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ABSTRACT 

 
Chronic pain alters sensory responses and carries a strong emotional component.  

Persistent pain can heighten pain experiences, resulting in hyperalgesia and allodynia.  
Further, patients suffering from chronic pain are more prone to experience a range of 
affective disorders including depression, sleep dysregulation, panic disorders, anxiety 
abnormalities and stress-related disorders including post-traumatic stress disorder 
(PTSD).  Hence while pain serves a protective function to prevent additional 
physiological harm by driving behavioral and cognitive responses, chronic or persistent 
pain can lead to maladaptive nociceptive responses and exacerbate psychopathologies.  
Among brain regions, the amygdala is centrally situated to integrate the many descending 
and ascending signals to modulate the sensory and emotional components of pain.  The 
amygdala is well studied for its role in fear and stress-related behavioral processes.  The 
central nucleus of the amygdala (CeA), and in particular the lateral capsular subdivision 
of the CeA (CeLC), receives prominent ascending pain neurotransmission via the spino-
parabrachioamygdaloid tract.  In this pathway, peripheral nociceptive signals carried via 
primary sensory Aδ- and C-fibers terminate in the dorsal horn where second order 
neurons send projections via the spino-parabrachial pathway to the lateral parabrachial 
nucleus (LPBn).  Thus, the LPBn collects cutaneous (mechanical and thermal), deep 
(muscular and articular) and visceral nociceptive signals and relays the information in a 
highly organized manner principally to the CeLC for nociceptive processing.  In pain, the 
CeA and the LPBn-CeLC projections have been shown to undergo plasticity in the forms 
of enhanced synaptic transmission and alterations in neurotransmitter and receptor 
expression.  Accordingly, the neurocircuit intersections in the CeA can modulate the 
sensory and emotional responses to pain.  Yet despite these associations, the mediators 
and mechanisms underlying the emotional consequences of pain are poorly understood.   

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neural and 
endocrine pleiotropic peptide important in the development and homeostatic regulation of 
many physiological systems.  Recently, the expression of PACAP and its cognate PAC1 
receptor has been shown to be upregulated in specific limbic regions by chronic stress.  
PACAP infusions into several limbic regions is anxiogenic, and altered blood PACAP 
levels and PAC1 receptor polymorphism have been associated with PTSD and other 
stress-related disorders.  Here, we establish that CeLC PACAP originates from the LPBn 
as part of the spino-parabrachoamygdaloid pathway.  Chronic pain enhanced PACAP 
expression along LPBn-CeLC projections, indicating it may be a component of pain-
related plasticity.  CeA PACAP signaling was sufficient to induce nociceptive 
hypersensitivity and anxiety-like behaviors.  In a chronic neuropathic pain model, CeA 
PACAP signaling was found to contribute to heightened anxiety-like behaviors and 
nociceptive responses.  Further, we characterized one prominent intracellular signaling 
mechanism through which CeA PACAP signaling influences these behaviors.  

In these experiments we provide evidence that CeA PACAP signaling plays an 
important role in the emotional components of pain and that alterations in CeA PACAP 
signaling are part of pain-related plasticity.  This work establishes novel molecular 
mechanisms that underlie the emotional component of pain and may contribute to the 
development of chronic pain and associated affective disorders. 
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 Chapter 1. 

Literature Review 

 

1.1. General Introduction 

Chronic pain is one of the greatest medical health problems in the developed 

world affecting approximately 19% of the adult population (Breivik et al., 2006). From 

an economic standpoint, chronic pain presents an enormous burden.  In 2010, the 

estimated additional health care costs due to pain ranged from $261-300 billion within 

the United States, and with the loss in productivity, the total costs increase to an 

estimated $560-635 billion (Gaskin & Richard, 2012).  In relative terms, the annual cost 

of chronic pain is greater than that for heart disease ($309 billion), cancer ($243 billion), 

and diabetes ($188 billion) (Gaskin & Richard, 2012).  While readily available and 

highly efficacious treatments for acute pain exist, successful treatment options for those 

suffering chronic pain still remain elusive, with current medications reducing pain 

severity by only 30-40% in fewer than 50% of patients treated (Turk, 2002).   

Pain is an adverse sensory and emotional experience associated with real or 

potential tissue damage.  Under normal conditions, pain serves a protective function, 

driving a set of responses that prevent the body from incurring additional harm.  Pain is 

multidimensional, acting both as an immediate sensory-discriminatory indicator and as an 

emotional-affective drive that promotes defensive and vigilant behaviors.  Poignantly 

illustrative of this protective function are the accounts from case reports of individuals 

with a congenital insensitivity to pain.  Individuals with a set of rare nonsense mutations 
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in the SCN9A gene, encoding for the α-subunit of Nav1.7 channel, display normal 

reactions to touch, warmth, cold, and pressure, but completely lack any kind of reaction 

to painful stimuli.  These individuals live in constant threat of injury, displaying frequent 

bruises, cuts, damage to lips and tongue (from biting themselves during early years of 

life), and are at risk for early mortality from accidental injury (Cox et al., 2006). 

While acute pain serves a clear protective function, pain can outlast the injury and 

the normal healing process and become chronic.  In these cases, pain is detrimental to an 

individual’s quality of life, without any physiological benefit.  Clinically, chronic pain 

has often been defined as pain that persists for at least 3 to 6 months; however, very often 

chronic pain lasts much longer.  One study reported that those seeking treatment at 

chronic pain treatment facilities did so for 7 years on average (Flor et al., 1992).  There is 

a crucial need to determine both the mechanisms underlying the transition from acute to 

chronic pain, and the mechanisms that maintain and reinforce chronic pain.  One of the 

key concepts to emerge from the efforts to understand the mechanisms of chronic pain is 

that of central sensitization.  Sustained noxious input can result in the prolonged increase 

in excitability and synaptic efficacy in neurons along central nociceptive pathways.  The 

enhancement of nociceptive transmission is manifested as pain hypersensitivity, in which 

pain can result from a normally non-painful stimulus (allodynia) or pain is enhanced from 

a painful stimulus (hyperalgesia).  Since central sensitization results from changes 

occurring in central neurons, the increased responsiveness may become decoupled from 

the peripheral noxious stimulus and could result in the persistence of pain in the absence 

of injury (Latremoliere & Woolf, 2009).  Thus, discovering the mechanisms underlying 
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the sensitization of nociceptive central circuits appears crucial to the understanding the 

pathogenesis of chronic pain and will provide opportunities to develop treatments for 

chronic pain. 

Further increasing the burden of chronic pain sufferers is that pain often co-exists 

with psychiatric illness.  One study found that 59% of those being treated for chronic 

back pain had at least one concurrent diagnosis of psychiatric illness compared to 15% in 

the general population, and 77% had at least one lifetime psychiatric diagnosis compared 

to 29-38% in the general population (Kroenke & Price, 1993).  Epidemiological studies 

have found a strong association between chronic pain and anxiety disorders.  A nationally 

representative sample (n=5877) of those who suffered chronic pain found that they were 

2-3 times as likely to have an anxiety disorder compared to the general population.  The 

rate of posttraumatic stress disorder (PTSD) was present 3.7 times more often in those 

with chronic pain than in the general population, and the rate of panic disorder (PD) was 

4.3 times that of the general population (McWilliams et al., 2003).  A large cross-national 

mental health survey (n=85,088) found similar results, with chronic back or neck pain 

being associated with PTSD, PD, and generalized anxiety disorder (GAD) 2-3 times the 

rate in the general population (Demyttenaere et al., 2007).  This relationship appears to 

hold true across several different types of pain, as migraine, arthritis, and back pain 

sufferers were found to have 2-4 times the rate of anxiety disorders compared to the 

general population (McWilliams et al., 2004).  Furthermore, pain may precipitate stress-

related disorders, as it has been shown that the level of peritraumatic pain in patients 

admitted to a trauma center is highly predictive of the development of PTSD at 4 and 8 
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months following hospital admission (Norman et al., 2008).  PTSD symptoms were 

significantly positively correlated with pain ratings, with PTSD sufferers having higher 

subjective pain and more pain-related disability (Phifer et al., 2011).  Interestingly, PTSD 

sufferers also have altered reactions to acute pain, with higher pain thresholds to acute 

noxious stimulation, but greater intensity of pain with suprathreshold noxious stimulation 

(Defrin et al., 2008; Geuze et al., 2007). 

Theoretical models have been proposed to explain the relationship underlying the 

concurrence of chronic pain and anxiety-related disorders.  The mutual maintenance 

model holds that both disorders interact in a way that reinforces the persistence of the 

other (Asmundson & Katz, 2009).  In the mutual maintenance model, the physiological, 

affective, and behavioral components of anxiety disorders interact to maintain or 

exacerbate symptoms of pain.  Similarly, the various physiological and affective 

components of pain interact to maintain or exacerbate symptoms of anxiety disorders.  

For instance, pain sensations in a chronic pain sufferer could act as a persistent, 

conditioned reminder of trauma, resulting in increased anxiety.   Alternatively, the shared 

vulnerability model posits that individual factors may predispose people to develop both 

anxiety disorders and chronic pain.  These factors, such as feelings of loss of control or 

low threshold for alarm, may be genetically influenced (Asmundson & Katz, 2009).  

While these models offer explanations for how pain and stress interact, the biological 

mechanisms that underlie these relationships are still largely unknown. 

In examining function of neuropeptide signaling within the nervous system, the 

laboratories of Dr. Victor May and Dr. Sayamwong Hammack have recently identified 
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pituitary adenylate cyclase activating polypeptide (PACAP) and its cognate PAC1 

receptor as a mediator of the stress response system.  Increased PACAP expression is 

found following a repeated variate stress (RVS) paradigm within the bed nucleus of the 

stria terminalis (BNST) and the paraventricular nucleus of the hypothalamus (PVH) 

(Hammack et al., 2009).  Infusion of PACAP into the BNST is anxiogenic, increasing 

anxiety-like behaviors and hypothalamic pituitary axis (HPA) activation, and producing 

an anorexic response (Hammack et al., 2009; Kocho-Schellenberg et al., 2014; Lezak et 

al., 2014).  Blocking BNST PACAP signaling during RVS can significantly attenuate 

heightened anxiety-like behaviors and stress-induced anorexia (Roman et al., 2014).  

PACAP signaling may be relevant to human anxiety-disorders, as a single nucleotide 

polymorphism (SNP) in the PAC1 receptor gene, ADCYAP1R1, has been correlated with 

PTSD symptoms in women, and PAC1 receptor methylation has been found to be 

associated with PTSD symptoms in both sexes (Ressler et al., 2011).  In aggregate, these 

findings implicate limbic PACAP signaling as a central mediator of the stress response 

system.  In the course of our investigation, we noted dense PACAP immunoreactivity in 

the nerve terminals within the central amygdala (CeA).  Subsequently, we found that 

CeA PACAP corresponded to nociceptive input originating from the parabrachial nucleus 

(PBn).  Thus, PBn PACAP released in the CeA could serve as a mechanism linking 

nociceptive input to amygdala-mediated emotional responses.   

To further understand the pathways described above, we investigated whether 

CeA PACAP signaling mediates the emotional components of pain, first, by establishing 

PACAP in the PBn-CeA projections, and next by examining whether CeA PACAP was 
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involved in pain-related emotional responses.  Further, we characterized the potential 

molecular pathways through which CeA PACAP signaling may be acting.  These 

investigations were aimed at understanding the molecular and anatomical substrates 

underlying the relationship of pain and emotional behaviors.  The coexistence of pain 

with affective disorders may not only result in substantial disease burden, but also lead to 

the amplification and perpetuation of pain.  The mechanisms linking these two systems 

may be particularly effective targets for the development of treatments for affective 

disorders comorbid with chronic pain. 

In interest of clarity, the background and introduction are divided into three main 

sections: 1) mechanisms of nociception - reviewing the detection and transmission of 

nociceptive information; 2) amygdala and its functions in pain; and 3) PACAP signaling 

in pain.  The subsequent two chapters are primary research studies in manuscript form, 

which is then concluded with a comprehensive discussion.   

 

1.2. Neurobiology of Pain 

Detection of painful stimuli 

The detection of stimuli of a thermal, mechanical, or chemical nature is performed 

by a set of sensory afferent fibers in the body containing a set of specialized receptors 

that transduce sensory stimuli into electrical currents.   For thermal stimuli, a clear 

demarcation between innocuous warmth and noxious heat exists and typically rests 

around 42.5 C.  At this temperature lies the approximate thermal activation threshold for 

the transient receptor potential cation channel subfamily vanilloid member 1 (TRPV1) 
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receptor.  A member of the transient receptor potential (TRP) ion channel family, TRPV1 

receptor activation results in the perception of a burning sensation.  Capsaicin, the 

pungent ingredient in “hot” chili peppers, is a TRPV1 agonist.   On the other end of the 

thermal spectrum, TRPM8 and possibly TRPA1 receptors are sensitive to noxious cold 

stimuli and display an affinity to natural cooling agents such as menthol (Basbaum et al., 

2009).  Mechanical stimuli are detected through multiple mechanisms including high-

threshold mechanoreceptors that terminate in free nerve-endings in the skin, low-

threshold mechanoreceptors that terminate on hair fibers, as well as Merkel cells and 

Pacinian corpuscles, which detect texture, vibration, and light pressure.  It is predicted 

that these structures contain ion channels that are activated directly by force underlie 

mechanotransduction; however the identity of these channels has been difficult to 

determine.  Recently, piezo channels, piezo 1 and piezo 2, have been shown to be 

potential candidates for mechanotransduction (Coste et al., 2010).  Piezo channels are 

extremely large proteins comprised of more than 2000 amino acids with 30 to 40 

transmembrane segments, and exist in an even larger structural complex, as the functional 

channels appear to be tetramers.   Initial evidence suggests that piezo1 might be 

particularly important in vascular architecture as a shear-stress-evoked ionic current (Li 

et al., 2014).  Piezo 2 has been shown to be important in low-threshold 

mechanotransduction, mediating innocuous touch sensation (Ranade et al., 2014).  The 

channels mediating high-threshold, noxious mechanosensation are still unknown.  

Noxious chemical stimuli can consist of environmental agents such as capsaicin, 

menthol, and isothiocyanates that bind to receptors that transduce noxious stimuli, 
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including TRPV1, TRPM8, and TRPA1 respectively.   Additionally, noxious chemical 

stimuli can be substances that are endogenously released after tissue damage or 

physiological stress.  These include signaling molecules, such as calcitonin gene related 

peptide (CGRP) and substance P, and factors released from mast cells and macrophages, 

such as bradykinin, prostaglandin E2, interleukin-6 (IL-6) and tumor necrosis factor – α 

(TNFα).  These molecules bind to receptors on the cell surface to activate or sensitize 

nociceptors directly, thereby inducing pain or lowering the threshold for pain perception 

(Basbaum et al., 2009).   

 

Nociceptive pathways 

After detection of noxious stimuli and transduction into electrical currents, two 

main classes of fibers convey nociceptive information, medium diameter, lightly 

myleinated Aδ fibers and small diameter, unmyleinated C-fibers.  Aδ-fibers range in 

diameter from 2-6 µm with a conduction velocity of 12-30 m/s, while C-fibers have a 

diameter of 0.4 to 1.2 µm with a conduction velocity between 0.5-2 m/s.  Whereas Aδ 

afferents convey acute, well-localized pain, C-fibers are responsible for more diffuse, 

slow onset pain.  Each fiber type can be further divided into subpopulations.  Aδ-fibers 

can be divided into type I fibers that respond to mechanical stimuli but have a high heat 

threshold, and type II fibers that have a low heat threshold but high threshold for 

mechanical stimuli.  Many C-fibers are polymodal, responding to both mechanical and 

thermal stimuli; however subsets of these fibers may have modality specificity.  Based on 

molecular characterization, C-fibers consist of a peptidergic population that expresses 
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substance P and calcitonin-gene related peptide (CGRP), and a nonpeptidergic population 

that binds IB4 isolectin and express G protein-coupled receptors of the Mrg family 

(Basbaum et al., 2009).  Although still a matter of debate, there might be modality 

specificity as it was recently found that selective ablation of these peptidergic fibers 

reduced sensation to noxious heat and capsaicin, without impairing mechanosensation 

(McCoy et al., 2013).  Nociceptive fibers originate from pseudo-unipolar somatosensory 

neurons that have cell bodies residing in the dorsal root ganglion (DRG) or the trigeminal 

ganglion.  The peripheral terminals of these neurons transduce nociceptive information 

and convey it to the central terminals that synapse in the outer layers of the dorsal horn of 

the spinal cord, specifically Rexed laminae regions I, II, and V.  Subtypes of afferents 

synapse with regional specificity creating a distinct laminar organization.  Projections 

from dorsal horn neurons within laminae I and III-VI form the main connections to 

brainstem and brain (Todd, 2010).   

Within the dorsal horn, second order neuronal projections form multiple parallel 

pathways to convey nociceptive information to higher order central nervous system 

(CNS) regions.  The afferent pain pathways can be separated on a phylogenetic basis into 

two different systems, ancient and more evolutionarily recent pathways.  The 

evolutionarily ancient pathways run through the medial brainstem consisting of the 

paleospinothalamic, spinoreticular, spinomesencephalic, spinoparabrachio-amygdaloid, 

and spinohypothalamic tracts.  In contrast, evolutionarily recent pathways traverse the 

lateral region of the brainstem and consist of the neospinothalamic and spinocervical 

tracts (Almeida et al., 2004).  These tracts form the main projections from the superficial 
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dorsal horn to brainstem and brain.  The main targets of dorsal horn projection neurons 

within the brainstem include the caudal ventrolateral medulla (CVLM), which is an 

integrative center of cardiovascular response and nociception, and a site of origin for 

many of the descending projections back to the dorsal horn.   The nucleus of the solitary 

tract (NTS) is a second major target involved in cardio-respiratory integration, as well as 

a major target for visceral nociceptive information arriving via the vagus nerve.  The 

periaqueductal grey (PAG) in the medulla is involved in the descending modulation of 

dorsal horn circuits, one of the key regions for the actions of analgesics, and critical in 

stress-induced analgesia through descending output from the amygdala (Butler & Finn, 

2009).  The lateral PBn (LPBn) is a major target of lamina I input, and LPBn neurons 

have axonal projections to the amygdala, hypothalamus, and BNST; these projections 

will be discussed further in the next section.  Another major target of nociceptive lamina I 

projections neurons is the thalamus.  In particular, several regions in the thalamus receive 

nociceptive information, including the ventral posterolateral nucleus (VPL), which 

receives nociceptive information from the body, and the ventral posteromedial nucleus 

(VPM), which receives nociception information from the face via the trigeminal nerve.  

The VPL and VPM have direct projections to the primary somatosensory cortex, and are 

involved in the sensory-discriminative aspects of pain.  Another set of thalamic nuclei the 

posterior group and posterior triangular nucleus of the thalamus (PoT) also receive 

nociceptive information and project primarily to the insular cortex, secondary 

somatosensory cortex, and amygdala.  These regions are thought to be involved the 

aversive emotional aspects of pain (Gauriau & Bernard, 2004).  Studies in rodents have 
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examined the anatomical distribution for each spinal pathway by injecting retrograde 

tracers into each brain region and quantifying the number of lamina I neurons labeled 

(Spike et al., 2003; Todd, 2010).  Upon examination, lamina I of the L4 segment of the 

rat spinal cord contains approximately 400 projection neurons, which is about 5% of the 

total number of neurons in lamina I.  A majority of the neurons project to the 

contralateral side of the brain; however about 25% have bilateral projections.  The vast 

majority of lamina I neurons exhibit extensive collateralization projecting to multiple 

regions.  Hence, of all L4 lamina I projections neurons, an estimated 85% project to the 

LPBn, 85% project to the CVLM, 30% project to the PAG, 25% project to the NTS, and 

less than 5% project to the thalamus (Spike et al., 2003).  The very small proportion of 

projections to the thalamus may be unique to the lumbar region, because the cervical 

spinal cord contains a greater number of spinothalamic projection neurons and fewer 

spinoparabrachial projection neurons (Al-Khater & Todd, 2009).    

 

Parabrachial nucleus (PBn) anatomy and connectivity 

The PBn is an anatomical area surrounding the superior cerebellar peduncle 

(SCP), or brachium conjunctivum, located in the dorsolateral rostral pons and caudal 

midbrain.  The PBn can be divided into medial (MPBn) and lateral (LPBn) nuclei, with a 

third ventrolateral extension called the Kölliker-Fuse nucleus.  The PBn can be further 

divided into 10 distinct subnuclei based on cytoarchitecture (Figure 1.1).  Immediately 

ventromedial to the SCP is the MPBn subnucleus containing a heterogenous cell 

population.  In contrast, the external MPBn subnucleus contains larger multipolar 
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neurons and is interposed between the MPBn and Kölliker-Fuse nucleus.  The LPBn is 

made up of several homogeneous groups of cells, including the superior lateral, internal 

lateral, central lateral, ventral lateral, dorsal lateral, external lateral, and extreme lateral 

nuclei, which are delineated by morphology and spatial distribution (Fulwiler & Saper, 

1984).  Individual subdivisions can also be differentiated based on connectivity.  The 

primary projections of the PBn include several hypothalamic regions (the medial preoptic 

hypothalamus (MPO), ventromedial hypothalamus (VMH), lateral hypothalamus, and 

paraventricular hypothalamus (PVH)), the nucleus of the solitary tract (NTS), several 

thalamic regions including the intralaminar nuclei and paraventricular nucleus of 

thalamus (PVT), and the extended amygdaloid complex including the BNST and CeA 

(Fulwiler & Saper, 1984).  Within the amygdaloid complex, the central medial amygdala 

(CeM) receives projections mainly from the MPBn and ventral lateral subnucleus.  The 

central lateral amygdala (CeL) and the BNST receives projections from the central LPBn 

and the outer portion of the external LPBn subnucleus.  The central laterocapsular 

amygdala (CeLC) receives projections primarily from the external and dorsal LPBn 

(Bernard et al., 1993).  Reconstruction of axonal branching patterns have found that, 

while the LPBn has projections that travel exclusively to either the BNST or CeA, the 

LPBn projections in passage to the CeA can also send collaterals to the BNST (Sarhan et 

al., 2005).  After leaving the LPBn, the efferent fibers can travel through the dorsal and 

central tegmental tracts, and then join the medial forebrain bundle and ansa lenticularis.  

Here, the fibers can branch and course via dorsal or ventral pathways.  In the ventral 

pathway, the fibers immediately turn laterally to reach the CeLC and CeL.  In the dorsal 



 

13 

pathway, the fibers can continue to travel rostrally sending collaterals to the lateral BNST 

and traveling back around through the stria terminalis to reach the CeL and CeLC (Figure 

1.2).   

 

Spino-parabrachio-amygdaloid tract 

The LPBn is a key site of convergence for nociceptive input.  It is one of the 

largest targets of nociceptive dorsal horn projection neurons, relayed primarily through 

the dorsal lateral funiculus, and receives nociceptive information broadly from the body.  

Besides the substantial input from lamina I, the PBn also receives input from the 

trigeminal nucleus, carrying nociceptive information from the face, and from the NTS 

relaying visceral nociceptive inputs.  Thus, the LPBn may integrate both peripheral and 

visceral nociceptive signals.   

To examine the role of the parabrachio-amygdaloid projections in nociception, 

PBn neurons from anesthetized rats were examined using extracellular 

electrophysiological recordings (Bernard et al., 1996).  Antidromic stimulation of the 

CeA was used to identify PBn-CeA projecting neurons and to examine the 

responsiveness of these neurons to mechanical thermal or visceral stimuli.  

Approximately 70% of PBn-CeA neurons were exclusively excited by noxious stimuli, 

whereas innocuous somatic or gustatory stimuli did not alter firing of these neurons.  

These neurons tended to have large excitatory receptive fields, often covering several 

areas of the body, suggesting that these neurons are likely not encoding specific spatial 

information to allow for sensory discrimination.  A subpopulation (30%) of PBn-CeA 
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neurons had a smaller receptive field and were only excited when noxious stimuli were 

applied to a specific part of the body.  Subthreshold or non-noxious stimuli were found to 

inhibit responses in the nociceptive-responsive PBn-CeA neurons.  Noxious thermal 

stimuli tended to induce a stronger excitatory response than noxious mechanical stimuli.  

Morphine was found to have multiple effects blocking the excitatory response to thermal 

stimuli in PBn-CeA neurons and reducing c-fos expression in a subset of lamina I spino-

parabrachial neurons following noxious stimulation (Huang et al., 1993; Jasmin, Wang, 

Tarczy-Hornoch et al., 1994).   

 

Central pain processing 

While this review primarily focuses on the role of the amygdala in pain processes, 

the experience of pain is multifactorial and utilizes a large distributed brain network 

commonly referred to as the pain matrix (Tracey & Mantyh, 2007).  It can be divided into 

two main systems, one lateral sensory-discriminatory and the other medial affective-

cognitive.  The majority of the research on these systems has been based on 

neuroimaging studies to determine which brain regions are more or less active depending 

on the interplay of particular conditions and factors, including the type of injury, mood, 

and cognitive components.  As such, the pain matrix is not precisely defined, nor is it 

always consistent as to which regions are included or excluded.  Rather, the pain matrix 

may be more a pain signature, reflective of individual and subjective experiential 

differences (Tracey & Mantyh, 2007).  During acute pain, the most common regions 

involved are the thalamus, primary and secondary somatosensory cortices, insular cortex, 
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anterior cingulate cortex, and prefrontal cortex (Apkarian et al., 2005).  Within the pain 

matrix, the regions responsible for emotional components of pain, including those related 

to anxiety and depression, may act to further amplify the pain experience.  Commonly 

associated regions in the processing of the emotional aspects of pain regions include the 

anterior cingulate cortex, insular cortex, hippocampus, and amygdala (Yalcin et al., 

2014).  Thus, in the context of the larger pain matrix, the amygdala might serve to impart 

an emotional context to pain.   

 

1.3. Amygdala in Pain Processes 

Anatomy 

The amygdala refers to a group of nuclei deep within the temporal lobe, vital in 

the processing of emotion-related responses.  The amygdala can be divided on the basis 

anatomy and function into several major divisions; the basolateral nuclei, cortical-like 

nuclei, and centromedial nuclei.  The basolateral nuclei (BLA) consist of the lateral 

nucleus (LA) and the basal nucleus (BA).  The BLA is bordered laterally by the external 

capsule and medially by the central amygdala (CeA).  The cortical-like nuclei are the 

most superficial group consisting of the nucleus of the lateral olfactory tract, bed nucleus 

of the accessory olfactory tract, periamygdaloid cortex, anterior cortical nucleus, and 

posterior cortical nucleus.  The centromedial group consists of the CeA and medial 

nucleus (MeA).  The CeA can be further divided into central medial (CeM), central 

lateral (CeL), and central lateral capsular (CeLC) (Sah et al., 2003).  Further, it has been 

argued on the basis of structural and functional homology that the centromedial group 
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should be extended rostrally and medially to include the bed nucleus of the stria 

terminalis (BNST) and the caudodorsal regions of the substantia innominata to form what 

is referred to as the extended amygdala complex (Alheid, 2003).  This distinction is on 

the basis of similarities between efferent and afferent connections and histochemical 

architecture in these regions.  Another amygdala group, the intercalated neurons, does not 

form a distinct nucleus but occurs as numerous dense clusters found in the external 

capsule on the lateral border of the BLA, and two clusters in the intermediate capsule 

between the BLA and CeA. 

 

Intrinsic and extrinsic connectivity 

The amygdala has fairly extensive intrinsic connections.  In general, information 

in the amygdala tends to flow in a lateral to medial direction, with sensory and 

multimodal input from cortical association areas arriving in the LA.  The main output is 

from the CeM, where the amygdala is strongly connected to autonomic and modulatory 

centers of the hypothalamus and brainstem, including the paraventricular hypothalamus 

(PVH), lateral hypothalamus (LH), the periaqueductal grey (PAG), PBn, NTS and dorsal 

vagal complex.  Between the LA and CeM are few to no direct connections, instead 

projections to the CeL, CeLC and intercalated cells are thought to function to gate 

sensory input to modulate fear behavior under particular environmental conditions 

(Duvarci & Paré, 2014).  The BLA is primarily composed (~80%) of large glutamatergic 

projection neurons with the remaining neurons belonging to a diverse set of GABAergic 

interneurons that form local circuits.  These glutamatergic projections neurons synapse 
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primarily onto CeL, CeLC and intercalated neurons.  The CeA is composed primarily of 

GABAergic neurons, with the CeM neurons having large soma and sparsely branching 

dendrites, and the CeL and CeLC neurons having smaller soma and dendritic trees that 

branch profusely (Ehrlich et al., 2009).  Neurons within the CeL and CeLC project to the 

CeM, with few to no reciprocal projections (Petrovich & Swanson, 1997).  Within the 

CeL and CeLC are microcircuits with GABAergic interneurons synapssing on a second 

GABAergic interneuron.  In turn, these interneurons then project to the CeM and can 

result in the activation of the CeM through disinhibition.  These two populations of 

interneurons have been defined genetically by the presence of protein kinase Cδ.  During 

a fear-evoking stimulus, one CeL/CeLC interneuron population is selectively activated 

(CeL-On), whereas a second population is inhibited (CeL-Off). The CeL-Off population 

projects to the CeM, and the inhibition of CeL-Off neuron during fear results in 

disinhibition of the CeM and evokes fear-related behaviors (Ciocchi et al., 2010; 

Haubensak et al., 2010).  In aggregate, this suggests that the CeL and CeLC form a 

complex inhibitory gate on the CeM, allowing for multiple points of modulation.  One 

input to the CeLC and CeL is through the previously described projection from the LPBn 

to CeL and CeLC.  These nociceptive inputs bypass the BLA completely.  Additionally, 

while the CeM is the source of the largest output from the amygdala, projecting to 

multiple regions in the brainstem and hypothalamus, the CeL and CeLC also modulate 

behavior through a set of direct projections to the BNST (Dong et al., 2001).     
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Amygdalar neuronal circuits for fear and anxiety 

Fear and and anxiety serve a protective function driving behavioral responses 

aimed at avoiding potential harm.  The amygdala has been long held to be a key mediator 

of emotional behaviors.  The pioneering studies in this area were of macaques with a 

temporal lobe lesion wherein the amygdala was ablated.  Following the lesions, there 

were behavioral alterations including amnesia, inability to recognize familiar objects, 

docility and a striking lack of emotional responses.  This was most apparent by the 

complete absence of fear responses in these macaques (Klüver & Bucy, 1937).   Since 

then, the role of the amygdala in fear has become a focus of a substantial body of 

research.  Due to relative simplicity and robustness of response, fear conditioning 

paradigms remain on the forefront of our ability to understand the brain at the level of 

neural circuits.  The fundamental framework of the amygdalar fear conditioning network 

posits that information about both the unconditioned stimulus (US) and conditioned 

stimulus (CS) converge onto neurons in the LA.  The LA then projects to the CeA, the 

main output, which then has projections to various brainstem regions that generate fear 

responses (Ledoux, 2000).  In this model, the LA receives information related to the CS, 

such as context cues from the hippocampus or tone information from the auditory cortex. 

