”), 2) harvest data and tag sales as a proxy of effort 

(“pftags”), and 3) harvest data and hunter-days (“pfhd”), calculated as tag sales times 

mean days hunted per hunter (Table 3.3). The mean days hunted was estimated as a 

simple average of the responses to the simulated hunter effort survey. Residual analysis 
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was performed on select iterations of the Paloheimo-Fraser method. No evidence 

suggesting systematic lack of model fit to the data was observed.  

The SPR strategies all used the same SPR model but the data differed in 2 

dimensions. First, SPR strategies used either the smaller (“spr12”) or larger (“spr25”) 

marked animal datasets, and second, they used either tag sales as the index of effort 

(“tags”) or hunter-days (“hd”) as the measure of effort (Table 3.3). In the latter case, the 

SPR models estimated mean days hunted across all individuals in the effort survey and 

the product of mean days and tag sales was the estimate of hunter-days. Following the 

model-fitting suggestions of Skalski et al (2012), we calculated Anscombe residuals and 

plotted them by age and by year for select instances of our SPR estimations. The 

residuals gave no indication of systematic lack of fit to our data. We did not attempt to 

test sensitivity to annual data by dropping some years from analysis. This type of 

sensitivity is likely high and unavoidable in the short duration studies we simulated.  

To furnish auxiliary data for SPR analysis, we simulated two tag-recovery 

datasets over the same 6-year period in each 50-year iteration of the simulation. One 

dataset had a mean capture rate of 12 animals per year and the other had a rate of 25 

captures per year, representing different levels of investment and information. A Poisson 

random variable was drawn for the captures in each year. Captured animals were then 

considered tagged and the prevailing harvest and survival rates for that year and 

simulation setting were applied over the duration of the simulated study. We assumed the 

causes of mortality (harvest, non-harvest) were known with certainty and no animals 

were lost or censored. Males and females were equally likely to be captured. Tag 
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resighting occurred without error. See Chapter 2 for complete description of simulated 

data and estimation strategies. 

For each of the five population growth scenarios, we estimated population size for 

each of the eight alternative strategies across the 25
th

 to 45
th

 years of the simulations 

(Chapter 2). Marked animal studies were simulated for only 6 years so SPR estimates are 

only available for years 25-30. Years 31-45 are therefore missing for SPR and estimates 

from SPR strategies is based on only 6 years of data per simulation.  

Expected Value of Sample Information 

To calculate the EVSI for each strategy, the prior probabilities of each state, the 

payoff, and the likelihood of observing the estimator result given a state are needed. We 

assumed that a decision maker considers three possible states of  for the harvested 

species: above the target range (trueHI), at/within the target range (trueAT), and below 

the target range (trueLO). We assumed that the decision maker considers three possible 

management actions with respect to the harvest rate: increase (INCR), maintain (STAY), 

and decrease (DECR).  

Payoffs  

For the payoffs under each state and management option, we used a value scheme 

for the decision payoffs that consisted of an artificial variable describing the general 

satisfaction obtained in a given situation by the beneficiaries of the decision (Table 3.4). 

The scheme used a constructed scale in which the best outcome had a value of 100 and 

the worst outcome had a value of -200. The greater range of negative values of 
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undesirable outcomes relative to desirable outcomes reflects a “loss-averse” decision-

maker (Kahneman and Tversky 1984), one for whom sustaining a loss (i.e., a negative 

payoff) is twice as bad as a gain (i.e., a positive payoff) is good. The values were 

assigned presuming that a population at the target level was very good, over-abundance 

was less good, and under-abundance was very bad. The worst values were obtained when 

the undesirable states, over- and under-abundance, were the result of management action, 

again with under-abundance being more negative than over-abundance. Arbitrary scaling 

is not ideal, but thoughtfully constructed, can be constructive in actual practice (e.g., 

Runge et al. 2011).  

Prior Probabilities  

We assigned the probabilities of trueHI and trueAT values ranging from 0.05 to 

0.95 in increments of 0.05, and for each unique pairing with a sum less than or equal to 

one; we calculated P(trueLO) as 1 minus their sum. This resulted in 190 distinct prior 

distributions, each of which was used to compute the EV of a decision using only prior 

information (EVprior) and the EV|SI for each estimation strategy. 

Conditional probabilities (or likelihoods)  

EVSI calculations for each estimation strategy used Bayes’ Theorem to compute 

the posterior probability of each state, given the prior probability of each state and the 

likelihood, or conditional probability, of observing an estimator’s test result given each 

true state.  

Our hypothetical management scenario represented a fall hunting season for bears 

in a jurisdiction with unlimited tags for state residents and a season that runs up until the 
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start of the fall rifle season for deer. With no tag limitations and no excess demand to 

hunt, means of increasing harvest are limited. The manager typically influences the 

harvest my modifying the end-date of the bear season to achieve greater or lesser overlap 

with deer season. Larger harvests occur when there the bear season overlaps with deer 

season as the woods suddenly become full of hunters that wouldn’t be out for bears 

otherwise. In this scenario, the bear season overlaps the first weekend of deer season and 

the manager can either shorten the next season to eliminate that overlap and reduce the 

harvest, lengthen the season into the first week of the deer season to increase the harvest, 

or make no changes to keep the harvest at the same level. These alternatives are referred 

to as “DECR” for decrease the harvest, “INCR” for increase, and “STAY” for maintain 

the current harvest level. 

We framed the population monitoring task as a classification “test” with the 

possible inferences (“results”) of the population as above, at, or below a defined target 

range. We assumed that in year t, the existing abundance is optimal relative to some 

hypothetical ecological and social standards such as ample hunting and viewing 

opportunities, minimal nuisance events, etc. Therefore, the abundance estimate for year t 

is the target abundance. We then project ourselves 4 years into the future (year = t +4) 

and estimate the annualized growth rate since year t. We considered that the population 

warranted management if the annualized growth rate estimated 4 years later (T + 4) was 

greater than 1.019 or less than .0981, approximating a 10% change in the population over 

5 years. Estimated growth rates within the defined target zone (test result = “testAT”) 

indicated that the population was at the target level and the optimal management action 

should be to maintain the status quo harvest intensity. If the estimated growth rate was 
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above the target zone (“testHI”), the management decision would be to intensify harvest 

through some defined measures such as extended seasons, expanded tag offerings, etc. 

An annualized growth rate below the zone (“testLO”) would indicate the need for 

restricting the harvest intensity to ameliorate the population decline. Thus, “testAT”, 

“testHI”, and “testLo” represent the inference obtained via an estimator strategy. 

The simulation study produced abundance estimates for years 25-45 of each 

iteration from all estimation strategies except SPR. We had 6 years of SPR estimates for 

each iteration due to the limitations of the data those strategies employ. For a given 

estimation strategy, we selected 5 4-year periods at random from each iteration of the 

simulation, and computed the annualized growth rate based on the estimated abundances. 

We also computed the growth rate based on the true (simulated) abundances for the same 

periods. The estimated growth rates were classified as “testHI”, “testAT”, or “testLO”, 

depending on if the growth rate was above, within, or below the target range of 0.981 to 

1.019. Similarly, we classified the true growth rate as “trueHI”, “trueAT”, “trueLO”, by 

the same criteria, so that for a sample from each iteration, we knew both the test result 

and the true state. Compiling these across the all iterations of all settings in the simulation 

study, we computed the conditional probabilities of each test result given each true state 

as a proportion of random samples. For example, using the Downing reconstruction 

strategy (“dnull”), 82% of the “trueHI” samples were both “testHI” and “trueHI”, so 

P(testHI | trueHI)dnull = 0.82. This process was followed for all estimation strategies, in 

turn.  

We used the payoffs and conditional probabilities of the test results to calculate 

the EV|SI across a range of different prior distributions for the states (see Appendix A). 
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Subtracting each EVprior from the corresponding EV|SI, we found the EVSI for each 

strategy across all sets of prior probabilities. For comparison, we computed the maximum 

and median values of EVSI for each strategy across all prior distributions.  

Sensitivity Analysis 

We formulated six different payoff matrices to examine the sensitivity of EVSI to 

the variation among payoffs in the matrix (Table 3.9). Matrices varied by absolute range 

of values across all outcomes and range of difference between outcomes. Most matrices 

ranged from 0 to 100. Had we set the lowest payoff to, say, 50, this would serve to 

rescale the matrix, but the important aspect of the matrix to examine is the effect of the 

relative distribution of scores within a given range. We performed the EVSI calculations 

using each payoff matrix in turn and compared ranges and distributions of resulting EVSI 

values among matrices. The sensitivity analysis of conditional probabilities was implicit 

in our analysis as the estimation methods we examined displayed a range of distributions 

of conditional probabilities of correct diagnosis of population states. Therefore, we 

examined the impact of different conditional probability distributions through examining 

patterns in EVSI among the estimation strategies.  

RESULTS 

The growth rates for the five base population simulations were approximately 

0.96 (strong decline), 0.99 (weak decline), 1.0 (stationary), 1.02 (weak increase), and 

1.03 (strong increase; Table 3.3). Effort for all years of variable-effort simulations ranged 

between 2.27 and 5.8 thousand tags (mean = 4, sd = 0.4) and between 5 and 24 thousand 

hunter-days (mean = 12, sd = 2). The correlation between tags and hunter-days was 0.58. 
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Nominal harvest rates (calculated at the intercept, without covariates) varied between 

0.05 and 0.08 for females and 0.08 and 0.13 for males. Positive age effects result in pre-

breeding survival between 0.90 and 1.0 for adults, and post-breeding survival rates 

between 0.80 and 0.85 for males and 0.85 and 0.88 for females. Annual birth rates ranged 

between 1.03 and 1.22 cubs per breeding-age female per year.  

Conditional probabilities 

The conditional probabilities of the estimation strategies (Table 3.5) were 

generally better for the trueHI and trueLO states than for trueAT. Probabilities of correct 

state identification varied from 0.6 (pfhd) to 0.82 (dnull) when population was truly 

above the target (“trueHI”), from 0.32 (pftags) to 0.89 (dnull) when the population was at 

the target (“trueAT”), and from 0.61 (pftags) to 0.92 (dnull) when the population was 

below the target (“trueLO”). All strategies performed better when the true state was 

above or below the target. The Paloheimo-Fraser strategies, in particular, had essentially 

uniform probabilities for results when the population was at the target. The abundance 

estimates from the Paloheimo-Fraser strategies were the most variable of all strategies 

(Chapter 2) and on a scale that apparently exceeded the target zone, making them 

unreliable at this level of growth rate monitoring. The SPR strategies were better than 

Paloheimo-Fraser in this regard, but not as good as Downing reconstruction. The 

probabilities of correct state identification given that the population was at the target zone 

varied from 0.32 (pf_tags) to 0.89 (dnull) across the SPR strategies, with the tag-only 

strategies performing generally better than the hunter-days strategies.  
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The Paloheimo-Fraser strategies were sufficiently similar to each other, as were 

the SPR strategies, that the remainder of this chapter focuses on only the dnull, pftags, 

and spr25_tags strategies, with the latter two representing all strategies using the same 

estimators.  

Expected value of sample information 

Recall that EV|SI is the expected value a decision-maker could achieve using 

inferences based on the sample information and these values will tend to fall between 

EVprior and EV|PI and are directly comparable to those two quantities. EVSI, on the other 

hand, might take high or low values and is not comparable to EVprior or EV|SI. Rather, 

EVSI is comparable to EVPI. EVSI will be low where EVprior is relatively close to EV|SI 

and EVSI will tend to be great where EVprior and EV|SI diverge, generally because the 

former gets very small. A small value of EV|SI means that the outcome of the decision 

will be slight, whereas a small value of EVSI means that little additional benefit is 

obtained from the sample inference, but it tells us nothing directly about the expected 

outcome of the decision, with or without sample information. Hence, we discuss both the 

EV|SI and the EVSI in the following sections. 