Concurrently, the LA is also receiving information related to the US, such as the aversive 

information from electrical shock via the thalamus.  Hence, in this model there is a 

convergence of the US and CS in the LA, and synaptic plasticity within this region is 

thought to be critical for the formation of the association between the US and CS, or fear 

acquisition.  The fundamentals of this model are still valid; however, numerous updates 
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and clarifications have been made surrounding the basic circuitry.  Between LA neurons, 

which receive sensory input, and the CeA output neurons in the CeM, there are little to no 

direct connections.  Rather, the LA projects to three intermediaries including the CeLC 

and CeL, ITC cells and the BLA, where each one in turn projects to the CeM (Duvarci & 

Paré, 2014; Tovote et al., 2015) (Figure 1.3).  Additionally, while there is significant 

synaptic plasticity occurring in the LA following fear conditioning, synaptic plasticity in 

the CeA also appears important in the acquisition of fear (Paré et al., 2004).  The 

infralimbic (IL) and prelimbic (PL) regions of the medial prefrontal cortex appear critical 

in the suppression of fear responses via projections of the IL to the ITC cells, and the PL 

to the BLA.  These circuits appear particularily important in learned suppression of fear 

response, as occurs during fear extinction (Tovote et. al. 2015).  Of particular relevance 

to the current work, is the recognition of direct nociceptive projections from the LPBn to 

the CeLC and CeL, which completely bypass the BLA and thalamus (Veinante et al., 

2013).  Further, it has emerged that the amygdala may play a central role in the response 

to short, phasic fear-evoking stimuli. However, in response to sustained sustained fear-

evoking stimuli, more akin to anxiety, it is thought that the BNST becomes the primary 

mediator (Davis et al., 2010; Walker et al., 2009).  The current work involving the 

amygdala in fear has begun to utilize novel genetic manipulations to dissect 

subpopulations of neurons that may represent circuits with specific functions.  One of the 

ideas to emerge from this work is that within the BLA specific circuits might encode 

either a positive or negative valence, that either heightens or dampens the overall fear 

response (Namburi et al., 2015; Redondo et al., 2014).     
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Nociceptive input 

Due to its integration of a wide range of emotionally salient sensory stimuli, 

extensive nociceptive input, and its prominent role in the production of emotional 

behaviors, the amygdala is thought to be a key region in the processing and production of 

the emotional components of pain.  As a whole, the amygdala is thought to attach an 

emotional valence to sensory stimuli and initiate behavioral and affective responses.  In 

the context of the pain matrix, the amygdala would likely function to attach a negative 

emotional valence to nociceptive stimuli, resulting in compensatory behavioral changes.  

Within the amygdala, the CeA is situated at the interface of two nociceptive pathways 

(Figure 1.3).  The first pathway carries nociceptive information originating from the 

cerebral cortex and thalamus and relayed by the BLA.  The BLA receives nociceptive 

information from the ventroposterior, posterior, triangular, and posterior intralaminar 

thalamic nuclei, the secondary somatosensory area, and the insular cortex (Sah et al., 

2003; Shi & Davis, 1999).  The BLA then projects to the CeLC and CeL or to the 

intercalated cell masses, which, in turn, project to the CeM.  This nociceptive information 

has gone through the thalamus and cerebral cortex, where it can be integrated with other 

sensory, affective, and cognitive influences to become a highly polymodal and processed 

form of information.  While the BLA receives a majority of its input from the cortex and 

thalamus, there is, however, a small projection from these cortical and thalamic areas that 

directly innervates the CeA (Shi & Davis, 1999).  The second main nociceptive input is 

the spinoparabrachio-amygdaloid pathway that sends direct and less processed 

nociceptive information to the CeLC and CeL.  Additionally, there is also a sparse 
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projection directly from lamina I in the dorsal horn to the CeA.  Nociceptive information 

both directly through the PBn-CeA pathway and indirectly through the BLA-Ce A 

pathway converges in the CeLC and CeL (Neugebauer et al., 2004).   

There is substantial evidence that neurons in CeA respond to nociceptive 

information.  Using in vivo electrophysiology, CeA neurons of anesthetized rats were 

examined for their responsiveness to noxious stimuli, defined as stimuli that would be 

painful in an awake subject.  The majority of responsive neurons were located in the 

CeLC with approximately 80% of neurons displaying responses exclusively or 

predominantly to noxious stimulation of superficial or deep body tissue (Bernard et al., 

1992; Neugebauer & Li, 2002).  Of the approximately 80% of nociceptive responsive 

neurons, 46% were excited by noxious stimulation and the remaining 34% of CeA 

neurons were inhibited in the presence of noxious stimulation (Bernard et al., 1992). The 

excited neurons tended to be located in the CeLC, and inhibited neurons tended to be 

located in the CeL and CeM.  In light of recent understanding of CeA microcircuitry, in 

which a population of CeLC and CeL neurons have inhibitory projections onto neurons in 

the CeL and CeM, increased excitatory drive on these GABAergic CeLC neurons could 

be directly inhibiting CeM and CeL neurons and explain the heterogeneity of response.  

Three main types of neurons were described based on their responses to nociceptive 

stimulation.  Nociceptive-specific neurons are activated exclusively by noxious 

stimulation.  Multireceptive neurons respond to both nociceptive and innocuous stimuli, 

and nonresponsive neurons do not respond to noxious stimulation at all.  The majority of 

responsive neurons have large, often bilateral, receptive fields that include large portions 
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of the body.  In response to differing intensities of mechanical and nociceptive stimuli, 

responsive neurons display a sigmoidal response curve rather than increasing 

monotonically, suggesting poor resolution of intensity.  Similar to the PBn, this suggests 

that CeA neurons are unlikely to encode a sensory-discriminative component of pain 

(Bernard et al., 1992; Neugebauer & Li, 2002; Neugebauer et al., 2004).   

Human brain imaging supports involvement of the amygdala in pain.  In 

experimental settings, application of an infrared laser thermal stimulus or colorectal 

distention leads to increased amygdala activity (Bonaz et al., 2002; Bornhovd, 2002).  

Although a few studies have reported either reduced activation or no change in the 

amygdala with noxious stimuli, a meta-analysis found that the majority of experiments 

applying noxious stimulation supported increased amygdala activation (Simons et al., 

2012).   

 

Pain-related plasticity 

In states of persistent pain, the amygdala undergoes considerable synaptic, 

neurochemical, and transcriptional plasticity.  Increases in the immediate early gene c-fos 

have been repeatedly found across different models of pain.  Amygdala c-fos mRNA was 

increased one hour following intra-plantar injection with formalin or following 

intraperitoneal injection with acetic acid (Nakagawa et al., 2003).  c-fos 

immunoreactivity increased in the amygdala with esophageal acid exposure, and 

increased c-fos immunoreactivity was found in the CeLC 4 hours following 

cyclophosphamide-induced cystitis (Bon et al., 1998; Suwanprathes et al., 2003).  
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Glutamatergic signaling is increased in the CeA, as demonstrated in models of arthritic 

pain or neuropathic pain where increased expression of the metabotropic glutamate 

receptors mGluR1 and mGluR5 were found, as well as increased phosphorylation of the 

NR1 subunit of the NMDA receptor (Bird et al., 2005; Neugebauer et al., 2003).  A 

model of neuropathic pain was associated with increases in glucocorticoid receptor 

mRNA expression, and higher levels of corticotropin-releasing hormone (CRH) mRNA 

and peptide immunoreactivity in the CeA, suggesting involvement of several of these key 

mediators of the stress response system (Rouwette et al., 2012; Ulrich-Lai et al., 2006).  

Interestingly, one study raised the possibility that neurogenesis may be a component of 

pain-related plasticity in the amygdala.  Two months following induction of neuropathic 

pain, bromodeoxyuridine (BrdU) incorporation was found in both BLA and CeA cells.  

While BrdU+ cells were found in astrocytes in both control and neuropathic pain 

conditions, the increase in BrdU+ cells under pain conditions also included  cells that 

colocalized with neuronal markers, evidence suggesting that either enhanced 

neurogenesis or increased neuronal migration contributes to pain-related plasticity in the 

amygdala (Goncalves et al., 2008).    

Electrophysiological recordings from rodent brain slices from models of 

persistent pain have demonstrated synaptic alterations.  One of the most prominent 

changes is an enhancement of evoked PBn-CeA and BLA-CeA transmission.  Using 

patch-clamp recordings of CeLC neurons, the regions of PBn or BLA afferents were 

electrically stimulated to characterize PBn-CeA or BLA-CeA transmission.  An increase 

in PBn-CeA transmission was identified following neuropathic pain, arthritic pain, acid-
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induced muscle pain, and visceral pain (Cheng et al., 2011; Han & Neugebauer, 2004; 

Ikeda et al., 2007; Neugebauer et al., 2003).  The potentiation of these synapses 

heightened nociceptive input via the PBn and emotional-salience input via the BLA, 

leading to the amygdala being more reactive with chronic pain.  This hypothesis has also 

been supported by human brain imaging studies, where changes in amygdala activity 

were identified in people suffering from arthritis, neuropathy, or irritable bowel 

syndrome (Bonaz et al., 2002; Kulkarni et al., 2007; Petrovic et al., 1999).   

 

1.4. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 

PACAP and its receptors 

PACAP is a neuropeptide with diverse roles in neurotransmission, development, 

trophic support, and homeostatic function.  This important neuropeptide was first 

identified in 1989 by Akira Arimura and colleagues, who were searching for 

undiscovered hypothalamic peptides capable of stimulating adenylate cyclase activity and 

cyclic AMP production in anterior pituitary cells (Miyata et al., 1989).  In humans, the 

PACAP, ADCYAP1, gene is at chromosomal locus 18p11 and is comprised of five exons.  

The cDNA encodes for a 176-amino-acid prepro-protein, which is then 

endoproteolytically cleaved by prohormone convertases into either a 38-amino-acid or a 

27-amino-acid form.  Subsequently, peptidylglycine α-amidating monooxygenase 

converts the protein into a bioactive peptide.  Within the central nervous system, 

PACAP38 peptide is approximately 10- to 100-fold more abundant than PACAP27 

(Vaudry et al., 2009).  The highest expression of PACAP transcript within the central 



 

25 

nervous system is within several hypothalamic nuclei, habenular nuclei, the pontine 

nucleus, the LPBn and the vagal complex (Hannibal, 2002).   

PACAP is the most conserved member of the VIP/secretin/glucagon superfamily 

of peptides across animal species.  Its amino acid sequence is well conserved across the 

mammals that have been studied.  Among chicken and frogs, PACAP differs by only a 

single amino acid, and PACAP cDNA cloned from tunicates has 96% nucleotide identity 

with human cDNA.  The closest related peptide, vasoactive intestinal peptide (VIP) 

shares 68% amino acid homology.  It is thought that PACAP is the ancestral precursor to 

the VIP/secretin/glucagon family.  The highly conserved nature of PACAP suggests that 

it might have functions essential for survival (Sherwood et al., 2000). 

PACAP signals through three G-protein coupled receptor subtypes; PAC1, 

VPAC1 and VPAC2 receptors.  Both the VPAC1 and VPAC2 receptors bind to PACAP 

and VIP with near equal affinity; however the PAC1 receptor has a much higher affinity 

for PACAP than VIP.  The alternative splicing of the PAC1 receptor results in multiple 

variants to allow greater signaling diversity.  Alterations in the N-terminal extracellular 

regions result in short receptor isoforms that can affect ligand-binding specificity.  

Alternative splicing also results in the presence or absence of two 84 base pair cassettes 

termed “hip” and “hop” within the PAC1 receptor corresponding to the third cytoplasmic 

loop resulting in the generation of at least 4 variants; PAC1-null (neither hip nor hop), 

PAC1-hip, PAC1-hop, and PAC1-hiphop.  PAC1 receptor signaling can activate 

adenylate cyclase (AC) through Gs activation and phospholipase C (PLC) through Gq 

activation; variants in the third cytoplasmic loop of PAC1 receptors can result in the 
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differential engagement of AC and PLC signaling (Blechman & Levkowitz, 2013). 

 

PACAP expression in nociceptive pathways 

A variety of bioactive neuropeptides participate in the formation, transmission, 

modulation, and perception of pain.   Substance P and neurokinin A of the tachykinin 

family of peptides and CGRP, for example, have expression patterns along nociceptive 

pathways and the ability to initiate and modulate nociceptive transmission (Basbaum et 

al., 2009).  Although appreciated as a sensory peptide within a few years after discovery, 

the recent accumulation of evidence has generated renewed interest in PACAP as a 

nociceptive peptide critical in mediating the development of chronic pain and pain-

related behavioral responses. 

The initial evidence that PACAP plays a role in nociception stemmed from its 

distribution and expression patterns within the peripheral nervous system.   

Complementing other sensory peptides, PACAP expression has been identified in both 

DRG and trigeminal ganglion neurons through immunocytochemical and in situ 

hybridization histochemical studies (Moller et al., 1993; Mulder et al., 1994).  Under 

normal physiological conditions, PACAP immunoreactivity in DRG neuronal soma and 

peripheral axons has been identified in small to medium-sized unmyelinated capsaicin-

sensitive C-fiber nociceptor afferents, along with other sensory peptides, including CGRP 

and substance P.   In addition, PACAP expression within a defined subset of peptidergic 

DRG neurons has been confirmed using single-cell RNA sequencing (Usoskin et al., 

2015).  In the spinal cord, the central axons of PACAPergic DRG neurons are largely 
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confined to lamina I and II of the dorsal horn, corresponding to projections important for 

nociceptive transmission (Jongsma et al., 2000; Moller et al., 1993; Zhang et al., 1996).  

In addition to DRG, there is also a population of PACAP-expressing neurons in lamina I 

and II of the spinal cord dorsal horn, raising the possibility that PACAP may be 

expressed in second order neurons in the nociceptive pathway (Beaudet et al., 1998; 

Pettersson et al., 2004).  Based on in vitro receptor autoradiography and in situ 

hybridization, PAC1 receptors have been shown to be densely expressed in laminae I and 

II of the dorsal horn in correspondence with PACAP DRG central axon projections.   

While the distribution of PACAP fibers, PACAP neurons and PAC1 receptors in the 

superficial layers of the dorsal horn is suggestive, the potential functional ‘PACAP to 

PACAP’ connectivity between DRG and second order dorsal horn PACAPergic neurons 

is still unclear.   Based on ultrastructural studies, PACAP signaling on PACAP 

expressing neurons has been suggested in the enteric nervous systems (Nagahama et al., 

1998).   Only a few isolated neurons in the ventral horn appear to express PAC1 receptors 

(Pettersson et al., 2004).  PAC1 receptors are not apparent in DRG neurons implying that 

PACAP does not act in an autocrine or paracrine manner in the ganglion or 

presynaptically in the dorsal horn (Jongsma et al., 2000). 

 

Plasticity following injury 

Among several sensory peptides, PACAP demonstrates phenotypic plasticity in 

various peripheral models of injury- and inflammation-induced pain.   Across different 

experimental paradigms, including axotomy, nerve compression and adjuvant treatments, 
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DRG PACAP transcripts, peptide levels and cell numbers can be dramatically induced 

(Jongsma et al., 2000; Jongsma Wallin et al., 2003; Mabuchi et al., 2004; Pettersson, et. 

al., 2004; Zhang et al., 1995; Zhang et al., 1998; Zhang et al., 1996).  Notably, depending 

on the nature of insult, there appears to be an induction of PACAP within select DRG 

neuronal populations with concurrent changes in central and peripheral axon peptide 

immunoreactivity.   PACAP is normally identified in a subpopulation of small and 

medium-sized nociceptive cells and following inflammatory insult, the induction of 

PACAP appears to be confined to the same small-sized neuronal population (Jongsma 

Wallin et al., 2003).  Accordingly, inflammatory cyclophosphamide-induced cystitis 

augments DRG PACAP neuronal numbers and immunoreactive fiber density in the 

superficial layers of the dorsal horn, consistent with projections from DRG small neuron 

induction of PACAP (Vizzard, 2000).   By contrast, axotomy shifts PACAP expression in 

different DRG populations, resulting in decreased peptide expression in small DRG 

neurons and increased peptide expression in the medium and large-sized DRG neurons 

(Jongsma et al., 2000;  Zhang et al., 1996).  Large DRG neurons project to deeper layers 

of the dorsal horn and in coherence with axotomy-mediated induction patterns, PACAP-

immunoreactivity in fibers appear reduced in the superficial layers of the dorsal horn but 

enhanced in the deeper laminae.   However, whether or not the decrease in PACAP fiber 

immunoreactivity in the superficial dorsal horn laminae reflects heightened C-fiber 

PACAP secretion has not been determined.   Nerve compression increases PACAP levels 

in both small and large neuronal populations (Pettersson et al., 2004).  The mechanisms 

underlying the various PACAP induction patterns to different injuries and the 
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consequences of the dynamics in fiber projections in pain remain unclear but are 

supported in recent transgenic animal studies (see below).   Whether the second order 

PACAP neurons in laminae I and II of the dorsal horn also demonstrate plasticity under 

the different injury models is unknown, although no overt changes were observed 

following axotomy (Pettersson et al., 2004).   In contrast to DRG PACAP inductions, 

PACAP binding in the dorsal horn after injury was diminished without apparent changes 

in PAC1 receptor transcript levels (Jongsma et al., 2000).  Although the expression 

patterns for PACAP and PAC1 receptors exhibit an inverse relationship in some studies, 

the loss of PACAP binding may reflect higher PAC1 receptor internalization and 

turnover following heightened signaling (May et al., 2014; Merriam et al., 2013).  

Likewise, VPAC1 receptor expression is decreased but VPAC2 receptors are increased 

following neuropathic pain (Dickinson & Fleetwood-Walker, 1999).   While the changes 

in PACAP expression in the multiple experimental models may be related to enhanced 

nociceptive neurotransmission, the interpretations are complicated by cellular stress-

induced plasticity responses to the various injury challenges.   PACAP/PAC1 receptor 

activation can engage neurotrophic pro-survival signals to promote regeneration (Vaudry 

et al., 2009); hence induction in DRG PACAP expression in the neuropathic and 

inflammatory pain paradigms may have distinct, dual or overlapping activities in 

nociception and trophic support. 
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PACAP and PAC1 receptors in nociceptive signaling 

Based on PACAP and PAC1 receptor expression, distribution and plasticity 

observed in experimental injury models, the PACAPergic system was implicated in the  

facilitation of nociceptive responses.  While seemingly straightforward, the results of 

PACAP infusion studies were equivocal as to whether PACAP was pro- or anti-

nociceptive.  At peripheral nerve terminals, the actions of PACAP appeared largely anti-

nociceptive.  While intraplantar PACAP injections alone had no effect on thermal or 

mechanical sensitivity in naïve animals, intraplantar PACAP injections proved anti-

allodynic, anti-nociceptive and anti-hyperalgesic in experimental models of somatic and 

visceral inflammatory pain (Sándor et al., 2009).  However, PACAP at knee joint 

afferents resulted in increased mechanical sensitivity (Sándor et al., 2009).  Intrathecal 

PACAP injections was reported to inhibit spinal and inflammatory nociceptive responses 

(Yamamoto & Tatsuno, 1995; Zhang et al., 1996; Zhang et al., 1993), whereas PACAP 

administration was reported by others to be anti-nociceptive in the early phase of 

formalin induced pain, but transitioned to pro-nociception in the late phase of the 

inflammatory response (Shimizu et al., 2004). 

The pro-nociceptive actions of PACAP, however, are compelling.  Intrathecal 

PACAP infusions to naïve rats produced hyperalgesia in thermal hypersensitivity and tail 

flick latency tests, and amplified pain neurotransmission to the dorsal horn via NMDA 

mechanisms (Narita et al., 1996; Ohsawa et al., 2002).  The intrathecal nociceptive 

effects of PACAP were gradual but long lasting, which were in contradistinction to the 

rapid and transient effects of substance P (Shimizu et al., 2004).  Demonstrating a direct 
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effect of PACAP signaling, PACAP application to spinal cord neurons increased 

excitability of multireceptive cells in lamina III-V of the dorsal horn (Dickinson et al., 

1997).  Importantly, in comparable studies, blockade of PACAP signaling with the 

PAC1/VPAC2 receptor antagonist PACAP(6-38) or neutralizing PACAP antibodies 

attenuated the thermal hypersensitivity and nocifensive responses in a variety of 

neuropathic and inflammatory pain models (Davis-Taber et al., 2008; Ohsawa et al., 

2002).  Further, while PACAP(6-38) had no effects alone or upon non-noxious 

stimulation, the receptor antagonist blocked the increased excitation of dorsal horn 

neurons to noxious stimuli (Dickinson & Fleetwood-Walker, 1999).  The effects of C-

fiber stimulation on spinal nociceptive reflex responses were facilitated by PACAP 

administration and inhibited with a specific PAC1 receptor antagonist (Sakashita et al., 

2001; Xu & Wiesenfeld-Hallin, 1996).  The causes for the observed discrepancies in the 

PACAP nociceptive effects in the various experimental models are not well understood 

but may be related to dose and temporal parameters, and route or site of PACAP 

administration, especially after pain initiation.  Under specific circumstances, PACAP 

may have activated autoregulatory or descending inhibitory pathways or stimulated anti-

inflammatory responses by blocking immune cell cytokine release into the peripheral 

milieu of pain mediators to produce anti-nociceptive effects.  Based on PACAP and 

PAC1 receptor expression and distribution in the sensory pathways, and the 

preponderance of electrophysiological and behavioral data, however, the central effects 

of PACAP in injury appear to result in system sensitization and are pro-nociceptive.   
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Nociception studies in PACAP/PAC1 receptor knockout mice 

The most convincing evidence for PACAP involvement in pain stems from 

studies using transgenic PACAP (PACAP -/-) and PAC1 receptor (PAC1R -/-) knockout 

mice, which have been coherent in demonstrating the facilitatory roles of PACAP 

signaling in chronic pain (Table 1.1).  PACAP-/- mice display a range of physiological 

and neuropsychiatric phenotypes, including decreased locomotor activities, decreased 

feeding behaviors, altered memory performance, and attenuated stress responses, 

reflecting the multifaceted roles of PACAP (Girard et al., 2006; Hitoshi Hashimoto et al., 

2001; Hattori et al., 2012).  In several experimental models, PACAP-/- mice exhibited 

important deficits in neuropathic pain development.  Under control conditions, naïve 

PACAP-/- mice showed unaltered or slightly decreased sensitivity responses to thermal 

or mechanical stimuli (Mabuchi et al., 2004; May & Vizzard, 2010; Sándor et al., 2010).  

However, following chronic pain with intraplantar noxious stimulus, PACAP-/- mice 

displayed a marked loss in the induction of mechanical or thermal hypersensitivity, and 

nocifensive behaviors (Mabuchi et al., 2004; Sándor et al., 2010).  Similarly, PACAP-/- 

mice failed to develop thermal or mechanical hypersensitivity in response to spinal nerve 

transection or sciatic nerve ligation, and demonstrated substantially attenuated writhing 

responses in response to intraperitoneal acetic acid injection (Botz et al., 2013; Mabuchi 

et al., 2004; Sándor et al., 2010).  The diminished nociceptive responses in the PACAP-/- 

mice to either formalin or acetic acid treatments were accompanied by decreased c-fos 

expression in the somatosensory cortex and periaqueductal grey (PAG), indicating a 

tangible decrease in nociceptive transmission rather than an absence of behavioral 
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responses (Sándor et al., 2010).  Interestingly, following intraplantar TRPV1 agonist 

resiniferatoxin injection into PACAP-/- mice, a reduction in mechanical sensitivity but an 

immediate enhancement of thermal nociception was observed, which suggests differential 

roles for PACAP in central versus peripheral nociceptive signaling. 

PACAP activation of multiple different receptor subtypes and PAC1 receptor-

mediated intracellular signaling appear central to nociceptive mechanisms.  This was 

supported by studies where PACAP nociceptive responses were recapitulated with the 

PAC1 receptor selective agonist maxadilan and blocked by the specific receptor 

antagonist max.d.4 (Sakashita et al., 2001).  Accordingly, as in PACAP -/- animals, mice 

with PAC1 receptor deficiency (PAC1R -/-) under naïve conditions also exhibited normal 

responses to acute thermal or mechanical stimuli, but demonstrated reduced nocifensive 

responses to intraplantar formalin administration and decreased abdominal responses to 

intraperitoneal acetic acid injection (Jongsma et al., 2001; Martin et al., 2003).  The 

knockout studies conducted to date have not addressed the different potential sites of 

PACAP/PAC1 receptor action mediating the nociceptive responses; however, 

PAC1CamKCre2 mice with forebrain-specific deletions of the PAC1 receptor (PAC1 

receptor deletions in the forebrain cortical areas, hippocampus and olfactory bulb) did not 

demonstrate diminished chemical and visceral pain responses (Martin et al., 2003).  Thus, 

the nociceptive actions of PACAP likely reside within the peripheral pathways, spinal 

cord and brainstem, or possibly in combinations these regions.  The PACAP knockout 

studies do not exclude possible roles for VIP, or PACAP on VPAC1/VPAC2 receptor 

signaling in pain responses, as VIP is an important mediator of inflammatory processes, 
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and VIP administration is often potently anti-inflammatory (Delgado, Pozo, & Ganea, 

2004).  Nevertheless, these studies in aggregate implicated PACAP and PAC1 receptor 

involvement in the development of nociceptive hypersensitivity across several models of 

chronic pain. 

 

PACAP and PAC1 receptors in emotional behaviors 

In the peripheral and central nervous systems, PACAP and the PAC1 receptor are 

expressed in structures that orchestrate a diverse set of responses following stressor 

exposure.  In autonomic pathways, PACAP appears to be one of the principal regulators 

of sympathetic function (Braas et al., 2007; May et al., 1998).  In the brain, some of the 

highest levels of PACAP expression have been identified in hypothalamic and related 

limbic structures, and PACAP has been shown to regulate classical stress mediators 

(Piggins et al., 1996).  PACAP stimulates hypothalamic CRH transcription, c-fos 

expression, and CREB phosphorylation, and can augment plasma corticosterone levels 

(Agarwal et al., 2005; Tsukiyama et al., 2011).  Although previous work has shown that a 

variety of acute stress paradigms do not alter hypothalamic PACAP transcript levels, 

more recent studies have shown that chronic stress can increase PACAP and the PAC1 

receptor transcript levels in the paraventricular nucleus (PVN) of the hypothalamus and 

the BNST (Hammack et al., 2009; Hannibal et al., 1995).  Further, PACAP infusions into 

the BNST can mimic chronic stress-related responses by increasing startle and anxiety-

like behavior on the elevated plus maze, decreasing weight gain and feeding (anorexia), 

and elevating circulating corticosterone levels (Hammack et al., 2009; Roman et al., 

F
i
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2014; Kocho-Schellenberg et al., 2014; Lezak et al., 2014).  A role for PACAP signaling 

in mediating these chronic stress responses was supported by the demonstration that 

PACAP receptor antagonists can attenuate all of these responses.  To complement these 

observations, PACAP and PAC1 knockout mice exhibit decreased anxiety- like 

behaviors, have attenuated corticosterone responses, and show impairments in 

hypothalamus CRH regulation in response to stress (Girard et al., 2006; Hashimoto, 

2006; Hattori et al., 2012).  Evidence has also been found linking PACAP to disease.  In 

humans, altered blood PACAP levels and PAC1 receptor polymorphism was associated 

with PTSD and other stress-related disorders (Ressler et al., 2011).  In sum, these 

observations implicate PACAP/PAC1 receptor signaling in anxiety-related behaviors. 

 

Signaling through extracellular signaling regulated kinase (ERK) activation 

A signature of nociceptive signaling is extracellular signaling-regulated kinase 

(ERK) activation, which participates in the neuroplasticity that promotes the 

manifestation of chronic pain and stress-related disorders (Ji et al., 2009).  Both 

inflammation and axotomy injury have been shown to increase pERK+ neurons in the 

DRG; following inflammatory or neuropathic pain, increased pERK levels are found in 

lamina I and II neurons of the spinal cord, and the ensuing development of 

hypersensitivity can be abrogated upon blockade of ERK phosphorylation by intrathecal 

application of a mitogen-activated protein kinase kinase (MEK) inhibitor (Ji et al., 1999; 

Obata et al., 2003).  ERK signaling has been shown to contribute to pain-related 
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enhancement of PBn-CeLC synaptic neurotransmission and inhibition of CeA ERK 

activation attenuates pain-related behavioral hypersensitivity (Carrasquillo & Gereau, 

2007; Cheng et al., 2011; Ji et al., 2009).  PACAP and PAC1 receptor signaling can 

stimulate and sustain ERK activation potently and efficaciously (May et al., 2014; May et 

al., 2010).  There are multiple intracellular PAC1 receptor effector mechanisms that 

activate ERK, including PKA and PKC (Barrie et al., 1997; Bouschet et al., 2003; May et 

al., 2014), but, more recently, it has been suggested that PAC1 receptor internalization 

and endosomal signaling provide a means to sustain cellular ERK levels (May et al., 

2014; Merriam et al., 2013). 

 

PACAP and glutamate signaling 

In addition to stimulation of ERK-mediated neuroplasticity, PACAP signaling 

may also regulate postsynaptic neuronal function by modulating glutamatergic 

neurotransmission.  PACAP is coexpressed with glutamate in a variety of systems, 

including retinal ganglion cells and the suprachiasmatic nucleus (Engelund et al., 2010; 

Hannibal et al., 2000).  Furthermore, in the developing dorsal horn of the spinal cord, the 

same transcription factors that determine glutamatergic cell fate also appear to control 

PACAP expression (Guo et al., 2012).  The co-release of PACAP with glutamate may 

function to modulate excitatory neurotransmission, since NMDA receptor blockade in the 

ventromedial hypothalamus (VMH) leads to diminished PACAP-induced hypophagia 

(Resch et al., 2014).  The attenuation of fear conditioning by intra-BLA PACAP(6-38) 

administration was mediated through altered NMDA signaling (Schmidt et al., 2015).  
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Intrathecal PACAP-mediated pain resulted in a dose-dependent enhancement of NMDA-

induced aversive behaviors and potentiated NMDA currents in dorsal horn neurons 

(Ohsawa et al., 2002).  In addition, transgenic PACAP-/- mice failed to develop 

mechanical allodynia to NMDA, but allodynia could be restored by co-infusion of 

PACAP with NMDA (Mabuchi et al., 2004).  There are multiple mechanisms by which 

PACAP could potentially modulate glutamatergic signaling.  In the dorsal horn, there is 

evidence that PACAP may promote the functional coupling of nitric oxide synthase to 

NMDA receptors (Mabuchi et al., 2004).  In the hippocampus, PACAP has been found to 

enhance synaptic NMDA trafficking and surface expression through Gq, PKC and Src 

signaling mechanisms (Chowdhury et al., 2013; Macdonald et al., 2005; Trepanier et al., 

2012).  In the amygdala, PACAP resulted in potentiation of BLA-CeA transmission 

through a postsynaptic mechanism involving synaptic targeting of GluR1 subunit-

containing AMPA receptors.  Alternatively, PACAP may enhance glutamate signaling by 

regulating mGluR function (Kammermeier, 2008).   

 

1.5. Summary 

Pain is a multidimensional experience comprised of both sensory-discriminative 

and emotional homeostatic components.  Despite the high comorbidity between chronic 

pain and stress-related behavioral disorders, the neurocircuits, neurochemical mediators, 

and mechanisms underlying these responses are not well understood.  The current work 

tests the hypothesis that PACAP expression, plasticity and signaling in nociceptive 
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pathways intersect with those in the amygdala and related limbic systems to drive the 

maladaptive behavioral responses. 

The detection of noxious stimuli is performed by sensory nerve afferents that 

transduce noxious stimuli into electrical currents which are then relayed centrally.  The 

second order projection neurons then relay the information via sets of spinal tracts to a 

wide range of brainstem and subcortical regions.  The diffuse network of regions that 

process pain information is thought to result in the diverse sensory and emotional 

experiential components of pain.  Maladaptive neurochemical and neuroplastic processes 

can produce central nociceptive network sensitization leading to the potentiation of 

nociceptive transmission and the amplification and persistence of pain.   