Across the examined range of possible prior distributions, EVprior ranged from 0 to 

82.5 with values being least when uncertainty about state is greatest (Figure 3.2). The 

situations with very low EV are most likely driven by only one alternative for a given 

state having a positive payoff. When the prior probabilities of the 3 states are uniform 

(P(trueHI) = P(trueAT)=P(trueLO) = 0.333), the expected value of an alternative is a 

simple average across the payoffs for the states. On the other hand, an outcome of 0 can 
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be interpreted as “neutral”, given that our loss-averse payoff scheme ranges from +100 to 

-200. Given the down-side risk of negative payoffs, obtaining neutral outcomes in 

uncertain situations could be counted as a victory of sorts.  

The EV|PI is 100 for all prior distributions as the best payoff per state is +100 in 

all cases, rendering the prior distribution immaterial. If the states had different maximum 

payoffs, then EV|PI would be more sensitive to the prior distribution. With EV|PI fixed at 

100, EVPI varied inversely to EVprior, being high when EVprior was low and vice versa. 

EVprior is lowest and EVPI is highest when prior uncertainty is greatest, as indicated by 

uniform prior probabilities P(trueAT) = P(trueHI) = P(trueLO) = 0.333. EVPI reaches a 

low of 8.5 when P(trueAT) was 0.95, P(trueHI) was 0.05, and P(trueLO) was 0. In other 

words, the value of perfect knowledge is proportional to uncertainty, or conversely, 

EVprior is inversely proportional to uncertainty. EVprior was highest as one of the state 

probabilities approached 1, which led to low values of EVPI. When prior uncertainty was 

greatest (prior state probabilities ~ equal), EVprior hovered near zero, leading to the 

greatest values of EVPI.  

With sample information obtained from an estimation strategy, the priors are 

updated via Bayes’ Theorem, and EV|SI and EVSI can be computed. Each of the three 

estimation strategies had high EVSI under some combinations of priors, but they differed 

in the overall magnitude.  

EV|SI with Downing reconstruction ranged from 75 to 92 with a median of 82 

(Table 3.6). When uncertainty was low (e.g. P(trueAT) = 0.95), the EV|SI of Downing 

was approximately equal to EVprior, confirming that inference based on sample 
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information is of little value in such situations. On the other hand, when uncertainty was 

high, the EV|SI of Downing reconstruction was much greater than EVprior. When 

P(trueAT) = P(trueHI) = 0.3, EV|SI was 80 and EVprior was 0.4, yielding EVSI of more 

than 79 (Figure 3.2). As noted above, the EV|PI was 100 for all cases, so this estimation 

strategy was excellent for monitoring the population relative to the target.  

Paloheimo-Fraser had maximum EV|SI around 92, a minimum of 8, and median 

EV|SI of 37. In situations of high prior uncertainty, the EV|SI with Paloheimo-Fraser was 

between 8 and 20 (Table 3.7), not a great deal more than the very low EVprior in such 

situations. SPR had EV|SI values that ranged between 37 and 93 with a median of 50 

(Table 3.8).  

The highest EVprior and EV|SI (all strategies) values were in the cases of low 

uncertainty, as in the corners of the images in Figure 3.2. Therefore, the highest EV|SI 

values did not contribute to high EVSI. Rather, the highest EVSI values come from the 

lower values of EV|SI for a given estimation strategy. Because all methods tend to be 

lowest when uncertainty is high, the question then becomes, how low does each strategy 

go? 

As indicated by EVSI, Downing reconstruction was twice as good as SPR and 4-8 

times better than Paloheimo-Fraser at reducing state uncertainty when prior information 

was weakest. For any given prior state distribution, EVSI was greatest for Downing, less 

for SPR, and least for Paloheimo-Fraser. This pattern is also evident in the median EVSI 

values for each estimator across all prior distributions (Figure 3.3). The EVSI for 

Downing reconstruction was surprisingly great, approaching EVPI. 
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EVSI sensitivity 

The payoff matrices (Table 3.9) examined did not change the relative efficacy of 

the estimation strategies, but different matrices did result in different distributions of 

EVSI values. The different payoff matrices can be compared directly when their values 

are normalized to a 0 – 1 scale (Figure 3.4, Figure 3.5). For a given estimation strategy, 

the distribution of EVSI values across different priors changes and the greater the range 

of values in the payoff matrix, the greater the range of EVSI (Figure 3.4). In Figure 3.5, 

the top row shows the EVSI for dnull, pftags, and spr25_tags under the risk averse 

payoff, with dnull offering the highest and pftags the lowest values, generally. The same 

is true for these models under the slight3 payoffs (Figure 3.5, bottom row) although, 

again, the absolute range of values is lesser under this payoff scheme. 

The range of difference in the payoff values influences the range of EVSI by 

altering the scale of the EVprior and EV|SI. Because the payoffs scale EVprior and EV|SI 

similarly, the relative magnitude of EVSI between estimation strategies (which is 

“better”) is unaffected. As reported above, the “risk averse” matrix resulted in median 

EV|SI for dnull and pftags of 85 and 35, respectively. Using the “slight3” matrix with 

payoffs of 0, 75, or 100, the median EV|SI for dnull and pftags were 97 and 88. The 

differences between the strategies are less in the latter case because the penalties for 

“wrong” action are less, but the same strategy delivers the higher expected value in both 

cases. This pattern holds with the other matrices as well: range of EV|SI values is roughly 

proportional to the relative distribution of payoffs within the matrix (Figure 3.4). Slight3 

has relatively high payoffs for most sub-optimal decisions while the risk averse matrix 

penalizes “wrong” decisions, so in the former case, the manager would obtain a relatively 
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high value from 2 of the 3 alternatives for each state. In the latter, risk averse case, low 

values are more common than high ones, which appear to expand the overall range of 

EV|SI scores. The “positive” payoff matrix only rewards one alternative for each state 

(100) compared to payoffs of 0 for all other alternatives. Nevertheless, this does not span 

the same range as the risk averse matrix and so the overall range of EV|SI is lesser than 

risk averse and greater than slight3. 

The conditional probabilities of accurately diagnosing the true population state 

from among three options could vary, for any hypothetical estimation strategy, from 

complete certainty (e.g., 1, 0, 0) to complete uncertainty (e.g., 0.33, 0.33, 0.33). The 

conditional probabilities of the dnull model typically strongly favored one state (e.g. 0.82, 

0.18, 0.00). Those of pftags were often close to uniform (e.g., 0.34, 0.32, 0.34), and those 

of spr25_tags were intermediate (e.g., 0.18, 0.55, 0.27).  

The conditional probabilities influence the magnitude of the EVSI for a given 

strategy. Ultimately, this is what differentiates the ranges of EVSI for different strategies 

(Figure 3.5). Less certainty in the conditional probabilities means that less information is 

added to the prior, hence the generally low values of EVSI for pftags. Downing 

reconstruction (dnull) had the greatest EVSI values because it delivered the greatest 

certainty of proper state identification.  

DISCUSSION 

Population estimators are typically evaluated on the basis of their statistical 

performance, either under ideal conditions, or under violations of assumptions. Value of 

information analysis parallels the results from the statistical and cost-performance 
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analyses, but renders the issue directly in terms of the decision to be made. In those 

terms, all of the strategies effectively reduced uncertainty, thereby increasing the 

expected return on the decision. The best performer, Downing reconstruction (dnull), is 

also the least expensive in practice. SPR methods, which also performed well, are the 

most costly as they require auxiliary data to shed a different light on harvest and survival 

processes. In this study, such expense appears unjustified purely from the standpoint of 

harvest management decision-making.  

Expected value of sample information is an incisive analysis for characterizing 

the benefit to be gained from data collection and analysis when there is a decision 

problem to evaluate. In this case, we used a hypothetical management scenario that was 

based on identifying the growth rate in a population across a small time frame. This 

scenario will clearly favor estimation strategies that excel in identifying growth rates at 

the expense of those that are better at estimating abundance. However, growth rates are 

based on abundance estimates. Repeating this analysis with a management scenario that 

focuses on abundance will deliver the same results as long as the decision is based on a 

comparison of abundance estimates at two points in time (unpublished analysis). The 

growth rate as used here is simply a scaling of change in abundance relative to the initial 

abundance. 

The management scenario that is not addressed by this analysis is that of 

managing for a specific abundance that is identified “outside” the estimation strategies in 

question. That is, the operative element of our hypothetical scenario is not a choice 

between growth rate or abundance, but rather the idea that the management target can be 

identified by some means (e.g., assessments of constituent satisfaction, 
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ecological/population health, nuisance/danger, etc) and then an estimated abundance can 

be assigned to that moment in time as a benchmark against which to judge the need for 

management (i.e., internally-consistent). As long as that is possible, then the management 

decisions will be inherently based on changes from baseline. If, on the other hand, a 

numerical abundance target were defined by some other means, then ability to estimate 

abundance with great fidelity takes on a different character as do the requirements of the 

estimation strategies. In that case, the more expensive estimation strategies would be 

more valuable to the manager and this should be reflected in an EVSI analysis of such a 

decision problem.  

Had the best EVSI resulted from one of the estimation strategies that carried 

substantial cost of acquiring data, the wildlife manager would need to compare the gain 

in EV of the decision to the financial cost of that method. In such a case, the construction 

of the payoff matrix takes on particular importance. If a payoff matrix can be constructed 

with payoffs in dollars, then a given estimation strategy is beneficial if its cost is less than 

the EVSI. With an arbitrary payoff matrix, such evaluation is not as obvious. A manager 

would have to use other means to determine how many dollars might be spent to achieve 

a +80 “satisfaction” based on EVSI. Although this is not a trivial challenge, neither is it 

completely unprecedented. In practice, harvest management often includes nuanced 

evaluations of both quantitative and qualitative data and subjective assessments where are 

data are lacking. Managers must balance the desires of a constituency whose preferences 

are largely hidden and formulating a quantitative yard-stick of success is challenging. 

Some citizens desire higher harvest rates or better chances at success. Others prefer 

lowered harvest and other modes of appreciating wildlife. These and other challenges 
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lead to management that is a mix of information and analysis that often defies purely 

quantitative, let alone fiscal, evaluation. Of course, there are means of elucidating even 

“satisfaction” with rigor and even coarse payoff matrices can be helpful.  

The value of a population estimation and monitoring strategy is clearest when the 

truth is most obscure: this is exactly when knowing something more can make the biggest 

difference in expected outcomes. All of the examined strategies had positive EVSI, but of 

different magnitudes. When prior state uncertainty was greatest, the EVSI of Downing 

reconstruction attained nearly 80% of the EVPI, and at no additional expense (e.g. data 

collection). The other methods, using varying degrees of additional data, performed, at 

best, only half as well. 

We used an internally-consistent population-monitoring scheme in which the 

target and the subsequent monitoring were both defined by a given strategy. Employing 

our hypothetical decision scenario would require waiting for several years after 

management actions are made to re-evaluate the population state. Most estimation 

methods are sensitive to non-stable harvest rates so using them over a period with known 

changes in harvest rate is not advised. Simple estimation strategies can perform quite well 

as long as the underlying population and harvest processes are not changing. The 

Downing reconstruction is known to be strongly negatively biased (Davis et al. 2007, 

Chapter 2), yet consistently so, making it excellent for tracking population trends. This 

would not be the case when the harvest system is unstable, as when harvest rates have 

abrupt changes or temporal trends. Downing and Paloheimo-Fraser assume constant 

harvest and survival rates across the period represented by the data. In that case, a 
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strategy such as SPR may come to the fore. SPR is the best of all examined strategies at 

estimating abundance (Chapter 2), but it is also costly. 