In these studies, we identified PACAP expression in the spino-

parabrachioamygdaloid nociceptive tract.  As the amygdala is a critical structure for fear 

and anxiety-like behavior, the convergence of nociceptive input in the amygdala allows 

for the integration of pain with emotional information.  We found that PACAP signaling 

in the amygdala produced both pain and anxiety-like behaviors.  In a model of 

neuropathic pain, PACAP expression was found to be upregulated at multiple locations 

along the spinoparabrachio-amygdaloid tract.  The increase in CeA PACAP signaling in 

neuropathic pain contributed to both heightened anxiety-like and hypersensitivity 

behaviors as the PAC1/VPAC2 receptor antagonist PACAP(6-38) attenuated the chronic 

pain-induced responses.  Further, we demonstrated that PACAP signaling may modulate 

nociceptive hypersensitivity through ERK via the internalization of PACAP receptors.  

The adverse emotional consequences of chronic pain may result in the exacerbation and 
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perpetuation of both pain and anxio-depressive disorders.  Understanding the 

mechanisms that link pain to its emotional consequences may offer novel approaches for 

the rational development of therapeutics to alleviate suffering.   

The studies in this dissertation were divided into four main aims. The experiments 

in Aim 1 examined if PACAP is expressed in the PBn-CeA projections, as components of 

the spino-parabrachioamygdaloid tract. Aim 2 examined if CeA PACAP signaling is 

capable of altering pain or emotion-related behaviors. Aim 3 evaluated whether chronic 

pain heightened PACAP expression in the spino-parabrachioamygdaloid and whether 

these plasticity responses in CeA PACAP signaling contribute to heightened pain and 

anxiety-related behaviors. Lastly Aim 4, examined the potential downstream mechanism  

of CeA PACAP signaling.  The results of these studies are presented in manuscript form 

in the following sections. 
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1.6. Figures 

 
 

 

 

 

 

 

 

 

 

Figure 1.1. Subnuclear organization of the parabrachial nucleus (PBn).  The PBn can 

be divided into the lateral PBn (LPBn, blue), medial PBn (MPBn, pink), and the Kölliker-

fuse nucleus (kf, green).  The MPBn consists of the medial (m) and external medial (em) 

subnuclei.  The LPBn can be divided into the external (eL), ventral (vL), central (cL), 

dorsal (dL), internal (iL) lateral subnuclei, as well as the superior lateral subnucleus (not 

shown).  scp: superior cerebellar peduncle, D: dorsal, V: ventral, M: medial, L: lateral. 

Nomenclature adapted from (Fulweir et. al., 1985).   
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Figure 1.2. Diagram of the spino-parabrachioamygdaloid tract.  Convergences and 

divergences of the spinoparabrachio-amygdaloid pathway are illustrated.  In red is one 

particular pathway that nociceptive information travels, beginning at the detection of 

noxious stimulus and ending at the CeLC.  The pathways in black show known 

alternative or variations on the pathway to the CeLC, including ipsilateral projections 

from the spinal cord, the convergence of projections multiple spinal cord segments in the 

LPBn, and an alternative LPBn-CeLC pathway that gives off collaterals to the 

anterolateral BNST (BNSTal) before returning to the CeLC.  Dotted line illustrates 

contralateral projections.  DRG: dorsal root ganglion. 
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Figure 1.3. Afferent pathways and connections involved in pain processes in the 

amygdala.  The CeA (blue region) receives direct, highly processed, polymodal pain 

information from thalamus via the basolateral amygdala (green region) consisting of the 

basal (B) and lateral (LA) nuclei of the amygdala. Circuits from the LA known to 

enhance fear expression are shown, including BA to centromedial subdivision (CeM), via 

the inhibitory cells of the intercalated cell mass (ITC), and through interneurons in the 

centrolateral capsular (CeLC) and centrolateral (CeL) amygdala subdivisions. Direct, and 

less processed nociceptive information arrives in the CeLC and CeL as part of a spinal 

tract from the PBn.  The main output is CeM, in a addition to some direct projections 

from the CeL/CeLC to a number of brain regions including the bed nucleus of the stria 

terminalis (BNST), periaqueductal gray (PAG) and a reciprocal projection back to the 

PBn. 
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Gene 
Deleted 

Phenotype 

PACAP Baseline thermal or mechanical sensitivity (Mabuchi et al., 2004) 

Early and late nocifensive behaviors to formalin (Sandor et al., 2010) 

Somatic sensitivity (May & Vizzard 2010) 

Mechanical hypersensitivity following neuropathic pain (Mabuchi et 
al., 2004) 

Acetic acid induced writhing (Sandor et al., 2010) 

NMDA induced allodynia (Mabuchi et al., 2004) 

c-fos expression in somatosensory cortex and brainstem following 
formalin or acetic acid pain (Sandor et al., 2010) 

Thermal hypersensitivity to resiniferatoxin (immediate) (Sandor et al., 
2010) 

Mechanical hypersensitivity to resinferatoxin (delayed) (Sandor et al., 
2010) 

PAC1 R Baseline thermal sensitivity (Jongsma et al. 2001) 

Acetic acid induced writhing (no change in forebrain specific deletion) 
(Martin et al., 2003) 

Morphine withdrawal symptoms (Martin et al., 2003) 

Late phase of formalin induced nocifensive behaviors (Jongsma et al., 
2001) 

Galanin expression in DRG following nerve crush (Jongsma et al., 
2001)                                                                       

Table 1.1. Summary of pain-related behaviors in PACAP or PAC1 receptor gene 
knockout studies 

 

n.c. 

n.c. 

n.c.:no change 



 

46 

1.7. References 

Agarwal, A., Halvorson, L. M., & Legradi, G. (2005). Pituitary adenylate cyclase-
activating polypeptide (PACAP) mimics neuroendocrine and behavioral 
manifestations of stress: Evidence for PKA-mediated expression of the 
corticotropin-releasing hormone (CRH) gene. Brain Res Mol Brain Res, 138(1), 
45-57.  

 
Al-Khater, K. M., & Todd, A. J. (2009). Collateral projections of neurons in laminae I, 

III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral 
parabrachial area. J Comp Neurol, 515(6), 629-646.  

 
Alheid, G. F. (2003). Extended amygdala and basal forebrain. Ann N Y Acad Sci, 985, 

185-205.  
 
Almeida, T. F., Roizenblatt, S., & Tufik, S. (2004). Afferent pain pathways: a 

neuroanatomical review. Brain Res., 1000(1-2), 40-56.  
 
Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain 

mechanisms of pain perception and regulation in health and disease. Eur J Pain, 
9(4), 463-484.  

 
Asmundson, G. J. G., & Katz, J. (2009). Understanding the co-occurrence of anxiety 

disorders and chronic pain: state-of-the-art. Depress Anxiety, 26(10), 888-901.  
 
Barrie, A. P., Clohessy, A. M., Buensuceso, C. S., Rogers, M. V., & Allen, J. M. (1997). 

Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-
regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated 
protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J Biol Chem, 
272(32), 19666-19671.  

 
Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and 

Molecular Mechanisms of Pain. Cell, 139(2), 267-284. 
 
Beaudet, M. M., Braas, K. M., & May, V. (1998). Pituitary adenylate cyclase activating 

polypeptide (PACAP) expression in sympathetic preganglionic projection neurons 
to the superior cervical ganglion. J Neurobiol, 36(3), 325-336.  

 
Bernard, J. F., Alden, M., & Besson, J.-M. (1993). The organization of the efferent 

projections from the pontine parabrachial area to the amygdaloid complex: 
Aphaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol, 
329(2), 201-229.  

 
 



 

47 

Bernard, J. F., Bester, H., & Besson, J. M. (1996). Involvement of the spino-parabrachio -
amygdaloid and -hypothalamic pathways in the autonomic and affective 
emotional aspects of pain. Prog Brain Res, 107, 243-255.  

 
Bernard, J. F., Huang, G. F., & Besson, J. M. (1992). Nucleus centralis of the amygdala 

and the globus pallidus ventralis: electrophysiological evidence for an 
involvement in pain processes. J Neurophysiol, 68(2), 551-569.  

 
Bird, G. C., Lash, L. L., Han, J. S., & Zou, X. (2005). Protein kinase A-dependent 

enhanced NMDA receptor function in pain-related synaptic plasticity in rat 
amygdala neurones. J Physiol, 564(3), 907-921. 

 
Blechman, J., & Levkowitz, G. (2013). Alternative Splicing of the Pituitary Adenylate 

Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of 
Brain Activity. Front Endocrinol (Lausanne), 4, 55.  

 
Bon, K., Lantéri-Minet, M., Michiels, J. F., & Menétrey, D. (1998). Cyclophosphamide 

cystitis as a model of visceral pain in rats: a c-fos and Krox-24 study at 
telencephalic levels, with a note on pituitary adenylate cyclase activating 
polypeptide (PACAP). Experimental Brain Research, 122(2), 165-174.  

 
Bonaz, B., Baciu, M., Papillon, E., Bost, R., Gueddah, N., Le Bas, J. F., . . . Segebarth, C. 

(2002). Central processing of rectal pain in patients with irritable bowel 
syndrome: an fMRI study. Am J Gastroenterol, 97(3), 654-661.  

 
Bornhovd, K. (2002). Painful stimuli evoke different stimulus-response functions in the 

amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. 
Brain, 125(6), 1326-1336.  

 
Botz, B., Imreh, A., Sándor, K., Elekes, K., Szolcsányi, J., Reglodi, D., . . . Helyes, Z. 

(2013). Role of Pituitary Adenylate-Cyclase Activating Polypeptide and Tac1 
gene derived tachykinins in sensory, motor and vascular functions under normal 
and neuropathic conditions. Peptides, 43, 105-112.  

 
Bouschet, T., Perez, V., Fernandez, C., Bockaert, J., Eychene, A., & Journot, L. (2003). 

Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant 
activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J Biol 
Chem, 278(7), 4778-4785.  

 
Braas, K. M., Schutz, K. C., Bond, J. P., Vizzard, M. A., & Girard, B. M. (2007). 

Microarray analyses of pituitary adenylate cyclase activating polypeptide 
(PACAP)-regulated gene targets in sympathetic neurons. Peptides, 28(9), 1856-
1870. 

 



 

48 

Breivik, H., Collett, B., Ventafridda, V., Cohen, R., & Gallacher, D. (2006). Survey of 
chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J 
Pain, 10(4), 287-333. 

 
Butler, R. K., & Finn, D. P. (2009). Stress-induced analgesia. Prog Neurobiol., 88(3), 

184-202.  
 
Carrasquillo, Y., & Gereau, R. W. (2007). Activation of the extracellular signal-regulated 

kinase in the amygdala modulates pain perception. J Neurosci, 27(7), 1543-1551.  
 
Cheng, S.-J., Chen, C.-C., Yang, H.-W., Chang, Y.-T., Bai, S.-W., Chen, C.-C., . . . Min, 

M.-Y. (2011). Role of extracellular signal-regulated kinase in synaptic 
transmission and plasticity of a nociceptive input on capsular central amygdaloid 
neurons in normal and acid-induced muscle pain mice. J Neurosci, 31(6), 2258-
2270.  

 
Cho, J.-H., Zushida, K., Shumyatsky, G. P., Carlezon, W. A., Meloni, E. G., & 

Bolshakov, V. Y. (2012). Pituitary Adenylate Cyclase-Activating Polypeptide 
Induces Postsynaptically Expressed Potentiation in the Intra-amygdala Circuit. J 
Neurosci, 32(41), 14165-14177.  

 
Chowdhury, D., Marco, S., Brooks, I. M., Zandueta, A., Rao, Y., Haucke, V., . . . Perez-

Otano, I. (2013). Tyrosine phosphorylation regulates the endocytosis and surface 
expression of GluN3A-containing NMDA receptors. J Neurosci, 33(9), 4151-
4164.  

 
Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B. E., Letzkus, J. J., Vlachos, I., . . . Lüthi, 

A. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. 
Nature, 468(7321), 277-282.  

 
Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., . . . 

Patapoutian, A. (2010). Piezo1 and Piezo2 are essential components of distinct 
mechanically activated cation channels. Science, 330(6000), 55-60.  

 
Cox, J. J., Reimann, F., Nicholas, A. K., Thornton, G., Roberts, E., Springell, K., . . . 

Woods, C. G. (2006). An SCN9A channelopathy causes congenital inability to 
experience pain. Nature, 444(7121), 894-898.  

 
Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats 

and humans: role of the extended amygdala in fear vs anxiety. 
Neuropsychopharmacology, 35(1), 105-135.  

 
 
 



 

49 

Davis-Taber, R., Baker, S., Lehto, S. G., Zhong, C., Surowy, C. S., Faltynek, C. R., . . . 
Honore, P. (2008). Central Pituitary Adenylate Cyclase 1 Receptors Modulate 
Nociceptive Behaviors in Both Inflammatory and Neuropathic Pain States. J 
Pain., 9(5), 449-456.  

 
Defrin, R., Ginzburg, K., Solomon, Z., Polad, E., Bloch, M., Govezensky, M., & 

Schreiber, S. (2008). Quantitative testing of pain perception in subjects with 
PTSD – Implications for the mechanism of the coexistence between PTSD and 
chronic pain. Pain, 138(2), 450-459.  

 
Delgado, M., Pozo, D., & Ganea, D. (2004). The significance of vasoactive intestinal 

peptide in immunomodulation. Pharmacol Rev, 56(2), 249-290.  
 
Demyttenaere, K., Bruffaerts, R., Lee, S., Posada-Villa, J., Kovess, V., Angermeyer, M. 

C., . . . Von Korff, M. (2007). Mental disorders among persons with chronic back 
or neck pain: Results from the world mental health surveys. Pain, 129(3), 332-
342.  

 
Dickinson, T., & Fleetwood-Walker, S. M. (1999). VIP and PACAP: very important in 

pain? Trends Pharmacol Sci., 20(8), 324-329.  
 
Dickinson, T., Fleetwood-Walker, S. M., Mitchell, R., & Lutz, E. M. (1997). Evidence 

for roles of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase 
activating polypeptide (PACAP) receptors in modulating the responses of rat 
dorsal horn neurons to sensory inputs. Neuropeptides, 31(2), 175-185.  

 
Dong, H. W., Petrovich, G. D., & Swanson, L. W. (2001). Topography of projections 

from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev, 
38(1-2), 192-246.  

 
Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned fear. Neuron, 

82(5), 966-980.  
 
Ehrlich, I., Humeau, Y., Grenier, F., Ciocchi, S., Herry, C., & Lüthi, A. (2009). 

Amygdala inhibitory circuits and the control of fear memory. Neuron, 62(6), 757-
771.  

 
Engelund, A., Fahrenkrug, J., Harrison, A., & Hannibal, J. (2010). Vesicular glutamate 

transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat 
melanopsin-containing retinal ganglion cells. Cell Tissue Res, 340(2), 243-255.  

 
Flor, H., Fydrich, T., & Turk, D. C. (1992). Efficacy of multidisciplinary pain treatment 

centers: a meta-analytic review. Pain, 49(2), 221-230.  
 



 

50 

Fulwiler, C. E., & Saper, C. B. (1984). Subnuclear organization of the efferent 
connections of the parabrachial nucleus in the rat. Brain Res, 319(3), 229-259.  

 
Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the United States. J 

Pain., 13(8), 715-724. 
 
Gauriau, C., & Bernard, J.-F. (2004). Posterior triangular thalamic neurons convey 

nociceptive messages to the secondary somatosensory and insular cortices in the 
rat. J Neurosci, 24(3), 752-761.  

 
Geuze, E., Westenberg, H. G. M., Jochims, A., de Kloet, C. S., Bohus, M., Vermetten, E., 

& Schmahl, C. (2007). Altered Pain Processing in Veterans With Posttraumatic 
Stress Disorder. Arch Genl Psychiatry., 64(1), 76-85.  

 
Girard, B. A., Lelievre, V., Braas, K. M., Razinia, T., Vizzard, M. A., Ioffe, Y., . . . 

Victor, M. (2006). Noncompensation in peptide/receptor gene expression and 
distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem., 
99(2), 499-513.  

 
Goncalves, L., Silva, R., Pinto-Ribeiro, F., Pego, J. M., Bessa, J. M., Pertovaara, A., . . . 

Almeida, A. (2008). Neuropathic pain is associated with depressive behaviour and 
induces neuroplasticity in the amygdala of the rat. Exp Neurol, 213(1), 48-56.  

 
Guo, Z., Zhao, C., Huang, M., Huang, T., Fan, M., Xie, Z., . . . Cheng, L. (2012). Tlx1/3 

and Ptf1a Control the Expression of Distinct Sets of Transmitter and Peptide 
Receptor Genes in the Developing Dorsal Spinal Cord. J Neurosci, 32(25), 8509-
8520.  

 
Hammack, S. E., Cheung, J., Rhodes, K. M., Schutz, K. C., Falls, W. A., Braas, K. M., & 

May, V. (2009). Chronic stress increases pituitary adenylate cyclase-activating 
peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA 
expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in 
anxiety-like behavior. Psychoneuroendocrinology, 34(6), 833-843.  

 
Han, J. S., & Neugebauer, V. (2004). Synaptic plasticity in the amygdala in a visceral 

pain model in rats. Neurosci Lett, 361(1-3), 254-257.  
 
Hannibal, J. (2002). Pituitary adenylate cyclase-activating peptide in the rat central 

nervous system: An immunohistochemical and in situ hybridization study. J 
Comp Neurol., 453(4), 389-417.  

 
 
 
 



 

51 

Hannibal, J., Mikkelsen, J. D., Fahrenkrug, J., & Larsen, P. J. (1995). Pituitary adenylate 
cyclase-activating peptide gene expression in corticotropin-releasing factor-
containing parvicellular neurons of the rat hypothalamic paraventricular nucleus 
is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or 
restraint stress. Endocrinology, 136(9), 4116-4124.  

 
Hannibal, J., Moller, M., Ottersen, O. P., & Fahrenkrug, J. (2000). PACAP and glutamate 

are co-stored in the retinohypothalamic tract. J Comp Neurol, 418(2), 147-155.  
 
Hashimoto, H. (2006). New Insights into the Central PACAPergic System from the 

Phenotypes in PACAP- and PACAP Receptor-Knockout Mice. Annal N Y Acad 
Sci., 1070(1), 75-89.  

 
Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., . . . Baba, A. 

(2001). Altered psychomotor behaviors in mice lacking pituitary adenylate 
cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A., 98(23), 
13355-13360. 

 
Hattori, S., Takao, K., Tanda, K., Toyama, K., Shintani, N., Baba, A., . . . Miyakawa, T. 

(2012). Comprehensive behavioral analysis of pituitary adenylate cyclase-
activating polypeptide (PACAP) knockout mice. Front Behav Neurosci, 6, 58.  

 
Haubensak, W., Kunwar, P. S., Cai, H., Ciocchi, S., Wall, N. R., Ponnusamy, R., . . . 

Anderson, D. J. (2010). Genetic dissection of an amygdala microcircuit that gates 
conditioned fear. Nature, 468(7321), 270-276. 

 
Huang, G. F., Besson, J. M., & Bernard, J. F. (1993). Morphine depresses the 

transmission of noxious messages in the spino(trigemino)-ponto-amygdaloid 
pathway. Eur J Pharmacol, 230(3), 279-284.  

 
Ikeda, R., Takahashi, Y., Inoue, K., & Kato, F. (2007). NMDA receptor-independent 

synaptic plasticity in the central amygdala in the rat model of neuropathic pain. 
Pain, 127(1-2), 161-172.  

 
Jasmin, L., Wang, H., Tarczy-Hornoch, K., Levine, J. D., & Basbaum, A. I. (1994). 

Differential effects of morphine on noxious stimulus-evoked fos-like 
immunoreactivity in subpopulations of spinoparabrachial neurons. J Neurosci, 
14(12), 7252-7260.  

 
Ji, R. R., Gereau IV, R. W., Malcangio, M., & Strichartz, G. R. (2009). MAP kinase and 

pain. Brain Res Rev., 60(1), 135-148.  
 
 
 



 

52 

Ji, R. R., Baba, H., Brenner, G. J., & Woolf, C. J. (1999). Nociceptive-specific activation 
of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci, 
2(12), 1114-1119.  

 
Jongsma, H., Danielsen, N., Sundler, F., & Kanje, M. (2000). Alteration of PACAP 

distribution and PACAP receptor binding in the rat sensory nervous system 
following sciatic nerve transection. Brain Res., 853(2), 186-196.  

 
Jongsma, H., Pettersson, L. M., Zhang, Y., Reimer, M. K., Kanje, M., Waldenström, 

A., . . . Danielsen, N. (2001). Markedly reduced chronic nociceptive response in 
mice lacking the PAC1 receptor. Neuroreport, 12(10), 2215-2219.  

 
Jongsma Wallin, H., Pettersson, L. M., Verge, V. M., & Danielsen, N. (2003). Effect of 

anti-nerve growth factor treatment on pituitary adenylate cyclase activating 
polypeptide expression in adult sensory neurons exposed to adjuvant induced 
inflammation. Neuroscience, 120(2), 325-331.  

 
Kammermeier, P. J. (2008). Endogenous homer proteins regulate metabotropic glutamate 

receptor signaling in neurons. J Neurosci, 28(34), 8560-8567.  
 
Klüver, H, Bucy, P.C. (1937). "Psychic blindness" and other symptoms following 

bilateral temporal lobectomy in rhesus monkeys. Am. J. Physiol., 119, 352-353. 
 
Kocho-Schellenberg, M., Lezak, K. R., Harris, O. M., Roelke, E., Gick, N., Choi, I., . . . 

Hammack, S. E. (2014). Pituitary Adenylate Cyclase Activating Peptide 
(PACAP) in the Bed Nucleus of the Stria Terminalis (BNST) Produces Anorexia 
and Weight Loss in Male and Female Rats. Neuropsychopharmacology, 39(7), 
1614-1623. 

 
Kroenke, K., & Price, R. K. (1993). Symptoms in the community. Prevalence, 

classification, and psychiatric comorbidity. Arch Intern Med, 153(21), 2474-2480.  
 
Kulkarni, B., Bentley, D. E., Elliott, R., Julyan, P. J., Boger, E., Watson, A., . . . Jones, A. 

K. (2007). Arthritic pain is processed in brain areas concerned with emotions and 
fear. Arthritis Rheum., 56(4), 1345-1354.  

 
Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: a generator of pain 

hypersensitivity by central neural plasticity. J Pain., 10(9), 895-926.  
 
Ledoux, J. E., (2000). Emotion circuits in the brain. Annu. Rev. Neurosci., 23, 155-184. 
 
 
 
 



 

53 

Lezak, K. R., Roelke, E., Harris, O. M., Choi, I., Edwards, S., Gick, N., . . . Hammack, S. 
E. (2014). Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed 
nucleus of the stria terminalis (BNST) increases corticosterone in male and 
female rats. Psychoneuroendocrinology, 45, 11-20.  

 
Li, J., Hou, B., Tumova, S., Muraki, K., Bruns, A., Ludlow, M. J., . . . Beech, D. J. 

(2014). Piezo1 integration of vascular architecture with physiological force. 
Nature, 515(7526), 279-282.  

 
Mabuchi, T., Shintani, N., & Matsumura, S. (2004). Pituitary adenylate cyclase-

activating polypeptide is required for the development of spinal sensitization and 
induction of neuropathic pain. J Neurosci., 24(33), 7283-7291. 

 
Macdonald, D. S., Weerapura, M., Beazely, M. A., Martin, L., Czerwinski, W., Roder, J. 

C., . . . MacDonald, J. F. (2005). Modulation of NMDA receptors by pituitary 
adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein 
kinase C, and activation of Src. J Neurosci, 25(49), 11374-11384.  

 
Martin, M., Otto, C., Santamarta, M. T., Torrecilla, M., Pineda, J., Schutz, G., & 

Maldonado, R. (2003). Morphine withdrawal is modified in pituitary adenylate 
cyclase-activating polypeptide type I-receptor-deficient mice. Brain Res Mol 
Brain Res, 110(1), 109-118.  

 
May, V., Beaudet, M. M., Parsons, R. L., Hardwick, J. C., Gauthier, E. A., Durda, J. P., 

& Braas, K. M. (1998). Mechanisms of pituitary adenylate cyclase activating 
polypeptide (PACAP)-induced depolarization of sympathetic superior cervical 
ganglion (SCG) neurons. Ann N Y Acad Sci., 865, 164-175.  

 
May, V., Buttolph, T. R., Girard, B. M., Clason, T. A., & Parsons, R. L. (2014). PACAP-

induced ERK activation in HEK cells expressing PAC1 receptors involves both 
receptor internalization and PKC signaling. Am J Physiol Cell Physiol, 306(11), 
C1068-C1079.  

 
May, V., Lutz, E., MacKenzie, C., Schutz, K. C., Dozark, K., & Braas, K. M. (2010). 

Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor 
activation coordinates multiple neurotrophic signaling pathways: Akt activation 
through phosphatidylinositol 3-kinase gamma and vesicle endocytosis for 
neuronal survival. J Biol Chem, 285(13), 9749-9761.  

 
May, V., & Vizzard, M. A. (2010). Bladder dysfunction and altered somatic sensitivity in 

PACAP-/- mice. J Urol., 183(2), 772-779.  
 
 
 



 

54 

McCoy, E. S., Taylor-Blake, B., Street, S. E., Pribisko, A. L., Zheng, J., & Zylka, M. J. 
(2013). Peptidergic CGRPα primary sensory neurons encode heat and itch and 
tonically suppress sensitivity to cold. Neuron, 78(1), 138-151.  

 
McWilliams, L. A., Cox, B. J., & Enns, M. W. (2003). Mood and anxiety disorders 

associated with chronic pain: an examination in a nationally representative 
sample. Pain, 106(1-2), 127-133.  

 
McWilliams, L. A., Goodwin, R. D., & Cox, B. J. (2004). Depression and anxiety 

associated with three pain conditions: results from a nationally representative 
sample. Pain, 111(1-2), 77-83.  

 
Merriam, L. A., Baran, C. N., Girard, B. M., Hardwick, J. C., May, V., & Parsons, R. L. 

(2013). Pituitary Adenylate Cyclase 1 Receptor Internalization and Endosomal 
Signaling Mediate the Pituitary Adenylate Cyclase Activating Polypeptide-
Induced Increase in Guinea Pig Cardiac Neuron Excitability. J Neurosci., 33(10), 
4614-4622. 

 
Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., . . . Coy, D. 

H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which 
stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun., 
164(1), 567-574.  

 
Moller, K., Zhang, Y. Z., Hakanson, R., Luts, A., Sjolund, B., Uddman, R., & Sundler, F. 

(1993). Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: 
immunocytochemical and immunochemical evidence. Neuroscience, 57(3), 725-
732.  

 
Mulder, H., Uddman, R., Moller, K., Zhang, Y. Z., Ekblad, E., Alumets, J., & Sundler, F. 

(1994). Pituitary adenylate cyclase activating polypeptide expression in sensory 
neurons. Neuroscience, 63(1), 307-312.  

 
Nagahama, M., Tsuzuki, M., Mochizuki, T., Iguchi, K., & Kuwahara, A. (1998). Light 

and electron microscopic studies of pituitary adenylate cyclase-activating peptide 
(PACAP)--immunoreactive neurons in the enteric nervous system of rat small and 
large intestine. Anat Embryol (Berl), 198(5), 341-352.  

 
Nakagawa, T., Katsuya, A., Tanimoto, S., Yamamoto, J., Yamauchi, Y., Minami, M., & 

Satoh, M. (2003). Differential patterns of c-fos mRNA expression in the 
amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in 
rats. Neurosci Lett, 344(3), 197-200.  

 
 
 



 

55 

Namburi, P., Beyeler, A., Yorozu, S., Calhoon, G. G., Halbert, S. A., Wichmann, R., . . . 
Tye, K. M. (2015). A circuit mechanism for differentiating positive and negative 
associations. Nature, 520(7549), 675-678.  

 
Narita, M., Dun, S. L., Dun, N. J., & Tseng, L. F. (1996). Hyperalgesia induced by 

pituitary adenylate cyclase-activating polypeptide in the mouse spinal cord. Eur J 
Pharmacol., 311(2-3), 121-126.  

 
Neugebauer, V., & Li, W. (2002). Processing of nociceptive mechanical and thermal 

information in central amygdala neurons with knee-joint input. J Neurophysiol., 
87(1), 103-112.  

 
Neugebauer, V., Li, W., Bird, G. C., Bhave, G., & Gereau, R. W. (2003). Synaptic 

Plasticity in the Amygdala in a Model of Arthritic Pain: Differential Roles of 
Metabotropic Glutamate Receptors 1 and 5. J Neurosci., 23(1), 52-63. 

 
Neugebauer, V., Li, W., Bird, G. C., & Han, J. S. (2004). The Amygdala and Persistent 

Pain. Neuroscientist, 10(3), 221-234.  
 
Norman, S. B., Stein, M. B., & Dimsdale, J. E. (2008). Pain in the aftermath of trauma is 

a risk factor for post-traumatic stress disorder. Psychol Med., 38(4), 533-542. 
 
Obata, K., Yamanaka, H., Dai, Y., Tachibana, T., Fukuoka, T., Tokunaga, A., . . . 

Noguchi, K. (2003). Differential activation of extracellular signal-regulated 
protein kinase in primary afferent neurons regulates brain-derived neurotrophic 
factor expression after peripheral inflammation and nerve injury. J Neurosci, 
23(10), 4117-4126.  

 
Ohsawa, M., Brailoiu, G. C., Shiraki, M., Dun, N. J., Paul, K., & Tseng, L. F. (2002). 

Modulation of nociceptive transmission by pituitary adenylate cyclase activating 
polypeptide in the spinal cord of the mouse. Pain, 100(1-2), 27-34.  

 
Paré, D., Qurik, G. J., & Ledoux, J. E., (2004). New vistas on amygdala networks in 

conditioned fear. J. Neurophysiol, 92, 1-9.  
 
Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., & Hansson, P. (1999). A 

PET activation study of dynamic mechanical allodynia in patients with 
mononeuropathy. Pain, 83(3), 459-470.  

 
Petrovich, G. D., & Swanson, L. W. (1997). Projections from the lateral part of the 

central amygdalar nucleus to the postulated fear conditioning circuit. Brain Res., 
763(2), 247-254.  

 
 



 

56 

Pettersson, L. M., Dahlin, L. B., & Danielsen, N. (2004). Changes in expression of 
PACAP in rat sensory neurons in response to sciatic nerve compression. Eur J 
Neurosci, 20(7), 1838-1848.  

 
Pettersson, L. M. E., Heine, T., Verge, V. M. K., Sundler, F., & Danielsen, N. (2004). 

PACAP mRNA is expressed in rat spinal cord neurons. J Comp Neurol, 471(1), 
85-96.  

 
Phifer, J., Skelton, K., Weiss, T., Schwartz, A. C., & Wingo, A. (2011). Pain 

symptomatology and pain medication use in civilian PTSD. Pain, 152(10), 2233-
2240. 

 
Piggins, H. D., Stamp, J. A., Burns, J., Rusak, B., & Semba, K. (1996). Distribution of 

pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in 
the hypothalamus and extended amygdala of the rat. J Comp Neurol, 376(2), 278-
294.  

 
Ranade, S. S., Woo, S. H., Dubin, A. E., Moshourab, R. A., Wetzel, C., Petrus, M., . . . 

Patapoutian, A. (2014). Piezo2 is the major transducer of mechanical forces for 
touch sensation in mice. Nature, 516(7529), 121-125.  

 
Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X., & Tonegawa, S. (2014). 

Bidirectional switch of the valence associated with a hippocampal contextual 
memory engram. Nature, 513(7518), 426-430.  

 
Resch, J. M., Maunze, B., Phillips, K. A., & Choi, S. (2014). Inhibition of food intake by 

PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA 
receptors. Physiol Behav, 133, 230-235. 

 
Ressler, K. J., Mercer, K. B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., . . . May, 

V. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 
receptor. Nature, 470(7335), 492-497.  

 
Roman, C. W., Lezak, K. R., Hartsock, M. J., Falls, W. A., Braas, K. M., Howard, A. 

B., . . . May, V. (2014). PAC1 receptor antagonism in the bed nucleus of the stria 
terminalis (BNST) attenuates the endocrine and behavioral consequences of 
chronic stress. Psychoneuroendocrinology, 47, 151-165.  

 
Rouwette, T., Vanelderen, P., de Reus, M., Loohuis, N. O., Giele, J., van Egmond, J., . . . 

Kozicz, T. (2012). Experimental neuropathy increases limbic forebrain CRF. Eur 
J Pain, 16(1), 61-71.  

 
Sah, P., Faber, E. S. L., Armentia, M. L. D., & Power, J. (2003). The Amygdaloid 

Complex: Anatomy and Physiology. Physiol Rev., 83(3), 803-834. 



 

57 

 
Sakashita, Y., Kurihara, T., Uchida, D., Tatsuno, I., & Yamamoto, T. (2001). 

Involvement of PACAP receptor in primary afferent fibre-evoked responses of 
ventral roots in the neonatal rat spinal cord. Br J Pharmacol, 132(8), 1769-1776.  

 
Sándor, K., Bölcskei, K., McDougall, J. J., Schuelert, N., Reglodi, D., Elekes, K., . . . 

Helyes, Z. (2009). Divergent peripheral effects of pituitary adenylate cyclase-
activating polypeptide-38 on nociception in rats and mice. Pain, 141(1-2), 143-
150.  

 
Sándor, K., Kormos, V., Botz, B., Imreh, A., Bölcskei, K., Gaszner, B., . . . Helyes, Z. 

(2010). Impaired nocifensive behaviours and mechanical hyperalgesia, but 
enhanced thermal allodynia in pituitary adenylate cyclase-activating polypeptide 
deficient mice. Neuropeptides, 44(5), 363-371.  

 
Sarhan, M., Freund-Mercier, M.-J., & Veinante, P. (2005). Branching patterns of 

parabrachial neurons projecting to the central extended amgydala: single axonal 
reconstructions. J Comp Neurol, 491(4), 418-442.  

 
Schmidt, S. D., Myskiw, J. C., Furini, C. R., Schmidt, B. E., Cavalcante, L. E., & 

Izquierdo, I. (2015). PACAP modulates the consolidation and extinction of the 
contextual fear conditioning through NMDA receptors. Neurobiol Learn Mem, 
118, 120-124. 

 
Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the 

pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon 
superfamily. Endocr Rev., 21(6), 619-670.  

 
Shi, C., & Davis, M. (1999). Pain pathways involved in fear conditioning measured with 

fear-potentiated startle: lesion studies. J Neurosci., 19(1), 420-430.  
 
Shimizu, T., Katahira, M., Sugawara, H., Inoue, K., & Miyata, A. (2004). Diverse effects 

of intrathecal pituitary adenylate cyclase-activating polypeptide on nociceptive 
transmission in mice spinal cord. Regul Pept., 123(1-3), 117-122.  

 
Simons, L. E., Moulton, E. A., Linnman, C., Carpino, E., Becerra, L., & Borsook, D. 

(2014). The human amygdala and pain: Evidence from neuroimaging. Hum Brain 
Mapp., 35(2), 527-538. 

 
Spike, R. C., Puskar, Z., Andrew, D., & Todd, A. J. (2003). A quantitative and 

morphological study of projection neurons in lamina I of the rat lumbar spinal 
cord. Eur J Neurosci, 18(9), 2433-2448.  

 
 



 

58 

Suwanprathes, P., Ngu, M., Ing, A., Hunt, G., & Seow, F. (2003). c-fos immunoreactivity 
in the brain after esophageal acid stimulation. Am J Med, 115 Suppl 3A, 31S-38S.  

 
Todd, A. J. (2010). Neuronal circuitry for pain processing in the dorsal horn. Nat Rev 

Neurosci., 11(12), 823-836.  
 
Tovote, P., Fadok, J. P., & Lüthi A. (2015). Neuronal circuits for fear and anxiety. Nat 

Neurosci., 16, 317-331. 
 
Tracey, I., & Mantyh, P. W. (2007). The cerebral signature for pain perception and its 

modulation. Neuron, 55(3), 377-391.  
 
Trepanier, C. H., Jackson, M. F., & MacDonald, J. F. (2012). Regulation of NMDA 

receptors by the tyrosine kinase Fyn. FEBS J, 279(1), 12-19.  
 
Tsukiyama, N., Saida, Y., Kakuda, M., Shintani, N., Hayata, A., Morita, Y., . . . Baba, A. 

(2011). PACAP centrally mediates emotional stress-induced corticosterone 
responses in mice. Stress (Amsterdam, Netherlands), 14(4), 368-375.  

 
Turk, D. C. (2002). Clinical effectiveness and cost-effectiveness of treatments for 

patients with chronic pain. Clin J Pain, 18(6), 355-365. 
  
Ulrich-Lai, Y. M., Xie, W., Meij, J. T. A., Dolgas, C. M., Yu, L., & Herman, J. P. (2006). 

Limbic and HPA axis function in an animal model of chronic neuropathic pain. 
Physiol Behav., 88(1-2), 67-76.  

 
Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lonnerberg, P., Lou, D., . . . Ernfors, P. 

(2015). Unbiased classification of sensory neuron types by large-scale single-cell 
RNA sequencing. Nat Neurosci, 18(1), 145-153.  

  
Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., . . . 

Vaudry, H. (2009). Pituitary adenylate cyclase-activating polypeptide and its 
receptors: 20 years after the discovery. Pharmacol Rev., 61(3), 283-357.  

 
Veinante, P., Yalcin, I., Barrot, M. (2013). The amygdala between sensation and affect: a 

role in pain. J. Mol. Psychiatry, 1, 9. 
 
Vizzard, M. A. (2000). Up-regulation of pituitary adenylate cyclase-activating 

polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol, 
420(3), 335-348.  

 
 
 
 



 

59 

Walker, D. L., Miles, L. A., & Davis, M. (2009). Selective participation of the bed 
nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic 
fear-like responses. Progress in Neuro-Psychopharmacology & Biological 
Psychiatry, 33(8), 1291-1308.  

 
Xu, X. J., & Wiesenfeld-Hallin, Z. (1996). Intrathecal pituitary adenylate cyclase 

activating polypeptide facilitates the spinal nociceptive flexor reflex in the rat. 
Neuroscience, 72(3), 801-804.  

 
Yalcin, I., Barthas, F., & Barrot, M. (2014). Emotional consequences of neuropathic pain: 

insight from preclinical studies. Neurosci Biobehav Rev., 47, 154-164.  
 
Yamamoto, T., & Tatsuno, I. (1995). Antinociceptive effect of intrathecally administered 

pituitary adenylate cyclase activating polypeptide (PACAP) on the rat formalin 
test. Neurosci Lett., 184(1), 32-35.  

 
Zhang, Q., Shi, T.-J., Ji, R.-R., Zhang, Y.-t., Sundler, F., Hannibal, J., . . . Hökfelt, T. 

(1995). Expression of pituitary adenylate cyclase-activating polypeptide in dorsal 
root ganglia following axotomy: time course and coexistence. Brain Res., 705(1-
2), 149-158.  

 
Zhang, Y., Danielsen, N., Sundler, F., & Mulder, H. (1998). Pituitary adenylate cyclase-

activating peptide is upregulated in sensory neurons by inflammation. 
Neuroreport, 9(12), 2833-2836.  

 
Zhang, Y., Malmberg, A. B., Sjölund, B., & Yaksh, T. L. (1996). The effect of pituitary 

adenylate cyclase activating peptide (PACAP) on the nociceptive formalin test. 
Neurosci Lett, 207(3), 187-190.  

 
Zhang, Y. Z., Hannibal, J., Zhao, Q., Moller, K., Danielsen, N., Fahrenkrug, J., & 

Sundler, F. (1996). Pituitary adenylate cyclase activating peptide expression in the 
rat dorsal root ganglia: up-regulation after peripheral nerve injury. Neuroscience, 
74(4), 1099-1110.  

 
Zhang, Y. Z., Sjolund, B., Moller, K., Hakanson, R., & Sundler, F. (1993). Pituitary 

adenylate cyclase activating peptide produces a marked and long-lasting 
depression of a C-fibre-evoked flexion reflex. Neuroscience, 57(3), 733-737.  

 

 

 



 

60 

Chapter 2. 

Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polpeptide 

(PACAP) signaling in the amygdala: Implication for the sensory and behavioral 

effects of pain 

 

Missig G., Roman C. W., Vizzard M. A., Braas, K. M., Hammack S. E., May V.. 

(2014). Neuropharmacology, 86, 38-48. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

2.1. Abstract 

The intricate relationships that associate pain, stress responses and emotional 

behavior have been well established.  Acute stressful situations can decrease nociceptive 

sensations and conversely, chronic pain can enhance other pain experiences and heighten 

the emotional and behavioral consequences of stress.  Accordingly, chronic pain is 

comorbid with a number of behavioral disorders including depression, anxiety 

abnormalities and associated stress-related disorders including posttraumatic stress 

disorder (PTSD).  The central nucleus of the amygdala (CeA) represents a convergence 

of pathways for pain, stress and emotion, and we have identified pituitary adenylate 

cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral 

capsular division of the CeA (CeLC).  The PACAP staining patterns colocalized in part 

with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and 

excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities 

represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along 

the spino-parabrachioamygdaloid tract.  The same PBn PACAP/CGRP fiber system also 

projected to the BNST.  As in the BNST, CeA PACAP signaling increased anxiety-like 

behaviors accompanied by weight loss and decreased feeding.  But in addition to 

heightened anxiety-like responses, CeA PACAP signaling also altered nociception as 

reflected by decreased latency and threshold responses in thermal and mechanical 

sensitivity tests, respectively.  From PACAP expression in major pain pathways, the 

current observations are novel and suggest that CeA PACAP nociceptive signaling and 

resulting neuroplasticity via the spino-parabrachio- amygdaloid tract may represent 
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mechanisms that associate chronic pain with sensory hypersensitivity, fear memory 

consolidation and severe behavioral disorders. 

 

2.2. Introduction 

Chronic neuropathic pain alters sensory responses and carries an emotional 

subtext that can have severe effects on behavior.  Persistent pain can heighten pain 

experiences from hyperalgesia and allodynia (Rouwette et al., 2012; Veinante et al., 

2013).  Further, patients suffering from chronic pain are more prone to experience 

depression, sleep dysregulation, panic disorders, obsessive compulsive behavior, anxiety 

abnormalities and stress-related disorders including post-traumatic stress disorder (PTSD) 

(Asmundson and Katz, 2009).  The intricate relationship between pain and behavior has 

been well studied and among brain regions, the amygdala is centrally situated to integrate 

the many descending and ascending signals to modulate the sensory and emotional 

components of pain.  Highly processed descending polymodal nociceptive information is 

conveyed from the somatosensory cortex and thalamus to the basolateral amygdala 

(BLA) which in turn projects to the central nucleus of the amygdala (CeA).  The resulting 

CeA efferents signals are relayed to other central nuclei, including those traveling with 

hypothalamic e periaqueductal grey projections for autonomic control and anti-

nociception to dampen pain stimuli (Veinante et al., 2013).  Among several ascending 

pathways carrying pain transmission to the CeA, the most prominent is the spino-

parabrachioamygdaloid tract (Bernard et al., 1996; Gauriau and Bernard, 2002; Rouwette 

et al., 2012; Veinante et al., 2013).  Peripheral nociceptive signals carried via primary 
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sensory Aδ- and C-fibers terminate in the dorsal horn where second order neurons send 

projections via the spino-parabrachial pathway to pontine lateral and external medial 

parabrachial nuclei (PBn) (Todd, 2010).  Hence the PBn collects cutaneuous (mechanical 

and thermal), deep (muscular and articular) and visceral nociceptive signals and relays 

the information in a highly organized topographical manner principally to lateral capsular 

division of the CeA (CeLC).  The roles of the CeA/CeLC in nociceptive processing have 

been examined from a number of vantages.  In vivo electrophysiological studies have 

shown that noxious stimuli and chronic pain paradigms increase spontaneous and evoked 

CeA neuronal activity (Bernard et al., 1992; Ji and Neugebauer, 2009; Neugebauer and 

Li, 2003), and synaptic transmission at PBn-CeA and BLA-CeA synapses (Ikeda et al., 

2007; Neugebauer et al., 2003).  Visceral, inflammatory and chronic neuropathic pain can 

induce CeA neuron stress peptide and c-fos expression (Bon et al., 1998; Nakagawa et 

al., 2003; Suwanprathes et al., 2003; Ulrich-Lai et al., 2006; Rouwette et al., 2011) and 

increase glutaminergic NR1 receptor phosphorylation in CeA neurons (Bird et al., 2005).  

Further, human brain imaging studies have implicated the amygdala in pain (Simons et 

al., 2014).  Hence the neurocircuit intersections in the CeA can modulate the sensory, 

emotional and affective responses to pain. 

 Pituitary adenylate cyclase activating polypeptide (PACAP) is a well studied 

neural and endocrine pleiotropic peptide important in the development and homeostatic 

regulation of many physiological systems (reviewed in Vaudry et al., 2009).  In the 

central and peripheral nervous systems, PACAP is neurotrophic to promote neuronal 

survival, proliferation and differentiation in development and regeneration, participates in 
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sensory and autonomic signaling, is important in hippocampal learning and memory 

processes and regulates a variety of hypothalamic/limbic stress-related behavioral 

responses.  PACAP binds to several G protein-couple receptor subtypes (Braas and May, 

1999; Harmar et al., 2012; Spengler et al., 1993).  PACAP binds selectively at the PAC1 

receptor; both PACAP and VIP bind the VPAC receptors with equal high affinity.  

Recently, the expression of PACAP and its cognate PAC1 receptor has been shown to be 

upregulated in specific limbic regions by chronic stress (Hammack et al., 2009).  PACAP 

infusions into the bed nucleus of the stria terminalis (BNST) is anxiogenic, and altered 

blood PACAP levels and PAC1 receptor polymorphism have been associated with PTSD 

and other stress-related disorders (Almli et al., 2013; Chen et al., 2013; Ressler et al., 

2011; Uddin et al., 2013; Wang et al., 2013).  In sum, these observations have implicated 

limbic PACAP/PAC1 receptor signaling in stress- and anxiety-related behaviors. 

In evaluating PACAP expression in other limbic structures, we noted high levels 

of PACAP immunoreactivity in fiber terminals and varicosities within the CeLC, 

suggesting that the CeLC may be a target of distant PACAP projections.  The CeLC is 

heavily innervated by the lateral PBn (LPBn) and PACAP has been localized to many 

sensory pathways.  From these observations, we have hypothesized that LPBn PACAP 

signaling to the CeLC has both sensory and behavioral consequences.  In examining the 

localization and roles of PACAP to the CeLC, our current work demonstrates that 

PACAP is a component of the parabrachioamygdaloid pathway and that PACAP/PAC1 

receptor signaling in the CeA elicits nociceptive and behavioral responses.  The 

integration of these nociceptive and  
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emotion pathways may represent a set of neural circuits that mediate the adverse sensory 

and emotional consequences of chronic pain. 

 

2.3. Methods 

Animals 

Adult male Sprague-Dawley rats (Charles River Laboratories, Wilmington, MA) 

were habituated to the animal facility for 1 week before experimentation.  Rats were 

single-housed and maintained on a 12 h light/dark cycle (lights on at 0700 h).  Food and 

water were available ad libitum.  All procedures were approved by the Institutional 

Animal Care and Use Committee at the University of Vermont. 

 

Chronic variate stress 

Following acclimation, each animal was randomly assigned to either a control or 

chronically stressed group.  Control group animals were handled and remained in their 

home cages until euthanasia.  The chronically stressed group of animals underwent a 

chronic variate stress paradigm in which rats were exposed to one of 5 different stressors 

(oscillation, forced swim, restraint, pedestal standing and foot- shock) each day for 7 

days, as described previously (Hammack et al., 2009; Roman et al., 2012, 2014).  All 

animals within the group were exposed to the same order of stressors for the same 

duration. 
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Immunocytochemistry 

The brains from perfusion fixed animals were postfixed in 4% paraformaldehyde 

at 4C for 24 h, washed and equilibrated in 30% surcrose before embedding in Tissue-Tek 

OCT compound for cryosectioning.  The sections (30 µm) were mounted onto subbed 

slides, permeabilized with 0.3% Triton X-100, blocked with 1% BSA and incubated in 

primary antibody for 48 h at 4C.  CRH immunoreactivity was localized using an affinity 

purified rabbit antibody (1:100, No. G-019-06, Phoenix Pharmaceuticals, Burlingame, 

CA).  CGRP immunoreactivity was examined using a polyclonal antibody raised against 

the full length CGRP(1-37) peptide (1:1500, Ian Dickerson, Univ Rochester) for 

visualization with AlexaFluor 488 conjugated donkey anti-rabbit IgG (1:200, Jackson 

Immunoresearch).  PACAP immunoreactivity was detected using a mouse PACAP 

monoclonal antibody (1:10, Jens Hannibal, Bisperg Hospital, Copenhagen, Denmark) 

followed by tyramide signal amplification (Hannibal, 2002).  Following primary PACAP 

antibody incubation, the tissues were incubated in biotinylated horse anti-mouse antibody 

(1:200, 2 h; Vector Laboratories, Burlingame, CA) and treated with streptavidin-HRP 

(1:200, 30 min) before application of tyramide-biotin reagent (1:100, 10 min; Perkin 

Elmer, Waltham, MA).  After extensive washing, the PACAP immunoreactivity was 

localized with Cy3-conjugated streptavidin (1:200, 2 h; Jackson Immunoresearch, West 

Grove, PA).  In dual localization studies, the sections were incubated in PACAP and 

CGRP or CRH antisera concurrently.  Tissue sections from BDA anterograde tracing and 
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excitotoxic lesion studies were also processed for immunocytochemistry using the same 

procedures.  Images from immunocytochemistry, excitotoxic lesion and anterograde 

tracing experiments were acquired sequentially with appropriate filter sets using a Nikon 

E800 point scanning confocal microscope.  Image analyses were performed using NIH 

ImageJ (Schneider et al., 2012) to threshold, determine signal area (pixel number in 

staining area) and calculate Pearson's and Mander's correlation coefficients.  In within 

subject excitotoxic lesion studies, the area of immunoreactivity on the side of the lesion 

was compared to the vehicle control contralateral side. 

 

Transcript analyses 

 Quantitative PCR (QPCR) was performed exactly as described previously (Girard 

et al., 2002, 2006; Hammack et al., 2009).  Briefly, after euthanasia by rapid decapitation, 

the coronal rat brain sections were prepared using a rodent brain matrix (Ted Pella, Inc. 

Redding, CA) and the micropunched amygdala tissues were quickly frozen on dry ice for 

total RNA extraction using STAT-60 RNA/mRNA isolation reagent (Tel-Test “B”, 

Friendswood, TX).  All RNA were reverse transcribed simultaneously using random 

hexamer primers with the SuperScript II Preamplification System (Invitrogen, Carlsbad, 

CA) to obviate variability.  Real-time QPCR was performed as described using SYBR 

Green I detection (Girard et al., 2002, 2006; Hammack et al., 2009).  Briefly, cDNA 

templates were diluted 5-fold to minimize the inhibitory effects of the reverse 

transcription reaction components and assayed on an ABI Prism 7500 Fast Real-Time 

PCR System (Applied Biosystems, Foster City, CA) using SYBR Green I JumpStartTM 
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Taq ReadyMix (Sigma, St. Louis, MO) containing 3.5 mM MgCl2, 200 µM dATP, 

dGTP, dCTP and dTTP, 0.64 U Taq DNA polymerase and 300 nM of each primer in a 

final 25 µl reaction volume.  Oligonucleotide primer sequences were: PACAP (S) 5'-

CATGTGTAGCGGAGCAAGGTT-3' (AS) 5'- GTCTTGCAGCGGGTTTCC-3'; CRH 

(S) 5'-TGGATCTCACCTTCCACCTTCTG-3' (AS) 5'-

CCGATAATCTCCATCAGTTTCCTG-3'.  The melting profiles for amplified DNA 

fragments were performed to verify unique product amplification in the quantitative PCR 

assays.  For data analyses, a standard curve was constructed by amplification of serially 

diluted plasmids containing the target sequence (Girard et al., 2002, 2006).  The increase 

in SYBR Green I fluorescence intensity (DRn) was plotted as a function of cycle number 

and the threshold cycle (CT) was determined by the software as the amplification cycle at 

which the DRn first intersects the established baseline.  The transcript levels in each 

sample were calculated from the CT by interpolation from the standard curve to yield the 

relative changes in expression.  For each target sequence, all samples from the same brain 

region were amplified together in the same assay to minimize variability.  All data were 

normalized to 18S RNA. 

 

Surgical procedures 

Anterograde tracing 

Rats were anesthetized with isoflurane (1.5-3.5%), and secured into a stereo- 

tactic apparatus (David Kopf Instruments, Tunjunga, CA).  The skull was exposed from a 

midline incision and a micropipette (30-50 µm tip diameter) filled with 10% biotinylated 
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dextran amine (BDA; 10 kDa) was lowered into the LPBn using coordinates (from 

bregma in mm) AP: -9.3, ML: ±2.3, DV: -8.0, for iontophoretic tracer application (5 µA, 

7 s on and 7 s off, 20 min total).  The process was repeated on the contralateral LPBn.  

After 14 days, the 4% paraformaldehyde perfusion-fixed rat brains were processed and 

the cryosections incubated in 1:200 streptavidin-Cy2 (Jackson Immunoresearch) for BDA 

tracer localization.  The anterograde tracing studies were sometimes performed in 

conjunction with peptide immunocytochemistry for concurrent localizations (Section 

2.3).  As for most peptide antisera, the PACAP antibody preferentially labeled fibers than 

soma which precluded immunocytochemistry of retrogradely labeled LPBn neurons from 

the CeLC. 

 

Excitotoxic lesion 

Adult male rats were surgically prepared as above and a microsyringe (1 µl, 

Hamilton Co., Reno, NV) was unilaterally placed into the LPBn (from bregma in mm, 

AP: -9.3, ML: ±2.3, DV: -7.9) for automated pump infusion of 2 mg NMDA in 200 nl 

over 4 min.  The syringe was left in place for an additional 4 min and following 

postsurgical recovery the rats were returned to their home cages and for 7 days.  NMDA 

excitotoxic lesion at the targeted site was verified by processing the brain cryosections 

for neuron specific nuclear protein (anti-NeuN, 1:1500) immunoreactivity as visualized 

using Cy3-coupled secondary antisera (Roman et al., 2012).  Only brains that displayed 

LPBn neuronal loss were used for further analyses. 
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Intra-amygdalar PACAP infusion 

 Rats were anesthetized and secured in a stereotactic apparatus as described above.  

Four screws were secured into the exposed skull and two stainless steel cannulae (22 GA, 

PlasticsOne, Roanoke, VA) were targeted to the CeA bilaterally using coordinates (from 

bregma in mm) AP: -2.6, ML: ±4.5, DV: -7.2.  A dental cement skullcap was formed to 

secure the cannula and during the 7 day postsurgical recovery the rats were routinely 

wrapped in a towel to habituate handling.  For treatments, the rats were similarly 

restrained in a towel and PACAP or vehicle (0.05% BSA in saline) was slowly infused (1 

µg/0.5 µl each side) at 0.25 µl/min (Harvard Apparatus, Holliston, MA) through an 

internal cannula that projected 1 mm from the guide cannulae; the PAC1 receptor specific 

agonist maxadilan (from Ethan Lerner, Harvard/Massachusetts General Hospital) was 

similarly infused in some studies.  The peptide concentrations and treatment procedures 

were similar to those described in previous work (Hammack et al., 2009; Kocho-

Schellenberg et al., 2014; Roman et al., 2014).  The infusion cannula were left in place 

for an additional minute before removal.  Animal body weights were determined before 

and 24 h after infusions for all experiments (Kocho-Schellenberg et al., 2014).  At the end 

of each study, the rats were perfused with 4% paraformaldehyde and the brains 

cryosectioned for cresyl violet staining to confirm cannulae placement.  Only data from 

correct CeA cannulae placements are described in Results.  PACAP infusions into 

misplaced targets outside of the CeA, including the basolateral amygdala, had no effects 
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on stress-related behavior, body weight, food consumption and water intake. 

 

Behavioral assessments 

Elevated plus maze 

 The plus maze was elevated 75 cm from the floor and consisted of two opposing 

open and two opposing closed arms (each arm 50 cm long and 10 cm wide) that extended 

perpendicularly from a central square platform (10 x 10 cm).  The length of the closed 

arms were walled with black opaque plastic panels 30 cm in height.  Illumination using a 

red bulb was 6 lux at the center of the maze.  The rats were first room habituated for 10 

min and then individually placed in the center of the maze facing a closed arm for free 

exploration for 5 min.  A ceiling mounted camera digitally captured all movements 

during each session for analyses. 

 

Mechanical sensitivity testing 

 Mechanical sensitivity assessment was performed using von Frey mono- 

filaments (Stoelting, Wood Dale, IL).  All rats were first habituated in the clear acrylic 

testing chamber 20 min/day for 4 days with a fan to generate ambient noise.  On day of 

testing, the rats were placed in the acrylic testing chamber on top of a metal mesh floor 

(IITC Life Science Inc., Woodland Hills, CA) and habituated again for 10 min before the 

application of von Frey filaments to the lateral plantar surface of the hindpaw.  In 

ascending diameter thickness, each filament was applied until bent at 30° for 5-7 s.  The 

smallest filament that evoked a paw withdrawal in at least 3 of 5 trials was used as the  
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mechanical threshold for that trial.  Thresholds from both the left and the right hindpaws 

were measured. 

 

Thermal sensitivity testing 

 Responses to thermal stimuli were tested using a Hargreave's apparatus (Plantar 

Analgesia Meter, IITC Life Science Inc., Woodland Hills, CA).  Prior to behavioral 

testing, the rats were first habituated in the acrylic testing chamber for 4 days.  On day of 

testing, the rats were placed in an elevated clear acrylic testing chamber on top of a glass 

floor with an internal heating element that heated the glass to a consistent 30 °C.  Using a 

guide light to target the hindpaw, a beam of focused radiant light (4-6 mm, set to 25% of 

active intensity) from the apparatus beneath the glass floor was delivered to the plantar 

surface of the paw.  Upon rat awareness of the heat stimuli, as indicated by withdrawal or 

licking of the hindpaw, the heat source was immediately terminated and the reaction time 

automatically recorded.  An automatic cut-off timer set at 30 s was built into the system 

to prevent tissue damage.  Each time point represented the latency average of 3 trials 

from both the left and right hindpaw separated by 5 min inter-trial intervals.  The 

PACAP, maxadilan and vehicle treatment groups exhibited comparable average baseline 

latency scores (PACAP, 12.9 s; maxadilan, 12.5 s; vehicle, 12.3 s). 
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Experimental treatment and testing procedures 

 

Experiment 1 - behavioral effects of amygdala PACAP infusions on elevated plus maze 

 Adult male rats were cannulated for amygdala infusions as described in Surgical 

procedures.  The rats were handled daily for habituation and after 7 day postsurgery 

recovery, the rats were randomly assigned to vehicle or PACAP groups (n = 10 per 

group).  On experimental day, the rats were weighed for baseline measures and bilaterally 

injected with vehicle or PACAP38 as described in random order.  The injection needle 

was left in place for 1 min after which the rats were returned to their home cages for 30 

min and habituated in the testing room (10 min) before evaluation on the elevated plus 

maze.  The rats were allowed to freely roam the maze for 5 min and all data were 

captured digitally.  At the same time the following day, the vehicle and PACAP-treated 

rats were re-weighed to assess weight change over 24 h; food and water consumption 

were also measured.  All weight change measures in this and subsequent experiments 

were performed between 0900 and 1000 h.  All behavioral tests were completed between 

0900 and 1500 h; behavioral testing was randomized and counter balanced for order and 

time of testing. 

 

Experiment 2 - nociceptive effects of PACAP after amygdala infusions 

 Adult male rats were surgically prepared and handled as described in Experiment 

1 above.  The rats received 2 days of baseline thermal and mechanical sensitivity testing, 
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and on experiment day, the rats were weighed and received either vehicle or PACAP38 

amygdala infusions (n = 6 per group) as described in random order.  After 30 min, the 

rats were tested for mechanical sensitivity using von Frey filaments and evaluated for 

thermal sensitivity on a Hargreave's apparatus at subsequent time points (1 h, 4 h and 24 

h).  As before, weight change in the vehicle and PACAP-infused rats was assessed after 

24 h; food and water consumption was also determined.  As robust PACAP-induced 

thermal sensitivity was noted at 1 h, a separate study was prepared to better establish 

amygdala PACAP thermal nociception onset and persistence (30 min and 72 h time 

points) using exactly the same procedures (n = 7-8 per group).  The thermal sensitivity 

data at the different time points from the two cohorts were combined for analyses in a 

linear mixed model using an autoregressive covariate structure as described in statistical 

methods. 

 

Experiment 3 - the nociceptive effects of amygdala maxadilan infusions 

 Adult male rats were surgically prepared, handled and treated exactly as described 

for the first study in Experiment 2 except for the application of maxadilan (n = 7 - 8 per 

group).  Thirty min after amygdala maxadilan infusion, the rats were tested for 

mechanical sensitivity using von Frey monofilaments; at subsequent time points the rats 

were evaluated on a Hargreave's apparatus for thermal sensitivity. 

 

Statistics 

 Statistical Student's t-tests were performed using GraphPad PRISM v.6.  For 
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analyses of thermal withdrawal thresholds, a linear mixed model using an autore- 

gressive covariate structure was employed to allow combined analysis of two cohorts 

with differing timepoints, followed by pairwise comparisons between groups using 

Sidak-Holmes correction for multiple comparisons (MIXED procedure of the SAS 

System for Windows version 9.2; SAS Institute Inc, Cary, NC).  All values represent the 

mean change ± SEM. P < 0.05 was considered significant. 

 

2.4. Results 

PACAP and CGRP are expressed in the CeA and BNST 

 Our previous studies identified regulated PACAP expression in the BNST 

(Hammack et al., 2009).  In evaluating PACAP expression in other limbic structures, we 

observed significant levels of PACAP immunoreactivity restricted to the lateral capsular 

division of the CeA (CeLC; Fig. 2.1).  A number of neuropeptides have been identified in 

the CeA including corticotropin releasing hormone (CRH) which has been shown to 

regulated by psychological stressors (Makino et al., 1999).  However, unlike PACAP in 

the CeLC, CRH immunoreactivity in the amydala was prominent in the adjacent lateral 

(CeL) and medial (CeM) subdivisions of the CeA, recapitulating the apparent dichotomy 

of PACAP and CRH peptidergic pathways in the limbic system (Roman et al., 2014).  