Fieberg, et al (2010) found SPR-type models superior to Downing in tracking 

trends. Their study found similar degrees of error for Downing as we did (e.g. MSE = 

0.009; Chapter 2) while their integrated models performed much better (e.g. MSE = 

0.00005). Based on the value of information analysis presented here, there may be little 

room to improve on the Downing reconstruction when it comes to maximizing expected 

value of management decisions. The real strength of SPR is likely to emerge when 

underlying conditions make the assumptions of simpler methods untenable or when 

suitable data already exist or are being collected to support other research objectives as 

well. Our emphasis here was to examine scope for reducing decision uncertainty under 

small-budget and small-sample conditions, and we did not provide a comprehensive look 

at the potential benefits of all estimation strategies. Given our focus on small-sample 

scenarios, we found the Downing method to be superior to the other strategies. 

The Downing Reconstruction is not a panacea, however. Managing from only the 

information it conveys could lead to mismanagement. If a game population is in decline, 

and the individual vulnerability to harvest is increasing, the resulting harvest could be 

relatively stationary over many years. This stability in the harvest would mask the actual 

over-harvest that was occurring. In such a case, additional information is necessary to 

contextualize the reconstruction information. The ability to accurately and precisely 

estimate abundance is valuable here, as is the ability to collect a wide range of other 

information that game managers rely on to formulate as complete a picture as possible of 

the population of concern. Clearly there a wide range of information is needed when 
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managing a game population, but our analysis suggest that a substantial portion of the 

year-over-year monitoring for harvest management may be relatively simple. More 

intensive and expensive methods might have a role intermittently do identify the general 

range of current abundance (too high, too low). 

Our analysis also showed that the results were robust to how the payoff values are 

encoded. We duplicated these analyses using alternate sets of values and compared the 

effect of different conditional probability distributions. In general, the less difference in 

payoff value between alternatives, the less difference there is between estimation 

strategies. If all or most alternatives are relatively high in value, the EV|SI scores will be 

relatively high. EVprior follows this same scaling such that the resulting EVSI values get 

smaller and smaller as the difference among alternative decreases. The conditional 

probabilities shift the relationship between EVSI and the prior probabilities.  

As a means of comparing estimation strategies, EV|SI and EVSI are robust to 

different constellations of payoffs and conditional probabilities. For a single estimation 

strategy and the question of whether the gain in decision value is worth additional 

investment in data, the details will matter. In particular, the lowest values of EVSI will 

occur at different prior probabilities as the conditional probabilities change. Uncertainty 

of conditional probabilities can be addressed through Monte Carlo simulations of the 

EVSI over a range of possible values. This would allow generation of confidence 

distributions around the EVSI values of a given estimation strategy. Payoff uncertainties 

could be handled similarly. 
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MANAGEMENT IMPLICATIONS  

When management of game populations is based on tracking trends, simple 

methods with inexpensive data are more than adequate. Provided their use is justifiable, 

they provide the biggest bang for the buck in terms of reducing the uncertainty that 

erodes the expected long-term payoffs of management decisions.  

All strategies examined in this study were effective at tracking growth rates, 

leading to positive EVSI values. The Downing offered the greatest EVSI values for the 

least cost and complexity. The volatility of the Paloheimo-Fraser method suggests 

caution in its use. The Paloheimo-Fraser strategies basically indicated that the population 

was above or below the target zone for most years, even when the true population was on 

target. These strategies had limited ability to shed light on the true state when prior 

uncertainty was high. Use of these strategies would depend on other measures to guard 

against false classifications. In actual practice, longer time-series, additional streams of 

information, and expert judgment will be available, and in this case, required. Finally, 

SPR can be an excellent tool for more incisive population analysis than is possible with 

non-statistical reconstructions, but does not confer the same EVSI as other, much cheaper 

methods.  

The value of information analysis presented here underscores the differences 

between estimating abundance and monitoring populations over time. Estimating 

abundance with precision and accuracy is costly, while even the least costly means of 

monitoring trends can radically reduce the uncertainty faced by wildlife management 

decision-makers. When the upper limits of the wildlife population are defined primarily 

by human/social drivers, rather than ecological, the task of providing precise and accurate 
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estimates of abundance may, in fact, be meaningless to management decision-making. 

The uncertainty that erodes value in management decisions is not whether there are 5000 

or 6000 animals. Rather it is where the population stands relative to some previously-

defined target. It is possible to effectively manage a population without knowing 

precisely how large it is, as long as targets can be defined and monitored over time.  

Given the established performance of low-cost estimation methods, the vital task 

becomes identifying adherence to or departure from model assumptions. In the long run, 

a mixed strategy is likely the best: periodic investment in intensive data to test 

assumptions (which might be useful for ‘benchmark’ abundance estimates), within a 

regular program of low-cost annual trend-tracking that we have shown can greatly reduce 

the value lost due to uncertainty. Managers would also do well to grapple with how their 

decisions might change if uncertainty is reduced because some sources of uncertainty 

may not be obstacles to better decisions.  
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FIGURE LEGEND 

Figure 3.1: Annual cycle of events in the population as simulated using popMod. 

Figure 3.2: Expected values under a range of prior distributions. Lighter colors indicate 

higher values: a) expected value with only prior information (EVprior), b) EVSI using 

Downing reconstruction, c) EVSI using Paloheimo-Fraser, and d) EVSI using SPR. Note 

that the EVSI values for each estimation strategy are the values of EV|SI minus the 

EVprior (chart a). EVprior and EV|SI values are also shown in Tables 3.6-3.8. 

Figure 3.3: Maximum and median EVSI for three representative strategies. Statistics 

calculated across 190 different prior state distributions. 
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Table 3.1: Example quantities and calculations used in expected value of sample information analysis. A) 

Expected value with only prior information (EVprior) and EVPI. B) Conditional likelihoods 

representing accuracy of inference based on the sample information. C) The individual expected value 

calculations under each possible inference. D) EV|SI resulting from probability-weighted sum of the 

inference-specific expected values and EVSI, the value gained by using the sample information. 

A) State Prior Probability Increase Maintain Decrease

Above Target 0.5 10 7 5

At Target 0.3 7 10 7

Below Target 0.2 1 5 10

EV(alternative) 7.3 7.5 6.6

Evprior 7.5

EV|PI 10

EVPI 2.5

B) State Above Target At Target Below Target

Above Target 0.7 0.2 0.1

At Target 0.15 0.7 0.15

Below Target 0.1 0.2 0.7

C) Inference = Above Target

State Posterior Probability Increase Maintain Decrease

Above Target 0.84 10 7 5

At Target 0.11 7 10 7

Below Target 0.05 1 5 10

EV(alternative | inference) 9.2 7.2 5.5

EV(Infer Above Target) 9.2

Inference = At Target

State Posterior Probability Increase Maintain Decrease

Above Target 0.29 10 7 5

At Target 0.60 7 10 7

Below Target 0.11 1 5 10

EV(alternative | inference) 7.2 8.6 6.8

EV(Infer At Target) 8.6

Inference = Below Target

State Posterior Probability Increase Maintain Decrease

Above Target 0.21 10 7 5

At Target 0.19 7 10 7

Below Target 0.60 1 5 10

EV(alternative | inference) 4.1 6.4 8.4

EV(Infer Below Target) 8.4

EV|SI 8.8

D) EVSI 1.3

Alternatives: change harvest intensity

Likelihood of inference

Alternative harvest regimes

Alternative harvest regimes

Alternative harvest regimes
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Table 3.2: Parameter values used for simulating vital and harvest rates. Sample rates, calculated at the intercept, are displayed. Birth sex ratio was modeled as 

1:1 for all simulation scenarios. 

Simulation sub-model strong decline weak decline stationary weak increase strong increase

0.08 0.06 0.05 0.05 0.05

intercept -2.4 -2.7 -2.9 -3 -3

Female Harvest rate age 0.02 0.02 0.02 0.02 0.02

(logistic) age squared -0.002 -0.002 -0.002 -0.002 -0.002

density 0.01 0.01 0.01

effort 0.035 0.035 0.035 0.035 0.035

0.13 0.10 0.10 0.08 0.12

intercept -1.9 -2.2 -2.2 -2.5 -2

Male Harvest rate age 0.02 0.02 0.02 0.02 0.02

(logistic) age squared -0.002 -0.002 -0.002 -0.002 -0.002

density 0.01 0.01 0.01

effort 0.035 0.035 0.035 0.035 0.035

0.85 0.88 0.88 0.88 0.88

intercept 1.7 2 2 2 2

Female Post-breeding survival age 0.2 0.2 0.2 0.2 0.2

(logistic) age squared -0.005 -0.006 -0.005 -0.006 -0.006

density -0.005 -0.05 -0.005 -0.005

0.80 0.85 0.85 0.85 0.85

intercept 1.4 1.7 1.7 1.7 1.7

Male Post-breeding survival age 0.2 0.2 0.2 0.2 0.2

(logistic) age squared -0.005 -0.006 -0.005 -0.006 -0.006

density -0.005 -0.05 -0.005 -0.005

1.03 1.16 1.22 1.22 1.08

Birth rate (cubs/female/year) intercept 0.03 0.15 0.2 0.2 0.08

(Poisson) density -0.008 -0.008

density squared -0.001 -0.005 -0.005 -0.001

value at intercept:

value at intercept:

value at intercept:

value at intercept:

Simulation scenarios

value at intercept:

1
2
0
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Table 3.3: The 8 alternative estimation strategies. As one moves downward through the table, the strategies 

include increasing sophistication of estimator and intensity of data. The ‘pfnull’ strategy assumes 

constant annual effort, ‘pftags’ uses tag sales as the index of effort, and ‘pfhd’ uses hunter-days, 

calculated as the product of tag sales and the mean days hunted as reported on hunter surveys. The 

statistical population reconstructions differ in 2 dimensions. First, they use either the smaller or larger 

marked animal datasets, and second, they use either tag sales as the index of effort, or mean days 

hunted were estimated jointly with other parameters and used with tag sales to calculate hunter-days 

as the index of effort. 

 

 

 

  

Small (12) Large (25)

dnull Downing Reconstruction x

pfnull Paloheimo-Fraser x

pftags Paloheimo-Fraser x x

pfhd Paloheimo-Fraser x x x

spr12_tags Statistical Population Reconstruction x x x

spr25_tags Statistical Population Reconstruction x x x

spr12_hd Statistical Population Reconstruction x x x x

spr25_hd Statistical Population Reconstruction x x x x

Name

Marked Animal DataHarvest 

data
Tag Sales

Hunter 

Effort Estimator 
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Table 3.4: Payoff values associated with each combination of state and alternative. This scheme is “loss-averse”. 

Mismanagement (e.g. increasing harvest on a population that is already below the target) is twice as 

bad as proper management (decreasing harvest when the population is too low) is good. The best 

decision outcomes are valued at 100 while the worst outcome (increasing harvest intensity on a 

population is actually below the management threshold) has a value of -200.  

 

Table 3.5: Conditional probabilities of eight different estimation strategies, given the true states: P(Result|State). 

For each strategy, the values for a given state add to 1. For Downing reconstruction (dnull), the 

P(testHI|trueHI) = 0.82, meaning that 82% of the time that the true population is above the 

management target, this estimator correctly identified the true state. 

INCR STAY DECR

trueHI 100 -50 -100

trueAT -100 100 -50

trueLO -200 -100 100

Alternatives
States

Result State dnull pfnull pftags pfhd spr12_hd spr25_hd spr75_hd spr12_tags spr25_tags spr75_tags

testHI trueHI 0.82 0.62 0.62 0.6 0.62 0.65 0.63 0.69 0.69 0.69

testAT trueHI 0.18 0.31 0.3 0.3 0.31 0.28 0.29 0.27 0.26 0.27

testLO trueHI 0 0.08 0.08 0.1 0.07 0.07 0.07 0.04 0.05 0.05

testHI trueAT 0.03 0.34 0.34 0.34 0.26 0.27 0.25 0.18 0.18 0.18

testAT trueAT 0.89 0.32 0.32 0.32 0.39 0.41 0.41 0.55 0.56 0.55

testLO trueAT 0.07 0.34 0.34 0.35 0.35 0.32 0.33 0.26 0.26 0.27

testHI trueLO 0 0.16 0.16 0.17 0.05 0.06 0.06 0.02 0.02 0.02

testAT trueLO 0.08 0.21 0.22 0.2 0.27 0.25 0.26 0.21 0.22 0.22

testLO trueLO 0.92 0.63 0.61 0.63 0.68 0.69 0.68 0.77 0.76 0.77
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Table 3.6: Expected value *given* sample information (EV|SI) for Downing reconstruction (dnull) across a range of prior distributions. Columns differ by the 

probability that the population is truly at the target, P(trueAT). Rows differ as the probability that true stat is above the target, P(trueHI). The 

remaining proability, P(trueLO), is defined as 1 minus the sum of P(trueAT) and P(trueHI). Note that with this strategy, EV|SI remains great when 

the prior state probabilities tend to equality (i.e., maximal uncertainty). 

 

P(trueHI) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 90.7 83.3 83.2 83.1 83.1 83.0 82.9 82.8 82.8 82.7 82.6 82.5 82.5 82.4 82.3 82.2 82.2 82.4 92.0

0.10 88.9 82.8 82.7 82.6 82.5 82.5 82.4 82.3 82.2 82.2 82.1 82.0 81.9 81.9 81.8 81.7 81.6 91.0

0.15 87.0 82.2 82.1 82.1 82.0 81.9 81.8 81.7 81.7 81.6 81.5 81.5 81.4 81.3 81.2 81.1 90.0

0.20 85.3 81.6 81.6 81.5 81.4 81.3 81.3 81.2 81.1 81.0 81.0 80.9 80.8 80.7 80.7 89.0

0.25 83.4 81.1 81.0 81.0 80.9 80.8 80.7 80.6 80.6 80.5 80.4 80.4 80.3 80.2 88.0

0.30 81.6 80.6 80.5 80.4 80.3 80.3 80.2 80.1 80.0 79.9 79.9 79.8 79.7 87.0

0.35 80.1 80.0 79.9 79.8 79.8 79.7 79.6 79.5 79.5 79.4 79.3 79.3 86.0

0.40 79.5 79.5 79.4 79.3 79.2 79.2 79.1 79.0 78.9 78.9 78.8 85.0

0.45 79.0 78.9 78.8 78.7 78.7 78.6 78.5 78.5 78.4 78.3 84.0

0.50 79.4 78.3 78.3 78.2 78.1 78.0 78.0 77.9 77.8 83.0

0.55 80.6 77.8 77.7 77.6 77.6 77.5 77.4 77.3 82.0

0.60 81.8 77.3 77.2 77.1 77.0 76.9 76.9 81.0

0.65 83.0 76.7 76.6 76.6 76.5 76.4 80.0

0.70 84.2 76.1 76.1 76.0 75.9 79.0

0.75 85.4 76.8 75.5 75.5 78.0

0.80 86.6 78.1 75.0 77.0

0.85 87.8 79.3 76.0

0.90 89.0 81.5

0.95 90.8

P(trueAT)

1
2
3
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Table 3.7: Expected value *given* sample information (EV|SI) for Paloheimo-Fraser (pftags) across a range of prior distributions. Columns differ by the 

probability that the population is truly at the target, P(trueAT). Rows differ as the probability that true stat is above the target, P(trueHI). The 

remaining proability, P(trueLO), is defined as 1 minus the sum of P(trueAT) and P(trueHI). When prior state probabilities tend to equality (i.e., 

maximal uncertainty), the EV|SI is only a fraction of that for Downing reconstruction (Table 6). 

  

P(trueHI) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 81.6 74.2 66.7 59.3 51.8 44.3 37.1 33.8 30.8 32.2 33.5 34.8 36.0 42.7 52.7 62.6 72.6 82.5 92.5

0.10 71.6 64.2 56.7 49.3 41.8 34.4 30.3 27.0 27.0 28.3 29.6 30.9 35.3 45.2 55.1 65.1 75.0 85.0

0.15 61.7 54.2 46.8 39.3 31.9 26.8 23.5 21.9 23.2 24.4 25.8 27.7 37.7 47.7 57.6 67.6 77.5

0.20 51.7 44.3 36.9 29.4 23.3 20.0 16.7 18.0 19.3 20.6 21.9 30.2 40.1 50.1 60.1 70.0

0.25 41.8 34.3 26.9 20.7 16.5 13.2 12.8 14.1 15.5 16.8 22.7 32.6 42.6 52.6 62.5

0.30 37.0 31.1 25.2 19.3 13.4 8.8 9.0 10.3 11.6 15.2 25.1 35.1 45.1 55.0

0.35 35.6 29.8 23.9 18.0 12.0 10.4 9.1 7.8 7.8 17.7 27.6 37.5 47.5

0.40 34.3 28.4 22.5 16.6 13.3 12.0 10.7 9.4 14.4 21.7 30.0 40.0

0.45 32.9 27.1 21.2 16.2 14.9 13.6 12.3 14.9 22.2 29.6 36.9

0.50 31.6 27.7 24.3 20.9 17.5 15.2 15.4 22.8 30.1 37.5

0.55 36.0 32.7 29.3 25.8 22.4 19.0 23.5 30.7 38.1

0.60 41.0 37.6 34.2 30.8 27.4 29.5 34.8 40.0

0.65 46.0 42.5 39.1 35.7 35.5 40.8 46.0

0.70 50.9 47.5 44.1 41.5 46.7 52.0

0.75 55.8 52.4 49.1 52.7 58.0

0.80 60.8 57.4 58.7 64.0

0.85 65.8 65.1 70.0

0.90 75.1 80.0

0.95 90.0

P(trueAT)

1
2
4
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Table 3.8: Expected value *given* sample information (EV|SI) for SPR (spr25_tags) across a range of prior distributions. Columns differ by the probability 

that the population is truly at the target, P(trueAT). Rows differ as the probability that true stat is above the target, P(trueHI). The remaining 

proability, P(trueLO), is defined as 1 minus the sum of P(trueAT) and P(trueHI). When prior state probabilities tend to equality (i.e., maximal 

uncertainty), the EV|SI is only half that for Downing reconstruction (Table 6). 

 

 

P(trueHI) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 83.5 76.0 70.1 64.1 58.2 52.2 49.9 50.4 50.8 51.3 51.7 52.2 52.6 53.1 53.5 62.5 72.5 82.5 92.5

0.10 80.7 73.1 65.5 57.8 50.2 44.3 44.7 45.2 45.6 46.0 46.5 47.0 47.4 47.9 55.0 65.0 75.0 85.0

0.15 78.0 70.3 62.7 55.0 47.3 42.7 41.4 40.1 40.4 40.8 41.3 41.7 42.2 47.5 57.5 67.5 77.5

0.20 75.1 67.5 59.8 52.2 44.6 42.7 41.5 40.2 39.0 37.7 36.5 36.5 40.0 50.0 60.0 70.0

0.25 72.3 64.7 57.1 49.4 44.0 42.8 41.5 40.3 39.0 37.8 36.5 36.5 44.8 53.1 62.5

0.30 69.5 61.9 54.2 46.6 44.1 42.8 41.5 40.3 39.0 37.8 36.6 44.2 52.6 60.8

0.35 66.8 59.1 51.5 45.3 44.1 42.9 41.6 40.3 39.1 37.9 43.7 52.0 60.3

0.40 63.9 56.3 48.6 45.4 44.2 42.9 41.6 40.4 39.2 43.2 51.5 59.8

0.45 61.2 53.5 46.7 45.5 44.2 42.9 41.7 40.4 42.7 51.0 59.3

0.50 58.3 50.7 46.7 45.5 44.3 43.0 41.7 42.1 50.4 58.8

0.55 56.3 50.6 46.8 45.5 44.3 43.0 41.8 49.9 58.2

0.60 59.4 53.7 48.0 45.6 44.3 43.1 49.4 57.7

0.65 62.5 56.8 51.1 45.7 44.4 48.9 57.2

0.70 65.6 59.9 54.1 48.4 48.4 56.6

0.75 68.7 63.0 57.2 53.6 57.4

0.80 71.9 66.1 60.6 64.4

0.85 74.9 69.2 71.4

0.90 78.0 80.0

0.95 90.0

P(trueAT)

1
2
5
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Table 3.9: Payoff matrices examined during sensitivity analysis. In the left column, the matrices are expressed in their 

original scales. In the right column, the scores are normalized to each matrix’ range of payoff values. a) "risk 

averse" matrix used in the basic analysis; b) "strict" only rewards the correct decision; c) "posneg" mixes 

positive and negative payoffs but with lesser range than the risk averse matrix; d) "slight" differences between 

among payoffs and unique values in each cell; e) “slight2” has relatively slight difference across most of the 

matrix; f) “slight3” has even more slight difference across most of the matrix. 

pessimsitic Scaled Normalized

a)

INCR STAY DECR INCR STAY DECR

trueHI 100 -50 -100 trueHI 1.00 0.50 0.33

trueAT -100 100 -50 trueAT 0.33 1.00 0.50

trueLO -200 -100 100 trueLO 0.00 0.33 1.00

b)

INCR STAY DECR INCR STAY DECR

trueHI 100 0 0 trueHI 1.00 0.00 0.00

trueAT 0 100 0 trueAT 0.00 1.00 0.00

trueLO 0 0 100 trueLO 0.00 0.00 1.00

c)

INCR STAY DECR INCR STAY DECR

trueHI 100 -25 -50 trueHI 1.00 0.38 0.25

trueAT -50 100 -25 trueAT 0.25 1.00 0.38

trueLO -100 -50 100 trueLO 0.00 0.25 1.00

d)

INCR STAY DECR INCR STAY DECR

trueHI 100 -40 -75 trueHI 1.00 0.30 0.13

trueAT -55 100 -25 trueAT 0.23 1.00 0.38

trueLO -80 -35 100 trueLO 0.10 0.33 1.00

e)

INCR STAY DECR INCR STAY DECR

trueHI 100 50 0 trueHI 1.00 0.50 0.00

trueAT 50 100 50 trueAT 0.50 1.00 0.50

trueLO 0 50 100 trueLO 0.00 0.50 1.00

f)

States States

INCR STAY DECR INCR STAY DECR

trueHI 100 75 0 trueHI 1.00 0.75 0.00

trueAT 75 100 75 trueAT 0.75 1.00 0.75

trueLO 0 75 100 trueLO 0.00 0.75 1.00

Alternatives
States

Alternatives Alternatives

States
Alternatives

States
Alternatives

States
Alternatives

States
Alternatives

Alternatives
States

States
Alternatives

States
Alternatives

States
Alternatives

States
Alternatives
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Figure 3.1: Annual cycle of events in the population as simulated using popMod. 
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Figure 3.2: Expected values under a range of prior distributions. Lighter colors indicate higher values: a) 

expected value with only prior information (EVprior), b) EVSI using Downing reconstruction, c) EVSI 

using Paloheimo-Fraser, and d) EVSI using SPR. Note that the EVSI values for each estimation 

strategy are the values of EV|SI minus the EVprior (chart a). EVprior and EV|SI values are also shown in 

Tables 3.6-3.8. 
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Figure 3.3: Maximum and median EVSI for three representative strategies. Statistics calculated across 190 

different prior state distributions. 