Further, the pattern of PACAP and CRH expression following repeated stress appeared 

converse of that in the BNST.  Whereas BNST PACAP was augmented after stress 

(Hammack et al., 2009; Roman et al., 2014), chronic stress increased CRH 

immunoreactivity levels in the CeA approximately 2-fold without altering CeA PACAP 
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expression (Fig. 2.1A-C).  The stress-mediated changes PACAP and CRH staining in the 

CeA mirrored transcript expression patterns (Fig. 2.1D) and in aggregate were suggestive 

of their distinct but complementary roles in stress pathways and behaviors. 

 A number of neuropeptides exhibit distinct expression patterns within the CeA 

(Cassell et al., 1986).  From staining patterns the immunoreactivity for PACAP in the 

CeLC was largely punctate which appeared characteristic of terminals and varicosities of 

neuronal PACAP fiber projections from distal nuclei.  As the CeLC is heavily innervated 

by the PBn in the spino-parabrachioamygdaloid tract (Bernard et al., 1996; Gauriau and 

Bernard, 2002; Rouwette et al., 2012; Veinante et al., 2013) and PACAP is highly 

expressed in sensory neurons in many pathways (Beaudet et al., 1998; Mulder et al., 

1994; Pettersson et al., 2004b; Zhang et al., 1995), we examined whether the PACAP 

immunoreactivity in the CeLC reflected parabrachioamygdaloid projections.  Further, as 

fibers in the CeLC have been described to contain CGRP immunoreactivity (Dobolyi et 

al., 2005), we also compared the relative distribution of PACAP and CGRP in the 

parabrachioamygdaloid tract. 

 In these studies, PACAP and CGRP immunoreactivities displayed considerable 

overlap in fiber elements (Fig. 2.2A-C) that appeared to form basket-like networks 

suggestive of axosomatic innervation of CeLC neurons.  Given the heavy density of the 

peptide immunoreactivites, both Pearson's and Mander's correlation coefficients were 

determined for the acquired images to assess the extent of CeLC PACAP and CGRP 

colocalization.  For both measures, scores closer to 1 represent greater degrees of overlap 

and from 4 independent studies, Pearson's r was >0.7 and Mander's coefficient was >0.6 
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(Mander's CGRP/PACAP ratio = 0.625; PACAP/CGRP ratio = 0.631). 

Since the bed nucleus of the stria terminalis (BNST) is part of the central extended 

amygdala and has been described to display both PACAP and CGRP expression and 

function (Hammack et al., 2009; Sink et al., 2011), the relationship between PACAP and 

CGRP within the BNST was also investigated.  BNST PACAP and CGRP expression 

was highest within the oval nucleus (BNSTov) and as in the CeLC, PACAP and CGRP 

immunoreactivities were coexpressed in a majority of the fiber elements (Fig. 2.2D-F).  

Image analyses were performed as before and from 3 independent experiments, Pearson's 

coefficient for PACAP and CGRP colocalization was approximately 0.7, and Mander's 

coefficient was approximately 0.6 (Mander's CGRP/PACAP ratio = 0.57; PACAP/CGRP 

ratio 1= 0.56).  Hence the two statistical measures were in good agreement and suggested 

that more than half of the PACAP or CGRP neuronal fibers projecting to the CeLC and 

BNSTov expressed both peptides. 

 

PACAP and CGRP immunoreactives in the CeLC and BNST are localized to projection 

fibers from pontine parabrachial nucleus (PBn) 

 From several considerations, our evaluations for the potential origins of the 

PACAP- and CGRP-expressing neurons projecting to the CeLC and BNSTov narrowed 

to the LPBn.  The external LPBn contains a large population of PACAPergic neurons that 

may transmit signals to the amygdala (Das et al., 2007; Hannibal, 2002; Resch et al., 

2013).  Further, CGRP expression in the CeLC and BNSTov has been suggested 

previously to originate from PBn neurons (Dobolyi et al., 2005).  Hence from these 
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observations, we examined whether PACAP- and CGRP-expressing fibers to the CeLC 

and BNSTov were components of the parabrachioamygdaloid tract. 

 For these studies, we first evaluated whether anterograde fibers from the LPBn to 

the amygdala and BNST expressed PACAP.  From injection site analyses, the BDA 

infusions into the LPBn was confined to a small area (Fig. 2.3A).  In the amygdala, the 

neuroanatomical tracer was confined to the CeLC and upon immunocytochemical 

processing, a subset of the BDA-labeled fibers in the CeLC expressed PACAP-

immunoreactivity (Fig. 2.3B).  Although these results provided evidence for CeLC 

PACAP immuonoreactivity originating from the LPBn, the small focal size of the PBn 

BDA injection resulted in a modest number of labeled fibers in the CeLC.  Hence the 

number of BDA labeled fibers was not as extensive as that observed for PACAP-

immunoreactivity which precluded estimations of the relative contribution of CeLC 

PACAP immunoreactive fibers originating from the PBn.  From the same limitations, the 

BDA-labeled fibers from the PBn to the BNST appeared low (data not shown). 

 As an independent means of assessing peptide expression in LPBn projection 

fibers and to facilitate dual PACAP and CGRP immunocytochemistry in the same tissues, 

the LPBn was lesioned before amygdala and BNST immunocytochemistry (Fig. 2.4).  As 

the BDA anterograde fiber labeling studies demonstrated that the external lateral PBn 

projected only to the ipsilateral amygdala, only one side of the PBn was lesioned so that 

the contralateral LPBn and limbic structures could remain intact and serve as vehicle 

controls.  Accordingly, one side the LPBn was lesioned by excitotoxic NMDA injection 

(2 µg NMDA in 0.2 µl) and after postsurgery recovery for 7 days, coronal brain 
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cryosections were prepared to assess the extent of PBn lesion and altered peptide 

immunocytochemistry in the ipsilateral CeLC/BNST compared to staining patterns on the 

contralateral side.  Only brain lesions with neuronal loss in the external LPBn as 

identified by diminished neu-N staining (Fig. 2.4A and B) were used in subsequent 

analyses. 

 Following external LPBn lesion, PACAP and CGRP immunoreactivities in both 

the CeLC and BNSTov were greatly reduced.  The tissue sections were simultaneously 

processed for PACAP and CGRP immunoreactivities and within subjects, CeLC PACAP 

immunoreactivity was diminished 70% ± 5% on the side ipsilateral to the PBn lesion 

compared to staining levels in the contralateral CeLC in which the corresponding PBn 

received vehicle injection (t(2) = 4.41, p = 0.048; Fig. 2.4C-D and 2.5A).  The same 

changes were observed in the BNSTov.  PACAP staining levels in the BNSTov ipsi-

lateral to the PBn lesion were diminished 59% ± 11% compared to the contralateral 

BNSTov with PBn vehicle injections (t(2) = 5.77, p = 0.029; Fig. 2.4G-H and 2.5B).  As 

PACAP and CGRP demonstrated significant colocalization in these structures (Fig. 2.2), 

a similar change in CGRP staining was therefore anticipated.  From analyses, LPBn 

lesions resulted in a 64% ± 8% loss in CGRP immunoreactivity in the CeLC (t(2) = 7.49, 

p = 0.017) and 72% ± 6% in the BNSTov (t(2) = 8.90, p = 0.012) compared to contra-

lateral structures with vehicle injections into the PBn (Fig. 2.4E-F, 2.4I-J, 2.5A and 5B).  

Hence the anterograde labeling/lesion studies complement immunocytochemical data to 

demonstrate that PACAP and CGRP can be colocalized in the LPBn and that their 

projections are substantial components in the fibers innervating the CeLC and BNSTov. 
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PACAP signaling in the amygdala alters emotional behaviors and pain responses 

 Our previous work demonstrated that PACAP signaling in the BNST enhances 

anxiety-related responses including increased baseline startle responses, decreased open 

arm entries on the elevated plus maze, decreased open field crossings, decreased 

exploratory behavior in novelty tests and decreased weight gain (Hammack et al., 2009; 

Kocho-Schellenberg et al., 2014; Roman et al., 2014).  To examine whether PACAP 

expression and signaling in the central amygdala produced similar stress-related 

behavioral responses, we implanted bilaterally cannulae targeting the CeA for PACAP 

infusions (1 µg/0.5 µl) following previous treatment protocols (Hammack et al., 2009; 

Kocho-Schellenberg et al., 2014; Roman et al., 2014; Experiment 1).  Similar to PACAP- 

elicited responses in the BNST, amygdala PACAP infusions induced anxiety-like 

responses as shown by decreased open arm time (54.2 vs 88.3 s, t(18) = 2.71; p = 0.01) 

and open arm entries (5.9 vs 13.8; t(18) = 4.39, p = 0.0003) compared to vehicle-treated 

animals on the elevated plus maze (Fig. 2.6A).  Unlike the BNST where PACAP had no 

apparent effects on locomotor activity, PACAP injections into the CeA appeared to 

produce a small but significant decrease in total distance traveled during the test period 

not attributed to spontaneous freezing behavior.  To mitigate this potential confound, 

open arm preference (open : total arm entries) was calculated for each animal as this 

measure is less prone to locomotor vagaries.  Whereas vehicle control animals had no 

preference for either open or closed arms (open : total arm entries = 0.51 ± 0.03), CeA 

PACAP- infused animals demonstrated diminished open arm preference (Fig. 2.6B, open 

: total arm entries = 0.32 ± 0.04; t(18) = 3.70, p = 0.0015).  These PACAP-mediated 
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changes were comparable to those observed following BNST PACAP injections 

suggesting that PACAP signaling in the BNST and CeA can contribute to stress- related 

behaviors. 

 Similar to stress-mediated behaviors, BNST PACAP infusions were also capable 

of inducing anorexia-like responses resulting dramatic animal weight loss over the next 

24 h which approximated 5-8% of body weight and was reflected by decreased food 

consumption.  Accordingly, animal weight changes were also monitored during the CeA 

PACAP infusion studies (Experiments 1 and 2).  After 24 h, animals with CeA PACAP 

injections demonstrated a small (~1%) but significant decrease in body weight compared 

vehicle treated animals (t(45) = 2.63, p = 0.012).  Given the small weight changes, we 

sought to establish these observations using the PAC1 receptor selective agonist 

maxadilan (Experiment 3).  CeA maxadilan infusions again produced a small decrease in 

body weight (1.5% decrease; t(13) = 2.81, p = 0.014) which was accompanied by 

diminished food intake (17.5% decrease; t(13) = 2.66, p = 0.018) without apparent 

changes in water consumption (t(13) = 1.47, p = 0.163).  These changes largely reflected 

the propensity for vehicle treated animals to gain a small amount of weight during the 24 

h period while the PACAP treated animals experienced a slight weight loss.  Hence, in 

apparent contrast to the BNST, the effects of CeA PACAP signaling on stress related 

anxiety-like responses did not appear to be strongly associated with weight and feeding 

changes. 

 The fiber projections from the LPBn to the CeLC are part of the spino-

parabrachial amygdaloid pathway conveying nociceptive information from the dorsal 
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horn to the amygdala.  PACAP has been identified at many sensory pathway intersections 

including the dorsal root ganglion, layers 1 and 2 of the dorsal horn, and from previous 

and current work, the LPBn.  The CeLC responds to noxious stimuli and in modulating 

pain perception may contribute to the affective component of the pain experience.  Hence 

from its attributes as a sensory peptide and its localization in the CeLC, we examined 

whether PACAP signaling in the amygdala also altered spinal pain-associated reflexes.  

As before, cannulae were placed into the amygdala bilaterally and following recovery, 

the rats were habituated for Hargreave's thermal nociception tests (Experiment 2).  A 

baseline latency for hindpaw thermal withdrawal was first determined for each rat; 

PACAP was subsequently infused into the CeA and the temporal changes in hindpaw 

withdrawal to the same thermal stimuli were examined over the next 72 h.  Following 

PACAP infusion, there was a significant reduction in paw withdrawal latency at 30 min 

(35% decrease in latency; veh, 13.0 ± 1.0s vs PACAP 9.1 ± 0.9s, p = 0.002; Fig. 2.7A) 

and at 1h (31% decrease in latency; veh, 11.8 ± 0.9 s vs PACAP, 7.9 ± 0.6 s, p = 0.011).  

The PACAP-induced responses persisted at 4 h (21% decrease in latency; veh, 11.3 ± 0.8 

s vs PACAP 8.9 ± 0.7 s; p = 0.015) and returned to baseline by 24 h.  There was a small 

but significant decrease in latency at 72 h post injection compared to the corresponding 

vehicle control group (p = 0.021); whether this reflected any PACAP-mediated plasticity 

in the CeA remains to be examined.  Again, the thermal sensitivity responses were 

recapitulated with the PAC1 receptor-specific agonist maxadilan (Experiment 3).  CeA 

maxadilan infusions decreased paw withdrawal latency approximately 24% (veh, 11.7 ± 

0.9 s vs maxadilan, 8.9 ± 0.6 s; p = 0.002; Fig. 2.7B) at 1 h which returned to baseline by 
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24 h.  Overall, the PACAP and maxadilan results were robust and well reproducible 

across trials suggesting that intra-amygdalar PACAP signaling can facilitate thermal 

hyperalgesia. 

 To assess whether CeA PACAP infusion would elicit similar changes on 

mechanical threshold, the same animals were also evaluated using von Frey hair 

stimulation tests (Experiment 2).  From baseline tests, all animals demonstrated decreases 

in mechanical threshold after repeated trials over time.  Although mechanical threshold in 

the PACAP-and maxadilan-treated rats appeared decreased compared to vehicle control 

animals after 30 min, analyses revealed a trend rather than statistical difference (PACAP, 

t(10) = 1.7, p = 0.11; maxadilan, t(13) = 1.65, p = 0.12) which reflected in part the high 

variability within the assay.  These apparent PACAP changes in mechanical threshold 

dissipated by 2 h post-peptide infusion.  As thermal and mechanical pain are transduced 

by separate mechanisms, these differences may have contributed to the observed efficacy 

of PACAP between the two measures.  Nevertheless, the ability for PACAP to modulate 

pain responses via amygdala signaling appears novel and suggests that it may carry 

nociceptive information to impact the behavioral and emotional aspects of pain. 

 

2.5. Discussion 

 The central nucleus of the amygdala integrates nociceptive and stress-related 

signals that may be important for behavioral responses and the formation of emotional 

memory.  In examining PACAP/PAC1 receptor expression and function in the limbic 

system, we identified high levels of fiber PACAP immunoreactivity in the CeLC.  The 
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CeLC is innervated by LPBn neurons that form part of the spino-parabrachioamygdaloid 

pathway and although PBn PACAP expression was previously described, the targets of 

these PBn PACAP neurons were not identified.  Our current work identified PACAP 

immunoreactivity in anterogradely labeled LPBn projection fibers to the CeLC, and 

importantly, LPBn lesions significantly abolished PACAP immunoreactivity in the CeLC 

and BNST.  These studies were also revealing in demonstrating the relationships between 

PACAP and other CeA peptides.  Both CRH and CGRP share functional similarities with 

PACAP in mediating pain, stress and anxiety-like behaviors (Hammack et al., 2002; 

Koob and Heinrichs, 1999; Lee and Davis, 1997; Sink et al., 2011).  Yet the dual 

localization studies demonstrated a dichotomy in PACAP and CRH expression pattern; 

the localization of PACAP predominantly to the CeLC was distinct from CRH in the CeL 

which suggested separate but coordinate functions in intra-amygdalar neurocircuits.  By 

contrast, PACAP and CGRP immunoreactivities in CeLC and BNST fibers were well 

colocalized from image analyses, and PBn lesions abolished much of the staining for both 

peptides in the CeLC and BNST to a comparable extent.  Limbic PACAP and CGRP 

signaling share similarities in feeding and anxiety-like behaviors (Carter et al., 2013; 

Hammack et al., 2009; Kocho-Schellenberg et al., 2014; Sink et al., 2011); how their 

coordinate signaling modulates CeA and BNST functions however, remains to be 

evaluated. 

 Despite the extensive PACAP and CGRP colocalizations (60-70%), PACAP and 

CGRP may also exhibit independent CeLC and BNST functions.  After LPBn lesions the 

remaining PACAP and CGRP immunoreactivities appeared largely dissociate (Pearson's 
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coefficient 0.3-0.4) which may have represented endogenous CeLC/BNST peptide 

expression or PBn subpopulations expressing one of the peptides not affected by the 

lesion procedures.  The former may be consistent with the upregulation of BNST PACAP 

transcripts by chronic stress (Hammack et al., 2009).  PACAP and CGRP 

immunoreactivities in subpopulations of dorsal root ganglion (DRG) neurons for example 

can be separate and overlapping (Mulder et al., 1994), and comparable expression 

patterns may be present in the PBn and limbic structures. 

 The presence of PACAP in the parabrachioamygdaloid pathway has prominent 

implications in its roles modulating the sensory and emotional consequences of pain.  The 

ability for the amygdala to integrate pain processes and the emotional aspects of behavior 

has been well appreciated (Bernard et al., 1992; Gauriau and Bernard, 2002; Ulrich-Lai et 

al., 2006; Morano et al., 2008; Rouwette et al., 2011, 2012; Veinante et al., 2013) and 

among its many functions, the roles of PACAP as a sensory peptide are well recognized.  

PACAP and its PAC1/VPAC receptor subtypes are expressed in central and peripheral 

nervous system regions that mediate nociception.  PACAP is found in small-diameter 

nociceptive DRG and in lamina I/II of the spinal cord neurons (Beaudet et al., 1998; 

Mulder et al., 1994; Pettersson et al., 2004a, 2004b), and neuropathic pain through 

axotomy, chemical induced cystitis or related models of nerve injury, can induce long-

lasting upregulation of PACAP or PACAP receptor expression in these tissues 

(Dickinson et al., 1999; Mulder et al., 1994; Pettersson et al., 2004a; Vizzard, 2001).  In 

the central nervous system, PACAP can be found in many regions such as the 

hypothalamus, limbic system, hippocampus, various brainstem nuclei including the PBn, 
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and a number of thalamic and cortical regions implicated in pain processing (Das et al., 

2007; Hannibal, 2002; Resch et al., 2013). 

 However, the early investigations on PACAP in mediating pain were equivocal 

resulting in hyperalgesia in some experimental paradigms and hypoalgesia in others.  

These divergent responses likely reflected differences in the time course used in pain 

assessments in the different experimental models, and the peripheral vs central actions of 

PACAP.  Peripheral intraplantar PACAP injections, for example, appeared to produce 

mechanical hypoalgesia in both the early and late stages of inflammatory pain (Sandor et 

al., 2009) whereas intrathecal injections were hyperalgesic (Ohsawa et al., 2002).  In 

detailed studies, intrathecal PACAP administration resulted in an immediate analgesic 

response as measured by tail flick latencies, but transitioned into a long lasting 

hyperalgesia as demonstrated by increased aversive responses (Shimizu et al., 2004).  By 

contrast, the studies using PACAP and PAC1 receptor knockout mice demonstrated 

unequivocally a role for PACAP signaling in the development of persistent pain.  Mice 

deficient in PACAP or PAC1 receptor do not develop normal pain responses after 

arthritic pain or neuropathic pain (Jongsma et al., 2001; Mabuchi et al., 2004).  PACAP 

knockout mice do not display thermal hyperalgesia or mechanical allodynia after 

intraplantar carrageenan injection or spinal nerve transection, but show normal acute 

nociceptive processes compared to wildtype mice (Mabuchi et al., 2004).  In congruence, 

PAC1 receptor null mice exhibit dramatic decreases in thermal and mechanical 

nociceptive responses in the late phase of the formalin test, but preserve acute nociceptive 

processes in unchallenged states (Jongsma et al., 2001).  Hence PACAP/PAC1 receptor 
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signaling and resulting neuroplasticity appear critical in the central sensitization and 

development of persistent pain states. 

 Fibers from the lamina I spinal cord neurons carry thermal and mechanical 

noxious stimuli and project heavily via the spino-parabrachioamygdaloid tract to the 

lateral and external medial PBn (Gauriau and Bernard, 2002; Todd, 2010).  From the 

convergence of these projections onto the PBn, the sensory representations on the PBn 

neurons are therefore necessarily large, covering several areas of the body.  The majority 

of PBn neurons then project onto the lateral division of the BNST, the ventral medial 

hypothalamus (VMH), and the CeA; interestingly, as in the dorsal horn, high levels of 

PACAP expression are found within all of these regions.  The LPBn prominently 

innervates the CeLC and consistent with the modalities conveyed by the tract, in vivo 

electrophysiological studies demonstrate that these CeLC neurons are selectively 

activated by thermal and mechanical nociceptive stimuli with receptive fields that can 

encompass the entire body.  Hence from the broad body areas capable of stimulating the 

PBn and CeLC, the stimulus-response profiles, and the demonstration that spino- 

parabrachioamygdaloid tract lesions in the dorsolateral funiculus does not modify 

noxious stimuli response latency/threshold, the amygdala does not appear to mediate 

sensory discrimination but the affective-emotional and behavioral consequences of pain. 

 Many models of visceral, inflammatory and neuropathic pain have been shown to 

increase not only CeA neuronal excitability and PBn-CeA transmission, but also CeA c-

fos expression and ERK activation (Veinante et al., 2013) which may play roles in pain- 

related neuroplasticity.  Among bioactive peptides, CeA infusions with oxytocin, 
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neurotensin and galanin have produced anti-nociceptive responses (Dobner, 2006; Jin et 

al., 2010; Robinson et al., 2002); interestingly, CRH and CGRP have been described to 

produce either nociceptive or antinociceptive processes which may have been related to 

dose and temporal parameters (Cui et al., 2004; Han et al., 2010; Ji et al., 2013; Xu et al., 

2003).  To facilitate understandings of PACAP roles in the CeLC, our current studies 

demonstrated that PACAP infusions into the CeA heightened noxious stimuli responses, 

especially in thermal reactivity tests.  The effects of PACAP can be mediated by 

PAC1/VPAC receptors and notably, the PACAP-elicited CeA stress and nociceptive 

effects were recapitulated using maxadilan to implicate specific activation of the PAC1 

receptor in these responses.  Although the studies did not discriminate hyperalgesia from 

allodynia or spontaneous pain, the decrease in hindpaw withdrawal latency after CeA 

PACAP treatment was robust to clearly demonstrate altered sensory responses.  The CeA 

PACAP effects in mechanical sensitivity assessments, however, appeared smaller which 

may have reflected assay variability in the testing protocol or neuronal responses to 

specific sensory modalities.  The PBn responses to thermal stimuli are greater than those 

from mechanical stimuli (Bernard et al., 1996) and whether these mechanistic signals to 

the CeLC resulted in smaller PACAP-mediated mechanical responses remain to be 

established.  The CeLC has major projections to the BNST, the dorsal substantia 

innominata and the medial CeA (CeM) which represents the major output of the CeA.  

The CeM has reciprocal projections to other nociceptive effector centers including 

thalamic nuclei, periaqueductal gray, lateral hypothalamus, ventromedial reticular 

formation, substantia nigra, rostral tegmental area, locus coeruleus, and dorsal raphe 
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complex; hence in aggregate, the CeA is well integrated within ascending and descending 

pathways to influence nociceptive signal processing and responses. 

 The amygdala assigns emotional valence to extrinsic challenges and has been well 

studied with respect to fear.  The prominent nociceptive inputs to the CeLC and in 

particular the high levels of PACAP expression carrying nociceptive information in the 

spino-parabrachioamygdaloid tract provide important mechanistic insights on how 

chronic pain can initiate and/or amplify stress- related behavioral abnormalities, 

including depression and anxiety disorders.  As in the BNST, PACAP signaling in the 

amygdala promoted anxiety-like responses.  CeA PACAP infusions decreased open arm 

time, entries and preference on the elevated plus maze which appeared comparable in 

efficacy compared to that observed from BNST signaling.  Although CeA PACAP 

infusions may have induced nociceptive sensitivity to decrease locomotion and affect 

behavior, mitigating the potential confound by open arm preference analyses still 

demonstrated PACAP-mediated increases in anxiety-like behaviors.  Conversely, there is 

also a small possibility that CeA PACAP-induced stress- and anxiety-related behaviors 

may have contributed to the heightened nociceptive responses described above; this 

consideration is being pursued in ongoing studies.  However, unlike the overt BNST 

PACAP-elicited anorexia that accompanied the stress-related behavioral responses, CeA 

PACAP signaling had modest effects on feeding and weight change.  These observations 

suggested that the PACAP effects on stress-related behaviors and feeding may be not be 

strongly associated mechanisms or circuits; the small changes in weight, for example, 

may have reflected PACAP effects on thermogenesis (Hawke et al., 2009).  Interestingly, 
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the PBn PACAP projections to the BNST also implicate direct nociceptive transmission 

to the BNST and in agreement, the anterolateral BNST has been shown to participate in 

pain and stress-induced nociceptive hypersensitivity (Morano et al., 2008; Rouwette et 

al., 2011; Tran et al., 2012).  As in the BNST (Roman et al., 2014), preliminary 

experiments have shown that PACAP6-38, a PAC1/VPAC2 receptor antagonist, is 

capable of attenuating the effects of CeA PACAP signaling (data not shown).  Although 

the neurocircuits and mechanisms underlying the CeA PACAP effects have not been 

examined extensively, one PACAP function has been suggested to potentiate excitatory 

transmission at the BLA-CeL synapse by enhancing post-synaptic AMPA receptor levels 

(Cho et al., 2012).  The identities of PACAP targets in the CeLC, the functional 

mechanisms and consequences of PACAP CeLC signaling, and the functional 

relationships between PACAP and CGRP and CRH activities all remain to be 

investigated. 

 In summary, our results suggest that PACAP signaling via nociceptive fibers in 

the spino-parabrachioamygdaloid and associated tracts to the CeA and BNST may 

represent mechanisms that associate chronic pain with hypersensitivity and behavioral 

abnormalities including depression and anxiety-related disorders.  Previous studies have 

shown that PACAP is a pleiotropic peptide with neurotransmitter, hormonal and 

neurotrophic functions which can facilitate neuroplasticity in development and 

regeneration after injury.  PACAP signaling in chronic stress, fear and pain may facilitate 

the neuronal remodeling and plasticity in the limbic system that promote the maladaptive  
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behavioral responses, and transition short-term memory to long term forms that appear 

necessary for fear memory consolidation associated with PTSD. 
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2.6. Figures 
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Figure 2.1. PACAP and CRH immunoreactivities are differentially distributed and 

regulated in the CeA.  Tissue sections from control (A) and chronically stressed (B) rats 

were examined for CeA PACAP (Cy2, green) and CRH (Cy3, red) staining patterns.  In 

both groups, CeA fiber PACAP immunoreactivity was predominantly in the lateral 

capsular region (CeLC) with diffuse staining extending into the lateral division (CeL); 

CRH immunoreactivity was localized predominantly to the CeL.  From quantitative 

image analyses, only CRH immunoreactivity was augmented by chronic variate stress (C, 

n = 3).  These results complemented quantitative PCR measurements which also 

demonstrated increased CRH transcript expression after stress (D, n = 6).  Data represent 

mean ± SEM. Asterisk, significantly different from control at p < 0.05. Scale bar, 250 

µm.  
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Figure 2.2. PACAP and CGRP immunoreactivities can be colocalized in the CeLC 

and BNST.  Tissue sections for the amygdala (A-C) and BNST (D-F) were processed 

for dual PACAP (Cy3, red) and CGRP (Alexa488, green) immunocytochemical 

localization.  The merged micrographs demonstrate that in both regions, PACAP and 

CGRP immunoreactivities were largely colocalized (yellow) in the same fiber 

structures.  Amygdala, representative micrograph from 4 independent experiments; 

BNST, representative micrograph from 3 experiments.  LV, lateral ventricle; CPu, 

caudate-putamen.  Correlation coefficients described in text.  Scale bar, 200 µm for 

corresponding tissues.   
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Figure 2.3. PBn projection fibers to the CeLC demonstrate PACAP 

immunoreactivity.  Biotinylated dextran amine (BDA, 10 kD; 10%) was injected 

iontophoretically into the LPBn for anterograde transport into the CeLC over 14 days.  

BDA at the LPBn injection site (A) and in the projection fibers to the CeLC (B) were 

detected using streptavidin- conjugated Cy2 (green).  Processing of the same CeLC 

sections for PACAP immunoreactivity (Cy3, red) demonstrated that the LPBn projection 

fibers can contain PACAP (B, merge in yellow).  Representative data from 3 separate 

preparations.  scp, superior cerebellar peduncle.  Scale bar, 200 µm for corresponding 

tissues.   
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Figure 2.4. Excitotoxic LPBn lesions diminish PACAP and CGRP fiber 

immunoreactivities in the CeLC and BNST.  The LPBn was unilaterally lesioned with 

NMDA as described in Methods; the contralateral LPBn received vehicle.  After 7 days, 

the PBn sections were processed for neuron-specific nuclear NeuN immunoreactivity 

(Cy3, red) to assess the specificity and extent of the lesion.  Whereas vehicle injections 

had no apparent effects (A), NMDA injections produced substantial LPBn neuronal loss 

(B, dashed circled area).  Representative vehicle treated and contralateral NMDA 

excitotoxic lesioned PBn in the same animal are shown; the lesioned image was flipped 

to facilitate comparison.  CeA and BNST tissue sections from the NMDA excitotoxic 

lesioned animals were processed for dual PACAP and CGRP immunocytochemical 

localizations.  Similar to Fig. 2.2, tissue sections ipsilateral to LPBn - vehicle injections 

(left panels) demonstrated substantial PACAP (Cy3, red) and CGRP (AlexaFluor 488, 

green) colocalization in the CeLC (C and E) and BNST (G and I); colocalization in 

merged micrographs illustrated in yellow.  By contrast, the same CeLC and BNST 

regions in the contralateral half that received LPBn NMDA excitotoxic lesion (PBn - 

lesion) demonstrated marked decreases in both PACAP and CGRP immunoreactivities.  

Again, micrographs from the stained CeLC and BNST regions from the PBn - lesioned 

side were flipped for comparisons with the control vehicle e injected side from the same 

animals to facilitate comparisons.  These data were consistent with the colocalization of 

PACAP and CGRP in Fig. 2.2 scp, superior cerebellar peduncle; CPu, caudate putamen.  

Representative figures from 3 separate animals.  Scale bar, 200 µm. 
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Figure 2.5. CeA and BNST peptide immunoreactivities are diminished after PBn 

lesions.  PACAP and CGRP immunoreactivities in the CeA (A) and BNST (B) from 

studies described in Fig. 2.4 were subjected to image analyses as described in Methods.  

The PBn lesions decreased PACAP and CGRP immunoreactivities in the limbic regions 

to a comparable extent compared to levels on the contralateral hemisphere with PBn - 

vehicle injections.  n = 3, data represent mean ± SEM. *, different from vehicle control at 

p < 0.05.  
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Figure 2.6. PACAP infusions into the CeA decrease open arm entries on the elevated 

plus maze.  Adult rats were cannulated as described in Methods for CeA PACAP 

infusions.  Thirty minutes after PACAP injection, the animals were placed in the center 

square of the elevated plus maze, facing a closed arm, for behavior testing during a 5 min 

period.  All movements were tracked digitally for data analyses.  Total open arm entries 

(A) and open arm preference (B, open arm entries/total arm entries) were calculated.  