 

 

Figure 3.4: EVSI matrices for the pftags model under "risk averse" (left), "positive" (middle), and "slight3" 

(right) payoff matrices (Table 3.9). The range of EVSI scores is influenced by the range of payoffs in 

the matrix. The payoffs have been normalized to a 0 – 1 scale to facilitate direct comparison. Cell 

values in the figures correspond to different distributions of prior beliefs.  
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Figure 3.5: EVSI scores for dnull, pftags, and spr25_tags estimation strategies using the risk averse payoffs (top 

row) and the "slight3" payoffs (bottom row). Dnull has the most certain conditional probabilities and 

pftags, the most uncertain and EVSI values are proportional to the certainty of the sample 

information. These payoff matrices have been normalized to a 0 – 1 scale to facilitate direct 

comparison.
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Chapter 4 Rigorous Opinions: A Hybrid Framework for Modeling 

Expert Opinion and Hard Data 

Abstract Habitat models are critical to anticipating and assessing the impacts of 

environmental changes and human development on wildlife habitat (Guisan and 

Zimmermann 2000, Nielsen et al. 2010, Bird et al. 2011, Jackson et al. 2011). Habitat 

modeling efforts are typically hampered by a paucity of hard data and model uncertainty 

in expert-based models (e.g. HSI models). We modeled habitat suitability for American 

black bears in Vermont, USA, by combining the information from expert opinion and 

empirical animal locations. We first obtained a map of habitat suitability in Vermont 

based on expert opinion. We then fitted a statistical model to this map, estimating the 

effects of a suite of covariates on habitat suitability. These estimates then became our 

prior effect distributions for a second analysis in which we validated and updated our 

model through Bayesian analysis of an independent animal location dataset. We 

examined the effects of different interpretations of the expert map (e.g. “primary” vs. 

“secondary” habitat) on the final results and compared them to a model fitted solely to 

the validation data (uninformative priors). Our modeling framework was robust to 

different interpretations of the expert map, with parameter estimates and fitted habitat 

suitability values being essentially identical after updating with the validation data. 

Statistical fit and the point estimates and precision of effects were much better for the 

analysis using prior information from the expert map than for the analysis with 

uninformative priors. Our final, fitted results represent an integration of expert opinion 

and empirical data that exist in a form that can continue to “learn” as new data become 
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available. It enables direct quantification of habitat suitability across broad regions and 

provides a rigorous description of the uncertainty inherent in that valuation. Quantifying 

uncertainty is a critical feature of decision-making that is generally absent from broad-

scale habitat modeling efforts.  

Keywords Bayes, expert opinion, habitat suitability, HSI, occupancy, Ursus 

americanus. 

Introduction 

Habitat loss and degradation threaten the persistence of wildlife species 

worldwide (Wilcove et al. 1998, Brashares et al. 2001, Schipper et al. 2008), and habitat 

conservation often depends on decisions based on proper valuation of affected habitat. 

Habitat models are critical to anticipating and assessing the impacts of environmental 

changes and human development on wildlife habitat (Guisan and Zimmermann 2000, 

Nielsen et al. 2010, Bird et al. 2011, Jackson et al. 2011). Frequently, adequate species-

habitat data for statistical modeling do not exist. In the absence of empirical data, models 

must be built from expert opinion. Habitat Suitability Index (HSI) models (USFWS 1980, 

1981) are theoretical, deductive models that comprise input variables (e.g., distance to 

roads, percent of habitat in the surrounding area), suitability functions for each variable 

(e.g., linear equations that specify the change in suitability as input variable changes), and 

an aggregating scheme for combining the individual suitability indices into a single HSI 

value per spatial unit.  
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HSI model development is fraught with challenges. One difficulty is that of 

translating perceptions of species distribution or habitat value into model parameter 

values. Using elicited opinion, habitat suitability model-building entails iterative 

calibration and verification to adjust parameter functions and ensure satisfactory and 

meaningful output (Brooks 1997). Another challenge is that the model structure and 

parameterizations are typically elicited from one or more experts, and discrepancy 

between experts’ judgments can be the dominant source of uncertainty (Czembor et al. 

2011). Because different models result in different predictions (Elith et al. 2006) and 

different conservation outcomes (Wilson et al. 2005, Hauser et al. 2007), it is important 

to assess the credibility of alternative models.  

Yet another challenge with using HSI models is validating and updating them 

with empirical data as they become available (Roloff and Kernohan 1999, Mitchell et al. 

2002). Depending on the species of interest, empirical data for validation may or may not 

exist across all or much of the area to which the HSI is applied (pers. comm. B. DeLeuca, 

UMASS Landscape Ecology Lab). The growing impetus for conservation planning that 

includes future uncertainty and variability carries with it the need to model systems and 

drivers at broad spatial scales (e.g., Rowland et al. 2014). Habitat mapping at broad 

scales requires striking a balance between expert opinion and empirical validation. Hard 

data may be limited to only portions of the region and could be used for localized, 

spatially-explicit validation. There is currently no rigorous mechanism for incorporating 

the new empirical information into the parameters of an expert model and doing so in 

pieces across a modeling expanse.  
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 Despite these challenges, the use of expert opinion is common in wildlife habitat 

studies as there is a strong need to represent habitat values where empirical data do not 

exist. Bayesian models are a natural and increasingly favored  means of combining expert 

and empirical information, typically with experts forming prior distributions for the 

analysis of limited empirical data  (Yamada et al. 2003, Martin et al. 2005, Denham and 

Mengersen 2007, Griffiths et al. 2007, Mac Nally 2007, O’Neill et al. 2008, Murray et al. 

2009 and James et al. 2010). The experts can help identify prior parameter distributions 

which can later be updated with empirical data. Elicitation is a tricky issue (Low Choy, et 

al. 2009), and experts may be better able to think in terms of discrete locations than 

abstract or mathematical relationships (Denholm and Mengersen 2007, James et al 2010). 

James et al (2010) developed a software tool for eliciting for model components form 

experts in a graphical context that provide visual feedback and allows experts to think in 

terms of discrete places rather. Once the initial elicitation is complete, the Bayesian 

analysis provides a seamless means of updating the model with additional data. 

Here, we present a multi-step method for translating expert opinion into a 

statistical model of habitat suitability, and updating the result with independent empirical 

information. The approach begins with a graphical depiction (map) of expert opinion 

regarding the disposition of suitable and unsuitable habitat. We then analyze the map as 

the response variable of a Bayesian logistic regression with naïve priors, fitting it to a 

suite of environmental covariates. As new occurrence information becomes available, 

Bayes’ Theorem is used to update the model parameters (“betas”), weighted 

geographically according to the empirical data’s sample space. In this way, the HSI 
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model becomes a “living” model, spatially updated as new information accrues, and 

resting on expert opinion for locations within the region where data are sparse.  

We illustrate this approach by analyzing black bear occurrence across Vermont, 

USA and using two separate empirical datasets to make spatially-explicit updates of the 

initial model based on expert opinion. Our objectives for this study were to 1) fit 

statistical models to maps of relative habitat quality for black bears across the state of 

Vermont as determined by knowledgeable experts: and 2) update the resulting models 

with independent, empirical animal location dataset. 

Materials and Methods  

Study Area 

Vermont is predominantly covered by Northern Hardwoods forests dominated by 

Sugar Maple (Acer saccharum), Yellow Birch (Betula allegheniensis), Paper Birch (B. 

papyrifera), and American Beech (Fagus grandifolia). Elevation ranges from 30 meters 

(m) along the shores of Lake Champlain to 1339 m at Mount Mansfield. Mean January 

temperatures ranged from -10 
º
C to -5.5 

º
C, and mean July temperatures from 17.7 

º
C to 

21 
º
C (Thompson and Sorenson 2000). Annual precipitation ranged from about 75 

centimeters (cm) in the Champlain Valley to more than 180 cm along the southern Green 

Mountain peaks (Thompson and Sorenson 2000).  

 Human population density varied from extremely rural areas the northeast with 

3.7 people per km
2
, to the Champlain Valley, with 24% of the state’s population and a 
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human density of 91 people per km
2
 (U.S. Census Bureau 2001). Although mostly rural, 

the population of Vermont has grown at least 10% per decade since the 1960s (U.S. 

Census Bureau 2001). Road density varies considerably from an average of about 0.53 

km/ km
2
 in Essex County to over 1.55 km/ km

2
 in Chittenden County. 

Study Species 

Black Bears are large-bodied, generalist omnivores. They are long-lived and 

relatively slow to reproduce given delayed female primiparity, small litters, and biennial 

reproduction (Pelton 2003). Their diet consists mostly of vegetation and they hibernate in 

winter (Tøien et al. 2011). Bears must consume adequate nutrition in the warmer months 

to survive hibernation and to support reproduction. Late summer and fall are the critical 

feeding periods and bears can gain up to a kilogram of mass per day when food is 

abundant (Jonkel and Cowan 1971). Bears, especially males, may move often and range 

widely in search of food during late summer and fall, contributing to the greater 

vulnerability of male than female bears to fall hunting (Pelton 2003). Females are also 

less vulnerable to fall harvests because they den first, followed by sub-adults, and finally 

adult males (Jonkel and Cowan 1971, Johnson and Pelton 1980, Schooley et al. 1994). In 

the northeastern USA and Eastern Canada, denning occurs from September-November to 

March-May.  

Distribution of food and heavy cover providing refuge from human activity are 

generally recognized as primary components of prime bear habitat (Rogers and Allen 

1987, Clark et al. 1993, Mitchell et al. 2002, Pelton 2003). Black bears readily habituate 
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to living alongside humans (Pelton 2003), but proximity to humans also increases 

mortality risks to bears through legal, illegal, and accidental means (Rogers and Allen 

1987, Rogers 1989, Mattson 1990).  

Objective 1: Fit statistical model to a binary map of suitable-unsuitable habitat 

The Vermont Fish and Wildlife Department possesses a map of putative bear 

habitat that is derived from decades of experience of multiple biologists with reference to 

information on bear harvest, sightings, conflicts, road kills, and other information (F. 

Hammond, VT Fish and Wildlife Dept., pers. comm.). This map is a graphical 

compilation of expert opinion, a visual representation of the informal model of bear 

habitat suitability in Vermont. The map is divided into several categories of habitat 

quality ranging from the best to the worst. We digitized this map as a raster object 

(Figure 4.1) at 90m x 90m resolution with each cell bearing one of four habitat quality 

levels present in the original document: 1) primary habitat, 2) secondary habitat, 3) 

tertiary habitat, or 4) poor habitat. 

We translated this map of ordinal categories into a binary map for the purposes of 

statistical estimation. For this study, we assumed that habitat suitability categories 

indexed probability of occupancy and that the proportion of area occupied, either across a 

spatial area or within some set of points, will be directly proportional to habitat 

suitability. We created two habitat value maps with different coding schemes to examine 

model sensitivity to this processing of the original inputs. The coding replaced the four 

habitat categories with values of 1 or 0, to create a binary dataset from which the 
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probability of occupancy could be estimated using logistic regression. This model form 

was desirable as it would also be amenable to the presence-absence data that we 

subsequently used for validation and updating of the initial model fit.  