CeA PACAP signaling significantly increased anxiety-like behavior reflected by 

decreased number of open arm entries and open arm preference.  There were no changes 

in the number of closed arm entries and there were no indications of freezing behaviors.  

n = 10 per group, data represent mean ± SEM, *, different from vehicle control p < 0.05.   
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Figure 2.7. CeA PACAP/PAC1 receptor signaling increases thermal sensitivity.      

A, Rats were habituated in Hargreave's thermal sensitivity apparatus with 2 days of 

baseline assessments (24 and 48 h).  PACAP was subsequently infused into the CeA 

(single injection) for thermal testing at the indicated time (shaded area).  Whereas vehicle 

injection produced no apparent responses changes compared to baseline (white bars), 

CeA PACAP infusions consistently decreased thermal latency responses (black bars) up 

to 4 h post treatment.  The responses dissipated by 24 h; the small but significant 

decrease in thermal latency at 72 h may reflect latent plasticity events.  n = 6 - 8 per 

group, data represent mean response ± SEM, *, different from corresponding vehicle 

control, p < 0.025.  B, the PACAP-induced decrease in thermal latency was mirrored in 

CeA infusions with the PAC1 receptor specific agonist maxadilan.  The maxadilan 

responses observed at 1 h was again dissipated by 24 h n = 7 - 8 per group, data represent 

mean response ± SEM, *, different from corresponding vehicle control, p = 0.002.   
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3.1. Abstract 

 The high coincidence of chronic pain and stress-related psychopathologies, such 

as depression, anxiety-associated abnormalities and posttraumatic stress disorder (PTSD) 

can aggravate the debilitating conditions of both disorders through neurocircuit 

intersections and mechanisms that are still not well understood.  Pituitary adenylate 

cyclase activating polypeptide (PACAP; Adcyap1) and its cognate PAC1 receptor 

(Adcyap1r1) are expressed in peripheral nociceptive pathways, participate in anxiety-

related responses and have been associated with stress-related disorders including PTSD.   

In a partial sciatic nerve ligation chronic constriction injury (CCI) model, we show that 

chronic neuropathic pain increases PACAP expression at multiple levels along the spino-

parabrachioamygdaloid tract and bilaterally augments nociceptive amygdala (CeA) 

PACAP immunoreactivity, ERK phosphorylation and c-fos activation in parallel with 

heightened anxiety-like behavior and nociceptive hypersensitivity.  Acute CeA infusions 

with the PACAP receptor antagonist PACAP(6-38) blocked CCI-induced behavioral 

responses; further, pretreatments with MEK or endocytosis inhibitors to block endosomal 

PACAP receptor ERK signaling attenuated PACAP-induced CeA neuronal activation and 

nociceptive responses.  Accordingly, chronic pain-induced PACAP neuroplasticity and 

signaling in spino-parabrachioamygdaloid projections can impact CeA stress- and 

nociception-associated maladaptive responses, which can be ameliorated upon receptor 

antagonism even during disorder progression.   
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3.2. Introduction 

 Pain carries an aversive emotional component that can severely impact 

physiological and behavioral responses.  Accordingly, chronic pain has been well 

associated with a number of stress-related psychopathologies, including depression, sleep 

dysregulation, panic disorders, obsessive compulsive behavior, anxiety abnormalities and 

post-traumatic stress disorder (PTSD) 1.  The high comorbidity between pain and stress-

related behavioral disorders suggests that the two may be interrelated maladaptive 

processes 2.  Among brain regions, the amygdala is centrally situated to integrate the 

many descending and ascending signals to modulate the sensory and emotional 

components of pain.  Among several direct ascending pathways carrying nociceptive 

transmission to the CeA, the most prominent is the spino-parabrachioamygdaloid tract 3-6.  

Peripheral nociceptive signals carried via primary sensory Aδ- and C-fibers terminate on 

spinal projection neurons in lamina I/II and IV of the dorsal horn where the second order 

neurons send projections via the spino-parabrachial pathway to pontine lateral 

parabrachial nuclei (LPBn) 7.  In turn, the third-order LPBn neurons relay sensory 

information to the lateral (CeL) and lateral capsular (CeLC) subdivisions of the CeA.  

Hence the PBn collects cutaneous (mechanical and thermal), deep (muscular and 

articular) and visceral nociceptive signals and relays the information in a highly 

organized topographical manner principally to the nociceptive amygdala.   

 Although the integration of these inputs with amygdala circuits is a key 

mechanism underlying the emotional aspects of pain, the neurochemistry, neuroplasticity 

and regulatory events that drive the maladaptive responses are still not completely 
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understood.  In the CeA, chronic pain upregulates mGluR1/mGluR5 levels and function, 

increases NMDA NR1 phosphorylation, enhances extracellular-regulated kinase (ERK) 

signaling and c-fos expression, and facilitates LPBn and basolateral amygdala (BLA) 

synaptic transmission to the CeLC8-12 .  Relatedly, the pathophysiology of pain and 

stress-related disorders has been attributed to the decrease or dysregulation of anti-

nociceptive neuropeptide Y (NPY), opioid, endocannabinoid or neuroactive steroid 

actions on GABA signaling 2.  But in addition to diminished inhibitory neurocircuit 

function, persistent pain may also augment stimulatory CeA nociceptive neuropeptide 

levels including corticotropin releasing hormone (CRH) and calcitonin gene-related 

peptide (CGRP) as complementary means to facilitate the stress- and pain-induced 

changes in neural function 6,11,13. 

 Among brain peptides, there is accumulating evidence implicating pituitary 

adenylate cyclase activating polypeptide (PACAP) and its cognate PAC1 receptor in 

mediating the behavioral and physiological responses to a variety of homeostatic 

challenges 14.  Altered PACAP levels and a PAC1 receptor polymorphism have been 

associated with PTSD 15-19.  Mice that lack PACAP or the PAC1 receptor exhibit blunted 

anxiety-like behavior, show hypothalamic-pituitary-adrenal (HPA) axis and autonomic 

system dysregulation, and fail to develop hypersensitivity to nociceptive stimuli in 

inflammatory pain paradigms 20-27.  Furthermore, chronic but not acute stress leads to an 

upregulation of PACAP and PAC1 receptor transcript expression in the bed nucleus of 

the stria terminalis (BNST) 28-30.  BNST PACAP signaling increases anxiety-like 

behaviors and HPA axis activation, and mediates many of the behavioral consequences of 
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chronic stress 28-30. The BNST and the CeA share similar circuit connectivity, architecture 

neurochemistry, and physiology, and may play complementary roles in emotional 

behavior processes.  As in the BNST, dense PACAP immunoreactivity has been 

identified in the neuronal fibers of the CeLC/CeL which from previous work has shown 

to reflect LPBn PACAP projections in the spino-parabrachioamygdaloid tract 31.  

Importantly, infusions of PACAP or a specific PAC1 receptor agonist directly into the 

CeA of naive rats produced both anxiety-like behaviors and nociceptive hypersensitivity, 

suggesting that LPBn PACAP activity via the spino-parabrachioamygdaloid circuit 

carries signals that may in part alter the emotional responses to pain.  Using a partial 

sciatic nerve ligation chronic constriction injury (CCI) model, we examined whether 

persistent neuropathic pain alters PACAP transcript expression in the spino-

parabrachioamygdaloid tract and whether PAC1 receptor antagonism can mitigate CCI-

induced nociceptive hypersensitivity and anxiety-like behaviors.  As PACAP signaling 

potently and efficaciously activates MAPK/ERK, a central mechanism in synaptic 

plasticity and CeA-dependent behaviors and pain hypersensitivity, we also assessed CeA 

PAC1 receptor mechanisms in vivo.  The studies in aggregate suggest that endogenous 

PACAP signaling in the spino-parabrachioamygdaloid pathway and the resulting 

endosomal PAC1 receptor-stimulated activation of ERK in the CeA mediate the adverse 

emotional consequences of chronic pain, and may also explain comorbidities between 

chronic pain and other stress-related pathologies. 
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3.3. Results 

Neuropathic pain augments PACAP expression in the spino-parabrachioamygdaloid 

pathway. 

 Our previous studies identified PACAP in neuronal projections from the LPBn to 

CeLC and demonstrated that CeA PACAP infusions resulted in heightened nociceptive 

sensitivity and anxiety-like behaviors 31.  As previous studies implicated PACAP 

phenotypic plasticity in sensory systems 32,33 we examined whether chronic neuropathic 

pain in a unilateral sciatic nerve CCI model regulated endogenous PACAP expression 

along the spino-parabrachioamygdaloid pathway. The partial sciatic nerve ligation 

procedure reliably heightened nociceptive sensitivity as reflected by decreased thermal 

latency responses and also induced anxiety-like behavior in open field tests 14 days post-

surgery compared to sham controls without compromising locomotor activity (see 

below).  Quantitative PCR analyses of micropunched PBn tissues demonstrated that CCI 

specifically elevated PBn PACAP transcript levels approximately 1.5 fold compared to 

tissues from sham animals (t(12)=2.36, p=0.036); CCI did not augment PACAP 

transcript levels in the CeA,  anterolateral BNST, or the solitary nucleus (NTS)(figure 

S3.1). Additionally, no significant change was found for the PAC1 receptor transcripts in 

the LPBn or CeA (figure S3.1).  As in other peptidergic systems, the 

immunocytochemical localization for PACAP in the nervous system preferentially 

identified bioactive peptides in fibers rather than soma to preclude corresponding 

analyses of neuronal LPBn PACAP peptide changes after CCI.  But as an alternative 

means of evaluating injury-induced PACAP expression in the LPBn, the same unilateral 
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CCI was performed on PACAP-EGFP mice.  LPBn PACAP-EGFP+ cells were identified 

under basal conditions and CCI induced the number of PACAP neurons almost 2-fold 

compared to sham operated animals, main effect of CCI, F(1,22)=7.99, p = 0.01) (Figure 

1A - 1C). The CCI-induced PACAP-EGFP+ neurons appeared throughout the LPBn, with 

the majority confined to the external lateral and central lateral regions.  Notably, the 

LPBn PACAP induction was observed both ipsilateral and contralateral to the injury, 

which reflected bilateral dorsal horn neuronal projections to LPBn (Figure 3.1C), no main 

effect of side main effect (F(1,28) = 0.32, p = 0.6).  

 In good correspondence to the increase LPBn PACAP transcripts and neurons, 

CCI also augmented CeLC fiber PACAP staining from parabrachioamygdaloid 

projections (Figure 3.1D - 1F).  Consistent with previous studies, dense punctate 

PACAP-immunoreactivity characteristic of PACAP fiber terminals and varicosities was 

found primarily in the CeLC that extended into the CeL; image analyses after 

thresholding fluorescence intensity revealed a 1.4-fold increase in PACAP staining 

density in the CeLC of CCI animals compared to that in sham animals F(1,28)=14.74, 

p=0.0006).  As anticipated from bilateral dorsal horn neuronal projections to the LPBn, 

the increase in CeLC PACAP immunoreactivity was also bilateral after unilateral CCI; 

however, there was a notable bias toward greater PACAP immunoreactivity in the right 

CeLC irrespective of the side of the CCI which appeared consistent with CeA 

lateralization described in previous studies 34,35 (Suppl Figure 3.2).  

 Given the role of PACAP in neuroplasticity, we also evaluated whether 

neuropathic pain from CCI similarly affected other PACAPergic neurons within the 
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spino-parabrachioamygdaloid tract in the PACAP-EGFP mice.  While the sciatic nerve in 

sham operated and the contralateral leg of CCI animals demonstrated minimal PACAP-

EGFP fluorescence, the sciatic nerve segment proximal to CCI ligation demonstrated 

pronounced fiber PACAP expression (condition*side F(1,10)=57.22, p<0.0001, post-hoc 

Sham-ipsilateral vs. CCI-ipsilateral, p<0.0001) (Figure 3.2D - 2F).   In mouse, the 

sensory fibers in the sciatic nerve are predominantly peripheral axons from L3 - L5 dorsal 

root ganglia (DRG) with the largest contributions from L4 sensory neurons.  In 

correspondence, CCI increased the number of PACAP-EGFP+ L3 - L5 DRG neurons 

ipsilateral to the injury with the greatest increase in L4 DRGs compared to neurons from 

the same levels under all control conditions (L4 DRG condition*side F(1,8)=93.12, 

p<0.0001, post-hoc Sham-ipsilateral vs. CCI-ipsilateral, p<0.0001).  (Figure 3.2A - 2C, 

L3, and L5 Suppl Figure 3.2).  The CCI-induced increase in DRG PACAP expression 

was also reflected by a dramatic increase in DRG central axon EGFP fluorescence in 

laminae III-V of the ipsilateral dorsal horn and in the gracile fasciculus (Figure 3.2G) 

projecting to higher order central nuclei.  There were no apparent changes in the number 

of second order PACAP-EGFP+ dorsal horn neurons in CCI (data not shown).  

Interestingly, CCI also induced PACAP-EGFP in some ipsilateral ventral horn motor 

neurons which appeared consistent with previous nerve transection studies (Pettersson et 

al., 2004).   Accordingly, these demonstrate that chronic neuropathic pain elevates 

PACAP expression levels along multiple neuronal elements in the spino-

parabrachioamygdaloid pathway.  

 



 

116 

CeA PACAP signaling facilitates neuropathic pain-related anxiety-like behaviors and 

thermal hypersensitivity  

 We next examined if elevated CeA PACAP signaling in CCI contributes to 

heightened anxiety-like behaviors and nociceptive sensitivity. Our previous work 

demonstrated that CeA administration of PACAP or the PAC1 receptor specific agonist 

maxadilan was capable of producing both anxiety-like behaviors and thermal 

hypersensitivity31.  But to evaluate the contribution of sustained endogenous CeA 

PACAP signaling in chronic neuropathic pain, the PAC1 receptor antagonist PACAP(6-

38) was infused bilaterally into the CeA of CCI rats before assessing anxiety-like 

behavior in the open field and thermal nociception testing with the Hargreave’s test 

(Figure 3.3A).  Similar to chronic stress models, CCI attenuated weight gain over the 

course of observation; (Figure 3.3B, main effect of CCI, F(10,280) = 80.80, p < 0.0001).   

In open field tests 14 days post-surgery, CeA PACAP(6-38) infusions into the sham 

control group did not significantly change the number of center field entries compared to 

those receiving vehicle bonferroni’s m.c. t(22)=0.47, p = 0.9) suggesting that the 

antagonist alone had no apparent behavior effects.  Animals with CCI had fewer center 

field entries and these pain-associated stress responses were completely blocked upon 

CeA PACAP(6-38) administration (Figure 3.3C - 3D, bonferroni’s m.c. t(22)=3.12, p = 

0.03).  These responses were paralleled by a trend for PACAP(6-38) to increase center 

field durations times in CCI (bonferroni’s m.c. t(22)=2.22, p = 0.07).  The CCI procedure 

did not impair locomotion or affect the total distance traveled (F(1,20)=0.46, p = 0.6), 

similarly PACAP(6-38) did not alter total distance travelled (F(1,20)=1.22, p = 0.3). 
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 Concurrent with anxiety-related behaviors, CeA PACAP infusions also reliably 

facilitated nociceptive hypersensitivity in Hargreave’s thermal assays that persisted for 

several hours31.  CCI of the sciatic nerve has been well used to produce thermal 

nociceptive responses and comparable to previous work, CCI 14 days post-surgery 

typically decreased thermal latency 40 - 50% in the ipsilateral hindpaw compared to 

sham control groups or to the contralateral hindpaw (Figure 3.3E - 3G, F(1,21)=14.13, p 

= 0.001).  In the same experimental paradigm, all of the CCI animal groups demonstrated 

ipsilateral hindpaw thermal sensitivity prior to treatments; however, 1 h following 

bilateral CeA PACAP(6-38) administration, the PAC1 receptor antagonist attenuated the 

heightened thermal nociceptive responses compared to baseline measures prior to 

antagonist treatments in the ipsilateral hindpaw in the CCI condition (Figure 3.3E, 

interaction of condition*treatment*day (F(1,21) = 7.83, p = 0.009).  The effects were 

more marked when the responses in each animal were normalized to their own latency 

baseline immediately prior to the injections (Figure 3.3H, F(1,21)=16.40,  p = 0.001, 

interaction of condition*treatment F(1,21) = 15.49, p = 0.001). There were no significant 

effects of CeA PACAP(6-38) on the uninjured contralateral hindpaw or in the sham 

operated condition (Figure 3.3F).  Accordingly, these results mirrored previous PAC1 

receptor antagonist studies, demonstrating that PACAP has no apparent behavioral 

effects under control sham handling conditions, but contributes to heightened anxiety-like 

behavior and nociceptive sensitivity in chronic neuropathic pain.  
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CeLC PACAP-mediated ERK signaling in chronic neuropathic pain  

 One of the most consistent amygdala responses to persistent pain is an increase in 

ERK activation in a subset of CeLC neurons.  Enhanced amygdala ERK signaling can 

increase behavioral sensitivity in normal conditions and ERK signaling contributes to 

PBn - CeLC neurotransmission in persistent pain10,36,37. Conversely, MEK/ERK 

inhibition in inflammatory pain can decrease behavioral hypersensitivity10. Comparable 

to previous work and PACAP transcript/immunocytochemistry data above, unilateral CCI 

on either the right or left hind limb increased bilaterally the number of CeLC pERK+ cells 

compared to sham (Figure 3.4A - 4C, main effect of CCI F(1,26)=7.62, p = 0.01); there 

was no apparent difference in response relative to the side of injury ((IL vs CL) no main 

effect of side F(1,26) = 0.01, p = 0.9).  However, for all CCI (left or right hind limb), 

there was an apparent trend towards a greater number of pERK+ cells in the right CeLC 

((left vs right) F(1,26) = 3.15, p = 0.09) (Suppl Figure 3.2). These results signify that 

similar to other pain models, chronic neuropathic pain enhances ERK signaling in the 

CeLC.  

 But to evaluate whether CeA PACAP fibers can affect amygdala ERK activation 

in CCI, dual pERK and PACAP localization was performed (Figure 3.4D - 4E).  Notably, 

the majority of the CCI pERK+ cells (84.5 ± 5.0%) were in immediate apposition (< 2 

µm) with CeLC PACAPergic fibers with a high occurrence of PACAP fibers forming 

perisomatic contacts. The fraction of pERK+ cells with PACAP contacts is likely an 

underestimate given the limitations of section thickness and antibody penetration. Thus, 

PACAP is optimally situated to activate ERK in the CeLC.  In good correspondence with 
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previous characterizations of PACAP neurons, the CeLC PACAP fibers are mainly 

glutamatergic from PACAP colocalization with vGlut2 immunoreactivity; there was little 

overlap with vGlut1 or glutamic acid decarboxylase (GAD) staining (Suppl Figures 3.3  

and 3.5). 

 As the BNST displays structural and functional homology with the CeA and also 

receives LPBn PACAP projections31, the effects of CCI on neuronal pERK were also 

examined in the BNST.  As in the CeLC, CCI induced a robust increase in the number of 

pERK+ cells in the anterolateral BNST, with almost no cellular pERK labeling under 

sham conditions (main effect of CCI, F(1,8) = 15.04, p = 0.005) (Suppl Figure 3.5).   

Similar to the CeLC, the majority of BNST pERK neurons (83.1 ± 0.5%) were in close 

contact with glutamatergic PACAP fibers (Suppl Figures 3.3 and 3.5).  These results 

implied that BNST PACAP signaling may also have roles in the behavioral consequences 

of persistent pain, which complements previous work 38.  

 To establish whether CeA PACAP signaling via ERK can evoke thermal 

hypersensitivity, the MEK inhibitor PD98059 (20 µM) was infused into the CeA prior to 

PACAP38 injection.  While infusions of PACAP38 alone resulted in marked increases in 

CeA c-fos and pERK immunoreactivity in the same neurons (Figure 3.5; co-incidence = 

87%), pretreatment with the MEK inhibitor abolished the PACAP-stimulated responses, 

demonstrating that ERK activation is an essential component of PACAP signaling to 

instigate CeA neuronal activity (Figure 3.5A - 5L).  CeA PACAP infusion and signaling 

within the same study heightened nociception sensitivity as shown by the decreases in 

thermal latency times; the PACAP responses were completely abolished by MEK 
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inhibition, corroborating that PACAP/PAC1 receptor signaling via ERK pathways is 

central to CeA nociception processes (Figure 3.5M - 5N, bonferroni m.c. t(41)=3.59, p = 

0.002). 

 There are several potential mechanisms for PAC1 receptors to engage MEK/ERK 

pathways including PKA and/or PKC activation39-42; however, PAC1 receptor 

internalization into signaling endosomes has also been shown to be an alternative and 

efficacious means of ERK phosphorylation to potentially sustain cell stimulation 41,42.  

Blocking PAC1 receptor internalization at ambient temperature conditions or with 

endocytosis inhibitors substantially attenuated ERK phosphorylation.  Contiguous with 

the previous experiment, a separate experimental group was pretreated with Pitstop 2 (30 

µM), an inhibitor of clathrin-mediated endocytosis, prior to PACAP infusion.  Consistent 

with cell culture data 42, Pitstop 2 pretreatments markedly block PACAP-mediated c-fos 

expression and ERK phosphoryation in the CeA (Figure 3.5).   Importantly, inhibition of 

clathrin-mediated endocytosis reduced PACAP-induced hypersensitivity (Figure 3.5M - 

5N, bonferroni m.c. t(41)=2.57, p = 0.03).  Neither PD98059 nor Pitstop 2 produced CeA 

damage or cellular apoptosis (Suppl Figure 3.6) The efficacy of Pitstop 2 in blocking the 

PACAP-mediated nociceptive responses appeared lower than that for MEK inhibition 

which may reflect in part drug potency in vivo vs in vitro, and ERK activation via PAC1 

receptor PKA or PKC mechanisms.  Nevertheless, these studies in aggregate provide the 

first in vivo evidence that GPCR PAC1 receptor internalization and downstream ERK 

signaling can modulate CeA nociception responses.  
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3.4. Discussion 

 The current studies establish roles for CeA PACAP signaling as an effector 

conveying the behavioral and sensory consequences of chronic neuropathic pain.  Among 

several lines of evidence, CCI increased PACAP transcripts and neurons in the LPBn 

which correlated with enhanced LPBn PACAP projection fiber immunoreactivity in the 

CeLC and increased PACAP expression in the spino-parabrachioamygdaloid tract.  In 

good agreement with previous studies demonstrating the anxiety-related and nociceptive 

hypersensitivity responses following CeA PACAP administration31, blockade of 

endogenous PACAP signaling in CCI with PAC1 receptor antagonist PACAP(6-38) 

attenuated the CCI neuropathic pain-induced heightened anxiety-like behavior in the 

open field tests and nociceptive hypersensitivity in thermal assays.  Importantly, both 

CCI and PACAP stimulated CeA ERK activation and c-fos expression which were 

diminished upon pretreatments with MEK or clathrin-mediated endocytosis inhibitors in 

parallel with diminished PACAP-induced nociceptive hypersensitivity.  These results 

further our understandings of CNS PACAP mechanisms and functions, and how 

maladaptions in PACAP signaling in intersecting stress-related and pain circuits may 

negatively impact the course of psychopathologies. 

 Previous studies have shown PACAP neurophenotypic plasticity and 

demonstrated that central and peripheral neuronal PACAP expression can be upregulated 

in response to diverse homeostatic challenges.  In a chronic stress paradigm, heightened 

PACAP and PAC1 receptor transcript expression was observed in the BNST and 

paraventricular nucleus of the hypothalamus28. In several nerve injury models, PACAP 
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was elevated in sensory, autonomic and motor neurons 32,33,43.  The recent availability of 

the PACAP-EGFP mice illustrated that plasticity; whereas basal endogenous PACAP 

levels appeared low in many neuronal systems, physiological challenges especially nerve 

injury significantly induced PACAP expression.  Consistent with previous results, CCI 

increased DRG PACAP expression, which augmented dramatically PACAP levels in 

both peripheral sensory fibers in the sciatic nerve and central DRG axons in the dorsal 

horn and spinal pathways.  Second order PACAP producing neurons were found in 

lamina I/II of the dorsal horn but notably CCI also increased PACAP expression centrally 

in the LPBn and CeA as a consequence of enhanced nociceptive signaling in the spino-

parabrachioamygdaloid pathway.  The injury mechanisms underlying the induction of 

phenotypically plastic peptides, including PACAP, are not well understood but may 

reflect inflammatory responses or cellular stress from diminished target tissue signaling.  

The same mechanisms may underlie the PACAP induction in the few ventral horn motor 

neurons in CCI; PACAP function in these neurons have not been studied but posited to 

be regenerative or neuroprotective.  Uniquely, these studies demonstrate PACAP 

expression at all levels of the spino-parabrachio-amygdaloid pathway suggesting that 

PACAP is a common mediator at all levels of the nociceptive circuit.  

 The second order dorsal horn neurons project to the brain bilaterally; hence 

unilateral CCI produced bilateral increases in LPBn PACAP expression with 

corresponding increases in CeA PACAP immunoreactivity and pERK activation.  

However, when all data sets were analyzed with reference to tissues ipsilateral or 

contralateral to injury site, PACAP and pERK immunoreactivity was preferentially 
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heightened in the right CeA, irrespective of left or right sciatic nerve ligation.  These 

observations agreed with studies suggesting that the CeA displays a degree of lateralized 

function with the right CeA displaying greater increases in pERK and synaptic 

potentiation in response to pain34,35.  Accordingly, the lateralization of CeA PACAP may 

be consistent with the functional lateralization nociceptive processes in the CeA.  

 The evidence for PACAP functions as a nociceptive neurotransmitter is 

substantive.  PACAP was identified initially as a sensory peptide44 and in agreement with 

current work, other studies have shown that the low basal expression levels of PACAP in 

DRG neurons can be dramatically induced in sensory neurons and sciatic nerve fibers 

after injury.  Furthermore, heightened DRG PACAP is likely released from C-fibers in 

the superficial layers of the dorsal horn, as capsaicin applications decreased dorsal horn 

PACAP immunoreactivity and increased PACAP levels in cerebral spinal fluid perfusate 

44,45. PACAP knockout mice develop significantly less thermal and mechanical 

hypersensitivity from both neuropathic and inflammatory pain models, and have 

decreased somatic sensitivity in normal conditions 26.  Consistent with these findings, 

mice that lack PAC1 receptors display reduced mechanical hypersensitivity during the 

late phase following formalin injection27.  However, the nociception studies after PACAP 

infusion have been more variable depending on the route of peptide administration.  In 

the periphery, direct PACAP injections into the hindpaw was largely anti-nociceptive 

reducing thermal and mechanical sensitization in inflammatory pain46.  However, in 

parallel with our CeA studies, central and intrathecal PACAP administrations were pro-

nociceptive capable of potentiating hypersensitivity under normal conditions, and the 



 

124 

responses could be blocked with PACAP(6-38) 31,47,48.  The reasons for the variable 

results are unclear but may be related to PACAP regulation of many homeostatic 

systems.  In addition to expression and function in sensory systems, PACAP also 

regulates autonomic and immune functions; the anti-inflammatory and 

immunosuppressive attributes of PACAP for example, may be contributory to the 

peripheral anti-nociceptive effects.  

 Following CCI, a two week postsurgical recovery period was established to allow 

locomotor return from transient deficits, injury-induced PACAP expression and the 

development of chronic pain hypersensitivity and stress-related behaviors for multiple 

nociceptive and behavioral assessments.  BNST PACAP expression was upregulated in a 

seven day chronic variate stress paradigm but not following one day of acute stress29,30; 

whether a similar time course is necessary for PACAP induction in chronic versus acute 

pain and whether PACAP levels in the spino-parabrachioamygdaloind pathway increase 

incrementally with chronic pain duration have not been established.   As many weeks of 

CCI have been shown to gradually cause anxiodepressive-like disorders 49 and PACAP 

has been implicated in anxiety- and depression-related behaviors 15,29,50,51, the increase in 

PACAP expression and signaling may be a mechanism underlying the development of 

psychopathologies. 

 The current CCI paradigm produced anxiety-like responses in open field tests and 

thermal hypersensitivity in the ipsilateral hindpaw.  To evaluate whether continued CeA 

PACAP signaling participates in these heightened pain and behavioral responses, the 

PAC1/VPAC2 receptor antagonist PACAP(6-38) was infused into the CeA before 
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testing.  The infusion of PACAP(6-38) alone into  sham control animals had no effects on 

either pain or stress-related behaviors, suggesting that PACAP signaling under basal 

conditions may be low not to significantly impact the normal course of CeA functions.  

The ability for acute PACAP(6-38) treatments to mitigate anxiety-like behavior and 

thermal hypersensitivity responses during chronic injury suggested that the increase in 

CeA PACAP levels and signaling was sustained during the course of CCI to facilitate the 

pain-related behavioral responses.  The involvement of CeA PACAP only in a state of 

persistent pain and/or stress and not under normal conditions is comparable to 

observations for other CeA systems including CGRP, CRH and mGluR regulated-

functions8,52-54.  The mechanisms through which CCI-induced CeA PACAP may result in 

anxiety-like behaviors is not clear but may involve the potentiation of basolateral 

amygdala (BLA) excitatory postsynaptic transmission to the CeL 55.  Similarly LPBn 

PACAP projections to the BNST may not only have anxiogenic but hyperalgesic 

attributes by interactions with CRH systems 38.  Hence, CCI-induced LPBn PACAP 

expression and release could heighten nociceptive hypersensitivity and anxiety-like 

behaviors via multiple complementary mechanisms with projections facilitating BLA to 

CeL neurotransmission, modulating descending inhibitory signals, altering BNST 

function or enhancing CeLC nociceptive signals to the substantia innominata dorsalis for 

anxiety, aversion and fear responding56.   

 Activation of the ERK pathway is a central means of nociceptive signaling in a 

variety of pain models.  PACAP potently activates ERK through PAC1 receptors which 

may have contributed to the sustained levels of pERK in the CeLC during prolonged 
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CCI.  Both CCI and acute CeA PACAP infusion increased ERK phosphorylation and 

levels of the neuronal activity marker c-fos.  The increase in pERK and c-fos were 

colocalized to the same CeA neurons, and as c-fos stimulation could be abrogated 

concomitantly with pERK levels with MEK inhibitors, the increase in c-fos appeared 

downstream of PACAP signaling.  This was supported by the observation that the 

majority of the pERK neurons was found to be in close apposition to PACAPergic fibers.  

Further, the ability for MEK inhibition to attenuate CeA PACAP-stimulated pERK and c-

fos in parallel with blockade of PACAP-induced thermal sensitivity demonstrated that 

PACAP/PAC1 receptor-mediated ERK signaling is requisite for CeA nociceptive 

hypersensitivity responses.  There are several routes of PAC1 receptor-mediated 

activation of MEK including adenylyl cyclase/cAMP and PLC/PKC.  While these plasma 

membrane initiated cascades may be relatively short lived, the recent observations that 

PAC1 receptor endocytosis and recruitment of scaffolding proteins for endosomal MEK 

signaling may represent a key mechanism for prolonged intracellular ERK activation.  As 

with MEK inhibitors, Pitstop 2, an inhibitor of clathrin mediated endocytosis also 

blocked PACAP-mediated CeA pERK and c-fos levels and attenuated PACAP-mediated 

nociceptive hypersensitivity responses.  The internalization of several GPCR systems 

have been described to participate intracellular signaling; these results may be one 

demonstration of how GPCR internalization and endosomal signaling may relevant in a 

physiological mechanisms and in particular nociceptive mechanisms.   

 In summary, our results demonstrate that spino-parabrachioamygdaloid PACAP 

expression and signaling are augmented in neuropathic pain and that this heightened 
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expression may contribute to adverse pain- and stress-related behaviors.  While clinical 

data have placed considerable emphasis on the dysregulation of inhibitory pathways as 

mechanisms underlying pain-associated psychopathologies, the maladaptations from 

ascending activating pathways including neurophenotypically plastic PACAPergic 

system may be contributory to that process. CeA PAC1 receptor antagonism or inhibition 

of downstream endosomal ERK signaling can blunt PACAP- and CCI-induced 

nociceptive hypersensitivity and associated anxiety-like responses.  As PACAP receptor 

antagonism during CCI advancement can still ameliorate the adverse neuropathic pain 

and behavioral responses, these observations suggest that interventions in PACAP 

signaling during the progression of pain and associated behavioral responses may have 

therapeutic utility in improving disorder outcomes. 

 

3.5. Methods 

Animals 

 Adult male Sprague-Dawley rats were from Charles River Laboratories, 

Wilmington, MA. PACAP promoter-dependent EGFP BAC transgenic mice, generated 

by the GENSTAT (Gene Expression Nervous System Atlas) project were obtained from 

James Waschek (UCLA, Los Angeles, CA).  All animals were housed under a 12-hour 

light/dark cycle (lights on 0700 h) with food and water available ad libitum, and 

habituated to the animal facility for at least one week prior to any experiments. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Vermont. 
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Neuropathic pain model 

 Chronic constriction injury (CCI) of the sciatic nerve was performed in rats as 

described previously57.  Rats were anesthetized with isoflurane and four loose ties (4-0 

chromic gut sutures, Ethicon) were placed proximal to the trifurcation of the sciatic 

nerve.  In sham surgeries, the sciatic nerve was briefly exposed before incision closing 

with wound clips.  In some experiments with intra-amygdalar infusions, the stereotactic 

surgery for cannula implantation was performed concurrently with CCI.  Only animals 

that developed thermal hypersensitivity in Hargreave’s assay were used for testing and 

analyses.  In PACAP-EGFP mice, the same CCI procedure was followed except only 

three chromic gut sutures were used.  

 

Intra-amygdalar infusion 

 Rats were prepared as described previously29,31 and two stainless steel cannulae 

(22GA, PlasticsONe, Roanoke, VA) were placed targeting the CeA using the coordinates 

(from bregma in mm) AP: -2.6, ML: ± 4.5, DV: -7.2.  For CeA drug administration, rats 

were lightly restrained with a towel and infused with drug or vehicle (0.5 µl/min, Harvard 

Apparatus, Holliston, MA) through an internal cannula with a 1 mm projection beyond 

the end of the guide cannulae.  Infused compounds included PACAP(6-38) (0.3 µg/0.5 

µl), Pitstop 2 (30 µM/0.5 µl) and PD98059 (20 µM/0.5 µl). 
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Immunohistochemistry 

 Anesthetized rats were perfused transcardially with 4% paraformaldehyde and the 

brains were postfixed for 24 h, washed and equilibrated in 30% sucrose before 

embedding in OCT compound (ThermoFisher Scientfic, Waltham, MA) for 

cryosectioning (30 µm).  The sections were mounted onto subbed slides, permabilized 

with 0.3% Triton X-100, blocked with 1% BSA and incubated in primary antibody.  

Immunocytochemical staining for PACAP (1:10, 48 h at 4 C, Jens Hannibal, Bisperg 

Hospital, Copenhagen, Denmark) was enhanced by tyramide signal amplification (Perkin 

Elmer, Waltham, MA) for visualization with Cy3-conjugated streptavidin (1:200, 2 h; 

Jackson Immunoresearch, West Grove, PA) as previously described31.  Detection for 

phosphorylated ERK (1:1000, #4370 Cell Signaling Technology, Danvers, MA) and c-

fos (1:300, sc-52 Santa Cruz Biotechnology, Dallas, TX) were performed using species 

specific AlexaFluor 488 or Cy3-conjugated secondary antibodies. Antibodies to vGlut1 

(1:1000, AB5905), vGlut2 (1:1000, AB2251) and GAD (1:300, AB1511) were all from 

Millipore Billerica, MA.  

 

Image Analysis 

Micrographs were obtained using a Nikon E800 point scanning confocal 

microscope, except in analyses of PACAP immunoreactivity levels in which the images 

were captured using an Olympus fluorescence microscope captured using identical 

parameters.  For quantification of CeA PACAP fiber immunoreactivity, the 

corresponding CeA fields in the different brains were identified using the hippocampus 
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and optic tracts as reference points; area of threshold was used as an indicator of relative 

fluorescence from same sized fields. For enumeration of CeA pERK-, c-fos-, and 

PACAP-EGFP+ cells in fixed areas, a semi-autonomous cell counting method was 

performed in ImageJ.  All data represent mean values ± SEM. 

 

Behavioral Assessments 

Open Field 

Behavioral testing was performed 0.5 h following infusions.  Rats were 

individually placed into the corner of a 75 cm x 75 cm opaque black open arena with 50 

cm walls (United States Plastics Corp., Lima, OH) illuminated at 20 lux using a red bulb.  

Rat arena center entries and total distance traveled over 5 min test sessions were digitally 

captured with a ceiling mounted camera for analyses using EthoVision XT version 

6.1.326 (Noldus Information Technology, The Netherlands). 

 

Thermal Sensitivity Assessment 

A Hargreave’s apparatus (Plantar Analgesia Meter, IITC Life Science, Inc., 

Woodland Hills, CA). was used to assess thermal stimuli responses.  Following 

habituation in the acrylic testing chambers (30 min each day for 2 days), the rats were 

placed in the apparatus chamber with the glass floor maintained at 30 C with an internal 

heating element.  A low intensity guide light (8% active intensity) was used to target the 

plantar surface of the each hindpaw from beneath the glass floor before a beam of 

focused radiant light (4 x 6 mm, 25% active intensity) was switched on.  Upon animal 
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awareness of the heat stimulus, indicated by a withdrawal response or licking of the 

hindpaw, the heat source was terminated and the reaction time automatically recorded.  

An automated 30 sec cut-off was used to prevent tissue damage.  The hindpaws were 

randomly selected at trial initiation and 3 trials separated by 5 min inter-trial intervals 

were performed on each of the left and right hindpaws .  

 

Transcript analysis 

 Quantitative PCR (QPCR) was performed in the same manner as previously 

described28,29 . Following brief isoflurane anesthesia and rapid decapitation, rat brains 

were quickly frozen in OCT compound (ThermoFisher Scientfic, Waltham, MA); 300 

µm cryosections were prepared and 740 µm micropunches from each region were 

harvested.  Total RNA extraction was performed using STAT-60 RNA/mRNA isolation 

reagent (Tel-Test “B”, Friendswood, TX).  Each set of brain regions was reverse 

transcribed simultaneously using random hexamer primers using SuperScript II 

Preamplification System (Invitrogen, Carlsbad, CA).  The cDNA templates were diluted 

10-fold and assayed on an ABI Prism 7500 Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA) using SYBR Green I JumpStart Taq ReadyMix (Sigma, St. 

Louis, MO) containing 5.0 mM MgCl2, 200 µM dATP, dGTP, dCTP and dTTP, 0.64 U 

Taq DNA polymerase and 300 nM of each primer in a 25 µl reaction volume. 

Oligonucleotide primers were as follows: PACAP (S) 5’-

CATGTGTAGCGGAGCAAGGTT-3’ (AS) 5’-GTCTTGCAGCGGGTTTCC-3', PAC1 

(S) 5’ -AACGACCTGATGGGACTAAAC-3' (AS) 5’-
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CGGAAGCGGCACAAGATGACC-3'. Following amplification, melting profiles of 

amplicons were used to verify unique product generation. A standard curve constructed 

by amplification of serially 10-fold diluted plasmids containing the target sequence was 

used for analysis. Increase in SYBR Green I fluorescence intensity(ΔRn) was plotted as a 

function of cycle number and threshold cycle (CT) was determined using software as the 

amplification cycle at which the ΔRn intersects the established baseline.  Transcript 

levels were calculated from the CT by interpolation from the standard curve.  For each 

target sequence, all sample from the same brain region were amplified simultaneously.  

All data was normalized to 18s RNA and calculated as a fold change from control.    

 

Statistics 

All statistical tests were performed in SPSS (version 22) and GraphPad PRISM 

(version 6). Two-way analysis of variance (ANOVA) was performed to examine main 

effects and interactions, and Bonferrroni’s multiple comparisons tests were used to 

compare different groups for all experiments, except for those indicated.  A multifactorial 

ANOVA was used to examine PACAP6-38 treatment with CCI condition across side and 

day in tests of thermal sensitivity. Students T tests were performed to compare changes in 

average weight gain and post surgery weight loss.  

 

 

 

 



 

133 

3.6. Figures 
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Figure 3.1. CCI increases LPBn and CeA PACAP levels. Control sham surgery (A) or 

CCI (B) were performed on transgenic PACAP-EGFP mice and native EGFP 

fluorescence was examined in LPBn tissues 2 weeks following surgery.  The number of 

LPBn PACAP-EGFP cells was increased bilaterally in CCI compared to sham with a 

main effect of condition (C; sham ipsilatera/contralateral = 31.0 ± 7.1 cells/26.3 ± 3.5 

cells vs CCI ipsilateral/contralateral = 52.5 ± 9.2 cells/50.8 ± 9.7 cells; F(1,22) = 7.99,    

p = 0.01, n = 6-7 per group, 3 sections enumerated per side per animal).  CeA PACAP 

immunoreactivity was also increased after CCI (E) compared to sham controls (D). From 

image analyses with thresholded area, there was a main effect of CCI (F; sham 

ipsilatera/contralateral = 21.7 ± 2.0 units/20.6 ± 1.3 units vs CCI ipsilateral/contralateral 

= 27.3 ± 0.4 units/ 30.6 ± 1.1, F(1,28) = 14.74, p = 0.0006; n = 8 per group) but no main 

effect (F(1,28)=0.32, p=0.6) or interaction (F(1,28) = 1.17, p = 0.3) with respect to side. 

Data represent mean cells/unit area or fluorescence units/unit area ± SEM; scp, superior 

cerebellar peduncle; IL, ipsilateral; CL, contralateral;  Scale bar = 200 µm.  
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Figure 3.2.  Sensory pathway PACAP expression is enhanced by CCI.  Compared to 

sham surgery controls (A), unilateral partial sciatic nerve CCI (B) induced PACAP -

EGFP expression in the ipsilateral L4 dorsal root ganglion (DRG) sensory neurons (C; 

sham ipsilateral/contralateral = 1.3 ± 0.9 cells/2.0 ± 1.0 cells vs CCI 

ipsilateral/contralateral = 96.0 ± 9.6 cells/1.3 ± 0.3 cells, condition*side F(1,8) = 95.78, 

p<0.0001), *p = 0.0001 Bonferroni’s m.c; n = 3 per group).   L4 DRG represents the 

major contributor to mouse sciatic nerve; similar PACAP-EGFP inductions were 

observed in L3 and L5 DRGs (Suppl Figure 3.3).   The increase in CCI induced DRG 

PACAP expression was also reflected in peripheral and central DRG axons.  The 

ipsilateral sciatic nerve fibers proximal to the ligation demonstrated pronounced PACAP-

EGFP fluorescence (E) compared to sham (D) or contralateral control tissues (F; sham 

ipsilateral/contralateral = 0.8 ± 0.5 units/0.9 ± 0.4 units vs CCI ipsilateral/contralateral    

= 54.7 ± 6.1 units/0.2 ± 0.1 units; interaction side*condition F(1,10)=57.22, p<0.0001;    

n = 3 - 4).  The CCI-induced PACAP-EGFP fluorescence in the central DRG axons were 

observed in the dorsal horn with prominent projections in the dorsal while matter tracts 

(G).  Few PACAP-EGFP neurons were also observed in laminae I of the dorsal horn but 

there were no apparent differences between ipsilateral and contralateral dorsal horn 

PACAP neuronal number after sciatic nerve injury.  CCI also induced PACAP-EGFP 

expression in the ipsilateral ventral horn motor neurons.  Data represent mean cells/unit 

area or fluorescence units/unit area ± SEM; DH, dorsal horn; VH, ventral horn; GF, 

gracile fasciculus.  Scale bars = 200 µm 
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Figure 3.3. Blocking CeA PACAP signaling attenuates CCI-mediated anxiety-like 

behavior and thermal nociceptive hypersensitivity.  CCI and CeA cannulations were 

performed concurrently in rats for behavior and nociception studies in the experimental 

timeline shown (A). The CCI-mediated pain- and stress-related responses were associated 

with attenuated weight gain compared to sham control animals during the post-surgical 

recovery period (B). There was decreased weight gain in the CCI operated animals 

compared to sham,  (main effect of CCI, F(10,280) = 80.80, p < 0.0001, n =8 per group).. 

The pain- and stress-related behavior in CCI was also reflected in decreased center 

entries in open field tests compared to sham controls (C; open bars).  CeA infusions in 

sham operated animals with the PACAP receptor antagonist PACAP(6-38) had no effects 

on center field entries over the 5 min test period (sham-vehicle = 7.5 ± 0.7 vs sham-

PACAP(6-38) = 6.75 ± 1.4, Bonferroni’s m.c. t(22) = 0.47, p = 0.9) but blocked the 

stress- and anxiety-like open field responses in CCI  (CCI-vehicle = 3.7 ± 0.8 vs CCI-

PACAP(6-38) = 9.0 ± 1.3, Bonferroni’s m.c. t(22) = 3.12, p = 0.03; condition*treatment 

F(1,22) = 6.78, p = 0.02, n = 5 - 8 per group).  (D), Representative movement tracks in 

open field area for the 4 groups. There were no significant differences in total distance 

traveled for either condition or treatment. Data represent mean open field entry ± SEM. 

In Hargreave’s thermal nociception assays, CCI increased thermal sensitivity as reflected 

by decreased baseline latency times in the ipsilateral hindpaw compared to the 

contralateral leg or in sham animals (F(1,21) = 14.13, p = 0.001). PACAP(6-38) infusions 

into the CeA attenuated the CCI-induced thermal hypersensitivity compared to baseline 

(E); simple effect of day in CCI-PACAP(6-38) on IL side (baseline: 5.3 ± 0.6s vs. 30 
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min: 7.2 ± 0.7s, F(1,21) = 12.21, p = 0.002) and interaction of condition*treatment*day 

(F(1,21) = 7.83, p = 0.009, n = 5 - 8 animals per group) and within group PACAP(6-38) 

ameliorated the nociceptive sensitivity. The effects were amplified when the responses of 

each animal were normalized to their own baseline measures prior to antagonist treatment 

(G; CCI-Vehicle: -3.4 ± 7.2% vs. CCI-PACAP(6-38): 36.2 ± 6.6%, simple effect of 

treatment F(1,21) = 16.40, p = 0.001, interaction of condition*treatment F(1,21) = 15.49, 

p = 0.001. (H); There were no effects of PACAP(6-38) on thermal latency in the 

contralateral leg (F).  
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Figure 3.4.  PACAPergic fibers contact CeA activated ERK cells in CCI.   

CCI produced a bilateral increase in the number CeLC activated pERK+ neurons (Cy3, 

red) compared to that in the sham condition (A - C; sham ipsilateral/contralateral = 32.1 ± 

4.5 cells/30.6 ± 2.8 cells vs CCI ipsilateral/contralateral = 53.4 ± 12.6 cells/56.6 ± 11.9 

cells, F(1,26)=7.62, p = 0.01, n = 7 - 8 animals per group).  When the same sections were 

dually processed for PACAP immunoreactivity (AlexaFluor 488, green), a majority of 

the CeLC pERK+ neurons were found in apposition to PACAP-immunoreactive fibers 

and varicosities (D - E).  Data represent mean cells/unit area ± SEM; IL, ipsilateral; CL, 

contralateral.  Scales bar = 50 µm 
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Figure 3.5.  PACAP receptor internalization and ERK activation participate in 

CeA-mediate nociceptive hypersensitivity.  Compared to vehicle (A), CeA PACAP 

infusion increased the number of activated phosphorylated ERK neurons (D, Cy3 red) 

which coincided with the increase in neuronal activity marker c-fos (G, J, blue).  

Pretreatments with MEK inhibitor PD98059 (B, E, H) or clathrin-mediated endocytosis 

inhibitor Pitstop 2 (C, F, I) blocked the ability of PACAP to induce ERK 

phosphorylation or c-fos in CeA neurons.  K, The increase in PACAP-stimulated ERK 

activation was attenuated approximately 60 - 70% by PD98059 (vehicle + PACAP = 

149.0 ± 33.1 cells vs PD98059 + PACAP = 41.9 ± 15.9 ± 6.7 cells, (bonferroni’s m.c. 

t(40) = 4.49, p = 0.0001) and Pitstop 2 (veh + PACAP = 149.0 ± 33.1 cells vs Pitstop2 

+ PACAP = 62.7 ± 14.2 cells, bonferroni’s m.c. t(40) = 3.50, p = 0.002), 

pretreatment*treatment(F2,40) = 4.67, p = 0.02.  L, Similarly, the increase in PACAP-

stimulated c-fos levels activation was attenuated approximately 50 - 60% by PD98059 

(cells/unit area, vehicle + PACAP = 148.5 ± 32.3 cells vs. PD98059 + PACAP = 59.8 ±  

18.7 cells, bonferroni’s m.c. t(40) = 3.62, p = 0.002) and Pitstop 2 (vehicle + PACAP = 

148.5 ± 32.3 cells vs. Pitstop2 + PACAP = 74.4 ± 15.8 cells, t(40) = 2.92, p = 0.02) 

pretreatment*treatment (F(2,40) = 3.46, p = 0.04).  Scale bar: 100 µm. Data represent 

mean cell number ± SEM; n = 7 - 8 per group.  Commensurate with ERK activation, 

CeA PACAP injection induced nociceptive hypersensitivity in decreasing thermal 

latency; both MEK and endocytosis inhibition blocked the PACAP-induced thermal 

sensitivity (M; latency in sec, Veh + PACAP = 7.1 ± 0.6 sec vs PD98059 + PACAP = 

11.2 ± 0.8, bonferroni’s m.c. t(41) = 5.05, p < 0.0001; Veh + PACAP = 7.1 ± 0.6 vs 



 

145 

Pitstop2 + PACAP = 9.8 ± 0.4, bonferroni’s m.c. t(41) = 3.31, p = 0.004) 

(pretreatment*treatment F(2,41) = 6.64, p = 0.003).   Expressed as percent change from 

baseline measures of each animal before drug administration, both MEK inhibition (% 

latency change from vehicle control;  PACAP = -37.8 ± 5.9% vs. PD98059 + PACAP = 

2.6 ± 4.8%, bonferroni’s m.c. t(41) = 5.58, p=0.0001) and  endocytosis inhibitor Pitstop 

2 (PACAP = -37.8 ± 5.9% vs  Pitstop + PACAP = -13.5 ± 4.9%, bonferroni’s m.c. t(40) 

= 3.36, p = 0.003) attenuated nociceptive hypersensitivity.  Data represent mean ± 

SEM, n = 7 - 8 per group. 
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Supplementary Figure 3.1. CCI increases PACAP transcript in the LPBn. 

Adult male rats underwent either CCI or sham surgery as described in text and 14 days 

following the indicated brain regions were harvested for quantitative PCR analysis.  

Tissue samples for each region were reverse transcribed and normalized against 18s 

RNA. In the LPBn was a significant increase in PACAP transcript (1.47 ± 0.1) fold 

change SEM) compared to tissues from sham animals ((1.00 ± 0.2), t(12) = 2.36, p = 

0.036). Demonstrating that this effect may be specific to the LPBn, there were no 

significant changes in PACAP transcript in the CeA (CCI: 0.96 ± 0.2 vs. sham: 1.00 ± 

0.3, t(12) = 0.12, p = 0.9), anterolateral BNST (CCI:1.06 ± 0.2 vs. sham: 1.00 ± 0.2, t(13) 

= 0.21, p = 0.8), or the solitary nucleus (NTS)(CCI: 1.00 ± 0.2 vs. sham: 0.90 ± 0.3, t(14) 

= 0.29, p = 0.8). There were no significant changes in PAC1 R transcript in the LPBn 

(CCI:1.15 ± 0.1 vs. Sham 1.00 ± 0.1, t(12) = 1.09, p = 0.3) or CeA (CCI:1.03 ± 0.1 vs. 

Sham: 1.00 ± 0.1, t(12) = 0.45, p = 0.7). n = 6-8 per group, dependent on viability of 

tissue sample during processing. Data represent fold change normalized to 18s; ± SEM.  
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Supplementary Figure 3.2.  The CeA demonstrates lateralization in CCI-induced 

increases in PACAP and pERK immunoreactivity.  CCI (14 days) preferentially 

increased PACAP immunoreactivity and pERK+ cells in the right CeA.  When 

thresholded PACAP immunoreactivity from Figure 3.2 was analyzed with respect to right 

or left CeA, there was a significant main effect of side (A; F(1,28) = 4.87, *p = 0.04), but 

no interaction between side and condition (F(1,28) = 1.63, p = 0.2), with greater PACAP 

immunoreactivity in the right CeA. There was a significant main effect of CCI for 

increased PACAP immunoreactivity (F(1,28) = 17.24, p = 0.0003). There was a similar 

bias in pERK+ cells in the right CeA with a trend for the effect of side (B; F(1,26) = 3.15, 

p = 0.09). There was also a main effect of CCI for increased pERK+ cells (F(1,26) = 

8.85, p = 0.006).  These results appear consistent with the lateralization of CeA pERK 

shown previously in persistent pain, and implicate PACAP in the lateralization of the 

nociceptive process. 
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Supplementary Figure 3.3.  CCI increases PACAP-EGFP expressing L3 and L5 

DRG neurons.  Similar to the L4 DRG (Figure 3.2), unilateral CCI increased the 

number of L3 and L5 DRG PACAP-EGFP+ neurons 14 days postsurgery (B, E) 

compared to sham controls (A, D).  L3 - L5 DRG peripheral sensory axons travel in the 

sciatic nerve with major contributions from L4.  The increase in CCI-induced PACAP-

EGFP+ neuron expression in L3 DRG (C; sham ipsilateral = 5.0 ± 2.1 cells vs CCI 

ipsilateral = 36.3 ± 4.3 cells, *p = 0.0002, n = 3 per group) and L5 DRG (F; sham 

ipsilateral = 4.5 ± 1.5 cells vs CCI ipsilateral = 37.5 ± 10.5 cells, n = 2 per group) was 

not as robust as that in L4 DRG.  Data represent mean cells/unit area ± SEM. 
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Supplementary Figure 3.4.   CeA and BNST PACAP fibers colocalize 

predominantly with vGlut2 immunoreactivity.  CeA (A) and BNST (D) tissues were 

dually processed for PACAP (Alexa Fluor 488, green) and vGlut2 (Cy3, red) to help 

establish neuronal transmitter identity.   CeA and BNST PACAP colocalized with 

glutaminergic marker vGlut2 as shown in their respective isolated merged signals (B, E; 

yellow).  From quantitative image analyses, there was minimal overlap between PACAP 

and vGlut1 or GAD (C, F; see Suppl. Figure 3.5).  Scale bar = 25 µm   
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Supplementary Figure 3.5.  PACAPergic fibers contact BNST pERK+ neurons in 

CCI.  As in the CeLC, CCI increased bilaterally the number of pERK+ neurons in the 

anterolateral BNST compared to sham controls (A - C).  The BNST pERK+ cells (Cy3, 

red) were in close contact with PACAP fibers (D,E; Alexa Fluor 488, green), implicating 

PACAP as a potential mechanism of CCI-induced nociceptive ERK signaling.   There is 

a main effect of CCI (C; F(1,8) = 15.3 p = 0.005, n = 3 per group).  Scale bar = 50µm. 
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Supplementary Figure 3.6.  CeA and BNST PACAP immunoreactivity does not 

colocalize with vGlut1 or GAD.  CeA (A, B) and BNST (E, G) tissues were dually 

processed for PACAP (Alexa Fluor 488, green) and vGlut (Cy3, red) or GAD (Cy3, 

red).  Unlike vGlut2 (Supplementary Figure 3.4), there was little overlap with the 

glutamatergic marker vGlut1 or GABAergic marker GAD in both regions as shown by 

the paucity of merged signals (B, D, F and H; yellow).  Quantitative analyses in Suppl. 

Figure 3.4.  Scale bar = 25 µm 
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Supplementary Figure 3.7.  Acute CeA infusions with inhibitors does not induce 

apoptosis.  To verify that the CeA infusions with drugs to block MEK (PD98059) or 

endocytic mechanisms (Pitstop 2) did not cause overt neurotoxicity and apoptosis to 

impact results, the treated tissues were also processed for nuclear Hoechst staining (A - 

C) and apoptotic marker cleaved caspase-3 immunoreactivity (D - F).  Hoechst nuclear 

staining confirmed there were no apparent signs of substantial cell loss in any of the 

treatment conditions; further, there were no signs of any ongoing apoptosis in the CeA.  

Cleaved caspase 3+ cells were found sporadically throughout the brain; G, an example of 

a cleaved caspase 3+ hippocampal neuron at the same magnification. Scale bar = 50µm 
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 Chapter 4.  

General Discussion 

 

 The studies in this dissertation were aimed to investigate the role of CeA PACAP 

signaling in mediating the emotional components of pain.  Severe emotional 

dysregulation often co-exists in patients with chronic pain, as evidenced by the high rates 

of comorbid affective disorders including post-traumatic stress disorder (PTSD), 

generalized anxiety disorder (GAD), and panic disorder (PD).  Chronic pain carries an 

enormous personal, societal, and economic burden and in the presence of comorbid 

affective disorders, the degree of disability and suffering in these individuals becomes 

greatly amplified.  Moreover, the presence of an affective disorder may not only 

exacerbate pain, but may also act to reinforce the underlying mechanistic processes of 

chronic pain in a self-perpetuating cycle.  As these mechanisms are not well understood, 

studies elucidating the key signaling molecules and neural circuits in this system may 

offer insights to the pathogenesis of these disorders and provide therapeutic approaches to 

break the cycle of chronic pain and affective disorders.  To this end, the studies in this 

dissertation find evidence that PACAP signaling within the parabrachio-amygdaloid tract 

may be a key mediator of the emotional components of pain.   
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4.1. Insights into PACAP neurocircuits and plasticity 

PACAP expression in the spino-parabrachioamygdaloid tract 

 In the course of ongoing investigation, our laboratory found dense PACAP fiber 

immunoreactivity in the CeLC and CeL regions of the central amygdala (CeA).  From in 

situ hybridization data,  there appeared to be little endogenous PACAP expression within 

the CeA, indicating that the observed immunoreactivity reflected axonal fiber projections 

of undetermined external origins (Piggins et al., 1996).  Using anterograde tracing with 

10 kDa BDA and excitotoxic lesion studies, we showed that the vast majority CeA 

PACAP immunoreactivity originated from the LPBn (ure 2.3, 2.4).  This finding is of 

particular interest because sensory input converges on the LPBn before projecting to the 

CeLC.  Nociceptive information from the entire body and face are relayed by the spinal 

cord and sensory trigeminal system, respectively, via second order sensory afferents onto 

LPBn neurons.  Additionally, the LPBn also receives visceral input from the vagal nerve 

via relays from the NTS.  Given the involvement of the LPBn in sensory systems, the 

expression of PACAP in the LPBn is suggestive of a role in the processing of nociceptive 

stimuli.   

 The LPBn has major projections to the CeLC, anterolateral BNST (BNSTal), and 

the VMH.  Interestingly, LPBn-BNST projections are either direct or via collaterals from 

axons ultimately projecting to the CeLC (Sarhan et al., 2005).  We found that lesioning 

the LPBn resulted in a substantial loss (~70%) of PACAP expression within the 

ipsilateral BNST, similar to the findings within the CeA (Figure 2.4).  Although the 

source of the remaining BNST PACAP (~30%) was not investigated, the residual 
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PACAP could have originated from the PVH or dorsal vagal complex, or represented 

endogenous BNST expression (Hammack et al., 2009; Kozicz et al. 1998).  Although not 

examined directly in this work, PACAP in the VMH was previously found to originate 

from the LPBn (Resch et al., 2013).  In projecting to the CeLC, BNST and VMH, the 

population of LPBn PACAP neurons may be components of a much enlarged network 

and behave as a sensory distribution hub, relaying discrete information to these three 

regions to coordinate the behavioral and physiological responses to aversive sensory 

input.  Along this line, the effect of PACAP signaling in each of these regions has now 

been investigated.  PACAP infusion directly into the VMH resulted in hypophagia and 

increased thermogenesis (Resch et al., 2011).  BNST PACAP infusion produces anxiety-

like behaviors, hypophagia, weight loss, and HPA axis activation (Hammack et al., 2009; 

Roman et al. 2014; Kocho-Schellenberg et al., 2014; Lezak et al., 2014).  Whereas, CeA 

PACAP was demonstrated in the current studies to produce nociceptive hypersensitivity 

and anxiety-like behavior, CeA PACAP signaling has also recently been reported to 

produce a delayed hypophagia and weight loss (Figure 2.6; Iemolo et al., 2015).  

Interestingly, PACAP signaling in CeA, BNST, and VMH appear to initiate various 

combinations of hypophagia, anxiety-like behavior, and nociceptive hypersensitivity.  

Hence, these responses may represent a behavioral and physiological phenotype that is 

characteristic of sustained or enhanced LPBn activity, as might occur following 

prolonged nociceptive input with chronic pain. 

 Further, PACAP expression in nociceptive pathways is not restricted to LPBn-

CeLC projections, as it is found all along the spino-parabrachio-amygdaloid pathway 
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(Figure 4.1).  PACAP is found within peripheral afferent terminals and within a subset of 

peptidergic DRG cells that also express CGRP and the precursor of substance P (Mulder 

et al., 1994; Usoskin et al., 2015).  PACAPergic fibers from these DRGs project to the 

dorsal horn, and dense PACAP immunoreactivity is found in lamina I/II of the spinal 

cord (Vizzard, 2000).  At the next step of this pathway, neurons in lamina I/II have been 

reported to express PACAP, and although yet to be established, these neurons may 

represent the second-order spinal projection neurons that relay nociceptive information to 

the LPBn (Pettersson et al., 2004).  In our experiments utilizing PACAP-EGFP mice, we 

confirmed PACAP-EGFP expression in a subset of DRG neurons and consistently found 

PACAP-EGFP expressing cells within lamina I/II of the spinal cord (Figure 3.2).  Our 

findings are in agreement with prior work and demonstrate that PACAP is expressed at 

all levels of the spino-parabrachio-amygdaloid pathway.  These PACAP expression 

patterns raise the possibility of PACAP-expressing neurons synapsing onto other PACAP 

neurons (PACAP to PACAP projections) all along the spino-parabrachio-amygdaloid 

tract.  Mechanistically this system would appear plausible, as PACAP signaling was 

found to exhibit positive autoregulation in the sympathetic system, with PACAP receptor 

activation driving more PACAP expression (Braas et al., 2007).  Additionally, the 

existence of PACAPergic fibers synapsing on PACAPergic neurons has been suggested 

in the enteric nervous system (Nagahama et al., 1998).  Further, infusion of PACAP 

appears pro-nociceptive at several levels of the spino-parabrachio-amygdaloid pathway 

(Table 4.1).   Potentially this system could also involve visceral sensory input, as there is 

a substantial population of PACAP neurons within the NTS, corresponding to the 
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location of the primary relay of visceral information to the LPBn.  The possibility of 

PACAP expression at every level of the spino-parabrachio-amygdaloid pathway is 

significant, as it would identify a signaling molecule used along an entire pathway.  