The first step was to assign ordinal values to the habitat classes. We assigned 

values of 1.0, 0.7, 0.5, and 0.2, in order from primary to poor habitat. These values can be 

interpreted as probabilities of occupancy and of habitat suitability where the most suitable 

habitat supports the densest and most persistent population densities and the poorest 

habitat can support bears but is expected to do so at lower densities. These habitat values 

were then recoded as binary values according to a classification threshold, a value on the 

0-1 spectrum. Any habitat values above the threshold were interpreted as 1’s and any 

values below were treated as 0. In the first case (“strict”), we chose a threshold between 

0.7 and 1, encoding the primary habitat as 1 (0 – 1 scale) and all other habitat categories 

as 0. In the “inclusive” case, we encoded primary, secondary, and tertiary habitat as 1 

(threshold between 0.5 and 0.2) and gave only the poorest habitat a value of 0.  

For the first phase of analysis, we sought to identify correlations between the 

patterns of the expert map and measurable landscape-scale covariates. To do so, we 

overlaid 1000 sample points arranged, in a state-wide regular lattice, assigning a value of 

1 or 0 at each sample point depending on the suitability score on which each fell. There 

was no constraint on the number of sample points (other than computing time), and we 

elected to use 1000 points with a resulting density of approximately 1 point per 25 km
2
, 

the approximate average size of a female black bear home range. This was a small 

enough sample for quick computation but large enough that the uncertainty in the 
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resulting covariate effects resulted from uncertainty about the covariate associations and 

not from sampling variability. 

We used National Land use - Landcover data (NLCD) to characterize ecological 

covariates of habitat quality. We first resampled the NLCD data from 30 x 30m to 90m x 

90m resolution in a GIS using a majority rule. When there is no clear majority, the GIS 

algorithm assigns a value of “No Data” to the resulting cell. We filled any of the No Data 

results by also resampling the data to a 120 x 120 m resolution (which did not have any 

No Data results), subsampling back to the 90 x 90 m resolution and then using the results 

to fill any No Data cells in the original resampled layer. After resampling to the new 

resolution, we reclassified some of the NLCD data into thematic categories for use in our 

models: residential and developed classes (“res”); row crops, orchards, pastures and 

grassy open space (“agopen”); and forested and emergent wetlands (“wet”). We also used 

the three NLCD forest cover types: deciduous (“dec”), coniferous (“con”), and mixed 

(“mix”). To avoid collinearity, we calculated rank-order correlation coefficients between 

each pair of potential covariates in a random sample of cells (n = 1000) from the NLCD 

layer. We sought to avoid correlations less than -0.6 or greater than 0.6 between any two 

variables. The correlation was 0.68 between coniferous and mixed forest, so we 

combined these into a single category comprising coniferous and mixed forest types 

(“conmix”), which then met or conditions for inclusion in the model. No other 

correlations exceeded our criteria.  

 Each 90 x 90 raster cell across a map of Vermont was assigned the percentage of 

each land cover covariate found within a 990 x 990 m square moving window. To these 
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percentages of landcover covariates, we added “core” habitat blocks, the amount of area 

in contiguous areas of homogenous natural community types (e.g. forest) that are 

unbroken by roads, development or agriculture. We rasterized a polygon layer of 

contiguous habitat blocks , assigning each cell a value equivalent to the area in square 

kilometers of the contiguous block in which it occurred. Given the mobility of black 

bears, we ignored potential edge effects of these blocks. We assumed that a bear in any 

portion of such a block would be able to access the entire block. 

For both the “strict” and “inclusive” expert inputs, we fit a Bayesian logistic 

regression to the expert data using R (R Core Team 2013), WinBUGS (Lunn et al. 2000), 

and the R package R2WinBUGS (Sturtz et al. 2005). We sampled a regular lattice of 

points from the expert map and the covariate data layers and fit them using Uniform (-10, 

10) prior distributions for covariate effects. We compared parameter estimates and 

precision across types (“strict”, “inclusive”) of analysis using Receiver Operating 

Characteristic (ROC) curves. We used the area under the ROC curves (AUC) to compare 

the ability of the statistical models to “predict” the map from which it was estimated. The 

AUC is interpreted as the probability that a randomly chosen pixel from the expert map, 

if it has a value of 1, is classified higher than if the random pixel were actually a 0. A 

random classifier would have an AUC of 0.5 and greater AUC suggests better 

classification. 
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Objective 2: Update model with independent, empirical animal location dataset. 

We used bear scat location data from Long et al. (2011) as an example of “new” 

empirical data that can be used to update the HSI models. The dataset comprised 162 

sample sites from across the state that were sampled for bear presence using scat-sniffing 

dogs, camera traps, and hair snares in the summers of 2003 and 2004 (Long 2006, Long 

et al. 2011). Sites consisted of multiple transects that were all sampled during one to three 

visits over the course of the study. The majority of sites were visited once and subsets of 

sites were visited on two and three occasions. Trained dogs and dog-handlers detected 

fresh scats, identifying them to species in the field and collecting them for corroborative 

testing. Summer bear scats were visually distinctive and subsequent genetic testing 

confirmed species identification by dogs and handlers. Automatic cameras and hair-

snares were also deployed at some sites. See Long et al. (2011) for a full discussion of the 

study and description and evaluation of the methods.  

The analytical model for the scat detection data was a logistic regression for site 

occupancy with a joint model for detection probability to account for imperfect 

detectability. The covariates for detection were year of survey and method of detection 

(dog and other). The “updated” or “validated” model was the result of fitting this 

detection-occupancy model using the effect distributions estimated in the previous step as 

prior effects distributions for occupancy and Uniform (-10, 10) priors for the detection 

effects. We also fit this model using uninformative priors in order to examine the impact 

of the prior information on the results.   
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To simulate having data from multiple studies that could be used for iterative 

updates, we split the empirical data into northern and a southern datasets along a natural 

horizontal break between survey locations near the middle of the state. We treated the 

two datasets as distinct from one another, each with a study area that covered roughly 

half of the area over which the expert map was fit. After fitting the expert map, we 

performed two separate updates, one using the northern dataset and one using the 

southern. Finally, a map of the state was produced that combined the southern update and 

the northern update, each within their respective boundaries. 

We fit the state-wide model by fitting predictions from the prior model across the 

entire region and then updated those areas represented by the validation data. To 

accomplish this, we generated a predicted surface for both updated models, and then 

created one single surface by taking the weighted sum of model predictions for each map 

pixel. We created a data layer with a model weight, w, between 0 and 1 for every cell in 

the region. This weight indicates the degree of membership of a given cell in the sample 

space of the northern validation study, hence the raster cells had weights of 1 in the north 

and 0 in the south. The proportion of weight given to the northern update of the model 

was w, and the weight for the southern update model was 1-w. The weights allow each 

separate update to be featured within its study area and the two models grade into one 

another across a 20 km-wide band spanning their borders.  
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Results  

Objective 1: Fit statistical model to a binary map of suitable-unsuitable habitat  

Differences in beta estimates from different interpretations of the expert map 

(inclusive vs. strict) were apparent in the first posterior estimates (before updating with 

Long et al. data; Figure 4.2). The greatest difference in model betas was seen for the 

effect of residential and wetland cover. These effects also had the greatest uncertainty, so 

they were not estimated well from the data. Both are relatively sparse cover types in 

Vermont. Each covers less than 2.25% of the state. The effect size for the “core” habitat 

blocks was of small magnitude due to the scale of that covariate, but was very influential 

in the fitted results. This is as expected as the amount of unbroken habitat a characteristic 

strongly linked to black bear habitat quality in Vermont. By virtue of core habitat blocks 

the fitted map follows the pattern seen in the expert with the notable exception in the 

upper, middle portion of the state. 

The models estimated from the two interpretations of priors are similar in 

appearance with the inclusive prior estimates leading to a map with more area falling in 

the upper quantiles of the HSI scale ( 

Figure 4.3). The “relief” of the two maps is similar, but the inclusive 

interpretation of the expert map looks like the strict map with cells shifted slightly 

upward in HSI value (i.e., darker), consistent with the expert map interpreted as having a 

greater amount of suitable area. 
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The maximum AUC for the posterior based on the strict model was 0.8 and the 

maximum for the inclusive posterior was 0.75. The optimal threshold for classification 

(threshold associated with highest AUC) for the strict model was 0.35 and that for the 

inclusive model was 0.5. Based on the AUC statistic, the strict interpretation of the expert 

map appeared to be the better fit and hereafter, we will discuss the updating of the strict-

based model.  

Objective 2: Update model with independent, empirical animal location dataset. 

The first posterior map (estimated from the expert map) was updated using the 

two scat detection datasets. Each dataset was used to update the half of the map from 

which the data originated, while the rest of the map retained the pre-update, first posterior 

values. The resulting two updated models (Error! Reference source not found.) were 

then combined into one using the model weights layer (Figure 4.6).   

The effects changed little for most of the covariates from the first model fitting to 

the update (Table 4.2; Figure 4.4). The clearest difference was in the amount of agricultural 

and open land in the northern vs. southern portions of the state. For the less common 

cover types (e.g. res, wet) and the widely and relatively-evenly distributed types (e.g. 

dec) the effects changed little in terms of the magnitude of the estimated effect or their 

precision.  

All of the covariate values had positively-skewed distributions and landcover 

types other than deciduous and conifer-mixed forest were relatively rare (Table 4.1). The 

northern data area had more residential/developed landcover, more agriculture and open 
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landcover, and more wetland cover than the southern part of the state. All three of these 

classes were still rare, but in the north, there were more locations that had very high 

values, leading to a greater skew to the distributions. Large core habitat blocks are 

generally found along the Green Mountains and in the northeast corner of the state, 

resulting in greater values of the core covariate in the North. 

Although development, agriculture, and wetlands are thought to have non-trivial 

impacts on black bear habitat quality, the data presented here had not strong signal, at 

least partly due to the relatively homogenous, forested character of Vermont and the 

coarse grain of the data and analysis.  

Discussion 

This habitat modeling effort was an attempt at using a simple, graphical 

representation of habitat quality as the basis for a fitted Bayesian model that could be 

updated with empirical data. Our proposed method addresses two key concerns in expert-

based habitat modeling, elicitation of information and model validation. The expert map 

was built up over many years by biologists with the Vermont Fish and Wildlife 

Department, and we considered it to convey information that was not directly accessible 

with typical broad-scale GIS data. For that reason, we used the map itself as the expert 

opinion and sought to “train” statistical effects distributions from it directly. This then, 

formed the basis of the analysis of the empirical bear location data. Previous analysis of 

the bear scat dataset (Long, et al., 2012) resulted in a broadly-distributed, high probability 

of occupancy by black bears across Vermont. We attempted to bridge the spatially-



 

147 

 

restricted expert assessment of range quality and the broadly-distributed empirical 

detections with an analytical framework that could borrow information from both sources 

and integrate it into a hybrid evaluation of habitat (Low Choy, et al. 2009).   

Other authors have presented models that integrated opinion-based or synthetic 

models and empirical data as a means of validation. Recently, Kaminski, et al (2013) 

borrowed existing expert-based habitat suitability functions for black bears and 

supplemented them with field data collection to adapt the model to their specific study 

region. They borrowed from the work of Powell et al (1997) who used field data to 

estimate univariate relationships between black bear space use and habitat features and 

then combined many such models into a habitat suitability model for the Southern 

Appalachians. Once parameterized, the Southern Appalachian model was validated, once 

in its initial form, and again (Mitchell et al. 2002) after eliminating variables from the 

model that appeared unnecessary in the first validation. Alteration of that model, as with 

deletion of a variable by McLaughlin et al (1999) from the HSI model for black bears in 

Maine, was an ad hoc elimination of model elements that appeared superfluous upon 

validation.  

Our method merely packages that same process into a statistical framework that 

can estimate effects, combine them into the HSI score, and “remove” unwarranted 

covariates by letting their values shrink to 0 as the evidence warrants. In this analysis, the 

effect of the “informed prior” estimated from the expert map was strong relative to the 

information in the empirical data. Different covariates could potentially tease out stronger 

patterns in the empirical data, but this is unlikely when limiting the analysis to remotely-
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sensed data. However, different data did alter the relative influence of the prior versus the 

empirical update. We analyzed models at all stages of the process presented here using a 

variety of other covariates to in an attempt to find better-fitting models (unpublished 

analyses). In some cases, the expert map fit very poorly but the effects for the empirical 

data were strong (e.g. using a single NLCD “forest” category). In that case, the updating 

very clearly changed the effect estimates. Ultimately, using remotely-sensed data, we did 

not find any constellation of covariates that was strongly correlated with both the expert 

map and the empirical data. The could mean that the experts are truly encoding 

information that is absent from the empirical study or that the two data sources are simply 

too divergent in the underlying quantity they encode to blend well.   

Assessing the fit of our logistic model of the expert map is a non-trivial challenge. 

We know that the ecological correlates and drivers of black bear habitat occupancy are 

not neatly bounded by the zones depicted in the expert map. The expert map identifies 

concentrations of certain conditions that are considered beneficial to black bears in 

Vermont and we attempted to use this as a guide in developing a statistical model that 

offered more flexibility of use. The abiotic and biotic elements of black bear habitat 

extend across and outside the designated polygons and we fully expected the resulting 

maps to lose the stark contrast of the expert map. However, by using the expert map, we 

hoped to capture the general pattern depicted, to train the statistical model in a manner 

consistent with existing knowledge but to put it in a flexible analytical form.  

In our application, the resulting map was a much more diffuse map than the 

expert map, due mostly to the absence of covariates that clearly followed the distribution 
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indicated in the expert map. The dominant vegetation types and other variables were 

much more broadly distributed than the highest quality ranges. Furthermore, the 

empirical data did not exert a large influence on the model effect estimates. These same 

data have been used in a typical occupancy analysis that also resulted in imprecise effect 

estimates (Long, et al., 2012) essentially dominated by the generally positive effect of 

forest cover. The empirical data show bears occupying a wide range of forested locations 

and being broadly distributed in the state. The effect of this data on the model was to 

generally raise the habitat value across the state, especially in the north. This outcome 

highlights the value of being able to jointly model multiple sources of data. The empirical 

data are telling us to relax the expert model a little and allow that the habitat quality is 

relatively high across more of the state than the expert map suggests. At the same time, 

we were able to let the expert map largely shape the final outcome rather than let the state 

map be determined solely by the empirical study.  

The practice of modeling habitat “quality” or “suitability” presents many 

challenges of definition as well as implementation. The range quality represented by the 

experts and the occupancy state inherent in the empirical data may not be closely-enough 

linked to allow their efficient combination. Occupancy may be a poor state to monitor for 

an abundant, wide-ranging species far from range frontiers. Low-quality habitat can be 

occupied, even by high population densities, based on individual movement and social 

and population dynamics (Charney 2012, Van Horne 1983, Garshelis 2000, Schmidt and 

Pellet 2005). Tyre, et al. (2001) demonstrate that habitat occupancy may be more 

indicative of the processes governing dispersal than those governing birth and death rates 
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as is often implied or assumed by notions of habitat quality. Yet these concerns are 

neither new, nor unique to this study. Proper care must be exercised in any modeling 

effort, regardless of the data or structural methods employed. 

Conclusions 

The methods presented here offer a potentially efficient and effective way to 

construct habitat suitability maps for broad areas when empirical data are sparse or 

lacking. The graphical representation of expert opinion simplifies the initial elicitation 

and allows the construction of a statistical model trained on the information provided. As 

a statistical model, it is then amenable to parameter updating through iterative validation. 

In the example resented here, we used expert opinion to formulate a base model across a 

large area. We then incorporated statistical updates of that base model for multiple, 

separate areas and combined them all into a single habitat model.  

As in all expert-based model-building exercises, care must be taken to ensure 

common interpretations and definitions of quantities and processes. Nevertheless, 

discrepancies can occur when the experts infer an underlying reality that is difficult to 

sample empirically. In the case at hand, the scat-based detection of black bears does not 

identify timing or intensity of local habitat use. A single scat counts as much as a 

multitude. Alternatively, the expert focus on “backcountry” strongholds as primary bear 

habitat reflects a long-term view about species persistence that may be overly 

conservative. Or, this view could include not just assessments of habitat quality, but 

implicit management strategy or objectives that emphasize certain portions of the range 
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more than others even when suitability differs little. To the extent that both the expert 

map and the empirical data can teach us something, we need some way to integrate them 

into the management of the species. Having a model to do that may improve the 

interpretation of this information and allow it to be used directly and transparently in the 

planning and decision-making.   

We believe that this model could be extended across wider areas to formulate 

regional models and has the added benefit of supporting computation of credible intervals 

for any and all cells on the map. The ability to estimate uncertainty may be as valuable as 

the point estimates. Our hope is that this flexible method facilitates a mosaicking of 

habitat models across regional landscapes in a dynamic and spatially-specific manner, 

resulting in locally realistic and constructive approximations of habitat value for the 

purposes of long-term conservation. The resulting models could also outlive any one 

creator or user and become a living model that is repeatedly updated with additional 

information as it becomes available. 

  



 

152 

 

Literature Cited 

Bird, J. P., G. M. Buchanan, A. C. Lees, R. P. Clay, P. F. Develey, I. Yépez, and S. H. M. 

Butchart. 2011. Integrating spatially explicit habitat projections into extinction 

risk assessments: a reassessment of Amazonian avifauna incorporating projected 

deforestation. Diversity and Distributions 17:1-9. 

Brashares, J. S., P. Arcese, and M. K. Sam. 2001. Human demography and reserve size 

predict wildlife extinction in West Africa. Proceedings of the Royal Society of 

London. Series B: Biological Sciences 268:2473-2478. 

Brooks, R. P. 1997. Improving Habitat Suitability Index Models. Wildlife Society 

Bulletin 25:163-167. 

Charney, N. D. 2012. Evaluating expert opinion and spatial scale in an amphibian model. 

Ecological Modelling 242:37-45. 

Clark, J. D., J. E. Dunn, and K. G. Smith. 1993. A multivariate model of female black 

bear habitat use for a geographic information system. Journal of Wildlife 

Management 57:519-526. 

Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. 

Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of 

the United States:  A Working Classification of U.S. Terrestrial Systems. 

NatureServe, Arlington, Virginia, USA. 

Czembor, C. A., W. K. Morris, B. A. Wintle, and P. A. Vesk. 2011. Quantifying variance 

components in ecological models based on expert opinion. Journal of Applied 

Ecology 48:736-745. 

Denham, R. and K. Mengersen. 2007. Geographically assisted elicitation of expert 

opinion for regression models. Bayesian Analysis. 2:99–136. 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, 

F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. 

Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. McC. M. 

Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-

Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz, and N. E. 

Zimmermann. 2006. Novel methods improve prediction of species’ distributions 

from occurrence data. Ecography 29:129-151. 

Garshelis, D. L. 2000. Delusions in habitat evaluation: Measuring use, selection, and 

importance. Pages 111-164 in L. Boitani and T. K. Fuller, editors. Research 

techniques in animal ecology: Controversies and consequences. Columbia 

University Press, New York USA. 



 

153 

 

Griffiths, S. P., P.M. Kuhnert, W.N. Venables, S.J.M. Blaber. 2007. Estimating 

abundance of pelagic fishes using gillnet catch data in data-limited fisheries: a 

Bayesian approach. Canadian Journal of Fisheries and Aquatic Science, 64:1019–

1033. 

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in 

ecology. Ecological Modelling 135:147-186. 

Hauser, C. E., M. C. Runge, E. G. Cooch, F. A. Johnson, and W. F. Harvey Iv. 2007. 

Optimal control of Atlantic population Canada geese. Ecological Modelling 

201:27-36. 

Iglecia, M. N., J. A. Collazo, and A. J. McKerrow. 2012. Use of occupancy models to 

evaluate expert knowledge-based species-habitat relationships. Avian 

Conservation and Ecology 7(2): 5. 

Jackson, S. M., G. Morgan, J. E. Kemp, M. Maughan, and C. M. Stafford. 2011. An 

accurate assessment of habitat loss and current threats to the mahogany glider 

(Petaurus gracilis). Australian Mammalogy 33:82-92. 

James, A., S.L. Choy, K. Mengersen. 2010. Elicitator: an expert elicitation tool for 

regression in ecology. Environmental Modelling & Software, 25:129–145. 

Johnson, K. G., and M. R. Pelton. 1980. Environmental Relationships and the Denning 

Period of Black Bears in Tennessee. Journal of Mammalogy 61:653-660. 

Jonkel, C. J., and I. M. Cowan. 1971. The Black Bear in the Spruce-Fir Forest. Wildlife 

Monographs:3-57. 

Kaminski, D. J., C. E. Comer, N. P. Garner, I. K. Hung, and G. E. Calkins. 2013. Using 

GIS-based, regional extent habitat suitability modeling to identify conservation 

priority areas: A case study of the Louisiana black bear in east Texas. The Journal 

of Wildlife Management 77:1639-1649. 

Long, R., T. Donovan, P. MacKay, W. Zielinski, and J. Buzas. 2011. Predicting carnivore 

occurrence with noninvasive surveys and occupancy modeling. Landscape 

Ecology:1-14. 

Long, R. A. 2006. Developing predictive occurrence models for carnivores in Vermont 

using data collected with multiple noninvasive methods. Dissertation. Ph. D. 

Dissertation. University of Vermont, Burlington. 

Low Choy, S., R. O’Leary, and K. Mengersen. 2009. Elicitation by design in ecology: 

Using expert opinion to inform priors for Bayesian statistical models. Ecology. 

90:265-277. 



 

154 

 

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS -- a Bayesian 

modelling framework: concepts, structure, and extensibility. Statistics and 

Computing 10:325--337. 

MacNally, R. 2007. Consensus weightings of evidence for inferring breeding success in 

broad-scale bird studies. Austral Ecology, 32:79–484. 

Martin, T. G., P.M. Kuhnert, K. Mengersen, H.P. Possingham. 2005. The power of expert 

opinion in ecological models: a Bayesian approach examining the impact of 

livestock grazing on birds. Ecological Applications. 15:266-280. 

Mattson, D. J. 1990. Human impacts on bear habitat use. Bears: Their Biology and 

Management 8:33-56. 

McLaughlin, C. R. 1999. Black bear assessment and strategic plan. Maine Department of 

Inland Fisheries and Wildlife, Bangor, Maine, USA. 

Mitchell, M. S., J. W. Zimmerman, and R. A. Powell. 2002. Test of a Habitat Suitability 

Index for Black Bears in the Southern Appalachians. Wildlife Society Bulletin 

30:794-808. 

Murray, J. V., A. W. Goldizen, R. A. O’Leary, C. A. McAlpine, H. P. Possingham, S. 

Low Choy. 2009. How useful is expert opinion for predicting the distribution of a 

species within andbeyond the region of expertise? A case study using brush-tailed 

rock-wallabies Petrogale penicillata. Journal of Applied Ecology. 46:842-851. 

Nielsen, S. E., G. McDermid, G. B. Stenhouse, and M. S. Boyce. 2010. Dynamic wildlife 

habitat models: Seasonal foods and mortality risk predict occupancy-abundance 

and habitat selection in grizzly bears. Biological Conservation 143:1623-1634. 