Further, it might indicate that PACAP expression could mark a set of neural circuits 

within the CNS that integrate aversive sensory information with emotional salience.  

Intriguingly, PACAP is the mostly highly conserved peptide in its family and appears to 

be present along one of the more phylogenetically ancient spino-parabrachial nociceptive 

pathway, in comparison to the more evolutionarily recent neospinothalamic pathway 

(Almeida et al., 2004; Sherwood et al., 2000).  Given what is known about its function, 

PACAP-expressing neural circuits may function in the generation of a primitive, whole-

body response to particularly averse and long-lasting challenges, such as prolonged pain.   

 

CEA PACAP is coexpressed with CGRP 

 In addition to PACAP, the CeA also expresses diverse neuropeptides and 

markers, including somatostatin (SST), CRH, parvalbumin (PV), cholecystokinin (CCK), 

calbindin, calretinin and VIP, all of which display characteristic unique or overlapping 

expression patterns (Ehrlich et al., 2009; Kemppainen & Pitkanen, 2000).  The CeA 

PACAP fiber immunoreactivity is confined to the CeLC and CeL, and the PACAP 

terminals form perisomatic basket-type innervations of amygdala neurons.  We found no 

overlap between PACAP and somatostatin or CRH immunoreactivity in the CeA; the 

distribution of each peptide appeared to display non-overlapping, but intermingled 

expression patterns (Figure 2.1).  However, co-labeling with CGRP and PACAP resulted 



 

165 

in fairly extensive colocalization in the CeA (Figure 2.2).  CGRP expression in the CeLC 

has been previously shown to originate from the LPBn; thus PACAP and CGRP appear 

to demonstrate high levels of coexpression within LPBn-CeLC projections (Dobolyi et 

al., 2005).  Similarly, within the BNSTal, there is a substantial overlap of PACAP and 

CGRP immunoreactivity, suggesting that this too is part of the LPBn projections.  This 

latter finding was confirmed, as LPBn lesions produced a concomitant loss of CGRP 

immunoreactivity with PACAP in both the BNST and CeLC (Figure 2.2).   

 CGRP signaling could play a similar or complementary role to PACAP in the 

generation of stress-related behavioral responses in the limbic system.  CGRP signaling 

can promote unconditioned fear, as CGRP infusions into the amygdala produced an 

unconditioned freezing response before any aversive stimulus was presented 

(Kocorowski & Helmstetter, 2001).  Further, pretreatment with the CGRP receptor 

antagonist, CGRP(8-37) in the amygdala disrupted cued but not contextual fear 

conditioning.  In the BNST, infusion of CGRP induced anxiety-like responses on the 

elevated plus maze and produced a dose-dependent enhancement of startle (Kelly et al., 

2011).  This effect appeared to be dependent on CRH signaling, since either pretreatment 

with CRHR1 antagonist or virally-mediated siRNA knockdown of CRH expression, 

blocked the ability of BNST CGRP to enhance startle (Sink et al., 2013). CGRP is well 

known as a peripheral modulator of nociceptive transmission and this role may hold true 

within the brain.  Application of CGRP to amygdala sections increases excitatory 

postsynaptic currents (EPSCs) on PBn-CeLC synapses, increasing amplitude but not the 

frequency of miniature EPSCs (Han et al., 2010).  Further, CeA administration of CGRP 
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into awake rats was found to increase audible and ultrasonic vocalizations and produce 

mechanical hypersensitivity.  CeA CGRP may also play a role in feeding behavior.  

Using optogenetic and pharmacogenetic manipulation of CGRP-expressing PBn-CeLC 

projections, activation of these projections strongly suppressed appetite.  Conversely, 

inhibition of CGRP LPBn-CeLC projections increased food intake in situations when 

mice normally do not eat, and prevented starvation after agouti-related peptide (AgRP) 

neuronal ablation, implicating CGRP LPBn-CeLC signaling may be connected to the 

principal feeding circuits within the hypothalamus (Carter et al., 2013).  Interestingly, 

activation of CGRP LPBn neurons was sufficient to induce conditioned taste aversion in 

the absence of an anorexigenic substance, and inhibition of these same neurons 

attenuated conditioned taste aversion to lithium chloride (Carter et al., 2015).  From these 

studies, CGRP LPBn-CeLC projections are thought to encode a type of visceral malaise 

signal.  In sum, the effects of CGRP in the CeA bare some striking similarities to those of 

PACAP, inducing anxiety-like behaviors, nociceptive hypersensitivity, and hypophagia.   

 Given the overlap in expression and functional similarities of PACAP and CGRP 

in the CeLC, these two peptides might play complementary roles.  In mammalian brains 

it has been found that generally when two or more neuropeptides are coexpressed within 

the same neuronal population, they are also co-stored within the same large dense core 

vesicles (Merighi, 2002).  Co-storage would have functional implications; first, it would 

necessitate co-release of both neuropeptides, allowing for interactions between the 

different peptides, and second, it would suggest that regulation of these systems would be 

most readily accomplished through altering rates of synthesis.  Neuropeptides can often 
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work in a synergistic manner.  One of the best-known examples of this is the potentiation 

of CRH by vasopressin in the pituitary gland, where the effect of vasopressin greatly 

increases the amount of adreno-corticotropin releasing hormone (ACTH) that is released 

by CRH binding (Merighi, 2002).  Studies of the ophthalmic artery, suggest the 

possibility of a synergistic interaction between PACAP and CGRP.  In the porcine 

ophthalmic artery, both PACAP and CGRP each induced a concentration dependent 

vasorelaxation, but when both peptides where administered together the amount of 

relaxation substantially increased, beyond what would be predicted individually (Elsas & 

White, 1997).   

 

Pain-related plasticity of PACAPergic neural circuits 

 To examine if there is increased PACAP signaling during persistent pain, we 

performed a set of experiments using a CCI model of neuropathic pain.  At 14 days 

following CCI surgery, PACAP transcript was increased in the LPBn (Figure s3.1).  This 

effect appeared to be specific to the LPBn, as no other CNS regions examined had 

significant alterations in expression.  Increased PACAP transcript levels at 14 days 

corresponded to an increase in PACAP immunoreactivity in the CeA, indicating 

increased PBn PACAP biosynthesis and increased axonal transport of PACAP peptide to 

CeA terminals (Figure 3.1).  Complementary to these studies, tissue from transgenic 

PACAP-EGFP mice was analyzed following CCI.  In agreement, 14 days following CCI 

there was a bilateral increase number of PACAP-EGFP+ cells in the LPBn, compared to 

sham surgery (Figure 3.1).  These results provide strong evidence that CCI increases 
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PACAP signaling in LPBn-CeLC circuits and support PACAP involvement in chronic 

pain-related plasticity. 

In addition to the LPBn-CeLC, CCI induced PACAP expression along multiple 

neural sites within the spino-parabrachial amygdaloid pathway.  Following CCI, PACAP-

EGFP mice displayed marked PACAP-EGFP expression within the proximal sciatic 

nerve and in L3-L5 DRG ipsilateral to the injury (Figure 3.2).  This is consistent with a 

number of previous studies reporting enhanced PACAP expression in peripheral nerve 

and DRG following injuries including axotomy, injection of complete Freund’s adjuvant, 

L5 nerve transection, or capsaicin treatment (Jongsma et al., 2000; Mabuchi et al., 2004; 

Mulder et al., 1999; Nemeth et al., 2006; Pettersson et al., 2004).  In the spinal cord, we 

identified prominent PACAP-EGFP fibers in the dorsal columns/medial lemnisicus tract 

that give off collaterals into lamina III-V (Figure 3.2).  This pathway likely corresponds 

to Aβ fibers conveying non-noxious sensory information to the gracile nucleus.  The 

presence of PACAP within this pathway may be a consequence of its role as a 

prosurvival/injury response factor.  Interestingly, it has been proposed that during 

neuropathic pain, the sprouting of these collateral Aβ fibers from lamina III-V into 

lamina I-II may explain the presence of allodynia (Mannion et al., 1996; Woolf et al., 

1992).  In this model, as a consequence of pain-related sprouting, lamina I neurons would 

now receive non-noxious sensory input, and result in innocuous sensory stimuli leading 

to the perception of pain to normally non-noxious stimuli. However, this interpretation 

has been questioned because of the development of new more precise techniques, raising 

questions about peripheral sprouting of Aβ lamina III-V fibers as a mechanism of 
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sensitization (Hughes et al., 2003; Zhang et al., 2015).  In our studies, the lack of 

PACAP-EGFP fibers in lamina I in either normal conditions or following CCI is 

surprising and might suggest a specific role in non-noxious sensory transmission in the 

periphery.  However, under normal conditions PACAP immunoreactivity has been 

repeatedly found primarily within lamina I and not in lamina III-V (Hannibal, 2002; 

Vizzard, 2000).  The lack of PACAP within lamina I could simply be a result of  native 

EGFP detection limits or differences in cellular mechanisms between different sized 

neuronal fibers and causing EGFP to be found only in larger neuronal fibers.  The 

increased expression of PACAP-EGFP along multiple levels of the spino-parabrachio-

amygdaloid pathway suggests PACAP signaling might contribute to pain-related neural 

transmission and plasticity within distinct nociceptive pathways. 

 All experiments that examined alterations in PACAP expression were performed 

at 14 days following CCI surgery to allow comparisons across different experiments.  

There were several factors in the determination of this time point.  The first is that it 

allowed sufficient time for recovery from surgery, such that the cutaneous incision would 

be healed, and motor deficits could be largely resolved.  This time point also corresponds 

to a time following CCI when hypersensitivity behaviors are fully developed.  Finally, 

given the nature of stress stimuli required in our previous studies, several days of 

persistent pain may be required for the regulation of PACAP in this system.  

Upregulation of PACAP and PAC1R transcript in the BNST was found following 7 days 

of stress, but no change following one acute stressor exposure (Hammack et al., 2009; 

Lezak et al., 2014).  Further, although PAC1R deficient mice have normal stress response 
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to acute restraint stress, longer periods of stress (14-21 days) resulted in a significant 

attenuation of HPA axis activation and stress-induced hypophagia (Mustafa et al., 2015).  

Thus, the induction of PACAP expression and signaling might occur at later time points 

and require a prolonged stimulus.  Future characterization at different time points is 

necessary to determine whether longer durations of pain are required to induce PACAP 

expression in the PBn-CeLC.   Interestingly, the development of anxiodepressive 

behaviors in rats with CCI follows a very gradual timeline, appearing over the course of a 

number of days, in comparison to hypersensitivity which has more immediate 

development in the hours following surgery (Alba-Delgado et al., 2013).  The biological 

mechanisms that could be governing these changes occurring in the timeframe of several 

days and weeks following initial onset are not well understood.  Given the delayed onset 

of many pharmacological antidepressant treatments (Lam, 2012), the factors that mediate 

neural circuit plasticity over longer time courses might be those most valuable for 

treating psychiatric disease.   

 

4.2. The role of PACAP in emotional behaviors 

PACAP as a regulator of anxiety-like behaviors 

 The amygdala plays a principal role in assigning emotional salience to external 

stimuli and coordinating the behavioral and physiological responses to these triggers.  As 

PACAP expression corresponds to a direct nociceptive input into the amygdala, this 

suggests that CeA PACAP could have a role in modifying the attachment of emotional 

salience to nociceptive stimuli.  In agreement with this idea, we found CeA PACAP 
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infusion produced an aversive emotional response, as reflected by an increase in anxiety-

like behaviors on the elevated plus maze (Figure 2.6).  These findings are consistent with 

two prior studies suggesting CeA PACAP signaling can produce negative/defensive 

emotional behaviors.  In the shock-probe fear/defensive burying task, rats are placed in 

an arena with an electrified probe and allowed to explore freely.  After freely 

encountering the probe and receiving an electric shock, the resulting behavioral responses 

are recorded and classified into stereotypical categories.  CeA PACAP infusion created a 

shift towards passive coping strategies characterized by increased immobility time and 

avoidance, in contrast to active behavioral strategies like burying the probe with bedding 

(Legradi et al., 2007).  Another study, found that CeA PACAP signaling may also 

regulate feeding behavior.  Infusion of PACAP in the CeA produced a dose-dependent 

decrease in food intake and resulted in weight loss through mechanisms that required 

melanocortin and TrkB signaling (Iemolo et al., 2015).  In aggregate, these data suggest 

that CeA PACAP signaling appears produce an emotional state characterized by 

increased passive behaviors, decreased exploratory behaviors, and hypophagia. 

 The role of CeA PACAP signaling should be interpreted in the context of the 

neural circuitry of the larger extended amygdala complex that includes the BLA, CeA, 

BNST, and other less studied regions, such as the substantia innominate.  While the terms 

fear and anxiety are often used interchangeably, on the basis of neural circuitry there may 

be rationale for the separation of these into two distinct entities (Davis et al., 2010; 

Walker et al., 2009).  Within the extended amygdala, the CeA is thought to a have a 

greater role in fear responses, which are short phasic responses, and likely best 
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recapitulated in cued fear conditioning and fear-potentiated startle paradigms.  On the 

other hand, the BNST is thought to mediate responses primarily to longer-duration, 

diffuse, or unpredictable threats, and which are more akin to anxiety.  Paradigms such as 

light or CRH-enhanced startle, and learned helplessness were found to be dependent on 

BNST activity (Hammack et al., 2004; Davis et al., 2010; Walker et al., 2009).  With this 

interpretation it might suggest that the emotional responses found following CeA PACAP 

might be related to ongoing fear behaviors or a decreased threshold in the generation of 

the fear response.  Detailed analysis of the behaviors of CeA PACAP on elevated plus 

maze revealed that total locomotor activity was reduced; however this was not the result 

of increased spontaneous freezing responses (a fear response), but rather a selective 

decrease in the choice to enter the open arms.  The traditional extended amygdala model 

is complicated by the fact that previous studies have relied largely on lesion techniques, 

where often the entire CeA was lesioned.  In phasic fear responses, the CeM appears 

critical as an output to brainstem targets to drive fear responses.  The role CeLC and CeL 

is less straightforward, although both areas have prominent projections to the CeM which 

are thought to be important in the release of inhibitory signals on the CeM, to allow the 

expression of fear behaviors through CeM to brainstem projections (Ciocchi et al., 2010; 

Haubensak et al., 2010).  Additionally prominent projections of the CeL and CeLC to the 

BNST have been postulated to be important in the transition from phasic to sustained fear 

(Walker et al., 2009).  A population of CRH neurons within the CeL is the source of the 

majority of CRH fiber immunoreactivity within the BNSTal, and CeA-BNST CRH 

signaling within is thought to be a mediator of conditioned anxiety-like behaviors.  As 
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such, CeA PACAP could produce anxiety-like responses through enhanced neuronal 

activation or CRH release in the BNST (Beckerman et al., 2013).  Previous studies within 

the PVH demonstrate that PACAP can drive CRH expression (Agarwal et al., 2005).  In 

the future, determining which neurons are being activated in the CeLC and CeL by 

PACAP, and defining their projections will be crucial to understanding the role of 

PACAP within these neural circuits and the extended amygdala.   

 One intriguing possibility is that CeA PACAP signaling could lead to plasticity 

within fear circuitry that conveys the unconditioned stimulus (US).  Compared to the 

BLA, the contribution of the PBn in fear conditioning has been relatively unexplored; 

however it has been recently found that following fear conditioning, there is a synaptic 

potentiation of both BLA-CeLC and LPBn-CeLC pathways (Watabe et al., 2013).  This 

appears to be accomplished by both pre- and postsynaptic mechanisms. In addition, there 

was a correlation between BLA-CeLC and LPBn-CeLC synaptic potentiation suggesting 

a heterosynaptic interaction between these two pathways.  In a follow up study, 

inactivation of the LPBn during acquisition of fear conditioning decreased freezing to the 

conditioned stimulus (CS) during testing.  Further, optogenetic activation of LPBn-CeLC 

projections could be paired with a tone and resulted in increased freezing to the 

presentation upon presentation of the tone, suggesting that LPBn-CeLC activation could 

effectively act as a US (Sato et al., 2015).   

 Given the presence of PACAP within LPBn-BNST projections, BNST PACAP 

signaling might also have a role in the emotional components of pain, similar to CeA 

PACAP.   Our previous work has extensively characterized BNST PACAP as it relates to 
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the behavioral and physiological consequences to chronic stress (Hammack et al. 2009; 

Roman et al., 2014; Kocho-Schellengberg et al., 2014, Lezak et al., 2014).  Situations of 

chronic stress can potentiate pain experience, such as in stress-induced hyperalgesia 

(McEwen & Kalia, 2010).  Thus, during chronic stress the BNST might enhance pain 

experience through direct or indirect influences on descending pathways to modulate 

pain.  Further, the existence of the ascending LPBn-BNST projections and that some of 

these projections as collaterals of nociceptive LPBn-CeLC projections, suggests a 

possible role for the BNST in ascending nociceptive modulation.  Unlike the LPBn-CeA 

projections, there have been sparse investigations into the contribution of LPBn-BNST 

projections as they relate to nociception.   An electrophysiological study of anesthetized 

rats found that over a quarter of BNST neurons were excited by noxious stimulation, and 

that this afferent pathway was not a result of indirect input from the amygdala (Casada & 

Dafny, 1992).   

 

PACAP signaling in pain-related behaviors 

 Since neuropathic pain increased PACAP expression in the CeLC, we wanted to 

determine if this heightened PACAP signaling in the CeLC contributed to pain-related 

behaviors.  To examine this, the PACAP receptor antagonist PACAP6-38, a PAC1 and 

VPAC2 receptor antagonist, was injected into the CeA following CCI to examine its 

abilities to attenuate pain-induced hypersensitivity or emotional behaviors.  The CCI 

model has been shown to heighten anxio-depressive behaviors including anxiety-like 

behaviors on the elevated plus maze and increased depressive behaviors in open field and 
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forced swim tests (Roeska et al., 2008; Zeng et al., 2008).  Fourteen days following 

surgery, CeA infusion of PACAP6-38 was able to block heightened anxiety-like 

behaviors in the open field in the CCI condition (Figure 3.3).  There was no effect of 

PACAP6-38 alone on rats with sham surgery, suggesting that ongoing CeA PACAP 

signaling has a role in modulating behavior in the setting of pain, but does not modulate 

behaviors under normal conditions.  Similarly, CeA infusion of PACAP6-38 resulted in 

an attenuation of thermal hypersensitivity in the CCI afflicted hindpaw, but did not alter 

response latency for either the contralateral hindpaw, or for either hindpaws in the sham 

condition (Figure 3.3).  A lack of thermal sensitivity in either condition implies that CeA 

PACAP signaling may modulate sensitivity in situations of persistent pain, but may not 

alter thresholds under normal conditions.  The selective involvement of PACAP in states 

of persistent pain mimics the involvement of several neurotransmitter systems in the CeA 

that selectively contribute to increased CeA activity during pain.   Arthritic pain increased 

expression of metabotropic glutamate receptor 1 (mGluR1) in the CeA; a selective 

mGluR1 antagonist reduced synaptic transmission in the CeA from arthritic animals but 

had no effect in the CeA of control animals (Neugebauer et al., 2003).  Blockade of the 

CGRP1 receptor in the CeA attenuated enhanced synaptic transmission from arthritic 

animals, reducing EPSC amplitude and spike frequency, as well as attenuating 

heightened spinal reflexes and ultrasonic vocalizations, but had no effect in control 

animals (Han, et al., 2005).  Thus, enhanced PACAP signaling might be one of a  

collection of molecular and synaptic changes in the CeA during pain that influences pain-

related behaviors. 
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A mechanism of CeA PACAP signaling via ERK 

 Among intracellular signaling cascades, enhanced ERK signaling within the 

CeLC appears to have prominent roles in pain-related plasticity.  At 4 hours following 

formalin injection into the hindpaw or 2 hours following acid-induced muscle pain, an 

induction of pERK+ cells was found in the CeLC (Carrasquillo & Gereau, 2007; Cheng 

et al., 2011).  Consistent with these observations we found an increase in pERK+ cells in 

the CeLC 14 days following CCI surgery (Figure 3.4).  The induction of CeLC ERK 

signaling in several different pain models signifies that ERK signaling is likely a pain 

signature, and not a response to any one model.  Additionally, the presence of increased 

ERK signaling at 14 days following CCI would suggest that ongoing ERK signaling in 

the CeA may be a component of persistent pain, rather than just part of the initial 

plasticity.   

Further, we found evidence that PACAP signaling may mediate CeLC ERK 

activation.  In cell culture, PACAP signaling in primary neuronal or HEK EGFP-PAC1R 

cells results in potent and sustained ERK activation (May et al., 2010; May et al., 2014).  

In examining the CeA from CCI rats, a majority of pERK+ cells were immediately 

apposed to PACAP-immunoreactive fibers.  CeA PACAP administration resulted in a 

robust induction of pERK+ cells, demonstrating that CeA PACAP signaling activates 

ERK in the amygdala neurons (Figure 3.5).  Further, ERK activation was found to be 

necessary for CeA PACAP to alter nociception, as pretreatment with a MEK inhibitor 

abolished PACAP-induced thermal hypersensitivity.  One remaining question is whether 
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PACAP signaling is the sole mediator of pain-related activation of ERK.  This appears 

unlikely as several other candidates, including signaling through NMDA, mGluR, and 

reactive oxygen species (ROS) have been found to contribute to ERK activation in the 

CeLC (Cheng et al., 2011; Li, Ji, & Neugebauer, 2011).  In this view, ERK signaling 

appears to be a site of convergence for multiple signaling systems in the CeLC to allow 

for diverse modulation and the dynamic regulation of amygdalar circuits.   

 One prominent mechanism through which PACAP may activate ERK is through 

the internalization of PACAP receptors.  Internalization of G-protein coupled receptors 

(GPCRs) was once thought to be primarily a means of receptor desensitization; however, 

more recent studies have suggested GPCR internalization may play a role in receptor 

resensitization and even act as an alternative form of intracellular signaling (Ferguson, 

2001; Sorkin & von Zastrow, 2009).  The most common form of GPCR internalization of 

signaling endosomes is dependent on the binding of β-arrestin scaffolds and the 

formation of clathrin-coated pits, to result in a signaling endosome (Ferguson, 2001; 

Sorkin & von Zastrow, 2009).  Using an EGFP-PAC1 receptor cell line, PACAP/PAC1 

receptor binding and signaling was shown to induce PAC1 receptor internalization, which 

was inhibited by blocking either clathrin (Pitstop) or dynamin I/II (Dynasore) (Merriam 

et al., 2013).  Blocking internalization of the PAC1 receptor was found to strongly reduce 

PACAP-mediated ERK activation.  However, the induction of ERK signaling was not 

completely blocked by inhibiting internalization, as a further reduction of ERK signaling 

was affected by blocking phospholipase C/diacylglycerol/protein kinase C signaling.  

These results demonstrate that PAC1 receptor-mediated ERK activation is accomplished 
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via multiple mechanisms through both internalization/cytosolic signaling and plasma 

membrane signaling (May et al., 2014).  The current work extends these findings in vivo 

and suggests that receptor internalization may occur with CeLC PACAP nociceptive 

signaling.  Blocking endocytosis by using the clathrin inhibitor, Pitstop, attenuated the 

ability of PACAP to activate ERK in the CeA in parallel with a reduction in CeA 

PACAP- induced thermal hypersensitivity (Figure 3.5).  This is the first piece of evidence 

to suggest that PACAP receptors may internalize in vivo and demonstrates a possible 

functional role of this process.  However, an important limitation in this line of studies is 

that Pitstop is not selective to the PAC1 receptor and results in the global inhibition of 

clarthrin-mediated endocytosis.  However, as there were no changes between vehicle and 

Pitstop-treated control animals that did not receive PACAP, it can be reasonably 

concluded that clathrin-mediated endocytosis is required for CeA PACAP signaling to 

fully induce pERK and behavioral hypersensitivity.  To determine conclusively if this 

was a direct effect of the PAC1 receptor would likely require the genetic modification to 

generate a PAC1 receptor incapable of internalization.  One possible role for PAC1 

receptor internalization is that it may provide a mechanism to allow sustained ERK 

activation.  This would be consistent with the findings that in comparison to some other 

neuropeptides, PACAP mediated effects have a more gradual onset but are much longer 

in duration (Shimizu et al 2004) .  As such, PACAP released in the CeA during chronic 

pain might result in a prolonged excitability and heightened plasticity of CeA neurons 

and lead to the strengthening of amygdalar nociceptive and emotional-salience circuits.   
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 One fundamental remaining question is whether CeA PACAP signaling is specific 

to nociception.  Recent experiments utilizing genetic circuit manipulations have resulted 

in the hypothesis that specific subsets of amygdala neurons and their connections may not 

encode specific modalities but rather encode a positive or negative emotional valence 

(Namburi et al., 2015; Redondo et al., 2014).  In this view, CeA PACAP signaling would 

likely be a circuit carrying negative emotional valence, and nociceptive stimuli would be 

one of numerous stimuli that result in PACAP release.  Given that the vast majority of 

CeA PACAP originates from the LPBn, the decisive factor would be determining the 

modality of stimuli that activates the LPBn.  Prior studies which suggest the existence of 

amygdalar circuits for positive and negative valence have been focused on the BLA, a 

region which receives highly polymodal and processed nociceptive information (Namburi 

et al., 2015; Neugebauer et al., 2004; Redondo et al., 2014).   The LPBn, in contrast, 

receives direct nociceptive information from lamina I of the spinal cord and visceral 

inputs from the NTS.  The contrast between the input of BLA compared to the LPBn is 

illustrated by its role in fear conditioning. The BLA is thought to receive afferents related 

to both the US (electric shock) in combination with a host of other environmental sensory 

information (light, tone, etc.). The PBn-CeLC projection is only thought to convey the 

only the US (electric shock), likely due to aversive/nociceptive nature (Paré et al., 2004; 

Sato et al., 2015).  However, a recent study found that the CGRP expressing LPBn-CeLC 

projections (which overlap with PACAP projections) can convey a visceral malaise 

signal to strongly inhibit feeding behavior, such as those induced by lithium chloride 

(Carter et al., 2015).  Even though these results were argued not to reflect nociceptive 
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activation, this was not tested directly (Carter et al., 2013).  Regardless, CGRP LPBn-

CeLC activation can be regarded as a highly aversive interoceptive stimulus.   Further, it 

remains to be determined if inflammatory factors could also result in the activation of 

LPBn-CeA circuits via the NTS.  Although much remains to be determined, CeA PACAP 

signaling may be encoding a negative valence that is associated with a subset of highly 

aversive sensory stimuli.   

 

4.3. Summary 

 PACAP has been well established as neuropeptide that regulates homeostatic 

function.  Several recent lines of research have demonstrated that PACAP signaling 

potently activates both physiological and behavioral responses to stressors and that these 

responses are likely due to PACAP signaling in limbic regions.  Additionally, it had been 

previously established that PACAP might have important roles in nociceptive 

transmission and sensitization in peripheral systems.  In this work, the role of PACAP in 

nociceptive processes was found to extend centrally into limbic regions via the spino-

parabrachio-amgydaloid pathway.  Through this pathway, PACAP functions to potentiate 

many of the emotional components of pain.   

 This work has several key limitations.  The PBn was found to be a substantial 

source of CeA PACAP, thus the effects of infusions of PACAP or PACAP(6-38) on both 

pain and anxiety-related behaviors were attributed to nociceptive PBn-CeA projections. 

However, it cannot be ruled out that PACAP signaling from sources other than the PBn 

or locally within the amygdala could be contributing to these effects.  Additionally, all 
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infusions were performed bilaterally; however our results and others have suggested that 

there may be a lateralization of the CeA in pain processing.  Thus, comparisons of 

injections into the left and right CeA could be performed to explore this area.  A second 

limitation comes from the use of hypersensitivity assessments to measure pain-related 

behaviors. While hypersensitivity assessments may provide a well-used indicator of 

evoked pain-responses, often a larger problem in chronic pain sufferers is the presence of 

spontaneous pain.  However, spontaneous pain often been particularily difficult to model 

in rodents; hence careful design of experiments assessing spotaneous pain behaviors may 

be needed to address these questions.  Finally, while the Pitstop experiments suggest that 

receptor internalization may be required for CeA PACAP-induced thermal 

hypersentivity, the studies did not specifically address whether PAC1 receptor 

internalization was the primary driver of the nociceptive effects or whether the response 

was a consequence of other interacting receptor systems.  Future experiments that 

directly interfere with PAC1 receptor internalization would address this possibility. 

 The results of this work raise a number of important new questions.  Heightened 

levels of PACAP expression were observed 14 days following CCI in the LPBn-CeLC 

pathway.  The time course of induction and the exact nature of the challenge, whether it 

is specific to pain or aversive stimuli, all remain to be determined.  We found that the use 

of PACAP-EGFP mice could offer a powerful tool for investigating these questions.  The 

recent creation of PACAP-Cre mice allows for a whole new set of investigations 

examining circuit specific functions using optogenetic and pharmacogenetic 

manipulations.  The behavioral and physiological role of PACAPergic projections from 
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the LPBn to the CeLC, BNST, and VMH can now be individually stimulated and 

inhibited to allow characterization. PACAPegeric PBn-CeA projections can be directly 

examined by injecting a virus containing a floxed channelrhodopsin directly into the PBn 

of PACAP-Cre mice.  By optogentically stimulating the terminals of CeA fibers, the 

effects of activating only PACAP containing PBn-CeA projections can be examined for 

its effects on pain and anxiety-related behaviors.  In a similar manner, by inhibiting these 

same fibers in a model of chronic pain, the contributions of the PBn-CeA projections can 

be determined in pain-related behavioral changes.  The use of PACAP-specific viral 

tracting will allow for the deciphering of PACAP pain and stress circuits with better 

prescision and resolution in future functional studies.  
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4.4. Figures 

Figure 4.1. Schematic of known pain-related plasticity of PACAP expression within 

the spino-parabrachioamygdaloid pathway 
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Region 
 

Compound Behavioral / physiological result 

Amygdala PACAP 
 
 
 
 
PACAP(6-38) 

Thermal sensitivity (Missig et al., 2014) 
Anxiety-like behavior (Missig et al., 2014) 
Food intake (Iemolo et al., 2015) 
Passive-behavior responding (shock-probe) 

(Legradi et al., 2007) 
Pain-induced thermal hypersensitivity 

(unpublished observations) 
Pain-induced anxiety-like behavior 

(unpublished observations 
Spinal Cord PACAP 

 
 
 
 
 
 
 
 
 
 
PACAP(6-38) 

Thermal sensitivity (Ohsawa et al. 2002) 
Aversive licking/scratching behavior (Ohsawa 

et al. 2002) 
NMDA-induced nocifensive responses 

(Ohsawa et al., 2002) 
Tail flick sensitivity (late phase) (Narita et al., 

1996) 
Multireceptive cell excitability (Dickinson et 

al. 1997) 
NMDA currents (Ohsawa et al., 2002) 

 
Nocifensive responses to formalin (Ohsawa et 

al. 2002) 
Sensory 

Afferent Fibers 
PACAP Nocifensive responses to formalin (Sandor et 

al., 2009) 
Heat-injury induced thermal sensitivity 

(Sandor et al., 2009) 
Acetic acid-induced writhing behaviors 

(Sandor et al., 2009) 
Thermal / mechanical sensitivity (baseline) 

(Sandor et al. 2009) 
Activity of knee joint (Sandor et al. 2009) 

n.c.: no change  

Table 4.1. Summary of site-specific actions of PACAP or PACAP(6-38)  

 

  

 

n.c. 
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