O’Neill, T. Osborn, M. Hulme, I. Lorenzoni, A. Watkinson. 2008. Using expert 

knowledge to assess uncertainties in future polar bear populations under climate 

change. Journal of Applied Ecology, 45:1649–1659 

Pelton, M. R. 2003. Black Bear Ursus americanus. Pages 547-555 in G. A. Feldhamer, B. 

C. Thompson, and B. R. Chapman, editors. Wild Mammals of North America: 

Biology, Management, and Conservation. Johns Hopkins University Press, 

Baltimore Maryland USA. 

Powell, R. A., J. W. Zimmerman, and D. E. Seaman. 1997. Ecology and behaviour of 

North American black bears : home ranges, habitat, and social organization. 

Chapman & Hall, London, UK; New York, USA. 

R Core Team. 2013. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 



 

155 

 

Rogers, L. L. 1989. Black bears, people, and garbage dumps in Minnesota.in Bear-People 

Conflicts - A Symposium on Management Strategies. Yellowknife, Northwest 

Territories Department of Renewable Resources. Northwest Territories 

Department of Renewable Resources, Yellowknife, Canada. 

Rogers, L. L., and A. W. Allen. 1987. Habitat suitability index models:black bear, Upper 

Great Lakes Region. U.S. Fish and Wildlife Biological Report 82 (10.144), 

United States Fish and Wildlife Service, Washington, D.C., USA. 

Roloff, G. J., and B. J. Kernohan. 1999. Evaluating Reliability of Habitat Suitability 

Index Models. Wildlife Society Bulletin 27:973-985. 

Rowland, E. L., M. S. Cross, and H. Hartmann. 2014. Considering Multiple 

Futures:Scenario Planning To Address Uncertainty in Natural Resource 

Conservation. US Fish and Wildlife Service. Washington, DC, USA. 

Schipper, J., J. S. Chanson, F. Chiozza, N. A. Cox, M. Hoffmann, V. Katariya, J. 

Lamoreux, A. S. L. Rodrigues, S. N. Stuart, H. J. Temple, J. Baillie, L. Boitani, T. 

E. Lacher, R. A. Mittermeier, A. T. Smith, D. Absolon, J. M. Aguiar, G. Amori, 

N. Bakkour, R. Baldi, R. J. Berridge, J. Bielby, P. A. Black, J. J. Blanc, T. M. 

Brooks, J. A. Burton, T. M. Butynski, G. Catullo, R. Chapman, Z. Cokeliss, B. 

Collen, J. Conroy, J. G. Cooke, G. A. B. da Fonseca, A. E. Derocher, H. T. 

Dublin, J. W. Duckworth, L. Emmons, R. H. Emslie, M. Festa-Bianchet, M. 

Foster, S. Foster, D. L. Garshelis, C. Gates, M. Gimenez-Dixon, S. Gonzalez, J. F. 

Gonzalez-Maya, T. C. Good, G. Hammerson, P. S. Hammond, D. Happold, M. 

Happold, J. Hare, R. B. Harris, C. E. Hawkins, M. Haywood, L. R. Heaney, S. 

Hedges, K. M. Helgen, C. Hilton-Taylor, S. A. Hussain, N. Ishii, T. A. Jefferson, 

R. K. B. Jenkins, C. H. Johnston, M. Keith, J. Kingdon, D. H. Knox, K. M. 

Kovacs, P. Langhammer, K. Leus, R. Lewison, G. Lichtenstein, L. F. Lowry, Z. 

Macavoy, G. M. Mace, D. P. Mallon, M. Masi, M. W. McKnight, R. A. Medellín, 

P. Medici, G. Mills, P. D. Moehlman, S. Molur, A. Mora, K. Nowell, J. F. Oates, 

W. Olech, W. R. L. Oliver, M. Oprea, B. D. Patterson, W. F. Perrin, B. A. 

Polidoro, C. Pollock, A. Powel, Y. Protas, P. Racey, J. Ragle, P. Ramani, G. 

Rathbun, R. R. Reeves, S. B. Reilly, J. E. Reynolds, C. Rondinini, R. G. Rosell-

Ambal, M. Rulli, A. B. Rylands, S. Savini, C. J. Schank, W. Sechrest, C. Self-

Sullivan, A. Shoemaker, C. Sillero-Zubiri, N. De Silva, D. E. Smith, C. 

Srinivasulu, P. J. Stephenson, N. van Strien, B. K. Talukdar, B. L. Taylor, R. 

Timmins, D. G. Tirira, M. F. Tognelli, K. Tsytsulina, L. M. Veiga, J.-C. Vié, E. 

A. Williamson, S. A. Wyatt, Y. Xie, and B. E. Young. 2008. The status of the 

world's land and marine mammals: diversity, threat, and knowledge. Science 

322:225-230. 

Schmidt, B. R., and J. Pellet. 2005. Relative importance of population processes and 

habitat characteristics in determining site occupancy of two anurans. Journal of 

Wildlife Management 69:884-893. 



 

156 

 

Schooley, R. L., C. R. McLaughlin, G. J. Matula, Jr., and W. B. Krohn. 1994. Denning 

chronology of female black bears: effects of food, weather, and reproduction. 

Journal of Mammalogy 75:466-477. 

Sturtz, S., U. Ligges, and A. Gelman. 2005. R2WinBUGS: A Package for Running 

WinBUGS from R. Journal of Statistical Software 12:1-16. 

Thompson, E. H., and E. R. Sorenson. 2000. Wetland, Woodland, Wildland: a Guide to 

the Natural Communities of Vermont. The Nature Conservancy and The Vermont 

Department of Fish and Wildlife, Hanover, New Hampshire, USA. 

Tøien, Ø., J. Blake, D. M. Edgar, D. A. Grahn, H. C. Heller, and B. M. Barnes. 2011. 

Hibernation in Black Bears: Independence of Metabolic Suppression from Body 

Temperature. Science 331:906-909. 

Tyre, A. J., H. P. Possingham, and D. B. Lindenmayer. 2001. Inferring process from 

pattern: Can territory occupancy provide information about life history 

parameters? Ecological Applications 11:1722-1737. 

U.S. Census Bureau. 2001. Census 2000 summary file 1 technical documentation. U.S. 

Census Bureau Washington, D.C., USA. 

USFWS. 1980. Habitat evaluation procedures (HEP). ESM-102. Department of Interior, 

Division of Ecological Services., Washington, D.C., USA. 

USFWS. 1981. Standards for the development of habitat suitability index models. ESM-

103. Department of Interior, Division of Ecological Services, Washington D.C. 

Van Horne, B. 1983. Density as a misleading indicator of habitat quality. Journal of 

Wildlife Management 47: 893-901. 

Wilcove, D. S., D. Rothstein, D. Jason, A. Phillips, and E. Losos. 1998. Quantifying 

Threats to Imperiled Species in the United States. Bioscience 48:607-615. 

Wilson, K. A., M. I. Westphal, H. P. Possingham, and J. Elith. 2005. Sensitivity of 

conservation planning to different approaches to using predicted species 

distribution data. Biological Conservation 122:99-112. 

Yamada, K., J. Elith, M. McCarthy, A. Zerger. 2003. Eliciting and integrating expert 

knowledge for wildlife habitat modelling. Ecological modelling 165:251-264. 

 

  



 

157 

 

List of Figures 

 

Figure 4.1: Expert approximation of black bear habitat suitability in the state of Vermont. 

Primary habitat coincides with low human activity and more continuous forest cover. 

Secondary and Tertiary habitat are well-forested areas but with higher levels of human 

residency and activity. The Poor habitat includes relatively high amounts of agricultural 

and open landcover types and the highest human residential densities. 

Figure 4.2: Comparison of the prior effect estimates and 95% credible intervals between 

the “strict” (gray) and “inclusive” (black) interpretations of the expert map. RES and 

WET cover ~2.5% and ~1.5%, respectively, of the land area in Vermont. 

Figure 4.3: The expert (upper) and first posterior (lower) models fit to the state of 

Vermont. The maps on the left are the “inclusive” interpretation of the expert map and 

those on the right follow the “strict” interpretation. 

Figure 4.4: Estimated covariate effects (dots) and 95% credible intervals (bars) of the first 

posterior (black), Northern update (medium gray), and Southern update (light gray). The 

study areas appeared to differ most clearly in the amount of agricultural and open land 

(agopen). Points are offset vertically to avoid over-plotting. 

Figure 4.5: The updated maps based on data from the northern (left) and southern (right) 

halves of the state. Updates are applied in the half of the state where the data originated. 

The remainder of the map is the non-updated fit of the first posterior model estimated 

from the expert map. 
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Figure 4.6: The model-averaged state-wide habitat map. 
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Table 4.1: Summaries of the distributions of covariate values between the Northern and Southern study areas. 

 

 

Table 4.2: Covariate effect estimates based on the strict expert map

 

 

RES AGOPEN DEC CONMIX WET CORE

Minimum 0.000 0.000 0.000 0.000 0.000 0

1st Quartile 0.000 0.000 0.080 0.080 0.000 3

Median 0.000 0.000 0.140 0.245 0.000 20

Mean 0.015 0.100 0.137 0.295 0.017 102

3rd Quartile 0.010 0.020 0.190 0.490 0.000 140

Maximum 0.360 1.000 0.310 0.860 0.500 626

RES AGOPEN DEC CONMIX WET CORE

Minimum 0.000 0.000 0.000 0.000 0.000 0

1st Quartile 0.000 0.000 0.088 0.118 0.000 17

Median 0.000 0.000 0.160 0.245 0.000 48

Mean 0.006 0.037 0.167 0.282 0.008 118

3rd Quartile 0.000 0.000 0.230 0.440 0.000 206

Maximum 0.070 0.590 0.420 0.880 0.120 364

Southern

Northern

mean sd mean sd mean sd

Intercept -0.80 0.23 -0.54 0.20 -0.31 0.20

res -6.11 1.79 -6.08 1.78 -6.23 1.71

agopen -1.35 0.54 -1.12 0.52 -0.35 0.47

dec -0.07 0.99 0.30 0.92 0.63 0.93

conmix 1.06 0.38 1.18 0.36 1.22 0.36

wetscrub -4.80 1.81 -4.67 1.83 -3.65 1.76

core 0.02 0.00 0.02 0.00 0.02 0.00

First Posterior SOUTHERN NORTHERN
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Figure 4.1: Expert approximation of black bear habitat suitability in the state of Vermont. Primary habitat 

coincides with low human activity and more continuous forest cover. Secondary and Tertiary habitat 

are well-forested areas but with higher levels of human residency and activity. The Poor habitat 

includes relatively high amounts of agricultural and open landcover types and the highest human 

residential densities. 
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Figure 4.2: Comparison of the prior effect estimates and 95% credible intervals between the “strict” (gray) and 

“inclusive” (black) interpretations of the expert map. RES and WET cover ~2.5% and ~1.5%, 

respectively, of the land area in Vermont. 
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Figure 4.3: The expert (upper) and first posterior (lower) models fit to the state of Vermont. The maps on the 

left are the “inclusive” interpretation of the expert map and those on the right follow the “strict” 

interpretation. 
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Figure 4.4: Estimated covariate effects (dots) and 95% credible intervals (bars) of the first posterior (black), 

Northern update (medium gray), and Southern update (light gray). The study areas appeared to differ 

most clearly in the amount of agricultural and open land (agopen). Points are offset vertically to avoid 

over-plotting. 
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Figure 4.5: The updated maps based on data from the northern (left) and southern (right) halves of the state. 

Updates are applied in the half of the state where the data originated. The remainder of the map is the 

non-updated fit of the first posterior model estimated from the expert map.  
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Figure 4.6: The model-averaged state-wide habitat map.  
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